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PARAMETER SET ESTIMATION OF TIME VARYING 

SYSTEMS 

By 

John Watkins, Ph.D. 

The Ohio State University, 1995 

Stephen Yurkovich, Adviser 

Parameter set estimation (PSE), a class of system identification schemes which 

aim at characterizing the uncertainty in the identification experiment, will play a vital 

role in robust identification for control. An important step in current research along 

these lines is development of PSE algorithms for systems which are time varying in 

nature; this is particularly true if the identified model set is to be used in an adaptive 

setting. 

In this dissertation, the Optimum Volume Ellipsoid (OVE) algorithm for pa- 

rameter set estimation of time-invariant systems is extended to time-varying sys- 

tems. Building on this development of the OVE algorithm for Time-Varying systems 

(OVETV), two algorithms are also presented for reducing the computational com- 

plexity of the optimal time update equations. These algorithms, scalar addition and 

scalar multiplication, reduce the computational complexity of the time update equa- 
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tions by constraining the new ellipsoid to be parameterized by the previous ellipsoid 

and a single new parameter. Several examples are presented in detail. 

Following this, extensions to the OVE and OVETV algorithms are presented. The 

algorithms are extended to handle multiple-input, single-output (MISO) systems. It 

is shown how knowledge of dependencies in the parameter variations can be exploited 

to reduce the number of computations in the resulting algorithm. A "square-root" 

implementation of the OVE algorithm is developed which has improved numerical sta- 

bility properties. We show how the scope of OVE-ISP, an OVE-based input synthesis 

procedure, can be extended to handle systems with known transportation lag. 

Lastly, it is shown how the OVE and OVETV algorithms can be utilized for fault 

detection and isolation (FDI). Two methods are suggested for detecting faults in 

dynamical systems. The first method relies on a consistency check which is integral 

to the OVE and OVETV algorithms, while the second method utilizes an ellipsoid 

intersection test to detect a fault. Two "recovery" strategies are also presented which 

allow the OVE and OVETV algorithms to continue to track the parameters after a 

fault is detected. 

During the course of this research, we derived some extremely useful routines using 

symbolic computations for linear time-varying systems; these appear in an appendix 

to the dissertation. 
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CHAPTER I 

Introduction 

1.1    Motivation 

Throughout the centuries, humans have desired to control their environment. Within 

the last 150 years, a large body of theory has been developed for designing algorithms 

which are capable of controlling elements of this environment autonomously. Most 

of these algorithms depend either explicitly of implicitly on a mathematical model 

of the system to be controlled. There are two fundamental methods for developing 

models which describe the dynamic behavior of a system. 

The first method is an analytical approach whereby these mathematical equations 

are developed from the basic laws of physics, chemistry, biology, etc. One drawback 

with this approach is the fact the system may be too complex for the derivation of a 

model to be practical or even possible using this approach. 

In contrast, the second method for deriving a model, system identification, is "rel- 

atively' easy to use. System identification is an empirical approach whereby experi- 

ments are performed on the system, and parameter values of a model are estimated 

based on the observed data. This method is not without its drawbacks. First of all, it 

1 



u 

Estimator 

CHAPTER I.  Introduction 

Y 

Parameter (Set) 
Estimate 

Figure 1: System identification scheme 

may not be valid for all inputs and operating points. Secondly, in general, it does not 

provide as much physical insight into the problem as the analytical approach. Most 

complex systems usually require some combination of these approaches. 

In spite of these drawbacks, system identification is a very powerful tool and the 

subject of this dissertation. A typical block diagram of a system identification scheme 

is shown in Figure 1.1, where the plant is the system to be modeled, u is the system 

input, and y is the system output. The estimator attempts to find parameters (or 

a set of parameters) which describe the behavior of the system. Unfortunately, this 

process is complicated by the fact that this must be done in the presence of noise and 

uncertainty, v. 
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Not surprisingly, the characterization of v dictates the nature of the algorithm 

used to estimate the parameters. Most traditional parameter estimation algorithms 

assume that v is a random variable which satisfies certain statistical properties. Given 

these assumptions, the algorithms seek to find a "best" estimate of the parameters 

that describe the system. A problem with this approach is the fact that this "best" 

estimate will probably not match the "true" parameters exactly. Consequently, there 

is no guarantee that a control algorithm designed for this "best" estimate will perform 

satisfactorily on the actual system. 

Alternatively, it can be assumed that v is unknown-but-bounded. This results in a 

parameter set which is theoretically guaranteed to contain the true parameter. If the 

control algorithm is designed for the entire parameter set, some sense of robustness 

has been gained. 

Conceptually, parameter set estimation is a simple idea. Consider the system 

yk = buk + vk, (1.1) 

where 

- 1 < vk < 1, (1.2) 

and where b is the parameter we seek to estimate. Solving (1.1) for vk and substituting 

into (1.2) results in — 1 < yk — buk < 1 or 

Vk ~ 1 < buk < yk + 1. (1.3) 

An experiment was performed on the system from which the data in Table 1 was 

measured. 
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Table 1: Measured data 

k    uk     yk 

1 0.5    1.5 
2 1.0    1.5 

Substituting the measured values at k = 1 into (1.3), we find that the parameter b 

must lie within a certain feasible range, or set, of parameters; that is, b must satisfy b £ 

[1,5]. Likewise, at k = 2, b must also satisfy b € [0.5,2.5]. The parameter b is constant 

(time-invariant), and therefore, must satisfy both these conditions. Therefore, the 

actual value of b must be contained in the "feasible parameter set" [1,2.5] where 

[1,2.5] = [1,5] n [0.5,2.5]. 

Unfortunately, as this concept is extended to higher dimensions, the feasible pa- 

rameter set is quite complicated and difficult to track computationally. Because of 

their computational efficiency and ease in mathematical expression, ellipsoids are 

often used to overbound the feasible parameter set. However, if the estimated pa- 

rameter set is to be used for robust control, there is a tradeoff between the volume 

of the ellipsoid and the achievable performance level. Consequently, we would like to 

find the smallest volume ellipsoid which is guaranteed to contain the true parameter 

values. 

This was the motivation for the Optimal Volume Ellipsoid (OVE) algorithm which 

was developed in [1] for single-input, single-output linear time-invariant systems. This 

algorithm is computationally efficient and is guaranteed to contain the true plant. 
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While the OVE algorithm was developed for linear time-invariant systems, there 

is a large number of systems where the underlying model to be identified is linear 

time-varying. The identification of time-varying systems is an integral part of many 

adaptive control and adaptive signal processing applications. Consequently, the pri- 

mary goal of this dissertation will be to extend the OVE parameter set estimation 

algorithm for identification of time-varying systems. 

1.2    Review of the Literature 

While the work in this dissertation was motivated in particular by [1], there has been 

a large amount of research in this area. Most parameter set estimation algorithms 

use either ellipsoids or boxes to bound the feasible parameter set; one exception is 

found in [2] where the exact feasible parameter set is calculated. 

The most well known methods for bounding the feasible parameter set are the 

Optimal Bounding Ellipsoid (OBE) algorithms. Fogel and Huang [3] were the first 

to apply overbounding ellipsoids to the parameter set estimation (PSE) problem. In 

their algorithm, the center of the bounding ellipsoid can be viewed as a particular 

weighted least squares estimate. They considered two optimization strategies. One 

strategy sought to minimize the volume of the ellipsoid while the second strategy 

sought to minimize the lengths of the ellipsoid semi-axes. 

A third optimization strategy with no interpretable geometrical significance was 

used by Dasgupta and Huang in [4]. In [5], it was shown how these optimization 

strategies can be combined with different weighting strategies to include a larger 
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family of algorithms that they call unified OBE (UOBE). Included in this family is 

the set-membership weighted recursive least squares (SM-WRLS) algorithm. 

These algorithms are recursive in nature. They also have the capability of ignor- 

ing redundant data. However, even when they use the minimum volume optimization 

strategy, they do not produce the ellipsoid with the minimum volume. This conser- 

vatism is undesirable for robust control design. Although the volume convergence of 

the Fogel and Huang algorithm was improved by Belforte and Bona [6], it still did 

not produce an ellipsoid with the minimum volume because the center estimate was 

constrained to be a weighted least square estimate. 

In [1], Cheung, Yurkovich, and Passino eliminated this constraint which led to the 

Optimal Volume Ellipsoid (OVE) algorithm, shown to have desirable convergence 

properties (proof) and geometrical interpretation. Two independently developed al- 

gorithms, which have been shown to be mathematically equivalent to the OVE algo- 

rithm, are the the modified OBE (MOBE) algorithm of [7] and the EPC algorithm 

of [8]. The difference between the algorithms lies in convergence proofs, geometrical 

interpretation, and implementation. 

Several extensions to the OVE algorithm have already been considered. In [9], 

a modified-OVE (MOVE) algorithm was presented which allows for time-varying 

bounds on v and simplifies the parameter update calculations. The OVE algorithm 

was extended for interconnected systems in [10]. In [11], an OVE-based input syn- 

thesis procedure was presented which seeks to choose the system input such that a 

rapid decrease in ellipsoid volume occurs. 
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We are particularly interested in how PSE can be extended to time-varying sys- 

tems. As in the time-invariant case, most adaptive PSE algorithms have used over- 

bounding ellipsoids. However, two algorithms using polytopes can be found in [12]. In 

[13], three ellipsoid-type algorithms for tracking time varying systems are discussed: 

scalar bound inflation, fixed-memory bounding, and bound incrementing. Most adap- 

tive PSE algorithms fit into one of these three categories. 

The simplest of these is scalar bound inflation. In this algorithm, the ellipsoid is 

expanded uniformly in all direction before processing the new measurement. While 

computationally simple, one difficulty with this approach has been choosing the ex- 

pansion factor such that the set estimate is guaranteed to contain the true plant. 

Similar to the forgetting factor in the standard weighted recursive least squares al- 

gorithm, the expansion factor is often chosen heuristically, usually to be a constant 

[5]. 

In [14], Rao and Huang show how the Dasgupta-Huang OBE algorithm can be 

modified by artificially increasing the noise bound to guarantee consistency if an 

update takes place. However if no update takes place, this consistency can still be 

lost. They also have developed a procedure to "recover" when tracking is lost, for 

example due to an unexpected large parameter jump. 

With fixed memory bounding the data is windowed, that is, only the last L obser- 

vations are used to find the plant estimate. Norton and Mo [13] found this method 

awkward to implement with no advantage over scalar bound inflation or bound incre- 

menting. However, in [5] "back-rotation", an efficient method for implementing the 
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window, is applied to SM-WRLS. With this strategy two additional windowing tech- 

niques were also considered. In the first, instead of a rectangular window, tapered 

windowing is used where the window tapers slowly to zero. In the second, selec- 

tive forgetting is used where only previously heavily weighted data sets are removed. 

These algorithms offer no guarantee of consistency. 

The last strategy that [13] considered was the bound incrementing method. This 

method is based on an explicit parameter variation model in which the possible pa- 

rameter deviation during each time step is assumed to be ellipsoidally bounded. They 

used a result given in [15] which finds the minimum volume ellipsoid that bounds the 

sum of two vectors which are also ellipsoidally bounded. 

A significant motivation for extending PSE to time-varying systems is adaptive 

robust control. As defined in [16], the robust control problem is the problem of ana- 

lyzing and designing accurate control systems given plants which contain significant 

uncertainty. While this is still an open research area, there has been some work in 

this direction. 

In [17], Kosut examined some of the issues involved in using PSE for adaptive 

control. A finite horizon controller was designed for a finite impulse response (FIR) 

model whose parameters were ellipsoidally bounded in [18]. In [19], a controller was 

designed for systems whose output matrix was ellipsoidally bounded. Bound-based 

worst-cased self-tuning controllers were designed in [20]. 

Some very promising results for robust control can be found in [21]. In this work, 

techniques are developed for extracting modeling uncertainty information, vital for 
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H°° robust control design, from the results of PSE algorithms. A worst-case analysis 

was used to address the characterization of parametric uncertainty as additive and 

coprime factor perturbations to a nominal plant model. Techniques for identification 

of reduced-order perturbation weightings were also given. 

1.3    Dissertation Organization 

This dissertation is organized into four main chapters. In Chapter II, the OVE 

algorithm is extended for identification of time-varying systems. After illustrating 

how the equations arise for an optimal time update when there are two parameters 

to estimate, the results of [15] are combined with the optimum volume measurement 

update equations of [1] to develop an Optimal Volume Ellipsoid algorithm for Time- 

Varying systems (OVETV). 

Building on the development of the OVETV, two algorithms are presented for 

reducing the computational complexity of the optimal time update equations. These 

algorithms reduce the computational complexity of the time update equations by 

constraining the new ellipsoid to be parameterized by the previous ellipsoid and a 

single new parameter. One of these algorithms uses the same parameterization as 

the scalar bound inflation method of [13]. However, the algorithms developed in this 

chapter are optimized for volume and combined with the optimal volume measurement 

update equations of [1]. 

Three examples, which illustrate the main feature of the OVETV algorithm, are 

considered in Chapter III. The first is a simple first-order example which compares 
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the OVETV algorithm with the scalar addition and scalar multiplication approaches. 

In the second example, identification of a linear time-varying circuit is used to demon- 

strate how this approach can be applied to sampled-data systems with quantization 

noise. In the final example, the OVETV algorithm is applied to actual data obtained 

from a crude oil distillation column. 

In Chapter IV, four extensions to the OVETV algorithm are presented. In many 

real systems, the output of the system is effected by more than one input. We discuss 

how the OVE and OVETV algorithms can be used to identify multiple-input, single- 

output (MISO) systems. Results are demonstrated on the distillation column example 

of Chapter III. 

Often, the time-varying parameters that we are trying to identify are dependent on 

a smaller set of physical time-varying parameters. If we can exploit this dependence, 

we may be able to simplify the problem and reduce the number of computations 

required to implement the algorithm. Adaptations of the OVETV algorithm are 

developed to utilize knowledge of these dependencies. 

When applying the OVE and OVETV algorithms in practice, numerical round-off 

errors can cause the algorithms to become numerically intractable. To solve this prob- 

lem, we apply an approach that has been successfully used in stochastic estimation 

schemes. A "square-root" algorithm is developed for implementing OVE. Further- 

more, it is shown how the square-root approach can be extended to time-varying 

systems. 

The type of system input for identification experiments has a very significant 
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effect on the "quality" of estimates produced from an identification scheme. The 

final extension to the OVETV algorithm which we will consider in Chapter IV is 

based on the OVE-ISP procedure of [11]. We show how the scope of OVE-ISP can 

be extended to handle systems with known transportation lag such as the distillation 

column in Chapter III. We also demonstrate its application to time-varying systems 

and an important "stabilizing" property that other synthesis strategies do not appear 

to possess. 

Fault detection and isolation (FDI) is concerned with the detection and identifi- 

cation of failures in complex dynamical systems. In Chapter V, we discuss how the 

OVE and OVETV algorithms can be utilized for FDI. Two methods are suggested 

for detecting faults in dynamical systems. The first method relies on a consistency 

check which is integral to the OVE and OVETV algorithms, while the second method 

utilizes an ellipsoid intersection test to detect a fault. 

Two "recovery" strategies are presented which allow the OVE and OVETV algo- 

rithms to continue to track the parameters after a fault is detected. The first strategy 

simply resets the current ellipsoid to an ellipsoid which is "large enough" to guar- 

antee that the "true" parameter is contained in the parameter set immediately after 

a fault is detected. An alternative strategy based on projections is also introduced. 

While this algorithm is not guaranteed to recapture the ellipsoid, it usually produces 

ellipsoids with smaller volumes. 

An integrated approach is also suggested for combining these recovery strategies. 

Finally, the algorithms of Chapter V are illustrated using the linear time-varying 
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circuit example of Chapter III. 

Finally, during the course of this research, investigation into time-varying linear 

systems was imperative. In so doing, we derived some extremely useful routines using 

symbolic computations for linear time-varying (LTV) systems. To our knowledge, 

such routines have not appeared elsewhere in the open literature; we have gathered 

this material in a stand-alone unit, given in Appendix B. 



CHAPTER II 

OVE for Time-Varying Systems 

2.1     Overview 

Identification of time-varying systems is essential for many adaptive control and adap- 

tive signal processing applications. In particular, adaptive tracking algorithms are 

needed for (i) complex systems which admit a linear, time-varying parameterization, 

(ii) failure detection and identification (FDI) systems, and (iii) gain scheduling con- 

trol systems where supervisory controllers must track changing system characteristics. 

While most adaptive tracking algorithms assume that the perturbations to the system 

satisfy certain statistical properties, in many real world applications it is often more 

natural to assume that these perturbations are unknown-but-bounded. 

Traditional system identification techniques abound for such applications, where 

a point in the parameter set is identified to model the system. A different philosophy, 

discussed in [22], [17], and elsewhere, is to seek to identify a set of models which 

are consistent with the incoming data (referred as set membership identification or 

parameter set estimation, or PSE). A major motivation for adopting this philosophy 

for the identification portion of the overall control design process is for use in robust 

13 
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control design. While many adaptive and auto-tuning techniques have been developed 

based on point estimation schemes over the last 20 years, it has only been recently 

that connections have been made to the robust control design problem for ellipsoidally 

based PSE techniques; see, for example, [21] and [19]. It is for this reason, within this 

promising line of research for robust identification and control, that we focus here 

on PSE algorithms, and limit our discussions and comparisons with point estimation 

schemes. Indeed, there exists a large body of literature, which we cannot address 

here, on point estimation schemes, many of which are useful in practice (see, e.g., 

[23]). 

Generally speaking, PSE algorithms are classified as robust identification tech- 

niques, because they attempt to characterize uncertainty by identifying the set of 

feasible parameters, given the data from the identification experiment. That is, PSE 

seeks to identify a set of parameters which are feasible with the measured data and 

the bounds on the perturbations. In general, this feasible set is an irregular convex 

set. Because of their computational efficiency and ease in mathematical expression, 

ellipsoids are used to overbound the feasible set. When PSE is used in robust control 

or robust adaptive control, there is a tradeoff between set size and system perfor- 

mance. Consequently, one seeks the smallest volume ellipsoid which is guaranteed to 

contain the "true" plant parameters. 

In [13], the authors considered the bound incrementing and scalar bound infla- 

tion methods for PSE of time-varying systems. In [1], the Optimal Volume Ellip- 

soid (OVE) algorithm was developed for a time-invariant single-input, single-output 
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(SISO) auto-regressive with exogenous input (ARX) model, and extended in [10] for 

interconnected systems. The bounded incrementing method of [13] uses an optimum 

volume algorithm found in [15] for updating the time equations. 

In this chapter, after illustrating how the equations arise for the optimal time 

update equations when there are two parameters to estimate, we will combine the 

results of [15] with the optimum volume measurement update equations of [1] to 

develop an Optimal Volume Ellipsoid algorithm for Time-Varying systems (OVETV). 

The OVETV enjoys many of the favorable characteristics of the OVE, which in fact 

are shared with other mathematically equivalent techniques such as extensions of the 

modified OBE algorithm of [7], and the ellipsoid with parallel cuts (EPC) algorithm 

of [8]. 

Building on the development of the OVETV, we present two algorithms for re- 

ducing the computational complexity of the optimal time update equations, thereby 

making real-time implementation feasible for many applications. These algorithms 

reduce the computational complexity of the time update equations by constraining 

the new ellipsoid to be parameterized by the previous ellipsoid and a single new 

parameter. One of these algorithms uses the same parameterization as the scalar 

bound inflation method of [13]. However, the algorithms developed in this chapter 

are optimized for volume and combined with the optimal volume measurement update 

equations of [1]. 
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2.2    Problem Statement 

Consider the time-varying SISO ARX model 

Vk   =   Ojfa + Vk, (2.1) 

9k+1   =   9k + wk. (2.2) 

r iT 

where 6k =    alk   ■••   ank   bik   ••■   hmk      is the parameter vector, yk is the system 

output, Uk is the system input, and (j)k =     —yk-i    • • •   — Vk-n   Uk-i   - • •   uk-m J 

is the regression vector. Here / is the number of time steps delay in the system where 

0 < / < ra. Let r = n + m — l+l. The system disturbance, vk, and the parameter 

disturbance vector, wk G 3£r, are assumed to satisfy the following bounds 

Xk < vk < 7*> (2-3) 

wT
kR-k

xwk < 1, (2.4) 

where 7,  < 7k and 7fe, 7fc, and Rk G 3?rXr are known at each time k.  The vector, 

Wk, represents the change in the parameter vector at each time k. The matrix, Rk, 

is symmetric, positive definite and represents an ellipsoidal bound on the possible 

parameter vector deviation during each time step. 

Equations (2.1) and (2.2) and the bounds in (2.3) and (2.4) are used to define 

the adaptive parameter set estimation problem. Let Hk-i C 3Jr be the set such that 

all 6k-\ G Hk-i are feasible parameters of the plant which are consistent with past 

Vki <l>k, 7fe, 7fc, and Rk. *  Let Fk C 9£r be the set such that all Ok G Fk are feasible 

1In this work, the notation A C B means that A is a subset of B, and therefore, A may be equal 
to B. 
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parameter estimates of the plant which are consistent with the measurements at time 

k. That is, from (2.1) and (2.3), 

Fk = {6k G r : lk < yk - öUk < 7*}, (2-5) 

where Fk is the region between two parallel hyperplanes. 

Let Gk C 9£r be the set such that all 0k G Gk are feasible parameter estimates of 

the plant which are consistent with 0k-\ G Hk-\. That is, from (2.2) and (2.4), 

Gk = {9k G »r : (9k - e^f R-k\{6k - 0k.t) < l;^_x G Hk^}. (2.6) 

Before incorporating a new measurement, the set, Gk, tells us how much the parame- 

ter set estimate at time (k — 1), Hk-i, must expand to guarantee consistency at time 

k. For Hk to be consistent, it must satisfy (2.5) and (2.6); therefore, Hk is given by: 

Hk = Gkf) Fk. (2.7) 

The problem of parameter set estimation for time-varying systems is to find Hk ex- 

plicitly in the parameter space where Hk is defined recursively by (2.5), (2.6), and 

(2.7). In general, however, computing (2.7) is an extremely difficult problem because 

the feasible parameter space, Hk, is an irregular convex set. Consequently, ellipsoids 

will be used to overbound Hk because of their ease in mathematical expression and 

computational efficiency. 

Define the ellipsoid Ek-\ as 

£fc_x = {£*_! : (0*_! - h-ifPk\{h-i - h-i) < 1; Ok-i G r} (2.8) 
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where 6k-\ € W is the center of the ellipsoid, and Pk-\ G 3ftrxr is a symmetric, 

positive definite matrix. Similarly, define Ek as 

Ek = {Ok : (0k - 0kfPk-\0k - 9k) < 1; 0k G r} (2.9) 

where 6k G $r is the center of the ellipsoid and Pk € W*r is a symmetric, positive 

definite matrix. 

Choose Ek-X such that Ek-X D #jt_i. By replacing #fc_i with Ek-X in (2.6), we 

obtain a new set, Gk, given by 

Gk = {9k e r : (ok - e^fR^e, - ek.x) < i-,ek^ e E^}.        (2.10) 

In general, Gk is not an ellipsoid. Consequently, we choose Ek such that Ek D Gk, 

i.e., we wish to bound the set, Gk with an overbounding ellipsoid. In particular, we 

would like to choose the Ek with minimum volume, that is 

Ek = arg£; min{vol(£) : E D Gk}. (2.11) 

In addition to Gk, at time k the ellipsoid, Ek, is also constrained by Fk as defined in 

(2.5). Clearly, we wish to choose Ek such that Ek D Ek f) Fk, i.e., we wish to bound 

all consistent parameter estimates with an overbounding ellipsoid. As with Ek, we 

seek the Ek with minimum volume, that is 

Ek = argE min{vol(£) : E D Ek n Fk}. (2.12) 

Equations (2.5), (2.10), (2.11), and (2.12) provide a recursive algorithm for finding 

an ellipsoid Ek such that Ek D Hk. However, this algorithm assumes that the solutions 
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to (2.11) and (2.12) can be calculated. The solution to (2.12), the measurement 

update equations, will be solved using a modified version of the OVE algorithm 

found in [9]. The solution to (2.11), the time update equations, will be developed for 

r = 2, i.e., when there are two parameters to estimate. A result by Chernous'ko will 

be used to generalize this to the full r-dimensional case [15]. 

2.3    Measurement Update Equations 

In [1], Cheung, Yurkovich, and Passino developed the OVE algorithm, with conver- 

gence proofs, for linear time invariant systems, that is, when Wk = 0. This result was 

extended for interconnected systems in [10]. The OVE algorithm solves the following 

optimization problem: 

Ek = argE min{vol(£) : E D Ek-X n Fk). (2.13) 

The most significant difference between the OVE algorithm and the seminal work of 

[3] is that unlike the OVE algorithm, the OBE algorithm constrains the center of the 

new ellipsoid, Ek, to satisfy a "modified" recursive least squares estimate. It is, in 

fact, true that the OVE, the modified OBE (MOBE) algorithm of [7], and the EPC 

algorithm of [8] are mathematically equivalent. The difference between the algorithms 

lies in convergence proofs, geometrical interpretation, and implementation. 

The OVE algorithm in [1] assumes that jk = —7fc = 7. In [9], Gassman and 

Yurkovich discuss the modified OVE (MOVE) algorithm which uses the more general 

bound in (2.3). The optimization in (2.13) is identical to (2.12) with Ek replaced by 
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Ek-i. Consequently, we will be able to use the MOVE algorithm by simply replacing 

dk-\ and Pfc-i with 6k and Pk, respectively. 

With these substitutions, the algorithm is given as follows: 

1. Set 

-k   =   max(   urpi u/2   ' _1) V-U> {<Pipk<pkr12 

"" = mm( <tfW 'l) (   5) 

K &k > 1 or ®k < — 1) then the observed data is inconsistent with Ek and the 

algorithm stops. 

2. Set ek = akak. If ek < —^, then no measurement update is necessary, that is 

h = k      Pk = Pk. (2.16) 

3. Set fik 

4. If \jik\ > P, then 

bk   =   2r»k+
1-±^ (2.17) 

ßk 

bk - sign(/xfc)^ - 4(r + 1)(1 + rek) 
Tk   ~ 2(r + l) 

(2.18) 

*fc   =   rfc(rfc-^) + l (2.19) 

°k (2.20) 
l_a. 
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5. If \fik\ < Pi then rk = 0 and 

a   =   maxflajtl, \ah\) (2.21) 

<rk   =   ra2 (2.22) 

Kl - a2) 
r — 1 

6. Update 0^ and P* 

** = §k + 7^WIwi (2-24) 

P X   P   _L ^ X \Pk<t>k4>lPk ft) 0-x 
-Pfc   =   öfc-nt + (CTA: - bk)       f,   — (2.25) 

nFk<Pk 

To arrive at the equations, an affine transform can be used to transform the 

ellipsoid Ek to a unit ball centered at the origin. In the transformed coordinate 

system, ak and ak are the coordinates along <f>k of the two hyperplanes (defined by 

Fk) which are orthogonal to fa. The consistency check in step 1 is used to verify that 

the intersection of Ek and Fk is not empty. If this intersection is empty, then either 

E0 did not contain the "true" parameter or the assumptions made in (2.1) through 

(2.4) were invalid. Recovery strategies have been developed to handle the situation 

where an inconsistency does occur. 

The check in step 2 is used to determine whether the current data record contains 

enough information to reduce the ellipsoid volume. In steps 4 and 5, p is chosen to 

be a very small value and is used to determine when ak « —cik. In the transformed 

coordinate system, Tk, fa, and 8k are used to characterize the optimum volume ellip- 

soid Ek- The parameter Tk is the center coordinate of Ek along fa, <?k is the squared 
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length of the semi-axis of Ek along fa, and 6 k is the squared length of the semi-axes 

of Ek orthogonal to fa. In step 6, the center 9k and orientation matrix Pk of the 

optimum volume ellipsoid Ek are given in the original coordinate system. Finally, it 

should be noted that a similar algorithm for set membership state estimation can be 

found in [24]. 

2.4    Time Update Equations 

Initially, we will constrain Rk to be (%I where / is the identity matrix, and (k bounds 

||u>fc||2. Doing so, equation (2.10) can be rewritten as 

Gk = {9k e r : (Ok - 9k-i)
T(9k - 0*-i) < CiU; 0k-i € £*_i}. (2.26) 

Later, this constraint will be relaxed. 

Clearly for (k-i - 0 where k = 1... N, Ek = Gk = Ek-\, that is, this algorithm 

reduces to the MOVE algorithm. Note that, while E0 cannot be chosen to be 3Jr, it 

can be chosen arbitrarily large so that the "true" parameter vector, 90, is guaranteed 

to be in EQ. 

To solve (2.11), it is important that we understand the nature of Gk. From 

(2.26), we see that Gk is a union of hyperspheres with radius (k whose centers are 

contained in the ellipsoid, Ek-\. The hyperspheres of greatest interest are those on 
A 

the hypersurface of the ellipsoid because they define the hypersurface of Gk. See 

Figure 2 for an example of the 2-D case. 

Let V be the unit vector normal to the hypersurface of Ek that points away from 
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-6 

Figure 2: Union of Ek-\ with spheres on the surface of Ek-\ 

the interior of Ek. Clearly, the distance along V between the hypersurface of Ek and 

the hypersurface of Gk is always (k-i- In fact5 this defines the hypersurface of Gk. 

The surfaces of Ek-\ and Ek are defined by 

Sk-i = {Ok-i : (Ok-i - Ok-xfP&iOk-! - ek-i) = l;0k-i € W}, (2.27) 

Sk = {0k: {Ok - ekypk-\ek - ek) = i-,eke r}. (2.28) 

Let the distance between two parameter vectors, 0; and Oj, be given by 

d(6i,0j) =|| Oj — 8j ||2 (2.29) 

Next we need the following lemma. 
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Lemma 1   The minimum distance between the hypersurface of Ek and the hypersur- 

face of Ek-i must be (k-i, that is, 

Ck-i = min{d{9k-u0k) : 0fc_i € Sk-U9k € Sk} (2.30) 

Proof: If the minimum distance is less than (k-i, then Ek ^> Gk. This is a contradic- 

tion because Ek must bound Gk. If the minimum distance is greater than (k-i, then 

there must exist some ellipsoid E D Gk where vol(E) < vol(Ek). This is a contradic- 

tion because Ek must be the minimum volume ellipse that contains Gk. Therefore, 

(2.30) must hold. □ 

Using Lemma 1, equation (2.11) can be rewritten as 

Ek = argEmin{vol(£) : min(d(0*_i A)) = Cfc-iA-i e Sk-U6k € Sk).       (2.31) 

That is, we want to find the minimum volume ellipsoid, Ek, such that the minimum 

distance between the surface of Ek-\ and Ek is equal to (k-i. This suggests a two step 

optimization problem. First, solve (2.30) analytically for minimum values 0£_a and 

0%. That is, find 9l_1 and 0% as a function of Ek-\ and Ek such that d(6*k_^0%) = (k-i. 

Secondly, substitute ^_x and 0*k into (2.31) and solve for the minimum volume Ek as 

a function of Ek_\ • 

Using the singular value decomposition (SVD), the positive definite matrix, Pk-i, 

used to define the ellipsoid in (2.8) can be factored as 

A-i = Vfe-iAfc-id (2.32) 
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where Vfc-i € 3£rXr is orthogonal and Afc_i € 3£rXr is diagonal. The axes of the ellipsoid 

are aligned with the columns of Vk-i. The semi-axes lengths are given by the diagonal 

elements of A^ [25]. Note also that vol(Ek-i) oc y det(Pfc-i) = Jdet(Ak-i). Due to 

the symmetry of Ek-i and Gk, the minimum volume Ek must have the same center 

and axes as Ek, that is, 

Ok   =   Ok-i, (2.33) 

Pk   =   Vk-rkkVl,. (2.34) 

Consequently, the optimization problem becomes one of finding Afc as a function of 

Afc_i such that (2.30) is satisfied and ydet(ÄA;) is minimized. 

With this said, the general r dimensional problem will be discussed later.   The 

two dimensional problem, r = 2, is solved next. 

2.4.1    Two-Dimensional Case 

Although most systems that we would like to identify have more than two parameters 

to estimate, the two-dimensional problem is important because it is easy to visualize 

and it provides insight into the r-dimensional problem. In the two-dimensional case, 

"ellipsoids" become "ellipses" and "volume" is actually "area". 

As discussed in the previous section, we will begin by solving (2.30) for ö^_x and 

01- By (2.33) and (2.34), it is clear that we can consider ellipses centered at the origin 

with axes aligned along the coordinate axes without any loss of generality. Define the 
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surface of ellipses, E\ and E2, as 

2 2 

St   =   {*i,yi:^ +§■ = !;*!,!&€*}, (2-35) 
«I      bi 

2 2 

S2   =   K, 2/2:^ + 11 = 1;^, 2/2 €3?}, (2.36) 
02 ft2 

where at, &i, ö25 
an<i ^2 are positive constants.   The distance between St and 1S2, 

(2.29), can be rewritten as 

d(x1,x2,y1,y2) = y/fa - x2)
2 + (t/i - y2)

2. (2.37) 

Now we can prove the following lemma. Note, that because of symmetry, we can find 

the solution in the upper right quadrant without any loss of generality. 

Lemma 2  The parameters which minimize (2.37), the distance between S\ and S2, 

must satisfy one of four solutions: 

• Minimum distance along y-axis: 

xl = 0      y\ = bu (2.38) 

x*2 = 0      yl = h, (2-39) 

with 

d(x*1,x*,y*1,y*2) = \b2-b1\, (2.4O) 

• Minimum distance along x-axis: 

xl = ai      y{ = 0, (24I) 

x*2 = a2      y{ = 0, (848) 
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with 

• Ellipses Intersect: 

d(x\,x*2,yl,y*2) = |a2-ai|, 

with 

X\=Pi Vl=P5, 

d{x*i,x*2,yl,y;) = 0, 

• Minimum distance between axes: 

with 

where 

Pi 

P2 

Pz 

Pi 

Ps 

2 z.2        1.2   2 

4„2 b\a\ - 2bl
2a

1
2a{ + a\a\ - bVa\ + 2b[a\a{ - aVaz

2 

b\b2
2 - b\b\ - 2b\V2a{ + b2a\ + 2b\b\a\ - a\b{, 

a1a2-"" — A2 y/H^bJ 
y/Pl 

bib2yja\ 

VPT 

2~al 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

Xl      (al-bl)^pl      Vl      (al-bl)^ 
«2\/^                    *                 blVP~2 

X2      (al-H)^pl      Vl      {al-bl)^ 

(2.47) 

(2.48) 

d[x1, x2, yi,y2) — \ 
{b\al-a\bl){bl-al-b\ + a\) 

{bl-al){b\-a\) 
(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

(2.54) 
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Proof: Because d(xi,x2,yi,y2) is nonnegative, minimizing d2 is equivalent to mini- 

mizing d. Using the Lagrange multiplier method, the constraints posed by the ellipses, 

(2.35) and (2.36), can be augmented to d2 to form 

/(si,32,yi,y2,Ai,A2)   =   (x1-x2)
2 + {y1-y2)

2 + Xi(x2
1bl (2.55) 

+y2
1a

2
1 - a\b\) + \2{x\b\ + y\a\ - a\b\). 

For f(xl,xl,yl,y2,Xl,X2) to be a minimum, the differential, df(x*1,x*2,y{,yl,\*1,\*2) 

must be 0. Taking the differential of (2.55), we get the following set of equations that 

must be solved 

2(x*1-x*2) + Xi(2xib2
1)   =   0, (2.56) 

2(2/i* - Vl) + KVvlA)  = °> (2-57) 

-2(xl-x*) + \*2(2x*2b
2) = 0, (2.58) 

-2(yr-ya*) + A;(2y2*o2) = 0, (2.59) 

xfbl + yfal-albl = 0, (2.60) 

x?b\ + y?a\-a\b\ =■ 0. (2.61) 

The solution of (2.56) through (2.61) yields Lemma 2. □ 

The second step of the optimization process requires substitution of x\, j/J", #*,; 

and y2 into (2.31). Doing so and solving for the minimum volume ellipse, E2, results 

in the following lemma. 

Lemma 3  The minimum volume ellipse, E2, whose surface, S2, is at least ( > 0 
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from the surface S\ of ellipse E\ is parameterized by 

a2 = (Gl + C   a\ = h\ (2.62) I p6          otherwise l       y 

' ^/2\/Ps + («l - bl)y/pl   01 > &i 
b2= \  h + C    ox = bx (2.63) 

where p\ through ps are defined in Appendix A. 

Proof: As mentioned above, we begin by substituting x\, j/J, x\, and y\ into (2.31). 

However, Lemma 2 gives four possible solutions which depend on the values of a\, &i, 

a2, and b2. Clearly, we are not interested in the 3rd case, that is, when the ellipses 

intersect. The case that we are most interested in is case 4, that is, when the minimum 

distance is between the axes. However, case 4 is not a solution when a\ — b\. 

We begin by considering the case a\ = &i, and assume that the minimum distance 

is along the y-axis, i.e., case 1. We wish to minimize the volume of E2, which is 

equivalent to minimizing 

V = a2b2. (2.64) 

If the minimum distance is along the y-axis then b2 — &i = £ and b2 = &i + C- Also 

implied by (2.40) is that a2 - ax > (. Consequently, a2 = ar + C, if (2.64) is to be 

minimized. Clearly, if we assume that the minimum distance was along the x-axis, 

we would get the same result. 

Now consider the case when ax ^ &i and assume that the minimum distance is 

between the axes. The constraint posed by (2.49) can be appended to (2.64) giving 

KK b2, A) = a2b2 + X((b2
2 -al-b\ + a\){b\a\ - a\b\) - (2(b2

2 - a»)(6? - a?)) (2.65) 
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to be minimized. For Va(al, b2, A*) to be a minimum, the differential, dVa(a*2, b*2, A*), 

must be 0. Taking the differential of (2.65), we get the following set of equations that 

must be solved 

(b? 

b* + 2\\a*2a\bf - 2b\af + b\a*2bf + b\a*2a\ - b\a\ 

- ?a\a\ + C?a\b\) 

a*2 + 2\*{b*2b\a? - 2a\bf + a\b*2a*2
2 + a\b*2b\ - a% 

- (%b\ + Cb*al) 

a? ~ h\ + a\){b\af - a\bf) - (2(b? - af){b\ - a{) 

0      (2.66) 

0      (2.67) 

0      (2.68) 

The solution of (2.66), (2.67), and (2.68) yields Lemma 3. □ 

We can now prove the following theorem. 

Theorem 1 For r = 2, let Pk.x be factored as Pfc-i = V^-iAfc-iV^x where Vk-i G 

9£2x2 is orthogonal and 

Afc-i = 
a\    0 
0    b\ 

(2.69) 

Then, the minimum volume ellipse, Ek, which contains the set, Gk, where Ek is 

defined by (2.9) and Gk is defined by (2.26), is given by 

Pk = Vfc-xA*^ (2.70) 

where 

Afc = 
a\    0 
0    b\ 

(2.71) 

and a2 and b2 are given by Lemma 3 with ( replaced by (k. 
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Proof: The proof follows directly from equations (2.33) and (2.34) and Lemmas 1-3. 

D 

Example of Minimum Volume Ellipse 

In this section we will apply Theorem 1 to a particular Ek-\ and (k-i- Let (k-i = 0.5 

and Ek-i be given by (2.8) with 

Pk-i   = 

Qk-i 

' 25 -5 " 
_ -5 

' 6 ' 

5 

7 ' 

(2.72) 

(2.73) 

The SVD of P*-i is given by 

Vk-X 

Afc-i 

-0.9732 -0.2298 
0.2298 -0.9732 

26.1803       0 
0 3.8197 

(2.74) 

(2.75) 

From (2.69), we get a\ and b\ which are used by Lemma 3 to solve for a-i and &2- 

Substituting a^ and 62 into (2.71) results in 

A* 
32.6125       0 

0        6.1300 
(2.76) 

Using (2.33) and (2.34), Ek is given by (2.9) with 

Pk   ~- 

0k   -- 

31.2145 -5.9217 
-5.9217 7.5279 

' 6 " 
_ 7 

(2.77) 

(2.78) 
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Figure 3: Minimum volume ellipse, Ek, that bounds Gk 

In Figure 3 we see that Ek does bound Gk. Note that although Ek has the smallest 

volume of any ellipse that contains Gk, it is still larger than Gk except for the case 

ai = &i. However, except for the cases where ai > h or ai < &i this difference in 

volume is small. 

2.4.2     r-Dimensional Case 

To generalize this to r-dimensions, we will use a result by Chernous'ko. In [15], 

Chernous'ko finds the minimum volume ellipsoid which bounds the sum of two vectors 

which are also ellipsoidally bounded. This is exactly the problem posed by (2.11). 
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The solution is given as follows: 

1. Solve the generalized eigenvalue problem 

Rk-iXj = XjPk-iXj (2.79) 

for each Aj, j € [l,r]. 

2. Solve 
r        1 r 
E T-^— =   ,      ^ (2-80) £jA;+P     p(p+l) v      ; 

for the unique p > 0. 

3. Then, the solution to (2.11) is given by 

Ok   =   ek-i (2.81) 

Pk   =   (p+l)Pfc-i + (p"1 +l)^-i (2.82) 

To arrive at these equations, a nonsingular matrix can be found which transforms 

the ellipsoid Ek-i to a unit ball and the ellipsoid Gk to an ellipsoid whose semi- 

axes are aligned with the coordinate axes. After the transformation, the semi-axes 

length of the ellipsoid Gk are given by the square root of the generalized eigenvalues 

of (2.79). The optimization in (2.11) is then solved in the transformed coordinate 

system. This optimization requires the solution of (2.80). A proof that (2.80) has 

only one positive root can be found in [15]. After transforming back to the original 

coordinate system, the solution to (2.11) is given by (2.81) and (2.82). Note that Rk 

is no longer constrained to be £|J. 



34 CHAPTER II.   OVE for Time-Varying Systems 

2.5    OVETV Algorithm Summary 

The steps of the Optimal Volume Ellipsoid for Time-Varying systems (OVETV) al- 

gorithm are summarized below. 

1. Choose the initial ellipsoid, E0, "large enough" such that the initial "true" 

parameter vector, 0O, 1S m Eo- 

2. Find Ek such that 

Ek = argE min{vol(£) : E D Gk}. (2.83) 

3. Find Ek such that 

Ek = arg£ min{vol(£) : E D Ek D Fk}. (2.84) 

4. Repeat steps two and three for each new measurement. 

2.6    Alternative Strategies 

The optimal time update equations require the solution of an rth order generalized 

eigenvalue problem (2.79) and an (r + 1) order polynomial (2.80). Computationally, 

this may not be feasible for certain real-time applications, especially when r is large. 

Consequently, we will consider two alternative algorithms which represent different 

degrees of tradeoff between computational complexity and resulting volume. These 
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algorithms also use the MOVE algorithm to solve (2.12); thus, we will only discuss 

the approximating solutions to (2.11). These algorithms reduce the computational 

complexity by parameterizing the new ellipsoid with one parameter instead of r pa- 

rameters. Again, we will begin with the two-dimensional case. 

2.6.1    Two-Dimensional Case 

If we consider the 2-dimensional system described in Section 2.4.1, one possible pa- 

rameterization is given by 

a2   =   7/ai (2.85) 

b2   =   Tjh. (2.86) 

The parameterization in (2.85) and (2.86), scalar multiplication, is appealing because 

it does not require finding all the singular values of Pk-i- Note that this parameteri- 

zation was refered to as scalar bound inflation in [13]. Unfortunately, it may yield a 

very conservative bounding ellipsoid. For E\. to contain Gk, the following conditions 

on the semi-axes must hold: 

a2   >   ai + C (2-87) 

b2   >   &1 + C- (2-88) 

Substituting (2.86) into (2.88) and solving for 77, we get 

V > 1 + £• (2-89) 
0i 
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Substituting (2.89) into (2.85) yields 

G2>ai+Cr- (2-9°) 
0i 

Clearly, for a^ > bx, a2 can become very large. 

For an example, see Figure 4. Here, we set ax = 9, &i = 1, and vary ( from 0 to 1.9. 

This plot contains a2 and 62 which are the optimal values calculated using Theorem 1. 

Also plotted are the lower bounds, (2.88) and (2.90), for the parameterization in (2.85) 

and (2.86). Clearly, for ( > 0 this parameterization will produce an ellipse which is 

much larger than optimum. Despite this conservativeness, we will state the following 

lemma without proof. It's implications will be discussed in the next section. 

Lemma 4 Let a2 = o-iV> °2 = Ö17? where n > 0. Let the surfaces of ellipses, E\ and 

E2, be defined by (2.35) and (2.36), then the value of n which minimizes the volume 

of E2 such that the surface, 52, is at least ( > 0 from Si is 

V = l + -, (2.91) 
X 

where x = min(ai, 61). 

Examining Figure 4, it appears that the change in a2 versus ( and the change in 62 

versus ( are similar. This suggests parameterizing the new ellipse by scalar addition, 

that is 

02   =   «i + V (2.92) 

b2   =   &!+//, (2.93) 

which leads to the following lemmas. 
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Figure 4: Comparison of ellipse parameters between optimum and scalar multiplica- 
tion 
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Lemma 5 Let a2 = ai + f], b2 = bi + r] where rj > 0. Let the surfaces of ellipses, E\ 

and E2, be defined by (2.35) and (2.36). Then the minimum distance between S\ and 

S2 is given by 

Proof: This lemma follows from Lemma 2. Substituting (2.92) and (2.93) into (2.49) 

yields (2.69). A more direct proof will be used to extend this method to r dimensions. 

D 

Lemma 6 Let a2 = ai + n, b2 = W + r) where n > 0. Let the surfaces of ellipses, 

Ei and E2, be defined by (2.35) and (2.36). Then the value ofrj which minimizes the 

volume of E2 such that the surface, S2, is at least ( > 0 from Sx is 

where 

po   =   ai + 61 (S-M) 

Pl   =   27b4
1+3Qb3

1a1 + 2albl + m1a
3

1 + 2a4
1 (2.97) 

=   ^3(-16^oC4+PiC2-646?a?) (2.98) 

(2.99) 

V2 
Po 

P3     -     -TT- 
Sp3o 

P4   =   -l-CPo (2.100) 

aM2 

Ipo 
(2.101) 

n  =  ff*-5*+ !»-£» <gJ0S> 
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Pi 
3/2 1 64 1 
V~3P5-2P4+27P3+36^2 (2.103) 

Proof: By Lemma 1, for E2 to have minimum volume, the minimum distance, d, in 

(2.94) must be equal to (. Solving (2.94) for n yields (2.95). □ 

We can now prove the following theorem. 

Theorem 2 For r = 2, let Pk-\ be factored as Pk-\ = Vk-ihk-iV^ where Vk-\ G 

3£2x2 is orthogonal and 

Afc-i = 
a\    0 
0    b\ (2.104) 

Let the semi-axes of Ek be parameterized as a2 = ai + ?/ and 62 = h + r\. Then, the 

minimum volume ellipse, Ek, which contains the set Gk where Ek is defined by (2.9) 

and Gk is defined by (2.26), is given by 

Pk = Vk-xKkVlr 

where 

A* = 
a\    0 
0    b\ 

(2.105) 

(2.106) 

and T] is given by Lemma 6 with ( replaced by (k-i • 

Proof: The proof follows directly from equations (2.33) and (2.34) and Lemmas 5 

and 6. □ 

In order to compare the values of Theorem 2 with the optimum values of Theo- 

rem 1, again we set ai = 9 and 61 = 1. This time ( is varied from 0 to 8.9. Shown in 

Figure 5 are the plots of a2 and 62 from Theorem 1 and Theorem 2. Clearly, this is 

a much closer approximation than the one given by (2.85) and (2.86). The volumes 
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Figure 5: Comparison of ellipse parameters between optimum and scalar addition 

were calculated for the parameters shown in Figure 5. A ratio of the volume using 

scalar addition versus the optimum volume is shown in Figure 6. For this exam- 

ple, the volume using scalar addition is at most approximately 7% higher than the 

optimum volume. 

Theorem 2 presents a reasonable alternative to Theorem 1.  In the next section, 

we will extend it as well as scalar multiplication to r dimensions. 
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1.08 

1.07 

Figure 6: Ratio of scalar addition volume versus optimum volume 

2.6.2    r-Dimensional Case 

Scalar Addition 

In the extension to r-dimensions, we see that Ek is constrained to be an ellipsoid with 

the same center and orientation as Ek-i and with semi-axis lengths which are found 

by adding a scalar, i], to the semi-axis lengths of Ek-\. Rk is again constrained to be 

(f/; therefore, Gu is given by (2.26). 

As in the 2-dimensional case, we need to parameterize the minimum distance 
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between the following ellipsoids. Define the surface of ellipsoids, E\ and E2, as 

Si   =   {x€Kp:£^7 = l} (2-107) 
,-=i ai 

x? 

where each a,-, i 6 [l,r] and 77 are positive scalars. 

Lemma 7 Lei ffee surfaces of ellipsoids, E\ andEi, be defined by (2.107) and (2.108). 

Then, the minimum distance between Si and S2 is given by 

d=   /v     Im + arj + an 
V       (ä + a)(a + 2TJ + a) [ y 

where 

a = max a,-       a = min a,-. (2.110) 
je[i,r]   J        _     j€[l,r] 

Proof: Because c?(a;,5) is nonnegative, minimizing d2 is equivalent to minimizing d. 

Using the Lagrange multiplier method, the constraints posed by the ellipsoids, (2.107) 

and (2.108), can be augmented to d2 to form 

n r       2 r ~2 

/(*, 5, Ax, A2) = J>,- - *,-)' + Ai(E 4 - 1) + HE TTT^ ~ ^       ^U1>> 
i=l i=l ai t=l \U* "r" ''/ 

For /(x*,x*,Ai, Aj) to be a minimum, the differential, df(x*,x*, AJ, Aj) must be 0. 

Taking the differential of (2.111), we get the following set of equations that must be 

solved 

2(x*-x*) + 2\ß =   0 J'6[l,r] (2.112) 

^) + 2X*27-4zX-2 =   0 ie[i,r] (2.113) 
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E^-l   =   0 (2.114) 
i=l     ui 

r (Z.*\2 

Err^-i = o (2.H5) 

The solution of (2.112) through (2.115) yields Lemma 7. □ 

This lemma holds because if the semi-axes of ellipsoid, E\, are incremented by a 

scalar rj, then the minimum distance between the surface of E\ and the surface of 

the resulting ellipsoid, Ei, must lie along the two-dimensional cross-section defined 

by the maximum and minimum length semi-axes. 

We now state the following theorem: 

Theorem 3 Let Ek-\ and Ek be defined as in (2.8) and (2.9). Let Gk be given by 

(2.26). If the SVD ofPk-\ is given by Pk-i = Vfc_iAfc_iV^_i where Vk-\ is orthogonal 

and Afc_i = diag{\\... Ar), then the value of n which optimizes 

7/ = arg,mm{vol(E) :EDGk;P = Vk-M)!-i + Vl?Vk
T-i} (8.116) 

is given by 

"     ""X""~3p0' 

where 

ä = max A/Aj       a= min yXj, (2.118) 
je[i,r] v je[i,r] v 

and 

p0   =   ä + ö (2.119) 

Pi   =   27a4 + 36a3ä + 2äV + 36ÖÖ3 + 2a4 (2.120) 

2aa ,n _ J„, 
V=P7 + P6--=K, (2.117) 
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=   %V3(-16Ä4-i +Pi(Li ~ 64a3ä3) (2.121) 

(2.122) 

V2 
Po 

—a3 a3 

Pz   = 
%pl 

P.   =   -\(liPo (2-123) 

(2.124) 

Proof: The proof follows directly from equations (2.33) and (2.34) and Lemmas 6 

and 7. □ 

Scalar Multiplication 

In the examples we have considered, Theorem 3 provides an acceptable alternative to 

the optimal algorithm. Notice that the (r + 1) order polynomial in (2.80) has been 

reduced to the same computational complexity as the 2nd order problem. However, 

the algorithm still requires the solution of an rth order SVD. 

With this in mind, we reconsider the scalar multiplication strategy discussed in 

section 2.6.1. In this algorithm, Ek is constrained to be an ellipsoid with the same 

center and orientation as Ek-i; the semi-axis lengths are found by multiplying the 

semi-axes's of Ek-\ with a scalar, rj. 

Theorem 4 Let Ek-X and Ek be defined as in (2.8) and (2.9).  Let Gk be given by 
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(2.10). Then the value oft] which optimizes 

r) = arg„ min{ vol(Ek) :EkDGk,6k = Ok-i, A = V2Pk-i} (2.127) 

is given by 

1 = 1 + ^1 (2.128) 

where A is the maximum generalized eigenvalue, Xj, which satisfies 

Rk-iXj = XjPk-iXj. (2.129) 

Proof: From [26], we know that E D Gk if and only if 

S6„(0)>Säk{0) (2.130) 

where S(0) defines the support function of the respective sets. We also know that 

S6kV) = SBk.1V) + Su,M, (2-131) 

with the support functions given by 

sEk(0) = oTek + yfeTPke, (2.132) 

SE^W)   =   0T0k-i + y/eTPk^e, (2.133) 

SWk_M   =   \JOTRk-iÖ. (2.134) 

Substituting (2.131)-(2.134) into (2.130) results in 

eTek + yJeTPke > eTek-i + \loTPk-1e + ^eTRk-1e. (2.135) 

By substituting 6k = Qk-\ and Pk = t]2Pk-i into (2.135), it is easy to show that 

(rj - 1)20TA-10 > eTRk.19. (2.136) 
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From [27], we know that there exists a matrix transformation, 0 = T9, such that 

{rj - lfeTe > 0TA6, (2.137) 

where A is a diagonal matrix containing the generalized eigenvalues of (2.129). For 

(2.137) to hold, it is necessary that (rj - l)2 > \ where Ä is the maximum generalized 

eigenvalue of (2.129); thus TJ > 1 + y/X. The volume of Ek is proportional to y/det(Pk) 

which is minimized if the equality holds; therefore, r] = 1 + V Ä. □ 

Note that this algorithm does not require the solution of an (r + 1) order polyno- 

mial. Furthermore, the rth order generalized eigenvalue problem of (2.79) is replaced 

with finding the largest eigenvalue. There exist iterative techniques which can be 

used to find this value quickly. We could also use the relationship, \\Pk\Rk-i\\ > A 

[28], to replace rj in (2.128) with fj = 1 + V WP^Rk-i II where || • || is any matrix norm; 

note that fj > rj. Also, note that Pfc-i is given recursively by [29] 

A-i = -Pr1 + (-- L)M±- (2.138) 

where P;1 = ±Pk-\. 

Theorem 4 always gives more conservative results than the OVETV. For the case 

where Rk = (|7, Theorem 4 often gives more conservative results than Theorem 3. 

However, the reduced number of computations may make it the most acceptable for 

real time applications. 
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2.7    Summary 

In this chapter, we developed the optimal volume ellipsoid algorithm for parameter 

set estimation of time-varying systems. We also developed two alternative strategies 

that offer various degrees of trade off between computation complexity and ellipsoid 

volume. Given our assumptions in (2.1)-(2.4), all three algorithms are guaranteed 

to contain the "true" parameter in the parameter set. While OVETV gives the 

optimum volume ellipsoid, the scalar addition and scalar multiplication algorithms 

give optimum volume ellipsoids assuming additional constraints on the time update 

ellipsoid. 



CHAPTER III 

Examples 

3.1 Overview 

In his chapter, we consider three examples. The first is a simple first-order exam- 

ple which serves to illustrate the main features of this approach and to compare the 

OVETV algorithm with the scalar addition and scalar multiplication approaches. In 

the second example, identification of a linear time-varying circuit is used to demon- 

strate how this approach can be applied to sampled-data systems with quantization 

noise. Finally, we show how this approach can be applied to actual data obtained 

from a crude oil distillation column. 

3.2 First-order Example 

Consider the following time varying system, 

Vk   =   -akVk-i + huk-i + Vk (3.1) 

ak   =   ak + 0.0005 (3.2) 

h   =   bk + 0.001 (3.3) 

48 
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where vk is a uniformly distributed random noise between [—0.1,0.1]. For this simula- 

tion uk is a uniformly distributed random variable between [—1,1]. Initial conditions 

for the system are yo — 0, do = 0.5, and &o = 1-0. 

To apply OVETV, the bounds in (2.3) and (2.4) must be specified. We set 7fc = 

-7, = 0.1 and Rk = Ql where (k =    f 0.0005   0.001 T     = 0.00118 and I is the 
-ft L J       2 

identity matrix. The orientation matrix PQ is set to 21, and the center 0Q is set to 

the origin. 

In Figure 7 we see the results of the algorithm at one time step, A; = 16. We begin 

with the ellipsoid at the previous time step, i?15. Applying the time update equations 

produces the ellipsoid E\&. The measurements u\& and yi§ give us the region between 

two hyperplanes, F\&. Finally, the measurement update equations are used to find 

the minimum volume ellipsoid, E\e, which bounds the intersection of E\& and Fi6- 

Note that the +'s represent the "true" parameter vector at k = 15 and k = 16. 

Results of the simulation for k = 0 to k = 300 are shown in Figure 8 with ak at 

the bottom of the plot and bk at the top. The upper and lower bounds are found 

by projecting the ellipsoids onto the coordinate axes [29]. Simulation results for the 

same system using scalar addition and scalar multiplication instead of the optimal 

time update equations are shown in Figures 9 and 10, respectively. The similarity 

of these plots to Figure 8 indicate that, for this system, very little performance is 

sacrificed using either scalar addition or scalar multiplication. 

In Figure 11, the volume of Ek is plotted for the three simulations. Unlike the 

linear time invariant OVE and MOVE algorithms, OVETV has no guarantee of mono- 
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tonically decreasing volume. For this example, the volume of Ek using scalar addition 

is almost identical to the volume of Ek using the optimal update equations. The vol- 

ume of Ek using scalar multiplication is larger, but the difference in volume is small. 

To ensure that the volume of Ek remains "small", persistent excitation is required. 

With "less" persistent excitation, the difference in volume between the algorithms 

would probably be larger. 

The normalized center estimate error for all three simulations is plotted in Fig- 

ure 12. This error is calculated according to 

{6k-h)TPk\h-h) 

where 6k and Pk parameterize Ek, and 8k is the true parameter vector [9]. If the 

normalized center estimate error is less than one, then the true parameter vector, 9k, 

is bounded by the ellipsoid, Ek] this consistency is guaranteed by all three algorithms. 

3.3    Linear Time-Varying Circuit 

Linear circuits with time-varying components arise in various applications. For ex- 

ample, the values of resistors, capacitors, and inductors all vary with temperature. 

Resistances and capacitances will also vary with adjustments in potentiometers and 

variable capacitors, respectively. 

In this example, we consider a series R-L-C circuit across a voltage source [30]. 
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The state equations for this system are given as follows: 

x(t)   =   A(t)x(t) + B(t)u(t), 

y(t)   =   D(t)x(t), 

(3.4) 

(3.5) 

where 

A(t) = c(t) c(t) , 
_!_       -r(t)-l(t) 

L   Kt) i(t) 
,   B(t) 

0 

W) 
,   D(t)=    0   r(t) (3.6) 

xi(t) is the voltage across the capacitance c(t), x2(i) is the current through the in- 

ductance l(t), u(t) is the voltage source, and y(t) is the voltage measured across the 

resistance r(t). 

To evaluate the performance of our algorithm, it is necessary that we discretize 

the state variable equations and then transform them to an ARX structure. Unfor- 

tunately, for linear time-varying systems, in general, there is no closed form solution 

for discretizing the state space equations. Consequently, we must resort to numerical 

methods. The discretized state space equations have the form 

x((k+l)T)   =   G{kT)x(kT) + H(kT)u(kT), 

y(kT)   =   D(kT)x(kT), 

(3.7) 

(3.8) 

where T is the sampling time. The output matrix D(kT) is simply the output matrix 

of (3.5) evaluated at time kT. To find the state matrix G(kT) and the input matrix 

H(kT), we must solve numerically for the state transition matrix, using 

$(t, kT) = A(t)${t, kT)   $(&T, kT) = I. (3.9) 
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The matrices G(kT) and H(kT) can then be evaluated as [31] 

G(kT)   =   $((Jfc + l)r,ÄT), (3.10) 

/■(*+i)T     , 
tf(fcT)   =   $((ife + 1)T, ibT) / fc-^T.fcT^T)*-. (3.11) 

Next, we need to transform from the state space equations to an ARX structure. 

Because the system matrices in (3.10) and (3.11) are time-varying, it is not possible 

to find the pulse-transfer-function in the usual way via the z transform. However, 

using the following Theorem (which extends a concept found in [30] for continuous 

time systems) we are able to transform the state space equations of (3.7) and (3.8) 

to the required form. 

Theorem 5  Given the linear time-varying SISO state space equation 

x((k+l)T)   =   G(kT)x(kT) + H(kT)u(kT), 

y{kT)   =   D(kT)x(kT) + E(kT)u(kT), 

(3.12) 

(3.13) 

where x(kT) G 3£n and T is the sampling interval, define a sequence oflxn matrices 

If the rank of the matrix 

L{kT) = 

L0(kT) 
Li(kT) 

(3.15) 

. in-i(fcT) J 
is n for all k, then y(kT) satisfies a linear nth-order difference equation of the form 

y((k + n)T) + £ ai(kT)y((k + n- i)T) = £ ßi{kT)u{{k + n - i)T),        (3.16) 
i=\ i'=0 
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where 

an(kT)   an.x{kT)   ■■■   al{kT)\ = -Ln{kT)L-\kT\ (3.17) 

ßn(kT)   ßn-r(kT)   •••   ß0{kT)]=wn(kT)-Ln(kT)L-1(kT)W(kT),    (3.18) 

W{kT)   = 

wn(kT)   = 

w0o{kT) 0 

w10{kT) wn{kT) 

W(n-l)o{kT)     W(n-i)!(kT) 

wn0(kT)   wnl(kT)   • wr 

■■   «;(„_!)(„_!) (fcT)   0 

l-i){kT)   wnn{kT) 

,   (3.19) 

(3.20) 

and the Wij(kT) are given recursively by 

_    f E(kT) j = 0 
voA^)   ~   \L{j_1)0((k + l)T)H(kT)   i = 1,2, 

Wij{kT)   =    tü(,-_i)(i_i)((fc + 1)T)   z' = l,2,-.., i = 1,2, 

(3.21) 

(3.22) 

Proof: The proof is straight forward. From equation (3.13), we have 

y(kT)   =   D(kT)x(kT) + E(kT)u(kT) 

=   L0{kT)x(kT) + w00{kT)u{kT), (3.23) 

where L0(kT) and w00(kT) are as defined above.  Applying the shift operator q(-), 

where q(x(kT)) = x((k + 1)T), to equation (3.23), we get 

y{(k + l)T)   =   L0((k + l)T)x((k + l)T) + w00{{k + l)T)U((k+l)T) 

=   Lo((k + l)T){G{kT){x{kT) + H{kT)u{kT)) 

+w00((k + l)T)u((k + 1)T) 

=   L^T)^(ff) + ^„(ff)u(fcT) + ^(fcTjuli^ + 1)T). (3.24) 
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Repeatedly applying the shift operator, we find that in general, 

y ((* + i)T) = Li{kT)x{kT) + £ Wiju((k + j)T). 
]=0 

From (3.25), we get the following equations 

(3.25) 

y(kT)   =   L(kT)x(kT) + W(kT)ü(kT) 

y((k + n)T)   =   Ln(kT)x(kT) + wn(kT)ü(kT). 

where L(kT), W(kT), Ln{kT), and wn{kT) are as defined above, and 

y{kT) = 

y(kT) 
y((k + l)T) 

y((k + n-l)T) 

u (kT) = 

u(kT) 
u((k + l)T) 

u((k + n)T) _ 

(3.26) 

(3.27) 

(3.28) 

Solving (3.26) for x(kT) (L(kT) is invertible), and substituting the result into (3.27), 

we get 

y((k + n)T) - Ln{kT)l-\kT)y{kT) = (wn(kT) - Ln{kT)L-\kT)W{kT))u(kT). 

(3.29) 

The linear recorder difference equation of (3.16) follows directly from (3.29). D 

Note that the condition that the rank of L(kT) be n guarantees that the system 

is observable (see [30] for a discussion of a concept in continuous time referred to 

as instantaneously observable).  In fact, for the time-invariant case L reduces to the 

observability matrix, i.e., LT = [ DT   GTDT   • • •   (GT)^DT }. This theorem can 

be extended to the single-input, multiple-output (SIMO) case by changing L'^kT) 

in the definition of a,- and ft to L+(kT), where (•)+ is the matrix pseudoinverse as 
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defined in [32]. In the next chapter, we will extend this theorem to multiple-input, 

single-output (MISO) systems. 

To apply Theorem 5 to the circuit's discretized state space equations in (3.7) and 

(3.8), we need to check if 

L{kT) = 
0 d2(kT) 

d2((k + l)T)g21(kT)   d2((k + \)T)g22{kT), 
(3.30) 

is invertible where G(-), H{-)> and D(-) have the elements 9ij(-), fc(-), and di(')> 

respectively. Clearly, L(kT) will be invertible provided that d2(kT) and g21(kT) are 

not equal to zero for all jfc. This will be the case for the system we consider. 

Applying Theorem 5 to (3.7) and (3.8), we get the following difference equation 

y(k + 2) + 5ÄÄy(-fti(*W(* +1)" *»(* +1 W*)M* + D 
+ d dWnW 1)(922(k)9n(k) - gu(k)g2i(k))y(k) = 

^WWH^Ayt) _ h2(k)gn(k))u(k) + d2(k + 2)h2{k + l)u(k + 1) 
321 CO 

where the sampling time, T, is implied. If we apply the inverse shift operator q-\-) 

twice to (3.31), where q-\<kT)) = *((* - 1)T), and solve for y(k), we get the 

following equation 

flri (3.32) 

(3.31) 

where 

Ok   = 

d (fc ?)% 2j(-gii(fc ~ 2)^(fc " !) - ^fc - 1)92l{k ~ 2)) 

2_Mig=iL(^22(fc _ 2)gn(k - 2) - $«(* - %2i(fc - 2)) 
d2{k)h2(k - 1) 

«fa(*)iyi(fc-i)vfe (jfc - 2Wfc - 2) - h2{k - 2)gn{k - 2)) 

«£fc     =      [  -yfc_!     -J/fe-2     «fc_i     «fc-2  )     • 

(3.33) 

(3.34) 

The discrete time input-output equations of the linear time-varying circuit are 

given by equations (3.9)-(3.11) and (3.32). However, because the OVETV algorithm 
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is implemented on a digital computer, quantization errors in the D/A and A/D con- 

verters become an issue. Consequently, the measured input umk and the measured 

output ymk differ from the actual input into the system Uj. and the actual output from 

the system yk. They are related by the following equations 

Uk    =    Umk + Uqk (3.35) 

Vk   =   Vmk - yqk (3.36) 

where uqk is the quantization error introduced by the D/A converter and yqk is the 

quantization error introduced by the A/D converter. The quantization errors are 

known to be bounded by 

M   <   ^f, (3.37) 

\V*\   <   ^f-. (3.38) 

where the quantization level Q (for the A/D and/or D/A) is equal to    ^   , FSAR 

is the full scale analog range of the converters, and nb is the number of bits. [31] 

In general, equation (3.32) can be written as 

n m 

Vk = - J2 aikVk-i + Yl hkUk-i- (3.39) 
»=1 »=o 

After substituting equations (3.35) and (3.36) into (3.39), we get 

n m n m 
Vmk — - Yl aikym(k-i) + XI bikUm(k-i) +Vqk + Y, aikVq{k-i) + Y, ^ik^q(k-i)-       (3.40) 

i=l i=0 i=\ i=0 

If we let vk = yqk + E"=i aikyq(k-i) + T4L0 bikUq(k-i), equation (3.40) can be rewritten 

as 

ymk = -J2 aikym{k-i) + Y kkUm(k-i) + vk, (3-41) 
t=l t'=0 
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which is precisely the ARX structure of (2.1). 

To apply the OVETV algorithm, we need a bound on vk. It is easy to show that 

Consequently, if we have a priori bounds on the parameter values (which we have 

already assumed), then it is possible to derive a bound on vk. It is clear, though, that 

the tighter these bounds are, the better the OVETV algorithm will perform. 

We can now apply OVETV to the linear time-varying circuit. We will consider 

the case where r{t) = (1.0 + 0.5cos(i/10.0))O, l(t) = 1.0H, and c(t) = 1.0F. The 

sampling time T is selected to be 0.1 seconds. Both the A/D and D/A converter are 

assumed to have 12 bit resolution and a FSAR of 10 volts. 

The OVETV algorithm is initialized as follows. Using (3.42), the bounds on vk 

are set at 7fc = -j_k = 0.005. The matrix, Rk, which bounds the parameter variations 

is set at Rk = (kI with (k = 0.001. The orientation matrix, P0, is set at 107, and the 

ellipsoid center, 0O, is set at the origin. For this simulation, umk, the input supplied by 

the digital computer, is selected as a uniformly distributed random variable between 

[-5.0,5.0] volts. 

Results of the simulation are shown in Figure 13 where the solid lines are the 

true parameters calculated from (3.32) and the dashed lines are the center estimates 

obtained from the OVETV algorithm. As discussed earlier, with this approach we 

are more interested in the parameter sets than the center estimates. That said, 

we would like to know how the center estimates of the OVETV algorithm compare 

with the point estimates of a traditional parameter estimation technique. The same 
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Table 2: Performance measures for OVETV-WRLS comparison 

£i 

£2 

WRLS 

0.0851 
0.0643 

OVETV 
(Center Estimate) 

0.0618 
0.0471 

simulation was run using weighted recursive least squares (WRLS). The WRLS was 

tuned empirically to minimize the following performance measures: 

N 

* = TFI!II**-**II.-    i = i.2 N k=i 
(3.43) 

where N is the number of samples, 6k is the parameter estimate at time Jb, 0k is 

the true parameter value at time k, and || • ||,- is a vector norm. The performance 

measures resulting from a simulation with a forgetting factor of 0.73 and an initial 

covariance matrix of 106 are shown in Table 2. The performance measures for the 

center estimates of the OVETV algorithm are also shown in Table 2. The center 

estimates for the OVETV algorithm had smaller performance measures than WRLS 

for both i = 1 and i = 2. 

Despite the good performance of the center estimates, we are most interested in 

the parameter sets. The parameter bound for bx and b2 are shown in Figures 14 and 

15, respectively. The bounds for bx are especially tight. While the bounds on ax and 

a2 are not as tight, the volumes of the ellipsoids, as shown in Figure 16, are quite 

small. 
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T 

40 
Seconds 

Figure 16: Ellipsoid volume for Linear Circuit example 
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3.4    Crude Oil Distillation Column 

As a final example, we consider a crude oil distillation column. Our identification 

exercise for this example will be conducted on actual data recorded from an Amoco 

refinery in south Texas. The goal of the distillation process is to separate a mixture 

of two or more substances into its various components with a desired degree of purity. 

Because different pure liquids exhibit different volatilities, the application and removal 

of heat can be used to separate the components [33]. 

While the distillation process is highly nonlinear, within a given operating range 

it can effectively be modeled as a linear system. However, because of factors such as 

changes in raw materials or production levels or equipment fouling, the parameters 

of the linear model tend to vary with time [33]. Consequently, for control purposes 

it would be advantageous to track these parameters as they change with time. This 

information could be then be utilized to retune the process controllers automatically, 

rather than manually, as is often done in practice. 

Several data sets were collected under open loop conditions on the distillation 

column shown in Figure 17. The results from one test are shown in Figure 18. The 

types of data measured are given in Table 3 where the y's are outputs, the u's are 

inputs, and d\ is a disturbance. This is clearly a multi-input, multi-output (MIMO) 

system. 

In this section, we will look at the SISO relationship between the heat which 

is being applied at the base of the column, u2, and the top section temperature 

difference, j/2. By controlling the temperature at specific locations along the column, 
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150      200      250      300 
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300 

Figure 18: Open loop data for Distillation Column example 

Table 3: Distillation column data 

2/1 
2/2 
2/3 
«1 
u2 
dl 

overhead drum level 
top section temperature difference (degrees F) 
mid section temperature 
reflux 
heat addition to base of tower 
feed rate to tower 
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we are able to control the purity of the product compositions. In the next chapter, 

we will look at a multi-input, single-output (MISO) relationship for this example. 

Based on knowledge of the system operation, and on control needs, the following 

model structure is assumed 

Vk = -aiVk-i - a2yk-2 + h^k-2 + &3«*-3, (3.44) 

where the sampling time is 20 seconds. The OVETV algorithm is initialized as follows: 

jk^-lk = 0.25, Rk = C2
kI with & = 0.00001, P0 = 107, and 0„ = 0. 

Applying the OVETV algorithm to this data, we obtain the center estimates shown 

in Figure 19. While we cannot compare the center estimates to the "true" parameters 

(which are effectively unknown), we can observe how well the center estimates predict 

the output at each time step. In Figure 20, we see that the predicted output yk = Q\<f>k 

and the output yk are almost indistinguishable. The volumes of the ellipsoids are 

shown in Figure 21 and the parameter bounds at 298 minutes are shown in Figure 22. 

As a final note, for the bounds specified above on the disturbance vector, jk and 

7 , the time-invariant OVE algorithm was inconsistent and failed. 

3.5     Summary 

In this chapter, we examined three examples. The first example was a first-order 

system which served to illustrate the key features of the OVETV algorithm. For this 

example, two other strategies, scalar addition and scalar multiplication, were shown 

to be effective alternatives to OVETV. 
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Figure 19: Center estimates for Distillation Column example 

Figure 20: Top section temperature difference, Distillation Column example 
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In the second example, we explored the effects of sampling and quantization on 

a linear time-varying system, a linear time-varying circuit. Theorem 5 was given 

for transforming a dicrete-time linear time-varying state space equation to a time- 

varying difference equation. We were able to successfully identify the system using 

the OVETV algorithm. In fact, while the goal of the OVETV algorithm is to identify 

a parameter set, the center estimate of the OVETV algorithm was able to track the 

"true" parameter vector better than the "best" estimate using WRLS. 

In the final example, we applied the OVETV algorithm to actual data obtained 

from a distillation column. Because the "true" parameter vector was effectively un- 

known, we were not able to compare it with the parameter sets and center estimates. 

However, the predicted output based on the center estimate matched the actual out- 

put very closely. 



CHAPTER IV 

Algorithm Extensions 

4.1     Overview 

As we saw in the last chapter, OVETV is a very effective tool for PSE of time-varying 

systems. However, as we began to apply OVETV, our experiences challenged us to 

extend and improve the properties of this algorithm. In this chapter, we discuss 

several of these modifications and adaptations to the OVETV algorithm. 

As we applied OVETV to the crude oil distillation column of Section 3.4, we 

discovered that each of the outputs was actually affected by more than one input. 

Clearly, it would be good to identify this relationship directly in the OVETV frame- 

work. In Section 4.2, we discuss how the OVE and OVETV algorithms can be used 

to identify multiple-input, single-output (MISO) systems. We begin by showing how 

MISO linear time-invariant systems can be placed within the OVE framework. We 

also extend Theorem 5 of Section 3.3 to show how certain MISO linear time-varying 

systems can be placed within the MISO framework. Finally, we use the results of this 

section to identify a MISO relationship for the distillation column example. 

Often, as was the case in the linear time-varying circuit example of Section 3.3, 

71 
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the time-varying parameters that we are trying to identify are dependent on a smaller 

set of physical time-varying parameters. If we can exploit this dependence, we may 

be able to simplify the problem and reduce the number of computations required to 

implement the algorithm. Adaptations of the OVETV algorithm are developed in 

Section 4.3 to utilize knowledge of these dependencies. 

When applying the OVETV algorithm in practice, the orientation matrix, i\, can 

become non-positive definite. Theoretically this is impossible, geometrically it does 

not make since, and practically it causes the algorithm to fail. Numerical round- 

off errors are causing the algorithm to bomb. To solve this problem, we apply an 

approach that has been used successfully for stochastic estimation. A "square-root" 

algorithm is developed for implementing OVE. Furthermore, it is shown how the 

square-root approach can be extended to time-varying systems. 

The type of input into the system has a very significant effect on the "quality" 

of estimates produced from an identification scheme. A "calculated" synthesis of 

the system input is explored in Section 4.5. In particular, we investigate an OVE- 

based input synthesis procedure (OVE-ISP) which was developed in [29] and [21]. 

We show how the scope of OVE-ISP can be extended to handle systems with known 

transportation lag such at the distillation column in Section 3.4. We also demonstrate 

its application to time-varying systems and an important "stabilizing" property that 

other synthesis strategies do not appear to possess. 
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4.2    Multiple-Input, Single-Output Systems 

In many real systems, the output of the system is effected by more than one input. 

Consequently, we would like to extend the OVE and OVETV algorithms to handle 

MISO systems. In this section we will show how this can be done for linear time- 

invariant systems. Then we will show how this can be done for a class of linear time- 

varying systems. Finally, we will apply the MISO framework to the crude distillation 

column example which we explored in Section 3.4. 

4.2.1    Linear Time-Invariant Case 

Consider the linear time-invariant MISO state space equation 

x{{k + l)T)   =   Gxik^ + ^H^kT), (4.1) 
K=l 

y(kT)   =   Dx(kT) + J2EKuK(kT), (4.2) 
K=l 

where x(kT) € 9£n, uK{kT) G 3£, {G,HK,D,EK} are matrices of appropriate dimen- 

sions, and T is the sampling interval. Taking the Z transform of (4.1) and (4.2) 

gives 

zX(z)   =   GX(z) + ^HKUK(z), (4.3) 

Y(z)   =   DX{z) + J2EKUK{z). (4.4) 
K=l 
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Solving (4.3) for X(z), substituting it into (4.4), using a classical representation for 

the matrix inverse, and rearranging terms results in 

det(zJ - G)Y(z) = £{£>adj(*I - G)HK + det(zl 
K=l 

- G)EK}UK(z) (4.5) 

where det(-) and adj(-) return the determinant and adjoint of a matrix, ] respectively. 

If we multiply (4.5) by z ", take the inverse Z transform , and solve for y{kT), it is 

easy to see that we get an equation of the form 

y(kT) = 
n                                               ß      n 

2 = 1                                                  K-l i=0 

((k-i)T). (4.6) 

Equation (4.6) can be rewritten as 

Vk = 0T<f>k (4.7) 

where 

6   = ax   ■■■ an &oi   • • •   Ki    bo^   ■ "nß 

T 

<j>k   = -y(k- -1) •••    -y(k-n)   u0(k)    ■■■ u0(k - -n) 

uß(k)   ■■■   uß(k-n) I    . 

(4.8) 

(4.9) 

Assuming that the noise or uncertainty entering the system as {yu = 9T<f>k + Vk) is 

bounded, the OVE algorithm can be directly applied to the system described by (4.7). 

4.2.2     Linear Time-Varying Case 

The goal of the dissertation has been to identify the parameters of time-varying 

systems. Clearly, we would like to be able to do this for MISO systems as well. To 
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see how MISO systems might fall into our time-varying ARX framework, we will 

extend Theorem 5 of Section 3.3 to MISO systems. 

Theorem 6 Given the linear time-varying MISO state space equation 

x{{k + l)T)   =   G(kT)x{kT) + Y,HK(kT)uK(kT), 

y{kT)   =   D{kT)x(kT) + J2EK{kT)uK(kT), 

(4.10) 

(4.11) 
K=\ 

where x(kT) € 3£n, uK(kT) € 3£, and T is the sampling interval, define a sequence of 

1 x n matrices 

L0(kT)   =   D{kT) 
Li{kT)   =   Li-i({k + l)T)G{kT)      * = 1,2,- 

(4.12) 

If the rank of the matrix 

L{kT) 

Lo(kT) 
Li(kT) 

(4.13) 

is 

Ln-i{kT) . 

n for all k, then y{kT) satisfies a linear nth -order difference equation of the form 

y((k + n)T) + J2 <*i{kT)y{(k + n - i)T) = £ £ ßi*(kT)uK({k + n - i)T),   (4M) 
i=i 

p.      n 

L.Y. 
K=l j=0 

where 

an(kT)   <*„_i(fcr)   •••   a1(kT)]=-Ln(kT)L-\kT), (4-15) 

ßnK(kT)   ß{n-1)K(kT)   •••   ß0K(kT)}=wnK(kT)-Ln(kT)L-\kT)WK(kT), 

(4.16) 
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WK(kT)   = 

wnK(kT)   = 

w00K{kT) 

w10K(kT) 

0 

wllK(kT) 

W(n-i)OK{kT)   iw(n_i)i«(A;r)   • • •   W(„_i)(„_i)K(&r)   0 _ 

wnoK(kT)   wnlK(kT)   ■■■   wn(n-i)K{kT)   wnnK(kT) 

,(4-17) 

(4.18) 

and the W{jK(kT) are given recursively by 

w0jK(kT) 

wiJK(kT) 

and K = 1,2, • • • ,fi. 

EK(kT) j = 0 
Lu.1)0{(k + l)T)HK(kT)   ; = 1,2,..., 

U(,-_i)ü-i)«((fc + 1)T)   * = 1,2, — ,   j = 1,2,••-,«, 

#•■">; 

^.^ 

Proof: The proof is a direct extension of the proof of Theorem 5 in Section 3.3 and 

is therefore omitted. Below we will show how this theorem can be used to transform 

a MISO system, which can be realized via linear time-varying state space equations, 

to a framework for which the OVETV algorithm is applicable. □ 

If we apply the inverse shift operator, <?-1(-), to (4.14) n times and solve for y(kT), 

we get the following 

p      n 

y(kT) = -J2 <kT)y((k - i)T) + £ £ biK(kT)uK((k - i)T), (4.21) 
t=l K=1i=0 

where a^kT) = a,-((Jb - n)T) and biK(kT) = ßiK((k - n)T). Equation (4.21) can be 

rewritten as 

Vk = 0Uk (4-22) 

where 

ek = ai(kT)   ■■■   an(kT)   boi(kT)   ■■■   bnl(kT) 
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•••   •••   •••   b0ß(kT)   ■■■   bnß(kT) }T (4.23) 

<f>k   -      -y(k-l)   ■■■   -y(k-n)   u0(k)   •••   u0(k - n) 

iT 
uL ß(k)   ■■■   uß(k-n)      . (4.24) 

If the noise or uncertainty entering the system as (J/J. = 6j<f>k + Vk) is bounded, and if 

we can find a bound on how much the parameters change during any time step, then 

the OVETV algorithm can be directly applied to the system described by (4.22). 

Remark 1 Before giving a MISO example, this seems to be an appropriate place 

to discuss the more general multiple-input, multiple-output (MIMO) case. First, 

Theorem 6 can be extended to the MIMO case by changing L~1(kT) in the definition 

of a, and ßiK to L+(kT), where (•)+ is the matrix pseudoinverse as defined in [32]. 

The system can then be transformed into the full polynomial form as defined in [34]. 

In the MIMO case, the system disturbance, ujt, is a vector. If bounds are known on 

each of the components of Vk, then the problem can be composed into a separate 

problem for each output for which the MISO results discussed above directly apply 

[5]. When a bound exists on the norm of Vk, rather than on each of the components, 

the problem becomes more difficult. For extensions of the OBE algorithm to the case 

where a norm bounds exists on i^, see [5]. 
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4.2.3    Crude Oil Distillation Column Example 

In Section 3.4, we estimated the parameters of the difference equation relating the 

heat which is being applied at the base of the distillation column, u2, to the top section 

temperature difference, y2. In actuality, the top section temperature difference is also 

affected by the reflux, ul, and the (disturbance) feed rate to the tower, d\. Clearly, 

we are interested in the MISO relationship between the output, j/2, and the inputs, 

ul, u2, and d\. 

Based on knowledge of the system operation, and on control needs, the following 

model structure is assumed: 

y2(kT)   =   -Y/ai(kT)y2{(k-i)T) + J2bn(kT)ul((k-i)T) 
2=1 t=2 

5 5 

+ £ bi2(kT)u2((k - i)T) + £ bi3(kT)dl((k - i)T)       (4.25) 
i=2 i=2 

where the sampling time is 20 seconds. The OVETV algorithm is initialized as follows: 

7fc = -lk = 0.15, Rk = (%I with (k = 0.0000006, P0 = 10/, and 0„ = 0. 

Applying the OVETV algorithm to the data shown in Section 3.4, we get the 

results shown in Figure 23 for two parameters, a,\ and 622- The center estimates and 

parameter bounds for all the parameters at 298 minutes are shown in Figure 24. As 

in the SISO case, we cannot compare the estimated parameter sets with the "true" 

parameters because they are effectively unknown. Also, as in the SISO case, we 

can observe how well the center estimates predict the output at each time step. As 

would be expected, the predicted output, yk = 0jfa, when we consider multiple 

inputs, matches the actual output, y*, better than the predicted output when we 
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Figure 23: Parameters aj and 622 of MISO Distillation Column example 

only consider a single input. In fact, the absolute error, \yk — yk\, is bounded by 

7fk = —7 = 0.15 for the MISO case. The volumes of the ellipsoids are shown in 

Figure 25. 

4.3    Dependent Parameter Variations 

In this section, we will present an algorithm which exploits information regarding 

dependency in parameter variations to reduce the computational complexity of the 

OVETV algorithm. In the problem statement given in Chapter II, it was assumed 

that Rk, the matrix bound on the change in the parameter vector during each time 
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Figure 24: Parameter bounds at 298 minutes for MISO Distillation Column example 
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Figure 25: Ellipsoid volume for MISO Distillation Column example 
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step, was positive definite. While the theory of [15] still holds if Rk £ $lrXr is positive 

semi-definite, the bound on Wk must be defined in terms of its support function [26] 

instead of (2.4), that is, 

{wk e r : rffwk < JvJRkVr; vr e r} (4.26) 

The case where Rk is positive semi-definite is important because often there are time- 

invariant parameters, or the variation in one parameter is dependent on variations in 

other parameters. 

Furthermore, if it is known that the rank of Rk is always less than r, we can use 

this information to reduce the number of computations required for the time update 

equations. If the rank of Rk is always s < r, then (2.2) can be rewritten as 

ek+i = 9k + Bkwk, (4.27) 

where Wk € 9£s is assumed to satisfy 

wlRT^Wk < 1, (4.28) 

and the matrix, Rk € 3£s><s, is symmetric, positive definite and known at each time k. 

The bound in (4.28) can also be rewritten in terms of its support function as 

{wk e &s : fawk < yJtfRkr)8; Vs £ »'}■ (4.29) 

Using Wk = BkWk, the bound in (4.29), and the definition of a support function, the 

bound in (4.26) is given by 

{wk € r : vjwk < yJnJBkRkBlrjr-, Vr G 9fT}. (4-30) 
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Consequently, the generalized eigenvalue problem in (2.79) can be rewritten 

Bk-iRk-iB^Xj = XjPk-iXj. (4.31) 

Solving (4.31) for each Xj, j € [l,r] is equivalent to solving 

det(AA-i - Bk-iitk^Bl^) = 0 (4.32) 

for A. Using properties of the determinant [35], it is easy to show that 

det(AA-i - Bk-rkk^B*^) = det^) det(Pfc-i)A'-sdet(AJR^1 - Bj^P^B^). 

(4.33) 

Using (4.31) and (4.33), the revised time update equations are given in the fol- 

lowing procedure: 

1. Solve the generalized eigenvalue problem 

Bk-iPk-iBk_lXj = XJR^XJ. (4.34) 

for each Aj, j 6 [l,s]. 

2. Solve 

El (s — r)p + s 
. . Ä7T7; =   „r»4.n (4-35) 

for the unique p > 0. 

3. Then, the solution to (2.11) is given by 

ek   =   h-\ (4.36) 

A   =   (p + l)Pk-i + (p-1 + ^BkRk^Bl (4.37) 
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Note that the generalized eigenvalue problem in step 1 has been reduced from 

rth order to 5th order. Furthermore, the (r + 1) order polynomial in step 2 has 

been replaced with a (s + 1) order polynomial. If s < r, the reduction in number 

of computations will be substantial. Note that the inverse of Rk-i can often be 

calculated a priori. For the particular case when s = 1, see [15]. 

4.4    Square-Root Implementation 

One problem when implementing many recursive estimation algorithms is that the 

covariance matrix in stochastic algorithms, such as the Kaiman filter and recursive 

least squares, and the ellipsoid matrix in bounded input algorithms, such as OVE and 

OVETV, tend to loose their positive definite (PD) property due to finite precision 

calculations. This may cause the algorithms to "fail." One solution to this problem 

is to factor the PD matrix as P = SST and then update S instead of P; this would 

guarantee the PD property of P. There have been many square-root methods de- 

veloped for updating the covariance matrix of stochastic algorithms. For example, 

see [36], [37], [38]. While some of the algorithms are easily amenable to the OVE 

algorithm, others are not. 

In this section, we will show how Potter's implementation of the Kaiman filter [36] 

can be modified to work with the OVE algorithm. We will also compare the number of 

floating point operations using the direct implementation of the OVE algorithm with 

those using the new square-root algorithm. Finally, we will show how the square-root 

algorithm can be extended to the time-varying case. 
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4.4.1    Linear Time-Invariant Case 

Recall from Section 2.3 that the measurement update equations for the center esti- 

mate, 6k, and the ellipsoid matrix, Pk, are given by 

h = 6k + Wh^T\     T 
(4-38) 

h   =   hh + fa - Sk)**!1**?*, (4.39) 
9kpk9k 

where rk, 6"^, and ak are scalars defined in Section 2.3 and <f>k is the regression vector. 

For the time-invariant case 9k = 0k-i and Pk = Pk-i- 

Following an outline similar to the development of Potter's algorithm for the 

Kaiman filter in [36], we will develop a square-root algorithm for the OVE algorithm. 

We begin by setting 

Pk   =   SkSl (4.40) 

Pk   =   SkSl (4.41) 

Substituting (4.40) and (4.41) into (4.39), we get 

Pk   =   SkSk = 8kSkSk+(crk — 6k)SkSk^kh<f>'kSkSk 

=   Sk(6kI+{(Jk-6k)\kWkwl)S^, (4.42) 

where Wk = Sk4>k and Xk = —5^ 

From (4.42) it is easy to see that we can define 

§k   =   Sk(SkI + (crk ~ Sk)Xk^k^l)1/2 
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=   8^Sk(I - (1 - ^)W^)1/2> (4-43) 

where we know that 8k is positive. Next, we use the fact that (7 — (1 — ^)\kwkwl) 

can be factored as 

7 - (1 - ^-)Xkwkw
T

k =(I- ßkwkw
T

k)
2 (4.44) 

ok 

where ßk is the root of 

vtftskßl - 2ßk + (1 - ^)\k = 0. (4.45) 
Ok 

The roots of (4.45) are given by ßk = (1 ± ^)Xk. Using the root ßk = (1 + y/%)h 

and the factorization in (4.44), (4.43) can be written as 

Sk   =   8l/2Sk(I-(l + <[^)\k™k™T
k)) 

=   8\l\Sk-{l + J°±)\kLktxl)), (4.46) 
V  °k 

where Lk = Skwk. 

Equation (4.46) is key step in the square-root algorithm for the OVE measurement 

update. The complete algorithm (excluding the calculation of the scalars rk, 8k and 

ok which can be found in Section 2.3) is shown in Table 4. Also shown in Table 4 

is a tabulation of the number of floating point operation required for each step. 

For comparison purposes, Table 5 details the steps and corresponding floating point 

operations for a direct implementation of the OVE measurement update. In our 

floating point counts for the direct implementation, we take advantage of the fact that 

we only have to calculate the upper triangular part of Pk because it is symmetric. 
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Table 4: Square-root algorithm and corresponding floating point operations 

Steps Floating Point Operations 
+ X V" -7- 

wk = Sl<f>k 
Afc — —T— 

Af = Vh 
£k = TfcAfc 

Lk = Sk^k 

@k = Qk + LkSk 

$![ = Vh 
vk = (<Y   + y/°k)h 

Sk = Si   Sk - {vkLk)wl 

n2 

n 

n2 

n 

1 
n2 

n2 

n 

1 
n2 

n 

1 
2n2 + n 

1 

1 
1 

1 

Total 3n2 + 2n + 1 4n2 + 3n + 2 3 1 

As can be seen in Table 4 and Table 5, the number of floating point operations is 

of the same order for each algorithm. The number of floating point operations using 

the square-root algorithm will be more than the number of floating point operations 

using the direct implementation. In most cases, however, this increase in number of 

computations will be less important than the increase in numerical stability which is 

gained by using the square-root algorithm. 

Finally, we need to be concerned with how the algorithm is initialized. That is, 

how does one find S0 assuming that P0 is specified. Often, when little is known about 

the plant, P0 is initialized to £7 where / is the identity matrix and £ is a very large 

positive scalar. In this case, S0 can simply be set to y/^I. If, on the other hand, more 

is known about the system and P0 has a more complicated structure, then P0 can 
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Table 5: Direct implementation and corresponding floating point operations 

Steps Floating Point Operations 
+ X ^ -j- 

&k = Pk<f>k 
Xk ~ $*>„ 

0k = 0k + ™k{Tk\k    ) 
Lk = &k(<Tk - 4)Afc 
Pk = 4 A + Lkwl 

n2 

n 

n 
1 

w+1» 

n2 

n 

n + 1 
n + 2 
n2 -\- n 

1 

1 

Total fn2 + fn + l 2n2 + 4n + 3 1 1 

easily be factored as SO-SQ* using the Cholesky decomposition [32]. 

4.4.2    Linear Time-Varying Case 

Because of the improved numerical stability of square-root algorithms, we would like 

to extend this concept to the time-varying case. Unfortunately, the optimal time 

update equations of the OVETV algorithm are not amenable to being rewritten in 

square-root form. However, the two alternative algorithms discussed in Section 2.6, 

scalar addition and scalar multiplication, are very amenable to being rewritten in 

square-root form. 
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Scalar Addition 

Recall from Section 2.6 that the basic idea of scalar addition was to reduce the number 

of calculations by constraining the time update ellipsoid, Ek, to be an ellipsoid with 

the same center and orientation as Ek-\, and with semi-axis lengths which are found 

by adding a scalar, rj, to the semi-axis lengths of Ek-\. Rk is also constrained to be 

From Theorem 3, we see that this is equivalent to constraining Pk to be of the 

form 

A = H_1(AlS+i?/)2V£1 (4.47) 

where a SVD of Pk-i is given by 

Pk-^Vk-i^k-iVk-!, (4.48) 

Vk-i is orthogonal, and Ak-i = diag(Ai... Ar). 

To show how scalar addition can be cast in a square-root framework we take a 

SVDof &_!, 

Sk-i = Vk-^k-iU^, (4.49) 

where Vk-\ and Uk-i are orthogonal and Efc_i = diag(oi... ar). Substituting (4.49) 

into (4.40), we get 

-Pfc-i   =   Sk-iSk-i 

=   Vk-iT,k-iUk_1Uk-i'E>k-iVk_1 

=   Vk-^UV^. (4.50) 
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Comparing (4.48) and (4.50), we see that Vfc-i and A^-i can be chosen such that 

Vk-i = Vk-i and Afc_2
x = Sfc_i. 

Let 

Sk = Vk-1(2k-1+TiI)UL1. (4.51) 

Substituting (4.51) into (4.41), we get 

Pk   =   SkSk 

=   ^.iCSfe-i + vlM-iUk-iPk-i + r}I)Vlx 

=   V*-i(E*-i H-i/J)2^. (4.52) 

1/2 
Comparing (4.47) and (4.52), and using the fact that Vk-\ = Vk-i and A^ = Efc_i, 

we see that (4.51) provides us with the square-root update for scalar addition where 

the SVD of Sk-i is given by (4.49). 

However, we still must show that the value of 77 which minimizes the volume of 

Ek such that Ek D Gk where Gk is given by (2.26) can be calculated directly from 

Sk-i- From Theorem 3, we know that optimum value for -q is given by 

*=P*+Pr-W+Ä' (4-53) 

where 

a = max JXj.      a - min J\j, (4.54) 
i6[l,r]V    " -       j6[i,r]V 

and p6 and p7 are defined in Theorem 3 and are functions of ä, a, and (fc-i- Therefore, 

if we can define a and ä in terms of Sk-i 
we have achieved our goal. In fact, 

ä = max o\-,      a= min u,-, (4.55) 
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where the <7j are the singular values given by (4.49). 

Scalar Multiplication 

In the scalar multiplication strategy, Ek is constrained to be an ellipsoid with the 

same center and orientation as Ek-i', the semi-axis lengths are found by multiplying 

the semi-axes of Ek-\ with a scalar, rj. From Theorem 4, we see that this is equivalent 

to constraining Pk to be of the form 

Pk = ri1Pk-l. (4.56) 

It is easy to see that this is equivalent to 

Sk = r,Sk-U (4.57) 

in our square-root framework. 

We still must show that the value of 77, which minimizes the volume of Ek such 

that Ek D Gk where Gk is given by (2.10) (Rk is not constrained to Cf-0? can De 

calculated directly from Sk-i- From Theorem 4, we know that optimum value for 77 

is given by 

ri = l + y/\ (4.58) 

where X is the maximum generalized eigenvalue, Aj, which satisfies 

Rk-iXj = XjPk-iXj. (4.59) 
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Since jRfc-i is symmetric and positive semi-definite, it can be factored as Tk-iT^. 

Therefore, (4.59) can be written as 

Tk-iT^xj = XjSk^S^Xj. (4.60) 

This problem can be solved directly from Tk-i and Sk-i using the generalized 

singular value decomposition [32]. Given Tk-i and Sk-i, there exist orthogonal T4-i 

and Uk-i and invertible Xk-i such that 

V^Tk-iXk-i   =   Cfc_x (4.61) 

UlJk-iXk-i   =   Dk-u (4.62) 

where Ck-i = diag(ci... cr) and Dk-\ — diag(da... dr). The generalized singular 

values are given by <TJ = CJ/SJ where j = 1... r. The generalized singular values, <7j, 

are also equal to the square-root of the generalized eigenvalues, Xj. Therefore, the 

optimum value of r\ is given by 

»7 = 1 + 0- (4.63) 

where ö is the maximum generalized singular value. For a discussion of how the 

generalized singular values can be calculated, see [32]. 

Finally, some discussion of how Rk can be factored as TkT£ is in order. Clearly 

if Rk = (2/5 then Tk = Ckl- Actually, if Rk = Ql, then this problem can be solved 

using the standard singular value decomposition. If on the other hand, Rk has a more 

complicated structure, then Rk can be factored using the Cholesky decomposition [32]. 

If Rk does not vary with time, then this can be done once before the identification 

process begins. 
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4.5    Input Synthesis 

The input into a system during an identification experiment greatly affects the "qual- 

ity" of the estimates produced by an identification algorithm. Often the experiment 

design has some freedom on how this input is chosen. We will call this design of 

the system input, which is intended to improve the identification experiment, "input 

synthesis." 

In this section, we will consider an input synthesis strategy developed to work 

with the OVE algorithm [11]. The goal of this OVE-based input synthesis procedure 

is to drive the system such that the regression vector, <j>k, is aligned parallel to the 

ellipsoid axis of greatest length. This direction is chosen because it was found in [29] 

that, when using the OVE algorithm, the greatest reduction in volume occurs along 

the direction which is parallel to <f>k. 

The OVE Input Synthesis Procedure (OVE-ISP) was originally developed in [29] 

for systems with a single delay, / = 1. The algorithm is based on a system model 

which is realized from the ellipsoid center estimate at time ko, 0ko, for which <f>k is 

the state vector. In [39], DeVilbiss and Yurkovich modified the algorithm to handle 

systems where the delay index, ?, was either 0 or 1. For improved numerical robust- 

ness, they used a balanced minimal realization instead of the canonical realization 

discussed above. However, by using a minimal realization, the new strategy required 

an additional "observation" stage which was not needed with the canonical realiza- 

tion. In [11], DeVilbiss and Yurkovich returned to the canonical realization because 
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it was found that the input signal level during the "observation" stage was large in 

magnitude compared to the final stage of the input synthesis strategy. 

This input synthesis strategy is investigated in this dissertation for several rea- 

sons. First, the authors of [11] and the author of this dissertation feel that one of 

the most significant applications of OVE-ISP may be for robust adaptive control of 

time-varying systems. The reasoning is as follows. As has been said, when applying 

PSE to robust control or robust adaptive control, there is a trade off between set 

size and system performance. In [39], the OVE-ISP algorithm demonstrated signifi- 

cantly greater ellipsoid volume reduction than a pseudorandom white noise sequence 

of equal expected energy during the "transient phase" of the identification exper- 

iment. However, in [11] the OVE-ISP algorithm did not demonstrate any volume 

reduction advantages over a pseudorandom white noise sequence of equal expected 

energy, or over an alternative input synthesis algorithm found in [40], when comparing 

steady-state performance. 

Therefore, in the time-invariant case where steady-state performance is often more 

important than transient performance, other input synthesis strategies could be used. 

However, in the time-varying case, where the transient performance is very important, 

OVE-ISP could be used in conjunction with an adaptive robust controller. Initially, 

OVE-ISP could be used to quickly reduce the ellipsoid volume so that a robust con- 

troller could be designed. It could also be used periodically if the ellipsoid volume 

becomes to large for effective robust control. 

Second, during our course of study of OVETV and OVE-ISP we discovered a 
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significant property of OVE-ISP which may make it the preferred input synthesis 

strategy for a certain class of linear systems which may be either time-invariant or 

time-varying. Because of the "feedback nature" of OVE-ISP, the OVE-ISP demon- 

strates a "stabilizing" property that the pseudorandom white noise or input synthesis 

strategy of [40] did not possess. Consequently, OVE-ISP is probably the preferred 

strategy for systems which may be unstable or marginally stable. 

Third, OVE-ISP offers design flexibility which may make it a useful strategy not 

only for system identification but also for FDI (which is discussed in the next chapter). 

For an example of FDI-based input design, see [41] where Sadegh, Madsen, and Hoist 

discuss an optimal input design strategy for fault detection and diagnosis based on 

stochastic properties of the system. In OVE-ISP, the goal is to direct the regression 

vector, <f>k, such that maximum reduction in ellipsoid volume occurs. For FDI an 

alternative goal might be to direct (j>k such that fast tracking and isolation take place 

after a fault is detected. It should be pointed out, however, that the OVE-ISP strategy 

is highly dependent on the ellipsoid center estimate, $ko, which may not adequately 

represent the system dynamics after a fault occurs. 

Finally, one of the most significant limitations of the OVE-ISP algorithm in [11] is 

its lack of capability to handle plants where the known system delay, I, is greater than 

1. This should not be a problem for physical systems where the original continuous 

system can adequately be modeled with rational functions in the Laplace domain. 

However, it will not be very satisfactory for systems where there is a known trans- 

portation lag such that / > 1 or or / > 1. This include systems such as the crude oil 
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distillation column which was discussed in Sections 3.4 and 4.2.3. The development 

of OVE-ISP in this section will eliminate this restriction and improve the speed of 

the OVE-ISP for systems where / = 0. 

We begin by developing the OVE-ISP algorithm for the general case, I > 0. Next, 

we show how the OVE-ISP algorithm can be used in conjunction with OVETV for 

PSE of time-varying systems. We compare the performance of OVETV using OVE- 

ISP with the performance of OVETV using pseudorandom white noise and OVETV 

using the input synthesis strategy of [40]. We compare this performance for systems 

which are both stable and unstable. 

4.5.1     OVE-ISP Development for General Delay Case 

As discussed earlier, the goal of OVE-ISP is to drive the system such that <j)k is 

aligned with the ellipsoid axis of greatest length. At time k0, this axis is given by 

the eigenvector, ±xko, which corresponds to the largest magnitude eigenvalue of Pko 

and has been normalized such that ||xfc||2 = 1. At some future time &i, the desired 

regression vector, (f>d, is selected to be (<f>d = ±gxko) where g is a scalar which is 

maximized subject to the constraints of the physical system, and the sign of xko is 

chosen to minimize the synthesized input energy for a given g. 

Invoking a certainty equivalence argument, the current ellipsoid center, 6ko, is 

chosen to realize a state space model of the system which has the form 

<j)k+1 = A(j>k + Buk-i+i (4.64) 
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where 

A = 

-a,\   • • •   — a„_i    — an   —bi 
1     0       

0      '•• 

"m—1 "m 

0 

0 0        1 0 

B = 0 
1 
0 

0 

(4.65) 

At this point in our design, we will assume that the center ellipsoid estimate, 9ko, 

is equal to the "true" center estimate, 6k, that the noise or uncertainty entering our 

system, vk, is 0, and that the system is time-invariant. Most likely, all three of these 

assumptions will fail. However, the degree to which they hold will directly affect the 

ability of OVE-ISP to achieve it goal. 

Also at issue is the observability and controllability of (4.64). By realizing (4.64) 

as we did, the states are directly measurable; therefore observability is not an issue. 

If the modeling orders are chosen correctly, but (4.64) is not controllable, it should 

be possible to choose another parameter estimate within Eko such that (4.64) is 

controllable. For a more complete discussion of the issues involved in choosing this 

realization, see [29] or [21]. 

The system realization in (4.64) can now be used to generate the desired input 

sequence. Let ki = k0 + / — 1. From (4.64), we know that 

(f)kl+i   =   A(f)kl + Bukl-i+i 

=   A<j)kl+Buko. (4.66) 
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Iterating (4.66) and using back substitution, it is easy to show that 

(ßh+r = AT hi + AT     BUk0 -\ h BUk0+r-\- 

Equation (4.67) can now be rewritten as 

(4.67) 

<^b,+r - A* fa, + CU, (4.68) 

where U — 

and C = 

Uk0     uk0+l 

B   AB   ■■■ 

Uko+r-l is a vector which contains the next r inputs 

Ar~lB is the controllability matrix which is assumed to 

be invertible. Thus, the desired input sequence is given by 

U = C-1(h-Arcj)kl), 

where <pki+r has been set to our desired regression vector, (f>d. 

Finally, we need to specify </>^. It is easy to show that 

(4.69) 

hi = < 
(Pko-l 
4k0 

1 = 0 
i = i (4.70) 

A1-1^ + Ä-2Buko-i+i + ■■■ + Buko-i   I > 2, 

where all the terms on the right hand side are known. The desired input sequence 

series takes r steps. The desired regressor is achieved at time k\ = ki+r = k0+l—1-f-r. 

This algorithm reduces to the algorithm discussed in [11] for the case when 1 = 1. It 

is faster for the case where / = 0. Finally, it handles the cases where / > 2 that are 

not handled by the development in [11]. 

The steps of the revised OVE-ISP algorithm can now be summarized: 

1. Use the current OVE (OVETV) ellipsoid center estimate, 6k0, to generate the 

state space realization of (4.64). 



98 CHAPTER IV.  Algorithm Extensions 

2. Find the eigenvector Xk, which corresponds to the largest eigenvalue of Pk0. Set 

fa = ±QXk0 where Q is prespecified. 

3. Compute the input sequence specified by (4.69) and (4.70) which is necessary 

to transfer <j>k0 to fa. 

Note that even through fa will not reach fa until k± = k0 + / — 1 + r, the input 

sequence is only specified until (k0+r — 1). Therefore, if desired, a new sequence could 

be generated starting at (k0 + r). If fact, if a new sequence is to be generated every r 

steps, from (4.69) we see that the OVE-ISP procedure could be viewed (and analyzed) 

as a multi-rate time-varying feedback scheme. To illustrate this, see Figure 26 for 

the case where / = 1, and where {AC,BC,DC} represent the plant's continuous time 

system dynamics, T is the sampling time, and ZOH is a zero-order hold. If an OVE- 

ISP sequence begins at time k0, for k = k0 ... k0+r-i, the time-varying gain Kk is 

given by [ K&    Afo+1    • • •   Af0+r._! ]    =C~X. 

Feedback can cause difficulties for system identification algorithms [34]. It is 

shown in [42] how identifiability can be lost due to static gain feedback. In this 

case, the parameters cannot be uniquely determined. However, identifiability can be 

regained by using a time-varying feedback gain or feedback of sufficiently high order. 

The feedback gain in the OVE-ISP procedure, Kk, is time-varying. Furthermore, the 

feedback depends not only on the output, but on past values of the output and input. 

While the full implications of this "feedback nature" will require further study, its 

importance will be demonstrated in the next section. 
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Figure 26: OVE-ISP procedure viewed as time-varying feedback scheme 

4.5.2    Application of OVE-ISP and OVETV to Time-Varying 
Systems 

As previously mentioned, one of the most significant applications for OVE-ISP may 

be in the areas of adaptive PSE and adaptive robust control. However, in the devel- 

opment of the previous section, it was explicitly assumed that the system we were 

trying to identify was time-invariant. Clearly, we would expect the performance of 

OVE-ISP to deteriorate for systems which vary "quickly" with time. Consequently, 

for demonstration purposes we will work only with "slowly-varying" systems. 

In this section, we will consider a variation of the example examined in [40] and 

[11]; here, we will allow the system parameters to vary with time.   Consider the 
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time-varying system 

Vk   =   Qk4>k + vk, 

0k+i   =   Ok + Wk, 

(4.71) 

(4.72) 

where 

h   = 

<t>k   = 

o-ik   a2k   bik 

-Vk-i    —Vk-i   Uk-i 

(4.73) 

(4.74) 

and 

e0 = 0.4   0.85   0.75 
-\T 

Wk 0.005   -0.002   0.007 

(4.75) 

(4.76) 

and Vk is a uniformly distributed random variable between [-0.05 0.05]. The system 

is initially at rest. 

To apply OVETV, the bounds in (2.3) and (2.4) must be specified. We set jk = 

—j = 0.05 and Rk = (£1 where (k = \\wk\\2 and / is the identity matrix. The 

orientation matrix P0 is set to 104/, and the center 0O is set to the origin. 

For this example, we will use three different input sequences. OVE-ISP with Q = 1 

is repeatedly applied to the system to generate the first input sequence. The second 

input sequence is a uniformly distributed random white noise sequence whose bounds 

are set such that it has the same input energy as the OVE-ISP sequence. The final 

input sequence uses an approach which was developed by Pronzato and Walter and 

can be found in [40]. This input sequence is "bang-bang" in nature and is designed 
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Figure 27: First time-varying example comparing system inputs 

using an "optimal" one-step-ahead cost function with a constraint on the magnitude 

of the input. We will choose the bound on the input level so that the energy of this 

input sequence also matches the energy of the OVE-ISP sequence. 

Before applying any of these input sequences, a uniformly distributed random 

white noise sequence of length 3 was applied to the system to "initialize" the 0VETV 

algorithm. The ellipsoid volumes for the three input sequences are shown in Figure 27. 

While OVE-ISP may have a slight advantage during the transient phase, overall, there 

appears to be no clear advantage for any of the input sequences. The parameters, 

center estimates, and upper and lower bounds are shown in Figure 28 for the OVE-ISP 

input sequence. The plots for the other input sequences were similar. 
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Figure 28: First time-varying example with OVE-ISP input sequence 

This    simulation   is    repeated    as    above   except    with    Wk    now    given   as 

T 
wk = 0.005   0.0035   -0.007 The ellipsoid volumes for this second example 

are shown in Figure 29. Upon first inspection, it would appear that the performance 

of OVE-ISP is inferior to the performance of the random input and the Pronzato- 

Walter algorithm. However, if we examine the output sequences in Figure 30 for each 

of the three input input sequences, we clearly see the source of the discrepancy. The 

output sequences for the random input and Pronzato-Walter algorithms are growing 

to levels which would probably be unacceptable for most physical systems, while the 

output sequence for the OVE-ISP algorithm is remaining "well-behaved." Clearly, the 

energy of the output sequence has as much effect on the volume of the ellipsoids as 
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Figure 29: Second time-varying example comparing system inputs 

the energy of the input sequence. 

The reason for the unacceptable increase in magnitude of the output sequences 

for the random input and Pronzato-Walter algorithm can be seen in Figure 31. In 

Figure 31, we see that while the system poles at each time-step during the first 

example remain within the unit circle, the system poles during the second example 

clearly move outside the unit circle. While the locations of the "frozen-time" poles by 

themselves do not guarantee stability or instability for linear time-varying systems, 

they do provide information, particularly for slow-varying systems, about the local 

(in-time) behavior of the system. 

In the second example, once the poles of the system move outside the unit circle, 
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Figure 30: System outputs for second example 
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Figure 32: Second time-varying example with OVE-ISP input sequence 

the magnitude of the output of the open-loop system grows rapidly. However, the 

output sequence using the OVE-ISP input sequence remains well-behaved because of 

the "feedback nature" of its synthesis. Furthermore, as seen in Figure 32, OVETV is 

able to track the parameters effectively using the OVE-ISP input sequence. This is 

in contrast to the Pronzato-Walter case where the overall volume is smaller, but the 

uncertainty around the parameter 61 becomes very large, as can be seen in Figure 33. 

OVE-ISP has achieved similar performance for unstable linear time-invariant systems. 

In conclusion, while this "stabilizing" property is appealing, clearly more analysis is 

needed to determine when and if this property can be guaranteed. 
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Figure 33: Second time-varying example with Pronzato-Walter input sequence 

4.6    Summary 

In this chapter, we discussed several algorithm modifications and extensions which 

serve to improve one or more properties of the OVE or OVETV algorithms. In Sec- 

tion 4.2, we showed how MISO systems could be placed in the OVE or OVETV frame- 

work. We began by showing how linear time-invariant MISO state space equations 

can be placed in the OVE framework. Next, we extended Theorem 5 to linear time- 

varying MISO systems which satisfy a certain "observability" property. Theorem 6 

showed how systems which satisfy this property can be transformed into the OVETV 

framework. Finally, results were presented showing how the OVETV algorithm could 

be applied to the crude oil distillation column using the MISO framework. 
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In section 4.3, we showed how dependencies in parameter variations could be ex- 

ploited to reduce the number of calculations necessary to implement the OVETV 

algorithm. When these dependencies are present, support functions are utilized to 

handle the degeneracies which arise in the ellipsoid bound on the parameter distur- 

bance vector, Wk- Properties of determinants are used to decrease the size of the 

generalized eigenvalue problem in step 1 of the optimal time update equations, as 

well as the size of the polynomial which needs to be solved in step 2. 

Section 4.4 introduced a square-root implementation of the OVE algorithm. This 

implementation serves to prevent the ellipsoid orientation matrix, Pk, from becoming 

non-positive definite due to finite precision calculations. The implementation fol- 

lows an outline similar to Potter's algorithm [36] which is often used in stochastic 

estimation routines. A comparison with the direct implementation of the OVE algo- 

rithm showed that while the square-root implementation requires more floating point 

operations, the number of operations is of the same order for each implementation. 

Furthermore, in most cases this increase in number of computations will be less im- 

portant than the increase in numerical stability which is gained by the square-root 

implementation. For the time-varying case it was shown how the scalar addition and 

scalar multiplication algorithms of Section 2.6 can also be implemented in a square- 

root framework. 

Finally, in section 4.5 the OVE-ISP input synthesis procedure of [21] and [11] 

was investigated. First, we extended OVE-ISP to handle the class of systems which 

contains a known transportation lag. The modified algorithm also improves the speed 
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of response for the case where there is no delay. Next, we demonstrated how OVE-ISP 

and OVETV could be applied to linear time-varying systems. The simulation results 

presented demonstrate a "stabilizing" property of OVE-ISP which is not possessed by 

a random input sequence and an alternative synthesis procedure found in [40]. This 

"stabilizing" property makes OVE-ISP the preferred input scheme for unstable linear 

time-invariant and linear time-varying systems. 
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Fault Detection and Isolation using PSE 

5.1     Overview 

To attain autonomy in control systems it is necessary that a controller be able to 

detect and identify faults in a complex dynamical system. These faults (or failures) 

may occur in the sensors, actuators, and components of the system we are trying to 

control. It is very important that a fault detection and isolation (FDI) scheme be able 

to accurately detect failures in the presence of modeling errors, system and measure- 

ment noise, and parameter variations. Because of these stringent requirements, this is 

a natural setting for a robust system identification technique such as set-membership 

identification. In this chapter we show how the OVE the OVETV algorithms can be 

used for detection and isolation of faults in dynamical systems. 

The chapter begins with a brief overview of FDI and some of the issues involved 

in its implementation. Next, we will discuss two methods for detecting faults in 

dynamical systems. The first method relies on the consistency check which is integral 

to the OVE and OVETV algorithms, while the second method utilizes an ellipsoid 

intersection test to detect a fault. 

109 
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If a fault is detected by an inconsistency check in the OVE or OVETV algorithms, 

a fault is signalled and the algorithms halt. However, in many situations it is desir- 

able to track the parameters in the parameter space after a fault is indicated. Two 

"recovery" strategies are presented. The first strategy simply resets the current ellip- 

soid to a "large enough" ellipsoid guaranteed to contain the "true" parameter after a 

fault is detected. This is the only method that we know of that can guarantee that 

the "true" parameter will be contained in the parameter set immediately after a fault 

it indicated. However, after the ellipsoid is initially reset, there may be a transition 

time for which the ellipsoid is too large to be effective for applications such as robust 

adaptive control. 

Consequently, an alternative strategy is also introduced. This strategy uses a 

projection strategy to combine the information contained in the new measurements 

with the "best" of the information retained by the previous ellipsoid. While this 

strategy is not guaranteed to capture the "true" parameter, it often succeeds in 

doing so very quickly. Rules are also proposed for combining these strategies to take 

advantage of the guaranteed properties of the resetting algorithm and the transition 

properties of the projection algorithm. 

Finally, the algorithms of this chapter are illustrated using the linear time-varying 

circuit example of Section 3.3. Some techniques for fault isolation are also discussed 

in our concluding remarks. 
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5.2    Issues in FDI 

The use of FDI is becoming more and more critical as the complexity of systems to 

be controlled increases. Applications where FDI is necessary include complex process 

plants where early detection of slowly-varying faults can avoid major plant break- 

downs and disasters. FDI is also applicable to high performance vehicles, such as 

ships, submarines, airplanes, and spacecraft, where safety and significant financial in- 

vestment are at stake. The application of FDI techniques has also been made possible 

by the increased computational capability of digital computers and the development 

of advanced processing techniques. 

There are four basic approaches to FDI: (1) limit and trend checking, (2) physical 

redundancy, (3) analytical redundancy, and (4) knowledge-based redundancy. Limit 

and trend checking is the simplest and the most widely used. In this strategy, limits 

are placed on measured variables or on there rate of change. If these limits are 

surpassed, a fault is detected. Examples include smoke alarms and "dummy" lights 

on an automobile. 

With physical redundancy, multiple sensors are used for each measurement. A 

voting strategy is used to decide which measurements to use. Multiple actuators may 

also be used. While this method has the advantage of being simple, the additional 

hardware requirements may be costly in terms of dollars as well as mass and volume 

requirements. 

Analytical redundancy is an approach, often model-based, which generates residu- 

als utilized to detect and isolate failures. This is the approach used in this dissertation 
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and will be discussed in detail.   Knowledge-based redundancy uses heuristic model 

information and often functions as a supervisor utilizing the other approaches. 

One model considered by analytical redundancy techniques is 

x((k + l)T)   =   Ax(kT) + Bu(kT) + Ed(kT) + Kf{kT) (5.1) 

y(kT)   =   Cx(kT) + Fd(kT) + Gf{kT), (5.2) 

where x € 9£n is the state, u € 9£p is the control input, y £ 9£? in the output, d E$tl 

is the unknown input vector, / 6 3£m is the fault vector, and T is the sampling time. 

The unknown input vector, d, represents noise and modeling errors which may cause 

false alarms in a FDI strategy. The fault vector, /, is nonzero only when a fault 

occurs. 

Another type of model considered by analytical redundancy techniques is 

Vk = 8l<t>k + vk, (5.3) 

where yk is the system output, 9k is the parameter vector, </>& is the regression vector, 

and Vk is the system disturbance. Faults are modeled by changes in the parameter 

vector, 9k, which are not anticipated by the no-fault behavior of the system. 

There are two types of fault modes with which we are concerned: abrupt and 

incipient. Abrupt faults are step-like changes which require quick detection for safety 

reasons. Incipient faults are slowly varying failures, e.g., bias or drift, which take 

longer to detect, but are usually more maintenance related. 

As discussed previously, analytical redundancy relies on the generation of residuals 

to detect and isolate faults. Residuals are simply functions which are accentuated by 
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the fault vector / and are ideally zero when / = 0. Most analytical redundant 

schemes require two steps: (1) generation of residuals and (2) decision and isolation 

of the faults. Residuals are most often generated using either state estimation or 

parameter estimation. Examples of state estimation schemes include parity checks, 

observer schemes, and detection filters. Once residuals are generated, they may be 

used to form decision functions where the relevant information is more apparent. 

Isolation of the failures is based on a fault signature, which is a signal defining the 

effects associated with a particular fault (often derived from a model of the faulty 

system). 

To achieve fault detection and isolation, three types of models may be used: nom- 

inal representing no fault behavior, actual representing observed behavior, and faulty 

representing the system after a fault has occurred. Ultimately, we may desire to know 

the type, size and source as well as the time and location of the fault. To achieve this, 

often additional heuristic information is required, i.e., knowledge based redundancy. 

While FDI has received much attention in the research community (see e.g., [43], 

[44], and [45]), there has been little investigation into the use of set-membership iden- 

tification approaches for FDI. This is surprising given the stringent requirements for 

robustness. Set-membership identification algorithms have the very desirable prop- 

erty that the estimated parameter sets are guaranteed to contain the "true" param- 

eter. It should be mentioned, though, that this robustness property is only as good 

as the assumptions upon which the parameter estimation algorithms are based. 

Work which is related to the use of PSE for FDI can be found in [46], where a 
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two-ellipsoid overlap test for on-line failure detection is developed. The authors did 

not use set-membership identification but, instead, used confidence regions based on 

covariance matrices. They compared the confidence region of an on-line identified 

model of the system with the confidence region of a nominal model. A fault was 

detected when the confidence regions did not overlap. 

In [14], the authors show how a version of the OBE algorithm developed in [4] can 

be modified by artificially increasing the noise bound to guarantee consistency if an 

update takes place. This algorithm suffers from the fact that this consistency can still 

be lost if no update takes place. However, they have developed a "rescue procedure" 

for when tracking is lost, for example due to an unexpected large parameter jump 

which could be caused by a fault. Other rescue procedures are discussed in [47]. 

5.3     Detection of Failures 

A critical part of an FDI scheme is the ability to detect failures. In this section, 

we will discuss two approaches for detection of failures. The first approach uses 

the consistency check which is integral to the OVE and OVETV algorithms. This 

check determines if the intersection between the ellipsoid resulting from the time 

update, Ek, and the region based on the new measurements, Fk, is empty. The second 

approach combines the ellipsoid intersection test of [46] with the OVETV algorithm. 

An alternative, more straight-forward, development of the ellipsoid intersection test 

is given. 
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5.3.1     Consistency Check 

Consider the system given by (2.1) and (2.2) with known bounds given in (2.3) and 

(2.4). To apply the OVETV algorithm to this system, we assume that the following 

are known: the system structure, i.e., n, m, and /, the bounds on the system distur- 

bance, i.e., 7 and 7fc, the bound on the parameter disturbance vector, i.e., Rk, and 

the initial ellipsoid which is guaranteed to contain the "true" parameter vector, i.e. 

EQ. Under the assumption that these parameters are known, the algorithm produces 

an ellipsoid at each time k, Ek, which is guaranteed to contain the "true" parameter 

vector. 

However, if any of these are unknown, we may have the case where Ek fl Fk = 0, 

where Fk is the region between the two parallel hyperplanes, and Ek is the ellipsoid 

resulting after the time update equations. For an example, consider the first-order 

system in Section 3.2. With the algorithm initialized as before, at k = 16 a fault is 

induced causing the parameter ak to jump by 0.25, i.e., ai6 = ai5 + 0.25. This violates 

the bounds on the parameter disturbance vector, Wk, and produces the simulation 

results shown in Figure 34. Clearly, E16 f~l Fw = 0, indicating that a fault has 

occurred. 

Let us formalize an approach implied by this simple example. Let the nominal 

system model be given by 

Vk   =   &Uk + vk, (5.4) 

0k+i   =   0k + wk, (5.5) 
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Figure 34: Fault detected at k = 16 

where     6k 

<j>k = 

«lit ani-   bik   • • •   bmk 

-yfc-1     • • •     -J/fc-n     Uk-l Uk- 

,      6o        €        E0,      and 

The system disturbance, Vk, and 

the parameter disturbance vector, Wk, are assumed to satisfy the following bounds 

lh<vk< 7A, -LA 

{wk € r : 9Twk < \JeTRk6; 6 G 9ftr}, 

(5.6) 

(5.7) 

where 7fc < 7fc, and 7fc G 3£, 7fc G 3?, and ßfc G 3Jrxr are known at each time k. The 

matrix Rk is symmetric, semi-positive definite. 

From these quantities, define the following sequences: 

UN — {uk}k=o,...,N YN = {yk}k=o,...,N 
VN = {UA}A=O,...,AT        WAT = {^A}A=o,...,iv- 

(5.8) 
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For this work, we will define a fault as follows. 

Definition 1 For a given input sequence, UN, and output sequence, YN, of the actual 

system, a fault is said to have occurred if there does not exist a pair of sequences, VN 

and WN, which satisfy the nominal system equations, (5-4) and (5.5), and nominal 

system bounds, (5.6) and (5.7). 

We can now state the following theorem. 

Theorem 7 Given that 

• the actual system satisfies (5.4)-(5.7) under nominal operating conditions, 

• the OVETV algorithm is initialized such that ;yk > ^k, j_k < j_k, Rk > Rk, and 

Eo D E0, and 

• the OVETV algorithm is applied to the input sequence, UN, and output sequence, 

YN, of the actual system. 

If 

EkC)Fk = <I\, (5.9) 

for any k € {0,..., JV}, then a fault has occurred. 

Proof: Given the input sequence, UN, and output sequence, YN, of the actual system, 

assume that Ek C\ Fk = 0, but that no fault has occurred. Therefore, there exist 

sequences, VN and WN, such that the nominal system equations and nominal systems 

bounds are satisfied. However, if Vjv and WN exist which satisfy (5.4)-(5.7), by 

construction of the OVETV algorithm, 

EknFk^t (5.10) 
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This is a contradiction. Therefore, if Ek H Fk = 0, then there cannot exist sequences, 

V/v and WN, such that the nominal system and nominal system bounds are satisfied. 

Thus, a fault must have occurred. □ 

In this section we applied Theorem 7 to the first-order example of Section 3.2. 

In Section 5.5, we will demonstrate this detection strategy on a more complicated 

example, the linear time-varying circuit of Section 3.3. 

When a fault is detected by this algorithm, i.e, when Ek D Fk = 0, the OVETV 

algorithm halts. However, there are many situations where it would be desirable to 

track the parameters after a fault is detected. In Section 5.4, algorithms are discussed 

which allow the OVETV algorithm to "recover" after a fault is detected. In the next 

section, we will discuss another algorithm for fault detection. This algorithm has the 

advantage that for linear time-invariant systems with incipient faults, no "recovery" 

strategy is needed to continue tracking the parameters after a fault is detected. 

5.3.2     Ellipsoid Intersection Test 

Consider the system given by (2.1) and (2.2) with known bounds given in (2.3) and 

(2.4). Assume that under nominal conditions, the system can be described by (5.4)- 

(5.7) where Rk is known to be equal to 0 for all fe, i.e., the nominal system is time- 

invariant. If we apply the OVE algorithm to the system when it is operating under 

nominal conditions, we will get a resulting ellipsoid, Enom. 

To monitor the system for incipient (slowly-varying) faults, we can apply the 

OVETV algorithm with Rk set greater than 0 such that parameter tracking is never 
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lost. In this situation, we can compare the ellipsoid, Ek, produced by the OVETV 

algorithm during actual operation with the nominal ellipsoid, Enom, which was pro- 

duced during nominal operating conditions. If these ellipsoids intersect, it is possible 

that the actual plant matches the nominal plant model. However, if the ellipsoids do 

not intersect, clearly a fault has occurred. 

For an example, consider the first-order system in section 3.2. Initially, the OVE 

algorithm was applied to the system under nominal conditions, i.e., dk = 0.5 and 

bk = 1.0. This resulted in the ellipsoid 

Enom = {6: (9-enomfp^m{e-enom) <i-,ee sr}, (5.11) 

where 

P      = 
0.0007   0.0006 
0.0006   0.0011 

ün.nm.   — 
0.4970 
1.0045 

(5.12) 

During the actual operation of the plant, the parameters begin to drift, just as in 

Section 3.2. In order to track the parameters as they drift, the OVETV algorithm 

was initialized the same as in Section 3.2. In Figure 35, we see at that time k = 99, 

the nominal ellipsoid, Enom, and the actual ellipsoid, Ek, fail to intersect. Clearly, a 

fault has occurred. 

In this section, we will develop an algorithm to automatically detect if two ellip- 

soids intersect. While such an algorithm was previously developed in [46], the devel- 

opment in this section serves to illustrate the process and is, we feel, more straight 

forward than that of [46]. Furthermore, we will recommend an additional step to the 

algorithm presented in [46] which often results in a reduced number of computations. 

Finally, the detection strategy discussed above will be stated in terms of a theorem. 
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Figure 35: Fault detected at k = 99 

Ellipsoid Intersection Equations 

We wish to develop a test to determine if two ellipsoids, 

Ei    =    {ö:(ö-ö1)
r

JPf1(ö-ö1)<l;öieKr} 

E2   =   {6:(6-62)
TP;\9-02)<l;62eW} 

(5.13) 

(5.14) 

intersect. This is equivalent to testing whether the following ellipsoids intersect 

Ei   =   {x:xTPilx<l;xeW} (5.15) 

E2   =   {x:(x-x2)
Tp-1(x-x2)<l;x2e$r}, (5.16) 
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Figure 36: Intersecting and nonintersecting ellipsoids 

where x = 0 — 0i and x2 = 02 — Q\. A pair of intersecting and a pair of nonintersecting 

ellipsoids are shown in Figure 36. 

If the center of E\ is contained within E2, 

*Eo     2     *^2 -^ i (5.17) 

then the ellipsoids intersect, i.e., E^E2 ^ 0. If E1f)E2 ^ 0 and (5.17) is not satisfied, 

then clearly there must be at least one point, x*, which lies on the hypersurface of 

E2, i.e., (x* - x2)
TP2

1{x* - x2) = 1, and lies within Eu i.e., x^P^x* < 1. 

This suggests the following development, as a straight-forward alternative to that 

of [46]. If (5.17) is satisfied, then the ellipsoids intersect and the algorithm stops. If 
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(5.17) is not satisfied, minimize 

J(x) = xTP^x, (5.18) 

subject to the constraint that x satisfies 

(x-x2)
TPiX{x-x2) = l. (5.19) 

If J(x*) < 1, where x* is the optimum value, then the ellipsoids intersect, otherwise, 

they do not. The value of x* can be seen in Figure 36 for a pair of intersecting 

ellipsoids and a pair of nonintersecting ellipsoids. 

To solve (5.18) subject to (5.19), we form the augmented cost function 

Ja(x, A) = xTPf1x + X((x - x2)
TP^(x - x2) - 1), (5.20) 

where A is the Lagrange multiplier. Taking the gradient of (5.20) with respect to x 

and setting it equal to 0, we get 

^{x*, A*) = 2P~1x* + 2\*Pr1(x* - x2) = 0. (5.21) 
ox 

Rearranging (5.21) results in 

(P^1 + A*P2-
1)x* = \*P^x2. (5.22) 

Assuming that A* is positive, then the term multiplying x* is positive definite and 

invertible, therefore, 

x* = A*^-1 + A*P2-
1)-1P2-

1a:2. (5-23) 

Taking the gradient of (5.20) with respect to A and setting it equal to 0 gives 

^V, A*) = (x* - x2)
TP;\x* - x2) - 1 = 0. (5.24) 
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By substituting (5.23) into (5.24) and performing some algebra, we get 

4A" w + yp^r'p^iPi1 + X*P2-
I
)-

I
P1-

I
X2 =1.       (5.25) 

To show that a unique positive solution exists for A*, we make the following 

substitution. Because P{1 and P2
_1 are symmetric, positive definite, there exists a 

nonsingular matrix S such that 

Pf1   =   STS (5.26) 

Pi1   =   STDS, (5.27) 

where D — diag(di,d2, • • • ,dr) [32]. Substituting (5.26) and (5.27) into (5.25) results 

m 

x TnT ST(I + \*D)-lD{I + X*D)~1Sx2 = 1. (5.28) 

r       diV2 

The left hand side of (5.28) can be written as r/(X*) = ]P       ' *       where v = 

Sx2 =    v\   v2   ■ ■ •   vr   . Clearly, rj(oo) = 0. At A* = 0, r?(0) = x2P2
1x2 must be 

greater than 1, otherwise, we would have stopped the algorithm earlier because we 

would have known that the ellipsoids intersect. For A* > 0, ^f(A*) < 0 and, therefore, 

r/(A*) is strictly decreasing.  Consequently, a unique positive solution must exist for 

A*. 

Therefore, the algorithm for detecting when two ellipsoids, E\ and E2, intersect 

is given as follows: 

1. If x2P2
1x2 < 1 where x2 = 62 — 01? then EiC\ E2 ^ 0 and the algorithm stops; 

otherwise continue. 
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2. Solve /(A) = xJP^Xz — 1 for the unique positive solution, A*, where x3 = 

(P^1 + AP2~1)~1-Pf 1(02 — #i)- The authors in [46] recommend using the bisection 

method to solve for A*. This method is guaranteed to converge if the initial 

values for A are set at 0 and some positive value such that /(A) < 0. 

3. If z*TP2-V < 1 where x* = A^Pf1 + A*^1)-1^1^ - 0i) and A* is found 

as above, then E\ D E2 ^ 0, otherwise, E\ D E2 = 0, i.e., Ei and E2 do not 

intersect. 

We also recommend an additional step, which is not included in [46], to precede 

step 1. 

0. If x\Px 1x2 < 1 where x2 = 92 — 6i, then E\ f\ E2 ^ 0 and the algorithm stops. 

Step 0 determines if the center of E2 is contained in E\. While this step is not 

necessary for the algorithm to achieve its goal, it will reduce the number of times the 

search in step 2 has to be conducted. 

Ellipsoid Intersection Detection Strategy 

Now, let us formalize the detection strategy which utilizes the ellipsoid intersection 

test developed above. Let the nominal system model be given by (5.4)-(5.7) with 

Rk = 0. Let the actual system under all conditions be given by (5.4)-(5.6) and 

{wk G W : 6Twk < ^JeTRk9; ^r}, (5.29) 
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where Rk € $lrXr is known at each time k. The matrix, Rk, is symmetric, semi-positive 

definite. We can now state the following theorem. 

Theorem 8 Given that 

• the actual system satisfies (54)-(5.7) under nominal operating conditions with 

Rk = 0; 

• an ellipsoid, Enom, was produced by the OVE algorithm which was initialized 

such that TJ. > ik) 7, < 7,, and E0 D E0, and which was applied to the system 

under nominal operating conditions; 

• the OVETV algorithm is initialized such that 7^ > 7fc; 7fc < jk> Rk > Rk, and 

EQ D E0; and, 

• the OVETV algorithm is applied to the input sequence, UN, and output sequence, 

YN, of the actual system. 

U 

EknEnom = ®, (5.30) 

for any k G {0,..., N}, then a fault has occurred. 

Proof: Given the input sequence, UN, and output sequence, YN, of the actual system, 

assume that Ek f~l Enom = 0, but that no fault has occurred. Therefore, there does 

exist sequences, VN and WN, such that the nominal system equations and nominal 

systems bounds are satisfied.  Therefore, the true parameter, 6*, must be in Ek for 
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all k — 0,..., N. By construction of the OVE algorithm, 6* must also be contained 

within Enom. Therefore, 

Ek n Enom ^ 0. (5.31) 

This is a contradiction. Therefore, if EkC\Enom = 0, then there cannot exist sequences, 

VN and WN, such that the nominal system and nominal system bounds are satisfied. 

Thus, a fault must have occurred. □ 

Clearly, this algorithm has an advantage over the consistency check detection 

strategy in the fact that for incipient faults, no recovery strategy is needed. However, 

it does require calculations in addition to those of the OVETV algorithm. Further- 

more, it would be difficult to apply this algorithm to systems which are nominally 

time-varying, because it would be required to know Enom as a function of k for all time. 

Finally, abrupt failures will still, most likely, cause an inconsistency in the OVETV 

algorithm. Consequently, for abrupt failures, no matter which detection strategy we 

use, the algorithm recovery strategies of the next section will be important. 

5.4    Algorithm Recovery Strategies 

When Ek fl Fk = 0, the OVE and OVETV algorithms indicate an inconsistency and 

stop. This is satisfactory if the system being monitored also shuts down immediately 

(for example, due to safety reasons). However, in many situations it is not safe or 

desirable for the system being monitored to be shut down immediately. 

In situations where the system does not shut down immediately, there are strong 
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reasons why one may desire that the OVE and OVETV algorithms continue to track 

the parameters moving in the parameter space. If the algorithm is being used in an 

indirect adaptive control setting, the parameter set is critical for the on-line control 

design. To isolate the type of fault that has occurred, it is important that we know 

where in the parameter space the parameter set has moved to after a fault has been 

detected. In [48], it is argued that the need for estimation of uncertainty in the pa- 

rameter estimates (which is integral to OVE and OVETV algorithms) is particularly 

important for reconfigurable control. Fault isolation will be discussed further in our 

concluding remarks. 

In [47], a recovery strategy is developed for the OBE algorithm of [3]. In [14], a 

recovery strategy is developed for a modified version of the OBE algorithm [4]. When 

an inconsistency is detected, they can guarantee, under certain assumptions, that this 

algorithm will asymptotically contain the "true" parameter. 

However, we would argue that while asymptotically capturing the "true" param- 

eter is a nice property, it does not satisfy the requirement that the "true" parameter 

always be contained within the parameter set. We suggest instead, that after a fault 

is detected, the ellipsoid, Ek, be reset to a "large enough" volume ellipsoid such that 

the "true" parameter is contained within the parameter set. 

However, initially this reset ellipsoid may be too large for effective robust adaptive 

control, isolation, etc. Consequently, an alternative approach, which uses projections 

to effectively utilize the information gained by new measurement, Fk, and the infor- 

mation contained in the ellipsoid, Ek, is developed. Finally, an integrated approach is 
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proposed to take advantage of the guaranteed containment properties of the resetting 

algorithm and the improved volume properties of the projection algorithm. 

5.4.1     Ellipsoid Resetting Algorithm 

Consider the example investigated in Section 5.3.1. This is similar to the first-order 

example considered in Section 3.2. However, at k = 16 a fault occurs causing the a^ 

parameter to jump by 0.25, i.e., a^ = a\s + 0.25. A simulation was run and the fault 

was detected at time k = 16; the intersection of Ei& and FIQ was empty as can be 

seen in Figure 34. At this point the OVETV algorithm halts. As discussed above, 

often we would like to continue to track the parameters in the parameter space. 

In this section, we will reset the ellipsoid to a size which is guaranteed to capture 

the true parameters after the fault has been detected. In the example above, the 

ellipsoid EIQ was reset to have Pi6 = 21 and 6ie = 0. The results are shown in 

Figure 37. The algorithm tracks the jump in the parameter very quickly. In fact, it 

appears that the actual parameter is always contained in the parameter set. 

This is verified by examining the normalized center estimate error (see Figure 38), 

which is found to always be less than one. While the OVETV algorithm is guaran- 

teed to contain the true parameter before a fault occurs, and the ellipsoid resetting 

algorithm guarantees this property immediately after a fault is detected, there is 

no guarantee that the true parameter will always be contained during the time be- 

tween when the fault occurs and when it is detected. For this example, the fault was 

detected immediately; this will not always be the case. 



5.4.   Algorithm Recovery Strategies 129 
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Figure 37: Ellipsoid resetting algorithm results for First-Order example 
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Figure 38: Normalized center estimate error for First-Order example 
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Furthermore, the ellipsoid resetting algorithm guarantees that the true parame- 

ter will always be contained immediately after a fault is detected. Under nominal 

conditions, once the parameter is captured, it is guaranteed to remain inside the pa- 

rameter set until another fault occurs. However, if the system does not satisfy the 

nominal conditions after a fault is detected, e.g. due to continued large jumps in the 

parameter vector, the true parameter may not remain in the parameter set. Hope- 

fully, however, another inconsistency will indicate the "continued" fault allowing the 

true parameter to be recaptured permanently. This is an important point and will 

be discussed further in Section 5.5.1. 

One of our concerns about the ellipsoid resetting algorithm was the volume of the 

ellipsoids immediately after the resetting takes place. Indeed, as seen in Figure 39, the 

ellipsoid volume does rise sharply immediately after the ellipsoid is reset. However, 

due to the excitation of the input and the low order of the problem, the ellipsoid vol- 

ume decreases rapidly. In the next section, we will examine an alternative algorithm 

which should result in smaller ellipsoid volumes, but lacks the guaranteed recapture 

property of the ellipsoid resetting algorithm. 

The procedure for incorporating the resetting algorithm within the standard OVETV 

structure is given as follows: 

1. Choose the initial ellipsoid, E0, "large enough" such that the initial "true" 

parameter vector, $o, is in EQ. 

2. Find Ek such that 

Ek = argE min{vol(£) : E D Gk}. (5.32) 
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Figure 39: Ellipsoid volume for First-Order example 

3. If Ek H Fk = 0, then signal a fault and reset Ek, 

i-'k — Preset i (5.33) 

where Ereset is "large enough" such that "true" parameter vector, 6k, is in Ek- 

4. Find Ek such that 

Ek = argB min{vol(£) : E D Ek D Fk}. (5.34) 

5. Repeat steps two through four for each new measurement. 

Note, that in step 3, the question of how one chooses Ereset "large enough" such that 

Ok £ Ek is an important one and will be discussed in detail in Section 5.5.2. 
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5.4.2     Ellipsoid Projection Algorithm 

Consider the situation in Figure 40 where, at time k, the "true" parameter 6k has 

jumped. The intersection of Fk and Ek is empty, and a fault has been detected by the 

OVETV algorithm. In this section, we want to develop an algorithm to find a new 

ellipsoid, Ek, which utilizes the information gained by Fk and the "best" information 

possessed by Ek. 

We are guaranteed that the true parameter must be contained within Fk. The 

region, Fk, provides information in the direction parallel to the regression vector, <f>k. 

However, it provides no information in the directions orthogonal to fa. Since we 

have no additional information, we will make the assumption that in the directions 

orthogonal to fa, that the ellipsoid, Ek, bounds the "true" parameter. While this 

assumption holds for the example in Figure 40, there is no guarantee that it will hold 

in general. We will use the results of Sections 2.4.2 (optimal time update equations) 

and 4.3 (dependent parameter variations) to solve for the minimum volume ellipsoid 

which bounds the sum of (i) the degenerate ellipsoid found by projecting Ek onto the 

plane orthogonal to fa and (ii) the degenerate ellipsoid found by projecting Fk onto 

the line of fa. In Figure 40, the resulting ellipsoid is given by Ek- 

Mathematically, we want to find Ek such that 

Ek = axgEmm{vo\(E) : E D V{Ek, <j>£) + V{Fk,<f>k)}, (5.35) 

where V(X, Y) is the projection of X onto Y and YL is the orthogonal complement 

of Y. To solve this problem, we begin by finding the singular value decomposition of 
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Figure 40: Projection Algorithm 

4>k, 

4>k = uzv1 (5.36) 

, and V G & where U G 5RrXr is orthogonal, E G &r is equal to E = [ <r   0   • • •   0 

is equal to one. It is easy to show that u must be equal to ||<^fc||2- Recall that Fk and 

Ek are defined as 

Fk  =  {4er ■•lk<yk-eTkh<ik} 

Ek = {6k:{0k-&k)TPk-\h-ek)<i\h£$tr}, 

(5.37) 

(5.38) 

where 6k G W is the center of the ellipsoid and Pk G Wxr is a symmetric, positive 

definite matrix. 
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To simplify our problem, we define the affine transformation, TJy, and its inverse 

by 

h   =   M6k) = UT(6k-9k) (5.39) 

9k   =   Tü\h) = Uh + h. (5.40) 

This transformation is similar in form to the transformation defined in [29] for the 

development of the MOVE algorithm. The key difference lies in the fact that U is 

orthogonal and therefore directions and distances are preserved. 

Substituting (5.40) into (5.38), we see that the ellipsoid, Ek, is given by 

Ek = {9k : eT
kPk-

l9k <l;8keW} (5.41) 

in the transformed coordinate systems where Pk = UTPkU. The transformation 

translates Ek to the origin and then applies a rotation. Substituting (5.40) into 

(5.37), we see that the region between the two hyperplanes, Fk, is given by 

Fk = {Ök e^r:lk<yk- eT
k fa - elfa < 7J (5.42) 

in the transformed coordinate systems where (j>k = UT(j)k. Using (5.36), <f>k 
can be 

rewritten as 

fa = UTfa = UTUZVT = S. (5.43) 

Substituting (5.43) into (5.42) and rearranging terms results in 

Fk = {h € r : a* < hi < eck}, (5.44) 

where ak and ak are now defined as 

Vk ~ fjk ~ 7fc {,A,s 
& =      IWh (5'45) 
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Oik 
Vk - <j>l@k -1 ±k 

U k\\2 

(5.46) 

and 6k —    &ki   Ok2   •••   9kr 

the parallel hyperplanes which are orthogonal to fa. 

Let the matrices, A and U, be partitioned as 

. The variables ak and ak represent the location of 

Pk = 
r Ai P12' 

[P21 P22 
u2 ul 

uj (5.47) 

where Pn e &, A2 E ^lx{r-1), Ai 6 &W\ A2 € aft*-1»«'-1), tfi € »pxl, and 

U2 £ 9ftrX(r-1). The projection of Efc onto the subspace orthogonal to fa is given by 

the degenerate ellipsoid 

V(Ek, ft) = {Ök e &r : riJh < y/tfQiVri Vr € »r}, (5.48) 

where 

Qi 
' 0 0 

0 -P22 
(5.49) 

The projection of Fk onto the axis parallel to fa is given by the degenerate ellipsoid 

V(Fk, fa) = {4 G r : Vrh < frh + vWi; Vr € r}, (5.50) 

where 

Q2 
[/?2 0 ' 

Ök = 

0
  

p 
•   

    
    

    
   »

 

0 0 
(5.51) 

and a = ^ and /? = ^. 

Next, we want to solve (5.35) in the transformed coordinate systems, i.e. 

Ek = arg£ min{vol(£) : E D V(Ek, fä) + V(Fk, fa)}. (5.52) 
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This is the problem we solved in Section 2.4.2 for the case where both ellipsoids were 

nondegenerate and in Section 4.3 for the case where one ellipsoid was nondegenerate. 

However, in (5.52) both ellipsoids are degenerate. To apply the results of Section 2.4.2, 

we will let 

e 0 
0 P22 

Qi = 

where e is a scalar which we will specify later, and factor Q2 as 

(5.53) 

Q2 = BRB1 (5.54) 

where BT = 1   0 and R 

From Section 2.4.2 we know that the solution of (5.52) can be found by solving 

the following generalized eigenvalue problem 

BRBTXj — XjQiXj (5.55) 

for each Aj, j G [1, r]. However, from (4.34) in Section 4.3, we know that the solution 

of (5.52) can also be found by the solving the following reduced order problem 

BTQ~1Bx = \R-*x (5.56) 

for A. This is equivalent to solving 

det(XR~l - B1 Q?B) = 0 (5.57) 

for A. The solution to (5.57) is given by 

A = RBTQ?B = —. (5.58) 
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For the case where s = 1, the unique value of p > 0 in (4.35) is given by 

137 

P 
-X(r - 1) + ^/A2(r-l)2 + 4rA 

2r 
(5.59) 

After some algebra, (5.59) can be rewritten as 

P = (5.60) 
r-l + x/(r-l)2 + f* 

Substituting (5.58) into (5.60) and taking the limit as e approaches 0, we find that 

P r-1 
(5.61) 

Therefore, from (4.36) and (4.37), we find that the solution to (5.52) is given by 

Ek = {9k : (6k - 6k)
TPk\h - h) < 1; 6k G Kr}, (5.62) 

where 

Pfe = (p + 1)Q2 + (p"1 + l)ßÄ5T = 
" rß2 0 

0 r    n 
^1^22- 

(5.63) 

Substituting (5.39) into (5.62) gives us the solution to (5.35) in the original coor- 

dinate system as 

Ek = {9k : (0k - ekfPk\6k - 6k) <l;9ke 3T}, (5.64) 

where 

Pk   =   Tß2UxUi + -U2P22Ui 
r-1 

0k   =   Ok + aUL 

(5.65) 

(5.66) 
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By substituting for a and ß and using the fact that 4>k — alii, (5.65) and (5.66) can 

be rewritten as 

h   =   l^^ + ^l/Atf (5.67) 

h   =   k + Vk    9kJ 2—cj>k. (5.68) 
9k 9k 

Therefore, the ellipsoid projection algorithm for recovering from a fault is given 

as follows: 

1. Find the singular value decomposition of $k as 

fa = UXVT. (5.69) 

2. Calculate 

Pk = UTPkU. (5.70) 

3. Update Ok and Pk 

Vk-9kek 2^ * 
Ok   =   0k + J      rK,T. 

2—(f>k (5.71) 
9 k 9k 

h = w"'^"2^' (5'72) 

As discussed earlier, one iteration of the projection algorithm is not guaranteed 

to capture the "true" parameter. Consequently, even after the projection algorithm 

is applied and the OVETV algorithm resumes, more inconsistencies could arise. If 

this happens, the projection algorithm would then be applied again. 

A procedure for incorporating the projection algorithm within the standard OVETV 

structure is given as follows: 
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1. Choose the initial ellipsoid, E0, "large enough" such that the initial "true" 

parameter vector, 60, is in E0. 

2. Find Ek such that 

Ek = argB min{vol(£) : E D Gk). (5.73) 

3. Find Ek such that 

Ek = argE min < 
f EkOFk if£*ni^0 

V° l   } •     J \ V(Ek, (ft) + V(Fk, fa)   otherwise 

(5.74) 

4. Repeat steps two and three for each new measurement. 

This procedure is often able to recapture the "true" parameter very quickly. Con- 

sider the first-order example we investigated in Section 5.4.1 where a fault occurs at 

A; = 16 causing the a^ parameter to jump by 0.25, i.e., ai6 = ais + 0.25. This simula- 

tion was repeated using the projection algorithm, rather than the resetting algorithm, 

as a recovery strategy. The results are shown in Figure 41. 

For this example, the results are very similar to those obtained using the resetting 

algorithm. The key difference can be seen in the ellipsoid volumes of Figure 39. The 

large increase in ellipsoid volume, which occurs immediately after the fault is detected 

in the resetting algorithm results, is not seen in the projection algorithm results. As 

can be seen in Figure 38, the true parameter is always contained in the parameter 

set for both simulations. This is particularly surprising for the projection algorithm, 

where repeated applications of the algorithm are often necessary to recapture the 
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300 

Figure 41: Ellipsoid projection algorithm results for First-Order example 

true parameter. In the next section, we will suggest a set of rules which serve to 

combine the ellipsoid resetting algorithm and the ellipsoid projection algorithm in an 

integrated approach. 

5.4.3     Integrated Approach 

The ellipsoid resetting algorithm is guaranteed to capture the true parameter imme- 

diately after a fault is detected. This is important for robust control applications and 

detection of any future faults. However, immediately after being reset, the resulting 

ellipsoid may be too large for effective control applications. On the other hand, the 
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projection algorithm does not suffer from the large volume increases encountered by 

the resetting strategy. While often capturing the true parameter soon after a fault 

is detected, the projection algorithm may have to "recover" from several inconsisten- 

cies before doing so. Furthermore, it lacks the guaranteed properties of the resetting 

algorithm. 

In this section, we propose an algorithm whereby once a fault is detected by an 

inconsistency, the resetting algorithm and projection algorithm are run in parallel. A 

set of rules are used to decide which ellipsoid to utilize for robust control applications. 

Although heuristic, these rules are designed to capture the strengths of each approach. 

One possible set of rules is given below, where TU are the time update equations of 

Section 2.4.2, MU are the measurement update equations of Section 2.3, and PU are 

the projection update equations of Section 5.4.2. In this notation, "MU(i?fc, Fk)v, for 

example, means to apply the measurement update equations to the ellipsoid E\. and 

region between two hyperplanes Fk- Once a fault has been detected, Er
k and Er

k are 

the ellipsoids resulting from the resetting algorithm, and El and Ek are the ellipsoids 

resulting from the projection algorithm. 

The steps of this integrated approach are given below. 

1. Choose the initial ellipsoid, EQ 

2. k = k + l 

3. Ek = T\J(Ek-i,Rk-i) 

4. If Ekr\Fk^ 0, then 
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. Ek=MU(Ek,Fk) 

• Go to step 2 

5. A fault has been detected:   E% = PU(£fc, <f>k, Fk)      E{ = MU(£resei, Fk) 

6. If (a) El n El = 0, (b) vol(^) < vo\(Ep
k), or (c) vol(^) < 7, then 

• Ek = El 

• Go to step 2 

7. Ek = El 

8. k = k + l 

9. El = TU (El^R^)      ^ = TU(^_!,Än) 

10. If ^flFfc = 0, then 

• Ek = El 

• Go to step 5 

11. El = M\](El,Fk) 

12. If Ep
kf)Fk = 0, then 

. ^ = PU(4P,^,Ffc) 

• Go to step 6 

13. El = MXJ(El,Fk) 
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14. Go to step 6 

Of particular importance in this integrated approach are steps 6 and 10. Once a 

fault has been detected, they are used to decide whether the ellipsoids resulting from 

the projection strategy or the ellipsoids resulting from the resetting strategy are to be 

used for control purposes. In step 6, rule (a) is the most important. If Ekf)Ek — 0, E\ 

does not contain the true parameter; therefore, we should use Er
k for robust control. 

In rule (b), we choose Er
k if it has the smallest volume because it is guaranteed to 

contain the true parameter, while the projection strategy is not. In rule (c), we also 

choose Ek if the volume is "small enough" that a robust controller design is possible, 

where 7 is a prespecified constant. Clearly, other rules could be used instead of (b) 

and (c) depending on the control design, performance requirements, etc.. 

Step 10 is used to determine if an additional fault has occurred. Notice that the 

determination of a fault depends on Ek and not on Ek because of the guaranteed 

containment property of the resetting algorithm. 

Probably the biggest disadvantage of the integrated approach is the added com- 

plexity. After recovery, and until E\ has been selected, two versions of the OVETV 

algorithm are required to run in parallel. 

5.5    Example 

In this section, we will consider the linear time-varying circuit which was examined in 

Section 3.3. Recall that we investigated a series R-L-C circuit where the components 
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were allowed to vary with time. To obtain the true parameters, the continuous time 

state-space equations were discretized and then transformed into a difference equation 

using Theorem 5. Quantization errors in the D/A and A/D converters were also 

incorporated into the ARX structure. 

In the simulations of Section 3.3, the inductance / and capacitance c were held 

constant, while the resistance r was allowed to vary slowly with time. In this section, 

we will consider two scenarios. The values of / and c will remain constant for both 

scenarios. In the first scenario, the nominal model will assume that r varies slowly 

with time. The consistency check, which is integral to the OVETV algorithm, will 

be used to detect when an abrupt fault occurs. The ellipsoid resetting and ellipsoid 

projection algorithms will be applied to recover tracking. 

In the second scenario, the system is nominally time-invariant. Our goal is to 

detect incipient faults and track the parameters after a fault is detected. Two different 

methods are used to detect a fault. In the first method, the OVETV algorithm is 

applied to the system with the bounds on the parameter disturbance vector set to 

track the parameters during an incipient fault. The ellipsoid intersection test detects 

a fault when the ellipsoid output of the OVETV algorithm does not intersect with 

the ellipsoid which was found using the OVE algorithm under nominal conditions. 

In the second method, the OVE algorithm is applied to the system and the internal 

consistency check is used to detect a fault. The resetting and projection schemes will 

be applied to recover tracking. 
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5.5.1    Abrupt Fault 

In this section, we will use the consistency check of the OVETV algorithm to detect 

an abrupt fault in the linear LTV circuit of Section 3.3. Nominally, we expect the 

circuit to behave just as it did in Section 3.3. Consequently, the OVETV algorithm 

is initialized the same with % = -j_k = 0.005, Rk - &I where (k = 0.001, P0 = 107, 

and 0o = 0. The input, umk, is a uniformly distributed random variable between 

[-5.0,5.0] volts, and the sampling time T is 0.1 seconds. 

In Section 3.3, the actual circuit components were: r(t) = (1.0 + 0.5 cos(i/10.0))ft, 

l(t) = 1.0H, and c(t) = 1.0F. In this section, the components are identical to those of 

Section 3.3 from t = 0.0 to t = 10.0. However, at t = 10.0, the resistance r(t) jumps 

sharply, i.e., r{t) = (1.0 + 0.5cos(t/10.0) + 0.bus(t - 10))O, where «,(■) is the unit 

step function. 

A simulation was run with the OVETV consistency check utilized for detection 

and the ellipsoid projection scheme utilized for recovery. The consistency check easily 

detected the fault and signalled immediately at t = 10.0 seconds. 

Consequently, the projection scheme was applied to recover tracking. Inconsisten- 

cies also occurred at t = 10.2 and t = 10.3 seconds requiring a reapplication of the 

projection scheme. This reapplication was expected since the projection algorithm is 

not guaranteed to recapture the parameter. Finally, as seen in Figure 42, the normal- 

ized center estimate error goes below 1.0att = 10.6 seconds. This tells us that the 

true parameter has been recaptured by the parameter set. Under nominal conditions, 

once the true parameter has been recaptured, it will stay there until another fault 
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Figure 42: Normalized center estimate error during abrupt fault 

occurs. Figure 43 shows the tracking of the parameter &i before and after the fault 

occurs. 

The simulation was run again; this time using the ellipsoid resetting scheme for 

recovery. The resetting ellipsoid, Ereset, was set the same as E0, i.e, Preset = 10/ 

and 6reset = 0. As before, the fault was detected immediately at t = 10.0 seconds. 

As expected, the ellipsoid resetting strategy resets Ek to Ereset before applying the 

measurement update equations. As can be seen in Figure 42, the normalized center 

estimate error for the ellipsoid resetting algorithm is clearly less than one at t = 10.0 

seconds. 

At this point, note that the OVETV signals another inconsistency at t = 10.4 



5.5.   Example 147 

0.2 

0.18 

0.16 

;0.14 

0.12 

0.1 

0.08 

-i 1 1 r 

b1 
center estimate 
lower bound 
upper bound 

,V ''•'•   ^. 

_l I i_ 
0 2 4 6 8 10 12 14 16 18 20 

Seconds 

Figure 43: Parameter 61 with Ellipsoid Projection algorithm 

seconds. Intuitively, this may be unexpected since the ellipsoid resetting algorithm 

was designed to recapture the parameter immediately after a jump in the parameter 

vector was detected. While the algorithm succeeds in doing this at t = 10.0 and 

t = 10.4 seconds, as can be seen in Figure 42, the normalized center estimate error is 

greater than one between these times. 

To understand these results, consider the change in the true parameter vector at 

each time step, wk. Under nominal conditions, wk is bounded by (2.4). Recall from 

above that Rk was specified to be equal to Ql where (k = 0.001. When Rk = (kI, 

the bound in (2.4) can be written as 

\\wk\U < (k- (5.75) 
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Figure 44: Change in the true parameter vector 

In Figure 44, ||tufc||2 and (k are plotted. As expected, at t = 10.0, ||u>fc||2 > Cfc- 

Clearly, a fault has occurred. However, at t = 10.1 and t = 10.2, ||i0fc||2 is again 

greater that (k- This is puzzling at first, since the only jump in the continuous time 

state space equations occurred at t = 10.0. However by examining equation (3.32), 

we see that true parameter vector, 0k is a function of d2 at time fc, k — 1, and k — 2, 

where d2(k) = r(kT). 

Because the OVETV algorithm is highly dependent on the input of the system, 

we ran this simulation again using a saw-tooth wave as an input. The results were 

similar, but the inconsistencies were detected at t = 10.0 and t = 10.2. 

This problem poses an interesting challenge for a recovery strategy, because even 
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Figure 45: Parameter b\ with Ellipsoid Resetting algorithm 

though the jump in the continuous time parameter occurred during just one time 

step, it caused the nominal system bounds to be violated for r time steps. Perhaps 

the integrated approach, which was discussed in Section 5.4.3, could be modified to 

account for this behavior. 

Lest we forget, this algorithm actually performed quite well. It was able to detect 

the fault immediately, recapturing the true parameter one time step after the fault 

ended. Figure 43 shows the tracking of the parameter &i before and after the fault 

occurs. As would be expected, the ellipsoid projection algorithm had a smaller volume 

around the fault area. See Figure 46. 
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Figure 46: Ellipsoid volume during abrupt fault 

5.5.2    Incipient Fault 

In the example of the previous section, the nominal plant was slowly time-varying, 

but an abrupt fault occurred in the actual plant. In this example, the nominal plant 

is time-invariant and the fault is incipient (slowly-varying). Two methods will be 

used to detect the fault. 

The first method uses the ellipsoid intersection test of section 5.3.2 to detect 

a fault. First, we apply the OVE algorithm to the system when it is operating 

under nominal conditions. Under nominal conditions, the circuit components are 

r(t) = 1.5ft, l(t) = 1.0H, and c(t) = 1.0F. The OVE algorithm is initialized with 

7fc = —7   = 0.005, Po = 107, and 60 = 0. After 20 seconds, the bounding ellipsoid is 
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given by Enom, where 

P      = 1 nom — 

1.7476e-03 -1.5366e-03 2.6452e - 06 2.4247e - 04 
-1.5366e-03 1.3697e - 03 -3.5244e - 06 -2.1448e - 04 

2.6452e-06 -3.5244e - 06 1.9640e - 06 5.4088e - 07 
2.4247e-04 -2.1448e - 04 5.4088e - 07 3.5318e - 05 

(5.76) 

"nom — 

T 
-1.8537e + 00   8.6256e - 01   1.3916e -01   —1.3935e — 01 J   .    (5.77) 

When the system is undergoing an incipient fault, it is still known to satisfy the 

bounds which were specified in Section 3.3. Consequently, to monitor the circuit, 

the OVETV algorithm is initialized the same as in Section 3.3. The system was 

simulated with the actual circuit components given by r(t) = (1.0 + 0.5 cos(tf/10.0))O, 

l(t) = l.OH, and c(t) = 1.0F. 

The ellipsoid intersection test is used to indicate when Ek, the output of the 

OVETV algorithm, and Enom, the nominal ellipsoid, fail to intersect. At t = 3.6 

seconds, the ellipsoids fail to intersect and a fault is indicated. The performance of 

this algorithm clearly depends on how tightly Ek bounds the actual parameter and 

the size of the nominal ellipsoid, Enom. For comparison purposes, it was found that 

the true parameter actually escaped the nominal parameter set at t = 2.0. As we saw 

in Section 3.3, the OVETV algorithm has no problem tracking this system. 

The second method we will apply uses the consistency check which is integral 

to the OVE algorithm to indicate a fault. The OVE algorithm was initialized to 

bound the nominal system with 7yk = -j_k = 0.005, P0 — 107, and 60 = 0. The 

OVE algorithm was then applied to the measured data from the actual system. At 

t = 3.9 seconds, an inconsistency was indicated, signaling a fault. This was slightly 

slower than the results achieved using the intersection test. However, this algorithm 
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Figure 47: Normalized center estimate error during incipient fault 

is significantly cheaper in terms of the number of computations required at each time 

step. It requires neither the time update computations of the OVETV algorithm nor 

the computations required for the ellipsoid intersection test. 

The ellipsoid intersection strategy has the advantage of built-in tracking after an 

incipient fault is detected. This raises the question of how well the OVE algorithm 

can track the system after a fault is detected using the projection and resetting 

algorithms. With the resetting ellipsoid initialized to 9reset = 0 and PreSet = 10007, 

the normalized center estimate errors for the OVE algorithm with ellipsoid resetting 

and ellipsoid projection, and for the OVETV algorithm, are given in Figure 47. 

Clearly, the OVETV algorithm has the best tracking characteristics in terms of 
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Table 6: Center estimate performance measures 

OVETV Ellipsoid 
Resetting 

Ellipsoid 
Projection 

£2 

0.0800 
0.1019 

0.1358 
0.1780 

0.0589 
0.0740 

normalized center estimate error, as it always remains below one. The ellipsoid pro- 

jection normalized center estimate error resets below one every time an inconsistency 

occurs, but drifts above one as the parameters continue to vary with time. The results 

for the ellipsoid projection algorithm are clearly unacceptable since they spend much 

of the time above one. 

While our primary interest is in the parameter sets, it is interesting to note that the 

center estimate of the ellipsoid projection algorithm actually tracks the true parameter 

better than either of the other approaches. Based on the performance measures 

defined in Section 3.3, the projection algorithm results have the lowest cost as can be 

seen in Table 6. 

Having gained some experience with the ellipsoid projection algorithm, this seems 

to be an appropriate place to discuss how Ereset can be chosen "large enough". The 

answer is definitely problem dependent. If one has a relatively significant amount of 

a priori information about the system, i.e., how it behaves under nominal and fault 

modes, then it may be possible to specify Ereset for the particular case. 

If, on the other hand, relatively little is known about the system, at least two 
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choices exist. In the abrupt fault example, we chose an Ereset of the form 6reset = 

0, Preset = ßl where ß is a large number. This approach basically discounts any 

measurements received prior to that point. 

In the incipient fault example, we chose an Ereset of the form, 6reset = 0 and 

Preset = ßl where ß is a large number. This gives some credibility to the center 

estimate of the previous ellipsoid, but greatly increases the uncertainty. Observations 

made using this form for Ereset led to the following Theorem. 

Theorem 9 Let 

E(0r,Pr) = avgEmm{vol(E) : E D E(6reset,PreSet) n Fk}, (5.78) 

and 

E(9P,PP) = avgEmm{vol(E) : E D V(E(0k, A),^) + V(Fk, fa)}, (5.79) 

where E(6, P) is defined to be 

E(6,P) = {9k : (9k - 9)Tp-\6k - 9) < l;0fc € 3Jr}. (5.80) 

Given that E(9k,Pk) C\ Fk = 0, if 9reset = 9k and PreSet = ßl, then 

lim 0r = 0P. (5.81) 
ß—*oo 

Proof: The proof is straight forward. From (5.71), 

9p = §k+ y*~ **!*." ^fr. (5-82) 
9i 9k 
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It is easy to show that in the limit, as ß approaches infinity, 9r equals (5.82). This 

is done by substituting 6reset = 0k and Preset = ßl into the measurement update 

equations (2.14)-(2.25) of Section 2.3 and taking the limit as ß approaches infinity. 

D 

This theorem is significant because it states that if you choose the parameters of 

Ereset as 6reset = 0fc and PreSet = ßl where ß is some large number, then the center 

estimate produced by the resetting algorithm is approximately equal to the center 

estimate produced by the projection algorithm. The orientation matrices, however, 

are quite different. 

5.6     Summary 

In this chapter, we demonstrated how the OVE and OVETV algorithms could be 

used for FDI. We began the chapter by discussing some of the issues involved in the 

implementation of FDI algorithms. 

Next, we discussed two different methods for detection of failures. The first 

method used the consistency check which is integral to the OVE and OVETV al- 

gorithms. Because the check is an integral part of the OVE and OVETV algorithms, 

this detection strategy was easy to implement. It was particularly adept at detecting 

abrupt failures in nominally slowly-varying systems. 

We also utilized an ellipsoid intersection test to detect when an ellipsoid, produced 

under nominal conditions, fails to intersect with the current ellipsoid of the OVETV 

algorithm.   The advantage of this algorithm lies in the fact that it is able to track 
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incipient faults without resorting to recovery strategies. However, it requires addi- 

tional computations and is not easily applicable to nominally time-varying systems. 

An alternative development of the ellipsoid intersection test equations was realized 

by framing the problem as a constrained optimization problem. 

We should mention that the ellipsoid intersection test could also be used for fault 

isolation. Assume that "signature" ellipsoids exist which represent the system un- 

der particular faults. Once a fault has been detected and recaptured, the ellipsoid 

intersection test could be used to check which, if any, signature ellipsoids intersect 

with the current ellipsoid. If the current ellipsoid does not intersect with a particular 

signature ellipsoid, then it is clear that the associated fault did not occur. Clearly, 

if a signature ellipsoid intersects with the current ellipsoid, the associated fault may 

have occurred. For certain systems, it may be possible to use a modified version of 

the OVE-ISP algorithm in Section 4.5 to help isolate which fault did occur. 

When a fault is detected by an inconsistency in the OVE and OVETV algorithms, 

the algorithms halt. For applications such as fault isolation and reconfigurable control, 

it would be desirable to continue tracking the parameters after the fault is detected. 

Two methods for recovering the true parameter were proposed. 

The ellipsoid resetting algorithm resets the current ellipsoid to one large enough 

to capture the true parameters. If the system satisfies the nominal conditions after 

the ellipsoid is reset, the algorithm is guaranteed to contain the true parameters until 

another fault occurs. Several different strategies were considered for choosing the 

resetting ellipsoid, Ereset. It was shown that for a particular form of Ereset, that as 
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the size of Ereset is increased, the center estimate approaches the center estimate of 

our other recovery strategy, ellipsoid projection. 

To guarantee that the true parameter is contained in the parameter set after a 

fault is detected, the ellipsoid resetting algorithm often results with large ellipsoid 

volumes immediately after a fault is detected. Consequently, a method with better 

volume properties for recovering the true parameter is also proposed. It combines 

the information contained in the new measurements and assumes correct information 

from the old ellipsoid whenever ambiguity arises. Because this is not always the 

case, repeated applications of the projection algorithm may be required to recapture 

the true parameter. To take advantage of the guaranteed containment properties of 

the ellipsoid resetting algorithm and the smaller volumes of the ellipsoid projection 

algorithm, an integrated approach was also proposed. 

Finally, the strategies of this chapter were demonstrated on the LTV circuit of 

Section 3.3. The algorithms were shown to successfully detect and track both abrupt 

and incipient faults. 



CHAPTER VI 

Conclusion 

In [49], Ljung, one of the leaders in the field, argues that while system identifica- 

tion is a mature area, there are several important problems that are not sufficiently 

understood. Two issues that he feels require more investigation are parameter set 

estimation and the tracking of time-varying properties of systems and signals. In this 

dissertation, we extended the OVE algorithm for parameter set estimation of linear 

time-invariant systems to allow for tracking of time-varying parameters. Our expe- 

rience with the OVETV algorithm challenged us to extend and improve some of the 

properties of this algorithm; several of these modifications and adaptations are also 

included in this dissertation. Finally, we demonstrated how the OVE and OVETV 

algorithms could be utilized for fault detection and isolation. 

6.1     Summary 

The main result of this dissertation can be found in Chapter II. In this chapter, 

we combined the optimum volume time update equations of [15] with the optimum 

volume measurement update equations of [1] to develop the Optimal Volume Ellipsoid 

158 
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algorithm for Time-Varying systems (OVETV). Given a priori assumptions on bounds 

of the noise entering the system and the possible deviation of the parameters during 

each time step, this algorithm is guaranteed to contain the true parameter as it varies 

with time. 

Building on the development of the OVETV, we created two algorithms which 

require fewer computations than the optimal time update equations, thereby mak- 

ing real-time implementation more feasible for many applications. These algorithms 

reduced the computational complexity of the time update equations by constrain- 

ing the new ellipsoid to be parameterized by the previous ellipsoid and a single new 

parameter. One of these algorithms uses the same parameterization as the scalar 

bound inflation method of [13]. However, the algorithms developed in this chapter 

are optimized for volume and combined with the optimal volume measurement update 

equations of [1]. 

In Chapter III, we applied the OVETV algorithm to three examples. The first 

example, a simple first-order system, illustrated the key features of the OVETV 

algorithm and demonstrated the applicability of two alternative algorithms, scalar 

addition and scalar multiplication. 

In the second example, the effects of sampling and quantization on a linear time- 

varying system, a linear time-varying circuit, were explored. Theorem 5 was given 

for transforming a discrete-time linear time-varying state space equation to a time- 

varying difference equation. Interestingly enough, while the goal of the OVETV 

algorithm is to identify a parameter set, the center estimate of the OVETV algorithm 
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was able to track the "true" parameter vector better than the "best" estimate using 

WRLS. 

In the final example, we applied the OVETV algorithm to actual data obtained 

from a distillation column. With the "true" parameter vector effectively unknown, we 

were not able to compare it with the parameter sets and center estimates. However, 

the predicted output based on the center estimate matched the actual output very 

closely. 

In Chapter IV, we discussed several algorithm modifications and extensions to 

the OVE and OVETV algorithms. First, we showed how MISO systems could be 

placed in the OVE or OVETV framework. Theorem 5 was extended from LTV SISO 

systems to LTV MISO systems; an extension to MIMO systems was also discussed. 

Results were also presented showing the application of the OVETV algorithm within 

the MISO framework to the distillation column of Chapter HI. 

Next, we showed how dependencies in parameter variations could be exploited to 

reduce the number of calculations necessary to implement the optimal time update 

equations of Section 2.4.2. When these dependencies are present, the sizes of the 

generalized eigenvalue problem and the governing polynomial may be significantly 

reduced. 

A square-root implementation of the OVE algorithm is developed which prevents 

the ellipsoid orientation matrix, Pk, from becoming non-positive definite due to finite 

precision calculations. A comparison with the direct implementation of the OVE 

algorithm showed that while the square-root implementation requires more floating 
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point operations, the number of operations is of the same order for each implementa- 

tion. Furthermore, in most cases this increase in number of computations will be less 

important than the increase in numerical stability which is gained by the square-root 

implementation. For the time-varying case it was shown how the scalar addition and 

scalar multiplication algorithms of Chapter II can also be implemented in a square- 

root framework. 

The last subject investigated in Chapter IV was the OVE-ISP input synthesis 

procedure of [21] and [11]. First, the OVE-ISP algorithm was extended to handle 

systems which contain a known transportation lag. Next, we demonstrated how OVE- 

ISP and OVETV could be applied to linear time-varying systems. The simulation 

results demonstrated a "stabilizing" property of OVE-ISP procedure which is not 

possessed by a random input sequence and an alternative synthesis procedure found 

in [40]. This "stabilizing" property makes OVE-ISP the preferred input scheme for 

unstable linear time-invariant and linear time-varying systems. 

In Chapter V, we demonstrated how the OVE and OVETV algorithms could be 

used for FDI. Two different methods for detection of failures were discussed. The 

first method used the consistency check which is integral to the OVE and OVETV 

algorithms. Because the check is integral to the OVE algorithms, this detection 

strategy was easy to implement. It was particularly adept at detecting abrupt failures 

in nominally slowly-varying systems. 

An ellipsoid intersection test was also used to detect when an ellipsoid produced 

under nominal conditions fails to intersect with the current ellipsoid of the OVETV 
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algorithm. The advantage of this algorithm lies in the fact that it is able to track in- 

cipient faults without resorting to recovery strategies. An alternative development of 

the ellipsoid intersection test equations of [46] was realized by framing the intersection 

test as a constrained optimization problem. 

Also proposed were two methods for recovering the true parameter once a fault 

causes an inconsistency in the OVE or OVETV algorithm. The ellipsoid resetting 

algorithm resets the current ellipsoid to one large enough to capture the true pa- 

rameters. If the system satisfies the nominal conditions after the ellipsoid is reset, 

the algorithm is guaranteed to contain the true parameters until another fault oc- 

curs. Several different strategies were considered for choosing the resetting ellipsoid, 

Ereset. It was shown that for a particular form of Ereset, that as the size of Ereset is 

increased, the center estimate approaches the center estimate of our other recovery 

strategy, ellipsoid projection. 

The ellipsoid projection strategy results in smaller ellipsoid volumes than the 

ellipsoid resetting strategy. It combines the information contained in the new mea- 

surements and assumes correct information from the old ellipsoid whenever ambiguity 

arises. Because this is not always the case, repeated applications of the projection 

algorithm may be required to recapture the true parameter. To take advantage of 

the guaranteed containment properties of the ellipsoid resetting algorithm and the 

smaller volumes of the ellipsoid projection algorithm, an integrated approach was 

also proposed. 

Finally, during the course of this research, investigation into time-varying linear 
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systems was imperative. In so doing, we derived some very useful routines using 

symbolic computations for linear time-varying (LTV) systems which are given in 

Appendix B. 

In short, the major contributions of this dissertation are: 

• development of the OVE algorithm for time-varying systems, 

• development of alternative algorithms for PSE of time-varying systems, scalar 

addition and scalar multiplication, 

• extension of OVE and OVETV algorithms to MISO systems, 

• exploitation of dependencies in parameter variations to reduce computations in 

optimal time update equations, 

• modification of the OVE algorithm using square-root approach for improved 

numerical stability, 

• development of PSE estimation schemes for fault detection, and 

• development of schemes for parameter recovery after fault detection. 

6.2    Future Work 

While there are many directions towards which this research could turn, there are a 

few areas which seem particularly promising. In Chapter IV, the simulation results 

presented demonstrate a "stabilizing" property of OVE-ISP which is not possessed by 
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other input sequences. This stabilizing property could be potentially very important 

for the identification of unstable systems in the closed loop. However, more analysis 

is needed to determine when and if this property can be guaranteed. 

At the end of Chapter V, we discussed how the ellipsoid intersection test could be 

used in conjunction with recovery strategies for fault isolation. Certainly, more work 

is required to explore the use of PSE for fault isolation and/or reconfigurable control. 

Along these lines, it would be worthwhile to explore how the OVE-ISP procedure 

could be modified to aid in the isolation process. 

Most analytical redundancy approaches for FDI involve either parameter estima- 

tion or state estimation schemes. In Chapter V, we explored the use of PSE for FDI. 

An alternative approach would be to apply the closely related set-membership state 

estimation schemes to the FDI problem. For some possible starting points, see [50]. 

Another area for future investigation involving PSE is to use the divided-difference 

or 5-operator instead of the traditional shift operator where S = ^ and A is a 

positive number. Traditional digital signal processing and control algorithms using 

the shift operator often suffer from ill-conditioning at high sampling rates. The 8- 

operator has been shown to eliminate many of these numerical difficulties [51, 52]. It 

has also allowed for a unification of continuous and discrete time algorithms [53, 51]. 



Appendix A 

Optimum Parameters for Two-Dimensional Case 

The following equations define the parameters pi through p8 used in lemma 3. 

pi      =     _8 &6C4 _ 24 64C4a2 _ 24 C4ß462 _ g ^6 _ ^2 _ JQ ^2 

+282 b\C4 - 76 Catbl - (2a\ - 8 b\a\ - 24 b\a\ - 24 a% 

-%b\a\ (A.l) 

p2   =   -17l61
6CV-17161

6CV2-333 61
8C2a1

2 + 6 61
4C6ai2-333 61

4CV4 

-39 &!4C V + 15 6x
2C4ai6 + 6 fc^CV4 + 15 6X

10C2 - 39 h8(4 

+6 Ö!10«!2 + 6 hW + 2bl6(6 + 2 biV + 2 C%6 (A.2) 

P3 = 9c3v^r^6iV-9c^r^6i6-3cv^rV36iV 

+3C3^^6i4 + 2 6x
12 (A.3) 

* ■ *'f ^ (A'4) 

23/    P2 - & 

» = "■'ffw (A-5) 
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\IPA +P5- fei4 - C2«i2 + 5 C V + 5 ax V 
Pe   =     Wl  (A-6) 

p7 = -2(2a2 + at + (4 + 4- 2a\a\ - 2(2a2
2 (A.7) 

p8 = h\a\ + a\a\ + a\b\ -a\- Cb\ + (2a2 (A.8) 



Appendix B 

Symbolic Computations for Linear Time-Varying 
Systems 

B.l    Overview 

During this work, it has become clear that the state transition matrix is integral for 

both analysis and control system design of linear time-varying (LTV) systems. Un- 

fortunately, a closed form solution for the state transition matrix exists only when 

the LTV system satisfies certain properties. In this appendix we show how Maple 

V, a computer algebra system, can be used to calculate the state transition matrix 

for several classes of LTV systems. By working with symbolic rather than numerical 

data, computer algebra systems offer several advantages including the greater accu- 

racy achieved by the absence of finite precision arithmetic and the additional insight 

obtained by maintaining the mathematical information and structure. Examples and 

applications to control system design are discussed. 

167 
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B.2    Motivation 

Although the laws of physics do not change with time, time-varying models arise due 

to special circumstances in the physical plant or due to the particular formulation 

of the model [30]. Applications of linear time-varying (LTV) systems include rocket 

dynamics, time-varying linear circuits, satellite systems, and pneumatic actuators. 

The LTV structure is also often assumed in adaptive and standard gain-scheduled 

control systems. 

In this appendix, we are interested in LTV systems of the form 

x(t)   =   A(t)x(t) + B(t)u(t), (B.l) 

y(t)   =   C(t)x(t) + D(t)u(t), 

where x(t) € üß" is the state vector, u(t) € 9£m is the control input, y(t) € 3JP is 

the system output, and A(t), B(t), C(t), D(t) are matrices of appropriate dimension, 

each with (possibly) time-varying entries. The state transition matrix is the unique 

solution to 

$(*, t0) = A(t)$(t, t0), $(*„, t0) = I, (B.2) 

where I is the identity matrix. The state transition matrix is essential in determining 

the complete solution, stability, controllability, and observability of (B.l). It is also 

useful in design of controllers and observers for (B.l). Unfortunately, a closed form 

solution to (B.2) exists only when A(t) satisfies certain properties. 

By working with symbolic rather than numerical data, computer algebra systems 

offer several advantages for the controls engineer, particularly for problems such as 
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that outlined above. These advantages include the greater accuracy achieved by the 

absence of finite precision arithmetic and the additional insight obtained by maintain- 

ing the mathematical information and structure [54]. Computer algebra systems also 

handle complex mathematical manipulations, which if done by hand would be tedious 

and error prone [55]. One particular computer algebra system, which we use in this 

work, is Maple V, which is a powerful software package for symbolic and numeric 

computation. Maple V includes a large library of functions, programming capability, 

interactive graphics, a worksheet interface, and an online help facility. It is available 

on many computer platforms including MS-DOS, Windows, Macintosh, NeXT, DEC, 

Sun and other UNIX workstations. 

Maple V can easily find the solution of (B.2) when A(t) is constant or satisfies 

a well known commutative property. This appendix describes routines written by 

the authors to expand the class of systems for which Maple V can easily calculate 

§(t,t0) to include systems where A(t) is triangular or A(t) satisfies certain bracket 

properties. Routines have also been written to calculate the general solution of (B.2) 

to any arbitrary order and to check whether a given $(t,t0) satisfies (B.2). 

B.3    State Transition Matrix Properties 

The state transition matrix is an integral component in the study of LTV systems of 

the form given by (B.l). It is used for determining the complete solution, stability, 

controllability, and observability. It can also be used in the design of controllers and 

observers for (B.l). In this section we will discuss these uses along with some of the 
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properties of the state transition matrix. Since this material is somewhat standard in 

the linear systems literature, we offer here only a brief overview, and present relevant 

theorems in the Addendum. 

The state transition matrix, <&(t,t0), satisfies 

$(Mo) = A(t)$(Mo), (B.3) 

and has the following important properties [56]: 

<&(M)   =   / (B.4) 

S-^Mo)   =   $(W) (B.5) 

$(*2,<o)   =   $(<2,*i)$(*i,*o). (B.6) 

Stability of the homogeneous system, 

x(t) = A{t)x(t), (B.7) 

whose solution is given by 

x(t) = $(Mo)x0, (B.8) 

where x0 = x(to), can be determined from the state transition matrix, according to 

well known stability theorems [56] (see Addendum). The necessary and sufficient 

conditions on $(t,<o) for stability are summarized in Table 7. 

It is easy to verify that the solution to the non-homogeneous system (B.l) is given 

by 

x{t)   =   $(t,to)x0+ [ $(t,T)B(T)u{T)dr 
Jto 

y(t)   =   C{t)$(t,t0)x0 + C(t) f §{t,T)B(T)u(T)dT + D(t)u{t). (B.9) 
Jto 
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Table 7: Stability bounds on $(t,t0) 

Stability Result Necessary and Sufficient Condition 

Stable in the sense of Lyapunov at t0 ||$(Mo)   <k(t0)<oo 
Uniformly stable in the sense of Lyapunov ||$(Mo)   < k < °° 
Asymptotically stable at to ||$(Mo)|| <k(t0) <oo 

||$(i,<o)|| -> 0 as t -> oo 
Uniformly asymptotically stable ||$(Mo)|| < he-W-W 

To guarantee that the system can be driven from one state x0 to another state 

xi with an input u(t), it is necessary to show that the system is controllable. The 

LTV system (B.l) is said to be controllable if given any x0 there exists an input 

u(t)[t0ttl] such that xfa) = 0. Controllability of (B.l) can be determined from the 

state transition matrix according to a well known theorem [30] (see Addendum). 

To guarantee that the system state x(t) can be estimated from the system output 

y(t), it it necessary to show that the system is observable. The LTV system (B.l) 

is said to be observable on [t0,ti] if the initial state x0 is uniquely determined by 

the output y(t) for t 6 [to,h]- Observability of (B.l) can be determined from the 

state transition matrix according to a well known theorem [30] (see Addendum). The 

controllability and observability grammians, W(t0, U) and M(t0, ti), respectively, (see 

Addendum) can also be used in the design of controllers and observers for (B.l). 

It is clear that the state transition matrix is important for studying stability, 

controllability, and observability of (B.l). Calculation of the state transition matrix 

for linear, time-invariant systems is a straight forward task.  Unfortunately, for lin- 
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ear time-varying systems, it is often difficult if not impossible to calculate the state 

transition matrix. 

B.4    Calculating the State Transition Matrix 

In general, a closed form solution for $(t,t0) does not exist. In this section, several 

classes of systems for which $(t,t0) can be calculated in closed form are discussed. 

Maple V routines which aid in this calculation are discussed. After summarizing 

classes for which the state transition can be calculated, two decomposition schemes 

will be discussed which expand on these classes. 

Before examining these classes, some comments about Maple V should be given. 

As mentioned earlier, Maple V contains a large library of functions. While many of 

these functions are internal to Maple V and available immediately, other functions are 

grouped together as packages which must be loaded into Maple V before using those 

commands. One such package, the linear algebra package, contains many common 

functions for working with vectors and matrices [57]. Several of the functions that we 

use in this work are given in Table 8. While many of Maple V's other commands are 

self-explanatory, the procedure map also requires some discussion. The procedure 

map(f, A, arg2, arg3, ..., argn) is used to apply a function, /, with multiple 

arguments to each component of an expression (or matrix), A. 

In addition to the linear algebra package, it is assumed that several procedures, 

which were written by the authors and listed in Table 9, are also loaded. The eye 

and zeros procedures are modeled after the Matlab functions of the same names and 
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Table 8: Maple V linear algebra procedures 

linsolve(A, b) Solves Ax = b 
evalm(-) Evaluates matrix expression 
add(A, B) Adds matrices A and B 
multiply(A, B) Multiplies matrices A and B 
exponential^, £) Computes matrix exponential, eAt 

transpose(A) Matrix transpose, AT 

eigenvals(A) Computes eigenvalues of matrix A 

return the identity matrix and a matrix of zeros, respectively. The msubs procedure 

substitutes expressions into matrices. The Kronecker product of A = [a{j] G $i.mXn 

and ß £ ^x« is defined to be 

aiiB    • • •    alnB 

A®B 

Q"m\B     ' ' "     amnB 

where A®Be WnpXqn. The vector vec A is defined to be 

Öl 

(B.10) 

vec A 

an 

(B.ll) 

where A <E 3£mXn, vec A G 3ftmn, and the ät- are the columns of the matrix A. The 

command invec(vec(A) ,m, n) will return the matrix A. The procedures kron and 

vec transform matrix equations of the form 

AXB = C (B.12) 

where C 6 SRmx' and X € 9£nXp is unknown, to the equivalent system of equations 

(BT <g> A)vec X = vec C. (B.13) 
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Table 9: Maple V utility procedures 

eye(-) Generates identity matrix 
zeros(-) Generates matrix of zeros 
msubs(A,Si, ...,s„) Substitutes expressions into a matrix 
kron(A,B) Kronecker product A® B 
vec(A) vec A 
invec(a,m,n) inverse of vec A 

This equation can be solved for vec X by linsolve(D, vec(C)) where D = BT ® A 

[58]. 

With these tools, we can now study the solution of the general problem (B.2). 

While in general there is no closed form solution to (B.2), the solution can be expressed 

in terms of the Peano-Baker series [30] 

$(Mo) = I+ /*4(7i)d7i + f A(n) r A{T2)dT2dTX + (B.14) 

The following procedure, peano(A, n, tO), allows us to calculate this series to any 

prespecified order n: 

peano:= 
proc(A,n,tO) 
local wl,w2,i,tp; 

if not type(n,posint) then ERR0R('n must be positive integer') 
elif not type(A,matrix) then ERR0R('A must be matrix') 
elif not type(tO,scalar) then ERROR('tO must be a scalar') 

fi; 
w2 := eye(A); 
wl := evalm(w2); 
for i to n-1 do 
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w2   := map(int,nmltiply(A,w2),t = tO   ..  tp); 
w2   := msTibs(msubs(w2,t = t.i),tp = t) ; 
wl   := add(wl,w2) 

od; 
RETURN(") 

end 

For time-invariant systems, that is, when A(t) = A is a constant matrix, the state 

transition matrix is given as 

$(t,t0) = eA{t-to). (B.15) 

When A is time-invariant, Maple V can easily calculate $(t,t0) using the Maple V 

function exponential A, t-tO). 

If A(t) satisfies the commutative property, 

A(t) (J* Afädh} = (jf* A(h)dt^j A(t), (B.16) 

for all t, t0, the state transition matrix is given as 

*(t1to) = *I*A{il)*1- (B-17) 

Again, Maple V can easily calculate $(t,t0) using tne command exponential (map 

(mt,msubs(A,t=tl), tl=t0..t)). 

Checking (B.16) is equivalent to checking if 

A(h)A(t2) = A(t2)A(h), Vti, h (B.18) 

is satisfied [59]. The commutative condition can also be checked by decomposing A(t) 
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into the form 

A(t) = J2ai{t)Ai (B.19) 

where the a2(i)'s are linearly independent time functions and the A^s are constant 

matrices, and then checking if the A^s form a commuting family, that is A{Aj = AjA{, 

Viij. When the system is commutative, the state transition matrix is given by 

$(Mo)=ne*ft(t,to)> (B-2°) 

where ßi(t,t0) = // a;(r)c?T [60]. The solution of (B.18) and (B.20) are equivalent; 

however, the solution of (B.20) may result in a simpler form. For another decomposi- 

tion method, see [61]. Clearly, constant matrices and diagonal matrices both satisfy 

the commutative property. 

If A{t) exists and there is a constant matrix A\ which satisfies 

jA(t) = AxA(t) - A(t)At Vt > t0, (B.21) 

then 

$(<, t0) = eMt-to)eA2(t-t0) w > toj (R22) 

where A2 = A(to) — A\ [62]. If A(t) satisfies (B.21), it is said to be a member of the 

Ai class. A necessary condition to satisfy (B.21) is that the eigenvalues of A(t) are 

time-invariant. Stability for members of Ai can be completely determined from the 

eigenvalues of A\ and Ai. 
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The Kronecker product is used to transform (B.21) to 

{AT ® I - I <g> A)vec Ai = vec A, (B.23) 

which can be solved for vec Ai using the Maple V routine linsolve. The following 

procedure, fal(A, AO, Al, A2), transforms (B.21) to (B.23) and returns AQ, AU 

and Ai'- 

fal: = 
proc(A,A03Al,A2) 
local ad,Ad,al,Al,n; 

n   := linalg[rowdim](A); 
Ad  := map(diff,A,t); 
ad  := vec(Ad); 
Al   := add(krön(linalg[transpose](A),eye(A)),-kron(eye(A),A)); 
al   := linalg[linsolve](Al,ad); 
if al = NULL then ERR0R('no solution possible') fi; 

AO 
Al 
A2 

end 

= msubs(A,t = 0) ; 
= invec(al,n,n); 
= evalm(AO-Al) 

We note that multiple solutions are possible; the user should, if possible, choose the 

free parameters such that Al and A2 are time-invariant. If a time-invariant solution 

exists, $(Mo) is §iven by multiply(exponential(Al, t-tO), exponential(A2, t- 

to)). 

The class A\ can be extended as follows [63]. If Ä(t) and h(t) exist, where h(t) is 

a nonzero scalar time function, and there is a constant matrix Ai which satisfies 

d (A(ty 
dt \ h(t) 

= AiAit) - A{t)Ax V< > to, (B.24) 



178 Appendix B.  Symbolic Computations for Linear Time-Varying Systems 

then 

$(*, t0) = eMa^eM9^ V* > t0, (B.25) 

where g(t) = jj h(r)dT and A2 = lim*_«0(^) - Ax. If A(t) satisfies (B.24), it is 

said to be a member of the Ah class. A necessary condition to satisfy (B.24) is 

that the eigenvalues of A(t) are scalar multiples of h(t). This can be checked using 

eigenvals(A). When h(t) = 1 this class reverts to the A\ class, and when h{t) = \jt 

the Euler-type differential equation can be solved [64]. 

The following procedure, fah(A, AhO, Al, A2, tO, h, g), transforms (B.24) 

using the Kronecker product and returns Ax, A2 and g: 

fah: = 
proc(A,AliO,Al,A2,tO,h,g) 
local ad,Ad,al,Al,n,Ah,tl; 

g := eval(int(subs(t = tl,h),tl = tO .. t)); 
n := linalg[rowdim](A); 
Ah 
Ad 

ad 
Al 
al 

evalm(l/h*A); 
:= map(diff,Ah,t); 

:= vec(Ad); 
add(kron(linalg[transpose](A),eye(A)),-kron(eye(A),A)); 
linalgClinsolve](Al,ad); 

if al = NULL then ERR0R(rno solution possible') fi; 
AhO   := map(limit,Ah,t = tO); 
Al   := invec(al,n,n); 
A2   := evalm(AhO-Al) 

end 

Again, if a time-invariant solution for A\ and A2 exists, $(t, t0) is given by multiply( 

exponential(Al, g), exponential(A2, g)). 
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Often situations arise where A(t) is triangular. If A(t) = [ciij(t)] is lower triangular, 

that is a,ij(t) = 0, Vj > i, then the state transition matrix has elements given by 

<MMo) = < 

0 i < j 

f   au{r)dT gJt0 i = j 

/ <l>ii(t, r) Y^ aik(r)(l>kj{T, tQ)dr i > j, 

(B.26) 

k=j 

where <&(£, t0) = [<f>ij(t,to)]- The following procedure, ltriangle(A), calculates $(t,t0) 

for lower triangular matrices: 

ltriangle:= 

proc(A) 
local phi,n,i}sumk,k,j ,1; 

n := rowdim(A); 

phi := map(0,A); 
for i to n do 

phi[i,i] := exp(int(subs(t = tl,A[i,i]),tl = tO .. t)); 

for j to i-1 do 

1 := i-j+l; 
sumk := subs(t = t.l,sum(A[i,k]*phi[k,j],k = j .. i-1)); 

phi[i,j] := phi[i,i]* 
int(subs(t = tO,subs(tO = t.l,phi[i,i]))*sumk,t.1 = t0..t) 

od 

od; 
map(simplify,phi); 

RETURN(") 

end 

If A(t) is upper triangular, that is at-j(i) = 0, Vi > j, the state transition has 
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elements given by 

<t>ij{t,to) = * 

0 i>j 

ef>"(T)dT i = j (B.27) 

/ <l>ii(t,T)  J2 aik{r)(f)kj{T,tQ)dT i<j. 
Jta ,zr:, k=i+l 

Note that a diagonal matrix is both lower and upper triangular. The following pro- 

cedure, utriangle(A), calculates $(i,£o) for upper triangular matrices: 

utriangle:= 
proc(A) 
local phi,n,i,sumk,k,j,1; 

n   := rowdim(A); 
phi   := map(0,A); 
for i from n by -1 to 1 do 

phi[i,i]   := exp(int(subs(t = tl,A[i,i]),tl = tO   ..  t)); 
for j  from i+1 to n do 

1   := j-i+1; 
sumk  := subs(t = t.l,sum(A[i,k3*phi[k,j],k = i+1   ..   j)); 
phi[i,j]   := phi[i,i]* 
int(subs(t = t0,subs(t0 = t.l,phi[i,i]))*sumk,t.1 = t0..t) 

od 
od; 
map(simplify,phi); 
RETURN(") 

end 

This concept can be extended to block triangular matrices. Let A{t) = \Aij{t)\, 

where each Aij(t) has dimensions nt- x rij, and $(t,i0) = [$ü(Mo)L where <&;_,•(£,£0) 

has dimensions nt- x nj. If A(t) is lower block triangular, that is A{j(t) = 0, Vj > i, 
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then the state transition matrix has blocks given by 

$ü(Mo) = * 

i <j 

i =j (B.28) 

ft «-1 

/ $ü(t,r)y;A,-fc(T)$fcj(T,to)rfr   i>j. 
Jt° k=j 

Likewise, if A(t) is upper block triangular, that is Aij(t) = 0, Vi > j, then the state 

transition has blocks given by 

*y(Mo) = 

0 

MMo) 

"'to 7 -•  I  1 

I    >   J 

i=j (B.29) 

k=i+l 

While (B.28) and (B.29) hold for all lower and upper block triangular matrices, re- 

spectively, §(t,t0) can be calculated explicitly only when the $,-,-(£, 20) are known. 

Therefore, if every Au{i) is from a class of matrices from which §u(t, t0) can be calcu- 

lated, $(£, t0) can also be calculated. Note that a block diagonal matrix is both lower 

and upper block triangular. 

Two decomposition schemes exist which expand the class of systems for which 

$(i, t0) can be calculated. The first one can be found in [65]. Let A(t) be decomposed 

as 

A(t) = J2Mt) (B.30) 
i=l 
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such that 

$,-(*,0) = #(*)$,-(*, 0), 
i = l,2,...,m (B.31) 

*i(0,0) = J, 

is solvable where 

Fi(t)   =   T-^Aim^it)   i = l,2,...,ro, (B.32) 

and 

(B.33) 
Tt(t)   =   $i(«,0)2;-_i(t)   i = l,2,...,m-l, 

7b(i)   =   /. 

Then we have that 
m 

*(*,0) = n *.■(*, 0). (B.34) 
t=i 

The procedures discussed to this point are useful in constructing procedures for com- 

puting this decomposition. It is interesting to note that this decomposition scheme 

can be used to show that any arbitrary A(t) can be decomposed into two normal 

systems [66]. Consequently, if closed form solutions exist for these normal systems, a 

closed form solution exists for any arbitrary A(t). 

A second decomposition scheme can be found in [67] and [68].   Differentiating 

(B.7) results in 

x = (A(t) + A2(t))x(t). (B.35) 

If 

A(t) + A2(t) = B{t)A(t), (B.36) 
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for some B(t), then (B.35) can be rewritten as 

x = B{t)x. (B.37) 

If a solution for B{t) exists, the following procedure, hemami(A), returns B(t): 

hemami:= 
proc(A) 
local ad,Ad,b,B,n,Al; 

n  := linalgCrowdim](A); 
Ad 
ad 
Al 

:= map(diff,A,t); 
:= vec(evalm(Ad+A~2)); 
:= kron(linalg[transpose](A),eye(A)); 

b := linalg[linsolve](Al,ad); 
if b = NULL then ERR0R('no solution possible') fi; 

B := invec(b,n,n) 

end 

If 

$i(*,0) = £(*)(<)*!(*,0), $i(0,0)=7 (B.38) 

is solvable then 

$(Mo) = (j[**i(T,*o)rfr) A(t0) + I. (B.39) 

Assuming Phil has been found, $(i,i0) is given by add(multiply(map(int, msubs 

(Phil, t=tl), tl=t0..t), msubs(A, t=tO)), eye(A)). If (B.38) is not solvable 

using any of the previous procedures, (B.37) can be differentiated. If a solution to 

the Riccati equation B(t) + B2(t) = C(t)B(t) exists, this procedure can be repeated 

until $(£,£o) is found, or until the Riccati equation has no solution. 



184 Appendix B.  Symbolic Computations for Linear Time-Varying Systems 

Lastly, we discuss the procedure used to verify that a given $(t,tQ) satisfies (B.2). 

From (B.2), we know that 

A(t)   =   ^(McO^Mo) (B.40) 

$(<o,*o)   =   /• 

The following procedure check(Phi) returns $_1(*,f0)$(Mo) and $(t0,t0): 

check:= 

proc(phi,t,tO) 
local a,Id; 

a := multiply(map(diff,phi,t).inverse(phi)) ; 
Id := map(limit,phi,t = tO); 
RETURN(map(simplify,Id),map(simplify,a)) 

end 

In this section, several classes for which the state transition matrix can be calcu- 

lated were given. These include constant matrices, matrices which satisfy the commu- 

tative condition, the A\ class, the Ah class, triangular matrices, and block triangular 

matrices whose block diagonal matrices are solvable. Two decomposition schemes 

which extend these classes were also given. Maple V procedures were given which aid 

in this calculation. 
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B.5    Examples 

In this section, we will apply the Maple V procedures discussed earlier to two LTV 

systems. In exposition of the examples, we include diary-like output from the Maple 

V implementation to assist the reader in reproducing these results. 

Example 1 

Consider Euler's equations for the rigid body [30]: 

*,(*)   =   ^LzA^(t)^(i) + IU2(t) (B.41) 

W3(t) = Ij-r^u1{t)u2(t) + -u3{t) 

where the a;,- are the angular velocities, the I; are the principal moments of inertia, and 

the m are the applied torques. If we let Ix = I2 = I (symmetrical body) and linearize 

about the nominal trajectory, ux = u2 = u3 = 0, ui(t) = sm(wgt), u2(t) = cos(wgt), 

and u3(t) = w, where g = ^j2-, we obtain the state equation 

ü(t) = A{t)ü(t) + B(t)u(t), (B.42) 

where ü(t) = w(t) - u>(t). In this case, the matrix A(t) can be found according to 

> A:=matrix([[0,g*w,g*cos(w*g*t)]3[-g*wJ0,-g*sin(w*g*t)]J 

> [0,0,0]]); 

[0        g w      g cos(w g t) 
[ 

A:=[-gw      0      -g sin(w g t) 
[ 
[00 0 
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The eigenvalues of A(t), given by 

> eigenvals(A); 

2    2  1/2 2    2 1/2 
0,   (- g    w )       ,   -  (- g    w ) 

are time-invariant, which suggests that A(t) may be in the A\ class. The procedure 

call fal(A, AO, Al, A2, 0) returns A\ and A2 with Ai given below as 

> fal(A,A0,Al,A2,0): 
> print(Al); 

cos(w g t)t4      sin(w g t)t5 
t5 t4       +  

w w 

sin(w g t)t9 
- g cos(w g t) 

-sin(w g t)t4      cos(w g t)t5      cos(w g t)t9 
-t4 t5        + + g sin(w g t) 

www 

0    0 t9 

where £4, £5, and t$ are parameters to be specified. These parameters are chosen such 

that Ai and A2 are time-invariant, according to 

> Al:=msubs(Al,t4=w*g,t5=0,t9=0); 

0        g w    0 ] 
] 

Al   :=   [ - g w      0       0 ] 
] 

0 0       0] 

> A2:=msubs(A23t4=w*g,t5=0,t9=0); 
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[ 0    0    g ] 

[ ] 
A2   :=   [ 0    0    0 ] 

[ ] 
[000] 

Now $(t,0) can be calculated as in (B.22) using 

> phi:=map(simplify,multiply(exponential(Al,t), 

> exponential(A2,t))); 

[cos(wgt)    sin(wgt)    cos(wgt) t g] 

C ] 
phi:=[-sin(wgt)  cos(wgt)  -sin(wgt) g t] 

C ] 
[0 0 1 ] 

Finally, checking our results (according to (B.40)) 

> check(phi,t,0); 

[10    0]        [0        g w      g cos(w g t)  ] 

[ ]        [ ] 
[0     10],     [- g w      0      - g sin(w g t)] 

[ ]        [ ] 
[0    0    1]        [    0 0 0 ] 

The identity matrix and the matrix A(t) are returned as expected.   Note that by 

examining <&(£,0), we see that the nominal trajectory is unstable (see Table 7). The 

elements <f>13(t,0) and (f>23(t,0) of $(^,0) are clearly unbounded. 

Example 2 

Again consider Euler's equations for a symmetrical body, that is I\ = I2 = /. 

Setting ui = u2 = 0, the equations can be written in the form of a quasi-linear 
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parameter varying system [69]: 

d_ 
dt 

Wi(*) 0 

Mt) + 0 

I*w 1 

wi(t) 0        gz(t)   0 

w2(i)     =     -gz(t)      0      0       w2(t)    +     0     Mt) (B.43) 

*(*) 0 0      0 

where z(<) = u>3(t). A linear parameter varying (LPV) system depends on a time- 

varying parameter rather than explicitly on time. This parameter is known at time 

t, but not necessarily a priori [69]. 

The control structure u3(t) = —Izk(z — zref) is proposed to drive z(t) to zrej and 

maintain stability of the system where k is a positive constant. Substituting 163(2) 

into (B.43), we obtain the following closed loop matrix for A(t), 

> A:=matrix([[0,g*z(t),0],[-g*z(t),0,0],[0,0,-k]]); 

0 g z(t)       0    ] 

A   : = 
] 

z(t) 0 0    ] 
] 

0 0        - k ] 

Taking the Peano-Baker series to the 5th order results in 

> peano(A,5,0); 
2 4 3 

[1-1/2 °/„l    + 1/24 y.i   , y.2 - 1/6 °/„2  ,        0] 

3 2 4 
[°/„i-i/6 y.i ,       1-1/2 y.2  + 1/24 y.2 ,      o] 

2 2 3 3 4 4 
[0, 0, 1-k t+1/2 k t -l/6k t +l/24k t ] 
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t 
/ 

°/.l   : = 

I 
I     - g z(tl) dtl 
I 

/ 
0 

t 
/ 

°/.2   : = 
I 
I    g z(tl)  dtl 

/ 
0 

By examining the Peano-Baker series and checking a table of Taylor series, it is 

proposed that $(i, 0) is of the following form: 

> h:=int(g*z(tl),tl=0..t): 
> phi:=matrix([[cos(h),sin(h),0],[-sin(h),cos(h),0], 
> [0,0,exp(-k*t)]]); 

phi: = 

cos(°/„l)       sinC/l) 

- sinC/.l)    cos(°/„l) 

0 

0 exp(- k t) 

t 
/ 

°/.l   : = 

I 
I     g z(tl)  dtl 
I 

/ 
0 

Checking our proposed <&(£,0), 
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> check(phi,t,0); 

[10    0] 

[ ] 
[ 0    1    0 ], 

[ ] 
[001] 

0 g z(t)       0    ] 
] 

g z(t) 0 0    ] 

] 
0 0        - k ] 

where the identity matrix and A(t) are returned as expected. By examining $(t,0), 

it can be seen that ui and u>2 are stable and that z is asymptotically stable as desired. 

B.6     Summary 

In this appendix, we have examined how Maple V could be used to calculate the 

state transition matrix for several classes of LTV systems. We motivated the problem 

by arguing that the state transition matrix is important for understanding stability, 

controllability, and observability of LTV systems. Classes of systems for which the 

state transition matrix can be calculated include constant matrices, matrices which 

satisfy a commutative condition, the A\ class, the Ah class, triangular matrices, 

and block triangular matrices whose block diagonal matrices are solvable. Maple V 

procedures to aid in this calculation were given. Finally, examples showing how the 

state transition matrix can be calculated and used for analysis and control of LTV 

systems were discussed. Clearly, this is one of many applications where symbolic 

software packages can be used to aid the controls engineer. 
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Addendum 

In the following we list several well known Theorems (involving the state transition 

matrix), without proof, which are referenced in the text. 

1. Stability [56]: 

Theorem 10 Every equilibrium state of (B.7) is stable in the sense of Lya- 

punov at t0 if and only if there exists some constant k which depends on t0 such 

that \\$(t,t0)\\ < k < oo for all t > t0. If k is independent oft0, it is uniformly 

stable in the sense of Lyapunov. 

2. Asymptotic Stability [56]: 

Theorem 11 The zero state of (B.7) is asymptotically stable at t0 if and only 

if ||$(t,i0)|| < k(to) < oo and \\$(t,t0)\\ -► 0 as t -»• oo. The zero state is 

uniformly asymptotically stable over [0, oo) if and only if there exist positive 

numbers kx and k2 such that ||$(t,i0)|| < fcie-*2**-*») for any t0 > 0 and for all 

t>t0. 

3. Controllability [30]: 
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Theorem 12  The LTV system (B.l) is controllable on [*o>*i] if and only if the 

controllability grammian 

W(t0,t1)= r ${t0,t)B(t)BT(t)$T{t0,t)dt (B.44) 

is invertible. 

4. Observability [30]: 

Theorem 13  The LTV system (B.l) is observable on [to,ti\ if and only if the 

observability grammian 

M(t0,h) = r $T(t0,t)CT{t)C{t)<i>{t0,t)dt (B.45) 

is invertible. 
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