
Logistics Management Institute

Maintenance of Department of
Defense Mission Critical and

Mission Support Software
A Preliminary Characterization

LG518T1

November 1997

App«^ te P^MT^ET Elizabeth K. Bailey
SSSS^S^±__ Emanuel R. Baker

James A. Forbes
Donald W. Hutcheson

19980116 040
uric qpAimfflB^0™5 LMI

Maintenance of Department of
Defense Mission Critical and

Mission Support Software
A Preliminary Characterization

LG518T1

November 1997

Elizabeth K. Bailey
Emanuel R. Baker

James A. Forbes
Donald W. Hutcheson

Prepared pursuant to Department of Defense Contract DASW01-95-C-0019. The views expressed
here are those of the Logistics Management Institute at the time of issue but not necessarily those
of the Department of Defense. Permission to quote or reproduce any part except for government

purposes must be obtained from the Logistics Management Institute.

LOGISTICS MANAGEMENT INSTITUTE

2000 CORPORATE RIDGE

MCLEAN, VIRGINIA 22102-7805

LOGISTICS MANAGEMENT INSTITUTE

Maintenance of Department of Defense Mission
Critical and Mission Support Software:

A Preliminary Characterization

LG518T1/NOVEMBER 1997

Executive Summary

Within DoD, mission critical software maintenance has been reported to cost be-
tween $700 million and $20 billion annually. The wide range results from uncer-
tainty over the definitions of "mission critical" and "software maintenance," as
well as the lack of any catalog of performing activities. The problem, however, is
deeper than definitions and uncertainty over level of investment. The software
maintenance process is poorly characterized in general, so there is no real basis for
establishing coherent policy. Further, key software maintenance decisions—such
as the choice of contract or organic performance and whether it should be defined
as depot maintenance—are largely ad hoc and reap limited benefit from the results
of past decisions.

The purposes of this study were to characterize DoD mission critical software
maintenance in terms of its activities and processes, users and stakeholders,
amount of resources, and existing formal and informal policy; identify policy is-
sues; and outline the scope and major features of potential new or revised policy.
This study was conducted at the direction of the Deputy Under Secretary of
Defense (Logistics).

RESULTS

The terms "software maintenance" and "software support" are both in use, some-
times with modifiers such as "post-production" or "post-deployment." To avoid
confusion, we adopted the term software maintenance and defined it as including

♦ correction of defects,

♦ adaptation (e.g., to a new host operating environment), and

♦ incremental functional improvements.

»TIC QUALITY INSPECTED 3
iii

This definition is generally consistent with industry usage. Excluded from this
definition are major modifications and upgrades, the purpose of which is major
functional improvement.

We found it helpful to distinguish among three categories of mission-related soft-
ware: mission critical, embedded; mission critical, nonembedded; and mission
support. Broadly speaking, within a category different organizations may use
similar processes; across categories they generally do not.

It is also helpful to characterize software maintenance by application area. We
gathered data on six major applications: weapon systems; space control; auto-
mated test equipment (ATE); command, control, and communications; system
integration laboratories; and simulation and training. Given the current state of
data availability and reasonable limits on the study scope, it proved impractical to
ensure completeness for any category or to achieve a reasonable degree of com-
pleteness for other than the first three.

FINDINGS

Within the six categories, we were able to account for about 16,000 government
and contract personnel equivalents performing software maintenance, 55 percent
organic and 45 percent contractor. The related total annual expenditure is about
$1.26 billion annually. About 40 percent of the effort is corrective and 60 percent
a combination of adaptive and incremental improvement. The code base that cor-
responds to these same categories is about 278 million source lines of code.

The use of operations and maintenance funds is almost universal for software
maintenance. The amount of resources is normally determined as a level of effort
rather than built up from discrete requirements. This approach appears to be con-
sistent with industry software maintenance practice.

Software for the application areas studied is normally developed in the private
sector. Although there were many transition patterns from original equipment
manufacturer (OEM) to maintainer, three reasonably clear trends emerged:

♦ Pure organic maintenance is the exception for any type of software.

♦ Organic maintenance of embedded software is generally found only on
older models of weapon systems.

♦ When attempted for nonembedded software, competitive contract support
proved both more economical and at least as effective as either sole-source
contract support or organic support.

There is a lack of consensus over what software maintenance is also depot main-
tenance. For this reason, inclusion or exclusion of software maintenance when

IV

Executive Summary

reporting compliance with Title 10 U.S.C. limitations on depot maintenance out-
sourcing (the 60/40 rule) is not consistent across the department.

Written policy consists of military standards and local operating instructions
rather than DoD instructions or service regulations. Not surprisingly, given the de
facto status of the military standards as policy, their ongoing elimination was an
issue for almost all of the organizations we interviewed.

RECOMMENDATIONS

We make two sets of recommendations, one set related to general policy and a
second related to how DoD organizes for software maintenance.

Policy

Standardize on the term software maintenance, defining it to include correction of
defects, adaptation, and incremental improvements. Exclude major modifications.

Define software maintenance in the weapon system, ATE, systems integration
laboratory, and space control categories as depot maintenance. All four categories
are either embedded in or closely tied to mission essential platforms.

Routinize consistent reporting of depot-level software maintenance, as defined
above, in the AP-MP(A)-1397 Depot Maintenance Cost System report to provide
a basis for reporting to Congress and management of depot-level software mainte-
nance generally.

Invest in process improvement. Consider mandating minimum process capability
levels for both organic and contract activities performing software maintenance.

Organizing for Software Maintenance

To achieve scale economies, consolidate smaller software maintenance activities
into software maintenance centers of excellence. For each center of excellence,
establish or keep a strong central management structure.

For embedded software, plan for long-term OEM maintenance. However, it is im-
portant to retain enough work organically to maintain a "smart buyer" capability.

For mission critical, nonembedded software, continue consolidation using the
government-managed, contractor-performed, centralized maintenance model em-
ployed by the Army Communications Electronics Command and the Air Force
Space Systems Support Group.

Where feasible combine development and maintenance within one organization.
Where not feasible to do so, provide software maintenance organizations a greater

voice in the definition of system requirements, particularly the development envi-
ronment and documentation that will be delivered.

For software (such as ATE test program sets) where the software engineering
knowledge is relatively easy to transfer, consider competition in order to reduce
cost.

VI

Contents

Chapter 1 Introduction 1-1

STUDY BACKGROUND AND PURPOSE 1-1

APPROACH 1-1

FINDINGS 1-2

RECOMMENDATIONS 1-7

Policy 1-8

Organizing for Software Maintenance 1-8

Chapter 2 Software Maintenance Demographics 2-1

INTRODUCTION 2-1

CODEBASE 2-2

PERSONNEL 2-9

BUDGET IMPACT 2-10

Chapter 3 Software Maintenance Processes 3-1

INTRODUCTION 3-1

MAINTENANCE RESPONSIBILITY TRANSITION PATTERNS 3-2

COMMUNICATION OF REQUIREMENTS 3-5

SOFTWARE VERSION RELEASE CYCLES 3-6

Mission Critical, Embedded Software 3-7

Mission Critical, Nonembedded 3-7

Mission Support 3-7

BUDGETING 3-7

EQUIPMENT AND FACILITIES 3-8

OUTSIDE MONITORING 3-9

PROCESS IMPROVEMENT 3-10

Alternative Frameworks 3-10

The Grassroots Level 3-12

Higher Organizational Levels 3-13

Vll

TRAINING 3-14

METRICS 3-15

FUNDING SOURCES FOR PROCESS IMPROVEMENT AND CAPITAL INVESTMENTS 3-17

OPERABLE POLICY AND MILITARY STANDARDS 3-18

Policies Cited 3-18

Policy-Related Concerns 3-19

ADVANCES OR INITIATIVES 3-23

LESSONS LEARNED 3-24

CHANGES DESIRED 3-24

EFFECTIVENESS 3-25

Commitments Taken Seriously 3-25

Commitment to Process Improvement 3-26

Participation Throughout the System Life Cycle 3-26

Effective Use of Contractor Support 3-27

Critical Mass Along with Strong, Central Leadership 3-27

Appendix A Software Maintenance Organizations Visited

Appendix B Interview Outline

Appendix C Abbreviations

FIGURES

Figure 1-1. Study Approach 1-2

Figure 1-2. Approximate Completeness of Data (Quantitative and Qualitative) 1-5

Figure 2-1. Mission Critical Software Magnitude Estimate Process 2-2

Figure 2-2. Software Code Base by Service and Category 2-3

Figure 2-3. Navy Source Code Counts by Application and Organization 2-5

Figure 2-4. Air Force Code Base by Organization and Application 2-6

Figure 2-5. Army Code Base by Organization and Application 2-7

Figure 2-6. Source Code for Selected Helicopter Platforms 2-8

Figure 2-7. Personnel Data from Eight Site Visits Compared to CORM Data
for Same Sites 2-9

vni

Contents

Figure 2-8. Organic vs. Contractor Personnel for Each Service 2-10

Figure 2-9. Estimated Budget Impact by Service 2-11

Figure 3-1. Maintenance Responsibility Transition Patterns 3-3

Figure 3-2. Requirements Process 3-5

Figure 3-3. Standards Evolution 3-20

TABLES

Table 1-1. Software Maintenance Categories 1-4

Table 2-1. Representative Maintenance Costs by Category 2-4

Table 2-2. Source Code by Bomber Type, Model and Series 2-8

Table 3-1. Capability Maturity Model 3-11

Table 3-2. Use of Metrics by Sites Interviewed 3-16

IX

Acknowledgments

The authors are indebted to the many Department of Defense software mainte-
nance professionals who carved significant amounts of time out of their busy days
to permit us to interview them for this report. All of the organizations we inter-
viewed cooperated fully, were universally interested in this project, and had obvi-
ously devoted significant preparation time in advance of the interviews. We would
especially like to thank the following:

♦ Mr. Dennis Turner and Mr. James Wagner of the Army Communications
and Electronics Command (CECOM) Research and Development Engi-
neering Center, Software Engineering Division, Fort Monmouth, NJ, who
took great interest in the study, helped us frame the overall approach, and
then followed up to see what other help they could provide.

♦ Mr. Mike Reed of the Air Force C4 Agency, Software Management Divi-
sion, Software Process Improvement Branch at Scott AFB. Mr. Reed met
with us twice, once to review our approach and once to critique prelimi-
nary results. His interest was sufficient that he met with us on a vacation
day.

♦ Mr. Darrell Maxwell and Mr. Charles Bechtel of the F/A-18 Weapon Sys-
tem Support Activity at China Lake, CA, who were among the most ar-
ticulate in describing the essentials of successful process improvement.

♦ All of the personnel whom we interviewed at the Air Force Consolidated
Integration Support Facility (CISF) at Peterson Air Force Base, CO. We
conducted seven interviews at the CISF; everybody was prepared in ad-
vance, candid in his or her assessments, and contributed a depth of insight
that was vital to the final results.

♦ Mr. Waynard "Dev" Devers at the Institute for Defense Analysis who ar-
ranged for us to have access to software data originally collected in sup-
port of the Commission on Roles and Missions (CORM) of the Armed
Forces. The CORM database is the foundation on which we built in creat-
ing a demographic picture of DoD software maintenance.

XI

Chapter 1
Introduction

STUDY BACKGROUND AND PURPOSE

Within DoD, mission critical software maintenance has been variously reported to
cost between $700 million and $20 billion annually. However, there has been no
generally agreed-upon definition of what comprises mission critical. That being
the case, there is no credible estimate of the resources involved in mission critical
software maintenance. Similarly, there is no definitive list of performing activi-
ties, software maintenance that is also depot-level maintenance, processes used,
formal and informal policy, or high- and low-cost drivers (or good and bad re-
sults). Lacking an adequate characterization of software maintenance, there is no
real basis for establishing normative expectations regarding who should do it, how
it should be managed, or how it should be funded. As a result, software mainte-
nance decisions—such as contract or organic performance and levels of funding—
are largely ad hoc, are difficult to reach, and reap limited benefit from an under-
standing of the results of past decisions.

The purposes of this study were to characterize DoD mission critical software
maintenance in terms of its activities and processes, users and stakeholders,
amount of resources, and existing formal and informal policy; to identify policy
issues; and to outline the scope and major features of potential new or revised
policy. This study was conducted at the direction of the Deputy Under Secretary
of Defense (Logistics).

APPROACH

Our study approach is illustrated in Figure 1-1.

In order to respond to the tasking, we separated the research into two segments,
one quantitative and one qualitative. To establish the "demographics" of software
maintenance (e.g., rough order of magnitude estimates of the code base, number
of people performing, and annual cost), we started with a database created by the
Institute for Defense Analysis for the Commission on Roles and Missions
(CORM) of the Armed Forces. Because it was clear from the beginning that this
database (the result of a data call to the services) had some voids, we supple-
mented it with data we obtained directly from the services. This study does not
include software maintenance performed by defense agencies; the decision to ex-
clude defense agencies was driven by the need to establish a reasonable scope of
effort for what was envisioned as primarily an exploratory study.

1-1

Figure 1-1. Study Approach

Independent data
gathering

Service data

CORM data

Literature review
Interviews

Characterize structure of
DoD software maintenance

• Activities and processes

• Users/stakeholders

• Amount of effort

• Existing policy

Identify policy issues

In order to approach the more qualitative aspects, such as those having to do with
the software maintenance process, we began with a literature review and then
conducted a series of 15 semistructured interviews at 8 service installations. In
keeping with the unsettled nature of software maintenance, we focused on devel-
oping an understanding of the common norms, meanings, values, and organiza-
tional relationships.1 We were not so much trying to determine "facts" as discern
signposts and perspectives.2 In combination, the demographics research, literature
review, and interviews permitted us to do this by characterizing software mainte-
nance in terms of activities and processes, users and stakeholders, amount of
effort, and existing formal and informal policy. Policy issues, in turn, flow from
that characterization. The sites visited are shown in Appendix A, and the ques-
tionnaire used to conduct structured interviews is in Appendix B.

FINDINGS

The terms software maintenance and software support are both in use and their
meanings are unclear. Sometimes these terms are used with modifiers, such as
post-production or post-deployment, but generally without a sense of what either

1 Kalle J. Lyytinen and Heintz K. Klein, "The Critical Theory of Jürgen Habermas as a Means
for a Theory of Information Systems," Research Methods in Information Systems, ed. E. Mum-
fored et al. (Holland: Elsevier Science Publishers B.V., 1985) p. 221.

2 U. Kelle, "Theory Building in Qualitative Research and Computer Programs for the Man-
agement of Textual Data," Sociological Research Online, Vol. 2, No. 2,
http://www.socresearchonline.org.Uk/socresonline/2/2/l .html, f 3.9.

1-2

Introduction

maintenance or support encompasses. To resolve this ambiguity, we adopted the
term software maintenance and defined it as including

♦ correction of defects,

♦ adaptation (e.g., to a new host operating environment), and

♦ incremental functional improvements.

Excluded from this definition are major modifications and upgrades, the purpose
of which is major functional improvement. Further, we defined software mainte-
nance as beginning once a system has passed acceptance testing and has been de-
livered to the user.

Our use of the term software maintenance is generally consistent with the Institute
of Electrical and Electronics Engineers (IEEE) definition; namely, it is "the proc-
ess of modifying a software system or component after delivery to correct faults,
improve performance or other attributes, or adapt to a changed environment."
The IEEE also defines three subcategories of software maintenance:

Corrective maintenance. Software maintenance performed to correct
faults in hardware or software.

Adaptive maintenance. Software maintenance performed to make a com-
puter program usable in a changed environment.

Perfective maintenance. Software maintenance performed to improve
the performance, maintainability, or other attributes of a computer pro-
gram.

The one difference between the definition we developed and that of the IEEE is
the substitution of "incremental functional improvements" for "perfective." Our
reason for this substitution is that none of the software professionals whom we
interviewed was comfortable with the term "perfective" or used it. By contrast,
"adaptive," "corrective," and "incremental improvement" were natural parts of
their vocabulary. The definition we propose is also consistent with the way the
work is actually being managed in DoD: the three activities of defect correction,
adaptation, and incremental improvement are normally managed and performed in
concert with one another as part of a single effort rather than correction of defects
(maintenance in a classical hardware sense) being separate from adaptation and
incremental functional improvements.

The term "mission critical software" is used as a catchall, sometimes as a syno-
nym for "embedded software" (e.g., hosted in aircraft and tanks) and sometimes

3 Institute of Electrical and Electronics Engineers, IEEE Standard Computer Dictionary:
Compilation of IEEE Standard Computer Glossaries, New York, 18 January 1991, pp. 16, 55,
127, and 152.

1-3

defined more broadly. In analyzing the patterns of software maintenance, we
found it helpful to be more specific and distinguish among three categories of
mission-related software that undergo maintenance: mission critical, embedded;
mission critical, nonembedded; and mission support (Table 1-1). Broadly speak-
ing, within a category different organizations may use similar processes; across
categories they generally do not.

Table 1-1. Software Maintenance Categories

Type Cardinal characteristics Examples

Mission critical,
embedded

• Tightly coupled interfaces

• Real-time response requirements

• Very high reliability requirements (life
critical)

• Generally severe memory and throughput
constraints

• Often executed on special-purpose
hardware

B-1 flight software,
F-14 flight software

Mission critical,
nonembedded

• Multiple interfaces with other systems

• Constrained response time requirement

• High reliability but not life critical

• Generally executed on commercial off-the-
shelf (COTS)

Command, control,
and communications
(C3), space systems

Mission support • Relatively less complex

• Self-contained or few interfaces

• Less stringent reliability requirement

Automatic test
equipment (ATE)
Test Package Sets
(TPSs), mission
planning, business
systems

These categories correspond roughly to those described in Boehm as embedded,
semidetached, and organic.4 Because in DoD maintenance the term "organic" is
frequently used when referring to the government labor force, we have substituted
the term "support" to describe the third class of software. Support software in-
cludes ATE and, more specifically, TPSs as well as software for simulation and
training. The distinctions among these three classes of software have several im-
portant implications:

♦ They differ in their complexity and, consequently, in their cost to develop
and maintain. [In fact, Boehm's Constructive Cost Model (COCOMO)—
the most widely used software cost model—has three different cost and
schedule equations to cover these three different types of software.]
Embedded software is much more complex and costly to develop and

1981.
Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ: Prentice Hall,

1-4

Introduction

maintain. It is characterized by tightly coupled interfaces with hardware
components and often with other hardware-software systems, real-time
response requirements, very high reliability requirements, and often very
constrained memory and processing capacity.

♦ They differ in terms of the nature of the associated maintenance activity,
which primarily consists of functional enhancements for the first two and
defect corrections for the third.

♦ They differ in terms of the skill set and amount of tacit knowledge re-
quired for maintenance—with implications for who can maintain the soft-
ware, i.e., organic personnel or original equipment manufacturer (OEM)
contractor.

Within the scope of the study, we accounted for an estimated 16,000 government
and contract persons performing software maintenance on 278 million source
lines of code (SLOC) at a cost of $1.26 billion annually. Given the current state of
data availability and reasonable limits on the scope of this exploratory study, it
proved impractical to develop census data on DoD software maintenance. We
gathered data on the first six application areas in Figure 1-2, which depicts our
subjective judgment of the degree to which each area was covered. The darkest
shading means that the area is well covered, both in terms of on-site interviews of
organizations maintaining that category of software and in terms of representation
in our quantitative sources of data. The lighter shading means that the category
has some representation in the study but also known major omissions. No shading
means that the category is not represented in the study. Weapons systems, ATE,
and space control systems are reasonably well covered in the study. C3, system
integration, and simulation and training and are partially covered. The remaining
categories are not covered.

Figure 1-2. Approximate Completeness of Data
(Quantitative and Qualitative)

Application area Type Data completeness

Data complete
Weapon systems Embedded Essentially complete
Space control Nonembedded Essentially complete
Automated test equipment Support Essentially complete

Data incomplete

Atmospheric search Nonembedded None

War games and mission rehearsal Nonembedded None

Nonembedded None

Intelligence Nonembedded None

Business systems Support None

Weather Nonembedded None

Other

1-5

For the six categories shaded in Figure 1-2, we were able to account for an esti-
mated 16,000 government and contract personnel performing software mainte-
nance, about 55 percent organic and 45 percent contractor. The related total
annual expenditure is about $1.26 billion annually. About 40 percent of the effort
is corrective and 60 percent is a combination of adaptive and incremental im-
provement. The code base that corresponds to these same categories is about
278 million SLOC.

Use of operations and maintenance (O&M) funds is almost universal for software
maintenance within the application areas studied. The amount of resources is
normally determined as a level of effort rather than built up from discrete re-
quirements. In some organizations the level of effort was fixed in terms of dollars;
in others it was fixed by the (fairly stable) size of the labor force. In either case,
software maintainers addressed the backlog of requirements to the extent re-
sources permitted. Requirements not satisfied in one planning period (e.g., year)
were simply deferred to the following period. This approach also appears to be
consistent with industry software maintenance practice.

There are three reasonably clear trends relating to choice of organic or commer-
cial support. Software for the application areas studied is originally developed in
the private sector. Although there were many transition patterns from OEM to
maintainer, three reasonably clear trends emerged:

♦ Pure organic support is the exception for any type of software.

♦ For embedded software, there was a consistent pattern of early OEM
maintenance lead followed by—only for older models of weapon sys-
tems—transition to organic lead. We believe that this pattern dominates
for embedded software because the systems engineering knowledge
needed to maintain it is difficult and costly to transfer.

♦ When attempted, competitive contract support proved both more economi-
cal and at least as effective as either sole-source contract support or or-
ganic support.

There is a lack of consensus over which software maintenance is also depot
maintenance. The Defense Depot Maintenance Council Business Plan for Fiscal
Years 1996-2001 shows $275 million of contract depot-level software mainte-
nance and 3.2 million direct labor hours of organic maintenance for FY96.5 By
contrast, the AP-MP(A)-1397 Depot Maintenance Cost System (DMCS) report,
which explicitly requires reporting of depot-level software maintenance, shows
$20.4 million for FY96. Our interviews with software maintenance managers con-
firmed the lack of consensus over what categories, if any, of software maintenance
are also depot-level maintenance.

5 DoD Defense Depot Maintenance Council, Business Plan for Fiscal Years 1996-2001,
Tables 1-2 and 1-3, pp. 1-10 and 1-11.

1-6

Introduction

Because of the lack of consensus, inclusion or exclusion of software maintenance
when reporting compliance with Title 10 U.S.C. limitations on depot maintenance
outsourcing (the 60/40 rule) is not consistent across the department.

Although there is not yet any general sense of what distinguishes effective and
ineffective software maintenance, there are candidate criteria. Certain organiza-
tions we visited had a better sense of what they did, and were better able to ex-
plain it, than others. On reflecting on what seems in some sense to be consistent
patterns of behavior across these organizations the following characteristics stand
out:

♦ They take commitments seriously and are able to follow through on them.

♦ They are able to articulate organizational objectives for improvement and
to follow through with actions to reach them.

♦ They participate throughout the system life cycle, not just after deploy-
ment.

♦ They make effective use of contractor support, competing contracts when
that makes sense and fostering productive long-term relationships among
sole-source providers at other times.

♦ They have the necessary quantity of people and resources along with
strong, central leadership within the organization.

Of the organizations we visited, the F/A-18 program stands out as having all of
these characteristics. The F/A-18 program provides an especially interesting ex-
ample because it moved from a self-acknowledged near-disaster to a state of
health in less than 5 years. However, all three services had some organizations
with some if not all of these characteristics. Also worth noting, and of more than
passing importance, is that some of the premier mission critical software is main-
tained by organizations that do not satisfy the above criteria.

Written policy consists of military standards and local operating instructions
rather than DoD instructions or service regulations. Not surprisingly, given the
de facto status of the military standards as policy, their elimination was an issue
for almost all of the organizations we interviewed.

RECOMMENDATIONS

We make two sets of recommendations, one set related to general policy and a
second related to how DoD organizes for software maintenance.

1-7

Policy

Standardize on the term software maintenance in lieu of alternatives, such as
software support. Define software maintenance to include correction of defects,
adaptation, and incremental improvements. Exclude major modifications.

Define software maintenance in the weapon system, ATE, systems integration
laboratory, and space control categories as depot maintenance. All four categories
are either embedded in or closely tied to mission essential platforms.

Routinize consistent reporting of depot-level software maintenance, as defined
above, in the AP-MP(A)-1397 Depot Maintenance Cost System report to provide
a basis for reporting to Congress and management of depot-level software mainte-
nance generally. In the absence of a compelling reason for broader reporting, we
recommend against expanding beyond depot-level software maintenance. Because
of both the current lack of consensus on basic definitions and the many different
organizational hierarchies involved, it would be costly to mount and sustain this
type of effort.

Invest in process improvement. Specifically, we recommend mandating minimum
process capability levels for both organic and contract activities performing soft-
ware maintenance. The mandated capability levels should be judiciously expanded
over time.

Organizing for Software Maintenance

Consolidate smaller software maintenance activities into software maintenance
centers. Size each center such that it has an annual business base of approximately
$100 million or greater. For each center of excellence, establish or keep a strong
central management structure.

For software embedded in a single weapon system platform, recognize that long-
term OEM software maintenance is a given and plan for it. However, it is also
necessary to retain enough work organically to maintain a smart buyer capability.

For mission critical, nonembedded software, continue consolidation using the
government-managed, contractor-performed, centralized maintenance model em-
ployed by the Army Communications Electronics Command (CECOM) and the
Air Force Space Systems Support Group (SSSG).

Where feasible, follow the F/A-18 model and combine development and mainte-
nance under one organizational umbrella. Where not feasible to do so, provide
software maintenance organizations a greater voice in the definition of system re-
quirements such as what development environment and what documentation will
be delivered.

1-8

Introduction

For support software (such as ATE TPSs) where the software engineering knowl-
edge is relatively easy to transfer, consider converting to essentially 100 percent
competed contract performance in order to reduce costs.

1-9

Chapter 2
Software Maintenance Demographics

INTRODUCTION

The purpose of this chapter is to convey the relative size of DoD mission critical
and mission support software maintenance activity. To do so, we present data on
three key demographics: source lines of code (SLOC) supported, number of peo-
ple involved, and estimated budget impact.

As noted in Chapter 1, there are wide discrepancies in the estimates of dollars
spent per year on the maintenance of mission critical software. At the high end is
a $20 billion figure, which MITRE derived by estimating that $30 billion is spent
by DoD annually on software and that two-thirds of that is for maintenance. At
the low end is an estimate of $700 million derived from the results of a 1994
Commission on Roles and Missions (CORM) data call to the services.2

Both of these estimates have significant methodological difficulties. It is unclear
in the MITRE analysis whether the $20 billion total is for all DoD software, mis-
sion critical only, or some other subset of the DoD total. The CORM result con-
tained known areas of omission in addition to terminological confusion. Thus, an
important objective of the present study was to establish the magnitude of soft-
ware maintenance with greater confidence. In addition to characterizing the mag-
nitude of software maintenance in terms of dollars, we also looked at the size of
the code base being maintained and the number of personnel (government and
contractor) maintaining this code base.

The CORM database was used as a starting point since it was recent, bottom-up,
and based on a formal data call. We filled in fairly obvious gaps (such as space
control systems) that were missed entirely by the CORM data call and asked sub-
ject matter experts in all three services to identify and correct other errors (e.g.,
significant underrepresentation of ATE software). In addition to enlarging the
CORM database, we refined it by comparing the CORM data for a given site with
data obtained from our site visits. We looked in particular for any systematic
under- or over-estimates in the CORM data on size (SLOC) and people.

The overall process we used to quantitatively characterize software maintenance is
illustrated in Figure 2-1.

1 Barry M. Horowitz, The Importance of Architecture in DoD Software, MITRE M91-35,
1995, p. 2-3.

2 Computed by members of the IDA research staff from service submissions in response to the
CORM data call.

2-1

Figure 2-1. Mission Critical Soßware Magnitude Estimate Process

CORM census data

• $700 million
• 8,000 personnel, etc.

CORM data to sample data comparison

• Filled some data holes
• Sanity check on rest
• Developed adjustment factors
• Revised estimate

Independent "vertical" samples
and supplemental data to fill
identified "data holes"

Accounted for approximately

• $1.26 billion annually
• > 16,000 personnel equivalents

CODE BASE

We used SLOC to estimate the size of the code base being maintained. This was
not without reservations. The SLOC metric suffers from inherent ambiguities.
Some software engineers count physical lines while others count instructions.
Additional sources of ambiguity are whether or not comments and nonexecutable
lines, such as data declarations, are counted. In spite of these known problems,
SLOC is the most common measure of software size.3 Other size measures have
been proposed, the most notable being function points.4 However, the function
point method is not in wide use for embedded weapon system software and, for
this reason alone, could not be used in the current study.

As noted earlier, we used site visits to check on the validity of the CORM SLOC
counts. We asked the interviewees to verify the counts we had, making any cor-
rections or additions. We also looked for evidence of any systematic over- or un-
der-estimation across the various sites. While there were corrections and
additions, there were no systematic differences, and, with a few major exceptions,
the CORM numbers appeared to be relatively accurate for the sites where we were
able to do a comparison. The CORM database, however, is only a partial database.
For example, it omitted the Air Force's space control software entirely and missed
most of the ATE TPS software, so the site visits were also used to fill in missing
data, but this is at best a partial and limited enlargement of the CORM database.

Barry W. Boehm, Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1981, pp. 479,482.

4 International Function Points Users Group, Function Points Counting Practices Manual,
Westerville, OH, 1994.

2-2

Software Maintenance Demographics

As discussed in Chapter 1, we defined three general categories of mission critical
software: embedded, nonembedded, and support. In reality, these categories repre-
sent points on a continuum rather that clearly discrete classes. It is especially dif-
ficult in some cases to classify systems as embedded or nonembedded. We used
the following guidelines in classifying systems:

♦ We classified as embedded anything integral to the operation and perform-
ance of an aircraft, ship, missile, gun, etc.

♦ We classified as nonembedded satellite control software and command and
control software.

♦ We classified as support TPSs, trainers, and simulators.

Figure 2-2 shows a breakout by the three high-level categories for each service.
The Navy and Air Force have much larger code bases than does the Army.

Figure 2-2. Software Code Base by Service and Category

300,000

250,000

Operational,
nonembedded

Support Embedded

Type

Total

I Total BAF DNavy BArmy

While support software is the single largest category in terms of the sheer number
of SLOC, it is less costly to maintain than the other two categories. As an indica-
tor of the size of the difference, Table 2-1 reflects the approximate cost per source
line of code per year for three of the sites in the expanded database.

2-3

Table 2-1. Representative Maintenance Costs by Category

Category
Approximate maintenance cost per

line of code per year

Embedded

Nonembedded

Mission support

$110.00

$5.60

$0.81

Note: The mission support cost is calculated from North Island
ATE TPSs, nonembedded is calculated from CECOM data, and
embedded is calculated from B-1B data.

In addition to the overall volume of code being maintained in DoD, the amount of
code by application area is also of interest. Figures 2-3 through 2-5 show the
number of source lines of code by application area and organization for each
service.

Figure 2-3 shows a breakdown of SLOC by organization and application for the
Navy. Of 136 million SLOC reported by the Navy, the warfare centers are respon-
sible for maintaining over 90 million. The Naval Aviation Depots (NADEPs) are
responsible for 33 million, of which 31 million are for support software (ATE).
The Marines reported a total of 8 million.

Figure 2-4 shows the same breakdown for the Air Force. Of the 114 million
SLOC reported, 87 million are maintained by the air logistics centers, primarily
Ogden, Oklahoma City, and Warner-Robins. The SSSG at Colorado Springs is
responsible for the balance. As was the case with the Navy, support software is
the single largest category, containing 60 million SLOC.

In interpreting Figures 2-2 through 2-4 it should be remembered, as noted earlier,
that there are significant reliability and validity issues with the underlying data.
Although our check of code counts reported in the CORM database against those
made available in site visits did not reveal a systematic bias, that is not the same
as saying the data are known to be valid. Because only three of the six application
areas we examined were, in our judgment, reasonably complete, this summary is
an underestimate even for the areas we examined. The portrayals shown here are
best characterized as approximate representations of the relative sizes of the code
bases for the categories we examined. These caveats also apply to the labor force
and budget impact demographics presented later in this chapter.

2-4

Software Maintenance Demographics

Figure 2-3. Navy Source Code Counts by Application and Organization

c
g

"co
o
Q.
D. <

Other/unknown

Wargames

Trainers

Automated test
equipment

Command
and control

Radio

Communications

Helicopters

Fixed wing
aircraft

Sonars

Radars

Combat data
systems

Countermeasures

Torpedoes

Guns

Missiles

10 100 1,000
KSLOC

10,000 100,000

INAWC DNSWC miNllWC BSPAWAR BNCCOSC BNADEP DMarines BTotal

Note: Total = 114,450 KSLOC (thousands of lines of source code).

2-5

Figure 2-4. Air Force Code Base by Organization and Application

Unknown

Simulators/
trainers

Support/ATE

Command
and control

Engines

Space
systems

Decoys

Missiles
c
o

ü Helicopters

Q. <
Trainers

Tankers

Transports

Recon and
special duty

Attack and
observation

Defensive
systems (EW)

Fighters

Bombers

100 1,000 10,000 100,000

KSLOC

HOgden HOklahoma BSacramento BSan Antonio IDWarner- DColorado BTotal
City Robins Springs

Note: Total = 136,050 KSLOC (thousands of lines of source code).

2-6

Software Maintenance Demographics

Figure 2-5 shows the same breakdown for the Army. Of the 27 million total,
almost 25 million are maintained by CECOM, 11 million of which are for com-
munications.

Figure 2-5. Army Code Base by Organization and Application

to u
Q.
Q.
<

Missiles

Tanks

Helicopter ~^~~»^—«

ATE/TPSs

Training, M&S
^ SiSiiSS*^***. kasiäaidiisiiiii; =^==^1

Avionics
g^MJJiiiHHSmBHigiliflji ~. ££J

Fire support

Integrated
EW

Tactical
fusion

Communications
1 |

;llB;l|IIii|.|ii=ii.| —jBHPPWfl

10 100 1,000 10,000 100,000

KSLOC
I CECOM HTACOM BMI COM DATCOM ■ Total

Note: Total = 27,350 KSLOC (thousands of lines of source code).

M&S = modeling and simulation.

These code counts represent a horizontal snapshot across services, platforms, and
application areas. The longitudinal change over time is also important. Table 2-2

2-7

shows the amount of software code in three generations of strategic bombers.
Figure 2-6 does the same thing over a succession of helicopter platforms.

Table 2-2. Source Code by Bomber Type, Model and Series

Bomber type,
model, series

Year first aircraft
delivered to the Air Force KSLOC

B-52H

B-1B

B-2A

1981a

1985

1993

100

500

1,800

Although the B-52H was introduced in 1961, the offensive avionics were
converted from analog to digital in 1981, a more reasonable milestone for this
purpose.

Figure 2-6. Source Code for Selected Helicopter Platforms

1,400 ■

1,200 -

1,000 ■

800-

600-

400-

200-

Kiowa

'Apache

1975

"Cobra"

1980

Comanche

Longbow Apache

rSOA

1985 1990 1995 2000 2005

Year of first delivery

Note: Code counts courtesy of Army Aviation and Troop Command. Years of first delivery from
Janes' All the Worlds Aircraft, 1995-1996; Air Force Magazine, June 1996; and Army Factbook at
http://www.dtic.mil/armylink/factfile/comanche.html.

The trends in Table 2-2 and Figure 2-6 confirm the general sense of the interview-
ees that software density is increasing with succeeding generations of weapon
systems.

Years of introduction from United States Air Force fact sheets at world-wide web URL
http://www.af.mil/news/factsheets, 7 April 1997. Code counts from George Koleszar, et al., FY95
Heavy Bomber Force Study, Institute for Defense Analysis Report R-394, July 1995 and George
Koleszar et al., Cost and Operational Effectiveness Analysis (COEA) for the B-1B Conventional
Mission Upgrade Program (CMUP), Institute for Defense Analysis Report R-398, Draft Final,
November 1996.

2-8

Software Maintenance Demographics

PERSONNEL

Software development and maintenance are labor-intensive activities. In fact, hu-
man effort is generally recognized to be the major cost driver. ■ To estimate the
number of people involved in software maintenance, we began with the CORM
database personnel counts. Here also we expanded the CORM database using
other data gathered during the study. As we did with the size data, to determine
accuracy we compared the numbers obtained from the site visits with those in the
CORM database.

The CORM database consistently underrepresented the number of people. A com-
parison between the CORM and site visits is shown in Figure 2-7. If the data from
the site visits and the CORM data for the same sites were about the same, then a
linear plot of the data would have a 1:1 slope. The slope is 1.96, meaning that the
personnel counts obtained from the site visits were almost twice as large as those
from the CORM data call, and this was consistent for all but one of the sites we
visited. The one outlier was the F/A-18 aircraft. The CORM data call reflects
30 F/A-18 personnel, all organic, while interviews with F/A-18 software manag-
ers indicate the total should be approximately 1,000 (125 organic plus 875 con-
tractors). Since it was such an egregious outlier, we did not include the F/A-18 in
calculating the 1.96:1 site-visit-to-CORM data ratio.

Figure 2-7. Personnel Data from Eight Site Visits Compared
to CORM Data for Same Sites

1 1,400 -

1 onn
• /

1 I ,uuu

H 800 —J

H
600

1 400
•

1 200

o4
200 400 600 800 1,000 1,200

Boehm, Software Engineering Economics.
7 Wolfhart B. Goethert, Elizabeth K. Bailey, and Mary B. Busby, Software Effort and

Schedule Measurement: A Framework for Counting Staff-Hours and Reporting Schedule Infor-
mation, CMU/SEI-92-TR-21, ESC-TR-92-021, Carnegie Mellon University Software Engineering
Institute, Pittsburgh, PA, September 1992.

2-9

For the specific sites for which we had data, the corrected counts were used. We
adjusted all other numbers in the CORM database by 1.96, essentially doubling
the CORM counts. Figure 2-8 shows the breakdown of organic and contractor
personnel for each of the services. Overall, there are almost 16,000 people main-
taining software for the mission critical and mission support applications included
in this study. Overall, this labor force is about 55 percent organic, although the
ratio varies by service. The Navy and Air Force rely primarily on organic person-
nel, whereas the Army has fewer organic personnel than contract.

Figure 2-8. Organic vs. Contractor Personnel for Each Service

15,000
(15,957)

c

(0 >
cr
(B

"03
c
c
o
£2
w
a.

£

10,000

5,000

Army Air Force Navy

Type

Total

I Total B Organic H Contractor

BUDGET IMPACT

The third measure of magnitude is financial (dollars). We did not use the budget
numbers from the CORM data call because it is not clear what these reflect (i.e.,
labor only or labor and equipment, contract or contract plus organic, etc.). As an
alternative, we estimated the financial commitment in dollars by multiplying
counts of people by average loaded labor rates for organic and contractor person-
nel. Figure 2-9 shows the estimated dollars per year for each service.

The rate used for organic personnel was $67,364, which is a composite rate based
on an assumed distribution of 80 percent GS-12 and 20 percent GS-13 (1996 dol-
lars).8 The rate used for contractor personnel was $97,364, which is the median of

The composite organic rate is a weighted average of the rates shown for GS-12s and GS-13s
in Table A26-1 of the Civilian Standard Composite Pay Rates by Grade, Air Force I instruction
65-503, May 1996.

2-10

Software Maintenance Demographics

the rates that were quoted to us during the site visits. The contractor rates ranged
from $55,500 to $250,000 per year, and this difference generally corresponded
with the complexity and uniqueness of the software being maintained. The differ-
ence between organic and contractor rates should not be interpreted to mean that
contractors are more expensive. By and large, the contractor labor force was
maintaining more complex software that required higher skills.

Figure 2-9. Estimated Budget Impact by Service

1,000
(1.262)

Army Air Force Navy

Service

Total

I Total S Organic B Contractor

The financial commitment that we were able to account for using this procedure is
approximately $1.26 billion dollars annually ($205 million for the Army,
$543 million for the Air Force, and $514 million for the Navy).

As noted in Chapter 1, one of the reasons for characterizing DoD software main-
tenance was to shed light on the amount of software maintenance that is also de-
pot-level maintenance. Whether software maintenance is or is not depot level is of

2-11

interest because it affects the department's compliance with the congressional re-
strictions on how much depot maintenance work can be outsourced.9

It is not possible at present to describe what fraction of the $1.26 billion in soft-
ware maintenance is depot level. First, it was clear from the interviews that, here
also, there is a lack of consensus over definitions. For example, the Air Force
would generally classify work on fighter aircraft embedded software as depot
maintenance. The Navy does not consider it so. Hence, inclusion or exclusion of
software maintenance when reporting compliance with Title 10 U.S.C. limitations
on depot maintenance outsourcing (the 60/40 rule) is inconsistent. Uncertainty in
this area is quite large. The Defense Depot Maintenance Council Business Plan
for FY96-01, which is compiled with service inputs, shows $275.3 million in
contract depot-level software maintenance for FY96 and an additional 3.2 million
depot labor hours worth of organic support. By contrast, the AP-MP(A)-1397
Depot Maintenance Cost System (DMCS) report, under which depot-level soft-
ware maintenance is explicitly required to be reported, reflects $20.4 million for
the same year.

910 U.S.C. 2466, "Limitations on the Performance of Depot-Level Maintenance of Material,"
requires that not more than 40 percent of the funds available in a fiscal year to a military depart-
ment or agency for depot-level maintenance and repair may be used to contract for performance by
non-federal-government personnel.

2-12

Chapter 3

Software Maintenance Processes

INTRODUCTION

This chapter describes the software maintenance processes in terms of certain
qualitative characteristics. The most relevant characteristics, which were selected
after a review of available literature and exploratory interviews, are

♦ the typical patterns for transitioning from the original equipment manu-
facturer (OEM) who designed the software to the steady-state maintenance
organization,

♦ the process by which maintenance requirements are communicated from
the user to the maintainer,

♦ the typical software maintenance version release cycles,

♦ the software maintenance budgeting process,

♦ the equipment and facilities used for software maintenance,

♦ the entity outside of the maintenance organization who monitors software
maintenance performance,

♦ the software maintenance process improvement efforts,

♦ training,

♦ the metrics used to measure and manage software maintenance,

♦ the funding sources for process improvement and capital investments,

♦ the operable software maintenance policy,

♦ the advances and initiatives,

♦ the lessons learned as reported by maintenance organizations,

♦ the changes desired by maintenance organizations, and

♦ the characteristics that appear to be associated with effective software
maintenance organizations.

In the following sections, we address each of these characteristics in turn.

3-1

MAINTENANCE RESPONSIBILITY

TRANSITION PATTERNS

Because a major reason for this study was understanding the basis for selecting
contract or organic software maintenance, we asked the interviewees during our
site visits to describe the basis for whatever arrangement they had in place. With
the exception of one program office at the SSSG, none of the interviewees were
able to articulate why they had the arrangements they did, nor did we find much
help in the literature. To the extent that there was any response from interviewees
other than at SSSG, the answer typically was that some organic maintenance is
necessary to preserve smart buyer capability.

Since explanations for the present arrangements were not available, it was neces-
sary to infer first the categories of arrangements and then infer why these
arrangements existed.1 We did so by determining who was currently providing
maintenance and the pattern for transitioning from the OEM developer (in all
cases we studied software was developed under contract) to the present main-
tainer. Figure 3-1 illustrates nine transition patterns that we either found or that
appeared reasonable to anticipate. We found examples for seven of the nine.

These patterns had the following characteristics:

♦ Pattern I is OEM development followed by OEM sole-source mainte-
nance. We found one example of this pattern, the Global Positioning Sys-
tem Operational Control System (GPS OCS).

♦ Pattern II is OEM development followed by pure organic support. We
found only one example of this pattern, maintenance of ATE TPSs at the
Warner-Robins Air Logistics Center (WR-ALC).

♦ Pattern HI is OEM development followed immediately by competed com-
mercial maintenance (without the OEM as one of the competitors). We did
not find any representatives of this pattern.

♦ Pattern IV is OEM development followed by joint OEM/organic mainte-
nance followed by a transition to competed contract maintenance. The
Defense Support Program software followed this pattern.

John W. Creswell. Research Design: Qualitative and Quantitative Approaches. Thousand
Oaks CA: Sage, 1994, pp. 153-161. The method we used is sometimes called grounded theory—
i.e., grounding a theory in the data.

3-2

Software Maintenance Processes

Figure 3-1. Maintenance Responsibility Transition Patterns

Pattern
type

Maintenance provider

r— o
o. Workloads Design

Pure OEM
(sole

source)
"Pure

organic" OEM

Completed
(OEM 3rd

party) Organic Organic

— — Organic — OEM

Completed
(OEM 3rd

party)

c
■o
■o o

1 A ^ SDG (GPS OCS)

II ► WR-ALCATE

III

11
ii
M

> ^

IV > ^ SDB (DSP)

V > ^- F-14, F/A-18, F-15
WR-ALC EW

VI ^ CECOM, SDN, SMS

VII ►
VIM ► No. island avionics

No. island ATE

IX 1 > ► SDD

User software maintenance appears to be relatively rare

> = Transitional = Final

Note: SDG (GPS OCS) = Global Positioning System Operational Control System; WR-ALCATE =
Automated Test Equipment at Warner Robins Air Logistics Center; SDB (DSP) = Defense Support
Program; SDN = Air Force Satellite Control Network; SMS = Space Defense Operations Center;
SDD = Defense Meteorological Satellite Program.

♦ Pattern V is OEM development followed by joint OEM and organic
maintenance. Typically, the OEM has the lead at first (e.g., as each new
series of aircraft is introduced), then organic personnel take the lead as the
software ages. This pattern is typical for embedded software in combat air-
craft. It appears that this pattern has emerged for embedded software be-
cause the detailed system knowledge needed for embedded software
maintenance is very hard to transfer from one organization to another.

♦ Pattern VI is OEM development followed by a transition to competed
commercial support when the OEM is one of the competitors, but not nec-
essarily the winner. CECOM uses this model, as do two of the programs at
SSSG in Colorado Springs.

♦ Pattern VII differs from Pattern V in that there is no intermediate, OEM-
lead stage. We did not find a representative of this pattern.

3-3

♦ Pattern VIII has the organic sector leading the maintenance effort but with
competed contract support. North Island Naval Aviation Depot uses this
model for maintenance of avionics software and TPSs.

♦ In Pattern IX, the organic sector always leads the maintenance effort. Early
on, the OEM provides support; later, the support role is competed. We
found one space systems program using this model.

Analysis of these patterns and comments offered during the interviews suggest the
following provisional conclusions:

♦ Pure organic software maintenance is the exception and seems limited to
mission support software, such as ATE TPSs. Since the organic and
contract sectors have roughly the same skills and would be expected to use
the same software environments, we conclude that, except for support
software such as ATE TPSs, there is significant difficulty and cost associ-
ated with transferring the knowledge of the software necessary for its
maintenance. In addition to problems with nondelivery of documentation
or computer-aided software engineering environments, this knowledge is
probably tacit (i.e., deep knowledge) rather than explicit—that is what
makes it hard to transfer. The contrast between the simple TPS software
typical of Pattern II and the complex embedded software typical of
Pattern V supports this conclusion. Support for this conclusion is also
found in the literature on technology management in which Teece,2 ex-
amining how companies arrive at make-or-buy decisions, noted that they
often choose what is easy to do rather than what is most important to them.

♦ Based on the empirical evidence (i.e., the established transition patterns)
and the reasons presented under Pattern V, planning for pure organic
maintenance or competed maintenance of embedded software is unrealis-
tic. It is probably more realistic to accept OEM involvement in (and initial
lead of) embedded software maintenance as a. fait accompli.

♦ Competed commercial maintenance is viable for mission critical, nonem-
bedded and for mission critical, support software.

David J. Teece, "Technological Change and the Nature of the Firm," Technological Change
and Economic Theory, 1988, pp. 256-281.

3-4

Software Maintenance Processes

COMMUNICATION OF REQUIREMENTS

Communication of requirements is clearly an important part of the software mainte-
nance process. We found uniformity in this process among organizations in the field
survey. The typical requirements process (Figure 3-2) follows these steps:

♦ It is initiated by a user through a problem report or a request for change.
These reports or requests had almost as many different names and acro-
nyms as organizations surveyed. The names included system deficiency
report (SDR), standard change form (SCF), software trouble report (STR),
and program change proposal, or they could take the form of an electronic
mail or letter input. (Interestingly, in the Air Force, no one reported using
formal Technical order 00-35-D54 deficiency reports, even though this
technical order applies to all Air Force agencies and organizations and
provides for software deficiency reporting.)

♦ The requests are typically screened in a preliminary review to determine
the urgency of the problem or change request. Urgent needs (e.g., safety of
flight) are worked immediately. The remainder of the requests are accu-
mulated in what the Space and Warning Systems Directorate (accurately,
if colloquially) termed a "job jar" awaiting a scheduled review.4

Figure 3-2. Requirements Process

Question: How are changes and requirements communicated and changes initiated?

Consistent response

Problem
or need

SDR
SCR
STR
SCF
PCP
E-mail
Letter

Worked
immediately

1 Urgent (e.g., safety ^ flight)
Preliminary review

Periodic review with user

Not
urgent

Assigned
to specific
releases

Back to job jar

Note: SDR = Software deficiency report; SCR = Software change request; STR =
Software trouble report; SCF = Software change form; PCP = Program change
proposal; E-mail = Electronic mail.

3 United States Air Force, TO 00-35D-54, USAF Deficiency Reporting and Investigation
System, 15 January 1994, pp. 1-1,1-4, and 1-5.

4 Space and Warning Systems Directorate, Operating Instruction 33-7, Software Mainte-
nance—Acronyms and Terms, Vol. 2,15 September 1995, p. 6. The term job jar is actually used in
this operating instruction.

3-5

♦ The requests are reviewed by an established group (e.g., F/A-18 System
Change Review Board) periodically. Prior to the review, initial estimates
of the magnitude of the effort, which changes can be efficiently grouped,
etc., are accomplished by an engineering staff. The reviews often (but not
always) have user participation or inputs. The group chartered to do the
review examines the requests in the job jar, prioritizes them, and selects
software changes to be implemented. Selection is based primarily on pri-
ority and available funding.

♦ Requests not selected go back to the job jar for future consideration. Typi-
cally, there are more requests than funds.

♦ Problem reports or change requests selected for implementation are as-
signed to a software version release.

Neither the size of the backlog of requirements nor the specifics of particular
requirements in the backlog drives the budget. Rather, planned support takes the
form of a level of effort expressed in terms of either dollars or work force.
Essentially, the agreed upon level of effort establishes a "cut line." On a priori-
tized list of software maintenance requirements, software changes above the line
are implemented and those below it are deferred to the job jar for future funding
opportunities. This behavior would indicate that most software maintenance tasks
are not of a time-critical nature. It is worth noting that level-of-effort funding is
found in commercial software maintenance practices.5 (There are at least anecdo-
tal indications that it is also found in commercial software development.)

SOFTWARE VERSION RELEASE CYCLES

Once the software change is approved for design, the process of changing the
software begins. Typically (except for TPSs), software maintenance occurs in
cycles called block releases. The number of software changes in a block release,
the length of individual cycles, the time between version releases, and the struc-
ture and content of the process vary by category of software (i.e., embedded,
nonembedded, support) and within categories. Since the greatest variation seemed
to be between categories, we characterize the release cycles by category in the text
that follows. The software release cycles seen were primarily the result of the
nature of the systems being supported. The diversity seen in release cycles for
nonembedded and support software was also a function of the diversity in the
systems and needs.

5 Alain Abran and Hong Nguyenkim, "Analysis of Maintenance Work Categories Through
Work Measurement," Proceedings of the 1991 IEEE Conference on Software Maintenance, Sor-
rento, Italy, p. 105.

3-6

Software Maintenance Processes

Mission Critical, Embedded Software

The most formal release process observed was for embedded software. The
embedded system software change process typically follows a structured waterfall
of required activities accomplished on an agreed upon schedule. The waterfall of
activities includes engineering design, coding, testing, rework, and formal accep-
tance. Embedded systems normally have multiple changes in each software re-
lease. The typical duration of the embedded software change process is 1.5 to
3 years. Releases overlap in time, resulting in software releases to the field ap-
proximately every 2 years.

The length of the embedded software cycle and the overlapping cycles are a bal-
ance between the economy of scope for the costly testing necessitated by a highly
integrated weapon system and the user's need to field changes in a timely manner.
A third or more of the change process may involve regression testing to ensure
proper function and to determine and eliminate any detrimental effects on other
subsystems. For example, the F/A-18 followed a 36-month release cycle. Each
cycle had 8 months of development testing and 5 months of formal validation and
verification testing for each release. Thus, grouping of multiple changes in a
software version release is the norm to make efficient use of the testing invest-
ment required for each cycle.

Mission Critical, Nonembedded

A variety of software change processes was observed across mission critical,
nonembedded software maintenance in our field surveys. We observed everything
from highly formalized, regularly scheduled releases to single changes made as
needed. The change process is consistent over time for a given system but varied
greatly across systems both in process duration and release intervals. This was true
even of systems managed at the same organization. The patterns seen appear to be
affected by the number of fielded systems and number of interfaces. The frequency
of releases ranges from no software releases in a year to 15 releases per year.

Mission Support

For ATE TPSs, the only mission support software for which we have interview
data, changes are primarily made in reaction to weapon system hardware changes
or to correct initial defects. Changes are designed, tested, and fielded one by one
rather than being grouped.

BUDGETING

Budgeting for software maintenance is almost universally in O&M funds. An ex-
ception was fielded Army systems still in production, where software maintenance
is funded with production funds. Major software modifications for mission

3-7

changes or substantial performance changes are budgeted in R&D funding and fall
outside our definition of software maintenance.

Only one organization interviewed reported that funding was based on a specific
need set and entailed a contract with the next level of authority to accomplish the
specific efforts for the funds provided. More generally, software maintenance
funding was not budgeted for specific requirements but was established to support
a level of effort expressed in terms of dollars or work force. The level of funding
was typically a negotiation between the software maintenance activity and the
next level of authority.

There are at least three reasons for level-of-effort funding. First, a consistent level
of effort makes it easier to keep a trained and responsive work force. One organi-
zation with whom we spoke made this case. Second, software maintenance re-
quirements, unlike hardware maintenance requirements, are insensitive to
operations tempo. Increased flying hours result in increased hardware mainte-
nance costs due to reliability failures and wear. On the other hand, increased fly-
ing hours do not necessarily drive software costs in that software does not fatigue
or wear. Third, software maintenance requirements are individually of such lim-
ited scope and impact that it is just not worth the overhead that would be required
to manage them discretely. We suggest the second and third reasons without any
real proof, however, since none of the organizations we visited articulated a
reason (other than maintaining a stable work force) for managing to a level of ef-
fort. Level-of-effort funding or staffing has interesting implications for ability to
reduce maintenance costs: improving maintenance productivity will have no effect
on costs if it simply results in reaching deeper into the maintenance job jar.
Reduction in maintenance costs will depend on simultaneous control over pro-
ductivity and demand.

Air Force software maintenance organizations expressed budget process concerns
unique to that service. Generally speaking, the Air Force has more rigid rules re-
garding the use of different types of funding and a more fine grained approach,
with a number of different categories of O&M funds. As expressed by Air Force
software maintenance managers, the funding rules add complexity and time to the
software maintenance process. One software manager reported that 20 percent of
his time was spent on funding issues. Software maintenance managers in other
services did not report similar problems.

EQUIPMENT AND FACILITIES

We found a variety of software maintenance environments during the survey.
These were generally a cumulative legacy of software development programs.
Operating under such as legacy was not a problem when only one weapon system
was supported at a facility—as was typical of embedded software. However, mis-
sion critical, nonembedded and support maintenance organizations that supported

3-8

Software Maintenance Processes

multiple systems expressed concern over the plethora of environments at then-
software maintenance facilities. Such diversity limited their ability to move people
from support of one system to another. Not surprisingly, they expressed a need for
more voice in the selection of the software maintenance environment during sys-
tem development. Some of the organizations with whom we spoke stated that a
common support environment (e.g., language or support processor) would benefit
future systems, but also recognized that changing the current support environment
was impractical.

The practicality of a common support environment is worthy of further discus-
sion. Specifying common target environments is practical and is done today (e.g.,
the MIL-STD-1750 architecture for avionics computers). Under these circum-
stances, the contractor may develop the software on its own development envi-
ronment and use a cross-compiler to produce the software that executes in the
target environment. Specifying a common support environment means specifying
a common development environment, since software maintenance is typically
done on a carbon copy of the development host computer (and its associated
software tools). Specifying a common support environment would mean that only
a handful of computer environments could be made common, as a practical mat-
ter, and many companies would have to redo their development environments to
meet the common standard. This would be costly and anti-competitive, and might
even cause some companies to forgo defense software business.

Upgrades to equipment and facilities are usually funded by weapon system pro-
grams case by case. Support organizations surveyed typically had little if any of
their own funds for upgrades. Only one organization amortized facilities to pro-
duce funds for facility upgrades. However, the organizations in general did not see
equipment and facilities upgrades as a significant concern.

OUTSIDE MONITORING

The interviewees were asked "What outside sources monitor your software sup-
port activity?" We asked this question to identify people or organizations outside
of the immediate software maintenance activity that collected or received infor-
mation and had authority to influence what the activity does. We looked at who
these outside organizations are, what it is they are monitoring, and whether there
were any issues or problems in this area.

Monitoring took several forms. All organizations reported cost and schedule
status on a periodic basis to the next higher level in their organizational hierarchy.
Depending on the service and the source of funding, these are program manage-
ment activities (PMAs), program executive offices, program managers (PMs), or
system managers. Another form of monitoring is through operational test, which
is required for major weapon systems (e.g., F-14, F/A-18) and subsystems (e.g.,
defensive systems). Operational tests are conducted by user representatives. We

3-9

also found cases of peer group monitoring in both the Navy and Air Force, but
peer groups, not surprisingly, did not appear to have veto power over the software
maintenance decisions. Rather, they made recommendations and promulgated best
practices. Beyond the three forms of monitoring described, the organizations we
interviewed were largely self-managed.

From the perspective of those we interviewed, there are no issues or problems
raised with respect to monitoring. In the words of one Navy manager, "We are
responsible for meeting schedules and implementing functions and we're held ac-
countable for that. Why do we need someone else?" However, from the perspec-
tive of headquarters organizations and OSD, there is a need for both quantitative
and qualitative monitoring of these organizations to better characterize software
maintenance. It is the general lack of this type of information that was the impetus
for the current study.

PROCESS IMPROVEMENT

Process improvement (sometimes called business process reengineering) has
taken center stage within DoD and the commercial world as a primary means to
realize productivity and quality gains. For this reason, we asked the organizations
we visited about their software maintenance process improvement efforts.

Alternative Frameworks

For software, there are two frameworks for guiding process improvements, the
Software Engineering Institute (SEI) Capability Maturity Model (CMM) and the
International Organization for Standardization (ISO) 9000 standard. Fundamental
to both is the idea that an organization's software processes must first be assessed
regarding baseline areas of strength and weakness. Improvements are then made
relative to this baseline.

Based on experience of one of the authors (Baker), who has extensive experience
in this area, the most widely followed framework for software process assessment
and improvement within the United States is the CMM. The CMM comprises five
maturity levels (Table 3-1). At each level there is a set of key process areas
(KPAs), which are the focus of process improvement efforts at that level.

3-10

Software Maintenance Processes

Table 3-1. Capability Maturity Model

Level Characteristics Example KPAs

1. Initial • Lack of defined processes for project
management or software engineering

• Performance dependent on individual, rather
than organizational, capability

N/A

2. Repeatable • Basic project management controls in place • Requirements management

• Project planning

3. Defined • Standard process across the organization

• Software engineering process group
facilitating process improvement

• Peer reviews

• Organization process definition

4. Managed • Quantitative quality goals for software
products

• Implementing corrective action based on
process measures

• Software quality management

• Quantitative process manage-
ment

5. Optimizing • Continuous process improvement

• Rigorous causal analysis of defects and
defect prevention

• Defect prevention

• Process change management

The alternative is the ISO 9000-series quality standards, used as a basis for proc-
ess assessment in concert with ISO's Software Process Improvement and Capa-
bility determination (SPICE), which is used as a basis for both software process
assessment and improvement. The ISO framework is predominant in Europe and
other areas outside the United States. ISO 9000 is a quality standard that is not
specific to software but applies to any design and manufacturing process (e.g.,
automobile design and production). ISO has published ISO 9000-3, which con-
tains a set of guidelines for applying ISO 9000 to software.6

Unlike the CMM, ISO 9000 has only one "level"—an organization is either reg-
istered or not registered. To obtain ISO 9000 registration, processes must be
defined, documented, and followed. Specific processes are not mandated; instead,
an organization must "say what they do and do what they say." This contrasts with
the CMM, which is much more prescriptive in defining what has to be in place for
the KPAs at each level. Also unlike the CMM, ISO's SPICE provides a continu-
ous model for improvement rather than containing discrete levels. SPICE also in-
troduces new methodological issues. With the CMM, Level "n" organizations can
be compared to each other because they are evaluated using the same criteria. At
Level 2, for instance, they have all achieved satisfaction of the same KPAs. With
SPICE, however, organizations can pick and choose which KPAs to be evaluated

6 Gianluigi Caldiera, "Impact of ISO 9000 on Software Maintenance," Proceedings of the
IEEE 1993 Conference on Software Maintenance, Montreal, Quebec, Canada, pp. 228-230.

3-11

against. Consequently, to compare two SPICE Level 2 organizations, for example,
one would have to know which KPAs they were evaluated against.

Among the sites we interviewed, the CMM was the framework of choice, with
one exception. That exception was an ATE organization working toward ISO
9000 registration—which they chose specifically because it is not specific to
software but applies to hardware as well. It is worth noting that this organization
described what they were doing as test engineering, not software engineering.

The Grassroots Level

In our site visits, we found a consistent grassroots desire for process improvement.
A major stumbling block, however, is obtaining the resources required. Process
improvement takes a commitment of time, effort, and money. Resources are
needed for training, defining and documenting processes, and formal assessments
by people authorized by the SEI or ISO. In the experience of one of the authors
(Baker) of this report, who is authorized by the SEI to lead assessments, a typical
assessment can cost on the order of $50,000 to $60,000 (including the dollar
equivalents for the time that participants spend in supporting the assessment proc-
ess). We found only one organization that was able to command and keep the nec-
essary resources to implement a long-term program of process improvement: the
F/A-18 program. They reported that the move from a CMM Level 1 to a Level 2
took them 5 years, and then additional years to reach Level 5. While it required a
long-term commitment, they felt that it clearly improved quality and schedule per-
formance. This is not atypical: the SEI and others have published data showing
clear improvements in software quality and productivity with increasing process
maturity.7

We found other sites that had embarked upon programs of process improvement
but expressed the concern that the decision-makers would pull the funding. In the
words of one Air Force software manager: "I'm a firm believer in the CMM and
hope that our leaders do not become impatient and stop funding software agen-
cies' abilities to reach higher CMM levels." In fact, a software manager in another
Air Force organization went on to tell us that in his organization funding for proc-
ess improvement was cut by a two-star flag officer because progress was so slow.
His organization kept working on it underground. Finally, there were organiza-
tions who wanted to improve their processes but did not begin to have the re-
sources. For example, one Navy software manager had a total budget of $12,000
per year for all training for an organization of 55 personnel.

7 J. Herbsleb and D. Goldenson, "A Systematic Survey of CMM Experience and Results,"
International Conference on Software Engineering, 1996.

3-12

Software Maintenance Processes

Higher Organizational Levels

In contrast to the grassroots level, it was not clear how consistent the support for
process improvements is at higher levels of DoD.

In the early 1990s, the Deputy Assistant Secretary of the Air Force for Communi-
cations, Computers, and Support Systems promulgated a formal directive man-
dating that all organic software activities (central design, software design, and
software support) undergo a formal CMM assessment by October 1994. These
assessments were carried out by personnel from the Air Force C4 Agency, Soft-
ware Management Division, Software Process Improvement Branch at Scott Air
Force Base. According to the directive, all organizations were to reach Level 2 by
1996 and Level 3 by 1998.8 The Air Force organizations we interviewed at Colo-
rado Springs and WR-ALC had been assessed and had active process improve-
ment efforts underway. That directive has now been discontinued, and the future
of software process improvement in the Air Force is unclear.

In May 1996, the Army mandated that their software organizations establish a
process improvement program with the goal of reaching CMM Level 3 within
6 years of an initial process assessment.9 In addition, the Army policy mandated
that the process maturity of contractors be considered in source selection for soft-
ware development and maintenance. The Army policy stated that the "SEI
CMM... concepts and methodologies are widely used and internationally accepted
in industry and DoD for defining and appraising the software process capability of
an organization." The Army policy "strongly recommends" the use of the CMM in
evaluating the process maturity of a contractor but allows for alternative frame-
works, specifically ISO's SPICE.

The Navy had no formal policy related to software process improvements. Conse-
quently, improvement efforts depended on the interest of software maintenance
organizations and their ability to acquire the resources required for assessments
and improvement activities. We found a wide range of process improvement ef-
forts—everything from the F/A-18 organization, which had undertaken a long-
term process improvement effort, to several Navy organizations that had no re-
sources to embark on any kind of a process improvement program.

8 Deputy Assistant Secretary of the Air Force for Communications, Computers, and Support
Systems, Action Memorandum, Subject, Policy on Software Maturity Assessment Program,
23 September 1991.

9 Department of the Army, HQDA LTR 25-96-3, "Software Process Improvement Policy,"
24 May 1996.

3-13

TRAINING

Software maintenance, whether organic or contractor provided, requires a skilled
labor force. When it is performed by contractors, the government still must main-
tain the skills to monitor the performance. During the interviews, we asked ques-
tions about

♦ the amount and nature of training,

♦ the percentage of the total software maintenance budget that was spent on
training, and

♦ the prevalence of project-specific training over more generalized training
in software engineering and new technologies.

Most respondents said that project-specific training was paid for by project funds
and that general training was paid for out of overhead funds. In other aspects, the
answers differed by service.

In the Air Force, both the SSSG at Peterson Air Force Base and the WR-ALC had
a combined organic and contractor work force and both described ongoing train-
ing programs for organic personnel. The SSSG had a contract with an outside firm
to provide training (both project specific and general). Managers at WR-ALC re-
ported a fair amount of training activity (CMM, project specific, and general). The
estimates of the percentage of their total budget spent for training ranged from 5
to 10 percent.

Managers at the Navy sites described a Naval Air Systems Command (NAVAIR)
requirement of 40 hours per year per person for training. Taken literally, this
would be about 2 percent of the labor budget (i.e., 40 hours per year divided by
2080 hours). The reported number of actual number of hours spent on general-
ized training ranged from 13 to 40 at the different sites. All sites reported
project-specific training as well. The Naval Undersea Warfare Center reported a
fair amount of variability—from essentially no training in certain divisions to
fairly extensive training in general and project-specific training (representing a
10 percent commitment of budget) in others.

Neither of the two Army sites we visited described an ongoing training program.
The software managed by both sites is almost entirely contractor maintained. They
did report that, in some cases, contractors had funded their own training to im-
prove their CMM rating.

In general, training for the organic or contractor labor force did not appear to be
an issue to those we interviewed, with the exception of training needed for process
improvement. Both Navy and Air Force organizations mentioned training for
process improvement as a problem.

3-14

Software Maintenance Processes

Virtually everyone we talked to pointed to the need for a well trained organic
force to serve as an intelligent customer. A particular point of emphasis was the
training needed by those in acquisition to ensure that the products required for
maintenance are specified during system development. Symptoms of problems
that were cited include the lack of adequate tailoring of DoD-STD-2167A to strike
the right balance between too little and too much documentation as well as the
failure to contractually require delivery of source code.

METRICS

During the interviews, we asked "What information (i.e., metrics, management
indicators, etc.) do you use to monitor software support?" One would expect pro-
grams to track cost and schedule (dollars budgeted versus expended and mile-
stones planned versus completed). We were interested in looking beyond these
basic status indicators to the use of specific quantitative information about the
software maintenance process or the product.

We placed the responses into one of the following three categories:

♦ The organization did not have a metrics program and did not track quanti-
tative information beyond dollars and milestones.

♦ The organization reported metrics to some outside organization or group
(usually as a result of a specific service policy).

♦ The organization used quantitative information to make internal manage-
ment decisions and could readily describe or show us specific examples.

While the second and third categories are not, conceptually, mutually exclusive, in
our sample of software maintenance organizations they appeared to be in practice.

Table 3-2 summarizes the responses. In interpreting this table, it is helpful to
understand the policy related to metrics within each of the services. The Army
required reporting of a total of 12 metrics reflecting such characteristics as re-
quirements volatility, control-flow complexity, and completeness of testing. The
purpose of these metrics is to indicate readiness for operational testing. They are
known as the software test and evaluation panel (STEP) metrics and were man-
dated by the Army on 4 January 1993 for all programs that had not reached mile-
stone U by that date.10 As part of the Army policy, the STEP metrics were
reviewed as part of the operational test readiness review.

10 U.S. Army Director of Information Systems for Command, Control, Communications, and
Computers Memorandum, "Preparation for Implementing Army Software Test and Evaluation
Panel (STEP) Metrics Recommendations," 4 January 1993.

3-15

Table 3-2. Use of Metrics by Sites Interviewed

Organization
Basic status

metrics
Metrics reported

outside organization
Metrics used to
make decisions

Army

Communications
Electronics Command
(CECOM)

•

Aviation and Troop
Command (ATCOM)

•

Air Force

Colorado Springs •

Warner-Robins •

Navy

North Island-ATE •
North Island-
Helicopters

•

F-14 •
F/A-18 •

CECOM not only reported the STEP metrics but has produced a guidebook that
relates the STEP metrics to specific program issues—The Streamlined Integrated
Software Metrics Approach (SISMA) Guidebook: Application of STEP Metrics.11

The STEP metrics were not required for the Apache helicopter because it was be-
yond milestone II when the Army policy was implemented. (We should point out
that we spoke to the government organization responsible for the Apache heli-
copter. The software is maintained by McDonnell-Douglas in Meza, AZ. We did
not speak with the contractor about any metrics they may have had for internal
use.)

Air Force policy mandated the collection of five core metrics (size, effort, sched-
ule, defects, and rework).12 Although this policy has since been rescinded, at the
time of our site visits, it was still in effect and was being followed by the Air
Force organizations we interviewed. In addition, both Air Force organizations
participated in a metrics working group, which was organized to share lessons
learned across the Air Force Materiel Command.

The Navy had no service-wide policy related to software metrics. There was,
however, a NAVAIR metrics working group, which met to share lessons learned

Department of the Army Communications Electronics Command, Research and Engineering
Center, Software Engineering Directorate. The Streamlined Integrated Software Metrics Approach
(SISMA) Guidebook: Application of STEP Metrics. Ft. Monmouth, NJ, July 1993.

12 Deputy Assistant Secretary of the Air Force for Communication, Computers, and Support
Systems, "Software Metrics Policy," 93M-017,16 February 1994.

3-16

Soßware Maintenance Processes

related to metrics. The organization at North Island responsible for maintaining
the Navy helicopter software did not participate in that group. The remaining
Navy sites all used metrics to make specific management decisions. For example,
the F/A-18 program used defects found during testing—categorized by priority—
to decide when the software was ready to be fielded. The ATE organization at
North Island described their use of historical data to predict the number of prob-
lem reports from the field that they will be required to investigate and, of those,
the number that would require corrections (i.e., real problems not user error).
These predictions were used to determine the budgetary requirements for the fol-
lowing year.

In general, and despite the fact that the Navy did not have a formal metrics policy,
it was the Navy offices that were most likely to use measurement as an integral
basis for management. It is not clear if this apparent trend is real or a product of
our sampling.

FUNDING SOURCES FOR PROCESS IMPROVEMENT

AND CAPITAL INVESTMENTS

All organizations had some form of support environment (e.g., computer hard-
ware, networks, system simulators, compilers, and other support software) in
place. Generally, these support environments were inherited from the acquisition
programs under which the software was initially developed. Interviewees identi-
fied three types of funding for capital improvements of these support environ-
ments. They were

♦ other new systems (or major modifications to existing systems) in devel-
opment,

♦ capital investment budgets, and

♦ depreciation on existing capital plant.

Of the sites visited, only CECOM identified a capital investment budget, and only
WR-ALC indicated they depreciated existing capital plant to generate replenish-
ment funds. All other organizations stated they had one route to upgrade: they de-
pended on acquisition organizations to transfer the development environments
associated with the new systems to them.

We did not note any particular concern with a lack of funding to upgrade envi-
ronments. Of more concern—but this was not consistently articulated—was the
heterogeneity of the support environments. Interviewees brought this problem up
in the context of their not having enough influence over the acquisition process.
(See the section on changes desired by maintenance providers for a more complete
discussion of this perceived problem.)

3-17

OPERABLE POLICY AND MILITARY STANDARDS

A primary reason for this study was to understand what is needed in the area of
software policy. Consequently, this is a topic we explored in some detail during
the interviews. Policy can be viewed from two different perspectives. First, it can
be considered as representing required behavior (i.e., as formal, normative policy),
the common view. Another perspective is to consider policy as providing a
framework of consistent expectations regarding how players mutually interact
(i.e., as facilitating cooperative action).13 Given the relative absence of normative
software maintenance policy, both perspectives were potentially important. Both
formal and informal policy are covered in this report; this section focuses primar-
ily on formal policy.

In order to explore policy issues, we asked the following question: "As you per-
ceive it, what is the operable policy affecting software maintenance?" The inter-
viewees, consistent with the previous discussion, were encouraged to answer this
as broadly as possible and were told that "operable policy" referred to both formal
and informal policy. We explained that "formal policy" refers to DoD, service,
and organizational directives that mandate how something is to be done, while
"informal policy" refers to generally understood ways of doing business. This
question also triggered a great deal of discussion about policy-related concerns.

Policies Cited

The most frequently cited documents were several military standards that pre-
scribed software engineering processes. Almost universally, DoD-STD-2167 or
DoD-STD-2167A were mentioned. Several respondents listed MIL-STD-498 as
well.14 Two sites mentioned MIL-STD-1679. These military standards describe
the documentation to be delivered, formal reviews to be held, and tasks to be ad-
dressed in developing or maintaining software. A fairly broad variety of other
documents were also listed. These included DoD (especially 5000 series), service,
and command regulations and instructions.

Most interviewees also cited standards, guidebooks, and operating instructions
that applied locally or at an intermediate service organizational level (such as a
major command in the Army or Air Force). The local- and intermediate-level
policy documents covered a fairly wide range of activities and products, including

13 J. Forester, "Selling you the Brooklyn Bridge and Ideology," Theory in Society, September
1981, p. 746; J. Forester, "The Policy Analysis—Critical Theory Affair: Wildavsky and Habermas
as Bedfellow?" Journal of Public Policy, 1982, No. 2, p. 151; J. Habermas, The Theory of Com-
municative Action, 1984, Vol. 1, p. 308; S. Seidman, ed., Jürgen Habermas on Society and Poli-
tics: a Reader, Boston: Beacon Press, 1989, p. 154.

14 MIL-STD-498 replaced both DoD-STD-2167A (for weapon systems and other mission
critical applications) and DoD-STD-7935A (for automated information systems) and brought these
two areas together under one standard.

3-18

Software Maintenance Processes

documentation, coding, inspections, software quality assurance, process defini-
tion, formal reviews, project planning and tracking, configuration management,
product engineering, and testing. In addition, Air Force sites described a set of di-
rectives from the office of the Deputy Assistant Secretary of the Air Force for
Communications, Computers, and Support Systems covering process assessment
and improvement, software reuse, and metrics. (As noted earlier, these directives
have since been rescinded.)

It was clear that the most important source of policy for software maintenance was
the military standards. The single most important reason was that the military stan-
dards provided a consistent framework of expectations for software developers and
software maintainers—two communities that generally have limited interaction
during software development. It is on the basis of what is described in the military
standards that the software maintenance community "knows" what to expect in the
way of software documentation. The considerable unease we found, in almost all of
the interviews, regarding the demise of the military standards stems from the poten-
tial loss of this consistency of expectation. The F/A-18 program was an exception
because there is almost no wall between developer and maintainer.

Policy-Related Concerns

Echoing the unease previously described, the most widely expressed concerns
were related to former Secretary Perry's 29 June 1994 memorandum discouraging
the use of military standards and calling for greater use of commercial standards
and performance specifications. The objective of that memorandum was to orient
DoD to specifying system functionality and performance rather than the process
by which a system is developed. There were two concerns related to the Perry
memorandum:

♦ There was a perception that there were no commercial process standards
for software. Hence, there was nothing to replace DoD-STD-2167A and
MIL-STD-498.

♦ There was a perception that performance specifications were not sufficient
to maintain software, the design of which is constantly evolving; design
and other documentation is needed.

In attempting to address these concerns, the Air Force and Navy granted blanket
waivers allowing the use of MIL-STD-498, initially until December 1996, then
indefinitely. The Army required waivers to be granted case by case.

The legitimacy of the first concern is questionable because commercial software
process standards do exist. The IEEE and Electronics Industries Association (EIA)
have developed a commercial counterpart to MIL-STD-498 called J-STD-016.

15 Reed Sorensen, "MIL-STD-498, J-STD-016, and the U.S. Commercial Standard," Cross
Talk, June 1996, pp. 13-26.

3-19

Additionally, in August 1995, ISO/International Electrotechnical Commission
12207 Information Technology and Software Life Cycle Processes, was released
as an international standard. An adaptation for the United States is currently being
developed as US 12207. The approximate time sequence of these standards is
shown in Figure 3-3. We conclude that the concern over the demise of the military
standards at least in part is a result of uncertainty over change, although we would
not want to minimize the importance of this uncertainty. DoD-STD-2167A was
very prescriptive in terms of required documentation. MIL-STD-498 effectively
only suggested documentation. J-STD-016 like MIL-STD-498 also only suggests
documentation. The likely scenario under J-STD-016 is that contractors would be
required "to develop the software in accordance with best commercial practices."
The contractors, in their proposals, would then likely propose using J-STD-016,
and cite the documentation that they would produce. This will likely lead to more
inconsistency (and attendant uncertainty) as to what can be expected in the way of
documentation to support maintenance. This scenario mitigates for increased in-
volvement of maintenance activities in the development of project requirements.
Alternatively, the policy recommendation might be to forego organic and/or third
party support of any kind (especially for embedded systems) and plan long-term
OEM support.

Dec 94

Figure 3-3. Standards Evolution

Dec 95 Dec 96 Dec 97 2001
+

MIL-STD-498
• Replaces DoD-STD 2167A, 7935A, 1703

• Guidance on software development process and
documentation

• Waiver to use may be required by service

EIA/IEEE J-STD-016
• Evolved from MIL-STD-498

• Guidance on software development process and documentation
• Can be invoked by services without a waiver

US-12207
• U.S. Commercial Standard
•Builds on J-STD-016

The second concern appears to have solid foundation in fact. The point was made
by several of those interviewed that performance specifications are not sufficient
for software maintenance. In the words of one Navy software manager: "The
problem with doing away with specifications is that, for us, it's not just a matter
of specifying performance but also documentation if we have to maintain it or-
ganically." (Although he did not say so, clearly the same observations would ap-
ply to any software maintainer other than the OEM.)

3-20

Software Maintenance Processes

The military process standards call out a set of data item descriptions that, at least
notionally, provide such documentation. Although several interviewees acknowl-
edged that there was often inadequate tailoring (resulting in documentation over-
kill), at least they knew what documentation would be available and in what
format. Now they can no longer count on this. This is an understandable concern
because software is typically developed by one government organization, then
moved to another for maintenance.

These concerns lead to another widely expressed issue. Software maintenance or-
ganizations perceive themselves as having no real input during development, even
though decisions are made that impact software maintainability. These decisions
include choices of programming languages, type and extent of documentation,
host and target computers, operating systems, software architectures, and buy-or-
build options. We heard several examples of decisions that were made—or not
made—during acquisition that have had major negative consequences for the gov-
ernment during the maintenance phase.

One Navy software manager told of a case in which the government had failed to
specify delivery of source code (the actual human readable programming lan-
guage) and received object code only (the machine readable version). This meant
that the code could never by modified or enhanced by anyone except the original
developer—since they owned and were the only ones with access to the source
code.

The Army provided another example. The Kiowa Warrior helicopter is currently
in production. Some of the onboard software was commercial off-the-shelf
(COTS) and some was developed under contract to the Army. To quote one of the
interviewees: "The PM is doing a study to see who owns what for the Kiowa War-
rior and to determine who should provide the support. It's not clear what is COTS
and owned by the contractors and what is government owned. That was never
specified clearly in the contract." Once production of the Kiowa is completed in
1999, responsibility and dollars were to move from the program manager to the
Army Aviation and Troop Command (ATCOM). In the interim, personnel at
ATCOM could only make suggestions and perceived themselves as having lim-
ited power to initiate actions.

This "throwing the software over the wall" was a situation we heard described in
most of the site visits. In the words of one Army software manager,

Program managers have no incentive to be concerned with the long-term
supportability of their system. The weapon system PMs are measured on
the extent to which the system is fielded on time and within budget. The
PMs need an incentive to be concerned with software supportability ei-
ther because they have life-cycle responsibility or because the people
who are responsible for software maintenance have a vote.

3-21

That manager went on to say

There is nothing in the DAB [Defense Acquisition Board] approvals that
addresses post-deployment software support. The PM is never chal-
lenged on the PDSS concept or costs. A PDSS gate is needed during de-
velopment. The kinds of issues that should be addressed include costs,
who will be responsible, and where software support will be done.

We did see a counterexample to this approach: the Navy's F/A-18 program at
China Lake, CA. Unlike most of the sites we visited, the same government or-
ganization (the Weapon System Support Activity within the Naval Air Warfare
Center) is involved throughout the life cycle of the aircraft. They described a joint
contractor-government team in which the contractor has the lead until production
is complete, then it transfers to the government. The A/B model has been fielded
since 1984; hence, the government has the lead responsibility for this model. The
C/D model is just completing production, and responsibility is about to transfer
from the contractor to the government. The E/F model is still under development
and under the lead of the contractor. The government and contractor follow a com-
mon process for all models so that people can and do move across models as
needed.

The F/A-18 people that we interviewed were not concerned about the Perry
memorandum. They have a tailored version of DoD-STD-2167A included as a
technical memorandum in their contract and do not view themselves as being im-
pacted by the elimination of government standards. This is a key point: there is
nothing in the Perry memorandum to prevent government personnel from speci-
fying exactly what products they want delivered, including documentation, but
there has to be the knowledge and action taken up front to specify these products
if they are to be delivered as part of the system. However, because most govern-
ment people responsible for software maintenance indicate that they have no real
input during development and little confidence that the right knowledge is in place
to specify the needed documentation, their concern about the disappearance of
military standards is understandable. With those standards in place, they at least
knew what documentation they would be getting.

A final concern we heard is that, in some cases, policies are accompanied by in-
sufficient implementation guidance. This concern was heard primarily from the
Air Force, which is not surprising considering that it has been the most ambitious
in its software policies. To quote one of the Air Force people tasked with imple-
menting the policy related to the CMM,

3-22

Software Maintenance Processes

There is current policy covering software reuse, metrics, and process
maturity. The policy says what but not how. There is a real need to help
organizations institutionalize these things and give guidance on how they
work together. The guidance must address three levels: (1) organiza-
tional, (2) project, (3) individual programmer. Currently there is too
much in the way of high-level policy and not enough implementation
guidance. The policy should give organizations ammunition to get the
resources needed for implementation.

It was noted earlier that these policies are no longer officially in effect, but the
concern over lack of implementation guidance in general is valid.

ADVANCES OR INITIATIVES

During the site visits, people were asked to describe any advances or initiatives
within their organization that could help other software maintenance organiza-
tions. Two types of initiatives appear noteworthy in terms of demonstrated cost
savings.

The first involves contract consolidation and competition. This was mentioned by
both the Army's CECOM and the Air Force's SSSG (Colorado Springs). The two
organizations are somewhat similar in that both rely on contractor support and
both are responsible for numerous systems. Over the past few years, the two
organizations have moved from individual contracts with many different contrac-
tors, each maintaining single systems, to fewer contractors, each maintaining
multiple systems. These larger, "omnibus" contracts are competed, typically at
5-year intervals. Two obvious benefits were mentioned in the interviews:
(1) government management overhead has been reduced, with only a few large
contracts instead of many smaller ones, and (2) the competitive bidding for these
larger contracts has kept contractor rates down. For example, the Defense Satellite
Program at Colorado Springs consolidated seven contracts into one, which was
competitively awarded to Loral. Historically, $15 million has been spent per year
maintaining these seven systems. The people we interviewed expected this figure
to drop to $5 million as a result of the contract consolidation.

A second type of successful initiative, cited by the F/A-18 program, entails per-
sistent, long-term process improvements. The F/A-18 program began to improve
in 1991 by getting control of the requirements process. In addition to strict control
over requirements, the F/A-18 program has made more efficient use of labor,
since that is their biggest cost driver. A typical operational flight program for the
F/A-18 that cost $210 million in the early 1990s now costs $140 to $150 million,
a 30 percent savings.

Initiatives mentioned by other sites include the use of electronic documentation
rather than paper and the use of computer-aided software engineering tools to de-
scribe software architectures. No specific cost savings were cited for these.

3-23

LESSONS LEARNED

The people we interviewed were asked to reflect on any lessons learned about
software maintenance. The most commonly given response was the need for ef-
fective communication with users. From the responses given, "effective commu-
nication" covers a variety of areas, including a clear understanding of
requirements on both sides, thorough training of users in the operation of the sys-
tem to avoid problems being reported as software defects that are actually user
errors, and ensuring that users do report real problems. Different means for
achieving effective communication were described, most of which involved face-
to-face interaction with users. In some cases, this was achieved by collocating
with users and, in other cases, by visiting user sites. The Army's ATCOM men-
tioned having Apache helicopter pilots attend technical interchange meetings to
provide input "and they caught a lot of things we would have missed." A variety
of electronic means were provided for communication with users, including hot-
lines, e-mail, faxes, and telephone.

The next most common lesson learned was the need for good documentation. This
was also listed as a frequent problem and was the basis for the often-expressed
concern that the absence of military standards would make this problem worse.

Two sites mentioned the need to document the software maintenance process and
measure how much effort and dollars are being spent on each step. In this way,
one could focus cost savings efforts on the parts of the process that are consuming
a disproportionate amount of effort.

Two sites (both of which maintained embedded software) mentioned the value of
collocating hardware and software engineering.

CHANGES DESIRED

There were no universal themes to the changes that the interviewees would like to
see. However, the need for several changes did emerge often enough to be re-
ported:

♦ The organizations need the ability to invest in software process improve-
ment. This was expressed in the context of the need for training to attain
CMM-level certification.

♦ The CMM process needs to be institutionalized. This would provide
structure and high-level guidance and support for software process im-
provement, especially as it relates to software maintenance.

♦ The maintenance providers need to have a greater voice during develop-
ment decisions affecting software maintenance.

3-24

Software Maintenance Processes

EFFECTIVENESS

Although there is not yet any general sense of what distinguishes effective and
ineffective software maintenance organizations, there are candidate criteria. Cer-
tain organizations we visited had a better sense of what they did, and were better
able to explain it, than others. On reflecting on what seems in some sense to be
consistent patterns of behavior across these potentially more effective organiza-
tions, the following characteristics stand out:

♦ They take commitments seriously and are able to follow through.

♦ They are able to articulate organizational objectives for improvement and
to follow through with actions to reach those objectives.

♦ They participate throughout the system life cycle, not just after deploy-
ment.

♦ They make effective use of contractor support, competing contracts when
appropriate and fostering productive long-term relationships among sole-
source providers when applicable.

♦ They have a critical mass of people and resources along with strong, cen-
tral leadership within the organization.

Of the organizations we visited, the F/A-18 program stands out as having all of
these characteristics. Not only does this program embody all five, it has moved
from near-disaster to a state of health within a 5-year period. According to the
chief engineer of the F-A/18 program,

The massive improvements started in 1991. They were always slipping
schedules. They weren't delivering a good product. They got burned
really bad on one OFP [operational flight program] and realized they no
longer had an endless budget. The incentive was to stay in business.
Costs were spiraling. Now we deliver a better product which is an even
more important incentive.

Because the F/A-18 program has all five characteristics, it can serve as a case
study of best practices.

Commitments Taken Seriously

What is striking about the F/A-18 program is the degree to which they take their
commitments seriously. This is manifested in several ways.

First, there is an emphasis on requirements management. The chief engineer told
us that this was the area they got under control first because requirements "creep"
had been such a problem in the past. In fact, when the chief engineer first joined

3-25

the program, it was unclear what requirements were being addressed in what
block. They have implemented a formal process of defining and documenting re-
quirements and of associating cost and schedule estimates to those requirements.
Any changes are agreed upon in writing since "requirements creep" led to missed
schedules and cost overruns. In the words of their chief engineer, "everything we
do is in writing and we don't do anything different unless it's in writing."

Second, there is an emphasis on cost and schedule estimation, planning, and
tracking. Detailed plans are drawn up and schedules are tracked to the day. A lag
of a single day is reported to the PMA.

Finally, they rely on objective completion criteria. For example, readiness for de-
livery to the field is decided on the basis of defect data from testing normalized by
the amount of testing.

Commitment to Process Improvement

We noted earlier that process improvement requires a commitment of time and
resources. Meaningful improvements are often precipitated by a crisis. This was
clearly the case for the F/A-18 program. Process improvement is an ongoing con-
cern for this program. The block manager and chief engineer meet weekly to
discuss how to improve their processes. The team leaders meet twice a week. As
noted earlier, the F/A-18 program can point to real savings.

Participation Throughout the System Life Cycle

We have already discussed the concern raised in multiple interviews that the peo-
ple who will be maintaining a software system typically have limited involvement
during development. Decisions are made during development that impact mainte-
nance—including the language to the host environment, the target processor, and
the documentation requirements—in short, everything with which the mainte-
nance organization is concerned. Once a system begins or ends production
(depending on the service), a transfer of responsibility occurs and the system en-
ters its maintenance phase. From the perspective of the maintenance personnel,
the system is being "thrown over the wall," and they are on the other side.

The F/A-18 avoids this by involving maintenance personnel during the develop-
ment of any given model. Both contractor and government personnel work on all
models during all phases of the life cycle. What varies is who has the lead: the
contractor has it for models before the end of production; the government has it
once a model has completed production. But both organizations are involved in
pre- and post-production activities to ensure a smooth transition of responsibility.

3-26

Software Maintenance Processes

Effective Use of Contractor Support

As discussed earlier, whether contracts can be competed or not depends on the
complexity of the hardware-software system being maintained. In the embedded
world, we never saw a case of successful competition. We saw one program (the
Navy's F-14) that had tried to compete the maintenance and repeatedly had the
OEM emerge as the single bidder. Given the likelihood of this result in other
cases, the best course is to foster an effective working relationship between the
government and the OEM. This is what the F/A-18 program has done. (In this
case, the OEM is McDonnell-Douglas.) In the words of the chief engineer,

We're not interested in putting McDonnell-Douglas on report. We're
interested in getting the product to the fleet. In order to build up trust, we
don't set up competitive situations. It's important to define the roles and
responsibilities for each player and ensure that people don't violate that
role and engage in turf grabbing.

In the nonembedded environment, competition among contractors is possible and
we saw instances in which competition was effectively used. Both CECOM and
SSSG have produced significant cost savings through their initiatives to consoli-
date contracts into larger chunks and compete them.

Critical Mass Along with Strong, Central Leadership

The organizations that appear to be the most effective all had a critical mass of the
necessary people and resources. The threshold, if there was such, appeared to be
about 1,000 people total (contractors and organic) or a $100 million budget per
year. This is not necessarily the rule, but there does appear to be some critical
mass that is needed in order to pull together the resources needed to invest in
meaningful process improvements.

Also important is strong, centralized leadership within the organization. The more
effective organizations had strong leadership that could articulate priorities and
future direction and had a track record of following through with action. In con-
trast, we saw one organization that had the required people and resources but very
decentralized decision-making. The result was multiple stovepipes within the or-
ganization and a lack of cohesive direction or a set of priorities for the organiza-
tion as a whole.

3-27

Appendix A

Software Maintenance Organizations Visited

The sites visited and the specific systems or types of systems being maintained at
those sites are shown in the Table A-l. Information is also included about the
maintenance provider for each site (contractor or organic). (The managers inter-
viewed were always government personnel, including those cases in which the
bulk of the work was done by contractors.)

Table A-l. Maintenance Information

Service Organization Location Area of responsibility
Contractor or

organically maintained

Air Force Consolidated
Integration Support
Facility

Peterson AFB Satellite control systems Predominantly
contractor

Warner-Robins Air
Logistics Center

Robins AFB Electronic warfare,
F-15, ATE

Mixed contractor and
organic

Scott AFB Conducted process
capability assessments
of Air Force organic
organizations

Not applicable (we
spoke to process
assessment group
only)

Army CECOM Fort Monmouth, NJ Communications Predominantly
contractor

ATCOM St. Louis, MO Apache and Kiowa
Warrior helicopters

Contractor

Navy North Island NADEP San Diego, CA Helicopters/ATE Mixed contractor and
organic

F-14 weapon system
support activity

Point Mugu, CA F-14 Mixed contractor and
organic

F-18 weapon system
support activity

China Lake, CA F/A-18 Mixed contractor and
organic

A-l

Appendix B

Interview Outline

Data on DoD software maintenance practices were primarily obtained through
semistructured interviews of personnel working in software maintenance. This
appendix presents the interview outline.

1. Who are your software users and other customers?

2. For what system do you provide mission critical software support and
what is its function?

3. How long has the system been fielded and when have major software up-
grades been accomplished?

4. Describe the nature of the software support that you provide. (If appropri-
ate, describe in terms of the IEEE categories of corrective [bug fixes],
adaptive [rehosting, etc.], and perfective [incremental improvements]).

What percent of effort is in each category.

How many lines of executable code do you support? Please provide by
system or major subsystem that relates to your support approach. What
computers and software languages are used for these systems/subsystems?

Who performs the software support? (Please provide the number of people
involved by category, organic [military and civilian] or contractor, as ap-
plicable.)

a. What are the typical grade levels/grade structures operative in organic
software maintenance activities, e.g., GS-12, WS-15? What are the oc-
cupational codes of government personnel? What is the annual cost of
support in these categories?

b. What is the basis for selecting contractor or organic support, e.g., or-
ganic or OEM/developer selected as logical choice, competition,
other?

c. What is a typical progression of software maintenance providers after
initial fielding of system, e.g., OEM initial support progressing to or-
ganic support with OEM assistance?

B-l

8. What is the workload measurement basis for determining software main-
tenance requirement, e.g., direct labor hours per year, dollars per year,
tasks per year?

9. How are organic and contract activities workloaded, e.g., work orders, task
orders, job list?

10. How are these activities budgeted, i.e., level of effort, work package/task
order, etc.?

11. Describe your infrastructure, i.e., facilities, tools, capabilities, etc.

a. What types of special equipment and facilities have been established to
support software maintenance requirements, e.g., support environment,
networked work stations, subsystem labs, system labs, operational
hardware?

b. What are the funding sources for capital improvements, e.g., little or
no funding, upgrades associated with new systems, capital investment
budget, amortization generated funds, individual project justification?

c. What automated development environments do you use, e.g., inte-
grated CASE tool sets, such as Cadre's Teamwork or IDE's Software
Through Pictures?

d. What is the value of capital equipment and facilities involved in sup-
porting organic activity?

12. As you perceive it, what is the operable policy affecting software mainte-
nance, e.g., formal policy, MIL-STD-498/2167A, local operating instruc-
tions, metrics, CMM, other?

13. What is the process and communication mechanism for initiating software
changes and how does the user participate?

14. How often do you field block upgrades/version releases? What is the
typical cycle time?

15. What information (metrics, management indicators, etc.) do you use to
monitor software support, e.g., basic status, basic 5 (effort, size, de-
fects/quality, schedule, rework), project focused decision tool metrics?

a. How are they used? By whom?

b. What other sources monitor software maintenance, e.g., self-contained,
peer working group, program manager/agency, user, higher headquar-
ters? What or how do they monitor?

B-2

Interview Outline

16. Is your organization or any of your supporting contractors CMM certified?
What level of certification? Was this by formal or informal assessment?

17. Is CMM useful? In what ways? Do you have a desired level targeted? How
could application of CMM be improved for your situation?

18. Describe your approach and rationale for training.

a. What is the interface between you and the development contractor for
training when new or upgraded systems are delivered?

b. How much of your software maintenance budget is devoted to this type
of training? Is this included in the figures you have already given us for
the magnitude of the maintenance effort?

c. How much of your budget is dedicated to other forms of training not
associated with support of the delivered systems, e.g., training to
maintain general proficiency in software development/maintenance
(accomplished through public seminars, conferences, in-house train-
ing, etc.)? Is this included in the figures you have already given us for
the magnitude of the maintenance effort?

19. What other software support activities do you work with because of the
system interface, the subsystems contained, embedded software, govern-
ment-furnished software contained, etc., e.g., electronic warfare, intelli-
gence community?

20. How is software support addressed in program documents/contracts,
memorandums of agreement, etc.?

a. How do these requirements get communicated to the buying activity?
How effective is the communication process?

b. How do you interface with contractor activities providing maintenance
support, e.g., oversight/insight, technical interface, procurement inter-
face?

c. How responsive are the acquisition organizations to the supportability
concerns?

d. What military standards or other documents are typically used in
contracts to specify supportability requirements?

21. What is the extent of "module" or code reuse?

22. What are the lessons learned for software maintenance?

B-3

23. What changes would you like to see affecting software maintenance?
Could OSD policy changes help the situation?

24. What advances or initiatives are you developing that could help other
software support organizations? How will these innovations be communi-
cated?

25. Are we asking the right questions? What other questions should we be
asking?

26. What other organizations within the command/agency do you know of that
do software maintenance, based on the definition that we have used?

B-4

Appendix C

Abbreviations

ALC

ATCOM

ATE

C3

CASE

CECOM

CISF

CMM

CORM

COTS

DMCS

EIA

GPS OCS

IEEE

ISO

KPA

MIL-STD

NADEP

O&M

OEM

PDSS

PM

PMA

SCF

SDR

SEI

SISMA

air logistics center

Army Aviation and Troop Command

automated test equipment

command, control, communications

computer-aided software engineering

Communications Electronics Command

Consolidated Integration Support Facility

Capability Maturity Model

Commission on Roles and Missions

commercial-off-the-shelf

Depot Maintenance Cost System

Electronics Industries Association

Global Positioning System Operational Control System

Institute of Electrical and Electronics Engineers

International Standards Organization

key process area

military standard

Naval Aviation Depot

operations and maintenance

original equipment manufacturer

post-deployment software support

program manager

program management activity

standard change form

system deficiency report

Software Engineering Institute

Streamlined Integrated Software Metrics Approach

C-l

SLOC source lines of code

SPICE Software Process Improvement and C
Determination

SSSG Space Systems Support Group

STEP Software Test and Evaluation Panel

STR software trouble report

TPS test program set

WR-ALC Warner-Robins Air Logistics Center

C-2

REPORT DOCUMENTATION PAGE
Form Approved
OPM No.0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering, and maintaining the data needed, and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, and to the Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

Nov97

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Maintenance of Department of Defense Mission Critical and Mission Support Software:
A Preliminary Characterization

6. AUTHOR(S)

Elizabeth K. Bailey, Emanuel R. Baker, James A. Forbes, and Donald W. Hutcheson

5. FUNDING NUMBERS

C DASW01-95-C-0019

PE0902198D

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Logistics Management Institute
2000 Corporate Ridge
McLean, VA 22102-7805

8. PERFORMING ORGANIZATION
REPORT NUMBER

LMI-LG518T1

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Mr. Robert T. Mason,
Assistant Deputy Under Secretary of Defense (MPP&R)
Room3B915
The Pentagon, Washington, DC

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

A: Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purposes of this study were to undertake an initial characterization of DoD mission critical software
maintenance; to identify policy issues; and to outline the scope and major features of potential new or revised policy.
We distinguished among three categories of mission-related software. Within a category different organizations may
use similar processes; across categories they generally do not. For six specific types of software maintenance, we
accounted for about 16,000 government and contract personnel equivalents (55% organic and 45% contractor)
maintaining 225M lines of code at an annual cost of about $1.26B. About 40 percent of the effort is corrective and 60
percent is a combination of adaptive and incremental improvement. Pure organic maintenance is the exception for
any type of software; organic maintenance of embedded software is generally found only on older models of weapon
systems; where attempted, competitive contract support proved both more economical and at least as effective as
either sole-source contract support or organic support. Written policy consists of MIL-STDs (e.g., 2167 and 498) and
local operating instructions rather than DoD instructions or Service regulations. There is a lack of consensus over
what software maintenance is also depot maintenance.

14. SUBJECT TERMS

Software maintenance, software support, depot maintenance, mission critical software

15. NUMBER OF PAGES

82

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-18
299-01

