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Abstract 

Complex systems typically possess a hierarchical structure, characterized by continuous- 
variable dynamics at the lowest level and logical decision-making at the highest. Virtu- 
ally all control systems today perform computer-coded checks and issue logical as well as 
continuous-variable control commands. Such are "hybrid" systems. 

Traditionally, the hybrid nature of these systems is suppressed by converting them into 
either purely discrete or continuous entities. Motivated by real-world problems, we introduce 
«hybrid systems" as interacting collections of dynamical systems, evolving on continuous- 
variable state spaces, and subject to continuous controls and discrete phenomena. 

We identify the discrete phenomena that arise in hybrid systems and review previously 
proposed models. We propose a hybrid control model, coupling differential equations and 
automata, that encompasses them. Our unified model is natural for posing and solving 

hybrid analysis and control problems. 
We discuss topological issues that arise in hybrid systems analysis. Then we compare 

the computational capabilities of analog, digital, and hybrid machines by proposing intu- 
itive notions of analog machines simulating digital ones. We show that simple continuous 
systems possess the power of universal computation. Hybrid systems have further simula- 
tion capabilities. For instance, we settle the famous asynchronous arbiter problem in both 
continuous and hybrid settings. Further, we develop analysis tools for limit cycle existence 
perturbation robustness, and stability. We analyze a hybrid control system, typically used 
in aircraft, that logically switches between two conventional controllers. Stability of such 
systems has previously only been tested using extensive simulation; we prove global asymp- 
totic stability for a realistic set of cases. Our tools demonstrate robustness of this stability 
with respect to "continuation" of the. logical function. 

We systematize the notion of a hybrid system governed by a hybrid controller using 
an optimal control framework. We prove theoretical results that lead us to algorithms 
for synthesizing such hybrid controllers. In particular, we prove existence of optimal and 
near optimal controls and derive "generalized quasi-variational inequalities" that the asso- 
ciated value function satisfies. We outline algorithms for solving these inequalities, based 
on a generalized Bellman equation, impulse control algorithms, and linear programming. 
Several illustrative examples are solved. The synthesized optimal hybrid controllers verify 

engineering intuition. 
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Complex systems typically possess a hierarchical structure, characterized by continuous- 
variable dynamics at the lowest level and logical decision-making at the highest. Virtu- 
ally all control systems today perform computer-coded checks and issue logical as well as 
continuous-variable control commands. Such are "hybrid" systems. 
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We identify the discrete phenomena that arise in hybrid systems and review previously 
proposed models. We propose a hybrid control model, coupling differential equations and 
automata, that encompasses them. Our unified model is natural for posing and solving 
hybrid analysis and control problems. 

We discuss topological issues that arise in hybrid systems analysis. Then we compare 
the computational capabilities of analog, digital, and hybrid machines by proposing intu- 
itive notions of analog machines simulating digital ones. We show that simple continuous 
systems possess the power of universal computation. Hybrid systems have further simula- 
tion capabilities. For instance, we settle the famous asynchronous arbiter problem in both 
continuous and hybrid settings. Further, we develop analysis tools for limit cycle existence, 
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in aircraft, that logically switches between two conventional controllers. Stability of such 
systems has previously only been tested using extensive simulation; we prove global asymp- 
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ciated value function satisfies. We outline algorithms for solving these inequalities, based 
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Chapter 1 

Introduction to Hybrid Systems 

In this chapter, we motivate a study of hybrid systems and examine real-world examples 
where they arise. We explain our theoretical paradigm for such a study and formally 
introduce the objects of that study: autonomous and controlled hybrid dynamical systems. 
We outline the thesis and summarize its contributions. 

§1.1   INTRODUCTION 

MOTIVATION 

Motivated by biology and a study of complex systems, intelligent behavior is typically 
associated with a hierarchical structure. Such a hierarchy exhibits an increase in reaction 
time and abstraction with increasing level. In both natural and engineered systems the 
lowest level is usually characterized by continuous-variable dynamics and the highest by 
a logical decision-making mechanism. The interaction of these different levels, with their 
different types of information, leads to a "hybrid" system. 

Many complicated control systems today (e.g., those for flight control, manufacturing 
systems, and transportation) have vast amounts of computer code at their highest level. 
More pervasively, programmable logic controllers are widely used in industrial process con- 
trol. We also see that today's products incorporate logical decision-making into even the 
simplest control loops (e.g., embedded systems). Thus, virtually all control systems today 
issue continuous-variable controls and perform logical checks that determine the mode— 
and hence the control algorithms—the continuous-variable system is operating under at any 
given moment. As such, these "hybrid control" systems offer a challenging set of problems. 

So, "hybrid" systems are certainly pervasive today. But they have been with us at 
least since "the days of the relay. Traditionally, though, the hybrid nature of systems and 
controllers has been suppressed by converting them into either purely discrete or purely 
continuous entities. The reason is that science and engineering's formal modeling, analysis, 
and control "toolboxes" deal largely—and largely successfully—with these "pure" systems. 

Engineers have pushed headlong into the application areas above. And the successes 
in flight control alone attest to the fact that it is possible to build highly complex, highly 
reliable systems. Yet ever more complex systems continue to arise (e.g., flight vehicle 
management and intelligent vehicle/highway systems). And the trend toward embedded 
systems is sure to continue. 

It is time to focus on developing formal modeling, analysis, and control methodologies 

for "hybrid systems." 

11 
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WHAT ARE HYBRID SYSTEMS? 

Generalizing from the examples above, hybrid systems involve both continuous-valued and 
discrete variables. Their evolution is given by equations of motion that generally depend on 
all variables. In turn these equations contain mixtures of logic, discrete-valued or digital 
dynamics, and continuous-variable or analog dynamics. The continuous dynamics of such 
systems may be continuous-time, discrete-time, or mixed (sampled-data), but is generally 
given by differential equations. The discrete-variable dynamics of hybrid systems is generally 
governed by a digital automaton, or input-output transition system with a countable 
number of states. The continuous and discrete dynamics interact at "event" or "trigger" 
times when the continuous state hits certain prescribed sets in the continuous state space. 
See Figure 1-1. 
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Figure 1-1: Hybrid System. 

Hybrid control systems are control systems that involve both continuous and discrete 
dynamics and continuous and discrete controls. The continuous dynamics of such a system 
is usually modeled by a controlled vector field or difference equation. Its hybrid nature is 
expressed by a dependence on some discrete phenomena, corresponding to discrete states, 
dynamics, and controls. The result is a system as in Figure 1-2. 
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Figure 1-2: Hybrid Control System. 

Below, we introduce hybrid systems as interacting collections of dynamical systems, 
each evolving on Continuous state spaces, and subject to continuous and discrete controls, 
and some other discrete phenomena. 
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STUDIES IN HYBRID SYSTEMS 

Research into such hybrid systems may be broken down into four broad categories: 

Modeling: formulating precise models that capture the rich behavior of hybrid sys- 
tems. 

How do we "fill in the boxes" in Figures 1-1 and 1-2? 

Analysis:  developing tools for the simulation, analysis, and verification of hybrid 
systems. 

How do we analyze systems as in Figure 1-1 ? 

• Control: synthesizing hybrid controllers —which issue continuous controls and make 
discrete decisions—that achieve certain prescribed safety and performance goals for 
hybrid systems. 

How do we control a plant as in Figure 1-2 with a controller as in Figure 
1-2? 

• Design: conceiving new schemes and structures that lead to easier modeling, verifi- 
cation, and control of hybrid systems. 

In this thesis, we concentrate on the first three categories, in Parts I, II, and III, respec- 
tively. Dependencies among the material is given in Figure 1-3. 

Next, we give a quick overview of the thesis and its contributions. For more details 
consult §§1.5-1.7, in which we discuss modeling, analysis, and control contributions, in 
more depth. 

Modeling. After examining the real-world examples in this chapter, we identify the dis- 
crete phenomena that generally arise in hybrid systems and give more examples. Then, we 
review in detail six previously posed hybrid systems models, primarily from the systems and 
control literature. We make some comparisons which enable us to later prove simulation 
and modeling results for such systems. 

Throughout, we concentrate on the state-space and consider general hybrid dynamical 
systems as an indexed collection of dynamical systems along with some (deterministic, or 
autonomous) rules for "jumping" among them. These jumps take the form of switching 
dynamical systems and/or resetting their "continuous" states. This jumping generally oc- 
curs whenever the state satisfies certain conditions, given by its membership in a specified 
subset of the state space. 

Controlled hybrid systems add the possibility of making discrete decisions at autonomous 
jump times as well the ability to discontinuously reset state variables at "intervention times" 
when the state satisfies certain conditions, given by its membership in another specified 
subset of the state space. In general, the allowed resettings depend on the state. 

We introduce a hierarchy of such systems and provide a taxonomy of them based on 
their structure and the discrete phenomena they exhibit. We also give explicit instructions 
for computing the orbits and trajectories of general hybrid dynamical systems, including 
sufficient conditions for existence and uniqueness. 

As a final result we introduce a precise model for hybrid control that is shown to en- 
compass all identified phenomena and subsume all reviewed models. This "unified" model 
is suitable for the posing and solution of analysis and control problems in the sequel. 
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STUDIES IN HYBRID SYSTEMS 
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Figure 1-3: Dependency Structure of Thesis Topics. 

Analysis. We first discuss topological issues that arise in hybrid systems analysis. In par- 
ticular, we examine topologies for achieving continuity of maps from a set of measurements 
of continuous dynamics to a finite set of input symbols (AD map of Figure 1-1) and back 
again (DA map). Finding some anomalies in completing this loop, we discuss a different 
view of hybrid systems that can broach them and is more in line with traditional control sys- 
tems. The most widely used fuzzy control system is related to this different view and does 
not possess" these anomalies. Indeed, we show that fuzzy control leads to continuous maps 
(from measurements to controls) and that all such continuous maps may be implemented 

via fuzzy control. 
Then we compare the simulation and computational capabilities of analog, digital, and 

hybrid machines. We accomplish this by proposing several new, but intuitive, notions of 
simulation of a digital machine by an analog one. We show that even simple continuous 
systems, namely smooth ODEs in R3, possess the power of universal computation. And our 
simulation definitions do not require infinite precision or precise timing. Hybrid systems 
have further simulation capabilities. We contrast hybrid and continuous systems by solv- 
ing the well-known arbiter problem in both a differential equations and a hybrid systems 

framework: 
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• You cannot build an arbiter with a set of Lipschitz ODEs with continuous output 
map. 

• There is a simple (2-discrete-state, no continuous-state-jump) hybrid system—whose 
component ODEs are Lipschitz with continuous output map—that meets arbiter spec- 
ifications. Each reviewed model can implement it. 

Then we develop some tools for the analysis of hybrid systems. In particular, we develop 
two tools for stability of such systems: 

• a new one which we call multiple Lyapunov functions for studying Lyapunov stability, 

• iterated function systems (IFS) as a tool for Lagrange stability and positive invariance. 

Other tools, such as an extension of Bendixson's Theorem for detecting limit cycles of certain 
hybrid systems and a robustness lemma for differential equations, are also developed. These 
tools have applications beyond the scope of hybrid systems. 

Finally, our attention focuses on example systems and their analysis. The example 
systems, denoted max systems, arise from a realistic aircraft control problem which logically 
switches between two controllers (one for tracking and one for regulation about a fixed angle 
of attack) in order to achieve both reasonable performance and safety. While stability of 
such systems has previously only been examined using extensive simulation [134], we are 
able to prove global asymptotic stability for a realistic class of cases. Using our robustness 
lemma to compare ODE solutions, we extend the result to a class of "continuations" of max 
systems, which dynamically smooth the logical nonlinearity. 

Control. We systematize the notion of a hybrid system governed by a hybrid controller 
using an optimal control framework. We prove theoretical results that lead us to algorithms 
for synthesizing such hybrid controllers. 

In particular, we define an optimal control problem in our unified hybrid control frame- 
work and derives some theoretical results. The problem, and all assumptions used in obtain- 
ing the remaining results, are expressly stated. Further, the necessity of these assumptions— 
or ones like them—is demonstrated. The main results are as follows: 

• We prove the existence of optimal and near optimal controls. 

• We derive "generalized quasi-variational inequalities" (GQVIs) that the associated 
value function is expected to satisfy. 

Using the GQVIs as a starting point, we concentrate on algorithms for solving hybrid 
control problems. Our unified view led to the concept of examining a "generalized Bellman 
equation." We also draw explicit relations with impulse control of piecewise-deterministic 
processes. Four algorithmic approaches are outlined: 

• an explicit boundary-value algorithm, 

• generalized value iteration and policy iteration, 

• modified impulse control algorithms, 

• linear programming. 

Finally, three illustrative examples are solved in our framework. We consider 
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• a hysteresis system that exhibits autonomous switching and has a continuous control; 

• a satellite station-keeping problem involving controlled switching; 

• a transmission problem with continuous accelerator input and discrete gear-shift po- 
sition. In each case, the optimal controls produced verify engineering intuition. 

Conclusion. §12 concludes with a summary of contributions and a list of some open issues 
and future directions, including some words on Design. 

AN INTRODUCTION ... 

There has been much recent interest in studying hybrid systems [3, 5, 9, 32, 38, 56, 63, 64, 
65, 66, 114, 120]. This chapter is both an introduction to that field and to this thesis. It is 

organized as follows. 
We have already informally defined hybrid systems. In the next section, §1.2, we 

provide real-world examples of hybrid systems. These serve the dual purpose of illustration 
and motivation. Next, we give a short history and examine approaches to the studies of 
hybrid systems. One is the paradigm adopted here: a hybrid system as an interacting 

collection of dynamical systems. 
Thus, in §1.4 we are led to review the notion of a general dynamical system. This sets 

the stage for us to formally define the objects of our study: hybrid dynamical systems. Since 
we are interested in control, we introduce both autonomous and controlled versions. 

We have already outlined our contributions above. In §§1.5-1.7, we consecutively discuss 
modeling, analysis, and control contributions in more depth. 

Throughout the thesis we assume some familiarity with control theory [96, 133], differ- 
ential equations [73], automata theory [20, 76], and topology [62, 75, 113]. Some review of 
notation arid material is done in §2.1 and §A. A majority of the notation is collected m the 
Symbol Index, pp. 193-194. A general Index is also provided for convenience. 

lrrb.e symbol § is used to cross-reference thesis sections. 
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§1.2   REAL-WORLD EXAMPLES OF HYBRID SYSTEMS 

The prototypical hybrid systems axe digital controllers, computers, and subsystems mod- 
eled as finite automata coupled with controllers and plants modeled by partial or ordinary 
differential equations or difference equations. Thus, such systems arise whenever one mixes 
logical decision-making with the generation of continuous control laws. More specifically, 
real-world examples of hybrid systems include 

• systems with relays, switches, and hysteresis [135, 152], 

• computer disk drives [65], 

• transmissions, stepper motors, and other motion controllers [38], 

• constrained robotic systems [9], 

• intelligent vehicle/highway systems (IVHS) [64, 140], 

• modern flexible manufacturing and flight control systems [80, 103]. 

Other important application areas for hybrid systems theory include embedded systems and 
analog/digital circuit co-design and verification. 

We now briefly examine each of the above examples in more detail in turn. 

Systems with Switches and Relays. Physical systems with switches and relays can be 
naturally modeled as hybrid systems. Sometimes, the dynamics may be considered merely 
discontinuous, such as in a blown fuse. In many cases of interest, however, the switching 
mechanism has some hysteresis, yielding a discrete state on which the dynamics depends. 
This situation is depicted by the multi-valued function H shown in Figure 1-4. 

■ A 

Figure 1-4: Hysteresis Function. 

Suppose the function H models the hysteretic behavior of a thermostat. We may model 
a thermostatically controlled room as follows 

x = f(x,H(x-x0)), (1-1) 

where x and xo denote room and desired temperature, respectively. The function / denotes 
dynamics of temperature, which depends on the current temperature and whether the 
furnace is switched On or Off. Note that this system is not just a differential equation whose 
right-hand side is piecewise continuous. There is "memory" in the system, which affects the 
value of the vector field. Indeed, such a system naturally has a finite automaton associated 
with the hysteresis function H, as pictured in Figure 1-5.  Notice that, for example, the 
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discrete state changes from +1 to -1 when the continuous state enters the set {x > A}. 
That is, the event of x attaining a value greater than or equal to A triggers the discrete or 
phase transition of the underlying automaton. 

[ x < A [ x > -A ] 

Figure 1-5: Finite Automaton Associated with Hysteresis Function. 

Disk Drive. A computer disk drive may be modeled as a black box that receives exter- 
nal Read commands and outputs bytes. The action of the disk drive is governed by the 
differential (or difference equations) modeling the dynamic behavior of the disk, spindle, 
disk arm, and motors. The drive receives symbolic inputs of disk sectors and locations; it 
transmits symbolic outputs corresponding to the bytes read. It may also receive symbolic 
commands like Reinitialize and transmit symbolic outputs like ReadError. See Figure 1-6, 
which is constructed from the description in [65]. 
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Figure 1-6: Finite State Machine Associated with Disk Drive Activities. 
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Transmission. An automobile transmission system takes the continuous inputs of acceler- 
ator position and engine RPM and the discrete input of gear position and translates them 
into motion of the vehicle. Suppose one is designing a cruise control system that accelerates 
and decelerates under different profiles. The desired profile is chosen depending on sensor 
readings (e.g., continuous reading of elevation, discrete coding of road condition, etc.). In 
such a case, we are to design a control system with both continuous and discrete states and 
controls. See Example 3.4, p. 54. 

Hopping Robot. Interesting examples of hybrid systems are constrained robotic systems. 
In particular, consider the hopping robots of Marc Raibert of MIT [122]. The dynamics 
of these devices are governed by gravity, as well as the forces generated by passive and 
active (pneumatic) springs. The dynamics change abruptly at certain event times, and fall 
into distinct phases: Flight, Compression, Thrust, and Decompression. See Figure 1-7. In 
fact, Raibert has built controllers for these machines that embed a finite state machine that 
transitions according to these detected phases. For instance, the transition from Flight to 
Compression occurs when touchdown is detected; that from Decompression to Flight upon 
liftoff. Thus, finite automata and differential equations naturally interact in such devices 
and their controllers. 

r\ 

$mmm 
Flight 

Thrust Decompression 

Figure 1-7: The dynamic phases of Raibert's hopping robot. Reproduced from [9]. 
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IVHS. A more complicated example of a hybrid system arises in the control structures 
for so-called intelligent vehicle and highway systems (IVHS) [106, 140]. The basic goal 
of one such system is to increase highway throughput by means of a technique known as 
platooning. A platoon is a group of between, say, one and twenty vehicles traveling closely 
together in a highway lane at high speeds. To ensure safety—and proper formation and 
dissolution of structured platoons from the "free agents" of single vehicles—requires a bit 
of control effort! As in the theory of communication networks, researchers have broken this 
control task into layers [140]. See Figure 1-8. 

Network 

Link Link Link 

Planning Planning Planning 

Regulation Regulation Regulation 

Physical Physical Physical 

Figure 1-8: IVHS Control System Architecture. 

Protocols for basic maneuvers such as Merge, Split, and ChangeLane have been proposed 
in terms of finite state machines. More conventional controllers govern the engines and 
brakes of individual vehicles. Clearly, the system is hybrid. Each vehicle has a state 

determined by: 

• continuous variables, such as velocity, engine RPM, distance to car ahead, 

• the finite state of its protocol-enacting automata. 

The more conventional controllers can be analyzed for good performance using methods 
in control theory. The protocol designs can be verified using tools such as AT&T's COSPAN 
[72]. See Figure 1-9. The challenge with IVHS is to analyze the interconnected system as 
a whole: One has to verify (by proof or simulation) that the vehicles enact the protocol 
correctly and safely, under a range of dynamics conditions, for each of the possible product 
of finite states, for a wide scope of scenarios. 
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Figure 1-9: COSPAN specification of IVHS Merge protocol. Reproduced from [140]. 

Complex Systems. In the case of modern flexible manufacturing or flight control systems, 
there are typically many control subsystems with many control modes for each subsystem. 
The control subsystems that are active and the modes that are enforced at any given 
time is usually determined by a computer program. This computer program is a complex 
dynamical system in its own right and may be modeled as a finite automaton, pushdown 
automaton, Petri net, Turing machine, etc. The "transitions" of the computer program 
are not entirely independent of the physical system; many depend on the logical truth of 
statements concerning the continuous values of the physical variables. Since the logical state 
of the computer program determines which control mode is in use, the evolution of states 
of the physical system is likewise influenced by the values of these logical variables. In real- 
world systems, this interaction is complicated by the fact that there is not a strict dichotomy 
between discrete or logical components and continuous or physical components. The entire 
system is made up of subsystems that we choose to model as discrete, continuous, or hybrid. 
Figure 1-10 depicts a course-grained model of a modern flight vehicle management system 
(FVMS) proposed for the High-Speed Civil Transport [80, 103]. 

Interactions among the subsystems of a FVMS are typically so complicated that the 
only course of action in analyzing such systems is exhaustive simulation. This is currently 
done using programs such as Statemate [69, 70, 71, 81]. See Figure 1-11. The "statechart" 
pictured represents a simplified mode controller. It switches from the nominal mode of 
"pitch controlling climb, throttle controlling speed" to modes of "pitch controlling speed, 
climb clamped high/low" when the throttle exceeds upper and lower limits, respectively. 
There is also a "manual" mode, corresponding to the autopilot's being turned off. 

In §9, we analyze a closely related aircraft control system, termed the mar system, 
which switches between two different controllers in order to achieve a good tradeoff between 
performance and safety constraints. See Figure 9-2, p. 139. 
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Figure 1-10: Flight Vehicle Management System architecture. Reproduced from [80]. 
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Figure 1-11: Statechaxt Description of a Simplified FVMS Mode Controller. 

§1.3   STUDIES IN HYBRID SYSTEMS 

§1.3.1   HISTORY IN BRIEF 

Hybrid systems are certainly pervasive today. But they have been with us at least since 
the days of the relay. The earliest direct reference we know of is the visionary work of Hans 
Witsenhausen from MIT, who formulated a class of hybrid-state, continuous-time dynamic 
systems and examined an optimal control problem [152, §3.3, §10.5]. This was followed by 
others, like Pavlidis, who studied stability of systems with impulses via Lyapunov functions 
[118, §8.8]. Other early work on hybrid systems also came from MIT [83,137,151], where the 
interest was in finite state controllers. Ezzine and Haddad examined stability, controllability, 
and observability of a restricted class of switched linear systems [60, §2.2.2]. Motivated by 
an interest in systems with hysteresis, Tavernini produced a precise hybrid systems model 
and proved results on initial-value problems and their numerical approximations [135, §3.4]. 

In control theory, there has certainly been a lot of related work in the past, includ- 
ing variable structure systems, jump linear systems, systems with impulse effect, impulse 
control, and piecewise deterministic processes. These are quickly reviewed in §2.2. In com- 
puter science, there has been a successive build-up in the large formal verification literature 
[15, 54, 68, 84, 99, 146] toward verification of systems that include both continuous and 
discrete variables [3, 16, 66, 98, 120]. 

Recently, we have witnessed a resurgence in examining quantization effects [55, 89, 123, 
128] and a heightened interest in analog computation [19, 27, 37, 46, 131, §7]. Finally, there 
has also been recent progress in analyzing switched [30, 93, 119, 149, §4.5, §8], hierarchical 
[40, 146], and discretely-controlled continuous-variable systems [41, 90, 112, 110, 111]. 

Hybrid systems have just started to be addressed more wholeheartedly by the control 
community [3, 5, 9, 32, 38, 56, 63, 64, 65, 66,114,120]. Computer scientists have also begun 
to attack this area [3, 66, 120]. 
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§1.3.2   PARADIGMS 

We see four basic paradigms for the study of hybrid systems: aggregation, continuation, 
automatization, and systemization. The first two approaches deal with the different sides- 
analog and digital—of hybrid systems. They attempt to suppress the hybrid nature of the 
system by converting it into a purely discrete or purely continuous one, respectively. The 
last two approaches are both more general and potentially more powerful. Under them, 
a hybrid system is seen directly as an interacting set of automata or dynamical systems; 
they complement the input-output and state-space paradigms, respectively, of both control 
theory and computer science. More specifically, the approaches are as follows. 

1. Aggregation That is, suppress the continuous dynamics so that the hybrid system is 
a finite automaton or discrete-event dynamical system [74]. This is the approach most 
often taken in the literature, e.g., [5]. The drawback of this approach is three-fold. 

• Nondeterminism, i.e., one usually obtains a nondeterministic automaton. This 
was noted by Antsaklis, Stiver, and Lemmon [5]. Also cf. Hsu's cell-to-cell map- 

ping [78]. 

• Nonexistence, i.e., even if clever constructions are used, no finite automaton may 
exist that captures the combined behavior [63]. 

• Partition Problem. It appears a conceptually deep problem to determine when 
there exist partitions of just a continuous system such that its dynamics is cap- 
tured by a meaningful finite automaton. "Meaningful," since we note that every 
system is homomorphic to one with a single equilibrium point [129, §2.1.2]. The 
answer thus depends on the dynamical behavior one is interested in capturing 
and the questions one is asking. Readers interested in pursuing this topic should 
consult work on analog simulation of digital machines [27, 31, 36] as well as the 
more recent work of Prof. Roger Brockett [39]. 

The aggregation program has been fully carried out so far only under strong assump- 
tions on the hybrid system [1, 63]. 

2. Continuation, the complement of aggregation, that is, suppress the discrete dynam- 
ics so that the hybrid system becomes a differential equation. This original idea of 
Prof. Sanjoy Mitter and the author is to convert hybrid models into purely continuous 
ones—modeled by differential equations—using differential equations that simulate fi- 
nite automata. In this familiar, unified realm one could answer questions of stability, 

* controllability, and observability, converting them back to the original model by taking 
a "singular limit." For instance, one would like tools that allow one to conclude the 
following: if a "sufficiently close" continuation of a system is stable, then the original 
system is stable. Such a program is possible in light of the existence of simple con- 
tinuations of finite automata [31, 36] and pushdown automata and Turing machines 
[31]. The drawback of this approach is three-fold. 

• Arbitrariness, i.e., how one accomplishes the continuation is largely arbitrary. 
For example, to interpolate or "simulate" the step-by-step behavior of a finite 
automaton Brockett used his double-bracket equations [38] and the author used 
stable linear equations [22, 31]. In certain cases this freedom is an advantage 
[§7].  However, care must be taken to insure that the dynamics used does not 
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introduce spurious behavior (like unwanted equilibria) or that it itself is not hard 
to analyze or predict. 

• Hiding Complexity. One cannot generally get rid of the underlying discrete 
dynamics, i.e., the complexity is merely hidden in the "right-hand side" of the 
continuation differential equations [27]. 

• Artificiality. It can lead to a possibly unnatural analytical loop of going from 
discrete to continuous and back to discrete. Cf. Chen's recent results in stochastic 
approximation vis-ä-vis Kushner's [42, 43]. 

The combination of these points has been borne out by some experience: it can be 
easier to examine the mixed discrete-continuous system. Cf. our analysis of a switched 
aircraft controller [28, §9] and Megretsky's recent analysis of a relay system [102]. 

3. Automatization or automata approach. Treat the constituent systems as a net- 
work of interacting automata [114, p. 325]. The focus is on the input-output or lan- 
guage behavior [20, 76]. The language view has been largely taken in the computer 
science literature in extending the dynamical behavior of finite automata incremen- 
tally toward full hybrid systems (see [1, 66] for background). 

Automatization was pioneered in full generality by Nerode and Kohn [114]. The 
viewpoint is that systems, whether analog or digital, are automata. As long as there 
is compatibility between output and input alphabets, links between automata can be 
established. However, there is still the notion of "reconciling different time scales" 
[114, p. 325]. For instance, a finite automaton receives symbols in abstract time, 
whereas a differential equation receives inputs in "real time." This reconciliation can 
take place by either of the following: 

• forcing synchronization at regular sampling instants [114, p. 333], 

• synchronizing the digital automaton to advance at event times when its input 
symbols change [114, §3.2.5]. 

For hybrid systems of interest, the latter mechanism appears more useful. It has been 
used in many hybrid systems models, e.g., [5, 38, §§3.7-3.8]. It is reviewed in §3.6. 

The automata approach has been taken most fruitfully by Deshpande [56]. 

4. Systemization or systems approach. Treat the constituent systems as interacting 
dynamical systems [129, §1.4, §2.1.2]. The focus is on the state-space [117]. The 
state-space view has been taken most profitably in the work of Witsenhausen [152] 
and Tavernini [135]. 

Systemization is developed in full generality in this thesis. The viewpoint is that 
systems, whether analog or digital, are dynamical systems. As long as there is com- 
patibility at switching times when the behavior of a system changes in response to 
a logical decision or event occurrence, links between these dynamical systems can be 
established. Again, there is still the notion of reconciling dynamical systems with 
different time scales (i.e., transition semigroups). For instance, a finite automaton ab- 
stractly evolves on the positive integers (or on the free monoid generated by its input 
alphabet), whereas a differential equation evolves on the reals. This reconciliation can 
take place by either or both of the following: 
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• sequentially synchronizing the dynamical systems at event times when their 
states enter prescribed sets, 

• forcing uniform semigroup structure via "timing maps." 

Both approaches are introduced here, but the concentration is on the former. 

Systemization is established in our formulation of hybrid dynamical systems below 
[§1.4,§5]. It is used in examining complexity and simulation capabilities of hybrid 
systems [31, §7], analyzing the stability of hybrid systems [28, 30, §§8-9], and in 
establishing the first comprehensive state-space paradigm for the control of hybrid 
systems [32, §10]. 

Note. A different approach to the control of hybrid systems has been pursued by 
Kohn and Nerode [114, Appendix II], in which the discrete portion of the dynamics is 
itself designed as a realizable implementation (that is a sufficient approximation of) some 
continuous controller. We call this hybridization. 

We are not really interested in such questions in this thesis. Instead, we wish to view 
both plant and controller as hybrid entities. That is, both are of the form of Figure 1-2. We 
are motivated to this view by the examples above, such as FVMS. Recall Figure 1-10. 

§1.4   HYBRID DYNAMICAL SYSTEMS 

DYNAMICAL SYSTEMS 

The notion of dynamical system has a long history as an important conceptual tool in 
science and engineering [6, 67, 73, 96, 117, 133]. It is the foundation of our formulation of 
hybrid dynamical systems. We review it and some refinements useful in modeling, analysis, 
and control below, which is condensed from §2.1.2. 

Briefly, a dynamical system [129] is a system 

s = [x,r,0], 

where X is an arbitrary topological space, the state space of S. The transition semi- 
group T is a topological semigroup with identity. The (extended) transition map 
(j> : X xT ^ X is & continuous function satisfying the identity and semigroup proper- 
ties [§2.1.2], A transition system is a dynamical system as above, except that (f> need not 
be continuous. 

Examples of dynamical systems abound, including autonomous ODEs, autonomous dif- 
ference equations, finite automata, pushdown automata, Turing machines, Petri nets, etc. 
As seen from these examples, both digital and analog systems can be viewed in this formal- 
ism. The utility of this has been noted since the earliest days of control theory [96, 117]. 

We will also denote by dynamical system the system 

E = [X,I\/], 

where X and T are as above, but the transition function / is the generator of the 
extended transition function <j>. 
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EXAMPLES. In the case of T = Z, / : X -► X is given by / = 4>{; 1). In the case of T 
f : X -* TX is given by the vector fields 

/(*) = | *(M) 
t=o 

We may also refine the above concept by introducing dynamical systems with initial and 
final states, input and output, and timing. See §2.1.2. 

NOTE. Timing maps provide the aforementioned mechanism for reconciling different "time 
scales," by giving a uniform meaning to different transition semigroups in a hybrid system. 
This is made clear in §4. 

ON TO HYBRID ... 

Briefly, a hybrid dynamical system is an indexed collection of dynamical systems along 
with some map for "jumping" among them (switching dynamical system and/or resetting 
the state). This jumping occurs whenever the state satisfies certain conditions, given by 
its membership in a specified subset of the state space. Hence, the entire system can be 
thought of as a sequential patching together of dynamical systems with initial and final 
states, the jumps performing a reset to a (generally different) initial state of a (generally 
different) dynamical system whenever a final state is reached. 

More formally, a general hybrid dynamical system (GHDS) is a system 

# = [Q,E,A,G], 

with its constituent parts defined as follows. 

• Q is the set of index states, also referred to as discrete states. 

• £ = {Zq}qeQ is the collection of constituent dynamical systems, where each S, = 
[Xg,r„ <j>q] (or S, = [Xg, r„ /,]) is a dynamical system as above. 

Here, the Xq are the continuous state spaces and <f>q (or /,) are called the contin- 
uous dynamics. 

• A = {Aq}q(zQ, Aq C Xq for each q € Q, is the collection of autonomous jump sets. 

G = {Gq}qeQ, where Gq : Aq ->• \JqeQ Xq x {q}, is the collection of (autonomous) 
jump transition maps. 

These are also said to represent the discrete dynamics of the hybrid dynamical 

system. 

• 

Thus, S = Ug€Q x9 x {<}} is the hybrid state sPace of H- For c°nvenience> we use 

the following shorthand. Sq = Xq x {q} and A = \JqeQ Aq x {q} is the autonomous jump 
set. G : A ->• S is the autonomous jump transition map, constructed componentwise in the 
obvious way. The jump destination sets D = {Dq}g€Q are given by Dq = iri[G(A) n Sq], 
where 7Tj is projection onto the ith coordinate. The switching or transition manifolds, 
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MqtP C Aq are given by M9iP = G-l{p,Dp), i.e., the set of states from which transitions 
from index q to index p can occur. 

A GHDS can be pictured as an automaton as in Figure 1-12. There, each node is a 
constituent dynamical system, with the index the name of the node. Each edge represents 
a possible transition between constituent systems, labeled by the appropriate condition for 
the transition's being "enabled" and the update of the continuous state (cf. [69]). The 
notation '.[condition] denotes that the transition must be taken when enabled. 

Figure 1-12: Automaton Associated with GHDS. 

Roughly,2 the dynamics of the GHDS H are as follows. The system is assumed to start 
in some hybrid state in S\A, say s0 = (a*.«))- lt evolves according to <t>qo{x0, •) until the 
state enters—if ever—Aqo at the point s{" = (xj", q0). At this time it is instantly transferred 
according to transition map to Gqo(xD = (xuqi) = su from which the process continues. 

See Figure 1-13. 

NOTES. 

1. The case |Q| = landA = 0isa single dynamical system. 

2. The case \Q\ finite, each Xq a subset of Rn, and each T, = R largely corresponds to 
the usual notion of a hybrid system, viz. a coupling of finite automata and differential 
equations [31, 32, 66]. The two are coupled at "event times" when the continuous 
state hits certain boundaries, prescribed by the sets Aq. 

3. Nondeterminism may be added in the obvious way, i.e., by allowing the possibility 
that "enabled transitions" need not be taken and letting A be set-valued. Also, see 
the note below. 

4. Other refinements can be made. See §4.1. 

In this thesis, a hybrid dynamical system, or simply hybrid system, is defined as 

follows: 

Definition 1.1 A hybrid system is a general hybrid dynamical system with Q countable, 
and with r, = R {or R+) and Xq C K*», dq € R+, for all qeQ. In the notation above, it 

2We make more precise statements in §4.3. 
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Figure 1-13: Example dynamics of general hybrid dynamical system. 

may be written as 
[Q,[{*,WR.{.M«eQ]>A,G] 

where fq is a vector field on Xq C W,q. 

...AND TO HYBRID CONTROL 

A controlled general hybrid dynamical system (GCHDS) is a system 

#C = [Q,£,A,G,V,C,F], 

with its constituent parts defined as follows. 

• Q, A, and S are defined as above. 

• E = {Sg}96Q is the collection of controlled dynamical systems, where each T,q = 
[Xg,rq,fq,Uq] (or £„ = [Xg,rg,<l>q,Ug]) is a controlled dynamical system as above 
with -(extended) transition map parameterized by control set Uq. 

• G = {Gq}geQ, where Gq : Aq x Vq -> S is the autonomous jump transition 
map, parameterized by the transition control set Vg, a subset of the collection 
V = {Vq}q€Q. 

• C = {Cq}qeQ, Cg C Xq, is the collection of controlled jump sets. 

• p _ {Fg}q&Q, where Fg : Cg -> 2s, is the collection of controlled jump destination 
maps. 

As shorthand, G, C, F may be defined as above. Likewise, jump destination sets Da and 
Dc may be defined. In this case, D = Da U Dc. 
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Again, a GCHDS has an automaton representation. See Figure 1-14 There, the notation 
?[condition] denotes an enabled transition that may be taken on command; ":€" means 
reassignment to some value in the given set. 

?[ x € Cp ] I x :€ Fp(x) 

?[ i e C„ ] / x :£ Fq(x) 

Figure 1-14: Automaton Associated with GCHDS. 

Roughly, the dynamics of Hc are as follows. The system is assumed to start in some 
hybrid state in S\A, say s0 = (*o,?o). It evolves according to 0w(-,-,u) until the state 
enters—if ever—either Aqo or Cqo at the point s^ = (xJ">9o)- If it enters Aqo, then it must 
be transferred according to transition map Ggo(zJ~, v) for some chosen v € Vqo. If it enters 
C90, then we may choose to jump and, if so, we may choose the destination to be any 
point in Fqo(x^). In either case, we arrive at a point ax = (xi.gi) from which the process 
continues. See Figure 1-15. 

NOTE. Nondeterminism in transitions may be taken care of by partitioning ?[condition] 
into those which are controlled and uncontrolled (cf. [74]). Disturbances (and other 
nondeterminism) may be modeled by partitioning U, V, and C into portions that are under 
the influence of the controller or nature respectively. Systems with state-output, edge- 
output, and autonomous and controlled jump delay maps (A0 and Ac, respectively) may 
be added as above. See §4.1 for more details. 

Our "unified" model for hybrid control is detailed in §5. Briefly, it is a controlled hybrid 

system, with the form 

[Z+, [{K*}£o,Rf ,{/*}£o,u], A,V,G,C,F] , 

where each d{ G Z+. In §5 we show that this model encompasses the discrete phenomena 
associated with hybrid systems [§3.2] as well as subsumes previously posed hybrid systems 
models [5, 9, 38, 114, 135, 152, §§3.3-3.8]. 
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Figure 1-15: Example dynamics of general controlled hybrid dynamical system. 

§1.5   MODELING CONTRIBUTIONS 

REVIEW 

Evidently, a hybrid system has continuous dynamics modeled by a differential equation 

x(t) = £(*),        t > 0 

that depends on some discrete phenomena. Here, x(i) is the continuous component of the 
state taking values in some subset of a Euclidean space. £(t) is a controlled vector field that 
generally depends on x(t), the continuous component u(t) of the control policy, and the 
aforementioned discrete phenomena. 

An examination of real-world examples and a review of other hybrid systems models 
has led us to an identification of these phenomena. The discrete phenomena generally 
considered are as follows. 

1. Autonomous switching: Here the vector field £(•) changes discontinuously when 
the state ar(-) hits certain "boundaries." 

2. Autonomous jumps: Here the continuous state x(-) jumps discontinuously on hit- 
ting prescribed regions of the state space. 

3. Controlled switching: Here the vector field f (•) changes abruptly in response to a 
control command. 
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4. Controlled jumps: Here the continuous state x(-) changes discontinuously in re- 

sponse to a control command. 

We also review in some detail the hybrid systems models of Witsenhausen (WHS), 
Tavernini (TDA), Back-Guckenheimer-Meyers (BGM), Nerode-Kohn (NKSD), Antsaklis- 
Stiver-Lemmon (ASL), and Brockett (BB/BD/BDV). We summarize this review as follows. 

The WHS, TDA, NKSD, and ASL models combine ordinary differential equations with 
finite (or digital) automata by allowing the ODEs to depend on the automaton's state or 
output, while the automaton's state or input depends on a partitioning of the continuous 
state space. The discrete state/input change on crossing these partition boundaries. Each 
model places different restrictions on the allowed partitioning. All these models implement 

autonomous switching. 
The BGM model is similar, except that it allows one to make autonomous jumps in the 

continuous state, set parameters, or start timers upon hitting the partition boundaries. It 
uses autonomous switching and autonomous jumps. 

Brockett combines differential equations with a single rate equation, or "clock," which 
progresses monotonically. The differential equations depend on the integer value of this 
clock variable. He also combines finite automata that update on the times when the clock 
passes through integer values. His BD model is a special form of autonomous jumps. 

Comparing autonomous versions of each model, we see that BGM contains each of the 
others, while TDA is contained in each of the other autonomous-switching models. However, 
BD and the autonomous-switching models are not strictly comparable. 

BGM and TDA are only autonomous. From the control perspective, NKSD and ASL 
models focus on the "control automaton," coding the action of the controller in the mappings 
from continuous states to input symbols, through automaton to output symbols, and back 

to controls. See Figure 1-1. 
Witsenhausen adds a control to the continuous component of the system dynamics. 

Brockett's BD/BDV models allow the possibility of both continuous and discrete controls to 
be exercised as input to the continuous and symbolic dynamics of the systems, respectively. 
These last are closer to our own study of hybrid control below. See Figure 1-2. 

CLASSIFICATION 

In this chapter we classify hybrid systems according to their structure and the phenomena 
that they exhibit. The hierarchy of classes we explore are as follows (for both autonomous 
and controlled systems). First, there are general hybrid dynamical systems (GHDS). These 
are then refined to the concept of hybrid dynamical system, or simply hybrid system, studied 
in this thesis. Then there are two restrictions of hybrid systems, in which the discrete 
dynamics are suppressed, called switched systems and continuous switched systems, which 
are analyzed in §§8-9. A further taxonomy of such systems in terms of their structure and 
the discrete phenomena which they admit is presented. 

Along the way we also discuss the dynamics of general hybrid dynamical systems. In 
particular, we give sufficient conditions on GHDS which aUow us to construct its positive 
orbit, i.e., the set of points reachable in forward "time flow." 

Let I = S\A. When a GHDS is time-uniform (all semigroups identical) with time- 
like semigroup I\ it induces a r+-transition system [J,r+,*]. In this case, we may define 
its (forward) trajectory as a function from T+ into I. We give sufficient conditions for 
existence and uniqueness of these trajectories. 
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Finally, we also introduce switched systems, for example, 

x(t) = fi(x(t)),        ieQ~{l,...,N}, 

where x{t) G Rn and Q is called the switching set. We add the following switching rules. 

• Each fi is globally Lipschitz continuous. 

• The i's are picked in such a way that there are finite switches in finite time. 

We also consider discrete-time versions. Abstracting away of the finite dynamics in studying 
switched systems above can be motivated by "verification by successive approximation" [2]. 

A continuous switched system is one whose vector fields agree at switching times. 

UNIFIED MODEL 

Finally, we come to our unified model for hybrid control. We consider a controlled hybrid 
systems model, i.e., 

[Z+, [{R*}~0,l^,{/i}£o^] ,A,G,V,C,D] . 

To ease presentation, but without real loss of generality, we consider the continuous and 
discrete control sets to be uniform, and that the controlled jump destinations are given by 
the sets D{ G D instead of by the set-valued maps F{. 

We also add delay operators on autonomous and controlled jumps: 

• autonomous jump delay AQ : A x V -¥ !+. 

• controlled jump delay Ac : C x Dc ->• R+. 

The dynamics of the control system is much the same as for GCHDS above, except that 
the delay maps give rise to a sequence of pre-jump times {TJ} and another sequence of 
post-jump times {Ti} satisfying 0 = T0 < n < Ti < r2 < T2 < ■ • ■ < oo. On each 
interval [TJ-I,TJ) with non-empty interior, x(-) evolves according to x(t) = fi(x(t),u(t)) in 
some Xi, i G Z+. At the next pre-jump time (say, T,) it jumps to some Dk G Xk according 
to one of the following two possibilities: 

1. X(TJ) € Ai, in which case it must jump to x(Tj) = Gi{x(Tj),Vj) € D at time Tj = 
Tj + Aaii(x(Tj),Vj), Vj e V being a control input. We call this phenomenon an 
autonomous jump. 

2. X(TJ) e Ci and the controller chooses to—it does not have to—move the trajectory 
discontinuously to x(Tj) G D at time Tj = TJ + AC)i(x(rJ),a:(rj)). We call this a 
controlled (or impulsive) jump. 

See Figure 1-15. 
Thus, the admissible control actions available are 

• the continous controls u(-), exercised in each constituent regime, 

• the discrete controls {vi} exercised at the pre-jump times of autonomous jumps 
(which occur on hitting the set A), 
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• the pre-jump or intervention times {&} and associated destinations {x(Ct')} 
of 

the controlled jumps. 

We then explicitly show that the above model captures all identified discrete phenomena 
arising in hybrid systems and subsumes all reviewed and classified hybrid systems models. 
The resulting model is useful for posing and solving hybrid control problems in the sequel. 

§1.6  ANALYSIS CONTRIBUTIONS 

TOPOLOGICAL RESULTS 

In traditional feedback control systems—continuous-time, discrete-time, sampled-data—the 
maps from output measurements to control inputs are continuous (in the usual metric-based 
topologies). Continuity of state evolution and controls with respect to the states also plays 
a role. Yet, in general, hybrid systems are not continuous in the initial condition: 

Example 1.2 Consider the following hybrid system on X\ = X2 = M2. The continuous 
dynamics is given by /i = (1, 0)T and f2 = (0, 1)T. The discrete dynamics is given by 
Ai = [0, l]2 and G(x, 1) = (s,2). Now consider the initial conditions x(0) = (-e, -e)T and 

y(0) = (-e,0)T. Note that x(l) = (1 - e, -e) but j/(l) = (0,1 - e). Clearly, no matter how 
small e, hence ||x(0) - y(0)||oo, *« chosen, \\x{l) - y(l)||oo = 1- 

We examine systems as in Figure 1-1, where the set of symbols, automaton states, and 
outputs, are finite sets and the plant and controls belong to a continuum. However, note 
that the only continuous maps from a connected set to a disconnected one are the constant 
ones. Hence, the usual discrete topologies on a set of symbols do not lead to nontrivial 

continuous AD maps. 
We then examine topologies that lead to continuity of each member of topologies for 

which the AD maps from measurements to symbols are continuous. In dynamics terms, we 
examine topologies that lead to continuity of each member of the family of maps G ° 4>q. 
One topology in particular, proposed by Nerode and Kohn [114], is studied in depth. 

We then look at what happens if we attempt to "complete the loop" in Figure 1-1, by 
also considering the DA maps. We exhibit a topology making the whole loop continuous. 
But, instead of dwelling on this, we examine a different view of hybrid systems as a set of 
continuous controllers, with switching among them governed by the discrete state. Also, 
we examine fuzzy control systems consisting of a finite set of so-called fuzzy rules. On the 
surface, they are hybrid. Yet, we show that fuzzy control leads to continuous maps (from 
measurements to controls) and that all such continuous maps may be implemented via fuzzy 

control. 

COMPLEXITY RESULTS 

Computational equivalence (or simulation of computational capabilities) may be shown in 

the following two ways: 

1. Comparing accepted languages [76], 

2. Simulation of step-by-step behavior [20]. 

The above are clear when comparing two digital automata. The situation is slightly harder 
in comparing digital and analog systems. 
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In order to examine the computational capabilities of hybrid and continuous systems 
we first must introduce notions of a continuous-time system simulating a discrete-time one. 

[31, §7.2]: 

Definition 1.3 A continuous-time transition system [X,R+,/] simulates via section or 
S-simulates a discrete-time transition system [Y, Z+, F] if there exist a continuous sur- 
jective partial function ip : X -¥ Y and t0 € R+ such that for all x G V_100 and all 

k€Z+ 
Wf(x,kt0)) = F(iP(x),k). 

Definition 1.4 A continuous-time transition system [X,R+,f] simulates via intervals 
or I-simulates a discrete-time transition system [Y, Z+, F] if there exist a continuous sur- 
jective partial function ip : X -» Y and e > 0 such that V = ^~1{Y) is open and 
for all x  e V the set T = {t € R+   | f(x,t)  6 V} is a union of intervals (Tfc,r£), 
0 = T0 < T'Q < Ti < T[ < ■ ■ ;  \r'k - Tk\ > 6,  VJtth 

*P{f(x,tk)) = F{iP(x),k), 

for all tk € (Tk,T'k). 

When the continuous-time transition system is a HDS, the maps i/> above can be viewed as 
an edge-output and state-output map, respectively. In this case, S-simulation can be viewed 
as equivalent behavior at equally-spaced edges and I-simulation as equivalent behavior in 
designated nodes. S- and I-simulation are distinct notions. Si-simulation denotes the case 
when both hold. 

In §7 we show the following: 

• Every dynamical system [Rn,Z,F] can be S-simulated by an autonomous-switching, 
two-discrete-state hybrid system on R2n. 

• Every dynamical system [En, Z+, F] can be S-simulated by an autonomous-jump, two- 
discrete-state hybrid system on Rn. 

• Every dynamical system [Y,Z,F], Y C Zn, can be Si-simulated by a (continuous) 
dynamical system of the form [R2n+1, R+, /]. Furthermore, if Y is bounded / can be 
taken Lipschitz continuous. 

As corollaries to the last we result, we have (via demonstrated isomorphisms with dynamical 
systems on Z) 

• Every Turing machine, pushdown automata, and finite automaton can be Si-simulated 
by a (continuous) dynamical system of the form [R3, R+, /]. 

• Using Si-simulation, there is a system of continuous ODEs in R3 with the power of 
universal computation. 

Noting that even ordinary dynamical systems are so computationally powerful, we use 
the the famous asynchronous arbiter problem [26, 100, 144] to distinguish between dynam- 

ical and hybrid systems. 

NOTE. An arbiter is a device that can be used to decide the winner of two-person races 
(within some tolerances). It has two input buttons, £i and B2, and two output lines, 'Wx 

and W2, that can each be either 0 or 1. For its "technical specifications" see §7.4.1. 
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In particular, we settle the problem in an ODE framework by showing that no system 
of the form 

\BT,R+,B,f,Wth], 

with / Lipschitz and h continuous, can implement an arbiter [26, 31]. On the other hand, 
we exhibit a hybrid system of the form 

[{l,2},[^IR+,£,{/i,/2},W;/i],A,G], 

with each fq Lipschitz, h continuous, and G autonomous-switching, that satisfies the arbiter 
specifications. 

ANALYSIS TOOLS 

In the first part of §8, we develop general tools for analyzing continuous switching sys- 
tems. For instance, we prove an extension of Bendixson's Theorem to the case of Lipschitz 
continuous vector fields. This gives us a tool for analyzing the existence of limit cycles of 
continuous switching systems. We also prove a lemma dealing with the continuity of differ- 
ential equations with respect to perturbations that preserve a linear part. Colloquially, this 
lemma demonstrates the robustness of ODEs with a linear part. For purpose of discussion, 
we call it the Linear Robustness Lemma. This lemma is useful in easily deriving some of 
the common robustness results of nonlinear ODE theory (as given in, for instance,^ [11]). 
This lemma also becomes useful in studying singular perturbations if the fast dynamics are 
such that they maintain the corresponding algebraic equation to within a small deviation. 
We add some simple propositions that allow us to do this type of analysis in §9. 

In the second part of §8, we examine stability of we introduce "multiple Lyapunov 
functions" as a tool for analyzing Lyapunov stability of switched systems. The idea here is to 
impose conditions on switching that guarantee stability when we have Lyapunov functions 
for each system ft individually. Iterative function systems are presented as a tool for 
proving Lagrange stability and positive invariance. We also address the case where the 
finite switching set is replaced by an arbitrary compact set. 

ANALYZING EXAMPLES 

We have analyzed example systems arising from a realistic aircraft controller problem which 
logically switches between two controllers (one for tracking and one for regulation about a 
fixed angle of attack) in order to achieve reasonable performance and safety. While stability 
of such hybrid systems has previously only been examined using simulation [134], we were 
able to prove global asymptotic stability for a meaningful class of cases [28]. Using our 
robustness lemma to compare ODE solutions, we extend the result to a class of continuations 
of these systems, in which dynamically smooths the logical nonlinearity. 

The conclusion in this case is that the continuation method worked in reverse, i.e., it was 
easier to prove stability of the original, hybrid system directly. Furthermore, we concluded 
stability of the continuation via that of the original system. In effect, we showed robustness 
of the max system to the considered class of dynamic continuations. 
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§1.7   CONTROL CONTRIBUTIONS 

THEORETICAL RESULTS 

We consider the following optimal control problem on our unified hybrid systems model. 
Let a > 0 be a discount factor. We add to our model the following known maps: 

• Running cost k : S x U -4 1+. 

• Autonomous jump cost or transition cost ca : A x V -*■ M+. 

• Controlled jump cost or impulse cost cc : C x Dc -*■ M+. 

The total discounted cost is defined as 

/ e-atk(x(t),u(t)) dt + $;c-fflff-Ca(x(ffi),t;i) +2e-^cc(a:(Ci),a:(Ci)) (1-2) 
JT i i 

where T = RAdfeTi)), fo} (respectively {Q}) are the successive pre-jump times for 
autonomous (respectively impulsive) jumps and Cj is the post-jump time for the jth impul- 
sive jump. The decision or control variables over which Equation (1.2) is to be minimized 
are the admissible controls of our unified model. 

Under some assumptions (the necessity of which are shown via examples) we have the 

following results [32]: 

• A finite optimal cost exists for any initial condition.   Furthermore, there are only 
finitely many autonomous jumps in finite time. 

• Using the relaxed control framework, an optimal trajectory exists for any initial con- 
dition. 

• For every e > 0 an e-optimal control policy exists wherein u{-) is precise, i.e., a Dirac 

measure. 

• The value function, V, associated with the optimal control problem is continuous on 
S\{dAUdC) and satisfies the following generalized quasi-variational inequalities 
(GQVIs). 

1. x € S\A: 

2. OnC: 

3. On A: 

4. OnC:' 

F(x, u) = (VxV(x), fi(x, u)> - aV{x) + k{x, u), 

min F(x,u) < 0. 
u 

V(x) < min {cc(x, z) + e-
a^x'z)V(z)} 

V(x) < min {ca(x,v) + e-
aA^V(G(x,v))} 

(l)-(2) = 0 
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ALGORITHMS AND EXAMPLES 

In this section we outline four approaches to solving the generalized quasi-variational in- 
equalities (GQVIs) associated with optimal hybrid control problems. Our algorithmic basis 
for solving these GQVIs is the Bellman Equation: 

V*(x) = min {g(x,a) + V*(x'(x, a))} , 
pen 

where II is a generalized set of actions. The three classes of actions available in our hybrid 
systems framework at each x are 

• Continuous Controls: u€U. 

• Controlled Jumps: choosing source and destination (if x G C). 

• Autonomous Jumps: possibly modulated by discrete controls v € V (if x € A). 

Prom this viewpoint, generalized policy and value iteration become solution tools. 
The key to efficient algorithms for solving optimal control problems for hybrid sys- 

tems lies in noticing their strong connection to the models of impulse control [§2.2.4] and 
piecewise-deterministic processes [§2.2.5]. Making this explicit, we develop algorithms sim- 
ilar to those for impulse control and one based on linear programming. 

Three illustrative examples are solved. They are as follows. First, we consider a hys- 
teresis system that exhibits autonomous switching and has a continuous control. Then we 
discuss a satellite station-keeping problem. The on-off nature of the satellite's reaction jets 
creates a system involving controlled switching. We end with a transmission problem. The 
goal is to find the hybrid strategy of continuous accelerator input and discrete gear-shift 
position to achieve maximum acceleration. In each case, the optimal controls produced 

verify engineering intuition. 



Chapter 2 

Preliminaries and Related Work 

In this chapter, we cover preliminaries and review some literature related to hybrid systems. 

§2.1   PRELIMINARIES 

Throughout the thesis we assume familiarity with the notation and concepts of analysis 
[126], topology [62, 75, 113, §A], ordinary differential equations [6, 73], automata theory 
[20, 76], control theory [58, 85, 96, 133], and nonlinear systems analysis [132, 142]. 

Next, we collect some notation used throughout. Then we cover the necessary prelim- 
inary information from dynamical systems, ordinary differential equations, and automata 
theory. Some review of topology is done in §A. A majority of the notation is collected 
in the Symbol Index, pp. 193-194. Finally, a general Index is provided for convenience in 
locating definitions. 

§2.1.1   NOTATION 

New concepts being defined are displayed in bold face. The end of a proof is denoted with 
the symbol Q Sectional cross-referencing within the thesis is done using the symbol §. 

A system is the abstract entity of our study that we shall not formally define, just as 
"points" are not defined in analysis. Difference and differential equations are examples of 
frequently used systems. A map is a function; we use the two interchangeably. 

We make use of common abbreviations like ODEs (ordinary differential equations), FA 
(finite automata/on), DEDS (discrete event dynamical systems; see [74]), etc. 

The symbols R, R+, Z, and Z+ denote the reals, nonnegative reals, integers, and non- 
negative integers, respectively. For x € K, |xj denotes the greatest integer less than or equal 
to x, and, in an abuse of common notation, \x~\ denotes the least integer greater than x. \A\, 
A a set, denotes its cardinality; A ~ B, when A and B are sets, is read A is isomorphic 
to B and means herein that \A\ = |B|; N denotes the set {1,2,..., N}; = means "defined 
equal to," whereas := denotes reassignment of meaning. 

Below we deal with continuous time systems, such as ODEs, that are affected by events 
at discrete instants, such as jumps in state. We use [t] to denote the time less than or equal 
to t at which the last "jump" or "event" occurred. If the event is unclear, we subscript the 
variable, so that [t]p denotes the time at which the variable p last jumped. Throughout, 
v[p\ and x[t] are shorthand for v{[p\) and x([i\), respectively (cf. [38]). Finally, we use 
Sontag's discrete-time shift operator [133] to denote the discrete phenomena updating a 
hybrid systems' states. That is, q+ is the successor of q. Likewise, q~ is its predecessor. 

Other notation is common [113, 126].  For example, X\U represents the complement 

39 
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of U in X; V represents the closure of U, U° its interior, dU its boundaxy; /(t+),/(0 
denote the right-hand and left-hand limits of the function / at t, respectively; a function is 
right-continuous if /(*+) = f(t) for all t; C{X,Y) denotes the space of continuous functions 
with domain X and range Y; vT denotes the transpose of vector v; unless specified ||z|| 
denotes an arbitrary norm of vector x, \\x\\2 its Euclidean norm; the infinity norm of x € Mn, 

denoted ||z||oo, is max"=1 \xi\. 

§2.1.2   DYNAMICAL SYSTEMS 

First, we review some standard definitions from dynamical systems [67,129]. A dynamical 
system is a system S = [X,T,<(>], where 

• X is an arbitrary topological space, the state space of S. 

• The transition semigroup T is a topological semigroup.1 

• The (extended) transition map <f>: X x T -»• X satisfies the following. 

1. Identity. For all x € X, <j>{x,0) = x. 

2. Semigroup. For all x € X and arbitrary gx, 52 in I\ 

<j)((t>(x,gi),g2) = <t>{x,gi+g2)- 

3. Continuity. <j> is continuous in both arguments simultaneously, i.e., for any 
neighborhood W of the point 0(ar, g) there exist neighborhoods U and V of the 
point x and the element g respectively such that <j>(U, V) C W. 

Such objects are well-studied in mathematics under the names topological transformation 
groups or continuous general dynamical system. A general dynamical system need not 
have T a topological space and only requires continuity with respect to x [129]. 

Technically, we have defined semi-dynamical systems, with the term dynamical sys- 
tem reserved for the case T above is a group. However, the more "popular" notion of dynam- 
ical system in math and engineering—and the one used here—requires only the semigroup 
property [59, 96]. Thus, the term reversible dynamical system is used when it is necessary 
to distinguish the group from semigroup case [97]. 

If a dynamical system is defined on a subset of X, we say it is a dynamical system in 
X. For every fixed value of the parameter g, the function </>(-, g) defines a mapping of the 
space X into itself. Given [X,Z+,<f>], <P(;1) is its transition function. Thus if [X,Z+,4>] 
is reversible, its transition function is invertible, with inverse given by <f>{-, -1). 

Generalizing this notion, we also denote by dynamical system2 a system 

s = [x,r,/], 

where X and T are as above, but the transition function / is the generator of the 
extended transition function <j>. Thus / : X x Tg -> X, where Tg generates T. For example, 

1 We assume only semigroups with identity, (a.k.a. monoids). We use addition notation for the semigroup 
operation throughout (i.e., + is the operation, 0 the identity) and suppress the operation in referencing the 

semigroup. 
2The distinction should be clear by context. 
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in the case of T = Z, / : X -+ X is given by / = <j)(; 1). In the case of T = K, / : X ->■ TX 

is given by 

f(x) = j 4>(x,i) 
=0 

This definition is just as general as before since / may depend on all of T. Of particular 
interest are cases where T is finitely generated. For example, we had it depend on 1 (the 
generator for Z) and dt (informally, the generator for R) in the examples above. Another 
concrete example is a finite automaton given by its transition function, v.QxI^Q (since 
2" generates the free monoid I* on which its extended transition function is defined) [20]. 

Examples of dynamical systems abound, including autonomous ODEs, autonomous dif- 
ference equations, finite automata, pushdown automata, Turing machines, Petri nets, etc. 

The set cj){x, T) = {<f)(x, g) : g € T} is called the orbit of the point x. The function 
T ->• 4>{x, Y) trajectory of the point x. An equilibrium or fixed point of [X, T, 4>] is a 
point x such that <p{x, g) = x for all g € T. A set A C X is invariant with respect to </>, if 

<f>(A,g) C A for all 9 € T. 
The notions of equivalence and homomorphism are crucial. Two dynamical systems 

[X,r,0], [Y,T,9] are said to be isomorphic or (topologically) equivalent if there exists 
a homeomorphism r/>: X -> Y such that 

1>{<j>(x,g))=0(il>{x),g), 

for all x € X and g € V. If the mapping xp is only continuous, then [X, T, </>] is said to 
be homomorphic to [Y,I\0].   Homomorphisms preserve trajectories, fixed points, and 

invariant sets. 
Less restrictively, a transition system is a general dynamical system as above, except 

that 4> need not be continuous in x. As shorthand we use T-transition system to denote 
one with group T. Continuous- and discrete-time transition system denote the cases 
where T = R (or M+) and T = Z (or Z+), respectively. 

Next, we refine the above concept by introducing controlled dynamical systems and 
systems with marked states, output, and timing. In each case, X, T, <f>, and / are as above. 

A controlled dynamical system or a dynamical system with input is a system 

£ = [X,r,£/,/],       (or s = [x,r,U,<t>]), 

where U is the set of inputs. The input u € U may act state-by-state, i.e. / :XxTgxU -* 
X, or by transition, i.e. (f>: X xT xU -* X. 

To each of the above, we may append the following refinements: 

• Output. Add Y the set of outputs. The output map h may produce state-output, 
i.e. h : X -► Y, or edge-output, i.e. h : X x T -> Y. 

NOTE. These are often equivalent. For example, Moore (resp. Mealy) machines are 
finite automata with state-output (resp. edge-output). However, Moore and Mealy 
machines are equivalent [76]. In differential equations one almost always assumes 
state-output, the edge-output case being subsumed in most cases of interest by inte- 
gration operators. There is also the equivalence of nodes and actions under perfect 
recall in game theory [115]. 
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• Marked states. These are distinguished subsets of X. For example, let I C X 
denote a set of (admissible) initial or start states, and F C S the set of final, 
halting, or cemetery states. Roughly, such a dynamical system, is defined to start 
from any point 7, from which it evolves until it hits a point in F, at which time its 
action is halted. 

• Timing. Add a transition time map or timing map. r : X x T -» R (or !+)• 
Of particular interest are maps where r is constant on X and those that, in addition, 
are homomorphisms with subsets of R (R+). In the generator case, the timing map 
can be defined on X x Tg. 

§2.1.3   ODEs 

In this thesis, the continuous dynamical systems dealt with are defined by the solutions of 
ordinary differential equations (ODEs) [73]: 

x(t) = f(x(t)), (2-1) 

where x{t) G X C Rn. The function / : X ->• Rn is called a vector field on Rn. The 
resulting dynamical system is then given by 4>{xQ,t) = x{t) where x{-) is the solution to 
Equation (2.1) starting at x0 at t = 0. We assume existence and uniqueness of solutions; see 
[73] for conditions. A well-known sufficient condition is that the vector field / is Lipschitz 
continuous. That is, there exists L > 0 (called the Lipschitz constant) such that 

\\f(x)-f(v)\\<L\\x-y\\,        forallx,y€X 

A system of ODEs is called autonomous or time-invariant if its vector field does 
not depend explicitly on time. Throughout, the shorthand continuous (resp. Lipschitz) 
ODEs to denote those with continuous (resp. Lipschitz) vector fields. 

An ODE with inputs and outputs [96, 133] or plant is given by 

x(t)   =   /(x(t),u(t)), (22) 

y(t)    =   h(x(t)), 

where x(t) G X C R", u(t) € U C Rm, y € Y C W, f : Rn x R™ -> Rn, and h : W -> W. 
The functions ti(-) and y(-) are the inputs and outputs, respectively. 

Whenever inputs are present, as in Equation (2.2), we say / is a controlled vector 

field. 

§2.1.4   DIGITAL AUTOMATA 

We begin with some standard material [76]. A symbol is the abstract entity of automata 
theory. Examples are letters and digits. An alphabet is a finite set of symbols. A string 
is a finite sequence of juxtaposed symbols. The empty string, denoted e, is the string 
consisting of zero symbols. 

A finite automaton (FA) is a system {Q, I, v, q0, M), where 

• Q is a finite set of states, 

• J is an alphabet, called the input alphabet, 
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v is the transition function mapping Q x I into Q, 

qo € Q is the initial state, 

M C Q is the set of the accepting states. 

We envision a finite automaton as a finite control reading a sequence of symbols from i" 
written on a tape. In one move, the finite automaton in state q scans symbol a, enters state 
u(q, a), and moves its head one symbol to the right. If the head moves off the right end of 
the tape while in an accepting state, then it accepts the entire tape. 

A (deterministic) pushdown automaton (in normal form), or simply PDA, is a 
system M = {Q, I\ I, v, q0, Z0, F), where 

• Q is the finite set of states, 

• T is an alphabet, called the tape alphabet, 

• J is an alphabet, called the input alphabet, 

• v is the transition function from Q x T x (I U {e}) to Q x (r U {e}), 

• go in Q is the start state, 

• ZQ in T is the start symbol, 

• F C Q is the set of final states. 

Thus, we envision a finite control reading a sequence of symbols of I written on a tape and 
manipulating a stack of symbols. In state q and with Z the topmost stack symbol, then 
exactly one of the following is true.3 

1. u(q,Z,i) = (p,Y) for some i G /, 

2. v{q,Z,e) = (jp,Y). 

If Y G T, the PDA performs a push operation, i.e., it replaces Z with ZY, and Y becomes 
the new top stack symbol. If Y = e, it performs a pop, i.e., it removes Z from the stack. 
In the first case, the PDA performs a push or pop (depending on Y), moves to state p, and 
advances the input head. In the second case, the PDA performs a push or pop (depending 
on Y) and moves to state p (i.e., it ignores the tape input and does not advances the input 
head). The PDA is assumed to halt on an empty stack or the state's entering F. 

In the 1930's Alan Turing introduced a mechanical model for computation which con- 
sisted of a finite control, an (infinite to the right) input tape that is divided into cells, and a 
tape head that scans one cell of the tape at a time. Each tape cell may hold one of a finite 
number of tape symbols. Initially, the machine starts with its tape head at the leftmost 
cell, its internal control at some designated initial state, and its input coded into the first 
0 < n < oo tape cells. All remaining cells hold a special symbol, called the blank, which is 
separate from the input symbols. More formally a Turing machine (TM) is a system 

M={Q,T,B,I,v,qo,F), 

where 

3By determinism. Also we may assume v is a total function by appending special final states. 
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• Q is the finite set of states, 

• T an alphabet of allowable tape symbols, 

• B, a symbol of I\ is the blank, 

• J, a subset of T not including B, is the alphabet of input symbols, 

• v is the next move function, a mapping from Q x T to Q x F x {L, R}, 

• g0 in Q is the start state, 

• F C Q is the set of final states. 

Evidently, a Turing machine is a finite automaton whose input at step k is the tape symbol 
in the cell over which the tape head is positioned at the fcth step. In addition to changing 
state, however, the Turing machine can also print a symbol on the scanned tape cell and 

move its head left or right one cell. 
Now we move on to some particular notation. An inputless FA (resp. PDA) is one 

whose input alphabet is empty, i.e., one whose transition function depends solely on its 

state (resp. state and top stack symbol). 
A digital or symbolic automaton (with input and output) is a system (Q, I, v, O, rf), 

consisting of the state space, input alphabet, transition function, output alphabet, and 
output function, respectively. We assume that Q, I, and O are each isomorphic to subsets 
of Z+. When these sets are finite, the result is a finite automaton with output. In any 
case, the functions involved are v : Q x / -»• Q and rj: Q x I -* O. The "dynamics" of the 

automaton are given by 

qk+i   =   v{qk,ik), 

Ok   =   v(Qk,ik)- 

Such a model is easily seen to encompass finite automata, Mealy and Moore machines, 
pushdown automata, Turing machines, Petri nets, etc. 

§2.2   RELATED WORK 

Here, we briefly mention other areas of inquiry related to hybrid systems. The interested 
reader is referred to the cited works for more details. Some connections, e.g., impulse control 
to hybrid systems control, are made clear later in the thesis. 

§2.2.1  VARIABLE STRUCTURE AND SWITCHED SYSTEMS 

Switched systems have been looked at by [30, 93, 119, 149] and others. We discuss them in 
§4.5 and §8. In variable structure systems [139], one takes a plant described by 

x = f(x,u,t). 

Each component of the control is assumed to undergo discontinuity on an appropriate 

surface in the state space: 

_ f uf{x,t),   iisi(x)>0, 
Ui~\ u-{x,t),   Hsi{x)<0.' 
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The design problem is to choose the continuous functions uf, u~, and the functions S{(x) 
so that the system behaves in a desired manner (e.g., globally stabilizization about some 
operating point). 

§2.2.2  JUMP SYSTEMS 

Also related to hybrid systems are so-called jump systems. The majority of results are 
for continuous-time linear systems with Markovian jumps. See [82, 101] and the references 
therein. These systems are modeled by 

x(t) = A(t, r(t)) x(t) + B(t, r(t)) u(t), 

where t € [t0, T], T may be finite or infinite, x(t) G Kn {t) is the x-process state, u{t) € Rm 

is the jc-process input, and A{t,r{t)) and B(t;r(t)) are appropriately dimensioned real- 
valued matrices, which are functions of the random process {r{t)}. The form process 
{r{t)} is a continuous-time discrete-state Markov process taking values in jV with transition 
probability matrix P = {pij} given by 

Pij   =   Pr{r(t + A)=j|r(t)=t}. 

f AyA + 0(A), ift^j, 
\ 1 + XuA + 0(A),   ift = j, 

where A > 0, A^ > 0 is the form transition rate from i to j (i ^ j), and 

N 

An = —     2_j     *ij' 

Note that, in general, A, 5, and the Aj/s could be explicit functions of time. Also, the 
switchings are nondeterministic and do not depend on the continuous state. 

In [60] a special class of hybrid systems is studied in which the Markov process above is 
replaced with a deterministic one: 

x(t)   =   A(r(t))x(t) + B(r(t))u(t), 

y(t)   =   C(r(t))x(t), 

with r{t) e N. Stability, controllability, and observability results are given for the two cases 
described below. Let SN denote the set of permutations of the values in N- and numbers 
6ti > 0 be given. The convention is that the ith system is active for time 8U and the order 
of activation is given by SN- TWO cases are examined: 

1. Periodic. The switching sequence is periodic of length N and is a repetition of some 

s G SN- 

2. General. The switching sequence is a concatenation of members of SN- 

The stability results come directly from those for time-varying systems [150]. We note that 
in the case of controllability, for example, the rank of N\ matrices must be tested. Further, 
the restriction to constant 6U is quite restrictive. 
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§2.2.3   SYSTEMS WITH IMPULSE EFFECT 

Closely related to hybrid systems is the work on so-called systems with impulse effect. 
Most of these results appear only in the Russian literature, but fortunately there is an 
English monograph [10] which summarizes major results. 

A system of differential equations with impulse effect is given by 

1. the system of differential equations 

x(i) = /(i,x), (2-3) 

where * € R, x € ft C Rn, / : R x ft -> Rn; 

2. sets Mt, Nt of arbitrary topological structure contained inlxfi; 

3. the operator At:Mt-^Nt. 

The motion begins from (t0, *o) and moves along the curve (t, x(t)) described by Equa- 
tion (2.3) with initial condition x(t„) = *o until the instant n > *0 when it meets the set 
Mt   At time n the operator ATl instantly transfers the point from position (r1,x(r1))to 

•    (n x+) €NT   xt = ATlx(n), from which the process continues to evolve under Equation 
(2.3) until it again encounters Mu etc. Three classes of systems are considered in [10]: 

. Class I: Systems with fixed instants of impulse effect are those for which Mt is 
represented by a sequence of hyperplanes t = rk, where {rfe} is a given sequence of 
instants of impulse effect. In this case, At is only defined for t = n, giving a sequence 

of operators Afc : fi ->■ fi. 

. Class II: Systems with mobile instants of impulse effect are those for which Mt 

is represented by a sequence of hypersurfaces ak = t = Tk(x), k € Z+. It is assumed 

that Tk{x) <Tk+i(x) for x G fi and 

lim Tfc(x) = oo 
fc-^oo 

for all ie!l. Again, At restricted to hypersurface ak is given by operator Ak. 

. Class III- Autonomous systems with impulse effect are those where the sets 
Mt = M and Nt = N are subsets of ft and At = A : M -> N. Further, the equation 

/(t,x) is replaced by g{x). 

Class III systems are closely related to hybrid systems, as we see below. Virtually all 
the results in [10], however, are for Class I and II systems. 

§2.2.4  IMPULSE CONTROL 

Impulse control, or control by interventions, deals with choosing a discrete strategy 
for controlling a set of differential equations with minimal cost. In particular, consider 

x(t) = f(x{t)),       x(to) = xo, 

where x{t) 6 R", and let £(t,x0) denote its solution. There is a running cost k : W1 -»> R+ 

associated with the continuous state. 
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The discrete dynamics is modeled by a set-valued map T : Rn -> 2Rn of destinations, 
each with an associated cost. Let Grr = {(x,v) | x G Rn,v G T(x)}. It is assumed that 
T(x) is compact for each x and that the jump cost c : Grr -> 1+ is 

1. bounded, with c(x, •) continuous on T(x), 

2. c(x,v) + c{v,w) > c{x,w), for all x G Rn, v G l?(x), and u; G I». 

3. c(x, w) > c> 0, for all x G W1 and u; G T(x). 

A control policy 7r or strategy for this impulse control problem is a sequence {tm; xm, wm} 
of intervention times, intervention states, and intervention destinations, where 

Wm G T(xm). 
The trajectory under n is as follows: x(t) = £(i,x0) for t < h; at time ix the state is 

impulsively transferred from xi = ^(ti,x0) to un at a cost c(xi, wi); from there, the process 
continues. 

The infinite-time, discounted cost associated with the above problem is 

J(TT,X0)= /    e-atk(x{t))dt + Y,e-atmc{xm,wm), 

where a > 0. The optimal control problem is to minimize J(7r,x0) over all strategies. For 
more details see [51, 156] 

§2.2.5   PIECEWISE DETERMINISTIC PROCESSES 

A piecewise-deterministic process (PDP) taking values in an open set E of W1 with 
Borel cr-field B(E)A and boundary dE is determined by [53] 

1. the flow 4>(t,x) in E satisfying <£(t,<£(s,x)) = </>(t + s,x); 

2. the jump rate A : E -> R+; 

3. the transition probability Q : B(JS) x {E U 9*^) -> [0,1] where 

d*E = {x€dE\ <j)(-t, z)EE forte (0, e) some e > 0}. (2.4) 

We define t*(x) = inf{t > 0 | 4>{t, x) G d*E} and A(t, x) = /0* \(<f>(8, x)) ds for 0 < t < t*(x). 
A sample, Xt starting from x, of the piecewise-deterministic process is constructed as 

follows. Pick a number Ti from the distribution 

P(T ^i\-l exp(-A(t,x)),   *<*•(*), 
Px(Ti > *) - | 0) t > t*(x). 

Define Xt = <t>{t,x) for t < Ti. Now independently choose an ^-valued random variable 
Zx having distribution Q(-;</»(Ti,x)) and define XTl = Zx. The process now restarts at 
Z\. It is assumed that A is bounded and the sequence of jump times Ti,T2,... satisfies 

limn_*oo Tn = oo Px-a.s. 

4Thatis, B(E) = EDB{Rn). 
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§2.2.6  TIMED AND HYBRID AUTOMATA 

There is a growing literature, mainly in computer science, that deals with hybrid systems 
as an outgrowth of automata theory. The main idea is to successively add time constraints 
on events and simple dynamics (such as clocks and timers) to finite automata in order to 
build on automata results. We do not attempt to summarize this literature and refer the 
interested reader to [1, 3, 63, 66, 98, 120]. 

This program comes full circle back to control theory in the work of Deshpande and 
Varaiya (also cf. [69]). A hybrid automaton [56, 57] is a system 

H = (Q,Rn,X,E,$,r), 

where Q is the finite set of discrete states, Rn is the the set of continuous states, and 
£ is the finite set of discrete events. The finite set of edges, 

E C Q x 2Rn x £ x {Rn -» Rn} x Q. 

models the discrete event dynamics of the system. An edge 

EBe = (qe,Xe,Ve,re,q'e) 

is enabled when the discrete state is in qe and the continuous state is in Xe. When the 
transition is taken, the event Ve € £ is accepted, the continuous state is reset according to 
map re, and the system enters discrete state q'e. The reset map is allowed to be set valued 
(denoted Re), in which case the continuous state is reset nondeterministically when e is 
taken. The continuous dynamics is given by the set of controlled vector fields 

$ = {JFg:R
n-^2R"\{0} \q£Q}. 

When the discrete state is q, the continuous state evolves according to the differential 
inclusion 

xc(t) G Fq(xc(t)). 

Finally, 
T = {r9 C Kn | g € Q} 

is a set of invariance conditions that the system state must satisfy, that is, when the system 
is in phase q, the continuous state is required to be in Tq. 
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Chapter 3 

Hybrid Phenomena and Models 

In this chapter, we identify the discrete phenomena which occur in hybrid systems. We then 
review in detail several models of hybrid systems from the control and dynamical systems 
literature and draw relations among them. 

§3.1   INTRODUCTION 

A hybrid system is a system that involves continuous states and dynamics, as well as some 
discrete phenomena corresponding to discrete states and dynamics. In this thesis, our 
focus is on the case where the continuous dynamics is given by a differential equation 

*(*)=£(*),        t>0. (3.1) 

Here, x(t) is the continuous component of the state taking values in some subset of a Eu- 
clidean space. £{t) is a vector field which generally depends on x{t) and the aforementioned 
discrete phenomena. 

Hybrid control systems are control systems that involve continuous states, dynamics, 
and controls, as well as discrete phenomena corresponding to discrete states, dynamics, and 
controls. Here, £(£) is a controlled vector field which generally depends on x(t), the contin- 
uous component u(t) of the control policy, and the aforementioned discrete phenomena. 

The chapter is organized is follows. First, we begin by identifying the discrete phenom- 
ena that generally arise in hybrid systems. We identify four types: 

1. autonomous switching, 

2. autonomous jumps (also called autonomous impulses), 

3. controlled switching, 

4. controlled jumps (also called controlled impulses). 

In the next section, we briefly examine these discrete phenomenon and give examples of 
each. We also discuss how digital automata may be viewed as evolving in continuous time, 
which sets the stage for their interacting with ODEs below. 

Next, we review in turn several models of hybrid systems developed from the control 
and dynamical systems point of view. For sure, there are many others [3, 4, 66, 120]. The 
models here have been chosen as much for the clarity and rigor of their presentation as for 
the mechanisms they use to combine discrete and continuous dynamics. Specifically, we 
review the following models of hybrid systems, in order of (original) appearance of the cited 
papers: 

51 
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1. Witsenhausen's model [152, §3.3], 

2. Tavernini's model [135, §3.3], 

3. Back-Guckenheimer-Myers model [9, §3.5], 

4. Nerode-Kohn model [114, §3.6], 

5. Antsaklis-Stiver-Lemmon model [5, §3.7], 

6. Brockett's models [38, §3.8]. 

For further discussion and examples, the reader is referred to the original papers. 
Some models in the papers above allow time-varying vector fields, but we only consider 

time-invariant ones here. Also, we have sometimes changed notation from the original 
papers to make the presentation more uniform and place the models in as similar a light as 
possible. In §§3.9-3.10 we briefly discuss and compare the six models. 

§3.2   HYBRID PHENOMENA 

§3.2.1   AUTONOMOUS SWITCHING 

Autonomous switching is the phenomenon where the vector field £(•) changes discon- 
tinuously when the continuous state x{-) hits certain "boundaries" [5, 114, 135, 152]. The 
simplest example of this is when it changes depending on a "clock" which may be mod- 
eled as a supplementary state variable [38]. An example of autonomous switching is the 

following. 

Example 3.1 (Hysteresis)  Consider the following model of a system with hysteresis [135]: 

x\   =   x2 - <^(xi), 

x2   =   H{ip{xi,x2))-<t>(x2), 

where the multi-valued function H is shown in Figure 3-1.  The functions </>, xp depend on 
the exact system under consideration. 

H 

■l 

V 

4    t 
■-1 

Figure 3-1: Hysteresis function. 

Note that this system is not just a differential equation whose right-hand side is piecewise 
continuous. There is "memory" in the system, which affects the value of the vector field. 
Indeed, such a system naturally has a finite automaton associated with the function H, as 

pictured in Figure 3-2. 



§3.2    Hybrid Phenomena     53 

a < ip < d] 

[rl><b][ (ff = +l) I H = 0 ] \ti=-L) jiV»>c] 

[i<o] 

Figure 3-2: Finite Automaton Associated with Hysteresis Function. 

§3.2.2   AUTONOMOUS JUMPS 

An autonomous jump is the phenomenon where the continuous state x(-) jumps discon- 
tinuously on hitting prescribed regions of the state space [9, 10]. We may also call these 
autonomous impulses. The simplest examples possessing this phenomenon are those 

involving collisions. 

Example 3.2 (Collisions) Consider the case of the vertical and horizontal motion of a 
ball of mass m in a room under gravity with constant g (see Figure 3-3). In this case, the 

dynamics are given by 

x   =   vx, 

y = vy, 

Vx    =    0, 

Vy   =   -mg. 

Further, upon hitting the boundaries {(x,y) | y = 0 or y = C} we instantly set vy to -pvy, 
where p € [0,1] is the coefficient of restitution. Likewise, upon hitting {(x,y) | x = 0 or x - 
R} vx is set to —pvx. 

§3.2.3   CONTROLLED SWITCHING 

Controlled switching is the phenomenon where the vector field £(•) changes abruptly in 
response to a control command, usually with an associated cost. This can be interpreted 
as switching between different vector fields [156]. Controlled switching arises, for instance, 
when one is allowed to pick among a number of vector fields: 

x = fi(x),        i€Q~{l,2,...,iV}. 

Example 3.3 (Satellite Control) 4s a simple example of satellite control consider 

6    =    TeffV, 

where 6 is angular position, Ö angular velocity of the satellite, and v G {-1,0,1} depending 
on whether the reaction jets are full reverse, off, or full on. 
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Figure 3-3: Ball bouncing in an enclosed room. 

An example that includes controlled switching and continuous controls is the following. 

Example 3.4 (Transmission)  Consider a simplified model of a manual transmission, 

modified from one in [38]: 

i\   -   x2, 
x2   =   [-a{x2/v) + u]/{l + v), 

where xx is the ground speed, x2 is the engine RPM, u E [0,1] is the throttle position, and 
v E {1,2,3,4} is the gear shift position. The function a is positive for positive argument. 

! 3.2.4   CONTROLLED JUMPS 

An controlled jump is the phenomenon where the continuous state x(-) changes discon- 
tinuous^ in response to a control command, usually with an associated cost [14]. We may 
also call these controlled impulses. An example is the following. 

Example 3.5 (Inventory Management) In a simple inventory management model [14], 
there are a "discrete" set of restocking times 0i < 02 < ••■ and associated order amounts 
c*i, «2, • • •• The equations governing the stock at any given moment are 

y(t) = -fi(t) + y£S(t-el)ai 

t 

where n represents degradation or utilization dynamics and S is the Dirac delta function. 

NOTE. If one makes the stocking times and amounts an explicit function of y (or t), then 
these controlled jumps become autonomous jumps. 
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i 3.2.5   DIGITAL AUTOMATA AND ODEs 

Usually, digital automata [§2.1.4] are thought of as evolving in "abstract time," where only 
the ordering of symbols or "events" matters: 

Qk+i   =   v{Qk,ik), 

Ok   =   v(Qk,ik)- 

We may add the notion of time by associating with the fcth transition the time at which it 

occurs: 

q{tk+i)   =   "(?(**)> *(**))• 
o(tk)   =   T){q{tk),i(tk)). 

Finally, this automaton may be thought of as operating in "continuous time" by the con- 
vention that the state, input, and output symbols are piecewise right- or left- continuous 
functions. 

NOTE. The notation t~ may used to indicate that the finite state is piecewise continuous 
from the right: 

q(t) = u(x(t),q(r)) 

Likewise 
q(t+) = u(x(t),q(t)) 

denotes that it is piecewise-continuous from the left. To avoid making the distinction here 
we use Sontag's more evocative discrete-time transition notation [133] 

q+(t) = v(x(t),q(t)) 

to denote the "successor" of q(t). Its "predecessor" is denoted q~(t). This notation makes 
sense since no matter which convention is used for g(t)'s piecewise continuity, we still have 
q+(t)=q(t+). 

The result is the following system of equations, where q, o are piecewise continuous in time: 

q+(t)    =   u{q{t),i{t)), ,32) 

o(t)    =   r,{q(t),i{t)). 

Here, the state q(t) changes only when the input symbol i(t) changes. Also, note that this 
reduces to the previous automaton equation 

q+[t]  =  *(g(M),i[*]), 
o[t]   =   v(q[t)At]), 

where [t] denotes the time at which the input symbol last changed. Thus, we have the 
idea of an automaton whose update times are not the abstract members of Z+, but the 
event times in R when the input symbol i changes. Note that in the usual case, a finite 
automaton can be presented with the same input symbol for two successive time intervals. 
These situations must be handled differently (e.g., by adding new states and symbols) in 
the continuous-time version. 

Finally, we may wish to model the interaction of digital automata with ODEs.   To 
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accomplish this we note that such equations can be thought of as a special case of ODEs 
with controlled jumps (§4): 

q(t)   =   0, 
q+(t)    =   u(q(t),i(t)), 

o(t)  = v(q(t),i(t))- 

Suppose these equations interact with a set of differential equations with output i(t). 
Thus, the symbol i(t) jumps as a function of the state x(t) of the differential equation 

x(t)   =   /(*(*), u(*)), 
i(t)   =   h(x{t)). 

At these interaction times, the discrete phenomena are autonomous jumps in the combined 
system. We may also allow u to depend on o(t), which is the case in hybrid systems below. 

§3.3  WITSENHAUSEN'S MODEL 

In [152], Witsenhausen introduces a class of continuous-time systems with part continuous, 
part discrete state—in short, what we would call a continuous-time hybrid system. The 
class of systems he considers is restricted by the following conditions: 

1. At a transition, that is, at a time when the discrete state undergoes a change, the 
state vector is still continuous, though the vector field may change discontinuously. 
No jumps of the continuous state vector are allowed. 

2. Transitions occur when and only when the continuous state vector satisfies a condi- 
tion given for each type of transition. In the case of control inputs, these influence 
transitions only through the differential equations, never directly. 

3. Some technical requirements on the data describing the system. 

Witsenhausen starts with continuous systems, described by 

x(t)=f(x(t),u(t)), 

where x{t) 6 Rn and u(t) € Rm. The effect of the discrete components of the state on these 
continuous components is accounted for by letting / depend on the discrete state: 

' ±(t) = f(q(t),x(t),u(t))- 

The coupling in the opposite direction is described by conditions on the continuous state 
for which transitions of the discrete component occur. In particular, let Q C Z be finite. 
The state of the system is characterized at any time by the pair {q, x) ranging over QxW1; 
q is called the discrete state, and x is the continuous state. 

A transition of the discrete state from q = i to q = j # i is triggered when the 
continuous state x reaches a given transition set Mitj C Rn. There is one such set, 
possibly empty, for each ordered pair of distinct indexes from Q. 

Define the arrival set 
Mt = U Mi<- 
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That is, the set of all values of the continuous state for which a transition into discrete 
state i can occur from some other discrete state (in our parlance, the set of destinations of 
autonomous switchings into discrete state i). Likewise, define the departure set 

That is, the set of all values of the continuous state for which a transition from discrete 
state i into some other discrete state can occur (in our parlance, the set of autonomous 
switchings from discrete state i). 

Witsenhausen places three key assumptions on the sets above, which we explore in some 

detail: 

1. For any three distinct indexes i,j, k from Q, the sets Mij and M^ are disjoint. 

2. For all i e Q, M~ is closed in Rn (equipped with the usual topology). 

3. For all i € Q, the sets Mf and M~ are disjoint in Rn. 

The first assumption says that it is never the case that the conditions for transition to two 
or more different discrete states are fulfilled. The second assumption is more technical; its 
usefulness is seen in the description of the dynamics below. The third assumption guarantees 
that after a discrete transition is made, the condition for a further, instantaneous transition 
to some other discrete state does not occur. This rules out "transition loops," in which an 
infinite number of discrete transitions occur in a single instant. If there is no loop, and a 
transition sequence starting at (x,i0) goes through (x,ü),... and terminates at some state 
(x,i*), then the whole sequence can be avoided by considering x 6 Mi0tu instead of Mj0)il. 

Witsenhausen assumes that each f(q,x,u) is continuous in (x,u) for fixed q and con- 
tinuously differentiable in x for fixed (q,u). He restricts the set of controls to be as follows. 
Let tf be a variable end time in [t0,oo) and ficR™, closed. A control is a pair [</,«(•)] 
where u(-) is any piecewise continuous function from [to,tf] into Q. 

We are now ready to describe the evolution of the system from initial state (xo,9o) at 
time t0 until (x/,g/) at time tf, under the control [*/,«(•)]: 

1. Solve 
i(t) = f(qo,x(t), u(t)),        x(t0) = XQ. 

The conditions on / assure the existence of a unique solution either up to tf or up to 
some earlier escape time. In either case a continuous path, xo{-), in Rn is given. If 
this path does not meet M~, then it gives the evolution of the continuous state and 
the discrete state remains constant at go- 

2. If the path x0(-) meets M~ at some point x* at time t*, then by virtue of x0([to>**]) 
compact and M~ closed (Assumption 2), there exists an earliest time of intersection 
t\ with corresponding point x\. By Assumption 1, xi belongs to exactly one of the 
transition sets in M~, say, M90i9l. The state of the system at time *i is defined to be 
(xi,gi). Note that ti > tQ, since otherwise (x0,gi) would have been considered the 
initial state. 

3. The point xi now belongs to M+ and (by Assumption 3) not to M~. Thus, we may 
repeat the above steps from (xi, q\). Furthermore, if a second transition time t2 exists, 

it satisfies £2 > *i- 



58     Hybrid Phenomena and Models 

Thus, the above rules, applied recursively, generate a unique state evolution [x(-),q(-)] up 
to tf, some earlier escape time, or a critical time representing a point of accumulation of 
transition times. See Figure 3-4. 

Finally, Witsenhausen notes that since the transitions of x(-) always take place on the 
boundary dM~ of a departure set (which is closed by Assumption 2), all transition sets Mij 
can be replaced by their reductions MijDdM'. He also gives some optimal control results, 
which are discussed in §10. We refer to the above as the WHS model, for Witsenhausen 

hybrid systems. 

§3.4  TAVERNINI'S MODEL 

Tavernini introduces and discusses so-called differential automata in [135]. He was moti- 
vated to study such systems as a means of modeling hysteretic phenomena like backlash 

and friction (cf. Example 3.1). 
A differential automaton, A, is a system (5, /, v) where 

• S is the state-space of A, S = W1 x Q, Q ^ {1,2,..., N} is the discrete state space 
of A, and W1 is the continuous state space of A; 

• / is a finite family /(-,?) : Rn -)!",?€ Q, of vector fields, the continuous 
dynamics of A; 

• v : S -> Q is the discrete transition function of A. 

Let uq = v{-,q), q € Q. Define I(q) = uq{R
n)\{q}, that is, the set of discrete states 

"reachable in one step" from q. We require that for each q € Q and each p € I(q) there 

exist closed sets 
M9,p = ^_1(p)- 

The sets dMq,p are called the switching boundaries of the automaton A. Define Mg = 

UP€/(g) MW and define the domain of caPture of state 1 by 

C{q) = Rn\M9 = {x € Rn | v(x,g) = q}. 

The equations of motion are 

x(t)   =   f(x(t),q(t)), 
q+(t)   =   u(x(t),q(t)), 

with initial condition [x(0), q(0)]T € \Jq<=QC(q) x {q}. The notation V indicates that the 
discrete state is piecewise continuous from the right. Thus, starting at [x0,»], the continuous 
state trajectory x(-) evolves according to x = f{x,i). If x(-) hits some dMi%j at time tu 

then the state becomes [x{ti),j], from which the process continues. See Figure 3-4. 
Tavernini places restrictions on the model above: First each /(•,?), q € Q, is assumed 

to be globally Lipschitz so that the continuous dynamics are well-behaved. Also, for each 
'  q E Q and p € I{q), the set M,,p is required to be connected and there must exist a function 

g    g C^l", R) with 0 in its image a regular value such that 

M,,p = {x6Mn| gq,P{x) > 0}. 
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Figure 3-4: Example dynamics of Tavernini's model. 

Thus, v~l(p) is an n-submanifold of Rn with boundary 

dMq>p = {x € Rn | gq,P{x) = 0}, 

which is an (n - l)-submanifold of Rn. 
Finally, [135] makes the following three key assumptions on differential automata: 

• Define aq = min{dist(Mg,p, Mqj) \ p,p' € I(q),p # p'}- We require that 

a (A) = minag > 0 

be satisfied. That is, the distance between any two sets with different discrete transi- 
tions is bounded away from zero. 

• Define ßq>p = mm{dist(dMqiP,dMPtpl) \ p' € I(p)}. We require that the inequality 

ß(A)=mm min ßq,P>0 
q£Q p€l(q) 

be satisfied.   That is, after a discrete transition, the next set from which another 
discrete transition takes place is at least a fixed distance away. 

• The assumption on a(A) is such that C{q) is an open set with boundary dC(q) = 
dMq = UpeJ(q) 9MqtP. We require that the inclusions 

dMq,pCC(p),        peI(q),q€Q 

be satisfied. That is, after a discrete transition one is found in an open set on which 
the dynamics are well-defined. 

With these assumptions,1 Tavernini proves that the initial value problem has a unique 
solution with finitely many switching points. Let [x(-),«(-)] denote the solution correspond- 
ing to the initial value [x0,qo]. Then q defines a sequence of discrete states qo,qi,q2,---, 

actually, the vector fields f(-,q) and switching functions gq,p are assumed to be smooth. 
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with switching points ti,t2,..., where U denotes the time of transition from g»-i to 1i- K 
[x'{-),q'{-)] denotes the solution when the initial value is [x'0,q0] where x'0 is near x0, then 
we should have [x'{-),q'{-)] "near" [x(-),q(-)] in the sense that q' should define the same 
"discrete trajectory" qo,qi,q2,--- witil possibly different switching points. However, the 
corresponding switching points of the two solutions should be close, i.e., \t\ - U\ should be 
"small" whenever \x'0 - x0\ is "small." Tavernini defines a topology to make this precise. 
He also shows that the set of points with such a property is an open, dense subset of C(q0), 

denoted 5°. 
Finally, Tavernini concentrates on the analysis of numerical approximations of the tra- 

jectories of differential automata. Briefly, if {x0,q0) G 5° then the result of numerical 
integration of the trajectory starting from x'0 uniformly approaches that of the differential 
automaton starting from x0 as the integration step size plus d{xo,x'0) goes to zero. See 

[135] for details. 
We refer to the above as the TDA model, for Tavernini's differential automata. 

§3.5   BACK-GUCKENHEIMER-MYERS MODEL 

The framework proposed by Back, Guckenheimer, and Myers in [9] is similar in spirit to 
the Tavernini model. The model is more general, however, in allowing "jumps" in the 
continuous state-space and setting of parameters when a switching boundary is hit. This is 
done through transition functions defined on the switching boundaries. Also, the model 
allows a more general state space. 

More specifically, the model consists of a state space 

X= \JXq,        Q~{l,...,iV}, 
geQ 

where each Xq is a connected, open set of Rn. Notice that the sets Xq are not required to 

be disjoint. 
The continuous dynamics are given by vector fields /, : Xq -> Rn. Also, one has open 

sets Uq such that Vq C Xq and dUq is piecewise smooth. For q € Q, the transition functions 

Gg.Xg^XxQ 

govern the jumps that take place when the state in Xq hits dUq. They must satisfy 
Tti(Gq(x)) € Un2(G (x))> where irk is the fcth coordinate projection function. Thus, iri{Gq(x)) 
is the "continuous part" and Tr2(Gq{x)) is the "discrete part" of the transition function. 

The dynamics are as follows. The state starts at point x0 in U{. It evolves according to. 
x = fi{x). If x(-) hits some dUi at time h, then the state instantaneously jumps to state £ 
in TJj, where Gi(x(ti)) = (£, j). From there, the process continues. We refer to this as the 
BGM model. See Figure 3-5, which is taken from [9]. 

As in [135], it is assumed in [9] that the switching boundaries are fairly regular. In par- 
ticular, it is assumed that the switching boundaries dUq have a concrete representation 

in terms of the zeros of 
hq = min{/ig)i,...,/i9,Ar,}. 

where the hQti : Xq ->• R are smooth. The convention then is such that hq > 0 on Uq. Thus, 
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\*i       ' 

Figure 3-5: Example dynamics of Back-Guckenheimer-Meyers model. Reproduced from [9]. 

the switching boundaries are (n - l)-dimensional Lipschitz continuous manifolds. 

NOTE. This does not add much power (over single functions) since Lipschitz functions are 
strongly approximated by C1 functions: for every e > 0 a C1 function can be chosen that 
coincides with a Lipschitz function except on a set of measure e [109]. 

The model above is fairly expressive, allowing the modeling of a large variety of phenom- 
ena. However, its expressiveness does allow the possibility of some seemingly "anomalous" 
behavior. For example, since one allows jumping to the boundary of the sets Uu trajectories 
may infinitely "cycle" if Gj(x) = (y,i) and G<(y) = (x,j). In a simulation facility, however, 
such conditions can presumably be detected and reported to the user for interpretation. 

The paper [9] presents computer tools that have been developed by its authors for the 
simulation of hybrid systems. As an example, Raibert's one-legged hopping robot [122] is 
placed into their framework. 

We refer to the above model (simplified from the one in [9]) as the BGM model. 

§3.6   NERODE-KOHN MODEL 

In [114], Nerode and Kohn take an automata-theoretic approach to systems composed of 
interacting ODEs and FA. The basic philosophy of the models discussed in [114] is given 
in great generality, with a subsequent specialization to various cases, e.g., deterministic 
versus non-deterministic. To keep the discussion germane to that so far, we discuss here 
the so-called "event-driven, autonomous sequential deterministic model" [114, p. 331]. We 
refer to it as the NKSD (for sequential deterministic) model. Here, autonomous refers to 
the fact that the ODEs do not explicitly depend on time, although this is without loss of 
generality by appending to the state a single equation for t. 

The model consists of three basic parts: plant, digital control automaton, and interface. 
In turn, the interface is comprised of an analog-to-digital (AD) converter and digital-to- 
analog (DA) converter. See Figure 3-6. 

The plant is modeled as in Equation (2.2).2 It is considered to be an input/output 
automaton in the following sense. The states of the system (in this sequential deterministic 
case) are merely the usual plant states, members of Rn [114, p. 333]. The input alphabet is 

2We have lumped the control and disturbance signals of [114] into a single signal u. 



62     Hybrid Phenomena and Models 

Symbol, 
Digital 

Automaton 

Symbol, 
o&0 

AD 

Measurement, 
yeY 

Plant 

Interface 

Control, 
u(-) € PU 

Figure 3-6: Hybrid system as in Nerode-Kohn model. 

formally taken to be the set of members of (u(-), h) where Sk is a positive scalar and u(-) is 
a member of the set of piecewise right-continuous functions in U^oc). Let PU, for piecewise 
U, denote the latter set. Suppose the plant is in state xk at time tk. The "next state" of the 
transition function from this state with input symbol(u(-), Sk) is given by xk+i = x(tk + 6k), 
where x(-) is the solution on [tk,tk + Sk] of 

x(t) = f(x{t), u(t - tk)),        x(tk) = xk. 

Setting ifc+i = tk + Sk, the process is continued. 
The digital control automaton is a digital automaton as discussed in §2.1.4 and 

§3.2.5. In general, then, Q, I, and O are each isomorphic to subsets of Z+. However, the 
interesting case is where these sets are finite, which is discussed below. As noted before, 
this automaton may be thought of as operating in "continuous time" by the convention 
that the state, input, and output symbols are piecewise right-continuous functions, leading 

to Equation (3.2). 
It remains to couple these two "automata." This is done through the interface con- 

sisting of the following two maps: 

• The analog-to-digital map AD :Y xQ -> I, 

• The digital-to-analog map DA : O -+ PU. 

The AD symbols are determined by (FA-state-dependent) partitions of the output space 
Y. These partitions are not allowed to be arbitrary, but are the "essential parts" of small 
topologies placed on Y for each q e Q. We explain this later. To each o € O is associated 
an open set of PU. The DA signal corresponding to output symbol o is chosen from this 
open set of plant inputs. The scalar 8k is a formal construct, denoting the time until the 
next "event." It is not actually computed or chosen by the digital automaton, nor is it 
actively used by the plant in computing its update equations. 

The dynamics of the above model are then similar to those of the Tavernini model. 
Two important distinctions arise: input and output for both the ODEs and FA have been 
included, and the maps AD and DA have been added. Specifically, we have 

x(t)   =   f[x(t),DA(o(t),t-[t])], 
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y(t)    =   h[x(t)], 

q+(t)   =   v[q(t),AD(y(t),q(t))], 

o(t)    =   n[q(t),AD(y(t),q(t))]. 

Briefly, the combined dynamics is as follows. Assume the continuous state is evolving 
according to the first equation and that the FA is in state q. Then AD(-,q) assigns to 
output y(t) a symbol from the input alphabet of the FA. When this symbol changes, the FA 
makes the associated state transition, causing a corresponding change in its output symbol 
o. Associated with this symbol is a control input, DA(o), which is applied as input to the 
differential equation until the input symbol of the FA again changes. 

Now, we explain what is meant by the "small topologies" mentioned above, concen- 
trating on the AD map. Nerode and Kohn introduce topologies that make each mapping 
ADq = AD(-,q), q € Q, continuous (see Algorithm 6.2). The sets AD~l(i), i € I axe the 
essential parts mentioned above. For a verification that ADq is continuous, as well as other 
results on AD and DA maps, see [24, §6]. 

The starting point of the Nerode-Kohn approach is an assumption that one can only 
realistically distinguish points up to knowing the open sets in which they are contained. 
That is what led them to use the small topologies above to encode the plant output symbols. 
However, the bottom line is that by combining information of inclusion in different open 
sets, the ADq functions, q € Q, form partitions of the measurement space. Although the 
small topologies are meant to provide "reasonable partitions," it is interesting to note that 
one can still "identify" single points in the model. 

EXAMPLE. Consider as a representative example zero in [-1,1]. Then the open sets [—1,1], 
[-1,0), and (0,1] give information to exactly deduce x = 0. Such anomalies lead to a 
breakdown of the description of the dynamics above in the sense that it is easy to construct 
examples where the formal input letter to the plant is (u,0). 

The Nerode-Kohn paper develops the underpinning of a theoretical framework for the 
hybrid continuous/rule-based controllers used by Kohn in applications. Continuity in the 
small topologies associated with the AD and DA maps above plays a vital role in the theory 
of those controllers. See [114] and the references therein for details. 

§3.7   ANTSAKLIS-STIVER-LEMMON MODEL 

In [5], Antsaklis, Stiver, and Lemmontake a discrete-event dynamical systems (DEDS, [74]) 
approach to hybrid systems. Conceptually, the model is related to that of Nerode-Kohn, 
but we quickly review it here. We refer to it as the ASL model. 

Like the NKSD model, the ASL model consists of three basic parts: the plant, the 
controller, and the interface. See Figure 6-1. The plant is modeled as in Equation (2.2). 
The controller is a discrete event system, modeled as a digital automaton. We think of it 
as operating in continuous time as in §3.2.5: 

q+(t)    =   v(q(t),i(t)), 

o(t)    =   n(q(t)), 

where q(t) e Q, i(t) € I, and o(t) € O, the state space, plant symbols, and controller 
symbols, respectively. The sets Q, I, and O are unspecified in [5], but we take from context 
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that they are each isomorphic to subsets of Z+. The maps are v : Q x I -> Q and r,: Q -» O. 
The subscript fc denotes the Jfcth symbol in a sequence. The output map does not depend 
on the current symbol, which is without loss of generality after adding more states. 

The plant and controller communicate through an interface consisting of two memo- 
ryless maps, AD and DA. The first map, called the actuating function, DA : O -> R , 
converts a controller symbol to a piecewise constant plant input: 

u(t) = DA(o(t)). 

The second map, called the plant symbol generating function, AD : W -> J, is a function 
which maps the plant state space to the set of plant symbols as follows 

i(t) = AD(x(t)). 

The function AD is based upon a partition of the state space, where each element of the 
partition is associated with one plant symbol. The combined dynamics is similar to that of 

the NKSD model. . . „       , 
The model is simple but fairly general. The fact that arbitrary partitions are allowed 

limits what one can prove about the trajectories of this model. Several example systems 
are given in [5]. Results, mainly from the DEDS point of view, may be found in [5] and the 

references therein. 

§3.8   BROCKETT'S MODELS 

Several models of hybrid systems are described in [38]. We only discuss those which combine 
ODEs and discrete phenomena since that is our focus here. Two models combining difference 
equations and discrete phenomena are also discussed in [38]. 

The first model, which Brockett calls a type B hybrid system, is as follows: 

±{t)   =   f(x{t),u{t),v\p\), 

p(t)   =   r(x{t),u(t),v\j>\), 

where x(t) eXcW, u(t) eUcW", P(t) € R v\p\ € V, f : R" x W* x V -> RVand 
r • W x Rm x V -* R Here, X and U are open subsets of Rn and Rm, respectively, and V is 
isomorphic to a subset of Z+. Also, the rate equation r is required to be nonnegative for 
all arguments, but need have no upper bound imposed upon it. We denote such a system 

as BB, short for Brockett's type B model. 
Brockett has mixed continuous and "symbolic" controls by the inclusion of the special 

counter variable p. The control u(t) is the continuous control exercised at time t; the 
control v\p\ is the pth symbolic or discrete control, which is exercised at the times when 
p passes through integer values. In general, one may also introduce (as in [38]) continuous 

and symbolic output maps: 

y(t)   =   c{x{t),v\jp\), 

o\p\   =   J7(vM,«bJ)- 

In this case, one may limit / by allowing it to depend only on y instead of the full state x. 
Note, we have used [t] to denote the value of t at which p most recently became an integer. 
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Brockett also introduces a type D hybrid system as follows: 

x(t) = f{x(t)Mt),z\p\), 
p(t) = r{x(t),u{t),z[p\), 

z\p]    =   v{x[t],z\p\,v\p\), 

where z E Z, and Z is isomorphic to a subset of Z+. Here, 1/: Rn x Z x V -4 Z, with all 
other definitions as above except that Z replaces V in those for / and r. Again, u and v 
are the continuous and discrete controls, respectively. We denote such a system by BD. We 
may picture the dynamics as in Figure 3-7. 

x=f(x.uj) 

Figure 3-7: Example dynamics of Brockett's Type D model. 

The first equation denotes the continuous dynamics and the last equation the "symbolic 
processing" done by the system- The times when p passes through integer values can be 
thought of as the discrete event times of the hybrid dynamical system. Thus, we consider 
BD as a precise, first-order model of interactions of ODEs and DEDS. Once again one may 
introduce output equations: 

y{t)    =   c(x(t),z[p\), 

o\p\  = v(y[t],z\j>D- 

Finally, Brockett generalizes BD to the case of "hybrid system with vector triggering" 
(herein, BDV), in which one replaces the single rate and symbolic equations with a finite 
number of such equations: 

x(t)   =   /(*(*), u(t),«bJ)>- 
Pi(t)   =   r{x{t),u(t),Zi[pi\), 

Zi\pi\   =   v(x[t]Pi,z[p\,Vi\pi\), 

where i G {1,2,..., it}. Again, outputs may be introduced. 
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In order for, say, the BB system above to be well-posed, we would like there to exist a 
unique solution on finite interval [0,T]. That is, given [x(0),p(0)] G X x R, there should 
exist unique x(-) and p(-), continuous and differentiable almost everywhere, satisfying the 
equations. Brockett meets these specifications on any interval in which p does not take on 
an integral value by requiring / to be Lipschitz in x, continuous with respect to u, and 
u to have a finite number of discontinuities. [It is also necessary to assume U bounded]. 
The result extends if on any finite interval of time p passes through only a finite number of 
integers,' leading to a finite number of discontinuities of the derivatives of x and p in finite 
time. In general, this requires similar continuity assumptions on r. Consider, for example, 
the case where V = Z+, v \p\ = (bJ +1)2» and r = vLPJ ■ This leads to p = (bJ +1)2, which 
has finite escape time. Analogous behavior for x results if u is not bounded. In the usual 
case, however, U, V, and Z are taken compact, avoiding such behavior. Similar discussion 

holds for models BD and BDV. 
In [38], Brockett gives many examples of systems modeled with the above equations, 

including buffers, stepper motors, and transmissions (cf. Example 3.4). 

§3.9   DISCUSSION OF REVIEWED MODELS 

At the risk of oversimplification, WHS, TDA, NKSD, and ASL use autonomous switching; 
BGM uses autonomous switching and autonomous jumps; and BD uses a combination of 
autonomous and controlled switching. 

Also, comparing to systems with impulse effect [§2.2.3], we have the following. BGM 
can be modeled as a Class III system (cf. §5.2); TDA, and autonomous versions of WHS, 
NKSD, and ASL [§3.10] are special cases of Class III systems; the autonomous versions of 

BB and BD [§3.10] are Class II. 
From the control perspective, the TDA model is an autonomous system and the BGM 

is essentially so (although one can set parameters on jumps). The NKSD and ASL models 
focus on the "control automaton," coding the action of the controller in the mappings from 
continuous states to input symbols, through automaton to output symbols, and back to 

controls. 
Witsenhausen adds a control to the continuous component of the system dynamics. 

Brockett 's BD/BDV models allow the possibility of both continuous and discrete controls to 
be exercised as input to the continuous and symbolic dynamics of the systems, respectively. 
That is the plant not only responds to the state (or output) of the finite machine, but to 
continuous commands generated separately as weU. One may argue that this is largely a 
matter of level of modeling. For instance, one can assume (as in NKSD and ASL) that the 
"low-level" loops have been closed, eliminating the continuous control from the design of 
the "high-level" ones. Nevertheless, our approach in this thesis is more in spirit with those 

of Witsenhausen and Brockett. 
From the original papers, it is clear that the models above were primarily developed 

for a variety of purposes: TDA and BGM for modeling and simulation, NKSD and ASL 
for controlling continuous systems with computer programs or "higher level controllers," 
and Brockett's for modeling the action of (hierarchical) motion control systems. Moreover, 
there is a direct trade-off between the generality of a model and what one can prove about 
such a model. Therefore, "containment" of one model in another does not reflect any bias 
of the more general model's being "superior." Indeed, in §5 we develop a very general, 
abstract model which captures many hybrid phenomena and the models reviewed here. 
Later, however, we place restrictions on this model in order to solve a related control 
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problem [§10]. 

§3.10   COMPARISON OF REVIEWED MODELS 

In the sequel, we explore the capabilities of the hybrid systems models WHS, TDA, BGM, 
NKSD, ASL, and BD, described above. Clearly, these models were developed for different 
purposes with assumptions arising accordingly. Nevertheless—and for expediency—we note 
some containment relations among these models. 

Here, A contains B means that every system described by the equations of model B 
can be described by the equations of model A. When the equations of a model describe a 
system, we say that the model implements that system. 

First, since we are not interested in control yet, we develop autonomous versions of the 
models WHS, NKSD, ASL, and BD above, in which the control inputs are replaced by fixed 
functions of state. For instance, an autonomous version of WHS (denoted WAUT) arises 
by dropping dependence of the vector field on input u(t). 

Next, we construct an autonomous version of NKSD. An autonomous version of ASL 
(denoted ASLAUT) can be constructed similarly. We refer to the following as NKAUT. 

x(t)   =   f(x(t),q(t)), 

q+(t)    =   v(q(t),AD(x(t),q(t))), 

where x{t) € Rn and q{t) € Q ^ {1,... ,N}. Here, / : Rn x Q -> Rn, v : Q x / -»■ Q, and 
AD : Rn x Q -» I ~ {1,..., M}. Note that we have incorporated the output equations into 
the /, v, and AD functions. The AD map is restricted as discussed in §3.6. 

Here is an autonomous version of the BD model, which we refer to as BAUT: 

x(t) = f(x(t),z\p\), 

p{t) = r{x(t),z\p\), 

z\p\    =   v(x[tp\,z\p\,[p\), 

where x(t)€Rn,p(t)'eM, z\p\ € Z a {1,... ,N}, f : Rn x Z -»■ Rn, r: W1 x Z -> 1, and 
K:RnxZxZ->Z. As in BD, r is restricted to be nonnegative. 

By construction, the original models contain their autonomous versions. Note also that 
BAUT is distinct from the TDA and NKAUT models since, for instance, it allows arbitrary 
dependence of the discrete dynamics v on x[tp\, which can lead to partitions not permitted 
by the other two models. We have other containment relations as follows. 

Remark 3.6 BGM contains TDA. 

Proof. Given an arbitrary TDA equation, choose, in the BGM model, Xq = Rn, Uq = 
C(q) = Rn\M„ /, = /(-,?), Gq{x) = (x,p) if x E Mq,p, and hq,p = -gq,p for all q € Q, 

p€l(q). O 

Remark 3.7 NKAUT contains TDA. 

Proof. Suppose we are given an arbitrary TDA equation (i.e., a differential automaton 
A). Let primed symbols denote those in the NKAUT model with the same notation as 
those for the differential automaton. Set Q' = Q, /'(-,?) = /(•,?), q € Q'. This duplicates 
the continuous dynamics. 
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Now, for each q 6 Q', choose the small topology on Rn 

Tq = C(q)U   U   Mw 

where 0 < e < a(A)/3 and 

M'iP = {xe Rn|dist(x, Mg,p) < e}. 

The non-empty join irreducibles are C(q) and Mg
e
p, Ae

qp, p € I(q), where 

Alp = Mlp\Mq,p. 

Let iq,p, jq,p, kq denote the symbols associated with the join irreducibles Mg
e
iP, AqtP, and 

C{q), respectively. Defining 

v'(q,3q,p)   =   1i 

u'(q,kq)    =   q, 

duplicates the discrete dynamics. 1-1 

Remark 3.8 BGM contains BAUT. 

Proof.   Given an arbitrary BAUT equation, choose, in the BGM model, 

Xi = fxlxRxl, 

Ux = Kn x (-ex), 1) x R x R, 

fl(x,q,p,z) = [f{x,z), r{x,z), 0, 0], 

Gx(x,q,p,z) = (a:,0,p + l,i/(a;,2,p),l), 

D 
Notice the last proof shows that in the BGM model, setting parameters on hitting 

switching boundaries can be implemented with the transition functions. Note also that 
unlike the first two proofs, the last construction uses a different (but equivalent) state space 
for BGM and BAUT. In any case, we do not use the fact that BGM contains BAUT in 
further results. Also, we do not compare among BGM, NKSD, and BD here. We also notice 
that WAUT and ASLAUT contain TDA. 

Summarizing results needed later, the WHS, BGM, NKSD, and ASL models contain the 
TDA model; BD contains BAUT. Thus in the sequel, when examining capabilities of these 
models, the presentation concentrates on the TDA and BAUT models, since all capabilities 
possessed by both of them are automatically possessed by all those reviewed above. Extra 
capabilities of the BGM model are noted as warrants. 

§3.11   NOTES 

Our classification of hybrid phenomena and the review of all but Witsenhausen's model 
appeared in [32]. The comparison results for those five minus the ASL model is from [31]. 



Chapter 4 

Classification of Hybrid Systems 

In this chapter we classify hybrid systems according to their structure and the phenomena 
that they exhibit. The hierarchy of classes we explore are as follows (for both autonomous 
and controlled systems). First, there are general hybrid dynamical systems (GHDS). These 
are then refined to the concept of hybrid dynamical system, or simply hybrid system, studied 
in this thesis. Then there are two restrictions of hybrid systems, in which the discrete 
dynamics are suppressed and no continuous-state jumps are allowed: switched systems and 
continuous switched systems. 

Along the way we also explicitly define the dynamics of general hybrid dynamical sys- 
tems. 

§4.1   GENERAL HYBRID DYNAMICAL SYSTEMS 

Recall the definition of a general dynamical system (GHDS): 

tf = [Q,E,A,G], 

with its constituent parts defined in §1.4. Also recall the notation and shorthand from that 
section. We now offer the following observations, expanded from that section. 

Dynamical Systems. First, note that in the case |Q| = 1 and A = 0 we recover all dynam- 
ical systems. Thus, the class of GHDS includes systems described by ordinary differential 
equations, difference equations, and digital automata (which include finite automata, push- 
down automata, Turing machines, Petri nets, etc.) 

Hybrid Systems. Next, the case |Q| finite, each Xq a subset of Rn, and each T, = R largely 
corresponds to the usual notion of a hybrid system, viz. a coupling of finite automata 
and differential equations [31, 32, 66]. The two are coupled at "event times" when the 
continuous state hits certain boundaries, prescribed by the sets Ag. We thus include the 
examples containing the discrete phenomena discussed in §3.2: collisions, relays, hysteresis, 
etc. This is proven more" formally in §5, where we examine the following useful extension, 
repeated from §1.4: 

A hybrid system is a general hybrid dynamical system with Q countable, and 
with r, = R (or R+) and Xq C R*«, dq e R+, for all q 6 Q. In the notation 
above, it may be written as 

[Q.[W«6Q,Rf,{/«}«€Q].A,G], 

69 
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where fq is a vector field on Xq C Rdq ■ 

Here, we may take the view that the system evolves on the state space R* x Q, where R* 
denotes the set of finite, but variable-length real-valued vectors. For example, Q may be 
the set of labels of a computer program and x € R* the values of all currently-allocated 
variables. If N = snp{dq}qeQ is finite, we may take the state to belong to the so-called 

carrier manifold MN. 

EXAMPLE. An interesting example motivated above is scientific calculations. More precisely, 
we can model Smale's tame machines [19] in this framework. 

Changing State Space. The state space may change. This is useful in modeling com- 
ponent failures or changes in dynamical description based on autonomous—and later, 
controlled—events which change it. Examples include the collision of two inelastic par- 
ticles or an aircraft mode transition that changes variables to be controlled [103]. 

We allow the Xq to overlap and the inclusion of multiple copies of the same space. This 
may be used, for example, to take into account overlapping local coordinate systems on a 

manifold [9]. 

Refi nements.    We may refine the concept of general hybrid dynamical system H by adding: 

• inputs, including control inputs, disturbances, or parameters (see general controlled 

hybrid dynamical system below). 

• outputs, including state-output for each constituent system as for dynamical systems 

[§2.1.2] and edge-output: 

ff'=[Q,£,A,G,0,?7], 

where r\ : A -> O produces an output at each jump time. 

I,F C S, sets of initial or final states. 

• A : A ->• R+, the jump delay map, which can be used to account for the time which 
abstracted-away, lower-level transition dynamics actually take. 

EXAMPLE. Think of modeling the closure time of a discretely-controlled hydraulic 
valve or trade mechanism imperfections in economic markets. 

• 

• Marked states, timing, or input and output for any constituent system. 

Example 4.1 (Reconciling Time Scales) Suppose that each constituent dynamical sys- 
tem Y,q of H is equipped with a timing map. That is r = {Tq}qeQ where 

Tq:XqxTq^R+. 

Then, we may construct trajectories for H, i.e., a function from "real-time" to state. 
This is discussed in more generality in §4.3 below. 
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Hierarchies. We may iteratively combine hybrid systems Hq in the same manner, yielding 
a powerful model for describing the behavior of hierarchical systems (cf. Baas's hyper- 
structures [8] and Harel's Statecharts [69]). 

Adding Control. Likewise, a general controlled hybrid dynamical system (GCHDS) is a 
system 

tfc = [Q,£,A,G,V,C,F], 

with its constituent parts defined in §1.4. 
The admissible control actions available are 

• the continous controls u € Uq, exercised in each constituent regime, 

• the discrete controls v € Vq, exercised at the autonomous jump times (which occur 
on hitting the set A), 

• the intervention times and destinations of the controlled jumps. 

NOTES. 

1. Disturbances and other nondeterminism may be modeled by partitioning U, V, and 
C into portions that are under the influence of the controller or nature respectively. 

2. The model includes that posed by Branicky, Borkar, and Mitter [32] and thus several 
other previously posed hybrid systems models [5, 9, 38, 114, 135, 152, §3.1]. It also 
includes systems with impulse effect [10, §2.2.3] and hybrid.automata [57, §2.2.6]. See 
§5.2. 

3. We could, but do not for pedagogical reasons and later results, combine autonomous 
and controlled jumps by defining a set-valued autonomous jump map G' : AuC -> 2s 

by 

G W " \ F(s) U {s},    a G C. 

§4.2   CLASSIFYING GHDS 

The scope of hybrid dynamical systems presents a myriad of modeling choices. In this 
section, we classify them according to their structure and the discrete phenomena they 
possess. Below, the prefixes "c-," "d-," and "t-" are used as abbreviations for "continuous-," 
"discrete-," and "time-" respectively. If no prefix is given, either can be used. 

NOTE. To respect the historical development of the subject of hybrid systems and the 
cases of current high interest, we colloquially use "discrete" when referring to the index 
set, "continuous" when referring to the constituent state spaces, and "time" when referring 
to the constituent transition semigroups. We use these even though our model allows, for 
instance, the index state to be a continuum and the constituent state spaces to be discrete 
topological spaces. 

Our structural classification is roughly captured by the following list. 

• Time-uniform.  The semigroups may be all be the same for each q, denoted S = 
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• Continuous-time, discrete-time, sampled-data. Each constituent dynamical sys- 
tem may be of a special type that evolves in continuous-time (r = R), discrete-time 
(r = Z), or a mixture. However, if the GHDS is time-uniform, we refer to it by the 
appropriate label, e.g., continuous-time-uniform. 

• C-uniform. The ambient state space may be the same for each q, that is, 

E = [X,{r,},6Q,{#,},eQ]. 

• C-Euclidean, c-manifold. Each ambient state space may be Euclidean (subset of 
Rn in the usual topology) or a smooth manifold. 

• D-compact, d-countable, d-flnite, n-state. Special cases arise when the index 
space is compact, finite, or countably infinite. If \Q\ = n, we say the GHDS is n-state. 

• D-concurrent versus d-serial. We may or may not allow more than one discrete 
jump to occur at a given moment of time. This is related to the next classification. 

• Dynamically-uniform. The dynamics may be the same for each q. Strictly, such a 
case would also require that the system be c-uniform and time-uniform: 

E = K*,W {rg}9ee, 4>\ (or E = [{*,},€«, i^h^ /I).       for a11 9 e Q- 

In these systems, then, the interesting dynamics arises from the transition map Gq. 
Such is the case with timed automata (see §2.2.6 for references). 

• Deterministic versus nondeterministic. 

• Nonautonomous versus autonomous. The continuous (or discrete) portions of the 
dynamics may or may not depend on time (or count of events) or external controls. To 
distinguish between time and control dependence, we use the next two classifications. 

• Time-varying versus time-invariant. 

NOTE. We do not explicitly deal with time-varying systems here, assuming it is taken 
care of in the usual way, viz. appending another state to represent time. 

• Controlled versus uncontrolled. 

Finally, a hybrid dynamical system may also be classified according to the discrete 
dynamic phenomena that it exhibits as follows (cf. [32]). 

• Autonomous-switching. The autonomous jump map G = v is the identity in its 
continuous component, i.e., v : A -» S has u(x, q) = (x, q ). 

• Autonomous-impulse. G = J is the identity in its discrete component. 

• Controlled-switching. The controlled jump map F is the identity in its continuous 

component, i.e., F(x,q) C {x} x Q. 

• Controlled-impulse. F is the identity in its discrete component. 
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With this notation, our GHDS model admits some special cases: 

• H autonomous-impulse with \Q\ = 1 and T = E is an autonomous system with 
impulse effect [10]. 

• H c-uniform, time-uniform, and autonomous-switching is an autonomous switched 
system [30]. 

• H continuous-time-uniform, c-Euclidean-uniform, d-countable, is what we call a hy- 
brid system. 

§4.3   GHDS DYNAMICS 

In this section, we place some restrictions on GHDS in order to prove some behavioral 
properties. We assume that T is an ordered set with the least upper bound property, 
equipped with the order topology. Note that this implies T is a lattice [88]. We also assume 
addition to be order-preserving in the sense that if a > 0, then a + b > b. This last 
assumption ensures, among other things, that 

r+ = {a € r | a > 0} 

is a semigroup; likewise for T~, defined symmetrically. For brevity, we call such a group 
(semigroup) time-like. 

EXAMPLE. The most widely used time-like groups are E and Z under addition, each in the 
usual order. The rationals are not allowed since they do not have the least upper bound 
property (though they are a lattice). However, pZ, p € E, is allowed. Example semigroups 
are M+, pZ+, and the free monoid generated by a finite, ordered alphabet (in the dictionary 
order). 

In this section we consider several initial value problems for GHDS. First, in the time- 
like case, given dynamical system [X,T,<p], we may define the positive orbit of the point 
xas P(x) = (/>(x,r+). 

NOTE. The negative orbit B(x) may be defined even in the non-reversible case by y € B(x) 
if and only if x S P(y) [17]. 

Problem 4.2 (Reachability Problem)  Compute the positive orbit for general hybrid dy- 
namical system H. 

The positive orbit is the set defined as follows. We consider only initial points in I = 
X\A. We restrict ourselves to the case where Aq is closed1 and Dq n Aq = 0. Suppose 
so = (zcbgo) € I. If Pgo(x0) = <£90(a:o,r+) does not intersect Aqo we are done: the positive 
orbit is just Pgo(a:o)- Else, let 

9l = inf{5 G r+ | <pqo{x0,g) e Aqo}. (4.1) 

^e may relax this to d'Aq, defined in Equation (2.4), trivially. 
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Since Aqo closed, T+ is time-like, and <f> is continuous, the set in Equation (4.1) is closed, 
gx exists, and xx = <j>qo(x0,9i) € Aqo. Define s, = Gqo{x1) G / and continue. D 

When a GHDS is time-uniform with time-like group I\ it induces a r+-transition system 
[I, r+, $]. In this case, we may define its (forward) trajectory as a function from T+ into 

I. 

Problem 4.3 (Trajectory Problem) Compute the trajectories for general hybrid dynam- 

ical system H. 

We want to compute $(sO,0/) for gf G T+ and s0 = (x0,qo) e I.   Let 50 = 0.   The 
construction and arguments are similar to above, so we give the (t - l)th step: 

gi+l = mi{g eTf \g<gf- gu (f>qi{xi,g) € Aqi}. (4.2) 

If the set is ever empty, we are done. On the interval g € \g»gi+i) the system evolves 
according to </>(*,,9 ~ 9i)- Also, gi+1 - 9i > 0 is assured by the fact that topological groups 
are regular [113, p. 145]. LJ 

The above construction allows us to formulate stability and finite-time reachability prob- 

lems. 
Note that trajectories may noi be extendible to all of T+, i.e., we have not precluded 

the accumulation of an infinite number of jumps in finite time. See Example 10.7. This 
can be removed in the case of hybrid systems by, for example, assuming uniform Lipschitz 
continuity of the vector fields and uniform separation of the jump and destination set A 

and D. See §10. 

NOTE. From above, if DqC\Aq = 0 and Aq closed then (positive) orbits and trajectories exist 
(up to a possible accumulation time of finite jumps) and are unique. Using [17, Theorem 
3.4.11], it is enough that A, = D, U (Xq\Aq) be locally compact at each x € Dq and f(x) 

subtangential to A, for all x € Dq D dDq. 

Similarly to reachability, we have the following. 

Problem 4.4 (Accessiblity Problem) Compute the set of points accessible under all ad- 
missible control actions from initial set I for general controlled hybrid dynamical system 

system Hc. 

The answer is largely the same as above except that we must vary over all admissible 

;        control actions. 

§4.4   HYBRID DYNAMICAL SYSTEMS 

In this section, we give, explicit representations of the different classes of hybrid systems 
arising from the definitions above. We concentrate on the c-continuous-time, c-uniform, 
d-finite, time-invariant, autonomous case. Extensions to other cases above are straightfor- 

ward. 

NOTE. Recall the notation q+, introduced in §3.2.5. 
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A (continuous-time) autonomous-switching hybrid system may be defined as fol- 

lows: 
x(t)   =   f(x(t),q(t)), U3) 

q+(t)    =   v{x(t),q(t)), 

where x{t) G Rn, q(t) G Q =s {1,... ,N}. Here, f{-,q) : R" -> Rn, q G Q, each globally 
Lipschitz continuous, is the continuous dynamics of Equation (4.3); and v:Rn xQ ->Q 
is the finite dynamics of Equation (4.3). 

Thus, starting at [x0,i], the continuous state trajectory x(-) evolves according to x = 
f(x,i). If x(-) hits some (i/(-,i))_1 (j) at time h, then the state becomes [x(ti),j], from 
which the process continues. 

Clearly, this is an instantiation of autonomous switching. Switchings that are a fixed 
function of time may be taken care of by adding another state dimension, as usual. Examples 
are the Tavernini and autonomous Witsenhausen models. 

By a c-controlled autonomous-switching hybrid system we have in mind a system 

of the form: 
x(t)   =   f(x{t),q(t),u{t)), (A4) 

q+(t)    =   v(x(t),q(t)Mt)), 

where everything is as above except that u{t) € Rm, with / and v modified appropriately. 
An example is Witsenhausen's model. 

An is a system 
x(t)   =   f(x(t)), x(t)?M ,    , 

x+(t)   =   J(x(t)), x(t) € M ^ ' 

where x(t) E Rn, and J : Rn -> Rn. Examples include autonomous systems with impulse 
effect. 

Finally, a hybrid system with autonomous switching and autonomous impulses (i.e., the 
full power of autonomous jumps) is just a combination of those discussed above: 

x(t)   =   f(x(t),q(t)), 

x+(t)   =   J(x(t)), 

q+(t)    =   u(x(t),q(t)), 

where x(t) € Rn and q{t) GQcZ. Examples include the BGM model and hence all the 
other autonomous models in §3. 

Likewise, we can define discrete-time autonomous and controlled hybrid systems by 
replacing the ODEs above with difference equations. In this case, Equation (4.3) represents 
a simplified view of some of the models in [38]. Also, adding controls—both discrete and 
continuous—is straightforward. Finally, non-uniform continuous state spaces, i.e., x(t) G 
X9(t), may be added with little change in the foregoing. 

§4.5   SWITCHED SYSTEMS 

We have in mind the following model as a prototypical example of a switched system: 

x(t) = fMt)),        i 6 Qs {!,...,#}, (4.6) 

where x(t) G R". We add the following switching rules. 

• Each fi is globally Lipschitz continuous. 
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• The z's are picked in such a way that there are finite switches in finite time. 

Switched systems are of "variable structure" or "multi-modal"; they are a simple model 
of (the continuous portion) of hybrid systems. The particular i at any given time may be 
chosen by some "higher process," such as a controller, computer, or human operator, in 
which case we say that the system is controlled. It may also be a function of time or 
state or both, in which case we say that the system is autonomous. In the latter case, 
we may really just arrive at a single (albeit complicated) nonlinear, time-varying equation. 
However, one might gain some leverage in the analysis of such systems by considering them 

to be amalgams of simpler systems. 
Models like Equation (4.6) have been studied for stability [60, 119]. However, those 

papers were predominantly concerned with the case where all the ft are linear. We discuss 

the general cases in §8. 
We also discuss difference equations 

x[k + l] = fi(x[k + l]),        ieQ~{l,...,N}, (4.7) 

where x[k] € W1.   Here, we only add the assumption that each ft is globally Lipschitz 
continuous. Again, these equations can be thought of as the "continuous" portion of the 
dynamics of hybrid systems combining difference equations and finite automata [38]. 

More abstractly, a general switched system is a system 

a = [Q,E,A,R], 

where all is as defined as above, except the operators Aq, which are restricted to be 
autonomous-switching, and the switching rules given by R. We will not be more pre- 
cise here, noting that the cases of usual interest (i.e., when R depends on the state) have 
been taken care of above. Nevertheless, the abstraction is helpful, as seen below, where we 
concentrate on the non-general case. 

Our abstracting away of the finite dynamics in studying switched systems above can 
be motivated by "verification by successive approximation" [2]. For instance, consider the 
following set of (initial state-dependent) switching sequences: 

(C) Constrained (hybrid systems) 

(A) Arbitrary (IFS, see §8) 

Then, examining the reachability sets of these systems with respect to safety and liveness 
constraints given by sets, we have the following picture: 

• Safety: 11(C) C H{A) C Safe 

• Liveness: Live C K{C) C K{A) 

Such containment relations allow one to prove properties of the hybrid system by comparison 
with the switched system and vice versa. 

§4.6   CONTINUOUS SWITCHED SYSTEMS 

We also study continuous switching systems.   A continuous switching system is a 
switching system with the additional constraint that the switched subsystems agree at 
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the switching time. More specifically, consider Equation (4.6) and suppose that at times 
tj, j = 1,2,3,..., there is a switch from fkj_r to fkj. Then we require /*,-_!(x(*j),tj) = 
fk-{x(tj),tj). That is, we require that the vector field is continuous over time. 

This constraint leads to a simpler class of systems to consider. At the same time, 
it is not overly restrictive since many switching systems naturally satisfy this constraint. 
Indeed they may even arise from the discontinuous logic present in hybrid systems. For 
example, we might have an aircraft where some surface, say the elevator, controls the 
motion. But this elevator is in turn a controlled surface, whose desired action is chosen 
by a digital computer that makes some logical decisions. Based on these decisions, the 
computer changes elevator inputs (say current to its motor) in an effectively discontinuous 
manner. However, the elevator angle and angular velocity do not change discontinuously. 
Thus, from the aircraft's point of view (namely, at the level of dynamics relevant to it), 
there are continuous switchings among regimes of elevator behavior. Therefore, continuous 
switching systems arise naturally from abstract hybrid systems acting on real objects. 

Another problem arises in examples like the one we just introduced: the problem of 
unmodeled dynamics. Suppose the pilot, from some quiescent operating point, decides to 
invoke hard upward normal acceleration. The elevator starts swinging upward until it is 
swinging upward at maximum angular velocity (in an effort track the violent maneuver 
requested by the pilot). Then, some higher process makes a calculation and decides that 
continuing this command would result in an unsafe configuration (say attack angle beyond 
critical). It decides to begin braking the elevator motor immediately to avoid this situation. 
In this case, the desired angular velocity profile of the elevator (over the whole move) is 
most probably trapezoidal. However, the elevator is a dynamic element that can't track 
that desired profile exactly. We may want to know how taking these unmodeled dynamics 
into account affects our already modeled dynamics. We may also want to know how high 
our control gains should be to track within a certain error. In §8 we develop theory that 
allows to answer both these questions. 

§4.7   NOTES 

Our identification of discrete phenomenon and examples is from [32]. We started to classify 
hybrid systems in [30]. That paper also studied switched systems. Continuous switched 
systems were pursued in [21], summarized in [28] 
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Chapter 5 

Unified Hybrid Systems Model 

In this chapter we introduce an abstract, unified hybrid systems model which is shown to 
capture all identified discrete phenomena arising in hybrid systems and subsume all reviewed 
and classified hybrid systems models. The resulting model is useful for posing and solving 
hybrid analysis and control problems. 

§5.1   OUR UNIFIED MODEL 

We now present our over-riding hybrid systems framework in generality. We refine it later 
when we set up our control problem in §10. In the nomenclature of §4, the result is a 
controlled hybrid system with delay maps. For simplicity, though, the destination sets are 
specified a priori instead of by the collection of set-valued maps F. Also, with no real loss 
of generality, we consider Ui = U,Vi = V,i€ Z+. However, we do generalize to allow the 
vector field to depend on the continuous state at the last jump time. 

Specifically, our discrete state space is Q = Z+. The continuous state space for x{-) is 
X = {Xi}£LQ where each Xi is a subset of some Euclidean space Edi, ck <E Z+. We also 
specify a priori regions Ai,d,Di C X» i € Z+. These are the autonomous jump sets, 
controlled jump sets, and jump destination sets, respectively. Let A, C, and D denote 
the unions \JiA x {i}, \JtCi x {i}, and \Ji A * {*}, «' € Z+I respectively. Let U, V be the 
sets of continuous and discrete controls, respectively. The following maps are assumed to 
be known: 

1. vector fields ft : Xi x Xi x U -> Rdi, t € Z+. 

2. jump transition maps Gi : Ai x V -* D. 

3. autonomous transition delay Aaj : Ai x V -> 1+. 

4. controlled transition delay Aci : Cj x D -» 1+. 

As shorthand, we may define G : A x V -> P in the obvious manner. Similarly, for A„ and 

Ac. 
The dynamics of the control system can now be described as follows. There is a sequence 

of pre-jump times {n} and another sequence of post-jump times {Ti} satisfying 0 = 
To < n < Ti < T2 < T2 < • • • < oo, such that on each interval [TJ-I,TJ) with non-empty 
interior, x(-) evolves according to the differential equation 

x(t) = £(<),        t > 0 

79 
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in some Xi, i € Z+.   At the next pre-jump time (say, T,-) it jumps to some Dk € Xk 

according to one of the following two possibilities: 

1. X(TJ) e Ai, in which case it must jump to x{Tj) = Gi{x(Tj),Vj) € D at time Fj = 
TJ + Aa!i{x(Tj),Vj), VJ € V being a control input. We call this phenomenon an 
autonomous jump. 

2. X{TJ) € Ci and the controller chooses to—it does not have to—move the trajectory 
discontinuously to x{Tj) € D at time Tj = TJ + AC)i(x(rj),x(rj)). We call this a 
controlled (or impulsive) jump. 

See Figure 5-1. 
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Figure 5-1: Example dynamics of our unified model. 

For t e [0,oo), let [t] = maxj{Ij | Tj < t}. The vector field £(t) of Equation (3.1) is 

given by 
m = fi(x(t),x[i\Mt)), (s-1) 

where i is such that x{t),x[t] G X{ and u(-) is a [/-valued control process. 

NOTE. The autonomous version of this model (including no controlled jumps) yields unique 
trajectories in the case of, for instance, Ai closed and A> n A = 0. See §4. 
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§5.2  INCLUSION OF DISCRETE PHENOMENA AND PREVIOUS 
MODELS 

We now show how this framework encompasses the discrete phenomenon of §3.2, and how 
it subsumes the hybrid systems models reviewed in §3 and classified in §4. 

First, a simplification. If a set of parameters or controls is countable and discrete, such 
as a set of strings, we may take it to be isomorphic with a subset of Z+. On the other 
hand, consider a set of parameters or controls, U, where U is a compact, connected, locally 
connected metric space U. By the Hahn-Mazurkiewicz theorem [75], U is the continuous 
image of [0,1] under some map and thus we may set U = [0,1] without any loss of generality. 
Thus, we may assume below without any loss of generality that parameters and controls 
take values in a subset Pcf". 

Autonomous Switching. We show that autonomous switching can be viewed as a special 
case of autonomous jumps, which are taken care of next. Consider the differential equation 
with parameters 

x = f(x,p), 

where x G R", p € P C Rm closed, and / : Rn x P -»• R" continuous. Let, v : Rn x P -> P 
be the function governing autonomous switching. For example, in the Tavernini model, v 
is the "discrete dynamics." 

Then, since Rn has the universal extension property [113, §A], we can extend / to a 
continuous function F : Rn x Rm -» Rn. Now, consider the ODE on Rn+m: 

x   =   F(x,0, 

i = o, 

where x 6 Rn, f € Rm, and F : R" x Rm -> Rn continuous. Let, the transition function be 
G : Rn x P -¥ Rn x P with G{x,p) = (x, v(x,p)). 

Autonomous Jumps.    This is clearly taken care of with the sets A*. 

Controlled Switching.    A system with controlled switching is described by 

x{t) = f(x(t),u(t)),        x(0)=xQeRd, 

where u(-) is a piecewise constant function taking values in U C Rm and / : W* x U -> Rd 

is a map with sufficient regularity. There is a strictly positive cost associated with the 
switchings of u(-). In our framework, let x'(-) = [z(-), u{-)]T be the new state process with 
dynamics 

x'(t) = /'(*'(')),        /'(•) = [/(•), 0]T, 

taking values in X = {Xi}£0 
where each x*is a C(W of ^ x U- Set Ci = Di = Xi> Ai = 0 

for i G Z+. Switchings of u(-) now correspond to controlled jumps with the associated costs. 

Controlled Jumps.    This is clearly taken care of with the sets Q. 

Digital Automata. A variety of automata are automatically subsumed by inclusion of the 
Tavernini, BGM, NKSD, ASL, and Brockett models, which is demonstrated next. Inclusion 
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of general digital automata follows by using a countable symbol set I in, for instance, the 

NKSD model. 

Tavernini and BGM Models. Let primed symbols denote those in our model with the 
same notation as_those for BGM. It is obvious that our model includes the BGM model by 
choosing X'i =TuAi = dXi UdUu A = Uh d = 0, and 

G'j(x) = (m(Gj(x)); MGj(x))) 

for x eUj. G' need not be defined on dXj\dUj, but for completeness we may define 
G/.(x) _ (x. j) for x e dXj\dUj. Since BGM contains Tavernini's model, our model does 

as well. 

NKSD and ASL Models. Our model includes the ASL model. First, choose X{ = Rn x R3, 
i e I.  Then, note that the sets AD"1«, t € I, form a partition of Y.  Define the sets 

Mi = /i_1(A£»_1(i)) and define 

Ai=    U    Mr 

Then define 
fi = [/, 0, 0, 0] 

with dimensions representing x, q, i, and o. The model is complete by specifying 

Gi{x) = (x,u{q,j),j,r){q);j) 

HxeMjCAi. 
Inclusion of NKSD is similar. However, since the resulting partitions depend on q one 

must use multiple copies of Xi and h as above, one for each ADg, q € Q. We must 
also append the state t to the state vector X (and use [*]), with the obvious differential 
equations/transitions. Finally, r\ depends on both q and j in this case. 

A 
Brockett's Models.    Our model includes Brockett's BD model by choosing Xi = Kn x 

and defining 
/ = [/, r, 0, 0, 0] 

with dimensions representing x, q = p - \j>\, i = bJ > «> and z. Also, set Ai = Mn x {1} x R3, 
D1=R"x {0} x Z3., and Gx((x, 1,i,v,z),v') = (x,0,i + 1,t/,i/(x,z,v);l). BB is seen to 
be included in the same manner, but removing the state dimension for z. It is clear that 

this can be extended to include BDV. 

Setting Parameters and Timers. A system which, upon hitting boundaries, sets parame- 
ters from an arbitrary compact set P CW can be modeled in our framework by redefining 
Xi = Xi x W, and V = V x P, and defining ff-.XixXixU -> M* x R* as 

fi(xlp,y,q,'u) = \fi{x,y,u), 0]T 

and G': A x P xV x P ^ D x P as 

G'(x,p,v,p') = [G(x,v),p']T, 



§5.3    Example     83 

each for all possible arguments. Likewise, one can redefine the switching cost and delay 
appropriately. 

A system which sets timers upon hitting boundaries can be modeled by a vector of the 
rate equations in Brockett's BDV model of hybrid systems, which in turn can be modeled 
in our framework as previously discussed. 

§5.3   EXAMPLE 

Consider again the hysteresis example of Equation (1.1). For specificity, consider a system 
with control, namely, / = H(x) + u. It can be modeled as follows. The state space is 
X = {X-i,Xi}, with X-i = [-A,oo) and Xi = (-oo,A]. The continuous dynamics is 
given by 

/_!    =   u-1, 

/i    =   u + l. 

The discrete dynamics is governed by the autonomous jump sets A-\ and A\ and their 
associated transitions, which are, respectively, 

(-A,-l)   M-   (-A,+l), 

(+A,+1)   ■->   (+A,-1). 

§5.4   NOTES 

Our unified model first appeared in [32]. 
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Part II 

Analysis of Hybrid Systems 
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Chapter 6 

Topology of Hybrid Systems 

In this chapter, we discuss topological issues associated with hybrid systems. Recall from 
§1.6 that, in general, hybrid systems do not give rise to trajectories that are continuous 
in the initial condition. Therefore, the best one can hope for, in general, is continuity of 
each of the constituent maps. By construction though, each extended transition map, <f>q, 
is continuous. In this chapter, we discuss topologies such that the discrete component of 
the transition map, r)(-,q), is continuous for each q. In particular, we examine topologies 
for achieving continuity of maps from a set of measurements of continuous dynamics to a 
finite set of input symbols (AD map). 

Then we look at "completing the loop" by composing the AD map with that from a 
finite set of output symbols back into the control space for the continuous dynamics (DA 
map). Finding some anomalies in completing this loop, we discuss a different view of 
hybrid systems that can broach them and is more in line with traditional control systems. 
The most widely used fuzzy control system is related to this different view and does not 
possess these anomalies. Indeed, we show that fuzzy control leads to continuous maps (from 
measurements to controls) and that all such continuous maps may be implemented via fuzzy 
control. 

We end by drawing connections to the previous and next chapters. 

§6.1   INTRODUCTION 

In traditional feedback control systems—continuous-time, discrete-time, sampled-data—the 
maps from output measurements to control inputs are continuous (in the usual metric- 
based topologies). When dealing with hybrid systems, however, one immediately runs into 
problems with continuity using the "usual" topologies. Whereby we begin ... 

In this chapter, we discuss some results relating to the topology of hybrid (mixed con- 
tinuous and finite dynamics) systems. We begin with a model of a hybrid system as shown 
in Figure 6-1. 

We are interested in maps from the continuous plant's output or measurement space 
into a finite set of symbols. We call these AD maps. We are also interested in the map 
from this symbol space into the control or input space of the continuous plant {DA map). 
In many control applications, both the measurement and control spaces are (connected) 
metric spaces. Therefore, we keep our discussion germane to such assumptions. 

The chapter is organized as follows: In the next section, we discuss AD maps. First, we 
illuminate the general issues. Then, we examine at length an AD map proposed in [114]. 
We verify that the map is indeed continuous, developing enough technical lemmas to easily 
add the fact that the symbol space topology they constructed is the same as the quotient 
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Figure 6-1: Prototypical hybrid system. 

Interface 

topology induced by their AD map. 
In §6.3 we discuss what happens if we try to impose continuity from the measurement 

to the control spaces. We first illuminate why this is unreasonable given the fact that the 
measurement and control spaces are normally connected metric spaces. We then impose a 
new topology on the control space that gives rise to continuous maps. 

In §6.5 we introduce a different view of hybrid systems. This view allows us to meaning- 
fully discuss continuity of maps from the measurement to control spaces without introducing 
new topologies. We also show that the most widely used fuzzy logic control structure is 
related to this form, and that it indeed is a continuous map from measurements to controls. 
It is further demonstrated that these fuzzy logic controllers are dense in the set of such 

continuous functions. 
We end with a topological viewpoint that reconciles the results in this chapter to our 

discussion of hybrid system trajectories in the preceding one and our definitions of simulation 
in the next, simulation, our next topic. The Appendix to this chapter collects the proofs 
of parts of a technical lemma. The thesis Appendix §A reviews most of the topological 

concepts used. 

§6.2   CONTINUOUS AD MAPS 

§6.2.1   GENERAL DISCUSSION 

In this section, we discuss continuity of maps from the measurement space of the continuous 
plant into the finite symbol space. Such continuity is desirable when implementing control 
loops, since we want, roughly, small changes in measurement to lead to small changes in 

control action. 
The basic problem we have in going from the continuum, Y, into a finite set of symbols, 

I, is that I usually comes equipped with the discrete topology and the only continuous maps 
from Y to I in this case are constant (since Y is connected and any subset of I with more 
than one point is not). Therefore, we must search for topologies on I which are not the 

■ discrete topology. At first, we may be disheartened by the fact that this also precludes all 
Hausdorff, and even Tx topologies, from consideration. However, the topologies associated 
with (finite) observations are naturally T0 [141]. Fortunately, there do exist T0 topologies 
other than the discrete topology on any finite set of more than one point: 
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Example 6.1 Suppose X is a finite set having n > 1 elements. There exists a TQ topology 
on X that is not the discrete topology (and hence neither T\ nor Hausdorff). 

Proof.   Take as a basis the following subsets of X: 0, {xi},..., {xn_i}, X. □ 
Using this idea, a way of getting around the problem above is to append the symbol 

space, i", with a single new symbol, _L Then, we place the following topology on V = /U{±}: 
2/,J U {±}, where 21 is the power set of I. This topology on I' makes it homeomorphic 
to X in the proof above (when X and I' have the same number of elements). Therefore, 
it is To, but not T\. Now, we can create continuous maps from a continuum, Y, into /' as 
follows: Let Ai be N mutually disjoint open sets not covering Y. Let I = {1,..., N}, and 
define f{Ai) = i and f(Y - U A,) = -J- We claim / is continuous. It is enough to check 
the basis elements of the topology on /', which are the singleton sets of elements of I plus 
the set V itself. We have /_1(t) = Au open, for each i € I. Further, /_1(/') = Y, which is 
open. 

Another topology which works is the following: 0, {V U {J.} | V € 27}, with the Ai 
closed instead of open (see §6.3 for a use of a topology like this). There are presumably 
many other choices one can make. Below we examine at length one espoused in [114]. 

5 6.2.2   AD MAP OF NERODE-KOHN 

DEFINITION: 

The AD map is a map from the measurement space, Y, into a finite set of symbols, I. 
Nerode and Kohn [114] create a continuous AD map as follows: 

Algorithm 6.2 (Open Cover Topology)       1. First, take any finite open cover of the 
measurement space: Y - (J"=i At, where the Ai are open in the given topology of Y. 

2. Next, find the so-called small topology, Ty, generated by the subbasis Ai. This 
topology is finite (as we argue below) and its open sets can be enumerated, say, 
as B\,.. ■ ,Bp. 

3. Next, find all the non-empty join irreducibles in the collection of the B{ (that is, all 
non-empty sets Bj such that if Bj = BkLiBi, then either Bj = Bk or Bj = BL). Again, 
there are a finite number of such join irreducibles, which we denote C\,..., Cjv. 

4. Let the set of symbols be I = {1,..., N}. Further, define the function AD(y) = i if 
Ci is the smallest open set containing y. 

5. Create a topology, Tj, on / as follows. For each i e I, declare A = {j \ Cj C Q} to 
be open. Let 7/ be the topology generated by the A- 

Here is a simple example of the construction: 

Example 6.3 Let our measurement space beY = [0,3] and the open cover of this measure- 
ment space be 

Ai = [0,2),        A2 = (l,3]. 

The small topology generated by this subbasis can be enumerated as follows: B\ — 0, 2?2 = 
(1,2), B3 = [0,2), Ai = (1,3], Bb = [0,3]. Next, we find the non-empty join irreducibles: 

d = [0,2),   ■    C2 = (l,3],        C3 = (l,2). 
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Thus, we let our set of symbols be I = {1,2,3} and define the function AD as follows: 

AD(y) = < 
f i,  ye[0,1], 

2, y€ [2,3], 
3, y€ (1,2). 

The open sets D{ are found to be 

A = {1,3},        I>2 = {2,3},        Di = {3} 

and the resulting topology on I, Ti is 

0,        {3},        {1,3},        {2,3},        {1,2,3}. 

One can readily check that Ti is T0 and that AD is continuous. D 

FILTER INTERPRETATION: 

Here, we give an intuitive interpretation of the Nerode-Kohn approach to hybrid systems 
as described in [114] (herein, N-K) in terms of bandpass filters. Our discussion covers both 

AD and DA maps. 
The starting point of the N-K approach is an assumption that one can only realistically 

distinguish points up to knowing the open sets in which they are contained. Thus, one takes 
small topologies on the measurement (a.k.a. plant output) and control (a.k.a. plant input) 
spaces. The open sets in these topologies correspond to events that are distinguishable and 
achievable, respectively. For example, they represent measurement error or actuator error 
(or equivalence classes that are adequate for the task at hand). 

NOTE. However, the theory developed from this principle is destined to contradict itself. In 
particular, we have seen that closed sets may be distinguished (these arise from the partition 
of the measurement space into symbol pre-images, the so-called "essential parts.") More 
provocatively, we can distinguish single points in the measurement space. Consider as a 
representative example zero in [-1,1]. Then the open sets [-1,1], (0,1], and [-1,0) give us 
information to exactly deduce a; = 0. 

A good way to think of the open sets in the small topology is as notch filters. On the 
input side, we can pass our measurements through these filters. The level of information 
that we glean is, Did it go through the filter or not? Now, the total information from 
our sensors is summarized in the string of Yes/No answers.1 (Of course, we also implicitly 
have the filters themselves, that link these binary symbols with real regions of measurement 
space.) By taking the intersection of all filters which had a Yes answer, we obtain the join 
irreducible from which the measurement came. The input symbols of the finite automaton 
are simply "names" given to join irreducibles. By also taking into account the No answers, 
we obtain a partition of the measurement space into what N-K call essential parts. See 

Figure 6-2 
Likewise, on the output side one constructs the join irreducibles. The output symbols 

of the finite automata are exactly "names" given to these join irreducibles. Now, the finite 

i-That is, we can basically do peak detection (now allowing nonideal filters).   Biological auditory and 

olfactory systems may work like this [77]. 
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1    I 

Figure 6-2: Filter interpretation of the open cover A{. 

automata controller is simply a map from input symbols to output symbols (modulated 
by its internal state). To fix ideas, let's say that the'output symbol corresponds to join 
irreducible Kj. 

Again, we can think of the control space small topology as a set of notch filters. Here, we 
imagine some broadband source signal (which is not exactly flat) which we use to produce 
our control in the following way: Instead of choosing a single output from the named join 
irreducible deliberately (normal AD conversion), we simply construct one in the correct 
equivalence class. We do this by using as a control signal the signal that results from 
passing our broadband source through each of the filters (open sets) which intersect to form 
the join irreducible Kj. 

It is also interesting to note that N-K seem to have adopted the idea (cf. Appendix II of 
[114]) that the finite automaton and small topologies are used to construct approximations 
to maps from the measurement to control spaces, the approximation (of a continuous control 
law) necessarily approaching that law as the cover becomes finer. 

VERIFICATION OF CONTINUITY: 

One of the results of [114] is the fact that their AD map is continuous from (V, Ty) to (I, 77). 
Namely, they give (without proof) the following proposition, whose proof we provide for 
completeness: 

Proposition 6.4 (Nerode-Kohn) AD :Y ^ I is continuous. 

We need several technical lemmas first, which are also used to prove later results: 

Lemma 6.5 The non-empty join irreducibles of the topology generated by the (subbasis) Ai 
are exactly those sets which can be written as 

Vy=   PI   Av 
J€J(y) 

where J{y) is the set of all j such that y eAj. 
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Proof. Pick y £ Y arbitrarily. Then Vy is non-empty since it contains y. Next, suppose 
that Vy is not join irreducible, so that it can be written as Vy = A U B where A # Vy and 
B ^ Vy. Then we must have that y € A or y € B, or both. Without loss of generality, 
assume y € A. But, since A is an element of the topology generated by the Au it must be 
of the form A = U€/ fW« ^ where Ji C {1,..., n}, for each i € /, that is, an arbitrary 
union of finite intersections of elements of the subbasis. Since y e A, it must be in at least 
one of the sets in the union, say, the fcth: y € f\jeJk 

Ar However, this means y € Aj for 
each 3 E Jk- By definition, Jk C J(y), so that Vy C A. But, since Vy = A U B, we also have 
Vj, D A. So that A = Vy, a contradiction. LJ 

Thus, A£> is a well-defined function, with AD{y) = i where d is the smallest join 
irreducible containing y. In fact, Q equals the Vy defined in the lemma. Now, it is easy to 
see that the set of non-empty join irreducibles is finite: there are at most 2n - 1 distinct 
non-empty sets that can be written in this manner. Thus, the topology generated by the 
Ai has less than 22" elements (since each element is a union of basis sets). 

Lemma 6.6      1. The non-empty join irreducibles d form a basis of the topology, Ty, 

which they generate. 

2. The sets Di are a basis for the topology, Ti, which they generate. 

3. AD is surjective. 

4. If f is surjective, /(/-1P0) = X. 

5. Cj = AD~\Dj). 

Proof. The detailed proofs appear in the Appendix. Items 1 through 3 are straightforward. 
(For those with a knowledge of lattice theory, the d and Di are lower closures in their 
respective lattices and give rise to the (dual) Alexandrov topologies thereupon [141].) Item 
4 is in [113, p. 20]. Item 5 is almost immediate in the D-direction and follows with the help 
of Lemma 6.5 in the C-direction. - ^ 

Now, we are ready to prove the proposition: 
Proof, (of Prop. 6.4) Lemma 6.6 says the Dj are a basis and that AD (Dj) = Cj, 

which is open in Y. 

Ti IS THE QUOTIENT TOPOLOGY: 

Next, we want to show that the AD topology of Nerode and Kohn, T/, is exactly the quotient 
topology of their AD map. This is accomplished by proving that 7/ is both coarser and 
finer than the quotient topology. The following is well-known [113, p. 143]: 

Let X be a space; let A be a set; let p : X ^ A be a surjective map. Then the 
quotient topology on A induced by p is the finest (i.e., largest) topology relative 

to which p is continuous. 

Since the AD map is continuous in Ti and surjective, we trivially have: 7} is coarser than 
the quotient topology, TQ, corresponding to AD. Now, it remains to show that Ti is finer 
than TQ. Proof. Suppose J is open in TQ. Then AD~l(J) is open in Ty. Finally, it can 
be written as AD~\J) = [)ßeB Cß, where B is some subset of {1,..., N}, since the Cß are 
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a basis for Ty. We want to show that J € 7}. But note that since AD is surjective 

J = AD(AD-\J)) = AD f (J Cß J = U AD(C^). 
\ßeB     J    ßeß 

Now, we have from Lemma 6.6. that Cß = AD~l(Dß). Since AD is surjective, this implies 
AD{Cß) = AD(AD-l{Dß)) = Dß So that J = U^B £>/3> which is open in 7}, being a union 
of basis elements. LJ 

Summarizing, we have shown 

Theorem 6.7 The AD topology of Nerode and Kohn, Ti, is exactly the quotient topology 

of their AD map. 

We have also gotten something else along the way. In the last proof we showed that 
AD{Cß) = Dß. From Lemma 6.6, we have AD~l{Dß) = Cß and that Dß and Cß are bases 
for 7} and Ty, resp. Thus, AD is a homeomorphismbetween the topological spaces (Y,Ty) 
and (I,Ti). (This homeomorphism was also noted without proof in [114].) 

§6.3   COMPLETING THE LOOP 

§6.3.1   PROBLEMS COMPLETING THE LOOP 

In this section, we discuss problems which arise when considering continuous mappings from 
the measurement to control spaces (see Figure 6-1). Specifically, we have 

Remark 6.8 IfY is connected and U is T\, the only continuous maps from Y to a finite 
subset of U (i.e., f(Y) = {ui,... ,uN}, m,...,uN € U) are constant maps. 

Proof. First, constant maps are always continuous, and their image is a single point of 
U, hence finite. Next, suppose for contradiction that / is a non-constant continuous map 
from Y into U and the image f{Y) = {ui,.. .,uN}, where the Ui are distinct points in U 
for some finite N greater than or equal to two. Since U is Ti, we can construct open sets 
V-r for i 4 i such that V- contains m but not it,-. Thus, there is an open set about u\ 

not containing u2,...,uN, viz., V = f]f=2V\j- Als0> we can construct an open set which 
contains each u2, •..,uN yet does not contain m: W = {J?L2 ViT. Therefore, f(Y) = VU W 
is not connected. •—' 

§6.3.2  TOPOLOGIES COMPLETING THE LOOP 

In the previous subsection, we saw that, under mild assumptions, there are no non-constant 
continuous maps from the measurement to control spaces. In this subsection, we wish to give 
a topology on the (augmented) control space which allows us to construct a non-constant 
continuous map. 

We make no assumptions on Y and U (except those implicit in the definition of / 
below). Suppose that the topology on U is T. Then we let U' = U U {±}, that is, 
we append a single element, J., to U. Next, we define a topology, V, on U' as follows: 
T' = 0, {V U {-L} | V € T}. Suppose we wish to have image points iti,..., UN in U. Let 
/-i(Ui) = Ki be disjoint closed sets not covering Y. Let f{Y - Uili Ki) = -I- Then 

Remark 6.9 / is continuous. 
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Proof. /_1(0) = 0, which is open. Now, suppose V is any non-empty open set of U'. 
Then V = V U {1}, where V is open in U. Therefore, 

r\v') = rwu/-1«-!-}) 

= y- U K" 
iei-j 

(where J is the set of indices j for which Uj G V, and 7 = {1,..., N}) which is open since 
its complement is closed; the formula is well-defined if J ^ 7. If J = 7, then / (V) = Y, 
which is open. '—' 

§6.4  A DIFFERENT VIEW OF HYBRID SYSTEMS 

We wish to propose a different view of hybrid systems as shown in Figure 6-3. 

Symbol, 
iel Digital 

Automaton 

Symbol, 
oeo 

AD 
■ ■ 

. . 

Controllers, Kv » DA 

Plant 
*asiii rement. Con trol, 
veY ueu 

Figure 6-3: Alternative prototypical hybrid system. 

The difference between this and the previous prototypical hybrid system is that there is 
feedback on the signal level. This feedback modulates the symbols coming down from the 
higher level. Alternatively, one can view the symbols as specifying one of several controllers 
whose output is to be the control signal. 

The most widely used fuzzy control scheme is related to this model in the sense that 
' it achieves continuous maps—despite a finite number of so-called fuzzy rules—by utilizing 

the continuous measurement information. We discuss this in more detail below. 

§6.4.1  WHY THE DIFFERENT VIEW? 

Before, we had a natural fan-in of sensory information from the signal to symbol levels. 
This models abstraction and reduction. In our new view, we also have an analogous, natural 
fan-out of control commands from the symbol to signal level that was not present before. 



§6.5    Example of the Different View: Fuzzy Control     95 

Basically, we are saying that the finite description of the plant's dynamics as seen from 
automaton's point of view is not an exact aggregation of the plant's dynamics. Therefore, 
one should utilize the continuous information present at the lower level as well as the discrete 
decision made above in order to choose a control input for the lower level. There is no need 
to arbitrarily pick a member from the set of controls (fixed for normal AD conversion, 
always arbitrary in the Nerode-Kohn view). Instead, the set is given by the automaton, 
while the member of that set is chosen using information from the lower level. Thus, the 
aggregated and continuous dynamics are related, but the first is not a substitute for the 
latter. If it were, the plant could have been modeled directly as a finite automaton. 

§6.5   EXAMPLE OF THE DIFFERENT VIEW: FUZZY CONTROL 

We now wish to examine the different view of hybrid systems as shown in Figure 6-3. Such 
a view can give rise to a continuous map completing the loop. In particular, the most 
widely used fuzzy control scheme is related to this model in the sense that it achieves con- 
tinuous maps—despite a finite number of so-called fuzzy rules—by utilizing the continuous 
measurement information. We discuss this in more detail below. 

THE CONTROL SCHEME: 

.A fuzzy control scheme is given by the commuting diagram of Figure 6-4, where F denotes 
fuzzification, G the inference map of the fuzzy rule base, and D denazification. Here, the 

x E X -2 € Z 

D 

[fiAl (*),.■'•, ii AM (X)]—£-~\HB[ (a),"-, »B>M (x)] 
€ [0, l]M e?M 

Figure 6-4: Fuzzy Logic Controller. 

fuzzy controller has M rules of the form 

RULEi: IF x is Au THEN z is Bu    i E {1,... ,M} 

and TM is a cross product of the space of fuzzy sets on Z. The most widely used inference 
rule computes nB>(z) = mm{pAi{x), PBi{z)}, for all z € Z, and defuzzifies using the 

centroid: z = (Ei4i^ MB;(^))/(Ei^i/^s;(^))i where z* equals the centroid of/XB;: 2* = 
(Jz z MBJ(*)^)/(/Z ßB'X.z)ldz). 

The finite rule base is related to the finite symbols of our hybrid model. For instance, the 
rules which fire are akin to the filters which passed data in our discussion of the Nerode-Kohn 
approach. However, here one utilizes the underlying continuous information (represented 
in the continuous membership functions for the measurement space) in order to construct 
the precise control output. Thus, it fits into our different view. See Figure 6-5 
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H(Ai) 

M(A2) 

H(AM) 

0.8    0.6 

Figure 6-5: Filter interpretation of the fuzzy rule antecedents A». 

PRODUCING CONTINUOUS MAPS: 

We deal with the prototypical case where X and Z are closed intervals in R (for specificity, 
[a, 6] and [c,d\, resp.). The case where X is a multi-interval in Em is a straightforward 
extension. The case where z is a multi-interval in Rn then follows from considering each 
dimension componentwise. We claim that the induced map g = D o G o F is continuous 
from X to Z. We assume, for the proof, that the ßAi and fiBi are continuous on X and Z, 
resp. This is fairly typical (e.g., triangular functions). 

Proof. If the nAi are continuous, then F is continuous. It is also easy to see that 
centroid denazification, D, is continuous. It remains to show that G is continuous. Well, 
a fuzzy inference rule gives rise to the following situation: HaJ(z) = min{a,/(«)}, where 
Ha f, /, and a are playing the role of fixed nB[, ßBi, and ßAi{x) resp. Thus, by assumption, 
f(z) € C{[c, d] -> [0,1]). Now, we need G to be continuous as a map from, componentwise, 
[0,1] to C([c, d] -» [0,1]). But, if |ai - a2| < e, then \\HaiJ - HQ2j\\ < e where || • || denotes 

the sup norm. 

APPROXIMATING CONTINUOUS MAPS: 

Fuzzy control maps are also dense in the set of continuous functions from X to Z. It 
is enough to note that triangular functions, which are prevalent for descriptions of fuzzy 
membership sets, are so dense. To more easily see this, note that triangular functions can 
be combined to construct arbitrary piecewise linear functions. 

56.6  A UNIFYING TOPOLOGICAL VIEWPOINT 

As open and closed sets play dual roles in topology, we can define topologies based on 
closed sets by replacing "open" with "closed" in Algorithm 6.2. Of course, one still runs 
into the problem that essential parts may be points. However, we provide a construction 
below that avoids'this. Further, it relates the topological results of this chapter back to our 
assumptions for the existence and uniqueness of hybrid systems trajectories and to insuring 
finitely many jumps in finite time [§5]. Further, it is related to our simulation definitions 

in §7. 
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For sake of argument, assume that the measurement space is a bounded metric space. 
Then the following two constructions are dual. 

• Pick as open cover, Y plus a finite number of disjoint open sets separated by at least 
some distance e. 

• Pick as "closed cover," Y plus the disjoint closures of a finite number of open sets. 

In each case, Y - \J{ A4 is mapped to "continue" and the others to different symbols. The 
advantages of the latter construction are that: (1) each ADq map is continuous; (2) it is 
consistent with the conditions for the dynamics to be uniquely defined. 

56.7 NOTES 

The majority of this chapter appeared in [24]. The topological view of §6.6 did not appear 
but was presented in the associated conference talk. 

The filter interpretation of the Nerode-Kohn approach arose from discussions with Anil 

Nerode. 

56.8 APPENDIX 

This appendix collects the full proofs for statements 1-3 and 5 in Lemma 6.6. They are 
listed as separate lemmas for convenience. 

Lemma 5.1 The non-empty join irreducibles Q form a basis of the topology, Ty, which 

they generate. 

Proof. Each y € Y is contained in such a set since the A4 are a cover of Y. The intersection 
of two such sets that contain the point y is a superset oiVy. D 

Lemma 5.2  The sets Di are a basis for the topology, Ti, which they generate. 

Proof. Each i € I is contained in Di since Q C Q, so there is a basis element containing 
each i € I. If i € I belongs to the intersection of two basis elements, say Djx and Dj2, then 
we need a basis element Dj3 containing i such that Dj3 C D^ D Dj2. But then Ci C Cjx 

and Ci C CJ2. So that Q C Ch f*l CJ2. From this, we want to show that Di is contained in 
Dix n Dj2. But this is evident from the definition of A: 

Di = {j\CjcCi}. 

So, if 3 € Du then Cj C d C Ch, so that j G Dh. Likewise, Cj C d C CJ2, so that 
j € Dj2. Therefore, Di C D^ n DJ2, is the required basis element. D 

Lemma 5.3 AD is surjective. 

Proof. Pick i € I. By construction, there exists y € Y such that Ci is the smallest 
non-empty join irreducible containing y. AD(y) = i. □ 
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Lemma 5.5 Cj = AD~l(Dj) 

Proof. 

1. CjDAD-^Dj). 

AD-\Dj)   =   AD'H^keDjk) 

=     U  AD~\k)C   U  CkcCj. 
keDj keDj 

The last inequality follows from the fact that Ck C Cj for all k € Dj. 

2. Cj C AD-1(Z>j). Suppose y € Cj. Then either Cj is the smallest non-empty join 
irreducible containing y, in which case we are done, or there is some other smallest 
non-empty join irreducible Ck containing y. We claim Ck C Cj, in which case k € Dj 
and y e AD~l(Dj), which is the desired result. 

Therefore, it remains to show that Ck C Cj. The smallest join irreducible containing 

y is (see Lemma 6.5) is Vy = fljeJ(y) Aj where J^ is the set of a11 J such that y € A^ 
However, Cj is also a join irreducible, so that it can be written Cj = fljej A? for some 

J C {1,... ,n}. But Cj contains y, so that each of the Aj in the intersection must 
contain y. So that by definition J C J{y), whence Ck = Vy C Cj. 

D 



Chapter 7 

Complexity and Computation in 
Hybrid Systems 

We explore the simulation and computational capabilities of hybrid and continuous dynam- 
ical systems. Notions of simulation of a discrete transition system by a continuous one are 
developed. We show that hybrid systems whose equations allow a precise binary timing 
pulse (exact clock) can simulate arbitrary reversible discrete dynamical systems defined on 
closed subsets of Rn. We also prove that any discrete dynamical system in Z" can be sim- 
ulated by continuous ODEs in R2n+1. We use this to show that there are smooth ODEs 
in R3 that possess the power of universal computation. We use the famous asynchronous 
arbiter problem to distinguish between hybrid and continuous dynamical systems. 

i7.1   INTRODUCTION 

In this chapter, we explore the simulation and computational capabilities of hybrid systems. 
This chapter is a step towards the characterization of these models in terms of the types 
of systems that can be described by, or "implemented" with, their equations. By construc- 
tion, however, a hybrid system model can implement ODEs with continuous vector fields 
(continuous ODEs). Thus, even with no discrete dynamics, these models can describe a 
large variety of phenomena. 

In addition to "implementing" ODEs, all reviewed models can implement a precise 
binary timing pulse or "exact clock" (defined later). Thus, we explore the capabilities of 
systems with continuous ODEs and exact clocks. For instance, we show such systems can 
simulate arbitrary reversible discrete dynamical systems defined on closed subsets of Rn. 
These simulations require ODEs in R2n which use an exact clock as input. 

Later, we find that one can still simulate arbitrary discrete dynamical systems defined 
on subsets of Zn without the capability of implementing an exact clock: one can use an 
approximation to an exact clock. Such an "inexact clock" is implemented with continuous 
functions of the state of a one-dimensional continuous ODE. As a result, one can perform 
such simulations using continuous ODEs in R2n+1. Turning to computational abilities, we 
show that continuous ODEs in R3 possess the ability to simulate arbitrary Turing machines, 
pushdown automata, and finite automata. By simulating a universal Turing machine, we 
conclude that there exist ODEs in R3 with continuous vector fields possessing the power of 
universal computation. Further, the ODEs simulating these machines may be taken smooth 
and do not require the machines to be reversible (cf. [108]). 

Finally, we show that hybrid dynamical systems are strictly more powerful than Lipschitz 
ODEs in the types of systems they can implement. For this, we use a nontrivial example: the 

99 
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famous asynchronous arbiter problem [26, 100, 144]. First we quickly review the problem. 
Then we settle it in an ODE framework by showing that one cannot build an arbiter out 
of devices modeled by Lipschitz ODEs. Next, we examine the problem in a hybrid systems 
framework. We show that all the hybrid systems of §3 can implement an arbiter even if 
their continuous dynamics is a system of Lipschitz ODEs. 

The chapter is organized as follows. In §7.2 notions of simulation are discussed. Here, we 
make precise what we mean by "simulation" of discrete transition systems by continuous 
transition systems. All our simulation results are collected in §7.3. §7.4 deals with the 
asynchronous arbiter problem. The Appendix collects some technical lemmas. 

§7.2   NOTIONS OF SIMULATION 

In dynamical systems, simulation is captured by the notions of topological equivalence and 
homomorphism [59, 67, 129]. One can extend these notions to systems with inputs and 
outputs by also allowing memoryless, continuous encoding of inputs, outputs, and initial 

conditions. 
In computer science, simulation is based on the notion of "machines that perform the 

same computation." This can be made more precise, but is not reviewed here [20, 104]. 
Other notions of simulation (for discrete dynamical systems) appear in [91]. All these 

notions, however, are "homogeneous," comparing continuous systems with continuous ones 
or discrete with discrete. One that encompasses simulation of a discrete transition system 
by a continuous transition system is required here. 

One notion that associates discrete and continuous transition systems is global section 
[129]. The set Sx C X is a global section of the continuous dynamical system [X,R+,/] 

if there exists a t0 G K+ such that 

Sx = {f{PM\keZ+}, 

where P is a set containing precisely one point from each of the trajectories f(p, 1+), p € X. 

Using this for guidance, we define 

Definition 7.1 (S-simulation) A continuous transition system [X,!+,/] simulates via 
section or S-simulates a discrete transition system [Y,Z+,F] if there exist a continuous 
surjective partial function if, : X -> Y and t0 € 1+ such that for all x € V XP0 and all 

kez+ 
iP(f{x,ht0)) = F(iP(x),k). 

Note that surjectivity implies that for each y € Y there exists x € V_1(v) such that 
the equation holds. Here, continuous partial function means the map from ip 1{Y) (as a 

subspace of X) to Y is continuous. 
Intuitively, the set V = V'W may be thought of as the set of "valid" states; the set 

X\V as the "don't care" states. In dynamical systems, V may be a Poincare section; X\V 
the set of points for which the corresponding Poincare map is not defined [67, 73]. In com- 
puter science and electrical engineering, V may be the set of circuit voltages corresponding 
to a logical 0 or 1; X\V the voltages for which the logical output is not defined. 

S-simulation is a strong notion of simulation. For instance, compare it with topological 
equivalence. Typically, though, the homogeneous notions of simulation do not expect time 
to be parameterized the same (up to a constant) for both systems. For example, a universal 
Turing machine, U, may take several steps to simulate a single step of any given Turing 
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machine, M. Moreover, the number of such U steps to simulate an M step may change 
from M step to M step. Some of the notions of simulation denned in [91] also allow this 
generality. Further, the definition of topological equivalence of vector fields (different than 
for dynamical systems, see [67].) is such that parameterization of time need not be preserved. 
Thus, following the definitions in [91] one formulates 

Definition 7.2 (P-simulation) A continuous transition system [X,l+,/] simulates via 
points or P-simulates a discrete transition system [Y, Z+, F] if there exists a continuous 
surjective partial function i/> : X ->• Y such that for all x € ^(Y) there is a sequence of 

times 0 = <o < *i < *2 < • • •» hmfc-K» tk = oo, such that 

il>(Kx,tk))=F(xKx),k). 

One readily checks that S-simulation implies P-simulation. This is a weak notion. For 
instance, consider the case where Y is finite, \Y\ = N. Suppose [X,l+,/] has a point p 
such that |/(p,R+)| > N and p = f(p,t0) for some t0 > 0. That is, the orbit at point p 
is periodic and contains more than N points. Clearly, one may associate N distinct points 
in /(p,R+) with the points in Y, so that [X,l+,/] P-simulates [Y,Z+,F]. This weakness 
persists even if Y is infinite. For example, the simple harmonic oscillator defined on the 
unit circle, X = Sl: 

x\    =    X2, 

x2   =   -xi, 

along with ip(x) = Xi P-simulates every [[-1,1],Z+,F]. These arguments also show 
the weakness of some of the definitions in [91]. Finally, this same example shows P- 
simulation does not imply S-simulation: the harmonic oscillator above cannot S-simulate 
any [[-1,1],Z+,F] for which 0 is a fixed point and 1 is not a fixed point. 

Thus, P-simulation need not correspond to an intuitive notion of simulation. The reason 
is that one wants, roughly, homeomorphisms from orbits to orbits, not from points to points. 
As mentioned in §2.1, this is achieved with continuous dynamical systems. However, this 
is not possible with nontrivial nonhomogeneous systems since a discrete orbit with more 
than one point is a (countable) disconnected set and any non-constant continuous orbit is 
an (uncountable) connected set. Thus, there exist homeomorphisms between discrete and 
continuous orbits only when both are constant. 

If X is connected and Y is a discrete topological space, this situation exists even with 
points, i.e., the only continuous functions from X to Y are constant functions [113]. One way 
to remedy this is simply to place topologies on X and Y other than their usual topologies, so 
that continuous maps are possible (cf. §3.6). There are several ways to accomplish this. One 
approach is to use so-called small topologies on X. Another is to append a single element 
{1} to Y, which stands for "don't care" or "continue," and topologize Y' = Y U {±}. For 
more information and other approaches see [24, 114, §6]. 

Here—and with a view towards simulating systems defined on discrete topological 
spaces—we strengthen the definition of P-simulation in two ways. First, we require that 
the "simulated state" be valid on some neighborhood and for at least some minimal time 
period. Physically, this allows one to use "imprecise sampling" to obtain discrete data, 
providing a robustness that is lacking in the definition of P-simulation. Second, we require 
that the "readout times" are exactly those for which x(t) € ip~l{Y). 
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Definition 7.3 (I-simulation) A continuous transition system [X,R+,/] simulates via 
intervals or I-simulates a discrete transition system [Y, Z+, F] if there exist a continuous 
surjective partial function </>: X -»■ Y and e > 0 such that V = V'W " open and for all 
x eV the setT = {t E M+ | f(x,t) € V} is a union of intervals (rfc,r^), 0 = T0 < T'Q < 

T\ <T{ <•■•, K-Tk] >e, with 

ip(f(x,tk)) = F(il;(x),k), 

for alltke{Tk,T'k). 

Clearly I-simulation implies P-simulation. S-simulation and I-simulation, however, are in- 

dependent notions. 
The extra requirement that ^(Y) be open implies that the inverse images of open 

sets in Y are open in X (and not just in ip-l{Y) as before). This is probably too strong 
a requirement in the case of a general topological space Y. However, in the case of Y a 
discrete topological space, it has the desirable effect that i/>_1(y) is °Pen for a11 VeY- 

One might also have required an output map that is zero (or any distinguished output 
value) on the complement of T and non-zero otherwise. This amounts to, in the case of a 
universal Turing machine simulating a machine M, the existence of a distinguished state 
meaning "a step of the simulated machine is not yet completed."   Here, it is related to 

" the appending of a symbol {-L} to Y as above and extending </> : X -> Y' = Y U {J.} by 
defining rj>{x) = {-L} if a: € XV/>-100 [7, 24, 114]. In this case, the requirements on </> 
may be replaced by requiring i> to be continuous from X to Y' (in a suitable topology) 
after extension. Finally, if X is a metric space one could introduce a "robust" version of 
I-simulation by requiring the inverse image of y € Y to contain a ball with at least some 

minimum diameter. 
Below, "simulation" is a generic term, meaning I-simulation, S-simulation, or both. 

Si-simulation denotes S-simulation and I-simulation. If a machine is equivalent, or simu- 
lates one that is equivalent, to a universal Turing machine, one says it has the power of 
universal computation. 

§7.3  SIMULATION WITH HYBRID & CONTINUOUS SYSTEMS 

In this section we concentrate on general simulation results and the capabilities of hybrid 

systems and continuous ODEs. 
We first construct low-dimensional discrete dynamical systems in Zn that are equivalent 

to finite automata (FA), pushdown automata (PDA), and Turing machines (TMs). Later, 
we give some general results for continuous ODEs in R2n+1 simulating discrete dynamical 
systems in Zn. Combining allows us to conclude simulation of arbitrary FA, PDA, and TMs. 
By simulating a universal TM, one obtains continuous ODEs with the power of universal 
computation. In the process, we also discuss the simulation and computational capabilities 

of hybrid systems. 

§7.3.1   DISCRETE DYNAMICAL SYSTEMS EQUIVALENT TO FA AND TMs 

We start by showing that every TM is equivalent to a discrete dynamical system in Z2 and 
then consider systems equivalent to PDA and FA. Later, we refine these results to discrete 
dynamical systems in Z equivalent to TMs, PDA, and FA. 
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The FA, PDA, and TMs considered here are deterministic. Thus their transition func- 
tions naturally give rise to discrete dynamical systems. These are defined on state spaces of 
input strings and states; input strings, states, and stacks; and states, tape head positions, 
and tapes, respectively. 

Here, the states, input strings, stacks, and tape configurations of automata and Tur- 
ing machines are taken in the discrete topology; Zn as a topological or normed space is 
considered as a subspace of W1 (in particular, it has the discrete topology). 

See [76, §2.1.4] for precise definitions of FA, PDA, and TM. 

Proposition 7.4      1. Every TM is equivalent to a discrete dynamical system in Z2. 

2. There is a discrete dynamical system in I? with the power of universal computation. 

3. Every FA and inputless PDA is equivalent to a discrete dynamical system in Z. Every 
PDA is equivalent to a discrete dynamical system in Z2. 

Proof. 

1. Assume the tape alphabet is T = {70,71, • • •, 7m-2>, m > 2, with 70 the blank symbol; 
and that the set of states is Q = {go, • • •, 9n-i}, n > 1. Define p = max{m, n}. 

As is customary, the one-sided infinite tape is stored in two stacks, with the state 
stored on the top of the right stack. The coding used is p-ary. In particular, suppose 
the TM is in configuration C, with tape 

/  — 7ii) • • •) 7tAr-i > Tijv ' Ti »AT+1> ' 

head positioned at cell N, and internal state qj. Encode the configuration C in the 
integers 

JV-1 

TL = h(C) = 52 pkiN-k +PN(m - 1),        TR = hiP) = j + $>*%+*• 
fc=0 fc=1 

The second sum is finite since only finitely many tape cells are non-blank. The integer 
(m - 1) is an end-of-tape marker. The TM is assumed to halt on moving off the left 
of the tape, so that (m - 1,TR) in Z2 is a fixed point for all valid TR. On all other 
valid configurations, C, define transition function G in Z2 by 

G(/i(C),/2(C)) = (/1(C'),/2(C')), 

where C" is the configuration resulting when the next move function of the TM is 
applied to configuration C. 

2. Use part 1 with any universal TM. 

3. The inputless cases are immediate from part 1. For the cases with input, note that 
we encode the input string in an integer like the left part of the tape of a TM above, 
the results following. 

D 
Note that one can perform the above encodings of TMs, FA, and PDA with [0,p] replac- 

ing Z. Merely replace p by p~l in the formulas. The important thing added is compactness, 
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and other encodings, e.g., with [0,1] replacing Z, follow similarly. There is a problem using 
these encodings since two distinct tapes may have the same encoding, e.g., 3,2,0W and 3, lw. 
One can get around this by "separating" each tape encoding by replacing p with 2p and 
using 2i for the tth symbol. Namely, the tape of length N, T = 7n, • • • .Ti*. is encoded 
as £fcLo(2P)~fe2*fc- Such Cantor encodings were used in [131]. We still do not use such 
encodings here, however, since later we want to ensure a minimum distance between any 

two tape encodings. 
Finally, a wholly different approach is to use encodings inspired by those in [49]. Suppose 

we are given an arbitrary TM, T. Let q, h, I, and r be integer codings of its state, position of 
its read-write head, the parts of the tape on the left and on the right of its head, respectively. 
A configuration of T is encoded in the integer 2«3/l5/7r. 

More generally, any discrete dynamical system in Zn is equivalent to one in Z by using 
such encodings, viz., by associating (ti,»2,...,tn) with p\1p%...p%, where Pi is the ith 

prime. 
We could have used such constructions instead of those in Proposition 7.4. However, 

we retain them since their transition functions have properties which those arising from the 
"prime encodings" do not (cf. §7.3.3). In any case, we conclude 

Proposition 7.5 Every TM, PDA, inputless PDA, FA, and inputless FA is equivalent to 
a discrete dynamical system in Z. There is a discrete dynamical system in Z with the power 

of universal computation. 

It is important to note that one can extend the transition functions in Zn above to 
functions taking Rn to Rn. We may extend any function / : A C Zn -»• Rm in such a 
manner, by first extending arbitrarily to domain Zn and then using linear interpolation. 

Here is an example, used below: 

Example 7.6 A continuous mod function may be defined as follows: 

_ f ([xj mod m) + x - |xj,   0 < [x\ mod m < m - 1, 
x mode m = | (m _ i)( [xj + 1 - x),       [iJmodm = m-l. 

Later results require extensions that are robust to small input errors. That is, one would 
like to obtain the integer-valued result on a neighborhood of each integer in the domain. 
For instance, one may define a continuous nearest integer function, [-]c : R -> R, that is 

robust in this manner as follows: 

ft, i-l/3<x<i + l/3, 
W° = \ 3x - 2t - 1,   i + 1/3 < x < i + 2/3. 

More generally, define II: Rn -► Rn, by 

n(x) = [[xi]c, • • •, [xn]c]- 

Then given any function / : Rn -> Rm, with /(Zn) C Zm, we can define a "robust version" 

by using the function f oU. 
Thus, given [A, Z+, F], A C Zn, its transition function may be extended to a continuous 

function from Rn to Rn which is constant in a neighborhood of each point in A. Such a 
remark is actually a byproduct of a more general result needed below [113, p. 216]: 
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Fact 7.7 Any continuous function f : A -» Rm, A a closed subset ofW1, may be extended 
to a continuous map / : Rn -> Rm. 

Throughout the rest of this section we use continuous extensions as in the fact above, 
the notation / always denoting such an extension of /. 

§7.3.2  THE POWER OF EXACT CLOCKS 

Later, we find that the ability to implement precise timing pulses is a strong system char- 
acteristic, enabling one to implement equations with powerful simulation capabilities. To 
this end, define 

Definition 7.8 (Exact Clock) A function S : R+ ->• Z is an exact m-ary clock with 
pulse-width T .or simply (m,T)-clock if 

1. It is piecewise continuous with finite image Q = {0,... ,m — 1}, m > 2. 

2. For all t € (kT, (k + 1)T), S{t) = iifk = i    (mod m). 

All reviewed hybrid systems models, WHS, TDA, BGM, NKSD, ASL, and BAUT, can 
implement (m, T)-clocks, as the results of §3.10 and the following shows. 

Example 7.9       1.  The BAUT model implements (m,T)-clocks: Choose Z = {0,... ,m - 
1} and 

p   =   1/T, p(0)   =   0, 
z\p]   =   {z\p\ +1) modm,        z|0j    =   0. 

Then S{t) — z\p{t)\ is an (m,T)-clock. 

2.  The TDA model implements (m,T)-clocks: Setp = mifm even, p = m +1 ifm odd. 
Choose state space R x Q, Q = {0,... ,p - 1}. Define the continuous dynamics as 

f(x,q) = cg(-l)", 

q EQ. Set cq = l for all q if m is even; set cq = 1 for q € {0,..., m - 2}, cq = 2 for 
q € {m _ l,m}, ifm odd. In each case define the switching manifolds by 

S2fc,2fc+l(z)     =    X-T, 

ff2fc+l,(2k+2)mod p{x)     =     —X. 

Setting x(0) = 0, S{t) = q(t) and 

S(t) = q(t)-(m-l)[q(t)/3(m-l)]c 

are (m,T)-clocks when m is even and odd, respectively. 

As an example of the simulation power one obtains with access to an exact clock, consider 
the following: 

Theorem 7.10 Every reversible discrete dynamical system F defined on a closed subset of 
Rn can be S-simulated by a system of continuous ODEs in R2n with a (2,T)-clock, S, as 

input. 
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Proof. 

x(t)   =   T-l[G(z)-z](l-S(t)), 

z(t)   =   T-\x - H(x)}S(t), 

where G and H are continuous extensions of G = F(-, 1) and H = F(-, -1), respectively. 
Starting this system at t = 0 with x(0) = z{0) = x0, x0 € domain G, one sees that 
x(2kT) = z{2kT) = Gk{x0). Here, <Kx, z) = x for x = z, x € domain G. D 

This theorem shows that exact clocks allow one to S-simulate arbitrary reversible discrete 
dynamical systems on closed subsets of R" with a system of ODEs in R2n. The idea of 
turning on and off separate systems of differential equations is key to the simulation. The 
effect of the simulation is that on alternating segments of time one "computes" the next 
state, then copies it, respectively. Then, the process is repeated. One readily sees that the 
exact way the continuous extensions in the proof are performed is not important. 

As seen above each of the reviewed hybrid systems models can implement (2, T)-clocks. 
In particular, they can implement a (2,T)-clock with just a single ODE. Thus the simula- 
tions of the theorem can be performed with continuous state space R2n+1 in each of these 
cases. Further, they each require only 2 discrete states. 

The generality of Theorem 7.10 allows us to conclude 

Corollary 7.11 Using S-simulation, any hybrid systems model that implements continuous 
ODEs and a (2,T)-clock has the power of universal computation. 

Proof. Using constructions as in Proposition 7.4, construct a reversible discrete dynamical 
system in Zn equivalent to a universal, reversible TM (one whose transition function is 
invertible) [13, 138]. In turn, simulate it using the theorem. D 

However, we want to explore simulation of non-reversible finite and infinite computa- 
tional machines with hybrid and continuous dynamical systems. First, we show that the 
ability to set parameters on clock edges is strong. 

Theorem 7.12 Every discrete dynamical system F defined on a closed subset of Rn can 
be S-simulated by a system of continuous ODEs on R2n (resp. R") with a {2,T)-clock, S, 
as input and the ability to set parameters on clock edges. 

Proof. Define G = F{-,1). Both systems are initialized at t = 0 with c = x(0) = arn, 

xn € domain G. 

1. Initialize z(0) = xn- Use 

x(t)   =   T-'iGiz) - z](l - S(t)), 

z{t)   =   T~l[x - c)S{t). 

The constant c is set to z when t = kT, k odd. One sees that x(2A;T) = z(2kT) = 
Gk(x0). Choose ^(x, z) = x for x = z, x € domain G. 

2. Use 
x(t)=T-1[G(c)-c](l-5(t)). 

The constant c is set to x when t = kT, k even.  One sees that x(2A;T) = G (x0). 
Choose i/>(x) = x, x G domain G. LJ 
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Note that if F is not reversible, forward trajectories of the above systems of equations 
may merge. This situation is allowed by our definitions. The simplest example of this is 
[{0,1}, Z+, F] with F(0,1) = F(l, 1) = 0. 

Corollary 7.13 Any hybrid systems model that implements continuous ODEs, a (2,T)- 
clock, and setting parameters on clock edges, can S-simulate any TM, PDA, or FA; and, 
using S-simulation, has the power of universal computation. 

Proof.   Combine the theorem and Proposition 7.4. D 
In particular, the BGM model has this power (by defining the appropriate transition 

functions on the switching boundaries of the TDA (2,T)-clock given above). 

§7.3.3   SIMULATION WITHOUT EXACT CLOCKS 

Without an exact clock, one's simulation power is limited. However, one can still simulate 
discrete dynamical systems defined on arbitrary subsets of Zn. Next, we proceed to explicitly 
show that all hybrid systems models of §3 can simulate any discrete dynamical system on 
Z". Indeed, we show that continuous ODEs can simulate them. 

In the previous section we used an exact (2, T)-clock to precisely switch between two 
different vector fields in order to simulate discrete dynamical systems in W1. Again, the 
essential idea behind the simulations in this section is to alternately switch between two 
different vector fields. However, since we are simulating systems in Zn, using "robust ver- 
sions" of their transition functions, and choosing well-behaved ODEs, it is not necessary to 
precisely time these switches using an exact clock. Indeed, we can use continuous functions 
to switch among vector fields. 

It is still convenient to ensure, however, that only one vector field is active (non-zero) 
at any given time. Thus, we would like 

Definition 7.14 (Inexact Clock) An inexact (m, T)-clock, m > 2, is a continuous 
function S : R+ -+ [0, l]m such that on each interval t € [kT, (k + l)T\ with k = i (mod m) 
the following hold: Sj+i{t) = 0, 0 < j < m - 1, j # i; Si+X{t) = 1 on a sub-interval of 
length greater than or equal to T/2. 

It is also reasonable to require that transitions between 0 and 1 take place quickly or 
that there be some minimum separation between the times when Si > 0, Sj > 0, i # j. 
Below, we need an inexact (2,T)-clock with the latter property. 

What is key is that such inexact clocks do not require discontinuous vector fields, dis- 
continuous functions, or discrete dynamics. They can be implemented as follows. 

Example 7.15 (Inexact (2,T)-clock) Define i(t) = 1/T, initialized at T(0) = 0. Now, 
define 

SI,2(T) = /i±[sin(7rr)], 

where 
f 0, r < (5/2, 

h+{r) = l  2r/S-l,   6/2<r<6, 
[h S<r, 

h-{r) = h+{-r),andO<8<V2/2. 

Thus, one can switch between two different systems of ODEs with (Lipschitz) continuous 
functions of the state of another (Lipschitz) ODE. This is why 2n + 1 dimensional ODEs 
are used below to simulate an n-dimensional discrete dynamical system. 



108     Complexity and Computation in Hybrid Systems 

We also need the following technical definitions: 

Definition 7.16 (Non-degeneracy, Finite Gain) A function f : W - 
degenerate (resp. finite gain) if there exist constants ß > 0, M > 0, such that 

|MI<M||/(aO||+ft        (resp.   \\f{x)\\<M\\x\\ + ß), 

for all x G X. 

Now we are ready for our main simulation result: 

Theorem 7.17 Every discrete dynamical system F defined on Y C Zn 

1. can be Si-simulated by a system of continuous ODEs in R2n+1. 

2. such that F{-, 1) is finite gain and non-degenerate can be I-simulated by a system of 

continuous ODEs in R2n+1. 

S. such that Y is bounded can be Si-simulated by a system of Lipschitz ODEs in R2n+1. 

Proof. Let G = F{-, 1) and 0 < e < 1/3. Si,2 and 8 are as in the preceding example. For 

each y €Y, define the set 

Hy = {{x, z, T) I ||x - y||oc < C II* - i/lloo < «. sin(TTT) < 8/2, T modc2 < 1/2}, 

Set ij>{x, z, T) = U(z) = y if (x, z, r) € Hy. Note: the ^(y) = Hy are open and disjoint. 
Initialize X(0),Z(0),T(0) in V_1(y)> V^Y- 

1. Choose 

i   =   _e-
2[x-G(n(z))]3Si(r), 

i   =   -e-2{z-U(x)]3S2(r), 

f   =    1. 

It is straightforward to verify U(z(2k)) = Gk{y), k G Z+, and the interval constraint. 

2. Let a and L be the finite gain, and ß and M the non-degeneracy constants of G under 

norm || • ||oo- Choose 

T   =   l/[l + (L + l)||z|U + a + (M + l)||x||oo + ^]- 

It is straightforward to verify U(z(t)) = Gk{y) on an interval about the time tk where 

r(tfc) = 2fc, fc € Z+. 

3. Let /? = max{||i - j|loo I bJ € ^}- Choose 

x   =   ^/Je-Mx-GWz))]^!^), 
z   =   -2ße-l[z-U(x)]S2(r), (7.2) 

f   =   1.        " 

It is straightforward to verify U(z{2k)) = C7fe(y), k € Z+, and the interval constraint. 
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Note that non-degeneracy and finite gain of the extension G need not hold for points 
not in Y. Note also that the simulations above are "robust" in the sense that there is a 
neighborhood of initial conditions leading to the correct simulations. The import of part 2 
of the theorem is that if G = F(-, 1) is non-degenerate and may be extended to a Lipschitz 
function, then the ODEs used in the I-simulation are also Lipschitz. 

Note also that the theorem continues to hold for any discrete dynamical system defined 
on y C 1" such that there is some minimum separation between any two distinct points of 

Y. 
The discrete dynamical systems equivalent to TMs given by Proposition 7.4 have tran- 

sition functions that are both finite gain and non-degenerate. Unfortunately, the transition 
functions of systems equivalent even to PDA need not be Lipschitz. Consider a PDA which 
pushes a tape symbol 7 on input symbol h and pops 7 on input symbol i2 and test with 
inputs of the form i"+1 and t?i2. One may check that the "prime encodings" mentioned 
earlier lead to transition functions that are neither finite gain nor non-degenerate. 

Nevertheless, relating the theorem back to simulation of TMs, PDA, and FA, we have 
many results, the most striking of which are: 

Corollary 7.18 Every TM, PDA, and FA can be Si-simulated by a system of continuous 

ODEs in R3. 
Every FA (resp. inputless FA) can be I-simulated (resp. Si-simulated) by a system of 

Lipschitz continuous ODEs in R . 
Using Si-simulation, there is a system of continuous ODEs in R3 with the power of 

universal computation. 

Proof. Everything is immediate from the theorem and Propositions 7.4 and 7.5 except 
that the FA transition function is Lipschitz, which is readily checked. D 

Of course, any hybrid systems model that implements continuous (resp. Lipschitz) ODEs 
has similar powers. In particular, the models reviewed in §3 do. 

Finally, all the simulation results for discrete dynamical systems on Z can be extended 
from continuous to smooth vector fields by using C°° interpolation (with so-called "bump" 
functions [59]) rather than linear interpolation in extending their transition functions and 
the functions []c and h±, and by replacing || • ||oo with || • ||2 in Equation (7.1). 

§7.4   IMPLEMENTING ARBITERS 

In this section, we contrast the capabilities of hybrid and continuous dynamical systems by 
using the famous asynchronous arbiter problem [26, 100, 144]. 

We begin in the first subsection with a discussion of the arbiter problem. Next, we prove 
that one cannot implement an asynchronous arbiter using a system of Lipschitz ODEs 
continuous in inputs and outputs, i.e., a system of the form of Equation (2.2) with / 
Lipschitz in x, continuous in u and h continuous [73, p. 297]. Finally, we show that all 
hybrid systems models in §3 can implement arbiters, even when their continuous dynamics 
is a system of Lipschitz ODEs continuous in inputs and outputs. 

§7.4.1   THE ARBITER PROBLEM 

The definition and technical specifications of an (asynchronous) arbiter below are adapted 

from [144]. 
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An arbiter is a device that can be used to decide the winner of two-person races. It is 
housed in a box with two input buttons, labeled Bi and B2, and two output lines, Wx and 
W2, that can each be either 0 or 1. For ease of exposition, let the vectors 

B = (B1,B2\        W = {WUW2) 

denote the button states and outputs, respectively. There is also a reset button, R. Below, 
the buttons BuRaxe taken to be 1 when they are pressed, 0 when they are unpressed. 

After the system has been reset, the output should be (1,0) if Bx is pressed before B2; 
it should be (0,1) if B2 is pressed before Bx. Let T{ denote the time that button B{ is 
pressed. Then, the function of the arbiter is to make a binary choice based on the value of 
the continuous variable Tx -T2. If the difference is negative, the output should be (1,0); if 
it is positive, the output should be (0,1). Upon reset, the output is set to (0,0). 

Here are the arbiter's technical specifications: 

51. Pressing the reset button, R, causes the output to become (0,0), perhaps after waiting 
for some specified time, denoted TR, where it remains until one or both buttons are 

pressed. 

52. The pressing of either or both buttons B{ causes, after an interval of at most Td units, 
the output to be either (0,1) or (1,0); the output level persists until the next reset 

input. 

53. If Bi is pressed Ta seconds or more before B2 is pressed, then the output is (1,0), 
indicating that Bx was pressed first. Similarly, if B2 is pressed Ta seconds or more 
before Bx is pressed, then the output is (0,1), indicating that B2 was pressed first. 

54. If Bi and B2 are pressed within Ta seconds of each other, then the output is either 
(1,0) or (0,1)—one does not care which—after the Td-second interval. 

The arbiter problem is 

Problem 7.19 (Asynchronous arbiter problem) Build a device that meets the specifi- 

cations S1-S4. 

§7.4.2  YOU CAN'T IMPLEMENT AN ARBITER WITH LIPSCHITZ ODEs 

In this section, we show that it is impossible to build a device, described as a system of 
Lipschitz ODEs continuous in the required inputs and outputs, that implements the arbiter 

specifications. 
First we give a generic system of Lipschitz ODEs with the required properties: 

i(t) = f(x(t),B(t)), (7;3) 

W(t)   =   h(x(t)), 

where x{t) G Kn, W(t) G R2, B(t) G {0,1}2, with £(•) piecewise continuous. Each /(-,£), 
B G {0 l}2 is Lipschitz. Thus, each vector field f(-,B) defines a continuous dynamical 
system i(Bl Ba), with 0(Bl,Ba)(*o,T) the solution at time T of x(t) = f(x(t), BltB2) starting 
at x(0) = XQ. Further, h : Rn -» R2 is continuous. Note that the action of the reset button 
is unmodeled; it is not necessary to the proof, which assumes it remains unpressed on the 

interval of interest. 
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Since h is continuous, there exists a constant 6^ > 0 such that 

\\h{x) - h{x')\\2 < V2       whenever       ||x - x'|| < 6^, (7.4) 

Define Lw — v2/<^/2- 
Now, we are ready to settle the arbiter problem in this framework: 

Theorem 7.20 For no choice of the values for Ta and Td is it possible to build a device 
described by Equation (7.3) that meets the arbiter specifications S1-S4. 

Proof. The proof is by contradiction, assuming there is a device described by Equation 
(7.3) which satisfies the specifications. 

Assume that the arbiter has been reset, is in state x(0) = in at time t = 0 with 
h(x0) = (0,0), and that one of the buttons is pressed at time t = 0. (This is without loss 
of generality as the equations are autonomous.) Also, assume that the reset button is not 
pressed until some time TR 3> Ta + Td- 

The behavior of the device from t = 0 to t = TR is completely determined by which 
button was pressed first and at what time the second button is pressed (if ever). Therefore, 
let xp(t) denote the solution at time t of Equation (7.3) starting at time t = 0 at state 
x(Q) = xo with fixed parameter p = 7\ - T2. Thus, p represents the difference between the 
times when B\ and Bi are pressed. If B\ is pressed but B2 is never pressed, set p = -co. 
If Bi is pressed but B\ is never pressed, set p = co. 

The arbiter specifications require that for Ta + Td<t< TR, 

h{xp(t)) = < 
(1,0), P<-Ta, 
(0,1), p>Ta, 
(1,0) or (0,1),   otherwise. 

These specifications and Lemma 7.23 (in the Appendix) are such that for any 6 > 0, one 
can find -Ta < e <T < Ta, with r - a < 6, and with one of h{x(T{Ta + Td)), h(xT(Ta + Td)) 
equal to (1,0) and the other equal to (0,1). 

Pick <5 < min{TQ,Td, 1/L}, where L > 0 is a finite bound of the maximum of the four 
Lipschitz constants corresponding to each of the f{-,B). Define 

c = max{||/(x0,1,0)||, ||/(x0,0,1)||, ||/(xo, 1,1)||}. 

Note c > 0,-for otherwise h(x,(t)) = h(xT(t)) = h{x0) for all 0 < t < TR, a contradiction. 
For ease of notation, let Ft, Gu Ht denote the fundamental solutions 0(O,i) (•, t), 0(i,o) (', *), 

and <^(i,i)(-,*), respectively. Also, let Xt = xc{t) and Yt = xT{t). Note that XQ = Y0 = x0. 
The proof splits into three cases: 

1. 0 < a < T < Ta. 

2. -Ta < a < T < 0. 

3. -Ta < a < 0 < T < Ta. 

Case 1. In this case, 

/ Ft(xo), 0<t<<r, 
At   "   \ Ht-riFcixo)),   a <t < TR, 
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Yt    = 
Ft{xo), 0 < t < T, 
Ht-r(FT(x0)),     T<t<TR. 

Thus, Xa = Yc. Now, by Corollary 7.25 

\\YT-YA<cL-\eLr-eLa). 

Thus, Lemma 7.26 gives 

Pk+r, - IWTJ   <   cL-\eL^-l)eL°eLT<, 
< cL-\eLS-l)eLV«+T*\ 

< cS(e-l)eL(Ta+Td), 

where the last line follows from LS < 1. But by assumption, 

V2 = \\h(X<T+Td)-h(YT+Td)\\2, 

so that Equation (7.4) yields 

K^V2/[cLw(e-l)eL^^} < 6. 

Case 2. The argument is similar to Case 1 and yields the same inequality on 6. 

Case 3. In this case, 

Xt   = 

Yt   = 

Gt(x0), 0<t< M, 
tft_w(Gw(*o)),   M<*<TB, 

Ft(xo), 0 < t < r, 
#t_T(FT(x0)),   T<t<TÄ. 

Note that max{|a|, |r|} < S. This and Lemma 7.24 give 

< 
lt„L8 XM - xo   + \\YT - xoll < 2cL-1(eLd - 1) X\a\ - YT 

Thus, Lemma 7.26 gives 

\XWI+Td-YT+Td\\   <   2cL-1(eLS-l)eLT*, 

<   2ceLTd(e-l)8, 

where the last line follows from L6 < 1. But by assumption, 

y/2=\\h(xM+Td) -h(YT+Td)\\2, 

so that Equation (7.4) yields 

K3 = l/[V2cLw(e-l)eLT*} <S. 

Thus, choosing 6 < mm{Ta,Td, 1/L,KUKZ}, would have achieved a contradiction in all 
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three cases. D 
The basic argument used above is that one cannot have a continuous map from a con- 

nected space (e.g., R containing p) to a disconnected space (e.g., {(1,0), (0,1)}) [113]. 
Nevertheless, one must prove that the map given by the device is indeed continuous before 
one makes such an appeal. Above, we have explicitly demonstrated the continuity of the 
system of switched differential equations describing the arbiter. 

§7.4.3   IMPLEMENTING ARBITERS WITH HYBRID SYSTEMS 

In this section it is shown that each of the hybrid systems models can implement an arbiter. 
Given the results of §3.9, it is enough to implement one using the BAUT and TDA models. 
However, the problem is such that we must add inputs and outputs to these models, which 
is done in an obvious way. 

In each case, the continuous dynamics is a system of Lipschitz ODEs continuous in inputs 
and outputs, the essential "resolving power" coming from the mechanisms implementing the 
discrete dynamics. 

We first implement an arbiter with a hybrid system d la Brockett: 

Proposition 7.21 There exists a system of equations in the BAUT model with inputs and 
outputs that meets the arbiter specifications S1-S4. 

Proof.   We design for Ta = Td/2 = Tm. 

x = [2(42 bJ " 1) max(Bi, B2)T(x)/Tm] (1 - R) - (2x/TR) R, 

p = [2B1(B1-B2)(l-z\p\)/Tm](l-R) + (z[p\/TR)R, 

z\p] = (zLpJ +l)mod2, 

W = h{x), 

where 
(0,1), x<-3, 
(0, |x| — 2), -3<x<-2, 

h{x) = {   (0,0), -2<x<2, 
(x-2,0), 2<x<3, 

. (1,0), 3<x, 

T(x) = { 
1, \x\ < 4, 
5-|x|,   4<|x|<5, 
0, 5 < \x\. 

Let's examine these equations when B2 is pressed at time t = 0. Let T\ > 0 denote the time 
at which B\ is pressed. The equations are assumed to be properly reset so that without 
loss of generality, we assume that |x(0)| < 1 and p(0) € [2fc,2fc + 1), for some k e Z+, 
and z[p(0)J = 0. Also, we assume that the reset button is inactive (R = 0) from t = 0 to 
t = tR > 2Tm- In this case, the two equations are simply (no matter when B\ is pressed) 

x   =   -2T(x)/Tm, 

P   =   0, 

so that x{t) < -3and hence W(t) = (0,1) for t G [2Tm,tÄ]. 
Now, we look at these equations under the same assumptions, excepting B\ is pressed 
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at t = 0 and B2 is pressed at t = T2 > 0. Now there are two cases: T2 < tz and T2 > tz, 
where tt = [l-(p- bJ)]Tm/2 < Tm/2 is the time when z(\p{t)\) would first equal 1 if B2 

were not pressed before it. In the second case, by time t, the equations are 

x   =   6T(s)/Tm, 

P   =   0, 

so that x(t) > 4 and hence W(t) = (1,0) for t E [tz + Tm,tR] D [2Tm,tR]- In the first case, 

the first equation remains 
x = -2T(x)/Tm, 

'      so that x(t) < -3 and hence W{t) = (0,1) for t G [2Tm, «Ä]. 
The reset behavior is readily verified. L-1 

Now, we implement an arbiter with TDA: 

Proposition 7.22 There exists a system of equations in the TDA model with inputs and 

outputs that meets the arbiter specifications S1-S4. 

Proof. For convenience, define Tm = min{Td,Ta}. Define the continuous dynamics, 
f(x,q,Bi,B2,R), which depends on states x € R2, q 6 {1,2,3}, and inputs Bu B2, and R, 

each in {0,1}, as follows: 

/(x,l;Bi,B2,0)   =   (Bi[Bl-B2],B2), 

/(x,3 
v,0)   =   (0,0), 

v,0)   =   (0,0), 

with switching boundaries defined as follows: 

<7i,2(x)    =   4e2-||x-(Tm,0)||i, 

9lMX)     =     x2- Tm, 

92,l(x) = 93,l(x)     =     62- NU, 

where 0 < e < Tm/4. Finally, define the output W = h{x) where 

(1,0), x2<Tm/2, 
(1 - 4(x2/Tm - l/2),4(x2/Tm - 1/2)),   Tm/2 < x2 < 3Tm/4, 
(0,1), 3Tm/4<x2. 

h(x) = * 

One readily verifies that it behaves correctly. U 

§7.5   DISCUSSION 

We now turn to some discussion. Our simulation of arbitrary Turing machines imply that, 
in general, questions regarding the dynamical behavior of hybrid systems with continuous 
ODEs—and even well-behaved ODEs themselves—are computationally undecidable. See 
[107, 108] for a discussion of such questions. Further, the ODEs simulating these machines 
may be taken smooth and do not require the machines to be reversible (cf. [108, p. 228]). 
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The import of S-simulation here is that such simulations take only "linear time" [49]. 
The import of I-simulation is that the readout times for which the state/tape is valid are 
non-empty intervals. Indeed, the intervals are at least some minimum length. Also, the 
simulations were "robust" in the sense that they can tolerate small errors in the coding of 
the initial conditions. Though not required by our definitions, these contained balls of at 
least some minimum diameter. 

The explicit formulation and solution of the asynchronous arbiter problem in an ODE 
framework appears to be new. One should note that in our ODE model, the inputs Bi were 
assumed to be ideal in the sense that they switch from 0 to 1 instantaneously. Imposing 
continuity assumptions on B as signals in [0, l]2 leads to a similar result. 

To demonstrate the computational capabilities of hybrid and continuous dynamical sys- 
tems summarized above, we constructed low-dimensional discrete dynamical systems in Zn 

equivalent to Turing machines (TMs), pushdown automata (PDA), and finite automata 
(FA). It is well-known that certain discrete dynamical systems are equivalent to TMs and 
possess the power of universal computation (see, e.g., [49,107,131]). Our systems were con- 
structed with the goal of simulation by continuous/Lipschitz ODEs in mind. One notes that 
while it is perhaps a trivial observation that there are systems of (Lipschitz) ODEs with 
the power of universal computation—just write down the ODEs modeling your personal 
computer—this requires a system of ODEs with a potentially infinite number of states. 

The best definition of "simulation" is not apparent. While stated in terms of our defini- 
tions of simulation, the simulation results of §7.3 are intuitive and would probably continue 
to hold under alternate definitions of simulation. 

Related to our general simulation results is a theorem by N. P. Zhidkov [157] (see also 
[129, p. 135]), that states if a reversible discrete dynamical system is defined on a compact 
subset K C Kn, then there exists on a subset of R2n+1 a reversible continuous dynamical 
system that is defined by ODEs and has K as a global section. 

It is possible to take a different approach than the one in §7.3 and construct smooth 
systems of ODEs with inputs that "simulate" finite automata. For instance, in [36] Brockett 
used a system of his so-called double-bracket equations (also see [37]) to "simulate" the step- 
by-step behavior of a FA. This was done by coding the input symbols of the FA in a function 
of time that is the "control input" to a system of double-bracket equations. Specifically, if 
the input alphabet is J = {ui,...,um}, the input string uio, utl, ui2,... is encoded in a time 
function, u{t), that is ik on the intervals [2kT, (2k + 1)T] and zero otherwise. In this paper, 
we encoded the full input string in the initial condition of our simulations. 

In [36], Brockett was interested in the capabilities of his double-bracket equations. How- 
ever, the resulting "simulations" of FA happen to behave poorly with respect to our defi- 
nitions of simulation. Nevertheless, the key idea of his simulations of FA is that the input 
coding, u(t), is used in such a way that it alternately switches between two different systems 
of double-bracket equations. This idea is critical in our simulations of discrete dynamical 
systems with ODEs. 

It is not hard to see that one could use the same approach as that in [36] but more 
well-behaved systems of ODEs to simulate the step-by-step behavior of FA. Consider a FA 
with transition function 6, states Q = {qi,... ,qn), and input alphabet I as above. Code 
state qi as i and consider the first two equations of Equation (7.2). Choose ß = n and 
replace, respectively, S%, S2, and G with h+(u(t)), h-(u{t) - 1), and 

D : {1,..., n} x {1,..., m} ->• {1,..., n}, 
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defined by D{i,j) = k if %,«;) = «*• The result is that any FA may be Si-simulated by 
a system of ODEs in R2 with input. This was also announced in [22]. 

In [7], it is shown that so-called piecewise-constant derivative systems (PCDs) in 
R3 can "simulate" arbitrary inputless FA, inputless PDA, and TMs. Briefly, the notion of 
simulation used is that of I-simulation excepting as follows. First, the intervals in T can be 
open, closed, or half-closed; '<' may replace '<' in the constraints on rfc, T£; and there is no 
e constraint. Also, there is no continuity constraint on ip and for each y € Y there need exist 
only one point in V_1(y) for which the equation holds. However, there is the constraint that 
each </>_1(y) is convex and relatively-open (i.e., open in the subspace of its affine hull). For 
convenience, we refer to this notion as AM-simulation. Since our I-simulations in Theorem 
7.17 had V>-1(y) open and convex, they are AM-simulations (here we are thinking of r in 
R/2Z, or in a circle embedded in R2, with appropriate changes). 

Convexity of ip~l{y) may be a desirable property. For instance, it excludes simulation 
of FA by "unraveling" their transition diagrams into trees, a simple example of which is 
recounted in [7]. On the other hand, consider the case of a universal TM, U, simulating 
an inputless FA, A. Certainly, there could be many distinct configurations of U in which 
the current state of A is written on, say, its first tape cell. Then, even if the inverse images 
of the configurations of U are convex, the inverse images of the valid configurations with, 
say, q in the first tape cell need not be, preventing indirect AM-simulation of A ^through 
AM-simulation of U. In any case, we could have added the constraint that each rp 1{y) be 
convex to our definitions of simulation with little change in any of our results. 

Finally, in [7] Asarin and Maler use three-dimensional PCDs to AM-simulate inputless 
FA. They also point out that three dimensions are necessary in order to AM-simulate, 
with autonomous ODEs, inputless FA whose transition graphs are not planar. While their 
argument is fine, the transition graphs of deterministic inputless FA are always planar and 
it is straightforward to construct PCDs (and continuous ODEs) in two dimensions that 
AM-simulate such FA. Moreover, even though the transition graphs of FA (with inputs) 
need not be planar, their argument does not contradict the result in R2 derived in this 
section, since it uses non-autonomous ODEs. 

§7.6   NOTES 

The work in this chapter appeared in [31]. Our simulation of arbitrary Turing machines 

was first announced in [22]. 
Prof. John Wyatt presented the arbiter problem and the challenge to produce an ODE- 

based model and proof in his nonlinear systems course at MIT [153]. The explicit formula- 
tion and solution of the asynchronous arbiter problem in an ODE framework is excerpted 
from [26], which also discusses bounds on the performance of systems approximating ar- 
biter behavior, arising from the explicit proof. Specifically, while the proof prohibits the 
construction of an arbiter with Td = 0(1), it does not prohibit an arbitration device with 

Td = 0(ln(l/p)). Such a device is given in [26]. 
Dr. Charles Rockland has recently brought to our attention an interesting example of 

the complexity that can arise in low-dimensional differential equations. In particular, [125] 
gives a non-trivial fourth-order algebraic differential equation (given by a polynomial with 
integer coefficients) exhibiting smooth solutions dense in C(R,R). 
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§7.7   APPENDIX 

Lemma 7.23 If X is a connected metric space, Y is a discrete topological space with two 
points, and f : X -> Y is surjective, then for every 8 > 0 one can find x, z € X such that 
d{x,z) <6 and f(x)y£ f{z). 

Proof. Assume the contrary. Then for all x e X, f{Bs{x)) = {/(x)} C V, where Bs{x) 
denotes the ball of radius 8 about x and V is any open set about f{x) in Y. Thus, / is 
continuous [113]. But / continuous and X connected implies f(X) = Y is connected [113], 
a contradiction. L-l 

Lemma 7.24 Suppose ±{t) = f(x(t)) with f globally Lipschitz continuous in x with con- 
stant Lf > 0. Then, for any L such that L> Lf and L > 0, and any ti > t\, 

\\xt2-xtl\\<\\f(xtl)\\L-\eL^-^-l). 

Proof.   Note that for t>h, 

xt -xh= I f(xtl)ds'+ I [f{xf) - f(xtl)] ds. 
Jti Jti 

So that 

||Xt-Stl||      <       [t\\f(xtl)\\d8+  [t\\f(xs)-f{xtl)\\d3 
Jti Jti 

<    (t-t1)\\f(xtl)\\+ f'LWxs-Xt^ds. 
Jti 

Now, substituting r = t - t\ and a = s - t\, this becomes 

\\xT+ti - xtl || < r||/(xtl)|| + f
T L\\xa+tl - xtl || da 

JQ 

Finally, defining U(T) = \\xT+tl - xtl\\, this becomes 

u{r)<T\\f{xtl)\\+ f Lu{a)da. 
Jo 

The result now follows from the well-known Bellman-Gronwall inequality [58, p. 252].    D 

Corollary 7.25  Under the same assumptions plus the fact that the system was in state xto 

at time to < <i < <2> 

||xt2 - xtl || < ||/(xto)||L-1(eL(t2-to) - eL^-t0>). 

Proof.   Note that Lipschitz continuity gives 

||/(xtl)||<L||xtl-xt0|| + ||/(xt0)||. 

But, the lemma gives in turn 

\\xti-xt0\\<\\f{xt(i)\\L-l{eL^-^ -\). 
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So that the result follows. LJ 
The following lemma is well-known (see, e.g., [73, p. 169]). 

Lemma 7.26 Let y(t),z{t) be solutions to x(t) = f(x{t)) where f has global Lipschitz 

constant L > 0. Then for allt>to, 

\\y(t)-z(t)\\<\\y(t0)-z(to)\\eL^to). 

D 



Chapter 8 

Analysis Tools 

§§8.2-8.4 introduce some analysis tools for continuous switching systems. We prove theo- 
rems regarding limit cycles and robustness of such systems. The remainder of the chapter 
outlines some work on the stability analysis of switched and hybrid systems. We introduce 
multiple Lyapunov functions as a tool for analyzing Lyapunov stability and use iterated 
function systems (IFS) theory as a tool for Lagrange stability. We also discuss the case 
where the switched systems are indexed by an arbitrary compact set. 

§8.1   INTRODUCTION 

In the first part of the chapter, we develop general tools for analyzing continuous switching 
systems. For instance, we prove an extension of Bendixson's Theorem to the case of Lips- 
chitz continuous vector fields. This gives us a tool for analyzing the existence of limit cycles 
of continuous switching systems. We also prove a lemma dealing with the continuity of dif- 
ferential equations with respect to perturbations that preserve a linear part. Colloquially, 
this lemma demonstrates the robustness of ODEs with a linear part. For purpose of discus- 
sion, we call it the Linear Robustness Lemma. This lemma is useful in easily deriving some 
of the common robustness results of nonlinear ODE theory (as given in, for instance, [11]). 
This lemma also becomes useful in studying singular perturbations if the fast dynamics are 
such that they maintain the corresponding algebraic equation to within a small deviation. 
We give some simple propositions that allow us to do this type of analysis. 

The extension of Bendixson's Theorem and the Linear Robustness Lemma have uses 
beyond those explicitly espoused here and should be of general interest to systems theorists. 

§8.5 introduces "multiple Lyapunov functions" as a tool for analyzing Lyapunov stability 
of switched systems. In §8.6 iterative function systems are presented as a tool for proving 
Lagrange stability and positive invariance. We also address the case where.{1,... ,N} in 
Equations (4.6) and (4.7) is replaced by an arbitrary compact set. We conclude with some 
discussion. 

Appendix A collects some tedious proofs. Appendix B treats the background, statement, 
and proof of our extension of Bendixson's Theorem. 

In the next chapter, we use the above tools to analyze some example continuous switch- 
ing systems motivated by a realistic aircraft control problem. 

§8.2   EXISTENCE OF LIMIT CYCLES 

Suppose we are interested in the existence of limit cycles of continuous switching systems 
in the plane. The traditional tool for such analysis is Bendixson's Theorem. But under our 
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model, systems typically admit vector fields that are Lipschitz, with no other smoothness 
assumptions. Bendixson's Theorem, as it is traditionally stated (e.g., [67, 142]), requires 
continuously differentiate vector fields and is thus not of use in general. Therefore, we 
offer an extension of Bendixson's Theorem to the more general case of Lipschitz continuous 
vector fields. Its proof is based on results in geometric measure theory (which are discussed 

in Appendix 8.10). 

Theorem 8.1 (Extension of Bendixson's Theorem) Suppose D is a simply connected 
domain in E2 and f(x) is a Lipschitz continuous vector field on D such that the quantity 
V/(x) (the divergence of f, which exists almost everywhere) defined by 

v/M-§£<*..*»)+ |£<*i.*»> 
is not zero almost everywhere over any subregion of D and is of the same sign almost 
everywhere in D. Then D contains no closed trajectories of 

±i(t)   =   fi[xi(t),x2(t)], (8-1) 

±2(0    =   f2[xi(t),x2(t)}. (8-2) 

Proof.   Similar to that of Bendixson's Theorem [142, pp. 31-32] after using an extension 
of the divergence theorem known as the Gauss-Green-Federer Theorem [109, pp. 114-115]. 

(See Appendix 8.10.) P 
Finally, we give an example which shows the necessity of Lipschitz continuity of the 

vector fields. 

Example 8.2 Consider Example 8.9. Note that if the roles of A and B are interchanged, 
then the resulting system is asymptotically stable. Thus, continuity of solutions and the 
intermediate value theorem imply that there exists A € (0,1) such that fi = \B + {l- X)A 
and f2 = XA + (l- X)B results in a closed trajectory.  Yet, V/i < 0 and V/2 < 0. 

§8.3   ROBUSTNESS OF ODEs 

In this subsection, we summarize some results that show the robustness of solutions of 
ordinary differential equations with respect to perturbations of the vector field. First, we 
give and prove a basic lemma in ODE theory that demonstrates robustness of solutions to 
arbitrary perturbations. Then, we consider perturbations that preserve a linear part. This 
allows us to obtain more useful bounds. We call the result the Linear Robustness Lemma. 

The proofs of both lemmas depend critically on the well-known Bellman-Gronwall in- 
equality [58, p. 252], which is reprinted in Appendix 8.9 for convenience. The first is a basic 
lemma in ODE theory that was given without proof in [153]. It is useful as a comparison 
with our new result, Lemma 8.4. For completeness, we furnish a proof in Appendix 8.9. 

Lemma 8.3 Given 

x = F(x,t),      x(0)=x0, 

y = G(y,t),      y{0)=x0. 

Proofs that interrupt discussion flow or do not use novel techniques are relegated to Appendix 8.9. 
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Suppose that F is globally Lipschitz continuous and "close to G," i.e., 

\\F{x,t)-F(y,t)\\<L\\x-v\l       for all re,y,t, 
\\F(x,t) - G{x,t)\\ < e,      for alls,*. 

Then if L # 0 
Nt)-y(t)||<^(eLt-l),        forallt>0. 

IfL = 0, then \\x{t) - y(t)\\ < et. 

Proof.    (See Appendix 8.9.) □ 
The problem with this result is that (except in the trivial case) L > 0, so the bound 

diverges exponentially. Thus it is not useful in deducing stability of a nearby system, 
nor in examining robustness of a well-behaved model to perturbations in the vector field. 
There are some tools for this in the literature, under the heading "stability under persistent 
disturbances." For example, [127, p. 72] gives a local result. We are more interested in 
what one can say globally. Along these lines we consider perturbations that preserve a 
well-defined portion of the dynamics, a linear part. Here is our main result: 

Lemma 8.4 (Linear Robustness Lemma)  Given 

x = Ax + F(x,t),      x(0)=x0, 

y = Ay + G(y,t),       y(0) = x0. 

Suppose that F is globally Lipschitz continuous and "close to G," i.e., 

\\F(x,t) - F(y,t)\\ < L\\x - y\\,       for all x,y,t, 

\\F{x,t) - G(x,t)\\ < e,      forallx,*, 

Then 
\W)-y{t)\\<^~L{e^^t-l),        for all* >0 

when 
\\eA% < ce*, (8.3) 

where || • ||, is the induced norm associated with the norm \\ ■ || and c > 1, r\ + cL # 0, rj ^ 0, 
and L > 0. 

Proof.    (See Appendix 8.9.) □ 

Corollary 8.5 In some special cases not covered above we have: 

1. If L = 0 butr)^ 0, then 

IkW-yWH^^-i). 

2. Ifr) = 0 and L = 0, then 
\\x(t)-y(t)\\<cet. 

3. Ifr) = 0butL> 0, then 

ll*(*)-y(i)||<^(ecLt-i). 
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^. Ifrj^O and L>0 butr] + cL = 0 (this means rj < 0), then 

Mt)-ym<J^[cLt + e-<LT-e*}. 

Proof.    (See Appendix 8.9.) D 
The similarity of Lemmas 8.3 and 8.4 is easy to see. Their proofs are also similar. The 

most important distinction arises when A is stable and r\ can be chosen negative. Indeed, 
if 77 + cL < 0, then we can guarantee nondivergence of the solutions. 

The proof can easily be extended to the case where A is time-varying: 

Corollary 8.6 Lemma 8.4 and Corollary 8.5 hold when A is time varying, with Equation 

(8.3) replaced by 
\m,8)\\i<ce^-'\ 

where $(i,s) is the transition matrix of the time-varying linear matrix A{t). 

Proof.   Proof is the same as that for Lemma 8.4, replacing e^'-5) by $(*,«). _    D 
Then, the case L = 0 subsumes some of the global results of stability under persistent 

disturbances, e.g., [11, p. 167]. 

§8.4   SINGULAR PERTURBATIONS 

The standard singular perturbation model is [87] 

x   =   f(x,z,e,t),        x(t0) = x0,        x€Rn, (8.4) 

ez   =   g(x,z,e,t),        z(t0) = ZQ,        zERm, (8.5) 

in which the derivatives of some of the states are multiplied by a small positive scalar e. 
When we set e = 0, the state-space dimension reduces from n + m to n and the second 
differential equation degenerates into an algebraic equation. Thus, Equation (8.4) represents 
a reduced-order model, with the resulting parameter perturbation being "singular." The 
reason for this terminology is seen when we divide both sides of Equation (8.5) by e and let 

it approach zero. 
We make use of the simpler model 

x   =   f{x,z,t), x(t0)=x0,   xeW1, 
z   =   c?\g(z,t) - z],   z(t0) = zQ,   zeW", 

where we have e = 1/a2, a a nonzero real number. With this rewriting, one sees why 
Equation (8.5) is said to represent the "fast transients," or fast dynamics. The following 
lemma shows explicitly a certain case where the dynamics can be made so fast that the 
resulting "tracking error" between u(t) = g(x{t),t) and z{t) is kept small. 

Lemma 8.7 Let 
z(t) = a2{u{t) - z(t)), 

where u is a Lipschitz continuous (with constant L) function of time. Given any € > 0, if 

|*(0)-u(0)|=e0<e, 
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we can choose a large enough so that 

\z{t)-u{t)\<e,        t>0. 

Proof.   (See Appendix 8.9.) □ 
The result can be extended to higher dimensions as follows: 

Lemma 8.8 Let 
z(t) = a2A{u{t) - z(t)), 

where u and z are elements ofW and A € Rnxn. Further, assume that A is positive definite 
and that each coordinate of u is a Lipschitz continuous (with constant L) function of time. 
Given any e > 0, if 

||z(0)-u(0)|| = e0<e, 

we can choose a large enough so that 

||z(t)-u(t)||<C t>0. 

Proof. Similar to the proof of Lemma 8.7. [Hint: consider the time derivative of eTe, 
e = (z — u), and use equivalence of norms on Rn.] D 

These lemmas allow us to use the robustness lemmas of the previous section to analyze 
certain singular perturbation problems. The idea of the preceding lemmas is that the fast 
dynamics are such that they maintain the corresponding algebraic equation, z(t) =u{t), to 
within a small deviation (cf. invariant manifolds [87, p. 18]). 

§8.5   MULTIPLE LYAPUNOV FUNCTIONS 

In this section, we discuss Lyapunov stability of switched systems via multiple Lyapunov 
functions (MLF) The idea here is that even if we have Lyapunov functions for each system 
fi individually, we need to impose restrictions on switching to guarantee stability. Indeed, 
it is easy to construct examples of two globally exponentially stable systems and a switching 
scheme that sends all trajectories to infinity: 

Example 8.9 Consider fi(x) = Ax and /2(x) = Bx where 

A = 
-0.1      1 
-10    -0.1 

B 
-0.1      10 
-1     -0.1 

Then x = fi(x), is globally exponentially stable for i = 1,2. But the switched system using 
fi in the second and fourth quadrants and f<i in the first and third quadrants is unstable. See 
Figures 8-1-8-3, which plot ten seconds of trajectories for f\, ft, and the switched system 
starting from (1,0), (0,1), (10_6,10-6), respectively. 

We assume the reader is familiar with basic Lyapunov theory (continuous and discrete 
time), say, at the level of [96]. The level of rigor of the proofs is similar to those in that 
book. We let S(r), B{r), and B(r) represent the sphere, ball, and closed ball of Euclidean 
radius r about the origin in W1, respectively. 

Below, we deal with systems that switch among vector fields (resp. difference equations), 
over time or regions of state-space.   One can associate with such a system the following 
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Figure 8-1: Trajectory of f\. 

Figure 8-2: Trajectory of $2- 

(anchored) switching sequence, indexed by an initial state, xQ: 

S = x0; (io,*o)i(n,*i),-■•>(*#,<#),••• • (8.6) 

The sequence may or may not be infinite. In the finite case, we may take tN+i = oo, 
with all further definitions and results holding. However, we present in the sequel only 
in the infinite case to ease notation. The switching sequence, along with Equation (4.6), 
completely describes the trajectory of the system according to the following rule: (ik,tk) 
means that the system evolves according to x(t) = /it(x(*),*) for tk<t< tk+l. We denote 
this trajectory by xs{-). Throughout, we assume that the switching sequence is minimal 
in the sense that ij # ij+i, j € Z+. 

We can take projections of this sequence onto its first and second coordinates, yielding 

the sequence of indices, 
7Ti(5) = XQ; io, ii,..., iNi ■ • •) 
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Figure 8-3: Trajectory of switched system. 

and the sequence of switching times, 

7C2{S) = Xo;   to,ti,...,ttf,..., 

respectively. Suppose 5 is a switching sequence as in Equation (8.6). We denote by S\i the 
sequence of switching times whose corresponding index is i for the discrete case and the 
endpoints of the times that system i is active in the continuous-time case. The interval 
completion X(T) of a strictly increasing sequence of times T = to, h,..., ijv, • • ■■> is the set 

U  (*2j>*2j'+l)- 
J'€Z+ 

Finally, let £(T) denote the even sequence of T: 

to,t2,U,--- ■ 

Below, we say that V is a candidate Lyapunov function if V is a continuous, positive 
definite function (about the origin, 0) with continuous partial derivatives. Note this assumes 
V(0) = 0. We also use 

Definition 8.10 Given a strictly increasing sequence of times T in R (resp. Z), we say 
that V is Lyapunov-like for function f and trajectory x(-) (resp. x[-]) over T if 

• V(x(t)) < 0 (resp. V{x[t + 1]) < V(x[t])) for all t G l(t) (resp. t € T), 

• V is monotonically nonincreasing on £(T) (resp. T). 

Theorem 8.11 Suppose we have candidate Lyapunov functions VJ, i = 1,..., N, and vector 
fields x = fi(x) (resp. difference equations x[k + 1] = f%(x[k])) with /,(0) = 0, for all i. Let 
S be the set of all switching sequences associated with the system. 

If for each S € S we have that for all i, Vi is Lyapunov-like for fi and xs(-) over S\i, 
then the system is stable in the sense of Lyapunov. 

Proof.   In each case, we do the proofs only for N = 2. 
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• Continuous-time: Let R > 0 be arbitrary. Let rm{a) denote the minimum value 
of Vi on S(a). Pick n < R such that in B{n) we have V < mi(R). This choice is 
possible via the continuity of Vj. Let r = minfo). With this choice, if we start in 
B{r), either vector field alone will stay within B(R). 

Now, pick pi < r such that in B(JH) we have V < rrii{r). Set p = min(pi). Thus, 
if we start in B{p), either vector field alone will stay in B(r). Therefore, whenever 
the other is first switched on we have Vi{x{h)) < rm{R), so that we will stay within 

B(R). 

• Discrete-time: Let R > 0 be arbitrary. Let rm{a,ß) denote the minimum value of 
Vi on the closed annulus B{ß) - B(a). Pick RQ < R so that none of the ft can jump 
out of B{R) in one step. Pick n < Ro such that in B(n) we have Vi < rm(Ro,R). 
This choice is possible via the continuity of Vi. Let r = minfa). With this choice, if 
we start in B(r), either equation alone will stay within B{R). 

Pick r0 < r so that none of the ft can jump out of B(r) in one step. Now, pick Pi < r0 

such that in B(Pi) we have Vt < mi(rQ,r). Set p = min^)- Thus, if we start in B(p), 
either equation alone will stay in B(r0), and hence B(r). Therefore, whenever the 
other is first switched on we have Vi(x{ti)) < rm(Ro,R), so that we will stay within 

B(Ro), and hence B(R). 

The proofs for general N require N sets of concentric circles constructed as the two were 

in each case above. 
Some remarks are in order: 

• The case N = 1 is the usual theorem for Lyapunov stability [96].   Also, compare 
Figures 8-4 and 8-5, both of which depict the continuous-time case. 

• The theorem also holds if the ft are time-varying. 

• It is easy to see that the theorem does not hold if N = oo, and we leave it to the 

reader to construct examples. 

Figure 8-4: Lyapunov stability. 
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Figure 8-5: Multiple Lyapunov stability, N = 2. 

Example 8.12 Pick any line through the origin. Going back to Example 8.9 and choosing 
to use /i above the line and /2 below it, the resulting system is globally asymptotically stable. 
The reason is that each system is strictly stable linear and hence diminishes V{ = xTP{X for 
some P{ > 0. However, since switchings occur on a line through the origin, we are assured 
that on switches to system i, V* is lower energy than when it was last switched out. 

It is possible to use different conditions on the Vi to ensure stability. For instance, 
consider the following 

Definition 8.13 // there are candidate Lyapunov functions V{ corresponding to fi for all 
i, we say they satisfy the sequence nonincreasing condition for a trajectory x(-) if 

Vij+Mtj+i))<ViMtj))- 

This is a stronger notion than the Lyapunov-like condition used above. 
The sequence nonincreasing condition is used in the stability (version of the asymptotic 

stability) theorem of [119]. Thus that theorem is a special case of the continuous-time 
version of Theorem 8.11 above. Moreover, the proof of asymptotic stability in [119] is 
flawed since it only proves state convergence and not state convergence plus stability, as 
required. It can be fixed using our theorem. 

Now, consider the case where the index set is an arbitrary compact set: 

x = f{x, A),        A e K, compact. (8.7) 

Here, x eW and / is globally Lipschitz in x, continuous in A. For brevity, we only consider 
the continuous-time case. Again, we assume finite switches in finite time. 

As above, we may define a switching sequence 

S = xo; (Ao,io),(Ai,ii),...,(Atf,tiv),.— 

with its associated projection sequences. 

Theorem 8.14 Suppose we have candidate Lyapunov functions V\ = V(-,X) and vector 
fields as in Equation (8.7) with /(0,A) = 0, for each A G K. Also, V : W1 x K -»■ 1+ is 
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continuous. Let S be the set of all switching sequences associated with the system. 
If for each S € S we have that for all i, Vx is Lyapunov-like function for fx and xs{-) 

overS\X, and the Vx satisfy the sequence nonincreasing condition for xs{-), then the system 

is stable in the sense of Lyapunov. 

Proof. We present the proof in the case that K is sequentially compact, which is automatic 
if K is a metric space. The general case follows with little change from the argument below 
by using countable compactness and nets instead of sequences. (See [62,113] for definitions). 

The Lyapunov-like and sequence nonincreasing constraints are such that if 7r;(S) = 
XQ; AO, AI, A2,..., then the state x{t) will remain within the set: 

Rv(X0M)= \J{x\V(x,X)<V(xo,Xo)}. 

Next, note that if XQ lies in 

Ie = { x | sup V(x, A) < e \ , 
X€K I 

then the state will remain in Re. 
Thus, it remains to show that given any e > 0, there exist e', S > 0 such that 

B{5) C L> n B{e) C Re> n B{e) C B(e). 

Letting m denote the minimum of V on 5(e) xK,e' = m/2 satisfies the last equation. Now 
Ie, contains the origin, 0 € En. Suppose there is no open ball about 0 in Ie>. Then for each 

n € Z+, there exists yn such that 

Ill/nil <l/n.        supV(yn,A)>e'. 
xeK 

Further, we may take each ofjhe yn distinct. Let An € K be the point at which the 
sup above is attained. Since B(e') x K is sequentially compact, there is a subsequence 
{(yik,\ik)} converging to (0,A*) with V{yik,\ik) > e', a contradiction to the continuity of 
V and the assumption that V{0, A) = 0 for all A € K. _ □ 

This theorem is a different generalization of the aforementioned theorem in [119]. 

§8.6   ITERATED FUNCTION SYSTEMS 

In this section, we study iterated function systems theory as a tool for Lagrange stability. 
We begin with some background from [12, 143, 48]: 

Definition 8.15 Recall that a contractive function / is one such that there exists s < 1 
where d{f(x), f(y)) < sd{x,y), for all x,y. 

An iterated function system or IFS is a complete metric space and a set {fijiei 
of contractive functions such that I is a compact space and the map {x,i) ^ fi{x) is 

continuous. 

The image of a compact set X under an IFS is the set Y = \Ji€l fi{X). It is compact. 
Now suppose W is an IFS. Let S(W) be the semigroup generated by W under composition. 
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o w 'Tn (*)}, 

For example, if W = {/, g} then 

S(W) =f,g,fof,fog,gof,gog,.... 

Now, define Aw to be the closure of the fixed points of S(W). We have 

Theorem 8.16 Suppose W = {wi}i€i is an IFS on X. Then 

• Aw is compact. 

• Aw = {Ji€im{Aw)- 

• For all x G X, 

Aw = U { nm w*i ° W<T2 ° 
a 

where a = (<7i, o~2,...), &i € I. 

The relevance of this theorem is twofold: 

• Aw is an invariant set under the maps {u>j}jej. 

• All points approach Aw under iterated composition of the maps {t<Ji}iej. 

Clearly, this theory can be applied in the case of a set of contractive discrete maps 
indexed by a compact set (usually finite). Thus, it is directly applicable to systems of the 
form Equation (4.7). 

Example 8.17 The following IFS is well-known: 

Fi(x) = 
0.5     0 

0     0.5 
x + 

0-5 • l{i>1} 

0-5 • l{i<3} 
t = 1,2,3. 

It is pictured in Figure 8-6. 

To obtain contractive maps while switching among differential equations requires a little 
thought. Assume there is some lower limit T on the inter-switching time. Now, notice that 
for any inter-switching time r>T, there is a decomposition into smaller intervals as follows: 

M 

= £**. Ue[T,2T). 
1=1 

Proof. Let k = |r/(2T)J and q = r - 2Tk. Now, 2T > q > 0. If q = 0, the decomposition 
is U = 2T, i = 1,..., k. U2T>q>T, the decomposition is U = 2T, i = 1,..., k; tk+i = q\ 
the first equation not applying if k = 0. Finally, if T > q > 0, then (we must have k > 1 
since r>T) and 2T > q + T > T, so the decomposition is U = 2T, i = 1,..., k - 1; tk = T; 
tk+i = T + q; the first equation not applying if k = 1. D 

Therefore, we can convert switching among vector fields into an IFS by letting I = 
U =i N3

X
 [r' 2^1- *n particular* we see that for each i, if it is active for a time r > T, we 

can write the solution in that interval as <#(x) = {ofL^ix), where <j>\ is the fundamental 
solution for fi acting for time t. Thus the switching sequence can be converted to an iterated 
composition of maps indexed by the compact set I. 

The other interesting point about IFS theory is that the different vector fields (or differ- 
ence equations) need not have the same equilibrium point. This is important as it appears 
to be the usual case in switched and hybrid systems (cf. Example 3.4). 
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IFS: Sierpinksi Triangle (10000 points) 

HS? 

0.2 0.4 0.6 0.8 1 

Figure 8-6: Example IFS. 

Example 8.18 Starting with Example 8.17, we consider a corresponding differential IFS 

(DIFS), with 

Fi(x) 
-a 0 x + 
U —a a • !{i<3} 

i = 1,2,3. 

It is pictured in Figure 8-7 for a = In 2 and T = 2/3. 

In conclusion, in IFS we have a tool for analyzing the Lagrange stability and computing 
the invariant sets of switched systems of the form Equations (4.6) and (4.7). The resulting 
sets Aw are reminiscent of those for usual IFS (see [12]), although we don't give any here. 
The reader may consult [12] for algorithms to compute such invariant sets. 

§8.7   DISCUSSION 

In both the MLF and IFS cases, the stability results are sufficiency conditions on the 
continuous dynamics and switching. This work represents the rudiments of a stability 
theory of the systems in Equations (4.6) and (4.7) and, in turn, of hybrid systems. We also 
discussed the case where {1,..., N} in Equations (4.6) and (4.7) is replaced by an arbitrary 

compact set. 
For future directions, we offer the following brief treatment. In searching for necessary 

and sufficient stability criteria, we expect that the theory in [94] appears helpful. An early 
use of our MLF theory is given in [147], which deals with convergence of a combined scheme 
for robotic planning and obstacle avoidance. As far as IFS, we have yet to explore their full 
potential. For instance, we can state IFS theorems analogous to Theorem 8.11, namely, in 
which the maps need only be contractions on the points (time periods) on which they are 
applied. Finally, if there is no lower limit T on the inter-switching time, then we are not 
assured to have a contraction mapping. However, as long as we have only finite switches in 
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Differential IFS: Sierpinksi Triangle, T*0.667 (10000 points) 

Figure 8-7: Example DIFS. 

finite time, one expects that the trajectories should be well-behaved (e.g., invoke continuity 
of ODE solutions and take convex hulls). 

Finally, it is not hard to generalize our MLF theory to the case of different equilibria, 
which is generally the case in hybrid systems. For example, under a Lyapunov-like switching 
rule, after all controllers have been switched in at level a,, the set (Ji ^-1(ai) is invariant. 

§8.8   NOTES 

The work in §§8.2-8.4 first appeared in [21], later summarized in [28]. The work in §8.5 
and §8.6 was begun in [23] and continued in [30]. The extension of Bendixson's Theorem 
and the Linear Robustness Lemma have applicability beyond the systems discussed in this 
thesis. The Linear Robustness Lemma was published in [29]. 

After this work was published, we became aware of the related work in [118]. There 
Pavlidis concludes stability of differential equations containing impulses by introducing a 
positive definite function which decreases during the occurrence of an impulse and remains 
constant or decreases during the "free motion" of the system. Hence, it is a special case of 
our results. 

In personal discussions, Prof. Wyatt S. Newman essentially conjectured Theorem 8.11 
in the continuous-time setting. 

§8.9   APPENDIX A:   ASSORTED PROOFS 

§8.9.1   CONTINUITY LEMMAS 

The proofs of our continuity lemmas depend critically on the well-known Bellman-Gronwall 
inequality [58, p. 252]: 

Lemma 8.19 (Bellman-Gronwall) Let 
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1- /> 9, k; K+ —> K and locally integrable; 

2. g>0,k> 0; 

3. g € Lf; 

4. gk is locally integrable on R+. 

Under these conditions, if u : K+ ->■ K satisfies 

u(t) < f{t) + g(t) f k(T)u(r)dT,        for allteR+, 
Jo 

then 

u(t) </(*) + g{t) f fc(r)/(r) [exp jf k{a)g{a)da dr,        for allteR+. 

Proof, [of Lemma 8.3] For any t > 0, 

x(t)   =   x0+ [ F{x,r)dT, 
Jo 

y(t)    =   x0 + f G{y, T)dT. 
Jo 

Subtracting yields 

x(t)~y{t)   =    f F{x,T)dr- f G{y,T)dr 
Jo Jo 

=    f*[F(x, T) - F{y, T) + F(y, r) - G{y, r)]dr, 
Jo 

||a:(t)-y(t)||    =    l [\F{X,T) - F{y,r) + F{y,r)-G(y,T)]dr 
IIJ 0 

< f* \\F(X,T) - F(y,T)\\dr + [ \\F(y,T) - G(y,T)\\dr 
Jo J° 

< L AxM-i/MlldT + rf. 
Jo 

Using the Bellman-Gronwall Lemma, we obtain 

\\x{t) - y(t) ||   <   et + J Ler I exp J  Lda\ dr 

=   e\t + LJ\eL^dr} 

=   elt + LeLtfre-LTdrY 

If L = 0 
N*)-y(*)ll = e*. 



§ 8.9    Appendix A:   Assorted Proofs     133 

and if L > 0, we compute 

/' 
JO 

Te~LTdT   = 
-LT 

L2 -{-LT-1) 

e~Lt 1 

Therefore, 

W)-y(t)\\   <  <{'-*-1+ |e"} 

= i(«"-0- 
D 

Proof, [of Lemma 8.4] For any t > 0, 

x(t)   =   eAtx0 + j
teA^t-^F{x,T)dr, 

Jo 

y(t)   =   eAtx0+ f eA^-^G(y,T)dr. 
Jo 

Subtracting yields 

x(t)-y(t)   =    [teMt-T)[F(x,T)-F(y,T) + F(y,r)-G(y,T)}dT, 
Jo 

Mt)-y(t)\\    <    [t\\eA^\\i\\F(x,T)-F(y,T)\\dT+ f \\eA^^\\i\\F(y,r) - G(y,r)\\d 
Jo •'O 

<   L /"' lle^^-^IUHxC-r) - y(r)||dT + c f We^^hdr. 
Jo Jo 

Now we are given that ||eAs||; < ce7*3, so that 

t \\eA{t-T)\\idT   <   ce"< f e-^dr 
Jo Jo 

<    V(l-e-*) 

^ ;(**-0- 
Therefore, 

Mt) - y(t)\\ < cLe* f e-"lx(r) - y(r)||dr + ^ (e* - l) . 
Jo Jl 

Using the Bellman-Gronwall Lemma, we obtain 

\\x(t)-y(t)\\   <   ^(e^-l)+cIc^|tc-^-(e^-l)[expjfte-^cIe^do- 

e"* - 1 + cLe* f (1 - e-"T) e^^Wl 

(8.8) 

(8.9) 

th- 

ee 
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ec 

•n 
ec 

ec 

V 
ec 

e* - 1 + cLe*ecLt f (e"cLr - e~^+cL^) dr] (8.10) 

e^-l + cLe^+cL^QE-Xe-cLt + 

evt _ i _|_ e(»?+ci)* _ ent + 

cL rj + cL 
-kn+cL)t 1 

77 + cL 
cL 

D(»?+cL)t 
rj + cL     f] + cL 

cL (T)+cL)t] -1   [l-e . 
.77 + cL       J L J 

=     !£ [    -T?    1  [l _ eiv+cL)t\ 
r) U + cLJ L J 

=  _J£_ [«,<■*<*>*_ ij. 

Proof, [of Corollary 8.5] Now we deal some special cases not covered above: 

1. If L = 0 but T) £ 0, then Equation (8.9) gives 

\\x(t)-y(t)\\<ej(e*-i). 

If 77 = 0 then Equation (8.8) is replaced by 

r||eA(t-T)||idT<ct. 
h 

2. So, if 7? = 0 and L = 0 
||x(t)-I/(*)ll<c£t. 

3. If 77 = 0 and L > 0 then Equation (8.9) is replaced by 

\\x{t) - y{t)\\ <cL I \\X(T) - y(T)\\dr + ect. 
J 0 

in which case the Bellman-Gronwall Lemma gives 

\\x{t) - y(t)\\   <   ect + cLJ   ecr lexp J cL da dr 

< ect + ec2L ['re^-^dT 
Jo 

< ect + ec2LecLt [' rtcLrdr. 
~ Jo 

Now repeating the calculation of Equation (8.8) with cL identified with L: 

e-cLt \ 

\x{t)-y{t)\\   <   ect + ec2LecLt 

(cL)' 
;{Lt + l) + (cLf 

<   ect -ect-^- + jrecLt 

D 

(8.11) 
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4. If rj # 0 and L > 0 but r) + cL = 0 (this means 77 < 0), then Equation (8.10) and the 
further computations simplify to 

\x(t)-y(t)\\   = 
ec 

ec 

ec 

e^-l + cL f (e-cLr-l)dT 

[e"' - 1 + 1 - e~cLt - cLt 

=   fE^-e-cW-cLi] 

§8.9.2  SINGULAR PERTURBATION LEMMAS 

Proof, [of Lemma 8.7] Let e = z-u. Then 

d+e d+z     d+u 
dt dt        dt 

=   a2(u — z) — 
d+u 
dt 

=   —oft — 
d+u 

where 
d+z       ,. 
——- =  hm 
dt      /i->o+ 

dt ' 

z(t + h)- z(t) 

Now, since u is Lipschitz, we have 
d+u 
dt 

<L. 

Thus, if we choose a such that a2 > L/e, then when e > e, we have 

d+e 
dt 

< -a2e + L<0. 

Similarly, when e < — e, we have 

d+e 
dt 

>a?e-L>Q. 

Thus, the set |e| < e is an invariant set. 

§8.10  APPENDIX B:   BENDIXSON EXTENSION 

D 

D 

This appendix treats the background, statement, and proof of our extension of Bendixson's 
Theorem. 

Bendixson's theorem gives conditions under which a region cannot contain a periodic 
solution (or limit cycle). It is usually stated as follows (statement and footnote adapted 
from [142, pp. 31-32]): 
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Theorem 8.20 (Bendixson's Theorem) Suppose D is a simply connected2 domain in 
R2 such that the quantity V/(x) {the divergence off) defined by 

*/<*)-§£(«.,«)+ §£<«.,*.) 
is not identically zero over any subregion of D and does not change sign in D.   Then D 

contains no closed trajectories of 

ii(t)   =   fi[xi(t),x2(t)}, 

±2{t)   =   /2[xi(t),x2(t)j. 

The proof of Bendixson's Theorem depends, in a critical way, on Green's Theorem. The 
usual statement.of Green's Theorem says [109] that a C1 vector field f(x) on a compact 

region A in R" with C1 boundary B satisfies 

/ f(x) ■ n{A,x)do = / Vf(x)d£nx, 
JB JA 

where n(A,x) is the exterior unit normal to A at x, do is the element of area on B, and 
Cn is the Lebesgue measure on R". It is possible, however, to treat more general regions 
and vector fields that are merely Lipschitz continuous. A general extension is the so-called 
Gauss-Green-Federer Theorem given in [109]. Even the statement of this theorem requires 
the development of a bit of the language of geometric measure theory. We state a relaxed 
version of this theorem that is still suitable for our purposes. In the final formula, V/ 
exists almost everywhere because a Lipschitz continuous function is differentiable almost 

everywhere. 

Theorem 8.21 (Relaxation of Gauss-Green-Federer) Let A be a compact region of 
W with C1 boundary B. Then for any Lipschitz vector field f{x), 

[ f(x) ■ n(A,x)do = [ Vf{x)dCni 
JB J

A 

Now we can prove our version of Bendixson's Theorem: 
Proof, [of Theorem 8.1] The proof is similar to that of Bendixson's Theorem in [142, 

Suppose, for contradiction, that J is a closed trajectory of Equations (8.1) and (8.2). 
Then at each point x G J, the vector field f(x) is tangent to J. Then f(x) ■ n(5, x) = 0 for 
all x € J, where 5 is the area enclosed by J. But by Theorem 8.21 

0 = I f{x) ■ n{A,x)dl = J Vf{x)dC2x. 

Therefore, we must have either (i) V/(x) is zero almost everywhere, or (ii) the sets {x € 
5|V/(x) < 0} and {x € S|V/(x) > 0} both have positive measure. But if S is a subset of 
D, neither can happen. Hence, D contains no closed trajectories of Equations (8.1)-(8.2)_ 

2A connected region can be thought of as a set that is in one piece, i.e., one in which every two points 
in the set can be connected by a curve lying entirely within the set. A set is simply connected if (1) it is 

connected and (2) its boundary is connected. 



Chapter 9 

Analyzing Examples 

In this chapter, the attention focuses on example systems and their analysis. We first 
analyze a class of two-state, continuous switched systems, proving global stability. Using 
tools from §8, we conclude stability of a class of continuations of those systems. The example 
systems arise from a realistic aircraft control problem. 

§9.1   INTRODUCTION 

In this chapter, we use the tools of §8 to analyze some example continuous switched systems 
motivated by a realistic aircraft control problem. In the next section, we present an example 
continuous switched control problem. This system is inspired from one used in the longi- 
tudinal control of modern aircraft such as the F-8 [134]. The control law uses a "logical" 
function (max) to pick between one of two stable controllers: the first a servo that tracks 
pilot inputs, the second a regulator about a fixed angle of attack. The desired effect of the 
total controller is to "track pilot inputs except when those inputs would cause the aircraft 
to exceed a maximum angle of attack." We analyze the stability of this hybrid system in 
the case where the pilot input is zero and the controllers are linear full-state feedback. We 
call this the max system. While the restriction to this case seems strong, one should note 
that the stability of such systems is typically verified only by extensive simulation [134]. In 
this chapter, we use the tools discussed above to prove nontrivial statements about the con- 
troller's behavior. For example, we show that no limit cycles exist by applying our extension 
of Bendixson's Theorem. We also show that the family of linear full-state feedback max 
systems can be reduced to a simpler family via a change of basis and analysis of equilibria. 
Finally, we give a Lyapunov function that proves that all systems of this canonical form are 
globally asymptotically stable. The Lyapunov function itself has a logical component, and 
the proof that it diminishes along trajectories is split into logical cases. 

In §9.3 we analyze a "continuation" of the max system. Specifically, we use a dynamic 
variable (output of a differential equation) instead of the output given by the max func- 
tion directly. This corresponds to a dynamical smoothing or switching hysteresis, as we 
motivated above. By using our lemma on the robustness of linear ODEs, we conclude sta- 
bility properties of this (singular perturbation) continuation from those of the original max 

system. 
The Appendix collects the more tedious proofs. 
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19.2   EXAMPLE 1: MAX SYSTEM 

As an example of a switched system, we consider a problem combining logic in a continuous 
control system. Specifically, we start with the system 

E: dt 

r       *i 
9 _- 
a 

*■     J 

a   
nz _ 

-1   -10 
1    -1 

0      1 
0   -300 

Q 

a 

Q 

a 

+ 

+ 

-1 
0.1 

0 

30 

S, 

S, 

or, symbolically, 

x   =   Ax + B8, 

a   =   C\x + D\8 = C\x, 

nz   =   C2x + D25. 

These equations arise from the longitudinal dynamics of an aircraft (see Figure 9-1) with 
reasonable values chosen for the physical parameters. The variable 9 is the pitch angle and 
a is the angle of attack. The input command S is the angle of the elevator. The normal 
acceleration, n2, is the output variable which we would like to track, i.e., we assume that 
the pilot requests desired values of n2 with his control stick. As a constraint, the output 
variable a must have a value not much larger than aiim (for the model to be valid and 
the plane to be controlled adequately). A successful controller would satisfy both of these 
objectives simultaneously to the extent that this is possible: we desire good tracking of the 
pilot's input without violating the constraint a < ahm + e, for e > 0 some safety margin. 

Figure 9-1: Longitudinal Aircraft View. 

Now, suppose that two controllers, K\ and K2, have been designed to output Si and S2 

such that (1) £ is regulated about a = aiim when 6 = <*i; and (2) S tracks command r—the 
pilot's desired n— when S = 62, respectively. Finally, suppose that we add the following 
logical block: 6 = max(<5i,<52). Control configurations much like this (see Figure 9-2) have 
been used to satisfy the objectives of our aircraft control problem [134]. 

To our knowledge, the stability of such systems has only been probed via extensive 
simulation [134]. In the remainder of this section, we examine the stability of certain cases 
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Figure 9-2: The Max Control System. 

of this control system. First, we limit ourselves to the case where both controllers are 
implemented with full-state feedback. We discuss the well-posedness of the system and 
show an example output run. Next, we consider the equilibrium points of the system and 
their stability in the case where the pilot's reference input (desired normal acceleration) is 
clamped to zero. More practically, we answer the question, What is the behavior of this 
control system if the pilot lets go of the control stick? 

§9.2.1   PRELIMINARY ANALYSIS OF THE EXAMPLE SYSTEM 

First note that in our example system, the pair (A, B) is controllable. To make some 
headway, we restrict ourselves to the special case where the controllers K\ and K2 take the 
form of full-state feedback plus an offset term (for nonzero outputs): 

Si   =   -Fx + iCii-A + BF^B^aum, 

02   =   -Gx + {{C2-D2G){-A + BG)-lB + D2]-lr. 

For convenience, we let 

ki   =   [Cii-A + BFr'B]-1, 

k2   =   [(C2-D2G){-A + BG)-lB + D2)-\ 

Such constants generally need not exist. However, for our system we are keenly interested 
in the existence of k\} We have the following 

Fact 9.1 The constant Jfci is guaranteed to exist for our system whenever F is chosen such 
that (A - BF) is stable.2 

.  Proof.   (See Appendix 9.5.) D 

aWe assume fc2 exists since it does not affect our later analysis, which is in the case r = 0. 
2We say a matrix is stable when all its eigenvalues are strictly in the left-half plane. 
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Thus, the resulting max control law exists. It is simply 

6 = max{-Fx + kialim,-Gx + k2r). (9.1) 

To get a feel for how the example system behaves, we have included some simulations. 
Figure 9-3 shows an example run of the just the tracking portion of the control system 
(aiim = °-6> F chosen t0 Place the closed-loop poles at -6 and -7). Part (a) shows normal 
acceleration tracks the desired trajectory well; (b) shows the aüm constraint is violated to 

achieve this tracking. 
Figure 9-4 shows the outputs when the full max control system is activated (with both 

F = G chosen as F above). One easily sees that the controller acts as expected: it tracks 
the desired command well, except in that portion where tracking the command requires 
that the a\im constraint be violated. In this portion, a is kept close to its constraint value 
(the maximum value of a in this simulation run was 0.6092). 

§9.2.2   ANALYSIS FOR THE CASE R = 0 

The first thing we do is examine stability of £ using the max control law in the case where 

r = 0. 

NOTE. Similar analysis holds for r any constant after change of variables. If r is given by an 
asymptotically stable differential equation, then a theorem of [142] for triangular systems 
may be used with our result to conclude global asymptotic stability. 

In the case r = 0, the closed-loop system equations are then 

x   =   Ax + Bmax(-Fx + kia\im,-Gx) 

=   (A-BG)x + Bmax{{G-F)x + k1aiim,0). 

In our analysis below, we suppose that we have done a reasonable job in designing the 
feedback controls F and G. That is, we assume {A - BF) and (A - BG) are stable. This 
is possible because (A, B) controllable. 

Now, recall that {A, B) controllable implies that (A - BG,B) is controllable. Thus, it 

suffices to analyze the following. 

Definition 9.2  The max system is defined by 

Smax:        i = Az + Bmax(Fz + -y,0), 

where A and A + BF are stable and (A, B) is controllable and 7 = fcianm. 

To fix ideas, let's look at simulation results. Figure 9-5 shows a max system trajectory with 

A = 
-0.1       1 
-1     -0.1 

B = F=[ -9   O],        7 = -l. 

Figure 9-73 shows the trajectory resulting from the same initial condition for the system 
x = Ax; Figure 9-8 for the system i = {A + BF)x. Both component systems are stable. 

3We intentionally skipped a figure to allow better figure placement for comparison. 
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To simplify analysis of the max system, we can make a change of basis (x = Pz), yielding 

x   =   Pz 
=   PAz + PBmax{Fz + i,0) 
=   PAP-1x + PBmax{FP-1x + -f,0), 

where P is any nonsingular matrix. In particular, P can be chosen so that the matrices 
PAP'1 and PB are in the so-called controller canonical form: 

PAP'1   =    [    °        1    I, (9.2) 
—ao   —Oi J 

PB   =       J    . (9.3) 

Note that en > 0 since PAP-1 is a stable matrix. Renaming matrices again, we have 

Fact 9.3  The max system Emax can be reduced to the system: 

x = Ax + B max(Fz + 7,0), 

where A and A + BF are stable, (A, B) is controllable, and the matrices A and B are in 
controller canonical form. 

We can do one more thing to simplify the max system just derived: expand the equa- 
tions using the fact that A and B have controller canonical form. Doing this—and some 
equilibrium point analysis—we obtain 

Remark 9.4 The max system can be reduced to the following canonical form, denoted 
canonical max system: 

x   =   y, 
y   =   -ax -by+max(fx + gy + y,0), 

where a, b, a — f, and b — g are greater than zero. 

2. Further, without loss of generality, we may assume that 7 < 0, in which case the only 
equilibrium point of this system is the origin. 

Proof.   The first part is a straightforward calculation, with the inequalities on the constants 
arising from the assumed stability of A and A + BF. 

Now, let's analyze the equilibrium points of the canonical max system. The relevant 
equations are y = 0 and ax = max(/x + 7,0). This second one must be analyzed in two 
cases: 

ax = 0,      fx + 7 < 0, 
ax = fx + 7,      fx + 7 > 0. 

Thus, (0,0) is an equilibrium point if and only if 7 < 0; (7/(0 - /),0) is an equilibrium 
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point if and only if 

f    7 + 7   >   0, 
a-f 

a r, 
 7 7    >    0, a-f 

7   >   0, 

where the last line follows from a and a - f greater than zero.  Therefore, the canonical 
max system has exactly one equilibrium point. 

Finally, if 7 > 0, changing coordinates to z = x - 7/(0 - /) yields z = y and 

y   =   _a(z+^)-ty + max(/(z+^)+<72/ + 7,0j 

07 / a7       \ 
=   -az-by -Ly + maxl/z + py+—7,0J 

=   -az -by + fz + gy + max ( 0, -fz - gy - ^ZTf) 

=   -(a - f)z -(b- g)y + max ((-/)z + {-g)y + ("^T/) '°) ' 

Now introducing new variables for the constants in parentheses, we obtain 

z   =   y, 
y   =   -äz-by + max(fz + gy + i,0). 

It is easy to check that the new variables satisfy the inequalities of the canonical form. 
Further, we have 7 < 0, and thus (0,0) the only equilibrium. □ 

Next, note that this is equivalent to the second-order system: 

x = -ax -bx + max(/x + gx + 7,0), 

which we use below. 
We have the following global results for the max system in the case where the reference 

input, r, is zero: 

1. Limit cycles don't exist. Our max system consists of a logical (though Lipschitz. 
continuous) switching between two stable linear systems, both of which admit negative 
divergence in their respective regions. Therefore, by Theorem 8.1, no limit cycles can 

exist. 

2. The system is globally asymptotically stable. The proof is detailed below. 

To prove global asymptotic stability, we first show 

Remark 9.5 The following is a Lyapunov function for the canonical max system: 

V   =   h2+ f[a£-max(/£ + 7,0M 
2 Jo 

3 k+fcK)* 
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Proof.    The proof has two major parts: (i) V is a positive definite (p.d.) function, and 
(ii) V < 0. 

(i) To show that V is a p.d. function, it is enough to show that xc{x) > 0 when x ^ 0 
and c(0) = 0. The second fact follows from 7 < 0. Computing 

xc(x)   =   ax2 - x max(/x + 7,0) 

f ax2, /x + 7<0, 
—    \  ax2 - fx2 - 7X,   fx + 7 > 0. 

That the desired condition holds in the first case follows immediately from a > 0. For 
the second case, we consider 

1. x > 0: 
ax2 - fx2 - 7X = (a - f)x2 + (-7)x > 0 + 0 = 0, 

2. x < 0: 
ax2 - fx2 - 7X = ax2 + (-x)(/x + 7) > 0 + 0 = 0. 

Thus V is a p.d. function. 

(ii) Next, we wish to show that V" < 0. To that end, we compute 

V   =   xx + c(x)x 
=   x[-ax -bx + max(/x + ox + 7,0)] + axx - max(/x + 7) 0)x 
=   -6x2 + x max(/x + gx + 7,0) - x max(/x + 7,0). 

Now, there are four cases to be dealt with: 

1. If fx + gx + 7 < 0 and fx + 7 < 0, then V = -bx2 < 0. 

2. If fx + gx + 7 > 0 and fx + 7 > 0, then V = -{b- g)x2 < 0. 

3. If fx + gx + 7 < 0 and fx + 7 > 0, then 

F = -6x2 -x(/x + 7). 

If x > 0, then V < 0. If x < 0, then, using (6 - g) > 0, we obtain 

b > g 
bx < gx, 

fx + f + bx < fx + 'r + gx, 

fx + -y + bx < 0, 
-x[/x + 7 + 6x] < 0, 

V < 0. 

4. If /x + gx + 7 > 0 and fx + 7 < 0, then 

V = -bx2 + x(fx + xg + 7). 
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If x < 0, then V < 0. If x > 0, 

V = -(6 - a)x2 + x(/x + 7) < 0. 

D 
Global asymptotic stability results from the facts that (1) the origin is the only invariant 

set for which V = 0 and (2) V(x) -¥ 00 as ||x|| -» 00 [132]. 

§9.3   EXAMPLE 2: THE MAX SYSTEM CONTINUATION 

In this section we analyze a variant of the max system introduced in §9.2. Specifically, recall 
?       that the max system can be reduced to the canonical form of Remark 9.4: 

x   =   y, 
y   =   -ax -by + max(/x + gy + j, 0), 

where a, b, a - /, and b - g are greater than zero and 7 < 0. It was shown in §9.2 that the 
only equilibrium point of this system is the origin, which is globally asymptotically stable. 

We now examine a continuation of the max system that uses a differential equation to 

"dynamically smooth" the max function. 

Definition 9.6  The max system continuation is defined by 

x   =   Ax + BS, 

6   =   a2[max(Fx + 7,0)-S], 

where A and A + BF are stable and {A,B) is controllable. Also, 7 = foaiim and a # 0. 

This equation represents a smoothing of the max function's output; it provides a type of 
dynamic hysteresis that smooths transitions. Note also that this equation represents a 
singular perturbation of the original max system. It can be used to model the fact that the 
elevator angle does not exactly track the desired control trajectory specified by the max 
function. To compare the max and max continuation systems, consider Figure 9-6. This 
figure shows the continuation of the max system trajectory of Figure 9-5 with a = 16 and 
6(0) = max(Fx(0)+7,0). Note that, compared with the original max system, the switching 
is "delayed" and the trajectories are smoother, as expected. 

By changing basis with the matrix T = blockdiag{P, 1}, where P is chosen so that 
the matrices PAP~l and PB are in the so-called controller canonical form (see Equations 

(9.2) and (9.3)), we obtain 

Definition 9.7 The max system continuation can be reduced to the following canonical 
form, denoted canonical max system continuation: 

x   -   y, 
y   =   —ax — by+ 8, 

6   =   a2[max(/x + 0y + 7vO) - <*], 

subject to initial conditions 

x(0) = xo,       y(0) = yo,       * (0) = max(/x0 + gyo + 7,0), 
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where a, b, a- f, and b- g, are greater than zero; 7 < 0; and a^O. 

This is the system we study in the remainder of this section. Note the added constraint on 
the initial condition of S. 

NOTE. The constraint on 6(0) is for convenience. It can be relaxed to be within e of this 
value (where e arises in our proofs below), with the same analytical results holding true. 
Specifically, Fact 9.9 still holds when Equation (9.4) is replaced by \S(0) - max(/x(0) + 
52/(0)+7,0)| <e. 

Remark 9.8 The only equilibrium point of this system is the origin, which is locally asymp- 
totically stable (when 7 < 0). 

Proof. From the first two equations, we have the constraints y = 0 and 6 = ax. From the 
last one we obtain the following two cases: 

1. fx + 7 < 0: —ax = 0, which implies x — 6 = 0. 

2. fx + 7 > 0: (-a + f)x + 7 = 0, which implies x = j/(a - /). However, this can't 
occur since 

f x + *y = —— 1-0'= ——— < 0. 

The origin is locally asymptotically stable because it is a linear system in some neighborhood 
of the origin (since 7 < 0). O 

This system is globally asymptotically stable when / = g = 0, because it reduces to 
a stable linear system in this case. For the special case where 7 = 0, both component 
linear systems can be made stable by choosing a large enough. However, this in itself does 
not imply that the whole system is stable. We say more about this case at the end of the 
section. 

The rest of this section explores the stability of the max system continuation by using 
Lemma 8.4. 

§9.3.1   ASYMPTOTIC STABILITY WITHIN ARBITRARY COMPACT SETS 

In this subsection we show that the max system continuation can be made asymptotically 
stable to the origin—within an arbitrary compact set containing the origin—by choosing 
the parameter a large enough. 

Important Note. Since 5 is subject to initial conditions depending on x and y (see 
Definition 9.6), this stability is with respect to arbitrary sets of initial conditions 
for x and y only. 

This subsection only considers the case 7 < 0. In this case, the plane fx + gy + 7 = 0 
is a positive distance, call it d, away from the origin. Further, the three-dimensional linear 
system associated with the max system continuation about the origin with matrix 

0 1 0 
—a -b 1 
0 0 -a2 
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is asymptotically stable, so there is some (open) ball around the origin (in R3) of radius 
As<d such that once a trajectory of the max system continuation enters the ball of radius 
As, it tends toward the origin. Similarly, the max system is an asymptotically stable linear 
system near the origin, so there is some ball around the origin (in R2) of radius Am < d 
such that once a solution to the max system enters the ball of radius Am, it tends towards 
the origin. For convenience, define A = min(Am, As). 

Now, note that the max system and max system continuation can be written in the 

form required by Lemma 8.4 by choosing 

A = 
0      1 

—a   —b 

i.e., 

F{x,y,t)   =   max(/x + #y + 7,0), 

G{x,y,t)   =   6, 

where 6 = a2[max(/x + gy + 7,0) - 6]. An important fact is the following: 

Fact 9.9 Given 
6(0) = max(/x(0) + gy(0) + 7,0) (9-4) 

and e > 0, we can choose a large enough so that 

\S(t) - max(fx{t) + gy(t) + 7,0)1 < e,        t > 0. 

Proof.    Since max(/x + gy + 7,0) is Lipschitz continuous, we can apply Lemma 8.7 with 
u(-) = max(/x(-) + gy(-) + 7,0), x(-) = «(•), and e0 = 0. D 

Below, let n(t) and a(t) represent solutions to the max and max continuation systems, 
respectively. Next, consider the projection operator 

7T : 

7r([x,y,<5]T)    =    [x,y]r. 

Remark 9.10 lfj<0, the max system continuation can be made asymptotically stable to 
the origin within an arbitrary compact set containing it by choosing the parameter a large 

enough. 

Proof. First, pick any compact set, ft, containing the origin (of the max system). Next, 
we examine the trajectories of the max and max continuation systems from an arbitrary 
initial condition, p0 € Ü. Recall that So, and hence a0, is completely determined by ß0. In 
particular, S0 = max(/x0 + gyo + 7,0) and 7r(<r0) = ^o- 

Since the max system is globally asymptotically stable, there is a time, T(/i0, A), such 
that for t > T, we have ||/i(t)|| < A/3. Thus, we have max(/x(t) + gy(t) + 7,0) = 0 for all 
t > T, Now, according to Fact 9.9 we can pick a large enough so that 

^    .   /A       A(T? + CL)     \ ■    (QB) e<mmU'3c(e(^)r-l)J- (9-5j 
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At this point, we have, from Lemma 8.4, 

ec 
|/x(T)-7r(a(T))||<^I(e("+cL):r -0*f 

Now, by construction we have |<J| < A/3. Thus, we have ||a(T)|| < A. Prom this point on, 
a(t) tends asymptotically toward the origin. 

Finally, since Q is compact, there is a finite time r > T(/x0, A) for all ^o £ ^- Thus, we 
can pick e (and then a) to achieve the desired inequality for all initial conditions. □ 

Note that if r? + cL < 0, then e—and hence a—can be chosen constant for all T. On the 
other hand, if 77+ c.L > 0, restrictions on the magnitude of a may only guarantee asymptotic 
stability within some finite distance from the origin. 

It is also important to realize that the same analysis holds for any other dynamic or 
nondynamic continuous variable used to approximate the max function, if it is such that it 
can be kept within e of the max function for arbitrary e. (Also recall the note on p. 145.) 

§9.3.2   THE CASE 7 = 0 

For the special case 7 = 0, the max system continuation represents a switching between the 
following component linear systems: 

Ai   = 

0 1       0 
—a -6      1 5 

0 0    -0? 

0 1        0 
—a -b      1 
fa2 go?    —0? 

A2   = 

Remark 9.11 Both component linear systems can be made stable by choosing a large 
enough. 

Proof.    (See Appendix 9.5.) D 
Thus the component linear systems of the max system continuation with 7 = 0 can be 

chosen so both are stable. However, this need not imply that the whole system is stable. 

NOTE. A counterexample can be constructed after one that appears in [139]: Use the asymp- 
totically stable systems of Figures 9-7 and 9-8 (Systems I and II, respectively), activating 
System II in quadrants 4 and 2, System I in quadrants 3 and 1. Also, see Example 8.9. 

The comparison arguments of the previous subsection do not apply now since we cannot 
find a A like we did there. Thus, we can only use Lemma 8.4 to get bounds on the 
trajectories of the max system continuation. Note, however, that if n + cL < 0 then global 
asymptotic stability of the max system implies ultimate boundedness of the max system 
continuation. 

. One may be able to say more about specific instances of the max system continuation 
(i.e., knowledge of the constants). For example, some cases may yield to our robustness 
of linear ODEs lemma by comparing the case 7 = 0 with 7 = -e. Alternatively, one 
could invoke robustness results in the literature, e.g., [11, Theorem 6.1]. These tools can't 
be invoked in the general case because, roughly, the parameter a affects both 77 and L in 
conflicting fashion. 
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Figure 9-3:   Outputs of the tracking controller:   (a) normal acceleration, nz (solid), and 
desired normal acceleration, r (dashed); (b) angle of attack, a (solid), and a's limit (dashed). 

2000 

Figure 9-4: Outputs of the max controller: (a) normal acceleration, nz (solid), and desired 
normal acceleration, r (dashed); (b) angle of attack, a (solid), and a's limit (dashed). 
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Figure 9-5: Max System Trajectory. 

Figure 9-6: Max System Continuation Trajectory. 
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Figure 9-7: A System Trajectory. 

Figure 9-8: A + BF System Trajectory. 
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§9.4   NOTES 

The work in this chapter first appeared in [21], later summarized in [28]. Prof. Gunter Stein 
supplied the max system problem. 

§9.5   APPENDIX 

§9.5.1   MAX SYSTEM 

Proof, [of Fact 9.1] We first need the following theorem [92, Theorem 3.10]: 

Theorem 9.12 (Kwakernaak and Sivan) Consider the time-invariant system 

x(t)   =   Ax{t) + Bu(t), 

z{t)   =   Dx(t), 

where z and u have the same dimensions. Consider any asymptotically stable time-invariant 
control law 

u{t) = -Fx{t) + u'{t). 

Let H(s) be the open-loop transfer matrix 

H{s) = D(sI-A)-1B, 

and Hc{s) the closed-loop transfer matrix 

Hc(s) = D(sI-A + BF)-1B. 

Then Hc{0) is nonsingular and the controlled variable z{t) can under steady-state conditions 
be maintained at any constant value ZQ by choosing 

if and only if H(s) has a nonzero numerator polynomial that has no zeroes at the origin. 

For our system, we have 

which has a nonzero numerator with no zeroes at the origin. □ 

§9.5.2   MAX SYSTEM CONTINUATION 

' Proof, [of Remark 9.11] Ay is stable because it is upper block triangular with stable blocks. 
One can check that the characteristic polynomial of At is 

A3 + (ft + a2)A2 + [a + a2(6 _ g)]X + [a2{a _ f)] = A3 + Q/A2 + ß, X + ^ 

The Routh test (to verify stable roots) reduces here to [130, p. 175]: 

1. a', /?', V > 0, 

2. /?' > i/a'. 
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The first of these is verified by our conditions on a, 6, /, g, and a. The second says we need 

a2(a-/) 
a + a^b-g) > 

b + a2   ' 

which reduces to 

a4(b-g) + a2[b(b-g)+f] + ab>   0, 

a4 + a? b + f + ab 

(b-9) 
>   0. 

L      (b-9). 

Since the last term on the left-hand is positive by our previous conditions (a, b, and b - g 

greater than zero) it is sufficient for 

/ 
a4 + a2 b + 

al + b + 

(b-g) 

f 
(b-g) 

> o, 

> o. 

Again, since b > 0, it is sufficient for 

C*2 + TH^    >   0, 
(b-g) 

a2    >       -' 
(b-g) 

D 
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Chapter 10 

Control of Hybrid Systems: 
Theoretical Results 

In this chapter we define an optimal control problem in our unified hybrid control frame- 
work and derive some theoretical results. The necessity of our assumptions—or ones like 
them—are demonstrated using examples throughout the sequel. The main results are as 
follows: The existence of optimal and near-optimal controls for the problem are established. 
The "value function" associated with this problem is expected to satisfy a set of generalized 
quasi-variational inequalities (GQVIs), which are formally derived. We conclude with a 
brief list of some of the more striking open issues. 

§10.1   THE CONTROL PROBLEM 

In this section, we define a control problem and elucidate all assumptions used in deriving 
the results of the sequel. 

§10.1.1   PROBLEM 

Let a > 0 be a discount factor. We add to our previous model the following known maps: 

1. Running cost h : Xi x Xi x U ->• R+. 

2. Autonomous jump cost or transition cost ca,i : A» x V -*■ K+. We may define 

3. Controlled jump cost or impulse cost cC)i : Q x D -► 1+, satisfying for all 
i,j € Z+ the conditions 

cc(x,y)>co>0, Vx€Ci,yeD, (10.1) 

cc(x,y) < cc(x,z) + e-aA^x'zhc(z,y),   VxeCu zeDnCjfy€D.    (10.2) 

Important Note. As before, we have used the shorthand CciCxD^R^, defined 
in the obvious way. However, we have suppressed reference to the index state, since 
it is obvious. We do the same below, with ca(x(t),y) = cati{x(t),y) if x(t) e Xi. 
In such a case, it is equivalent to think of x(t) as a member of the formal union 
{Xi}?±0. Thus, to ease notation we use this shorthand throughout for the maps G, 
A„ A,. c„. c, etc. To alert the reader, such formal unions are denoted using the 

symbol U. 

155 
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Thus, autonomous jumps are done at a cost of ca(x(Tj),Vj) paid at time r,-; controlled 
jumps at a cost of CC(X{TJ),X(TJ)) paid at time TJ. 

In addition to the costs associated with the jumps as above, the controller also incurs a 
running cost of ki{x(t),x[t],u{t)) per unit time during the intervals [TJ_I,TJ), j € Z+. The 
total discounted cost is defined as 

e-a%(x(t),x[t]Mt)) dt + ^e-^Caixi^^ + ^^^MCi^xiCi)),       (10.3) 
JT 

where T = R+\(U»fc>r^' ^ (respectively id}) ^e the successive pre-jump times for au- 
tonomous (respectively controlled) jumps and C'j is the post-jump time for the jth controlled 
jump. The decision or control variables over which Equation (10.3) is to be minimized 

are 

• 

• 

the continuous control u(-), 

the discrete controls {vi}, exercised at the pre-jump times of autonomous jumps, 

• the pre-jump or intervention times {&} of controlled jumps, and the associated 
destinations {x(d)}- 

As for the periods [TJ,TJ), we shall follow the convention that the system remains frozen 
during these intervals.   Note that Equation (10.1) rules out from consideration infinitely 
many controlled jumps in a finite interval and Equation (10.2) rules out the merging of 
post-jump time of a controlled jump with the pre-jump time of the next controlled jump. 

Our framework clearly includes conventional impulse control [14]. 

§10.1.2   ASSUMPTIONS 

Throughout the sequel, we make use of the following further assumptions on our abstract 
model, which are collected here for clarity and convenience. 

For each i € Z+, the following hold: Xi is the closure of a connected open subset of 
Euclidean space Rdi, d{ € Z+, with Lipschitz boundary dXi. Ai,Q,Di C X{ are closed. In 
addition, dAi is Lipschitz and contains dX{. 

The maps G, AQ, Ac, ca, and cc are bounded uniformly continuous; the kt are uniformly 
bounded and uniformly equicontinuous. The vector fields fc, i € Z+, are bounded (uniformly 
in i), uniformly Lipschitz continuous in the first argument, uniformly equicontinuous with 
respect to the rest. U, V are compact metric spaces. Below, «(•) is a [/-valued control 
process, assumed to be measurable. 

All the above are fairly mild assumptions. The following are more technical assumptions. 
They may be traded for others as discussed in §10.4. However, in the sequel we construct 
examples pointing out the necessity of such assumptions or ones like them. 

Assumption 10.1 d{AuCi) > 0 and infieZ+d{Ai,DJ > 0, d being the appropriate Eu- 

clidean distance. 

Assumption 10.2 Each A is bounded and for each i, there exists an integer N(i) < oo 
such that for x G Cit y 6 Dj, j > N{i), cc(x,y) > sup2 J(z)\ 
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Assumption 10.3 For each i, dAi is an oriented C1-manifold without boundary and at 
each point x on dAi, fi(x,z,u) is "transversal" to dAi for all choices of z, u. By this we 
require that (1) the flow lines be transversal in the usual sense1 and (2) the vector field does 
not vanish on dA{. 

Assumption 10.4 Same as Assumption 10.3 but with Ci replacing A{. 

§10.2   EXISTENCE OF OPTIMAL CONTROLS 

Let J(x) denote the infimum of Equation (10.3) over all choices of tt(-), {vi}, {Ci}, MCi)} 
when x(0) = x. We have 

Theorem 10.5 A finite optimal cost exists for any initial condition. 

Proof. Let F, K, Q be bounds of the fr, kt, and c0, respectively. Then, choosing to make 
no controlled jumps and using arbitrary u, v we have that 

r°° _ __ 
.     J(x)<K       e-atdt + J2e~a<TiQ^K/a + QY,e~a(Ti- 

Let ß = infieZ   d{AuDi).   Then ai+x - <n > ß/F, so the second term is bounded by 

Q EiSi [e'aßlF)\ which converges. D 
The following corollary is immediate from the argument above: 

Corollary 10.6  There are only finitely many autonomous jumps in finite time. 

To see why an assumption like Assumption 10.1 is necessary for the above results, one 
need only consider the following one-dimensional example: 

Example 10.7 Let Xi = [0,2], A{ = {0,2}, and /,(•,-,•) = -1 for each i € Z+. Also for 
each i, define d = 0, A = 1/i2 and G(AU-) = l/(t + l)2. Finally, let AB(v) = 0 and 
ca(-, •) = 1. Starting in X\ at x(0) = 1, we see that 

4U)=  1 
w=i 

i2 (AT+ 1)2 

Since the sum of inverse squares converges, we will accumulate an infinite number of jumps 
and infinite cost by time t = 7r2/6. 

Next, we show that J(x) is attained for all x if we extend the class of admissible u(-) to 
"relaxed" controls. The relaxed control framework [155] is as follows: We suppose that 
U = V(U'), defined as the space of probability measures on a compact space U' with the 
topology of weak convergence [18]. Also 

fi(x,z,u)   =   J f-(x,z,u)u{dy),        ieZ+, 

ki(x,z,u)   =       k'i{x,z,u)u{dy),        i€Z+, 

1 Transversality implies that dAi is (d* - l)-dimensional. 
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for suitable {//}, {kß satisfying the appropriate continuity/Lipschitz continuity require- 
ments. The relaxed control framework and its implications in control theory are well known 
and the reader is referred to [155] for details. 

Theorem 10.8 An optimal trajectory exists for any initial condition. 

Proof.    (See Appendix 10.6.) _ ^ 
It is easy to see why Theorem 10.8 may fail in absence of Assumption 10.2: 

Example 10.9 Suppose, for example, ki{x,z,u) = an and ca(x,v) = ßi when x € Xif 

Cc(X)y) = 7ij. When xeXi,ye Xjt with a{, ßi, 7i,j strictly decreasing with i,j. It is easy 
to conceive of a situation where the optimal choice would be to "jump to infinity" as fast as 

you can. 

The theorem may also fail in the absence of Assumption 10.3 as the following two-dimensional 

system shows: 

Example 10.10 

with u € [0,1] and cost 

r Jo 

Xl(t)   =   1,        xi(0) = 0, 

X2(t)     =     U, 22 (0) = 0, 

'e-tmm{\x1{t)+x2{t)\,1020}dt, 

with the provision that the trajectory jumps to [1010,1010] on hitting a certain curve A. For 

A, consider two possibilities: 

1. the line segment {xx = 1, -1 < x2 < 0}, a Cl-manifold with boundary; 

2. the circle {(*i,x2) | (xi - I)2 + (x2 + l)2 = 1}, a C1-manifold without boundary, but 
the vector field (l,u) with u = 0 is not transversal to it at (1,0).. 

It is easy to see that the optimal cost is not attained in either case. 

Also, it is not enough that the flow lines for each control be transversal in the usual 
sense as the following one-dimensional example shows: 

Example 10.11 Let Xx = X2 = K+- 

fi(x,y,u) = -x + u,        f2{x,y,u)=0,        u€[-l,0], 

with running cost min{K, \x\) and Gx(0,-) = (#,2).   Choosing, for example, K > 1 one 
sees that the optimal cost cannot be attained for any 1 > x(0) > 0. 

Coming back to the relaxed control framework, say that u(-) is a precise control if 
u(-) = S , ^dy) for a measurable q : [0,oo) -»• U' where Sz denotes the Dirac measure at 
z € U'. Let M denote the set of measures on [0, T] x U' of the form dt u{t, dy) where u(-) is 
a relaxed control, and M0 its subset corresponding to precise controls. It is known that M0 

is dense in M with respect to the topology of weak convergence [155]. In conjunction with 
the additional assumption Assumption 10.4 below, this allows us to deduce.the existence of 
e-optimal control policies using precise tt(-), for every e > 0. 
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Theorem 10.12 Under Assumptions 10.2-10.4, for every e > 0 an e-optimal control policy 
exists wherein u(-) is precise. 

Proof.    (See Appendix 10.6.) □ 
Remarks. If {fi(x, z,y)\y€ U'} are convex for each x, z, a standard selection theorem 

[155] allows us to replace u°°(-) by a precise control which is optimal. Even otherwise, 
using Caratheodory's theorem (which states that each point in a compact subset of Rn 

is expressible as a convex combination of at most n + 1 of its extreme points) and the 
aforementioned selection theorem, one may suppose that for t > 0, the support of u°°{t) 
consists of at most d{ + 1 points when x(t) € X{. 

§10.3   THE VALUE FUNCTION 

In the foregoing, we had set [0] = 0 and thus x[0] = x(0) = x0. More generally, for 
x(0) = x0 € Xi0, we may consider x[0] = y for some y € Xio, making negligible difference 
in the foregoing analysis. Let V(x,y) denote the optimal cost corresponding to this initial 
data. Then in dynamic programming parlance, (x, y) H+ V(X, y) defines the "value function" 
for our control problem. 

In view of Assumption 10.3, we can speak of the right side of dA{ as the side on which 
/,(-,-,•) is directed towards dAi, i € Z+. A similar definition is possible for the right side 
of dCi (in light of Assumption 10.4). 

Definition 10.13 Say that (x„,yn) ->'(ioo,!/«)) from the right in \Ji{XiXXi) ifyn -> y<x, 
and either xn -> x«, £ Ui(^i u dCi) or xn -> Zoo € Ui(^i U dCt) from the right side. 

V is said to be continuous from the right if (x„,y„) ->• (ioo,J/oo) from the right implies 

V(xn,yn) -> V(xoo,j/oo). 

Theorem 10.14 V is continuous from the right. 

Proof.    (See Appendix 10.6.) □ 

Corollary 10.15 V is continuous on Ui(Xi x Xi)\[(8Ai U dd) x Xt]. 

Again, Example 10.11 shows the necessity of the vector field's not vanishing on dAi. 
Unfortunately, V need not be continuous in the data of the hybrid system: 

Example 10.16 Let X\ = X2 = R, /i = h = 1» fci = 1» and k2 = P-   Further, let 

M = {p}> G
I(P) = (P'2)» and C(P)P) = °- Then we have 

'0, x e x2, 
V{x) = <    (l - e-^"1)) /a,   xeXi, x < p, 

, 1/a, xeXu x>p. 

It is clear that the optimal cost-to-go is not continuous at p in the autonomous jump set 

data A\. 

We shall now formally derive the generalized quasi-variational inequalities V(-, •) is ex- 
pected to satisfy. Let C - \Ji(Ci x xi) andEcC the set on which 

V(x,y) = mm{cc(x,z) + e-aA^V(z,z)}, (10.4) 
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where t € Z+ is such that x,y E X{. For (x,y) G £, if x(t) = x and x[t] = y, an optimal 
decision (not necessarily the only one) would be to jump to a z where the minimum on the 
right hand side of Equation (10.4) is obtained. On the other hand, for (x,y) G C\E, 

V(x, y) < min {cc(x, z) + e-
aA^x'z)V(z, z)\ , 

with i as above and it is not optimal to execute a controlled jump. For i64 however, 
an autonomous jump is mandatory and thus 

V(x,y) = min{ca(x,v) + e-
aA^x'v)V(G(x,v),G(x,v))} . 

Suppose E is a closed subset of Ui(Xi x Xi). Let H = E U {UMi x X.)), with M = 
(Ui(Xi x Xi))\H. Let (x,y) G M°, with x,y G Xio (say). Let O be a bounded open 
neighborhood of (x, y) in M° with a smooth boundary dO and 1/ = inf {t > 0 | (x(t), y) g O}, 

where x(-) satisfies 

*(<) = /io^W.y»«(*))»        x(°) = x'f € t°'^- (10l5) 

Note that y is a fixed parameter here. By standard dynamic programming arguments, 
V{x,y), x G Ö, y as above, is also the value function for the "classical" control problem of 
controlling Equation (10.5) on [0, v] with cost 

f e-atki0(x(t),y,u(t)) dt + e"ai//i(x(z/),y), 
JO 

where /i(v) = ^(T) 
on 90- lt follows that y(x'y)' (x'y) e ° is the viscosity solution 

of the Hamilton-Jacobi equation for this problem [52], i.e., it must satisfy (in the sense of 

viscosity solutions) the p.d.e. 

min{(VxV(x,y),/i0(x,y,u)) - aV(x,y) + kio{x,y,u)} = 0 (10.6) 
u 

in O and hence on M°. (Here Vs denotes the gradient in the x variable.) Elsewhere, 
standard dynamic programming heuristics suggest that Equation (10.6) holds with '=' 

replaced by '<'. 
Based on the foregoing discussion, we propose the following system of generalized 

quasi-variational inequalities for V{■,■): For (x,y) G Xi x Xi, 

V(x,y)   <   mm{cc(x,z) + e-aA^z)V(z,z)} on C (10.7) 

V(x,y)   <   rmn{ca(x,v)+ e-aAa{x'v)V(G(x,v),G(x,v))} on UiiAixXi)  (10.8) 

min {{VxV(xty), /i(x,y, u)> - aV{x,y) + k(x,y,u)} < 0 (10.9) 
u 

(V(x, y) - minz€D {cc(x, z) + e~aA^V{z, z)}) (10 10) 

• (minu {(VxV{x, y), /»(x, y, tx)> - aV(x, y) + ki(x, y, u)}) = 0 on C 

(Equation (10.10) states that at least one of Equation (10.7), Equation (10.9) must be 
an equality on C.)- (Equations (10.7)-(10.10) generalize the traditional quasi-variational 
inequalities encountered in impulse control [14]. We do not address the issue of well- 
posedness of Equations (10.7)-(10.10). 
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The following "verification theorem," however, can be proved by routine arguments. 

Theorem 10.17 Suppose Equations (10.7)-(10.10) has a "classical" solution V which is 
continuously differentiable "from the right" in the first argument and continuous in the 
second. Suppose x(-) is an admissible trajectory of our control system with initial data 
(x0,yo) andu{-), {vi}, {>;}, {&}, {n}, {Ti} the associated controls and jump times, such 
that the following hold: 

1. For a.e. teJ, i such that x(t) € Xi, 

{VxV(x(t),x[t]),fi(x(t),x[t],u{t))) + ki(x(t),x[t],u(t)) = 
mm{(VxV(x(t),x[t]),fi{x{t),x[t],u)) + ki(x(t),x[t],u)}. 

u 

2. For all i, 

V(x(<Ti),x[ai\) = ca(x{o-i),Vi) +exp{-aAa{x(o-i),vi)}V{G(x{cTi),vi),G(x(o-i),Vi)). 

3. For all i, 

V(x(Q),x[Ci]) = cc(x(Ci),x(Ü))+exp{-aAc(x,x(Zl))}V(x(Ü),x(Ü)). 

Then x(-) is an optimal trajectory. 

§10.4   DISCUSSION 

The foregoing presents some initial steps towards developing a unified "state space" paradigm 
for hybrid control. Several open issues suggest themselves. We conclude with a brief list of 
some of the more striking ones. 

1. A daunting problem is to characterize the value function as the unique viscosity solu- 
tion of the generalized quasi-variational inequalities Equations (10.7)-(10.10). 

2. Many of our assumptions can possibly be relaxed at the expense of additional techni- 
calities or traded off for alternative sets of assumptions that have the same effect. For 
example, the condition d{d,Ai) > 0 could be dropped by having cc penalize highly 
the controlled jumps that take place too close to A*. (In this case, Assumption 10.4 
has to be appropriately reformulated.) 

3. Example 10.10 show that Assumption 10.3 cannot be dropped. In the autonomous 
case, however, the set of initial conditions that hit a C°° manifold are of measure zero 
[135]. Thus, one might hope that an optimal control would exist for almost all initial 
conditions in the absence of Assumption 10.3. The system of Example 10.11 showed 
this to be false. Likewise, in the systems of Example 10.10 we have, respectively, no 
optimal control for the sets 

{(xi,x2) | x2 < 0,xi < 1,x2 + 1 > xi}, 

{(xi, x2) | x2 < 0,xi < a,X2 + a > xx} U ([0,1] x [-a/2,0] - B([l, -l]r,l)) , 

where a = 2 - \pi and B(x, r) denotes the ball of radius r about the point x. 
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It remains open how to relax the conditions Assumptions 10.3 and 10.4. This might 
be accomplished through additional continuity assumptions on G, Aa, and ca. 

4. An important issue here is to develop good computational schemes to compute near- 
optimal controls, which is currently a topic of further research. See [51, §11.1] for 

some related work. 
This is a daunting problem in general as the results of [25, §7] show that the hybrid 
systems models discussed in §3 can simulate arbitrary Turing machines (TMs), with 
state dimension as small as three. It is not hard to conceive of (low-dimensional) 
control problems where the cost is less than 1 if the corresponding TM does not halt, 
but is greater than 3 if it does. Allowing the possibility of a controlled jump at the 
initial condition that would result in a cost of 2, one sees that finding the optimal 
control is equivalent to solving the halting problem. 

5. Another possible extension is in the direction of replacing Xio by smooth manifolds 
with boundary embedded in a Euclidean space. See [35] for some related work. 

6. In light of Definition 10.13, all the proofs seem to hold if Assumption 10.1 is relaxed 
to only consider distances "from the right," that is if infc d+{Au A) > 0, with 

d+(Ai,Di)=        inf       El(x,u(-)) £ Au 

where £f(ar,u(-)) denotes the solutions under /» with initial condition x and control 
«(•) in U^. Here, time can be used as a "distance" in light of the uniform bound 
on the fi-, we consider t > 0 by adding that caveat that if we jump directly onto A*, 
we do not make another jump until we hit it again. Presumably one must also make 
some transversality or continuity assumptions for well-posedness. This would allow 
the results to extend to many more phenomena, including those examples in [35]. 

§10.5   NOTES 

The results of this chapter grew out of [105].   They are joint work with Profs. Vivek S. 
Borkar and Sanjoy K. Mitter completed in December 1993. They appeared in [32]. 

Hybrid control is a rapidly expanding field and we make no explicit reference to general 
papers here (see §3 and the references). Viable control, considered by [57, 86], was not 
discussed here. However, optimal control of hybrid systems has been considered in [95] (for 
the discrete-time case) and the pioneering work of [114]. Kohn is the first we know of to use 
relaxed controls and their e-optimal approximations in the hybrid systems setting (see [114, 
Appendix I] and the references therein). The algorithmic importance of these was further 

described in [61]. 
We have already mentioned the link to impulse control. Even closer are the results 

of [154] discovered after this work was completed. That paper considers switching and 
"impulse obstacle" operators akin to those in Equations (10.7) and (10.8) for autonomous 
and (controlled) impulsive jumps, respectively. Yong restricts the switching and impulse 
operators to be uniform in the whole space, which is unrealistic in hybrid systems. However, 
he derives viscosity solutions of his corresponding Hamilton-Jacobi-Bellman system. His 
work may be useful in deriving viscosity solutions to our GQVIs. 

Also after this work was completed, we became aware of the model and work of [152, 
§3.3]. In that paper, Witsenhausen considers an optimal, terminal constraint problem on 
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his hybrid systems model. Recall his model contains no autonomous impulses, no controlled 
switching, and no controlled jumps. 

§10.6   APPENDIX 

Proof, [of Theorem 10.8] Fix x(0) = x0 € Xio, i0 € Z+. Consider a sequence 

(*"(.), «»(•), {v?h K>, {CD, {T?}, {i?}),     n e z+, 

associated with our control system, with the obvious interpretation, such that xn(0) = x0 

for all n and the corresponding costs decrease to J(xn). Let yn(-) denote the solution of 

Vn(t) = fi0(y
n(t),x0,un(t)),        y"(0) = x0,n € Z+. (10.11) 

Then xn(-), yn(-) agree on [0,if). Since {ft} are bounded, {yn(-)} are equicontinuous 
bounded in C(R+;Rdio), hence relatively sequentially compact by the Arzela-Ascoli theo- 
rem. The finite nonnegative measures rjn{dt,dy) = dt un(t,dy) on [0,T] x U' are relatively 
sequentially compact in the topology of weak convergence by Prohorov's theorem [18]. {if} 
are trivially relatively compact in [0,oo]. Thus dropping to a subsequence if necessary, we 
may suppose that yn(-) -> y°°(-), nn(dt,dy) -> r)°°{dt,dy), if -> rf in the respective 
spaces. Clearly r}°° disintegrates as rf°(dt,dy) = dt u°°{t,dy). Rewrite Equation (10.11) as 

yn(t) = x0 + 

(/o* fi0(y
n(s),xo,un(s)) - fiQ(y

oo(s),x0,u
n(s))ds^ + £ fio(y

00(s),xo,un(S))ds 

for t > 0. By the uniform Lipschitz continuity of fio, the term in parentheses tends to 
zero as n -¥ oo. Since 77" -*■ 7700, the last term, in view of the relaxed control framework, 
converges to 

r/io(y~(*).zo,«°°to)<fa 
JO 

for t € [0,T]. Since T was arbitrary a standard argument allows us to extend this claim to 
t € [0,00). (We use [18, Theorem 2.1(v), p. 12] and the fact that v°°({t} x U') = 0.) Hence 
y°°(-), u°°(-) satisfy Equation (10.11) with n = 00. Since d{Cio,Aio) > 0, either 7? = cf 
for sufficiently large n, or Tf = C," for sufficiently large n. Suppose the first possibility 
holds. Then y00(T1

00) = limxn(7f) € ,4io. Let zf -> «f in V along a subsequence. 
Then ca(xn(r?),v?) -> ca(y

0O(rfo),Uf), Aa(x"(rf ),^) -+ Aa(y0O(rfo),^), r? -+ Tf = 
T1~ + Aa(y°0(rf<V1°°). Setxoo(-) = yoo(-)on[0,rfo]andx~(rf) = G(xoo(Tfo),«f°)- Then 

fr" e-atkio(x
n(t),x0,u

n(t))dt^ P  e-
atA;io(x00(t),xo)u

00(t))di. (10.12) 
./o •'0 

If the second possibility holds instead, one similarly has yi(Tf°) € Cio. Then As- 
sumption 10.2 ensures that {xn(r?)} is a bounded sequence in D and hence converges 
along a subsequence to some y' <= D. Then, on dropping to a further subsequence if 

• necessary, cc(x»(7f),x"(r?) -> cc(y~(rf),y'), Ac(x"(if ),x"(r?)) -+ Ac(y°°(if ),y')- Set 
*«>(.) = y°°(-) on [0, rf0], Tf = if0 + Ac(y°°(7f> ),2/')) = liml? and x°°(rf) = y'. Again 
Equation (10.12) holds. Note that in both cases, x°°(-) defined on [0,rf°] is an admissible 
segment of a controlled trajectory for our system. The only way it would fail to be so is if 
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it hit Aio in [0,rf°). If so, xn(-) would have to hit Aio in [0,Tf) for sufficiently large n by 
virtue of Assumption 10.3, a contradiction. 

Now repeat this argument for {xn(rf + •)} in place of {xn(-)}- The only difference is 
a varying but convergent initial condition instead of a fixed one, which causes only minor 
alterations in the proof. Iterating, one obtains an admissible trajectory x°°(-) with cost 

J(xo). D 

Proof, [of Theorem 10.12] Recall the setup of Theorem 10.8. Consider the time inter- 
val [0,rf°]. Let tT(-), n 6 Z+, be precise controls such that dt vT{t,dy) -* r)°°{dt,dy) = 
dt u°°{t,dy) in the topology of weak convergence. Let y71^), n e Z+, denote the corre- 
sponding solutions to Equation (10.11). Now Tf° equals either a? or Cf0- Suppose the 
former holds. As in the proof of Theorem 10.8, we have f1 -» y°°(-) in C{[0,oo),Xio). 
Using Assumption 10.3 as in the proof of Theorem 10.8, one verifies that 

ä\ = M{t > 0 | yn(t) e Aio} -> af. 

Thus for any S > 0, we can take n large enough such that 

k!°-*il < *. 
sup{ir(*)-y~(*)iiio<t<arvö?} < s, 

iö?+Aa(ir(ä?),«r)-rri < s. 

Set f(.) = y"(-) on [0,0?] and x^ö" + A^ä?)^?0)) = G^ffi),«?0) (corresponding 
to control action uf). The latter may be taken to lie in the open ^-neighborhood of x°°(r?°) 
by further increasing n if necessary. In case rf0 = Cf°, one uses Assumption 10.4 instead 
to conclude that y"(0 € Gio for some £ in the ^-neighborhood of rf° for n sufficiently 
large. Set C? = C x"(-) = y"(-) on [0,<T). By further increasing n if necessary, we may 
also ensure that 

{xn(t)|<G[0,Cf)}n_Aio    =   0, 

sup{||ir(*) - a:°°(*)ll I 0 < * < C? A ^}    <    <*> 
IC? + Ac(x"(c?),x~(rr))-rri  < s. 

Set 
xn(c? + Ac(x"(c?),x°°(rr))) = «"(H0)- 

It is clear how to repeat the above procedure on each interval between successive jump times 
to construct an admissible trajectory x"(-) with cost within e of J(x0) for a given e > 0.   □ 

Proof, [of Theorem 10.14] Let (x„,y„) -»- (zoo.Voo) from the right in |Ji(*i x Xt) and 
let x^-), n € Z+ U {oo}, denote optimal trajectories for initial data (xn,y„) respectively. 
By dropping to a subsequence of n € Z+ if necessary, obtain as in Theorem 10.8 a limiting 
admissible trajectory x'(-) for initial data (soo,l/oo) with cost (say) a such that V(xn,yn) ->■ 
a > ^(xoo,yoo). Suppose a > F(x00,y0o) + 3e for some e > 0. Starting fromx°°(-), argue as 
in Theorem 10.12 to construct a trajectory xn(-) with initial data (x„,y„) for n sufficiently 
large, so that the corresponding cost does not exceed V(xoo,!/oo) + e- At tne same time' 
V{xn, yn) > a - € > V{xoo, j/oo) + 2e for n sufficiently large, which contradicts the fact that 
V(x„, y„) is the optimal cost for initial data (xn, yn). The claim follows. D 



Chapter 11 

Hybrid Control Algorithms and 
Examples 

In this chapter we outline four approaches to solving the generalized quasi-variational in- 
equalities associated with optimal hybrid control problems. Then we solve some illustrative 
problems in our framework. 

§11.1   ALGORITHMS FOR OPTIMAL HYBRID CONTROL 

In §5, we proposed a very general framework for hybrid control problems that was shown to 
encompass all hybrid phenomena considered in this thesis and all hybrid models reviewed 
from the literature. A specific control problem was studied in this framework, leading to an 
existence result for optimal controls. The value function associated with this problem was 
seen to satisfy a set of generalized quasi-variational inequalities (GQVIs). In this section, 
we give explicit algorithms for computing the solutions to such optimal control problems. 

There are two foundations to these algorithms. First, our unified view—treating con- 
tinuous and discrete controls in a conceptually similar manner—led us to a generalized 
Bellman equation that may be solved via adaptations of standard methods: value and 
policy iteration. 

Second, as previously noted [32, §10], the key to efficient algorithms for solving optimal 
control problems for hybrid systems lies in first establishing their strong connection to the 
models of impulse control and piecewise-deterministic processes (PDPs) [14, 51, 53, 156, 
§2.2.4, §2.2.5] Then, we modify the algorithms that have been found useful in solving those 
problems [50, 51]. The result is an impulse control-like algorithm and a linear programming 
solution for computing optimal controls. 

The object of this section is to make the above observations more precise. Throughout 
we follow an amalgamation of the notation of [51, §10]. To ease notation we do not discuss 
the general case considered in §10, i.e., we assume V is only a function of the state (and 
not also the last jump point). 

§11.1.1   BOUNDARY-VALUE ALGORITHMS 

We now discuss explicit solutions of the GQVIs. First, note that instead of thinking of V 
defined on the generalized state-space in the previous section, V : |Jt ^i -> K+, we may 
revert to considering it component-wise: V{: X{ -> R+. 

The Boundary-Value algorithms outlined in this section begin with a guess for each Vj. 
The algorithm is summarized as follows: 

165 
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1. Given: a guess for each V{. 

2. For each i, compute the constrained boundary values arising from the GQVIs: 

(a) For x e Ai impose the constraint 

Vi(x) = mm{ca(x,v) + e-a^x^V(G{x,v))} 

(b) For x eCi impose the constraint 

Vi(x) = min{Vi(x), mm {cc(x,z) + e-
aA^V(z)}} , 

3. Solve the GQVI Equation (10.9) to update each Vt separately, imposing the constraints 
of Step 2. This is an optimal control problem as we are used to encountering. 

4. If convergence, exit; else go to Step 2. 

Note that the boundary value problems in Step 3 can be solved in a variety of ways them- 
selves, including value iteration, policy iteration, or (as in the case of linear systems) explicit 
methods [121]. As is usual in boundary-value problems, convergence in Step 4 is determined 
by comparing computed and constrained values. We have made no attempt to theoretically 
study the above algorithm for convergence, but we have used it to solve the hysteresis 

example discussed below. 

§11.1.2   GENERALIZED BELLMAN EQUATIONS 

Another solution method arises from our unified viewpoint. The algorithmic basis is the 
following Bellman Equation: 

V*(x) = min {g(x, a) + V*(x'(x, a))} , (11.1) 
pen 

where II is a generalized set of actions. The three classes of actions available in our hybrid 
systems framework at each x are 

• Continuous Controls, uGU. 

• Autonomous Jumps, possibly modulated by discrete controls v € V (if x € A). 

• Controlled Jumps, choosing source and destination (if x G C). 

To solve on a computer, we first (discretize the continuous state and controls and) 
compute for x € X{ the minimum of the following three quantities: 

ünU* ki(x(t),u) dt + v(x + JQ fi(x(t),u) dtj\, 

min (ca(x, v) + e-aA^x'v)V(G(x,v)), } 

min{cc(x,z)+e-aA^2V(z)}, 



§11.1    Algorithms for Optimal Hybrid Control     167 

with several caveats. First, we make sure that we do not hit A in our computation of the 
first quantity. (Briefly, if we do, we replace 6 by CTI,U - t.) Second, the last two quantities 
are not taken into account if x £ A or x g C, respectively. 

The resulting system may be solved via value or policy iteration. So far, we have 
concentrated on value iteration (solved via relaxation) and call the resulting algorithm 
"Generalized Value Iteration." 

More specifically, the algorithm is as follows: 

1. Discretize the state space into X and set of continuous controls into U. 

2. For each x € X, guess a value for V(x), e.g., zero. 

3. For each x € X, compute the minimum of the three quantities described above, 
subject to the caveats. The first minimum is taken with respect to u € hi with the 
cost-to-go a weighted sum of the costs-to-go of nearest neighbors. Set V(x) equal to 
that minimum. Repeat until convergence. 

We do not go into theoretical results here, but only note that the theoretical framework 
of [45] is very general, allowing, e.g., piecewise Lipschitz continuous dynamics. 

§11.1.3  ALGORITHMS INSPIRED FROM IMPULSE CONTROL 

We now make more explicit the strong connection between hybrid systems and the models 
of impulse control and piecewise-deterministic processes (PDPs) §§2.2.4-2.2.5. More specif- 
ically, the controlled jumps sets of our model are precisely those sets in the impulse control 
framework where T(x) # 0. The associated controlled jump costs are likewise completely 
analogous to those of impulse control. The connection with autonomous jump sets is only 
slightly less direct: they can viewed as "singular limits" of the jump measures A and A of the 
the theory of PDPs. We have added the possibility of autonomous jump costs associated 
with such jumps. The jump destination sets are merely the union of the points that one 
can jump to using either controlled or autonomous jumps. We have also added autonomous 
and controlled jump transition delay maps, but these present no conceptual challenges, and 
are omitted from the following discussion. 

One conceptual differences is the inclusion of continuous controls in our model. The 
other conceptual difference is that instead of having a single, continuous state space, e.g, 
X = Rn, we have an indexed set of continuous state spaces, X = {A"j}£0 where each Xi is 
a subset of some Euclidean space Rdi, d{ € Z+. 

The splitting into discrete and continuous states is not a technical barrier. Indeed, 
the algorithms that arise from this structure are a natural consequence of the underlying 
"automata" interpretations (for example, our approximation techniques may be viewed as 
"unrolling" these automata into trees). 

Now, we show how the algorithms in [51] may be modified to form the basis of control 
algorithms for hybrid systems. Generalizing from [51] to the case of our hybrid systems 
model, define the following operators: 

/•(TlAt 

J(Vi,V2)(t,x)   =    /       e-ask(x(s)) ds 
Jo 
+e-atV1(x(t))l{t<eri} 

+e-QCTl min{ca(x(ai)) + V2(G(x(<xi)))} • l{tri<t} 
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KV2{x)   =    r e-ask{x{s)) ds + e-aai min{ca(a:(<Ti)) + V2{G(x(a1)))} 
Jo 

=   J(Vi,V2){oo,x) 

£(VuV2)(x)   =   lird^J(VuV2)(t,x)}AfCV2(x) 

MV2{x)   =     inf Ac{x,y) + V2(y)} 
yer(i) 

AV2(x)   =     inf   { [te-ask{xs)ds + e-atMV2(xt)\ 
T€Moo   UQ ) 

too 

h(x)   =    /    e-ask{xs)ds 
Jo 

Above, the set Af«, is the set of all times we are in the controlled jump set C.  Finally, 
define L(V) = C(MV,V). 

The following results may then be derived analogously to the results in [51]. 

Proposition 11.1 h is the smallest solution of 

f V   =   KV 
\ V   >   0 

and h0 = 0, hn+i = Khn implies hn t h as n -> oo. 

Proposition 11.2 V* is the biggest solution ofV = AV and V* = limn_>oow4n/i. 

Proposition 11.3 V* is the biggest solution of 

f V   =   L(V) 
\ V   <   h 

and VQ = h, Vn+i = L(Vn) implies VniV* as n -»■ oo. 

Proposition 11.4 Assume V0 > h, Vn+l = L(Vn).   Then limn-foo V„(x) = V*{x), for all 
x. 

We can thus use the L iterations above to compute the value function solving our 
GQVIs. Continuous controls u are taken care of by discretizing the control space into a 
finite number of values, treating the current value of u as part of an augmented state, and 
assigning a switching cost for transition between different control values. So, we perform L 
iterations on this problem. If performance of the resulting is satisfactory, we conclude. Else, 
we may decrease the cost of switching among continuous controls or increase the number 
of quantized control values considered. We refer to the above algorithm as the L-Iteration 
algorithm. 

Results on convergence of discretization of algorithms should follow similarly to those 
for impulse control [51]. 

§11.1.4  LINEAR PROGRAMMING SOLUTIONS 

Linear programming has been used to solve for the value function associated with optimal 
control of Markov decision processes [124]. It has also been shown to be valuable in impulse 
control of PDPs [50]. Here we use it to solve hybrid control problems. 
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Again assume we have discretized the state space into X and the set of continuous 
controls into U (yielding |TT| finite). Consider the right-hand side of Equation (11.1) as an 
operator, T, on functions V. Arguing as in [124, Lemma 6.21, p. 151], monotonicity of T 
and V* = TV*, imply that V* may be obtained by solving 

Maximize V subject to TV > V. 

However, since maximizing V{x) for each x € X also maximizes £V(z), the problem 

reduces to 

Maximize £ V{x) subject to 
mina6n {g(x,a) + V(x'(x,a))} > V{x), for all xeX. 

Alternatively, we can write this as 

Maximize £ V(x) subject to 
{g{x,a) 4- V{x'(x,a))} > V(x), for all a € II and xEX. 

This is just a linear program and may be solved by standard techniques. The problem 
is that these linear programs may be large. If \X\ = N, and |II| = M, then we have N 
variables and MN constraints. The advantage is that the matrix of constraints is sparse. 
Briefly, this is since the row corresponding to (x, a) only has non-zero weights for the nearest 
neighbors of the state x'(x, a). 

§11.2   CONTROLLING EXAMPLE SYSTEMS 

We discuss below the solution of several simple, but illustrative control problems. We begin 
with a quick warmup. Then we discuss continuous control of a hysteresis system that 
exhibits autonomous switching. Then we discuss a satellite control problem. The on-off 
nature of the satellite's reaction jets creates a system involving controlled switching. We 
end with a transmission problem. The goal is to find the strategy of continuous accelerator 
input and discrete gear-shift position to achieve maximum acceleration. 

WARMUP 

First, going back to Example 10.11 we have 

Example 11.5 Consider Example 10.11 except with the controls restricted in [-1, -e], 0 < 
e < 1. Then the flows are transversal and do not vanish on A\ — {0} for any u. In this 
case, the optimal control exists. For example, if K > 1/e, one can show that u(-) = -e is 
optimal. 

§11.2.1   HYSTERESIS EXAMPLE 

We now consider a hybrid control example which combines continuous control with the 
phenomenon of autonomous switching. 

Example 11.6 Consider a control system with hysteresis: 

x = f{x, u) = H(x) + u, 

where the multi-valued function H is shown in Figure 11-1. 



170     Hybrid Control Algorithms and Examples 

■   A 

Figure 11-1: Hysteresis Function. 

Note that this system is not just a differential equation whose right-hand side is piecewise 
continuous. There is "memory" in the system, which affects the value of the vector field. In- 
deed, such a system naturally has a finite automaton associated with the hysteresis function 

H, as pictured in Figure 11-2. 

x > A ] 

f x < A [x>-A] 

[x<-A] 

Figure 11-2: Finite Automaton Associated with Hysteresis Function. 

As a control problem we consider minimizing 

J= r):{qx2 + u2)e-atdt= r' k(x,u)e-atdt 
Jo    2 Jo 

(11.2) 

Let s = H(x).   We first solve for V(s,s), and then for u.   By symmetry, we expect 
V(-A, 1) = V(A, -1). From the GQVIs, we expect V to satisfy 

minu {-aV(x, s) + Vx(x, s) • f{x, u) + k{x, u)} = 0, 
V(A,l)=c + V(A,-l), 

V(-A,-l) = c + V(-A,l), 

(11.3) 

where s takes on the values ±1 and c represents the cost associated with the autonomous- 

switchings. 
We have solved these equations numerically (via the boundary-value algorithm) for the 

case c = 0, a = 1, A = 0.1. The boundary-value algorithm outlined in §11.1 was used. The 
resulting control«, plotted against x (for s = 1) and q, is shown in Figure 11-3. As the 
state is increasingly penalized, the control action increases in such a way to "invert" the 

hysteresis function H. 
To get an idea of the dynamics we plot the state and control over time for several values 

of q in Figure 11-4 and Figure 11-5, respectively. As the penalty on the state increases, 
the control acts in such a manner as to keep the state closer to zero for successively larger 
fractions of each "cycle." Concomittantly, we see how the controls begin to try to "invert" 

the hysteresis, as we just mentioned. 



Optimal Policy vs. x and q 
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Figure 11-3: Optimal control u versus x and q, for the case a = 1, c = 0, A = 0.1. 

Figure 11-4:   Comparison of x versus time, under different values of q.   Solid, q = 400; 
dashed, q = 200; dotted, q = 0. 

Figure 11-5:   Comparison of u versus time, under different values of q.   Solid, q = 400; 
dashed, q = 200; when q - 0, u is identically zero (not plotted) 
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Next, we compare the solutions found above with those computed by the generalized 
value iteration and linear programming algorithms of §11.1. In Figure 11-6 we plot the 
optimal control again, but this time we compare those previously shown (computed using 
the boundary-value algorithm) with those obtained using generalized value iteration arising 
from the Bellman equation described in §11.1. While the surfaces do look similar, we 
also plot several "slices" for better comparison. Up to the discretization used in the value 
iteration algorithm, the plots are seen to agree. 

Next, we compare the optimal costs computed by linear programming with those com- 
puted with value iteration for successively tighter convergence criteria. See Figure 11-7. 
Note that the value iteration solutions are converging to those found via linear program- 
ming. Both algorithms used the same discretization and the same computer resources (Mat- 
lab on a Sparc5 after data initialization using a C program). In this case, the wall time 
to compute each curve shown was about equal. Thus for this problem linear programming 
yielded more than a factor of four speed-up. 

Optimal Policy vs. x and q: Boundary-Value Problem      Optimal Policy vs. x and q: Value Iteration 

0-1     0.05 0    -0.05      -0.1 400q 

3   0- 

0.1      0.05 

Slice of optimal policy: q=100 Slice of optimal policy: q=200 

0.05        0.1 

Slice of optimal policy: q=300 

0.5 

=    0 \                   / 

-0.5 

Slice of optimal policy: q=400 

).05        0        0.05       0.1 
x 

Figure 11-6: Comparison of policies computed by boundary-value and value iteration. Slices 
show details. Smooth, boundary-value; staircase, value iteration 
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0.02 0.04 0.06 0.08 0.1 

Figure 11-7: Cost-to-go for hysteresis example versus state (s = 1,-1 superimposed). Plot 
shows the convergence of value iteration solutions (dash-dot and dotted lines) to that found 
by linear programming (solid and dashed). 

§11.2.2   EXAMPLES WITH CONTROLLED SWITCHING 

We have also considered two problems involving controlled switching, a satellite station- 
keeping problem and a transmission control problem. The second also involves continuous 
controls. 

SATELLITE CONTROL 

Recall Example 3.3. It is a system with controlled switching. We add switching costs of 
Con to switch from, and coS to switch to, v = 0. We also penalize control and state with a 
running cost of k = c||u|| + x\. 

We have solved the above using generalized policy iteration on Equation (11.1). We 
discretize the state-space and use the techniques described in [44] for dealing with edge 
effects. The resulting solution confirms the banded structure of positive, zero, and negative 
controls, that is typical for such problems. The reasoning is that there are long periods of 
drift followed by short bursts of control [145]. See Figure 11-8. 

TRANSMISSION EXAMPLE 

We now consider the transmission system of Example 3.4. We use a{y) = tanh(y/10) to 
represent our "torque curve." As a control problem we consider minimizing the running 
cost 

k = (40 - x2)
2, 

starting from x\ = x<i = 0. One would expect that this leads to an optimal acceleration 
strategy for reaching a velocity of 40 as quickly as possible. We solved the problem using 
both value iteration and linear programming as outlined above.   Figure 11-9 shows the 
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Figure 11-8: Satellite Station-Keeping Policy. State in Cq, denotes the policy is to use v = q. 

results. The piecewise shifting strategies are interpreted as follows. The continuous control 
u is given by the fractional part, and the gear shift position by the integer part plus 1. 

The "analytic strategy" shown results in maximum acceleration (up to the discretization 
of velocity and control used). In this case, it is simply given (as a function of x2) by 

arg maxf{x2,u,v) = [-a(x2/v) + u]/(l + v). 
u,v 

The "calculated strategy" was the result of solving the linear program described in the 
previous section using the running cost above. Except for the edge effect, the calculated 
and analytic shifting strategies agree up to the discretization used. This also confirms that 
the simple chosen cost was a good choice for approximating an optimal acceleration strategy. 

Further, we also plot four more curves, namely, the integral of the controlled vector field 

f(x*2(t),u*(t),v*(t)), 

versus both time and velocity for both the calculated and analytic solutions. In both cases, 
the "performance" of the calculated and analytic solutions are nearly identical. 

15     .     20 25 
velocity, time 

Figure 11-9: Optimal acceleration strategies and performance for the transmission problem. 
Solid, calculated; dashed, analytic. 



Chapter 12 

Conclusions and Future Work 

This chapter summarizes the contributions of the thesis and gives a view toward future 
areas of research. 

§12.1   CONCLUSIONS 

This thesis studied different aspects of hybrid systems, concentrating in the broad areas of 
modeling, analysis, and control. 

MODELING 

Review. In §3 we first identified the types of discrete phenomena that arise in hybrid sys- 
tems. Then we reviewed models of hybrid systems from the systems and control literature. 
We made some comparisons which enabled us to quickly prove simulation and modeling 
results for such systems. 

Classification. §4 presented our own taxonomy of hybrid systems models. We introduced 
four main classes of systems: 

• 

• 

• 

general hybrid dynamical systems 

hybrid dynamical systems, or hybrid systems, 

switched systems 

continuous switched systems 

Both autonomous and controlled versions were introduced. Further classification was based 
on their structural properties and the discrete phenomena they exhibit. We also gave explicit 
instructions for computing the orbits and trajectories of general hybrid dynamical systems, 
including sufficient conditions for existence and uniqueness. 

Unified. In §5 we formulated our own unified framework for hybrid systems modeling 
and control. We explicitly demonstrated that our unified model encompasses the identified 
discrete phenomena and the reviewed models of hybrid systems. The controlled version of 
the proposed model contains discrete and continuous states, dynamics, and controls. It is 
useful in posing and solution of hybrid control problems, including ones with disturbances. 
This was examined in Part III. 

175 
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ANALYSIS 

Topology. In §6 we discussed some of the topological issues that arise when differential 
equations and finite automata interact in hybrid systems. We concentrated on the maps 
from a continuum to a finite symbol space—AD maps—and back to another continuum— 
DA maps. We illuminated the general difficulties with the usual topologies in allowing 
continuous AD maps, constructed several topologies which bypassed them, and examined 
at length one such topology due to Nerode and Kohn. 

We showed that there are inherent limitations present when one desires continuous 
maps from continuum to continuum through a finite symbol space, viz., one must equip 
the continua with new topologies. We constructed a control space topology allowing a 
continuous map which "completes the loop." 

We ended with a different view of hybrid systems that may broach these problems. As 
an example, we showed that the most widely used fuzzy logic control structure is related to 
this different view and that it indeed is a continuous map from measurements to controls. 
We further demonstrated that these fuzzy logic controllers are dense in the set of such 
continuous functions. 

We also made some connections with hybrid system trajectories and definitions of sim- 
ulation. 

Complexity. In §7 we explored the simulation and computational capabilities of hybrid 
systems. To accomplish this, we first defined notions of simulation of a discrete dynamical 
system by a continuous dynamical system. S-simulation, or simulation via section, was 
motivated by the definition of global section in dynamical systems [129]. Relaxing this 
to allow different parameterizations of time we considered P-simulation (simulation via 
points), which was seen to be weak. To remedy this, we defined I-simulation, or simulation 
via intervals. Both S-simulation and I-simulation imply P-simulation. S-simulation and 
I-simulation are independent notions. 

We then showed that hybrid systems models with the ability to implement an exact clock 
can simulate fairly general discrete dynamical systems. Namely, we demonstrated that such 
systems can S-simulate arbitrary reversible discrete dynamical systems defined on closed 
subsets of Rn. These simulations require ODEs in R2n with the exact clock as input. Each 
of the reviewed hybrid systems models can implement exact clocks. They require only the 
most benign hybrid systems: two discrete states and autonomous switching. 

Later, we found that one can simulate arbitrary discrete dynamical systems defined on 
subsets of Zn without the capability of implementing an exact clock. Instead, one can use an 
approximation to an exact clock, implemented with a one-dimensional Lipschitz ODE. The 
result is that we can perform Sl-simulations (resp. I-simulations) using continuous (resp. 
Lipschitz) ODEs in K2n+1. 

Turning to computational abilities, we saw that there are systems of continuous ODEs 
possessing the ability to Si-simulate arbitrary pushdown automata and Turing machines. 
Finite automata may be Si-simulated with continuous, Lipschitz ODEs. By Si-simulating a 
universal Turing machine, we concluded that there are ODEs in E3 with continuous vector 
fields possessing the power of universal computation. 

Finally, we showed that hybrid systems are strictly more powerful than Lipschitz ODEs 
in the types of systems they can implement. For this, we used a nontrivial example: the 
famous asynchronous arbiter problem. First, we settled the problem in an ODE framework 
by showing one cannot build an arbiter with devices modeled by Lipschitz ODEs continuous 
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in inputs and outputs. Then, we showed that each of the reviewed models of hybrid systems 
can implement arbiters, even when their continuous dynamics are modeled by Lipschitz 
ODEs continuous in inputs and outputs. Again, such examples require only autonomous 
switching and two discrete states. 

Analysis Tools. §8 detailed work on switched and continuous switched systems. Each 
arise from hybrid systems by abstracting away the finite dynamics. In the first part of 
§8, we developed general tools for analyzing continuous switching systems. For instance, 
we proved an extension of Bendixson's Theorem to the case of Lipschitz continuous vector 
fields. This gives us a tool for analyzing the existence of limit cycles of continuous switching 
systems. We also proved a lemma dealing with the continuity of differential equations with 
respect to perturbations that preserve a linear part. Colloquially, this Linear Robustness 
Lemma demonstrates the robustness of ODEs with a linear part. The lemma is useful in 
easily deriving some of the common robustness results of nonlinear ODE theory (as given 
in, for instance, [11]). It also becomes useful in studying singular perturbations if the fast 
dynamics are such that they maintain the corresponding algebraic equation to within a 
small deviation. We added some simple propositions that allowed us to do this type of 
analysis in §9. 

In the second part of §8, we introduced "multiple Lyapunov functions" as a tool for 
analyzing Lyapunov stability of switched systems. The idea here is to impose conditions 
on switching that guarantee stability when we have Lyapunov functions for each system fc 
individually. Also, iterative function systems were presented as a tool for proving Lagrange 
stability and positive invariance. We also address the case where the finite index set is 
replaced by an arbitrary compact set. 

Analyzing Examples. In §9.2 we presented an example hybrid control problem: the max 
system. This system was inspired from one used in the control of modern aircraft. The 
control law uses a logical function (max) to pick between one of two stable controllers: 
one a servo that tracks pilot inputs, the second a regulator about a fixed angle of attack. 
Typically, engineers resort to extensive simulation of even such simple systems because the 
analysis is too hard with their present toolbox. However, we analyzed the stability of this 
hybrid system in the case where the pilot input is zero and the controllers are linear full- 
state feedback. We showed that no limit cycles exist by proving and applying an extension 
of Bendixson's Theorem to the case of Lipschitz continuous vector fields; we also gave a 
Lyapunov function that proved all systems of this form are globally asymptotically stable. 
Interestingly, the Lyapunov equation used a logical switching. 

In §9.3 we presented an analysis of a "continuation" of the max system. That is, we 
used a differential equation to obtain a "smooth" function instead of using the output given 
by the max function directly. By extending a result in the theory of continuity of solutions 
of ordinary differential equations, we proved stability properties of the continuation from 
those of the original max system. 

The conclusion in this case is that the continuation method worked in reverse, i.e., it was 
easier to prove stability of the original, hybrid system directly. Furthermore, we concluded 
stability of the continuation via that of the original system. In effect, we showed robustness 
of the max system to the considered class of dynamic continuations. 
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CONTROL 

Theoretical Results. In this part of the thesis, we took an optimal control approach to 
hybrid systems. In §10 we defined an optimal control problem in our unified hybrid control 
framework and derived some theoretical results. The problem, and all assumptions used in 
obtaining the remaining results, were expressly stated. The necessity of these assumptions— 
or ones like them—was demonstrated with examples. The main results were as follows: The 
existence of optimal and e-optimal controls for the problem is established in §10.2. §10.3 
gave a formal derivation of the associated generalized quasi-variational inequalities. 

Algorithms and Examples. Using the GQVIs as a starting point, §11.1 concentrated on 
algorithms for solving hybrid control problems by solving the associated GQVIs. Our unified 
view led to the concept of examining a generalized Bellman equation. We also drew explicit 
relations with impulse control of piecewise-deterministic processes. Four algorithms were 
outlined: boundary-value algorithm, generalized value iteration, an impulse control-like 
approach, and linear programming. 

Three illustrative examples were solved. We first considered a hysteresis system that 
exhibits autonomous switching and has a continuous control. Then we discussed a satel- 
lite station-keeping problem involving controlled switching. We ended with a transmission 
problem with continuous accelerator input and discrete gear-shift position. In each case, 
the optimal controls produced verify engineering intuition. 

§12.2   FUTURE WORK 

We have certainly seen a broad range of application areas to hybrid systems. We have only 
opened the door a little wider to further investigation. This should proceed along three 
fronts simultaneously: theory, applications, and development of engineering tools. 

Modeling. One needs to explore the plethora of modeling choices available in hybrid sys- 
tems. Since hybrid systems include dynamical systems as a subset, subclasses which permit 
efficient simulation, analysis, and verification should be explored. We believe that such a 
program is indeed being carried out by the computer scientists. Control theorists should 
do the same in their field in examining the hybrid control of hybrid systems. 

Analysis. First, it is not hard to generalize our Multiple Lyapunov function (MLF) theory 
to the case of different equilibria, which is generally the case in hybrid systems (see §8.7). 
For example, under a Lyapunov-like switching rule, after all controllers have been switched 
in at level au the set U^i'Vi) is invariant. Such a generalization is useful in hybrid 
systems, where different equilibrium generally arise. In this case, the multiple Lyapunov 
approach appears useful in establishing the convergence of optimization algorithms which 
perform jumps upon entering certain regions of the state-space [136] 

Since sufficient conditions for stability can become guidelines for synthesis, control design 
arising from the constraints of §8 is a topic of further research. Following our example above, 
it can lead to the design of convergent algorithms. 

There are also theoretical issues to be explored. Some examples include the stability 
of systems with multiple equilibrium points, the stability of switched systems, relations 
between fixed-point theory and Lyapunov stability, and the stability and dynamics of or- 
dinary differential equations driven by Markov chains whose transition probabilities are a 
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function of the continuous state. The latter may provide a link to the large literature on 
jump systems (see §2.2.2). 

Another important topic of further research is to incorporate developed analysis tools 
into software engineering tools. This will allow application of these tools to complicated 
examples in a timely manner. 

Control. Specific open theoretical issues were discussed in §10.4. Another has to do with 
the robustness of our hybrid controls with respect to state. Here, our transversality assump- 
tions should combine with Tavernini's result on continuity with respect initial condition to 
yield continuity of control laws on an open dense set. 

An important area of current research is to develop good computational schemes to 
compute near-optimal controls in realistic cases. Analysis of rates of convergence of dis- 
cretized algorithms should be explored. Later, the development of software tools to design 
such controllers automatically will become an important area of research. 

On to Design. Finally, from modeling, through analysis and control, we come to design 
of complex, hybrid systems. Here, some of the interaction between levels is under our 
jurisdiction. What would we do with such freedom, coupled with our new-found analysis 
and control techniques? For example, we might design a flexible manufacturing system that 
not only allows quick changes between different product lines, but allows manufacturing of 
new products on the line with relative ease. 

Consider the so-called reflex controllers of [116, 148], which constitute a dynamically 
consistent interface between low-level servo control and higher-level planning algorithms 
that ensures obstacle avoidance. Thus as a step in the direction of hierarchical, hybrid 
design, the reflex control concept is an example of how to incorporate a new control module 
to allow rapid, dynamically transparent design of higher-level programs. Further, there 
are some structures for the control programs used in research aircraft [79] that may lend 
themselves to such an approach. In each case, these designs incorporate structures which 
allow engineers to separate the continuous and logical worlds. 

These controllers provide the inspiration, our analysis and control results the foundation, 
and our steps toward efficient algorithms the impetus, for setting a course toward design 
of hybrid systems. Ultimately, it is hoped they will lead to truly intelligent engineering 
systems. 
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Appendix A 

Topology Review 

The following is only a quick review (and we do assume some basic point set topology, e.g, 
[126, Ch. 2]). For more details consult [62, 75, 113]. 

A topological space consists of a set X and a topology on X. A topology on X is 
a set T of designated subsets of X, called open sets, such that 

• 0, X are in T, 

• T is closed under arbitrary unions, 

• T is closed under finite intersections. 

EXAMPLE. 7} = {%,X} and TD = 2X are each topologies on X, known as the indiscrete 
and discrete topologies, respectively. 

If Y is a subset of topological space (X, T), the collection 

TY = {Y n U | U € 71 

is a topology on Y called the subspace topology. With this topology, Y is called a 
subspace of X, and U C X is open in Y (or open relative to Y) if it belongs to 7y. 

A set C C X is called closed if X\C is open. A set can be open, closed, both, or 
neither. Suppose T and V are two topologies on a given set X. If V C T, we say that V 
is finer than T, and that T is coarser than V. 

If X is a set, a basis for a topology on X is a collection ß of subsets of X (called basis 
elements) such that 

1. Each x € X is contained in at least one element of B. 

2. If x belongs to the intersection of two basis elements B\ and B2, then there exists a 
basis element B3 C B\ n 52 containing x. 

A subbasis S for a topology on X is a collection of subsets of X whose union equals X. 
The topology generated by basis B (subbasis S) is the collection of all unions of (finite 
intersections of) elements of B (5). 

EXAMPLE. For any set X, the collection of all one-point sets of X is a basis for the discrete 
topology on X. The open rays of an ordered set X, the collection 

{x I x > a},   {x I x < a},       a£ X, 

are a subbasis for the order topology on X. 
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The function /.: X -► Y is continuous if for all V open in Y, U = /_1(^) is °Pen in 

X; it is surjective if its image is Y, injective if it is one-to-one, and bijective if both of 
these hold; it is a homeomorphism if it is a continuous bijection with continuous inverse. 

A topological space X is connected if it cannot be written as X = AuB, where A and 
B are open, nonempty, and disjoint. Two useful results are the following. 

• X is connected if and only if X and 0 are the only subsets of X which are both open 

and closed. 

• The continuous image of a connected space is connected. 

The following classification of topological spaces is common: 

• T0. Given two distinct points in a topological space X, at least one of them is contained 
in an open set not containing the other. 

• IV Given two distinct points in a topological space X, each of them is contained in 
an open set not containing the other. 

• T2 or Hausdorff.   Given two distinct points in a topological space X, there are 
disjoint open sets, each containing just one of the two points. 

The following hold for spaces in which one point sets are closed. 

• Regular.  Given a point and a closed set disjoint from it, there exist disjoint open 
sets containing each of them. 

• Normal. Given two disjoint closed sets, there exist disjoint open sets containing each 

of them. 

Regular 

Figure A-l: Visualization of separation axioms. 

A space Y is said to have the universal extension property if for each triple (X, A, /), 
where X is a normal space, A C X is closed, and / : A -+ Y is continuous, there exists 
an extension of / to a continuous map of X into Y. For arbitrary index set J, R has the 
universal extension property [113, p. 216]. 
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Symbol Index 

Common Notation 

K, R+ reals, nonnegative reals 
z, z+ integers, nonnegative integers 

x\u, x-u complement of U in X 
u closure of U 
u° interior of U 
du boundary of U 

\A\ cardinality of set A 
A^B A, B are sets with \A\ = \B\ 

f(t+), f(t~) right-, left-hand limits of / at t 
C{X,Y) continuous functions from X to Y 

vT transpose of v 

X\\,  \\x\\2,  N|oo arbitrary, Euclidean, and infinity norm of x 

v/ divergence of / 

Special Notation 

jV {1,2,..., N} 
[x\ greatest integer less than or equal to x 
\x\ least integer greater than x 
[t] time less than or equal to t at which the last jump occurred 

[t]p time at which the variable p last jumped 
q+ successor of q(t) 
q~ predecessor of q(t) 

[condition] transition enabled (event is triggered) if condition is true 
![condition] transition must be taken (event must be accepted) if condition is true 
?[condition] transition may be taken (event may be accepted) if condition is true 

[X, S, f] dynamical/transition system / defined on X over the semigroup S 
G continuous extension of G 
T topology 
B basis 
S subbasis 
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Hybrid Systems Models 

State Spaces 
S      hybrid state space 
X      continuous state space 
Q      discrete state space 

Designated Subsets 
A      autonomous jump set 
C      controlled jump set 
D     jump destination set 

Mq>p    transition manifolds (q,p € Q) 

States 
s      hybrid state 
x      continuous state 
q      discrete state 

Dynamics 
cj)q      extended transition functions 
fq      transition functions 
G      jump transition maps 
J      impulse transition map (continuous component of G) 
v      switching transition map (discrete component of G) 

Transition Delays 
Aa     autonomous jump delay map 
Ti      pre-jump times 
Ti      post-jump times 
ai      pre-jump times for autonomous jumps 

Controls 
u continuous control 
v discrete control (exercised upon autonomous jumps) 
F controlled jump transition map (set-valued) 
Ac controlled jump delay map 
Q intervention (pre-jump) times for controlled jumps 
£,' post-jump times for controlled jumps 

Costs 
k      running cost 
ca      autonomous jump cost 
cc      controlled jump cost 

V(-)    value function 



Index 

AD map   89 
Aggregation    24 
Alphabet   42 
Anchored switching sequence    124 
Arbiter    110 
ASL   63 
ASLAUT   67 
Automatization    25 
Automaton 

digital    44 
differential    58 
finite   42 
hybrid   48 
push-down   43 
symbolic   44 

Autonomous 
-impulse    72 
impulses    53 
jump   53 
jump set    27 
switching    52 

Basis    181 
elements    181 
sub-    181 
topology generated by    181 

BB    64 
BD    65 
BDV    65 
Bellman-Gronwall lemma   131 
Bendixson's theorem    136 

extension    120 
BGM   60 
Bijective   182 

C-   71 
see § 4.4 

Candidate Lyapunov function   125 
Canonical max system   141 

continuation    144 

Cantor encodings    104 
Cemetery states   42 
Clock 

exact    105 
inexact    107 

Closed    181 
Coarser    181 
Connected    182 

simply    136 
Constituent    27 
Contains    67 
Continuation    24 
Continuous    182 

from the right    159 
ODEs   42 

Continuous-time 
transition system   41 

Contractive function    128 
Control    156 
Controlled 

-impulse   72 
impulses   54 
jump   54 
controlled jump destination maps   29 
jump set    29 
dynamical system   41 
switching   53 
vector field   42 

D-    71 
see § 4.4 

Decision    156 
DEDS    discrete event dynamic system 
Destination sets, jump   27 
Destinations    156 
Deterministic   72 
Discrete-time   72 
Digital automaton   44 
Differential 

automaton   58 
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equation    ordinary differential equation 
IFS    130 
inclusion   48 

DIFS    differential IFS 
Discount factor    155 
Discrete-event dynamical system see [74] 
Discrete-time 

transition system   41 
Discrete topology    181 
Divergence    120 
Dynamical system   40 

controlled    41 
equivalent    41 
generator of   40 
hybrid    hybrid dynamical system 
in (a space)    40 
with input    41 
with marked states    41 
with output    41 
with timing    42 

Dynamically-uniform    72 

Edge-output   41 
Empty string   42 
Equilibrium point    41 
Equivalent 

dynamical systems   41 
Essential parts    90 
Even sequence    125 
Exact clock    105 
Extended transition map   40 

FA   finite automaton 
Final states    42 
Finer    181 
Finite automaton   42 

inputless   44 
transition function   43 

Finite gain   108 
Fixed point   41 
Formal union   155 
From the right    159 

continuous    159 

General hybrid dynamical system   27 
Generalized quasi-variational inequalities 

(GQVIs)    160 
GHDS    general hybrid dynamical system 

controlled   29 

Global section    100 

Halting   42 
Hausdorff   182 
HDS    hybrid dynamical system 
Homeomorphism   182 
Homomorphic   41 
Hybrid automaton   48 
Hybrid dynamical system   28 

autonomous    72 
autonomous-impulse    72 
autonomous-switching   72 
controlled-impulse    72 
controlled-switching    72 
controlled    72 
general   27 
general controlled   29 
time-invariant    72 
time-varying    72 
trajectory of   74 
uncontrolled    72 

Hybrid system   28 

Identity property   40 
IFS    iterated function systems 
Implements   67 
Impulse 

autonomous    53 
control   46 
controlled    54 
cost    155 
effect, systems with   46 

Impulse effect, systems with   systems with 
impulse effect 

Index states   27 
Indiscrete topology    181 
Inexact clock    107 
Initial states   42 
Injective    182 
Inputless 

FA   44 
PDA   44 

Interval completion   125 
Invariant   41 
I-simulation    101 
Isomorphic 

dynamical systems   41 
sets   39 
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Iterated function system    128 

Join irreducibles   89 
Jump 

autonomous    53 
controlled    54 
transition maps   27 

Jump sets 
autonomous   27 
controlled   29 
delay map    70 
destination    27 

Jump systems   45 

Linear robustness lemma   121 
Lipschitz    42 

constant    42 
continuous    42 
ODEs    42 

Lyapunov-like    125 

Map    39 
Max system    140 

canonical    144 
continuation    144 

Mealy machines   41 
MLF    multiple Lyapunov functions 
Monoid   40 
Moore machines   41 
Multiple Lyapunov functions    123 

continuous    42 
inputs   42 
Lipschitz   42 
outputs   42, 
time-invariant    42 
with inputs and outputs   42 

PDA    push-down automaton 
PDP    piecewise-deterministic process 
Petri nets see [99] 
Piecewise-constant derivative systems  116 
Piecewise-deterministic process   47 
Plant   42 
Pop    43 
Post-jump times   79 
Precise    158 
Pre-jump times    79 
P-simulation    101 
Push   43 
Pushdown automaton   43 

inputless   44 

Quasi-variational inequalities 
generalized    160 

Regular    182 
Relaxed control    157 
Reversible   40 
Right side   159 
Running cost    155 

160 

NKAUT    67 Sampled-data   72 

NKSD    61 Semi-dynamical systems   40 

Nonautonomous    72 Semigroup property   40 

Non-degeneracy    108 Sequence nonincreasing condition 

Nondeterministic    72 Simply connected    136 

Normal    182 Simulation    100-101 
I-    101 

ODEs    ordinary differential equations P-    101 
Open   181 S-    100 

.    in   181 S-simulation    100 
relative to   181 Start states   42 
sets    181 State-output   41 
rays    181 State space   40 

Orbit   41 String   42 
positive   73 Subbasis    181 

Order topology    181 Subspace   181 
Ordinary differential equations   42 topology    181 

autonomous   42 Statechart see [69] 

127 
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Surjective    182 
Switched system   75 

continuous    76 
general    76 

Switching 
anchored sequence    124 
autonomous   52 
controlled    53 
manifolds   27 

Symbol   42 
Symbolic automaton   44 
System   39 
Systemization   25 
Systems with impulse effect 

autonomous   46 
Class I   46 
Class II   46 
Class III   46 
(of) differential equations 
fixed instants of   46 
mobile instants of   46 

46 

46 

semigroup   40 
time map   42 
system   41 

continuous-time   41 
discrete-time   41 

Turing machine   43 
universal see [76] 

Type B hybrid system   64 
Type D hybrid system   65 

Universal computation, power of   102 
Universal extension property    182 
Universal Turing machine see [76] 

Variable structure systems 
Vector field   42 

controlled   42 

WAUT   67 
WHS   58 

44 

T0    182 
2\    182 
T2    182 
TDA    60 
Time-like   73 
Time-uniform   71 
Timing map   42. 
TM    Turing machine 
Topology    181 

discrete    181 
generated by basis, subbasis, 
indiscrete    181 
order    181 
subspace   181 

Topological space   181 
Topologically equivalent   41 
Total discounted cost    156 
Trajectory   41 

ofGHDS    74 
Transition 

control set   29 
cost    155 
extended map   40 
function   40 

T- system   41 
manifolds    27 
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