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Abstract 

Theoretical Studies of Electronic, Vibrational, and 

Structural Properties of Solids under Pressure 

by 

Steven Paul Lewis 

Doctor of Philosophy in Physics 

University of California at Berkeley 

Professor Marvin L. Cohen, Chair 

This dissertation describes first-principles quantum mechanical investigations of sev- 

eral realistic solid-state systems. The main goal of this research has been to under- 

stand and predict the electronic, vibrational, and structural properties of materials 

under pressure. Microscopic information on these properties is obtained within lo- 

cal density functional theory using ab initio pseudopotentials. This work focuses on 

three categories of materials: 

• Part I deals with the high-pressure behavior of elemental systems from group 

IV of the Periodic Table. The pressure-dependences of Raman-active phonon 

modes of high-pressure, metallic phases of silicon, germanium, and tin are 

studied within the frozen-phonon approximation. In addition, the structural 

properties of a recently discovered orthorhombic phase of silicon are calcu- 

lated. The aim of these two investigations is to understand and explain recent 

experimental results. A third investigation predicts the existence of an or- 

thorhombic, high-pressure phase of germanium. 

• Part II focuses on group V of the Periodic Table. The electronic and vibra- 

tional properties of elemental arsenic are studied with the aim of understanding 

the measured pressure-dependences of the superconducting transition temper- 

ature and the normal-state resistance. In addition, several candidate atomic 

phases of solid nitrogen are studied to determine their structural-stability and 



electronic properties. 

• Finally, Part III considers the effect of varying the stoichiometry in compound 

systems. In particular, model calculations are performed to explore the Ga- 

As system with the goal of motivating experimental studies. The electronic 

properties of several model Ga-As systems with varying stoichiometry are 

studied. 
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Foreword 

Over the last two decades significant experimental advances in condensed mat- 

ter physics and materials science have opened avenues of materials research that 

were never before accessible. One example is the development and refinement of 

the diamond.anvil cell (DAC) for achieving extremely high pressures [Jay83]. Static 

pressures as high as ~400 GPa have been reported [Ruo90]. Because of the trans- 

parency and high thermal conductivity of diamond, a host of probes can be used 

to investigate the properties of samples pressurized in the DAC. With the DAC 

investigators have been able to address a wide variety of subjects including the 

properties of materials that are only stabilized under pressure [Mig86], the behavior 

of the Earth far below its surface [Kni91], and long-standing basic questions such 

as whether or not hydrogen will metallize [Hem88]. 

Another important advance has been the development of modern high-precision 

materials synthesis techniques, such as Molecular Beam Epitaxy (MBE), which pro- 

vide a great deal of control in preparing new materials. By manipulating parameters 

such as temperature, substrate, and so forth, it is possible to grow substances which 

do not occur naturally, but which have interesting and useful properties [Her89]. 

Concurrent with these experimental advances has been the development of 

powerful theoretical methods for computing the properties of real materials from 

first principles. Previous first-principles methods were restricted to idealized 

model systems for investigating general trends. Conversely, highly accurate ap- 

proaches for studying real materials, such as the empirical pseudopotential method 

[Coh70, Coh88], relied on experimental information about the solid, and thus were 

limited in their predictive power. Modern first-principles approaches, however, are 

able to investigate the structural, electronic, vibrational, bonding, and supercon- 

ducting properties of solids to a high degree of accuracy using only information 
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about the constituent atoms as inputs. Because these methods are inherently ab 

initio they are capable of a high level of predictive power. This has made them ide- 

ally suited to explore the effect of high pressures and to investigate novel materials, 

thus complementing the experimental situation described above. 

Density functional theory (DFT) [Hoh64, Lun83] provides the theoretical frame- 

work of most modern ab initio methods for studying solids. In this theory, the total 

ground-state energy of a system of interacting electrons in the presence of an ex- 

ternal field {e.g., the Coulomb fields produced by the constituent atomic nuclei) is 

shown to be a unique functional of the electron number density. The exact many- 

body ground state of the system is then given by the density that minimizes the 

energy functional and the resulting energy. Thus, the problem of solving for the 

ground-state coordinates of, say, 1023 interacting particles is reduced to determining 

a single function of only three spatial variables. It has been shown that DFT can be 

recast variationally into a set of self-consistent single-particle equations called the 

Kohn-Sham equations [Koh65]. Most applications of DFT use this form. 

Since DFT is an exact ground-state theory for a system of interacting electrons, 

it is, in principle, possible to calculate exactly any property that depends only on the 

ground-state electron density. In practice, however, several approximations must be 

adopted to make calculations tractable. Despite these approximations, DFT-based 

methods have enjoyed enormous successes in accurately explaining and predicting 

the properties of a large class of systems [Coh82, Coh86, Coh89]. The exact nature 

of the approximations and the details of the computational method are discussed 

extensively in the literature (see, for example, Ref. [Pic89] and references therein) 

and, therefore, will not be duplicated here. Only the most salient features follow. 

The Kohn-Sham equations are solved assuming that the constituent atomic nu- 

clei are fixed in space relative to the electrons. This is the Born-Oppenheimer 

approximation [Mad78] and is valid for nuclear masses much larger than the elec- 

tronic mass. With the nuclear degrees of freedom projected out of the Kohn-Sham 
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Hamiltonian, the resulting effective potential contains only electron-based terms. 

In particular, the effective potential is a sum of electron-nucleus interactions and 

electron-electron interactions. 

A common (and very successful) approach for treating the electron-nucleus inter- 

action is the pseudopotential method [Phi59, Coh70]. In this approach the electrons 

in the constituent atoms are separated into core and valence electrons, and the nu- 

cleus and core electrons are then combined into a single inert entity called an ion 

core. The valence electrons interact with the ion core via a pseudopotential. The 

justification for this approximation is that solid-state phenomena primarily involve 

only the valence electrons. Core electrons behave essentially as they would in a free 

atom, and thus can be considered as "frozen" with respect to the solid-state envi- 

ronment. The value of the pseudopotential concept is that the resulting shallower 

potential is simpler to characterize in a plane-wave expansion. 

In the past pseudopotenials were either based on idealized models or empirical 

inputs. However, in the late 1970's methods for generating pseudopotentials using 

only the atomic number as input were developed. These are the non-local, norm- 

conserving ab initio pseudopotentials of Hamann, Schlüter, and Chiang [Ham79] 

which, by construction, are highly transferrable to a wide variety of chemical envi- 

ronments. 

Because the exchange and correlation energies are complicated functionals of 

the electron density (in fact, the exact form of these terms is not known), it is very 

difficult to treat the electron-electron interaction without making an approximation. 

The simplest and most universally used method for describing the exchange and 

correlation energies is the local-density approximation (LDA). In this approach the 

exchange-correlation potential in a given volume element of the solid is approximated 

by that of a uniform electron gas with number density equal to the average density 

within the volume element. The validity of the LDA relies on a slow spatial variation 

of the charge density over the given volume element.   While this approximation 
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seems quite strong, the highly successful results obtained within the LDA suggest 

otherwise. 

Once the pseudopotential and local-density approximations have been adopted, 

it is straightforward to recast the total-energy problem in a momentum-space form 

[Ihm79, Coh82, Pic89] and use a plane-wave basis for expanding the potential and 

wavefunctions. Aside from its obvious simplicity, a plane-wave basis offers a number 

of useful features. First, a plane-wave basis provides a quantitative and systematic 

way of improving calculations by increasing the size of the basis. The size of the 

basis is governed by a single parameter: the cutoff energy. All plane waves with 

"kinetic energy" less than or equal to the cutoff energy are included in the basis. 

Another advantage of plane waves is that they are not biased by the composition or 

structure of the system under investigation as atomic-centered bases often are. 

This dissertation reports on a collection of first-principles theoretical investiga- 

tions of solids using the computational method described above (referred to as the 

ab initio pseudopotential plane-wave total energy method). The demonstrated pre- 

dictive power of this method [Coh82, Coh86, Coh89] encourages not only the study 

of experimentally realized systems but also the exploration of hypothetical materials 

with the aim of motivating experimental research. This work contains examples of 

both of types investigations. Phenomena studied here include structural, electronic, 

and vibrational properties of elemental systems under pressure, and stoichiometric 

effects in compounds. In particular, this thesis is organized into three parts: 

Part I deals with the high-pressure behavior of elemental systems from group 

IV of the Periodic Table. Chapter 1 presents a study of the pressure-dependences 

of Raman-active phonon modes in high-pressure metallic phases of Si, Ge, and Sn, 

with the aim of understanding recent measurements which found differences between 

the behavior of Si and Ge. In Chap. 2 the calculated structural properties of a 

recently discovered orthorhombic phase of Si are reported. This phase, observed for 

pressures between the transition pressures of the /3-Sn and simple hexagonal phases, 
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is found to transform continously from a ß-Sn-like structure'at low pressures to the 

simple hexagonal structure at high pressures. Finally, a third investigation (Chap. 3) 

predicts the existence of the same orthorhombic structure as a high-pressure phase 

of Ge. 

Part II focuses on group V of the Periodic Table. Chapter 4 contains the the- 

oretical portion of a combined experimental and theoretical investigation of su- 

perconductivity in As at high pressures. The experiments observed a peak in the 

superconducting transition temperature and a kink in the normal-state resistance at 

a pressure corresponding to the rhombohedral to cubic structural transition. Cal- 

culations of the electronic and vibrational properties of As provide a theoretical 

description consistent with the observations. In Chap. 5 several candidate atomic 

phases of solid nitrogen are studied to determine their structural-stability and elec- 

tronic properties. A simple tetragonal phase is singled out as a possible metastable 

metallic phase at high pressures. 

Part III considers the effect of varying stoichiometry on the properties of com- 

pound systems. In particular, Chap. 6 describes calculations designed to explore 

the Ga-As system with the goal of motivating experimental studies. The electronic 

properties of a family of hypothetical (except GaAs) Ga-As compounds with varying 

stoichiometry are studied. This family of materials all share the same underlying 

diamond lattice and range from pure As through zincblende GaAs to pure Ga. 

The investigations reported in this dissertation have also been reported in six ar- 

ticles written by the author [Che92, Lew92, Lew93a, Lew93b, Lew93c, Lew93d]. At 

the present writing, these articles have been published or submitted for publication. 
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Introduction 

There is little doubt that the elements in group IV of the Periodic Table are 

among the most technologically important solids and are among the most thoroughly 

investigated. The practical applications of carbon (in both the diamond and graphite 

forms), silicon, germanium, tin, and lead are manifold. In fact, an entire industry 

was developed to exploit the uses of Si. In condensed matter physics the group IV 

elements (particularly C and Si) often serve as prototypical materials and act as 

"testing grounds" for new theoretical and experimental techniques. 

The importance of the group IV elements extends to the study of their be- 

havior at high pressures. While the high-pressure properties- of carbon and lead 

have been investigated [Fah87, Liu91], this Part considers only the properties of 

Si, Ge, and Sn under pressure. Over the last three decades, the high-pressure 

behavior of these three group IV elements has been the subject of many experimen- 

tal [Min62, Wen63, Jay63, Bun63, Jam63a, Kas64, Bat65, Jam65, Bar66, Wit66, 

Pie75, Wei75, Asa78, Gup80, 01i84a, 01i84b, Hu84, Liu86, Voh86, Hu86, Ers86, 

Duc87, Des89, Duc90, 01i92] and theoretical [Van71, Van72, Yin80, Yin81a, Yin82, 

McM83, Cha84, Nee84, Cha85a, Cha85b, Dac85, Coh85, Cha86c, Cha86d, -Mar88, 

Liu88, Zan90, Cor91, Nee91, Che91, Nee93] investigations. In particular, these ele- 

ments are found to undergo a series of pressure-induced structural phase transitions 

which are summarized in Fig. 0.1. 

The following three chapters and their associated publications [Lew93a, Lew93c, 

Lew93d] contain new contributions to this vast literature on Si, Ge, and Sn under 

pressure. Chapter 1 contains a study of the vibrational properties of Si, Ge and 

Sn in the ß-Sn structure and Si in the hep structure. The main goal of this study 

is to understand recent measurements [OH92] which found differences between the 

behavior of Si and Ge.   In Chap. 2 the calculated structural properties of a re- 
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Figure 0.1: A schematic summary of the experimentally observed room tem- 
perature structural phases of Si, Ge, and Sn as a function of pressure in GPa. 
The transition pressures are taken from Ref. [Duc90] for Si, Ref. [Voh86] for Ge, 
and Ref. [01i84a] and [Des89] for Sn. The dashed lines correspond to the high- 
est reported pressure for each element; for Si, the highest pressure achieved 
is 248 GPa and is not shown. The structural abbreviations are defined as 
follows: cubic diamond (cd), simple hexagonal (sh), hexagonal close-packed 
(hep), face-centered cubic (fee), double-hep (dhep), body-centered tetragonal 
(bet), and body-centered cubic (bee). The results of Chap. 2 and 3 will slightly 
modify this diagram. 
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cently discovered [McM93] orthorhombic phase of Si are reported. Finally, a third 

investigation, described in Chap. 3, predicts the existence of the same orthorhombic 

structure as a high-pressure phase of Ge. 



Chapter 1 

Raman Modes in High-Pressure Phases of Si, Ge, and Sn 

1.1    Introduction 

A structural phase common to the group IV elements Si, Ge, and Sn is the 

metallic ß-Sn phase (see Fig. 0.1). This is the stable low-pressure structure of Sn 

at room temperature [1]. Upon compression to 9.5 GPa, Sn transforms to a body- 

centered tetragonal phase. Both Si and Ge exist in the diamond structure at low 

pressures and transform to the /9-Sn structure at about 10 GPa. They both then 

transform to the simple hexagonal (sh) structure at about 15 GPa for Si and at 75 

GPa for Ge. Upon further compression, Si transforms to an intermediate phase, 

denoted Si-VI, at about 38 GPa and to the hexagonal-close-packed (hep) structure 

at about 42 GPa. No such transitions are observed in Ge. 

Recently, Olijnyk [OH92] has used Raman spectroscopy to study the pressure- 

dependence of the Raman-active phonon modes of Si, Ge, and Sn in the /?-Sn struc- 

ture and of Si in the Si-VI and hep structures. For all three elements in the 0-Sn 

phase, the frequency of the doubly-degenerate TO Raman mode [2] is found to in- 

crease with pressure over the range of stability, although with slightly decreasing 

mode-Grüneisen parameter. In contrast, the behavior of the LO Raman mode [2] 

is found to change in going from Si to Ge to Sn. For Si, the LO mode is found to 

decrease with pressure, with an increasingly negative Grüneisen parameter, over the 

range of stability. This is attributed [01i92] to the onset of the 0-Sn -» sh transi- 

tion and is addressed more fully below. For Ge, the LO mode is found to increase 

initially and then level off by 50 GPa. No measurements on Ge are presented for 

pressures between 50 GPa and the transition to the sh structure at 75 GPa, although 
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it is speculated [OH92] that the mode will start to soften near the transition, as is 

seen for Si. Finally, the LO mode for Sn is found to increase over the whole range 

of stability, although more gradually than the TO mode, and with a more rapidly 

decreasing Grüneisen parameter. Two Raman modes are seen for Si-VI, the lower 

of which becomes the doubly-degenerate TO Raman mode for hep-Si. This mode 

is first seen at 33 GPa; it increases linearly with pressure (at least up to 47 GPa); 

and it is continuous across the Si-VI —> hep transition. 

This chapter reports on a first-principles investigation of the pressure-dependence 

of the Raman modes discussed above. Since the exact structure of Si-VI is not 

known, it is assumed to be the hep structure, and the structural transition sequence 

is assumed to be sh —» hep instead of sh —> Si-VI —► hep. These assumptions are 

acceptable for the purposes of the present study, since the lower frequency Si-VI 

Raman mode and the TO hep Raman mode are closely related to each other and 

are both associated to the distortion back to the sh structure [OH92]. The higher 

frequency Si-VI Raman mode is not addressed in this study. The calculated results 

of phonon frequency vs pressure agree very well with the measurements of Ref. 

[OH92]. Discussion will focus primarily on Si and Ge in the /9-Sn structure, and 

the behavior of the LO Raman mode in particular. This feature of the data is the 

most challenging to understand because of the dissimilarity of the behavior of Si 

and Ge. An explanation of this dissimilarity based on the presence of d electrons in 

the Ge core is provided. This chapter is organized as follows. Section 1.2 discusses 

the methods used in the calculations and provides some computational details. A 

.description of the structures and relevant phonon modes is contained in Sec. 1.3. 

Section 1.4 presents the computational results. Finally, in Sec. 1.5 the discrepancy 

between Si and Ge in the pressure-dependence of the /?-Sn-structure LO Raman 

mode is discussed. 
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1.2    Computational Methods 

Calculations are performed using the ab initio pseudopotential total energy 

method [Ihm79, Coh82, Pic89]. Electron-ion interactions are evaluated in this 

method using nonlocal, norm-conserving pseudopotentials [Ham79]. The Si, Ge, 

and Sn pseudopotentials used here have reference configurations 3s203p°-53d°-5, 

4s204p°-54d°-5, and 5s205p°-55d°-5, respectively. The cutoff radii (in a.u.) for the s-, 

p-, and d-potentials are equal to (1.12, 1.35, and 1.17), (1.17, 1.35, and 1.77), and 

(1.20, 1.50, and 2.55) for the three elements respectively. Electronic exchange and 

correlation energies are calculated within the local-density approximation (LDA) 

[Lun83] using a standard form for the exchange-correlation potential [Cep80]. The 

only external inputs to the calculation are the atomic numbers and masses of the 

constituent atoms and the basic crystal structure. All relaxed structural parameters 

are calculated from first principles. 

Wavefunctions and pseudopotentials are expanded in a plane-wave basis up to 

an energy cutoff of 35 Ry for Si and Ge and 30 Ry for Sn. The irreducible part 

of the Brillouin zone is sampled at 148 (279) special points [Cha73, Mon77] for the 

TO (LO) mode of the ß-Sn structure and at 128 special points for the TO mode of 

the hep structure. To overcome numerical instabilities associated with filling energy 

levels over a discretely sampled Brillouin zone, all energy levels are broadened into 

Gaussians with widths of about 0.7 mRy. Values of the computational parameters 

are chosen such that the calculated total energies are converged to within 1 mRy. 

Phonon frequencies are calculated within the frozen-phonon approximation. In 

this approach, the total energy is calculated for a crystalline system with a static 

phonon distortion of given amplitude imposed. Such calculations are done for sev- 

eral phonon amplitudes up to about 2% of the bond length. The total energy vs 

amplitude data are then fitted, within the harmonic approximation, to a quadratic 

polynomial, and the phonon frequency is extracted from the coefficient of the leading 

term. 
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In these calculations, the unit cell volume is a more natural choice for the in- 

dependent variable than pressure. Therefore, to make contact with experiments, in 

which pressure is the more natural choice for the independent variable, an equation 

of state is required. For each system considered, the equation of state is obtained 

by first calculating the total energy at several unit cell volumes and fitting these 

data to the Murnaghan equation of state [Mur44]. A correction to account for the 

zero-point energy of the ions is then added (see below). Parameters of the fit to 

the Murnaghan equation are tabulated in Table 1.1 for each of the four systems 

considered here. For Si, Ge, and Sn in the /3-Sn structure, these parameters are in 

good agreement with the previously calculated values of Ref. [Nee84], [Cha86d], and 

[Cor91], respectively. The agreement for Si with the calculated equation of state of 

Ref. [Cha85a] is only fair, due primarily to the smaller Brillouin zone sampling and 

energy cutoff used in the earlier calculation. Calculations for Ge and Sn in the /3-Sn 

structure and for Si in the hep structure agree well with experimental equations 

of state. No experimental equation of state for Si in the /?-Sn structure has been 

published, to our knowledge, probably because the range of stability of this phase 

is so small. However, the calculations are consistent with the few measurements of 

volume vs pressure that exist [01i84b, Hu84]. 

Since the pressure is obtained as the negative of the derivative of the total energy 

with respect to volume, at high pressures the pressure is a sensitive function of 

volume, and the error can be significant. This often represents the largest error in 

the calculation. For Si in the 0-Sn structure, the range of stability (~4 GPa) is of 

the same order as the error in the calculated pressure. Therefore, volumes whose 

pressures are calculated to lie within the range of stability may, in fact, lie outside of 

it. To account for this, calculations for Si in the ß-Su structure have been performed 

for a volume range larger than the range of stability. 

The present computational method treats the ion cores classically, and the effect 

of the zero-point motion of the cores on the equation of state is approximated by a 
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Debye model: 
9t 9. 9,  IB n n 

EzPM = Ö^-D = öhVs^D = ÖÄ\/T 9D ' ^       ' o o o   V Z3 

where O>D is the Debye freqency, us is the speed of sound, B is the bulk modulus, p 

is the mass density, and qD is the Debye wavevector. Volume-dependence of EZPM 

is contained in B, p, and qD. The total energy is taken as the sum of the static- 

core total energy and the approximate zero-point energy correction. Because of the 

increasing mass, the zero-point energy becomes less important in going from Si to 

Ge to Sn. 

1.3    Structures and Phonon Modes 

The /?-Sn structure (Fig. 1.1) is made up of two interpenetrating body-centered 

tetragonal (bet) sublattices displaced from each other by the vector [0, a/2, c/4]. The 

relaxed values of c/a are fairly independent of volume, and are found to be about 

0.545, 0.560, and 0.555 for Si, Ge, and Sn, respectively, in good agreement with 

experiments and previous calculations. The calculated phonon frequencies, however, 

are not very sensitive to c/a. Each atom in the /3-Sn structure has four nearest 

neighbors by symmetry, but because of the value of c/a, the two second-nearest 

neighbors at ±[0,0, c] are only slightly farther away. Thus, the atoms are effectively 

six-fold coordinated with a nearest neighbor distance slightly larger than a/2. This 

represents an increase in coordination number from the four-fold coordination of 

the diamond structure. Increasing coordination number with pressure is a common 

feature of structural phase transitions and is attributed to the importance of the 

ion-ion Coulomb interaction (Ewald interaction) at high pressure (small unit cell 

volume). 

Both the LO and the doubly-degenerate TO phonon modes at the center of the 

/?-Sn Brillouin zone are Raman active. The TO mode corresponds to an opposing 

motion of the two interpenetrating bet sublattices in any direction perpendicular 

to the c-axis. The LO mode corresponds to an opposing motion of the sublattices 
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jg-Sn Structure 

Figure 1.1: A ball-and-stick model of the /?-Sn conventional cell. Open circles 
correspond to one of the bet sublattices, and filled circles correspond to the 
other. The two sublattices are separated by the vector [0,a/2,c/4]. Dotted 
lines serve only to show atomic positions. The c/a ratio is roughly 0.55 for-Si, 
Ge, and Sn in this structure. 
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parallel to the c-axis. 

For Si in the hep structure, the relaxed c/a ratio is found to be about 1.68, 

essentially independent of volume. This value is slightly higher than the ideal hep 

c/a ratio (1.633), but is in very good agreement with experiments [01i84b, Hu86, 

Duc87, Duc90] and previous calculations [McM83, Cha85a]. The doubly-degenerate 

TO phonon mode at the center of the hep Brillouin zone is Raman active. This 

mode corresponds to an opposing motion of adjacent hexagonal planes in a direction 

perpendicular to the c-axis. 

Two of the Raman modes under consideration are associated with structural 

phase transitions. The ß-Sn LO mode is related to the /3-Sn -> sh phase transition 

in that an LO-type displacement of the /?-Sn lattice of amplitude c/8, accompanied 

by slight modifications of axial ratios, yields the sh lattice. The c-axis for the sh 

structure is parallel to the a-axis for the ß-Sn structure. Similarly, the hep TO mode 

is related to the sh -» hep transition. A distortion with amplitude a/\/6 will bring 

the hexagonal layers into registry, and then a slight expansion of c/a brings about 

the stable sh structure. 

1.4    Results 

Figures 1.2-1.4 show calculated frequency vs pressure of the phonon modes de- 

scribed above for Si, Ge, and Sn, respectively. These theoretical results are compared 

to the experimental results of Ref. [OH92], and are shown to be in very good agree- 

ment. In particular, the observed change in the pressure-dependence of the /?-Sn LO 

mode in going from Si to Ge to Sn is also exhibited by the calculations. Moreover, 

the speculation in Ref. [01i92] that the Ge LO mode will start to decrease with 

pressure beyond 50 GPa is not born out by the calculations which show that this 

mode merely plateaus up to 80 GPa. 

It is known that a displacive first-order structural phase transition is often ac- 

companied by a softening of an associated phonon mode (see, for example, [Bei90] 
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Figure 1.2: Phonon frequency vs pressure for the LO and TO Raman modes 
of Si in the /3-Sn structure, and for the TO Raman mode of Si in the hep 
structure. The black dots are the calculated results of the present study. The 
crosses are the experimental results of Ref. [01i92]. 



Chapter 1.   Raman Modes in High-Pressure Phases of Si, Ge, and Sn 13 

300 

e 
Ü 

o 
S   200 
cr 
u 

£ 
o 
£ 
o 
xi 
0-, 

100 

~i 1 r -i 1 1 1 1 1 1      I     i      i      r 

TO 

XXX X x 
XX       X    X    XX 

LO 

0 

Ge 

J I L. J 1 L. ' ' L. J I L 

0 20 40 60 

Pressure (GPa) 

80 

Figure 1.3: Phonon frequency vs pressure for the LO and TO Raman modes 
of Ge in the ß-Sn structure. The black dots are the calculated results of the 
present study. The crosses are the experimental results of Ref. [01i92]. 
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Figure 1.4: Phonon frequency vs pressure for the LO and TO Raman modes 
of ß-Sn. The black dots are the calculated results of the present study. The 
crosses are the experimental results of Ref. [01i92]. 
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or [Che92]), although the frequency of this mode need not vanish [Kru92]. The ß- 

Sn -» sh and sh -> hep transitions are both displacive transitions of this kind, and 

they are associated with the 0-Sn LO mode and the hep TO mode, respectively, as 

mentioned in Sec. 1.3. For Si, these modes both soften approaching their respective 

transition to the sh structure, as expected. However, for Ge, which also undergoes 

a /S-Sn -> sh transformation, the 0-Sn LO mode does not soften near the transition 

pressure. In fact, the frequency increases initially with pressure and only levels off 

near the transition. This discrepancy is discussed in the next section. 

The phonon frequency for a given mode is found to be highest in Si, next highest 

in Ge, and lowest in Sn (see Figs. 1.2-1.4). This ordering is anticipated since, in the 

harmonic approximation, phonon frequencies scale inversely as the square root of 

the mass. Furthermore, for the /3-Sn structure TO mode the frequencies at a given 

pressure obey this scaling law almost exactly. This behavior is only approximated 

for the LO mode, since the pressure-dependence of this mode is different for the 

three elements. 

In the ß-Sn structure, the TO modes lie at higher frequencies than the LO 

modes because of the geometry of the structure. The bonds between the two bet 

sublattices are nearly perpendicular (angle ~ 75°) to the c-axis. Therefore, for a 

given amplitude, the TO mode distorts the bonds more than the LO mode, resulting 

in a stiffer bond for the TO mode. 

Figure 1.5 exhibits the calculated charge density contours in the (100) plane for 

Ge in the ß-Sn structure at 13 GPa (Fig. 1.5(a)) and 60 GPa (Fig. 1.5(b)). The 

region of the plane shown contains the two atoms of the basis plus two adjacent 

atoms along the c-axis. The analogous contour plots for Si and Sn are qualitatively 

very similar to these, and thus have not been included. While the charge density 

is clearly highest between the two atoms of the basis, there is also a lot of charge 

between the two adjacent atoms along the c-axis, indicating a secondary bond. This 

is not surprising considering that the interatomic distance along the c-axis is only 
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slightly larger than the nearest-neighbor distance. 

The binding in the /3-Sn phase is mainly metallic over the whole pressure range. 

This can be seen in the degree of uniformity of the charge density. Even at low 

pressure, the lowest value of the interstitial charge density in the (100) plane is 

about 5 electrons/cell, not much less than the average value of 8 electrons/cell. 

However, the peaking of the charge density in the bond region clearly indicates 

that there is still covalent character to the binding. Upon compression, the system 

becomes more metallic. This is seen in Fig. 1.5(b) by the transfer of charge from 

the bond regions to the interstitial region. The peak in the charge density decreases 

from 14.5 electrons/cell at 13 GPa to 14.0 electrons/cell at 60 GPa. Similarly, the 

charge density minimum in the interstitial region increases from 5.0 electrons/cell 

at 13 GPa to 5.6 electrons/cell at 60 GPa. 

The decrease in bond charge with increasing pressure (decreasing volume) for 

Si, Ge, and Sn in the ß-Sn structure is summarized in Fig. 1.6, which shows the 

calculated bond charge as a function of unit cell volume for the three elements. For 

the purpose of this study, the bond charge is defined as the amount of charge, in 

excess of a uniform background, contained in a symmetric ellipsoid whose major axis 

extends from one atom of the basis to the other, and whose minor axis is chosen 

to be half of the major axis. This definition is scale independent, and therefore, 

the choice of aspect ratio is somewhat arbitrary. The value used here was chosen 

to include in the ellipsoid all closed charge density level surfaces. For each element, 

the bond charge is found to vary linearly with volume. The curves for Si and Ge 

have approximately the same slope (~ 0.0084 electrons/cell), whereas the slope of 

the curve for Sn is about a third smaller. At a given cell volume, the bond charge 

is largest in Si and smallest in Sn, which is consistent with an increase in metallic 

character in going from Si to Ge to Sn. This trend is also seen for these elements 

in the diamond structure, and is attributed to the more effective screening of the 

nucleus by the core electrons with increasing atomic number [Coh88]. 
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(a) 13 GPa (b) 60 GPa 

Figure 1.5: Charge density contours in the (100) plane of the ß-Sn structure 
for Ge at (a) 13 GPa and (b) 60 GPa. The maximum and minimum contours 
are (a) 14 and 2 electrons/cell, and (b) 13 and 1 electrons/cell, respectively, 
and the spacing between contours is 1 electron/cell. Black dots represent 
the locations of the atoms, and heavy solid lines denote the 13 electrons/cell 
contours for reference. The charge density peak goes from 14.5 electrons/cell 
in (a) to 14.0 electrons/cell in (b). The minimum in the interstitial region 
goes from 5.0 electrons/cell to 5.6 electrons/cell. 
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Figure 1.6: Bond charge vs cell volume for Si, Ge, and Sn in the /?-Sn struc- 
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1.5    Discussion 

This section discusses the difference in the pressure-dependence of the LO mode 

for Si and Ge in the /3-Sn structure, as described in Sec. 1.4. To understand this 

anomaly, it is useful to see how the different terms in the total energy contribute. 

The total energy can be written as [Pic89] 

,       Etot = EEwald + E1-el + EHaTtree + Exc + Ea (1.2) 

where EEwald is the ion-ion Coulomb energy, £i_e( is the energy associated with 

single-electron effects such as kinetic energy and the electron-ion interaction, 

EHartree is the electron-electron Coulomb energy, Exc is the sum of the exchange 

and correlation energies, and Ea is a term to account for the difference between the 

pseudopotential and a Coulomb potential. This last term depends only on volume 

and therefore does not contribute to the phonon frequency. 

If each term in the total energy is fitted to a quadratic polynomial in the phonon 

amplitude u, then a component phonon frequency w; can be defined as follows 

Ei = Atu
2 + Bt = \MJ\U

2
 + Eoi (1 -3) 

where At, ß„ and Eoi are constants, and M is the atomic mass. The term linear 

in phonon amplitude vanishes rigorously for each component of the total energy be- 

cause the crystal is symmetric about u=0 for this phonon mode. The total phonon 

frequency u can be decomposed into the component phonon frequencies in the fol- 

lowing way: 

W
2 = J>?. (I-4) 

i 

In Figs. 1.7 and 1.8 we present the decomposition of J1 as a function of pressure 

for the LO mode of Si and Ge, respectively, in the )0-Sn structure. For both Si 

and Ge, the pressure-dependence of the phonon frequency comes mainly from the 

one-electron term since the other terms are fairly independent of pressure. Thus, 

the discrepancy between Si and Ge should arise from single-particle effects.   The 



Chapter 1.   Raman Modes in High-Pressure Phases of Si, Ge, and Sn 20 

primary difference between Si and Ge is that Ge has d electrons in its ion core. 

Therefore, the ^-component of the Ge pseudopotential is more repulsive than the Si 

d potential. This difference has been used effectively to explain why Ge is stable in 

the /?-Sn structure over a much larger pressure range than Si [Cha86d]. 

In Ref. [Cha86d] the rf-component of the valence electronic wavefunction is found 

to increase in going from the /?-Sn structure to the sh structure. Furthermore, this 

component is found to increase with pressure for both phases. Since the sh structure 

is essentially the /i-Sn structure with a large amplitude LO phonon distortion, the 

d-component of the wavefunction for a smaller amplitude distortion should have 

a value somewhere between these two extremes. Thus, it is expected that an LO 

phonon distortion of the 0-Sn structure produces an increase in the d-character of 

the wavefunction. 

This same conclusion is reached by examining the effect on the charge density 

produced by a small LO distortion. Figure 1.9 shows contours in the (100) plane of 

the difference in charge density between the distorted and undistorted crystal. Solid 

(dashed) lines represent positive (negative) contours and correspond to an increase 

(decrease) in charge density upon distortion. Heavy solid lines represent zero change 

in the charge density, and black dots denote atomic positions for the undistorted 

system. Contours shown range from -0.50 to 0.35 electrons/cell. The two lobes 

(one positive, one negative) surrounding each atom are primarily caused by a rigid 

shift of the charge density with the distortion and are not particularly relevant. 

The most physically relevant feature of Fig. 1.9 is the shift of charge density from 

the bond region (negative contours) to the interstitial region (positive contours). 

This is analogous to the effect of increasing pressure (see Fig. 1.5), and, since the 

(/-component increases with pressure [Cha86d], it is consistent with the notion that 

the d-character of the wavefunction increases with an LO distortion. 

This behavior can be used to explain the initial increase with pressure (decreasing 

volume) of the 0-Sn-structure LO mode of Ge.  At smaller volumes the ion cores 
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Figure 1.7: Components of u2 vs pressure for the LO mode of Si in the 
ß-Sn structure. The total u>2 is given by an open circle, the one-electron 
component is given by an open triangle, the Hartree component is given by 
a filled square, the exchange and correlation component is given by an open 
square, the Ewald component is given by a filled circle, and the experimental 
results of Ref. [OH92] are given by crosses. 
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Figure 1.8: Components of u2 vs pressure for the LO mode of Ge in the 
/3-Sn structure. The total u>2 is given by an open circle, the one-electron 
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Figure 1.9: The difference in charge density (in the (100) plane) between 
/3-Sn-Ge at 60 GPa with and without a static LO distortion of amplitude 
0.08 a.u. Solid (dashed) lines denote positive (negative) contours; heavy solid 
lines denote zero change in charge density. The maximum (minimum) contour 
shown is 0.35 (-0.50) electrons/cell. Black dots correspond to atomic positions 
of the undistorted system. 
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make up a larger fraction of the unit cell volume. Since Ge has core d electrons, its 

pseudopotential is relatively repulsive to d-symmetry valence electrons, which are, 

therefore, effectively blocked from the core region. Thus, as pressure increases, the 

valence d electrons in Ge are confined to a decreasing fraction of the volume, and are 

thus increasingly energetic. Since an LO phonon distortion of the /?-Sn structure 

produces an increase in the ^-component of the wavefunction, the energy of the 

distorted system for Ge should increase with pressure more rapidly than that of the 

undistorted system. Therefore, the curvature of the energy of Ge with respect to 

LO phonon amplitude increases as a function of pressure due to this "decreasing- 

volume-fraction" effect. In other words, the LO phonon frequency for Ge in the 

#-Sn structure should increase with pressure. Since Si has no d electrons in its core, 

this effect is less pronounced in Si. 

It is also found in Ref. [Cha86d] that the increase in the d-component of the 

wavefunction with pressure is slightly more rapid for the sh phase than for the 

/3-Sn phase. Therefore, by similar reasoning as above, it is expected that, for an 

LO distortion of the ytf-Sn structure, the accompanying increase in the d-character 

of the wavefunction will increase slightly with pressure. Further evidence of this 

is obtained by examining contour plots like Fig. 1.9 for several different pressures. 

The shift in charge from the bond region to the interstitial region upon distortion, 

which was shown to signal an increase in d character, is found to be somewhat more 

pronounced at higher pressures. This is consistent with the above assertion that the 

distortion-induced increase in the ^-component of the wavefunction increases with 

pressure. Such behavior serves to enhance the "decreasing-volume-fraction" effect 

described in the preceding paragraph, and, therefore, also has a positive effect on 

increasing the phonon frequency with pressure. 

The plateauing of the Ge LO mode near the transition pressure is caused by the 

competing effect of phonon mode softening due to the onset of a displacive structural 

transition. 
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NOTES 

[1] At atmospheric pressure, ß-Sn becomes more stable than a-Sn (cubic diamond 

structure) above 13°C. At absolute zero, the a-Sn -> ß-Sn transition is esti- 

mated to occur at about 0.5 GPa. 

[2] The Raman modes are designated either TO or LO in the manner of Ref. 

[OÜ92]. 
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System Vo 
(a.u./atom) 

Bo 
(GPa) 

B0 

ß-Sn 
Si 98.9 119 4.00 
Ge 116.8 91 4.04 
Sn 167.1 59 5.08 

hep 
Si 92.4 102 3.72 

Table 1.1: Best-fit parameters to the Murnaghan equation of state [Mur44] 
for Si, Ge, and Sn in the ß-Sn structure and for Si in the hep structure. The 
parameters are the equilibrium volume V0 and the bulk modulus B0 and its 
pressure derivative B0 at this volume. 
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Chapter 2 

High-Pressure Orthorhombic Silicon 

2.1    Introduction 

A recent angle-dispersive x-ray diffraction study by McMahon and Nelmes 

[McM93] of Si at high pressure reports a new intermediate structural phase at 

pressures between the transition pressures for the ß-Sn and simple hexagonal (sh) 

phases. Although the high-pressure properties of Si have been widely investigated 

both theoretically and experimentally (see Ref. [Lew93a] and references therein), 

until now Si was thought to transform directly from the /?-Sn structure to the sh 

structure at about 16 GPa. In particular, a previous x-ray diffraction study [Hu84] 

interpreted the diffraction pattern between 13.2 and 16.4 GPa as resulting from a 

mixture of the ß-Sn and sh phases, with the transformation completed by 16.4 GPa. 

However, McMahon and Nelmes [McM93] are unable to fit their data to any such 

mixture. Instead, they index the diffraction pattern to a body-centered orthorhom- 

bic lattice with space group Imma which is a generalization of both the ß-Sn and sh 

structures. This structure (denoted Imma) is the monatomic equivalent of the pro- 

posed structure for high-pressure compound phases of InSb II [Nel93] and GaAs III 

[Wei89]. 

Previous theoretical studies have considered the possibility of an intermediate 

orthorhombic phase between the /?-Sn and sh phases [Nee84, Cha85a], although 

not in detail. In Ref. [Nee84], the total energy was calculated for five structures 

along a linear, Imma-based path from ß-Sn to the sh structure. It was found that 

within the resolution of their calculation (~0.7 mRy/atom) the continuum of struc- 

tures along this path were viable candidates for stable phases. The authors of Ref. 
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[Cha85a] suggested that an accurate calculation of the energy barrier between ß-Sn 

and sh phases would involve varying several structural parameters. Their suggested 

structural variations are equivalent to exploring the Imma structure. 

This chapter reports on a first-principles investigation of the structural properties 

of the proposed orthorhombic phase of Si and its relative stability compared to 

both the ß-Sn and sh structures. The energy of the new phase is found to be 

lower than or equal to the energy of both the ß-Sn and sh phases for all unit 

cell volumes. For small (large) volumes the Imma and sh (0-Sn) structures are 

comparable in energy, whereas for intermediate volumes the energies of all three 

structures are distinct. Similar behavior is found in the volume-dependence of the 

optimal structural parameters (i.e., axial ratios and internal parameters) of the 

Imma phase. For very large volumes, the Imma structural parameters approach 

the values that give the /3-Sn structure. As volume decreases, the optimal Imma 

structure gradually deviates from the /3-Sn-like structure and approaches the sh 

structure. At very small volumes (high pressure), the Imma and sh structures are 

nearly identical. This calculated trend in the Imma structure from a /?-Sn-like phase 

to a sh-like phase accounts for the changes seen in the x-ray diffraction pattern 

[McM93] upon compression. 

The overall agreement between the calculations and the measurements of Ref. 

[McM93] is excellent. In particular, calculated structural parameters for the three 

phases agree with reported experimental values to within 0.5% (and in some cases 

much better) for axial ratios and a few percent for internal parameters. For the 

reference volume (13.6 Ä3) at which the diffraction pattern for the Imma phase was 

indexed, calculations show that the Imma structure is distinct from and-lower in 

energy than both the ß-Sn and sh phases. This is consistent with the observed x-ray 

data. 

Section 2.2 contains a description of the Imma structure and its relationship to 

the ß-Sn and sh structures, followed by an account of the computational method. 
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Next, the calculated structural properties of the Imma, ß-'Sn, and sh phases of Si 

are presented and compared in detail in Sec. 2.3. This is followed in Sec. 2.4 by a 

discussion of the calculated structural trends and some comments on previous work 

in light of the present results. 

2.2    Computations 

Figure 2.1 shows schematically the structure of the Imma phase, with open and 

filled circles referring, respectively, to the two Si atoms of the basis. As mentioned 

above, this structure has a body-centered orthorhombic Bravais lattice with space 

group Imma. Its two-atom primitive cell is defined by lattice vectors 

ai    =    2^a,b,~C^ 

a2   =   -(-a,b,c) (2.1) 

»3   =   ~(a,-b,c), 

and atomic postions 

T± = ±[-ai + (- + u)a2 + ua3] , (2.2) 

where u is an internal parameter (varying from ^ to |) which determines the relative 

z coordinate of the two atom in the basis. The three parameters b/a, c/a, and u 

specify the structure for a given cell volume. In practice, b/a is slightly less than or 

equal to unity, and c/a is slightly larger than |. 

The Imma structure is a generalization of the /3-Sn and sh structures in that 

they both can be described by the Imma unit cell with specific restrictions on the 

structural parameters. In particular, the two parameters u and b/a are restricted by 

symmetry for both the /?-Sn and sh structures, leaving only c/a as a free variable. 

The /3-Sn structure is body-centered tetragonal with a two atom basis, and is given 

by the Imma structure with b/a = 1 and u = |. The simple hexagonal structure 

is obtained from Imma by setting u = \ and b/a = \/3c/a.  The resulting sh cell 
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Imma Structure 

Figure 2.1: Schematic representation of the body-centered orthorhombic 
Imma structure. Open and filled circles correspond to the two Si atoms of 
the basis. The parameters that define this structure for a given volume are 
b/a, c/a, and u which describes the difference in the z component of the two 
atoms in the basis. Dotted lines serve only to show atomic positions. See the 
text for a thorough description of the Imma structure. 
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is not the conventional primitive cell but is related to it in the following way: if 

primed letters denote axes of the conventional sh cell and unprimed letters denote 

Imma axes, then c' = \a and a' = c. Thus, the Imma cell is rotated with respect to 

the conventional sh cell and is twice the size. The axial ratios of the two cells are 

related by (c/a) x (c'/a') = \. 

Calculations are performed using the ab initio pseudopotential total energy 

method in a plane wave basis [Ihm79, Coh82, Pic89]. In this method, electron- 

ion interactions are evaluated using a semi-local, norm-conserving pseudopoten- 

tial [Ham79]; electronic exchange and correlation energies are calculated within the 

local-density approximation (LDA) [Lun83] using a standard form for the exchange- 

correlation potential [Cep80]; and the temperature is assumed to be zero. 

Because the three metallic structures are very close in energy, it is necessary to 

calculate total energy differences very accurately. To accomplish this, a large Fourier 

expansion cutoff energy (30 Ry) is used, and the irreducible part of the Brillouin 

zone is sampled at a large number (550) of points. These values were chosen to 

produce relative energies that are converged to within 0.05 mRy/atom. Typically, 

this degree of precision is not achievable when comparing different structures since 

systematic errors are usually larger. However, because the systems involved are so 

similar, errors tend to be correlated and therefore cancel in energy differences. 

All structural parameters for the three phases are optimized at each unit cell 

volume, with the degree of optimization governed by the desired precision in relative 

energies. Energy minimization is carried out for a given structure and volume by 

stepping along the gradient of the energy with respect to structural parameters until 

the magnitude of the gradient is smaller than a specified threshold. The gradient of 

the total energy with respect to structural parameters is calculated using ab initio 

determined quantum mechanical forces [Ihm79] and stresses [Nie85]. 
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2.3    Results 

The calculated volume-dependence of the optimal structural parameters of the 

three phases is presented in Fig. 2.2. Points with dashed lines through them rep- 

resent parameters that are constant by definition. For clarity, error bars have been 

omitted for data points for which errors are comparable to or smaller than the size of 

the dots that denote them. The computed structural parameters are consistent with 

structural data from previous less-converged calculations and less resolved measure- 

ments (see Ref. [Lew93a] and references therein), and are in excellent agreement 

with reported experimental values of Ref. [McM93] as is shown in Table 2.1. 

At large volumes, the optimal Imma structure is close to /?-Sn structure. However 

as this phase is compressed, its structural parameters are found to diverge from the 

ß-Sn values and approach the sh values. By a volume of 86 a.u./atom, the sh and 

Imma structures are nearly indistinguishable, whereas for intermediate volumes all 

three structures are clearly distinct. The rate at which the Imma phase changes 

with volume can also be seen in Fig. 2.2. As it is compressed, the Imma phase 

deviates slowly from ß-Sn structure, but by 95 a.u./atom it starts rapidly changing 

into the sh structure. 

Calculated equations of state for the three phases of Si are shown in Fig. 2.3, 

where solid lines are fits of computed data points (solid dots) for each structure to 

the Birch equation of state [Bir78]. The fits for the /?-Sn and sh structures are in 

good agreement with previous calculations [Lew93a, Nee84, Cha85a]. 

The total energy for the optimal Imma structure is calculated to be lower than 

that of /3-Sn structure for all volumes considered. However, at large volumes (low 

and negative pressures) where the two structures are quite similar, the difference in 

energies of the two phases is within the systematic uncertainty of the calculation. 

At relatively low pressures experiments observe only the /5-Sn phase even though 

the calculations show that the Imma structure is competitive if not lower in energy 

than the /?-Sn structure.   Since the two structures are so similar in this pressure 
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Structure Volume Theory Experiment 
(a.u./atom) (present work) (from Ref. [McM93]) 

sh 89 c/a=0.534 0.533 
Imma 92 c/a=0.537 

6/«=0.950 
«=0.185 

0.538 
0.950 
0.193 

ß-Sn 95 c/a=0.549 0.551 

Table 2.1:  Comparison between calculated structural parameters for the ß- 
Sn, Imma, and sh phases and reported measurements from Ref. [McM93]. 
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Figure 2.3: Calculated total energy versus volume, fitted to the Birch equation 
of state [Bir78], for Si in the Imma, /3-Sn, and sh structures. Structural 
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region, perhaps they are indiscernable at finite temperatures, which could explain 

the discrepancy between theory and experiment. 

The Imma phase is also found to be lower in energy than the sh phase for all 

but the smallest volumes, where, within the resolution of the calculation, the two 

equations of state merge. It is interesting to note that the merging of the total 

energies (at ~90 a.u./atom) occurs while the two structures are still distinct (see 

Fig. 2.2). This point is discussed below. 

2.4    Discussion 

Transformation of the Imma phase from the ß-Sn-like to the sh-like structure 

results from relative changes in the various terms of the total energy as a function 

of cell volume. The total energy can be viewed as the sum of five terms: 

Etot = Ei-el + Enartree + Exc + E Ewald + Ea (2.3) 

where Ei-ei, also called the band energy, is associated with single-electron effects 

such as kinetic energy and the electron-ion interaction; EHartree is the direct electron- 

electron Coulomb energy (Hartree energy); Exc is the sum of the exchange and 

correlation energies; EEwaid is the ion-ion Coulomb energy (Ewald energy); and Ea 

is a term to account for the difference between the pseudopotential and a Coulomb 

potential. Figure 2.4 shows the volume-dependences of the first four terms of Eq. 2.3 

for the /J-Sn and sh phases relative to the Imma phase. The Ea term is essentially 

the same for all three phases. 

Because electrons and ions are more uniformly distributed in the more closely 

packed sh structure, the repulsive Coulomb-based terms, Euartree and Eßwaid, tend 

to favor this phase over the /?-Sn structure. Conversely, the band and exchange and 

correlation energies tend to favor the /?-Sn structure. For Ei-ei this trend is due to 

greater band dispersion in the more highly coordinated sh phase; whereas for Exc 

the trend is due to the attractive nature of the exchange interaction which favors 
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less uniform electron distributions. 

At large volumes the band and exchange and correlation terms dominate the 

relative total energies, so that the lowest energy structure is /?-Sn-like. However, 

as volume decreases the repulsive Coulomb-based terms become more dominant, 

and the lowest energy structure becomes more sh-like. It is interesting to note that 

the Imma structure is not favored by any individual term of the total energy, but 

that the terms cancel in such a way as to make it lowest in energy. Figure 2.4 also 

explains the merging of the Imma and sh equations of state while the structures are 

still different (see above). Individual total-energy components for the two phases 

remain distinct as long as the structures do. However the terms combine to produce 

comparable total energies even before the structures have merged. 

Previous studies have attributed the pressure-induced /?-Sn -> sh structural tran- 

sition to a softening of the zone-center LO phonon of the 0-Sn phase. Described 

in terms of Imma structural parameters, this mode corresponds to a variation of u 

about u = J, and hence lies along the coordinate of the largest component of the 

structural transformation. Recent experimental [01i92] and theoretical [Lew93a] 

(see Chapter 1) investigations of the pressure-dependence of this mode have found 

that it does indeed soften under pressure. However, in light of the discovery of the 

Imma phase, we now re-examine these experimental and theoretical results. 

Raman measurements of Ref. [01192] can be reconciled with the present results 

by reassigning the crystal structure of the observed phonon mode from ß-Sn to the 

more general Imma structure. The observed phonon softening can still be viewed 

as related to a structural transition even though technically the structure remains 

Imma throughout. Since the Imma crystal structure is symmetric in u about u = ^ 

(the sh value), the total energy is always an extremum in u for this value. Thus, as 

the optimal Imma structure approaches sh under pressure, the topology of the total 

energy surface must adjust itself to accomodate this symmetry. Since the curvature 

in u of the total energy surface at its minimum defines the phonon frequency, this 
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adjustment in topology is likely to result in a softening of the phonon mode. 

The theoretical results of Ref. [Lew93a] can be understood in similar terms. 

Since that calculation only considered the ß-Sn structure, the value of b/a was fixed 

at unity. For this value of b/a, however, the Imma crystal structure is symmetric in 

u about the ß-Sn value of u = j, and therefore, the /3-Sn structure is an extremum 

in u of the total energy. Calculations show it to be a minimum, thus giving a real- 

valued LO phonon frequency. Since varying b/a from unity removes the constraint, 

the optimal value of u is free to deviate from its ß-Sn value when b/a^l. However, 

it is likely that the structural minimum for b/a = 1 behaves similarly to b/a ^ 1 

minimum. In particular, the calculations of Ref. [Lew93a] show that the curvatures 

in u of the two minima {i.e., their phonon frequencies) have the same pressure- 

dependence. Despite the agreement with the measured pressure-dependence of the 

phonon frequency, the calculation gave values of the frequency that were systemat- 

ically somewhat larger than the experimental values. This discrepancy may be due 

to the structural differences that are now known to have existed. 

The authors of Ref. [McM93] speculate that a transition from the ß-Sn to the 

Imma structure might account for the discontinuous jump observed in the supercon- 

ducting transition temperature (Tc) in the same pressure region [Mig86]. However, 

the present calculation of a continuous Imma-based transformation to the sh struc- 

ture would seem to contradict this hypothesis. A calculation of electron-lattice 

coupling and Tc of Si in the Imma structure is beyond the scope of this study, 

however two possible explanations of the discontinuity observed in Tc are offered. 

One possiblity is tied to an increase in the rate of change of the Imma structure 

for volumes < 95 a.u./atom (see above). If this effect were to manifested itself in 

analogous changes in the phonon frequencies or density of states at the Fermi level, 

then a shift in Tc that appears discontinuous might occur. We have calculated the 

volume-dependence of the density of states at the Fermi level and have found no 

rapid change near 95 a.u./atom. Another explanation is the possibility of slight pres- 
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sure inhomogeneities in the Tc versus pressure measurements causing discontinuous 

structural transformations. 

Theoretical and "experimental results on the Imma-mediated /3-Sn -» sh struc- 

tural transition in Si suggest a similar mechanism for Ge which undergoes the same 

pressure-induced ß-Sn -» sh transformation [Voh86]. This hypothesis is considered 

in the next chapter. 
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Chapter 3 

Prediction of an Orthorhombic Phase of Germanium 

3.1    Introduction 

From their many studies of highly condensed Si and Ge (see Ref. [Lew93a] and 

references therein), high-pressure investigators have come to agree that the first 

three structures of both elements are the diamond, ß-Sn, and simple hexagonal 

(sh) structures, respectively. The phase transitions occur at about 12 and 16 GPa, 

respectively, for Si and about 11 and 75 GPa, respectively, for Ge. However, as was 

stated in Chap. 2, a recent x-ray diffraction study by McMahon and Nelmes [McM93] 

on Si up to ~18 GPa has called this picture into question. These investigators 

discovered a new orthorhombic phase (denoted Imma after its space group) for 

pressures between the transition pressures of the /?-Sn and sh phases, suggesting the 

structural sequence: diamond —» /?-Sn —» Imma —» sh. 

In the last chapter, we presented results of an ab initio investigation of the 

structural properties of the /?-Sn, Imma, and sh phases of Si that were in excellent 

agreement with the experimental results of Ref. [McM93]. It was further shown for 

Si, however, that the energy of the Imma structure is lower than or equal to that of 

the ß-Sn and sh structures for all unit cell volumes. The optimal structural param- 

eters {i.e., axial ratios and internal parameters) that define Imma-Si were found to 

vary continuously with cell volume from values at large volumes that give the ß-Sn 

structure to values at small volumes that give the sh structure. At intermediate 

volumes the three structures were clearly distinct. In this region the Imma phase 

was noticeably lower in energy than either the ß-Sn or sh phase. Thus the picture 

that emerges for the structural sequence of Si consists of the diamond phase trans- 
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forming into the Im ma phase, with the ß-Sn-like and sh structures being limiting 

cases of the latter. Since Ge has also been observed to transform from the /?-Sn to 

the sh structure [Voh86], the results on the Imma phase of Si strongly suggest the 

possibility of an Imma phase for Ge. 

This chapter reports the results of a first-principles investigation of Ge in the 

Imma structure. The stability properties and structural trends of Imma-Ge are 

found to be analogous to those of Imma-Si. In particular, the energy of the Imma 

phase is calculated to be lower than or equal to the energy of both the /?-Sn and 

sh structures for all unit cell volumes. Furthermore the optimal Imma structure for 

Ge is found to transform continuously under pressure from a /?-Sn-like structure to 

the sh structure as it does for Si. Vohra, et al. [Voh86] found that the /3-Sn -» sh 

transformation was isovoluminal within the resolution of their measurements. The 

prediction here of a continuous, Imma-based transformation to the sh structure is 

consistent with that observation. 

3.2    Computations 

Chapter 2 contains a detailed picture (Fig. 2.1) and description of the Imma 

structure, only the most salient features of which are reviewed here. The Imma 

structure has a body-centered orthorhombic Bravais lattice with a two-atom basis. 

Its lattice vectors and atomic positions are given by aa = |(a, b, -c), a2 = jl
-0' ^ c)' 

and a3 = \{a, -6,c), and r± = ±[\&i + (} + «)a2 + ua3], respectively. For a given 

cell volume, the three parameters c/a, b/a, and u specify the structure. If b/a and 

u are set equal to unity and |, respectively, then the ß-Sn structure is obtained. 

Likewise, the sh structure is obtained for b/a = y/Sc/a and u = \. 

Total energies for the three Ge systems are calculated within the the local- 

density approximation (LDA) [Lun83] using ab initio norm-conserving pseudopo- 

tentials [Ham79] and the momentum-space formalism [Ihm79, Coh82, Pic89]. In 

order to resolve the very small energy differences between the three metallic struc- 
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tures under investigation, it is necessary to truncate the Fourier expansion at a 

large cutoff energy (30 Ry) and to sample the Brillouin zone at a large number 

(550) of irreducible k-points. These values produce highly converged relative ener- 

gies (within ~0.05 mRy/atom). While this degree of precision cannot ordinarily be 

achieved when comparing different structures, the structures being studied are so 

similar that systematic errors tend to be correlated and therefore cancel in energy 

differences. All structural parameters for the three phases are optimized at each 

unit cell volume, with the degree of optimization governed by the desired precision 

in relative energies. 

3.3    Results 

The calculated volume-dependences of the optimal structural parameters for Ge 

in the Imma, 0-Sn, and sh structures are displayed in Fig. 3.1. This figure is to 

be compared with the analogous figure for Si (Fig. 2.2). Points with dashed lines 

through them indicate parameters that are defined as constant. The computed c/a 

ratios for the 0-Sn and sh [1] structures lie entirely within the experimental error 

bars of the measurements of Ref. [Voh86]. 

At large volume (low pressure), the optimal structural parameters are found to be 

close to the ß-Sn values. Upon compression the Imma structure stays ß-Sn-like until 

a volume of about 100 a.u./atom where the parameters start to shift toward the sh 

values. By 75 a.u./atom, the Imma and sh structures are nearly indistinguishable. 

For intermediate volumes, the three structures are clearly distinct. This volume- 

. dependence of the Imma structure for Ge is very similar to that of Si, except that 

the /?-Sn-like optimal Imma structure persists for a larger volume range in Ge than 

in Si. 

Figure 3.2 shows the calculated equations of state for the three phases of Ge. 

Computed data points (dots) are fitted for each structure to the Birch functional 

form of the equation of state [Bir78], with parameters of the fits tabulated in Table 
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3.1. The fit for the ß-Sn structure is in good agreement with previous calculations 

[Cha86d, Lew93a]. Because of the large energy scale of Fig. 3.2, the energy of the 

Imma structure cannot be distinctly resolved at any volume. To overcome this 

difficulty, the total energies of the /?-Sn and sh structures are plotted in Fig. 3.3 

relative to the Imma total energy at each volume. 

The energy of the Imma structure is seen to be equal, within the precision of 

the calculation, to the sh (/?-Sn) energy for volumes < 80 (> 90) a.u./atom. For 

intermediate volumes, the Imma phase is distinctly lower in energy than the other 

two phases. This is also the range of volumes where the Imma structure is the most 

different from the other two structures (see Fig. 3.1). 

3.4    Discussion 

The stability of the Imma phase for Si and its continuous transformation from 

a /?-Sn-like structure to the sh structure was shown in Chapter 2 to be caused 

by a competition between various terms of the total energy. Terms which favor 

the relatively compact sh structure {i.e., the Ewald and Hartree energies) compete 

with terms that favor the less uniform distribution of the ß-Sn structure (i.e., the 

band and exchange and correlation energies). The Imma structure is a compromise 

between these conflicting tendencies. At low pressure the latter terms dominate, 

and so the optimal Imma structure is /?-Sn-like. Whereas with increasing pressure 

the former terms become more dominant, and the optimal Imma structure deforms 

toward its sh limit. 

This explanation is found to be equally valid for Ge. In fact, the most significant 

difference between Si and Ge in the behavior of the Imma structure is the much larger 

volume (and pressure) range over which the structure of the Imma phase is /?-Sn- 

like for Ge than for Si. The experiments observe this as the much larger range of 

pressures for which Ge is stable in the /?-Sn phase compared to Si. An explanation 

of this phenomenon based on the presence of d electrons in the ion core of Ge but 
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Figure 3.2: Calculated total energy versus volume, fitted to the Birch equation 
of state [Bir78], for Ge in the Imma, /?-Sn, and sh structures. Structural 
parameters have been optimized at each volume for all three phases. 

Structure 

Imma 
sh 

Vo Bo 
(a.u./atom)    (GPa) 

116.3 
116.3 
116.4 

91.2 
93.7 
86.1 

Bo 

4.44 
4.21 
4.54 

Table 3.1: Best-fit parameters to the Birch equation of state [Bir78] for Ge 
in the /3-Sn, Imma, and sh structures. The parameters are the equilibrium 
volume Vo and the bulk modulus B0 and its pressure derivative B0 at this 
volume. 
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not of Si was provided by Chang and Cohen [Cha86d]. 

In the present study of Ge, as in our previous study of Si (Chapter 2), the 

calculated optimal Imma structure is always at least slightly different from the ß- 

Sn structure even at large volumes. Furthermore, the energy of the /?-Sn structure 

is always at least slightly higher than that of Imma, although at large volumes 

the energy difference is within the systematic uncertainty of the calculation. In 

light of these results one would expect that the experiments would at least observe 

both phases, however only the 0-Sn phase has been reported to be observed. One 

possible explanation of this discrepancy between theory and experiment is that finite 

temperature effects might be important, especially since the energy differences are 

so small. The validity of this hypothesis, however, requires further investigation. 
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NOTES 

[1] The c/a ratios for the conventional sh unit cell and the Imma-based sh unit cell 

are related by {c/a)conv. x (c/a)jmma = ^. 
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Part II 

Group V Elements Under Pressure 
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Introduction 

The elements in group V of the Periodic Table enjoy a great deal of scientific 

and technological importance as constituents of molecules and compounds. Both 

nitrogen and phosphorous are ubiquitous in biology and chemistry. Furthermore, 

arsenic and antimony play essential roles in condensed matter physics and materials 

science as components of the widely studied III-V semiconductors. However, in 

their pure elemental forms, the group V elements have received significantly less 

attention, especially compared to their neighbors in group IV. 

In recent years interest in pure group V solids, and especially their high-pressure 

properties, has grown largely because of some intriguing observations and predic- 

tions. For example, phosphorous and arsenic have been found to undergo interesting 

displacive structural phase transitions under pressure [Jam63b, Kik83, Kik87]. At 

low pressure arsenic exists in the semimetallic o-arsenic, or A7, structure. Un- 

der pressure, this phase continuously deforms toward the metallic simple cubic (sc) 

structure which becomes stable at about 30 GPa. Phosphorous exhibits the same 

structural transition at about 10 GPa. However, it first undergoes a transformation 

from its low-pressure, semiconducting phase (black phosphorous) to the semimetallic 

A7 structure at about 5 GPa. 

Predictions of molecular-bond dissociation and metallization of solid nitrogen 

under pressure [McM85, Mar86, Cha86a, Mai92] have also spurred interest in the 

group V elements. Experimental verification of these transitions could have many 

important ramifications. For example, the large valence and high Debye temper- 

ature of nitrogen both suggest the possibility of high transition-temperature (Tc) 

superconductivity for a metallic phase. Further motivation for this hypothesis is 

the discovery of superconductivity at 18 K in compressed phosphorous [Shi90]. This 

is the highest Tc found among the elements. 
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The following two chapters and their associated publications [Che92, Lew92] ad- 

dress two aspects of the group V solids under pressure. Chapter 4 contains the 

theoretical portion of a combined experimental and theoretical investigation of su- 

perconductivity in high-pressure arsenic. In Chap. 5 several candidate atomic phases 

of solid nitrogen are studied to determine their structural-stability and electronic 

properties. 
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Chapter 4 

Superconductivity in Arsenic at High Pressures 

4.1    Introduction 

One of the most physically interesting pressure induced structural transforma- 

tions is the rhombohedral A7 (a-arsenic) to simple cubic (sc) transition in the group 

V elements phosphorous, arsenic, and antimony. At low pressure the A7 phase is 

stable [Don74]. X-ray diffraction experiments [Jam63b, Kol69, Kik83, Kik87, Bei90] 

show that pressure causes the low symmetry rhombohedral unit cell to relax contin- 

uously toward the highly symmetric sc phase. The A7 phase [1] is considered to be 

the result of a Peierls-like distortion of the sc phase at low pressure. This distortion 

results in a semimetal with a rather low electronic density of states at the Fermi 

level [N(EF)]. Pressure stabilizes the sc phase and thus increases N(EF). Various 

theoretical studies [Nee86, Cha86b, Mat86] have been able to predict the occurrence 

of such subtle transformations by the onset of phonon softening. 

Both the A7 and the sc phases of P, As, and Sb have been shown to be su- 

perconducting [Wit68, Wit69, Wit84, Wit85, Ber69]. Because these transitions are 

nearly continuous (there are slight discontinuities in the lattice constants), it is ex- 

pected that the superconducting transition temperatures (Tc) will be continuous 

'with pressure as well. Work by Wittig, et al. [Wit85] has shown that the Tc of 

Sb and P exhibit peak values of 5 K and 10 K, respectively, at the transition pres- 

sure. These peaks are ascribed to the softening of phonon modes near the transition 

pressure, which has a positive effect on the electron-phonon coupling. This expla- 

nation is supported by ab initio total energy calculations performed by Chang and 

Cohen [Cha86b], which suggest the existence of soft phonons in the sc phase. Wit- 
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tig [Wit84] also measured Tc of As under pressure. His published data on As did 

not show a peak in Tc as in the case of P and Sb. However, a later abstract with 

Kawamura [Kaw85] did mention that Tc in As reached a maximum value of 2.7 K 

at a pressure of ~24 GPa. Furthermore these authors suggested phonon softening 

as the probable reason for the peak in Tc. 

The vibrational properties of As in the A7 phase were studied as a function of 

pressure by Beister, et al.   [Bei90] using Raman scattering.   These authors found 

evidence of softening in the zone-center optical phonon at the A7 -* sc transition. 

The experimental results were found to be qualitatively in good agreement with 

the theoretical calculation of Needs, et al. [Nee86j. Although the experimental and 

theoretical results so far all suggest that phonon softening plays an important role 

in determining Tc, the importance of other factors such as N(EF) is still not clear. 

This chapter reports on the theoretical portion of a detailed experimental and 

theoretical investigation of elemental As which elucidates the roles of phonon soft- 

ening and N(EF) in the pressure-dependence of Tc near the A7 -> sc transition. 

The experimental portion of this investigation was conducted by Chen, Su, and Yu 

[Che92], and includes measurements of the normal state resistance and Tc both as 

functions of pressure up to 41 GPa.   A maximum value of Tc ~ 2.4 K at a pres- 

sure of 32 GPa is determined. This result is similar to that reported by Kawamura 

and Wittig [Kaw85], but shifted to higher pressure. First-principles calculations of 

the pressure-dependences of N(EF) and relevant phonon modes are performed for 

both phases. The results on N(EF) explain qualitatively the pressure-dependence of 

the normal state resistance and point to the importance of N(EF) in enhancing Tc. 

Phonon softening is found to occur as the transition pressure is approached from 

either side. Thus both an increasing N(EF) and phonon softening serve to increase 

Tc rapidly as As is pressurized toward the A7 -+ sc transition. Above the transition 

further compression stiffens the phonons while N(EF) remains relatively constant, 

so that Tc decreases gradually. 
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Section 4.2 reviews the experimental results on Tc and normal state resistance 

of As under pressure. The details and results of the first-principles calculations are 

then described in Sec. 4.3. Finally, Sec. 4.4 shows that the experimental results can 

be qualitatively understood by the calculated behavior of N(EF) and the phonon 

spectrum under pressure. 

4.2    Review of Experimental Results 

Figure 4.1(a) displays Tc of As as a function of pressure measured for increasing 

pressure over several runs. The results show a peak in the pressure-dependence of 

Tc at approximately 32 GPa. This peak is noticeably asymmetric, with the rate 

of increase in Tc for pressures below the maximum larger than the rate of decrease 

in Tc for pressures above the maximum. Similar but more conspicuous behavior is 

observed in Sb across its A7 -► sc transition [Wit84]. In the case of Sb, however, 

there is a discontinuity in the Tc presumably caused by the slight discontinuity in the 

lattice constants through the transition. The downward arrow on the plot indicates 

the pressure below which superconductivity was not observed down to the lowest 

attainable temperatures of the experiment (1.7 K). 

The behavior of the normal state electrical resistance as a function of pressure is 

an indication of the trend in N(EF), since resistances of semimetals and metals are 

inversely proportional to N(EF). Measured pressure-dependence of the resistance 

of As at 300 K is shown in Fig. 4.1(b). The electrical resistance of As is found to 

decrease with pressure at an almost constant rate until 32 GPa, above which the 

resistance becomes roughly independent of pressure. This behavior is qualitatively 

reproducible upon decreasing the pressure, however, there is a slight difference that 

is attributable to deformation of the sample. Arrows on the plot indicate which 

data correspond to increasing and decreasing pressure. 

A measure of the A7 -» sc transition pressure is given by both the Tc and 

resistance data. The maximum value of Tc and the kink in the resistance vs pressure 
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Figure 4.1: Experimental measurements by Chen, Su, and Yu [Che92] of 
(a) the superconducting transition temperature (Tc) and (b) the normal state 
resistance (at 300 K) of As as a function of pressure. Horizontal error bars 
indicate a pressure inhomogeneity of ±5% while vertical error bars represent 
the transition width. The Tc data were taken for increasing pressure only, 
while the resistance vs pressure curve was measured for both increasing and 
decreasing pressures. The downward arrow indicates a pressure at which no 
superconducting transition was observed above 1.7 K. 
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both occur at about 32 GPa. Since these features are both related to the structural 

transition (see below), they both can be interpreted as indicating the transition 

pressure. 

4.3    Calculations 

An understanding of the behavior of Tc under pressure requires an analysis of 

the physical properties that determine supercondutivity, namely the electronic den- 

sity of states at the Fermi level and the electron-phonon coupling . A theoretical 

investigation of the pressure-dependence of these two properties can provide in- 

sight into the pressure-dependence of Tc. In this section results of first-principles 

calculations of the volume-dependence of N(EF) and the frequency of the phonon 

mode corresponding to the sc-A7 distortion are presented. To make contact with 

the experimental measurements, in which the pressure is the independent variable, 

a calculation of the equation of state is provided and compared with experimental 

equations of state. 

Total energy calculations are performed within the local-density approximation 

(LDA) [Lun83] using ah initio norm-conserving pseudopotentials [Ham79] and the 

momentum-space formalism [lhm79, Coh82, Pic89]. The plane-wave basis is trun- 

cated at an energy cutoff of 17 Ry. Aside from the atomic number and mass of As, 

the only empirical inputs were the structural data for As in the A7 structure [Bei90], 

which depends, at each volume, on two parameters [1]. The use of these empirical 

structural data was necessitated by the prohibitive computational cost of relaxing 

both parameters at each volume. 

The calculated equations of state for As in the sc and A7 structures are shown in 

Fig. 4.2. They were determined from least-squares fits of the calculated total energy 

vs volume to the Murnaghan equation of state [Mur44]. A Debye model was used to 

approximate the zero-point motion correction to the total energy. The experimental 

errors associated with the empirical structural parameters used in the calculation 
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represent the largest limitation to the accuracy of the calculated equation of state 

for As in the A7 structure. With that taken into account, the calculated equations 

of state of As are in reasonably good agreement with the experimental equations of 

state of As [Bei90, Kik87] (see Fig. 4.2). 

According to band theory, As in the sc structure should be a metal with a fairly 

large N(EF). At low pressure, the metallic sc phase is unstable with respect to a 

Peierls-like distortion that doubles the unit cell and produces the lower-symmetry 

A7 phase. In the A7 structure, As is semimetallic with a small N(EF). Figure 4.3 

shows the calculated N(EF) vs volume for As in the sc and A7 structures. The error 

in the calculation is estimated to be 0.1 states/Ry/atom and is attributed to an 

incomplete sampling of the Brillouin zone. When As in A7 is compressed toward 

the phase transition, N(EF) increases rapidly. Since pressure diminishes the Peierls- 

like distortion from sc, this concomitant increase in N(EF) is expected. When As in 

sc is compressed, N(EF) decreases very gradually. This behavior is consistent with 

a free-electron-like picture, in which N(EF) ~ V2'3. 

If the sc structure is described as two identical, interpenetrating fee sublattices, 

then one of the distortions that transforms sc to A7 corresponds to a relative dis- 

placement of the fee sublattices along the [111] direction. The phonon mode corre- 

sponding to this displacement can be thought of either as the longitudinal acoustic 

mode at the corner of the sc Brillouin zone or as the Ta-symmetry optic mode at 

the center of the A7 Brillouin zone. For pressures near the structural transition, 

this phonon mode is expected to soften to facilitate the necessary displacements. 

Since this phonon drives the Peierls-like distortion, it is expected that the overall 

electron-phonon interaction for this mode is particularly strong. Thus, the super- 

conducting properties of As are likely to depend strongly on the behavior of this 

mode. 

Fig. 4.4 presents the phonon frequency as a function of volume for both the sc 

and A7 sides of the phase transition. Results of a previous calculation [Nee86] for the 
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A7 phase are also displayed and are found to be in good agreement with the present 

results. For both structural phases, the phonon frequency was extracted from a fit to 

an even polynomial of the calculated total energy vs phonon distortion coordinate. 

This is the frozen-phonon approximation. In the sc case, the polynomials were 

highly quartic single wells. Since the harmonic definition of phonon frequency fails 

in this case, the phonon frequency was defined as the energy difference between the 

ground and first excited states, as calculated by numerically solving the Schrödinger 

equation. It is reasonable to ignore higher excited states, because the relevant 

working temperatures (< 2.5 K) are much less than the vibrational energy level 

spacings (typically ~ 200-300 K). In the A7 case, the total energy vs displacement 

was usually well fitted by a sixth order, double-well polynomial. At low pressure the 

double wells were quite deep. Upon compression toward the phase transition, the 

position of the well minimum and the depth of the well both decreased. The phonon 

frequency was calculated by expanding the polynomial to second order around the 

minimum. This works well at large volumes where the wells are deep, but becomes 

less reliable at volumes near the transition where the wells become quite shallow. 

The general trend of the phonon frequency is that as the structural transition 

is approached from either side, the mode, as expected, softens considerably. A 

comparison of the calculated phonon frequency for As with experimental values 

[Bei90] shows good qualitative agreement overall, with good quantitative agreement 

at low compression. 

4.4    Discussion 

Using the results of the theoretical calculation of the pressure-dependence of both 

N(EF) and the phonon frequency, we can now understand the measured pressure- 

dependence of the Tc of As. 

We begin by examining the dependence of Tc on the average phonon frequency, 
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(u>), and on N(EF) through an idealized McMillan equation [McM68]: 

kBTc~h(u)ex?(-^j  , ' (4-1) 

where 

A* = TTÄ'   and 

(4.2) 

V     = 
V z = In 

l + zn' \Hu)J 

The parameter A is the electron-phonon coupling constant which is proportional to 

N(EF) and inversely proportional to (u;2), and ft is the Coulomb repulsion pseudopo- 

tential which is approximately proportional to N(EF). The logarithmic variation of 

Tc with respect to (u;) and N(EF) is given by 

d\og(kBTe)   = 
2A*2 1 fi*2 

1- 

+ 

(A- - A**)
2
   A     (A*-/i*)2. 

A*2 1 /i*2 1 

dlog(&(«>) 

(4.3) 

d\og(N(EF)). 
_(A*-/i*)2 A (A*-//*)2 /1. 

If A < 1, which is valid in the weak coupling limit, and A* > /1*, which is the con- 

dition for superconductivity, then Eq. 4.4 implies that an increase in (u;) decreases 

Tc, while an increase in N(EF) enhances Tc. 

The phonon calculations indicate (Fig. 4.4) that the phonon frequency softens 

near the structural phase transition, in agreement with previous Raman-scattering 

results [Bei90j. Because a lower average phonon frequency favors a higher transi- 

tion temperature, the peak in Tc can then be explained by the minimum in phonon 

frequency at the phase transition. However, the rate of softening of the phonon 

frequency is, to the accuracy of our calculations, about the same on both sides of 

the transition, which cannot explain the slight asymmetry of the peak in Tc. The 

pressure-dependence of N(EF) accounts for this asymmetry. Both the calculations 

(Fig. 4.3) and normal state resistance measurements (Fig. 4.1) show that N(EF) 
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increases strongly with pressnre below the A7 - sc transition and becomes inde- 

pendent of pressure above. Thns the increasing N(E„) and the decreasing phonon 

frequencies both contribute to the rapid enhancement of T, as As is pressunzed 

toward the A7 -, sc transition. Above the transition, further compression does not 

change N(Ep) considerably, but does stiffen the phonon modes, so that Tc decreases 

more gradually. 
The present experimental results of Chen, et „/., consistently place the A7 - sc 

transition at 32 ± 1 GPa, in disagreement with the results of Wittig [Wit84]. Sim.lar 

disagreements among earlier experimental investigations with regard to the A7 -, sc 

transition in As have been reported. In particular, the x-ray diffraction work of Be.s- 

ter et al. [Bei90] pinpoint the transition at 24 GPa while x-ray work by K.kegawa 

and Iwasaki [Kik871 place the transition between 31 and 37 GPa. The cause of th.s 

,arge scatter in the measured transition pressures is not known, although sens.t.v.ty 

of the transition to pressure inhomogeneities is a possible explanation. 

Difficulty in establishing the A7 - sc structural transition pressure also extends 

to the theoreliea. calculations. It is not possible to predict the transition pressure 

and volumes using the usual common-tangent technique for the energy vs volume 

curves. The reason for this is that the A7 - sc transition is nearly continuous, and 

the energy vs volume curves do not cross but merge. 

This difficulty actually suggests another method for determining the transition 

pressure. Since this transition is „early continuous, it is expected that the N(EF) 

and the phonon frequency are also nearly continuous at the transition. These hy- 

potheses are borne out by Fig. 4.1 of the present work and Fig. 8 of Ref. [Bei90], 

respectively.  Since N(EF) and the phonon frequencies vary appreciably wth vol- 

ume the transition pressure can be deduced from the volume where the N(EF) or 

phonon frequency curves of the two phases intersect. The calculated N(EF) for sc 

and A7 (Fig. 4.3) intersect at a volume of about 102 a.u./atom. According to the 

equation of state in Fig. 4.2, this corresponds to a pressure of about 36 GPa, which 
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is in good agreement with the present experimental results. An extrapolation of 

the calculated phonon frequency (Fig. 4.4) suggests a transition volume that is also 

consistent with the present experiment, however the large error in this calculation 

near the transition makes this prediction less reliable. 
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NOTES 

[1] If the sc structure is viewed as two interpenetrating fee sublattices (i.e., the 

monatomic analog of the NaCl structure), then the A7 structure is obtained 

from sc by a relative displacement of the two sublattices along the [111] direc- 

tion, accompanied by a rhombohedral shear strain of the unit cell. These two 

distortions are described by two parameters: an internal parameter and the 

c/a ratio of the rhombohedral unit cell. For a thorough discussion of the A7 

structure see, for example, the appendix of Ref. [Nee86]. 
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Chapter 5 

High-Pressure Atomic Phases of Solid Nitrogen 

5.1    Introduction 

Elemental nitrogen exists in nature as a small, very stable diatomic molecule. 

Its bond length (1.094 Ä) is among the smallest of the diatomic molecules, and 

its bond dissociation energy (9.8 eV/bond) is among the largest [Mah65]. At low 

pressures, the molecular nature of nitrogen persists in the solid, state which forms at 

low temperatures via weak intermolecular interactions. A variety of stable molecular 

phases of solid nitrogen, all of which are insulators, are found to exist at low [Don74] 

and moderate [Rei85] pressures. However, as nitrogen is further compressed and the 

intermolecular distance becomes comparable to the molecular bond length, these 

molecular phases are expected to become unstable with respect to more highly 

coordinated atomic phases. While this molecular-to-nonmolecular transition has 

not as yet been observed in nitrogen up to 130 GPa [Rei85], it has been predicted 

theoretically [McM85, Mar86]. 

Martin and Needs (Ref. [Mar86]) further predict that the stable high-pressure 

atomic phase is the rhombohedral A7 (a-arsenic) structure. All other elements in 

group-V exist in this semimetallic, threefold-coordinated structure [Don74, Kik83], 

' which is a slight distortion of the simple cubic (sc) structure [1]. It has been 

shown [Cha86a, Cha86b, Sas88, Shi90, Bei90, Che92] in P, As, and Sb that pres- 

sure diminishes the distortion from sc, and ultimately removes it through a weakly 

first-order structural phase transition. Because of the odd number of electrons per 

cell, the group-V elements in the sc structure are metals. These pressure-induced 

semimetallic-to-metallic phase transitions in P, As, and Sb are accompanied by 
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peaks in the superconducting transition temperature (Tc) [Che92, Wit84, Wit85], 

which have been attributed both to an increase in the electronic density of states 

at the Fermi level (N(EF)) and a softening of phonon modes which are assumed to 

participate in both the structural transition and in the electron pairing. 

This chapter reports on a first-principles investigation of the structural and elec- 

tronic properties of several candidate atomic phases of solid nitrogen at high pres- 

sures. These candidate phases include the sc structure plus three structures which 

are distortions of sc: the A7 structure and two simple tetragonal (st) structures. 

The results agree with previous work [Mar86] in that the A7 phase is found to be 

the lowest energy nonmolecular phase of nitrogen within the manifold of structures 

considered in the present and previous investigations. A recent theoretical study 

[Mai92] predicts, however, that a candidate polymeric phase of nitrogen (called 

cubic gauche) is of even lower energy than the A7 phase and may be the first 

nonmolecular phase of nitrogen. Since the present study does not investigate the 

molecular-to-nonmolecular phase transition, the absence of the cubic gauche phase 

from consideration does not significantly alter the present conclusions. 

The present study also agrees with previous authors [Mar86] that the sc structure 

is unstable with respect to the A7 phase. However, we find that both st structures 

studied are stable with respect to sc, and therefore possibly metastable with respect 

to the A7 structure. This is of particular interest because a st form of nitrogen 

would necessarily be metallic. At extremely high pressures, the distortions from sc 

in the A7 and st structures are found to diminish to zero, leaving sc as the stable 

structure. 

Following this introduction, Sec. 5.2 deals with computational details and de- 

scribes the structures studied. Results of the calculations are presented in Sec. 5.3. 

Section 5.4 contains a discussion of the results, including a brief discussion of the 

possibility of superconductivity in nitrogen. 
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5.2    Computations 

The calculations for nitrogen were performed using the ab initio pseudopotential 

total energy method [Ihm79, Coh82]. The electron-ion interaction was treated using 

a nonlocal, norm-conserving pseudopotential [Ham79] [2], the electronic exchange 

and correlation energies were treated within the local-density approximation (LDA) 

[Lun83] using a standard form for the exchange-correlation potential [Cep80], and 

the temperature was assumed to be zero. 

Because nitrogen cores lack p states, p-like valence electrons are not effectively 

excluded from the core region. Hence the / = 1 component of the pseudopotential is 

relatively deep in the core region, and plane-wave expansions of the wavefunctions 

require a very high kinetic-energy cutoff for good convergence. In the present work, 

plane waves of up to 60 Ry in energy are used in the expansion. The irreducible part 

of the Brillouin zone of the various structures studied is sampled at 110-150 special 

it-points [Mon77], depending on the structure. Using this cutoff energy and this 

number of it-points, relative total energies of nitrogen between different structures 

are converged to within ~2 mRy/atom. 

This study focuses on two families of structures, A7 and st, both of which are 

slight distortions of the sc structure. If sc is viewed as two interpenetrating fee 

sublattices (i.e., the rocksalt structure with one atomic species), then the A7 struc- 

ture is obtained from sc by a relative displacement of the two fee sublattices along 

the [111] direction, accompanied by a rhombohedral shear strain of the cubic unit 

cell. These distortions of the metallic sc structure double the unit cell, suggesting a 

Peierls-like effect. The resulting crystal structure [1] has lattice vectors 

ai    =   (a/>/3,0,c/3) 

a2   =   (-a/2\/3,-<z/2,c/3) (5.1) 

a3   =   (-a/2\/3,a/2,c/3) 
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and basis vectors 

T± = ±(0,0, tic) = ±u(aa +a2 + a3). (5-2) 

Thus, at each volume, the A7 structure depends on two parameters - the fractional 

displacement, u, of the fee sublattices, and the axial ratio, c/a, of the rhombohedral 

unit cell. For the sc structure, u = 0.25 and c/a = yfi. 

The st structure is obtained from sc by either shortening or extending the cubic 

cell along one of the cubic axes. The lattice vectors of the st structure are ai = 

(a, 0,0), a2 = (0,ö,0), and a3 = (0,0, c), where c = a for the sc structure. 

Structural parameters for both the A7 and st structures were optimized at each 

unit cell volume.  The energy minimization procedure involved a coarse sampling 

of parameter space followed by a finer sampling near the minimum. This method 

resulted in a discrepancy with a previous calculation [Mar86] in the relaxed A7 

structural parameters at the reference volume 5 Ä3. In the previous work, the cal- 

culations were performed using a 50 Ry plane wave energy cutoff and an irreducible 

Brillouin zone sampling of 10 special points.  The optimal parameters (u = 0.217 

and c/a = 2.643) were found by relaxing each parameter one at a time in an alter- 

nating fashion for two iterations.  In the present work, a broad, deep minimum in 

the total energy was found at u = 0.205 and c/a = 3.453 using the more uniform 

structural-optimization technique described above. No minimum was found at the 

previously predicted parameters until the k-point sampling and plane wave energy 

cutoff were reduced to the previous work's values, whereupon a small minimum ap- 

peared. This spurious minimum apparently resulted from an inadequate sampling 

of the Brillouin zone and an insufficient number of plane waves. 

Because of nitrogen's small mass, zero-point motion of the ion cores becomes a 

significant effect. However, the present computational method treats the ion cores 

as fixed. Therefore, an estimate of the zero-point energy is added to the total energy 

as a correction using a Debye model 

9* 9t 9*  ft ^3) EzPM = g fcwD = - kvsqD = -kJ-qD [*■*) 
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where UJD is the Debye frequency, v. is the speed of sound, B is the bulk modulus, 

p is the mass density, and qD is the Debye wavevector. The volume dependence of 

the zero-point energy correction appears in the bulk modulus, the mass density, and 

the Debye wavevector. 

5.3    Results 

5.3.1    Structural Stability 

Calculations of the relative stability of the various structures studied are pre- 

sented first. Figure 5.1 shows the relative energy of nitrogen in st as a function of 

c/a at two volumes; uncompressed (Fig. 5.1(a)) and compressed (Fig. 5.1(b)). In 

general, three local minima were found - one at c/a « 1, corresponding to sc; one 

at c/a < 1, referred to as oblate- or o-st; and one at c/a > 1, referred to as prolate- 

or p-st. 

At the uncompressed volume, the energetically favored st structure is the o-st 

structure. It has an activation barrier of about 47 mRy/atom to st structures with 

a larger c/a ratio. Both the sc and p-st minima are metastable with respect to 

o-st, and have activation barriers of about 11 and 28 mRy/atom, respectively. The 

sc structure is the least energetically favored minimum with a barrier to the p-st 

structure of about. 3 mRy/atom. At the compressed volume, the p-st structure 

becomes energetically favored over the sc and o-st structures by about 30 and 35 

mRy/atom, respectively. The other two minima are marginally metastable, with 

the sc structure slightly more favored than the o-st structure. 

Upon compression, the optimum c/a ratio of both the o-st and p-st structures 

approaches the sc value of unity. Therefore, even though sc is never favored over 

p-st when both minima exist distinctly, at very high compression the optimal st 

structure is sc. 

In Ref. [Mar86], the sc phase is found to be unstable with respect to variations 
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Figure 5 1: Relative energy versus c/a for nitrogen in the simple tetragonal 
structure at (a) an uncompressed volume (44 a.u./atom) and (b) a compressed 
volume (26 a.u./atom). At both volumes, three distinct minima are present, 
one for c/a < 1, one for c/a « 1, and one for c/a > 1. The filled squares are 
calculated data points, which are connected by a solid curve to guide the eye. 
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of the A7 parameters u and c/a. This instability of sc with respect to A7 distortions 

is also evident in the present work, however the optimal A7 parameters are found 

to approach the ideal sc values (see above) continuously upon compression. At a 

volume of 15 a.u./atom, the optimal A7 structure is indistinguishable from sc to 

within the accuracy of the calculations. This corresponds to a pressure of about 15 

Mbar. Therefore, at very high compression the optimal A7 structure is sc. 

The equations of state for the four structures, A7, sc, p-st, and o-st, are shown 

in Fig. 5.2. The computed data points (dots) are fitted, for each structure, to the 

Murnaghan equation of state [Mur44] (solid lines). The parameters of the fit (the 

equilibrium volume, V„, and the bulk modulus and its pressure derivative both at 

Vo) are shown in Table 5.1. The correction due to zero-point motion, as described 

earlier, is included in Fig. 5.2. 

The A7 structure is energetically favored within this set of structures, in agree- 

ment with Martin and Needs [Mar86]. At low compression, sc is the least energet- 

ically favored. At moderate compression, o-st becomes slightly higher in energy. 

At very high compression, all of the curves merge, because all of the structural pa- 

rameters tend toward their sc values. This tendency toward sc can be understood 

in terms of a preference for more highly coordinated compact structures at high 

pressures where the Madelung (ion-ion interaction) term to the total energy begins 

to dominate. The sc structure is more highly coordinated (6-fold) than the o-st 

(2-fold), A7 (3-fold), and p-st (4-fold) structures. 

Several other simple structures have been shown not to be viable candidates for 

high-pressure phases of nitrogen. We have studied nitrogen in a simple hexagonal 

structure with an optimized c/a ratio. This phase is higher in energy than the A7 

phase at all pressures, and higher than the sc phase at all but the lowest pressures. 

A previous theoretical investigation [McM85] has shown (for atomic volumes down 

to 20 a.u./atom) that diamond, bcc, hep, and fee phases of nitrogen would all be 

higher in energy than the sc phase. 
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Figure 5.2: Total energy versus volume, fitted to the Murnaghan equation 
of state [Mur44] (see Table 5.1), for solid nitrogen in the four atomic phases 
studied. For the A7 and the two st phases, all structural parameters have 
been optimized at each volume. At very high pressures, these parameters all 
approach their sc structure limiting values. A zero-point energy correction has 
been included using the Debye model described in the text. 
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5.3.2    Electronic States 

The nature of the filled electronic states of nitrogen will depend on the cell 

volume and the crystal structure. Because nitrogen has five valence electrons, it 

will necessarily be metallic in any structure with one atom per cell, such as sc or 

either st structure considered earlier. The A7 structure, however, has a two-atom 

unit cell, and, therefore, nitrogen in A7 can be either insulating, semiconducting, or 

semimetallic. 

The density of states at the Fermi level (N(EF)) of nitrogen in the A7, sc, and 

p-st structures is tabulated in Table 5.2 for two volumes, 44 and 21 a.u./atom. The 

former value corresponds approximately to the equilibrium volumes of the three 

structures; the latter corresponds to a significantly compressed volume. The values 

of N(EF) for the o-st structure have not been calculated because it is the less likely 

of the two st structures to form (see Sec. 5.4 below). As expected, the sc and 

p-st structures are metallic with fairly large N(EF), even at low pressures. Upon 

compression, the N(EF) of these structures decreases. This behavior is consistent 

with a free-electron-like picture, in which N(EF) ~ V2/3. 

Since the A7 structure is a Peierls-like distortion of sc, a gap at the Fermi level 

is expected. This is seen in the vanishing of N(EF) at the uncompressed volume. 

However, since the A7 structure approaches the sc limit upon compression, the 

N(EF) of the A7 phase is expected to become non-zero and approach that of the 

sc phase. The existence of a finite N(EF) is indeed found for the compressed A7 

phase, however the value is still quite small (~ 50% of the sc and p-st values at this 

volume). 

The metallicity of the structures is also exhibited by the nature of the bonding. 

Charge density contours in planes containing bonds are shown in Fig. 5.3 for the 

p-st and sc structures and in Fig. 5.4 for the A7 and sc structures. Contours for both 

uncompressed (44 a.u./atom) and compressed (21 a.u./atom) volumes are included. 

Bonding in the sc and p-st structures is clearly metallic at both volumes.   The 



Chapter 5.   High-Pressure Atomic Phases of Solid Nitrogen 75 

Structure Vo Bo Bo 
(a.u./atom) (GPa) 

A7 48.8 192 2.686 
sc 44.4 206 2.833 
o-st 111.4 9 3.114 
p-st 47.4 92 4.196 

Table 5.1: Best-fit parameters to the Murnaghan equation of state [Mur44] 
for nitrogen in the four phases studied. The parameters are the equilibrium 
volume Vo and the bulk modulus B0 and its pressure derivative B0 at this 
volume. 

Structure N(EF) (states/Ry/atom) 
V=44 a.u./atom   V=21 a.u./atom 

A7 0.00 0.91 
sc 4.06 1.82 

p-st 3.61 2.06 

Table 5.2: Density of states at the Fermi level for nitrogen in three of the 
phases studied. Values are given for two volumes - one uncompressed <44 
a.u./atom) and one compressed (21 a.u./atom). The estimated numerical 
error is ~ 10%. 



Ckapltr 5.   H.gh-Prtssure Atom.c Phases of Solid Nitrogen 76 

difference, A„, between the maximum and minimum charge density is small (~ 0.45 

and ~ 0 57 electrons/am. for sc and p-st, respectively), indicating that the electrons 

are quite delocalized. Furthermore, the bonding in the'compressed A7 phase u also 

metallic, with Ap ~ 0.47 electrons/am. 

In contrast, the „„compressed A7 phase is covalently bonded, with a compara- 

tively large Ap ~ 0.71 electrons/a.n. The charge density in the bond is quite large 

compared to the minimum.   However, the largest peahs are outside of the bond, 

positioned on the side of the atom away from the plane formed by its three near- 

est neighbors. This geometry is reminiscent of the dangling bond in the ammoma 

molecnle, suggesting that the bonding «bit* do not exhaust all of the valence 

electrons.   This is not surprising, since each atom in the A7 structure covalently 

bonds to three nearest neighbor atoms, while each nitrogen atom has five valence 

electrons. 

5.4    Discussion 

As shown above, the A7 structure is the lowest energy atomic form of solid 

nitrogen of the structures studied. This phase is nonmetallic or semimetaH.c at all 

b„, the very highest pressures (-15 Mbar) where the structure merges with the sc 

struct„re. In contrast, the sc phase is a metal with a large N(EF) at all pressures. 

However, the sc phase is unstable with respect to distortions that bring about the 

A7 phase at all pressures for which the two phases are distinct. The -15 Mbar of 

pressure required to stabilize the metallic sc phase are, at present, unachievable for 

static experimental conditions [3]. 

The question of the existence of a stable metallic form of solid nitrogen is of 

particular interest because of the possibility of superconductivity at a high trans.tmn 

temperatme (T.) in such a phase. This possibility is suggested both by the small 

mass and by the large valence of nitrogen. The small mass implies a large Debye 

temperature, and the large number of valence electrons implies a large carrier densdy 
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Figure 5.3: Charge density contours for nitrogen in p-st and sc structures at 
uncompressed and compressed volumes. For all frames, the horizontal axis is 
parallel to ai and the vertical axis is parallel to a3, where the lattice vectors 
are those for the st structures. The frames correspond to: (a) the p-st phase 
at 44 a.u./atom with contours ranging from 2 to 22 electrons/atom; (b) the p- 
st phase at 21 a.u./atom with contours ranging from 2 to 12 electrons/atom; 
(c) the sc phase at 44 a.u./atom with contours ranging from 2 to 20 elec- 
trons/atom; and (d) the sc phase at 21 a.u./atom with contours ranging from 
2 to 20 electrons/atom. All contour levels are evenly spaced. 
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Figure 5.4: Charge density contours for nitrogen in A7 and sc structures at 
uncompressed and compressed volumes. For all frames, the horizontal axis is 
parallel to 2ai - a2 - a3 and the vertical axis is parallel to ai + a2 + a3, where 
the lattice vectors are those for the A7-symmetry structures. The frames 
correspond to: (a) the A7 phase at 44 a.u./atom with contours ranging from 3 
to 30 electrons/atom; (b) the A7 phase at 21 a.u./atom with contours ranging 
from 2.5 to 10.5 electrons/atom; (c) the sc phase at 44 a.u./atom with contours 
ranging from 2 to 20 electrons/atom; and (d) the sc phase at 21 a.u./atom 
with contours ranging from 2.5 to 10.5 electrons/atom. All contour levels are 
evenly spaced. 
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in a metallic phase. Both of these properties will trend to enhance Tc. 

The two st structures studied here, both of which are stable with respect to sc, 

are candidates for a metastable metallic phase. It is important to point out, however, 

that the metastability of a st phase of nitrogen with respect to the A7 phase has 

not been proven here. Indeed, the only path connecting the two structures that has 

been considered is st -> sc -+ A7. The st structure might be unstable with respect 

to distortions analogous to the A7 distortions of sc. However, such considerations 

have not been explored here. 

Assuming the st structures are metastable, one possible mechanism for achieving 

such a phase would be to compress the A7 sample to sc, and then quench it into a st 

phase on releasing the pressure. Such a procedure, if possible, is likely to favor the 

p-st structure, even though the o-st structure has a lower energy at low pressures. 

This can be seen by examining Fig. 5.1. A sample prepared in the sc structure is 

more apt to "find" the p-st minimum than the o-st minimum as pressure is released. 

The sample is then likely to remain in the p-st minimum due to the large activation 

barrier to the o-st minimum. 

As was stated earlier, the zero-point energy of the ion cores is an important 

correction in systems of light atoms, such as nitrogen. This large effect of zero- 

point motion might, be important in explaining the discrepancy between theory and 

experiment on the pressure of the molecular-to-atomic transition in solid nitrogen. 

Martin and Needs [Mar86] predicted that the structural transition from a molecular 

phase to the A7 phase would occur at ~0.7 Mbar, in disagreement with experiments 

[Rei85], which indicate no atomic phase up to ~1.3 Mbar. In the molecular solid, 

only the intermolecular zero-point motion is likely to be relevant to the total en- 

ergy. Since the molecule is twice as massive as the atom, the zero-point correction 

in the molecular solid is smaller than in the atomic solid. Thus, including a cor- 

rection for zero-point motion produces a relative shift in the total energies of the 

two phases. Since structural transition pressures are very sensitive functions of the 
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relative energy between two phases, this effect could result in a significant increase 

in the predicted molecular-to-nonrnolecular transition pressure. A rigorous test of 

this hypothesis and its analogy for finite temperatures, however, is beyond the scope 

of the present work. 
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NOTES 

[1] For a thorough discussion of the A7 structure see, for example, the appendix 

of Ref. [Nee86]. 

[2] The nitrogen pseudopotential chosen for the present work is the one suggested 

in Ref. [Bac82]. 

[3] For a discussion of high pressure technology and the regime of pressures achiev- 

able, see, for example, Ref. [Jay83]. 
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Part III 

Stoichiometric Effects in Compounds 
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Chapter 6 

Electronic Structure of Non-Stoichiometric Ga-As 

Compounds 

6.1    Introduction 

Modern high-precision sample-growth techniques, such as Molecular Beam Epi- 

taxy (MBE), provide a great deal of control in preparing new materials. By ma- 

nipulating parameters such as temperature, substrate, and so forth, it is possible 

to grow substances which do not occur naturally, but which have interesting and 

useful properties [Her89]. The ability to control the growth process suggests that 

quantities previously considered to be fixed, such as stoichiometry, can now become 

experimental variables. Here we use theoretical computations to explore the Ga-As 

system with the goal of motivating experimental studies. This study of the effect 

of stoichiometry is focused on GaAs because it is one of the most thoroughly inves- 

tigated compounds and because of its technological importance. In addition GaAs 

often serves as the prototypical III-V material, and has been one of the main "testing 

grounds" for new theoretical and experimental techniques. 

The purpose of the present study is to provide model calculations of the effect of 

varying stoichiometry on the electronic properties of Ga-As crystalline compounds. 

-The model chosen consists of five systems with an underlying diamond structure, 

all of which can be described by the same four-atom unit cell. These systems can be 

characterized as Ga4_„Asn, n = 0,... ,4, and range from pure Ga in the diamond 

structure (n = 0) through GaAs (n = 2) to pure diamond-structure As (n = 4). 

It should be pointed out that the diamond structure is not the naturally occurring 

stable configuration for either pure Ga or pure As [Don74]. 
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Only two intermediate compounds (n = 1 and n = 3) are contained in this 

model, and they can be viewed, respectively, as Ga-As/Ga-Ga and Ga-As/As-As 

superlattice structures along the cubic [111] axis. Other related intermediate com- 

pounds {i.e., superlattices with longer repeat distances) would have larger unit cells 

and, therefore, would be more computationally intensive. The electronic properties 

of the systems studied here, however, should be indicative of the electronic behavior 

of these more complicated systems. This supposition is reinforced by the result (dis- 

cussed below) that the electronic charge density of a given type of superlattice layer 

(Ga-As, Ga-Ga, or As-As) is relatively insensitive to the type of layers surrounding 

it. Thus, while the present model treats only five systems directly, it has useful 

implications for more complicated Ga-As systems. 

Because this study is designed only as a basis for future explorations and as 

a guide for experimental studies, no structural relaxation or stability analysis has 

been performed. Structural relaxation calculations involve computing quantum me- 

chanical forces on each atom and then moving the atoms repeatedly until the forces 

vanish. These calculations tend to be costly and time-consuming and would be 

warranted only if experimental investigations give some confirmation for the models 

chosen. Since structural relaxations find local (not necessarily global) minima of the 

energy, a rigorous stability analysis would be even more computationally intensive 

and thus beyond the scope of this study. 

Analyses of the respective electronic band structures show that the four systems 

which are off-stoichiometric'with respect to GaAs are metallic with fairly large den- 

sities of states at the Fermi level. Furthermore, an analysis of the valence charge 

density of the Ga3Asi and Gaj As3 compounds suggests that the Ga-As layers would 

be semiconducting (as in bulk GaAs) and that the Ga-Ga and As-As layers, re- 

spectively, would be metallic. Such a metal-semiconductor superlattice should have 

ideal Schottky barriers. 

This chapter is organized as follows: the following section discusses the compu- 
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tational method and describes in detail the systems under investigation. Section 6.3 

presents and discusses the calculated electronic energy levels and charge densities of 

the five systems, including a brief discussion of the possibility of superconductivity. 

Finally, the study is summarized in Sec. 6.4. 

6.2    Computations 

Calculations are performed using the ab initio pseudopotential total energy 

method [Ihm79, Coh82, Pic89]. Electron-ion interactions are evaluated in this 

method using nonlocal, norm-conserving pseudopotentials [Ham79]. The Ga (As) 

pseudopotential used here has reference configuration 4s18754p0-8754d0-25 (4s1875 

4p2-8754d°-25) and cutoff radii (in a.u.) for the s, p, and d potentials equal to 2.21, 

2.21, and 2.50 (2.18, 2.18, and 2.18), respectively. Effects stemming from slight 

core-valence overlap are treated using the scheme of Ref. [Lou82]. Electronic ex- 

change and correlation energies are calculated within the local-density approxima- 

tion (LDA) [Lun83] using a standard form for the exchange-correlation potential 

[Cep80]. The only external inputs to the calculation are the atomic numbers of the 

constituent atoms and their positions in the unit cell. 

Wavefunctions and pseudopotentials are expanded in a plane-wave basis up to 

an energy cutoff of 20 Ry, and the irreducible part of the Brillouin zone (IBZ) is 

sampled at 60 special points [Cha73, Mon77]. These values produce a well-converged 

self-consistent potential. Electronic densities of states (DOS's) are generated from 

energy levels calculated at 580 points in the IBZ. The tetrahedron method [Leh72] 

is used to interpolate between these sampled points. 

The family of compounds studied here is designated by Ga4_„As„, where n = 

0,1,... ,4 is the stoichiometric parameter. An underlying diamond lattice is chosen 

for all five systems with the lattice constant fixed at the experimental value for GaAs, 

a = 5.654 A[Coh88]. The four-atom unit cell describing the family of compounds is 

rhombohedral with trigonal axis pointing along the cubic [111] direction and lattice 
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vectors 

a, = £[112], aa = |[211], and a3 = £[121] . (6.1) 

Cartesian coordinates used here correspond to the edges of the diamond structure 

cubic cell. Basis vectors for the four atoms in the unit cell are given by 

n = ai fa + a2 + a3) (6-2) 

where a, = 0, |, f, § for t = 1,2,3,4, respectively.   We denote this quasi-cubic, 

rhombohedral structure by qcr4. 

Given the qcr4 unit cell, the stoichiometric parameter n uniquely defines the 

crystal structure for all values except n = 2. That is, for any value of n ^ 2, all 

arrangements of the four atoms in the unit cell are equivalent by symmetry. For 

n = 2, there are two non-equivalent qcr4 crystal structures, however the one studied 

here consists of alternating Ga and As atoms in the unit cell and is equivalent to 

ordinary GaAs in the zincblende structure. The n = 0 and n = 4 systems correspond 

to pure Ga and pure As, respectively, in the diamond structure. The resulting crystal 

structure for n = 1 (n = 3) is shown in Fig. 6.1, where the larger circles represent 

Ga (As) atoms, and the smaller circles represent As (Ga) atoms. This can be viewed 

as a superlattice of alternating Ga-As and Ga-Ga (As-As) corrugated layers in the 

[111] direction. 

6.3    Results 

6.3.1    Energy Levels 

The calculated energy levels for the Ga4_„Asn family are presented in two series: 

the As-rich series (Ga2As2 -> GaoAs4) and the Ga-rich series (Ga2As2 -» Ga4As0). 

All energy levels are referred to the top of the Ga2As2 valence band as the zero of 

energy. Electronic DOS's for the As-rich series are exhibited in Fig. 6.2. The two 

As-enriched compounds (GaiAs3 and GaoAs4) are found to be metallic with fairly 
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Figure 6.1: The qcr4 structure for the Ga3As! and GaiAs3 systems. Large 
(small) circles correspond to Ga (As) in the former system and to As (Ga) in 
the latter system. This structure can be thought of as a stacking of corrugated 
layers in the cubic [111] direction that alternate between Ga-As layers and 
either Ga-Ga or As-As layers, depending on the stoichiometry. 
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large DOS's at the Fermi level. This is not surprising since each atom in these 

compounds has, on average, more than the four electrons required to satisfy the 

tetrahedral bonds. The excess electrons are thus available for itinerancy. 

As expected, the DOS for the n = 2 compound agrees well with previously 

published DOS's for GaAs [Coh88]. Furthermore, the DOS for GaoAs4 is in good 

qualitative agreement with that of Si [Coh88] in its zero pressure diamond structure, 

however there are important differences. In particular, there is no band gap in 

diamond As between the fourth and fifth bands. Also, there is a relative separation 

between peaks b and c (see Fig. 6.2 for labels) compared to Si. The small gap in 

the DOS between peaks a and b, which is forbidden by symmetry for the diamond 

structure, is an artifact associated with sparse counting of the states in the DOS 

calculation near the zone boundary. 

Detailed structure of the DOS's can be understood by examining the correspond- 

ing band structures, which are shown in Fig. 6.3. To facilitate comparisons, band 

structures for all of the systems considered are plotted in the qcr4 Brilloiun zone, 

even though this structure is not primitive for the n = 0,2, and 4 systems. In these 

cases the band structures shown are folded with respect to their "primitive" band 

structures. Symmetry points for the rhombohedral Brillouin zone are labeled as in 

Ref. [Wan86]. 

It is natural to compare the electronic structure of Gax As3 to that of its stoichio- 

metric "neighbors" GaoAs4 and Ga2As2. Since GaaAs3 corresponds to a reduction 

in symmetry along [111] with respect to either of its neighbors, a comparison of 

electronic structures along the T -+ T direction (i.e., along [111]) is particularly 

illustrative. For GaoAs4 and Ga2As2, bands come together in pairs at the T-point 

due to the zone folding. The reduction in symmetry in going to GaiAs3 splits this 

degeneracy, and similar splittings occur at other high symmetry points of the qcr4 

Brillouin zone. However, the intrinsic degeneracies of the bands in the n = 2 and 

4 systems are maintained for n = 3 which is attributed to the underlying diamond 
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Figure 6.2: Electronic density of states for the As-rich series of materials, 
including Ga2As2, GaiAs3, and GaoAs4. The zero of energy is taken to be the 
top of the valence band in Ga2As2. A dashed line marks the Fermi energy, 
and letters denote specific regions or peaks of the density of states which are 
discussed in the text. 
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Figure 6.3: Electronic band structure for the As-rich series of materials, in- 
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symmetry. 

The splitting of the a, b, and c peaks of the DOS's of GaoAs4 and Ga2As2 into 

two peaks each in G&i As3 is a direct result of the band splitting. This is particularly 

evident for the splitting of the b-complex into ba and b2. For Ga2As2, the large b- 

peak occurs at about -0.5 Ry and is due to the flatness of the bands just above the 

well-known antisymmetric gap. This peak diminishes as energy increases until the 

onset of the c-complex at about -0.3 Ry, where the bands flatten out near the A - 

and L-points. 

Because there is no antisymmetric potential for GaoAs4, the degeneracy at X 

and near A' is not lifted, and the a- and b-complexes touch. The onset of the b- 

complex is, therefore, more gradual than for Ga2As2 and the peak is smaller and 

occurs at about -0.6 Ry, where the bands are flat near the Y- and X-points and 

between the A'- and L-points. The onset of the c-complex in GaoAs4 is similar to 

that of Ga2As2. 

A small antisymmetric-like gap is seen for GaiAs3 between the a- and b- 

complexes. Its presence causes the bands to flatten at the onset of the b-complex, 

producing a sharp peak, bu in the DOS analogous to that of Ga2As2, but smaller 

in magnitude. This peak diminishes up to about -0.45 Ry where peak b2 abruptly 

appears due to flat bands at the X-point and between the A- and L-points. The 

features of the band structure which produce the separate b! and b2 peaks in Gaa As3 

are merged for the two neighboring systems and thus contribute to only a single peak. 

A similar analysis can be used to explain the splitting of the a and c-complexes in 

GaiAs3. 

Electronic DOS's for the Ga-rich series are shown in Fig. 6.4, with the corre- 

sponding band structures in Fig. 6.5. Regions of the DOS plots have been labeled 

in the same fashion as Fig. 6.2. The two Ga-enriched compounds (Ga3As! and 

Ga4As0) are both found to be metallic with large DOS's at the Fermi level. The 

smaller number of valence electrons in these two systems with respect to the average 
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of four electrons per atom required to satisfy tetrahedral bonds suggests that they 

would be hole-like metals. 

The DOS of Ga4As0 is qualitatively very similar to that of both GaoAs4 (Fig. 6.2) 

and the Group IV semiconductors (Ref. [Coh88]). As with diamond As, there is no 

band gap in diamond Ga between the fourth and fifth bands as there is for the Group 

IV materials. Detailed structure of the DOS of Ga3As! can be understood from 

the band structure in a manner similar to GaiAs3 (see above). Certain significant 

differences do exist, however. Most strikingly, the split in the two lowest bands is 

much larger in Ga3ASl than in GajAsa- In fact, the a-complex completely separates 

into two disjoint peaks, ax and a2. This is reflected in the band structure by a 

large splitting of the lowest valence bands in going from either Ga2As2 or Ga4As0 to 

GagAsj. Another difference is that the band splitting which produced the distinct 

bx and b2 peaks in Ga^sa is much smaller for Ga3As!, leaving a single b-complex. 

Compared to Ga2As2, the b-complex of Ga3Asi is more spread out and, thus, has a 

smaller peak. 

In light of the large DOS's at the Fermi level calculated for the off-stoichiometric 

systems (~ 20 - 30 states/Ry/cell), it is interesting to consider the possibility of 

superconductivity in these materials. Superconductivity has been observed in sim- 

ilar systems. In particular, a high pressure metallic phase of GaAs, denoted GaAs 

II, is superconducting with Tc « 4.5 K and a calculated DOS at the Fermi level 

~ 16 states/Ry/four-atom cell [Zha89]. Furthermore, at high pressure, elemen- 

tal As is also a superconductor at around 2.5 K with a calculated DOS of ~ 8 

states/Ry/four-atom cell [Che92]. Assuming the vibrational and electron-phonon 

coupling properties of the present model systems are similar to those of the observed 

superconductors, the off-stoichiometric materials are expected to be superconduc- 

tors with Tf's in the range 5-10 K due to the large calculated DOS's at the Fermi 

level. Detailed theoretical calculations to explore this suggestion are possible, but 

are beyond the scope of the present study. 
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Figure 6.4: Electronic density of states for the Ga-rich series of materials, 
including Ga2As2, Ga3Asi, and Ga4As0. The zero of energy is taken to be the 
top of the valence band in Ga2As2. A dashed line marks the Fermi energy, 
and letters denote specific regions or peaks of the density of states which are 
discussed in the text. 
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Figure 6.5: Electronic band structure for the Ga-rich series of materials, 
including Ga2As2, Ga3As!, and Ga4As0. High-symmetry points of the rhom- 
bohedral Brillouin zone are labeled in the manner of Ref. [Wan86]. The top 
of the valence band of Ga2As2 defines the zero of energy. A dashed line marks 
the Fermi energy. 
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6.3.2    Electronic Charge Density 

Electronic charge density contours in the cubic (110) plane are shown in Fig. 6.6 

for the Ga4_„Asn systems. Contours are separated by 5 electrons/cell and range 

from 5 to 55 electrons/cell with the lowest (highest) contour in each panel denoted 

by a dashed (bold) line. Triangles (pentagons) are used to mark the positions of the 

Ga (As) atoms. 

If the qcr4 structure is thought of as corrugated planes stacked along the cubic 

[111] direction, then each panel in Fig. 6.6 shows bonds lying within two neighbor- 

ing planes. A comparison of consecutive panels of Fig. 6.6, then, shows that the 

charge density within a given plane is insensitive to the makeup of its neighboring 

planes. For example, a Ga-As plane has essentially the same charge density pro- 

file regardless of whether its neighboring planes are also Ga-As or are Ga-Ga or 

As-As. Thus, the additional electron (hole) introduced in going from Ga2As2 to 

Ga!As3 (Ga3ASl) remains localized in the As-As (Ga-Ga) plane. The As-As (Ga- 

Ga) plane may, therefore, be thought of as being metallic, while the Ga-As plane 

remains semiconducting. Such a metal-semiconductor superlattice should have ideal 

Schottky barriers. 

The charge density between the corrugated planes is examined in Fig. 6.7 which 

shows contours in the cubic (Oil) plane for Ga3Asx and GaiAs3. Bonds pointing to 

the upper right corner connect adjacent planes, whereas bonds pointing to the upper 

left corner lie within a plane. Similar contour plots for the other three systems are 

not necessary due to the higher symmetry of those systems. 

The charge densities of the interplanar bonds are very similar, in general, to 

their intraplanar counterparts. In particular, the interplanar and intraplanar Ga- 

As bonds look essentially the same. There are, however, slight differences between 

the charge density of the interplanar and intraplanar As-As and Ga-Ga bonds. In 

GaiAs3, for example, the interplanar As-As bond is slightly lopsided compared to 

its in-plane counterpart and favors the atom in the As-As plane.   This is further 
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Ga4As0 Ga3As, GajjASjj GajASg Ga0As4 

Figure 6.6: Valence charge density contours in the cubic (110) plane for 
the five systems Ga4_nAs„, n = 0,...,4. Intraplanar bonds for two adja- 
cent corrugated layers are shown in each panel. Contours are separated by 5 
electrons/cell and'range from 5 to 55 electrons/cell with the lowest (highest) 
contour in each panel denoted by a dashed (bold) line. Triangles (pentagons) 
mark the positions of the Ga (As) atoms. 
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GagÄSj GajASg 

Figure 6.7: Valence charge density contours in the cubic (Oil) plane for 
Ga3Asi and Ga-iAs3. In each panel, interplanar bonds point to the upper 
right corner, and intraplanar bonds point to the upper left corner. Contours 
are separated by 5 electrons/cell and range from 5 to 55 electrons/cell with 
the lowest (highest) contour in each panel denoted by a dashed (bold) line. 
Triangles (pentagons) mark the positions of the Ga (As) atoms. 
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indication that the extra electron tends to be localized in the As-As plane. Analo- 

gously, the interplanar Ga-Ga bond in Ga3As! has a higher electronic charge density 

than the in-plane Ga-Ga bond which suggests that the extra hole per atom in the 

Ga-Ga plane is confined, for the most part, in the plane. 

Contour plots in Figs. 6.6 and 6.7 also provide insight into the nature and 

strength of the bonding in these systems. For the Ga-As bond, the figures show 

that the bonding is partially covalent and partially ionic. However, for the As-As 

and Ga-Ga bonds, no ionic bonding is possible. For the As-As bond, charge between 

the atoms is seen to segregate into two humps, indicating that the additional electron 

is filling an anti-bonding orbital. Such a double-hump structure is usually indicative 

of weakening, or even breaking, of bonds (although for diamond, a strongly-bound 

covalent material, similar structure is seen in the charge density [Yin81b]). For the 

Ga-Ga bond, the charge density between the atoms is not very large compared to 

the surrounding charge density. In particular, there are peaks in the charge density 

near but not between the Ga atoms that are comparable to the charge density peak 

between the Ga atoms. This suggests that the covalent bond between the Ga atoms 

is not particularly strong. 

6.4    Summary 

This study has investigated the dependence of the electronic properties of hy- 

pothetical Ga-As compounds on stoichiometry. In particular, systems designated 

by Ga4_nAs„ for n. = 0,... ,4, which include GaAs and four other hypothetical ma- 

terials on an underlying diamond lattice, have been studied. We have not relaxed 

structural parameters since this is a model calculation designed to motivate further 

experimental and theoretical studies of these systems. 

The four systems which are off-stoichiometric with respect to GaAs are all found 

to be metallic with fairly large DOS's at the Fermi level. A comparison to the 

electronic properties of similar materials which exhibit superconductivity below ~ 5 
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K suggests that these model systems are good candidates for superconductors with 

Tc's in the range of 5-10 K. For the Ga3As! (GaiAs3) system, the charge density 

of the Ga-As layer is essentially the same as in pure GaAs, and the charge density 

of the Ga-Ga (As-As) layer is essentially the same as in diamond Ga (As). This 

suggests that the Ga-As layers would be semiconducting similar to pure GaAs and 

that the Ga-Ga (As-As) layers would be metallic. 

An analysis of the charge density indicates that the off-stoichiometric materials 

might be weakly bound and thus might be unstable with respect to cleavage or 

structural distortions. A simple bond-counting argument reinforces this conclusion 

[Cha93]. Similar Ga-As systems that are less "off-stoichiometric" {i.e., superlattices 

with longer repeat distances) should be less unstable, but the large unit cells implied 

preclude their inclusion in an exploratory study such as this at this time. However, 

the calculated electronic properties of the systems studied here are expected to be 

indicative of the properties of these larger-celled systems. 
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