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ABSTRACT 

This thesis presents new systems-analysis methods that are appropriate for 

complex, non-linear systems that are driven by uncertain inputs. These methods extend 

the ability of discrete dynamic programming (DDP) to system models that include six or 

more state variables and a similar number of stochastic variables. This is accomplished 

by interpolation and quadrature methods that have high-order accuracy and that provide 

significant computational savings over traditional DDP interpolation and quadrature 

methods. 
These new methods significantly improve our ability to apply DDP to large-scale 

systems. Using these methods, DDP can solve a wide variety of systems analysis 

problems without resorting to the simplifying assumptions required by other stochastic 

optimization methods. This is demonstrated in the application of DDP to problems with 

as many as seven state variables. Of particular interest, this thesis applies DDP to the 

practical problem of conjunctively managing groundwater and surface water. Moreover, 

the applications also demonstrate that DDP can be a powerful planning tool, such as 

when evaluating a range of capacity expansion alternatives. 
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CHAPTER 1. 

INTRODUCTION 

The challenges of water resources management are increasing, complicating the 

efforts of managers who rely on traditional heuristic methods of system operation and 

planning. Not only are objectives of water management changing, but the means by 

which managers can achieve these objectives are dramatically different from what they 

were twenty years ago. Conflict is common as increasing demands must be balanced by 

consideration for environmental qualities without the ability to tap new resources. 

Conservation, conjunctive use, desalination, reclamation and other techniques for 

meeting demands have replaced dam construction. With increasing competition for 

limited water resources, the solution of water resources management problems will 

continue to become more complex. 

Mathematical modeling and optimization, also known as "systems analysis," are 

increasingly useful methods in coping with these challenges. With advances in 

algorithms and computing power, we have greatly expanded our ability to develop 

practical solutions for realistic water management problems. In contrast, the limited 

ability of earlier methods often required that practitioners resort to simplistic solutions 

developed for drastically simplified water management problems. As a result, application 

of these solutions was often found to be unsatisfactory [Rogers and Fiering, 1986]. 

This thesis is an effort to further expand the abilities and acceptance of systems 

analysis in the management of water systems. It is my belief that these methods are 

becoming increasingly relevant and practical because of rapid changes in water 

management. In particular, this thesis demonstrates the application of systems analysis to 

managing systems that combine groundwater and surface water, commonly known as 

"conjunctive use." To accomplish this, this thesis present analysis methods that allow 

solution of stochastic optimization problems of greater complexity than previously 

possible, not just for water resources management, but also for many other management 

problems that fit the general mathematical form. 



A. MOTIVATION 

This effort began with some straight-forward systems operation questions that 

turned out not to have straight-forward answers. A local water supply agency, the East 

Bay Municipal Utility District (EBMUD) of Oakland California, has been considering 

structural and operational options to reduce the agency's susceptibility to water shortages 

in its growing district. While working on the groundwater storage option of this project, I 

became interested in understanding the operational effects of adding groundwater storage 

to the existing surface reservoir system. In particular, I was interested in comparing 

benefits of groundwater storage with benefits of additional surface reservoir capacity. 

The first question that needed answering was how operation of the groundwater 

component should differ from existing surface reservoirs. A direct comparison of 

capacities was inappropriate because a groundwater component would likely face 

significant constraints on rate of recharge and extraction while also offering significantly 

larger storage volumes. Not until this first question was answered could the second 

question, how to compare the benefits of adding groundwater storage or additional 

surface storage, be answered correctly. 

It was a desire to answer these questions that lead to the use of optimization and, 

in particular, the application of dynamic programming (DP) methods. However, 

limitations on available DP methods frustrated these efforts, prompting work to overcome 

these limitations. This thesis is a summary of successful methods developed to overcome 

these limitations and of their application to answer the initial questions. It does not 

include the many failed methods and dead-end paths that seem to be inevitable in such a 

journey. 

Though the specific problem of conjunctive-use management led me to this work, 

the broader potential of this work has provided the motivation to address the problem to 

the degree presented in this thesis. By developing general methods to answer the above 

questions, I hope to have developed methods applicable to many other water resource 

management problems that we face. 

1. Evolving Challenges in Water Resources Planning and Management 

Increasingly rapid changes in supply, demand, and system configuration are 

requiring managers to reevaluate the management of their systems. Moreover, the 

objectives of water management are changing and system managers must now consider 

ill-defined "costs" and "benefits" of qualities such as impacts on fisheries, riparian 

ecosystems, scenery, recreation, and water quality. To meet these changing demands, 



systems increasingly employ management methods that include water conservation, 

system redundancy, prioritizing deliveries, and integration of alternate sources such as 

groundwater, desalinated water, and recycled water. Managers find it increasingly 

difficult to develop operating rules as these rapid changes reduce the base of experience 

available to guide operations. 

Many water-management practices result from years of experience operating 

water systems. Drawing upon this experience, managers have developed operating rules 

that generally do an acceptable job of reducing the risk and expected cost arising from 

water shortages and floods, while increasing the benefits of, say, hydropower generation 

[Bredehoefi et ah, 1995; Kelman et al, 1990]. 

However, with changes in supply, demand, and system configuration, operating 

rules must be updated if system performance is to be maintained. With gradual changes, 

managers may be able to update these rules incrementally without much degradation in 

performance. Rapid changes, however, may require that managers update operating rules 

much more dramatically with potentially large degradation in performance. 

Even when changes are gradual, the failure to periodically update operating rules 

can result in dramatic changes when their weaknesses are highlighted in a crisis. For 

example, the severe 1976-77 drought in western North America resulted in drastic 

revision of operating rules for many water supply agencies. Many had failed to recognize 

their susceptibility to drought as demands grew in their service areas. As a result, many 

agencies suffered severe shortages; and, in response, many of these have become much 

more cautious in their allocation of water supplies. This has been demonstrated by 

preemptive rationing initiated during the more recent periods of drought and by some 

expensive new projects that have included reclaiming waste water, desalination, and 

water conservation. 

B. AN EXAMPLE: CONJUNCTIVE MANAGEMENT OF 
GROUNDWATER AND SURFACE WATER 

Systems that conjunctively manage groundwater and surface water, often called 

"conjunctive use" systems, present examples where managers may find difficulty in 

developing operating rules. Dam construction has become difficult—if not impossible— 

because the best available sites have been used and environmental considerations have 

eliminated many remaining potential sites [Lettenmaier and Barges, 1979]. Also, public 

perception has turned against further dam construction. Consequently, aquifer storage 

has become more attractive. 



However, conjunctive use is still a relatively novel management method, and 

managers may hesitate to take advantage of conjunctive-use benefits. Although both 

ground and surface water resources are widely used for water supply, these sources are 

most often managed independently [Lettenmaier and Burges, 1979]. In part, this may be 

because management of conjunctive-use systems can be difficult. Efficient management 

may not be possible using common-sense or heuristic methods because of the different 

capabilities and limitations of storage in surface reservoirs and aquifers. Without 

appropriate management policies, managers may be discouraged by increased uncertainty 

in the risks and costs of conjunctive-use development. 

1. Benefits of Conjunctive-Use 

In contrast to dam construction, the public seems more willing to accept the use of 

aquifers for storing water. Though this is partially due to the less obvious impact that 

aquifer storage has on modifying the environment, there are real advantages to aquifer 

storage, especially in areas where pumping has already depressed groundwater levels. 

Aquifer storage can help restore groundwater levels and thus reduce the costs of salt- 

water intrusion, land subsidence, and pumping lifts. Also, aquifer storage may avoid 

evaporation and seepage losses associated with surface reservoirs, and avoid engineering 

risks and costs associated with dam construction. Aquifer storage is not a panacea, 

however; it also has its own associated costs, such as from pumping and conflicts over 

land use and water rights. 

From an operational perspective, conjunctive use is a possible method for 

improving water supply reliability and efficiency.  Willis and Yeh [1987, p. 241] 

recognize that, "By controlling the total water resources of a region, conjunctive use 

planning can increase the efficiency, reliability, and cost-effectiveness of water use, 

particularly in river basins with spatial or temporal imbalances in water demands and 

natural supplies." 

Many of the largest water supply systems traditionally have relied entirely on 

surface reservoir storage [van der Leeden et al., 1990, pp. 319-325]; thus, there may be 

many opportunities for their improvement through utilization of aquifer storage. It is 

likely that initial efforts to employ aquifer storage will be more cost effective than 

expansion of surface-reservoir storage. Lettenmaier and Burges [1979] found that, under 

certain assumptions, developing aquifer storage as a buffer against variations in stream 

flow was about an order of magnitude cheaper than developing surface storage. 

Systems that integrate aquifer storage and surface reservoirs should be designed to 

enhance the advantages and mitigate the disadvantages of surface and subsurface storage 



(Table 1 Al). Management policies can use these differences to increase the reliability 

and reduce the operating cost of conjunctive-use systems. As Burges and Maknoon 

[1975, p. 1] point out, "Whenever multiple sources of water with different characteristics, 

as is the case with groundwater and surface water systems, are available, it may be 

possible to develop an operating strategy which exploits the different characteristics of 

the sources." For example, conjunctive-use systems should be better at simultaneously 

meeting water supply and flood control objectives by combining the long-term storage 

capability of groundwater with the short-term surge capacity of surface reservoirs. 

Table 1B1. Advantages and Disadvantages of Subsurface and Surface Reservoirs 

Subsurface Reservoirs Surface Reservoirs 
Advantages 
1. Many large capacity sites available 
2. Slight to no evaporation loss 

3. Require little land area 
4. Slight to no danger of catastrophic 

structural failure 
5. Uniform water temperature 
6. High biological purity 
7. Serve as conveyance systems and 

avoids need to establish right-of-way 

Disadvantages 
1. Few new sites available 
2. High evaporation loss even in humid 

climate 
3. Require large land area 
4. Danger of catastrophic failure 

5. Fluctuating water temperature 
6. Easily contaminated 
7. Water must be conveyed by canal or 

pipeline  
Disadvantages 
1. Water must be pumped 
2. Storage and conveyance use only 
3. Water may be mineralized 

4. Minor flood control value 
5. Limited flow at any point 
6. Power head usually not available 
7. Difficult and costly to investigate, 

evaluate, and manage 
8. Recharge opportunity usually 

dependent on surplus surface flows 
9. Recharge water may require expensive 

treatment 
10. Continuous expensive maintenance of 

recharge areas or wells 

Advantages 
1. 

2. 
3. 

4. 
5. 
6. 
7. 

9. 

10. 

Water may be available by gravity 
flow 
Multiple use 
Water generally of relatively low 
mineral content 
Maximum flood control value 
Large flows 
Power head available 
Relatively easy to evaluate, 
investigate, and manage 
Recharge dependent on annual 
precipitation 
No treatment required of recharge 
water 
Little maintenance required of 
facilities 

Source:   U. S. Bureau of Reclamation, Ground Water Manual, U. S. Department of the 
Interior, 1977 (referenced by van der Leeden et al., 1990, p. 648). 



2. The Management Problem of Conjunctive-Use 

Because few conjunctive-use systems exist, we have little experience managing 

them. We cannot easily develop heuristic operating rules that are efficient, and this 

increases the expected expense and risk of developing new systems. Under these 

conditions, planners and managers are hesitant to develop conjunctive-use systems 

because of uncertain performance and unfamiliarity with these systems. 

Many managers' first exposure to conjunctive-use operations likely will occur 

when aquifer storage is added to existing surface reservoir systems. In contemplating the 

addition of groundwater to their system, managers currently appear to hold two extreme 

views. On one hand, they view aquifer storage as equivalent to a surface reservoir. On 

the other hand, they view aquifer storage as a back-up: to be recharged only when other 

reservoirs are full, and to be depleted only when other reservoirs are empty. 

Both views fail to recognize the different capabilities and limitations of surface 

and subsurface storage (Table 1B1). In particular, surface reservoirs and subsurface 

reservoirs have different storage capacities, recharge and depletion rate limits, and 

operating costs. If we base management rules on the notion that groundwater provides 

only a backup supply or that subsurface storage is equivalent to surface storage, 

conjunctive-use systems will perform little better than sole-source systems that rely only 

on groundwater or only on surface water. On the other hand, if we develop management 

rules that take advantage of the capabilities and avoid the limitations of each storage 

mechanism, we may significantly improve system efficiency and reliability. 

3. A Solution 

Systems analysis can help managers understand the use and benefits of adding 

aquifer storage to a reservoir system. Systems analysis involves mathematical modeling, 

simulation, and optimization to determine operating rules that maximize system 

performance. Through such an analytic approach, we can resolve conflicting views about 

the use of aquifer storage. Also, by determining operating rules in advance of actual 

operations, we can better anticipate the benefits and costs of conjunctive-use systems and 

can better compare alternative system designs. Greater ability to anticipate benefits and 

costs can reduce the uncertainty associated with the development of conjunctive-use 

systems. 
A systems analysis approach can also allow us to incorporate a variety of criteria 

and information into water system management. These include a wider consideration of 

system costs such as externalities that affect third parties or the environment. These may 



also include constraints that incorporate legal or public policy requirements. Systems 

analysis can incorporate these other criteria much more efficiently than heuristic methods 

and can allow easier evaluation of changes. In addition, systems analysis can allow water 

management agencies to determine a monetary value for proposed changes in system 

design or operation, aiding in public policy consideration of conflicting objectives. 

Consequently, agencies and policy makers can evaluate management alternatives and 

assess their tradeoffs with greater objectivity. 

C. SCOPE OF THE DISSERTATION 

This dissertation develops systems analysis methods and applies them to a few 

management problems, concluding with the problem of conjunctive-use. The methods 

and applications are both presented in generic terms to facilitate application to other 

water resource management problems. Indeed, the methods are valid for many optimal 

control problems in other fields, particularly those concerned with resource management. 

These include energy distribution, financial planning, chemical engineering, or any field 

that poses problems that fit the general mathematical form of stochastic DP. Application 

of these methods is most useful when considering processes driven by uncontrolled and 

uncertain inputs, just as reservoir management is driven by the uncontrolled and uncertain 

inputs of precipitation and stream flow. 

We can see the difficulty in controlling such systems by previewing the challenge 

presented by reservoir management. The control of stochastic dynamic systems is 

complicated by our need to determine controls for these systems in advance of essential 

knowledge. In particular, the regulation of stream flows for water supply requires that we 

make allocation decisions before we know future streamflows with certainty. As a result, 

we can only hope to make allocation decisions that are the best on average after 

considering all future stream flows that are possible. Also, though we may determine a 

current "best" allocation, we want to update allocation decisions as future stream flows 

become known; therefore, we cannot identify in advance a best trajectory that identifies 

the system's future condition. 

The chapters of this thesis are divided into three groups. The first group lays the 

groundwork for presentation of developments and applications discussed in the remaining 

chapters. The second group develops and analyses new systems analysis methods. The 

final group applies these methods to a conjunctive-use problem and considers other 

practical considerations associated with application of systems analysis methods. 
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1. Background 

Chapter Two presents background on systems analysis and stochastic 

optimization methods. This chapter describes the impact that uncertain inputs have on 

systems analysis and provides notation that will be used in the rest of this thesis. 

Chapter Three reviews optimization methods that can be used when system 

models contain uncertain inputs. This chapter briefly describes each method and its 

limitations, and describes a few water-resource applications. 

Chapter Four presents the optimization method of discrete dynamic programming 

(DDP) as an appropriate method for analysis of reservoir systems. This chapter discusses 

the limitations of DDP and provides additional notation and equations used in this thesis. 

The development of multilinear DDP is presented as an illustration of DDP and as an 

introduction to gradient dynamic programming (GDP) presented the following chapter. 

2. New Methods 

Chapter Five develops new interpolation methods for application in a GDP 

algorithm. These interpolation methods use both values and gradients for more accurate 

approximation of a cost-to-go function used by DDP. Development is guided by the need 

to produce a highly efficient numerical code, and a standard measure of computational 

effort is used to anticipate the actual performance of each method. 

Chapter Six applies GDP to a range of test problems. This chapter compares GDP 

with multilinear DDP by contrasting the computational time and accuracy of the two 

techniques. The analysis validates the expected performance discussed in the previous 

chapter and identifies the potential for using Gradient DP in problems with as many as six 

to eight state variables. 

Chapter Seven introduces efficient numerical-integration (i.e., quadrature) 

methods to calculate expected values in stochastic DDP problems. These methods use 

Gaussian quadrature for numerical integration of the stochastic expected-value function. 

Development is guided again by the need to produce efficient numerical code. Gaussian 

quadrature is an independent method that can improve efficiency almost as dramatically 

as GDP. Though independent, efficient quadrature is an important parallel development 

to efficient interpolation. In many practical applications, models require a number of 

stochastic variables that increases in parallel with the number of state variables. 

Chapter Eight applies Gaussian quadrature with GDP and multilinear DDP using 

the test problems of Chapter Six. This chapter illustrates the high-order accuracy of 

Gaussian quadrature and contrasts Gaussian quadrature with other methods that have 



been applied in water resources problems. The analysis validates the expected 

performance discussed in the previous chapter and the potential for solving problems 

with numerous stochastic variables. 

3. Applications 

Chapter Nine applies the GDP code to test the value of caution in reservoir 

management. GDP is applied to a series of reservoir control problems characterized by 

different levels of caution required for optimal control. From these applications, we can 

observe that management based most-likely forecasts of future reservoir inflows is 

insufficiently cautious and can result in poor system performance, particularly under 

extreme conditions. Chapter Nine also demonstrates the value of a systems analysis 

approach that uses DDP because of its ability to establish management policies that are 

appropriately cautious. 

Chapter Ten considers our ability to quantify the value of water for urban users. 

Optimal control is meaningless without an explicit statement of the values used to 

evaluate system performance. This can be difficult when applying systems analysis to 

practical problems. This chapter presents a reasonable method that can be used to 

identify water-supply values. 

Chapter Eleven applies GDP to a simple conjunctive-use problem. From this 

application, we can observe some of the management practices that contribute to the 

efficient control of a conjunctive-use system and some of the benefits expected from 

adding groundwater storage to existing surface reservoir systems. In a broader sense, this 

application also illustrates the practical benefit of using DDP to identify real-time control 

policies. Moreover, this application demonstrates our ability to use DDP to assess a wide 

range of planning options in an integrated approach. This integrated approach allows us 

to simultaneously identify optimal control policies and the expected cost for any 

proposed system configuration. As a result, we can efficiently identify the best options 

without evaluating each option separately. 

Chapter Twelve presents conclusions. The new interpolation and quadrature 

methods presented in this thesis present an opportunity to apply systems analysis to a 

wide variety of problems that previously were beyond the capability of DDP. A few of 

these problems are discussed, as well as future research to further advance GDP methods. 
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CHAPTER 2. 

ANALYSIS OF RESERVOIR SYSTEMS 

This thesis develops techniques for management of stochastic dynamic systems. 

These techniques are especially useful in the management of reservoir systems that 

regulate variable and uncertain streamflows for water supply, water quality, flood control, 

power generation, or other purposes. Management of such systems can include a variety 

of decision-making efforts, and this thesis focuses on two: the identification of effective 

real-time control decisions, and the evaluation of capacity expansion decisions. 

Real-time control decisions (i.e., decisions that use information as it becomes 

available) are necessary for effective system operations. For example, we require real- 

time water release decisions for reservoir operations. Appropriate decisions are those that 

best achieve the goals of reservoir management; when failure to meet these goals is 

identified as a cost (e.g., of water rationing or of flood damage), then appropriate 

decisions are those that minimize cost. 

Likewise, with increasing constraints on our use of water resources, capacity 

expansion decisions are essential for successful system planning. For example, we may 

add storage capacity to a reservoir system to reduce the likelihood of water rationing or 

flood damage. Appropriate decisions are those that combine development alternatives to 

achieve system goals in a cost-effective manner. 

To identify and evaluate reservoir system operations and plans, we can apply 

simulation and optimization in a systems analysis approach. However, systems analysis 

can be difficult when we must consider the impact that uncertain inputs, such as 

streamflow and demand, has on the efficient regulation of systems. Uncertainty makes it 

impossible to precisely identify the future impact of management decisions, and the best 

decisions are identifiable only with hindsight. As a result, efficient regulation of stream- 

reservoir systems is difficult, and there is no one optimization method that we may 

employ in all systems analysis efforts. 

This chapter presents background on systems analysis applied to reservoir 

systems, and illustrates why uncertain inputs make it difficult for us to apply systems 

analysis. To apply systems analysis to reservoir systems, we need an appropriate 

optimization method that can overcome these difficulties. In Chapter Four, I present one 

optimization method, "discrete dynamic programming" (DDP), as an appropriate method 

11 



for a variety of water resource and reservoir management problems. DDP is particularly 

appropriate because of its ability to represent system dynamics and constraints 

realistically. I present analyses of a few of these problems starting with Chapter Nine of 

this thesis. 

In between, Chapters Five through Eight present techniques developed to improve 

DDP. These techniques allow us to solve more complex systems analysis problems than 

previously possible. Such improvements are necessary since the application of traditional 

DDP requires significant and sometimes excessive simplification of system models. 

Chapters Five and Seven present these techniques and Chapters Six and Eight evaluate 

their performance by application to test cases. 

A. USING SIMULATION AND OPTIMIZATION IN RESERVOIR 

SYSTEM MANAGEMENT 

To aid us in making such reservoir system operating and planning decisions, we 

can develop and apply mathematical models that simulate the structure and dynamics of 

reservoir systems. These models allow us to observe the performance of different control 

policies and system configurations under the influence of different streamflow scenarios. 

The historical record is but one possible scenario that we may use to simulate the 

future. However, it is the most appealing in practice because the historical record is more 

concrete and less conjectural than other scenarios that we may use. Also, when the public 

applies hindsight to management decisions following an extreme event, such as a drought 

or a flood, it tends to be more critical of failures occurring with extremes that resemble 

historical events than of failures occurring with extremes that have not been observed 

previously [Glantz, 1982]. For example, though there was considerable criticism of water 

agencies in the western United States following the surprisingly severe drought of 1976- 

77, it is likely that the public's criticism was somewhat muted because such an extreme 

event had not previously been recorded. Now with this hindsight, a number of agencies 

use this drought as a basis for water rationing decisions [EBMUB, 1992; Gilbert, 1986]. 

Nevertheless, it is not generally appropriate to use only the historical record of 

streamflows (or other uncertain input) to test management decisions. It is unlikely that 

the future will repeat the pattern of the past. In addition, the past may not be an accurate 

guide to the future because of non-stationary processes that contribute to hydrologic 

conditions. The impact of changing land-use and weather patterns may significantly alter 

the magnitude and pattern of future rainfall and runoff. Even when conditions are 

stationary, the historical record provides but one possible scenario of past streamflows 
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(when viewed in a probabilistic sense) that is not representative of the range of possible 

future flows [Fiering and Jackson, 1971]. 

Instead of relying only on the historical record, we may use synthetic streamflow 

models to generate a number of random scenarios for river basin planning [Fiering and 

Jackson, \91\;Loucks et al, 1981; Salas et al, 1980]. We then attempt to make the best 

decisions possible after consideration of the possible outcomes and their likelihood. 

When faced with a large number of potential outcomes however, we find it difficult to 

identify the most appropriate management decisions. To aid our search effort, we can 

apply an optimization method that automatically identifies the "best" decisions. Thus, we 

may identify the best management options more quickly and efficiently by using a 

systems analysis approach than by using only simulation. 

B. THE IMPACT OF STOCHASTIC INPUTS 

The reason most reservoir systems exist is to moderate the variability and 

uncertainty of streamflows. Streamflows are variable because they change with transient 

patterns of precipitation that also vary with season and perhaps long-term trends 

reflecting climate change. In addition, streamflows are uncertain because the variable 

pattern of flows cannot be identified in advance (note that streamflows cannot be 

uncertain unless they also are variable). We say that streamflows are "stochastic" 

because they contain an erratic component that makes precise prediction of future flows 

impossible. Reservoir system conditions change in response to stochastic streamflow 

inputs in ways that are not completely within our control, and, as a result, management of 

a reservoir system presents what we call a "stochastic dynamic control" problem. 

A major challenge in the management of reservoir systems is how to anticipate 

and regulate stochastic streamflow inputs that drive system dynamics. The uncertainty of 

inputs is large, and we cannot identify efficient controls far in advance of actual 

operations. Instead, we make control decisions only when needed, thereby allowing us to 

collect as much information as we can before committing ourselves to a particular course 

of action. For example, when managing a flood-control reservoir, we make release 

decisions just prior to making actual releases so that we may take advantage of the most 

up-to-date streamflow forecasts. Such decisions are examples of "real-time control." 

1. An Example of Management Without Uncertain Inputs 

It is easier to regulate a system that does not have streamflows or other inputs that 

are stochastic. In such cases, we know everything, in advance, about the system and 
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there is no advantage in delaying control decisions. We say that such a system is 

"deterministic" because all information about the system is (or is assumed to be) 

determined precisely. As a result, we can identify, in advance, a single "best" schedule of 

control decisions for the entire operating horizon. So long as our information about the 

system doesn't change, we can use these controls to forecast the evolution of the system. 

As a simple example, suppose we need to regulate the level of a reservoir to meet 

water supply and flood control needs. If future inflows are determined precisely, we can 

identify the single best schedule of releases and the associated trajectory that describes 

the evolution of reservoir levels. Figure 2B1 illustrates possible trajectories that can take 

us from a half-full reservoir in December (the "current" month) to an empty reservoir in 

April, required perhaps to prevent flooding in May and June. The best trajectory is that 

associated with a release schedule that respects constraints on system operation, and that 

minimizes costs. These costs may quantify the impacts of flooding, water use, or other 

purposes. 

Figure 2B1. Example Trajectories for Regulation of Reservoir Level 

full 

empty 

December January February March 

2. The Effect of Uncertain Inputs on Reservoir Control 

In contrast, system regulation is difficult if a reservoir system has uncertain 

inputs. Uncertain inflows, for example, make it impossible to identify both future release 

decisions and reservoir levels. Instead of identifying a single schedule of control 

decisions, we adopt a "wait-and-see" approach to delay decisions as long as possible. By 

delaying, we can observe the values of some streamflows and may be able to reduce the 

uncertainty of other future flows. Using this information, we can identify releases that 

better achieve system management goals. Nevertheless, we can identify the truly best 

schedule of releases only with hindsight. 

To continue with the simple example, suppose an unexpected storm occurs in 

February. If we had identified, in advance, a single control schedule that is insufficiently 

cautious, then the storm could cause flooding. Figure 2B2 illustrates the effect that such 
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an unexpected event might have on a planned trajectory. In this illustration, the storm 

causes flooding because the reservoir fills and spills. 

With hindsight, we can easily identify that a more cautious release schedule 

would have prevented this flood; however, we cannot wait for hindsight. Instead, we 

must make release decisions in advance. At best, we can make release decisions in real- 

time by delaying each release decision until the month it is required. By delaying 

decisions, we can observe prior months' streamflows and the resulting reservoir levels, 

and perhaps we may also reduce the uncertainty of future flows. For example, we may 

not be able to foresee a February storm in December, but perhaps we may be able to 

anticipate the storm in January. By delaying control decisions, we can reduce the flood 

damage by adjusting January's control decisions to reflect this additional information 

(Figure 2B3). This is an example of real-time control because we adjust releases in real 

time using information from changing conditions and forecasts. 

In addition, we may prefer a more conservative control path, regardless of 

whether we can improve predictions by delaying control decisions. If the impact of 

infrequent flooding is unacceptably severe, we may drain the reservoir more rapidly to 

make additional storage available to capture flood waters (Figure 2B4). We refer to this 

preference as "caution." Cautious decisions hedge against the occurrence of extreme 

events that are potentially catastrophic, even though they are rare. Under ordinary 

streamflow conditions, cautious decisions may seem unduly conservative; however, in 

the long run, appropriately cautious decisions should be more effective. 

Figure 2B2. Effect of Unexpected Storm on Regulation 
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Figure 2B3. Effect of Real-Time Control and Better Foresight on Regulation 
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Figure 2B4. Effect of Caution on Regulation 
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3. The Purpose of Feedback Control 

For the simple reservoir example with stochastic inflows, we see that we cannot 

simultaneously identify a schedule of release decisions and future reservoir levels. If we 

specify release decisions in advance, then reservoir levels will vary with the cumulative 

impact of inflow variability. If we specify reservoir levels in advance, then release 

decisions must vary with inflows to achieve target levels. 

Using real-time control, we do not specify either decisions or levels in advance. 

Instead, we use a "wait-and-see" approach to delay decisions as long as possible. This 

allows us to observe the impact of inflows on reservoir levels and to reduce the 

uncertainty of future inflows. With this information, we are better able to choose 

decisions and levels that produce the best "expected" system performance (i.e., lowest 

expected cost) averaged over possible future scenarios. In other words, we "feed" this 

information back into the decision making process to improve control decisions. 

Whenever stochastic inputs have a cumulative impact on system characteristics 

(i.e., in any real-time control problem), we must provide a mechanism for using this 

information to update control decisions. This is known as "feedback control." When 

using systems analysis, the mechanism for feedback control depends on the optimization 

method that we use to update control decisions. In this thesis, I use the method of 
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discrete dynamic programming (DDP) for reasons that we will discuss in Chapter Four. 

In addition, Chapter Three will briefly consider other optimization methods that may be 

used for feedback control. 

4. The Impact of Reducible and Irreducible Uncertainty 

For purposes of systems analysis, it is useful to distinguish between uncertainty 

that is reducible and uncertainty that is irreducible. As we have discussed, if we can 

reduce the uncertainty of inputs as system operations progress, then we can improve 

system control by delaying decisions. This uncertainty is dynamic and reducible, and we 

should incorporate it in a system model as a stochastic input. In contrast, if we cannot 

reduce the uncertainty of inputs as operations progress, then the there is no benefit from 

delaying decisions. We may refer to this uncertainty as irreducible, and we may 

incorporate this in system models without need for real-time control. 

An input may have irreducible uncertainty if we cannot observe its impact on 

system dynamics. For example, groundwater models typically contain uncertain 

parameters for hydraulic conductivity and storativity. Because it is impractical to directly 

obtain values for many of these parameters, we infer parameter values from indirect tests 

conducted prior to modeling. Using our best estimates of these values, we create models 

and apply systems analysis using deterministic optimization. In these cases, we can test 

the impact of uncertainty on results by generating a number of Monte Carlo realizations. 

This allows us to test the range of possible outcomes, but we still can apply deterministic 

optimization to each realization. 

Often, we view uncertainty as irreducible to make a problem easier to solve. In 

truth, there are few uncertain inputs that have a completely unobservable impact on 

system dynamics. For example, we may observe the response of groundwater flow to 

control decisions. As recognized by several authors [Georgakakos and Vlatsa, 1991; Lee 

and Kitanidis, 1991; Whiffen and Shoemaker, 1993], we can use this response to improve 

parameter estimates and reduce uncertainty in groundwater models. Deliberate selection 

of control decisions to improve parameter estimates is known as "probing" [Lee and 

Kitanidis, 1991]. 

Though reducible and irreducible uncertainty both affect optimal control 

decisions, they have different representations in system models. For clarity, this thesis 

ignores the effect that irreducible uncertainty can have on reservoir management. In 

particular, as an example of irreducible uncertainty, this thesis will ignore the effect that 

measurement uncertainty has on optimal control. For discussion of how we may 
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incorporate irreducible uncertainty into reservoir management, one may view Stengel 

[1994] or other works on optimal control. 

C. DEVELOPING SYSTEMS ANALYSIS FRAMEWORK 

Systems analysis involves (1) the development of a mathematical model that 

simulates the essential elements of an actual system, (2) the development of a value 

model that identifies management goals and that quantifies system performance, and (3) 

an optimization procedure that identifies management policies that achieve the best 

system performance. 

A system is a group of components meant to perform a common function. 

Reservoir systems consist of interconnected storage components that function to regulate 

variable inputs such as streamflow or demands for water supply and power generation. 

We can judge the effectiveness of system management by measuring system performance 

against various criteria such as maintaining prescribed reservoir levels or meeting 

demands for water. Table 2C1 identifies some goals of stream-reservoir system 

management and some possible performance measures. 

We need not limit system management to a single goal, and "multi-purpose" 

systems are common. For example, a reservoir constructed for water supply may also be 

used for power generation. We may assess the performance of multi-purpose systems by 

a single quantitative measure or through a "multi-objective" analysis. Multi-objective 

analysis compares tradeoffs between objectives without identifying the relative value of 

each purpose explicitly [Major, 1977]. This thesis will not consider the problem of 

assessing relative values of system performance for each objective, but will assume that a 

single performance measure exists. 

Associated with the goals and performance measures of Table 2C1, we can 

identify control decisions and information that may aid selection of appropriate controls. 

Identification of appropriate controls often requires consideration of information that 

defines the Markovian "state" of a system. We can identify this state information by a set 

of variables summarizing what we know about the present condition of a system. 

Generally, the values of these state variables will change with time, subject to applied 

controls and stochastic inputs. 
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Table 2C1. Common Measures of Performance, Control, and State 

Goal Performance Measure Control State 

Water Supply Cost of water rationing Allocation Amount stored 
Long-term flow forecast 

Hydropower Revenue from power Turbine Power head 
generation operation Short-term flow forecast 

Flood Control Cost of flood damage Release Free storage 
Short-term flow forecast 

Fish Habitat Fish population Release River stage 
Water temperature 

Recreation Deviation from desired Release Reservoir level 
levels River stage 

1. Mathematical Model of a Svstem 

A system model is a concise mathematical description that identifies controllable 

inputs, the state of facilities and other system components, uncontrolled and uncertain 

inputs, system dynamics, and constraints. 

DECISION VARIABLES 

Regulation of a system requires the existence of system inputs that are 

controllable and that can modify system dynamics. For stream-reservoir systems, the 

most common and obvious inputs under our control are reservoir releases. In addition, 

we may also control allocation of supplies downstream and other types of flows within a 

system. We (i.e., the manager or operator of a system) regulate controllable system 

inputs by control decisions that we make. We represent these decisions by variables 

u = ["l. "2. "3. -]T   arranged in a column vector. 

STATE VARIABLES 

Effective regulation of a system requires appropriate use of information about the 

condition of the system. For stream-reservoir systems, this information will commonly 

include characterization of reservoir levels, streamflow forecasts (including related 

information such as current streamflow, snowpack measurements, soil moisture, weather 

forecasts, etc.), demand forecasts, status of equipment and facilities, and so forth. This 
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T 
information defines the state of a system that we represent as n variables x = [x\,... x„] 

arranged in a column vector. 

Because control decisions depend on a system's state, we can specify a functional 

relationship u(/) = U ,(X(,>) describing a course of action based on the system's state at 

time /. This relationship describes the "control policy" of a system. For example, we can 

specify optimal water releases from a reservoir as a function of current reservoir levels, 

streamflow forecasts, season, or other state information. We can also summarize such 

control policies by "rule curves" that prescribe control decisions for system operators 

[Marien et ai, 1994]. 

STOCHASTIC VARIABLES 

Often, a variety of uncertain and uncontrollable inputs affect the evolution of a 

system. For example, stochastic streamflows effect the evolution of reservoir levels and 

impact control decisions. We represent these stochastic inputs as variables 

s = [s\, si, -*3> —]T    arranged in a column vector. 
Part of our modeling effort is to identify functions that describe of the probability 

distributions of these inputs. I use a function s(w) to describe a transformation of m 

random normal variables w = [w\,... wm]T   to the stochastic variable s. For example, if 

streamflows are lognormally distributed, we may use the model 

s = exp[/i + aw] 

to describe the transformation of random variable vv to stochastic variable s. In this 
example, parameters fi and a are the mean and standard deviation of the log-transformed 

sample values of s. 

Such a functional description can also depend on the state of the system. For 

example, if streamflows are autocorrelated, we may use the model 

s = px + exp[/i + aw] 

Parameter p is a correlation coefficient and x(ti) = %,.,) is a state variable representing the 

prior period's flow. When modeling a stochastic input, we can use any appropriate 

function s(x,u,w,f)  of state variables, decision variables, random variables, or time, 

though we should prefer simple and clear models. In practice, we use random normal 

variables w to represent uncertainty, and we incorporate functional descriptions of 

stochastic variables s implicitly in other model equations. 
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DYNAMICS 

The state of a system evolves in response to the application of controlled and 

uncontrolled, uncertain inputs. We can model this dynamic behavior by a vector first- 

order differential equation that describes a continuous change of state x: 

&- = f(x,u,w,r) 
at 

The evolution of state x depends on its current value, on inputs u and w, and on the 

current stage. 

If we update controls periodically instead of continuously, it is easier to describe 

the system's evolution for discrete values of time tj = t\,...,t^ ■ These values break a 

control problem into "stages" (i.e., time intervals) of length A//, where tj+\=tj+Atj. For 

each stage, we can model a system's dynamic behavior by discrete changes 

■f 
ft+At 

Axw =  I       f(x,u,w,f)d/ 

In addition, at any discrete time tj, we can identify the state of a system by a function 

X(,,+l) = T,/x(,;),u(;>),w(,;)) 

where X(/y) and x(,>tl) are the states at the beginning and end of stage tj, and u(,y) and w(/;) 

are controlled and uncontrolled inputs applied during the stage. This equation identifies 

the "transition function" of a dynamic system. To avoid subscripts, I will frequently use 

the shorthand definitions 

ys*<M) .  XEEX«,) >  u = u(',) •  wsw(»>) >  tstj (2C1) 

Using these definition, we identify the transition function by 

y = T,(x,u,w) (2C2) 

Similarly, we identify the control policy and stochastic models by 

u = U,(x) 

s =   S,(x,u,w) (2C3) 

CONSTRAINTS 

A system model should not allow us to select infeasible control decisions. For 

example, reservoir releases cannot be negative. Feasibility may also depend on non- 

physical constraints that incorporate public policy considerations, contractual obligations, 
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or other legal constraints. Sometimes however, we may neglect certain feasibility 

constraints because they have a negligible impact on control policies (i.e., constraints that 

are never binding, or at least not during critical periods of system operation). For 

example, storage capacity in a reservoir system may be sufficiently large to have a 

negligible impact on limiting allocation decisions. 

We can represent inequality constraints in general form as 

lower bound </(x,u,w) < upper bound 

where / is any function of the variables x, u, and w (or s). For equality constraints, the 

lower and upper bounds are equal. Under certain conditions, we can re-express the set of 

constraints as 

B,L(x,w) < u(f) < B,u(x,w) (2C4) 

where BL and Bu are arrays of functions that define, respectively, the lower and upper 

bounds of control variables. Subscripts on these arrays indicate that constraints may 

depend on the current stage /. 

With stochastic inputs, constraints on decisions are also stochastic. When the 

impact of w on bounds is small, we can choose decisions that are feasible for all 

reasonable values of w. However, when the impact of w is large, control decisions may 

be unreasonably constrained or may have no values feasible for all w. 

To avoid stochastic constraints that unreasonably restrict available control 

decisions, we can make constraints deterministic by assuming foresight of w for the 

current stage. This also reduces the work for each optimization to identify the best 

control decisions. However, we now identify control decisions by a policy that is a 

function of both the initial state and random variables for the current stage: 

u(/) = U,(x,w) (2C5) 

As a result, we must identify optimal decisions for each possible outcome of w that we 

use to represent the stochastic distribution. As we will see, this can greatly increase the 

number of optimizations that we must perform, balancing out any reduction in work for 

each optimization. 

FEASIBILITY OF CONTROL DECISIONS WITH STOCHASTIC CONSTRAINTS 

In many hydrologic systems, the uncertainty of hydrologic variables can be quite 

large, making it difficult to fix control decisions in advance, even for the current stage. 

Frequent "tweaking" of control decisions is often required to adjust for changing 

hydrologic values. When developing mathematical models, we would like, ideally, to use 
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stage lengths that are small enough to allow tweaking of controls in a manner similar to 

actual operations. However, this may impose an unrealistically large computational 

burden that requires use of longer stages. 

Three approaches are available to ensure feasibility of control decisions under 

conditions of uncertainty. These are to (1) identify fixed controls that are feasible for all 

discrete outcomes, (2) identify controls that use some foresight of stochastic inputs, and 

(3) tolerate limited occurrence of infeasible controls as a form of model error. Each of 

these approaches requires simplification of the system model, and practical application 

may require tweaking of the identified controls. 

When using long stages, all the above approaches result in solution error. 

Because the first approach requires fixed controls that are feasible for all discrete 

outcomes, the range of available controls can be significantly constrained. This results in 

controls that are excessively conservative (i.e., cautious) and cost more than expected 

from actual operations. Because the second approach develops control decisions using 

prior knowledge of streamflows in the current stage, solutions may have an unrealistic 

advantage. This results in controls that are less conservative and cost less than expected 

from actual operations. 

The systems analysis methods presented in this thesis ensure feasibility of control 

decisions by using some foresight of stochastic inputs. Specifically, these problems 

assume foresight of current stochastic inputs s (or w) when identifying control decisions 

u. However, this foresight is "limited," because we use it only to identify current control 

decisions and not to identify the cost of current and future operations. In practical 

application, the resulting control decisions can be tweaked as observations of the true 

outcome are available. 

ARGUMENTS FOR USING LIMITED FORESIGHT 

Under most conditions, the use of limited foresight should produce better control 

decisions than alternative approaches. In particular, it is appropriate to use limited 

foresight when real-life changes in regulation occur more rapidly than simulated by a 

model. On the other hand, when the time required to implement changes is longer than 

the length of stages used in a model, it may be more appropriate to identify fixed controls 

for all outcomes of current stochastic inputs. However, there is little advantage to using 

stages that are shorter than the time required to implement changes. Moreover, using 

numerous, short stages can impose a significant computational burden. 

The following is a list of practical reasons that justify the use of foresight: 
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(1) Feasibility of Control Decisions 

Not using foresight may produce stochastic constraints for which there are no 

feasible decisions or for which the set of feasible decisions is unrealistically small. This 

is especially true when long stages are required to reduce the computational burden. 

(2) Limited Computer Resources 

Limited computer resources often require us to use long time intervals in system 

models. Real-time control of the true system will often be at shorter intervals, so the 

assumption of foresight produces a control policy that is closer to what we should use in 

practice. Also, with long time intervals, the impact of w is large and we may produce an 

empty set of feasible decisions as in (1). 

(3) Convergence of Solutions with Short Stages 

Even when we have the luxury of using short time intervals to reduce the impact 

of w on stochastic constraints, there is little benefit in not using foresight. As the impact 

of w diminishes, the significance of assuming foresight also diminishes. As a result, 

there will usually be a negligible difference between control policies that use foresight 

and those that do not. 

(4) Unboundedness 

A final—and perhaps most compelling—reason for not requiring feasibility for all 

reasonable w is that identification of reasonable w is arbitrary: do we bound reasonable 

w using a hundred-year or thousand-year flood event? If we use wide bounds to model 

extreme but rare events, then the impact of w may again become large enough to 

excessively constrain control decisions. 

2. Value Model of a System 

It is meaningless to talk about managing a system effectively without explicitly 

stating a measure of system performance. We require such a measure to compare the 

performance of one control policy or system-expansion plan with any other. For 

example, we may judge performance by how well inputs are regulated to minimize 

deviations from desired levels or to maximize some output. To measure system 

performance, we must develop a value model that explicitly quantifies this performance. 

Value models are often subjective and derived from a variety of decision makers 

with divergent views. As a result, identification of a single value model can be 

contentious [Rogers and Fiering, 1986]. Even when we measure performance by indices 
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such as minimizing absolute deviations or minimizing the square of deviations, these 

indices contain implicit judgments about the cost of deviations. 

When regulating a multi-objective system, it can be particularly difficult to 

identify a value model. Multi-objective systems require that we balance the costs and 

benefits of different objectives that may be in conflict and that may not have a common 

basis for measurement. Unfortunately, most reservoir systems require multi-objective 

analysis: Even when a system is designed for a single-purpose, multiple objectives exist 

because resources are limited and must be balanced with achieving the purposes of a 

system. 

ACCURACY OF VALUE MODELS 

Though it may be difficult to provide a precise measure of system performance, 

an approximate performance measure is better than none. An approximate measure can 

still incorporate significant information that will result in effective system management. 

For example, though we may not have a precise measure for the value of water supplies, 

we do know that the value of additional water generally diminishes with increasing 

supply. We can incorporate this information into an approximate value model, and better 

management will result than from management without any explicit or implicit value 

model. 
If we have some prior knowledge about appropriate management solutions, we 

can also use this to identify a value model. By using an iterative approach, we can 

progressively define a satisfactory value model. If an initial model produces an 

unsatisfactory solution, we can modify the model until we attain an appropriate solution. 

Using this approach, we can transform soft judgments and preferences into quantified 

performance measures. This also suggests that we can assess the implicit value 

judgments used in pre-determined management solutions. Likewise, we can evaluate the 

cost of constraints on operating and planning decisions. 

In this thesis, I use a variety of value models. Chapters Six, Eight and Nine use 

abstract value models used previously by other authors. Chapters Ten and Eleven use 

models based on reasonable values for water supply and for the cost of system 

management. Though reasonable, these value models still contain significant uncertainty. 

Various authors have worked at reducing uncertainty of water supply values [Cameron 

and Wright, 1990; Martin and Kulakowski, 1991; Martin and Thomas, 1986; Williams 

andSuh, 1986; Young, 1973], and Chapter Ten summarizes some of the results that we 

can use to provide values for the management of urban water supplies. 
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VALUE FUNCTION DESCRIPTION 

We can represent a value model in general form as 

&- = V(x,u,w,/) 
at 

This allows us to incorporate costs associated with the system state, controls, stochastic 

inputs, and time. If we update controls periodically instead of continuously, we can 

evaluate a "cost" for stage I as 

rt+At 

AV =  I       V(x,u,w,t)dl ■I 
which we can re-express as a function 

AV = C,(x,u,w) (2C6) 

where C, is a "current" cost associated with stage /. 

By evaluating the cost for each stage, we can assess the total cost (and 

"performance") for all stages by the summation 

ts 
V„ = X C,(x,u,w)   + FlNJx) (2C7) 

The function F,Ntl represents the long-term "future" cost or preference associated with a 
final state X(,vv,). For example, if we do not care about the impact of this final state on 

costs after stage f/v, we can set F,N^(x) = 0 for all x(/jVtl). On the other hand, if we need to 

attain some specific final state, either we can specify X(tN+l) - x(,) as a constraint, or we 

can specify FfAM(x) = 0 for x(/v+l) = x'" and a penalty cost F,„+,(x) > 0 for deviations from 

the target. 
In this thesis, I refer to the values produced by such models as "costs." This 

implies that the best operations and plans are those that "minimize" the cost from a value 

function. We can incorporate revenues or other benefits as negative costs. 

PERFORMANCE IN THE PRESENCE OF UNCERTAIN INPUTS 

We cannot precisely evaluate the total cost by equation (2C7) when some system 

inputs are uncertain. As discussed earlier, we cannot identify both control decisions and 

future states. We can identify actual system performance only after we have an 

opportunity to observe actual values of all inputs (i.e., with hindsight). 

Instead, because we must make control decisions in real-time, we can identify 

decisions that achieve the best possible "expected" performance. Expected performance 
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weighs possible outcomes of uncertain future inputs. For each control policy or schedule 

of proposed controls, we calculate cost as a weighted average of all possible outcomes. 

For example, if there are M possible outcomes of w in stage tj, the expected single-stage 

cost is given by the sum 

M 
Ew{ AV } = X vk C(x,u,w<*>) (2C8) 

k=\ 

Each parameter v* is the weight applied to the Ar'th outcome w<*> of the random variables. 

When a random variable has a continuous distribution, there is an infinite number 

of possible outcomes. As a result, the single-stage cost of equation (2C8) should be 

evaluated by the integral 

Ew{ AV } =  I      W(yr) { C(x,u,w) } dw (2C9) I. 
Function W(w) is the probability density of w used to weight the different outcomes. 

When w contains normally-distributed random variables, W(w) has a multivariate 

Gaussian distribution [Keeping, 1995]. However, analytic evaluation of integrals such as 

in equation (2C9) is usually difficult. 

Instead, we approximate expected-cost integrals using numerical integration, or 

"quadrature" using summations similar to equation (2C9) [Press et al, 1992]. To apply 

quadrature to equation (2C9), we need to identify a number of discrete outcomes w^ (or 

"abscissas") and appropriate weights v*. Abscissas are typically equally spaced 

outcomes at the nodes of a grid spanning the random variables. Weights depend on the 

abscissas, and there are several appropriate methods that we can use to evaluate these 

weights. For example, we may use the probability density function to define weights 

given by: 

v* = n ( AWJ w(wjk))} (2ci°) 

This approximation is known as the trapezoidal rule [Press et al., 1992]. There are other, 

more sophisticated, numerical integration methods that we will consider in Chapter 

Seven. 

3. Optimization of System Performance 

Our goal is to regulate a system to achieve the best possible performance. Given 

a system and value models for a system, our goal is to identify management decisions 
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that minimize system costs over a time horizon of interest. To identify these decisions, 

we need to employ some search method. A search method that automatically identifies 

the least-cost, or "optimal," decisions is also known as an "optimization" method. 

Depending on the characteristics of a reservoir management problem, we may 

choose to employ one of a variety of optimization methods. Problems considered in this 

dissertation are appropriately addressed by relatively simple "lumped-parameter" models 

because we can describe important state information—such as reservoir levels, 

streamflow forecasts, etc.—by a few state variables. Also, as discussed earlier in this 

chapter, reservoir management requires a cautious optimization method that can reduce 

the cost of extreme events. Because of these characteristics, I have relied on the 

optimization method of DDP discussed in Chapter Four. 

It is difficult to solve control problems with stochastic inputs, and all optimization 

methods rely on special characteristics of a problem to make it tractable. To help explain 

why it is difficult to solve stochastic management problems, the remainder of this chapter 

outlines the brute-force approach to finding real-time control decisions. 

DIFFICULTY IN IDENTIFYING PERFORMANCE FOR ALL STAGES 

With no stochastic inputs, we can identify a single optimal control schedule and 
the resulting system performance in advance. For a discrete initial state, x^\, we can 

evaluate the optimal schedule of control decisions u*,,),..., U*,N) and resulting system 

performance V* by 

V*(x(''>) = minUa|))._ U(/v){ V{x{^y\{h),..., x(,,Vt,),u(„),..., uils)) } 

As before, future states are defined by transition functions and constraints. Optimal 

control decisions and the resulting system performance can be identified relatively easily 

using an appropriate deterministic optimization method. 

With stochastic inputs, we cannot—in advance—identify a single optimal control 

schedule or the exact system performance. Using feedback control, there are an infinite 

number of possible control schedules, and we can only identify the best with hindsight. 

Also, a value model quantifies system performance for specific inputs, so we cannot 

evaluate actual performance until we know all inputs. 

Instead, we identify a set of policies, one for each stage, that provide control 

decisions for any possible outcome of the stochastic inputs. System performance is 

evaluated as the expected performance averaged over all possible outcomes with 

consistent application of the control policies. As discussed before, policies are functions 
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of the current state x that we observe and, when using limited foresight, of the current 

random variables w. 
The expected performance of a series of control policies {U(,,),...,U(/JV)}    for N 

stages is given by 

E{ V} = EW(fi))..., W(,w){ VlUa,,,..., U(l„>} (2C11) 

and the series of optimal control policies {U *,,),..., U*,v)} is given by 

F* = minU(li),..., U(lw){ E{ V } } (2C12) 

where F* is the optimal future performance expected under these policies. 

In contrast to the deterministic case with no stochastic inputs, optimal control 

policies and the expected system performance are difficult to identify. This is 

particularly true if we use equations (2C11) and (2C12) directly. The expected value of 

equation (2C11) is the multiple integration 

i»+oo r+°° 

E{V) =  I     W(vf(„))...  I     W(w(,w)) {V} dw(,,V)... dw(„) (2C13) 
J-OO J-QQ 

for a known series of control policies. Analytic solution of this equation is difficult, so 

we apply numerical integration analogous to equation (2C8): 

M M 

Ew(ll),.... w(,,v){ V } -  I v,„*,...   X v,H,kM { V ) (2C14) 

To evaluate equation (2C14) once for an initial state x[j|} and one series of control 

policies {U(,,).-,U(/A,)}    requires considerable effort: With M combinations of w for 

each stage, there are MN possible outcomes, each requiring an evaluation of the total cost 

given by VCxJ'^x^),..., x(^,),u(fl),..., u(/jv),w(„),..., w(ljv)). In addition, we must evaluate 

A^ transition functions and associated constraints. Suppose we evaluate a simple ten-stage 

model with two random variables. If we consider three possible outcomes for each 

random variable, the number of possible outcomes in each stage is M = 32, and the total 

number over ten stages is MN = (32)10, or about 3.5 billion. This is hardly a modest 

effort! As we see, the number of scenarios is essentially infinite for most realistic 

problems. 
For any stochastic control problem but the most trivial, it is futile to use equation 

(2C11) to evaluate the total cost function and equation (2C12) to search for optimal 

policies. Instead, we must identify a less general formulation and systems-analysis 

method. This formulation must take advantage of problem-specific characteristics and 
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appropriate simplifying assumptions. In the absence of appropriate simplifying 

assumptions, the formulation must employ assumptions judged to be least detrimental to 

the accuracy and validity of resulting management decisions. As we will see in Chapters 

Three and Four, one formulation involves breaking the control problem into smaller, 

easier-to-solve sub-problems using one of several dynamic programming methods. 

DESCRIPTION OF SYSTEM PERFORMANCE 

A function that describes the expected value of V at the time when controls are 

selected is also known as a "cost-to-go function" or a "future-cost function." For 

convenience, we may identify the future cost function by Fh where 

F„(x) = EW(;i),.„, W(/v){ VI U(ll,,..., U(,,v) } (2C15) 

This function specifies the expected system performance, or cost, to go from an arbitrary 

initial state x(/|) to a probabilistic final state x^,) at the desired time horizon. We wish to 

identify optimal control policies {U(/|),..., U(,v)} that we can use in real time to identify 

control decisions 

u* = U(*)(x,w) (2C16) 

Optimal control policies are those that minimize the total cost function for any initial 

state of the system. The function Ft(x) depends only of the system's initial state because 

everything else is determined: control decisions u are defined by control policies; 

random variables w are incorporated as a weighted average; and subsequent states 
X(,,),..., X(,v<.,) are defined by transition functions. 

This cost-to-go function summarizes all information that we need to assess future 

system performance and to make appropriate control decisions. When solved with 

sufficient accuracy, this function summarizes expected future costs of system operations 

and appropriately weighs the cost and risk of extreme events. Also, if we know the cost- 

to-go function for the end of our current stage, we can solve a single-stage optimization 

problem to identify current controls that appropriately balance current and future costs. 

For example, knowledge of the future water-supply value of water stored in a reservoir 

allows us to identify release decisions that balance the cost of current rationing with the 

cost of expected future rationing. Chapter Three will show that development of a cost-to- 

go function in each stage is the key that allows us to break dynamic control problems into 

easier-to-solve sub-problems. 
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CHAPTER 3. 

REVIEW OF OPTIMIZATION METHODS 

FOR STOCHASTIC DYNAMIC CONTROL 

Given a system and criteria for measuring the performance of the system (such as 

cost), we require a systems analysis method to determine the best real-time control policy 

where the "best" is defined as that policy that minimizes the total expected cost of system 

operations up to some time horizon as modeled by equation (2C7). As we saw at the end 

of Chapter Two, the effort required to identify such policies could be overwhelming, 

and—as we might expect—there currently appears to be no general optimization method 

that we can apply to solve all stochastic control problems. Instead, for each type of 

control problem, it appears that we must identify an optimization method that takes 

advantage of specific problem characteristics and, perhaps, appropriate simplifying 

assumptions. 

This chapter will present a brief summary of methods that we can use to solve 

stochastic dynamic control problems. As identified by Lamond and Boukhtouta [1995, p 

32], no single method can solve all problems that have the following characteristics: 

(1) a large amount of data required to describe the state of a system 

(2) uncertain parameters that are correlated and not normally distributed 

(3) non-linear dynamics, complex objectives, and constraints 

The weakness of various methods in one or more of these areas requires us to make 

simplifying assumptions in order to apply them, and these assumptions may be 

inappropriate for many problems. However, for a variety of reservoir management 

problems (such as those presented in Chapters Nine and Eleven), we will see that discrete 

dynamic programming (DDP) can be an appropriate method. 
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A. CURRENT STATUS OF SYSTEMS ANALYSIS APPLIED TO 
WATER-SUPPLY MANAGEMENT 

The operators of reservoir systems have continued to rely on simulation as the 

principal means for deciding what control policy to use. The use of optimization methods 

has been limited, primarily because of past difficulties in applying systems-analysis to 

realistic system models [Rogers and Fiering, 1986], and partly because of difficulties in 

quantifying the measures of system performance used in reservoir management 

[Brookshire et ai, 1986]. 

The exception to these general observations appears to be in the application to 

systems that have hydropower generation as the sole (or principal) goal of operations. In 

hydropower systems, it is easy to compare the benefits attained under different policies. 

Also, the simplifying assumptions have had only a reasonably small effect on the 

accuracy and appropriateness of the resulting control policies. Policies obtained using 

systems analysis have been successful in achieving larger hydropower benefits than well- 

established policies obtained using efficient heuristic methods. In hydropower systems, 

marginal improvements can be quantified, and systems-analysis methods have produced 

benefits amounting to millions of dollars [Kelmcm et ai, 1990]. Systems analysis 

methods have been applied to other types of systems to a lesser extent. The models and 

assumptions used in hydropower management have not been found appropriate for other 

types of reservoir problems. 

In this thesis, systems analysis methods are developed for application to water- 

supply management. This application has been motivated by my interest in ways to 

efficiently manage systems that use both surface water and groundwater (i.e., 

"conjunctive use") for urban supply. The structure of water-supply systems, including 

those that use both surface water and groundwater, is significantly different from the 

structure of hydropower systems. As a result, water-supply systems require quite 

different model formulations. Also, the assumptions that are appropriate for managing 

such systems are significantly different from assumptions that are appropriate for 

managing hydropower systems. 

Hydropower systems frequently are characterized by extensive and highly 

interconnected networks of reservoirs. Reservoir levels are frequently maintained at or 

near target levels to provide an optimum hydraulic head for power generation. At a 

constant head, the benefit of power generation is approximately a quadratic function of 

the release. Alternate power supplies (e.g., thermal power plants) are usually tied into the 

system, and the cost of curtailing power deliveries can be tolerated. These characteristics 
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permit appropriate simplifying assumptions, and various systems analysis methods have 

been used to produce useful policies for managing hydropower systems. 

In contrast, water-supply reservoirs frequently are managed independently or are 

managed in conjunction with a limited number of other reservoirs. Reservoir levels can 

vary widely, and it is rarely possible to identify a target storage level. Also, the 

management goals of water-supply are different and result in different types of functions 

for measuring benefits. Water supply benefits must be represented by more complex 

equations that reflect the vital role that water plays in sustaining life. Because of this 

vital role, extreme events that lead to water shortage have a disproportionate impact on 

system goals, and, therefore, the value functions are not reducible to simple linear or 

quadratic equations such as those frequently used in hydropower management. These 

characteristics make the simplifying assumptions that are appropriate for hydropower 

systems inappropriate for water-supply systems, and it has been possible to produce 

useful policies only when managing the simplest systems. 

Summary of Optimization Methods 

With stochastic inputs, the best management decisions for a system are not 

obvious. In particular, when future reservoir inflows are variable and uncertain, we 

cannot easily identify the best water supply and flood release decisions. Also, we cannot 

correctly evaluate the benefits of system expansion or other changes without stating what 

the control policies for the modified system are. Since we don't have the benefit of 

hindsight in making decisions about future events, the best decisions we can make are 

those that achieve the best expected performance over all possible future scenarios (as 

discussed in Chapter Two) weighted by their likelihood of happening. 

Complex real-world systems are often impossible or very difficult to model and 

solve analytically. To find a management solution, it is often necessary to excessively 

simplify the model of a real system. The so called "optimum" solution of this over- 

simplified model has frequently been far from the true optimal solutions of the real 

system. According to Rogers and Fiering [1986], practical applications of optimization 

to reservoir management have been limited, and managers have continued to rely largely 

on experience, in spite of several decades of effort trying to develop systems analysis 

methods. Indeed, experience appears to have been very effective in identifying 

appropriate ways to manage many well-established systems [Bredehoeft et al, 1995; 

Kelman et al, 1990] whose system dynamics, structures, and goals don't change much. 

However, this experience is not a sufficient to guide for the management of 

systems whose dynamics, structure, or goals change. These require systems analysis 
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methods to determine appropriate real-time controls and correctly evaluate the benefits 

and costs of different planning options. In particular, we need controls that hedge by 

balancing short-term costs with long-term expected costs that include the potential costs 

of extreme events. 

This chapter will touch upon some of the optimization methods that can be 

applied to a stochastic dynamic control problem. The methods vary depending on the 

number of state variables used to model the system and the complexity of constraints, 

objectives, and other characteristics. As more detail is added to the model, we may often 

be forced to accept simplifying assumptions to the point that the optimal solution of the 

model is useless as a management policy for the real system. The name of the game is to 

choose a model with enough detail as to be representative of the real system and to 

choose a solution method that can find the optimal solution. 

Table 3A1 summarizes many of the optimization methods that have been applied 

to reservoir management. These are methods that require (1) a forecast of stochastic 

inputs, (2) prior knowledge of appropriate control policies, or (3) a function that estimates 

the expected cost of future operations. Each of these methods can be modified to allow 

its application to almost any system, but the resulting control-policy will not be useful if 

the assumptions of the method are not valid. Table 3A1 also identifies for each method 

the maximum number of state variables that we may use to model a system. 

Not included in Table 3A1 are various aggregation-decomposition methods or 

hierarchical methods that may be used to simplify the model of a system and to allow 

application of systems analysis to large-scale systems. Aggregation-decomposition 

methods are those that "aggregate" information used to describe a system's state before 

optimization and that "decompose" this information following optimization. For 

example, this may be accomplished by optimization of "subproblems" used to feed to a 

global optimization problem or by identification of "principal components" of the state 

information [Saad and Turgeon, 1988]. Lamondand Boukhtouta [1995] summarize 

some of the aggregation-decomposition methods that may be employed. Hierarchical 

methods [Pereira and Pinto, 1983] are those that may be used to develop policies for 

long stages (e.g., weekly or monthly) which are consistent with policies appropriate for 

short stages (e.g., hourly or daily). 
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Table 3Al. Optimization Methods Used for Stochastic Dynamic Control 

Method Maximum number of states and other characteristics 

Forecast Based Methods 
Accurate if quadratic objective, linear dynamics, normal distributions, and no 
 inequality constraints  

Deterministic Feedback Control 

First-Order Analysis 

Chance Constraints 

Linear-Quadratic Control  

1000 

1000 - allows use of third-order polynomial 
objective 

1000  - allows use of probabilistic constraints 

1000 

Parametric Methods 
Accurate if prior knowledge of control policy, quadratic objective, linear 

 dynamics, normal distributions, and no inequality constraints  

Regression 

Neural Network 

1000  - requires prior knowledge of control 
policy 

100  - requires prior knowledge of control 
 policy  

Stochastic Dynamic Programming Methods 
Accurate for any type of objective, system dynamics, inequality constraints, or 
 probability distributions  

Parametric DP 

Discrete DP 

Stochastic Dual DP 

Static 

100  - requires prior knowledge of cost-to-go 

10  - requires sufficient state discretization 

100  - requires sufficient number of trial states, 
strictly convex or concave cost-to-go 

1000  - requires steady-state  
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B. FORECAST-BASED METHODS 

Systems analysis should use optimization methods that incorporate information of 

the state of the system as the system moves into the future. This allows development of a 

"feedback" process that uses previous results of stochastic inputs and their impact on the 

system's state to reduce future uncertainty and improve control decisions. For example, 

systems analysis applied to reservoir management should use observed inflows and 

storage levels to reduce the uncertainty of future inflows and improve release decisions. 

Forecast-based methods incorporate this feedback using the "best" available 

estimates of stochastic inputs and states to make control decisions. As time passes, 

forecasts and control decisions are improved as more and more actual outcomes are 

observed. Usually, a forecast is "expected" (i.e., the probability weighted) outcome of all 

possible stochastic-input scenarios. Sometimes the forecast is defined as some scenario 

that suits the goal of system management. For example, a "worst case" historical 

scenario of reservoir inflows could be used to make control decisions that will avoid 

some undesirable outcome (e.g., complete emptying or filling of a reservoir) given a 

repeat of any previously observed inflows. 

Deterministic Feedback Control (DFC) 

DFC is the most popular forecast-based method. Control decisions are found by 

optimizing a deterministic model using expected forecasts and by periodically updating 

the forecasts and reoptimizing. 

Because DFC can be used to generate control decisions for every state, we could 

develop policies that describe control decisions as a function of state variables. With 

such a set of policies at hand, decisions could be updated automatically to achieve 

"closed loop" control. This is rarely done in practice as this requires, in advance, the 

solution of an optimization problem for each initial and future state of the system. As a 

result, the updating of control decisions using DFC is not automatic, and forecast-based 

methods produce "open loop" control [Lamondand Boukhtouta, 1995, p 16]. We must 

periodically reoptimize as we observe the actual outcome of inputs and states. 

DFC identifies control decisions that assume perfect foresight of future inputs. As 

a result, control decisions may not be cautious enough in avoiding certain low-probability 

events that have catastrophic consequences. The forecasts do not warn of the possibility 

of events happening until after system conditions have evolved to the point that it may 
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not be possible to avoid the consequences [Kitanidis and Andricevic, 1989]. For 

example, DFC will delay taking action to avoid the emptying of a reservoir until the 

forecasts of low inflows and reservoir levels indicate that complete draining is likely. 

Even though managers of many reservoir systems use some form of DFC, they 

also recognize that it is important to be extra cautious. Thus, managers often use ad-hoc 

procedures to hedge against unacceptable, low-probability outcomes [Kitanidis, 1987]. 

Often, these procedures constrain system operations to avoid the worst consequences 

under a simulated recurrence of extreme historical events. For example, water-supply 

agencies in western North America often use the severe 1976-77 drought to evaluate their 

system's vulnerability [EBMUB, 1992]. 

While incorporating additional caution, ad-hoc procedures may leave systems 

vulnerable to extreme events beyond those previously seen. For example, before 1976, 

the prolonged droughts of the 1920's and 30's were the worst drought periods on record 

[Glantz, 1982], and the short, but more severe, 1976-77 drought caught many water 

management agencies unprepared. Preparation for specific extreme historical events— 

whose exact duplication is nearly impossible—may produce controls that are not cautious 

enough, too cautious, or both depending on the conditions. 

First-Order Analysis Methods 

First-order analysis (FOA) methods [Stengel, 1994, pp. 436-443] can be used in 

place of ad-hoc procedures to induce extra caution and protect against low-probability 

events. FOA identifies cautious control decisions by including an extra term to 

incorporate the first-order impact of stochastic inputs. We may expand our representation 

of a control policy [Kitanidis, 1987] by the series 

u* - u(0) + u(1)<r + u(2V + 

where UJ^ is the deterministic control policy identified by DFC. Higher-order terms are 

computed from a Taylor series expansion, assuming no constraints are binding 

(constraints are applied only to the deterministic policy). It turns out that U(f) is zero, so 

FOA uses the deterministic and second-order terms. In contrast, DFC makes the 

assumption that the higher-order terms are insignificant and that mean values of future 

inputs are sufficient to describe future uncertainty. 

Higher order terms result from the impact of stochastic inputs where a is a scaling 

factor of the forecasting-error covariance matrix 

Q(o = Ew(0{ w(o WJ ) 
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and 

a1 = Trace { Q(0 } 

As with DFC, control decisions depend mainly on the forecast of future states and 

stochastic inputs. When a2 is zero (or when the condition of "certainty equivalence" 

holds), DFC and FOA methods are exact and produce the same control policy. 

By including higher order terms, we can solve a control policy that is better at 

incorporating the impact of low-probability events and therefore is more cautious. 

Kitanidis [1987] introduced FOA, also known as the "small-perturbation approximation," 

for the solution of stochastic reservoir control problems. FOA accounts for contingencies 

and, as a result, is more cautious. Kitanidis and Andricevic [1989] showed that policies 

obtained from FOA perform much better than policies obtained from DFC. Even though 

DFC generates control decisions that usually perform slightly better than FOA under 

average conditions, they could perform much worse under extreme conditions. 

Chance Constraints 

Chance constraints require that operations "succeed" with a specified level of 

reliability by approximating the probability distribution of stochastic inputs using first 

and second moments (i.e., mean and variance). Chance constraints do not consider the 

impact of extreme events when minimizing the expected cost of operations; however, 

they develop operating strategies that are more cautious than "risk-neutral" strategies that 

result from using expected values of stochastic inputs. For example, Revelle et al. [1969] 

and Bhaskar and Whitlatch [1987] applied chance constraints in their evaluations of 

linear release-policies constrained by reservoir capacity. Even when feedback is not 

important, chance constraints are useful in the presence of uncertain parameters. For 

example, Wagner and Gorelick [1987] require that groundwater quality standards be met 

with a specified level of reliability in the presence of uncertain aquifer properties. 

Chance constraints are especially useful in problems where the goal is to 

minimize the rate of system "failure," defined perhaps as an inability to meet all demands 

or avoid flood damage. However, water-supply agencies are finding it impossible to 

avoid "failure" as water rationing or other forms of failure become more common with 

increasing demands and increasing regulatory constraints on operation. Increasingly, 

efficient management of reservoir systems is shifting from reducing the likelihood of 

failure to reducing the severity of failure. Though both FOA and chance constraints use a 

"first-order" approximation of probability distributions, chance constraints evaluate only 

the probability of achieving some goal or violating some constraint. 
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Linear-Quadratic Control 

When a single nominal (i.e., optimal) target state can be identified, stochastic 

inputs tend to move the system away from this state. In this case, optimal control acts to 

move the system back to the nominal state [Stengel, 1994, pp. 443-451], and we can use 

linear-quadratic control (LQC) to identify real-time decisions. In unconstrained systems 

with a quadratic objective, linear dynamics, and normal distributions, the optimal control 

policy is a linear function of deviations from the nominal state. Such systems allow us to 

determine optimal control policies without the need to reoptimize after each updated 

forecast. Thus, we can achieve closed-loop control. 

LQC is applicable to a wide variety of problems where the purpose of control is to 

correct small deviations from a pre-specified desired trajectory or condition. In such 

cases, small deviations allow us to ignore constraints under most conditions and use a 

quadratic first-order function to estimate the cost of deviations. For example, Wasimi and 

Kitanidis [1983] and Loaiciga and Marino [1985] use LQC for daily operation of a 

system of flood-control reservoirs to maintain reserved space, McLaughlin and Velasco 

[1990] use LQC to track power output targets in a system of hydropower reservoirs, and 

Georgakakos [1989a] uses LQC in a multiobjective system. 

Advantage of Forecast-Based Methods 

Forecast-based methods, and particularly DFC, are popular because they are 

relatively simple to understand and implement. Because these methods use a single 

scenario of future inputs, only a single optimal control schedule needs to be evaluated and 

not entire policies. Also, it is much easier to find the optimal control decisions that 

require evaluation over a single outcome (a "deterministic" problem) rather than control 

decisions that require evaluations over the entire space of possible outcomes (a 

"stochastic" problem). 

Forecast-based methods can be solved using a variety of deterministic 

optimization programs. Many of these methods are capable of modeling systems with 

many state variables and non-linear objective functions, dynamics, and constraints. 

Among these methods, differential dynamic programming is perhaps the most flexible; 

and it has been applied to a wide variety of forecast-based optimization problems, 

including hydropower generation, air traffic control, and various other feedback control 

problems [Yakowitz, 1982]. Differential DP has also found frequent application in 

multireservoir control and groundwater flow problems characterized by complex 

dynamics and abundant state information. For example, Murray and Yakowitz [1979] 
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use differential DP to solve a ten-reservoir control problem, and Jones et al. [1987] use 

differential DP to control nonlinear groundwater hydraulics. 

Chang et al. [1992] and Whiffen and Shoemaker [1993] modify the DFC method 

to incorporate feedback laws that change pumping rates directly in response to 

observations. When systems have linear dynamics, we may also use linear programming 

or linear-quadratic programming to allow even more large-scale (i.e., detailed) models or 

to reduce the computational burden. For example, Atwoodand Gorelick [1985] linearize 

the response of hydraulic head to determine pumping and recharge schedules for gradient 

control using a combination of simulation and linear programming. 

When caution is important, FOA (or chance-constraint) methods can be used to 

add caution to DFC solutions. FOA is somewhat more difficult to implement than DFC 

because we must adjust the deterministic control policy by a hedging term. The 

computational effort is not significantly greater, and the method can also be applied to 

problems with many state and control variables. As with DFC, FOA has found 

application in multireservoir control and groundwater flow problems, especially those 

characterized by complex dynamics and a large amount of data required to describe the 

state of a system. For example, Kitanidis and Andricevic [1989] solve a four-reservoir 

problem in which inflows are uncertain. Andricevic and Kitanidis [1990] solve a one- 

dimensional flow problem with uncertain parameters to remove groundwater 

contaminants. Lee and Kitanidis [1991] solve a more detailed flow problem with a 

longer time horizon. Georgakakos and Vlatsa [1991] use the FOA method to manage 

two confined aquifers using various performance indices in the presence of uncertain 

transmissivity and boundary conditions. 

Simplifying Assumptions of Forecast-Based Methods 

Forecast-based methods assume that optimization of a deterministic model using a 

single forecast will yield reasonable control decisions. This assumption is valid only 

when controls need not incorporate extra caution or "hedging" to avoid the consequences 

of extreme events; that is to say, when the condition of "certainty equivalence" holds 

[Kitanidis and Andricevic, 1989]. 

Certainty equivalence holds for unconstrained system models with linear 

dynamics, quadratic cost functions, and normally distributed inputs [Kitanidis, 1983; 

Lamondand Boukhtonta, 1995, p 17]. In these cases, we can achieve close-loop control 

by identifying a control policy by LQC. This can be seen in the results of Bhaskar and 

Whitlatch [1980]; they observe that linear control policies result when using a two-sided 

quadratic loss function but not when using a one-sided function. Certainty equivalence 

40 



also holds approximately for system models whose stochastic inputs cause only small 

deviations from a nominal state, even when other conditions are not satisfied. 

When the condition of certainty equivalence does not hold, FOA (or chance 

constraints) can be used to add caution to a deterministic control policy. FOA is accurate 

when a1 is "small" in some sense and when fourth and higher derivatives of the value 

function have little effect on the control policy [Kitanidis, 1987]. As with DFC, FOA "is 

appropriate for real-time operation problems for which the optimal release depends 

mainly on the best projection of future conditions (mean values) and the mean squared 

estimation error of forecasting uncertainty (variances/covariances)." In other words, 

FOA is appropriate for problems with loose constraints and objective functions that are 

locally third-order functions. For other problems, we are not guaranteed that control 

decisions will have the appropriate level of caution. 

In Chapter Nine, we will see that DFC can produce reasonable solutions when the 

condition of certainty equivalence holds approximately, even when a system model 

contains constraints. Chapter Nine provides a test of DFC solutions obtained by 

generating a large number of random scenarios. Application of DFC to these scenarios 

shows that when the condition of certainty equivalence holds at least approximately, the 

observed performance of DFC is distributed about the performance anticipated by the 

forecast. Nevertheless, we will also see that DFC solutions deteriorate as the impact of 

constraints and cost functions moves a system model away from the condition of 

certainty equivalence. 

Application of Forecast-Based Methods to Water-Supplv Management 

Most models that deal with reservoir system operations assume that the 

streamflow forecast is error-free [Kelman et al, 1990], permitting identification of a 

single set of "optimal" control decisions. This allows application of a variety of 

successive approximation methods to solve high-dimension reservoir control problems 

that are not tractable using other methods [Foufoula Georgiou, 1991]. In particular, 

managers of reservoir systems often use some form of DFC because of its ease and 

flexibility. For these systems, identification of the best forecasts of future inputs is a 

major priority [Bender andSimonovic, 1994; Georgakakos, 1989b]. In systems that 

allow identification of a nominal state (such as systems that have a target reservoir or 

river level for short-term regulation or for hydropower generation, recreation, and 

navigation), LQC can frequently be applied. 

Unfortunately, forecast-based methods are inappropriate for many water-supply 

management problems and for a variety of other reservoir control problems. In these 
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problems, we cannot identify a nominal state. For example, we cannot identify a nominal 

reservoir level for water supply unless reservoir capacities are large relative to demands 

and inflow variability. Also, the condition of certainty equivalence is not sufficiently 

correct because extreme events can produce extreme, non-quadratic costs: complete 

draining of a sole-source reservoir in a water-supply system is catastrophic for consumers 

ofthat supply. As a result, water-supply management requires cautious control policies 

that hedge against severe shortages by imposing rationing early. 

Just as it is common to buy insurance that compensates us for the consequences of 

fire, theft, accidents, or other unlikely events that could have severe consequences in our 

personal lives, so it is for water-supply management; we buy "insurance" through 

decisions that hedge against the severe consequences of extreme droughts, floods, or 

other consequences. Nevertheless, we may not always be rewarded for our caution in 

managing reservoir systems [Glantz, 1982], and we should balance the cost of hedging 

with its long-term expected benefit. 

As noted earlier, DFC solutions can significantly underestimate the expected cost 

of system operations because forecasts fail to adequately consider the impact of extreme 

events. When the impact of low-probability events is significant, DFC policies perform 

poorly when compared with policies obtained from other more-cautious methods. These 

other methods hedge against the occurrence of various contingencies [Kitanidis and 

Andricevic, 1989]. FOA is one example of these other methods; however, FOA captures 

only the first-order effects of uncertainty, and the resulting decisions may not be cautious 

enough or sometimes even too cautious. 

C. PARAMETRIC METHODS 

Parametric methods present another group of optimization methods that we may 

use to identify feedback control policies. These methods offer some of the advantage of 

FOA by identifying decisions that are more cautious than those of DFC, and these 

methods offer some of the advantage of LQC by identifying control policies that allow 

closed-loop control. 
"Parametric" methods reduce the problem of stochastic control to one of fitting a 

limited number of parameters (e.g., coefficients) in pre-determined control-policy 

functions. Similar to forecast-based methods, parametric methods incorporate feedback 

by adjusting the control response to observed outcomes of stochastic inputs and state 

variables. Unlike previous methods however, parametric methods do not require a 

forecast and control decisions are directly given as functions of the system state alone. 
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Parametric methods dramatically reduce the effort required to solve a stochastic 

control problem by using "soft" knowledge. For example, if we have some expectation 

based on prior experience about the characteristics of a good control policy function, then 

we may a-priori identify it as the correct functional form. Another example is modeling 

which involves fitting parameters to underlying functional forms that identify a system's 

structure and operation. As a result, parametric methods are frequently used in 

combination with other stochastic methods to simplify system models. 

To identify a control function, parametric methods identify parameters that match 

some known or assumed relationship between inputs (the system's state) and desired 

outputs (the "optimal" control decisions). In some cases, this relationship can be 

captured by arbitrary functions that have no basis in the structure or operation of a 

system, since the application of these functions is judged solely by their ability to 

empirically reproduce the relationship between inputs and desired outputs. These outputs 

are usually identified by deterministic optimization of historical inputs (e.g., reservoir 

inflows) or other scenarios. A stochastic problem is solved when optimization identifies 

parameters that minimize some measure of "cost," such as those that minimize the sum of 

squared differences between control policy outputs and desired outputs. 

Following is a brief outline of stochastic optimization methods that are 

"parametric" because the solution process includes "fitting" parameters to pre-selected 

functions. The process of fitting parameters to pre-defined control-policy functions gives 

rise to methods that share similar advantages and limitations. 

Regression 

Regression includes a wide variety of curve fitting methods. The particular 

function form of the curve and the particular fitting method depends on what prior 

knowledge we have about a control policy solution. Regardless of the form and method 

employed, the basic approach is to reproduce the relationship between sets of input and 

output data. The simplest example is linear regression that describes a relationship 

between a single input x and output y by fitting parameters {a,b} in the equation 

y(x) = ax + b 

to data pairs {(x('\yW), i=l,N}. 

Usually, a smooth curve is unable to exactly match input and output data. For 

example, random errors (that add "noise" to the relationship) and imprecise knowledge 

about the correct functional form prevent a complete description of the relationship. To 

identify parameters, we minimize some measure of the errors between true values y(,) and 
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estimates y(,). Typically, the best fit is identified by linear-quadratic programming to 

minimize the sum of squared errors. When a better fit is required, we might use higher 

order functions or functions that seem more appropriate based on the observed or the 

expected relationship between x and y. 

Neural Networks 

Neural networks also describe a functional relationship between sets of input and 

output data, but they require somewhat less prior knowledge to identify a control policy. 

A neural network consists of layers of nodes or "neurons" that sum input signals to 

produce an output signal. The "input" layer is the first layer of nodes that accepts signals 

from the system's state. The "output" layer is the last layer of nodes that produces 

control decisions. In between, there may by one or more "hidden" layers that combine 

these signals. The more hidden layers and nodes used to model a system, the more 

degrees of freedom that a control policy has to take into account in order to capture the 

interrelationship between inputs and outputs. Input and output data are used to "train" the 

neural network in an iterative process that varies the weights applied to signals between 

nodes. The objective is to find weights that minimize some measure of the errors 

between output from the network and the desired output from the data sets. When a 

better fit is required, an improved neural network model is developed with more nodes in 

a layer, more layers, or different methods of summing input signals. 

Advantage of Parametric Methods 

As with forecast-based methods, parametric methods are relatively simple to 

implement and understand. By using soft knowledge about a control policy solution, 

parametric methods allow us to significantly reduce the effort required to solve a 

stochastic control problem. Also, parameters can be fitted by a wide variety of 

deterministic optimization programs, and parametric methods can be applied to large- 

scale stochastic control problems. 

In some applications, parametric methods avoid the development of stochastic 

models. This can be useful in cases where it is difficult to construct a stochastic model. 

For example, the historical record may be insufficient to build a detailed stochastic model 

for inputs that are highly correlated and seasonal. If the historical record is sufficiently 

long, there is no need to develop synthetic scenarios to represent the relationship between 

state-variable inputs and control-variable outputs. 
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Simplifying Assumptions of Parametric Methods 

There is no guarantee that solutions obtained by parametric methods are truly 

optimal because the control-function shape specified before design may be incorrect 

[Stengel, 1994, p. 185]. Also, there are no general guidelines for function selection, other 

than to try to use functions that are easy to implement numerically or that are "natural" 

for the problem at hand [Stengel, 1994, p. 193]. 

Unfortunately, it may be difficult to test whether a particular functional form is 

appropriate since we may only compare solutions using different functions (based on the 

same soft knowledge). Unlike DDP (described later) which allows an increasingly fine 

mesh of discrete states, there may not be a series of increasingly detailed functions that 

can be used to generate solutions that converge to the true optimal solution. In addition, 

increasingly detailed functions can lead to the phenomenon of overfitting as the number 

of degrees of freedom in the solution structure approaches the number of available pairs 

of input and output data. 

Because the optimal relationship between the control policy and inputs is 

unknown (since this is what we want to determine), it is common practice to use the 

historical record in a deterministic optimization and to assume that the resulting 

relationship can be used to approximate the true optimal relationship [Karamouz and 

Houck, 1982; Karamouz and Houck, 1987; Young, 1967]. This approach is most popular 

both because it can provide the needed data sets and because it avoids the need for 

stochastic models of inputs. However, where the historical record is short or is not 

representative of future conditions, synthetic scenarios can be generated [Karamouz et 

al, 1992]. 
Unfortunately, the relationship between input and output data established by 

deterministic optimization is not correct unless the condition of certainty equivalence 

holds. Because deterministic optimization uses perfect foresight, the true optimal 

relationship is the same as the average relationship only when the condition of certainty 

equivalence holds. When a system is far from satisfying this condition, policies that 

result from parametric methods may generate an incorrect relationship. 

Application of Parametric methods to Water-Sunnlv Management 

Parametric methods have found considerable application to reservoir management 

problems in the literature. A significant advantage of these methods is that they can be 

applied to systems with well-established simulation models or in combination with other 

optimization methods to solve relatively large-scale reservoir management problems. 
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Parametric methods often permit significant simplification by using soft knowledge that 

is often available from long experience operating these systems. 

However, without soft knowledge that can be used to identify the functional form 

of a control-policy function, parametric methods should not be used. Parametric methods 

used in systems analysis of new and unfamiliar problems can result in sub-optimal 

control policies. Moreover, it is likely that a fitted control-policy function will perform 

poorly and result in significant losses under critical extreme conditions where intuition is 

weak. 

In addition, parametric methods should be applied cautiously to avoid over-fitting 

limited data. This is especially true when we use detailed models, such as when we use 

high-order control-policy functions, or when we use numerous layers and nodes in neural 

networks. The worst models are often the most complex, making it difficult to interpret 

solutions. Complex models also make it difficult to verify that control policies are 

consistent and otherwise in accord with our understanding of how the system should be 

operated. On the other hand, the best models are often the simplest. This is particularly 

true when data values are not known with much accuracy (e.g., due to measurement 

error) and detailed models may result in fitting the noise rather than the true relationship. 

Careful model selection can often simplify the representation of a system without 

significantly degrading the accuracy of solutions. For example, when a system contains 

seasonality or other non-stationary process (e.g., a process that changes, such as from 

changing system structure or changing probability distributions), it may be appropriate to 

"pre-whiten" the data, removing the influence of trends or other changes. 

In the case of the real-time control of reservoir systems, the input data are the 

reservoir storage, prior inflows, demand, and other state information, and the outputs are 

the amount to release and other control decisions. The most popular regression method 

applied to the control of reservoir systems is multiple linear regression that describes the 

relationship between the vector of inputs x and a control decision u = U(x) given by 
n 

U(\) = ao + X ajxJ 

where {a;, /'= 1 ,n} are fitted parameters, or weights, applied to each state variable. Young 

[1967] introduced the use of linear regression to determine release decisions that are a 

linear function of inflow and storage levels.  Young [1967] and Bhaskar and Whit latch 

[1980] tested more complex functions and found that linear functions often perform 

better in many cases. Other applications have added chance constraints and more 

complex models [Bhaskar and Whitlatch, 1987; Curry et ai, 1973; Karamouz and 
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Houck, 1982; Loucks and Dor/man, 1975; Marino and Simonovic, 1981; Revelle etai, 

1969; Simonovic, 1979], though most applications continue to use linear control-policy 

functions. Bogle and O'Sullivan [1979] take a somewhat different approach by 

identifying parameters of a pre-determined class of control-policy functions. They 

constrain the control policy for reservoir releases to be a step function with two 

parameters that identify critical storage levels below which releases are at a minimum 

value and above which releases are at a maximum value, with linearly changing releases 

between these storage levels. 

Neural networks have recently received considerable attention for the real-time 

control of reservoir systems [Saadet ai, 1994] and for the development of forecasts 

[French et al., 1992; Karunanithi et ai, 1994; Tang and Fishwick, 1993]. Raman and 

Chandramouli [1996] provide a clear and concise description of the method's application 

to a simple reservoir problem. In addition, neural networks find application to a variety 

of large-scale problems characterized by a large amount of state information. These 

applications include aquifer parameter estimation [Rashidet ai, 1992; Rizzo and 

Dougherty, 1994], groundwater remediation [Ranjithan et ai, 1993; Rogers and Dowla, 

1994], and aggregation/decomposition of large-scale reservoir systems [Saadet al, 1996; 

Saad etai, 1994]. 

D. STOCHASTIC DYNAMIC PROGRAMMING METHODS 

Stochastic dynamic programming (SDP) presents a third group of optimization 

methods that we may use to identify feedback control policies. Bellman [1957] coined 

the term "dynamic programming" (DP) to describe "the theory of multistage decision 

processes." Yakowitz [1982] noted that DP may broadly define all optimization methods 

that solve time-varying or dynamic problems; however, conventional usage of the term 

identifies optimization methods that solve a dynamic problem by dividing it into a series 

of subproblems, one for each stage of an operating horizon. 

In this section, we will consider SDP methods that develop explicit cost-to-go 

functions for each stage of a stochastic control problem. If we consider enough discrete 

states, then we can identify functions that accurately describe the expected cost of future 

operations for any initial state. By estimating a cost-to-go function for each stage of a 

stochastic control problem, SDP methods can decompose the difficult problem of finding 

optimal control policies for equation (2C12) into a series of easier subproblems, one for 

each stage. In contrast, deterministic DP methods (such as differential DP) do not 

develop explicit cost-to-go functions since they need only identify a single control 
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schedule and not a series of control policies. Note that SDP methods can also be applied 

to deterministic problems, though it is not usually practical to do so. 

In each stage of the problem, the control policy is defined by decisions that 

minimize the current cost of operations and the expected future cost given by the cost-to- 

go function for the next stage. This means that SDP problems are usually solved using 

backwards recursion, starting with the last stage (as the first subproblem) and working 

backwards to the first stage. At the beginning of a stage, the expected cost for each state 

is evaluated as the minimum weighted average using various scenarios to go from the 

beginning state to a state in the next stage. The effort to calculate this expected cost and 

to identify optimal control decisions is much less than the effort to calculate the expected 

cost and control decisions for a scenario path that spans all stages of a control problem. 

A more detailed illustration and discussion of SDP follow in the next chapter. 

The principal challenge in applying SDP is estimating a continuous cost-to-go 

function from discrete costs. SDP methods are distinguished by how they interpolate 

between discrete costs and by the number of initial states that must be evaluated. 

Following is a brief outline of SDP methods that use different function estimates to solve 

stochastic control problems. Unlike forecast-based methods and parametric methods 

discussed earlier, these methods have widely varying abilities and limitations. 

Parametric Dynamic Programming 

Parametric DP uses soft knowledge of the cost-to-go to identify pre-defined forms 

of a cost-to-go function. Thus, the method is similar to parametric methods because it 

requires some prior knowledge of a solution and because it requires fitting parameters. 

However, control decisions are the direct result of optimizing system goals and not the 

indirect result of a control policy fitted to reproduce a relationship between input and 

output data sets. Because parametric DP does not require input and output data sets, 

accurate solutions do not require the condition of certainty equivalence (so that the data 

sets identify the optimal relationship) and they avoid the problem of overfitting. 

As a result of using soft knowledge, parametric DP dramatically reduces the effort 

required to solve stochastic control problems. Similar to parametric methods, parametric 

DP requires evaluation of only a limited number of discrete states to fit parameters (if we 

have identified the correct functional form and if there is no noise). In general, the 

number of discrete states grows only linearly with the number of state variables. For 

example, (n+l) initial states are required to fit an /z-dimensional multi-linear cost-to-go 

function. 
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Bellman and Drey/Us [1962] were the first to propose parametric DP to overcome 

the so called curse of dimensionality. When solving a stochastic control problem, the 

curse of dimensionality refers to the exponential growth in effort with the number of state 

variables. Bellman and Dreyfus suggested using orthogonal polynomials to provide a 

global approximation of the cost function. However, their purpose was to reduce the 

exponential growth in memory required to store cost data at grid nodes, and not 

specifically to interpolate a cost-to-go function accurately. Unless polynomials are 

appropriate for global approximation, cost-to-go estimates are not accurate and the use 

high-order polynomials to match data may produce non-convex cost-to-go functions that 

oscillate. Other authors have recognized that local approximations provide better cost- 

function estimates [Foufoula Georgiou, 1991]. 

Gal [1979] applied parametric dynamic programming to a water supply system 

with three state variables (one for storage and two for inflows during two prior stages) by 

developing an iteration method to identify parameters of second-order polynomial cost- 

to-go functions. However, Gal noted that "contrary to the usual dynamic programming 

approach, the parameter iteration method is not fully automatic. It is expected that the 

user have a good understanding and intuition about the behavior of the considered 

system." Nevertheless, we may apply parametric DP to problems for which the curse of 

dimensionality prevents application of DDP. 

Discrete Dynamic Programming 

Discrete dynamic programming (DDP) uses interpolation over a fine mesh of 

discrete states to identify a cost-to-go function. In contrast to parametric DP that finds a 

single global function that is applied over the entire state domain, DDP uses a local 

approximation. Early applications of DDP depicted the cost-to-go as a set of nodes in a 

directed-flow network, as in the traditional "stagecoach problem" [Hillier and 

Lieberman, 1990]. Accurate solution development required a large number of discrete 

states at nodes of a fine state-space grid, and continuous cost-to-go functions were 

estimated using "nearest neighbor" interpolation (using a value at the nearest discrete 

state to estimate the costs at intermediate states). In more recent applications, multi- 

dimensional linear interpolation or higher-order interpolation methods [Foufoula 

Georgiou and Kitanidis, 1988; Johnson et al., 1993; Kitanidis and Foufoula Georgiou, 

1987] have been used to estimate the costs at intermediate states. 

Higher-order interpolation methods can be more accurate and may produce 

accurate cost-to-go estimates with coarser state-space grids. Kitanidis and Foufoula- 

Georgiou [1987] and Foufoula-Georgiou and Kitanidis [1988] developed Gradient DP to 

49 



use both cost and gradient information to improve interpolation over a rectangular grid. 

Gradient DP uses cubic Hermite polynomials in an interpolation algorithm that preserves 

costs and gradients at nodes of the grid. They demonstrate that with a decrease in the 

grid discretization interval of Ax, the error of the control policy and the cost functions 
converge respectively as (Ax)3 and (Ax)4 using Hermite interpolation versus Ax and 

(Ax)2  using linear interpolation. Their implementation of Hermite interpolation 

produced a cost-to-go function estimate that was continuous but only piecewise smooth. 

Johnson et al. [1988; 1993] avoid the need for gradients by developing cubic spline 

interpolations that use node values distributed over a larger subdomain. The resulting 

interpolation algorithm produces continuous first and second derivatives and allows them 

to fully implement an efficient Newton-based search method. 

Stochastic Dual Dynamic Programming 

Stochastic Dual Dynamic Programming (SDDP) estimates a cost-to-go function 

by evaluating expected costs only where needed most. At each discrete state, an 

estimated cost and gradient is evaluated to define a "cutting plane." A cutting plane is an 

affine function that bounds the optimal cost-to-go function. For a convex cost-to-go 

function (and minimum-cost objective), a cutting plane is a lower bound. By increasing 

the number of "cuts," the cost-to-go function can be estimated with increasing accuracy. 

Using a linear or linearized model in a single-stage subproblem, cuts can be efficiently 

identified by the dual to the linear programming problem [Gorenstin et al., 1992; Pereira 

and Pinto, 1991]. 
SDDP iteratively improves estimates of the cost-to-go for each stage by backward 

and forward loops using the Benders decomposition principle [Benders, 1962]. During a 

backward loop through the stages, SDDP improves the accuracy of estimated cost-to-go 

functions by adding cuts. The backwards recursion permits cost-to-go estimates using the 

improved cost-to-go functions of later stages. During a forward loop through the stages, 

SDDP uses trial scenarios to evaluate the simulated performance of the current cost-to-go 

functions and to identify new discrete states for cuts in the next backwards loop. The 

average cost of operations for the trial scenarios identifies a probabilistic upper bound on 

the optimal cost-to-go function (assuming a convex function), and the certainty of this 

bound increases with the number of scenarios. With continued looping backwards and 

forwards, the function estimate and the simulated estimate converge, providing tighter 

bounds on the true cost-to-go. Estimates are considered to be accurate when the lower 

and upper bounds are deemed "close enough" to tightly bound the true cost-to-go with a 

specified probability. 
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As with neural networks, SDDP has recently received considerable attention for 

the real-time control of reservoir systems. Pereira and Pinto [1985] used the dual 

solutions and Benders decomposition to solve a four-reservoir case study and a 37 

reservoir example with five month-long stages. Pereira and Pinto [1991] coupled dual 

decomposition to the SDDP method to approximately solve release decisions for a 39- 

reservoir hydropower system. A variety of other applications have also been made to 

other hydrothermal power generation problems [Gorenstin et al, 1992; Jacobs et al, 

1995; Rotting and Gjelsvik, 1992]. More recent applications have added "importance 

sampling" [Dantzig and Glynn, 1990; Infanger, 1991] to reduce the variance of upper 

bounds and to improve convergence of lower and upper bounds by improving the 

sampling of scenarios. Importance sampling identifies new cuts that are more significant 

(i.e., that trim off more of the region between the previous function estimate and the 

optimal function) than those identified by "naive" Monte Carlo sampling. 

Static Dynamic Programming 

The time horizon for management is often sufficiently long that control policies 

achieve a steady-state solution. In these cases, longer time horizons or different final 

cost-to-go functions (i.e., F#+i(x)) do not change initial control policies. Such invariant 

control policies turn out to be myopic [LamondandBoukhtoata, 1995], meaning that 

there is only one optimal control policy for the immediate future. Myopic policies are 

particularly common when a discount rate is used to diminish the current value of future 

operations. With a discount rate, both the cost-to-go function and control policies 

achieve steady-state solutions. 

When the optimal control policies are myopic, an infinite-time-horizon control 

problem can be solved by a single-stage problem [Sobel, 1989]. In the case of seasonal 

models, an infinite-time-horizon control problem can be solved by a problem with one 

stage for each season. A variety of methods can then be applied to identify the optimal 

control policy or cost-to-go function. Sobel [1975] notes that myopic release policies are 

often linear. 

Advantage of SDP 

SDP methods can identify optimal solutions in spite of inequality constraints, 

non-linear dynamics, complex value functions and probability distributions [Birge, 1995]. 

In contrast, forecast-based and parameter-iteration methods may produce solutions that 

are far from optimal, especially if conditions are far from certainty equivalent. Even 

FOA may not identify the optimal control policy, in spite of its ability to incorporate 
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caution. In contrast, SDP avoids these assumptions and can identify control policies that 

are appropriately cautious. 

SDP methods can identify the true optimal control policy for a model, and can be 

used to test simplifying assumptions that may allow solution of large-scale models by 

other methods. In the worst case, when we have little or no prior knowledge of a 

solution, we can use DDP. With a sufficiently fine grid of the state space, we can 

identify a control policy with any desired precision, even if the cost-to-go function is not 

strictly convex (or strictly concave in maximization problems). In cases where we have 

some prior knowledge of a cost-to-go function and need to solve problems with more 

state information, we may use parametric DP, SDDP, or static DP to solve a control 

policy. 

Simplifying Assumptions of SDP 

The effort required to apply SDP methods, particularly DDP, grows exponentially 

with the number of state variables used to model a system (the "curse of dimensionality") 

unless we have prior knowledge that allows the use of simplifying assumptions. As a 

result, SDP is difficult or impossible to apply to new problems requiring a large amount 

of data to describe the state of a system. 

Nevertheless, SDP is often applied in spite of this limitation because of its ability 

to identify appropriately cautious policies when a system contains constraints or complex 

objectives, dynamics, or inputs. These applications assume that simple "lumped- 

parameter" models provide a sufficiently accurate representation of real systems. In such 

systems, the state information is aggregated into a few state variables. For example, a 

single reservoir level is often used to represent the total storage of systems with numerous 

reservoirs [Kelman et al., 1990; Terry et al, 1986]. In addition, a variety of aggregation 

and decomposition methods may be used to preserve some detailed characteristics of 

large systems while reducing the number of state variables used in optimization [Saad et 

al, 1996; Saad and Turgeon, 1988; Saad et al., 1992; Turgeon, 1980; Turgeon, 1981; 

Valdesetai, 1992]. 
However, sometimes the level of aggregation may be inappropriate. Aggregation 

is always a compromise used to reconcile the need for realism and the need to solve a 

problem. Though we may solve highly accurate numerical solutions using simple 

models, they may be meaningless for management of real systems [Rogers and Fiering, 

1986]. To solve a problem having more state variables than can be handled with DDP, 

additional assumptions may be employed to allow application of parametric DP, SDDP, 

or static DP. If we have additional information that permits assumptions appropriate for 
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forecast-based methods or parametric methods, then we can solve control policies for 

large-scale models without aggregating system characteristics. 

Application of SDP to Water-Supply Management 

Application of SDP methods to reservoir management has been a topic of 

considerable interest beginning with the work of Bellman and Dreyfus [1962]. Of the 

SDP methods subsequently developed, DDP has been of particular interest because of its 

ability to cope with problems of a general non-linear and stochastic character. As a 

result, DDP is often considered synonymous with SDP when applied to stochastic 

dynamic control problems. 

SDP allows us to incorporate feedback with fewer simplifying assumptions. 

Feedback is used to incorporate the dynamic nature of physical inputs such as streamflow 

and demand. Other methods also incorporate feedback but require additional simplifying 

assumptions. When these assumptions are not entirely appropriate, these other methods 

produce suboptimal solutions. For example, Kitanidis and Andricevic [1989] show that 

policies obtained from DDP perform better than policies obtained from FOA and much 

better than policies obtained from DFC. However, they also observe that we cannot 

apply DDP to complex system models to which we can apply these other methods. 

DP methods also use simplifying assumptions, but usually these assumptions are 

based on soft knowledge we have about a system. For example, when we have prior 

knowledge of appropriate cost-to-go functional forms, we can use parametric DP. When 

we have knowledge that simple lumped-parameter models are appropriate, we can use 

DDP. Fortunately, we may use some of these assumptions even when we apply systems 

analysis to unfamiliar problems. For example, in Chapter Eleven we consider the real- 

time control of conjunctive-use systems using a simple lumped-parameter model. For 

this problem and similar water-management problems, DDP is the most appropriate 

method since it uses the least amount of prior knowledge and makes the fewest 

simplifying assumptions. 

Almost all systems have parameters whose estimated values are dynamic because 

they describe a changing state of knowledge. In reservoir management problems, these 

parameters are future inputs of streamflow and demand. In groundwater management 

problems, these parameters are inputs from recharge and boundary conditions, but also 

include estimates of aquifer characteristics. Though groundwater management problems 

are constrained and have complex dynamics, the large amount of data required to 

describe the state of the system requires detailed models that are beyond the ability of 

current SDP methods. 
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CHAPTER 4. 

DYNAMIC PROGRAMMING 

Reservoirs exist to regulate stochastic streamflows, water demands, power 

demands, and other system inputs. Because of limits on the capacity of reservoirs and 

because of the potentially high cost of operation during extreme events, there is a strong 

incentive to make cautious control decisions. For example, cautious water-supply 

decisions hedge by rationing earlier to balance the short-term cost of this rationing with 

the long-term expected cost of extreme shortages. 

Dynamic programming (DP) methods can identify appropriately cautious controls 

better than other optimization methods, and these methods provide great flexibility in 

modeling stochastic and non-linear system characteristics. Among stochastic methods, 

DP has the advantage of decomposing the overall problem into a number of simpler 

problems that are solved sequentially. However, DP methods may be unable to identify 

controls with many state variables. Fortunately, we can characterize a fairly large 

number of reservoir management problems by limited state information contained in a 

few "lumped" parameters. 

In many cases though, the degree of simplification required is still more than 

desired. A principle goal and result of this dissertation are the development of techniques 

that reduce the degree of simplification required. A couple of these techniques are 

developed in Chapters Five and Seven and the benefit of these methods is evaluated in 

Chapters Six and Eight. 

This chapter provides a detailed explanation and illustration of DP and the 

particular method of discrete dynamic programming (DDP). The purpose of this chapter 

is to identify DDP as an appropriate optimization method for reservoir-management 

problems, particularly for water-supply management. Following a detailed discussion of 

the DP approach to solving stochastic dynamic control problems, we develop the method 

and notation for DDP used in later chapters of this thesis. Also, we will observe why the 

strengths and limitations of DDP make it an appropriate method for management of 

reservoir systems used for water supply. 
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A. WHAT is DYNAMIC PROGRAMMING? 

The evolution of a system is identified by its changing state during the operating 

horizon. This operating horizon can be divided into stages used to identify the impact of 

a single set of control decisions and other inputs as in equation (2C2). Stages are defined 

so that a system must pass through each stage in sequence and so that a system cannot 

reach a future stage without passing through all intermediate stages. Stages usually 

represent increments of time since we cannot get from a current moment to some future 

moment without passing in sequence through all intermediate moments. For example, if 

we currently find ourselves in the month of December, we can only go forward to the 

month of January and cannot go back to the month of November. Also, we cannot get to 

the month of April without passing through the months of January, February, and March 

(Figure 2B1). 

DP takes advantage of this division to decompose the problem of minimizing 

equation (2C12) into a series of easier subproblems, one for each stage. When we 

describe the state of a system by a finite number of variables, then we assume these 

variables summarize all necessary information about a system's history. This 

characteristic allows us to identify optimal control decisions for each stage without any 

consideration of prior stages; all we need to know is a system's current state. DP takes 

advantage of this structure by recursively solving subproblems, starting with the last stage 

and working backwards until we arrive at the first or current stage. The solution of each 

subproblem identifies a set of control policies and a cost-to-go function that identifies the 

expected cost to go from any initial state. 

If the control policy for each stage is optimal, the control policy for the first stage 

is optimal for the whole problem. We are assured of this by the "Principle of Optimality" 

[Bellman, 1957] which states that 

"An optimal policy has the property that whatever the initial state and initial 
decisions are, the remaining decisions must constitute an optimal policy with 
regard to the state resulting from the first decision." 

This tells us that the control policy developed for each intermediate stage is an optimal 

policy for the remaining stages. 
To see this more clearly, let us consider the last stage of a DP problem. For this 

last stage, we represent the total cost function as 

V/A,(x,u,w) = C,„(x,u,w) + FtHJy) (4A1) 
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As discussed before, the cost-to-go function Ff/sr+I identifies the relative preference for 

state X(,„+1) at the end of a time horizon used for system management. The transition 

function 

y«») = T(,w)(x,u,w) 

identifies the ending state y(fw) = x(/^l). For any discrete state x[£)f we identify optimal 

control decisions u*,^ that minimize the total expected cost of operations from the current 

stage through the last stage. When random inputs are present, we cannot identify the 

actual total cost of operations that we will observe, so we identify the expected total cost. 

Using optimal controls, the cost-to-go from state x[|^ in the last stage is 

FJxC")) = minu{ Ew{ VlN(x^,n,w) } } 

This assumes we have no foresight of random inputs w(,„). Without foresight, we 
identify a single vector of control decisions u(*v) that is feasible regardless of outcome 

W(/jV). Solving F,N(\^) for a sufficient number of discrete states, we can estimate a cost- 

to-go function F,N(x) and control policy U^x) for any initial state. 

As discussed in Chapter 2, the lack of foresight may result in control decisions 

that are unrealistic and over constrained. Instead, we identify controls using limited 

foresight of current inputs w(,„) to identify controls. If we assume a current outcome of 

these inputs w[*\, the optimal controls are those that solve 

Vfw(x<'\u*,w<*>) = minu{ V^xW.u.w**)) } 

The expected cost-to-go from state x[^} is then an expected cost of all possible outcomes: 

F,„(x«)) = Ew{ minu{ V(x«),u,w) } } (4A2) 

Using limited foresight, the control policy is also a function of current inputs w(,v). In 

other words, u* = U^Cx.w). 

With the solution of the t^ subproblem, we now solve the next subproblem to 

identify a cost-to-go function F,„., and control policy U^_, for the second-to-last stage. 

For the second-to-last stage, the total cost function is 

V,w.,(x,u,w) = CV,(x,u,w) + FJy) (4A3) 

Note that the total cost is only a function of the state, control decisions, and random 

inputs for the current stage. Future control decisions are already established by the 

control policy U,*, and the expected cost of these future decisions is summarized by the 

cost-to-go function F,N. The expected cost-to-go from state x^ is 

F,N,(x«>) = Ew{ minu{ V,„,(x('>,u,w) } } (4A4) 
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Solving F/AM(xW) for a sufficient number of discrete states, we can again estimate a cost- 

to-go function F/AM(x) an(^ control policy U,*_, (x,w) for any initial state. 

This process can be repeated for each prior stage tj = fyv-2>fy/-3>—,'i  »backwards in 

time until we reach the first (or current) stage. In each stage, we obtain a cost-to-go 

function F,/x) and a control policy U, (x,w) identified by solving 

VtJ = C,/x,u,w) + FtjJy) (4A5) 

F,/x) = Ew{ minu{ Vt] } } (4A6) 

The Principle of Optimality assures us that current control decisions u*r) based on the 

cost-to-go function F,.+1 are optimal because all subsequent decisions are optimal. The 

new cost-to-go function Ftj tells us the expected cost of system operations based on 

application of optimal control policies in the current and each subsequent stage 

te [tj,...,tN+l] . 

By decomposing dynamic problems into subproblems, DP reduces the effort 

required to solve multi-stage problems. As we saw at the end of Chapter 2, the number of 

stochastic-input scenarios and the computational effort grow exponentially with the 

number of stages if we apply optimization to equation (2C12) naively. By decomposing 

the optimization of equation (2C12) into subproblems the effort to solve a subproblem for 

each stage is independent of the number of stages. As a result, the computational effort 

of DP grows linearly with the number of stages. 

However, the above discussion of DP specifies neither what constitutes a 

"sufficient" number of discrete states nor how we use solutions to approximate 

continuous cost-to-go and control-policy functions. How we approximate these functions 

significantly effects the practical application of DP, as chapter 3 briefly outlined. 

The remaining sections provide a more detailed illustration of the particular DP 

method of DDP and an explanation of limits on its practical application. DDP is an 

appropriate method for analysis of water-supply management problems. As we 

mentioned in Chapter 2, DDP is the most general DP method because it requires the least 

amount of prior knowledge. Also, we observed that water-supply management problems 

can often be solved using simple lumped-parameter models with limited state 

information. 
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B. DISCRETE DYNAMIC PROGRAMMING 

To pass a sufficiently accurate estimate of the cost-to-go function to the 

subsequent subproblem, DDP solves equations (4A5) and (4A6) for a sufficient number 

of discrete initial states, xf'A. These discrete states are located at the nodes of an n- 

dimensional grid that spans possible states of a system. DDP estimates the cost-to-go at 

intermediate states using interpolation, and the optimal cost-to-go function Ff>(x) is 

estimated by interpolating functions that are connected piecewise over the /i-dimensional 

domain x. The optimal control policies U,.(x,w) can be similarly estimated or can be 

directly solved by minimizing equation (4A5). By using finer grids (and increasing the 

number of discrete states), we can estimate the cost-to-go and control decisions with any 

desired level of accuracy. 

1. Illustration of the Last Stage Subproblem 

For each discrete state x[j^, we estimate the expected cost-to-go, F/iV(x
(')), by 

applying equations (4A1) and (4A2). This is accomplished by looping through a 
sufficient number of outcomes w[*\ and finding the optimal decisions u*/v)(x('\wW) for 

each. The expected cost-to-go is the probability weighted average of the cost for each 

outcome. 

If we solve F,N(x^) for a sufficient number of discrete states, we can estimate the 

continuous functions F,N(x) for any state. Figure 3B1 illustrates a grid of discrete storage 

levels (i.e., states) {x(I),..., x(A>} that we could use to model the single-reservoir problem 

of Figure 2B1. Figure 3B1 also illustrates the state evolution from each discrete storage 

level to a desired zero storage level at t = t^+\. In this illustration, control decisions are 

inflexible since the policy is to release all water, regardless of initial storage level. 

If inflows are stochastic and have a distribution such as illustrated in Figure 3B2, 

we need an appropriate numerical integration method to evaluate F,N(x^) for each 

discrete state xf'A. Even though control decisions are inflexible in this last stage, the 

costs and constraints that apply to these decisions are stochastic. To solve equation (4A6) 

using numerical integration, we use 

M 
F,N(x«>) = ]►>*{ minu{ V,N(x«),u,w(*>) } } 

Jt=i 

The weights v* and outcomes w<*> (also known as "abscissas") are provided by the 

particular numerical integration method that we select. The most common is the 
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trapezoidal method outlined by equation (2C10) which allows use of any desired grid of 

abscissa values. 
For each node x[j>} of the grid, Figure 3B3 illustrates possible values of F^/xW) 

that we might evaluate. By interpolating these values at intermediate states, we can 

produce a continuous estimate of the true function. For this illustration, the best storage 

level is somewhere in the middle; high costs at extreme low and high storage levels could 

represent the risks of water shortage and flooding when these are both goals of a system. 

Figure 3B1. Discrete States and State Trajectories for the Last-Stage Subproblem 
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Figure 3B2. Sample Streamflow Distribution 
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Figure 3B3. Discrete Estimate of the Last-Stage Cost-To-Go Function 
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2. Illustration of the Remaining Subproblems Using Recursion 

Once we have estimated the last-stage cost-to-go function, we can applying 

equations (4A3) and (4A4) in the second subproblem to estimate the cost-to-go function 

FtM and control policy Ur*,. Figure 3B4 illustrates possible state trajectories from a 

discrete storage level \[tN ty Several trajectories are shown to emphasize that the precise 

trajectory depends on the particular outcome of w (,„.,). Solving for different states, we 

can again estimate a new cost-to-go function and control policy. 
We repeat the process for every stage tj e {ti,...,tN}   until we arrive at the first 

stage. In each stage, the expected cost-to-go function F,y(x) contains all necessary 

information about future stages. This function estimates the cost of future operations 

starting from state X(,;.) and assuming that optimal control policies are applied in 

remaining stages. 

Figure 3B4. Discrete States and Sample State Trajectories for the Second-to-Last 
Subproblem 
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C. LIMITATIONS OF DISCRETE DYNAMIC PROGRAMMING 

DDP estimates the cost-to-go by interpolating between nodes of a grid that spans 

possible states of a system, and the accuracy of estimates can be improved by using finer 

grids. However, grids that achieve sufficient accuracy may impose a tremendous 

computational burden. This is especially true when numerous state variables are required 

to model a system. We will see that the number of discrete states and, therefore, the 

effort required to solve a DDP problem grows exponentially with the number of state 

variables. 

This exponential growth is known as DDP's "curse of dimensionality," and has 

led to a widely held view that practical application of DDP is limited to problems with 

only two or three state variables [Johnson et ai, 1993; Yakowitz, 1982]. As a result, DDP 
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as originally applied is unable to solve complex problems in which the state of a system 

is modeled by numerous variables [Yeh, 1985]. This has motivated efforts to find other 

stochastic methods (such as discussed in Chapter 3) capable of producing cautious 

control policies. More recently, this has also motivated efforts to improve DDP by using 

more accurate methods to approximate the cost-to-go function. With these recent 

improvements, DDP is able to solve problems with more state variables, and DDP can be 

an appropriate method for a wider variety of stochastic control problems. 

1. Exponential Growth with State Dimension 

Consider the single-reservoir problem illustrated in Figure 4C1. If there is but 

one state variable that represents the current amount of stored water, then we have a one- 

dimensional DDP. To approximate a cost-to-go function for each stage, we can identify 

the expected cost-to-go for each of A discrete states. Using DP, we find an optimal 

release policy and an expected cost-to-go function for each stage, working backwards in 

time. For this 1-D problem, the solution effort is proportional to the number of discrete 

states A and the number of stages N. 

Now consider the «-dimensional problem illustrated in Figure 4C2 (e.g., a 

problem with multiple reservoirs or other state information). To approximate a cost-to-go 

function for each stage using A discrete values for each state variable, the total number of 

discrete states is A". The effort to solve this multi-dimensional problem is also 

proportional to the number of discrete states. This effort grows exponentially with the 

number of state variables, n, and the number discrete values, A, used to span each 

variable. In addition, the effort for each discrete state grows with the dimension of the 

problem since more effort is required to search for optimal control decisions. 

In each stage, we conduct A" searches (optimizations) to find optimal controls for 

each discrete state x'. As a result, the total effort per stage is 

J = ZA" (4C1) 

where n is the state-space dimension (i.e., number of state variables), A is a representative 

number of discrete values used to span each state variable, and Z is the effort to 

determine a solution for each of the A " nodes. If we set A = 20 to develop sufficiently 

accurate control policies and cost functions, then a 2-D problem has 400 discrete states 

and a 6-D problem has 64,000,000 discrete states! 

Furthermore, the effort Z increases with the dimension of a problem. This effort 

is a product of the time required to evaluate the total cost of equation (4A5) and the 
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number of evaluations required to find the solution of equation (4A6). In other words, 

the total effort is 

J = Z/ Zs Z\ A (4C2) 

where Zj is the time required to evaluate the total-cost of equation (4A5), Zs is the 

number of evaluations required to search for the optimal solution of equation (4A6), and 

Z\ is the number of searches and other overhead required for each node. Z/ increases 

with n and primarily depends on the effort to interpolate the cost-to-go function Ftj+l(y). 

Zs also increases with n and depend on the solver employed to find the optimal control 

decisions. Typically, Zs ~ O(/i°0 where a depends on the search routine employed. For 

example, a = 0.5 might apply for an efficient Newton-based search routine and a = 1.5 

might apply for a more robust simplex search routine (as we will see in Chapter 6). In 

addition to Z/ and Zs, there may also be significant "overhead" effort required by the 

search routine and by other elements of the code used to implement the DDP algorithm 

and verify the results. In general, this overhead effort should become less significant part 

of the total effort with increasing dimension. 

Figure 4C1. Discrete States for a 1 -D Problem 

Figure 4C2. Discrete States for a Multidimensional Problem 
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2. Techniques to Reduce Exponential Growth 

Equation (4C1) suggests that there are three approaches that we may use to reduce 

the exponential growth in effort of DDP. These are: 

(1) reduce n, the number of state variables 

(2) reduce A, the average number of discrete values for each state variable 

(3) reduce Z, the effort required to identify decisions for each discrete state 

Each of these approaches is used in practice through the selection of practical models and 

optimization methods. However, each of these approaches also may require that we 

compromise the validity of a solution, through our use of inappropriately simple models. 

As a result, it is necessary to balance the accuracy of a model with the feasibility of 

solving the mathematical problem. 

The first approach is to reduce the number of state variables n. Out of necessity, 

this approach is always employed when solving stochastic reservoir control problems. 

Almost all examples of DDP in the water resources literature have three or fewer state 

variables [Gal, 1979; Johnson et al, 1991; Karamouz and Vasiliadis, 1992; Kelman et 

al, 1990; Saadand Turgeon, 1988; Saadet al, 1992], and, frequently, only one state 

variable is used. For example, a common technique in hydropower models is to 

aggregate the total stored water of multiple reservoirs into a single variable describing the 

total hydropower potential of stored water [Kelman et al, 1990; Saad et al, 1996; 

Turgeon, 1980; Turgeon, 1981; Valdesetal, 1992]. Though sometimes appropriate, 

such extreme aggregation of system characteristics may, at other times, result in 

unrealistic system models and control solutions. 
The second approach is to reduce the number of values A used to span a state 

variable. With only one or two state variables, reservoir control problems can be solved 

with relatively fine state-space grids. However, coarse grids are required when solving 

higher dimension problems [Esmaeil Beik and Yu, 1984], and coarse grids produce less 

accurate cost-to-go estimates and control policies that may be far from optimal. For 

example, Gal [1979] observed that DDP using coarse state-space grids may approximate 

cost-to-go functions worse than parameter iteration using a pre-determined class of 

functions. Also, because of coarse discretization and conditions that were closer to 

certainty equivalent, Karamouz and Houck [1987] observe that forecast-based methods 

identify more effective control decisions than DDP when applied to large reservoirs 

whose storage capacities exceed 50% of mean annual inflow. Figure 4C3 illustrates the 

effect that different state-space grids have on the accuracy of a cost function. Control 
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policies are especially sensitive to coarse grids because they should balance changes in 

current costs with changes in future costs. Changes in future costs are identified by cost- 

to-go function gradients, and estimation of these gradients is especially poor with coarse 

discretizations. Esmaeil-Beik and Yu [1984] provide an illustration of the trade-off in 

solution accuracy and computational effort for a single reservoir and correlated inflow. 

Johnson et al. [1993] provide an analysis the accuracy of cost functions and control 

policies for a range of grids applied to a four-reservoir test problem. 

The third approach is to reduce the effort Z required to identify control decisions 

for each discrete state. This effort depends on mathematical properties of the model and 

on the search routine employed. An efficient routine applied to continuous and smooth 

functions can rapidly find optimal control decisions. For example, Newton-based search 

methods can converge if applied to smooth and convex cost functions. If these functions 

are not smooth or convex, we may need to employ more robust, but slower, search 

methods. Z also depends on the work required to evaluate a cost function with the 

general form given by equation (4A5). This is especially true if the interpolation method 

used to evaluate cost-to-go functions is complex. As a result, multilinear interpolation is 

traditionally used since it is the simplest interpolation method that produces a continuous 

estimate. 

Besides these three basic approaches, there are a variety of other techniques that 

may significantly reduce the computational effort of some problems. These include: 

solving a sequence of problems with increasing difficulty, eliminating from consideration 

uninteresting areas of the state-space, partitioning the original problem into smaller 

separable problems, or creatively choosing variables used to model the system [Johnson 

et al, 1988; Johnson et al, 1993]. Nevertheless, when we model large-scale stochastic 

control problems, DDP becomes computationally infeasible. Until recently, we were 

instead required to use an approximate deterministic model [Willis and Yeh, 1987]. 

Though recent advances in stochastic control methods allow us to include greater detail in 

models, we still may require significant assumptions. 

Because many problems cannot be simplified sufficiently and assumptions of 

other methods may be inappropriate, this thesis proposes DDP methods that reduce the 

number of discrete values, A, while maintaining interpolation accuracy. I accomplish this 

by using interpolation methods that are more accurate than traditional linear interpolation. 

Though this comes at the cost of a larger effort to evaluate interpolated values, these 

methods produce smooth and convex function approximations that allow application of 

efficient Newton-based search methods. What is more important is that we can 

significantly reduce A while preserving solution accuracy; and this dramatically reduces 
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the exponential growth of effort J = ZAn. With these improvements, we can apply 

DDP to moderately complex reservoir management problems modeled with a greater 

number of state variables. 

Figure 4C3. Cost Function Accuracy for Various State-Variable Discretizations 
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3. Cost-To-Go Interpolation Methods 

Early applications of DDP used nearest-neighbor interpolation to estimate the 

cost-to-go by assigning the value evaluated at the nearest node of a state space grid 

[Buras, 1963]. No effort is required to evaluate the cost-to-go at intermediate states, and 

the problem can be solved using techniques applied to discrete-state dynamic 

programming models. However, nearest-neighbor interpolation produces models that 

assume inflows and releases are multiples of the discrete unit of storage [Bogle and 

O'Sullivan, 1979], and accurate solutions require a very fine discretization of the state 

space, typically about A = 50 to 100. As a result, DDP using nearest-neighbor 

interpolation can be accurately applied to problems with no more than one or two state 

variables. Other early applications of DDP included parametric DDP using pre-defined 

forms for the cost-to-go function [Bellman and Dreyfus, 1962; Gal, 1979]. 

Most current applications of DDP use multilinear interpolation. The effort 

required to evaluate the cost-to-go at intermediate states is modest, and the problem can 

be solved using a variety of robust search techniques. Multilinear interpolation 

significantly improves cost-to-go estimates, and accurate solutions can use a coarser 

discretization of the state space, typically about A = 10 to 20. Thus, DDP using 

multilinear interpolation can be accurately applied to problems with three or four state 

variables. 
Recently, higher-order interpolation methods have been developed for DDP 

applications [Foufoula Georgiou and Kitanidis, 1988; Johnson et al, 1993]. Though 

these methods require additional effort to evaluate the cost-to-go at intermediate states, 

the problem may be solved with more efficient search techniques that find solutions 

quickly. These interpolation methods further improve cost-to-go estimates, and accurate 
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solutions can use a very coarse discretization of the state space, typically about A = 3 to 

5. Though these methods have not seen significant application, DDP using these methods 

can be accurately applied to problems with five to seven state variables. 

Although not technically not DDP, SDDP methods have recently been developed 

using another interpolation method of estimating. Instead of interpolation, SDDP uses 

cutting planes to identify a lower bound on the cost-to-go function [Pereira and Pinto, 

1991]. The advantage of cutting planes is that they avoid the use of a regularly spaced 

grid and can be evaluated for an arbitrary state. In some cases, this may allow 

development accurate solutions with far fewer discrete states; though in other cases, the 

piecewise linear approximation of the cost-to-go function may be less accurate than high- 

order interpolation methods. However, a significant advantage of SDDP is that some 

estimate of a cost-to-go function can be developed, even for large-scale problems that 

cannot be addressed by DDP. 

Traditional DDP fails to take advantage of the smoothness or, in the earliest 

applications, the continuity of the cost-to-go function. As a result, existing applications 

of DDP have required fine discretization of the state variables in order to achieve accurate 

estimates of the cost-to-go function and the control policies. For example, [Raman and 

Chandramouli, 1996] apply DDP to a stochastic reservoir control problem using from 11 

to 51 discrete reservoir storage levels. In addition, it appears that they estimate the 

distribution of inflows using from 7 to 35 discrete inflow values. This high level of 

discretization does not impose a large computational burden on the solution of the single 

reservoir and inflow problem that they consider; however, for problems with multiple 

reservoirs and/or stochastic inputs, such a high level of discretization can make the 

solution intractable. 

As discussed above, this thesis proposes DDP methods that reduce the number of 

discrete values, A, while maintaining interpolation accuracy. To accomplish this, I will 

use high-order interpolation methods that produce accurate cost-to-go estimates with 

coarse discretization of the state space. These high-order methods are local 

approximations that take advantage of additional information. Existing methods 

accomplish this using one of the following approaches: (1) using costs at a larger number 

of nodes (spline methods), or (2) using gradient information with cost information at 

corner nodes (Figure 4C4). In Chapter 5, we will use the second approach to develop 

high-order methods; and, in Chapter 6, we will apply these methods to problems with as 

many as seven state variables. This is a sufficient number of state variables to consider a 

variety of water-supply management problems without using the simplifying assumptions 

required by other stochastic dynamic control methods. 
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Figure 4C4. Comparison of Methods to Improve Interpolation Accuracy 
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D. MULTILINEAR INTERPOLATION 

Traditionally, multilinear interpolation has been used to interpolate the cost-to-go 

for states not at the nodes of the grid. Multilinear interpolation is simple and is easier to 

compute than higher-order interpolation methods. Also, multilinear interpolation 

produces a much better estimate than that obtained using nearest-neighbor interpolation. 

In this thesis, I refer to DDP using multilinear interpolation as "multilinear DP." This 

section develops multilinear DP to establish a methodology and notation for new methods 

presented in the next chapter. In later chapters, multilinear DP is also used to evaluate 

the improved performance of new methods. 

1. Linear Interpolation in 1-D 

Interpolation uses certain known information to estimate values of a continuous 

function [Davis, 1975, pi 7]. For example, linear interpolation uses known values F(x<'>) 

to estimate the continuous function F(x). 

Interpolation produces a functional F(x) that we can use to represent the true 

function. Suppose we wish to approximate a 1-D function using values F, = F(x^) at 

nodes xW, /' = l,...,A . Each adjacent pair of nodes [JC<'\ ;t<'+1)] defines an interval over 

which we can evaluate the approximating functional F,(x) by a weighted sum 
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Fi(x) = <t>i(x)Fi + <f>M(x)FM 

To preserve known values F, and F,+i, each weighting function <j>i(x) must equal 1 at 

node x'1' and 0 at the other node. The lowest-order polynomial functions that have these 

properties are 

<j>i(x) = (*-*«)/Ax 

<pM(x) = (x(M)-x)/Ax 

where Ax = x^^-x^ is the length of interval [x<-'\ JC('
+1

>]. Application of these linear 

weighting functions over each interval i e {1 ,...,A-1}   produces a continuous functional 

F(x) that preserves function values at nodes. 

2. Linear Interpolation in Multiple Dimensions 

Suppose we wish to approximate a multi-dimensional function using values 

F, = F(xW) at gridded nodes \^\ i = 1 ,...A   . Because these nodes are gridded, they 

define corners of rectangular parallelepipeds or "hypercubes" that divide the function's 

domain. Figure 4D1 illustrates hypercubes of one, two, and three dimensions; and we see 

that each hypercube has 2" corner nodes in an «-dimensional domain. Any value of x can 

be identified as a point inside at least one hypercube (x may lie in more than one 

hypercube when on a border). 
Each set of corner nodes x(tf, y=j\,..., yr, define a subdomain over which we can 

calculate an approximating functional. The functional is a weighted sum of corner node 
values Fy given by 

ft" 
F,(x) = X {0j(x)Fy} (4D1) 

r=r\ 

where <^(x) is the weight for corner node x(#. The i'th subdomain is identified by its 

lower corner node x''' = x W. To preserve known values Fy, each weighting function 

0j(x), y= Y\,... yj", must equal 1 at node x(tf and 0 at all other nodes. The lowest-order 

polynomial function that has these properties is 

0/x) = fl{\xj-x^\/Axj} (4D2) 
7=1 

where AXJ, j = 1,..., n, are the dimensions of the hypercube. Application of this 

multilinear weighting function to each hypercube produces a continuous functional F(x) 

that preserves function values at nodes. 
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Figure 4D1. Hypercubes of One, Two, and Three Dimensions 
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3. Local Coordinate System 

Using notation for a local coordinate system, we can specify weighting functions 

that are simpler and more generic than those presented above. A local coordinate system 

is useful when interpolation depends only on nodes in a neighborhood of point x. For 

example, linear interpolation depends only on corner nodes of the hypercube that 

immediately surrounds point x. Notation for a local coordinate system will be especially 

useful in the next chapter to define other, more complex, interpolation methods. 

When hypercubes are defined by a rectangular grid aligned to the coordinate 

system, we can observe that the corner nodes of each hypercube are identified by two 

nodes, xlow and xhish , at the lowest and highest corners defined by the coordinate system 

(i.e., closest to and farthest from the origin). Other corner nodes are an exhaustive 

combination of the coordinates of these two nodes. In Figure 4D2, for example, 

xiow _ x(2) and xhigh = x(8) define the shaded 2-D hypercube. Combining the 

coordinates of these nodes, we can identify the coordinates of the other corner nodes 

{x(3),x<7)}that are located at {(.r,low^2
high), (*,high,x2

,ow)}. Also, Ax = x high - x'°w 

identifies the dimensions of the current hypercube. 

Using xlow and xhish, we can transform the coordinates of any location x into a 
local coordinate system. In each j = 1,..., n dimension, we can transform a coordinate Xj 

into a local coordinate fy by the equation 

§ = (xj-xto^/Axj 

If x is located in the hypercube identified by xlow, then 0 < % < 1 in all dimensions. For 

example, the corner nodes x W,..., \^-n) are transformed as follows: 
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xiow = x(y.) <r> ^ = [0,0,-,0] 

x<»> <=> $ = [1,0,...,0] 

x<»>   o   $ = [0,1,...,0] 

Xhigh = x(*0   «,     £=[1,1,...,1] 

With this notation, we can combine equations (4D1) and (4D2) to compactly 

express the multilinear approximating functional. For the 2-D hypercube of Figure 4D2, 

this functional is 

F%) = (HiW-Z\)F2 + S1F3] + &[(1-§I)F7 + §,F8] 

Point £ in the local coordinate system is a transformation of x, and {F2, F3, F-j, Fg} are 

the known corner-node values. 

The local coordinate system can also be used to develop other useful notation. 
The local coordinate system uses xlow as the origin and specifies a normalized distance Z, 

between x and corner-node xlow. We can define the normalized distance between x and 

any other corner-node x W as rjW = [r/^,... r/^]T where 

rf = § if   xf = x}™ 

77Jy) = (l-^-) if   xf = xf& 

For example, r|(^ = £    only if x(tf = xlow. Using this notation, we can transform the 

weighting-function of equation (4D2) to 

m) = fl o-n/> 

This notation allows us to express weighting functions that apply to all corner nodes x(#, 

7= 7i.•■•%"■ 
In the next chapter, we will use this local-coordinate-system notation to develop 

approximating functionals that use not only the value Fy at each corner-node xW, but also 

the gradient Gr For this, the approximating functional F   (x) is a weighted sum 

Ihr 

F{i\x) = X ( U*)pr + [V/x)]T- Gy} (4D3) 

y/Yj(x) is the weight applied to corner-node gradient Gyj = dF(x)/dr/-, x = x(A This is 

known as Hermite interpolation, and application of this to DDP is called "Gradient 

Dynamic Programming." 
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Figure 4D2. Local Coordinate System for Gridded 2-D Domain 
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CHAPTER 5. 

NEW HERMITE INTERPOLATION 
METHODS 

While DDP incorporates stochastic inputs with greater accuracy and fewer 

simplifying assumptions than is possible with other optimization methods, significant 

limitations prevent us from addressing large-scale reservoir management problems. This 

chapter presents new interpolation methods based on Hermite interpolation. Originally 

proposed for application to DDP by Kitanidis [1986], Hermite interpolation approximates 

cost-to-go functions with high-order accuracy and greatly reduces the exponential growth 

in computational effort. The methods presented in this chapter preserve the accuracy of 

the original interpolating functionals of Foufoula-Georgiou and Kitanidis [1988] while 

reducing the computational effort and providing smooth transitions between subdomains 

of the function. 
Kitanidis and Foufoula-Georgiou [1987] coined the phrase "gradient dynamic 

programming" (GDP) to describe DDP using Hermite interpolation methods. While still 

more restrictive than other stochastic control methods, GDP allows solution of complex 

reservoir management problems without the simplifying assumptions of these other 

methods. This chapter concludes with an analysis of the effort required to implement the 

new GDP methods, and Chapter Six demonstrates their application to a range of 

multireservoir problems with as many as seven state variables. 

A. CHARACTERISTICS OF AN EFFICIENT INTERPOLATION 

The choice of interpolation method can significantly affect the solution accuracy 

and the computational effort required to solve DDP control problems. To solve DDP 

problems, interpolation methods should be (1) simple, allowing rapid evaluation, (2) 

smooth, allowing application of efficient search techniques that converge rapidly, and (3) 

accurate, allowing use of coarse grids. The first and second characteristics allow us to 

find optimal control decisions quickly (i.e., small Z). The third characteristic allows us to 

reduce the number of searches required (i.e., small A"). All three decrease overall effort 

J and increase the number n of state variables that we are able to use in system modeling. 
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As a result, the choice of an interpolation method can significantly affect our ability to 

solve complex stochastic reservoir control problems. 

Low-order polynomials have significant advantages over other functions in the 

construction of interpolating functionals used to approximate a cost-to-go function. 

Polynomials are simple to program and easy to evaluate. This is especially useful when 

used for multi-dimensional interpolation where approximating functionals are composed 

of many functions. Low-order polynomials may also yield approximations that are 

sufficiently smooth [Davis, 1975] to allow application of efficient quasi-Newton 

optimization routines. 

For example, multilinear interpolation uses first-order polynomials that are simple 

and efficient. Unfortunately, multilinear interpolation is not very accurate on coarse 

grids, and it produces an approximation with undefined derivatives at subdomain 

boundaries. To find optimal control decisions, we must use fine grids and robust—but 

slow—search methods (instead of efficient, quasi-Newton search methods that require 

estimates of the gradient and Hessian of the cost-to-go function). Thus, DDP is severely 

limited in its ability to address complex problems when using multilinear interpolation. 

Instead, we can use polynomials of somewhat higher-order that are more accurate 

and that produce smooth functionals. This is the approach taken by both spline methods 

[Johnson et al., 1988; Johnson et al, 1993] and Hermite methods [Foufoula Georgiou, 

1991; Foufoula Georgiou and Kitanidis, 1988; Kitanidis, 1986; Kitanidis and Foufoula 

Georgiou, 1987]. In the case of spline methods, higher-order polynomials are used to 

incorporate cost-to-go information at nodes some distance beyond the surrounding 

hypercube. In the case of Hermite methods, higher-order polynomials are used to 

incorporate gradients or other derivative information, but only at nodes of the 

surrounding hypercube. In both cases, polynomials can be expressed as weights applied 

to node values, and interpolating functionals are linear combinations of these 

polynomials. 

B. ADVANTAGES OF HERMITE INTERPOLATION 

Hermite interpolation describes any method that approximates a function using 

both the function values and gradients at discrete nodes of a grid. For DDP applications, 

Hermite interpolation approximates the cost-to-go function with greater accuracy than 

spline methods and with significantly greater accuracy than multilinear interpolation 

[Johnson et al., 1993]. This greater accuracy allows use of coarse state-space grids and 

dramatically reduces the exponential growth of effort required to solve DDP problems. 
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In addition, Hermite interpolation can be used to produce smooth cost-to-go 

approximations that allow application of rapid, quasi-Newton search methods. 

However, Hermite interpolation requires additional computational effort, both to 

identify gradients at nodes and to incorporate gradient values in interpolating functionals. 

Fortunately, quasi-Newton search methods use an estimate of gradients to find optimal 

control decisions. This estimate is sufficiently accurate for direct use in Hermite 

interpolation, and we need only provide additional memory to store these values. Also, 

careful construction of interpolating functionals can minimize the effort required to 

incorporate gradient values. As we will see, the effort required for the first-order Hermite 

method presented here is only n-fold greater (where n is the number of state variables) 

than the effort for multilinear interpolation. Spline methods use cost-to-go values at a 

more extensive set of nodes than required by Hermite or multilinear interpolation, with an 

effort about 2"-fold greater than the effort for multilinear interpolation. 

Only recently has be benefit of higher-order interpolation methods been 

recognized. Previously, the effort required to apply Hermite interpolation to higher 

dimensions may have seemed excessive and likely to outweigh improvements in 

accuracy. Though Hermite interpolation has been applied to a variety of finite-element 

problems, including potential flow, boundary value, contaminant transport, and stress 

analysis [Foufoula Georgiou, 1991], these prior applications required only one, two, or 

three dimensions. Equivalent DDP problems had already been solved using tradition 

multilinear interpolation. 

Kitanidis [1986] first proposed Hermite polynomials to estimate DDP cost-to-go 

functions. Subsequently, Hermite interpolation was applied to a one-reservoir problem 

[Kitanidis and Foufoula Georgiou, 1987] and a four-reservoir problem [Foufoula 

Georgiou and Kitanidis, 1988]. Spline methods were introduced by Johnson et al. [1988; 

1993] to avoid the use of gradients while producing smooth interpolations that also 

permit application of rapid, quasi-Newton search methods. They compared spline 

methods with the Hermite method of Foufoula-Georgiou and Kitanidis, concluding that 

performance of the two methods was roughly equal. In application to a series of test 

problems with up to five dimensions, they found that their spline method benefited from 

higher-order smoothness and more rapid convergence of search methods and that 

Gradient DP benefited from higher accuracy. 

This chapter presents new interpolation methods based on Hermite interpolation. 

These methods maintain the high-order accuracy of the original Hermite methods of 

Foufoula-Georgiou and Kitanidis while achieving higher-order smoothness, allowing 
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more rapid convergence of search methods. Also, the computational effort required to 

evaluate interpolating functionals is significantly reduced. 

C. CHARACTERISTICS OF WEIGHTING FUNCTIONS 

The interpolation methods presented in this thesis assume that discrete states x® 

are located at the nodes of a grid that spans all possible states of a system. There are V" 

nodes for an n-dimensional grid, where V is the average number discrete values for each 

state variable. At each node, we evaluate a value F, and a gradient G, = [G,,i,..., G/,„]T, 

where G(>; = dF/dx^ is the derivative in the /'th dimension. This grid divides the domain 

of a cost-to-go function into subdomains with corner nodes xW,..., x<ft"\ 

Over each subdomain, we interpolate the cost-to-go value and gradient using a 

weighted sum of corner-node values and gradients. To preserve the cost-to-go values and 

gradients and to produce continuous and smooth approximating functionals, each 

weighting function 0j(x) and yrrj(x), 7= J\,-, Yi", j = U-,n , must satisfy a number of 

requirements. Continuous and smooth functionals allow us to use of efficient quasi- 

Newton search methods. Also, smooth interpolating functionals accurately represent true 

cost-to-go functions because stochastic inputs result in a distribution of future states that 

smooth out the expected cost of future operations. 

1. Requirements to Preserve Node Values and Gradients in One Dimension 

Suppose we wish to interpolate a one-dimensional cost-to-go function F(x) using 

function values F, = F(.tW) and derivatives G, = dF/dx^ at nodes .t^ , i = 1 A . Over 

an interval [x{'\ .t('+1)], the interpolating functional is given by the weighted sum 

FU\x) = (pi(x)Fi + y/i(x)Gi + <pM(x)FM + y/M(x) GM 

If this functional is to preserve the cost-to-go value F„ the weight 0,(.r) must equal one 

and all other weights must vanish when x = JC<
()

. Likewise, if this functional is to 
preserve the cost-to-go value F,-+i, the weight <pi+\(x) must equal one and all other 

weights must vanish when .r = x^M\ Over the same interval, the gradient of the 

interpolating functional is given by the weighted sum 

G   (x) = ^r-Fi + 3— G, + -3—F,+ I + —5—G/+1 
dx dx dx dx 

If this functional is to preserve the cost-to-go gradient G„ the weight dy/i/dx must equal 

one and all other weights must vanish when x = *('). Likewise, if this functional is to 
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1 at node *(«), 0 at node x('+1> 0 at both nodes 

0 at both nodes 1 at node JC<'>, 0 at node x('+1> 

preserve the cost-to-go gradient G,+i, the weight dy/i+\/dx must equal one and all other 

weights must vanish when x = x^i+l\ Table 5C1 summarizes these weighting-function 

requirements. There are four constraints on each weighting function that can be satisfied 

by third-order polynomial functions. Also, the resulting interpolating functionals are 

continuous and smooth across all intervals. 

Table 5C1. Weighting-Function Requirements for Interpolation in One-Dimension 

Zero'th-Order Value First Derivatives 

2. Requirements to Preserve Node Values and Gradients in Multiple Dimensions 

Similarly, suppose we wish to interpolate a multi-dimensional cost-to-go function 

F(x) using function values F, = F(xW) and gradients G, = dF/dxW at nodes x^ , 

/ = I,..„A n. There are 2" cost-to-go values and « 2" derivatives in each «-dimensional 

hypercube. Over an «-dimensional hypercube with lower corner node x('), the 

interpolating functional is given by the weighted sum of equation (4D3) 

Yi" 

F(0(x) = X i Wr + [V-/x)]T- GY) (5C1) 

If this functional is to preserve a cost-to-go value Fv the weight 0y(x) must equal one and 

all other weights must vanish when x = xW. Over the same hypercube, the gradient of 

the interpolating functional is given by the weighted sum 

d\\fy 
t3x"ry + 

If this functional is to preserve a cost-to-go derivative Grj, the weight dy/jj/dxj must 

equal one and all other weights must vanish when x = xW. Table 5C2 summarizes these 

weighting-function requirements. Using notation of the local coordinate system 

presented in Section 4D3, x = x(tf when q = 0. 

In an «-dimensional problem, there are potentially (1+n) 2" constraints on each 

weighting function 0^(x) and y/rj(x). However, many of these constraints are redundant 

since a constraint that causes a weight to vanish for one node and dimension also causes 

it to vanish for other nodes and other dimensions. For example, we can satisfy the 

requirements of Table 5C2 by weights that are an «-fold product of functions. Each 
function of this product contains a single state variable Xj and satisfies the requirements 
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of Table 5C1. Thus, each weight is an n-fold product of third-order polynomials (or 

higher), or a 3/z-fold product of linear terms. However, unlike the 1-D case, weighting 

functions that satisfy the requirements of Table 5C2 may produce interpolating 

functionals that are discontinuous and not smooth. Therefore, requirements for 

continuous and smooth interpolation go beyond those that preserve cost-to-go values and 

gradients at nodes. 

Table 5C2. Weighting-Function Requirements for Interpolation in Multiple Dimensions 

Zero'th-Order Value First Derivative in dimension x. 

Vy,j(x) 

1 at node x(tf, 

0 at other nodes 0 at all nodes 

0 at all nodes 

1 at node x(#, s=j, 

0 at node xW, s *;', 

0 at other nodes. 

3. Additional Requirements to Produce Continuous and Smooth Interpolating 

Functionals in Multiple Dimensions 

To ensure continuity and smoothness between hypercubes of higher dimension, 

we must ensure that weighting functions satisfy additional requirements beyond those 

that preserve cost-to-go values and gradients at nodes. We must also ensure that 

weighting functions for adjacent hypercubes produce the same cost-to-go values and 

gradients along the shared boundary. This means that the interpolating functionals on 

both sides of a shared boarder must converge to the same equation. 

Two conditions must be satisfied to ensure this convergence. The first condition 

is that only shared nodes can be used to evaluate a boundary, and weights applied to 

nodes not on the boundary must vanish. Otherwise, nodes not on the boundary can 

influence estimated values and gradients along the boundary. The second condition is 

that unless other properties of hypercubes (such as geometry) are shared, they cannot 

influence estimated values and gradients along boundaries. 

To satisfy these conditions on a regular grid (i.e., a grid with discretization 

intervals of equal length), we apply two additional constraints to weighting functions. 

The first constraint requires that we use interpolating functionals with consistent form for 

each hypercube. Unfortunately, this prevents us from selecting among different 

interpolations (such as the interpolations of Foufoula-Georgiou [1991] that can be used to 

preserve convexity) based on the local character of a cost-to-go function. The second 
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constraint is that weights vanish when applied to unshared node values. This requires 

that weights vanish at any location where fy = 1 in any dimension /' = 1 ,...,n (Table 5C3). 

If the domain is divided by an irregular grid with discretization intervals of 

variable length, the above constraints will be insufficient to guarantee continuity and 

smoothness. An example of an irregular grid is an adaptive grid that uses finer 

discretization intervals only where needed. With an irregular grid, we must be careful to 

avoid terms that depend on hypercube dimensions. In particular, if a weight depends on 

an unequal discretization interval Axk, this weight must vanish along hypercube 

boundaries both where r\k = 0 and where r/^ = 1 (Table 5C4). 

Table 5C3. Weighting-Function Requirements for Continuity and Smoothness on a 
Regular Grid 

Table 5C4. Weighting-Function Requirements for Continuity and Smoothness on an 
Irregular Grid 

Zero'th-Order Value First Derivative in dimension xs 

1 where T) = 0, 

0 where r/* = 1 any k = 1,...,« 

0 where r| = 0, 

0 where % = 1 any k = l,...,n 

0 where r\ = 0, 

0 where % = 1 any k = \,...,n 

1 where t| = 0, s=j, 

0 where r\ = 0, s * j, 

0 where % = 1 any k = \,...,n 

001) 

v/n) 

Zero'th-Order Value First Derivative in dimension xs 

1 where r\ = 0, 0 where T]s = 0, 

0 where r^ = 1 any k = \,...,n 0 where r\k = 1 any k = l,...,n 

1 where T) = 0, s=j, 

0 where fy = 0, 0 where r\} - 0 and r\s = 0, s ±j, 

0 where r/* = 1 any k = \,...,n 0 where r/* = 1 any k = l,...,/i 

D. ORIGINAL HERMITE INTERPOLATION METHOD 

This section presents the multi-dimensional Hermite interpolation presented by 

Kitanidis [1986] and applied to DDP by Fonfoula-Georgiou and Kitanidis [1988]. This 

first application of Hermite interpolation to a DDP problem produced accurate estimates 

of the cost-to-go and demonstrated an ability to solve stochastic dynamic control 

problems with a greater number of state variables. 
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1. The Weighting Functions 

This interpolation uses the polynomial weighting functions [Foufoula Georgiou 

and Kitanidis, 1988, Appendices A and B]: 

m) = RP (5D1) 

Yfi\) = rij(l-7ij)P (5D2) 

The terms R and P are given by the equations 
n 

R = 1 + X *fc 0-2*7*) (5D3) 
*=i 

^ = FT {1 - 77^> (5D4) 
*=i 

These weighing functions produce accurate cost-to-go approximating functionals F(x) 

even when using coarse grids. 

However, these weighing functions do not produce smooth cost-to-go 

approximating functionals (i.e., the gradient estimate G(x) is not continuous). Equations 

(5D1) and (5D2) do satisfy the requirements of Table 5C3 because their derivatives do 
not vanish for some 77* = 1. The derivatives of equations (5D1) and (5D2) are 

^ = dJk[(l.4Tls)P.Rp(s)] 

^L=(l-r1j)([-3T1j)P(s),    s=j 

d^=dM^k]\j(Jlj.l)P{sh    s*j 
***       dxs\dxjl 

The term P(S) is the previous product P exempting terms indicated by the subscript: 
n 

When TJS= I, the derivatives produce weights 

d0       df]s 

d^       dx 

n 

P(s)  X   i^ (1-277*)} 
s k= 1, h£s 
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^ = ^W"1
77;(n..1)PW, s*j 

<*** dxs\dXjJ 

The derivatives are not equal to zero except for values of T| such as at the corner nodes or 

when J]k = 1, k * s. As a result, weights do not always vanish when applied to nodes not 

on a shared border. Nevertheless, equations (5D1) and (5D2) do produce continuous 

cost-to-go approximations since the weights given by equations (5D1) and (5D2) vanish 

if rfe= 1 for any &= 1,...,/! . 

Discontinuous gradients between hypercubes can complicate application of 

Newton-based search methods and may require that we use a more robust, but slower, 

search method. For example, Johnson et al. [1993] applied a quasi-Newton search 

method to their test of Gradient DP by restarting the search whenever a hypercube 

boundary was crossed. 

2. Analysis of the Original Hermite Interpolation Method 

Johnson et al. [1993] compared the efficiency of Hermite and spline methods with 

linear interpolation, demonstrating that the improved accuracy of higher-order methods 

more than compensates for the increased complexity of the interpolation. They observed 

a significant reduction in the computational effort required to achieve comparable levels 

of accuracy. For example, computational effort was reduced by a factor of 250 for a four- 

reservoir control problem. While the savings for spline and Hermite methods were 

comparable, they evaluated the spline method to be slightly more efficient. In spite of the 

superior accuracy of Hermite interpolation, they judged this insufficient to overcome the 

effort required to calculate both function values and gradients at nodes. 

However, the original Hermite method does not produce continuous derivatives, 

and the quasi-Newton search method is not as effective at searching for the best control 

decisions or at estimating gradients. Also, it appears that Hermite interpolation may gain 

the advantage over spline methods at higher dimension than considered by Johnson et al. 

[1993] . Hermite interpolation uses values only at nodes on the boarder of a subdomain, 

or a total of (l+«)2" values.   The spline method of Johnson et al. [1993] uses 4" node 

values over a larger region. Indeed, they observe that after four state variables, the 

efficiency of the spline method does not improve rapidly in comparison with multilinear 

interpolation; multilinear interpolation, like Hermite interpolation, uses values only at 

immediately adjacent nodes, or a total of 2" values. 

The following three sections present new interpolation methods that improve on 

the original method. The first is a method that uses first-derivatives in what I call the 
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"first order" Hermite method to distinguish it from methods that use higher derivatives. 

Following this is a method that produces continuous second derivatives. A third section 

presents a "second order" method that uses some second derivatives. This third new 

method produces a more accurate interpolation that is better at preserving the convexity 

of the true cost-to-go function. All of these methods take advantage of the high-order 

accuracy of Hermite interpolation while producing a smooth interpolation to allow better 

implementation of quasi-Newton search methods. Also, these methods are easier to 

evaluate than the original Hermite interpolation method. 

E. NEW FIRST-ORDER HERMITE INTERPOLATION 

METHOD 

This section presents multidimensional interpolation method that uses cost-to-go 

values and first-derivatives to produce smooth and continuous approximating functionals. 

Multidimensional interpolation may require complex interpolating functionals of high 

dimension. This results from the exponential growth in the number of node values that 

must be preserved. This also results from additional requirements used to enforce 

continuity, smoothness, or other desirable qualities of an interpolating functional. 

The weights used in this method are the lowest-order polynomial functions that 

satisfy the requirements of Table 5C4. Low-order functions reduce the likelihood that an 

interpolating functional will oscillate. In addition, low-order functions increase the 

likelihood that an interpolating functional will be strictly convex (or concave) when the 

true cost-to-go function strictly convex (or concave). Because these polynomials satisfy 

the requirements of Table 5C4, the interpolation can be applied to grids with any arbitrary 

discretization interval. 

This method is used to produce a highly efficient numerical code that is contained 

in an appendix to this dissertation. As discussed earlier, efficiency is provided by 

interpolation methods that have higher-order accuracy and that are smooth. However, 

efficiency is also provided by interpolation methods that are easy to evaluate. For 

example, the traditional multilinear interpolation is exceptionally easy to evaluate, and 

this accounts for much of its popularity in DDP. Likewise, spline and Hermite 

interpolation methods use low-order polynomials and, thus, are also relatively easy to 

evaluate. 

This interpolation method improves upon the original multidimensional Hermite 

interpolation method of Kitanidis [1986] by ensuring continuity of first derivatives over 

the entire domain while also reducing the required computational effort. Continuous first 

82 



derivatives allow us to apply quasi-Newton search methods that also give us gradient 

information for little or no extra computational effort, though it does increase storage by a 

factor of n+l for an «-dimensional problem. The derivation in this section parallels the 

development of multilinear interpolation in Chapter 4. 

1. Hermite Interpolation in One Dimension 

To produce weighting functions that are simple to evaluate, we choose the lowest 

order polynomial functions that satisfy the requirements of Table 5C1. In a 1-D problem, 

there are four constraints on each weighting function. To satisfy four constraints, each 

weighting function must be a third-order or higher polynomial. 

Third-order polynomial functions that satisfy these constraints were identified by 

Kitanidis and Foufoula-Georgiou [1987] as: 

<k(x) = [2(X-JC<«>) + Ax] (JC('
+1

>-JC)
2
 /(Ax)3 

tö+iOO = [2(x«+lKx) + Ax] (x-xW)2/(Ax)3 

y/i(x) = (jc-jt<'>) (JC<'
+1

> - x)2 /(Ax)2 

W+iOO = - (xW>-x) (x-x(V)2/(Ax)2 

Because these functions preserve both cost-to-go values and gradients at nodes, the 

resulting 1-D interpolation is both continuous and smooth. Figure 5E1 compares 1-D 

linear and Hermite interpolation for an example cost-to-go function F(x) = l/x. The first 

two plots use nodes x^ e {1,4}, and the second two plots use nodes x (') e {1,2,4} . 

These plots illustrate the higher-order accuracy of Hermite methods: with few nodes, the 

Hermite interpolation produces an accurate and smooth approximation of cost-to-go 

values and gradients. 

We can simplify expression of the 1 -D weighting functions using the local 

coordinate system notation of Section 4D3. Using this notation, the weighting functions 

are given by 

0(77) = (l+2r7)(l-n)2 

Vtn) = ri(\-T])2(dri/dx)A 

and their derivatives are 

drj dx 
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^= (1-377) (1-77) 
d77 

The resulting 1-D cost-to-go value and gradient functionals over any interval [x('\ x('+1>] 

are 

F(& = (1+2Ö(1-5)2F,- + (3-2§Z2FM + &l-$l(l-&Gi-ZGM)(*x)      (5E1) 

G(£) = d£ = 6#l-$ £±L£L + (1-3©(1-Ö G,- - (2-3£)£G,+1 (5E2) 
•^ AJC 

Note that d<£/dx = 1/Ax. 

Figure 5E1. 1-D Linear and First-Order Hermite Interpolation of the Function F(x) =x'1 

True cost F(x) = \lx and gradient G(x) 

Interpolated cost F(x) and gradient G(x) 

Two Nodes at x = 1 and 4 Three Nodes at x = 1, 2, and 4 

-0.5 

2. Hermite Interpolation in Multiple Dimensions 

To produce multi-dimensional weighting functions that are simple to evaluate, we 

choose the lowest-order polynomial functions that satisfy the requirements of Table 5C4. 

Unlike the multi-dimensional requirements of Table 5C2 that are enforced only at corner 

nodes, most of the requirements of Table 5C4 are enforced along entire boundaries. 
More specifically, the weights <p(r\) and \\f(r\) and their first derivatives must be zero for 

any T]k = 1 an<^ even f°r some 77^ = 0. In an /i-dimensional problem, there are (l+n) 2" 

cost-to-go values and first-derivatives, so there are potentially (l+n) 2n constraints on 
each weighting function <pfi(.) and y/Yj(x). However, many of these constraints are 

redundant since a constraint that causes a weight to vanish for one node and dimension 
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also causes it to vanish for other nodes and other dimensions. As suggested in Section 

5C2, we can identify each weighting function as an «-fold product of 1-D functions. In 

each dimension there are either three or four constraints that can be satisfied by second- 

order or third-order polynomials. If we use only regular (i.e., evenly spaced) state-space 

grids, then we may be able to reduce the order of some polynomials. 

Weighting functions that are an n-fold product of 1-D functions and that produce 

continuous first derivatives for either regular and irregular grids are 

<Kr\) = P = fl (l+27k)(l-rfc)2 

Wjin) = QjP(j) (dljfdxjY1 

where Ö, = tyO-ty)2 

P(fi =    fl    (l+2ry(l-n,)2 

fc=l,foy' 

The first derivatives are 

^ = (1-3^X1-77,)^),   s=j 

^ = - 6U\-yis)QjP(sj) (dn/dxj)-1 ^,   s *j 

Because these satisfy the requirements of Table 5C4 (Figures 5E2 through 5E5), the 

resulting multidimensional interpolation is both continuous and smooth. Figure 5E6 

compares 2-D linear and Hermite interpolation for an example cost-to-go function 

F(x) = (JCJ-X^"
1
 . The first two plots use nodes formed from the set of coordinates 

x-() e {1,4}, / = 1,2; and the second two plots use nodes formed from the set of 

coordinates x-^e {1,2,4}. 

In contrast to the 1-D case, these weighting functions are not the lowest-order 

polynomials that guarantee continuous first derivatives. As mentioned, the requirements 

of Table 2C4 could be satisfied with second-order polynomials in some cases. However, 

experimentation with weights composed of mixed second-order and third-order 

polynomials did not produce interpolating functionals with noticeably lower curvature. 

Also, these mixed-order weights were not able to preserve convexity and they required 
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more effort to evaluate. If grids are regular in some or all dimensions, the requirements 

of Table 2C3 could be applied to further reduce the order of polynomials. I did not 

experiment with weights composed of such lower-order polynomials, and this presents a 

possible area for further refinements. 

To demonstrate the application of these weighting functions, we can state the 

closed-form approximating functional for 2-D interpolation. The 2-D approximating 

functional is 

F(x) =fo+fi+f2 

where f0 = P^P^ + ^'(1)^1 + ^(2)^(1)^ + FwFrf 

f\ = Qi[P(i)GYui+P\i)GYiA]Axl - Q'i[Pii)Gy2<l+PwGy4A]Axl 

h = PmiQiG^i-Q'iG^^xi - P'amiG^i + Q'iGya]^! 

Consistent with previous definitions, 

when 77,=^: Pm = (l+2Wtf 

Qx = £i(K,)2 

and when 77, = 1-^,: P\2) = (3-2£,)£,2 

Q\ = (Ki)£i2 

P(1), Q2, P\{), and Q'2 are defined similarly. The derivatives of the approximating 

functional are 

dF  _ d/0  | d/i   ( d/2 

dxi       dxi     dbci     dxj 

where &*- = (6)&(1-SI)[/»(I£^ + P'o)^^} 
«l AJC AX 

&- = (l-3^)(H\)[P(i)GYui +P\i)GYiA] - (2-35i)^[P(1)Gn.i +P(i)GYA,l] 
ax\ 

^ =  (6)$I(l-|,)[Ö2(Gn.2-Cyi.2)-ß'2(Gy4.2-Gw.2)]^2. 

The equation for dF/dx2 parallels that for dF/dxj. 
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Figure 5E2. 2-D Weighting Function <p(r\) Applied at a Node 

Figure 5E3. 2-D Derivatives of Weighting Function (p(r\) Applied at a Node 
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Figure 5E4. 2-D Weighting Function \|/(r|) Applied at a Node 

Figure 5E5. 2-D Derivatives of Weighting Function \|/(r|) Applied at a Node 
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Figure 5E6. 2-D First-Order Hermite Interpolation of the Function F(x) = Oqj^)"1 
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F. CONVEXITY OF THE FIRST-ORDER METHOD 

Frequently, the highest costs (and highest marginal costs) are associated with 

extreme states of a system and cost-to-go functions are convex. When a cost-to-go is 

convex, it is likely that the total cost function (i.e., the sum of the current cost and the 

cost-to-go) is a convex function of control decisions. Under these conditions, search 

methods can find the globally optimal solution and will not find a "local" minimum that 

yields incorrect control decisions (however, it is possible to find correct control decisions 

even if a DDP cost-to-go function is not convex). 

It is important that interpolation preserve the convexity of a cost-to-go function. 

Unfortunately, the Hermite interpolation proposed in the previous section does not 

always preserve convexity. The interpolation is convex over a subdomain of x (i.e., for 

all 0 < £j< 1, / = 1 ,...,/* ) only when the Hessian is positive semidefinite [Ecker and 

Kupferschid, 1991, p. 271]. A function is positive semidefinite if and only if all principle 

minors (i.e., the determinates of the square submatrices whose (1,1) elements are the (1,1) 

element of the Hessian) are nonnegative [Ecker and Kupfer schid, 1991, p. 298]. 

1. Convexity of One-Dimensional Interpolation 

For the 1-D case, the Hessian is a one by one matrix and there is only one 

principle minor. This principle minor is the second derivative 

«£| = -6- [ (1-2$ ^^ + (£ hGi + (£- {)Gi+l ] (5F1) 
dr-      A.v Ax ^ J 

where <jj is the local coordinate transformation of the single state variable x. The principle 

minor is a linear function of £ Thus, the principle minor is nonnegative over the domain 

0 < £ < 1 if it is nonnegative at the bounding values at £ = {0,1}. Bounding values are 

non-negative if and only if 

2-0, + k;,+1 < ^±TIL < Uj. + 1GM (5F2) 
3 3 fa 3 3 

The cost-to-go approximation is convex if these constraints are satisfied for each pair of 

adjacent nodes. 

Figure 5E1 illustrates a function approximation using two different discretizations 

of the state variable. Interpolation using the coarser discretization is not convex even 

though the true function is strictly convex. In this case, the second derivative is negative 

at the node .r = 4, and the upper bound constraint of equation (5F2) is violated. On the 
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other hand, interpolation using the finer discretization is convex and the constraints of 

equation (5E2) are satisfied. 

This illustration suggests a possible solution for non-convex function 

approximations. For the example considered, the constraints are satisfied as the 

discretization interval Ax decreases. In most cases, we can achieve a convex function 

approximation that satisfies the constraints of equation (5F2) by selecting a discretization 

interval Ax that is sufficiently small. For smooth functions (i.e., functions with 

continuous first derivatives), non-convex features become small or disappear as the 

values G„ G,+i, and (F,+i-F,)/Ax converge. Even if the constraints of equation (5F2) are 

not satisfied, we need not continue to decrease Ax to until the cost-to-go function 

approximation is strictly convex. We can tolerate some small concave features in a 

function approximation because the distribution of outcomes produced by stochastic 

inputs. Even if there are small concave features in a cost-to-go estimate, the distribution 

of outcomes causes an averaging process that can still produce a convex total-cost 

estimate. 

Foufoula Georgiou [1991] also addresses the problem of interpolating a 1-D 

convex function with convex interpolants. Using exponential functions, she produces 

interpolants that are strictly convex. Unfortunately, the interpolants have unbounded 

second derivatives and require that multiple interpolants be used. This can prevent 

application to multidimensional interpolation: when different interpolants are required 

for different subdomains, the resulting approximation will be discontinuous between 

subdomains. 

2. Convexity of Multi-Dimensional Interpolation 

For multi-dimension approximating functionals, the Hessian is more complex and 

evaluation of the principle minors is more difficult. For example, the (1,1) element of the 

2-D Hessian is 

d^£= d^_ + d^_ + d^ 

dx,2      dx,2     dx2     dx,2 

u                        d2/0         6   mtuD   Fn~Fn . p.    ^K^Jh where -^f = -**-(l-2$i)[P{i) + " (\) J 
dxr      Ax\ Ax Ax 

d2^ = ±^L[P(1)Gyiil +Fa)G,,,] + -2^L[Pil)G^ +P'(,)Gy4,I] 
dxf Ax! At) 
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dxf       Ax\ Ax\ 

The definitions for P(i), P\\), Q2, and Q'2 are as given previously. It is difficult to 

identify simple convexity constraints as in the 1-D case. 

Instead of evaluating convexity constraints for the multi-dimension interpolation, 

we might guess that if the 1-D convexity constraints are satisfied for each dimension, 

then the multi-dimensional interpolation is convex. This would seem reasonable since 

the proposed multi-dimensional interpolating functional is the n-fold product of 1-D 

functions. However, application of the proposed interpolation shows that it is not 

convex. However, among the various other interpolation methods attempted (including 

lower-order methods and non-polynomial methods), the proposed n-fold third-order 

polynomial weighting functions perform best. 

Problems with non-convexity (and with poor cost-to-go estimates) appear to be 

worse when the off-diagonal elements of the Hessian are significant. As a result, the next 

sections present higher-order interpolation methods that use estimates of some second 

derivatives to reduce non-convex features of cost-to-go approximations. We will observe 

the impact of off-diagonal elements on multi-reservoir solutions analyzed in the next 

chapter. 

G. A HERMITE INTERPOLATION METHOD WITH 
CONTINUOUS SECOND DERIVATIVES 

Higher-order interpolation methods can preserve higher-order derivatives or 

produce a higher degree of smoothness. Preserving higher-order derivatives (e.g., second 

derivatives) should improve accuracy, but requires higher-order weighting functions and 

additional effort to evaluate and store the derivatives. Producing a higher degree of 

smoothness should improve convergence of search routines and may improve convexity, 

but also requires higher-order weighting functions. 

This section presents a second interpolation method that produces a higher degree 

of smoothness by ensuring continuity of second derivatives between subdomains. 

Ideally, we would like an interpolation that produces continuous first and second to 

improve the efficiency of Newton-based search methods. Also, an interpolation with 

continuous first and second derivatives may preserve convexity better than the first-order 

Hermite method. 
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Additional requirements on the weighting functions are required to ensure 

continuous second derivatives. As with cost-to-go values and first derivatives, second 

derivatives along shared boundaries must be calculated to produce the same values in 

adjacent hypercubes. As a result, nodes and geometry that are not shared cannot be used 

to estimate second derivatives along a boundary. Table 5G1 identifies requirements on 

weighting functions <p(r\) and 1^<T|) that will produce continuous second derivatives on an 

irregular grid (if a grid is regular, the constraints on 77* = 0 are not needed). 

Continuity of second derivatives is accomplished without calculating the value of 

second derivatives at nodes. Instead, the requirements of Table 5G1 force the second 

derivatives to zero at hypercube boundaries. This may result in less accurate cost-to-go 

estimates; however, this avoids the potentially difficult task of calculating and storing 

these second derivatives. 

Table 5G1: Weighting-Function Requirements for Second-Derivative Continuity on an 
Irregular Grid 

2nd Derivatives 

m 0 where 77* = 0 any k = 1,. 

0 where rfc = 1 any k = 1,. 

v/Ti) 0 where % = 0 any k = 1,. 

0 where 77* = 1 any k = 1,. 

1. The Weighting Functions 

Evaluating a weighting function as an «-fold product, there are five or six 

constraints on each 1-D function. These are constraints on the weighing function, its first 

derivative, and its second derivative at the two bounds 77* = 0 and 77* = I, where k 

identifies the current dimension. As a result, each 1-D function is a fifth-order 

polynomial and the weighting functions are given by 
n 

001) = P = Ei (l+377i+677t
2)(l-77Jt)

3 

Vfl\) = QjP^drj/dxß-1 

where Qj = (1+377^)77/1-77/ 

P^j) =    fl    0+377*+677*2)(l-77*)3 

k=l,k*j 
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If the grid is regular in some or all dimensions, we could define lower-order polynomials 

that do not require weights to vanish when 77* = 0 for some dimensions k = l,.../i . 

The 1st derivatives of the above polynomial weighting functions are 

^ = (l+Srai-Srai-Tk)2^. dxs       
J —-."-« S~J 

^ = (^O^Kl-^QjP^drij/dxjy1 ^ s*j 

and the 2nd derivatives are 

0= (-60)(l-277,)77,(l-77j)/'w(^ 

d'Vj = (-12X3-5^)^(1-^)/^)^ s=j -v »,,»••„,•„£ 
s 

= {dT]jldxj)A\^ (-60)(l-277,)7k(l-7k)ßy/W **/ s=<w(r 
It can be easily verified that these weighting functions possess the properties of Table 

5C4 and Table 5G1. 

2. The One-Dimension Approximating Functional 

The 1-D approximating functional and derivatives are 

FU\x) = PFi + FFM + QGiAx - Q'Gi+lAx 

d|^ = 30^(\-O2^±rfl + (1+5£)(1-3$(1-$2G,- - (6-5£)(2-3#£2Gl+1 
fo Ax 

&J±- = (60)^l-^)[(l-2^)^±i^+(^2-)G, + (^|)G/+1]/Ax 
dLc2 Ax 5 5 

Consistent with the definitions above, 
-> 

whenr/ = £ /> = (l+3£+6<T)(l-£)3 

Q = (l+3£)£(I-£)3 

whenr7=l-£ F = (3-15£+6£ *)£3 
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Q = (4-3£)(l-£)£ 

Figure 5G1 illustrates this 1-D approximating functional. Comparing this figure with 

Figure 5E1, we see that this interpolation is less accurate and poorly preserves convexity 

of the true cost-to-go. Also, the curvature of the approximating functional increases with 

smaller discretization interval Ax. 

Figure 5G1. 1-D Hermite Interpolation with Continuous Second Derivatives of the 
Function F(x) = x-* 

True cost F(x) = l/x and gradient G(x) 

Interpolated cost F(x) and gradient G(x) 

Two Nodes at x = 1 and 4 

d2F/dx2 

0.5    . 

G(x) = dF/dx 
-0.5   1   / 

■1.0 

A 
Three Nodes x = \.2. and 4 

-1.0 

3. The Two-Dimension Approximating Functional 

The 2-D approximating functional is 

F(x) = /o +/i +fi 

where f0 = P(2)[/'(i)Fw + /"(1)F„] + F(2)[P(,)FÄ + F(l)F^ 

f\ = ßl[P(l)Gy,.l +F0)GYiA]Axl - Q'rtPwG^ +FwGYiA]Axi 

fl   =   PukQlGyiZ-QlG^bX!   -  P'(2)[QlGY:,2+Q'2GYA,2]^2 
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The 2-D interpolated 1st derivative with respect to x\ is 

dF = d/p  | d/i   x d/2 

dxi       dxi     dxi     dxi 

where 
^i Ax, AJCI 

Fv.-Fv 

^- = (1+5|,)(1-3|,)(1-§,)
2
[P(„GM+P

,
(„GB>,] 

- (6-5§,)(2-3^i)^2[P(1)GÄi,+P'(,)Gy4,1] 

^ = (30)^,2(l^I)
2[ß2(Gy2)2-Gy„2)-ß,2(Gy4,2-G),,2)]AJ:2/Ax1 

The first derivative for dF/cLc2 parallels that for dF/dx\. Figure 5G2 illustrates this 2-D 

approximating functional. Comparing this figure with Figure 5E6, we again see that this 

interpolation is less accurate and poorly preserves convexity of the true cost-to-go. 

Figure 5G2. 2-D Hermite Interpolation with Continuous Second Derivatives of the 
Function F(x) = (xix2)"' 

4. Accuracy and Convexity of Hermite Interpolation with Continuous Second 

Derivatives 

We see from the 1-D and 2-D examples that higher-order weighting functions 

may not produce interpolations as good as the simpler first-order Hermite method. To 

achieve continuous second derivatives, we produce an interpolation that is less accurate 

and has more difficulty preserving the convexity of a true cost-to-go function. In large 

part, this results from error induced by forcing second derivatives to zero at boundaries 
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between subdomians; however, this also demonstrates that interpolation functional 

oscillate more severely when we use higher-order polynomials to produce weights. 

As we observed, the interpolating functional has more difficulty preserving the 

convexity of a true cost-to-go function. For the 1-D approximating functional, the second 

derivative is nonnegative if 

fG,+§G,+, < ^^ < ZGI + IGM 
5        5 ^55 

As we expect, the bounds of this equation are more restrictive than the bounds of 

equation (5F2) for the first-order Hermite interpolation. For the 2-D approximating 

functional, the (1,1) element of the Hessian is 

£F = d%_+d%_ + d% 

dxj2       dx2     dx2     dx2 

d2/b 60(^2^) FyrFy, Fy-Fyi 
where --"*■ =  SiO-sOlAn + ^(i) J 

dbcf Axi Axi Ax\ 

^j- = --M^\-^)[0-5^){PwGYu^P'mG^) + (2-5§,)(/»(i)GB,1+/»,(i,Gr,,)] 
dxf      Ax\ 

Hi = -^ö-§I(l-^)(l-2$,)[ß2(GBf2-G7i,2)-ß,2(Gw.2-GB,2)]^2- 
dxf      Axi Axi 

Again, it is difficult to identify simple convexity constraints as in the 1-D case. 

Instead of forcing second derivatives to zero at boundaries, we could estimate 

second derivatives. From quasi-Newton search methods, we can extract estimates both of 

gradients and of the Hessian; however, such an estimate of the Hessian may not be 

sufficiently accurate. As an alternative, we can estimate the Hessian by finite differences 

using values of the gradient at adjacent nodes. Though this estimate is rough, it should be 

a significant improvement over forcing derivatives to zero as done in this section. 

Though computational effort and memory both increase, the increase in interpolation 

accuracy should prevent an overall increase in effort and memory. 
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H. A SECOND-ORDER HERMITE INTERPOLATION 

METHOD 

This section presents a third interpolation method that uses off-diagonal elements 

of the Hessian to produce more accurate estimates. This additional derivative 

information improves the convexity of interpolating functionals. What is more important, 

this method is able to use these derivatives without increasing the order of polynomials 

used by the weighting functions. However, this method does not produce continuous 

second derivatives. 
The off-diagonal elements of the Hessian are the elements d2F/dxjdxk where 

j * k. The interpolating functional is given by the weighted sum 

tt" n n 

F(,)(x) = X ( W*) Fr + X ( VwOO GYJ + X f XYJM*) Hyj.k } } }     (5H1) 
r=Y\ 7=1 k=j 

Table 5H identifies requirements on the second-derivative weights Xj.k00 required along 

with the requirements of Table 5C4 to produce continuous and smooth interpolations. 
Diagonal elements of the Hessian (i.e., d2FI±xf) are not used as this requires use of 

higher-order polynomials as in the last section. 

A great advantage of this second-order method is that the second-derivative 

weighting function Xj,k(x) is constructed from the same 1-D polynomials used by the 

first-order Hermite method. Also, the weighting functions 0(x) and y/,(x) are the same as 

those used for the first-order Hermite method. 

Table 5H1. Second-Derivative Weighting-Function Requirements for Continuity and 
Smoothness on an Irregular Grid 

Zero'th-Order Value First derivative in 

dimension xs 

Second derivative in 

dimensions xr and xs, rts 

XjJcW 1 where r\ = 0, [rj}={j,k) , 

0 where r\j = 0, 0 where r\j = 0, s*j, 0 where r\j = 0, r,s*j, 

0 where rj*: = 0, 0 where T]k = 0,s*k, 0 where r/^ = 0, r,s*k, 

0 where r\s = 0, si [kj) 0 where r\r = 0, rg {kj) 

0 where r]s = Q,s& {kj) 

0 where r\q = 1 any q 0 where J)q = 1 any q 0 where T)q = 1 any q 
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1. Shorthand Notation 

To present the second-order method, we will use shorthand notation for the 

polynomials used to construct the weighting functions. The following third-order 

polynomials are the same 1-D polynomials used by the first-order weighting functions 

used to satisfy the requirements of Table 5C4: 

Oj =  (l+2ty)(l-7fc)2 

ßj= 77/I-77/(dTT/dx,)"1 

In addition, the following second-order polynomials are derivatives of the weighting 

function polynomials 

da, ,   ..     .dTj, 

s' = df = c-Hxi-i-) 

Using this notation, the first-order weighting functions are 
n 

m = p = n <*k 

Yfi\) = ßjp<j) 

n 

where P(j) =     Yl    a* 

The first derivatives are 

^=tOsßjP(sj) s*j 

And the second derivatives d2/dxrdxs, r * s, are 

d20 
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_1-=*$!•«> s=j 

d2W; _ 

2. Weighting Function for the Second Derivatives 

As mentioned, the second-derivative weighting function XjJcOO IS constructed 

from the same 1-D polynomials used by the first-order Hermite method. This function is 

Xkfi\) = ßkßjP(kj) 

Its first derivatives are 

^    = P*<^(M 5=7 

t; = */>'<*> s = & 

^=  COjßkßjPMjl J« {*,/} 

its second derivatives d2/dx,dxs, r * 5, are 

i&-**'«* {r,*} = {*,/} 

i& = <*AVW r^k, s=j 

^ = «H/WW r *■}, s = k 

£&=*AVW r =j, s*k 

£&" ***'<<*> r = k,s *j 

d ^    -   r,). /»). ßt ß. P,„.«. n r.s £ (k.i) 
cM*. s 
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To verify that this weighting function and its derivatives satisfy the requirements of Table 
5H, notice that all polynomials vanish when 77 = 1 and that ß and m vanish when 77 = 0. 

This is appropriate since ß and a depend on the discretization interval Ax^. 

I. COMPUTATIONAL EFFICIENCY OF METHODS 

The effort required to solve a DDP problem is proportional to a number of 

discrete states that increases exponentially with the number of state variables as described 

by equation (4C1). For each discrete state, we solve a smaller optimization problem that 

identifies the best control decisions for this initial state. Most execution time is spent in 

the search routine used to find optimal decisions for each discrete state. As a result, we 

can also reduce the total execution time for a DDP problem by reducing this search time. 

The first way to reduce search time is to use an efficient search routine. The 

amount of time required by each search depends on the number of times the total cost 

function of equation (4A5) is evaluated. More efficient search routines (such as Newton- 

based routines) can find the optimal decisions with fewer the evaluations, and can 

significantly reduce the execution time. 

The second way to reduce search time is to reduce the amount of time required to 

evaluate the total cost function. For DDP problems with multiple state variables, the 

amount of time required to evaluate the total cost function depends primarily on the time 

required to interpolate the cost-to-go. Usually, the effort required to evaluate the 

interpolating functional will be large compared to the effort required to evaluate the 

current cost function or the state-transition function. Even in the case of crude nearest 

neighbor interpolation, a significant time amount of time may be spent searching for the 

correct subdomain. 

To evaluate the new Hermite interpolation methods, it is useful to identify the 

hypothetical effort required to interpolate using the various methods. In particular, we 

are interested in seeing how the effort grows with the dimension of the interpolation (i.e., 

the number of state variables). One approach is to count the number of "flops," or 

floating-point operations required to perform each interpolation [Johnson et ai, 1993]. A 

flop is a floating point multiplication and an addition (with most effort due to the 

multiplication). 

To evaluate the cost-to-go at a state x requires effort to evaluate the weighting 

functions and additional effort to apply the weights to node values. Let us first consider 

the effort required to apply weights to nodes. In the case of a local approximation that 

uses only immediately adjacent nodes (i.e., corner nodes of the surrounding hypercube), 
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there are 2" nodes. Thus, for multilinear interpolation, 2" flops are required to apply the 

weights to the cost-to-go value at each node and sum the result. For the first-order 

Hermite interpolation method, 2"(n+l) flops are required to apply the weight to the cost- 

to-go value and derivatives at each node. For the second-order Hermite interpolation 

method, 2""'(« 2+n+2) flops are required for the additional (n2-n)/2 second derivatives. 

This does not include the diagonal elements of the Hessian and assumes that the Hessian 

is symmetric (i.e., the (j,k) element equals the (k,j) element). In contrast, spline methods 

require a more extensive set of nodes but do not use derivatives to estimate the cost-to- 

go. In this case, there may be on the order of 4" flops [Johnson et al, 1993]. Clearly, the 

effort to attain higher-order accuracy using Hermite interpolation or splines can result in 

an exponential increase in interpolation effort. 

Now let us consider the effort to evaluate the weighting functions. The 1 -D 

functions «(r/y), ßj]j), üXfy), and b\r\j), j=l,...,n , are used numerous times in different 

weighting functions. Careful programming can significantly reduce the effort to evaluate 

the weighting functions by reusing in different weights the evaluation of the 1-D 

functions and their products. In contrast, it is not as easy to reduce the effort of the 

original Hermite interpolation [Kitanidis, 1986] because the weights cannot be 

decomposed into as simple a set of functions. Table 511 identifies the effort to interpolate 

the cost-to-go value using the linear and Hermite interpolation methods. The total effort 

is the sum of the effort to evaluate the 1-D functions, the effort to evaluate the weights 

using these functions, and the effort to apply these weights to the nodes (there are also n 

divide operations required to evaluate (Ax)"1, but this effort grows only linearly with the 

number state variables). With careful programming, the effort to evaluate the weights is 

only twice the effort to apply the weights. 

Table 512 identifies the growth in effort with dimension for multilinear 

interpolation, the first-order Hermite method, and the second-order Hermite method. 

These are the interpolation methods that have been included in the DDP code presented 

in an appendix to this thesis, and the effort is evaluated by counting the flops in the code. 

The effort to interpolate the cost-to-go F is identified for each method to provide an equal 

basis for comparison. Implementation of the quasi-Newton search is more efficient if we 

calculate the gradient of the cost to go analytically, and actual implementation in the GDP 

code interpolates both F and G. 
The next chapter will apply these three methods to a range of multi-reservoir 

problems to verify the interpolation effort anticipated here and to observe the accuracy of 

each method. Table 512 indicates that the first-order Hermite method requires 

approximately an n-fold increase in effort to evaluate the cost-to-go. Actual 
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implementation of the first-order Hermite method interpolates both the cost-to-go and its 

gradient, and this should increase the effort approximately by a factor of «2. 

Equivalently, the effort of the second-order Hermite method is approximately a factor «/2 

greater than the effort for the first-order Hermite method. 

Table 511. Distribution of Effort for One Interpolation of the Cost-To-Go (in Flops) 

Method Evaluate 1-D    Evaluate 
polynomials      weights 

Apply weights  Total effort 

Linear 1/j+i 2n 
-3-2" 

First-Order Hermite      14« 

Continuous second       20« 
derivatives 

Second-Order 14/i 
Hermite 

~ 2"+1« 

~ 2n+1n 

~2nn2 

2"(«+l) 

2"(«+l) 

~ 3-2"« 

~ 3-2"« 

2"-I(«2+"+2)     -3-2"-1« 2 

Table 512: Total Flops For Each Evaluation of the Cost-to-Go (per Code) 

Number of Linear First-Order Hermite Second-Order Hermite 
dimensions (F) (F)            (FandG) (F) (FandG) 

1 3 13                   22 n.a. n.a. 

2 10 36                   94 42 116 

3 23 97                  328 147 526 

4 48 234                1014 452 2044 

5 97 547               2932 1309 7162 

« -3-2" -3-2"«           ~3-2n«2 ~3-2nAn2 -3-2"-1«3 
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CHAPTER 6. 

ANALYSIS OF GRADIENT DYNAMIC 

PROGRAMMING 

In this chapter, we evaluate the benefit of the first-order and second-order Hermite 

interpolation methods of Chapter Five. We will apply these methods to solve reservoir 

control problems with a range of complexity. As a basis for comparison, we will also 

apply the multilinear interpolation method of Chapter Four to solve many of the same 

problems. All three methods are applied consistently and are incorporated in the 

computer code included in Appendix B. 

Each method is compared by evaluating the trade-off between solution accuracy 

and time to execute the code. This is accomplished by applying each method to reservoir 

control models using progressively finer state-space grids to approximate the cost-to-go 

functions. These finer grids yield solutions of increasing accuracy but also require 

increasing time to execute the code. As we will see, the solutions validate the expected 

performance discussed in Chapters Three and Five and support the accurate application 

of GDP to stochastic dynamic control problems with six or more state variables. 

The following analysis closely parallels the analysis of Johnson et al. [1993] used 

to evaluate the benefit of spline methods. Johnson et al. applied spline and linear 

interpolation methods to solve reservoir control problems with between two and five 

reservoirs. They also apply the original Hermite interpolation method [Foufoula 

Georgiou and Kitanidis, 1988] to a four-reservoir problem and demonstrate that the 

original Hermite interpolation performs about as well as spline methods. The 

applications of spline and Hermite methods demonstrate that higher-order interpolation 

allows us to solve stochastic DDP problems of higher dimension than possible with 

traditional DDP methods. 
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A. THE SERIES OF MULTI-RESERVOIR TEST PROBLEMS 

This section presents the series of increasingly complex test problems used to test 

DDP using the linear and Hermite interpolation methods. First, we will consider a 

traditional four-reservoir model that has been used by previous authors to test their 

systems analysis methods. Second, we will consider a series of modifications to create 

models with between one and seven reservoirs, extrapolating on the examples of Johnson 

etal. [1993]. 

1. The Four-Reservoir Test Problem 

Since its introduction by Larson [1968], the four-reservoir model has been used 

by many authors to test stochastic control methods [Chow et al, 1975; Foufoula 

Georgiou andKitanidis, 1988; Heidari et al., 1971; Kitanidis andAndricevic, 1989; 

Murray and Yakowitz, 1979; Saad et al, 1992; Sobel, 1989; Yakowitz, 1982]. Of 

particular interest, Johnson et al. [1993] used the four-reservoir model to assess the 

performance of spline DDP methods and Foufoula-Georgiou and Kitanidis [1988] used 

the model to test the original GDP algorithm. 

In applications of this thesis (and in the applications of Johnson et al. and 

Foufoula-Georgiou and Kitanidis), the four-reservoir model is fed by two independent 

stochastic streamflows. The four reservoirs are distributed above and below the 

confluence of the two streams (Figure 6A1). Upstream reservoir 1 receives flow of the 

first stream. Reservoirs 2 and 3 receive flow of the second stream. Downstream 

reservoir 4 receives water released from reservoirs 1 and 3. Streamflows are uncorrelated 

(both with each other and in time), and the state of the system is simply described by 

storage levels in each of the four reservoirs. A solution identifies the release policy for 

each reservoir (as a function of storage levels) and the expected cost for any initial set of 

storage levels. The optimal solution minimizes the expected cost of operations in each of 

three stages. The cost of operation is a quadratic penalty of deviations from desired 

releases. 
The mathematical model of the four-reservoir system follows the conventions 

established in Chapter Two. The four state variables x = [.rlrx2^3^4]T   represent storage 

in the four numbered reservoirs of Figure 6A1. The four decision variables 

u = [z/i,M2,"3>"4]T represent releases from each reservoir. Two stochastic variables 

w = [H>I,W2]
T
  represent the uncorrelated streamflows into reservoirs #1 and #2. These 
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streamflows are normally distributed with mean values of |i = [2,4]T and standard 
deviation a = [0.5,0.75]T and are represented by discrete flows w\ e {1.5,2.5}   and 
w2e {3.25,4.75}   weighted equally. For each of the three stages, the state transition 

function y = T,(x,u,w)   is linear and can be expressed in matrix form as 

7/(u,x,w)  = 
r-i ooo] r i o o oi rio] 

0-1 0 0 0 10 0 01 
0 1-10 u + 0 0 10 X  + 00 

L l o l-ij Lo o o lj Looj 
w 

Releases cannot be negative (u > 0) and reservoir levels must remain between [0,12] 

(0<u<12). 
The cost function in each of three stages is a quadratic function of deviations from 

desired releases. The desired releases in each stage are u = 1 for all reservoirs. The cost 

in each of the three stages t = {0, 1,2} is 
4 

C,(u) = X { fl/ty,),,-!)2 } 
7=1 

where a = [ 1.1,1.2,1.0,1.3]T . The cost-to-go at the time horizon (i.e., the cost for the 

terminal state) is given by the function 
4 

F,4(x) = X { (xrbj)2 } 
7=1 

where b = [5.0,5.0,5.0,7.0]T . The optimal solution minimizes the expected value of 

these costs for the entire operating horizon: 

F,(x) = minU(li),u(ö)fU(IJ){ ^(„.^w^f      I { C(u) } +F,4(x) } } 

Figure 6A1. Illustration of the Four-Reservoir Control Problem 

x = storage level 

u = release decision 
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2. Formulation of the Multi-Reservoir Test Problems 

Modifications of the four-reservoir problem are used to create a series of multi- 

reservoir models with varying complexity. Models with one to five reservoirs are those 

used by Johnson et al. [1993]. Models with six and seven reservoirs are simple 

extrapolations of the pre-existing models (Figure 6A2). 

The current-cost functions used by the seven reservoir-system models are 

Q[u] = X ( afuj-l)2 },   n =1,3,4, 5, 6, 7 
H 

C,[u] = (W1+U2-2)2,   n = 2 

Note that the current-cost function used with the two-reservoir model is different from 

that used with the other six models. As we will see later, this difference causes the 

relationship between computational effort and accuracy to deviate from the trend 

established by the other six problems. Consistent with the four-reservoir problem, the 

final cost-to-go associated with the terminal state of each system is 

Constraints are 0 < u, and 0 < x < 12. The coefficients a and b for each of the seven 

models are given in Table 6A1. 

Figure 6A2. Multi-Reservoir Systems 

One Two Three Four Five Six Seven 
Reservoir   Reservoirs   Reservoirs   Reservoirs   Reservoirs   Reservoirs   Reservoirs 

AAAA 
^y 
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Table 6A1. Definition of Multi-Reservoir Problems 

Case Description Parameters 

n=\ Reservoir below confluence of streams a=1.0, b = l 

n = 2 Reservoir on each stream a = [1.0, 1.0]T 

above confluence b = [5,7]T 

n = 3 Reservoir on each stream above confluence a=[l.l, 1.2, 1.3]T 

and reservoir below confluence b = [5, 5,7]T 

n = 4 Same as (n=3) with a = [l.l, 1.2,1.0, 1.3]T 

two reservoirs on stream 2 b = [5, 5, 5, 7]T 

n = 5 Same as (n=4) with a=[l.l, 1.2, 1.0, 1.3, 1.1]T 

two reservoirs below confluence b = [5, 5, 5, 7, 7]T 

n = 6 Same as (n=5) with a = [1.1, 1.2, 1.0, 1.3, 1.1, 1.0]T 

two reservoirs on stream 1 b = [5, 5, 5, 7, 7, 7]T 

n = l Same as (n=6) with a=[l. 1,1.2,1.0,1.3,1.1,1.0,1.0]T 

three reservoirs on stream 2 b = [5, 5, 5, 7, 7, 7, 7]T 

B. COMPUTATIONAL EFFORT TO SOLVE THE SERIES OF 
MULTI-RESERVOIR TEST PROBLEMS 

This section presents the computational effort required to solve the seven multi- 

reservoir test problems using the linear and Hermite interpolation methods. As we will 

see, the effort grows exponentially with the number of reservoirs (i.e., the number of state 

variables). In Chapter Four, we described this growth by the equation 

J = ZAn 

where Z is the effort to identify optimal control decisions for one initial state of a one- 

stage subproblem. This effort grows exponentially with the number of state variables n 

and the discretization A. 

However, this is not the complete story since Z also grows exponentially with the 

number of state variables.   Chapter Four divided this effort into the product of Z/, the 

time required to evaluate the total cost function, Z$, the number of evaluations required to 

find the solution that minimizes the total cost, and Z\, a catch-all term for overhead and 
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other factors that influence the total effort J. Thus, we described the total effort by the 

equation 

J = Z\Z[ZsA 

We will evaluate the computational effort to solve the seven multi-reservoir test problems 

as a function of these three factors. 

This computational effort will depend on the search routines employed. When 

using Hermite interpolation, we will employ the quasi-Newton method of NPSOL [Gill et 

al, 1986]. NPSOL iteratively searches for an optimal solution by using estimates of the 

cost-function gradient and Hessian to identify a search direction and by using a line- 

search routine to find new solutions. Constraints are incorporated by the Lagrange 

multipliers. When using linear interpolation, we will employ the downhill simplex 

method using the computer code of Press et al. [1992, pp. 402-6] in modified form (see 

Appendix). In brief, a simplex is a geometrical figure consisting of n+l linearly 

independent vertices (e.g., in two dimensions, any triangle is a simplex). Vertices are 

added and dropped iteratively so that the simplex moves in an amoeba-like fashion to 

find the minimum. Constraints are incorporated by adding to the cost function a large 

penalty for constraint violations. A cost function can have discontinuous gradients since 

the method does not use gradients to identify search directions. 

1. Standardization of Computational Time 

The raw computational time of the solutions presented in this chapter are not 

directly comparable. These solutions were run on a half-dozen HP-9000 Series 700 

workstations with different processor speeds. Also, computational time is in elapsed 

time, not in processor time; and multiple users of these machines have an impact on the 

raw computational time. 

To standardize the computational time, a series of short runs was conducted to 

estimate the time consumed in each interpolation of the cost-to-go function. Because this 

time depends on the dimension of each problem and on the interpolation method 

employed, problems were solved for each combination of the different problems and the 

interpolation methods. These runs were conducted with no competition from other users 

on the fastest workstation (an HP-9000 755). The reported computational times are 

averages from four runs of each reservoir problem. The reported times are used to 

remove the impact of different computer speeds and loads on all other runs. Following 

the practice of Johnson et al. [1993], computational time and error are reported for the 

first stage of the three-stage time horizon (i.e., t\). 
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The effort to evaluate the total cost equation (4A5) is the sum of efforts to 

evaluate the current-cost function, the transition function, and the future cost function. In 

general, the effort to evaluate the future cost function will predominate because of the 

relatively large effort to interpolate the cost-to-go. As a result, the standardized time 

consumed in each interpolation is a good estimate of Z/, the time required to evaluate the 

total cost function. 

LINEAR INTERPOLATION 

Runs were conducted to solve problems with one to five reservoirs. Problems 

with six or seven reservoirs required considerable computational time, even for the 

crudest discretization (A = 2). Problems with four or five reservoirs could be solved with 

coarse discretization; however, this does not imply an ability to solve these DDP 

problems using linear interpolation. As we will see later, the multilinear DDP solutions 

for the four- and five-reservoir problems contain significant error. 

The time consumed in each interpolation of the cost-to-go is summarized in italics 

on the last line of Table 6B1. The runs were designed to be short, but with a sufficient 

number of interpolations that a stable estimate would result. As the dimension of the five 

problems increases, the discretization is coarser and the accuracy is lower. The total time 

per stage should not be used to infer the growth in total effort J with dimension, though 

the total time per node can be used to infer the growth in effort per node Z. 

Table 6B1 preserves additional information that we can use to understand the 

growth in effort with dimension. For these runs and for runs presented later, the total 

time per stage is three to ten times the total time consumed in evaluating interpolants, 

regardless of dimension. A significant fraction of the total time is spent in program 

execution and calculations other than interpolation because multilinear interpolation is 

quicker and solver convergence is slower. For example, a significant fraction of the total 

time is consumed simply in identifying the current subdomain for interpolation. Large 

amounts of the total time are also consumed in other overhead activities, and it is likely 

that this overhead could be reduce by more efficient code. However, these overhead 

activities become a smaller fraction of the total time with increasing dimension. Also, 

multilinear DDP is used only as a benchmark against which we measure the performance 

of GDP. Thus, only limited work has been applied to reduce the overhead effort of the 

multilinear DDP code. 
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Table 6B1. Standard Computational Times per Stage of Linear Interpolation 

# Reservoirs, n One Two Three Four Five 

Discretization, A 
# nodes, A 
# interpolations 

17 
17 

3356 

7 
49 

31254 

5 
125 

119699 

3 
81 

188827 

2 
32 

191649 
Total time (seconds) 
per stage 2.15 17.59 72.55 104.67 126.52 
per node .13 .36 .58 1.29 3.95 
Total time (seconds) consumed in 
ID subdomain .25 1.83 8.13 12.74 16.53 
Eval. interpolants 
Overhead 

.19 
1.71 

2.14 
13.62 

8.56 
55.86 

18.18 
73.75 

38.94 
71.05 

Time per interpolation ("seconds) consumed in 
.00007 ID subdomain .00007 .00006 .00007 .00009 

Eval. interpolants .00006 .00006 .00007 .00010 .00020 

FIRST-ORDER HERMITE INTERPOLATION 

Runs were conducted to solve problems with one to seven reservoirs. The time 

consumed in each interpolation of the cost-to-go is summarized in italics on the last line 

of Table 6B2. The discretization of each problem is the same as used with the linear 

interpolation. 
As expected, the time required for each interpolation is significantly greater for 

the first-order Hermite method than for the linear method. In Table 6B1, the time 

consumed in each interpolation is 60 to 200 microseconds (/isec); but, in Table 6B2, the 

time consumed in each interpolation is 50 to 7120 /isec. 

However, what is lost in interpolation effort is more than recovered by the more 

rapid convergence of the quasi-Newton solver employed by GDP. Though the polytope 

solver employed by multilinear DDP is more robust and can handle discontinuous 

gradients, it is much slower. As a result, GDP requires fewer interpolations to find each 

solution, and the total interpolation time is consistently smaller by almost an order of 

magnitude. As a result, the total time per node in Table 6B1 is 0.13 to 3.95 seconds; but 

the total time per node in Table 6B2 is 0.05 seconds for the one-reservoir problem to 0.25 

seconds for the five-reservoir problem. 

The overhead activities for GDP rapidly become a small fraction of the total time 

per stage with increasing dimension. The total time per stage is over ten times the total 

time consumed in evaluating interpolants for low-dimension problems, but this decreases 

to less than 50% greater for the seven-reservoir problem. We can see that most of the 

effort required to solve higher dimension problems is consumed in evaluating interpolants 
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of the cost-to-go function. The effort required to identify the current subdomain for 

interpolation is insignificant except in low dimension problems (though not shown, this is 

also true even when A > 2 and identification of the current subdomain is not trivial). 

Table 6B2. Standard Computational Times per Stage of First-Order Hermite 
Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 

Discretization, A 17 7 5 3 2 2 2 

# nodes, A 17 49 125 81 32 64 128 

# interpolations 522 3107 6985 5062 2095 4690 10179 
Total time ("seconds') 
per stage .77 4.91 12.05 11.01 8.05 24.09 102.40 
per node .05 .10 .10 .14 .25 .38 .80 
Total time (seconds) consumed i n 
ID subdomain .03 .22 .53 .42 .22 .65 1.90 
Eval. interpolants .03 .44 1.89 2.93 3.24 13.85 72.48 
Overhead .71 4.25 9.63 7.66 4.59 9.59 28.02 
Time per interpolation (seconds' ) consumed in 

.00008 .00011 .00014 ID subdomain .00006 .00007 .00008 .00019 
Eval. interpolants .00005 .00014 .00027 .00058 .00155 .00295 .00712 

SECOND-ORDER HERMITE INTERPOLATION 

As for the first-order Hermite interpolation method, runs were conducted to solve 

problems with one to seven reservoirs. The time consumed in each interpolation of the 

cost-to-go is summarized in italics on the last line of Table 6B3. The discretization of 

each problem is the same as used with linear and first-order Hermite interpolation. 

As expected, the time required for each interpolation is the largest of all methods. 

In Table 6B3, the time consumed in each interpolation is 60 to 31,370 /isec. In addition, 

the additional time consumed in evaluating second derivatives by finite differences is 

from 110 to 15,610 //sec (though, with increasing dimension, this becomes a fraction of 

the time consumed by interpolation). As a result, the total time per node is greater than 

when using first-order Hermite interpolation. In Chapter 5, Section I, we predicted that 

the effort per interpolation should approach a factor n greater. 
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Table 6B3. Standard Computational Times per Stage of Second-Order Hermite 
Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 

Discretization, A 17 7 5 3 2 2 2 

# nodes, A 17 49 125 81 32 64 128 

# interpolations 522 3186 6488 4838 2041 4465 9694 
Total time ("seconds) 
per stage 1.75 6.07 14.61 17.44 16.32 85.74 477.08 
per node .10 .12 .12 .22 .51 1.34 3.73 
Total time (seconds) consumed in 
ID subdomain .03 .23 .51 .42 .21 .60 2.05 
Eval. 2'nd deriv. .06 .65 2.54 4.37 4.85 28.01 151.36 
Eval. interpolants .03 .54 2.77 5.50 7.19 48.41 304.09 
Overhead 1.63 4.65 8.79 7.15 4.07 8.72 19.58 
Time Der interoolation ("seconds) consumed in 

.00009 .00010 .00013 ID subdomain .00006 .00007 .00008 .00021 
Eval. 2'nd deriv. .00011 .00020 .00039 .00090 .00238 .00627 .01561 
Eval. interpolants .00006 .00017 .00043 .00114 .00352 .01084 .03137 

2. Growth in Interpolation Effort with State Dimension 

At the end of Chapter Five, we considered the hypothetical interpolation effort of 

the multilinear and Hermite methods. The effort for all methods increases with 

dimension because the increasing number and complexity of weights that must be 

evaluated and applied. If the hypothetical interpolation effort provides a good 

approximation of the actual time consumed in each interpolation, then the hypothetical 

effort provides a good approximation of Z/, the time required to evaluate the total cost 

function. They can also be used to identify inefficiency in algorithms and implementing 

code. 

Table 511 summarizes the hypothetical effort (in flops) to interpolate the cost-to- 

go. Keeping the lower order terms to produce better estimates for the low-dimension 

problems, the hypothetical time per interpolation in multilinear DDP is 

Zjin - Zo(n + 3-2") (6B1) 

where ZQ is a measure of computer processor speed. The hypothetical effort (in flops) for 

each interpolation method in GDP is 

first-order Hermite: 14« + 2"(3/i+l) 

second-order Hermite: 14« + 2"-\3n2+n+2) 
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However, these do not provide good approximations of Z/. As we will discuss later, each 

solution of the search routines is verified by a restart. In the case of GDP, the first call of 

the quasi-Newton method is used to search for the optimal control decisions and the total 

cost. The second call is then used to verify the previous solution and to estimate the cost- 

to-go gradient. Thus, the second call requires a factor (n+l) greater effort to interpolate 

the cost-to-go and each of the n first derivatives. The average effort for each 

interpolation is the average of the effort on the first call and the effort on the second call. 

Thus, the hypothetical effort in GDP is 

Z,H1 » Zb( 14/i + 2"(3/i+l) ö±2.) (6B2) 

Z/H2 » Zb(14w + 2""'(3/2 2+/Z+2) *&) (6B3) 

where Z7
H1 and Z,H2 are the hypothetical times per interpolation using first-order and 

second-order Hermite methods. 

Table 6B4 summarizes the observed and hypothetical effort for one to seven 

reservoirs using the linear and Hermite interpolation methods. The ratios of these 

provide an estimate of ZQ, the time per flop. For each interpolation method, the estimate 

of ZQ decreases with the dimension of the problem as overhead effort not included in 

equations (6B1) through (6B3) becomes less significant. Table 6B4 indicates that a value 

of Zo of about 0.5 //sec (or around 2 million flops per second) is appropriate. This is low 

for the published benchmark speed of around 60 million flops per second, and indicates 

that there may be significant improvements possible with better code or compilers with 

performance closer to the benchmark speed. 

Nevertheless, the estimates of Zo are consistent between the different interpolation 

methods. Even though the ZQ estimates using linear interpolation are two to four times 

the Zo estimates using Hermite interpolation, it is likely that this is another manifestation 

of the additional overhead seen in Table 6B1. When using linear interpolation, only 15% 

of the computational time is consumed in calculating interpolated values. When using 

Hermite interpolation, in contrast, most of the computational time is consumed in 

calculating interpolated values in the high-dimension problems. Except for the impact of 

some unaccounted overhead effort, it seems that equations (6B1) through (6B3) provide 

good estimates of Z/ and that the interpolation methods are implemented consistently. 
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Table 6B4. Comparison Between Actual and Hypothetical Growth in Interpolation Effort 

# Reservoirs, n                One        Two Three Four Five Six Seven 

Linear Interpolation 
Eval. interp. (sec.)       .00006    .00006 
Flops per interp.                  7           14 
Time/flop (psec.)              8.2          4.3 

.00007 
27 
2.6 

.00010 
52 
1.9 

.00020 
101 
2.0 

n.a. 
198 
n.a. 

n.a. 
391 
n.a. 

First-Order Hermite Interpolation 
Eval. interp. (sec.)       .00005    .00014 
Flops per interp.                26           84 
Time/flop (fjsec.)              1.8          1.7 

.00027 
242 
1.1 

.00058 
680 

.9 

.00155 
1862 

.8 

.00295 
4948 

.6 

.00712 
12770 

.6 

Second-Order Hermite Interpolation 
Eval. interp. (sec.)       .00006    .00017 
Flops per interp.                23           92 
Time/flop (psec.)              2.7          1.8 

.00043 
362 
1.2 

.00114 
1352 

.8 

.00352 
4662 

.8 

; State 

.01084 
14932 

.7 

.03137 
45026 

.7 

3. Growth in Number of Interpolation« i for Each Discret« 

In each stage, we approximate the cost-to-go function by values at a sufficient 

number of discrete states. To identify the cost-to-go for each discrete state, we use a 

search routine that identifies optimal control decisions. Each search for an optimal 

solution requires a number of cost-function evaluations Z$. The total search effort for 

each discrete state depends on the product of Zj and Z\ to account for overhead effort that 

includes verification of the solution. 
Table 6B5 breaks down the total searches for each interpolation method. By 

identifying the number of nodes, searches, and interpolations for each of the 

standardization runs, we can calculate the average number of searches per node and the 

average number of interpolations per search. 
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Table 6B5. Breakdown of Effort for Each Discrete State of a Subproblem 

# Reservoirs, n One Two Three Four Five Six Seven 

Discretization, A 17 7 5 3 2 2 2 

# nodes, A 17 49 125 81 32 64 128 

Linear Interpolation 
# searches 152 428 1128 1128 704 n.a. n.a. 
searches/node 8.9 8.7 9.0 13.9 22.0 n.a. n.a. 
# interpolations 3356 31254 119699 188827 191649 n.a. n.a. 
interp./'search 22.1 73.0 106.1 167.4 272.2 n.a. n.a. 
First-Order Hermite Interpolation 
# searches 136 392 1000 648 256 512 1024 
searches/node 8.0 8.0 8.0 5.0 5.0 5.0 5.0 
# interpolations 522 3107 6985 5062 2095 4690 10179 
interp./search 3.8 7.9 7.0 7.8 8.2 9.2 9.9 
Second-Order Hermite Interpolation 
# searches 136 392 1000 648 256 512 1024 
searches/node 5.0 5.0 5.0 5.0 5.0 5.0 8.0 
# interpolations 522 3186 6488 4838 2041 4465 9694 
interp./search 3.8 5.7 6.5 7.5 5.0 8.7 9.5 

SEARCHES PER NODE FOR EACH INTERPOLATION METHOD 

Table 6B5 shows that the minimum number of searches per node is eight. Using 

limited foresight (Chapter 2), we search for a new set of control decisions for each 

outcome of the stochastic variables w. Also, the solution for each outcome is verified by 

at least one restart of the search routine. For the test problems presented in this chapter, 

we use two discrete values for each stochastic variable, or a total of four discrete 

outcomes. With at least two calls to a search routine, this requires a minimum of eight 

searches per node. 

The code is written so that each solution is verified by at least one restart of the 

search routine. The first call is to identify control decisions and optimal cost, and the 

second is to verify that the solution doesn't change. The restart is especially important 

for the simplex search routine to verify that the simplex does not degenerate on the first 

call [Press et al., 1992] and produce an incorrect solution. If the solution is incorrect, a 

restart should identify a significantly different solution, where significance depends on 

the tolerance of the simplex method. The restart is also valuable for the quasi-Newton 

search routine to verify the solution and to ensure good gradient estimates: the first call 

of the quasi-Newton routine identifies optimal cost and control decisions; the second call 

verifies the previous solution and evaluates the gradient near the final solution. 
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Table 6B5 indicates multilinear DDP requires an increasing number of restarts as 

the dimension of a problem increases. With higher dimension, the simplex appears to 

have greater opportunity to degenerate, and subsequent restarts are required. The total 

number of searches increases with dimension at a rate of about n0-5. In contrast, the GDP 

methods require few if any restarts beyond the first, and the number of searches per node 

does not increase. 

INTERPOLATIONS PER SEARCH FOR EACH INTERPOLATION METHOD 

Table 6B5 shows that all methods require an increasing number of interpolations 

per search as the dimension of a problem increases. Multilinear DDP requires 22.1 to 

272.2 interpolations for each search using the robust but slow simplex search routine. 

The number of interpolations increases with dimension at a rate of about n L5. In 

contrast, the GDP methods require fewer than 10 interpolations for each search, even for 

the seven-reservoir problem, and the number of interpolations increases with dimension 

at a rate of about n0-5. Differences between the two GDP methods are not great, though 

it appears second-order method converges slightly more rapidly. 

Table 6B5 also shows that the number of interpolations per search for the two- 

reservoir problem appears break with the general trend, at least when using the Hermite 

interpolation methods. Following a doubling between the one- and two-reservoir 

problem, the number drops and increases at a slower rate for the higher-dimension 

problems. 

The computational time can vary considerably with the desired tolerance of the 

search routine. Because errors of less than about 1% are difficult to achieve with 

multilinear interpolation (without using finer grids than feasible for the four-reservoir 

problem), there is little benefit in solving highly accurate function values. As a result, the 

tolerance of the simplex solver is to a relative error of 10  . On the other hand, the 

tolerance of the quasi-Newton solver is to a relative error of 10"    because of the greater 

accuracy of the Hermite methods and the rapid convergence of the quasi-Newton routine. 

This additional accuracy also helps to improve gradient estimates. While this extra 

accuracy entails an increase in computational effort of about 10% for GDP, the increase 

is about 200% for multilinear DDP. 

4. Growth in Total Effort with State Discretization 

From the above discussion, we can estimate the total time to evaluate the expected 

cost-to-go for each node of the state-space grid. The total time per stage is the product of 
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the time per node and the number of nodes (i.e., discrete states) use to approximate the 

cost-to-go function. 

Each multi-reservoir problem was solved with discretizations up to A = 17 using 

the different interpolation methods. Not all combinations of dimension, discretization, 

and interpolation were solved because of the large amounts of time required. Tables 6B6 

through 6B8 identify the total standardized time per stage for each of the runs completed. 

Also included in each table is the average time per node for each run. Unfortunately, it 

appears that our standardization of computational time does not remove all impacts of 

different machines and loads. Also, the overhead effort required to execute the code is 

significant for low dimension problems and coarse discretizations, resulting in higher 

time for each node. 

Table 6B6. Impact of State Discretization on Standard Computational Time of Second- 
Order Hermite Interpolation 

# Reservoirs, n One Two Three Four Five 
Total Standardized Time for Each Stage (seconds') 

25.51 A =2 .31 2.27 5.01 127 

A =3 .44 3.87 19.64 105 802 

A = 4 .58 6.70 37.81 306 2951 

A =5 .79 9.11 72.55 709 9249 

A =1 .94 17.59 201 2361 48953 

A =9 1.22 28.31 384 6097 149327 

A =13 1.62 67.19 1083 24547 n.a. 

A =17 2.15 90.07 2474 73949 n.a. 

Average Standardized Time for Each Node (seconds) 
A =2 .16 .57 .63 1.59 3.95 

A =3 .15 .43 .73 1.29 3.30 

A =4 .14 .42 .59 1.19 2.88 

A =5 .16 .36 .58 1.13 2.96 

A =7 .13 .36 .59 .98 2.91 

A = 9 .14 .35 .53 .93 2.53 

A =13 .12 .40 .49 .86 n.a. 

A =17 .13 .31 .50 .89 n.a. 
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Table 6B7. Impact of State Discretization on Standard Computational Time of First- 
Order Hermite Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 
Total Standardized Time for Each Staee ("seconds) 
A =7                            3.16        2.45        1.21 2.59 7.81 23.04 102 

A = 3 2.86 3.33 3.14 10.52 57.66 284 n.a. 

A = 4 .32 3.58 5.70 33.92 256 1556 n.a. 

A = 5 .29 4.47 12.95 86.31 737 n.a. n.a. 

A =7 .70 6.89 35.25 332 4593 n.a. n.a. 

A =9 .37 10.52 67.19 923 16090 n.a. n.a. 

A =13 .59 17.34 200 4112 n.a. n.a. n.a. 

A =17 .66 29.84 453 12248 n.a. n.a. n.a. 

Average Standardized Time for Fach Node (seconds) 
A =2                            1-58          .61          .15          .16 .24 .36 .80 

A =3 .95 .37 .12 .13 .24 .39 n.a. 

A =4 .08 .22 .09 .13 .25 .38 n.a. 

A =5 .06 .18 .10 .14 .24 n.a. n.a. 

A =7 .10 .14 .10 .14 .27 n.a. n.a. 

A = 9 .04 .13 .09 .14 .27 n.a. n.a. 

A =13 .05 .10 .09 .14 n.a. n.a. n.a. 

A =17 .04 .10 .09 .15 n.a. n.a. n.a. 
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Table 6B8. Impact of State Discretization on Standard Computational Time of Second- 
Order Hermite Interpolation 

# Reservoirs, n               One Two Three Four Five Six Seven 
Total Standardized Time for Each Stage (seconds') 

3.06 9.92 87.52 A =2 .42 .10 .46 478 

A = 3 .48 .45 1.62 16.50 82.03 1048 8493 

A =4 .53 .94 3.73 29.88 341 5940 64025 

A = 5 .59 1.30 6.81 126 1647 23100 n.a. 

A =7 .68 2.84 19.16 501 8882 n.a. n.a. 

A =9 1.68 4.66 41.48 1379 31228 n.a. n.a. 

A =13 1.32 10.61 133 5738 n.a. n.a. n.a. 

A =17 1.95 16.69 552 17442 n.a. n.a. n.a. 

Averaee Standardized Time for Each Node (second 
.19 .31 1.37 A = 2 .21 .02 .06 3.74 

A =3 .16 .05 .06 .20 .34 1.44 3.88 

A = 4 .13 .06 .06 .12 .33 1.45 3.91 

A =5 .12 .05 .05 .20 .53 1.48 n.a. 

A =7 .10 .06 .06 .21 .53 n.a. n.a. 

A =9 .19 .06 .06 .21 .53 n.a. n.a. 

A =13 .10 .06 .06 .20 n.a. n.a. n.a. 

A =17 .11 .06 .11 .21 n.a. n.a. n.a. 
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C. ACCURACY OF THE SERIES OF MULTI-RESERVOIR 

TEST PROBLEMS 

As we saw in the last section, finer state discretization increases exponentially the 

effort to solve each of the seven multi-reservoir test problems. However, in exchange for 

this additional effort, finer discretization produces more accurate solutions. This section 

evaluates the accuracy of solutions with the range of discretization presented in the last 

section. 

Accuracy of solutions is evaluated by comparing each approximate cost-to-go 

function with the "exact" solution. Because we do not know the true exact solution 

(except when a problem is deterministic or when the condition of certainty equivalence 

holds), the exact solution is estimated by the most accurate solution available for each 

reservoir control problem. In all cases, the second-order Hermite solution with the finest 

discretization is used to estimate the exact solution. For problems with one to four 

reservoirs, the finest discretization is A = 17; for problems with five to seven reservoirs, 

the finest discretization is A = 9, A = 5, and A = 4, respectively. 

To measure the accuracy of solutions, we evaluate the average absolute relative 

error between the approximate cost-to-go and the "exact" cost-to-go. At each discrete 

state identified by the state-space grid of the "exact" solution, the relative error is 

calculated according to the formula 

F(x(,)) - exact 
R.fc.   =   

exact 

Where corresponding discrete states do not exist in the approximate solutions, the cost-to- 

go is interpolated multilinear or Hermite methods as appropriate. 

1. Error Reduction with State Discretization 

Tables 6C1 through 6C3 display the average absolute relative error (AARE) for 

the linear and Hermite interpolation methods. Though not shown, the average relative 

error (ARE) has the same magnitude as the AARE, though ARE is always positive for 

linear interpolation and is always negative for Hermite interpolation. In other words, 

linear interpolation overestimates the cost-to-go and Hermite interpolation underestimates 

the cost-to-go. For linear interpolation, over-estimation is consistent with convexity of 

the cost-to-go function. For Hermite interpolation, under-estimation is consistent with a 

cost-to-go function with greater curvature (i.e., larger second derivatives) than used by 
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the Hermite interpolation. Hermite interpolation uses the lowest curvature consistent 

with constraints at the boundaries. Indeed, when the true curvature of the cost-to-go 

function is severe, the Hermite interpolation will oscillate, producing a local minimum 

that is an artifact of the interpolation. 

As expected, error is reduced with finer discretization. Using linear interpolation, 

AARE is reduced from an average of 300% with A = 2 to about 1% with A = 17. Using 

Hermite interpolation, AARE is dramatically reduced from an average of 30% with A = 2 

to less than 0.002% with A = 17. Accuracy of the second-order Hermite method can be 

several times greater than accuracy of the first-order method, especially with finer 

discretization (this is true even if the most-accurate first-order Hermite solutions are used 

to evaluate the other first-order solutions). Note that first-order and second-order 

Hermite interpolations produce the same solutions for the one-reservoir problem because 

the Hessian is a one by one matrix and there are no off-diagonal elements. 

With greater accuracy, Hermite interpolation can use coarser state discretizations. 

If an accurate solution requires an AARE of less than 2%, multilinear DDP requires 

discretizations finer than A = 13. As a result, it appears impractical to accurately solve 

problems with four or five state variables using multilinear DDP, except perhaps for 

problems consisting of only a few stages with no more than four state variables. On the 

other hand, an AARE of 2% can be achieved by GDP using discretizations as coarse as 

A = 3. As a result, it appears practical to accurately solve problems with as many as six 

or seven state variables using GDP. 

In Tables 6C1 to 6C3, there is a trend toward somewhat higher error with 

dimension. For constant values of A, the one reservoir problem yields the most accurate 

solution; though problems with three or more reservoirs have relatively constant errors. 

Again, solutions for the two-reservoir problem break from the trend. In all cases, the 

solution error for the two-reservoir problem is significantly greater. This provides clearer 

evidence of the impact that more complex cost functions have on interpolation accuracy. 

For such problems, we require finer discretizations; AARE is not reduced below 2% until 

A = 4 using the second-order Hermite method and until A = 5 using the first-order 

Hermite method. 
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Table 6C1. Impact of State Discretization on Accuracy of Linear Interpolation 

# Reservoirs, n One Two Three Four Five 
Averaee Absolute Relative Error (%) 

216 257 A =2 77 564 293 

A =3 28 183 72 79 87 

A =4 12 76 34 38 42 

A =5 5.759 40 19 21 23 

A =7 2.778 18 8.028 9.278 10 

A =9 1.518 7.482 4.209 4.913 4.749 

A =13 .685 4.760 1.985 2.277 n.a. 

A =17 .332 1.522 .908 1.056 n.a. 

* second-order Hermite solution with finest discretization used as estimate of exact 
solution 

Table 6C2. Impact of State Discretization on Accuracy of First-Order Hermite 
Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 

Average Absolute Relative Error (%) (*) 
A=2                         3.0600           61 24 33 54 48 47 

A =3 .3829 8.4233 1.4916 1.8646 3.0710 1.5090 n.a. 

A =4 .0903 2.6326 .3583 .3955 .6336 .2704 n.a. 

A =5 .0276 1.4352 .1408 .1479 .2133 n.a. n.a. 

A =7 .0017 .3178 .0366 .0387 .0485 n.a. n.a. 

A =9 .0012 .1316 .0121 .0141 .0145 n.a. n.a. 

A =13 .0009 .0408 .0048 .0058 n.a. n.a. n.a. 

A =17 (*) .0169 .0017 .0023 n.a. n.a. n.a. 

* second-order Hermite solution with finest discretization used as estimate of exact 
solution 

Table 6C3. Impact of State Discretization on Accuracy of Second-Order Hermite 
Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 

Averape 
A =2 

Absolute Relative Error (%) 
3.0600           62 23 31 49 48 46 

A =3 .3829 6.1243 1.0534 1.1227 1.4563 1.4962 1.2326 

A =4 .0903 1.8740 .2581 .0559 .3196 .2703 (*) 

A =5 .0276 1.0048 .0995 .0935 .1134 (*) n.a. 

A =7 .0017 .1943 .0211 .0197 .0209 n.a. n.a. 

A =9 .0012 .0553 .0072 .0071 (*) n.a. n.a. 

A =13 .0009 .0120 .0012 .0015 n.a. n.a. n.a. 

A =17 (*) (*) (*) (*) n.a. n.a. n.a. 
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* solution with finest discretization used as estimate of exact solution 

2. Error Analysis 

Kitanidis and Foufoula-Georgiou [1987] compared convergence of Hermite 

interpolation with that of multilinear interpolation. They demonstrate that with decreases 

in the discretization interval Ax, the error of the control policy and the cost functions 

converge as (Ax)3 and (Ax)4, respectively, using Hermite interpolation versus Ax and 

(Ax)2 using linear interpolation. We can verify that convergence is roughly as expected 

by considering each pair of solutions using 

A = {(2,3), (3,5), (4,7), (5,9), (7,13), (9,17)} 

Since nodes of the state-space grid are evenly spaced, each of these pairs illustrates the 

improved accuracy obtained by halving the discretization interval. For each pair, we 

should expect a factor of 4 reduction in error using multilinear DDP and a factor of 16 

reduction in error using GDP. 

Tables 3C4 through 3C6 display the actual reduction of error. These results are in 

general agreement with the anticipated reductions in effort. In addition, the reduction in 

effort for the second-order Hermite method is greater than for the first-order Hermite 

method. If useful, we could use this result to extrapolate the accuracy of interpolation 

methods using even finer discretizations. 

Table 6C4. Error Reduction Obtained From Halving the Discretization Interval of Linear 
Interpolation 

# Reservoirs, n One Two Three Four Five 
Ratio of Average Absolute Relative Error 

3 3 A = 2 to A = 3 3 3 3 

A = 3 to A = 5 5 5 4 4 4 

A = 4 to A = 1 4 4 4 4 4 

A = 5 to A = 9 4 5 4 4 5 

A =7 to A =13 4 4 4 4 n.a. 

A =9 to A = 17 5 5 5 5 n.a. 

* second-order Hermite solution with finest discretization used as estimate of exact 
solution 
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Table 6C5. Impact of State Discretization on Accuracy of First-Order Hermite 
Interpolation 

# Reservoirs, n                One Two Three Four Five Six Seven 
Ratio of Average Absolute Relative Error 
A = 2 to A = 3                    8 7 16 18 18 32 n.a. 

A = 3 to A = 5                  14 6 11 13 14 n.a. n.a. 

A = 4 to A = 7                 53 8 10 10 13 n.a. n.a. 

A = 5 to A = 9                23 11 12 10 15 n.a. n.a. 

A =1 to A =13                  2 8 8 7 n.a. n.a. n.a. 

A =9 to A =17              na. 8 7 6 n.a. n.a. n.a. 

* second-order Hermite solution with finest discretization used as estimate of exact 
solution 

Table 6C6. Impact of State Discretization on Accuracy of Second-Order Hermite 
Interpolation 

# Reservoirs, n One Two Three Four Five Six Seven 

Ratio of Average Absolute Relative Error 

A =2 to A =3 8 10 22 27 34 32 37 

A = 3 to A = 5 14 6 11 12 13 (*) (*) 

A = 4 to A =1 53 10 12 13 15 n.a. n.a. 

A = 5 to A = 9 23 18 14 13 (*) n.a. n.a. 

A =7 to A = 13 2 16 18 13 n.a. n.a. n.a. 

A = 9 to A = 17 (*) (*) (*) (*) n.a. n.a. n.a. 

* solution with finest discretization used as estimate of exact solution 

3. Solutions of the Four-Reservoir Test Problem 

To put these measures of error in better perspective, we can view specific solution 

results. Tables 3C7 and 3C8 display the convergence of the cost-to-go and release 

decisions for the four-reservoir problem using finer discretization. Because the target 

releases are below the average inflows, lower initial storage levels (x,, = [1,1,1,1]T 

verses x,, = [6,6,6,6]T ) permit lower releases and produce lower expected costs. In both 

cases, the GDP solutions are accurate with few discrete values (A of three or four). 

Multilinear DDP solutions do not reach a comparable level of accuracy until A = 13 or 

A = 17. These solutions are in rough agreement with the solutions of Foufoula Georgiou 

and Kitanidis [1988] in spite of a somewhat different model formulation. 

126 



Table 6C7. Solution Convergence with Finer Discretization for the Four-Reservoir 

Problem When*'. = [6,6,6,6]T 

Linear ] 7irst-Order Hermite 

A Fn u Ftl 
u 

2 209.22 1.62 2.89 2.28 2.30 42.55 1.63 2.99 2.27 2.69 
3 99.29 1.98 2.42 2.42 2.83 66.91 1.45 2.72 1.92 2.47 
4 88.00 1.52 2.64 2.10 2.70 68.05 1.49 2.69 2.00 2.51 
5 77.44 1.61 2.62 2.13 2.53 68.03 1.47 2.68 1.99 2.53 
7 72.48 1.47 2.72 2.00 2.56 68.09 1.48 2.66 2.00 2.52 
9 70.63 1.47 2.67 2.08 2.50 68.10 1.49 2.67 2.00 2.52 
13 68.91 1.50 2.58 2.01 2.50 68.10 1.49 2.68 2.00 2.52 
17 68.62 1.59 2.66 1.98 2.51 68.10 1.49 2.67 2.01 2.52 

Table 6C8. Solution Convergence with Finer Discretization for the Four-Reservoir 
Problem When x„ = [1,1,1,1]T 

Multilinear DP Gradient DP 

A Ftl 

148.03 

u Ftl 
u 

2 1.80 2.12 1.95 .94 -.09 .98 2.50 1.23 .38 
3 55.68 1.18 2.16 1.54 .52 9.92 .92 2.38 1.19 .42 
4 34.86 .89 2.36 1.20 .50 11.45 .94 2.34 1.19 .42 
5 25.04 .82 2.37 1.11 .50 11.67 .94 2.34 1.19 .42 
7 17.41 .94 2.40 1.20 .41 11.81 .95 2.33 1.20 .40 
9 14.77 .96 2.31 1.14 .42 11.80 .94 2.33 1.19 .40 
13 12.87 .96 2.36 1.30 .40 11.83 .94 2.33 1.19 .40 
17 12.53 .91 2.36 1.17 .41 11.82 .94 2.33 1.20 .40 

D. NET PERFORMANCE OF THE DIFFERENT 
INTERPOLATION METHODS 

We can evaluate the net performance of the different interpolation methods by 

plotting the accuracy of Tables 6C1-3 against the effort of Tables 6B6-8. The results are 

presented in Figures 6D1-3. Note that at 105 seconds, each stage requires approximately 

one day of run time. One day per stage is too long for most real-world problems, and the 

maximum practical time is probably around 103 to 104 seconds per stage. 

As expected, these figures show a trade-off between accuracy and effort. The 

trade-off using linear interpolation is clearly inferior to the trade-off using either Hermite 

interpolation method. It is not clear from Figures 6D2 and 6D3 if the first-order Hermite 

method or the second-order Hermite method is better. 
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Also, the trade-off between accuracy and effort becomes worse with increasing 

dimension. In each plot, the trade-off curves shift to the upper right-hand corner with 

increasing dimension. We again see that the two-reservoir problem breaks from the trend 

established by the other problems. This is especially true when using first-order Hermite 

interpolation in Figure 6D2: the trade-off for the two-reservoir problem is worse than for 

the three-reservoir problem except for the finest discretizations. The break from the trend 

appears less significant for the second-order method, probably because it includes off- 

diagonal elements of the Hessian that are significant in the two-reservoir problem. 

Figure 6D1. Trade-Off Between Accuracy and Effort per Stage of Linear Interpolation 

Average 
Absolute 
Relative 
Error (%) 

10-2- 

10-1 101 103 105 
Standardized Computation Time Per Stage (seconds) 

Figure 6D2. Trade-Off Between Accuracy and Effort per Stage of First-Order Hermite 
Interpolation 

i        i 
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Figure 6D3. Trade-Off Between Accuracy and Effort per Stage of Second-Order Hermite 
Interpolation 

i        i        i        i        ■        ■ 

Average 
Absolute 
Relative 
Error 

10-1 101 103 105 

Standardized Computation Time Per Stage (seconds) 

1. A Reformulation of the Results 

To better compare the performance of each method, we can identify the amount of 

time required to achieve a particular level of accuracy. Table 6D1 and Figure 6D4 

identify the amount of time required to achieve 1% and 10% AARE using each of the 

methods. As we can see, using linear interpolation, it can be difficult to solve even the 

three-reservoir problem when high accuracy and many stages are required. In contrast, 

using Hermite interpolation, it is relatively easy to solve problems with as many as six 

state variables. For some problems, it may be possible to include as many as eight state 

variables. 

Figure 6D4 shows that the second-order Hermite method offers the best trade-off 

between accuracy and effort for low-dimension problems, but the less complicated first- 

order Hermite method is better for high-order problems. However, as discussed earlier, 

these test problems are unrealistically simple and off-diagonal elements of the Hessian 

may be insignificant for all but the two-reservoir problem. For this test problem, the 

performance of the first-order and second-order Hermite methods are close. In more 

realistic problems, it seems reasonable to expect that—in spite of the additional effort 

required—the second-order Hermite method will perform better. 
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Table 6D1. Standardized Time per Stage to Achieve 10% and 1% Average Absolute 
Relative Error 

# Reservoirs, n One Two     Three       Four Five Six     Seven 
Linear Interpolation Time per Stage (seconds) 
10%AARE .62 24 170       2200     53000 n.a. 
1%AARE 1.4 120       2200     80000 n.a. n.a. 

n.a. 
n.a. 

First-Order Hermite Interpolation Time per Stage (seconds') 
10%AARE n.a. 3.0 1.7 4.8 26 56 300 
1%AARE 2.8 5.0 3.8 18 180 320 n.a. 
Second-Order Hermite Interpolation Time per Stage (seconds') 
10%AARE n.a. .33 .65 6.0 
1%AARE .47 1.3 1.8 18 

27 300       1800 
130       1800     11000 

Figure 6D4. Growth in Effort with Number of State Variables to Achieve 10% and 1% 
Average Absolute Relative Error 
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Table 6D2. Ratio of Standardized Time Using Linear and Hermite Interpolation to 
Achieve 10% and 1% Average Absolute Relative Error 

# Reservoirs, n                One        Two Three Four Five Six Seven 

Linear Versus First-Order Hermite 
10%AARE                      n.a.        8.00 
1%AARE                        .50      24.00 

100 
579 

458 
4444 

2038 
n.a. 

n.a. 
n.a. 

n.a. 
n.a. 

Linear Versus Second-Order Hermite 
10%AARE                      n.a.      72.73 
1%AARE                       2.98      92.31 

262 
1222 

367 
4444 

1963 
n.a. 

n.a. 
n.a. 

n.a. 
n.a. 
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E. CONCLUDING REMARKS 

The results of this Chapter demonstrate the significant computational advantage 

of GDP methods compared with multilinear DDP. This results from the ability of GDP 

methods to produce accurate solutions with coarse state discretizations. This also results 

from the ability to use efficient quasi-Newton search routines that rapidly converge on 

optimal controls and that provide useful estimates of cost-to-go gradients. 

The results are less clear in defining the differences between the two Hermite 

interpolation methods. The first-order method is better at identifying some solutions and 

the second-order method is better at identifying other solutions. However, the short time- 

horizon (i.e., three stages) and the simple cost function (i.e., quadratic and separable, 

except for the two-reservoir test problem), appears to diminish the value of second 

derivatives used by the second-order method. In more practical applications, we can 

expect that the second-order method will perform better. Also, the second-order method 

is better at preserving convexity of cost-to-go functions. As a result, the second-order 

method can accurately solve multidimensional problems that the first-order method 

cannot solve using the same discretization. These expectations are supported by 

experience solving the conjunctive-use problem of Chapter Eleven. 

The results of this Chapter support the application of GDP to reservoir control 

problems with as many as six to eight state variables. Discretizations as coarse as A = 3 

appear sufficient for the test problems presented in this chapter. However, application to 

practical problems may require finer discretization to achieve the levels of accuracy 

attained with the test problems. This is especially true when cost-to-go functions have 

larger changes in curvature that are not easily approximated by third-order polynomials. 

This is also true when cost off-diagonal elements of the Hessian become more significant, 

as we saw in the two-reservoir problem. In these cases, it may not be possible to 

accurately solve problems with more than five or six state variables. 
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CHAPTER 7. 

METHODS OF NUMERICAL INTEGRATION 

TO EVALUATE EXPECTED VALUES 

We have seen that the effort required to solve a DDP problem grows 

exponentially with the number of state variables. This was explicitly stated in the 

equation 

J = Z/ Z$ Z\ A 
n 

Total effort per stage grows exponentially with the number of nodes A and with the 

effort to find a solution for each node. We have also seen how we reduce the rate of 

growth by more accurate and efficient interpolation methods. 

In the test problems considered in Chapter Six, we avoided the confounding 

effects of a changing number of stochastic inputs. However, in practice, it is likely that 

the number of stochastic variables will increase with an increasing number of reservoirs. 

Larger-scale systems are likely to include numerous inflows that are not perfectly 

correlated with each other. Also, the number of other stochastic inputs (e.g., water- 

supply demands, power demands, evaporation and seepage losses, etc.) are likely to 

increase. In this chapter, we consider the impact that the number of stochastic variables 

has on computational effort. We also discuss effective methods that can be used to 

reduce the rate of growth by more accurate and efficient methods of numerical 

integration. 

A. EFFECT OF STOCHASTIC VARIABLE DIMENSION ON 

COMPUTATION 

Up to this point, we have skated around the impact of the dimension of w or s 

used to model stochastic inputs. However, this is an important component of the "curse 

of dimensionality" that makes it difficult to solve high dimension stochastic control 

problems. The effort required to solve stochastic control problems grows exponentially 

with the number of stochastic variables and entails a trade-off between solution accuracy 

and computational effort. 
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1. Effort to Evaluate Expected Values 

To evaluate an expected cost-to-go, we apply numerical integration to a number 

of discrete outcomes of the stochastic variables. Using "limited foresight" of stochastic 

inputs, we must identify a set of optimal control decisions for each outcome. If each of m 

stochastic variables has K discrete values, then there are Km discrete outcomes for each 

discrete state x(l). 
Note that we cannot avoid this additional effort by identifying "fixed controls" 

that are feasible for all discrete outcomes (Chapter 2, Section Cl). In this case, we 

replace numerous simple searches with a single difficult search for each discrete state. 

Fixed controls require Km evaluations for one iteration of the search while limited 

foresight requires one evaluation for one iteration. In Chapter Six, we saw that much of 

the effort of DDP is consumed in evaluating the cost-to-go function. As a result, the total 

effort is about the same. 
At each node x(') of the state-space grid we evaluate the expected cost-to-go as 

I F,,(x) = W,/w) [C,,.(x,u,w) + F//fl(y)] dw 
J-oo 

where W, (w) is the probability density function for the stochastic input w. State y at the 

end of a stage is a result of w, control decisions u, and initial state x. In general, we 

cannot analytically evaluate this integrand. Instead, we approximate the expected cost as 

a probability weighted sum 

I 
+00 ism 

W,/w) [C,/x,u,w) + F,A1(y)] dw     » X ( v* [C//x,u,w(*)) + FtjJyW)] } 
k=\ 

where m is the number of stochastic variables and K is some average number of discrete 

values used to span each stochastic variable. 

The effort required to calculate the expected future cost is proportional to the 

factor Km. Thus, the effort required to solve a DDP problem can be represented by the 

equation 

J = Z,ZsZ2K
mAn (7A1) 

where the term Km explicitly breaks out the number of searches required to calculate the 

expected value as a probability weighted summation. Z2 is the remaining overhead 

effort. 
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Just as it is desirable to mitigate the exponential growth in effort with number of 

state variables, it is also desirable to mitigate the exponential growth in effort with 

number of stochastic variables. By using efficient numerical integration techniques, we 

can greatly reduce the number of stochastic nodes K   required to accurately solve a 

Stochastic DP problem. For example, Figure 7A1 illustrates that a crude method of 

numerical integration may result in significant error. When used to evaluate the area 

under a curve, we may need a fine discretization. This error can be especially large when 

applied in a DDP algorithm because the highest costs are often associated with the tails of 

a distribution, where a crude method of numerical integration does poorly. 

Figure 7A1. Probability Distributions for Various Discretizations of a Stochastic 
Variable 

p A K = 3 

A 
'A K = 10 

O)1      CO2      CO3 

Jlk» 
CO1 ...       co'o 

2. Evaluation of Expected Values by Numerical Integration 

Numerical integration, also called quadrature, has long provided methods for the 

integration of functions that could not easily be computed analytically [Press et ai, 1992, 

Chapter 4]. Numerical integration is the approximation of an integral by a weighted 

summation 

>b 

g(z)dz « £ vkg(zW) (7A2) f Ja 

where the goal is to accurately obtain an accurate integral value with as few function 

evaluations g(z(A:)) as possible. This is accomplished by use of a sufficiently fine 

discretization interval between abscissas z(k) and by selection of an appropriate method to 

assign weights v;.. 

In a DDP problem with one stochastic variable, the abscissas are the discrete 

outcomes z(*> of a stochastic variable. In DDP problems with multiple stochastic 

variables, the abscissas are nodes of a "stochastic space" grid defined by the discrete 

values of each stochastic variable. These nodes identify all possible outcomes z<*> for 

combinations of the discrete stochastic values, just as the nodes of the state-space grid 
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identify all possible outcomes xW for combinations of the discrete state values. The 

weight applied to each outcome, or node, is the product of the weights for the discrete 

values, 
m 

vk = n vkj 

assuming the stochastic variables are independent. 

3. Classical Numerical Integration: The Trapezoidal Rule 

The most common and straightforward numerical integration method is the 

trapezoidal rule. In essence, the trapezoidal rule uses linear interpolation between 

discrete outcomes to evaluate the area under a curve (Figure 7A1). In other words, 

numerical integration over each interval is estimated by equation (7A2) with weights 

v* = h/2,   z(k)e {a,b} 

Vk = h,    otherwise 

where h = (K-l)/ (b-a) using K equally spaced abscissas. Using unequally spaced 

abscissas, the weights are 

vk =  1 ,    z(k) = a 
2(z(*+1>-ZW) 

7(A-+1) . 7(k-\) ^    (k) ^ u vk =  ^——^— ,    a<z[K'<b 
2(z<*+i>-z<*>)(z(*>-z <*-!>) 

Vk=  1 ,    z«) = b 
2(z<*>-z <*-»>) 

The error is ~ 0( (b-a)3 f") where f" is the second derivative somewhere in each interval 

of integration [Press et al, 1992, pp. 125-6]. The trapezoidal rule is the starting point in 

the development of many other quadrature methods. 

4. Examples of Past Efforts to Evaluate Expected Values 

To evaluate expected values, past stochastic dynamic programming efforts have 

often used a form of the trapezoidal rule called the extended midpoint rule. This rule 

locates the abscissa halfway between the endpoints of each interval [Press et al., 1992, p. 

129] and evaluates the expected value as the probability weighted average cost of all 

abscissas: 
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{ 
M 

{W(s) V(s)}ds   = X { W(s lk)) As V(s W) } 
Jt=i 

where v* = W(s W) As is the probability weight assigned to abscissa s^. The error of 

these various approaches is ~ 0( (As)3 (WV)" ) where (WV)" is the second derivative of 

the product of W(s) and V(s) somewhere in the interval containing sW. 

Most commonly, equal intervals have been used to discretize the stochastic 

variable. For example, Turgeon [1981] uses ten equally spaced inflows in an aggregate 

reservoir. Weiner and Ben-Zvi [1982] use nine discrete inflows in a "one-reservoir" 

hydropower model using hypothetical flows from the Mediterranean to the Dead Sea. 

Karamouz and Houck [1987] use from two to nine intervals to evaluate the impact on 

solution accuracy. Valdes et al. [1992] discretize stochastic variables using a method by 

Bras et al. [1983] with conditional probabilities that depend on prior inflow. They apply 

the method to a one-reservoir hydropower model using five discrete inflows. Raman and 

Chandramouli [1996] use seven to thirty-five discrete inflows in DDP to contrast the 

performance of a neural-network model. Esmaeil Beik and Yu [1984] represent a 

distribution by 8 to 28 net inflows specified in advance. These inflows are selected "to 

change storage by exactly a multiple of the [storage] interval with a one-to-one 

correspondence between the resulting storage and the prescribed states." This avoids the 

need for interpolation between nodes of the state-space grid. Weights on each inflow are 

conditioned on release decisions and prior inflows. 

Equiprobable intervals have also been used to discretize stochastic variables. For 

example, Kelman et al. [1990] use a large, unspecified number of equally weighted 

scenarios. Karamouz and Vasiliadis [1992] develop a method that divides the 

distribution of a stochastic variable into a number of equally probable values. They apply 

the method to a one-reservoir water supply model using eight flow values. When using 

equiprobable intervals, abscissas may be placed at locations other than the midpoints. 

In some cases, uneven intervals are selected as somehow representative of the 

problem at hand. Stedinger et al. [1984] use abscissas located at the 97.5, 83.125, 

59.375, 35.625, and 11.875 percentiles of the unconditional probability distributions, and 

updated the weights using prior streamflows. Tejada-Guibert et al. [1993] apply a 

method by Max [1960] to identify five discrete inflows that are partitioned into flows for 

two hydropower reservoirs. 

When analyzing large-scale systems, quadrature accuracy is sacrificed to allow 

detailed system models. Often, two discrete values are used to represent a stochastic 
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variable [Gorenstin et al., 1992; Pereira andPinto, 1985; Pereira andPinto, 1991; 

Rotting and Gjelsvik, 1992]. Johnson et al. [1993] approximate lognormal distributions 

using abscissas at the 5, 50, and 95 percentiles and weights of 1/6, 2/3, and 1/6. Jacobs et 

al. [1995] use sorting of historical flows to define three discrete values that represent 

high, median, and low flow scenarios. In these examples, the selection of abscissas and 

weights was heuristic and it appears that quadrature accuracy was not considered. 

One exception is the application of quadrature by Foufoula Georgiou and 

Kitanidis [1988]. They apply DDP to a problem with two stochastic variables and only 

two discrete values for each. Using Gauss-Hermite quadrature, they achieve a high 

degree of accuracy. 

5. Discretization of Stochastic Variables in Past Efforts 

In all examples above, either fine discretization is used to model the distribution 

of stochastic variables, or the impact of discretization on solution accuracy is ignored. 

Tejada-Guibert et al. [1995] evaluate the benefit of hydropower generation, noting that 

"the discrete inflow approximation typically employed in SDP models often does not 

provide good resolution of hydrologic extremes. If the objective function employed is 

sensitive to extremes, as it is when large penalties are placed on shortages or damages 

due to flooding are considered, the deviations of the SDP-generated gains from the 

simulated gains are likely to be large and thus not be a good guide for reservoir release 

decisions and other water and energy related marketing decisions." While this 

observation identifies a common problem with many past efforts, the problem is not 

inherent to stochastic dynamic programming but to the quadrature methods employed. 

When the objective function is "sensitive to extremes" (i.e., when the objective 

function is not quadratic), numerous discrete values may be required to "provide good 

resolution of hydrologic extremes." Fine discretization of stochastic variables is required 

to evaluate expected values with accuracy just as fine discretization of state variables is 

used to approximate cost-to-go functions with accuracy. However, this is possible only 

with one or two stochastic variables. When multiple stochastic variables are needed to 

model a system, the solution effort grows almost as fast as the solution effort for multiple 

state variables. The solution effort is somewhat less only because the number of 

stochastic variables does not increase interpolation and solver effort (Z/ and Z$ in 

Chapters Five and Six). 
The effort required to calculate expected values, especially when using multiple 

stochastic variables, does not appear to have been a significant consideration in past 

efforts. In the examples cited, the efficiency of quadrature has not been a focus of effort. 
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Esmaeil Beik and Yu [1984] present one of the few examples of growing computational 

effort with increasing discretization, but they use only a single stochastic variable. In 

large part, past efforts may have been so limited in their consideration of problems with 

multiple state variables that concern for the impact of multiple stochastic variables was 

limited. 

In problems with one stochastic variable [Esmaeil Beik and Yu, 1984; Karamouz 

andHouck, 1987; Karamouz and Vasiliadis, 1992; Kelman et al, 1990; Raman and 

Chandramouli, 1996; Saadet al, 1996; Stedinger et al., 1984; Tejada-Guibert et al, 

1993; Valdes et al, 1992; Weiner and Ben Zvi, 1982] fine discretizations have been used. 

In these cases, no fewer than five discrete values have been used to accurately estimate 

expected values. 
In problems with multiple stochastic variables [Gorenstin et al, 1992; Jacobs et 

al, 1995; Johnson et al, 1993; Pereira and Pinto, 1985; Pereira and Pinto, 1991; 

Rotting and Gjelsvik, 1992; Turgeon, 1981], only two or three discrete values are 

identified for each stochastic variable. In these cases, the quadrature accuracy is 

sacrificed to allow a detailed system model. As mentioned, the one exception to this is 

the application Gauss-Hermite Quadrature by Foufoula Georgiou and Kitanidis [1988]. 

The next section discusses the advantage of Gaussian quadrature and specific methods 

that are appropriate for reservoir management problems. 

B. THE APPLICATION OF GAUSSIAN QUADRATURE TO 
DISCRETE DYNAMIC PROGRAMMING 

In "classical" methods of quadrature, numerical integration is applied first by 

identifying abscissas using some heuristic method (usually evenly spaced) and second by 

identifying appropriate weights. The idea of Gaussian quadrature is evaluate abscissas 

and weights together. In effect, this doubles the degrees of freedom that we have to 

estimate an integrand accurately [Press et al, 1992, p 140]. When an integrand is very 

smooth (i.e., well approximated by a polynomial), Gaussian quadrature allows us to 

achieve levels of accuracy using only half the number of abscissas of classical high-order 

methods. Moreover, when an integrand fits certain useful forms, Gaussian quadrature is 

exact. 

Bellman and Dreyfus [1962, pp. 324] first proposed the use of quadrature as a 

method to circumvent the difficulty in evaluating integrals in dynamic programming. 

They propose Gaussian quadrature to calculate the coefficients of polynomials used to 

approximate the cost-to-go function. They used a parametric dynamic programming 
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method to reduce the exponential growth in storage with higher state dimension, and the 

expected value function fit reasonably well the form used by Gaussian quadrature. To 

apply Gaussian quadrature in DDP has required cost-to-go approximations that provide 

similar smoothness. Recent developments of high-order Hermite and spline interpolation 

methods now offer this degree of smoothness and allow application of Gaussian- 

quadrature methods. 

1. Mathematical Form of Gaussian Quadrature 

In equation (7A2), Gaussian quadrature assigns not only the weights v* to be 

applied, but also assigns the locations Zk of the abscissas. By carefully choosing the 

location of abscissas and weights, we can obtain higher-order accuracy than possible by 

quadrature methods that rely on either equally-spaced or arbitrarily-spaced abscissas. 

Of additional importance, for a certain class of integrands, "polynomials times 

some known weighting function," numerical integration can be exact. This class of 

integrands can be described by the equation 

■b K 

W(z)g(z)dz = X "tg(z(«) (7B1) I Ja k=\ 

where g(z) is a polynomial and W(z) is some known weighting function. The restrictions 

are that (1) W(z) be sufficiently smooth or from the known set of weighing functions for 

which Gaussian quadrature is exact, and (2) we use a sufficient number of abscissas. The 

number of abscissa is sufficient if it provides degrees of freedom greater than or equal to 
the number of unknowns. In other words, if we use K abscissas, quadrature is exact for 

integrands with arbitrary polynomials of degree (2K- 1) or less. 

2. Compatibility of Gaussian Quadrature and Hermite Interpolation 

Using the Hermite interpolation of equations (5C1) or (5H1), the cost-to-go F,hl is 

a piecewise third-order polynomial function in each dimension of y. If the cost-to-go 

function is discretized with a sufficiently coarse grid, the apparent cost-to-go for various 

outcomes of y is adequately described by a third-order polynomial, and the piecewise 

nature of F,y>l will not have a significant impact. 

If we consider a system with linear dynamics, no constraints, and a current cost 
function Ctj represented by a third-order polynomial, then the total cost function given by 

equation (4A5) 

Vtj = C,,(x,u,w) + FtiJy) 
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is adequately described as third-order polynomial function of each random normal 

variable w*. For initial state x' and fixed decisions u, we can identify the expected cost 

by 

F,/x)lu = Ew{ Vtj} =    I     ...I     {W(w)V,/x,u,w)}dH>i...dwm (7B2) 
,/-oo J-oe 

This equation fits the form of equation (7B1) for each variable of w evaluated 

independently. W(w) is the probability density function for a normal distribution. As we 

will see, this is in the known set of weighting functions for Gaussian quadrature, and 

Gaussian quadrature is exact with only two discrete values for each random variable (i.e., 

K = 2). 
In modeling a system, we may transform a stochastic input s to obtain 

independent random normal variables. In such cases, the transition function probably is 

not a linear function of w and Vtj is not a third-order polynomial function of w. Instead, 

the expected cost can be expressed as a function of s to preserve the form of equation 

(7B1): 

-fi F,/x)lu = Es{ Vtj } = ...        {W(s) Vtj(x,u,s) }dsh..dsm (7B3) 
J-oo J-oo 

If the distribution W(s) is sufficiently smooth or comes from the known set of weighting 

functions, Gaussian quadrature applied to equation (7B3) is exact. 

It is useful to note that we may still apply Gaussian quadrature (or, more 

specifically, Gauss-Hermite quadrature) using equation (7B2) even when if a 

transformation of s to w results in a non-linear transition function and less smooth total- 

cost function. Most transformations of w do not make Vtj significantly less smooth; and 

V, may still be appropriately described as a third-order polynomial function of w. As a 

result, Gaussian quadrature applied to equation (7B2) will be accurate, or may be made 

sufficiently accurate with the addition of one or more abscissas. 

3. Sources of Error in Applying Gaussian Quadrature to Discrete Dynamic 

Programming 

The integrand used to evaluate the expected cost-to-go has a reasonable fit to the 

form required by Gaussian quadrature, but the fit is not exact. As a result, there are 

various sources of error that may result in poor quadrature. While none of these 

invalidate the use of Gaussian quadrature, the accuracy of solutions should be verified. 

141 



We will assess the impact of these sources of error in Chapter Eight. The following 

summarizes sources of error and conditions under which errors may be significant. 

PIECEWISE NATURE OF COST-TO-GO APPROXIMATIONS 

Gaussian quadrature is exact if applied to integration of a polynomial times an 

appropriate weighting function. In application to DDP, Gaussian quadrature is 

approximate because the interpolated cost-to-go function is divided into a number of 

subdomains. Even though each subdomain is described by an n-fold third-order 

polynomial function, the entire domain is described by a piecewise fitting of these 

functions that, in its entirety, may not be an «-fold third-order polynomial function. 

However, when evaluating an expected value using quadrature, the outcomes may sample 

a portion of the domain that can be approximated by some «-fold third-order polynomial 

function (or other n-fold low-order polynomial). 

The piecewise nature of cost-to-go approximations can have a variable impact on 

quadrature accuracy. On one hand, finer subdivision of the state space can degrade 

quadrature accuracy as outcomes sample more subdomians in a portion of the domain. 

The cost-to-go function may appear more complex and accurate quadrature may require 

finer stochastic discretization to evaluate a higher-order polynomial form. On the other 

hand, finer subdivision of the state space can improve quadrature accuracy as adjacent 

subdomains use interpolating functions that are more consistent. Also, finer subdivisions 

reduce the likelihood that interpolation error will destroy the higher-order accuracy of 

Gaussian quadrature. This can be a large problem when coarse state discretization 

permits oscillation in the interpolating functions. 

CHANGING CONTROL DECISIONS 

We solve control decisions for each outcome of w using limited foresight 

(equation (4A6)): 

F,,(x) = Ew{ minu{ Vtj } } 

As a result, control decisions are not fixed, and the expected total-cost function may not 

fit the form of equation (7B1). Fortunately, however, control decisions usually vary 

smoothly when not at a bound, and the resulting cost as a function of w is almost as 

smooth. Thus, Gaussian quadrature will often be sufficiently accurate without an 

increase in the number of abscissas. 
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NON-POLYNOMIAL COST AND TRANSITION FUNCTIONS 

Gaussian quadrature is exact if integration is applied to equations that fit the form 

of equation (7B1). As discussed above, interpolation of the cost-to-go function results in 

deviations from this form. However, non-polynomial current-cost and transition 

functions also result in deviations from this form, and may require additional abscissas to 

achieve sufficient quadrature accuracy. 

Fortunately, transition functions for many reservoir management problems are 

linear. Also, the summation of the current-cost and the cost-to-go will increase 

smoothness of the total cost, especially near optimal solutions. In finding the optimal 

trade-off between current and future costs, control decisions will generally avoid the 

most-curved, high-cost regions of a non-polynomial cost function. For example, in 

Chapter Ten, we will develop a cost function that becomes infinite as water supplies 

approach zero. Though this creates significant problems for quadrature when applied at 

zero supply, optimal control decisions are cautious and avoid this condition. 

CONSTRAINTS 

Gaussian quadrature assumes that the cost function is an unbounded polynomial 

function of the stochastic variables s. In application to reservoir problems, various 

constraints on system operation can produce costs that are a more complex function of s. 

For example, high inflows may fill a reservoir, requiring large downstream releases 

producing extreme costs. In this case, a constraint on reservoir level is binding, and the 

form of the cost function (as a function of inflows) may change significantly. 

When stochastic inputs are described by continuous distributions (as in the case of 

reservoir inflows), costs change smoothly even when constraints becoming binding. 

When using quadrature, changes may not be smooth, but may kink as each outcome shifts 

from non binding to binding (e.g., as we consider different initial states or as a solver 

iteratively changes control decisions). This may increase quadrature error and the 

number of iterations required by a solver for convergence. These potential problems can 

be addressed by using finer state discretization and finer stochastic discretization. 

Finer state discretization improves interpolation accuracy, especially near 

boundaries of the state-space. This can significantly improve the smooth transition of 

costs as constraints change from non-binding to binding at the boundary. Specifically, 

accurate interpolation of gradients at a boundary prevents state variables from becoming 

binding until marginal costs (with respect to control decisions) near a boundary match 

marginal costs at that boundary. 
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Finer stochastic discretization improves quadrature accuracy and reduces the 

sharpness of kinks as each outcome shifts from non binding to binding. With finer 

discretization, the weight applied to each outcome is less. Note, however, that the 

structure of DDP works in out favor to reduce the impact of kinks in a cost function. The 

first is that summation of current and future costs smooth out an estimate of the total-cost 

function, as discussed earlier. The second is that interpolation of a cost-to-go function 

smoothes out any kinks that may exist from prior subproblems. 

C. IDENTIFICATION OF GAUSSIAN QUADRATURE WEIGHTS 

AND ABSCISSAS 

Gaussian quadrature is exact when applied to integration of polynomials times 

some known weighting function. The previous section considered how well an 

interpolated cost function fits a polynomial form. This has significance for the 

appropriate application of Gaussian quadrature to DDP. This section considers how well 

stochastic variables such as inflow fit appropriate weighting functions. This has 

significance for the appropriate application of Gaussian quadrature to reservoir 

management problems. 

Stochastic inputs in reservoir management problems are usually described by 

continuous and smooth probability distributions that are well suited for Gaussian 

quadrature. For example, streamflow, demand, loss from evaporation or seepage, and 

other stochastic "inputs" are often described by normal, lognormal, or related 

distributions. In this section, we will consider "known weighting functions" that are 

appropriate for reservoir management problems. 

1. Gaussian Quadrature with Normal Distributions 

Normal distributions are often used to model stochastic inputs because they 

produce models with convenient mathematical properties. These properties may allow 

simpler solution of systems analysis problems, such as when the condition of certainty 

equivalence holds or when we use first-order analysis (Chapter Three). Normal 

distributions also are simple and their use is parsimonious. In other words, a simple 

model is more appropriate when data are insufficient to justify a more complex model. 

Weighting functions based on normal distributions fit the quadrature form known 

as Gauss-Hermite quadrature [Press etal., 1992, p. 144]. Gauss-Hermite quadrature uses 

the weighting function 
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W(z) = e'7-1 

Numerical integration of the form 

I K 

e-z2g(z)dz = X VAS(Z(«) (7C1) 

can be solved exactly for any polynomial function g(z). 

In application to normally distributed stochastic input s described by mean fi and 

variance a2, we scale abscissas and weights of Gauss-Hermite quadrature. The one- 

dimensional form of equation (7B3) can be expressed using normally distributed inputs 

as 

Es{ V,.} =   I     {ailK)A e-(^)2/2<72 Vtj(s) ds (7C2) 

If we substitute s = zoi2+fi into equation (7C2), we get 

r4- K 

Es{ Vtj} = KAI2 e-~2 Vtj(z(7 V2 + //) dz « K
AI2

 £ v* V,/z <% V2 + /x) 
J-oo *=i 

where vv = z V2 is a random variable with standard-normal distribution. The abscissas 
and weights for s are the scaled values z(k)o V2 + ß and v* Kn. Table 7C1 identifies the 

scaled abscissas and weights for a ~N(0,1) distribution (i.e., standard-normal) with up to 

K = 9. 
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Table 7C1. Gaussian Quadrature Abscissa Locations and Weights for Standard Normal 
Distribution 

Abscissa and (Weight) 
K=l 0 

(1.0) 
K = 2                                                      -1.00     +1.00 
 (-5)        (-5) 
K = 3 -1.73 0        +1.73 

(.16667) (.66667) (.16667) 
K = 4 -2.33     -0.74     +0.74    +2.33 
 (.04588) (.45412) (.45412) (.04588) 

A: = 5 -2.86     -1.36        0       +1.36    +2.86 
 (.01126) (.22208) (.53333) (.22208) (.01126)  
~K^6 332     339     ^062     +0.62    +1.89     +3.32 
 (.00256) (.08862) (.40883) (.40883) (.08862) (.00256)  
Y^7 3j5      337      33! Ö        +1.15     +2.37     +3.75 
 (.00055) (.03076) (.24012) (.45714) (.24012) (.03076) (.00055)  
~K~^8 ^4~14      -2.80      -1.64      -0.54     +0.54     +1.64     +2.80     +4.14 
 (.00011) (.00964) (.11724) (.37301) (.37301) (. 11724) (.00964) (.00011) 
~K~=9       33l      331      -2.08      -1.02 Ö        +1.02    +2.08     +3.21     +4.51 
 (.00002) (.00279) (.04992) (.24410) (.40635) (.24410) (.04992) (.00279) (2.2E-5) 

2. Gaussian Quadrature with Three-Parameter Gamma Distributions 

When sufficient data is available to use more complex models, it may be useful to 

fit the quadrature form known as Gauss-Laguerre [Press et al., 1992, p. 144]. Gauss- 

Laguerre quadrature uses the weighting function 

W(z) = zae-x 

where parameter a is a third parameter that may be used to fit a distribution. Numerical 

integration of the form 

Jr+c» K 

0 *=' 

Zae-*g{z)dz =  X ng(z{k)) (7C3) 

can be solved exactly for any polynomial function g(z). 

Gamma distributions are appropriate for modeling a variety of hydrologic 

processes. For example, the Pearson Type III distribution is a gamma distribution [Bras, 

1990; Wallis et al, 1974]. Gauss-Laguerre quadrature allows modeling of stochastic 

variables that are strictly positive and have significantly skewed distributions. This is 
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especially appropriate in application to hydrologic models that often incorporate non- 

negative, skewed stochastic variables for streamflow and demand. 

3. Gaussian Quadrature with Lognormal Distributions 

Hydrologic variables are frequently modeled using lognormal distributions. 

However, lognormal distributions do not fit the form of known weighting functions for 

which abscissas and weights have been solved. As suggested earlier, one approach to 

applying Gaussian quadrature with lognormal distribution is to apply quadrature to the 

transformed variables w, and add sufficient abscissas to achieve the desired accuracy. 

This approach still should produce higher-order accuracy than obtained using the 

trapezoidal rule or using a heuristic method. 
When the logarithm of a lognormal stochastic input s is described by mean \i and 

variance a2, the one dimensional form of equation (7B3) can be expressed as 

ES{V,.}=   I     (sai2Ky]e-^-rf/2°2Vtj(s)ds (7C4) 
J-<x> 

If we substitute s = Exp[zcr V2 + ji\ into equation (7C3), we get 

Es{ Vt] } =   I     7t-m e -z2 Vtj(e =«W2+/i) dz - rrm £ v* Vt)(e «^ 

Thus, the abscissas and weights are the scaled values s^ = Exp[z (*>(7 V2 + fi] and vjt KK. 

Notice that the cost function is a complex non-polynomial function, and that Gaussian 

quadrature may require additional abscissas to accurately identify the expected cost. 

4. Gaussian Quadrature with Arbitrary Distributions 

Instead of applying Gauss-Hermite quadrature to transformed variables w, we can 

use a general approach to identify abscissas and weights for any distribution that is 

sufficiently smooth. As a result, we can apply Gaussian quadrature without degrading the 

accuracy by a non-linear transformation. The following presents a practical method for 

identifying abscissas and weights for Gaussian quadrature when using an arbitrary 

weighting function W(z). The method and equations are taken from Press et al. [1992, 

pp. 142-4], with some adaptation of notation to that used in this thesis. 

Define the scalar product 
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>b 

<f\g>=  I   W(z)f(z)g(z)dz (7C5) 
Ja 

and the series of polynomial functions 

P-xiz) = 0 

Po(z) s 1 

p_/+l(Z) = (Z - fly) p;(z) - bj Pj.\(z),    / = 0,1,2,... 

where ay = ü£fc    ; = 0,1.2,... 

fc; = ^fe-,    ,'=1,2,3,... 
<Pj.\\pj.\> 

For an arbitrary weighting function W(z) applied over an interval [a,b], the K abscissas 

for Gaussian quadrature are the roots of the pfdz) polynomial. To identify roots of the 

Pfdz) polynomial, it is useful to progressively identify the roots of p\(z), pi(z), •■•, PK(Z), 

since the roots of each polynomial pj(z) interleave the roots of each polynomial pj.\(z). 

The weights for each abscissa Zj can be identified by the formula 

v. =   <^-1 ^PKA y 

1      PK-\iZj) qtcizj) 

where qidzj) is the derivative of pfdz) at Zj. Tables 7C2 through 7C5 identify the 

abscissas and weights for a variety of lognormal distributions. We will apply these 

abscissas and weights to problems in Chapter Eight to evaluate the performance of 

Gaussian quadrature. 
Practical techniques to evaluate these polynomials and their roots may require 

some trial and error. In this thesis, the roots were identified using the mathematical 

solver, Mathematica [Wolfram, 1991]. It was observed that convergence of numerical 

integration applied to equation (7C5) was poor when using unbounded distributions or 

distributions for which the lower bound is zero (e.g., lognormal distributions). In these 

cases, it was useful to use bounds that were slightly greater than zero and sufficiently 

large but not infinite. Convergence was found to be especially slow for high-order 

polynomials (e.g., ninth-order or larger), and numerical error also may be significant. 

However, practical application should generally require evaluation of only the second and 

third-order polynomials. Somewhat higher-order polynomials may also be desired to 

verify the accuracy using these coarse stochastic discretizations. 
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Unbounded highly skewed distributions can produce abscissas that are too large 

for a model. This is especially true when models include prior values of stochastic 

variables to incorporate autocorrelation. Under these conditions, it is practical to use 

more restrictive bounds [a,b] since roots of the polynomials all lie within this interval. 

Table 7C2. Abscissa Locations and Weights for Lognormal Distribution, ~LN(2.0, 0.5) 

Abscissa and (Weight) 
K=l 2 
 OP) 

K = 2 1.66      2.73 
(.67876) (.32124) 

K = 3 1.46       2.26       3.49 
(.39360) (.56148) (.04492) 

K = A 1.33       1.99       2.89       4.32 
(.22328) (.60860) (.16449) (.00364) 

K = 5 1.24       1.81       2.55       3.59       5.25 
(.12853) (.54940) (.29685) (.02502) (.00019) 

K = 6 1.16       1.67       2.31       3.17       4.38       6.31 
(.07601) (.45609) (.39526) (.07033) (.00230) (6.9E-6) 

K = l 1.10       1.57       2.14       2.88       3.87       5.27       7.51 
(.04636) (.36379) (.44812) (. 13195) (.00964) (.00014) (1.8E-7) 

AT = 8 1.05       1.49       2.01       2.66       3.51       4.66       6.28       8.87 
(.02917) (.28509) (.46261) (.19758) (.02471) (.00084) (5.8E-6) (3.4E-9) 

Table 7C3. Abscissa Locations and Weights for Lognormal Distribution, ~LN(4.0, .75) 

Abscissa and (Weight) 
K=\ 4 

(1.0) 
K = 2 3.43       4.99 

(.63684) (.36316) 
AT = 3 3.10       4.29       5.93 

(.33049) (.60450) (.06501) 
AT = 4 2.86       3.86       5.10       6.89 

(. 16308) (.60275) (.22666) (.00752) 
AT = 5 2.68       3.56      4.59       5.93       7.88 
 (.08012) (.48857)(.38191)(.04878)(.00062)  
AT = 6 2.53       3.32       4.23       5.34       6.80       8.92 
 (.03990) (.35788) (.46621) (.12899) (.00699) (3.9E-5)  
AT = 7 2.41       3.14       3.95       4.92       6.13       7.72      10.03 
 (.02030)(.24865)(.47758)(.22515)(.02761)(.00072)(1.9E-6) 
A" = 8 2.31       2.99       3.73       4.60       5.65       6.96       8.69      11.22 
 (.01058) (. 16811) (.44044) (.31023) (.06648) (.00410) (5.6E-5) (7.6E-8) 

149 



Table 7C4. Abscissa Locations and Weights for Lognormal Distribution, ~LN(2.0, 1.0) 

Abscissa and (Weight) 
K=\ 2 

(1.0) 
K = 2 1.52       4.10 

(.81530) (.18470) 
K = 3 1.30      3.12       7.48 

(.63745) (.35446) (.00809 
K = 4 1.18       2.67       5.72      12.96 

(.51344) (.45493) (.03151) (.00012) 
K = 5 1.10      2.40      4.88      9.93     21.76 

(.42937) (.50800) (.06177) (.00085) (6.2E-7) 
K = 6 1.04      2.23      4.39      8.48      16.72    35.85 

(.37147) (.53434) (.09172) (.00245) (8.2E-6) (1.3E-9) 
K = l 1.00      2.11       4.07       7.63      14.30     27.61     58.30 

(.33065)054641) (.11818)000472) (3.4E-5)(3.0E-8)(1.E-12) 
K = 8 .97        2.02       3.85       7.07      12.86     23.62     44.95     93.88 

(.30121) (.55105) (.14032) (.00734) (8.3E-5) (1.7E-7) (4.E-11) (4.E-16) 

Table 7C5. Abscissa Locations and Weights for Lognormal Distribution, ~LN(4.0, 1.5) 

Abscissa and (Weight) 
K=\ 4 

(1.0) 
K = 2 3.14      6.62 

(.75371)024629) 
K = 3 2.71       5.20      10.00 

(.52080) (.45930) (.01990) 
K = 4 2.44       4.47       7.88       14.45 

(.36491) (.55740) (.07697) (.00072) 
K = 5 2.25       4.02       6.77      11.42     20.36 

(.26461) (.58054) (.14957) (.00527) (1.3E-5) 
K = 6 2.12       3.70       6.07       9.82       16.13     28.19 

(.19912) (.56643) (.21874) (.01554) (.00017) (1.3E-7) 
K = l 2.01       3.47       5.59       8.81       13.88     22.38     38.56 

(.15517) (.53692) (.27632) (.03083) (.00075) (2.9E-6) (7.E-10) 
K = S 1.93       3.29       5.23       8.10      12.46      19.29     30.68     52.28 

(. 12478) (.50303) (.32096) (.04925) (.00197) (1.8E-5) (2.7E-8) (2.E-12) 
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CHAPTER 8. 

ANALYSIS OF GAUSSIAN QUADRATURE 

In Chapter Seven, we observed that Gaussian quadrature might provide high-order 

accuracy in the evaluation of expected costs of DDP. Because the total-cost function is 

roughly describable as an «-fold third-order polynomial function of the stochastic 

variables, it appears that coarse stochastic discretizations of K = 2 may be sufficient to 

obtain a high level of accuracy, even for arbitrary but smooth probability distributions. 

As a result, we may only require solutions for 2m different outcomes of the stochastic 

variables, significantly reducing the exponential growth in effort compared with alternate 

quadrature methods. 
In this chapter, we evaluate the benefit of using the Gaussian quadrature methods 

of Chapter Seven. The following analysis uses a range of stochastic discretizations 

applied in the multilinear DDP and GDP algorithms. In all cases, we use the four- 

reservoir test problem of Chapter Six. The four-reservoir problem contains two 

stochastic variables that represent independent inflows into the two uppermost reservoirs. 

A. GAUSSIAN QUADRATURE ACCURACY IN ESTIMATING 
THE EXPECTED COST-TO-GO 

This section presents quadrature error associated with stochastic discretizations 

from K = 1 (i.e., the deterministic solution) to K = 8. The measure of error is average 

absolute relative error (AARE) and absolute relative error (ARE) which we used in 

Chapter Six. In all cases, the state discretization is A = 4. For GDP, this is a sufficiently 

fine state discretization that interpolation error is small. For multilinear DDP, this is 

much too coarse for an accurate solution, but the results give some idea of the impact of 

Gaussian quadrature in these applications. 

1. The Stochastic Models 

If the condition of certainty equivalence holds, the error associated with the K = 1 

case should be approximately zero. In Chapter Six, we modeled inflows as normally 

distributed ~N(2.0, 0.5) and ~N(4.0, 0.75). These normally-distributed stochastic models 

151 



produce results that are close to the condition of certainty equivalence, and accurate 

quadrature is less important. 

As a result, we will also consider additional lognormally-distributed stochastic 

models that produce results that are further from the condition of certainty equivalence. 

The first two stochastic models are lognormally distributed with the same mean and 

standard deviation as the normally-distributed models (i.e., ~LN(2.0, 0.5) and ~LN(4.0, 

0.75)). These stochastic models are used in the "lognormal" four-reservoir problem. The 

second two stochastic models are also lognormally distributed, but with the variance 

quadrupled (i.e., ~LN(2.0, 1.0) and ~LN(4.0, 1.5)). These stochastic models are used in 

the "high-variance lognormal" four-reservoir problem. 

The abscissas and weights for the normal four-reservoir problem are calculated 

using Gauss-Hermite quadrature. The finest discretization used in this problem is K = 7 

as this is the largest number of abscissa that does not produce a negative inflow (see 

Table 7C1: an inflow is negative if the standard deviation is < (-) 4 for stream #1 or 

< (-) 5.33 for stream #2). The abscissas and weights for the lognormal and high-variance 

lognormal problems are calculated using the Gaussian quadrature method for arbitrary 

distributions (Tables 7C2 through 7C5). The finest discretization used in these problems 

is AT = 8. 

2. Error Versus Stochastic Discretization 

Tables 8A1 through 8A3 present the average absolute relative error (AARE) for 

the normal, lognormal, and high-variance lognormal problems. For all three problems 

solved using GDP, Gaussian quadrature is very accurate with a stochastic discretization 

of only K = 2. Using multilinear DDP, Gaussian quadrature is also very accurate in the 

normal and lognormal problems, and moderately accurate in the high-variance lognormal 

problem. Note that in all cases, a stochastic discretization of K = 3 improves quadrature 

accuracy only slightly, and finer discretizations produce little or no improvement. 

For the normal problem, the error of the K = 1 solutions is modest (Table 8A1). 

This indicates that the normal problem is close to the condition of certainty equivalence. 

The lognormal problem is not significantly different, and the error of the K = 1 solution is 

not significantly greater. 

In contrast, the high-variance lognormal problem, the error of the K = 1 solution 

is much more significant. High variance also increases quadrature error in all other 

solutions. Quadrature error is roughly five times greater for the GDP solutions and 

roughly forty times greater for the multilinear DDP solutions, regardless of the stochastic 

discretization. Larger variance produces a wider range of outcomes, and a wider range of 
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outcomes increases the impact of constraints and the impact of state discretization (as the 

outcomes sample a larger number of subdomains in the cost-to-go functions). As we will 

see in Section B, the inaccurate state discretization of the multilinear problem may 

contribute to the significantly greater increase in quadrature error. 

It is noteworthy that, for multilinear DDP, the error of the K = 1 solution is 

smaller than for the GDP methods. A likely explanation for this smaller error is that the 

K = 1 solution is exact for the Gaussian quadrature when the cost function of equation 

(7B1) is a "first-order polynomial." In other words, Gaussian quadrature applied to 

equation (7B1) is exact when the cost function is linear in each dimension. In all three 

models, multilinear DDP uses a cost-to-go function that is closest to this form. 

Table 8A1. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization 
(Normally Distributed Inflows) 

Method: Multilinear DPP First-order GDP     Second-order GDP 
T=l L2621 2.8034 2.7942 
K = 2 .0842 .0266 .0264 
K = 3 .0384 .0105 .0102 
K = 4 .0402 .0093 .0090 
A: = 5 .0145 .0037 .0032 
K = 6 .0241 .0070 .0067 
K = I (!) (!) (!L 
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each 
interpolation method 

Table 8A2. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization 
(Lognormally Distributed Inflows) 

Method: Multilinear DDP First-order GDP     Second-order GDP 
K=\ 1.2945 2.8238 2.8161 
K = 2 .1044 .0255 .0212 
K = 3 .0403 .0143 .0126 
K = 4 .0328 .0080 .0074 
K = 5 .0216 .0045 .0045 
K = 6 .0187 .0079 .0073 
K = l .0238 .0058 .0056 
K = % (!) (!) (Ü 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each 
interpolation method 
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Table 8A3. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization 
(High-Variance Lognormally Distributed Inflows) 

Method: Multilinear DPP First-order GDP     Second-order GDP 
K=\ 7.0484 10.1995 10.1842 
K = 2 1.6414 .1614 .1512 
K = 3 1.1656 .0671 .0647 
K = 4 .9084 .0527 .0424 
AT = 5 1.0040 .0618 .0627 
K = 6 1.0310 .0418 .0416 
K = 7 1.0470 .0189 .0177 
K = % (!) (!) (Ü 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each 
interpolation method 

3. Error Bias of Gaussian Quadrature 

We may gain some insight into the performance of Gaussian quadrature by 

observing the bias of the above errors. Tables 8 A4 through 8A6 present the average 

relative error (ARE) for the normal, lognormal, and high-variance lognormal problems, 

paralleling the results in Tables 8A1 through 8A3. 

In all cases, the K = 1 solution underestimates the exact solution. The K = 1 

solution is a deterministic solution that does not adequately incorporate the cost of 

extreme outcomes. With increasing stochastic discretization, these costs are incorporated 

with reasonable accuracy. 

Solutions with finer stochastic discretizations have less consistent biases, but 

some patterns are apparent. GDP solutions for the normal model show a consistent 

pattern of alternating positive and negative bias. If we look again at Table 7C1, we see 

that, when K is odd, there is a single heavily-weighted and centrally-located abscissa. In 

contrast, when K is even, there is a pair of heavily-weighted and centrally-located 

abscissa. As a result, solutions with even K have similar errors, and solutions with odd K 

have similar errors. Though more complex, GDP solutions for the lognormal models also 

consistent patterns that reflect the placement and weighting of abscissas. 

In all multilinear DDP solutions for the high-variance lognormal model (Table 

8A6), the biases are negative. As we will see in Section B, this may offer a clue to why 

the errors increase much more dramatically for multilinear DDP than for GDP. 
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Multilinear DDP First-order GDP Second-order GDP 
(-) 1.2603 (-) 2.8034 (-) 2.7942 
(-).0217 (-) .0190 (-) .0204 
(-) .0035 .0048 .0053 

.0299 (-) .0029 (-) .0041 
(-) .0070 .0011 .0012 

.0241 (-) .0014 (-) .0025 

(*) (*) (*) 

Table 8 A4. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization 
(Normally Distributed Inflows) 

Method:  
K=\ 
K = 2 
K = 3 
K = 4 
K = 5 
K = 6 
K = l  
* Finest stochastic discretization {K = 7) used as estimate of exact solution for each 
interpolation method 

Table 8A5. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization 
(Lognormally Distributed Inflows) 

Method:  
K=\ 
K = 2 
K = 3 
K = 4 
K = 5 
K = 6 
K = l 
K = 8  
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each 
interpolation method 

Table 8A6. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization 
(High-variance Lognormally Distributed Inflows) 

Multilinear DDP First-order GDP Second-order GDP 
(-) 1.2934 (-) 2.8238 (0 2.8161 

(-) .0732 (-) .0144 (-) .0100 
.0164 .0015 (0-0014 

(-) .0107 .0012 .0026 
.0073 (-) .0006 (-) .0006 

(-) .0094 .0005 .0005 
(-).0173 .0002 .0012 

(*) (*) (*) 

Method: Multilinear DPP First-order GDP     Second-order GDP 
K=\ (0 7.0484 (010.1995 (-) 9.9922 
K = 2 (01.1774 (0-0890 (-) .1043 
K = 3 (01.0668 (-).0353 (0-0175 
K = 4 (0.6709 .0250 .0001 
AT = 5 (0.8847 .0535 .0322 
K = 6 (0-9455 .0252 .0310 
K = 1 (0.5859 .0012 .0149 
* = 8 n (!) Q. 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each 
interpolation method 
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4. Comparison with a Heuristic Quadrature Method 

As a brief illustration of the accuracy of Gaussian quadrature, we can compare the 

above results with a heuristic quadrature method. For example, Johnson et al. [1993] 

approximate lognormal distributions using abscissas at the 5, 50, and 95 percentiles of the 

cumulative distribution and weights of 1/6,2/3, and 1/6. 

Abscissas can be located by transformation of the appropriate standard normal 

deviates. The standard normal deviates can be identified from a table of the cumulative 

normal density frequency distribution [Snedecor and Cochran, 1989, p. 465]. If we 

define w = Ln[s], then Ln[/z,] = ßw + 0.5*0^ and a} = fis
2(Exp[al] - 1) [Bras, 1990]. 

These expressions can be rearranged to yield 

al=Ln[a}/ß}+ I] 

ßw= -0.5Ln[(<J?/ß}+\)/li~] 

to identify the mean and standard deviation to apply to the standard normal deviates 

before transformation back to a lognormal variable. Table 8A7 presents the abscissas and 

weights of this heuristic method for the normal, lognormal and high-variance lognormal 

problems. 
Table 8A8 presents the solution errors using the heuristic quadrature method and 

some previous solution errors using Gaussian quadrature. The results show that Gaussian 

quadrature achieves significantly greater accuracy than the heuristic method. Even using 

the coarsest stochastic discretization of K = 2 (the minimum to still produce a stochastic 

problem), Gaussian quadrature is over ten times more accurate. To achieve similar levels 

of accuracy using heuristic methods may require fine stochastic discretizations that 

significantly increase computational effort. 
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Table 8A7. Abscissa Location and Weights for Heuristic Quadrature Method 

Abscissas (*) 
Normal Distributions 
~N(2.0,0.5) 1.18 2 2.82 
~N(4.0,.75) 2.77 4 5.23 
Lognormal Distributions 
~LN(2.0,0.5) i29 1.94 2.91 

~LN(4.0,.75) 2.90 3.93 5.34 

High-Variance Loenormal Distributions 
~LN(2.0,1.0) 0.82       1.79       3.89 
~LN(4.0,1.5) 2.06       3.75       6.80 

(Weight) (.16667) (.66667) (.16667) 
* Abscissas located at 5%, 50%, and 95% quantiles of each distribution. Weights are the 
same for all distributions. 

Table 8A8. Error (% AARE) of a Heuristic Quadrature Method and Gaussian Quadrature 

Quadrature method (*): Heuristic Gaussian Gaussian 
(* = 3) (K = 3) (K = 2) 

Normal Distribution  2706 .0102 -0264 
Lognormal Distribution -6607 -0126 -0212 
High-Variance Lognormal Distribution 2.6755 -0647 -1512 
* Second-order GDP in all cases. Gaussian quadrature with K = 7 (normal distributions) 
and with K = 8 (lognormal distributions) used as estimate of exact solution. Error in 
average absolute relative error (%). 

B. IMPACT OF PIECEWISE NATURE OF COST-TO-GO 
APPROXIMATIONS ON SOLUTION ACCURACY 

In Chapter Seven, we observed that state discretization can have a variable impact 

on quadrature accuracy. On one hand, finer subdivision of the state space can degrade 

quadrature accuracy as outcomes sample more subdomians in a portion of the domain. 

On the other hand, finer subdivision of the state space can improve quadrature accuracy 

as adjacent subdomains use interpolating functions that are more accurate, consistent, and 

less prone to oscillation. This section assesses the impact the state discretization can have 

on quadrature accuracy. 
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30.8370 4.2349 2.9845 2.7235 

30.6682 1.7480 .3119 .0268 

30.3765 1.6577 .2899 .0102 

30.5319 1.6919 .2958 .0093 

30.4601 1.6802 .2939 .0030 

30.5164 1.6793 .2943 .0070 

30.4536 1.6827 .2946 (*) 

1. Quadrature Error Versus Interpolation Error 

Table 8B1 presents the total errors of solutions of the normal four-reservoir 

problem using a range of state and stochastic discretizations. This total error combines 

interpolation error (from coarse state discretization) and quadrature error (from coarse 

stochastic discretization). To evaluate the impact of state discretization on quadrature 

accuracy, we want to avoid the confounding influence of interpolation error. 

Table 8B1. Total Error (% AARE) of Gaussian Quadrature with State Discretization 
(Normally Distributed Inflows and First-Order Hermite Interpolation) 

State discretization: A = 2 A = 3 A = 4 A = 5 

K=l 
K = 2 
K = 3 

K = 5 
K = 6 
K = l  
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state 
discretization. 

2. Quadrature Error with State Discretization 

Table 8B2 present the errors for the same solutions as Table 8B1 but with 

interpolation error removed. For each state discretization, the finest stochastic 

discretization (K = 7) is used as an estimate of the exact solution. 

In this case, we see that quadrature error decreases with increasing state 

discretization. Apparently, the increasing accuracy of interpolation overcomes the 

increasing fragmentation of the interpolation. 

Indeed, the largest errors occur when A = 2 and there is only one subdomain. 

These suggest that deviations of the cost function from the desired polynomial form are 

due less to discretization of the state space than to the impact of constraints. With a 

coarse discretization, costs near the boundary of the state space are not very accurate, 

and, when constraints become binding at the boundary, the cost function (as a function of 

the stochastic variables) changes significantly. This is supported by the observation that, 

when A = 2, the bias of errors is mostly negative (i.e., expected costs are lower than for 

the finest discretization used as the "exact" solution). For coarse stochastic 

discretizations K, fewer outcomes sample extreme costs that occur when constraints are 

binding. Low expected costs estimated using coarse discretizations suggest that costs 

increase disproportionately when constraints are binding. 
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As a result, inaccurate interpolation can also degrade quadrature accuracy. This is 

the clue that may identify why errors increased much more dramatically for multilinear 

DDP than for GDP when variance was increased (Table 8A3). Because multilinear DDP 

is inaccurate with a coarse state discretization of A = 4, the form of the cost function 

changes significantly when constraints become binding. With higher variance, more 

outcomes sample extreme costs that occur when constraints are binding, and costs are 

poorly estimated by a polynomial function. 

Tables 8B2 and 8B3 present solutions for the normal four-reservoir problem using 

first-order and second-order GDP. Likewise, Tables 8B4 and 8B5 present solutions for 

the lognormal problem, and Table 8B6 and 8B7 present solutions for the high-variance 

problem. As observed in Chapter Six, there is not a significant difference in the accuracy 

of the first-order and second-order GDP algorithms. Second derivatives are not 

significant for the cost function and short time horizon used by the traditional four- 

reservoir problem. Nevertheless, second-order GDP has consistently lower error than 

first-order GDP. These tables also show that error consistently decreases with finer state- 

discretizations, though the change is not significant after A = 4. 

Table 8B2. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (Normally Distributed Inflows and First-Order Hermite 
Interpolation) 

State discretization: A = 2 A = 3 A = 4 A = 5 
K = \ 5.0831 2.9047 2.8034 2.7235 
K = 2 .1435 .0600 .0266 .0268 
K = 3 .0903 .0244 .0105 .0102 
K = 4 .0770 .0224 .0093 .0093 
K = 5 .0676 .0078 .0037 .0030 
K = 6 .0536 .0182 .0070 .0070 
K = 7 (*) (*) (*) (*) 
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each state 
discretization. 
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Table 8B3. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (Normally Distributed Inflows and Second-Order Hermite 
Interpolation) 

State discretization: yl = 2 A = 3 A = 4 A = 5 

K=\ 4.5443 2.8160 2.7942 2.7263 
K = 2 .1194 .0687 .0264 .0217 
K = 3 .0777 .0280 .0102 .0089 
K = 4 .0786 .0282 .0090 .0091 
K = 5 .0635 .0076 .0032 .0027 
K = 6 .0419 .0217 .0067 .0072 

K = 7 C) (*) (*) (*) 
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each state 
discretization. 

Table 8B4. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (Lognormally Distributed Inflows and First-Order Hermite 
Interpolation) 

State discretization: A = 2 A = 3 vi = 4 A = 5 

K=\ 5.2074 2.9307 2.8238 2.7393 
K = 2 .2135 .0623 .0255 .0262 
K = 3 .1567 .0275 .0143 .0118 
K = 4 .0705 .0194 .0080 .0084 
K = 5 .0309 .0099 .0045 .0042 
K = 6 .1188 .0170 .0079 .0067 
K = 7 .0946 .0149 .0058 .0055 

K = 8 (*) (*) (*) (*) 

* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state 
discretization. 

Table 8B5. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (Lognormally Distributed Inflows and Second-Order 
Hermite Interpolation) 

State discretization: A = 2 A = 3 A = 4 A = 5 

K=\ 4.6590 2.8426 2.8161 2.7426 
K = 2 .1551 .0654 .0212 .0187 

K = 3 .1386 .0288 .0126 .0103 

K = 4 .0601 .0243 .0074 .0076 
K = 5 .0375 .0089 .0045 .0039 

K = 6 .0890 .0165 .0073 .0064 

K = l .0772 .0169 .0056 .0052 
K = S (*) (*) (*) (*) 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state 
discretization. 
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Table 8B6. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (High-Variance Lognormally Distributed Inflows and First- 
Order Hermite Interpolation) 

State discretization: A = 2 A = 3 A = 4 A = 5 

K=l 14.2999 10.5758 10.1995 9.9888 
K = 2 .8278 .1500 .1614 .1701 
K = 3 .3882 .1021 .0671 .0546 
K = A .2318 .1269 .0527 .0440 
K = 5 .3028 .0971 .0618 .0627 

K = 6 .1220 .0491 .0418 .0442 
K = l .0576 .0176 .0189 .0185 
K = 8 (*) (*) (*) (*) 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state 
discretization. 

Table 8B7. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State 
Discretization (High-Variance Lognormally Distributed Inflows and 
Second-Order Hermite Interpolation) 

State discretization: A = 2 A = 3 A = 4 A = 5 

tf=l 13.6612 10.4047 10.1842 9.9922 
K = 2 .7486 .1612 .1512 .1686 
K = 3 .3420 .1145 .0647 .0484 
K = 4 .1626 .1269 .0424 .0336 
K = 5 .2389 .1089 .0627 .0489 
K = 6 .0929 .0558 .0416 .0386 
K = l .0532 .0225 .0177 .0179 
K = 8 (*) (*) (*) (*) 
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state 
discretization. 

161 



162 



CHAPTER 9. 

CAUTION IN REAL-TIME OPERATION OF 
RESERVOIR SYSTEMS 

Management of reservoir systems is commonly accomplished using forecasts of 

stream flow and of demand. However, experience and common sense indicate that using 

most likely forecasts may be an insufficiently cautious approach because the impacts of 

low probability events are not adequately incorporated into management policies. As an 

alternative, we can use methods that combine forecasting under uncertainty and 

management, producing flexible real-time management policies that achieve an 

appropriate level of caution. Using a four-reservoir test problem, we demonstrate this by 

comparing operational results of forecast-based policies with the results of policies based 

on stochastic dynamic programming. We observe that real-time management using 

forecasts results in costs that are greater on average and that are much greater for extreme 

events. This is true even when short-term forecasts are accurate, such as when stream 

flows are highly auto-correlated. 

A. MOTIVATION 

Periodic updates of stream-flow and demand forecasts are commonly used to 

arrive at management decisions in real-time, that is, as events occur. Such decisions are 

often based on pre-determined operating policies but sometimes they rely on 

deterministic optimization of future operations, as if forecasted flows were the only 

possible input. 

However, if forecasts represent the most-likely stream flows, the potentiality of 

low probability events—such as extreme floods or droughts—is not adequately 

incorporated into the decision process. Constraints on system operation and excessive 

costs brought about by an extreme event may not be recognized until such an event 

becomes imminent and options for avoiding a catastrophe become quite limited. For 

example, managers of many water-supply systems hesitate to initiate rationing until 

shortages are imminent. 
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To hedge against extreme events, managers of reservoir systems may modify 

management policies but they have little guarantee that heuristically modified policies 

correctly balance their cost with the risk of extreme events. In some cases, these policies 

can even become too cautious and incur costs not justified by the avoided risk. 

Mathematical modeling and stochastic optimization, in the context of what is 

known as "systems analysis," can combine forecasting and management, thereby 

developing management policies that are appropriately cautious. The purpose of this 

chapter is to illustrate the influence that extreme events have on system performance and 

the value of appropriately cautious management policies. In addition, this chapter 

demonstrates that new systems-analysis methods allow us to combine forecasting and 

management in relatively complex problems. 

B. BACKGROUND 

Operational experience indicates that forecast-based methods are insufficiently 

cautious. Kitanidis and Andricevic [1989] show that policies obtained from deterministic 

optimization using most likely estimates, also known as "deterministic feedback control" 

(DFC), perform poorly when compared with policies obtained from either "first-order 

approximation" or discrete dynamic programming. These are stochastic optimization 

methods that account for contingencies and, as a result, are more cautious. Though 

management policies based on most-likely forecasts may perform slightly better under 

average conditions, these policies may perform much worse under extreme conditions. 

As a result, many agencies constrain system operations to heuristically 

incorporate greater caution in operations. One common approach is to adjust system 

operations based on performance during simulated recurrence of extreme historical 

events. While this approach incorporates additional caution, it may leave systems 

vulnerable to extreme events beyond those previously seen. For example, the severe 

1976-77 drought in western North America caught many water management agencies 

unprepared. Consequently, the 1976-77 drought is now used frequently as a benchmark 

of system vulnerability [EBMUB, 1992]. In addition, the use of extreme historical events 

may produce system operations that are excessively cautious since they prepare for a 

specific extreme event whose exact duplication is impossible. 

Unfortunately, it has been difficult to identify appropriately cautious real-time 

controls using available systems-analysis methods. Many existing methods applicable to 

complex problems require separating forecasting from management to allow application 

of deterministic optimization. Even those methods that combine forecasting and 
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management usually rely on some unique problem characteristic or other simplification. 

For example, Kitanidis and Andricevic [1989] applied first-order approximation 

[Kitanidis, 1987] to incorporate stochasticity using a small-perturbation approximation. 

This method is more cautious, but it still may not correctly balance the cost of hedging 

with the risk of extreme events when the uncertainty is large. Past difficulties in applying 

systems-analysis methods to realistic system models have contributed to limited 

application of these methods in practice [Rogers and Fiering, 1986]. 

As a result, system management has relied largely on experience. Indeed, this 

approach appears to have been effective in identifying an appropriate level of caution for 

many well-established systems [Kelman et al, 1990]. However, experience may not be a 

sufficient guide to manage changing conditions and extreme events. For example, 

constraints added to trigger additional caution when extreme events become likely may 

produce controls that are insufficiently cautious, too cautious, or both depending on the 

conditions. 
Discrete dynamic programming (DDP) is the most general formal optimization 

procedure for combining forecasting and management in reservoir control problems that 

meet certain requirements. It is but one of several dynamic-programming procedures 

available to solve dynamic control problems; however, it is the only one that is generally 

applicable to non-linear problems, stochastic problems, and problems where the goal is to 

minimize both the frequency and severity of failure. The development of new DDP 

methods in Chapters Five and Seven allows us to address systems that are more complex 

than traditionally possible. 

C. SYSTEM MODELS 

To compare real-time management policies using DFC and DDP, we use the four- 

reservoir problem (Figure 6A1) and an operating horizon of twenty-four stages (N = 24) 

stages. Streamflows are lognormally distributed ~LN(2.0, 1.5) and~LN(4.0, 1.5). The 

policy using DFC is to select release decisions that minimize total cost for all remaining 

stages assuming a perfect forecast. At the beginning of each stage, a new forecast is 

generated and new release decisions evaluated. The policy using DDP is to select release 

decisions that minimize the sum of current and expected future costs. Expected future 

costs in each stage are estimated by cost functions developed by the DDP. 

As seen in Chapter Eight, the traditional four-reservoir problem is close to 

certainty equivalent. The term "certainty equivalent" means simply that uncertainty may 

be neglected and decisions may be based mean values. This is due to the use of a 
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quadratic penalty function and also due to the small effect that constraints have on system 

operations. We can see this more clearly by interpreting the test problems' uncorrelated 

stream flows as a series of annual flow values. With this interpretation, total system 

storage is 800% of average annual inflow. This ratio of storage to flow is rarely achieved 

in practice and diminishes the influence that finite reservoir storage has on system 

operations. As a result, the problem is close to certainty equivalent, and DFC using the 

best-estimate forecast of future stream flows performs almost as well as DDP. 

Because the traditional four-reservoir problem (Model A) is close to certainty 

equivalent, we introduce two modifications (Models B and C). These modifications 

result in models that are more realistic and that better illustrate the value of cautious 

management policies and the influence that extreme events have on system performance. 

1. Four-Reservoir Model with Uncorrelated Streamflows (Model A) 

As in the previous applications of the four-reservoir problem, streamflows in 

model A are uncorrelated. Figures 9C1 and 9C2 illustrate two different synthetic 

scenarios generated according to the probabilistic model. Table 9C1 identifies moments 

of the random variables and resulting Gaussian-quadrature abscissas and weights used 

calculate expectations. 
We may think of the costs of the four-reservoir problem as multi-purpose 

penalties for not meeting water supply targets and for excessive flood releases. However, 

desired releases are smaller than mean inflows, and releases are maintained small as 

possible with little concern for the final reservoir level. We will see this effect later when 

observing the system's response in specific scenarios. 
The use of the constraints and the quadratic cost functions of the four-reservoir 

problem results in a systems-analysis problem that is close to "certainty equivalent." 

Under these conditions, DFC using a best-estimate forecast will do nearly as well as DDP 

except for the effect of operating constraints. 

Table 9C1. Parameters of Stochastic Variables for Uncorrelated Flow Model. 

Stochastic          Moments                Numerical Integration 
Variable       Mean  Std. dev.      Abscissas Weights 

j, 2.0 1.5     {1.5008,6.5070}   {.9003, .0997} 

s? 4.0 1.5     {3.1426,6.6240}   {.7537,2463} 
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Figure 9C1. Uncorrelated-Flow Scenario for Models A and C (Example 1). 
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Figure 9C2. Uncorrelated-Flow Scenario for Models A and C (Example 2). 
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2. Four-Reservoir Model with Correlated Streamflows (Model B) 

The first modification to Model A adds temporal and spatial correlation to the 

model of stream flows. We add auto-correlation by augmenting the traditional four- 

reservoir model with additional state variables, x5 and x6, representing stream flows of 

the prior stage. Current flows are a function of these additional state variables and of 

stochastic variables, s (Table 9C2). Evolution of the system in now modeled by a six- 

state transition equation: 

10 00.8 0 
0 1 0 0 0 .8 
0 0 10 0 0 x'+i - 0 0 0 10 0 
0 0 0 0.8 0 

LO 0 0 0 0.8J 

where state variables are reservoir levels and prior stream flows. Figures 9C3 and 9C4 

illustrate two different synthetic stream-flow scenarios generated according to this 

probabilistic model of inflows. Moments of the random variables have been chosen to 

produce stream-flow moments that match those of the uncorrelated flow model. These 

random-variable moments are identified in Table 9C3. Because of the highly skewed 

distributions of these random variables, Gaussian-quadrature produces large abscissas 

and small weights. These values can introduce significant solution errors. To reduce 

these errors, the tails of the unbounded log-normal distributions have been truncated to 

-1 0 0 01 "1 01 
0-1 0 0 .5  1 
0  1-10 0 0 

X,  + 10  1-1 u, + 0 0 
0 0 0 0 1 0 

L o o o oJ L.5  IJ 
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produce smaller abscissas without significantly degrading expected-value calculations 

(Chapter Seven). 

With stream-flow correlation, constraints on reservoir capacity have a greater 

effect and result in a model that is further from the condition of certainty equivalence. 

We can see this more clearly by interpreting the problem's correlated stream flows as a 

series of monthly flow values. With this interpretation, the model covers a 2-year period 

of operations and total system storage is 67% of average annual inflow. This is more 

realistic, and as we will see, the results of this model better illustrate the value of cautious 

management policies. 

Table 9C2. Model of Correlated Stream Flows. 

Stream Flow: Mean            o                     Model 

#1 

#2 
2.0             1.5                 0.8x5 + s\ 

4.0              1.5            0.8x6 + 0.5^) + sn 

Table 9C3. Parameters of Stochastic Variables for Correlated Flow Model. 

Stochastic Moments               Max. Tail                   Numerical Integration 
Variable Mean        o       Value       Prob.           Abscissas             Weights 

0.4         0.9        25.0       .000088    {.3019,7.4922}    {.9867, .0132} 

0.6      0.6364     25.0     <.000001    {.4583,3.4516}    {.9527, .0473} 

Figure 9C3. Correlated-Flow Scenario for Model 2 (Example 1). 
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Figure 9C4. Correlated-Flow Scenario for Model 2 (Example 2). 
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3. Four-Reservoir Model with Higher-Order Cost Function (Model O 

The second modification to Model A changes the penalty functions from 

quadratic to the fourth-order: 

4 

F(x) =  X (xj-b/ 

4 

C(u) =   X a*(«*-1.0)4 

*=1 

These non-quadratic penalties result in a model that is also further from certainty 

equivalent. Compared with results using Models A and B, results using Model C most 

dramatically display the poor performance of the DFC policy. 

D. RESULTS 

For each model, we compared real-time performance of the DFC policy with 

performance of the DDP policy using a thousand equally-likely scenarios generated 

according to the probabilistic model of inflows. In addition, we illustrate specific system 

behavior under each policy by viewing representative scenarios. Each scenario consists 

of synthetic flow series of 24 values for each of the two streams. State and stochastic 

discretizations are sufficient to reduce error below 1% AARE. 

Table 9D1 provides a quick summary of the mean, minimum, and maximum of 

costs for the two models under each management policy. For each model, we can see 

that operating costs under the DFC policy are generally greater because the policy is 

insufficiently cautious when compared with the appropriately cautious DDP policy. 

Table 9D1. Mean, Minimum, and Maximum of Cost Distributions. 

Flow Model Policy Mean Median Minimum Maximum 

A (traditional) DFC 1173.3 1143.6 618.0 3817.2 

DDP 1122.2 1097.3 648.4 3139.2 

B (correlated) DFC 1474.5 1149.3 260.6 96773.5 

DDP 1361.8 1056.9 369.9 89299.4 

C (non-quadratic) DFC 26743.0 19018.3 5805.9 2368884.5 

DDP 20257.8 17030.8 7105.6 1103842.5 
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1. Results for the Uncorrelated Flow Model (A) 

Applying the DFC policy and DDP policy to the thousand scenarios of the 

uncorrelated-flow model, we can compare the policies' performance. Figure 9Dla shows 

the distribution of costs resulting from DFC policy using best-estimate forecasts and 

Figure 9Dlb shows the distribution of costs resulting from DDP policy. By subtracting 

the resulting cost of the DDP policy from the resulting cost of the DFC policy in each 

scenario, we can better compare performance of the two policies. Figure 9Dlc shows the 

distribution of these cost differences for the thousand scenarios, with negative values 

indicating better performance for the DFC policy and positive values indicating better 

performance for DDP policy. 

Neither policy performs consistently better than the other; however, on average, 

the cautious DDP policy performs better than the DFC policy. DFC does well in 

scenarios with low flow variability, and does better than DDP in 20.1% of the scenarios. 

On the other hand, the caution of DDP does well in scenarios with high flow variability, 

and DDP does better in 79.9% of the scenarios. More telling is the policies' relative 

performance in extreme scenarios. In the best scenario, the DFC policy outperforms the 

DDP policy by achieving a cost that is 7% (i.e., 45.5 penalty units) lower. Note that, 

relative to the DDP policy, the best scenario for the DFC policy is not the scenario with 

the lowest cost but the scenario that most closely matches the real-time forecasts. In 

contrast, in the worst scenario, the DFC policy under-performs the DDP policy and the 

resulting cost is 22% (i.e., 678.0 penalty units) higher. 

Release decisions applied to specific scenarios can be observed to better assess 

the forecast-based DFC policy. Figures 9C1 and 9C2 illustrate "favorable" and 

"unfavorable" synthetic streamflow scenarios in the sense that the resulting costs as 

measured by the penalty functions are lower and higher than average. These are not the 

extreme scenarios discussed above, but more typical examples selected from among the 

first ten out of the thousand. 

The first scenario presents an outcome for which the DFC policy performs better 

than the DDP policy. Figures 9D2a-d show, for each reservoir respectively, the release 

decisions and evolution of storage levels from application of the DFC policy. For 

comparison, the figures also show as dashed lines the releases and storage levels resulting 

from application of the appropriately cautious DDP policy. DFC decisions maintain a 

relatively constant release level throughout the twenty-four stages. Because penalties 

associated with releases are greater than potential penalties associated with the ending 

storage, the DFC policy tends toward the filling of reservoirs. On the other hand, DDP 
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releases are unnecessarily cautious for this scenario: higher releases are maintained until 

the last few stages. During these last few stages, the DDP policy reduces releases as it is 

unlikely that flows during the remaining stages will require the large available storage as 

a buffer to spread out releases of large inflows. Performance costs are low under both 

policies, and the DFC policy outperforms the DDP policy by 4% (i.e., 795.4 to 828.2 

penalty units). 

The second scenario presents an outcome for which the DFC policy performs 

worse than the DDP policy. Figures 9Dla-d show, for each reservoir respectively, the 

release decisions and evolution of storage levels. In this scenario, the forecast-based 

DFC decisions are insufficiently cautious: reservoirs fill rapidly and less buffering 

capacity is maintained to spread out release of later flows. Resulting costs are high, and 

the DFC policy underperforms by 10% (i.e., 1952.1 to 1775.2 penalty units). 

Figure 9Dla. Distribution of Costs for DFC Policy (Model A). 
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Figure 9Dlb. Distribution of Costs for DDP Policy (Model A). 
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Figure 9Dlc. Distribution of Cost Differences for DFC Versus DDP (Model A). 
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Figure 9D2a. Release and Storage for 1st Reservoir (Model A, Example 1). 
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Figure 9D2b. Release and Storage for 2nd Reservoir (Model A, Example 1). 
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Figure 9D2c. Release and Storage for 3rd Reservoir (Model A, Example 1). 
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Figure 9D2d. Release and Storage for 4th Reservoir (Model A, Example 1). 
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Figure 9D3a. Release and Storage for 1st Reservoir (Model A, Example 2). 
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Figure 9D3b. Release and Storage for 2nd Reservoir (Model A, Example 2). 
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Figure 9D3c. Release and Storage for 3rd Reservoir (Model A, Example 2). 
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Figure 9D3d. Release and Storage for 4th Reservoir (Model A, Example 2). 
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2. Results for the Correlated Flow Model (B) 

Figures 9D4a-c show system performance using the correlated-fiow model. 

These figures parallel Figures 9Dla-c for the traditional uncorrelated-flow model. 

Average cost for model B is greater than for model A, even though median costs are 

roughly equal. This is largely because the cost of extreme events is much greater for 

model B. The coincidence and persistence of flows resulting from cross-correlation and 

auto-correlation causes extreme high combined flows and causes high flows to persist 

longer, producing higher costs. This also causes extreme low flows to persist, producing 

lower costs (Table 9D1). The DFC policy does better than the DDP policy in only 17.8% 

of the scenarios. In the best performing scenario, the DFC policy outperforms the DDP 

policy by achieving a cost that is 13% (i.e., 137.4 penalty units) lower. However, in the 

worst performing scenario, the DFC policy underperforms by 8% with a substantial 

difference in cost of 7474.1 penalty units. 

Figures 9C3 and 9C4 illustrate two synthetic flow scenarios for the correlated- 

flow model. In contrast to the uncorrelated-flow scenarios in Figures 9C1 and 9C2, we 

can see that the correlated synthetic flows change less rapidly and high flows show 

greater persistence. The correlated and uncorrelated scenarios of use the same seed in a 

random number generator (i.e., they have the same position among the thousand 

scenarios) so that differences in the streamflow models can be compared directly. 

As before, the first scenario presents an outcome for which the DFC policy 

performs better than the DDP policy. Figures 9D5a-d show, for each reservoir 

respectively, the release decisions and evolution of storage levels. As in the uncorrelated- 

flow model, the DFC policy maintains relatively constant release levels throughout the 

twenty-four stages. Again, releases under the DDP policy prepare the system for high 

inflows that do not happen, and high releases are maintained until the last few stages. 

Costs are low under both policies, and the DFC policy outperforms the DDP policy by 

11% (i.e., 656.0 to 741.1 penalty units). 

The second scenario presents an outcome for which the DFC policy performs 

worse than the DDP policy. Figures 9D6a-d show, for each reservoir respectively, the 

release decisions and evolution of storage levels. In this scenario, the DFC policy has 

failed to anticipate high flows that cause the reservoirs to fill rapidly. With the DDP 

policy, reservoir filling is delayed, though available storage capacity is still lost early. 

Resulting costs are high, and the DFC policy underperforms by 6% (i.e., 3056.4 to 2877.5 

penalty units). 
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Figure 9D4a. Distribution of Costs for DFC Policy (Model B). 
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Figure 9D4b. Distribution of Costs for DDP Policy (Model B). 
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Figure 9D4c. Distribution of Cost Differences for DFC Versus DDP (Model B). 
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Figure 9D5a. Release and Storage for 1st Reservoir (Model B, Example 1). 
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Figure 9D5b. Release and Storage for 2nd Reservoir (Model B, Example 1). 
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Figure 9D5c. Release and Storage for 3rd Reservoir (Model B, Example 1). 
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Figure 9D5d. Release and Storage for 4th Reservoir (Model B, Example 1). 
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Figure 9D6a. Release and Storage for 1st Reservoir (Model B, Example 2). 
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Figure 9D6b. Release and Storage for 2nd Reservoir (Model B, Example 2). 
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Figure 9D6c. Release and Storage for 3rd Reservoir (Model B, Example 2). 
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Figure 9D6d. Release and Storage for 4th Reservoir (Model B, Example 2). 
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3. Results for the Non-Quadratic Penalty Model (C) 

Figures 9D7a-c show system performance using the non-quadratic cost function. 

These figures parallel Figures 9Dla-c and Figures 9D4a-c. Compared to Models A and 

B, costs for Model C are greater because of the fourth-order penalty. Using this model, 

the DFC policy does better than the DDP policy in 23.9% of the scenarios, and the poor 

performance of the DFC policy is dramatic. In the best performing scenario, the DFC 

policy outperforms the DDP policy by achieving a cost that is 22% (i.e., 2285.8 penalty 

units) lower. However, in the worst scenario, the DFC policy underperforms and the cost 

is 110% (i.e., 1.2 million penalty units) higher! 

Figures 9C1 and 9C2 illustrate two synthetic flow scenarios for this model. These 

are the same scenarios used in Model A. Again, the first scenario presents an outcome 

for which the DFC policy performs better than the DDP policy. Figures 9D8a-d show, 

for each reservoir respectively, the release decisions and evolution of storage levels for 

the favorable first scenario. As seen in Models A and B, the DFC policy maintains 

relatively constant release levels and the DDP policy dictates additional releases that are 

unnecessary in hindsight. The DFC policy outperforms the DDP policy by 15% (i.e., 

8877.5 to 10404.2 penalty units). 

The second scenario presents an outcome for which the DFC policy performs 

worse than the DDP policy. Figures 9D9a-d show, for each reservoir respectively, the 

release decisions and evolution of storage levels. In this scenario, the forecast-based 

DFC policy allows the reservoirs to fill rapidly. In contrast, buffering capacity is 

maintained under the DDP policy. Under both policies, release decisions are higher than 

in model A, though they are not significantly different otherwise. Resulting costs, 

however, are significantly different: the DFC policy underperforms by 53% (i.e., 

67205.4 to 43965.2 penalty units). 

178 



Figure 9D7a. Distribution of Costs for DFC Policy (Model C). 
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Figure 9D7b. Distribution of Costs for DDP Policy (Model C). 
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Figure 9D7c. Distribution of Cost Differences for DFC Versus DDP (Model C). 
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Figure 9D8a. Release and Storage for 1st Reservoir (Model C, Example 1). 
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Figure 9D8b. Release and Storage for 2nd Reservoir (Model C, Example 1). 
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Figure 9D8c. Release and Storage for 3rd Reservoir (Model C, Example 1). 
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Figure 9D8d. Release and Storage for 4th Reservoir (Model C, Example 1). 
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Figure 9D9a. Release and Storage for 1st Reservoir (Model C, Example 2). 
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Figure 9D9b. Release and Storage for 2nd Reservoir (Model C, Example 2). 
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Figure 9D9c. Release and Storage for 3rd Reservoir (Model C, Example 2). 
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Figure 9D9d. Release and Storage for 4th Reservoir (Model C, Example 2). 
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E. CONCLUDING REMARKS ON THE CAUTIOUS 
MANAGEMENT OF RESERVOIR SYSTEMS 

Efficient reservoir-system operation is difficult when driven by uncertain inputs 

such as stream flow. Because of limitations on practical application of existing 

operations analysis methods, system managers have relied on forecast-based DFC 

policies as the best available method to conduct real-time operations. Because it is 

recognized that DFC policies are insufficiently cautious, heuristic constraints on system 

operations have frequently been adopted. However, these provide no guarantee of 

achieving an appropriate level of caution. 

The results presented in this chapter demonstrate the poor performance of DFC. 

Simulated real-time operational results for DFC policies have been compared with DDP 

policies in a variety of problems. The first uses the well-known four-reservoir model. 

Because this model is close to certainty equivalent, we have introduced two additional 

models that are further from certainty equivalent. The first includes temporal and spatial 

correlation. The second uses a non-quadratic cost function that heavily penalizes 

deviations from target release and reservoir levels. Application of DFC and DDP to these 

problems demonstrate the under-performance of DFC on average and the extremely poor 

performance possible in extreme events. These results also demonstrate that, even if 

more accurate forecasts are available, the information can be used with other methods 

such as DDP to produce a better policy. 

Except in problems that are appropriately modeled as certainty equivalent, 

forecast-based policies are insufficiently cautious and generally result in poor 

performance. Certainty equivalence occurs when system performance is measured by a 

quadratic cost function and there are no binding constraints on operations. However, 

realistic systems are not certainty equivalent. Except for systems characterized by 

extremely large storage capacities and by quadratic cost functions (perhaps valid for 

some hydropower systems), system performance will be significantly degraded by 

application of forecast-based policies. 

The modifications used to develop Models B and C are only a couple of those that 

may be needed to represent many real systems with practical accuracy. Many systems 

are even more severely constrained. Reservoir capacities may be even more severely 

limited, or additional constraints may be required to incorporate various legal 

requirements and social values. Seasonal variation in inflows will also increase the effect 

of constraints on system operation. Many systems cannot be modeled using a quadratic 

cost function. For example, many systems cannot tolerate the complete emptying of a 

182 



reservoir or the reduction of water supplies to zero, and these conditions would imply an 
infinite cost. We anticipate that for many real systems, Model C represents more 
accurately than Model A the importance of appropriately cautious policies. 

Examples presented here also demonstrate the feasibility of applying DDP to 

problems of greater complexity than generally assumed. We apply DDP to 24-stage 
problems to develop the first published solution of a six-state variable DDP problem. 
This has allowed us to combine forecasting under uncertainty and management in 

systems analysis applied to reasonably complex multi-reservoir problems. 
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CHAPTER 10. 

VALUATION OF WATER RESOURCES 

To identify shortage costs in a value model, we need to develop an appropriate 

cost function. Some reservoir management purposes, such as power generation, have 

clearly defined cost or benefit functions that can be quantified by revenue generated or 

costs incurred. We accept these revenues and costs in defining cost functions because 

they have been determined by market mechanisms. Other reservoir management 

purposes have less clearly defined costs because market prices may not be available or 

easily quantified. For example, the cost of water shortage is not well defined because 

water prices are not usually defined by the market. 

The purpose of this chapter is to propose and apply a surrogate cost function for 

shortages. This cost function allows us to explicitly state (and critique) the cost of 

rationing given by the general equation 

Cost of rationing = -f- P0 [ Qo - Q (Q /Qo)l,a ] 

where PQ is a market price for an available quantity of water QQ, and a is the "elasticity" 

of water demand. This equation assumes that market prices provide an appropriate 

measure of the benefit of water use and that the elasticity of demand is constant. 

By developing such a cost function, water management agencies can explicitly 

quantify the expected impact of water rationing on consumers. What is more important, 

agencies can use such a cost function to evaluate the expected benefits and costs of 

different operating policies and planning scenarios. As a result, different options for 

system expansion or modification can be compared with greater objectivity. 

A. BACKGROUND ON MARKET PRICES 

We cannot easily quantify water supply benefits without a water market. Instead, 

we can simulate a market mechanism to evaluate the benefit of water use and the cost of 

water shortage. In this section, we will first consider how real markets identify prices. 
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1. An Ideal Market 

When the price of a commodity is free to change, it responds to market forces of 

demand (i.e., desire for a commodity) and supply (i.e., willingness to sell). We generally 

observe that as the price goes up, we buy less of the commodity (with the exception of 

some odd commodities, called "superior goods," whose high price may create demand, 

e.g., jewelry). We also observe that as the price goes up, producers of the commodity are 

willing to supply more. Figure 10A1 illustrates the impact of price on the demand and 

supply of a typical commodity. For some commodities however, other possibilities also 

exist. For example, a commodity may have production costs that decrease with quantity 

(e.g., commodities produced with economies of scale), or the quantity of a commodity 

may not respond to price (e.g., commodities that cannot be produced or reproduced). 

Note that there is an equilibrium unit price P* for each quantity Q that matches 

demand with supply. P* identifies the "market clearing" price of a commodity. If the 

price is too high (> P*), then demand is less than the supply (Pi and Q\ in Figure 10A1). 

In this case, the price drops as producers compete to sell their supply of the commodity. 

If prices are set too low (< P*), then demand is greater than the supply {Pi and Qi in 

Figure 10A1). In this case, the price will be driven up as consumers compete for limited 

supplies. If the price is not allowed to change, then rationing is required to allocate 

available quantities of the commodity, perhaps through regulation by a government 

agency. When supply and demand are in balance, the market clearing price efficiently 

allocates the available quantities without regulation. 

The supply and demand functions are surrogates for the benefits of consumption 

and the costs of production. The demand function identifies a price that estimates the 

benefit from consuming each additional unit of the commodity when the total supply is at 

level Q. If the benefit is less, then we consume less; if the benefit is more, then we 

consume more. The net benefit to consumers is the difference between the price they pay 

for the commodity and the benefit they achieve from its use. Economists define this 

benefit as the "consumer surplus" (Figure 10A2). Likewise, the supply function 

identifies a price that estimates the cost of producing each additional unit of the 

commodity when total production is at level Q. The net benefit to producers is the 

difference between the cost to produce the commodity and the price they can charge. 

Economists define this benefit as the "producer surplus" (Figure 10A2). 

The market clearing price associated with the equilibrium between demand and 

supply has the benefit of maximizing the combined consumer and producer surpluses 

(i.e., the net benefit). For example, if a government applies controls to lower consumer 
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prices, then producers may respond by reducing production. Even though this may result 

in a larger consumer surplus, this comes at the expense of the producer surplus (Figure 

10A3). As a result, there is a net loss in total benefits to society. Also, demand ßo is 

greater than supply Q (since the benefit of consumption PD is greater than the price P), 

and rationing is required to allocate available quantities of the commodity. 

Figure 10A1. Example Demand and Supply Functions 
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Figure 10A2. Consumer and Producer Surplus 
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Figure 10A3. Impact of Non-Market Price on Consumer and Producer Surplus 
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2. Non-Ideal Water Markets 

In contrast to the ideal market presented above, the supply of water does not 

usually change in response to market forces. Instead, the supply of water is constrained 

by hydrologic conditions that are not affected by price. Figure 10A4 illustrates the 

relationship between price and quantity when hydrologic conditions constrain supply. 

This supply function also shows that an agency or other entity may establish a threshold 

price required to provide any supply. 
Likewise, the demand for water does not usually change in response to market 

forces. Because water utilities are natural monopolies (i.e., sole source suppliers) they 

have considerable power in setting prices. As a result, water supplies are typically 

government owned or subject to government regulation [Zarnikau, 1994], and utilities 

that manage these supplies are often non-profit or regulated-profit agencies. Thus, the 

price for water is often based on some measure of capital and operating costs and not on 

the cost of scarcity [Moncur, 1989; Rosa, 1991]. Because demand for water is growing 

almost universally, prices are often below market clearing prices. These low prices are 

popularly justified by the essential needs that water meets in human consumption, food 

production, and industry. However, without a market to allocate supplies, agencies must 

regulate who receives a portion of the limited supply (i.e., agencies must ration, even 

under "normal" water supply conditions). 
As long as the price is below the market clearing price for the available supply, 

the actual price serves only to divide water-use benefits between the utility and 

consumers. Under such conditions, an agency could establish a higher price as a form of 
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taxation without decreasing the benefit of water use. More likely, such taxation would 

improve the efficient allocation of water supplies as the actual price is brought closer to 

the market clearing price. Figure 10A4 illustrates the division of this benefit in terms of 

producer and consumer surpluses. We may interpret the threshold supply price as a 

"production" cost that we subtract from the producer surplus. In the short term, this may 

include the costs of operating storage, transportation and treatment facilities. Over the 

long term, this may also include the capital costs for these facilities. 

Nevertheless, a market relationship between price and demand exists even if the 

price is not allowed to change in response to market forces. As a result, we can use a 

simulated market price to estimate the benefit for each unit of water. The total benefit for 

consuming Q units is given by 

f 
rß 

Total benefit =  I    P(Q)dQ (9A1) 
/o 

where P is given by the demand function as the price that consumers are willing to pay 

for supply Q. To estimate the net benefit (i.e., consumer and producer surpluses), we 

subtract "production" costs associated with providing water. To neglect these costs, we 

consider the price raw-water (i.e., prior to treatment, delivery, and storage) to evaluate the 

benefits of water use and to develop a demand function. Without these costs, the cost to 

"produce" water is zero until we exhaust natural supplies. 

Even when prices are not allowed to change in response to market forces in the 

short term, the market equilibrium between demand and supply may influence prices in 

the long term. Over time, demands and water supply conditions change; and plans for 

system expansion or modification should be based on estimates of the costs incurred and 

benefits achieved. When the price of water is based on operating and capital costs, 

system expansion or modification may push the price higher. Given enough time, system 

expansion may increase the price until a market equilibrium is achieved. 

In the short term however, the market equilibrium between demand and supply 

may have little influence. For example, if an agency does not adjust prices in response to 

limited drought supplies, then the gap will increase between the actual price and the 

market clearing price, making efficient allocation of supplies even less likely. Moreover, 

if the market price is increasing due to long-term increases in demand or decreases in 

supply, then there may exist a persistent gap between the actual price and the market 

clearing price. 
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Figure 10A4. Producer Surplus and Consumer Surplus for Water Supply 

Price 

Quantity 

B. ASSUMPTIONS 

To measure the cost of rationing, we need to identify what benefit we derive from 

water use and what loss we incur from reductions in use. We can estimate the benefit of 

water using the market clearing price discussed above. Under non-market conditions, 

this is a conservative estimate: non-market mechanisms used to allocate supplies in times 

of shortage may not identify the best allocation for limited supplies. As a result, the 

benefit from use of these supplies will be less and the cost of rationing will be more 

[Mercer and Morgan, 1989]. 

However, water markets are not common and we generally cannot identify market 

clearing prices directly. Instead, we identify price as a "willingness to pay" [Dandy, 

1992] given the supply conditions. We can estimate this price using a reasonable demand 

function based on indirect observations and common sense. For example, our willingness 

to pay for water increases as water becomes scarce. Therefore, we should expect the 

price to increase monotonically as the severity of rationing increases. 

Because water is essential, we may not have much flexibility in reducing 

consumption during times of shortage, even with the incentive of higher prices. We say 

that demand for water is "inelastic" with changes in price because we find it difficult or 

expensive to adjust to shortages. Demand elasticity is the change in the quantity 

demanded as a result of changes in price. Note that we can define demand elasticity even 

if we do not use price to influence demand. 
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To simulate the behavior of market prices and estimate the willingness to pay, we 

can model demand using a reasonable mathematical function. In particular, we use the 

mathematical definition of demand elasticity. Demand elasticity is defined as the 

fractional change in demand with a small fractional change in price. Elasticities typically 

have negative values since demand usually decreases with increasing price [Schiene and 

Kemp, 1991]. Mathematically, we express the elasticity a as a function 

«=üm(^>=dJf (MD 
AP/P vriP 

A/>->0 

where Q is the quantity demanded and P is the price [Hanke, 1980]. For example, if the 

price of water changes 1%, then the change in demand for water is a%. The closer 

elasticity is to zero, the larger the change in price required to produce a change in demand 

(Figure 10B1). We say that demand is "inelastic" when -1 < a < 0. In other words, 

demand is inelastic when the resulting fractional decrease in demand is less than a 

fractional increase in price. 

Because we do not have market prices available to identify the benefit of water 

use and the cost of shortages, we estimate market prices from available data. This data 

includes estimates of demand elasticity and willingness to pay for water. Because this 

data does not cover the full range of water supply conditions, we extrapolate using 

simplifying assumptions. This section summarizes and justifies the use of these 

assumptions. Even though the resulting cost function is approximate, we can judge the 

appropriateness of extrapolated shortage costs since they are explicit. 

Figure 10B1. Elastic (a = -2), Isoelastic («= -1), and Inelastic (a= -0.5) Demand 
Functions 

, Price 
I OP* 

< (-► Quantity 
0.0 1.0 
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1. Constant Elasticity 

The most important assumption that we use is that elasticity is constant. A 

principal and practical reason for this assumption is that evaluating elasticities is difficult 

even for a single average value. Fortunately, water demand is consistently inelastic (even 

though it may vary in degree) so a reasonable value should produce reasonable results. 

Also, there is some evidence to suggest that, at least for urban demands, the long-term 

elasticity is roughly constant over a large range of prices [Martin and Thomas, 1986]. 

Moreover, constant elasticity produces a demand function that is consistent with a 

common-sense interpretation of water supply values (Figure 10B1). Using a constant 

inelastic value for a, the price of water decreases with an increasing supply and 

approaches zero as supplies become infinite (or, if we consider the impact of flooding, 

the price could become negative). Also, consistent with our inability to survive without 

some water, the price becomes infinite as supplies approach zero. Because water supplies 

are essential to the existence of life, an infinite price is appropriate. As a result, the 

assumption of constant elasticity produces a cost function that is more appropriate than 

the quadratic cost functions used by other authors [Bogle and O 'Sullivan, 1979; Foster 

andBeattie, 1979; Johnson et al, 1993; Kitanidis and Andricevic, 1989; Zarnikau, 1994]. 

A quadratic cost function implies that the price of water is finite, even as supplies 

approach zero. Note also that a quadratic cost function implies that demand varies 

linearly with price. 

In practical situations, supplies should never approach zero and produce infinite 

costs. Most water supply systems contain reservoirs, and these allow agencies to save 

water for later use when the value (i.e., willingness to pay) is higher. In these situations, 

the supply curve may have a positive slope for all prices (Figure 10B2). With the ability 

to store water, agencies should never allow complete emptying of all reservoirs if 

management is sufficiently cautious. Additionally, we can identify alternate supplies 

(e.g.. trucking in water in the short term; desalination in the longer term) that we use 

when supplies are scarce and prices sufficiently high. In these situations, the supply 

curve of Figure 10A4 is not uniformly vertical, but has a positive slope when prices are 

high (Pai, in Figure 10B3). 
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Figure 10B2. Impact of Storage on Market Equilibrium Scenarios 
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Figure 10B3. Impact of an Alternate Supply on Market Equilibrium Scenarios 
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2. Availability of Water Supplies 

The supply function that we use to describe the availability of water does not 

affect our estimate of a demand function or the cost of water rationing. Figure 10A4 

illustrates a potential fixed-quantify supply function that represents the amount of water 

available if there are no alternative supplies and there is no storage. In such situations, 

available supplies cannot change with price because they are controlled by hydrologic 

conditions. Comparing Figure 10A4 with Figures 10B2 and 10B3, we see different 

supply functions. Rationing has the same impact on a consumers' welfare whether it is 

the unavoidable result of shortage or the result of management decisions to hedge supply 

decisions. Though these different supply functions produce different outcomes of 
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equilibrium price and available quantity, the demand-function relationship between price 

and quantity does not change for consumers. 

Over the long-term however, the impact of water rationing may depend on the 

supply function. For example, a supply function associated with an ongoing condition of 

scarcity should encourage conservation by water users and agencies (e.g., planting yards 

with drought tolerant plants, installing low-flow toilets, regulating the type and amount of 

water use), and this would change the cost of water rationing in the short-term. 

3. Effect of Timing on Rationing Costs 

The cost of rationing depends on the amount of time that the agency and 

consumers have to adjust. The amount of time available depends both on our ability to 

forecast shortages and on how rationing is phased in. If very little time is available, we 

have little flexibility in changing our water use and we incur high costs. With sufficient 

time or with ongoing conditions of scarcity, we may change our patterns of consumption 

and/or change the water-supply system to improve its resiliency and reliability. In 

general, the more time available, the better we can plan for shortages. 

The availability of reservoirs makes a significant impact on the timing of 

shortages. Obviously, when we are able to store water for later use, we reduce the 

likelihood of shortages. In addition, we can hedge against the impact of severe shortages 

by initiating rationing earlier than required by available supplies. This can provide the 

agency and consumers with more time to adjust: low storage levels provide a strong 

warning of impending shortage and early rationing allows consumers to adjust water use 

more gradually. 
As a result, the timing of shortages significantly affects the elasticity of water 

demand. The more time available to adjust to shortages, the greater the elasticity of 

demand (i.e., a becomes more negative). In developing the rationing cost function, we 

neither make assumptions regarding the timing of shortages nor allow for the impact that 

timing has on changing elasticity. It is possible to incorporate this impact in the state- 

space model of a system by modeling the impact of prior rationing decisions on current 

rationing costs. However, given our difficulty in identifying a single average elasticity 

value, leaving this value as a constant may still be reasonable. 

4. Externalities 

Market prices should be used cautiously to measure for the value of water use. 

Where market prices exist for a commodity, the convenience of these prices sometimes 

194 



results in their use without regard to other impacts and values not reflected in the price. 

We call these impacts and values "externalities" because they exist outside the market. 

Potential externalities include indirect community benefits that are not reflected in 

the decisions of a consumer. For example, the price or reliability of water supplies may 

cause industrial users to change or move plant operations without including in their 

decisions the indirect impacts on jobs and taxes. In addition, prices do not have the same 

impact on all consumers. In such cases, reductions in water use may depend more on an 

ability to pay and less on the value of the use (although, actual prices seen by consumers 

are usually based on block rates that preserve a certain base level of service for a low 

cost). Given these non-ideal conditions, we may need to include other criteria to identify 

efficient prices and allocations. 

C. RATIONING COST FUNCTION 

Given the appropriateness of the assumptions discussed above, we can identify a 

demand function and a rationing cost function. To identify a demand function, we 

rearrange and integrate equation (9B1) to solve price as a function of demand (assuming 

constant elasticity a): 

jf-ja -idß 
Q 

ln(P) = aA ln(ß) + c{ 

-i 
P = c\ Qa 

c\ is the combined constant of integration for the indefinite integrals. Suppose "normal" 

supply in a period is ßo (perhaps established by system delivery capacity) and 

corresponds to an estimated market price of PQ. We can use these values to solve for the 

coefficient c\\ 

c\ = P0 QfX 

this gives us our general form of the demand function: 

P = PoiQ/Qda'1 (9C1) 

assuming a constant demand elasticity a and an estimated market equilibrium at point 

(PQ,Qo). This general demand function is similar to functions developed by other authors 

[Dandy, 1992; Mercer and Morgan, 1989]. 
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Now that we have a general demand function, we can identify a rationing cost 

function. Rationing cost is the lost benefit for each unit of water that is unavailable for 

consumption, either as a result of unavoidable shortages or as a result of decisions to 

hedge by saving water for later use. The total benefit of consuming Q units of water is 

given by equation (9A1) and is the area under the demand curve (Figure 10C1). 

However, using the price function given by equation (9C1), this value is infinite for 

-1 < a < 0 (i.e., whenever demand is inelastic). Since our goal is to estimate the cost of 

rationing rather than the total benefit of water use, we can evaluate this cost as the 

difference between the benefit of supplying water at level Q and the benefit of supplying 

water at the "normal" level QQ where Q < QQ. Thus, 

Cost of rationing = (benefit of go) - (benefit of Q) 

This establishes the rationing cost of a normal supply ßo as zero. Thus, we can evaluate 

the cost of rationing as: 

Cost of rationing = 
JrQo 

P(Q)dQ (9C2) 

Substituting equation (9C1) into equation (9C2) and integrating, we get the result 

presented by Dandy [1992]: 

Cost of rationing = -«- P0 [ Q0 - Q (Q IQ^la ) ,    a*-I (9C3a) 
l+a 

Cost of rationing = P0 Q0 In(ß) ,    a = -1 (9C3b) 

The price given by equation (9C1) is the marginal cost of supplying one additional unit of 

water given by the negative slope of the rationing cost function. In Figure 10C2 for 

example, the price P0 is the negative slope of the tangent line at Q = QQ. 

Figure 10C1. Graphical Estimation of the Total Benefit of Water Consumption 
iPrice 

► Quantity 
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Figure 10C2. Rationing Cost Versus Fraction of Normal Supply for a = -0.5 
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D. APPLICATION TO AN EXAMPLE SYSTEM 

We can apply the general cost function of equation (9C3a) to develop a 

reasonable estimate of rationing costs for real systems. Again, this equation assumes that 

demand elasticity is constant over the anticipated range of water supply conditions. To 

identify the cost function, we need an appropriate reference point for market equilibrium, 

and we need an appropriate estimate of demand elasticity. In this section, we will 

identify reasonable parameters using an example water-supply system. We conclude this 

chapter by applying the resulting cost function to the example system to assess the impact 

of water rationing. 

1. The Example Water supply System 

To illustrate the application and results of the rationing cost function, we consider 

a hypothetical water supply system that annually supplies 600,000 acre-feet of water 

(roughly the water supply required for a residential district of 3,000,000 people, or about 

1,200,000 families). Assuming a non-profit charter for this agency, the price of water to 

consumers primarily reflects a pro-rated share of the storage, transportation, and 

treatment costs. As a result, the agency finds it difficult to identify the market value of its 

water supplies and the impact of rationing decisions. The agency needs an estimate of 

these benefits and costs to minimize the impact of rationing and to better plan for system 

expansion. 
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This hypothetical system presents water supply conditions that are similar to 

expected conditions (within a few decades) for the East Bay Municipal Utilities District 

(EBMUD) of Oakland, California. Except for local runoff in its district, EBMUD 

currently obtains its entire supply from the Mokelumne River, located in the Sierra 

Nevada Mountains. EBMUD is the largest user and manages the two largest reservoirs 

on the River. Though the current demand by EBMUD is just over 200,000 acre-feet 

annually, the effective demand that the district must meet is greater. The River also 

provides water to meet growing demands by a variety of other users and for in-stream 

flow requirements. Because EBMUD's water rights are junior to those of most other 

users, it must manage the system to meet demands of all users to ensure that it can meet 

demands in its own district. 

2. Water Prices 

In normal years, wholesale water costs range from $44 per acre-foot in San 

Joaquin Valley to $237 per acre-foot in southern California [McClurg, 1992b]. During 

recent mild droughts in the early 1990s, California sold water from its Water Bank for 

$140-$175 per acre-foot [Howitt, 1994; McClurg, 1992a]. The more severe drought in 

1976 and 1977 prompted some California communities (including Santa Barbara, Goleta 

and Montecito) to build desalination plants for backup supplies that cost $1500 to $2000 

per acre-foot. At a level of 25% rationing, various authors anticipate rationing costs due 

to "welfare losses" to be between $40 and $180 per acre foot [Fisher et ai, 1995]. 

Water rates in the EBMUD district indicate that water has a high value for 

consumers. In recent years, the industrial water rate for EBMUD has been between $431 

and $1,307 per acre-foot scaled on prior usage [CUWA, 1991, pp. 5.6-7]. EBMUD's 

ongoing Water Supply Management Program has considered a variety of efforts to 

encourage conservation with costs from about $1000 to $12000 per acre-foot to increase 

system yield and reliability [EBMUB, 1992, volume I, p 9.8; Fisher et ai, 1995]. 

However, water rates indicate the value of water consumption, and these rates are net of 

raw water costs, storage, transportation, and treatment. It is likely that the net benefit 

(i.e., the consumer and producer surplus) is less, even if water rates are set below market 

prices. 

Water shortage impacts on industry can be especially severe: California Urban 

Water Agencies [1991] found significant production and employment reductions from 

water rationing. In some industries, the value of water can exceed $400,000 per acre- 

foot. Combined with low demand elasticity, rationing costs can be astoundingly high. 
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Though it is likely that these industrial uses have priority over other uses when rationing 

is required, exceptionally severe rationing can result in high costs. 

3. Demand Elasticity 

While it is recognized that water demand is inelastic with changes in price, the 

exact value of a is not precisely known and it can be influenced by a variety of 

confounding conditions [Foster and Beattie, 1979; Gallager and Robinson, 1977; 

Headley, 1963; Moncur, 1987; Schiene and Kemp, 1991]. For example, Martin [1991] 

uses abundant data from the city of Tucson, Arizona, to arrive at the conclusion that a is 

somewhere in the range of-0.70 to -0.26, depending on conditions such as weather and 

local wealth. 

Other studies have not gathered sufficient data to identify such a range of 

elasticity; however, they have still found that water demand is quite inelastic, particularly 

when water is scarce. Hahke [1980] estimated that elasticities are between -0.22 and 

-0.16 for Perth, Australia during the dry summer months. Other authors have found the 

demand for water to be inelastic with values typically between -0.7 and -0.2 [Billings and 

Agthe, 1980; Danielson, 1979; Mercer and Morgan, 1989; Moncur, 1987; Moncur, 

1989]. 

The available time for adjustment to shortage conditions can significantly 

influence demand elasticity, as discussed earlier. With increasing time, elasticity should 

increase (i.e., become more negative). Martin [1986] compared water demands in a 

variety of consistently wealthy urban areas and found that demand has a long-term 

elasticity of about a = -0.5. When these urban areas have less time to adjust to scarcity, 

demand is more inelastic [Cameron and Wright, 1990; Mercer and Morgan, 1989]. 

Moncur [1989] studied the drought response of the urban area of Honolulu, HI and 

observed a "short-run" elasticity of-0.265 and a "long-run" elasticity of-0.345. In 

addition, it appears that demands may become more inelastic over time [Young, 1973], 

possibly reflecting the impact of more intensive conservation efforts. 

4. Assessment of Rationing Costs 

Using a demand elasticity of a = -0.5 and a "normal" price (negative marginal 

cost) of $200 per acre-foot, we can obtain a specific rationing cost function from equation 

(9C3). Assuming at- -1, this cost of rationing is 

Cost of rationing = 200 ß0 [ (ß/ßo)'1 - 1 ] 
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Cost is in dollars and demand is in acre-feet. Note that the price of water (i.e., marginal 

cost) associated with each level of demand is the slope of the cost function given by 

equation (9C1). This price is 

P = 200(ß/ßo)-2 = -dg 
dß 

where C = Cost of rationing. Applying these functions to extreme levels of rationing, 

we observe that 50% rationing results in a price of $800 per acre-foot, and 90% rationing 

results in a price of $20,000 per acre-foot. Rationing cost (i.e., the lost benefit of water 

consumption) is $200ß0 at 50% rationing and $1800ß0 at 90% rationing. 

Water rationing costs calculated by assuming a = -0.5 appear conservative 

considering many authors1 estimates of short-term elasticity. Also, the prices of equation 

(9C1) and costs of equation (9C3a) appear low when compared to observed price and 

cost data. As noted earlier, the elasticity of a = -0.5 estimated by Martin [1986] was 

more appropriate for urban areas that had ample time to adjust to long-term conditions of 

water-scarcity. 

As a result, short-term elasticity should be even less negative. Using a demand 

elasticity a = -0.33, the cost of rationing is 

Cost of rationing = 100 ß0 [ (ß/ßo)"2 - 1] 

The corresponding function for the price of water is 

P = 200 (ß/ßo)"3 

In this case, 50% rationing results in a price of $1600 per acre-foot (close to the cost of 

desalination), and 90% rationing results in a price of $200,000 per acre-foot (about $0.60 

per gallon, close to the cost of bottled water). The rationing cost is now $300ß0 at 50% 

rationing and $9900 ß0 at 90% rationing. 

5. Application to the Example System 

To place these results in context, we can estimate the impact of shortage on the 

hypothetical water supply system. If we assume that families in the district have similar 

demands for water—in other words, they have similar uses for water, derive similar 

benefits, and have a similar ability to pay for this water or to adjust to shortages—then we 

can evaluate the impact of water shortages both on a single family (with representative 

water demands) and on the district (as an aggregate of all users). 

Assuming the system has a demand elasticity of a = -0.33, a normal price of $200 

per acre foot, and a normal demand of ß0 = 600,000 acre-feet, then 50% rationing results 
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in an annual cost (or lost benefit) of $180,000,000, and 90% rationing results in an annual 

cost of almost six billion dollars. Considering the severity of rationing, these costs may 

be reasonable, though it may be easier to evaluate if we consider the impact per family. 

We can distribute these costs to estimate the impact per family. A typical 

American family consumes around ßo = 0.5 acre-foot annually. Figure 10D1 displays 

the rationing cost using a = -0.33 and a PQ = $200 per acre-foot. We can see that 50% 

rationing results in an annual cost of $150, and 90% rationing results in an annual cost of 

$4950. In spite of the high prices, these rationing-cost estimates seem comparable to the 

damage we might expect from such extreme levels of rationing. 

In summary, to estimate the cost of water rationing one should consider the types 

of consumption and the time over which adjustments can be made. Urban consumption 

of water appears to be particularly inelastic with changes in price, resulting in high 

rationing costs. When urban areas have sufficient time to adjust to water conditions, an 

elasticity of a = -0.5 may be appropriate. In the short-term a = -0.33 appears 

reasonable, though there is evidence that water demand can be even less elastic under 

some conditions. 

Figure 10D1. Estimate of Rationing Cost for a Typical Family 

A Rationing Cost ($) 
1000 

Quantity 

Supply (acre-feet) 

201 



202 



CHAPTER 11 

OPTIMAL CONJUNCTIVE-USE 
OPERATIONS AND PLANS 

Heuristic or intuitive rules based on experience may not be efficient when applied 

to the management of water-supply systems that contain both surface and subsurface 

storage. In particular, rules that assign subsurface storage the role of a back-up supply to 

surface storage do not recognize the different capabilities of surface and subsurface 

storage. This is the case if we recharge groundwater only after filling surface reservoirs 

or if we pump groundwater only after exhausting surface supplies. We demonstrate how 

to incorporate the different capabilities of surface and subsurface storage in appropriately 

cautious real-time control of conjunctive-use systems and how to evaluate the benefit of 

adding groundwater supplies to an existing surface-water supply system. To illustrate 

this, we use the East Bay Municipal Utilities District of Oakland, California, as an 

example. 

A. INTRODUCTION 

Increasing demands on limited water resources are leading managers to consider 

innovative designs and control methods that can improve system reliability. Conjunctive 

use—the coordinated management of groundwater and surface water—is an affordable 

and environmentally sound method for enhancing the reliability of water supply systems 

[Fisher et al, 1995; Lettenmaier and Burges, 1979]. However, the potential for using the 

subsurface as a natural storage facility has not been fully recognized, and most large 

water supply systems continue to depend exclusively on surface water supplies. 

Managers of many systems view groundwater as providing only a back-up supply used 

only in times of shortage [Lettenmaier and Burges, 1979]. 

A barrier to conjunctive-use methods is that it is not clear how best to operate 

conjunctive-use systems. Surface and subsurface storage have operating costs and 

constraints that are fundamentally different. On one hand, surface storage can be filled 

and drained rapidly, while rates of recharge and pumping of groundwater are limited. On 

the other hand, aquifer storage capacity considerably exceeds available surface storage in 
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many watersheds [Buras, 1963]. In addition, pumping and recharge may be costly, while 

surface releases may generate hydropower benefits. 

Such differences suggest that control of reservoirs and aquifers should be quite 

different. For example, the potentially large subsurface storage capacity and the expense 

of pumping and recharge suggest that we store water in the subsurface as insurance 

against long-term water needs. In contrast, limited surface storage capacity and the low 

cost of active management suggest that we use surface water supplies to meet short-term 

needs during the next season or year. As Lettenmaier and Burges observe, "In contrast to 

the rather long-term failure modes encountered in excessive reliance on groundwater 

supplies, shorter scale (e.g., annual or seasonal) failures may result from exclusive use of 

surface supplies. The difference in time scales results because typical surface storage 

reservoir volumes are much smaller compared to abstractions than are groundwater 

supplies" [1979, p. 1]. 

The active use of aquifers for storage within a comprehensive water management 

program can yield significant benefits. By taking advantage of the distinctly different 

characteristics of surface and subsurface storage, we may significantly improve 

conjunctive-use operations and supply reliability. Also, we can identify levels of surface 

storage and pumping capacity that can be traded off effectively to achieve equivalent 

levels of reliability [Lettenmaier and Burges, 1979, p. 59]. 

This chapter will identify efficient real-time control policies for conjunctive use 

using simulation and optimization, or "systems analysis." Systems analysis allows us to 

identify control policies for new or modified systems for which we do not have sufficient 

operating experience to rely on heuristic control methods. In particular for conjunctive 

use systems, systems analysis allows us to identify control policies that efficiently ration 

water supplies and allocate stored water between surface and subsurface storage. 

Active management of groundwater can significantly improve the reliability of 

water supplies and can reduce expected costs, in spite of pumping and recharge costs. 

The results of systems analysis demonstrate that the severe impact of water shortages 

requires us to make active use of both surface and groundwater storage mechanisms. The 

severity of impacts grows rapidly with the degree of rationing, so we have an incentive to 

incur modest rationing and operating costs when these reduce the likelihood of more 

severe future rationing. In other words, efficient real-time control policies include 

management decisions that "hedge," sacrificing some current water-use benefits to ensure 

future benefits. 

In addition, this chapter will explicitly evaluate the benefit of adding surface and 

subsurface storage to an existing water supply system. By incorporating capacity 
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constraints as state variables in system models, we can evaluate the expected benefit of a 

wide range of expansion alternatives while simultaneously identifying the best operating 

policies. As a result, we can objectively balance the reliability and operating costs of 

various options with the capital costs of these options. 

B. PROBLEM DESCRIPTION 

To illustrate the identification of real-time control policies and capacity expansion 

benefits, we consider a system model similar to that discussed by Bur as [1963; 1972] and 

summarized by Yakowitz [1982]. It is based on the system of the East Bay Municipal 

Utilities District (EBMUD) of California that supplies water to communities along the 

eastern edge of the central and southern San Francisco Bay [EBMUB, 1992; Fisher et ai, 

1995]. 

1. The EBMUD System 

The EBMUD system serves the residential needs of approximately 1.2 million 

people, as well as the industrial, commercial, and institutional needs in the East Bay 

region of the San Francisco Bay area. About 95 percent of its water supply is from the 

Mokelumne River's 575-square mile watershed on the western slope of the Sierra Nevada 

Mountains. 

Streamflow supplies are seasonal and uncertain, and inflows to EBMUD's 

reservoir system average 720 thousand acre-feet (TAF) annually (1 TAF = 1.23 million 

cubic meters). Annual flow has varied between a low of 130 TAF and a high of 1,595 

TAF. Average monthly flow varies from a high of over 100 TAF in May to a low of 

about 30 TAF through the fall months. Typically, a year will have a month of high flow 

approaching 200 TAF and a month of low flow approaching 10 TAF. At times, the 

natural flow of the river has ceased. 

Future streamflows can be predicted with some accuracy using available 

information. The intra-annual streamflows on the Mokelumne River are seasonal and 

autocorrelated, with a monthly correlation coefficient of 0.8 to 0.9. In addition, much of 

the late spring and summer runoff is a result of melting snow pack, and measurements of 

snow pack are available throughout the winter. Therefore, consideration of the season, 

prior streamflows, and measurements of snow pack all contribute to streamflow 

prediction. 

EBMUD manages two reservoirs having a combined capacity of 641 thousand 

acre feet (TAF) on the Mokelumne River. Up to 200 TAF of this storage is reserved for 
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flood control (under agreements with the U. S. Army Corps of Engineers), and an 

additional 21 TAF is dead storage. Besides water supply and flood control functions, 

these reservoirs also have a combined hydropower generating capacity of 39 megawatts. 

An 82 mile aqueduct transports water to the service area for use or for storage in 

five terminal reservoirs. The aqueduct has a delivery capacity of 200 million gallons per 

day (mgd) by gravity flow or 325 mgd by pumping. This maximum delivery capacity 

coincides with EBMUD water-rights permits to divert up to 325 mgd (364 TAF per year) 

for use in its service district. The terminal reservoirs provide an additional 155 TAF of 

storage capacity (with 17 TAF of dead storage). 

2. Proposed Aquifer Storage 

Due to increasing needs for water in the district and in the Mokelumne River 

basin, EBMUD has been considering a number of options to prevent deterioration of its 

water supply reliability. These options include adding subsurface storage and increasing 

surface storage. 
Accessible subsurface storage appears substantial. The Mokelumne River and 

EBMUD Aqueduct run west from the Sierras across the Central Valley of California. 

This area is underlain by extensive fresh-water bearing formations of thick sand and 

gravel totaling a few hundred feet in the East and increasing to almost two thousand feet 

near the Delta. Well capacities are frequently 500 to 1500 gallons per minute (gpm), with 

specific capacities of 35 to 60 gpm per foot and transmissivities of 60,000 to 80,000 

gallons per day per foot [DWR, 1967].   Also, there is a great amount of available space 

for aquifer storage because significant development of groundwater for local agricultural 

and municipal needs has depressed the water table by an average 50 to 100 feet below 

pre-development levels [DWR, 1967; EBMUB, 1992]. 

3. System Model 

The conjunctive-use model that we analyze in this chapter is a simplified 

representation of the EBMUD system with an added aquifer-storage component (Figure 

11B1). This model is not intended for use in systems analysis to solve specific operating 

or planning problems for EBMUD, but to illustrate some of the general characteristics of 

optimal control and planning of a conjunctive-use system. The simple conjunctive-use 

model preserves essential components of a conjunctive-use system without including 

seasonality or complex system structures. While these may be important for systems 

analysis applied to the real system, they complicate our ability to observe and evaluate 

the general characteristics of optimal control and planning. In the next section and the 
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concluding remarks, we will summarize additional model components appropriate to 

solve specific operating or planning problems for EBMUD. 

Variables used to quantify the conjunctive-use model consist of control variables, 

u, state variables, x, and stochastic variables, s. Control variables include decisions to 

supply water to meet demands and to allocate water between surface and subsurface 

storage. State variables define the amount of water currently stored separately in surface 

and subsurface reservoirs. Stochastic variables define reservoir inflows. Table 11B1 

summarizes the variables of the simple conjunctive-use model and bounds on these 

variables. Units are in thousands of acre feet. 

The state of the system evolves under the influence of control decisions and 

reservoir inflows according to the linear transition equation 

X(H-D     = 
1   0 

L 0   1 
XW  + 

1   1-1-1 
L 0 -1   1   0 

u(0  + 
1 

10 
s(0 (11B1) 

This equation describes the change in surface and subsurface storage levels during any 
year-long stage /. The ending surface storage is the sum of beginning storage x\^t), 

inflow S\XD , and groundwater pumping «2.« > minus water supplied to users u\^,), 

groundwater recharge u-^xi), and release downstream u^t) • The ending subsurface 

storage is the sum of beginning storage *2,(0 and recharge minus pumping. In addition, 

the state of the system evolves subject to the bounds in Table 11B1 that constrain feasible 

decisions and attainable states. 

Figure 1 IB 1. The Simple Conjunctive-Use System 
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Table 11B1. Variables of the Simple Conjunctive-Use Model 

Variable Type Definition Min.* Max.* 

"l control supply to users (annual) 0 600 

"2 control groundwater pumping (annual) 0 100 

"3 control groundwater recharge (annual) 0 50 

"4 control release downstream (annual) 0 infinite 

*1 state surface reservoir storage 0 200 

*2 state subsurface reservoir storage 0 500 

Si stochastic inflow from streams 0 infinite 

* units in thousands of acre feet 

4. Demand. Streamflow. and Storage 

The effective demand that EBMUD must satisfy in managing its system is greater 

than the demand in its district summarized earlier. Because EBMUD's water rights are 

junior to those of most other users, it must manage its system to meet demands of all 

users to ensure that it can meet demands in its own district. Demands of these senior 

users are currently about 100 TAF annually, but these may significantly increase because 

of growth and new streamflow maintenance requirements [EBMUB, 1992]. Annual 

demands for Mokelumne water supplies are expected to increase to perhaps 600 TAF in 

twenty or thirty years. Thus, annual demands in the model are a constant 600 TAF. 

Streamflows in the model are lognormally distributed with a mean annual flow of 

700 TAF annually and a standard deviation of 350 TAF. For simplification, 

autocorrelation and snow-pack measurements are neglected as they have a minor impact 

on predicting streamflows a year in advance. 

The simple conjunctive-use model uses year-long stages, so we require annual 

updates of supply and allocation decisions. Though the actual real-time control of the 

EBMUD system requires more frequent updates of control decisions, our use of year-long 

stages allows us to illustrate more clearly the impact that differences in surface and 

subsurface storage have on real-time control and on evaluation of capacity expansion 

options. Because existing EBMUD system storage is used to regulate both annual and 

seasonal variability of Mokelumne River flows, an annual model greatly reduces the 

impact that streamflow variability has on water supply reliability. To ensure that water 

shortages have a reasonable impact on system operations, the model uses a reduced 

surface storage capacity of 200 TAF. In contrast, subsurface storage need not be reduced 
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since limited pumping and recharge capacities (and associated costs) means that 

subsurface storage has a smaller impact on seasonal variability. 

Subsurface storage capacity is 500 TAF. This is significantly greater than the 

surface storage capacity of 200 TAF but still less than the potential storage capacity of 

aquifers in the Central Valley. It is likely that EBMUD's access to subsurface storage 

would be constrained by legal and contractual arrangements and not by the physical 

capacity of the aquifers, so a simple bathtub model for groundwater may be sufficient. 

However, a more accurate representation of subsurface flow may be required under other 

conditions and for other systems. For example, EBMUD might use the smaller 

subsurface storage capacity in its own service district where it has greater access and 

control. In this case, local dewatering of the aquifers can make it impossible to fully 

access the available storage capacity. 

To realistically solve an actual operating or planning problem for the EBMUD 

system, it may be necessary to use month-long or week-long stages and to model each 

reservoir separately using actual capacities. However, shorter stages increase the total 

number of stages required to span the operating horizon of the problem, and added 

reservoirs and stochastic inputs increase the number of state variables. All these increase 

the computational effort required to solve a problem: effort grows linearly with the 

number of stages and exponentially with the number of state variables. Although, we can 

solve these more-complex problems using the systems analysis methods developed in this 

thesis, we will concentrate on the simpler model. 

5. Value Model 

In each stage, the cost of control decisions, u, is a sum of costs 

C(u) = shortage cost + pumping cost + recharge cost (11B2) 

Shortage cost is the loss from rationing that leaves unsatisfied some demands for water 

and is a function of the water supply decision u\. Pumping and recharge costs are 

operating costs that result from allocating stored water between surface and subsurface 

storage by a decision to pump «2 or recharge «3. 

SHORTAGE COST 

Identification of shortage costs can be difficult. As a result, few reservoir 

management studies attempt to estimate actual shortage costs in spite of the important 

impact that these costs have on hedging. For example, Fisher et al. [1995] compare the 

impact of various capacity expansion alternatives of the EBMUD system by evaluating 
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only the capital and operating costs of the various alternatives. However, the impact of 

shortages on operations and plans may not be correctly anticipated without a reasonable 

estimate of the shortage costs. 

In contrast, this study makes explicit use of a shortage-cost estimate to identify 

the benefits of water use and the cost of rationing. These costs are evaluated by a cost 

function that assumes that the "willingness to pay" for the use of water is a reasonable 

surrogate for the benefits of water supply [Dandy, 1992]. In addition, the cost function 

assumes that the elasticity of demand (i.e., its sensitivity to changes in price) for water is 

constant over a wide range of prices. 

We can identify a cost function given these assumptions and some additional data 

on the system. Using the results of Chapter Ten, we assume an elasticity of a = - 0.33 

and a price of $200 per acre-foot when we supply the full annual demand of uf1** = 600 

TAF. These values are reasonable given elasticities estimated by other authors [Billings 

andAgthe, 1980; Danielson, 1979; Martin and Thomas, 1986; Mercer and Morgan, 

1989; Moncur, 1987; Moncur, 1989] and recent California water prices [CUWA, 1991; 

EBMUB, 1992; Fisher et ah, 1995; Howitt, 1994; McClurg, 1992a; McClurg, 1992b]. 

Using these data in the general cost-function equation [Dandy, 1992], the total shortage 

cost in a year-long stage is 

shortage cost = $60,000,000 [ (WI/M,™*)"
2
 - 1 ] (11B4) 

Under "normal" conditions, there is no rationing and wi/uf13* = 1. Under water-shortage 

conditions, rationing may be required due to either hedging or unavoidable shortages and 

M,/w,max < 1 . 

PUMPING COST 

To provide an annual pumping capacity of 100 TAF, EBMUD could develop a 

field of perhaps 50 to 100 large capacity wells with total capacity of about 100,000 gpm. 

For pumping lifts of approximately 100 feet around the Mokelumne River and the 

aqueduct, the cost of electricity [Georgakakos and Vlatsa, 1991] is about $10 to $20 per 

acre-foot. These costs could increase as much as 50% when pumping at a maximum rate 

based on specific well capacities. In addition, we can expect additional costs for 

operation and maintenance for the well field. 

For this study, we assume a marginal cost for pumping of $40 per acre-foot that 

increases linearly to $80 per acre-foot when pumping at the maximum annual rate of w™3* 

= 100 TAF. At this maximum pumping rate, the average cost of pumping is $60 per acre- 

foot. 
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Using these costs, the total pumping cost in a year-long stage is 

pumping cost = $4,000,000 {u2lu^) [1+0.5 (M2/"2
max) 1 01B5) 

This cost should be sufficient to discourage unreasonable active pumping of groundwater 

and should allow us to identify water supply conditions that realistically justify pumping 

decisions. This does not include capital costs for installation and development of the well 

field. For example, Fisher et al. [1995] estimate costs of drilling and pump installation to 

be about $25,000 per well. 

RECHARGE COST 

The marginal cost of recharge is highly variable, depending on the methods used 

and the character of sites available for implementing a recharge program. Methods may 

include surface spreading, injection, and enhanced natural recharge (e.g., by structural 

and institutional arrangements that replace groundwater pumping with surface supplies 

during wet years). For example, the amount of land required and the maintenance of this 

land for recharge is highly variable, depending on soil type, infiltration rate, and 

subsurface geology. 

For this study, we assume a constant marginal cost for recharge of $40 per acre- 

foot. Depending on the recharge method used, this cost could represent the purchase, 

transportation, or treatment of water prior to recharge, or might represent the cost of 

recharge-facility maintenance. The total recharge cost in a year-long stage is 

recharge cost = $2,000,000 (M3/w3
max) (11B6) 

As with pumping cost, this cost should be sufficient to discourage unreasonable active 

recharge of groundwater and should allow us to identify water supply conditions that 

realistically justify recharge decisions. This does not include costs for land or other 

capital costs for installation of recharge facilities. These capital costs are also highly 

variable because of a diversity of recharge options and the cost of these options. For 

example, the cost of land is highly variable. Also, the cost of establishing and 

maintaining other structural and institutional arrangements can be significant due to 

government regulations and the diversity of interests that must be considered. 

C. EVALUATION OF OPERATIONS AND PLANS 

By using mathematical models that simulate the structure and dynamics of 

reservoir systems, we may simulate and evaluate proposed management options 
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conveniently. Also, by applying optimization methods, we may quickly and efficiently 

identify the best options for control and planning when a range of options exists. For the 

simple model, the best options are those that achieve the lowest expected cost of rationing 

and operations modeled above. 

The real-time control of a conjunctive-use system includes operating decisions 

that ration water supplies to users and that allocate stored water between reservoirs. For 

these controls to be efficient, we need to include information about the system that 

identifies its state. For the simple model presented above, this information consists of 

current surface and subsurface storage levels and the forecast of the current year's 

inflows. 

The planning of a conjunctive-use system includes analysis and implementation 

of changes in system configuration, inputs, or goals. To evaluate accurately the expected 

costs and benefits of these changes, we need to identify new control policies to operate 

the system. For the simple model presented above, we will identify control policies and 

expected costs for a range of pumping, recharge, and surface-storage capacities. 

As we observed in Chapter Nine, we desire control policies that consider the 

impact that current decisions have on future costs. This is important because current 

control decisions limit future management options. As a result, managers have an 

incentive to sacrifice some of the current performance (i.e., by incurring short-term costs) 

to improve future performance. By trading some short-term benefits for long-term 

benefits, managers hedge. For example, during a drought, a system manager may ration 

water supplies to reduce potential damages from more severe shortages in the future. 

Hedging is important when variable and uncertain inputs drive the state of a 

dynamic system and the marginal cost (per unit of deviation) from the target is a non- 

linear function of the deviation. For example, conjunctive-use systems are driven by 

inputs of water supply and demand that often are highly variable and uncertain, and the 

marginal cost of shortages can increase dramatically and non-linearly as a function of 

rationing severity. When inputs are uncertain, appropriate control decisions cannot be 

identified by a pre-determined control schedule because some information about future 

streamfiows and other stochastic inputs is not available. Instead, we make "real time" 

decisions that use information that is available when the decisions are made. Thus, the 

problem is how to optimize control policies rather than control schedules. 

Our goal is to identify control policies that minimize the combined expected costs 

of water rationing and system operations. Total costs accumulated over a multi-year time 

horizon are 
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V= Xcf,(l-r)' (11C1) 
*=i 

for an N year horizon using a discount rate r. 

To solve the control policies of the conjunctive use problem, we apply discrete 

dynamic programming using the second-order GDP method (Chapter Five). In each 

stage, we calculate expected costs as a probability weighted sum of outcomes using 

Gaussian quadrature (Chapter Seven). We use foresight of the current year's inflows to 

identify control decisions as this more closely represents real operations that are based on 

a sophisticated prediction of streamflow. Also, real operations are updated more 

frequently than permitted in the simple model. 

The following results are for the first stage of a hundred-year time horizon using a 

4% annual discount rate (r = 0.04). In effect, these results identify the infinite-horizon, 

steady-state solution that does not depend on boundary conditions at the end of the time 

horizon. Because system conditions (e.g., system constraints and hydrology) are static, 

we observe that control policies and the cost function converge to steady state values 

after a few decades. This convergence is promoted by the discount rate; however, as we 

will see later, the impact of a discount rate has only marginal impacts on control policies 

and capacity expansion benefits. 

D. RESULTS FOR REAL-TIME OPERATIONS 

The solution of the simple conjunctive-use problem provides a set of control 

policies for system operation. The solution also provides the expected total cost of water 

rationing, pumping, and recharge that results from application of these policies. Control 

policies are expressed as functions of the initial state (i.e., initial surface and subsurface 

storage levels) and the current year's inflows, and cost is expressed as a function of the 

initial state. 

Because we use foresight of current inflows to identify control decisions, the 

actual division between initial surface storage x\^tl) and current inflow s!,(,,) does not 

influence control decisions and the expected cost. We can define "available surface 

water" as the sum (x\ + ^i)(/,) to simplify illustration of the control-policy and cost- 

function solutions. Note that with this definition, available surface water has no 

maximum value and we will only illustrate results for available surface water less than 

1000 TAF. We also define "available groundwater" simply as subsurface storage X2,(/,) • 
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1. Supply Policy 

Figure 11D1 depicts the supply policy (i.e., release to users {/),(,,)) as a function 

of surface water and groundwater levels. Supply is in thousands of acre feet per year and 

levels are in thousands of acre feet. As surface-water and groundwater levels increase, 

we see that the supply increases until a plateau at the maximum of 600 TAF per year. 

Because annual pumping is limited to 100 TAF, rationing is required when 

surface water supply is low even if sufficient groundwater supply is available. The 

release to users must be less than the sum of available surface water and pumping. In 

Figure 11D1, this is indicated by vertical portions of the contours. When available 

groundwater is below 100 TAF, there is insufficient groundwater for maximum pumping. 

Figure 11D1 also indicates that we should ration even when sufficient surface 

water is available. At point A for example, there is sufficient water to meet all demands 

with 600 TAF available surface water. Instead, only about 530 TAF is the released to 

users and 70 TAF is stored to hedge against future shortages. Available water can be 

released to meet current demands or can be stored to meet future demands, and we should 

balance these two uses under certain conditions. 

In Figure 11D1, we can see that hedging exists when surface-water level is 

moderately low (approximately 400 to 730 TAF) and groundwater level is low. There is 

an incentive to ration under these conditions, even if supplies and pumping capacity are 

sufficient to meet all current demands. These decisions are examples of how we employ 

cautious management to balance the cost of current rationing with the potential cost of 

future, more severe rationing. 

Figure 11D1. Supply Policy: Release (TAF per Year) to Users as a Function of 
Available Water 
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2. Allocation Between Surface and Subsurface Storage 

Figure 11D2 depicts the pumping and recharge policies (£/2,(r,) and l^,,)) that 

transfer water from and to groundwater as a function of surface water and groundwater 

levels. In effect, these policies allocate stored water between surface and subsurface 

storage. As in Figure 11D1, pumping and recharge are in thousands of acre feet per year 

and levels are in thousands of acre feet. As the surface-water level decreases and the 

groundwater level increases, we see that pumping increases until a plateau at the 

maximum 100 TAF per year. In contrast, as the surface-water level increases and the 

groundwater level decreases, we see that recharge increases until a plateau at the 

maximum 50 TAF per year. 

Figure 11D2. Pumping and Recharge Policies: Transfers (TAF per Year) from and to 
Groundwater as a Function of Available Water 
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PUMPING POLICY 

Maximum pumping is required whenever available surface water is low and 

groundwater is available. This allows us to provide the maximum supply possible during 

extreme water-shortage conditions. In Figure 11D2, this is indicated by horizontal 

portions of the pumping contours. When the subsurface storage is below 100 TAF, 

pumping cannot exceed available groundwater. 

It might be thought that pumping should be determined solely by the need to meet 

current demands. However, Figure 11D2 indicates that we should not necessarily pump 

at the maximum rate needed to meet current demands when groundwater is low. Instead, 

we should reduce pumping when available surface water increases beyond 300 to 400 
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TAF and the groundwater level is low. These decisions coincide with supply decisions 

that hedge (Figure 11D1). This means that under conditions of moderate rationing to 

save water for future use, we should reduce or cease pumping to store some of this water 

in the subsurface. The appropriate level of pumping depends on the available 

groundwater in storage. 
Likewise, Figure 11D2 indicates that we should not necessarily cease pumping if 

not needed to meet current demands when the available groundwater level is high. 

Instead, we should continue pumping when available surface water increases beyond 600 

TAF and the groundwater level is high. For example, when there is 600 TAF available 

surface water and 500 TAF groundwater (point B in Figure 11D2), there is no rationing 

(see Figure 11D1) and there is sufficient available surface water to meet all demands. 

Instead of halting pumping under these conditions, pumping is continued at a moderate 

rate to transfer a greater portion of the remaining stored water to surface storage where it 

is more readily available. This means that it is desirable to shift some water from 

subsurface storage to surface storage when the groundwater level is high and surface- 

water level is low. Because the pumping rate is constrained, there is a risk of severe 

rationing if future inflows are extremely low and surface reservoirs are empty. 

RECHARGE POLICY 

Maximum recharge is required whenever available surface water is high and 

groundwater is low. This is especially true when the surface-water level exceeds 800 

TAF (the sum of maximum demand and surface storage); excess water above this level 

must be released "unused" downstream unless it is recharged. In Figure 11D2, this is 

indicated by the vertical portions of the recharge contours. When subsurface storage is 

above 450 TAF, recharge cannot exceed available subsurface storage. 

It might be thought that recharge should be determined solely by the availability 

of excess water. However, Figure 11D2 indicates that we should not necessarily recharge 

only after meeting current demands when groundwater is low. Instead, we should 

recharge when available surface water is below 800 TAF and the groundwater level is 

low. In particular, we should also recharge when available surface water is low enough 

that supply decisions hedge (Figure 11D1). This means that under conditions of 

moderate rationing to save water for future use, we should recharge to store some of this 

water in the subsurface. As with pumping, the appropriate level of recharge depends on 

the available groundwater in storage. For example, when there is 600 TAF available 

surface water and zero groundwater, we should ration to store 70 TAF for future use 

(point A, Figure 11D1). However, we also should recharge at the maximum rate (point 
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A, Figure 11D2). This means that we have a strong preference for storing water in the 

subsurface when groundwater level is low. If the surface reservoir fills in the following 

year, then we will lose the future benefit from current efforts to save water by rationing. 

ALLOCATION 

In effect, pumping and recharge decisions allocate stored water between surface 

and subsurface storage. In the absence of operating costs, pumping and recharge policies 

should seek allocations that give the best water supply reliability. These allocations 

should be based on the different capabilities and limitations of the storage mechanisms 

and the expected benefit of stored water: water stored in the surface may be "lost" if the 

reservoir subsequently fills; water stored in the subsurface may be inaccessible during 

severe shortages. 

In this simple conjunctive-use system, we never have an incentive to pump and 

recharge simultaneously. Indeed, water-supply conditions under which we should pump 

and recharge may be separated by a significant gap. In Figure 11D2, this is indicated by 

the unshaded gap between the pumping and recharge contours. 

Because of operating costs, we should pump and recharge to achieve a better 

allocation only when the benefit of an improved allocation exceeds the cost of achieving 

that allocation. The benefit of improved allocation is large when water levels are low, 

and we see that the gap between pumping and recharge is small. As water levels 

increase, the benefit of improved allocation decreases and the gap widens. 

When supplies are sufficiently large though, the gap again narrows as we recharge 

to store water that would otherwise be released downstream. The benefit of recharging 

this water is much greater than the benefit of recharging water that otherwise could be 

stored in the surface reservoir. 

3. Downstream-Release Policy 

Figure 11D3 depicts the downstream release policy U^i,) ■ As before, release is 

in thousands of acre feet per year and levels are in thousands of acre feet. Water is 

released downstream only when available surface water levels are high, and the bend in 

these contours above 450 TAF is because there is insufficient subsurface storage capacity 

for maximum recharge. 

The policy for downstream release is somewhat obvious since the control policy 

always saves as much water in surface and subsurface storage as possible. In the simple 

conjunctive-use model, rationing is frequently required because demands are such a large 

fraction of average streamflow. As a result, the expected cost of rationing always 
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outweighs the cost of recharge, and a downstream release occurs only when water levels 

exceed demands and opportunities for storage. 

Because the system objective includes only the goals of minimizing water 

rationing and operating costs, there is no benefit from releasing water downstream except 

when required by capacity constraints. However, if we were to add other goals such as 

flood control, release decisions would also show significant hedging to maintain available 

empty storage as a buffer against peak inflows. 

Figure 11D3. Release Policy: Release (TAF per Year) Downstream as a Function of 
Available Water 

500' 

Available 
Groundwater, 

*2(TAF)     H 

US 

0 
(zero release) 

T 

^100 

500 1000 
Avaiable Surface Water,x2 +s{ (TAF) 

4. Expected Cost of System Operations 

Figure 11D4 depicts the total discounted cost as a function of available surface 

water and groundwater levels. Cost is in millions of dollars and levels are in thousands of 

acre feet. As surface-water and groundwater levels decrease, we see that the total cost 

increases and becomes infinite as levels approach zero. Zero supply means that we have 

no water for any use, even for sustaining life. 

In reality, we should not expect to see the high costs that result from supplies 

approaching zero. It is extremely unlikely that we will operate with critically low 

supplies because (1) extremely low inflows are unlikely, (2) storage levels should rarely 

approach zero with cautious management, and (3) alternate supplies are often available 

when prices are sufficiently high (i.e., hauling water by trucks, desalination, and other 

supply methods become cost effective). 

Figure 11D4 shows that expected costs do not change when available surface 

water is greater than 850 TAF because we can neither use nor store supplies greater than 
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this amount. Such large surface supplies permit us to fully meet maximum demands of 

600 TAP while also permitting us to fill the surface reservoir (200 TAP) and recharge at 

the maximum annual rate (50 TAF). 

Figure 11D4. Expected Total Cost (Million $) as a Function of Available Water Using 
Foresight of Current Year's Inflows 
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5. Cost-To-Go 

Figure 11D4 plots the expected total cost of rationing and operations as a function 

of surface water and groundwater levels assuming that we know current inflow S(tl). We 

evaluate the cost as an expectation over all subsequent inflows {%,),...,%„) }■ In 

contrast, Figure 11D5 depicts the expected total cost F as a function of initial surface and 

subsurface storage levels *i and X2 assuming no foresight. We evaluate this cost as an 
expectation over all current and future inflows {s(h),...,S(,N) }. This function is known as 

the "cost-to-go" because it describes the expected cost to go from any initial state of the 

system. The cost-to-go function is useful in dynamic programming because it describes 

expected cost strictly as a function of the state. Thus, we can use the cost-to-go function 

to evaluate the impact that current control decisions have on future costs through the 

effect they have on the state of a system. 

We can evaluate an expected cost in Figure 11D4 that assumes foresight by using 

the cost-to-go function F,2(x) (which is the same as F,,(x) because of solution 

convergence using a discount rate). Using foresight of current stochastic inputs s, 

ftl(x,s) = minU(ri){ C„(u,s) + F,2(x) } (11D1) 

where /j,(x,s) is the cost function of Figure 11D4. In a recursive fashion, F,,(x) can be 

evaluated from /",,(x,s) as the probability weighted sum of current inflows, 
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Ftl(x) = X W(s)/ri(x,s) (11D2) 

where W(s) is the weight applied to input s. Compared to Figure 11D4, the costs of 

Figure 11D5 are less variable because of the "averaging" over possible values of current 
inflow S(tl). We can see that the results of Figure 11D5 are consistent with Figure 11D4. 

For example, the overall cost of about $250 million in Figure 11D5 is consistent with the 

costs in Figure 11D4 when available surface water is about 700 TAF. Surface water of 

about 700 TAF represent an "average" condition of streamflow and storage. 

Figure 11D5 shows that, using a discount rate of 4%, the total cost of future 

operations is roughly $250 million. The annual cost is 4% of the total cost, or roughly 

$10 million. These costs decrease as levels increase, but costs are still significant even 

when reservoirs are initially full. The time horizon is sufficiently long and the discount 

rate sufficiently low that we cannot avoid or discount the cost of future shortages. 

Figure 11D5 also shows that the decrease in costs with increasing levels is not 

constant. The decrease in costs is greatest when storage levels are low. Furthermore, the 

decrease in costs depends on the initial surface and subsurface storage levels. As we saw 

in the supply policy results, the change in cost with storage is significant enough to 

encourage a balancing of current benefits of water supply (to avoid current rationing) 

with expected future benefits of storing water (to reduce the impact of future shortages). 

As we saw in the allocation results, the change in cost with allocation between surface 

and subsurface storage is significant enough to encourage operations that move toward 

the best allocations. 

Figure 11D5. "Cost-To-Go": Expected Total Cost (Million $) from Future Inflows as a 
Function of Initial Storage Levels 

500 

Subsurface 
Storage, 
x2 (TAF) 

200 
Surface Storage, JC, (TAF) 
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E. RESULTS FOR CAPACITY EXPANSION 

We can extend the simple conjunctive-use model to evaluate the effect of 

changing system capacities. This is accomplished by converting the bounds on surface 

storage, pumping, and recharge from fixed values to variables. To allow these variable 

capacities, we add three additional state variables to the simple conjunctive-use model. 

These three state variables represent added pumping capacity X3, added recharge capacity 

X4, and increased surface storage capacity X5. We add these state variables to the 

transition function of equation (11B1), setting each identically equal to its value in the 

previous stage. Also, we ensure control policy solutions are valid for these capacities by 

adding constraints to bound pumping and recharge decisions and to bound the surface 

storage level (Table 11E1). 

Changing system capacities in this manner allows us to compare the benefits and 

trade-off of increasing surface storage and/or adding subsurface storage. The advantage 

of this approach is that we can evaluate the benefits of an infinite number of capacity 

expansion alternatives while simultaneously identifying the appropriate real-time control 

policies that should be applied. As a result, we need not rely on a trial-and-error 

approach to identify the best capacity expansion alternatives, each requiring a separate 

control-policy and expected-cost solution. 

It is difficult to view the entire solution of this planning problem because the cost 

function and control policy are functions of five state variables and of current inflows. 

Instead, we have identified a few representative comparisons of expansion alternatives to 

view the benefits and trade-off of increased capacities. We are interested in comparing 

the benefits of capacity expansion alternatives described by state variables X3, X4, and*5, 

so we evaluate these alternatives assuming surface storage and subsurface storage are 

nearly full initially (xii(/l) = 200 TAF and .r2,(/,) = 500 TAF). As we will see however, 

the application of a discount rate means that initial conditions influence the expected 

benefits, so we also evaluate the alternatives assuming reservoirs are empty initially 

(*!(,,) = X2,(r,) = 0). In addition, we evaluate the cost as an expectation over all current 

and future inflows using the cost-to-go function, so costs are not a function of current 

inflows. 
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Table 11E1. Variables for Capacity Expansion of the Simple Conjunctive-Use Model 

Variable Type Definition Min. Max. 

"l control supply to users (annual) 0 600 

u2 control groundwater pumping (annual) 0 *3 

"3 control groundwater recharge (annual) 0 X4 

"4 control release downstream (annual) 0 infinite 

*1 state surface reservoir storage 0 *5 

X2 state subsurface reservoir storage 0 500 

*3 state pumping capacity (annual) 0 100 

H state recharge capacity (annual) 0 50 

*5 state surface-reservoir capacity 200 300 

s\ stochastic inflow from streams 0 infinite 

* units in thousands of acre feet 

1. Benefits of Groundwater Development 

Figure 11E1 depicts the expected annual cost of rationing and system operations 

as a function of pumping and recharge capacities. Cost is in millions of dollars per year 

and capacities are in thousands of acre feet per year. As capacities increase, we see that 

the annual expected cost decreases from $16.5 million to $8.2 million. Using the 4% 

discount rate, the total expected cost for all future operations decreases from $412 million 

to $205 million (annual cost divided by 0.04). These results are for a surface storage 

capacity of 200 TAF. 

Besides identifying the benefit of groundwater development, we can use these 

results to identify the best level of development and the optimum trade-off between 

pumping and recharge capacities. The best mix of capacities depends on a balance 

between the benefits and costs of building and operating pumping and recharge facilities. 

For the conjunctive-use system, we should balance the benefit of lower rationing costs 

with the cost of system operations and capital. 

We can use the results of Figure 11 El to identify how to balance these benefits 

and costs. Figure 11E1 identifies the rationing and operating costs as a function of 

pumping and recharge capacities, but does not include the capital costs (e.g., cost of 

installing pumps, buying land, permitting, etc.). In real applications, capital costs are 

highly variable and site specific, so we simplify the illustration by assuming that marginal 

costs for expanding pumping and recharge facilities are equal and constant. In other 

words, each unit of additional capacity costs the same for both. Annualized capital costs 
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Figure 11E2. Expected Annual Cost (Million $) for Different Levels of Conjunctive 
Development with Initially Full Reservoirs 

300 

Surface 
Storage 

Capacity, 
x5 (TAF) 

Pumping Capacity, x3 (TAF annual) 

3. Impact of Initial Conditions on Results 

Because we apply a discount rate to the cost of future rationing and system 

operations, the impact of current costs is greater than the impact of future costs. As a 

result, expected costs are lower if initial conditions are favorable than if initial conditions 

are unfavorable. In our simple conjunctive use system, conditions are favorable if storage 

levels are high and are unfavorable if storage levels are low. 

Figure 11E3 depicts the expected annual cost as a function of pumping and 

recharge capacities assuming that reservoirs are empty initially (xi,(r,) = *2,(ri) =^)- ^s 

capacities increase, we see that the expected annual cost decreases from $19.0 million to 

$13.3 million. These costs are higher than in Figure 11E1 where we assume that 

reservoirs are nearly full initially. Also, the annual costs for full development of 

groundwater—$8.2 million in Figure 11E1 and $13.3 million in Figure 11E3—bracket 

the average annual cost-to-go in Figure 11D5 of $10 million. 
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If we again assume that marginal costs for expanding these capacities are equal 

and constant as in Figure 11 El, the shaded line in Figure 11E3 identifies the optimum 

trade-off of pumping and recharge capacities. In this case, we see that the best mix 

includes more recharge capacity, especially at lower levels of development. Without the 

ability to mine groundwater, pumping capacity is worthless without some ability to 

recharge. However, at high levels of groundwater development, initial storage levels 

become less significant and the best mix approaches that of Figure 11E1. 

Figure 11E4 depicts the expected annual cost as a function of pumping and 

surface storage capacities assuming that reservoirs are empty initially. As capacities 

increase, we see that the expected annual cost decreases from $19.0 million to $10.9 

million. Costs are higher than in Figure 11E2. Also, the benefit of added pumping 

capacity is less because we first must recharge so that we have water to pump. 

Figure 11E3. Expected Annual Cost (Million $) for Different Levels of Groundwater 
Development with Initially Empty Reservoirs 

Recharge 
Capacity, x4 

(TAF per year) 

Pumping Capacity, x3 (TAF annual) 
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Figure 11E4. Expected Annual Cost (Million $) for Different Levels of Conjunctive 
Development with Initially Empty Reservoirs 
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4. Impact of Discount Rate on Results 

For the results presented above, we have assumed a 4% annual discount rate on 

future costs. As a result, the impact of current costs is greater than the impact of future 

costs, and costs far in the future are diminished until they no longer matter. 

In spite of the impact that a discount rate has on balancing short-term and long- 

term costs, small changes in the discount rate do not appear to significantly affect control 

policies or expected costs. Figure 11E5 is a plot of the pumping and recharge policies 

using a zero discount rate. Compared with the results of Figure 11D4 using a 4% 

discount rate, we should pump less and recharge more. In addition, the supply policy 

(not shown) releases less water to users. Overall, the character of the solutions using 4% 

and 0% discount rates are the same, with marginal differences in the timing of rationing 

and reallocation. 

Figure 11E6 is a plot of the expected annual cost as a function of pumping and 

recharge capacities using a zero discount rate. This cost does not depend on the initial 
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conditions since, regardless of initial conditions, expected annual costs converge to the 

same values with a long enough time horizon and total costs increase linearly with time. 

For the conjunctive-use problem, we observe that policies change little after a few 

decades. In effect, Figure 11E6 represents the infinite-horizon, steady-state case. 

Using a smaller discount rate, we should ration more frequently and maintain 

higher storage levels. As a result, we expect to see annual costs that are somewhat 

higher. Also, we expect to see an increase in the benefit from expanding capacities since 

the somewhat larger benefit of storing water. However, we see that the expected annual 

cost using a zero discount rate (Figure 11E6) falls between the favorable and unfavorable 

costs expected annual cost using a 4% discount rate (Figures 11E2 and 11E4). This is 

because of the larger impact that initial storage conditions have on expected costs when 

using a non-zero discount rate. 

In addition, there is also a greater value in storing more of this water in the 

subsurface using a smaller discount rate. Limits on pumping and recharge (combined 

with larger subsurface storage capacity) mean that it is likely that groundwater will be 

used to meet long-term demands and surface water will be used to meet short-term 

demands. With a lower discount rate, the long-term benefits of groundwater increase its 

value relative to surface water. For maximum development of surface storage capacity, 

Figure 11E6 shows an annual decrease in cost of $4.8 million a year ($17.8 million minus 

$13.0 million). For maximum development of groundwater, the decrease is $8.0 million 

a year. This compares to annual decreases of $4.4 million and $8.3 million in Figure 

11E2 and of $4.4 million and $5.7 million in Figure 11E4. As expected, the benefit of 

expanding surface storage capacity is greater with a zero discount rate. The benefit of 

groundwater development is more difficult to compare because of the influence of initial 

storage levels; however, the benefit using a zero discount rate is close to the higher value 

of $8.3 million. 
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Figure 11E5. Pumping and Recharge (TAF per year) with a Zero Discount Rate 

500- 

Available    ~ 
Groundwater, 

x2 (TAF)     J 

100 
; ; (max pumping) 

1000 
Available Surface Water,x2 +s{ (TAF) 

Figure 11E6. Expected Annual Cost (Million $) for Different Levels of Conjunctive 
Development with Zero Discount Rate 
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F. CONCLUDING REMARKS ON THE CONJUNCTIVE 
MANAGEMENT OF SURFACE AND GROUNDWATER 

STORAGE 

For many systems, including those that conjunctively manage groundwater and 

surface water, it may be difficult to identify appropriate control policies and capacity- 

expansion alternatives without using systems analysis techniques to identify the best 

policies. Systems analysis is especially valuable when variable and uncertain inputs drive 

the state of a system. In particular, conjunctive-use systems are dynamic systems driven 

by inputs that often are highly variable and uncertain. 

We have developed optimal control policies for a simple conjunctive-use model 

by applying systems analysis. These policies identify decisions to supply water to users 

and to allocate stored water between a surface reservoir and an aquifer. Because of the 

year-long time step and treatment of groundwater as a "bathtub" with only one state 

variable, the model is too simple for practical application to the real system. However, 

modification of the simple conjunctive-use model for practical application to the real 

system is not difficult, and the number of state variables required is within the ability of 

new DDP methods. Also, the model captures important differences between surface and 

subsurface storage, and the results do give us some understanding of effective 

conjunctive-use management, particularly when the water resources of a system are 

almost fully utilized. 

Control policies that result from systems analysis of the simple conjunctive-use 

model require information on surface and subsurface storage levels and current inflows. 

Because of the impact of hedging, these control policies cannot be described by simple 

heuristic rules. Hedging is apparent in decisions that ration current supplies (to balance 

the current benefits of water use with future benefits) and that allocate supplies between 

surface and subsurface storage (to maximize water-supply reliability). 

We have demonstrated that efficient control of conjunctive-use systems requires 

decisions that cannot be identified by simple rules but, instead, requires detailed control 

policies that consider complete state information. When approaching full utilization of 

water resources in a system (as in the conjunctive-use model), these control policies make 

active use of pumping and recharge to meet demands and to allocate water between 

surface and subsurface storage, in spite of associated operating costs. Also, we observe 

that pumping and recharge should be managed in a manner that may conflict with 

heuristic or "common sense" control. In particular, we should reduce pumping and 

increase recharge when groundwater levels are low, even if insufficient surface water is 
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available to meet all demands and to fill surface reservoirs. Recharge may be appropriate 

even when rationing water supplies, if groundwater levels are sufficiently low. Though 

such cautious management is unexpected, we see that cautious management significantly 

improves system reliability by reducing the expected cost of rationing. However, even 

when the value of cautious management is recognized, the identification of system 

conditions that require hedging (i.e., rationing and cautious allocation decisions) can be 

difficult and contentious. Systems analysis allows us to identify these conditions using 

an objective approach that produces unambiguous results. 

In addition, we have demonstrated that water managers can use systems analysis 

to evaluate the best mix of facilities used to expand system capabilities. Changes in 

system configuration, inputs, or goals require identification of new control policies that 

are suited to the new conditions. We present a systems-analysis approach that allows use 

to evaluate these changes while simultaneously identifying the best control policies. We 

accomplish this by augmenting the state information with variables that identify 

pumping, recharge, and surface-storage capacity. This convenient approach allows us to 

identify the best mix of capacities. This is a significant improvement over a trial-and- 

error approach that requires use to iteratively modify system capacities and separately 

evaluate control policies and an expected benefit for the modifications. 

Though a simple case, the conjunctive use model has validated the application of 

systems analysis to the real-time control and capacity expansion planning. In particular, 

the application to the simple conjunctive-use model has permitted improved 

understanding of efficient conjunctive-use operations and plans. We have used the 

EBMUD system as a case study, though these results have been presented without case- 

specific complexities. Modifications to the model that would permit solution of specific 

problems for the EBMUD system include shorter stages and state variables for additional 

storage reservoirs and parameters to improve streamflow forecasts (to incorporate 

streamflow autocorrelation and correlation with snowpack measurements). Though these 

modifications will increase the computational effort required to solve the conjunctive-use 

problem, they are within the capabilities of the systems analysis methods employed. 

In summary, we have used systems analysis to develop real-time controls for a 

conjunctive-use system. These controls make use of differences between surface water 

and groundwater to improve water supply reliability. In addition, we have evaluated the 

benefit capacity expansion alternatives in a dynamic model with five state variables. 

Based on benefit and cost comparison of these results, we observe that adding subsurface 

storage to existing surface-reservoir systems can improve water-supply reliability for less 

than one-tenth the cost of increasing surface storage. 
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CHAPTER 12. 

CONCLUSIONS 

Discrete Dynamic Programming (DDP) is a general optimization method that can 

be used in systems analysis of complex non-linear stochastic control problems. 

Unfortunately, the application of DDP is limited by the "curse of dimensionality" that 

prevents its application to systems that must be described by many state variables. Using 

traditional methods, the application of DDP is restricted to system models that include 

two or three state variables. 

This thesis presents methods that allow DDP to be applied without excessive 

computational effort to stochastic control problems with as many as six to eight state 

variables. This is accomplished by Hermite-interpolation methods (Chapter Five) and 

Gaussian-quadrature methods (Chapter Seven) that are significantly more accurate than 

traditional methods. The high-order accuracy of these methods permits development of 

accurate control policies with coarse discretizations of the state variables and stochastic 

variables, reducing the effort to solve stochastic control problems by several orders of 

magnitude. 
The enhanced ability of DDP permits the solution of stochastic control problems 

that were previously beyond the ability of systems analysis. In the past, solutions could 

not be obtained without making assumptions that were correct only if certain conditions 

held. Frequently, these assumptions required that the condition of certainty equivalence 

held. At other times, it was assumed that solutions fit pre-determined functional forms. 

These various assumptions are unnecessary for DDP, and DDP produces the truly optimal 

solution so long as a system is appropriately modeled by a limited number of state 

variables. 
To demonstrate the ability of the new methods, this thesis applies DDP to several 

hypothetical problems. In the first set (Chapter Six), DDP is applied to problems with as 

many as seven state variables. These problems demonstrate the high-order accuracy of 

Hermite interpolation and the ability to use coarse state discretizations. In the second set 

(Chapter Eight), DDP is applied to problems with diverse stochastic models. These 

problems demonstrate the high-order accuracy of Gaussian quadrature and the ability to 

use coarse discretization of the probability distribution of input variables. In the third set 

(Chapter Nine), DDP is applied to reservoir problems with autocorrelated inflows and as 

233 



many as six state variables. These problems demonstrate that it is important that control 

policies incorporate an appropriate level of caution to reduce the potential high cost of 

extreme events. In the final set (Chapter Eleven), DDP is applied to a simple 

conjunctive-use problem. This problem demonstrates that effective management of 

groundwater and surface water systems requires complex policies that take advantage of 

the different characteristics of the surface and subsurface storage. 

This final problem also demonstrates our ability to use DDP as a planning tool to 

evaluate the benefit of capacity expansion alternatives. By adding state variables to 

represent variable capacity constraints, DDP is used to evaluate the expected benefits for 

a range of capacity expansion alternatives while simultaneously identifying and applying 

optimal control policies for each alternative. Thus, DDP can be used to select the best 

alternative by a rational balancing the capital costs and operating costs. This is but one 

among many applications of DDP that are now possible using a larger number of state 

variables. 

Building on the example of the conjunctive-use problem, we can anticipate a 

variety of other applications. Some of these applications that I hope to include in future 

work include: 

(1) Applications that result in practical use: The DDP methods of this thesis have 
practical value that can be demonstrated in application to real-world problems. 
This includes application of DDP to more detailed models of the EBMUD system 
or to other systems whose managers support a systems-analysis approach. 

(2) Measuring the value of forecast information in real-time control: For 
example, accurate measurements of precipitation can significantly improve 
predictions of drought and flood, but collection of these measurements comes at a 
significant cost. DDP can be used to identify cost-effective data collection 
strategies. 

(3) Balancing competing goals in multipurpose control: Reservoir management 
usually requires consideration of multiple and conflicting objectives. DDP can 
identify control policies that balance conflicting objectives if we are willing to 
explicitly state the values of these objectives (such as in Chapter Ten where we 
estimate the value of urban water supplies). Even when these values are 
approximate, DDP can develop better multipurpose control policies than heuristic 
methods. Also, this process can be reversed to identify values associated with 
preferred control policies and may be used to identify policies that use 
inappropriate values. 
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(4) Measuring the local costs of climate change: The scientific community is 
quickly coming to a consensus on the large-scale impacts of climate change, and 
global climate models may provide useful estimates on medium-scale hydrologic 
trends. DDP is a systems-analysis tool that can provide the necessary connection 
between these trends and their effect on local water-management. DDP is a 
useful tool in identifying operations and plans that best respond to changing 
hydrology, water needs, and management systems. 

(5) Aquifer management modeling: Hydrogeologie models describe spatially 
variable quantities that are not easily described by a few state variables. 
However, additional state variables permitted by the new DDP methods may 
permit the application of DDP to simple hydrogeologic models. This may be 
useful, for example, when using systems analysis to identify cautious 
management policies. 

In addition, it seems reasonable to extend the methods and application of the 

interpolation and quadrature methods of this thesis. These research opportunities may 

yield further improvement in DDP or may be used to improve other stochastic 

optimization methods. Some of these extensions include: 

(1) Discretization of cost-to-go functions using adaptive grids: Adaptive grids 
can apply fine state discretization only where needed. This can significantly 
reduce the number of state-space nodes, especially for problems with complex 
cost-to-go functions. Furthermore, adaptive grids can be used to automate the 
discretization process. 

(2) Application ofHermite interpolation and Gaussian quadrature to stochastic 
dual dynamic programming (SDDP): SDDP discretizes the state space without 
using a grid by locating discrete states where needed most. This can significantly 
reduce the number of discrete states required to approximate a cost-to-go 
function. However, interpolation of the cost-to-go by cutting planes does not 
produce high-order accuracy, and it may be useful to apply a high-order Hermite 
interpolation without interfering with the linear solver. Also, Gaussian quadrature 
may suggest a more efficient method of selecting scenarios. 

(3) Interpolation methods that preserve cost-to-go convexity: As of yet, no 
computationally efficient interpolation methods have been proposed that produce 
smooth function approximations while guaranteeing convexity. Using a finer grid 
to discretize the function domain tends to overcome problems with convexity, but 
this comes at a cost of substantially greater computational effort. 
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(4) Higher-order interpolation methods: A logical extension of the second-order 
Hermite method is to include other high-order derivatives of the cost-to-go. For 
example, the second-order method could be modified to include all second 
derivatives of the Hessian, and not just the off-diagonal elements. While this will 
increase the order of interpolating polynomials, the improved accuracy may offset 
the additional effort and potential for oscillation. In addition, other non- 
polynomial functions may be used for interpolation (e.g., complex exponential 
functions to represent periodic component). 

In summary, DDP can be applied to a range of new, more-complex applications. While 

DDP is but one method for the optimal control of stochastic and dynamic systems, it has 

unique abilities that make it the preferred optimization method for some applications. 

This thesis takes a few tentative steps towards these applications. 
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APPENDIX A. 

SUMMARY OF NOTATION 

This appendix provides a summary of notation and equations in common use in 

this thesis. 

1. NOTATION 

Authors have frequently developed notation adapted to suit their application of 

systems analysis. To the extent possible, notation in this thesis adheres to that used in 

existing optimal-control literature [Stengel, 1994] and that used by Foufoula-Georgiou 

and Kitanidis [1988], though I have also taken some liberty to avoid confusion. Tables 

A1-7 summarizes the notation presented in this thesis. 

Table AA1. Notation for System Model 

/ time or stage 

Ar stage length 

n number of state variables 

m number of random variables 

N number of stages 

u vector of decision variables 

x vector of« state variables 

y vector of state variables y<o = x(,+A/) 

s vector of stochastic variables 

w vector of m normally-distributed random variables 

B \, B ^ vectors of lower and upper bounds on decision variables 
T, vector of functions describing the transition of state X(,> to x(/+A/) 

S, vector of functions modeling stochastic inputs s (,) 

W, probability density function 

Q, covariance matrix of stochastic variables 
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Table AA2. Conventionally Defined and Non-Specific Parameters, Variables, and 
Functions 

ß             mean 

a             standard deviation 

a, b, c, h        arbitrary parameters 

f,g arbitrary function  

Table AA3. Notation for Value Model and Optimal Solution 

C, cost function for current stage 

FlN+l cost function for terminal state 

V, total-cost function 

E expected value operator 

u* vector of optimal control decisions 

U(f) vector of control policy functions 

U(*) vector of optimal control policy functions 

 F, cost function for expected cost-to-go from state x(/)  

Table AA4. Notation for Effort of Discrete Dynamic Programming 

J total computational effort for each stage 

Z total computational effort for each node 

Z/ computational effort for each evaluaton of the total-cost function 

Zs number of evaluations of the total-cost function in each search 

Zo computer processor speed (seconds per flop) 

Z\ number of searches for each node 

Zi number of searches to verify solution for each node and outcome 

x(,) discrete state (/) at node of the state-space grid 

A number of discrete values per state variable 

A" total number of state-space nodes (i.e., discrete states) 

w(*> discrete outcome (k) at node of the stochastic-space grid 

K number of discrete values per stochastic variable 

Km total number of stochastic-space nodes (i.e., discrete outcomes) 
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Table AA5. Notation for Interpolation of the Cost-To-Go Function 

xW discrete state at corner node (f) of current hypercube 

Fy function value at node x(tf 

Gy function gradient at node xW, Gy= dF/dxW = dF/dxM 

Hj, function Hessian at node x(# 

<py interpolation weight on Fy 

\\fy vector of interpolation weights on G y 

Xy matrix of interpolation weights onH? 

xiow ^ xhigh       discrete-state nodes at lowest/highest hyper-cube corners 

£ location of state x in the local coordinates of a hypercube 

T|(tf normalized distance of state x from node x(tf 

R,P,Q        arbitrary weighting functions 
a, ß, Cü, 6      shorthand notation for weighting function polynomials  

Table AA6. Notation for Numerical Integration of the Expected Cost-To-Go 

7. arbitrary stochastic variable 

PK polynomial of order K whose roots locate Gauss-quadrature abscissas 

vj weight applied to the /th root of px 

v,^ weight applied to the &'th outcome of the m random variables wj^ 

Table AA7. Notation for Rationing-Cost Function 

a            coefficient of demand elasticity (note: duplicate use) 

P             price of water (per acre foot) (note: duplicate use) 

Q            quantity of water (acre feet) (note: duplicate use) 

P*            price of water that equalizes supply and demand 

 Q* quantity of water supplied or demanded at P*  

2. EQUATIONS 

The following is a summary of the mathematical functions used for systems 

analysis in this thesis. The following functions use the notation of Tables A1-4. 

Equation numbers correspond to the presentation of these equations earlier in the thesis. 
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1. System Model 

Recursive definitions: 

y = x(,;+l), x=x(,;.),   us=u(,;) ,   w=w(/y), t = tj                   (2C1) 

Transition functions:                   y = T,(x,u,w) (2C2) 

Stochastic model:                       s =   S,(x,u,w) (2C3) 

Constraints: B^r)(x,w) < u < B^x.w) (2C4) 

2. Value Model 

tN 

Value function: Vu = £ C,(x,u,w)   + F,Nti(x) (2C7) 

3. General Solution 

Cost-to-go function:        F,,(x) = EW(/i)v->> W(rjv){ V\U{ll),..., U(,w) } (2C15) 

Control policy: u* = U(*}(x,w) (2C16) 

4. Dynamic Programming Solution 

Total cost function: V,. = C,/x,u,w) + FtjJy) (4A5) 

Cost-to-go function: F,/x) = Ew{ minu{ Vtj } } (4A6) 

5. Interpolation 

Multilinear: F(0(x) = £ t H^Fr) (4D1) 
y=yi 

rHermite: F(0(x) = X ( W> + [V/(x)]T-Gy} (4D3) 
r=yi 

2° Hermite: 

YJ" n n 

F(,)(x) = X ( W ^y + Z { Vy» GyJ + X ( XyjA*) HYj,k } } }      (5H1) 
y=yi y=i *=./' 
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APPENDIX B. 

COMPUTER CODE FOR DISCRETE 

DYNAMIC PROGRAMMING AND 
ENHANCEMENTS 

This appendix provides the code used to implement the discrete dynamic 

programming methods presented in this thesis. The following code is written in 

standard FORTRAN 90 with exception for the machine-dependent statements 

used to track computational time. The compiler did not have a complete 

implemention of the FORTRAN 90 standard, so the more restrictive FORTRAN 

77 standard is used by much of the code. 

1. SIMPLIFIED FLOW CHART 

Figure Al provides an overview of heirarchy of the DDP routines. The ovals 

indicate that routines are inside a loop, with the number of loops indicated to the top left. 

Not included are the user-supplied routines that define a systems-analysis problem. 

These routines feed routines used to model and solve the problem. 
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Figure ABI. Simplified Flow Chart for the DDP code 

CALLDP 

NSTAGES*NNODES 

2*NWNODES 

NCALLS 

{MODEIALL 
MODELSTG 
ADJ MDD 

COST PEN 

2. INCLUDE FILES FOR COMMON STORAGE OF DATA 

Include files are used throughout the code to ensure uniform specification of 

variables and to allow control over the allocation of storage. 

Include File I.SIZEALLO 

This include file identifies parameters used to allocate memory in common arrays. 

The parameters MAXNODES and MAXWNODES allocate memory to store nodes of the 

state-space and stochastic-space grids. The numbers of nodes can be large with fine 
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discretization and high dimension, and may exceed available memory of a computer. The 

maximum numbers of state variables MAXNX and stochastic variables MAXNW also 

significantly influence required memory. 

Parameters  to allocate  storage space: 
MAXNX = max #  state variables   (dimensions) 
maxidx       = max #  discrete values  in any one state variable 
maxnodes  = max # nodes  identifying discrete states  of cost  function 
MAXNW = max #  stochastic variables 
maxwnodes=  max  #  discrete  realizations  of   the  stochastic  variables 

INTEGER 

PARAMETER 
PARAMETER 
PARAMETER 
PARAMETER 
PARAMETER 

MAXNU,   MAXNX,  MAXIDX, 
MAXNW, MAXIDW,  MAXCON, 
MAXSEAS, MAXSTAGES, 
MAXWNODES, MAXNODES, MAXCORN 

( MAXNU   = 4,  MAXNX  = 4,  MAXIDX 
{ MAXNW   = 2,  MAXIDW = 9,  MAXCON 
( MAXSEAS  = 12,     MAXSTAGES= 50 ) 
( MAXNODES = 2000, MAXWNODES= 100 ) 
( MAXCORN  = 256 ) 

17 ) 
10 ) 

Include File I.SIZEPROB 

This include file identifies common variables that specify the actual size and other 

characteristics of a discrete dynamic programming problem. These values are used in 

many routines to allocate memory to variables. 

INTEGER 

DOUBLE PRECISION 
LOGICAL 
COMMON /SIZEPROB/ 

NU, NX, NNODES, NWNODES, NW, 
NSTAGES, NSEAS, 
NTNLN, NCNLN, 
NBASE2 
DISCOUNT, TIGHT, FTOL, UTOL 
GDP, NEWTON, STOCHASTIC 

NU, NX, NNODES, NWNODES, NW, 
NSTAGES, NSEAS, 
NTNLN, NCNLN, 
NBASE2, 
DISCOUNT, TIGHT, FTOL, UTOL, 
GDP, NEWTON, STOCHASTIC 

Include File I.XNODES 

This include file identifies common arrays that store the location for each state- 

space node in array XN. Array IABOVE and IBELOW are used as pointers to nodes that 

are immediately above and below. 

INTEGER 

DOUBLE PRECISION 

IABOVE(MAXNX,MAXNODES) 
IBELOW(MAXNX,MAXNODES) 
XN(MAXNX,MAXNODES) 
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COMMON /XNODES/     IABOVE, IBELOW, XN 

Include File I.SPECW 

This include file identifies common arrays that store the location of each 

stochastic-space node (i.e., each outcome) in array WN. Array PWN stores the weight of 

each outcome and array LIKELY is used to identify whether an outcome is sufficiently 

likely to be used in evaluating expected values. 

DOUBLE PRECISION      WN(MAXNW,MAXWNODES), PWN(MAXWNODES) 
LOGICAL LIKELY(MAXWNODES) 
COMMON /SPECW/        WN, PWN, LIKELY 

Include File I.FNODES 

For each state-space node, this include file identifies common arrays that store the 

cost-to-go (array FN) and first derivatives (array FXN). 

DOUBLE PRECISION      FN(MAXNODES), FXN(MAXNX,MAXNODES) 
COMMON /FNODES/     FN, FXN 

Include File I.CONTROL 

This include file identifies common arrays that store the linear constraints and 

bounds on control variables U and state variables X. Note that the code is not yet adapted 

to allow non-linear constraints. 

INTEGER NTLIN, NCLIN, NLCON 
DOUBLE PRECISION      UBL(MAXNU), UBU(MAXNU), 

+ UGUESS(MAXNU), USCALE(MAXNU), 
+ XBL(MAXNX), XBU(MAXNX), 
+ YBL(MAXNX), YBU(MAXNX), 
+ ACLBL(MAXCON), ACLBU(MAXCON), 
+ ACL(MAXCON,MAXNU+MAXNX+MAXNW) , 
+ ABL(MAXCON), ABU(MAXCON), 
+ AA(MAXCON,MAXNU+MAXNX+MAXNW) , 
+ XO(MAXNX), WO(MAXNW) 
COMMON /CONTROL/    NTLIN, NCLIN, NLCON, 

+ UBL, UBU, UGUESS, USCALE, 
+ XBL, XBU, YBL, YBU, 
+ ACLBL, ACLBU, ACL, 
+ ABL, ABU, AA, 
+ XO, WO 

!badj gives adjusted bounds on linear constraints with initial state 
! variables held constant.  Generally, badj bounds will be used, 
! except when gradients can be obtained directly from solver. 
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Include File I.SPECNOW 

This include file identifies common variables that store the current stage of a 

problem. 

INTEGER 
COMMON /SPECNOW/ 

ISTAGE, IYEAR, ISEASON, IFIRST, IYFIRST, ISW 
ISTAGE, IYEAR, ISEASON, IFIRST, IYFIRST, ISW 

Include File I.CUBE 

This include file identifies common arrays that store hypercube values. These 

common arrays are used in interpolation subroutines to avoid passing data. 

INTEGER 
DOUBLE PRECISION 

LOGICAL 
COMMON /CUBE/ 

LEVEL, IXSTART, IXID(MAXCORN) 
X(MAXNX), XLO(MAXNX), XHI(MAXNX), 
DXOUT(MAXNX), 
FC(MAXCORN), FXC(MAXNX,MAXCORN), 
FXXC (MAXNX, MAXNX, MAXCORN) 
XOUT 

LEVEL, IXSTART, IXID, X, XLO, XHI, 
XOUT, DXOUT, 
FC, FXC, FXXC 

Include File I.PERFORM 

This include file identifies common variables that store measures used to evaluate 

performance of the code. 

INTEGER 
DOUBLE PRECISION 

v 

LOGICAL 
COMMON /PERFORM/ 

LPRINT, N_INT, N_OBJ, N_OPT, N_SOL 
T_ID, T_VAL, T_WEIGH, T_INT, T_CALL, T_OBJ, 
T_OPT, T_SOL 
PP 

LPRINT, N_INT, N_OBJ, N_OPT, N_SOL, 
T_ID, T_VAL, T_WEIGH, T_INT, T_CALL, T_OBJ, 
T_OPT, T_SOL, 
PP 

3. INTERPOLATION SUBROUTINES 

Interpolated values of the cost-to-go function are evaluated in one of three 

subroutines that perform multilinear interpolation, first-order Hermite interpolation, or 

second-order Hermite interpolation. The subroutine rNT_FUNC selects interpolation 

subroutine INT_LIN, or iNT_HCl, or INT_HC2, as appropriate. These subroutines also 

call the subroutines CUBEJD and CUBEVAL2 to identify the the hypercube and node 

values used in interpolation. 
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Subroutine INT FUNC 

This subroutine selects the interpolation to be used. It is provided as a separate 

routine to allow convenient insertion of other interpolation routines. 

SUBROUTINE INT_FUNC ( LEVEL, X, 
+ F, FX ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Parameters for problem size. 
INTEGER LEVEL 
DOUBLE PRECISION X(NX) 

DOUBLE PRECISION      F, FX(NX) 

Specifies interpolation function used to approximate the cost function. 

On input, LEVEL identifies what derivatives are interpolated: 
0:  only f 
1:  f and fx 

On output, if LEVEL changed to zero, this is used as a flag to indicate 
that Gradient DP will not be used (for example, if linear 
interpolation is used to estimate the cost function). 

INTEGER HERMORD 

EXTERNAL INT_LIN, INT_HC1, INT_HC2 

Specify order of Hermite interpolation. 

HERMORD 

Call Interpolation routine. 

IF (GDP) THEN 
IF (HERMORD.EQ.1) THEN 
CALL INT_HC1 (LEVEL,X, F,FX) 

ELSEIF (HERM0RD.EQ.2) THEN 
CALL INT_HC2 (LEVEL,X, F,FX) 

ELSE 
WRITE (*,*) '(INT_FUNC) ERROR:  HERMORD =', HERMORD 
STOP 'INT_FUNC' 

END IF 
ELSE 
CALL INT_LIN (LEVEL,X, F,FX) 

END IF 

END 

246 



Subroutines INT HC2. INTHC1. and INT LIN 

This subroutine uses the second-order Hermite interpolation method to evaluate 

interpolated values and derivatives. These are evaluated as a weighted sum of the 

discrete values and derivatives at corner nodes of the surrounding hypercube. The nodes 

of the hypercube are identified by the subroutine CUBE_ID and the corner node values 

are identified by the subroutine CUBEVAL2. Common storage is used to avoid passing 

data between subroutines. The effort to evaluate interpolated values is divided into two 

parts: (1) evaluation of weights, and (2) application of the weights to the sum for each 

interpolant. 

The subroutine INT_HC1 is the same as INT_HC2 except that second derivatives 

are not used. Subroutine INTJHCl does not include portions of the code that evaluates 

and applies second-derivatives and weights. Subroutine INT_LIN is also structure 

similar to INT_HC2 except that derivatives are not used and the weighting functions are 

n-fold linear functions. 

SUBROUTINE INT_HC2  ( LEVELINT, XINT, 
+ F, FX ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Problem size parameters and tolerances. 
INTEGER LEVELINT 
DOUBLE PRECISION XINT(NX) 

DOUBLE PRECISION F, FX(NX) 

Determines interpolated function value and derivatives 
using a hermite interpolation that produces continuous 1st derivatives 

LEVEL identifies if derivatives are to be calculated: 
only f 
f and fx 
f, fx, and fxx ****not yet 

INCLUDE 'I.SIZEALLO' 
INCLUDE 'I.PERFORM' 
INCLUDE 'I.CUBE' 

[Parameters to allocate storage space. 
!Track performance of solver and output. 
!Holds corner node values for interp. 

Other local variables. 

INTEGER 

DOUBLE PRECISION 

LEVELO, J, Jl, J2, K, Kl, IBASE2(0:NX), 
I, INEW, IP 
TOL, DX(NX), DXINV(NX), XI(NX), 
ETAl(NX), ETA2(NX), 
EEl(NX), EE2(NX), 
Cl(NX), C2(NX), Dl(NX), D2(NX), 
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+ 
+ 
+ 
+ 
+ 
+ 
+ 

LOGICAL 
REAL 

El(NX),    E2(NX), 
Bl(NX),   B2(NX),   Q(NX), 
Al(NX),   A2(NX), 
PHKNBASE2),   PSI(NX,NBASE2) , 
CHI(NX,NX,NBASE2) , 
DPHI(NX,NBASE2),   DPSI(NX,NX,NBASE2), 
DCHI(NX,NX,NX,NBASE2) 
P 
SECNDS, TIMEO, TIME1 

EXTERNAL CUBE ID, CUBEVAL2 

N_INT = N_INT + 1 
TIMEO = SECNDS(0.0) 

Verify inputs. 

IF ( (LEVELINT.LT.0).OR.(LEVELINT.GT.1) ) THEN 
WRITE (*,*) '(INT_HC2) LEVEL INCORRECT,', LEVELINT 
STOP 

END IF 

Initialize values. 

TOL = 1.0E-14 
LEVEL = LEVELINT 
X(:NX) = XINT 
LEVEL0 = LEVEL 

IBASE2(0) = 1 
DO  J = 1,NX 

IBASE2(J) = IBASE2(J-1)*2 
END DO 

Identify hypercube. 

CALL CUBE_ID 
IF ( (XOUT).AND.(LEVEL.EQ.O) ) LEVEL = 1 

Get value at hypercube corner nodes. 

CALL CUBEVAL2 

Identify standardized x in the local coordinate 
system. 
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TIMEl = SECNDS(O.O) 

DX = XHI(:NX) - XLO(:NX) 
DXINV = 1.0/DX 
XI = (X(:NX) - XLO(:NX))*DXINV 

Define convenient variables. 

ETA1 = XI 
ETA2 = 1.0 - XI 
EE1 = ETA1*ETA1 
EE2 = ETA2*ETA2 
Al = (1.0 + ETA1 + ETA1)*EE2 
A2 = (1.0 + ETA2 + ETA2)*EE1 
Bl =  ETA1*EE2*DX 
B2 = -ETA2*EE1*DX 

IF (LEVEL.GT.O) THEN 
C2 = 6.0*ETA1*ETA2*DXINV 
Cl = - C2 
Dl = (ETA2 - ETA1 - ETA1)*ETA2 
D2 = (ETA1 - ETA2 - ETA2)*ETA1 

END IF 

Calculate weights for each node. 

Calculate weights recursively (1-D at a time) to 
reduce work by using values calculated in previous 
recursion.  Must calculated values for nodes added 
in a recursion before updating values for nodes 
already added. 

DPSI(1,1,2) = D2(l) 
DPHK1.2)   = C2(l) 

DPSI(1,1,1) = Dl(l) 
DPHI(1,1)   = Cl(l) 

PSI(1,2) = B2(l) 
PHI(2)   = A2(l) 

PSI(1,1) = Bid) 
PHI(l)   = Aid) 

DO  J = 2,NX 
Jl = J - 1 
J2 = J - 2 
IP = IBASE2(J1) 
DO  I = 1,IP 

INEW = I + IP 

IF (LEVEL.GE.l) THEN 

Derivative weights on second-derivative values. 
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DO  K = 2,J1 
Kl = K - 1 
DCHI(:J1,:K1,K,INEW) = DCHI(:Jl, :K1,K,I)*A2 (J) 
DCHK  J, :K1,K,INEW) = CHI ( : Kl, K, I) *C2 (J) 
DCHI(:J1,:K1,K,I) = DCHK : Jl, : Kl, K, I) *A1 (J) 
DCHK  J,:K1,K,I) = CHI ( : Kl, K, I) *C1 (J) 

END DO 
DCHI(:J1,:J1,J,INEW)   = DPSI(:Jl,:Jl,I)*B2{J) 
DCHK  J,:J1,J,INEW)   = PSI(:Jl,I)*D2(J) 
DCHI(:J1,:J1,J,I)   = DPSI(:Jl,:Jl,I)*Bl{J) 
DCHK  J, :J1,J,I)   = PSI(:J1,I)*D1(J) 

Derivative weights on first-derivative values. 

DPSI(:J1,:J1,INEW) = DPSK:Jl,:Jl,I)*A2(J) 
DPSK  J,:J1,INEW) = PSI(:J1,I)*C2(J) 
DPSI(:J1,  J,INEW) = DPHI(:J1,I)*B2(J) 
DPSK  J,  J,INEW) = PHI(I)*D2(J) 
DPSI(:J1,:J1,I) = DPSK:J1,:J1,I)*A1(J) 
DPSK  J,:J1,I) = PSI(:J1,I)*C1(J) 
DPSI(:J1,  J,I) = DPHI(:J1,I)*B1(J) 
DPSK  J,  J,I) = PHI(I)*D1(J) 

Derivative weights on function values. 

DPHI(:J1,INEW) = DPHI(:Jl,I)*A2(J) 
DPHK  J,INEW) = PHI(I)*C2(J) 
DPHI(:J1,I) = DPHK :J1,I)*A1(J) 
DPHK  J,I) = PHI(I)*C1(J) 

END IF 

Value weights on second-derivative values. 

DO  K = 2,J1 
Kl = K - 1 
CHI(:K1,K,INEW) = CHI(:Kl,K,I)*A2(J) 
CHI(:K1,K,I) = CHK : Kl, K, I) *A1( J) 

END DO 
CHI(:J1,J,INEW)   = PSK:J1,I)*B2(J) 
CHI(:J1,J,I)   = PSK :J1,I)*B1(J) 

Value weights on first-derivative values. 

PSI(:J1,INEW) = PSI(:J1,I)*A2(J) 
PSK  J,INEW) = PHI(I)*B2(J) 
PSI(:J1,I) = PSI(:J1,I)*A1(J) 
PSK  J,I) = PHI(I)*B1(J) 

Value weights on function values. 

PHI(INEW) = PHI(I)*A2(J) 
PHI(I) = PHI(I)*A1(J) 

END DO 
END DO 
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Calculate interpolated value. 

F = 0.0 
DO  1=1, IBASE2(NX) 

F = F + PHI(I)*FC(I) 
DO  J = 1,NX 

F = F + PSI(J,I)*FXC(J,I) 
DO  K = 1,J-1 

F = F + CHI(K,J,I) *FXXC(K, J.i) 
END DO 

END DO 
END DO 

Calculate interpol ated 1st derivatives. 

IF (LEVEL GE.l) THEN 

FX = 0.0 
DO  I = 1,IBASE2(NX) 

FX = FX + DPHI(:,I)* FC (I) 
DO  J = 1,NX 

FX = = FX + DPSI(:,J,I)*FXC(J,I) 
DO K = l.J-1 

FX = FX + DCHI(: ,K, J,D* FXXC(K,J,I) 
END DO 

END DO 
END DO 

ENDIF 

T_WEIGH = T_WEIGH + SECNDS( TIMED 

Calculate interpolated 2nd derivatives. 

IF (LEVEL .GE.2) THEN 

WRITE (*,* ')    ' (INT. _HC2) ROUTINE NOT ADAPTED' 
STOP 

ENDIF 

Adjust if x outside the domain. 

IF (XOUT) THEN 
DO  J = 1,NX 

F = F + FX(J)*DXOUT(J) 
END DO 

END IF 

X(:NX) = : K(:NX) + DXOUT(:NX) 
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DO  J = 1,NX 
IF (ABS(X(J)-XINT(J)).GT.TOL) THEN 
WRITE (*,*) '(INT_HC2) ERROR INX\ J, X(J), XINT(J) 
STOP '(INT_HC2)' 

END IF 
END DO 
LEVEL = LEVELO 

Verify outputs. 

T_INT = T_INT + SECNDS(TIMEO) 

END 

Subroutine CUBE ID 

This subroutine searches the state-space domain to identify the hypercube that 

contains the current state. The state-space domain is defined by the grid of nodes stored 

in common (in the include file I.XNODES). The corner nodes of the identified 

hypercube are stored in the common (in include file I.CUBE). If the current state is 

outside the bounds of the discretized state space, the distance away from the closest 

hypercube is identified for extrapolation of the cost-to-go and derivatives. 

SUBROUTINE CUBE_ID 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' [Problem size parameters 

Identifies corner nodes of hypercube bounding x. 
If x is outside domain, identifies nodes of closest hypercube and 
adjusts x to the closest location at the boundary of the domain. 
The original x is identified by flag xout distance dxout. 

INCLUDE 'I.SIZEALLO' 
INCLUDE 'I.XNODES' 
INCLUDE 'I.PERFORM' 
INCLUDE 'I.CUBE' 

(Parameters to allocate storage space. 
!State discretization. 
[Track performance of solver and output. 
[Holds corner node values for interpolat. 

INTEGER 

LOGICAL 

REAL 

Local variables to identify hypercube. 

IBASE2(0:NX), J, IX, IXLO, I, ID(NX) 
IC, IXB 
P 

Other local variables. 

SECNDS, TIMEO 
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Initialize values. 

TIMEO = SECNDS(O.O) 

IBASE2(0) = 1 
DO  J = 1,NX 

IBASE2(J) = IBASE2(J-1)*2 
END DO 

XOUT = .FALSE. 
DXOUT =0.0 

Identify low corner node ixlo of the hypercube that 
contains x or is closest to x. 

Let ixstart be set to previously identified cube; 
often this will be close to current cube low 
corner. 

IF ( (IXSTART.LE.O).OR.(IXSTART.GT.NNODES) ) IXSTART = 1 
IX = IXSTART 
IF ((IX.GT.NNODES).OR.(IX.LT.l)) IX = 1 

For a regular grid, ixlo is the highest node 
below x.  For an irregular (i.e., adaptive grid), 
this node is the highest node below x that is a 
low-corner node and whose associated high-corner 
node is above x. 

DO 1,NX 

Move up if current node below x. 

IF (XN(J,IX).LT.X(J)) THEN 
DO 

I = IABOVE(J,IX) 
IF (I.EQ.O) THEN 
XOUT = .TRUE. 
DXOUT(J) = X(J) - XN(J,IX) 
X(J) = XN(J,IX) 
IX = IBELOW(J,IX) 
IF (IX.EQ.O) THEN 
WRITE (*,*) '(CUBE_ID) POINTERS ABOVE AND BELOW =0', IX 
STOP 

END IF 
EXIT 

ELSE IF (I.EQ.-l) THEN 
write (*,*) '(cube_id) routine not adapted (1)' 
stop 

ELSE IF (XN(J,I).GE.X(J)) THEN 
EXIT 

ELSE 
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IX = I 
END IF 

END DO 

Move down if current node above x. 

ELSE IF (XN(J,IX).GT.X(J)) THEN 
DO 

I = IBELOW(J,IX) 
IF (I.EQ.O) THEN 
XOUT = .TRUE. 
DXOUT(J) = X(J) - XN(J,IX) 
X(J) = XN(J,IX) 
EXIT 

ELSE IF (I.EQ.-l) THEN 
write (*,*) '(cube_id) routine not adapted (2)' 
stop 

ELSE IF (XN(J,I).LE.X(J)) THEN 
IX = I 
EXIT 

ELSE 
IX = I 

END IF 
END DO 

Current node same as x. 

ELSE 
IF (IABOVE(J,IX).LE.O) THEN 

IX = IBELOW(J,IX) 
IF (IX.EQ.O) THEN 
WRITE (*,*) ' (CUBE_ID) POINTERS ABOVE AND BELOW =0', IX 
STOP 

END IF 
END IF 

END IF 

END DO 
IXLO = IX 
IXSTART = IX 

Identify corner nodes. 

Since node for lower corner is identified, nodes for 
all other corners can be identified by pointers 
from previously-identified nodes at lower corners. 

IXID(:NBASE2) = -1 
IXID(l) = IXLO 
ID = 0 
DO  IC = 2,IBASE2(NX) 

Identify current corner. 

DO  J = 1,NX 
ID(J) = ID(J) + 1 
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IF (ID(J).GT.l) THEN 
ID(J) = 0 

ELSE 
EXIT 

END IF 
END DO 

Identify associated node. 

DO J = 1,NX 
IF (ID(J).EQ.l) THEN 

IXB = IC - IBASE2(J-1) 
EXIT 

END IF 
END DO 
IX = IABOVE(J,IXID(IXB)) 

IXID(IC) = IX 

END DO 

Bound hypercube. 

XLO(:NX) = XN(:NX,IXID(1)) 
XHI(:NX) = XN(:NX,IXID(NBASE2)) 

Verify. 

T_ID = T_ID + SECNDS(TIMEO) 

END 

Subroutine CUBEVAL2 

This subroutine uses the corner nodes identified by CUBE_ID (include file 

I.CUBE) to get the cost-to-go and first derivatives used in interpolation (include file 

I.FNODES). Second derivatives are calculated by finite differences using the first 

derivatives and dimensions of the hypercube (include file I.XNODES) 

SUBROUTINE CUBEVAL2 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' !Problem size parameters 

Identifies corner-node values, first derivatives, and partial second 
derivatives of hypercube bounding x. 

INCLUDE 'I.SIZEALLO' 
INCLUDE 'I.XNODES' 

!Parameters to allocate storage space. 
!State discretization. 
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INCLUDE "I.FNODES' 
INCLUDE 'I.PERFORM' 
INCLUDE 'I.CUBE' 

!Future cost function. 
!Track performance of solver and output. 
!Holds corner node values for interpolat. 

local variables. 

INTEGER 
DOUBLE PRECISION 
LOGICAL 
REAL 

J, IC, ID(NX), IX, 1X1, 1X2, 1X3, NODE, N 
DX(NX), DELA, DELB, DENOM, Wl, W2, W3 
LININT, P 
SECNDS, TIMEO 

Initialize values. 

TIMEO = SECNDS(0.0) 

Bound hypercube. 

DX = XHI(:NX) - XLO(:NX) 

Identify corner node values. 

ID = 0 
ID(1) = -1 
DO  IC = 1,NBASE2 

IX = IXID(IC) 

Get value and gradient. 

FC(IC) = FN(IX) 
FXC(:NX,IC) = FXN(:NX,IX) 

Identify current corner. 

DO  J = 1,NX 
ID(J) = ID(J) + 1 
IF (ID(J).GT.l) THEN 

ID(J) = 0 
ELSE 

EXIT 
END IF 

END DO 

DO  J = 1,NX 

Identify intervals for calculating Hessian. 
Note:  could reduce effort by over half: 

(1) Hessian should be symmetric, 
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(2) Diagonal elements not needed. 

1X3 = IABOVE(J,IX) 
1X1 = IBELOW(J,IX) 
LININT = .FALSE. !If true, only 2 nodes 

! available in direction j. 
IF (ID(J).EQ.O) THEN 

IF (IX1.GT.0) THEN 
1X2 = IX 
NODE = 2 
DELA = XN(J,IX2) - XN{J,IX1) 
DELB = DX(J) 

ELSE 
1X1 = IX 
1X2 = 1X3 
1X3 = IABOVE(J,IX3) 
IF (IX3.GT.0) THEN 
NODE = 1 
DELA = DX(J) 
DELB = XN(J,IX3) - XN(J,IX2) 

ELSE 
LININT = .TRUE. 
1X3 = 1X2 

END IF 
END IF 

ELSE 
IF (IX3.GT.0) THEN 

1X2 = IX 
NODE = 2 
DELA = DX(J) 
DELB = XN(J,IX3) - XN(J,IX2) 

ELSE 
1X3 = IX 
1X2 = 1X1 
1X1 = IBELOW(J,IXl) 
IF (IX1.GT.0) THEN 
NODE = 3 
DELA = XN(J,IX2) - XN(J,IX1) 
DELB = DX(J) 

ELSE 
LININT = .TRUE. 
1X1 = 1X2 

END IF 
END IF 

END IF 

Calculate finite difference estimate of Hessian. 

N = NX 
IF (LININT) THEN 
DENOM = 1.0/DX(J) 
FXXC(:N,J,IC) = (FXN(:N,IX3) - FXN(:N,1X1))*DENOM 

ELSE 
DENOM = DELA*(DELA+DELB)*DELB 
DENOM = 1.0/DENOM 
SELECT CASE (NODE) 
CASE (1) 

Wl = - DELB*(2.0*DELA + DELB) 
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W3 = - DELA*DELA 
W2 = - (Wl + W3) 

CASE (2) 
Wl = - DELB*DELB 
W3 = DELA*DELA 
W2 = - (Wl + W3) 

CASE (3) 
Wl = DELB*DELB 
W3 = DELA*(DELA + 2.0*DELB) 
W2 = - (Wl + W3) 

END SELECT 
FXXC(:N,J,IC) = DENOM * 

+ ( W1*FXN(:N,IX1) + W2*FXN(:N,1X2) + W3*FXN(:N,1X3) ) 
END IF 

END DO 
! Average second derivates for best estimate 

DO J = 1,NX 
N = J-l 
FXXC(:N,J,IC) = 0.5*(FXXC(:N,J,IC) + FXXC(J,:N,IC)) 

END DO 
t^AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

END DO 

Verify. 

T_VAL = T_VAL + SECNDS(TIMEO) 

END 

4. OPTIMIZATION SUBROUTINES 

The following subroutines are used to identify the solvers used to search for 

optimal control decisions. In the current implementation of the DDP code, the quasi- 

Newton solver NPSOL [Gill et ai, 1986] is used with Hermite interpolation, and the 

solver AMOEBA [Press et ai, 1992] is used with multilinear interpolation. 

Subroutine OPT SOLV 

This routine calls the solver to find optimal control decisions and to verify the 

results. If first derivatives are needed but not provided by the solver (e.g., if using 

AMOEBA or if the accuracy of derivatives is in doubt), derivatives are estimated by a 

crude finite difference approximation. 

SUBROUTINE OPT_SOLVt ( LEVEL, 
+ U, F, FX, ERROR ) 
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IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' 
INTEGER 

!Parameters for problem size. 
LEVEL 

DOUBLE PRECISION 
LOGICAL 

U(NU), F, FX(NX) 
ERROR 

Specifies solver to find optimal controls and resulting cost f(x) 
and (if requested) gradient fx = df/dx. 

On input, if ERROR = true on input, diagnostic output is to be provided 
by solver. 
On output, if ERROR = true, there was a problem in solver. 
Solver is applied first to obtain optimum control decisions (with at 
least one restart), and then to obtain objective gradient w.r.t. 
state variables.  This approach avoids extra numerical calculation of 
gradients while searching for optimal control decisions. 

On input, LEVEL identifies what derivatives are to be calculated 
directly by solver (if it has the capability): 
0:  only u and f 
1:  u, f, and fx 

On output, LEVEL identifies what derivative were actually calculated. 
U on input is used as starting point for solver. 
If GOODGRAD true, gradients by newton solver as assumed good enough, 
even when there was a problem. 

INCLUDE 'I.SIZEALLO' 
INCLUDE 'I.CONTROL' 
INCLUDE 'I.PERFORM' 

[Parameters to allocate storage space. 
!Constraints on control. 
!Track performance of solver and output. 

Other local variables, 

INTEGER 

DOUBLE PRECISION 

LOGICAL 
REAL*4 

LEVELO, K, NI, MAXITER, 
NT_OPT, NT_OBJ, NCHECK 
DIFFMAX, USCALEO(NU), 
USTART(NU), FSTART, DIFF 
ERRORO, NEWTONO, DONE, SMALL, BADGRAD 
SECNDS, TIMEO 

EXTERNAL OPT FUNC 

Identify # restarts used to verify a good solution. 

MAXITER 20 

Verify inputs. 

IF ( (LEVEL.LT.O).OR.(LEVEL.GT.l) ) THEN 
WRITE (*,*) ' (OPT_SOLV) INCONSISTENT LEVEL 
STOP '(OPT_SOLV)' 

LEVEL 
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END IF 

Save initial settings, 

NT_OBJ = N_OBJ 
NT_OPT = N_OPT 
TIMEO = SECNDS(O.O) 

ERRORO = ERROR 
NEWTONO = NEWTON 
LEVELO = LEVEL 
USCALEO = USCALE(:NU) 

Get optimal control decisions. 

Call solver as required to get optimal solution. 
Solution will be confirmed by restart. 
If discrepency occurs, solver called as needed until 
solution converges or max iterations reached. 

Solution of u is used to initialize solver for 
subsequent calls. 

LEVEL = 0 
NI = 0 
USTART = U 
DO 

NI = NI + 1 

Call solver. 

ERROR = ERRORO 
IF (NI.GT.MAXITER-3) THEN 

PP = .TRUE. 
ERROR = .TRUE. 

END IF 
NCHECK = N_OBJ 

CALL OPT_FUNC (LEVEL, U,F,FX,ERROR) 

Specify desired solution accuracy. 

tolerance is lOx accuracy of npsol based on ftol. 

IF (NI.EQ.l) THEN 
IF (F.GT.1.0) THEN 
DIFFMAX = ABS (10.0*F*FTOL) 

ELSE 
DIFFMAX = 10.0*FTOL 

END IF 
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END IF 

If no problem with newton, solution not verified. 
If problem, polytope solver used instead. 

IF (NEWTON) THEN 
IF (.NOT.ERROR) THEN 

EXIT 
ELSE 
NEWTON = .FALSE. 

Though newton error, solution is propably close. 

USCALE = FTOL 
END IF 
END IF 

Assess convergence of solution. 

DONE = .TRUE. 
IF (NI.EQ.l) THEN 
DONE = .FALSE. 
SMALL = .FALSE. 

ELSE 
DIFF = ABS( FSTART - F ) 
IF (DIFF.GE.DIFFMAX) DONE = .FALSE. 

Check that number of objective calls indicate that 
initial polytope was not too small. 

NCHECK = N_OBJ - NCHECK 
IF (NCHECK.LE.NX+NX+2) THEN 

SMALL = .TRUE. 
DONE = .FALSE. 

ELSE 
SMALL = .FALSE. 

END IF 
END IF 

Do loop exit. 

! If half of maxiter exceeded for newton method, 
! remaining restarts use polytope solver. 

IF (DONE) THEN 
BADGRAD = .FALSE. 
DO  K = 1,NU 

DIFF = ABS( U(K) - USTART(K) ) 
IF (DIFF.GE.UTOL) THEN 
BADGRAD = .TRUE. 
WRITE (*,'(A53,E10.2,I6,20F8.2)') 

+ '(OPT_SOLV) WARNING:  U NOT STABLE FOR DIFF,K,X,W:', 
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+ 

DIFF,K,XO(:NX) ,WO(:NW) 
END IF 

END DO 
EXIT 

ELSE 
IF (NI.GE.MAXITER) THEN 
WRITE (*,'(A53,E10.2,6X,20F8.2)') 

'(OPT_SOLV) ERROR:  F NOT STABLE FOR DIFF,X,W: 
+        DIFF,X0{:NX),W0(:NW) 

EXIT 
END IF 

Adjust size of polytope for recursive soln. 
Using small polytope will help convergence; however, 
polytope must be sufficiently large to ensure 
that all points are not within ftol.  A small 
number of objective calls indicates that all points 
were within ftol. 

IF (SMALL) THEN 
USCALE = 100.0*USCALE 

ELSE 
DO  K = 1,NU 

IF (NI.EQ.l) THEN 
DIFF = USCALE(K) 

ELSE 
DIFF = ABS( U(K) - USTART(K) ) 

END IF 
USCALE(K) = MAX( DIFF,FTOL ) 

END DO 
END IF 

Initialize to new solution for next loop. 

USTART = U 
FSTART = F 

END IF 
| AAAAAAAAAAAAAAAAAAAAAAAAAA/1 

END DO 

NEWTON = NEWTONO 
USCALE(:NU) = USCALEO 

VAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

Get derivatives. 

Gradients by newton solver if requested. 

IF ( (LEVEL0.EQ.1).AND.NEWTON ) THEN 
LEVEL = 1 
ERROR = ERRORO 
USTART = U 
FSTART = F 
CALL OPT_FUNC (LEVEL, U,F,FX,ERROR) 

Verify that control solution is stable. 
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DO  K = 1,NU 
DIFF = ABS( U(K) - USTART(K) ) 
IF (DIFF.GE.UTOL) THEN 
BADGRAD = .TRUE. 
WRITE (*,"(A91,E10.2,I6,20F8.2)") 

'(OPT_SOLV) WARNING:  U CHANGED WHEN *// 
'USING SOLVER TO CALCULATE GRADIENTS FOR DIFF,K,X,W:', 
DIFF,K,XO(:NX),W0(:NW) 

END IF 
END DO 

DIFF = ABS( F - FSTART ) 
IF (DIFF.GE.DIFFMAX) THEN 
BADGRAD = .TRUE. 
WRITE (*,'(A91,E10.2,6X,20F8.2)') 

'(OPT_SOLV) WARNING:  F CHANGED WHEN '// 
•USING SOLVER TO CALCULATE GRADIENTS FOR DIFF,X,W: 
DIFF,X0(:NX),W0(:NW) 

END IF 

IF (ERROR.AND.BADGRAD) THEN 
LEVEL = 0 
U = USTART 
F = FSTART 

END IF 
ELSE 

LEVEL = 0 
END IF 

Verify outputs. 

END 

NT_OBJ = N_OBJ - NT_OBJ 
NT_OPT = N_OPT - NT_OPT 
N_SOL = N_SOL + 1 
T_SOL = T_SOL + SECNDS(TIMEO) 

Subroutine OPT FUNC 

This routine identifies the actual solver used to identify optimal control decisions. 

SUBROUTINE OPT_FUNC ( LEVEL, 
+ U, F, FX, ERROR ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Parameters for problem size. 
INTEGER LEVEL 

DOUBLE PRECISION 
LOGICAL 

U(NU), F, FX(NX) 
ERROR 

Specifies solver to find optimal controls and resulting cost f(x) 
and (if requested) gradient fx = df/dx. 
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On input, if ERROR = true on input, diagnostic output is to be provided 
by solver. 

On output, if ERROR = true, there was a problem in solver. 
On input, LEVEL identifies what derivatives are to be calculated 
directly by solver (if it has the capability): 
0:  only u and f 
1:  u, f, and fx 

On output, LEVEL identifies what derivative were actually calculated. 
U on input is used as starting point for solver.  This should not 
be changed in this routine since it is already set by the calling 
routines. 

EXTERNAL OPT_NPSL, OPT_POLY 

i   

! Verify inputs. 
i 

IF ( (LEVEL.LT.O).OR.(LEVEL.GT.l) ) THEN 
WRITE (*,*) '(OPT_SOLV) INCONSISTENT LEVEL = ', LEVEL 
STOP '(OPT_FUNC)' 

END IF 

Call solver. 

IF (NEWTON) THEN 
CALL OPT_NPSL (LEVEL, U,F,FX,ERROR) 

ELSE 
LEVEL = 0 
CALL OPT_POLY (U,F,ERROR) 

END IF 

END 

Subroutine OPT NPSL 

This routine sets up the data for input into the solver NPSOL. 

SUBROUTINE OPT_NPSL ( LEVEL, 
+ U, F, FX, ERROR ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Problem size parameters and tolerances. 
INTEGER LEVEL 

DOUBLE PRECISION      U(NU), F, FX(NX) 
LOGICAL ERROR 

Solves function value f(x) and, if requested, gradient fx = df/dx for 
node x using NPSOL. 
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On input, LEVEL identifies what derivatives are to be calculated: 
0:  only u and f 
1:  u, f, and fx 

U on input is used as starting point for solver. 
On input, if ERROR = true, printout is provided. 
On output, if ERROR = true, there is a possible problem with 
derivatives and calling routine (solv_opt) will solve gradients by- 
finite differences. 

If LEVEL=0, state variables are treated as constants to avoid extra 
numerical calculation of these gradients while searching for 
optimal control decisions. 

INCLUDE 'I.SIZEALLO' 
INCLUDE •I.CONTROL' 
INCLUDE 'I.SPECNOW 
INCLUDE 'I.PERFORM' 

!Parameters to allocate storage space. 
!Constraints on control. 
!Current stage id. 
!Track performance of solver and output. 

Arrays for transX. 

DOUBLE PRECISION X(NX), W(NW), S(NW), Y(NX), 
YU(NX,NU), YX(NX,NX), YW(NX,NW) 

Arrays for npsol. 

INTEGER 

DOUBLE PRECISION 

ALLOCATABLE 

N, NROWA, NROWJ, NROWR, 
INFORM, ITER, ISTATE, 
IWORK, LIWORK, LWORK 
OBJF, A, BL, BU, C, CJAC, CLAMDA, 
OBJGRAD, R, V, WORK 

ISTATEt:), IWORK(:), A(:,:), BL(:), BU(:), 
C(:), CJAC(:,:),CLAMDA(:), 
OBJGRAD(:), R(:,:), V(:), WORK(:) 

Other local variables. 

INTEGER 
DOUBLE PRECISION 
LOGICAL 
REAL*4 

LEVELO, NN, NB, J, NT_OBJ, I, IC, NLCONO 
ADJ(NLCON) 
ERRORO, TRIVIAL 
SECNDS, TIMEO 

EXTERNAL NPSOL, CONFUN, OBJFUN 

i  

i   

! Determine array-size parameters needed by npsol. 
! These will be used in objfun.f. 
i   

NN = NU + NX 
NTLIN = NX - NTNLN 
NLCON = NTLIN + NCLIN 

NROWA  = MAX (NLCON,!) 
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NROWJ  = MAX (NCNLN,1) 
NROWR  = NN 
N = NN 
LWORK  = 2*N**2 + N*NLCON + 2*N*NCNLN + 20*N + ll*NLCON + 21*NCNLN 
LIWORK = 3*N + NLCON + 2*NCNLN 
NB     = N + NLCON + NCNLN 

ALLOCATE ( ISTATE(NB), IWORK(LIWORK), A(NROWA,NN), BL(NB), BU(NB), 
+ C(NROWJ), CJAC(NROWJ,NN),CLAMDA(NB), 
+ OBJGRAD(NN), R(NROWR,NN), V(NN), WORK(LWORK) ) 

Initialize variables. 

NT_OBJ = N_OBJ 
TIMEO = SECNDS(O.O) 

LEVELO = LEVEL 
ERRORO = ERROR 
NLCONO = NLCON 

Identify linear constraints. 

! Add state bounds to linear constraints where 
! transition function is linear. 

LEVEL = 1 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

+ ISTAGE,IYEAR,ISEASON,U,X,W, 
+ S,Y,YU,YX,YW) 
LEVEL = LEVELO 

AA = 0.0 
ABL =0.0 
ABU =0.0 

ABL(:NTLIN) =YBL(:NTLIN) 
ABU(:NTLIN) = YBU(:NTLIN) 
AA(:NTLIN,        :NU)       =YU(:NTLIN, 
AA(:NTLIN,NU+1   :NU+NX)    =YX(:NTLIN, 
AA(:NTLIN,NU+NX+1:NU+NX+NW) =YW(:NTLIN, 

Add specified linear constraints. 

ABL(NTLIN+1:NLCON) = ACLBL(:NCLIN) 
ABU(NTLIN+1:NLCON) = ACLBU(:NCLIN) 
AA(NTLIN+1:NLCON,:NU+NX+NW) = ACL(:NCLIN,:NU+NX+NW) 

Identify constraints and initial solution. 

Identify decison bounds. 

BL = 0.0 
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BU = 0.0 
BL(:NU) = UBL(:NU) 
BU(:NU) = UBU(:NU) 
V(:NU) = U(:NU) 

IF {LEVEL.EQ.O) THEN 
N = NU 

ELSE 
N = NU + NX 
BL(NU+1:N) = X0(:NX) 
BU(NU+1:N) = X0(:NX) 
V(NU+1:N) = X0(:NX) 

END IF 

Get constraint bound adjustments. 

ADJ = 0.0 
DO J = 1,NW 
ADJ = ADJ + AA(:NLCON,NU+NX+J)*W0(J) 

END DO 

IF (LEVEL.EQ.O) THEN 
DO  J = 1,NX 
ADJ = ADJ + AA(:NLCON,NU+J)*X0(J) 

END DO 
END IF 

Identify non-trivial constraints. 

1 = 0 
A = 0.0 
DO  IC = 1,NLCON 

TRIVIAL = .TRUE. 
DO  J = 1,N 

IF (AA(ICJ) .NE.0.0) TRIVIAL 
END DO 
IF (.NOT.TRIVIAL) THEN 

'1 = 1 + 1 
BL(N+I) = ABL(IC) - ADJ(IC) 
BU(N+I) = ABU(IC) - ADJ(IC) 
A(I,:N) = AA(IC,:N) 

END IF 
END DO 
NLCON = I 

.FALSE. 

Call npsol. 

IWORK = 0 
WORK =0.0 
CALL NPSOL ( N, NLCON, NCNLN, NROWA, NROWJ, -NROWR, 

+ A, BL, BU, 
+ CONFUN, OBJFUN, 
+ . INFORM, ITER, ISTATE, 
+ C, CJAC, CLAMDA, OBJF, OBJGRAD, R, V, 
+ IWORK, LIWORK, WORK, LWORK ) 
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if (p) then 
write {i 

write(*, 
write(*, 
write(*, 
write (*, 
end if 

') (opt_npsl) npsol output' 
(al6,20il4)') 
(al6,20el4.8) 
(al6,20el4.8) 
(al6,i!4)') 

'istate: 
)'objgrad: 
)'clamda: 
'inform: 

istate(:n+nlcon) 
objgrad(:n) 
clamda(:n+nlcon) 
inform 

Save values. 

U = V(:NU) 
F = OBJF 
IF (LEVEL.NE.O) THEN 

FX = CLAMDA(NU+1:NN) 
END IF 

Determine if gradients can be used. 
Normally, inform should be 0, but because of "kinks' 
in the future cost function, poor convergence may 
result.  If the effect is minor, inform will be 1; 
if major, inform will be 6 or 7 
and the resulting gradients are not correct enough. 

Experience shows that at least 2 restarts are 
required when inform=6. 

Even if inform is 1, gradients may not be correct 
enough, but, because of extra work involved, 
minos gradients considered to be good enough 
unless a problem is identified in calling routine. 

IF ((INFORM.EQ.0).OR.(INFORM.EQ.1)) THEN 
ERROR = .FALSE. 

ELSE IF ( (INFORM.EQ.6).OR.(INFORM.EQ.7) ) THEN 
ERROR = .TRUE. 
IF (INFORM.EQ.7) 

+  WRITE (*,*) '        (OPT_NPSL) USER DERIV INCORRECT, INFORM = 7' 
ELSE 

Other errors are fatal. 

WRITE (*,*) ' (OPT_NPSL) FATAL ERROR:  INFORM =', INFORM 
IF      (INFORM.EQ.2) THEN 
WRITE (*,*) 'NO FEASIBLE POINT FOUND FOR LINEAR '// 

+ 'CONSTRAINTS AND BOUNDS' 

WRITE (*,*) 
WRITE (*,*) 
DO I = 1,N 
WRITE (*, 

END DO 

'BOUNDS ON VARIABLES:' 
'BL,BU' 

(2F8.2)') BL(I), BU(I) 

WRITE (*,*) 'ORIGINAL:' 
WRITE (*,*) 'ABL, ABU :: AA' 
DO  I = l,NLCON 
WRITE (*,'(2F8.2,A2,3 0F6.2)') 

' : : ' , AMI, :NU+NX+NW) 
END DO 

ABL(I), ABU(I) 
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WRITE (*,*) 'ADJUSTED FOR XO AND W:' 
DO  I = l,NLCON 
WRITE (*,'(2F8.2,A2,30F6.2)') BL(N+I), BU(N+I), 

+ '::', A(I,:N) 
END DO 

ELSE IF (INFORM.EQ.3) THEN 
WRITE (*,*) 'NO FEASIBLE POINT FOUND FOR NONLINEAR 

CONSTRAINTS' 
ELSE IF (INFORM.EQ.4) THEN 
WRITE ( *,*) 'MAJOR ITERATION LIMIT REACHED' 

ELSE IF (INFORM.EQ.9) THEN 
WRITE (*,*) 'AN INPUT PARAMETER IS INVALID' 

END IF 

If fatal error, call npsol again to produce 
diagnostic output before stopping. 

PP = .TRUE. 
if (level.eq.O) then 
write (*,'(a41,10x,i4,f9.4,7x,i5,30fl4.8)') 

'(opt_npsl) inform,time,nOb,u,x,w,f:', 
inform,secnds(timeO),nt_obj , 
u,xO(:NX),w0(:NW),f 

else 
write (*,'(a44,7x,i4,f9.4,7x,i5,30f14.8)') 

'(opt_npsl) inform,time,nOb,u,x,w,f,fx:', 
inform,secnds(timeO),nt_obj, 
u,xO(:NX),w0(:NW),f,fx 

end if 
CALL NPOPTN ('VERIFY LEVEL =3') 
CALL NPOPTN ('MAJOR PRINT LEVEL =30' 
CALL NPOPTN ('MINOR PRINT LEVEL = 30' 
CALL NPSOL ( N, NLCON, NCNLN, NROWA, 

A, BL, BU, 
CONFUN, OBJFUN, 
INFORM, ITER, ISTATE, 
C, CJAC, CLAMDA, OBJF, OBJGRAD, R, V, 
IWORK, LIWORK, WORK, LWORK ) 

) 
) 
NROWJ, NROWR, 

write(*,'(al6,20il4)')  'istate: ', istate(:n+nlcon) 
write(*,'(al6,20el4.8)')'objgrad:', objgrad(:n) 
write(*,'(al6,20el4.8)')'clamda: ', clamda(:n+nlcon) 
write(*,'(al6,il4)')    'inform: ', inform 

STOP '(OPT_NPSL) 
END IF 

Reset variables. 

NLCON NLCON0 

NT_OBJ = N_OBJ - NT_OBJ 
N_OPT = N_OPT + 1 
T OPT = T_OPT + SECNDS(TIMEO) 
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DEALLOCATE ( ISTATE, IWORK, A, BL, BU, 
+ C, CJAC, CLAMDA, OBJGRAD, R, V, WORK ) 

Verify outputs. 

+ 
+ 
+ 

if (error0.or.error.or.pp.or.p) then 
if (level.eq.O) then 
write (*, ' (a41,10x,i4,f9.4,7x,i5,30fl4.8) •) 

'(opt_npsl) inform,time,nOb,u,x,w,f:', 
inform,secnds(timeO),nt_obj , 
U,xO(:NX),wO(:NW),f 

else 
write (*, ' (a44,7x,i4,f9.4,7x,i5,30fl4.8) • ) 

'(opt_npsl) inform,time,nOb,u,x,w,f,fx:' , 
inform,secnds(timeO),nt_obj, 
u,x0(:NX),wO(:NW),f,fx 

end if 
end if 

END 

Subroutine OPT POLY 

This routine sets up the data for input into the solver AMOEBA. 

SUBROUTINE OPT_POLY ( U, F, ERROR ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' 

DOUBLE PRECISION 
LOGICAL 

!Problem size parameters and tolerances. 

U(NU), F 
ERROR 

Solves function value f(x) and using a polytope method, 
more traditionally known as the downhill simplex method 
(not the same as the simplex method of linear optimization). 

Routine sets up and calls ameoba as solver (from Numerical Recipes). 
U on input is used as starting point for solver. 
If ERROR = true on input, printout is provided. 
Restart is required to confirm all solutions, but should not require 
much computation if already close to solution. 

Does not calculate derivatives. 

INCLUDE 'I.SIZEALLO' 
INCLUDE 'I.CONTROL' 
INCLUDE 'I.SPECNOW' 
INCLUDE 'I.PERFORM' 

[Parameters to allocate storage space. 
[Constraints on control. 
[Current stage id. 
[Track performance of solver and output. 

Arrays for transX. 
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INTEGER 
DOUBLE PRECISION 

LEVEL 
X(NX), W(NW), S(NW), Y(NX), 
YU(NX,NU), YX(NX,NX), YW(NX,NW) 

Arrays for ameoba. 

INTEGER ,. 
DOUBLE PRECISION 

ITER, MP, NP 
PM(NU+1,NU), YM(NU+1) 

Other local variables. 

INTEGER 
LOGICAL 
REAL*4 

J, JLO, NT_OBJ 
ERRORO 
SECNDS, TIMEO 

DOUBLE PRECISION      OBJVAL 
EXTERNAL OBJVAL, AMOEBA 

NT_OBJ = N_OBJ 
TIMEO = SECNDS(0.0) 

Add State bounds to linear constraints where 
transition function is linear. 

LEVEL = 1 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

+ ISTAGE,IYEAR,ISEASON,U,X,W, 
+ S,Y,YU,YX,YW) 

AA = 0.0 
ABL =0.0 
ABU =0.0 

ABL(:NTLIN) = YBL(:NTLIN) 
ABU(:NTLIN) = YBU(:NTLIN) 
AA(:NTLIN,        :NU)        = YU(:NTLIN, 
AA(:NTLIN,NU+1   :NU+NX)    =YX(:NTLIN, 
AA(:NTLIN,NU+NX+1:NU+NX+NW) =YW(:NTLIN, 

Add specified linear constraints. 

ABL(NTLIN+l:NLCON) = ACLBL(:NCLIN) 
ABU(NTLIN+l:NLCON) = ACLBU(:NCLIN) 
AA(NTLIN+l:NLCON,:NU+NX+NW) = ACL(:NCLIN,:NU+NX+NW) 

Initialize variables. 

ERRORO 
ERROR = 

ERROR 
.FALSE. 

MP NU + 1 
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NP = NU 

PM(MP,:) = U(:NU) 
DO  J = 1,NU 

PM(J,:) = PM(MP,:) 
PM(J,J) = PM(MP,J) + USCALE(J) 

END DO 

DO  J = 1,MP 
YM(J) = OBJVAL (PM(J,:)) 

END DO 

Call solver. 

CALL AMOEBA (PM,YM,MP,NP,NP,FTOL, OBJVAL,ITER) 

Save values, 

JLO = 1 
DO  J = 2,MP 

IF (YM(J).LT.YM(JLO)) JLO = J 
END DO 

U = PM(JLO,:) 
F = YM(JLO) 

Verify outputs. 

NT_OBJ = N_OBJ - NT_OBJ 
N_OPT = N_OPT + 1 
T OPT = T_OPT + SECNDS(TIMEO) 

END 

Subroutine OBJFUN 

This routine feeds results of OBJ_CALC to the solver NPSOL. 

SUBROUTINE OBJFUN ( MODE, N, V, OBJF, OBJGRD, NSTATE ) 

IMPLICIT NONE 
INTEGER MODE, N, NSTATE 
DOUBLE PRECISION OBJF 
DOUBLE PRECISION V(N), OBJGRD(N) 

Provide objective and gradients for NPSOL as a function of 
decision variables u, state variables x, and stochastic variables w. 

Arrays:  u=v(:NU).  If n=NU, x is fixed and x=xO passed in common. 
Otherwise, n=NU+NX, x is variables and x=v(NU+l:NU+NX). 
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Gradients:  total where V(u,x,w) = C(u,x,w) + F(y), y = T(u,x,w) , 
p.d.f. of w is f(x), and u and x are independent (du/dx = 0). 

INCLUDE 'I.SIZEPROB' 
INCLUDE 'I.SIZEALLO" 
INCLUDE 'I.CONTROL' 

!Problem size parameters and tolerances. 
!Parameters to allocate storage space. 
[Constraints on control. 

INTEGER 
DOUBLE PRECISION 

h 

LOGICAL 

EXTERNAL 

LEVEL 
U(NU), X(NX), W(NW), 
OBJFU(NU), OBJFX(NX) 
P, LARGE 

OBJ CALC 

Distinguish between x fixed and x variable. 
Also identify what gradients are needed. 

IF (N.EQ.NU) THEN 

LARGE = .FALSE. 
U = V 
X = X0(:NX) 
W = W0(:NW) 
IF (MODE.EQ.0) THEN 

LEVEL = 0 
ELSE 

LEVEL = 1 
END IF 

ELSE IF (N.EQ.NU+NX) THEN 

LARGE = .TRUE. 
U = V(1:NU) 
X = V(NU+1:N) 
W = W0(:NW) 
IF (MODE.EQ.0) 

LEVEL = 0 
ELSE 

LEVEL = 1 
END IF 

THEN 

ELSE 

WRITE (*,*) ' (OBJFUN) N, NU, AND NX DISAGREE:', N, NU, NX 
STOP 

END IF 

Calculate objective value and gradients. 
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CALL OBJ_CALC (LARGE,LEVEL,U,X,W, OBJF,OBJFU,OBJFX ) 

OBJGRD(:NU) = OBJFU 
IF (LARGE) OBJGRD(NU+l:) = OBJFX 

END 

Subroutine OBJVAL 

This routine feeds results of OBJCALC to the solver AMOEBA. 

FUNCTION OBJVAL ( U ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Parameters for problem size. 
DOUBLE PRECISION      OBJVAL, U(NU) 

Returns value of objective function for ameoba, the numerical recipies 
polytope optimization routine. 

INCLUDE 'I.SIZEALLO'    !Parameters to allocate storage space. 
INCLUDE 'I.CONTROL'     !Constraints on control. 

INTEGER LEVEL 
DOUBLE PRECISION      X(NX), W(NW), 

+ OBJF, OBJFU(NU), OBJFX(NX) 
LOGICAL LARGE 

EXTERNAL OBJ_CALC 

LARGE = .FALSE. 
LEVEL = 0 
X = X0(:NX) 
W = W0(:NW) 
CALL OBJ_CALC (LARGE,LEVEL,U,X,W, OBJF,OBJFU,OBJFX ) 
OBJVAL = OBJF 

END 

Suhroutine ORT CALC 

This routine solves the objective function as the sum of a current cost and a cost- 

to-go (evaluated by interpolation). This routine also adds a penalty for constraint 

violations when using AMOEBA. 

SUBROUTINE OBJ_CALC ( LARGE, LEVEL, U, X, W, 
+ OBJF, OBJFU, OBJFX ) 
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IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' 
INTEGER 
DOUBLE PRECISION 
LOGICAL 

DOUBLE PRECISION 

!Problem size parameters and tolerances. 
LEVEL 
U(NU), X(NX), W(NW) 
LARGE 

OBJF, OBJFU(NU), OBJFX(NX) 

Calculates objective V=objf=C(u,x,w)+F(y) and partial derivatives 
w.r.t. controls u and state x. 

On input, LEVEL identifies what derivatives are to be calculated: 
0:  only u and f 
1:  u, f, and 1st      (applies only when using NEWTON solver) 

On output, LEVEL identifies if derivatives were calculated 
If LARGE = false, x is fixed and only dV/du calculated. 
If LARGE = true, x is variable and dV/du and dV/dx are calculated. 

V(u,x,w) = C(u,x,w) + F(y), y = T(u,x,w), p.d.f. of w is f(x). 
Note that u and x are evaluated as independent variables (du/dx=0) 
Note that w and x are evaluated as independent variables (dw/dx=0) 
Also, y=T(u,x,w) is incorporated implicitly: 
dF/du = [dy/du][dF/dy],  dF/dx = [dy/dx][dF/dy]. 

INCLUDE ' I.SPECNOW 
INCLUDE 'I.PERFORM' 

!Current stage id. 
!Track performance of solver and output. 

Local variables for transX. 

INTEGER 
DOUBLE PRECISION 

VLEVEL 
S(NW), Y(NX), 
YU(NX,NU), YX(NX,NX), YW(NX,NW) 

Local variables for cost_now. 

DOUBLE PRECISION      C, CU(NU), CX(NX), PEN 

Local variables for cost_pen. 

DOUBLE PRECISION      CPEN 

Local variables for int_func. 

DOUBLE PRECISION      F, FY(NX) 

Other local variables. 

INTEGER 
DOUBLE PRECISION 
LOGICAL 
REAL 

EXTERNAL 

VLEVELO, J, K 
DRMULT, FU(NU), FX(NX) 
P 
SECNDS, TIMEO, TIME1 

TRANSX, INT_FUNC, COST_NOW, COST_PEN 
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Verify inputs. 

IF ( (LEVEL.LT.O) .OR. (LEVEL.GT.1> ) THEN 
WRITE (*,*) ' (OBJ_CALC) INCONSISTENT LEVEL 
STOP 

END IF 

■, LEVEL 

N_OBJ = N_OBJ + 1 
TIMEO = SECNDS (0.0) 

Identify derivatives needed. 

Level identifies if 1st or 2nd derivatives needed. 
Vlevel identifies if which derivatives are needed, 
depending on the size of the problem (i.e., if 
solver is using variable x in order to get df/dx 
directly from solver vice from finite differences 
in opt_solv. 

IF (LEVEL.EQ.O) THEN 
VLEVEL = 0 

ELSE 
VLEVEL = 1 
IF (LARGE) VLEVEL = 2 

END IF 
VLEVEL0 = VLEVEL 

Get current cost. 

CALL COST_NOW (VLEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W, 
+ C,CU,CX,PEN) 
IF (VLEVEL.NE.VLEVELO) THEN 
WRITE (*,*) ' (OBJ_CALC) NOT ADAPTED FOR dC BY FINITE DIFF' 
STOP '(OBJ_CALC)' 

END IF 

Get end-of-stage state y. 

Y = 0.0 
YU = 0.0 
YX = 0. 
CALL TRANSXt (VLEVEL,NU,NX,NW,NTNLN, 

+ ISTAGE,IYEAR,ISEASON,U,X,W, 
+ S,Y,YU,YX,YW) 
IF (VLEVEL.NE.VLEVELO) THEN 
WRITE (*,*) ' (OBJ_CALC) NOT ADAPTED FOR dY BY FINITE DIFF' 
STOP '(OBJ_CALC)' 

276 



END IF 

If using polytope algorithm (i.e., not newton) 
then add penalty cost for constraint violation. 

IF (.NOT.NEWTON) THEN 
CALL COST_PEN (LEVEL,U,X,W,Y,PEN, CPEN) 
C = C + CPEN 

END IF 

Get cost-to-go by interpolation of future cost func. 

TIME1 = SECNDS(O.O) 

CALL INT_FUNC (LEVEL,Y, F,FY) 

T_CALL = T_CALL + SECNDS (TIMED 

Calculate total cost. 

DRMULT = 1.0 - DISCOUNT 

OBJF  = C + F*DRMULT 

IF (VLEVEL.GE.l) THEN 
FU = 0.0 
DO  J = 1,NX 

FU = FU + YU(J,:)*FY(J) 
END DO 
OBJFU = CU + FU*DRMULT 

END IF 

IF (VLEVEL.GE.2) THEN 
FX = 0.0 
DO  J = 1,NX 

FX = FX + YX(J,:)*FY(J) 
END DO 
OBJFX = CX + FX*DRMULT 

END IF 

Verify outputs. 

T OBJ = T_OBJ + SECNDS (TIME0) 

END 
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Subroutine COST PEN 

This routine evaluates the penalty for constraint violations when using the solver 

AMOEBA. Because the solver does not include constraints directly, the code uses a 

large penalty to push control decisions back into the feasible region. 

SUBROUTINE COST_PEN ( LEVEL, U, X, W, Y, PEN, 
+ CPEN ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Problem size parameters and tolerances. 
INTEGER LEVEL 
DOUBLE PRECISION U(NU), X(NX), W(NW), Y(NX), PEN 

DOUBLE PRECISION      CPEN 

Returns penalty cost of decisions u that violate control bounds or that 
result in a violation state bounds on y given initial state x and 
stage istage. 

Penalty is a polynomial function of violations 
When applied with polytope solver, penalty consists of linear and 
quadratic terms.  Quadratic term assists convergence and linear 
term ensures that constraint is satisfied. 

When applied with Newton-based solver, penalty consists only of 
third order term to ensure continuity of derivatives up to 2nd order. 
Newton-based solvers may not converge without sufficient smoothness. 

INCLUDE 'I.SIZEALLO'    !Parameters to allocate storage space. 
INCLUDE 'I.CONTROL'     [Constraints on control. 
INCLUDE 'I.PERFORM1     [Track performance of solver and output. 

INTEGER K, J 
DOUBLE PRECISION      DIFF, ADJ(NCLIN) 

Verify inputs consistent with routine. 

IF ( (.NOT.NEWTON).AND.(LEVEL.NE.O) ) THEN 
WRITE (*,*) ' (COST_PEN) LEVEL <> 0 FOR NON-NEWTON SOLVER' 
STOP '(COST.PEN)' 

END IF 

IF (NX-NTNLN+NCLIN.NE.NLCON) THEN 
WRITE (*,*) ' (COST_PEN) # LINEAR CONSTRAINTS INCONSISTENT' 

+ NX-NTNLN, NCLIN, NLCON 
STOP '(COST_PEN)' 

END IF 
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Check for violation of bounds and calculate cost. 

CPEN =0.0 

Newton solver penalty. 

IF (NEWTON) THEN 

WRITE (*,*) ' (COST_PEN) CALLED WITH NEWTON = TRUE' 
STOP '(COST_PEN)' 

Non-Newton solver penalty. 

ELSE 

Penalty for violating bounds on decisions u. 

DO  K = 1,NU 
IF      (U(K).LT.UBL(K)) THEN 
DIFF = U(K) - UBL(K) 
CPEN = CPEN - PEN*DIFF 

ELSE IF (U(K).GT.UBU(K)) THEN 
DIFF = U(K) - UBU(K) 
CPEN = CPEN + PEN*DIFF 

END IF 
END DO 

Penalty for violating bounds on state y. 

DO  J = 1,NX 
IF      (Y(J).LT.YBL(J)) THEN 
DIFF = Y(J) - YBL(J) 
CPEN = CPEN - PEN*DIFF 

ELSE IF (Y(J).GT.YBU(J)) THEN 
DIFF = Y(J) - YBU(J) 
CPEN = CPEN + PEN*DIFF 

END IF 
END DO 

Penalty for violating linear constraints. 

ADJ = 0.0 
DO  K = 1,NU 
ADJ = ADJ + ACL(:NCLIN,K)*U(K) 

END DO 
DO  J = 1,NX 

ADJ = ADJ + ACL(:NCLIN,NU+J)*X(J) 
END DO 
DO  J = 1,NW 
ADJ = ADJ + ACL(:NCLIN,NU+NX+J)*W(J) 

END DO 
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DO  K = 1,NCLIN 
IF      (ADJ(K) .LT.ACLBL(K)) 
DIFF = ADJ(K) - ACLBL(K) 
CPEN = CPEN - PEN*DIFF 

ELSE IF (ADJ(K) .GT.ACLBU(K)) 
DIFF = ADJ(K) - ACLBU(K) 
CPEN = CPEN + PEN*DIFF 

END IF 
END DO 

END IF 

THEN 

THEN 

5. MAIN SUBROUTINE AND ACCESSORIES 

These routines set up and manage the overall solution of a DDP problem. In 

addition, the following includes a few accessory routines are used repeatedly for data 

verification. 

Subroutine DYNPROG 

This routine control overall flow of the solution, including identification of the 

model, evaluation of the solution for each stage, and output. 

SUBROUTINE DYNPROG 
IMPLICIT NONE 

Determines the future-cost (a.k.a. cost-to-go) function for a 
stochastic dynamic programming problem. 

Future-cost function is an interpolated function with domain spanned by 
nodes stored in a list nnodes long.  Each node has the following 
associated characteristics: 

xn     location of node 
fn     function value at node 
fxn    function gradient at node 
iabove  pointer to nodes above in each dimension 
ibelow pointer to nodes below in each direction 

Nodes and values are contained in a linked list that points to nodes 
immediately above and below in each dimension.  The following is a 
special case: 

--Nodes on the edge of the domain: an adjacent node will be 0 

INCLUDE 'I SIZEPROB' 
INCLUDE ' I SIZEALLO' 
INCLUDE 'I CONTROL' 
INCLUDE •I SPECNOW 
INCLUDE ' I XNODES' 
INCLUDE ' I FNODES' 

!Problem size parameters and tolerances, 
!Parameters to allocate storage space. 
[Constraints on control. 
!Current stage id. 
[State discretization. 
[Future cost function. 
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INCLUDE   ' I.SPECW 
INCLUDE   'I.PERFORM' 

!Stochastic realizations. 
!Track performance of solver and output. 

Local variables to get cost function in START.DAT. 

INTEGER 
DOUBLE PRECISION 
ALLOCATABLE :: 

IOS, NUR, NXR, ISTAGER, IA, IB 
X, F, FX 

IA(:), IB(:) , X(:), FX(:) 

Local variables for modelall. 

INTEGER 
LOGICAL 
CHARACTER*10 

INTEGER 

DOUBLE PRECISION 
CHARACTER*11 

Local 

DOUBLE PRECISION 

Local 

ILAST 
RESTART 
LABELS(MAXSEAS), FTOLCHAR 

Local variables for modelstg. 

NDX(MAXNX), NNNEW, 
IANEW(MAXNX,MAXNODES), 
IBNEW(MAXNX,MAXNODES) 
XDX(MAXIDX,MAXNX), XNNEW(MAXNX,MAXNODES) 
NAMERUN, NAMECTG 

variables to hold current cost function. 

FNNEW(MAXNODES), FXNNEW(MAXNX,MAXNODES) 

variables for node val. 

INTEGER 
DOUBLE PRECISION 
LOGICAL 

LEVEL, IX 
U(MAXNU) 
ERROR 

Other local variables, 

INTEGER 
DOUBLE PRECISION 
REAL 
LOGICAL 

LEVELO, I, J, N 
FNMIN, FNAVG, TT_ID, TT_VAL, TT_WEIGH, T_TOT 
SECNDS, TIMEO, TIME1, TIME2 
P 

EXTERNAL GETMODEL,   NPOPTN,    FINALCTG, 
NODE_VAL,   ADJ_MOD, 
EXACT, EXACT_DIFF, OUTPUT 

TIMEO = SECNDS(0.0) 

Get parameters that specify characteristics of problem for all stages. 

Model parameters. 
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Parameters are stored in common. 

CALL MODELALL (NU,NX,NW,NTNLN,NCLIN,NCNLN,LPRINT, 
+ RESTART,NSTAGES,NSEAS,LABELS,ILAST, IFIRST, IYFIRST, 
+ DISCOUNT,TIGHT,FTOL,UTOL,FTOLCHAR, 
+ STOCHASTIC,GDP,NEWTON) 
NBASE2 = 2**NX 
NTLIN = NX - NTNLN 
NLCON = NTLIN + NCLIN 

Specify npsol optional parameters. 

c      CALL NPOPTN ('DIFFERENCE INTERVAL = 0.01') 
C      CALL NPOPTN ('DERIVATIVE LEVEL = 3') 
c      CALL NPOPTN ('DIFFERENCE INTERVAL = 1.0') 
C      CALL NPOPTN ('FUNCTION PRECISION = '//FTOLCHAR) 
C      CALL NPOPTN ('CENTRAL DIFFERENCE INTERVAL = 1.0') 

CALL NPOPTN ('VERIFY LEVEL = NO') 
C      CALL NPOPTN ('MAJOR ITERATION LIMIT = 100') 

CALL NPOPTN ('MAJOR PRINT LEVEL = 0') 
c      CALL NPOPTN ('HESSIAN = YES') 

1 
<0 

IF (GDP) THEN 
LEVEL = 1 

ELSE 
LEVEL = 0 

END IF 
LEVEL0 = LEVEL 

Identify if gradients needed, and how calculated. 

LEVEL tells if and how gradients are calculated: 
0:  none (only u and f)  (not applicable to GDP) 

fx by solver 
fx by finite diff  (even if given by solver) 

Set up cost function for final stage. 

Identify year and season of last stage. 

ISTAGE = NSTAGES + 1 
CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON) 

WRITE (*,*) ('-',1=1,70) 
WRITE (*,*) ' (DYNPROG) BEGINNING STAGE ',ISTAGE, ' '// 

,. '     SEASON/YEAR: ', ISEASON, '/', IYEAR 
WRITE (*,*) ('-',1=1,70) 

If restart, future cost function from START.DAT. 
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IF (RESTART) THEN 

WRITE (*, ' (/,X,43A,A45) ') C-M=l,40), 
+ •(DYNPROG) READING LAST STAGE COST FUNCTION' 

! Open data file with prior solution. 

OPEN (10,FILE='START.DAT',STATUS='OLD',IOSTAT=IOS) 
IF (IOS.NE.0) THEN 
WRITE {*,*) '(DYNPROG) CANNOT OPEN START.DAT' 
STOP '(DYNPROG)' 

END IF 
WRITE (*,*) '(DYNPROG) IOSTAT FOR OPENING START.DAT = ', IOS 

! Verify data file consistent with current model. 
! Note:  data file can have different discretization. 

READ (10,'(4I8,E20.14)') NUR, NXR, NNODES, ISTAGER 
IF ( (NUR.NE.NU).OR.(NXR.NE.NX) ) THEN 
WRITE (*,*) '(DYNPROG) INCONSISTENT DATA FILE; NU,NX,NNODES:' 
WRITE (*,*) NUR,NU,NXR,NX 
STOP '(DYNPROG)' 

END IF 
IF (ISTAGER.NE.NSTAGES) THEN 
WRITE (*,*) "(DYNPROG) LAST STAGE INCONSISTENT WITH DATA FILE' 
WRITE (*,*) ISTAGER, ILAST 

C STOP '(DYNPROG)' 
END IF 

! Read in array values. 

ALLOCATE ( IA(NX), IB(NX), X(NX), FX(NX) ) 
YBL =  1.0E20 
YBU = -1.0E20 
DO  IX = 1,NNODES 

READ (10,'(I8,20E20.14)') J, X 
XN(:NX,IX) = X(:NX) 
DO  J = 1,NX 

YBL(J) = MIN (YBL(J),X(J)) 
YBU(J) = MAX (YBU(J),X(J)) 

END DO 
END DO 
DO  IX = 1,NNODES 

READ (10,'(18,2018)') J, IB, IA 
IBELOW(:NX,IX) = IB(:NX) 
IABOVE(:NX,IX) = IA(:NX) 

END DO 
DO  IX = 1,NNODES 

READ (10,'(I8.20E20.14)') J, F, FX 
FN(IX) = F 
FXN(:NX,IX) = FX(:NX) 

END DO 
DEALLOCATE ( IA, IB, X, FX ) 

CLOSE (10,IOSTAT=IOS) 
WRITE (*,*) '(DYNPROG) IOSTAT FOR CLOSING START.DAT = ', IOS 
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If not restart, future cost function from finalctg. 

ELSE 

WRITE (*,'(/,X,40A,A48)') ('-',1=1,40), 
+ '(DYNPROG) CALCULATING LAST STAGE COST FUNCTION' 

Get parameters for final cost function. 

CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS, 
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC, 
+ UBL,UBU,UGUESS,USCALE, 
+ NDX,NNODES,IBELOW,IABOVE, 
+ XBL,XBU,YBL,YBU,XDX,XN, 
+ NWNODES,WN,PWN,LIKELY, 
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG) 

DO  IX = 1,NNODES 
CALL FINALCTG (NX,XN(:NX,IX), FN(IX),FXN(:NX,IX)) 

p = .true, 
do  j = 1,NX 

if ((xn(j,ix).ne.xbl(j)).and.(xn(j,ix).ne.xbu(j))) 
+ p=.false. 

end do 
if (p) write (*, ' (a26,i6,20f10.2) ' ) 

+ '(dynprog) ix/x/f/fx:', 
+ ix,xn(:NX,ix),fn(ix),fxn(:NX,ix) 

END DO 

Write future cost function for current stage. 

OPEN (1,IOSTAT=IOS,FILE=NAMERUN//'.dat',STATUS='NEW') 
WRITE (*,*) '(DYNPROG) IOS FOR OPENING '//NAMERUN//'.dat = ', IOS 
WRITE (1,'(6I8)') NU, NX, NNODES, NSTAGES, IYEAR, ISEASON 
DO  I = 1,NNODES 
WRITE (1,'(I8.20E20.14)') I, XN(:NX,I) 

END DO 
DO  I = 1,NNODES 
WRITE (1, ' (18,2018) ' ) I, IBELOW(:NX,I) , IABOVE(:NX,I) 

END DO 
DO  I = 1,NNODES 
WRITE (1,'(I8,20E20.14)') I, FN(I), FXN(:NX,I) 

END DO 
CLOSE (1,IOSTAT=IOS) 
WRITE (*,*) '(DYNPROG) IOS FOR CLOSING '//NAMERUN//'.dat = ', IOS 

Adjust values as desired. 

TIME2 = SECNDS(O.O) 

N = NNODES 
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CALL ADJ_MOD (ISTAGE,IYEAR,ISEASON, 
+ IBELOW(:NX,:N),IABOVE(:NX,:N), 
+ XN(:NX,:N),FN(:N),FXN(:NX,:N)) 

WRITE (*,*) 'TIME TO ADJUST STAGE = ', SECNDS(TIME2) 

END IF 

Verify gradients of final_ctg. 

IF (NEWTON) THEN 

|   * * * * * 

END IF 

Add nodes as desired for accuracy and convexity. 

Add additional nodes as required to ensure that 
interpolated values depend only on corner points of 
surrounding hypercube. 

WRITE (*,*} 'TIME TO SET UP MODEL = ', SECNDS(TIMEO) 

Loop though each stage and state. 

TT_ID =0.0 
TT_WEIGH =0.0 
T TOT    =0.0 

STAGES:  DO  ISTAGE 

TIME1 

NSTAGES,1,-1 

SECNDS(0.0) 

Identify year and season of current stage. 

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON) 

WRITE (*,'(//,70A)') ('-',1=1,70) 
WRITE (*,*) ' (DYNPROG) BEGINNING STAGE ', ISTAGE, ' '// 

h '        SEASON/YEAR: ',ISEASON,'/' ,IYEAR 
WRITE (*,'(70A)') ('-',1=1,70) 

Get parameters for current stage and initialize grid 

TIME2 = SECNDS(0.0) 
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CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS, 
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC, 
+ UBL,UBU,UGUESS,USCALE, 
+ NDX,NNNEW,IBNEW,IANEW, 
+ XBL,XBU,YBL,YBU,XDX/XNNEW, 
+ NWNODES,WN,PWN,LIKELY, 
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG) 

WRITE (' ) 'TIME TO ID STAGE SECNDS(TIME2) 

Get nodes needed for interpolation. 

TIME2 = SECNDS(O.O) 

WRITE (*, ' (X,40A,A45) ') { ' - ' ,1=1,40), 
'(DYNPROG) SOLVING GRID VALUES FOR NEW STAGE' 

N INT = 0 
N OBJ = 0 
N OPT = 0 
N SOL = 0 
T ID = 0 0 
T VAL = 0 0 
T WEIGH = 0 0 
T INT = 0 0 
T CALL = 0 0 
T OBJ = 0 0 
T OPT = 0 0 
T SOL = 0 0 

Start with initial discretization. 

DO  IX = l.NNNEW 
LEVEL = LEVELO 
ERROR = .FALSE. 
U(:NU) = UGUESS(:NU) 
CALL NODE_VALt (LEVEL,IX,XNNEW(:NX,IX), 

END DO 
U(:NU),FNNEW(IX),FXNNEW(:NX 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_ID/DBLE(N_INT), N_INT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_VAL/DBLE(N_INT), N_INT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_WEIGH/DBLE(N_INT), N_INT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_INT/DBLE(N_INT), N_INT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_CALL/DBLE(N_INT), N_INT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_OBJ/DBLE(N_OBJ), N_OBJ 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_OPT/DBLE(N_OPT) , N_OPT 

WRITE (*,'(A29,F10.5,I9,F10.2) 
T_SOL/DBLE(N_SOL), N_SOL 

WRITE (*,'(A29,F10.5,I9,F10.2) 

IX),ERROR) 

'ID TIME    = ' 
T_ID 
•VAL TIME   = ' 
T_VAL 
'WEIGH TIME = ' 
T_WEIGH 
'INT TIME   = ' 
T_INT 
'CALL INT TIME 
T_CALL 
'OBJ TIME   = ' 
T_OBJ 
'OPT TIME   = ' 
T_OPT 
"SOLVE TIME = ' 
T_SOL 
'NODE TIME  = ' 
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SECNDS(TIMEl)/DBLE(NNODES),NNODES,SECNDS(TIME1) 

TT_ID    = TT_ID    + T_ID 
TT_VAL   = TT_VAL   + T_VAL 
TT_WEIGH = TT_WEIGH + T_WEIGH 
T_TOT    = T_TOT    + SECNDS(TIMEl) 

WRITE (*,*) "TIME TO SOLVE STAGE = ', SECNDS(TIME2) 

Add nodes as desired for accuracy and convexity. 

Add additional nodes as required to ensure that 
interpolated values depend only on corner points of 
surrounding hypercube. 

Update future cost function. 

Done after developing new function since 
this will replace the old function in common. 

NNODES = NNNEW 
IABOVE = IANEW 
IBELOW = IBNEW 
XN = XNNEW 
FN = FNNEW 
FXN = FXNNEW 

Adjust values as desired. 

TIME2 = SECNDS(0.0) 

N = NNODES 
IF (LEVEL0.GT.0) THEN 
CALL ADJ_MOD (ISTAGE,IYEAR,ISEASON, 

+ IBELOW(:NX,:N),IABOVE(:NX,:N), 
+ XN(:NX,:N),FN(:N),FXN(:NX,:N)) 
END IF 

WRITE ( * , * ) 'TIME TO ADJUST STAGE , SECNDS(TIME2) 

Calculate tracking parameters. 

FNMIN = FN(1) 
FNAVG = FN(1) 
DO  IX = 2,NNODES 

FNMIN = MIN (FNMIN,FN(IX)) 
FNAVG = FNAVG + FN(IX) 

END DO 
FNAVG = FNAVG/DBLE(NNODES) 
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If deterministic, compare with exact solution. 

IF (.NOT.STOCHASTIC) THEN 
TIME2 = SECNDS(O.O) 

IF (NSTAGES-ISTAGE.LE.10) CALL EXACT 
WRITE (*,*) 'TIME TO COMPARE EXACT = ',SECNDS(TIME2) 

END IF 

Output nodes. 

TIME2 = SECNDS(0.0) 

WRITE (*,'(41A,A20,I4)') (' = ' , 1 = 1, 40) , '>', 
+ 'SOLUTION STAGE',ISTAGE 
WRITE (*,*) 'SEASON/YEAR: ',ISEASON,'/',IYEAR 
WRITE (*,'(2(A10,F10.4),A10,F12.6)') 

+ 'FNMIN=*,FNMIN, 'FNAVG=', FNAVG 

CALL OUTSTAGEt (NU,NX,NW,NSEAS,ISTAGE,IYEAR,ISEASON, 
+ XBL(:NX),XBU(:NX)) 

WRITE (*,*) 'TIME TO OUTPUT STAGE = ', SECNDS(TIME2) 
WRITE (*,*) 'TIME FOR STAGE = ', SECNDS(TIMED 
WRITE (*,*) 'TOTAL TIME = ', SECNDS(TIMEO) 

Write future cost function for current stage. 

OPEN (l,IOSTAT=IOS,FILE=NAMERUN//'.dat',STATUS='NEW') 
WRITE (*,*) '(DYNPROG) IOS FOR OPENING '//NAMERUN//'.dat = ', IOS 
WRITE (1,'(6I8)') NU, NX, NNODES, NSTAGES, IYEAR, ISEASON 
DO  I = 1,NNODES 
WRITE (1, ' (I8.20E20.14) ' ) I, XN(:NX,I) 

END DO 
DO  I = 1,NNODES 
WRITE (1,'(18,2018)') I, IBELOW(:NX,I), IABOVE(:NX,I) 

END DO 
DO  I = 1,NNODES 
WRITE (1,'(I8,20E20.14)') I, FN(I), FXN(:NX,I) 

END DO 
CLOSE (l,IOSTAT=IOS) 
WRITE (*,*) '(DYNPROG) IOS FOR CLOSING '//NAMERUN//'.dat = ', IOS 

I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

END DO  STAGES 

Summarize run time. 

WRITE (* , *) 'TOTAL ID TIME = ' , TT_ID 
WRITE (*,*) 'TOTAL VAL TIME = ', TT_VAL 
WRITE (* , * ) 'TOTAL WEIGH TIME = ' , TT_WEIGH 
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WRITE {* , *) 'TOTAL SOLUTION TIME = ', T_TOT 
WRITE (*,*) 'TOTAL TIME = ', SECNDS(TIMEO) 

Final output for first stage (istage = 0). 

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON) 

WRITE (*,*) ('-',1=1,70) 
WRITE (*,*) ' (DYNPROG) SUMMARY STAGE ',ISTAGE,' '// 

¥ • SEASON/YEAR: ',ISEASON,*/',IYEAR 
WRITE (*,*) ('-',1=1,70) 

Get parameters for current stage. 

CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS, 
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC, 
+ UBL,UBU,UGUESS,USCALE, 
+ NDX,NNNEW,IBNEW,IANEW, 
+ XBL,XBU,YBL,YBU,XDX,XNNEW, 
+ NWNODES,WN,PWN,LIKELY, 
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG) 

NWNODES = 1 
WN(:,1) = 0.0 
PWN(l) =1.0 
LIKELY = .FALSE. 
LIKELY(1) = .TRUE. 

i   

! Get solution using median values of stochastic 
variables. 

i   

CALL OUTFINAL (NX,NW,ISTAGE,IYEAR,ISEASON, XBL(:NX),XBU(:NX)) 

STOP '(DYNPROG) DONE' 
END 

Subroutine MODELALL 

This routine collects the model of a problem and verifies that the data are 

consistent. Only those data that are independent of the stage are collected by this routine. 

SUBROUTINE MODELALL ( NU, NX, NW, NTNLN, NCLIN, NCNLN, LPRINT, 
+ RESTART, NSTAGES, NSEAS, LABELS, 
+ ILAST, IFIRST, IYFIRST, 
+ DISCOUNT, TIGHT, FTOL, UTOL, FTOLCHAR, 
+ STOCHASTIC, GDP, NEWTON ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEALLO'    !Parameters to allocate storage space. 
INTEGER NU, NX, NW, NTNLN, NCLIN, NCNLN, LPRINT, 

+ NSTAGES, NSEAS, ILAST, IFIRST, IYFIRST 
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DOUBLE PRECISION 
LOGICAL 
CHARACTER*10 

DISCOUNT, TIGHT, FTOL, UTOL 
RESTART, STOCHASTIC, GDP, NEWTON 
LABELS(MAXSEAS), FTOLCHAR 

!Specify parameters of the system model for all stages. 
i  

! Local variables for specprob. 

INTEGER NTLIN, NLCON, IYLAST 

! Other local variables. 

INTEGER MMMDV, MMMDIM, MMMWDIM, MMMCON, MMMSEAS, I 

EXTERNAL SPECPROB, SIZETEST 

I  

WRITE (*,*) '(MODELALL) BEGIN' 

Initialize variables. 

MMMDV 
MMMDIM 
MMMWDIM 
MMMCON 
MMMSEAS 

= MAXNU 
= MAXNX 
= MAXNW 
= MAXCON 
= MAXSEAS 

Get user specified parameters that describe model. 

CALL SPECPROBt (MMMSEAS, 
+ NU,NX,NW,NTLIN,NTNLN,NCLIN,NCNLN, 
+ RESTART,NSTAGES,NSEAS,LABELS,IFIRST,ILAST, 
+ IYFIRST,IYLAST,LPRINT, 
+ STOCHASTIC,GDP,NEWTON,DISCOUNT,TIGHT,FTOL, UTOL) 

Verify parameters specified correctly. 

CALL SIZETEST (NU, 1 MMMDV, (MODELALL) NU 
CALL SIZETEST (NX, 1 MMMDIM, (MODELALL) NX 
CALL SIZETEST (NW, 0 MMMWDIM, (MODELALL) NW 
CALL SIZETEST (NTLIN, 0 NX, (MODELALL) NTLIN 
CALL SIZETEST (NTNLN, 0 NX, (MODELALL) NTNLN 
CALL SIZETEST (NCLIN, 0 MMMCON, (MODELALL) MAXCON 
CALL SIZETEST (NCNLN, 0 0, (MODELALL) NCNLN 
CALL SIZETEST (NSTAGES ,0 10000, (MODELALL) NSTAGES 
CALL SIZETEST (NSEAS, 1 MMMSEAS, (MODELALL) NSEAS 
CALL SIZETEST (IFIRST, 1 NSEAS, (MODELALL) IFIRST 
CALL SIZETEST (ILAST, 1 NSEAS, (MODELALL) ILAST 

IF (NTLIN+NTNLN.NE.NX) THEN 
WRITE (*,*) '(MODELALL) NTLIN + NTNLN <> NX' 
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STOP '(MODELALL)' 
END IF 

NLCON = NTLIN + NCLIN 
IF (NLCON.GT.MMMCON) THEN 
WRITE (*,*) '(MODELALL) NLCON > MAXCON' 
STOP '(MODELALL)' 

END IF 

IF (.NOT.RESTART) THEN 
IF (NSTAGES.EQ.O) THEN 
WRITE (*,*) '(MODELALL) NSTAGES = 0 WITHOUT RESTART' 
STOP '(MODELALL)' 

END IF 

I = IYFIRST + INT ( (IFIRST+NSTAGES-D/NSEAS) 
IF (IYLAST.NE.I) THEN 
WRITE (*,*) '(MODELALL) IYFIRST AND IYLAST DISAGREE', 

¥ IYFIRST, IYLAST, I 
STOP '(MODELALL)' 

END IF 

I = MOD (IFIRST+NSTAGES-1,NSEAS) + 1 
IF (I.EQ.NSTAGES+1) 1=1 
IF (I.NE.ILAST) THEN 
WRITE (*,*) '(MODELALL) IFIRST AND ILAST DISAGREE', 

¥ IFIRST, ILAST, I 
STOP '(MODELALL)' 

END IF 
END IF 

IF ( STOCHASTIC.AND.(NW.LE.O) ) THEN 
WRITE (*,*) ' (MODELSTG) STOCHASTIC MODEL WITH NW <= 0' 
STOP '(MODELALL)' 

END IF 

IF ( (.NOT.GDP).AND.NEWTON ) THEN 
WRITE (*,*) '(MODELALL) MULTILINEAR DP CANNOT USE NEWTON SOLVER' 
STOP '(MODELALL)' 

END IF 

IF ( (DISCOUNT.LT.0.0).OR.(DISCOUNT.GT.1.0) ) THEN 
WRITE (*,*) '(MODELALL) DISCOUNT NOT IN [0,1],', DISCOUNT 
STOP '(MODELALL)' 

END IF 

IF (TIGHT.LT.0.0) THEN 
WRITE (*,*) '(MODELALL) TIGHT < 0,', TIGHT 
STOP '(MODELALL)' 

END IF 

WRITE (*,*) 'SPECPROB OK' 

Get character string for ftol. 

OPEN (1,STATUS='SCRATCH') 
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WRITE (1,'(E10.2)') FTOL 
REWIND (1) 
READ (1,'(A10)') FTOLCHAR 
CLOSE (1) 

Echo model parameters. 

WRITE (*,*) 

END 

WRITE (* 
WRITE (* 
WRITE (* 

WRITE (* 
WRITE (* 

WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 

WRITE (* 
WRITE (* 
WRITE (* 

WRITE (* 

WRITE (* 

WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 

WRITE (* 
WRITE (* 

) 
C-\I=1,40) 
■(MODELALL) USER SPECIFIED MODEL' 
('-',1=1,40) 

*) 'DISCOUNT RATE =*, DISCOUNT 
*) 

*) 'GDP, TIGHT =', GDP, TIGHT 
*) 'NEWTON SOLV=', NEWTON 
*) 'STOCHASTIC =', STOCHASTIC 
*) 'PRECISION OF OBJECTIVE FUNCTION =',FTOL 
*) 'PRECISION OF CONTROLS =', UTOL 

'RESTART =   ', RESTART 
'#STAGES=',NSTAGES, ', #SEASONS =',NSEAS 
'DATES (SEASON/YEAR): ', 
IFIRST,'/',IYFIRST, 
ILAST,'/',IYLAST 
'YEARS OF OPERATION =', 
DBLE(NSTAGES)/DBLE(NSEAS) 

*) 

*) 

'»DECISION VARIABLES =', NU 
'#STATE VARIABLES =', NX 
'#STOCHASTIC VARIABLES =', NW 
'#LINEAR CONSTRAINTS =', NCLIN 

■) 'LPRINT =', LPRINT 
) 

WRITE (*,*) '(MODELALL) END' 

Subroutine MODELSTG 

This routine collects the model of a problem and verifies that the data are 

consistent. Those data that can change with the stage are collected by this routine. This 

routine is structured to allow adaptive grids in later work. 

SUBROUTINE MODELSTG ( NU, NX, NW, NTNLN, NCLIN, NCNLN, NSTAGES, 
+ NSEAS, ISTAGE, IFIRST, IYFIRST, STOCHASTIC, 
+ UBL, UBU, UGUESS, USCALE, 
+ NDX, NNODES, IBELOW, IABOVE, 
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+ 
+ 
+ 

XBL, XBU, YBL, YBU, XDX, XN, 
NWNODES, WN, PWN, LIKELY, 
ACL, ACLBL, ACLBU, NAMERUN, NAMECTG ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEALLO' 
INTEGER 

i- 

LOGICAL 

INTEGER 

DOUBLE PRECISION 

+ 
+ 
+ 

I 
+ 
+ 
+ 
+ 
+ 

LOGICAL 
CHARACTER*11 

!Parameters to allocate storage space. 
NU, NX, NW, NTNLN, NCLIN, NCNLN, 
NSTAGES, NSEAS, ISTAGE, IFIRST, IYFIRST 
STOCHASTIC 

NDX(MAXNX), NNODES, 
IBELOW(MAXNX,MAXNODES), 
IABOVE(MAXNX,MAXNODES), 
NWNODES 
UBL(MAXNU), UBU(MAXNU), 
UGUESS(MAXNU), USCALE(MAXNU), 
XBL(MAXNX), XBU(MAXNX), 
YBL(MAXNX), YBU(MAXNX), 
XDX(MAXIDX,MAXNX), 
XN(MAXNX,MAXNODES), 
WN(MAXNW,MAXWNODES), PWN(MAXWNODES), 
ACL(MAXCON,MAXNU+MAXNX+MAXNW), 
ACLBL(MAXCON), ACLBU(MAXCON) 
LIKELY(MAXWNODES) 
NAMERUN, NAMECTG 

Specify parameters of the system model for the current stage. 

Parameters of the stochastic model (e.g, for streamflow) are applied to 
the multivariate random normal variables in the w transition function. 

INCLUDE 'I.PERFORM' !Track performance of solver and output. 

Local variables for specU. 

INTEGER IYEAR, ISEASON 

Local variables for specX. 

INTEGER MMMIDX, KSTAGE, KYEAR, KSEASON 

Local variables for specW. 

INTEGER 
DOUBLE PRECISION 

LOGICAL 

MMMIDW, MODELW(NW), NDW(NW) 
WMEAN(NW), WSTDV(NW), WSKEW(NW), 
WDW(MAXIDW,NW), PROBW(MAXIDW,NW), 
SWLO(NW), SWHI(NW), PROBMIN 
GAUSQUAD 

Other local variables . 

INTEGER J, IDX, ID(MAXNX), IBASENX(MAXNX), 
I, IW, IXB, N, 
Nl, N2, N3, N4, N5, N6, N7 
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DOUBLE PRECISION DX(MAXIDX,MAXNX), ALARGE, VALOLD, PTEST 
LOGICAL P 

EXTERNAL IDNOW, SPECU, SPECX, SPECW, SPECLCON, 
+ SIZETEST, SW_GQ, SW_TRAP 

WRITE (*,*) '(MODELSTG) BEGIN' 

P = .FALSE. 
IF (LPRINT.GE.l) P = .TRUE. 
IF (ISTAGE.EQ.NSTAGES+1) P = .TRUE. 

Get user specified parameters that describe model. 

ALARGE = 1.0E+20 

ID year and season of current and following stage. 

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON) 
KSTAGE = ISTAGE + 1 
CALL IDNOW (KSTAGE,IFIRST,IYFIRST,NSEAS, KYEAR,KSEASON) 

Get number of decision variables, bounds, and guess. 

UBL = -ALARGE 
UBU = ALARGE 
N = NU 
CALL SPECU (NU,ISTAGE,IYEAR,ISEASON, 

+ UBL(:N),UBU(:N),UGUESS(:N),USCALE(:N)) 

Verify parameters specified correctly. 

DO  J = 1,NU 
IF (UBL(J).GE.UBU(J)) THEN 
WRITE (*,*) '(MODELSTG) UB:  ', UBL(J), ' NOT < ', UBU(J) 
STOP '(MODELSTG)' 

END IF 
END DO 

IF (P) WRITE (*,*) 'SPECU OK' 

Get bounds on end-of-stage state variables. 

MMMIDX = MAXIDX 
N = NX 
CALL SPECX (MMMIDX,NX,KSTAGE,KYEAR,KSEASON, 

+ YBL(:N),YBU(:N),NDX(:N),XDX(:,:N)) 
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Verify parameters specified correctly. 

DO J = 1,NX 
IF ((YBL(J).NE.XDX(1,J)).OR.(YBU(J) NE.XDX(NDX(J),J))) THEN 
WRITE 
WRITE 
WRITE 
WRITE 
STOP 

END IF 
END DO 

{*,*) '(MODELSTG) Y BOUNDS 
(*,'(11X.4A10)') 'DIM', 
(*,'(11X,2I10,2F10.2)') J, 
(*,'(11X,2I10,2F10.2)') J, 
(MODELSTG)' 

MUST BE AT HI 
'NX','BOUND' 

1, YBL(J) 
NDX(J), YBU(J) 

AND LOW NODES' 
,'NODE' 
, XDX(1,J) 
, XDX(NDXfJ),J) 

Get bounds on state variables and (initial) 
discretization. 

MMMIDX = MAXIDX 
N = NX 
CALL SPECX (MMMIDX,NX,ISTAGE,TYEAR,ISEASON, 

+ XBL(:N),XBU(:N),NDX(:N),XDX(:,:N)) 

Verify parameters specified correctly. 

DO  J = 1,NX 
IF ( (XBL(J) .NE.XDXd, J) ) .OR. (XBU(J) .NE .XDX (NDX (J) , J) ) ) THEN 
WRITE (*,*) '(MODELSTG) X BOUNDS MUST BE AT HI AND 
WRITE (*,'(11X,A10,A10)')     'BOUND', 'NODE' 
WRITE (*,'(11X,F10.2,F10.2)') XBL(J), XDX(1,J) 
WRITE (*,'(11X,F10.2,F10.2)') XBU(J), XDX(NDX(J),J 
STOP '(MODELSTG)' 

END IF 
END DO 

DX = 0.0 
DO  J = 1,NX 

IF (NDX(J).LT.2) THEN 
WRITE (*,*) NDX(:N) 
WRITE (*,*) '(MODELSTG) NDX NOT > 2' 
STOP '(MODELSTG)' 

END IF 
DO  IDX = 1,NDX(J)-1 

LOW NODES' 

DX(IDX,J) = XDX(IDX+1,J) - XDX(IDX,J) 
IF (DX(IDX,J).LE.0.0) THEN 
WRITE (*,'(20E8.2)') XDX(IDX 
WRITE (*,*) '(MODELSTG) DX < 
STOP '(MODELSTG)' 

END IF 
END DO 

END DO 

IDX+1,J), DX(IDX,J) 
0: XDX OR NDX INCORRECT',J,IDX 

NNODES = 1 
DO  J = 1,NX 

NNODES = NNODES * NDX(J) 
END DO 
N = MAXNODES 
CALL SIZETEST (NNODES,1,N, 
DO  J = 1,NX 

'(MODELSTG) NNODES 
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CALL SIZETEST (NDX(J),1,MMMIDX,     '(MODELSTG) IDX      ') 
END DO 

IF (P) WRITE (*,*) 'SPECX OK' 

Get stochastic variables, discretization, and 
significance level required. 

MODELW = 0 
WMEAN = ALARGE 
WSTDV = ALARGE 
WSKEW = ALARGE 
NDW = 0 
WDW =  ALARGE 
PROBW = ALARGE 
PROBMIN =0.0 
MMMIDW = MAXIDW 
N = NW 
CALL SPECWt (MMMIDW,NW,ISTAGE,IYEAR,ISEASON, 

+ MODELW,WMEAN,WSTDV,WSKEW, 
+ NDW,WDW,PROBW,SWLO,SWHI,PROBMIN,GAUSQUAD) 

Verify parameters specified correctly. 

DO  J = 1,NW 
IF (WMEAN(J).EQ.ALARGE) THEN 
WRITE (*,*) '(MODELSTG) WMEAN NOT ASSIGNED FOR W(',J,')' 
STOP '(MODELSTG)' 

END IF 
IF (STOCHASTIC) THEN 

CALL SIZETEST (MODELW(J) ,1, 2 , '(MODELSTG) MODELW ') 
CALL SIZETEST (WSTDV(J),0,ALARGE,'(MODELSTG) WSTDV ') 
IF (WSTDV(J).EQ.ALARGE) THEN 
WRITE (*, *) ' (MODELSTG) WSTDV NOT ASSIGNED FOR W(' ,J, ') ' 
STOP '(MODELSTG)' 

END IF 
IF (MODELW(J).GE.3) THEN 

IF (WSKEW(J).EQ.ALARGE) THEN 
WRITE (*,*) ' (MODELSTG) WSKEW NOT ASSIGNED FOR W(',J, ') ' 
STOP '(MODELSTG)' 

END IF 
END IF 

VALOLD = -ALARGE 
PTEST =0.0 
N = MAXIDW 
CALL SIZETEST (NDW(J),1,MMMIDW,  '(MODELSTG) NDW      ') 
DO  I = 1,NDW(J) 

IF (WDW(I,J).EQ.ALARGE) THEN 
WRITE (*,*) '(MODELSTG) WDW NOT ASSIGNED, W(',I,J,')' 
STOP '(MODELSTG)' 

END IF 
IF (WDW(I,J).LE.VALOLD) THEN 
WRITE (*,*) '(MODELSTG) WDW NOT IN ORDER, W(',I,J,')' 
STOP '(MODELSTG)' 

END IF 
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VALOLD = WDW(I,J) 
IF (PROBW(I,J).EQ.ALARGE) THEN 
WRITE {*,*) ' (MODELSTG) PROBW NOT ASSIGNED, W(',1,J, ') ' 
STOP '(MODELSTG)* 

END IF 
PTEST = PTEST + PROBW(I,J) 

END DO 
IF (ABS(PTEST-1.0).GT.PROBMIN) THEN 
WRITE (*,*) "(MODELSTG) PTEST <> 1.0,', J, PTEST-1.0 
STOP '(MODELSTG)' 

END IF 

IF (.NOT.GAUSQUAD) THEN 
IF (SWLO(J).GE.SWHI(J)) THEN 
WRITE (*,*) '(MODELSTG) SWLO > SWHI,', J 
STOP '(MODELSTG)' 

END IF 
END IF 

END IF 
END DO 

IF (STOCHASTIC) THEN 
N = NINT(PROBMIN) 
CALL SIZETEST (N,0,1, 
NWNODES = 1 
DO  J = 1,NW 
NWNODES = NWNODES * NDW(J) 

END DO 
N = MAXWNODES 
CALL SIZETEST (NWNODES,2,N, 

ELSE 
NDW = 1 
NWNODES = 1 

END IF 

(MODELSTG) PROBMIN  ') 

(MODELSTG) NWNODES  ') 

IF (P) WRITE (*,*) 'SPECW OK' 

Get linear constraints on end-of-stage state. 

ACLBL = -ALARGE 
ACLBU =  ALARGE 
CALL SPECLCON (NU,NX,NW,NCLIN,KSTAGE,KYEAR,KSEASON, 

+ ACL(:NCLIN,:NU+NX+NW), 
+ ACLBL(:NCLIN),ACLBU(:NCLIN)) 

Verify parameters specified correctly. 

DO  I = 1,NCLIN 
IF (ACLBL(I).GE.ACLBU(I)) THEN 
WRITE (*,*) "(MODELSTG) ERROR BOUNDS:  ACLBL NOT < ACLBU' 
WRITE (*,*) ' ENDING STAGE =', KSTAGE,KYEAR,KSEASON 
WRITE (*,*) ACLBL(I), ' NOT < ', ACLBU(I) 
STOP '(MODELSTG)' 

END IF 
END DO 
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Get linear constraints. 

ACLBL = -ALARGE 
ACLBU =  ALARGE 
CALL SPECLCON (NU,NX,NW,NCLIN,ISTAGE,IYEAR,ISEASON, 

+ ACL(:NCLIN,:NU+NX+NW), 
+ ACLBL(:NCLIN),ACLBU(:NCLIN)) 

! Verify parameters specified correctly. 

DO  I = 1,NCLIN 
IF (ACLBL(I).GE.ACLBU(I)) THEN 
WRITE (*,*) '(MODELSTG) ERROR BOUNDS:  ACLBL NOT < ACLBU' 
WRITE (*,*) ' STAGE =', ISTAGE,IYEAR,ISEASON 
WRITE ( *,*) ACLBL(I), ' NOT < ', ACLBU(I) 
STOP '(MODELSTG)' 

END IF 
END DO 

WRITE (*,*) 'SPECLCON OK' 

i  

!Convert values to variables needed and evaluate other values that need 
! to be calculated only once. 
i  

i 

Get character string to identify current run. 

IF ( (NDX(l).GT.99).OR.(NDW(l).GT.9).OR.(ISTAGE+1.GT.999) ) THEN 
WRITE (*,*) '(MODELSTG) ERROR IN CREATING FILE NAMES' 
WRITE (*,*), NDX(l), NDW(l), ISTAGE 
STOP '(MODELSTG)' 

END IF 
IF ( (NX.GT.9).OR.(NW.GE.9) ) THEN 
WRITE (*,*) '(MODELSTG) ERROR IN CREATING FILE NAMES', NX, NW 
STOP '(MODELSTG)' 

END IF 

Nl = INT(NDX(1)/10) 
N2 = NDX(l) - 10*N1 
N3 = INT(NDW(1)/10) 
N4 = NDW(l) - 10*N3 

OPEN (1,STATUS='SCRATCH') 

N5 = INT(  ISTAGE/100 ) 
N6 = INT( (ISTAGE - 100*N5)/10 ) 
N7 = INT(  ISTAGE - 100*N5 - 10*N6 ) 
REWIND (1) 
WRITE (1,'(Al,311,Al,3II,Al,211)') 

+ 't',N5,N6,N7,'x',NX,N1,N2,'w',NW,N4 
REWIND (1) 
READ (1,'(A11)') NAMERUN 
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N5 = INT( (ISTAGE + 1J/100 ) 
N6 = INT( (ISTAGE + 1 - 100*N5)/10 ) 
N7 = INT(  ISTAGE + 1 - 100*N5 - 10*N6 ) 
REWIND (1) 
WRITE (1,'(A1,3I1,A1,3I1,A1,2I1)') 

+ 'f,N5,N6,N7,'x',NX,N1,N2,'w',NW,N4 
REWIND (1) 
READ (1,'(All)') NAMECTG 

CLOSE (1) 

Get state-space grid. 

IBASENX(l) = 1 
DO  J = 2,NX 

IBASENX(J) = IBASENX(J-1)*NDX(J-1) 
END DO 

No links initially:  added as they are created. 

IBELOW = -1 
IABOVE = -1 

Positions and pointers to adjacent nodes. 
On the edge of the domain, adjacent node will be 0, 

IBELOW(:NX,:NNODES) = 0 
IABOVE(:NX,:NNODES) = 0 

ID = 1 
ID(1) = 0 
DO  I = l,NNODES 

DO  J = 1,NX 
ID(J) = ID(J) + 1 
IF (ID(J).GT.NDX(J)) THEN 

ID(J) = 1 
ELSE 

EXIT 
END IF 

END DO 

DO  J = 1,NX 
XN(J,I) = XDX(ID(J),J) 
IF (ID(J).GT.l) THEN 

IXB = I - IBASENX(J) 
IBELOW(J,I) = IXB 
IABOVE(J,IXB) = I 

END IF 
END DO 

END DO 

Calculate locations and weights for each dimension. 
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IF (STOCHASTIC) THEN 

#### 

ELSE 
NDW = 1 
WDW(1,:NW) =WMEAN(:NW) 
PROBW =0.0 
PROBW(l,:NW) =1.0 

END IF 

Get multivariate locations and weights for each node 

PWN =0.0 
LIKELY = .FALSE. 
IF (GAUSQUAD) LIKELY = .TRUE. 
ID = 1 
ID(1) = 0 
DO  IW = l.NWNODES 

Identify current node's position. 

DO  J = 1,NW 
ID(J) = ID(J) + 1 
IF (ID(J).GT.NDW(J)) THEN 

ID(J) = 1 
ELSE 

EXIT 
END IF 

END DO 

Identify and calculate node's probability weight. 

PTEST =1.0 
DO  J = 1,NW 

WN(J,IW) = WDW(ID(J),J) 
PTEST = PTEST*PROBW(ID(J),J) 

END DO 
PWN(IW) = PTEST 

Identify if node is likely. 

IF (PTEST.GT.PROBMIN) LIKELY(IW) = .TRUE. 

END DO 

Verify probabilities sum to one. 

PTEST =0.0 
DO  IW = l.NWNODES 

PTEST = PTEST + PWN(IW) 
END DO 
IF (ABS(1.0-PTEST).GT.PROBMIN) THEN 
WRITE (*,*) ' (MODELSTG) PROB < 1.0' , PTEST, 1.0-PTEST 
STOP '(MODELSTG)' 
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END IF 

Verify likely probabilities sum to one. 

PTEST =0.0 
DO  IW = l.NWNODES 

IF (LIKELY(IW)) PTEST = PTEST + PWN(IW) 
END DO 
IF (ABS(l.O-PTEST).GT.10.0*PROBMIN) THEN 
WRITE (*,*) '(MODELSTG) LIKELY PROB < 1.0', PTEST, 1.0-PTEST 
STOP '(MODELSTG)' 

END IF 

Echo model parameters. 

+ 
+ 

IF (P) THEN 
WRITE (*,'(X,20A,A11,20A,A40)') 

('-',1=1,20), NAMERUN, ('-',1=1,20) 
'(MODELSTG) MODEL FOR STAGE' 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

) '»DECISION VARIABLES =', NU 
(A8,20F8.2)') 'MIN U:', UBL(:NU) 
(A8,20F8.2)') 'MAX U:', UBU(:NU) 
(A12,20F8.2)') 'TRIAL SOLN:', UGUESS(:NU) 
(A14,20F8.2)')'LENGTH SCALE:',USCALE(:NU) 

') 

*) '#STATE VARIABLES =', NX 
'(A8,20F8.2)') 'MIN X:', XBL( 
'(A8,20F8.2)') 'MAX X:', XBU( 
'(A16,20I4)') 'DISCRETIZATION 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
DO  J = 1,NX 
WRITE (*, ' (A6,I2,A2,20F8.2) ' ) 

'XDX(',J,'):',XDX(:NDX(J),J) 
END DO 

NX) 
NX) 

NDX(:NX) 
'TOTAL INITIAL NODES =', NNODES 

DO  J = 1,NX 
WRITE (*,'(A6,I2,A2,20F8.2)') 

'DX(',J,'):',DX(:NDX(J)-1,J) 
END DO 
WRITE (*,*) 

WRITE (*,*) '#STOCHASTIC VARIABLES =', NW 
WRITE (*,'(A16.20I4)') 'DISCRETIZATION:',NDW(:NW) 
WRITE (*,*) 'TOTAL NODES =', NWNODES 
WRITE (*,*) 'GAUSSIAN QUADRATURE = ', GAUSQUAD 
IF (GAUSQUAD) THEN 
WRITE (*,'(A12,A10,A18)') 

'IW','PROB','DISCRETE STDV''S' 
DO  I = 1,NWNODES 
WRITE (*,'(6X,I6,F10.6,20F6.2)') 

I, PWN(I), WN(:NW,I) 
END DO 

ELSE 
WRITE (*,'(A12,A8,A8,A18)') 
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+ ■IW','PROB','LIKELY?','DISCRETE STDV''S' 
DO  I = l.NWNODES 
WRITE (*, ' (6X,I6,F8.5,L8,20F6.2) ") 

+ I, PWN(I), LIKELY(I), WN(:NW,I) 
END DO 

END IF 
WRITE (*,*) 

WRITE (*,*) '#LINEAR CONSTRAINTS =', NCLIN 
IF (NCLIN.NE.O) WRITE (*,*) 'BL, BU :: A' 

DO  I = 1,NCLIN 
WRITE (*,'(2F8.2,A2,30F6.2)') ACLBL(I),ACLBU(I) 

+ '::', ACL(I,:NU+NX+NW) 
END DO 

WRITE (*,*) 

WRITE (*,*) '(MODELSTG) END' 
END IF 

END 

Subroutine NODE VAL 

This routine identifies the expected cost-to-go and first derivatives for an initial 

state. This includes evaluation of control decisions and costs for each outcome of the 

stochastic variables (i.e., nodes of the stochastic-space grid). Gradients are evaluated by 

a crude finite-difference method if needed and not provided by other routines. 

SUBROUTINE NODE_VALt ( LEVEL, IXNODE, X, 
+ U, F, FX, ERROR ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB'    !Problem size parameters and tolerances. 
INTEGER LEVEL, IXNODE 
DOUBLE PRECISION X(NX) 

DOUBLE PRECISION      U(NU), F, FX(NX) 
LOGICAL ERROR 

Calls user specified solver to find optimal control u and associated 
cost-function value f(x) for initial state x.  If requested, gradient 
fx = df/dx is calculated. 

Values calculated as weighted average of stochastic variable outcomes. 
Gradients taken directly from solver if they appear correct; otherwise, 
gradient calculated by finite differences. 

On input, LEVEL identifies what derivatives are to be calculated: 
0:  none (only u and f) 
1:  fx 

On output, LEVEL identifies how derivatives actually were calculated 
(if derivatives requested). 

On input, if ERROR = true on input, diagnostic output is to be provided 
by solver. 

On output, if ERROR = true, there was a problem with solver. 
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U on input identifies starting solution.  Not reinitialized for current 
x on guess that solutions for different iw will be closer than uguess. 

U on output identifies weighted average of solutions for each iw.  It 
DOES NOT identify an actual solution unless deterministic (nwnodes=l). 

INCLUDE 'I.SIZEALLO' 
INCLUDE "I.CONTROL" 
INCLUDE 'I.SPECW' 
INCLUDE 'I.SPECNOW 
INCLUDE 'I.PERFORM' 

!Parameters to allocate storage space. 
!Constraints on control. 
!Stochastic realizations. 
!Current stage id. 
!Track performance of solver and output. 

Local variables for transx. 

DOUBLE PRECISION 

Local 

DOUBLE PRECISION 

Local 

DOUBLE PRECISION 

Local 

LOGICAL 

Local 

S(NW), Y(NX), 
YU(NX,NU), YX(NX,NX), YW(NX,NW) 

variables cost_now. 

C, CU(NU), CX(NX), PEN 

variables for transw. 

SW(NW), W(NW) 

variables for opt_solv. 

ERRTEST 

variables for finite difference calculations. 

INTEGER 
DOUBLE PRECISION 

LOGICAL 

INTEGER 

J, L 
UHOLD(NU), FHOLD, 
DEL, DELINV1, DELINV2, DELINV, 
XDEL(NX), Fl, F2, Ul(NU), U2(NU) 
SKIP 

Other local variables. 

DOUBLE PRECISION 
+ 

+ 

+ 

+ 

LOGICAL 
REAL*4 

EXTERNAL 

IW, LEVELO, K, 
NT_SOL, NT_OPT, NT_OBJ, NT_INT 
XHOLD(NX), WHOLD(NW), 
DUMMY, SUMF, SUMFX(NX), SUMU(NU), 
ADJ(NLCON), 
ERRTOL, ERRTST, G, 
Cl, C2, Yl(NX), Y2(NX) 
FDIFF, ERRORO 
SECNDS, TIMEO 

COST_NOW, TRANSX, OPT_SOLV 

! Specify interval for finite differences. 
! Used for override of solver gradients and for 
! verification of gradients in cost_now and transx. 
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DEL    = l.OE-08 

Specify tolerance for finite diff verification. 

ERRTOL = 1.0E-04 

Verify inputs. 

IF ( (LEVEL.LT.O).OR.(LEVEL.GT.l) ) THEN 
WRITE (*,*) '(NODE_VAL) INCONSISTENT LEVEL = ', LEVEL 
STOP 

END IF 

IF (NTNLN.NE.O) THEN 
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR.NON-LINEAR TRANSITION' 
STOP '(NODE_VAL)' 

END IF 

Save initial settings. 

NT_INT = N_INT 
NT_OBJ = N_OBJ 
NT_OPT = N_OPT 
NT SOL = NSOL 

ERRORO = ERROR 
LEVELO = LEVEL 
XHOLD = X 

Initialize values. 

TIMEO = SECNDS(O.O) 

DUMMY = 9.9E20 
DELINV1 = 1.0 / DEL 
DELINV2 = 0.5 * DELINV1 

Find optimal u and cost for each w. 

SUMU =0.0 
SUMF =0.0 
SUMFX =0.0 
ERROR = .FALSE. 

DO  IW = l.NWNODES 
IF (LIKELY(IW)) THEN 
WHOLD = WN(:NW,IW) 
W = WHOLD 
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Check current cost function. 

LEVEL = 1 
C =   DUMMY 
CU =  DUMMY 
CX =  DUMMY 
PEN = DUMMY 
CALL COST_NOW (LEVEL,NU,NX,NW, 

+ ISTAGE,IYEAR,ISEASON,U,X,W, 
+ C,CU,CX,PEN) 

IF (LEVEL.NE.l) THEN 
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR dC BY FINITE DIFF' 
STOP '(NODE_VAL)' 

END IF 
IF (C.EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) C MISSING FROM COST_NOW' 
STOP '(NODE_VAL)' 

END IF 
IF (PEN.EQ.DUMMY) THEN 
WRITE {*,*) ' (NODE_VAL) PEN MISSING FROM COST_NOW' 
STOP "(NODE_VAL)' 

END IF 
DO  K = 1,NU 

IF (CU(K).EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) CU(',K, ') MISSING FROM COST_NOW 
STOP '(NODE_VAL)' 

END IF 
END DO 
DO  J = 1,NX 

IF (CX(J).EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) CX(',J, ') MISSING FROM COST_NOW' 
STOP '(NODE_VAL)' 

END IF 
END DO 

Check transistion function. 

LEVEL = 1 
Y =  DUMMY 
YU = DUMMY 
YX = DUMMY 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y,YU,YX,YW) 

IF (LEVEL.NE.l) THEN 
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR dY BY FINITE DIFF' 
STOP '(NODE_VAL)' 

END IF 
DO  J = l.NX 

IF (Y(J).EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) Y(',J,') MISSING FROM TRANSX' 
STOP '(NODE_VAL)' 

END IF 
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DO  K = 1,NU 
IF (YU(J,K).EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) YU(',J,K,') MISSING FROM TRANSX' 
STOP '(NODE_VAL)' 

END IF 
END DO 
DO  K = 1,NX 

IF (YX(J,K).EQ.DUMMY) THEN 
WRITE (*,*) '(NODE_VAL) YX(',J,K,') MISSING FROM TRANSX' 
STOP '(NODE_VAL)' 

END IF 
END DO 
DO  K = 1,NW 

IF (YW(J,K).EQ.DUMMY) THEN 
WRITE (*,*) ' (NODE_VAL) YW(',J,K,') MISSING FROM TRANSX' 
STOP '(NODE_VAL)' 

END IF 
END DO 

END DO 

Solve for current w. 

IF (NEWTON) THEN 
LEVEL = LEVELO 
FDIFF = .FALSE. 

ELSE 
LEVEL = 0 
IF(LEVELO.NE.O) FDIFF = 

END IF 
ISW = IW 
ERRTEST = ERRORO 

.TRUE. 

X0(:NX) = X 
WO(:NW) = WHOLD 
CALL OPT_SOLVt (LEVEL, U,F,FX,ERRTEST) 

IF (ERRTEST) ERROR = .TRUE. 

IF ( (NEWTON).AND.(LEVEL.NE.LEVELO) ) THEN 
WRITE (*,'(A78)') 

+ '(NODE_VAL) SOLVER DID NOT PROVIDE GRADIENTS, '// 
+ 'SWITCHING TO FINITE DIFFERENCES' 

FDIFF = .TRUE. 
END IF 

Calculate derivative by finite differences 
if required but not provided by opt_solv. 

Save values, 

UHOLD = U 
FHOLD = F 

IF (FDIFF) THEN 
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LEVEL = 0 
DO  J = 1,NX 

XDEL = X 
DELINV = DELINV2 
DO  L = 1,2 

ID neighboring x used to calculate finite diff. 
Central diff approximation used unless outside 
the domain of x defined by the disretization. 

SKIP = .FALSE. 
IF (L.EQ.l) THEN 

XDEL(J) = X(J) - DEL 
IF (XDEL(J).LT.XBL(J)) THEN 

Fl = FHOLD 
Ul = UHOLD 
DELINV = DELINV1 
SKIP = .TRUE. 

END IF 
ELSE 

XDEL(J) = X(J) + DEL 
IF (XDEL(J).GT.XBU(J)) THEN 

F2 = FHOLD 
U2 = UHOLD 
DELINV = DELINV1 
SKIP = .TRUE. 

END IF 
END IF 

Solve for neighboring x if not outside domain. 

IF (.NOT.SKIP) THEN 

Solve for xdel. 

X0(:NX) = XDEL 
W0(:NW) = WHOLD 
ERRTEST = ERRORO 
CALL OPT_SOLVt (LEVEL, U,F,FX,ERRTEST) 

Save values. 

IF (L.EQ.l) THEN 
Fl = F 
Ul = U 

ELSE 
F2 = F 
U2 = U 

END IF 
END IF 

END DO 

Calculate finite difference values. 
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FX(J)   = (F2 - F1)*DELINV 
UX(J,:) = (U2 - U1)*DELINV 

END DO 

Reset to initial solution. 

U = UHOLD 
F = FHOLD 

if (error) write (*,'(a26,50x,30fl4.8)') 
+ '(node_val) u,x,w,f,fx:', 
+ u,xO(:NX),wO(:NW),f,fx 

END IF 

Get cost for current w. 

SUMU = SUMU + U*PWN(IW) 
SUMF = SUMF + F*PWN(IW) 
IF (LEVEL0.EQ.1) SUMFX = SUMFX + FX*PWN(IW) 

Verify user supplied gradients. 

Check cost_now gradients. 

LEVEL = 1 
X = XHOLD 
W = WHOLD 
DO  K = 1,NU 

U = UHOLD 
U(K) = UHOLD(K) - DEL . 
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W, 

C1,CU,CX,PEN) 
U(K) = UHOLD(K) + DEL 
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W, 

C2,CU,CX,PEN) 
G = (C2 - CD *DELINV2 
ERRTST = ERRTOL*(1.0 + ABS(Cl) + ABS(G)) 
IF (ABS(CU(K)-G).GT.ERRTST) THEN 
WRITE (*,*) ' (NODE_VAL) CU <> G',CU(K) ,G,CU(K)-G 

')    'IX,IW,K:',IXNODE,IW,K 
')    'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON 
■) 'C1,C2,DEL:', Cl, C2, DEL 

WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 
WRITE (* 

) 'U 
') 'X 
•) 'W 

UHOLD 
X 
W 

STOP '(NODE_VAL)' 
END IF 

END DO 

U = UHOLD 
W = WHOLD 
DO  K = 1,NX 

X = XHOLD(:NX) 
X(K) = XHOLD(K) - DEL 
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W, 
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C1,CU,CX,PEN) 
X(K) = XHOLD(K) + DEL 
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X, W, 

C2,CU,CX,PEN) 
G = (C2 - C1)*DELINV2 
ERRTST = ERRTOL*(1.0 + ABS(Cl) + ABS(G)) 
IF (ABS(CX 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
STOP 

END IF 
END DO 

(' 

(' 

K)-G).GT.ERRTST) THEN 
') '<NODE_VAL) CX <> G',CX(K),G,CX(K)-G 

'IX,IW,K:',IXNODE,IW,K 
•ISTAGE,IYEAR,ISEASON: ' , ISTAGE,IYEAR,ISEASON 
'C1,C2,DEL:', Cl, C2, DEL 

') 

'U 
'X 
'W 

u 
XHOLD 
W 

(NODE_VAL) 

Check transX gradients. 

LEVEL = 1 
X = XHOLD 
W = WHOLD 
DO  K = 1,NU 

U = UHOLD 
U(K) = UHOLD(K) - DEL 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y1,YU,YX,YW) 

U(K) = UHOLD(K) + DEL 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y2,YU,YX,YW) 

DO  J = 1,NX 
G = (Y2(J) - Yl(J))*DELINV2 
ERRTST = ERRTOL*(1.0 + ABS(YKJ)) + ABS(G)) 
IF (ABS(YU 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
STOP 

END IF 
END DO 

END DO 

{' 

(' 

J,K)-G).GT.ERRTST) THEN 
*) 
*) 

') 

'(NODE_VAL) YU <> G',YU(J,K),G,YU(J,K)-G 
'IX,IW,J,K:',IXNODE.IW,J,K 
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON 
'Y1,Y2,DEL:', Yl(J), Y2(J), DEL 

UHOLD 
X 
W 

(NODE_VAL)' 

U = UHOLD 
W = WHOLD 
DO  K = 1,NX 

X = XHOLD 
X(K) = XHOLD(K) - DEL 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y1,YU,YX,YW) 

X(K) = XHOLD(K) + DEL 
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CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 
+ ISTAGE,IYEAR,ISEASON,U,X,W, 
+ S,Y2,YU,YX,YW) 

DO  J = 1,NX 
G = (Y2(J) - Y1(J))*DELINV2 
ERRTST = ERRTOL*(1.0 + ABS(Y1(J)) + ABS(G)) 
IF (ABS(YX(J,K)-G).GT.ERRTST) THEN 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
STOP 

END IF 
END DO 

END DO 

(' r) 

'(NODE_VAL) YX <> G',YX(J,K),G,YX(J,K)-G 
'IX,IW,J,K:',IXNODE,IW,J,K 
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON 
'Y1,Y2,DEL:', Y1(J), Y2(J), DEL 
■u 
'X 
'W 

(NODE_VAL) 

U 
XHOLD 
W 

U = UHOLD 
X = XHOLD 
DO  K = 1,NW 
W = WHOLD 
W(K) = WHOLD(K) - DEL 
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN, 

ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y1,YU,YX,YW) 

WHOLD(K) + DEL 
(LEVEL,NU,NX,NW,NTNLN, 
ISTAGE,IYEAR,ISEASON,U,X,W, 
S,Y2,YU,YX,YW) 

W(K) 
CALL TRANSXt 

DO  J = 1,NX 
G = (Y2(J) - Y1(J))*DELINV2 
ERRTST = ERRTOL*(1.0 + ABS(YKJ)) + ABS(G)) 
IF (ABS(YW(J.K)-G).GT.ERRTST) THEN 

'(NODE_VAL) YW <> G',YW(J,K),G,YW(J,K)-G 
'IX,IW,J,K:',IXNODE,IW,J,K 
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON 
•Y1,Y2,DEL:', Yl(J), Y2(J), DEL 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
STOP 

END IF 
END DO 

END DO 

(* 
(* 
(* 
(* 
{* 
(* 
(* 

'U 
'X 
"W 

u 
X 
WHOLD 

(NODE_VAL) 

END IF 
END DO 

U  = SUMU 
F  = SUMF 
FX = SUMFX 
LEVEL = LEVELO 

Verify outputs. 
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NT_INT = N_INT - NT_INT 
NT_OBJ = N_OBJ - NT_OBJ 
NT_OPT = N_OPT - NT_OPT 
NT SOL = N_SOL - NT_SOL 

END 

Subroutine ADJ MOD 

This routine adjusts cost-to-go values and gradients to ensure convex 

interpolation. It is assumed that if node values are consistent with a convex function, 

then the interpolation should try to preserve this convexity. This is accomplished by 

adjusting the gradients and, if necessary, the cost-to-go to satisfy the one-dimensional 

convexity constraints of Chapter Five. This prevents small oscillations or numerical error 

from creating false local minima that become significant with additional recursions (i.e., 

stages). 

SUBROUTINE ADJ_MOD  ( ISTAGE, IYEAR, ISEASON, IBELOW, IABOVE, 
+ XN, FN, FXN ) 

IMPLICIT NONE 
INCLUDE 'I.SIZEPROB' 
INTEGER 

v 
DOUBLE PRECISION 

!Parameters for problem size. 
ISTAGE, IYEAR, ISEASON, 
IBELOW(NX,NNODES), IABOVE(NX,NNODES) 
XN(NX,NNODES), 
FN(NNODES), FXN(NX,NNODES) 

Adjusts cost function solutions using user-supplied constraints, and, 
if gdp, then adjusts gradients to produce a convex Hermite interpolat. 

ix = 1 is assumed to be the lowest node in the domain. 
Each node ix has the associated characteristics: 

xn     location of node 
fn      function value at node 
fxn     function gradient at node 

Nodes and values are contained in a linked list that points to nodes 
immediately above and below in each dimension.  The following are 
special cases: 

--Nodes on the edge of the domain:        an adjacent node will be 0 
--Interpolated nodes used for continuity:  an adjacent node will be -1 
G used for finite difference gradients. 

Local variables for specf. 

DOUBLE PRECISION      FMIN, FMAX, FXMIN(NX), FXMAX(NX) 

Other local variables. 

INTEGER MAXITER, MIDITER, NITER, 
v IX, J, IXB, IXA, KEY, IXBB, IXAA 
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DOUBLE PRECISION 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

I 
+ 
+ 

LOGICAL 

ERRTOL, TOL, FNEW, ACCEL, 
FO(NNODES), FX0(NX,NNODES), 
FHOLD(NNODES), FXHOLD{NX,NNODES) , 
X, XB, XA, F, FB, FA, FX, FXB, FXA, GB, GA, 
GA3, GAMIN, GAMAX, GB3, GBMIN, GBMAX, 
D, DA, DB, DENOM, FRAC, 
FXCA1, FXCA2, FXCB1, FXCB2, 
XBB, XAA, GBB, GAA, 
FDIFF, FXDIFF(NX) 
CONVEX(NX,NNODES), 
NOCHANGE, DONE, 
CA1, CA2, CB1, CB2, FINALTRY, SKIP 

EXTERNAL SPECF 

ERRTOL = 1.0E-15 
MAXITER =21 
ACCEL =2.0 

Set end-of-sharing iteration at which entire 
adjustment is taken by current node, if possible. 

MIDITER 

Save inputs. 

WRITE (*,*) ' (ADJ_MOD) BEGIN, STAGE =', ISTAGE 
F0  = FN 
FXO = FXN 

Get bounds on function values. 

FMIN = -1.0E20 
FMAX = 1.0E20 
FXMIN = -1.0E20 
FXMAX =  1.0E20 

CALL SPECF (NX,ISTAGE,IYEAR,ISEASON, FMIN,FMAX,FXMIN,FXMAX) 

Verify parameters specified correctly. 

IF (FMAX.LT.FMIN) THEN 
WRITE (*,*) '(MODELSTG) FMAX < FMIN', FMAX, FMIN, FMAX-FMIN 
STOP '(MODELSTG)' 

END IF 
DO  J = 1,NX 

IF (FXMAX(J).LT.FXMIN(J)) THEN 
WRITE (*,*) '(MODELSTG) FXMAX < FXMIN', J, FXMAX(J), FXMIN(J) 
STOP '(MODELSTG)' 

END IF 
IF ( (FMIN.NE.-1.0E20).OR.(FMAX.NE.1.0E20) ) THEN 

IF ( (FXMIN(J).GT.0.0).OR.(FXMAX(J).LT.0.0) ) THEN 
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WRITE 
WRITE 

• STOP 
END IF 

END IF 
END DO 

(*,*) '(MODELSTG) FX = 0.0 MUST BE WITHIN BOUNDS' 
(*,*} ' CHANGE FXMIN,FXMAX:', FXMIN,FXMAX 
(MODELSTG)' 

!Adjust function values. 
;  

i   

! Adjust consistent with specf. 
i   

DO  IX = l,NNODES 
F = FN(IX) 
IF      (F.LT.FMIN) THEN 
WRITE (*,'(A20,I6,2F16.8,E8.2)') 

i-        ' (ADJ_MOD) F < FMIN', IX, F, 
F = FMIN 

ELSE IF (F.GT.FMAX) THEN 
WRITE (*, ' (A20,I6,2F16.8,E8.2) ' ) 

f- ' (ADJ_MOD) F > FMAX' , IX, F, 
F = FMAX 

END IF 
FN(IX) = F 

END DO 

FMIN, F-FMIN 

FMAX, F-FMAX 

Write non-convex nodes grouped by dimension. 

DO  J = 1,NX 
DO  IX = l.NNODES 

IXB = IBELOW(J,IX) 
IXA = IABOVE(J,IX) 
IF ( (IXB.GT.O).AND.(IXA.GT.O) ) THEN 

F = FN(IX) 
X = XN(J,IX) 
XB = XN(J,IXB) 
FB = FN(IXB) 
XA = XN(J,IXA) 
FA = FN(IXA) 

IF (XB.GE.X) THEN 
WRITE (*,*) ' (ADJ_MOD) ERROR 1 DIVIDE', XB, X 
STOP '(ADJ_MOD)' 

END IF 
IF (X.GE.XA) THEN 
WRITE (*,*) ' (ADJ_MOD) ERROR 2 DIVIDE', X, XA 
STOP '(ADJ_MOD)' 

END IF 

GB = (F - 
GA = (FA 

FB) /(X - 
- F)/(XA 

XB) 
- X) 
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TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB)) 
TOL = MIN( TOL,1.0 ) 
IF (GB-TOL.GT.GA) THEN 
WRITE (*,'(A53,I6,I4,2F14.8,E10.4,3F12.4,20F10.2)') 

+ ' (ADJ_MOD) ***NOT CONVEX*** IX,J,GB>GA,DIFF,B/F/A,X: ', 
+ IX,J,GB,GA,GB-GA,FB,F,FA,XN{:,IX) 

END IF 

END IF 
END DO 

END DO 

Adjust values for convexity. 

Assumes lack of convexity due to error in interpol. 
Values adjusted iteratively using adjacent nodes. 

NITER = 0 
DO 
NITER = NITER + 1 
IF (P) WRITE (*,*) '(ADJ_MOD) BEGINING VALUE ITERATION', NITER 
NOCHANGE = .TRUE. 
FHOLD = FN 

DO  IX = l,NNODES 
F = FHOLD(IX) 
DO  J = 1,NX 

IXB = IBELOW(J,IX) 
IXA = IABOVE(J,IX) 
IF ( (IXB.GT.O).AND.(IXA.GT.O) ) THEN 
X = XN(J,IX) 
XB = XN(J,IXB) 
FB = FHOLD(IXB) 
XA = XN(J,IXA) 
FA = FHOLD(IXA) 

FNEW = ( FBMXA-X) + FA* (X-XB) ) / (XA-XB) 
IF (FNEW.LT.FHOLD(IX)) THEN 
NOCHANGE = .FALSE. 
F = MIN( F,FNEW ) 

END IF 
END IF 

END DO 
IF (F.LT.FMIN) THEN 
NOCHANGE = .FALSE. 
F = FMIN 

END IF 
FN(IX) = F 

END DO 

IF (NOCHANGE) THEN 
EXIT 

ELSE IF (NITER.GE.MAXITER*20) THEN 
WRITE (*,*)  ' (ADJ_MOD) WARNING:  MAX ITERATIONS EXCEEDED' 
EXIT 

END IF 
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END DO 

Write changed nodes. 

DO  IX = 1.NN0DES 
FDIFF = FN(IX) - FO(IX) 
TOL = ERRTOLM1.0 + ABS(FN(IX)) + ABS(F0(IX))) 
TOL = MIN( TOL,1.0 ) 
IF (ABS(FDIFF).GT.TOL) 

+   write (*,•(a33,3x,i6,3fl2.4,40fl0.2)•) 
+ ■(adj_mod) ix,f(old/diff/new),x:', 
+ ix,fO(ix),fdiff,fn(ix),xn(:,ix) 
END DO 

Verify adjusted values consistent with convex func. 

CONVEX = .TRUE. 
DO  IX = l.NNODES 

DO  J = 1,NX 
IXB = IBELOW(J,IX) 
IXA = IABOVE(J,IX) 
IF ( (IXB.GT.O).AND.(IXA.GT.O) ) THEN 
X = XN(J,IX) 
F = FN(IX) 
XB = XN(J,IXB) 
FB = FN(IXB) 
XA = XN(J,IXA) 
FA = FN(IXA) 

GB = (F - FB)/(X - XB) 
GA = (FA - F)/(XA - X) 

IF (GB.GT.GA) THEN 
CONVEX(J,IX) = .FALSE. 
TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB)) 
TOL = MIN( TOL,1.0 ) 
IF (GB-TOL.GT.GA) THEN 
WRITE (*,'(A53,I6,I4,2F14.8,E10.4,3F12.4,20F10.2)') 

+ '(ADJ_MOD) ***NOT CONVEX*** IX,J,GB>GA,DIFF,B/F/A,X:', 
+ IX,J,GB,GA,GB-GA,FB,F,FA,XN(:,IX) 

END IF 
END IF 

END IF 
END DO 

END DO 

Adjust function gradients. 

Adjust consistent with specf. 
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DO  IX = l.NNODES 
IF ( (FN(IX).EQ.FMIN)-OR.(FN(IX).EQ.FMAX) ) FXN(:,IX) = 0.0 
DO  J = 1,NX 

FX = FXN(J,IX) 
IF      (FX.LT.FXMIN(J)) THEN 

IF  <FX+ERRTOL.LT.FXMIN(J)) THEN 
WRITE (*,'(A22,I6,I4,2F14.8,E10.2)') 

f '(ADJ_MOD) FX < FXMIN',IX,J,FX,FXMIN(J),FX-FXMIN(J) 
END IF 
FX = FXMIN(J) 

ELSE IF (FX.GT.FXMAX(J)) THEN 
IF  (FX-ERRTOL.GT.FXMAX(J)) THEN 
WRITE (*,'(A22,I6,I4,2F14.8,E10.2)') 

i- ' (ADJ_MOD) FX > FXMAX1 , IX, J, FX, FXMAX (J) ,FX-FXMAX(J) 
END IF 
FX = FXMAX(J) 

END IF 
FXN(J,IX) = FX 

END DO 
END DO 

Calc. finite diffs and verify consistent with specf. 

DO  IX = l,NNODES 
F = FN(IX) 
DO  J = 1,NX 

X = XN(J,IX) 

IXB = IBELOW(J,IX) 
IF (IXB.GT.O) THEN 
XB = XN(J,IXB) 
FB = FN(IXB) 
GB = (F - FB)/(X - XB) 
TOL = ERRTOLM1.0 + ABS(GB)) 
TOL = MIN( TOL,1.0 ) 
IF (GB+TOL.LT.FXMIN(J)) 

+        WRITE (*,'(A26,I6,I4,2F14.8,E10.2)') 
+ '(ADJ_MOD) ERROR:  GB < MIN',IX,J,GB,FXMIN(J),GB-FXMIN(J) 

END IF 

IXA = IABOVE(J,IX) 
IF (IXA.GT.O) THEN 
XA = XN(J.IXA) 
FA = FN(IXA) 
GA = (FA - F)/(XA - X) 
TOL = ERRTOLM1.0 + ABS(GA)) 
TOL = MIN( TOL,1.0 ) 
IF (GA-TOL.GT.FXMAX(J)) 

+        WRITE (*,'(A26,I6,I4,2F14.8,E10.2)') 
+ '(ADJ_MOD) ERROR:  GA > MAX',IX,J,GA,FXMAX(J),GA-FXMAX(J) 

END IF 
END DO 

END DO 
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! Adjust gradients when using Hermite interpolation. 
i   

! Note:  since no absolute reference, adjust values 
! only at current node and let values at adjacent 
! nodes be adjusted in their turn. 

FINALTRY = .FALSE. 
IF (GDP) THEN 
NITER = 0 
DO 

j  

NITER = NITER + 1 
WRITE (*,*) ' (ADJ_MOD) BEGINING GRADIENT ITERATION', NITER 
DONE = .TRUE. 
FXHOLD = FXN 

Adjust gradients consistent with convex function. 

DO  IX = 1.NN0DES 
F = FN(IX) 
DO  J = 1,NX 

Get useful values. 

X = XN(J,IX) 
FX = FXHOLD(J,IX) 

IXB = IBELOW(J,IX) 
IF (IXB.GT.O) THEN 
XB = XN(J.IXB) 
FB = FN(IXB) 
FXB = FXHOLD(J,IXB) 
GB = (F - FB)/(X - XB) 

END IF 

IXA = IABOVE(J,IX) 
IF (IXA.GT.O) THEN 
XA = XN(J,IXA) 
FA = FN(IXA) 
FXA = FXHOLD(J,IXA) 
GA = (FA - F)/(XA - X) 

END IF 

Adjust lower bound gradient. 

IF      (IXB.LE.O) THEN 
IF (FX.GT.GA) THEN 
DONE = .FALSE. 
TOL = ERRTOLM1.0 + ABS(GA)) 
TOL = MIN( TOL,1.0 ) 
IF ( P.AND.(FX-TOL.GT.GA) ) 

+ WRITE (*,'(A22,I6,I4,2F14.8,E10.2)') 
+ '(ADJ_MOD) FX > GA ',IX,J,FX, GA,FX-GA 

IF (FXA.GT.GA) THEN 
FX = GA - TOL 
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ELSE 
FX = GA 

END IF 
END IF 

! Adjust upper bound gradient. 

ELSE IF (IXA.LE.O) THEN 
IF (FX.LT.GB) THEN 
DONE = .FALSE. 
TOL = ERRTOLM1.0 + ABS(GB)) 
TOL = MIN( TOL,1.0 ) 
IF ( P.AND.(FX+TOL.LT.GB) ) 

+ WRITE (*, ' (A22,I6,I4,2F14.8,E10.2) ' ) 
+ '(ADJ_MOD) FX < GB ',IX,J,FX, GB,FX-GB 

IF (FXB.LT.GB) THEN 
FX = GB + TOL 

ELSE 
FX = GB 

END IF 
END IF 

! Adjust internal gradient. 
! No change if finite diff indicates not convex. 

ELSE IF (CONVEX(J,IX)) THEN 
IF (GB.GT.GA) THEN 
WRITE (*,*) '(ADJ_MOD) ERROR 1:', J,IX,FB,F,FA,GB,GA 
STOP '(ADJ_MOD)" 

END IF 

TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB)) 
TOL = MIN( TOL,1.0 ) 

IF (FX.GE.GB) THEN 
IF (FX.GT.GA) THEN 
DONE = .FALSE. 
IF ( P.AND.(FX-TOL.GT.GA) ) 

+ WRITE (*, ' (A22,I6,I4,2F14.8,E10.2) ' ) 
+ '(ADJ_MOD) FX > GA ',IX,J, FX,GA, FX-GA 

IF (GB+(TOL+TOL).LT.GA) THEN 
FX = GA - TOL 

ELSE 
FX = 0.5*(GB + GA) 

END IF 
END IF 

ELSE IF (FX.LE.GA) THEN 
IF (FX.LT.GB) THEN 

DONE = .FALSE. 
IF ( P.AND.(FX+TOL.LT.GB) ) 

+ WRITE (*,'(A22,I6,I4,2F14.8,E10.2)') 
+ '(ADJ_MOD) FX < GB ',IX,J, FX,GB ,FX-GB 

IF (GB+(TOL+TOL).LT.GA) THEN 
FX = GB + TOL 

ELSE 
FX = 0.5*(GB + GA) 

END IF 
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END IF 

ELSE 
FX = 0.5*(GB + GA) 
IF (GB-TOL.GT.GA) THEN 
WRITE (*,*) ' (ADJ_MOD) ERROR:  GB>GA',IX,J,GB,GA,FX 
STOP '(ADJ_MOD)' 

END IF 
END IF 

END IF 

FXN(J.IX) = FX 

END DO 
END DO 

Adjust gradients for convex function interpolation. 

Adjustments to gradients at both ends of an interval 
are made in proportion to their deviation from the 
finite difference gradient.  The combined 
adjustment on both nodes should result in convex 
interpolation. 

Tight is passed in common. 

FXHOLD = FXN 
DO  IX = l,NNODES 

F = FN(IX) 
DO  J = 1,NX 

SKIP = .FALSE. 

Get useful values. 

X = XN(J,IX) 
FX = FXHOLD(J,IX) 

IXB = IBELOW(J,IX) 
IF (IXB.GT.0) THEN 
XB = XN(J.IXB) 
FB = FN(IXB) 
FXB = FXHOLD(J,IXB) 
GB = (F - FB)/(X - XB) 
GB3 = (3.0 + TIGHT + TIGHT)*GB 
GBMAX = (1.0 + TIGHT)*FXB + (2.0 
GBMIN = (2.0 + TIGHT)*FXB + (1.0 

END IF 

TIGHT)*FX 
TIGHT)*FX 

IXA = IABOVE(J,IX) 
IF (IXA.GT.0) THEN 
XA = XN(J,IXA) 
FA = FN(IXA) 
FXA = FXHOLD(J,IXA) 
GA = (FA - F)/(XA - X) 
GA3 = (3.0 + TIGHT + TIGHT)*GA 
GAMAX = (1.0 + TIGHT)*FX + (2.0 
GAMIN = (2.0 + TIGHT)*FX + (1.0 

TIGHT)*FXA 
TIGHT)*FXA 
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END IF 

Adjust lower bound gradient. 

IF (IXB.LE.O) THEN 
TOL = ERRTOLM1.0 + ABS(GA3)) 
TOL = MIN( TOL,1.0 ) 
IF      (GAMIN-TOL.GT.GA3) THEN 
DONE = .FALSE. 
D  = GA - FX 
DA = FXA - GA 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVED (1)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DA.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DA (1)', IX,J,DA 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (2.0 + TIGHT)*D + (1.0 + TIGHT)*DA 

ELSE 
DENOM = (2.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FX = GA 
KEY = 81 

ELSE 
IF (DENOM.GT.0.0) THEN 

FRAC = (GAMIN - GA3)/DENOM 
FX = GA - DM1.0 + FRAC) 

ELSE 
FX = GA 

END IF 
KEY = 1 

END IF 
ELSE IF (GAMAX+TOL.LT.GA3) THEN 

DONE = .FALSE. 
D  = GA - FX 
DA = FXA - GA 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVED (2)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DA.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DA (2)', IX,J,DA 
SKIP = -TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (1.0 + TIGHT)*D + (2.0 + TIGHT)*DA 

ELSE 
DENOM = (1.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FX = GA 
KEY = 82 

ELSE 
IF (DENOM.GT.0.0) THEN 
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FRAC = (GA3 - GAMAX)/DENOM 
FX = GA - DM1.0 - FRAC) 

ELSE 
FX = GA 

END IF 
KEY = 2 

END IF 
if (p) write (*,'(a35,3i6,8x,3f22.16,10f9.2)•) 

+ ' (adj_mod) key,ix,j,f,fxhold, fx,x: ' , 
+ key,ix,j,f,fxhold(j,ix),fx,xn(:,ix) 

END IF 

Adjust upper bound gradient. 

ELSE IF (IXA.LE.O) THEN 
TOL = ERRTOL*(1.0 + ABS(GB3)) 
TOL = MIN( TOL,1.0 ) 
IF      (GBMIN-TOL.GT.GB3) THEN 

DONE = .FALSE. 
DB = GB - FXB 
D  .= FX - GB 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVE D (3)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DB.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DB (3)', IX,J,DB 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (2.0 + TIGHT)*DB + (1.0 + TIGHT)*D 

ELSE 
DENOM = (1.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FX = GB 
KEY =83 

ELSE 
IF (DENOM.GT.0.0) THEN 

FRAC = (GBMIN - GB3)/DENOM 
FX = GB + DM1.0 - FRAC) 

ELSE 
FX = GB 

END IF 
KEY = 3 

END IF 
ELSE IF (GBMAX+TOL.LT.GB3) THEN 

DONE = .FALSE. 
DB = GB - FXB 
D  = FX - GB 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVED (4)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DB.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DB (4)', IX,J,DB 
SKIP = .TRUE. 

END IF 
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IF (NITER.LT.MIDITER) THEN 
DENOM = (1.0 + TIGHT)*DB + (2.0 + TIGHT)*D 

ELSE 
DENOM = (2.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 
FX = GB 
KEY = 84 

ELSE 
IF (DENOM.GT.0.0) THEN 
FRAC = (GB3 - GBMAX)/DENOM 
FX = GB + DM1.0 + FRAC) 

ELSE 
FX = GB 

END IF 
KEY = 4 

END IF 
END IF 

Adjust internal gradient. 
If cannot id satisfactory gradient, use reasonable 
value, and let other values adjust in looping. 

ELSE IF (CONVEX(J,IX)) THEN 
IF (GB.GT.GA) THEN 
WRITE (*,*) '(ADJ_MOD) ERROR 2:', J,IX,FB,F,FA,GB,GA 
STOP '(ADJ_MOD)' 

END IF 

TOL = ERRTOLM1.0 + ABS(GA3) + ABS(GB3)) 
TOL = MIN( TOL,1.0 ) 

IF (GAMAX+TOL.LT.GA3) THEN 
CA2 = .TRUE. 
D  = GA - FX 
DA = FXA - GA 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVE D (5)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DA.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DA (5)', IX,J,DA 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (1.0 + TIGHT)*D + (2.0 + TIGHT)*DA 

ELSE 
DENOM = (1.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FXCA2 = GA 
ELSE 

IF (DENOM.GT.0.0) THEN 
FRAC = (GA3 - GAMAX)/DENOM 
FXCA2 = GA - DM1.0 - FRAC) 

ELSE 
FXCA2 = GA 

END IF 
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END IF 
ELSE 

CA2 = .FALSE. 
FXCA2 = (GA3 - FXAM2.0 + TIGHT))/(1.0 + TIGHT) 

END IF 

IF (GAMIN-TOL.GT.GA3) THEN 
CA1 = .TRUE. 
D  = GA - FX 
DA = FXA - GA 
IF (D.LT.0.0) THEN 
WRITE {*,*) 'NEGATIVED (6)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DA.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DA (6)', IX,J,DA 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (2.0 + TIGHT)*D + (1.0 + TIGHT)*DA 

ELSE 
DENOM = (2.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FXCA1 = GA 
ELSE 

IF (DENOM.GT.0.0) THEN 
FRAC = (GAMIN - GA3)/DENOM 
FXCA1 = GA - DM1.0 + FRAC) 

ELSE 
FXCA1 = GA 

END IF 
END IF 

ELSE 
CA1 = .FALSE. 
FXCA1 = (GA3 - FXA*(1.0 + TIGHT))/(2.0 + TIGHT) 

END IF 

IF (GBMAX+TOL.LT.GB3) THEN 
CB2 = .TRUE. 
DB = GB - FXB 
D  = FX - GB 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVED (7)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DB.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DB (7)', IX,J,DB 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (1.0 + TIGHT)*DB + (2.0 + TIGHT)*D 

ELSE 
DENOM = (2.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FXCB2 = GB 
ELSE 
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IF (DENOM.GT.0.0) THEN 
FRAC = (GB3 - GBMAX)/DENOM 
FXCB2 = GB + D*(1.0 + FRAC) 

ELSE 
FXCB2 = GB 

END IF ' 
END IF 

ELSE 
CB2 = .FALSE. 
FXCB2 = (GB3 - FXB*(1.0 + TIGHT))/(2.0 + TIGHT) 

END IF 

IF (GBMIN-TOL.GT.GB3) THEN 
CB1 = .TRUE. 
DB = GB - FXB 
D  = FX - GB 
IF (D.LT.0.0) THEN 
WRITE (*,*) 'NEGATIVED (8)', IX,J,D 
STOP '(ADJ_MOD)' 

END IF 
IF (DB.LT.0.0) THEN 

WRITE (*,*) 'NEGATIVE DB (8)', IX,J,DB 
SKIP = .TRUE. 

END IF 
IF (NITER.LT.MIDITER) THEN 
DENOM = (2.0 + TIGHT)*DB + (1.0 + TIGHT)*D 

ELSE 
DENOM = (1.0 + TIGHT)*D 

END IF 
IF (ABS(DENOM).LE.TOL) THEN 

FXCB1 = GB 
ELSE 

IF (DENOM.GT.0.0) THEN 
FRAC = (GBMIN - GB3)/DENOM 
FXCB1 

ELSE 
FXCB1 = GB 

END IF 
END IF 

ELSE 
CB1 = .FALSE. 
FXCB1 = (GB3 

END IF 

GB + DM1.0 - FRAC) 

FXBM2.0 + TIGHT))/(1.0 + TIGHT) 

If finaltry, adjustments are not bounded to 
prevent non-convex interpolation in neighboring 
domains (in order to allow adjustments to 
propogate through domains that are ok). 

However, adjustments must still be bounded 
by finite-difference gradient of these neighboring 
domains. 

IF (FINALTRY) THEN 
IF (CA2) THEN 

IXAA = IABOVE(J,IXA) 
IF ( (IXAA.GT.0).AND.(CONVEX(J,IXA)) 
XAA = XN(J,IXAA) 
IF (XA.GE.XAA) THEN 

) THEN 
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WRITE (*,*) ' (ADJ_MOD) ERROR 3 DIVIDE', XA, XAA 
STOP '(ADJ_MOD)' 

END IF 
GAA = (FN(IXAA) - FA)/(XN(J,IXAA) - XA) 
FXCA2 = MIN(FXCA2,GAA) 

END IF 
END IF 

IF (CAD FXCA1 = MAX(FXCA1,GB) 

IF (CB2) FXCB2 = MIN(FXCB2,GA) 

IF (CB1) THEN 
IXBB = IBELOW(J,IXB) 
IF ( (IXBB.GT.O).AND.(CONVEX(J,IXB)) ) THEN 
XBB = XN(J,IXBB) 
IF (XBB.GE.XB) THEN 
WRITE (*,*) ' (ADJ_MOD) ERROR 4 DIVIDE', XBB, XB 
STOP '(ADJ_MOD)' 

END IF 
GBB = (FB - FN(IXBB))/(XB - XBB) 
FXCB1 = MAX(FXCB1,GBB) 

END IF 
END IF 

END IF 

Note:  adjustment for violation in either pair 
of constraints [cbl,ca2] or [cb2,cal] can cause 
violation of other constraint in pair. 

Note that constraint pairs [cbl,cb2] or [cal,ca2] 
cannot be violated at same time. 

Also, if constraint pairs [cbl.cal] or [cb2,ca2] 
are violated together, adjustment for one 
constraint will be in correct direction for other. 

IF    ( (CB2.OR.CA1).AND.(.NOT.SKIP) ) THEN 
DONE = .FALSE. 
IF (FXCB2+T0L.LT.FXCA1) THEN     !no problem with conflict 

IF (CB2) FX = FXCB2 
IF (CA1) FX = FXCA1 
IF (CB2.AND.CA1) THEN lvalues close. 

(* 
(* 
(* 
(* 
(* 
(* 
{* 
(* 
(* 
(* 

WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

END IF 
KEY =11 

ELSE 
IF      (.N0T.CB2) 

FX = FXCB2 
KEY = 12 
IF (FINALTRY) THEN 

IX,J=',IX,J '(ADJ_MOD) WARNING CB2 & CA1, 
'FXCB2,FXCA1', FXCB2,FXCA1 
*FXCB1,FXCA2', FXCBl,FXCA2 
'IXB,XB,FB,FXB', IXB,XB,FB,FXB 
'IX, X, F, FX ', IX, X, F, FXHOLD(J,IX) 
'IXA,XA,FA,FXA', IXA,XA,FA,FXA 
'GB,GB3', GB,GB3 
'GBMIN,GBMAX', GBMIN,GBMAX 
'GA,GA3', GA,GA3 
'GAMIN,GAMAX', GAMIN,GAMAX 

THEN 

325 



FX = FXCA1 
KEY = 22 

END IF 
ELSE IF (.N0T.CA1) THEN 

FX = FXCA1 
KEY = 13 
IF (FINAL/TRY) THEN 
FX = FXCB2 
KEY = 23 

END IF 
ELSE IF (FXCB2-TOL.GT.FXCA1) THEN 
DA = GA - FXCA1 
DB = FXCB2 - GB 
D = GA - GB 
IF      (DA.LE.0.0) THEN 

FX = GA 
ELSE IF (DB.LE.0.0) THEN 

FX = GB 
ELSE 

FX = GA - DA*D/(DA + DB) 
END IF 
KEY = 14 

ELSE 
FX = 0.5*(GB + GA) 
KEY = 15 

END IF 
END IF 

ELSE IF ( (CBl.OR.CA2).AND.(.NOT.SKIP) ) THEN 
DONE = .FALSE. 
IF (FXCA2+TOL.LT.FXCB1) THEN     !no problem with conflict 

IF (CB1) FX = FXCB1 
IF (CA2) FX = FXCA2 
IF (CB1.AND.CA2) THEN lvalues close 

(' WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 
WRITE 

END IF 
KEY =16 

ELSE 
IF      (.NOT.CB1) THEN 

FX = FXCB1 
KEY = 17 
IF (FINALTRY) THEN 

FX = FXCA2 
KEY = 27 

END IF 
ELSE IF (.NOT.CA2) THEN 

FX = FXCA2 
KEY = 18 
IF (FINALTRY) THEN 

FX = FXCB1 

'(ADJ_MOD) WARNING CB1 & CA2, IX,J=',IX,J 
'FXCB1,FXCA2", FXCB1,FXCA2 
'FXCB2,FXCA1', FXCB2,FXCA1 
'IXB,XB,FB,FXB', IXB,XB,FB,FXB 
'IX, X, F, FX ', IX, X, F, FXHOLD(J,IX) 
■IXA,XA,FA,FXA', IXA,XA,FA,FXA 
•GB,GB3', GB,GB3 
'GBMIN,GBMAX', GBMIN,GBMAX 
'GA,GA3', GA,GA3 
'GAMIN,GAMAX', GAMIN,GAMAX 

326 



KEY = 28 
END IF 

ELSE IF (FXCA2-T0L.GT.FXCB1) THEN 
DA = GA - FXCA2 
DB = FXCB1 - GB 
D = GA - GB 
IF      (DA.LE.O.O) THEN 
FX = GA 

ELSE IF (DB.LE.O.O) THEN 
FX = GB 

ELSE 
FX = GA - DA*D/(DA + DB) 

END IF 
KEY = 19 

ELSE 
FX = 0.5*(GB + GA) 

END IF 
END IF 

END IF 
END IF 

FXN(J,IX) = FX 
IF (SKIP) FXN(J,IX) = FXHOLD(J,IX) 
IF (FN(IX).EQ.FMIN) FXN(J,IX) = 0.0 

END DO 
END DO 

I AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

! Determine nodes changed. 

NOCHANGE = .TRUE. 
DO  IX = l,NNODES 

DO  J = 1,NX 
TOL = ERRTOLM1.0 + ABS (FXN (J, IX) ) + ABS (FXHOLD (J, IX) ) ) 
TOL = MIN( TOL,1.0 ) 
IF (ABS(FXN(J,IX)-FXHOLD(J,IX)).GT.TOL) THEN 
NOCHANGE = .FALSE. 

END IF 
END DO 

END DO 

I Determine if done. 

IF (DONE) EXIT 

! If not done, but no change, go to finaltry. 

IF (NOCHANGE) THEN 
WRITE (*,*) ' (ADJ_MOD) WARNING:  NOT DONE, BUT NO CHANGE' 
IF (FINALTRY) THEN 

EXIT 
ELSE 
NITER = 0 
FINALTRY = .TRUE. 

END IF 
END IF 

! If not done, but maxiter reached, go to finaltry. 
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IF (NITER.GE.MAXITER) THEN 
WRITE (*,*) '(ADJ_MOD) WARNING:  MAX ITERATIONS EXCEEDED' 
IF (FINALTRY) THEN 

EXIT 
ELSE 
NITER = 0 
FINALTRY = .TRUE. 

END IF 
END IF 

END DO 
END IF 

Write changed nodes. 

! If not done, but maxiter reached, go to finaltry. 

DO  IX = 1,NN0DES 
NOCHANGE = .TRUE. 
FDIFF  = 9999.99 
FXDIFF = 9999.99 
TOL = ERRTOLM1.0 + ABS(FN(IX)) + ABS(F0(IX))) 
TOL = MIN( TOL,1.0 ) 
IF (ABS(FN(IX)-FO(IX)).GT.TOL) THEN 
NOCHANGE = .FALSE. 
FDIFF = FN(IX) - FO(IX) 

END IF 
DO  J = 1,NX 

TOL = ERRTOLM1.0 + ABS (FXO (J, IX) ) + ABS (FXN (J, IX) ) ) 
TOL = MIN( TOL,1.0 ) 
IF (ABS(FXN(J,IX)-FXO(J,IX)).GT.TOL) THEN 
NOCHANGE = .FALSE. 
FXDIFF(J) = FXN(J,IX) - FXO(J,IX) 

END IF 
END DO 
IF (.NOT.NOCHANGE) THEN 
write (*,'(a36,i6,3fl2.2,40fl0.2)') 

+ '(adj_mod) ix,f(o/d/n),x,fx(o/d/n):', 
+ ix,      fO(ix),   fdiff, fn(ix), 
+ xn(:,ix),fxO(:,ix),fxdiff,fxn(:,ix) 

END IF 
END DO 

WRITE (*,*) '(ADJ_MOD) END' 

END 

Subroutine IDNOW 

This routine identifies the year and season of the current stage. 

SUBROUTINE IDNOW 

IMPLICIT NONE 
INTEGER 

( ISTAGE, IFIRST, IYFIRST, NSEAS, 
IYEAR, ISEASON ) 

ISTAGE, IFIRST, IYFIRST, NSEAS 
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INTEGER IYEAR, ISEASON 

Identify year and season for current stage. 

INTEGER I, IY, NY 

I = ISTAGE 
IY = 0 
IF (I.LE.O) THEN 

DO 
1=1+ NSEAS 
IY = IY + 1 
IF (I.GT.O) EXIT 

END DO 
END IF 
NY = (IFIRST+I-2)/NSEAS 
IYEAR = IYFIRST + NY - IY 
ISEASON = IFIRST + I - 1 - NY*NSEAS 

END 

Subroutine SIZETEST 

This routing verifies that the value of a user-supplied variable lies within 

permitted bounds. 

SUBROUTINE SIZETEST ( N, MINN, MAXN, TITLE ) 

IMPLICIT NONE 
INTEGER 
CHARACTER*20 

N, MINN, MAXN 
TITLE 

IF (N.LT.MINN) THEN 
WRITE (*,*) TITLE, 
STOP 

END IF 

, VIOLATES MINIMUM SIZE: ', N, '<', MINN 

IF (N.GT.MAXN) THEN 
WRITE (*,*) TITLE, 
STOP 

END IF 

, VIOLATES MAXIMUM SIZE: ', N, '>', MAXN 

END 
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6. MODEL SPECIFICATION SUBROUTINES 

The following routines specify parameters and functions that define the structural 

model, stochastic model, and solution method. Copies of these files can be grouped in 

separate files, each file identifying a different system. 

Subroutine CALLDP 

This routine calls the main subroutine. 

PROGRAM CALLDP 
IMPLICIT NONE 

i  

IGets optimal future cost function using GDP. 
i  

CALL DYNPROG 

STOP '(CALLDP) DONE' 
END 

Subroutine SPECPROB 

This routine specifies the size of a problem and the solution methods to be used. 

SUBROUTINE SPECPROBt ( MAXSEAS, 
+ NU, NX, NW, 
+ NTLIN, NTNLN, NCLIN, NCNLN, 
+ RESTART, NSTAGES, NSEAS, LABELS, 
+ IFIRST, ILAST, IYFIRST, IYLAST, LPRINT, 
+ STOCHASTIC, GDP, NEWTON, 
+ DISCOUNT, TIGHT, FTOL, UTOL ) 
IMPLICIT NONE 
INTEGER MAXSEAS 

INTEGER NU, NX, NW, 
+ NTLIN, NTNLN, NCLIN, NCNLN, 
+ NSTAGES, NSEAS, 
+ IFIRST, ILAST, IYFIRST, IYLAST, LPRINT 
DOUBLE PRECISION DISCOUNT, TIGHT, FTOL, UTOL 
LOGICAL RESTART, STOCHASTIC, GDP, NEWTON 
CHARACTER*10 LABELS(MAXSEAS) 

Specify dimensions of problem and parameters for stochastic model. 

Parameters of the stochastic model (e.g, for streamflow) are applied to 
the multivariate random normal variables in the transition function. 
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Other local variables. 

Specify dimensions of problem. 

NU = 4 
NX = 4 
NW = 2 

NTLIN = 
NTNLN = 
NCLIN = 
NCNLN = 

!number of decision variables. 
!number of state variables. 
Inumber of stochastic variables. 

!number of linear transistion equations. 
Inumber of non-linear transistion equations. 
Inumber of linear contraints. 
Inumber of non-linear constraints. 

Specify if a restart of prior run. 

If restart, save last stage cost func as START.DAT 

RESTART = .FALSE. 

NSTAGES = 3 

NSEAS = 1 

IFIRST = 1 
IYFIRST = 1 

ILAST  = 1 
IYLAST  = 4 

Specify number of stages. 

Specify number of seasons. 

Specify season and year of first stage. 

Specify season and year of final ctg. 

Specify discount rate. 

Note:  ensure dr is consistent with stage length 

DISCOUNT = 0.00 
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Specify season labels. 

GDP = .true. 
TIGHT =0.0 

Specify if stochastic problem. 

STOCHASTIC = .true. 

Specify interpolation mode. 

Specify interpolation mode and precision of 
objective function and controls. 

Objective precision used by solver for assessing 
convergence. 

Control precision used by routine that calls solver 
and tests for consistent solution on recursive 
calls of solver. 

Note that required precision will vary with solver 
and with characteristics of problem.  Start with a 
small number and increase as required. 

For Newton-based solvers, higher precision does not 
require much time; but, other solvers may require 
significantly more time to achieve convergence. 

Note for NPSOL:  if objective is > 1, ftol is a 
relative vs. absolute precision. 

c 
c 

NEWTON = .true. 
FTOL = 1.0E-12 
UTOL = 1.0E-04 
FTOL = 1.0E-06 
UTOL = 1.0E-02 

Specify level of printing for output. 

LPRINT = 0 

END 

Subroutine SPECU 

This routine identifies the bounds and other parameters for decision variables. 

Bounds can change with the stage of a problem. 

SUBROUTINE SPECU    ( NU, ISTAGE, IYEAR, ISEASON, 
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IMPLICIT NONE 
INTEGER 

DOUBLE PRECISION 

BL, BU, UGUESS, USCALE ) 

NU, ISTAGE, IYEAR, ISEASON 

BL(NU), BU(NU), 
UGUESS(NU), USCALE(NU) 

Specify parameters that describe the decision variables of the system 
and bounds for the current stage. 

Also specify an initial guess for solution of decision variables and 
a characteristic length scale. 

The initial guess will be used as a starting point in the optimization 
routine.  The characteristic length scale will be used to specify: 
(1) other near solutions if needed (i.e., for polytope algorithm) 
(2) interval for finite difference approximations 

Other constraints on decisions are expressed in the transistion 
equation and linear/nonlinear constraints. 

Verify number of decision variables. 

IF (NU.NE.4) THEN 
WRITE (*,*) ' (SPECU) INCORRECT NU =', NU 

STOP 
END IF 

Specify bounds. 

BL 0.0 

Provide initial guess of solution and length scale. 

UGUESS =0.0 

USCALE =1.0 

END 

Subroutine SPECX 

This routine specifies the bounds for state variables and the grid of discrete values 

used to span the domain of the cost-to-go function. Bounds and discretization can change 

with the stage of a problem. 

SUBROUTINE SPECX ( MAXIDX, NX, ISTAGE, IYEAR, ISEASON, 
BL, BU, NDX, XDX ) 
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IMPLICIT NONE 
INTEGER MAXIDX, NX, ISTAGE, IYEAR, ISEASON 

INTEGER NDX(NX) 
DOUBLE PRECISION      BL(NX), BU(NX), 

+ XDX(MAXIDX,NX) 

i  

!Specify parameters that describe the state of the system, bounds, 
! and the discretization(grid) of the state space for the current stage. 
!Order of state variables must agree with transx. 
i  

Verify number of state variables. 

IF (NX.NE.4) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NX =', NX 
STOP 

END IF 

Specify bounds. 

BL =    0.0 
BU =   12.0 

Specify (initial) discretization of state variables. 

! Note:  bounds on state variables are assumed to be 
! the maximum domain bounded by discretization below. 

NDX(:) 
XDX(1, 
XDX(2, 
XDX(3, 
XDX(4, 

END 

) = 0.0 
) = 4.0 
) = 8.0 
) =12.0 

Subroutine SPECW 

This routine specifies the quadrature abscissas and weights applied to stochastic 

variables (i.e., the grid of discrete values used to span possible outcomes). Assumes that 

stochastic variables are independent but, otherwise, have any discrete or continuous 

distribution that can be approximated discretely. Abscissas and weights can change with 

the stage of a problem. 

SUBROUTINE SPECWt    ( MAXIDW, NW, ISTAGE, IYEAR, ISEASON, 
+ MODELW, WMEAN, WSTDV, WSKEW, 
+ NDW, WDW, PROBW, 
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+ SWLO, SWHI, PROBMIN, GAUSQUAD ) 

IMPLICIT NONE 
INTEGER MAXIDW, NW, ISTAGE, IYEAR, ISEASON 

INTEGER MODELW(NW), NDW(NW) 
DOUBLE PRECISION WMEAN(NW), WSTDV(NW), WSKEW(NW), 

+ WDW(MAXIDW,NW), PROBW(MAXIDW,NW), 
+ SWLO(NW), SWHI(NW), PROBMIN 
LOGICAL GAUSQUAD 

Specify model and discretization of current stochastic variables. 
Also specifies method used to calculated expected values (quadrature). 

Model of stochastic variables are specified as independent random 
variables with know probability distribution.  If stochastic inputs of 
the real system are correlated, this correlation must first be 
identified and a stochastic model produced that allows identification 
of stochastic variables with correlation removed. 

Discretization and weights can be determined by Gaussian Quadrature 
(recommended) or by evenly spaced values corresponding to standard 
deviations from swlo to swhi.  If evenly spaced values are used, 
weights are determined by interpolation of the multivariate normal 
distribution using the trapezoidal rule. 

Stochastic distribution for each stochastic variable should be 
specified by MODELW (for model of distribution) and by WMEAN, WSTDV, 
and WSKEW (for first three moments).  Available models are: 

1:  normal (Gaussian) (2-parameter model) 
na  2:  lognormal (2-parameter model) 
na  3:  3-parameter lognormal (WSKEW = C) 

For two-parameter models, the third parameter is ignored.  Generally, 
the third parameter is used for the skew of the distribution (except 
for three-parameter lognormal distribution). 

If desired model not available, abscissas and weights used to calculate 
expected values can be specified directly. 

DOUBLE PRECISION      FACTOR 

Verify number of stochastic variables. 

IF (NW.NE.2) THEN 
WRITE (*,*) ' (SPECW) INCORRECT NW =' , NW 
STOP 

END IF 

For each season and each stochastic variable, specify distribution. 

!Currently unable to calculate Gaussian quadrature locations and weights 
! internally from distribution.  Must provide these in WDW and PROBW. 
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If a stochastic variable is normally distributed and 
Gaussian Quadrature is used, 2 discrete values will 
generally be sufficient. 

MODELW(l) = 1        Istreamflow 1 
WMEAN(l) = 2.0 
WSTDV(l) =0.5 

NDW(l) = 2 
WDW(1,1) =1.5 
WDW(2,1) =2.5 
PROBW(l,l) =0.5 
PROBW(2,l) = 0.5 

MODELW(2) = 1        istreamflow 2 
WMEAN(2) =4.0 
WSTDV(2) = 0.75 

NDW(2) = 2 
WDW(1,2) =3.25 
WDW(2,2) = 4.75 
PROBW(l,2) =0.5 
PROBW(2,2) = 0.5 

! For each season, specify distribution. 

SELECT CASE (ISEASON) 

CASE (13:) 

WRITE (*,*) ' (TRANSW) SELECTED INVALID SEASON =', ISEASON 
STOP '(SPECW)' 

CASE (:0) 

WRITE (*,*) '(TRANSW) SELECTED INVALID SEASON =', ISEASON 
STOP '(SPECW)' 

END SELECT 

[   

! Specify if Gaussian Quadrature is to be used. 
j   

! If gausquad = true, then sdlo, sdhi, and probmin 
! are not used. 

GAUSQUAD = .true. 

! Specify discretization of stochastic variables. 

SWHI = 1.645 
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SWLO = -1.645 

Specify min probability weight used. 
This will also be used as the maximum deviation from 
1.0 of summation over all probability weights. 

PROBMIN = 0.0001 

END 

Subroutine TRANSX 

This routine identifies the state transition function for the current stage. 

Derivatives should also be provided to avoid calculating finite difference estimates. 

SUBROUTINE TRANSXt 
h 

h 

IMPLICIT NONE 
INTEGER 

H 

DOUBLE PRECISION 

DOUBLE PRECISION 

( LEVEL, NU, NX, NW, NTNLN, 
ISTAGE, IYEAR, ISEASON, U, X, W, 
S, Y, YU, YX, YW ) 

LEVEL, NU, NX, NW, 
NTNLN, ISTAGE, IYEAR, ISEASON 
U(NU), X(NX), W(NW) 

S(NW), Y(NX), 
YU(NX,NU), YX(NX,NX), YW(NX,NW) 

Specifies transistion function y = T(u,x,w) and derivatives. 

State variables must be arranged so that linear transistion functions 
come before non-linear. 

On input, LEVEL identifies partial derivatives needed.  Can be used to 
avoid unnecessary calculation when derivatives not needed. 
0:  none (only y) 
1:  dy/du 
2:  dy/du, dy/dx, dy/dw 

On output, LEVEL identifies derivatives actually calculated. 
Derivatives that are needed but not calculated here will be 
approximated by finite difference. 

Notes:  Do not include state constraints to condition y. 
State constraints are incorporated by specLCon. 
Include the effect of state variables on prediction of 
stochastic inputs here; stochastic variables w are independent 
of x. 

INTEGER 

Other local variables. 

J 
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! Verify parameters are consistent with current model. 
i   

IF (NU.NE.4) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NU =', NU 
STOP 

END IF 
IF (NX.NE.4) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NX =', NX 
STOP 

END IF 
IF (NW.NE.2) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NW =', NW 
STOP 

END IF 
IF (NTNLN.NE.O) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NTNLN =', NTNLN 
STOP 

END IF 

Set desired parameters. 

Model stochastic inputs. 

S(l) = W(l) 

Variable s allows clearer identification of 
actual stochastic inputs without auto-correlation 
and cross-correlation removed.  Also allows 
forecast generation. 

Identify transition functions and gradients, 
yx(i,j) = dy(i)/dx(j) (also for yu,yw). 

Note:  the first (NX-ntnln) transistion function are 
used to create linear constraint equations. 

YU = 0.0 
YX = 0.0 
YW = 0.0 

Y(l) = X(l) - U(l) + W(l) 
YX(l.l) =  1.0 
YU(l.l) = -1.0 
YW(1,1) =  1.0 

Y(2) = X(2) - U(2) + W(2) 
YX(2,2) =  1.0 
YU(2,2) = -1.0 
YW(2,2) =  1.0 

Y(3) = X(3) - U(3) + U(2) 
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YX(3,3) =     1.0 
YU(3,3) =   -1.0 
YU(3,2) =     1.0 

Y(4)   =  X(4)   -  U(4)   + 
YX(4,4) =     1.0 
YU(4,4) =   -1.0 
YU(4,3) =     1.0 
YU(4,1) =     1.0 

U(3)   +  U(l) 

END 

Subroutine SPECLCON 

This routine identifies linear constraints other than the bounds on decision 

variables and state variables. 

SUBROUTINE SPECLCON ( NU, NX, NW, NCLIN, 

IMPLICIT NONE 
INTEGER 

DOUBLE PRECISION 

ISTAGE, IYEAR, ISEASON, 
A, BL, BU ) 

NU, NX, NW, NCLIN, 
ISTAGE, IYEAR, ISEASON 

A(NCLIN,NU+NX+NW), 
BL(NCLIN), BU(NCLIN) 

Specify linear constraints as a linear function of decision variables, 
state variables, and stochastic variables for the current stage: 

bl <= A*[u,x,w] <= bu 
Constraints can be equality or inequality as specified by bl and bu. 

For equality constraints, bl=bu. 
Constraint coefficients in A must be in the order: 

(1) decision variables 
(2) state variables 
(3) stochastic variables 

Controls u represent management decision.  Because 
actual realization of stochastic variables may 
affect feasibility of those decision, it may be 
desirable to allow adjustment of actual controls 
applied for certain realizations of stochastic 
variables (e.g., an insufficient release decision 
that results in a reservoir spilling, effectively 
changing the actual control by causing an increase 
in the release.  These adjustments are made in the 
transition function specified in trans.f. 

This can cause problems with finding opt solution: 
(1) The resulting objective will usually not be 
convex unless a sufficient penalty is applied to 
deviations from the management decisions. 
(2) The resulting objective will not be smooth, 
resulting in poorer convergence of the solver. 
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Therefore, this is not allowed. 

Verify number of decision and state variables. 

IF (NU.NE.4) THEN 
WRITE (*,*) "(SPECLCON) INCORRECT NU =', NU 
STOP 

END IF 
IF (NX.NE.4) THEN 
WRITE (*,*) "(SPECLCON) INCORRECT NX =' , NX 
STOP 

END IF 
IF (NW.NE.2) THEN 
WRITE {*,*) '(SPECLCON) INCORRECT NW =' , NW 
STOP 

END IF 
IF (NCLIN.NE.O) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NCLIN =', NCLIN 
STOP 

END IF 

Set A, matrix of linear constraint coefficients. 

i   

! Set bounds on linear and nonlinear constraints. 
i   

END 

Subroutine COST NOW 

This routine calls identifies the current-cost as a function of decision variables U, 

state variables X, and stochastic variables W. 

SUBROUTINE COST_NOW ( LEVEL, NU, NX, NW, 
+ ISTAGE, IYEAR, ISEASON, U, X, W, 
+ C, CU, CX, PEN ) 

IMPLICIT NONE 
INTEGER LEVEL, NU, NX, NW, 

+ ISTAGE, IYEAR, ISEASON 
DOUBLE PRECISION U(NU), X(NX), W(NW) 

DOUBLE PRECISION      C, CU(NU), CX(NX), PEN 

Returns cost of decisions u given initial state x and stage istage. 

On input, LEVEL identifies derivatives needed.  Can be used to avoid 
unnecessary calculation when derivatives not needed. 
0:  only c 
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1:  c, dc/du 
2:  c, dc/du, dc/dx 

Note that derivatives dc/dw are not needed; w is independent of u, x. 
On output, LEVEL identifies derivatives actually calculated. 
Needed derivatives that are not calculated here will be approximated 
by finite difference. 

INTEGER K 
DOUBLE PRECISION      A(NU), DEV 

! Verify inputs consistent with routine. 
j   

IF (NU.NE.4) THEN 
WRITE {*,*) ' (COST_NOW) NU INCONSISTENT, ', NU 
STOP 

END IF 

IF (NX.NE.4) THEN 
WRITE (*,*) ' (COST_NOW) NX INCONSISTENT, ', NX 
STOP 

END IF 

IF (NW.NE.2) THEN 
WRITE (*,*) ' (COST_NOW) NW INCONSISTENT, ', NW 
STOP 

END IF 

i 

Set desired parameters. 

A(l) = 1.1 
A(2) = 1.2 
A(3) = 1.0 
A(4) = 1.3 

i   

! Calculate current cost function and derivatives 

Calculate cost and derivatives. 

C = 0.0 

DO  K = 1,NU 
DEV = U(K) - 1.0 
C = C + A(K)*DEV*DEV 
CU(K) =  2.0*A(K)*DEV 

END DO 

CX = 0.0 
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Set penalty cost for violating a constraint. 

Penalty is only applied when using polytope solver 
(i.e., not gdp). 

Value should be great enough to force optimal 
controls into feasible region. 

PEN = 1000.0 

END 

Subroutine FINALCTG 

This routine calls identifies the final (or terminal) cost as a function of the final 

state X. 

SUBROUTINE FINALCTG (NX, X, 
► F, FX) 

IMPLICIT NONE 
INTEGER NX 
DOUBLE PRECISION      X(NX) 
DOUBLE PRECISION      F, FX(NX) 

Provides use specified function value f(x) and gradient fx = df/dx for 
the final-stage future-cost function. 

INTEGER J 
DOUBLE PRECISION      A(NX) 

Verify inputs consistent with routine. 

IF (NX.NE.4) THEN 
WRITE (*,*) '(COST_NOW) NX INCONSISTENT, \ NX 
STOP 

END IF 

Set desired parameters. 

A(l) = 5.0 
A(2) = 5.0 
A(3) = 5.0 
A(4) = 7.0 

Calculate current cost function. 
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F  =   0.0 
FX  =   0.0 
DO     J  =   1,NX 

F  =  F  +   (X(J)   -  A(J))**2 
FX(J)   =   2.0*(X(J)   -  A(J)) 

END DO 

END 

Subroutine SPECF 

This routine provides an opportunity to adjust solution values during each stage. 

Adjustments can be used to partially correct errors that may accumulate. This may be 

useful to cut off oscillations of the interpolation. 

SUBROUTINE SPECF    ( NX, ISTAGE, IYEAR, ISEASON, 

IMPLICIT NONE 
INTEGER 

DOUBLE PRECISION 

FMIN, FMAX, FXMIN, FXMAX ) 

NX, ISTAGE, IYEAR, ISEASON 

FMIN, FMAX, FXMIN(NX), FXMAX(NX) 

Specify maximum and minimum function values and gradients. 
Calculated values are adjusted based on values provided here and 
output is provided whenever adjustments needed. 

Verify inputs consistent with routine. 

IF (NX.NE.4) THEN 
WRITE (*,*) '(SPECF) NX INCONSISTENT, ', NX 
STOP 

END IF 

Check and modify control and cost function values. 

END 

Subroutine OUTSTAGE 

This routine provides an opportunity for output of data during each stage. Data is 

accessed throught common arrays. 

SUBROUTINE OUTSTAGEt ( NU, NX, NW, NSEAS, ISTAGE, IYEAR, ISEASON, 
+ XBL, XBU ) 
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IMPLICIT NONE 
INTEGER 

h 

DOUBLE PRECISION 

NU, NX, NW, NSEAS, 
ISTAGE, IYEAR, ISEASON 
XBL(NX), XBU(NX) 

Provides opportunity to prepare and write output at each stage. 

LOGICAL 

Create flag to ensure update of routine. 

IF (NU.NE.4) THEN 
WRITE (*,*) '(OUTPUT) ROUTINE NOT ADAPTED TO NU=', NU 
STOP 

END IF 

IF (NX.NE.4) THEN 
WRITE (*,*) ' (OUTPUT) ROUTINE NOT ADAPTED TO NX=' , NX 
STOP 

END IF 

IF (NSEAS.NE.l) THEN 
WRITE (*,*) ' (OUTSTAGE) ROUTINE NOT ADAPTED TO NSEAS=' , NSEAS 
STOP 

END IF 

Specify stages for printout. 

P = .FALSE. 

END 

Subroutine OUTFINAL 

This routine provides an opportunity for final output of data, including 2-D grids 

of control policy decisions or of the cost-to-go. Data is accessed throught common 

arrays. 

SUBROUTINE OUTFINAL ( NX, NW, ISTAGE, IYEAR, ISEASON, 
+ XBL, XBU ) 

IMPLICIT NONE 
INTEGER 
DOUBLE PRECISION 

NX, NW, ISTAGE, IYEAR, ISEASON 
XBL(NX), XBU(NX) 

!Solves grid of controls u(x) and cost F(x) for stochastic variables w. 
!If level = 1, also solves grid of derivatives dF/dx. 
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Variables needed by gridsolv. 

INTEGER 
DOUBLE PRECISION 
LOGICAL 

LEVEL, Jl, J2, Nl, N2 
XGLO(NX), XGHI(NX), W(NW) 
P 

Other local variables. 

EXTERNAL GRIDSOLV 

Verify parameters are consistent with current model. 

IF (NX.NE.4) THEN 
WRITE (*,*) ' (SPECLCON) INCORRECT NX =' , NX 
STOP 

END IF 

IF (NW.NE.2) THEN 
WRITE (*,*) '(SPECLCON) INCORRECT NW =' , NW 
STOP 

END IF 

Specify interpolated grid. 

Grid spans (jl,j2) dimensions between xglo:xghi 
at (nl,n2) points. 

Grids evaluated for each combination of xglo:xghi 
for j not in {jl,j2}. 

P = .FALSE. 
LEVEL = 0 

Specify dimensions and discretization. 

Jl = 5 
J2 = 3 
Nl = 11 
N2 = 21 

Specify random variables. 
Specify bounds 
Get grid. 

XGLO = XBL 
XGHI = XBU 
W(l) = 600.0 
CALL GRIDSOLV (P,LEVEL,Jl,J2,Nl,N2,XGLO,XGHI,W) 

END 
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