
REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated (o average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank)

X

2. REPORT DATE

December 1996
3. REPORT TYPE AND DATES COVERED

final

4. TITLE AND SUBTITLE
Optimal Real-Time Control of Stochastic, Multipurpose, Multireservoir
Systems

5. FUNDING NUMBERS

X

6. AUTHORS

x C. Russ Philbrick

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

x Stanford University

AFRL-SR-BL-TR-98-

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

xAFOSR/NI
110 Duncan Avenue, Room B115
Boiling Air Force Base, DC 20332-8080

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

X

12a. DISTRIBUTION AVAILABILITY STATEMENT

x Approved for Public Release
12b. DISTRIBUTION CODE

X

13. ABSTRACT (Maximum 200 words)
This thesis presents new systems-analysis methods that are appropriate for complex, non-linear systems that are
driven by uncertain inputs. These methods extend the ability of discrete dynamic programming (DDP) to system
models that include six or more state variables and a similar number of stochastic variables. This is accomplished
by interpolation and quadrature methods that have high-order accuracy and that provide significant computational
savings over traditional DDP interpolation and quadrature methods.

These new methods significantly improve our ability to apply DDP to large-scale systems. Using these methods,
DDP can solve a variety of systems analysis problems without resorting to the simplifying assumptions required
by other stochastic optimization methods. This is demonstrated in the application of DDP to problems with as
many as seven state variables. Of particular interest, this thesis applied DDP to the practical problem of
conjunctively managing groundwater and surface water. Moreover, the applications also demonstrate that DDP
can be a powerful planning tool, such as when evaluating a range of capacity expansion alternatives.

19980116 051
14. SUBJECT TERMS

X

15. NUMBER OF PAGES

X

16. PRICE CODE

X

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239.18
Designed using WordPerfect 6.1, AFOSPJXPP, Oct96

OPTIMAL REAL-TIME CONTROL OF

STOCHASTIC, MULTIPURPOSE, MULTIRESERVOIR SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

CIVIL ENGINEERING

C. Russ Philbrick

December 1996

Copyright by Charles Russell Philbrick, Jr. 1996

All Rights Reserved

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and in quality, as a dissertation for the degree of Doctor of Philosophy

Peter K. Kitanidis (Principal Advisor)
Professor, Department of Civil Engineering

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and in quality, as a dissertation for the degree of Doctor of Philosophy

George B. Dantzig
Professor Emeritus, Department of Operations Research
and Engineering Economics Systems

I certify that I have read this dissertation and that in my opinion it is fully adequate, in
scope and in quality, as a dissertation for the degree of Doctor of Philosophy

Steven M. Gorelick
Professor, Department of Geological and
Environmental Sciences

I certify that 1 have read this dissertation and that in my opinion it is fully adequate, in
scope and in quality, as a dissertation for the degree of Doctor of Philosophy

Gerd Infanger
Senior Research Engineer, Department of Operations
Research and Engineering Economics Systems

Approved for the University Committee on Graduate Studies

in

IV

ABSTRACT

This thesis presents new systems-analysis methods that are appropriate for

complex, non-linear systems that are driven by uncertain inputs. These methods extend

the ability of discrete dynamic programming (DDP) to system models that include six or

more state variables and a similar number of stochastic variables. This is accomplished

by interpolation and quadrature methods that have high-order accuracy and that provide

significant computational savings over traditional DDP interpolation and quadrature

methods.
These new methods significantly improve our ability to apply DDP to large-scale

systems. Using these methods, DDP can solve a wide variety of systems analysis

problems without resorting to the simplifying assumptions required by other stochastic

optimization methods. This is demonstrated in the application of DDP to problems with

as many as seven state variables. Of particular interest, this thesis applies DDP to the

practical problem of conjunctively managing groundwater and surface water. Moreover,

the applications also demonstrate that DDP can be a powerful planning tool, such as

when evaluating a range of capacity expansion alternatives.

VI

ACKNOWLEDGMENTS

Support for this work has been provided by the Laboratory Graduate Fellowship

Program of the Department of Energy and by the United States Air Force Laboratory

Graduate Fellowship Program of the Air Force Office of Scientific Research (AFOSR).

Computer resources used in this work have been provided by National Science

Foundation Grant BSC-8957186 and the Hewlett Packard Foundation.

vu

Vlll

TABLE OF CONTENTS

Acknowledgments vii

Table of Contents ix

List of Tables xix

List of Illustrations xxiii

Chapter 1. Introduction 1

A. Motivation 2

1. Evolving Challenges in Water Resources Planning and

Management 2

B. An Example: Conjunctive Management of Groundwater and Surface

Water 3

1. Benefits of Conjunctive-Use 4

2. The Management Problem of Conjunctive-Use 6

3. A Solution 6

C. Scope of the Dissertation 7

1. Background 8

2. New Methods 8

3. Applications 9

Chapter 2. Analysis of Reservoir Systems 11

A. Using Simulation and Optimization in Reservoir System Management 12

B. The Impact of Stochastic Inputs 13

1. An Example of Management Without Uncertain Inputs 13

2. The Effect of Uncertain Inputs on Reservoir Control 14

3. The Purpose of Feedback Control 16

4. The Impact of Reducible and Irreducible Uncertainty 17

C. Developing Systems Analysis Framework 18

1. Mathematical Model of a System 19

Decision Variables 19

State Variables 19

Stochastic Variables 20

Dynamics 21

Constraints 21

ix

Feasibility of Control Decisions with Stochastic Constraints 22

Arguments for Using Limited Foresight 23

(1) Feasibility of Control Decisions 24

(2) Limited Computer Resources 24

(3) Convergence of Solutions with Short Stages 24

(4) Unboundedness 24

2. Value Model of a System 24

Accuracy of Value Models 25

Value Function Description 26

Performance in the Presence of Uncertain Inputs 26

3. Optimization of System Performance 27

Difficulty in Identifying Performance for All Stages 28

Description of System Performance 30

Chapter 3. Review of Optimization Methods For Stochastic Dynamic Control 31

A. Current Status of Systems Analysis Applied to Water-Supply

Management 32

Summary of Optimization Methods 33

B. Forecast-Based Methods 36

Deterministic Feedback Control (DFC) 36

First-Order Analysis Methods 37

Chance Constraints 38

Linear-Quadratic Control 39

Advantage of Forecast-Based Methods 39

Simplifying Assumptions of Forecast-Based Methods 40

Application of Forecast-Based Methods to Water-Supply

Management 41

C. Parametric Methods 42

Regression 43

Neural Networks 44

Advantage of Parametric Methods 44

Simplifying Assumptions of Parametric Methods 45

Application of Parametric methods to Water-Supply Management 45

D. Stochastic Dynamic Programming Methods 47

Parametric Dynamic Programming 48

Discrete Dynamic Programming 49

Stochastic Dual Dynamic Programming 50

Static Dynamic Programming 51

Advantage of SDP 51

Simplifying Assumptions of SDP 52

Application of SDP to Water-Supply Management 53

Chapter 4. Dynamic Programming 55

A. What is Dynamic Programming? 56

B. Discrete Dynamic Programming 59

1. Illustration of the Last Stage Subproblem 59

2. Illustration of the Remaining Subproblems Using Recursion 61

C. Limitations of Discrete Dynamic Programming 61

1. Exponential Growth with State Dimension 62

2. Techniques to Reduce Exponential Growth 64

3. Cost-To-Go Interpolation Methods 66

D. Multilinear Interpolation 68

1. Linear Interpolation in 1-D 68

2. Linear Interpolation in Multiple Dimensions 69

3. Local Coordinate System 70

Chapter 5. New Hermite Interpolation Methods 73

A. Characteristics of an Efficient Interpolation 73

B. Advantages of Hermite Interpolation 74

C. Characteristics of Weighting Functions 76

1. Requirements to Preserve Node Values and Gradients in One

Dimension 76

2. Requirements to Preserve Node Values and Gradients in

Multiple Dimensions 77

3. Additional Requirements to Produce Continuous and Smooth

Interpolating Functionals in Multiple Dimensions 78

D. Original Hermite Interpolation Method 79

1. The Weighting Functions 80

2. Analysis of the Original Hermite Interpolation Method 81

E. New First-Order Hermite Interpolation Method 82

1. Hermite Interpolation in One Dimension 83

2. Hermite Interpolation in Multiple Dimensions 84

XI

F. Convexity of the First-Order Method 90

1. Convexity of One-Dimensional Interpolation 90

2. Convexity of Multi-Dimensional Interpolation 91

G. A Hermite Interpolation Method with Continuous Second Derivatives 92

1. The Weighting Functions 93

2. The One-Dimension Approximating Functional 94

3. The Two-Dimension Approximating Functional 95

4. Accuracy and Convexity of Hermite Interpolation with

Continuous Second Derivatives 96

H. A Second-Order Hermite Interpolation Method 98

1. Shorthand Notation 99

2. Weighting Function for the Second Derivatives 100

I. Computational Efficiency of Methods 101

Chapter 6. Analysis of Gradient Dynamic Programming 105

A. The Series of Multi-Reservoir Test Problems 106

1. The Four-Reservoir Test Problem 106

2. Formulation of the Multi-Reservoir Test Problems 108

B. Computational Effort to Solve the Series of Multi-Reservoir Test

Problems 109

1. Standardization of Computational Time 110

Linear Interpolation 111

First-Order Hermite Interpolation 112

Second-Order Hermite Interpolation 113

2. Growth in Interpolation Effort with State Dimension 114

3. Growth in Number of Interpolations for Each Discrete State 116

Searches Per Node for Each Interpolation Method 117

Interpolations Per Search for Each Interpolation Method 118

4. Growth in Total Effort with State Discretization 118

C. Accuracy of the Series of Multi-Reservoir Test Problems 122

1. Error Reduction with State Discretization 122

2. Error Analysis 125
3. Solutions of the Four-Reservoir Test Problem 126

D. Net Performance of the Different Interpolation Methods 127

1. A Reformulation of the Results 129

E. Concluding Remarks 131

XU

Chapter 7. Methods of Numerical Integration to Evaluate Expected Values 133

A. Effect of Stochastic Variable Dimension on Computation 133

1. Effort to Evaluate Expected Values 134

2. Evaluation of Expected Values by Numerical Integration 135

3. Classical Numerical Integration: The Trapezoidal Rule 136

4. Examples of Past Efforts to Evaluate Expected Values 136

5. Discretization of Stochastic Variables in Past Efforts 138

B. The Application of Gaussian Quadrature to Discrete Dynamic

Programming 139

1. Mathematical Form of Gaussian Quadrature 140

2. Compatibility of Gaussian Quadrature and Hermite Interpolation.... 140

3. Sources of Error in Applying Gaussian Quadrature to Discrete

Dynamic Programming 141

Piecewise Nature of Cost-To-Go Approximations 142

Changing Control Decisions 142

Non-Polynomial Cost and Transition Functions 143

Constraints 143

C. Identification of Gaussian Quadrature Weights and Abscissas 144

1. Gaussian Quadrature with Normal Distributions 144

2. Gaussian Quadrature with Three-Parameter Gamma Distributions .. 146

3. Gaussian Quadrature with Lognormal Distributions 147

4. Gaussian Quadrature with Arbitrary Distributions 147

Chapter 8. Analysis of Gaussian Quadrature 151

A. Gaussian Quadrature Accuracy in Estimating the Expected Cost-To-Go 151

1. The Stochastic Models 151

2. Error Versus Stochastic Discretization 152

3. Error Bias of Gaussian Quadrature 154

4. Comparison with a Heuristic Quadrature Method 156

B. Impact of Piecewise Nature of Cost-To-Go Approximations on

Solution Accuracy 157

1. Quadrature Error Versus Interpolation Error 158

2. Quadrature Error with State Discretization 158

Chapter 9. Caution in Real-Time Operation of Reservoir Systems 163

A. Motivation 163

Xlll

B. Background 164

C. System Models 165

1. Four-Reservoir Model with Uncorrelated Streamflows (Model A)... 166

2. Four-Reservoir Model with Correlated Streamflows (Model B) 167

3. Four-Reservoir Model with Higher-Order Cost Function (Model C) 169

D. Results 169

1. Results for the Uncorrelated Flow Model (A) 170

2. Results for the Correlated Flow Model (B) 174

3. Results for the Non-Quadratic Penalty Model (C) 178

E. Concluding Remarks on the Cautious Management of Reservoir Systems.. 182

Chapter 10. Valuation of Water Resources 185

A. Background on Market Prices 185

1. An Ideal Market 186

2. Non-Ideal Water Markets 188

B. Assumptions 190

1. Constant Elasticity 192

2. Availability of Water Supplies 193

3. Effect of Timing on Rationing Costs 194

4. Externalities 194

C. Rationing Cost Function 195

D. Application to an Example System 197

1. The Example Water supply System 197

2. Water Prices 198

3. Demand Elasticity 199

4. Assessment of Rationing Costs 199

5. Application to the Example System 200

Chapter 11 Optimal Conjunctive-Use Operations and Plans 203

A. Introduction 203

B. Problem Description 205

1. The EBMUD System 205

2. Proposed Aquifer Storage 206

3. System Model 206

4. Demand, Streamflow, and Storage 208

5. Value Model 209

xiv

Shortage Cost 209

Pumping Cost 210

Recharge Cost 211

C. Evaluation of Operations and Plans 211

D. Results for Real-Time Operations 213

1. Supply Policy : 214

2. Allocation Between Surface and Subsurface Storage 215

Pumping Policy 215

Recharge Policy 216

Allocation 217

3. Downstream-Release Policy 217

4. Expected Cost of System Operations 218

5. Cost-To-Go 219

E. Results for Capacity Expansion 221

1. Benefits of Groundwater Development 222

2. Benefits of Conjunctive Development of Groundwater and

Surface Water 224

3. Impact of Initial Conditions on Results 225

4. Impact of Discount Rate on Results 227

F. Concluding Remarks on the Conjunctive Management of Surface and

Groundwater Storage 230

Chapter 12. Conclusions 233

Appendix A. Summary of Notation 237

1. Notation 237

2. Equations 239

1. System Model 240

2. Value Model 240

3. General Solution 240

4. Dynamic Programming Solution 240

5. Interpolation 240

Appendix B. Computer Code for Discrete Dynamic Programming and

Enhancements 241

1. Simplified Flow Chart 241

2. Include Files for Common Storage of Data 242

xv

Include File I.SIZEALLO 242

Include File I.SIZEPROB 243

Include File I.XNODES 243

Include File I.SPECW 244

Include File I.FNODES 244

Include File I.CONTROL 244

Include File I.SPECNOW 245

Include File I.CUBE 245

Include File I.PERFORM 245

3. Interpolation Subroutines 245

Subroutine INT_FUNC 246

Subroutines INT_HC2, INTJHC1, and INT_LIN 247

Subroutine CUBEJD 252

Subroutine CUBEVAL2 255

4. Optimization Subroutines 258

Subroutine OPT_SOLV 258

Subroutine OPT_FUNC 263

Subroutine OPT_NPSL 264

Subroutine OPTPOLY 270

Subroutine OBJFUN 272

Subroutine OBJVAL 274

Subroutine OBJ_CALC 274

Subroutine COST_PEN 278

5. Main Subroutine and Accessories 280

Subroutine DYNPROG 280

Subroutine MODELALL 289

Subroutine MODELSTG 292

Subroutine NODE_VAL 302

Subroutine ADJ_MOD 311

Subroutine IDNOW 328

Subroutine SIZETEST 329

6. Model Specification Subroutines 330

Subroutine CALLDP 330

Subroutine SPECPROB 330

Subroutine SPECU 332

Subroutine SPECX 333

xvi

Subroutine SPECW 334

Subroutine TRANSX 337

Subroutine SPECLCON 339

Subroutine COSTJNOW 340

Subroutine FINALCTG 342

Subroutine SPECF 343

Subroutine OUTSTAGE 343

Subroutine OUTFINAL 344

References 347

xvii

Will

LIST OF TABLES

Table 1B1. Advantages and Disadvantages of Subsurface and Surface Reservoirs 5

Table 2C1. Common Measures of Performance, Control, and State 19

Table 3A1. Optimization Methods Used for Stochastic Dynamic Control 35

Table 5C1. Weighting-Function Requirements for Interpolation in One-Dimension ... 77

Table 5C2. Weighting-Function Requirements for Interpolation in Multiple

Dimensions 78

Table 5C3. Weighting-Function Requirements for Continuity and Smoothness on

a Regular Grid 79

Table 5C4. Weighting-Function Requirements for Continuity and Smoothness on

an Irregular Grid 79

Table 5G1: Weighting-Function Requirements for Second-Derivative Continuity

on an Irregular Grid 93

Table 5H1. Second-Derivative Weighting-Function Requirements for Continuity

and Smoothness on an Irregular Grid 98

Table 511. Distribution of Effort for One Interpolation of the Cost-To-Go (in Flops).. 103

Table 512: Total Flops For Each Evaluation of the Cost-to-Go (per Code) 103

Table 6A1. Definition of Multi-Reservoir Problems 109

Table 6B1. Standard Computational Times per Stage of Linear Interpolation 112

Table 6B2. Standard Computational Times per Stage of First-Order Hermite

Interpolation 113

Table 6B3. Standard Computational Times per Stage of Second-Order Hermite

Interpolation 114

Table 6B4. Comparison Between Actual and Hypothetical Growth in

Interpolation Effort 116

Table 6B5. Breakdown of Effort for Each Discrete State of a Subproblem 117

Table 6B6. Impact of State Discretization on Standard Computational Time of

Second-Order Hermite Interpolation 119

Table 6B7. Impact of State Discretization on Standard Computational Time of

First-Order Hermite Interpolation 120

Table 6B8. Impact of State Discretization on Standard Computational Time of

Second-Order Hermite Interpolation 121

Table 6C1. Impact of State Discretization on Accuracy of Linear Interpolation 124

xix

Table 6C2. Impact of State Discretization on Accuracy of First-Order Hermite

Interpolation 124

Table 6C3. Impact of State Discretization on Accuracy of Second-Order Hermite

Interpolation 124

Table 6C4." Error Reduction Obtained From Halving the Discretization Interval of

Linear Interpolation 125

Table 6C5. Impact of State Discretization on Accuracy of First-Order Hermite

Interpolation 126

Table 6C6. Impact of State Discretization on Accuracy of Second-Order Hermite

Interpolation 126

Table 6C7. Solution Convergence with Finer Discretization for the Four-
Reservoir Problem When x/i = [6,6,6,6]T 127

Table 6C8. Solution Convergence with Finer Discretization for the Four-

Reservoir Problem When x»i = [1.1,1.1] 127

Table 6D1. Standardized Time per Stage to Achieve 10% and 1% Average

Absolute Relative Error 130

Table 6D2. Ratio of Standardized Time Using Linear and Hermite Interpolation

to Achieve 10% and 1% Average Absolute Relative Error 130

Table 7C1. Gaussian Quadrature Abscissa Locations and Weights for Standard

Normal Distribution 146

Table 7C2. Abscissa Locations and Weights for Lognormal Distribution,
~LN(2.0,0.5) 149

Table 7C3. Abscissa Locations and Weights for Lognormal Distribution,

~LN(4.0, .75) 149

Table 7C4. Abscissa Locations and Weights for Lognormal Distribution,

~LN(2.0, 1.0) 150

Table 7C5. Abscissa Locations and Weights for Lognormal Distribution,

~LN(4.0, 1.5) 150

Table 8A1. Error (% AARE) of Gaussian Quadrature with Stochastic

Discretization (Normally Distributed Inflows) 153

Table 8A2. Error (% AARE) of Gaussian Quadrature with Stochastic

Discretization (Lognormally Distributed Inflows) 153

Table 8A3. Error (% AARE) of Gaussian Quadrature with Stochastic

Discretization (High-Variance Lognormally Distributed Inflows) 154

Table 8A4. Error Bias (% ARE) of Gaussian Quadrature with Stochastic

Discretization (Normally Distributed Inflows) 155

xx

Table 8A5. Error Bias (% ARE) of Gaussian Quadrature with Stochastic

Discretization (Lognormally Distributed Inflows) 155

Table 8A6. Error Bias (% ARE) of Gaussian Quadrature with Stochastic

Discretization (High-variance Lognormally Distributed Inflows) 155

Table 8A7. Abscissa Location and Weights for Heuristic Quadrature Method 157

Table 8A8. Error (% AARE) of a Heuristic Quadrature Method and Gaussian

Quadrature 157

Table 8B1. Total Error (% AARE) of Gaussian Quadrature with State

Discretization (Normally Distributed Inflows and First-Order

Hermite Interpolation) 158

Table 8B2. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (Normally Distributed Inflows and First-Order

Hermite Interpolation) 159

Table 8B3. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (Normally Distributed Inflows and Second-Order

Hermite Interpolation) 160

Table 8B4. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (Lognormally Distributed Inflows and First-Order

Hermite Interpolation) 160

Table 8B5. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (Lognormally Distributed Inflows and Second-Order

Hermite Interpolation) 160

Table 8B6. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (High-Variance Lognormally Distributed Inflows

and First-Order Hermite Interpolation) 161

Table 8B7. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State

Discretization (High-Variance Lognormally Distributed Inflows

and Second-Order Hermite Interpolation) 161

Table 9C1. Parameters of Stochastic Variables for Uncorrelated Flow Model 166

Table 9C2. Model of Correlated Stream Flows 168

Table 9C3. Parameters of Stochastic Variables for Correlated Flow Model 168

Table 9D1. Mean, Minimum, and Maximum of Cost Distributions 169

Table 11B1. Variables of the Simple Conjunctive-Use Model 208

Table 11E1. Variables for Capacity Expansion of the Simple Conjunctive-Use

Model 222

Table AA1. Notation for System Model 237

xxi

Table AA2. Conventionally Defined and Non-Specific Parameters, Variables,

and Functions 238
Table AA3. Notation for Value Model and Optimal Solution 238
Table AA4. Notation for Effort of Discrete Dynamic Programming 238
Table AA5. Notation for Interpolation of the Cost-To-Go Function 239
Table AA6. Notation for Numerical Integration of the Expected Cost-To-Go 239
Table AA7. Notation for Rationing-Cost Function 239

xxn

LIST OF ILLUSTRATIONS

Figure 2B1. Example Trajectories for Regulation of Reservoir Level 14

Figure 2B2. Effect of Unexpected Storm on Regulation 15

Figure 2B3. Effect of Real-Time Control and Better Foresight on Regulation 16

Figure 2B4. Effect of Caution on Regulation 16

Figure 3B1. Discrete States and State Trajectories for the Last-Stage Subproblem 60

Figure 3B2. Sample Streamfiow Distribution 60

Figure 3B3. Discrete Estimate of the Last-Stage Cost-To-Go Function 60

Figure 3B4. Discrete States and Sample State Trajectories for the Second-to-Last

Subproblem 61

Figure 4C1. Discrete States for a 1-D Problem 63

Figure 4C2. Discrete States for a Multidimensional Problem 63

Figure 4C3. Cost Function Accuracy for Various State-Variable Discretizations 66

Figure 4C4. Comparison of Methods to Improve Interpolation Accuracy 68

Figure 4D1. Hypercubes of One, Two, and Three Dimensions 70

Figure 4D2. Local Coordinate System for Gridded 2-D Domain 72

Figure 5E1. 1-D Linear and First-Order Hermite Interpolation of the Function
F(x)=x-' 84

Figure 5E2. 2-D Weighting Function Wl) Applied at a Node 87

Figure 5E3. 2-D Derivatives of Weighting Function 0Ol) Applied at a Node 87

Figure 5E4. 2-D Weighting Function VC1!) Applied at a Node 88

Figure 5E5. 2-D Derivatives of Weighting Function VC1!) Applied at a Node 88

Figure 5E6. 2-D First-Order Hermite Interpolation of the Function F(x) = (*i*2>" 89

Figure 5G1. 1-D Hermite Interpolation with Continuous Second Derivatives of

the Function^W =x~ 95

Figure 5G2. 2-D Hermite Interpolation with Continuous Second Derivatives of

the Function W = {x\x2)A 96

Figure 6A1. Illustration of the Four-Reservoir Control Problem 107

Figure 6A2. Multi-Reservoir Systems 108

Figure 6D1. Trade-Off Between Accuracy and Effort per Stage of Linear

Interpolation 128

Figure 6D2. Trade-Off Between Accuracy and Effort per Stage of First-Order

Hermite Interpolation 128

xxin

Figure 6D3. Trade-Off Between Accuracy and Effort per Stage of Second-Order

Hermite Interpolation 129

Figure 6D4. Growth in Effort with Number of State Variables to Achieve 10%

and 1% Average Absolute Relative Error 130

Figure 7A1. Probability Distributions for Various Discretizations of a Stochastic

Variable 135

Figure 9C1. Uncorrelated-Flow Scenario for Models A and C (Example 1) 167

Figure 9C2. Uncorrelated-Flow Scenario for Models A and C (Example 2) 167

Figure 9C3. Correlated-Flow Scenario for Model 2 (Example 1) 168

Figure 9C4. Correlated-Flow Scenario for Model 2 (Example 2) 168

Figure 9Dla. Distribution of Costs for DFC Policy (Model A) 171

Figure 9Dlb. Distribution of Costs for DDP Policy (Model A) 171

Figure 9Dlc. Distribution of Cost Differences for DFC Versus DDP (Model A) 171

Figure 9D2a. Release and Storage for 1st Reservoir (Model A, Example 1) 172

Figure 9D2b. Release and Storage for 2nd Reservoir (Model A, Example 1) 172

Figure 9D2c. Release and Storage for 3rd Reservoir (Model A, Example 1) 172

Figure 9D2d. Release and Storage for 4th Reservoir (Model A, Example 1) 172

Figure 9D3a. Release and Storage for 1st Reservoir (Model A, Example 2) 173

Figure 9D3b. Release and Storage for 2nd Reservoir (Model A, Example 2) 173

Figure 9D3c. Release and Storage for 3rd Reservoir (Model A, Example 2) 173

Figure 9D3d. Release and Storage for 4th Reservoir (Model A, Example 2) 173

Figure 9D4a. Distribution of Costs for DFC Policy (Model B) 175

Figure 9D4b. Distribution of Costs for DDP Policy (Model B) 175

Figure 9D4c. Distribution of Cost Differences for DFC Versus DDP (Model B) 175

Figure 9D5a. Release and Storage for 1st Reservoir (Model B, Example 1) 176

Figure 9D5b. Release and Storage for 2nd Reservoir (Model B, Example 1) 176

Figure 9D5c. Release and Storage for 3rd Reservoir (Model B, Example 1) 176

Figure 9D5d. Release and Storage for 4th Reservoir (Model B, Example 1) 176

Figure 9D6a. Release and Storage for 1st Reservoir (Model B, Example 2) 177

Figure 9D6b. Release and Storage for 2nd Reservoir (Model B, Example 2) 177

Figure 9D6c. Release and Storage for 3rd Reservoir (Model B, Example 2) 177

Figure 9D6d. Release and Storage for 4th Reservoir (Model B, Example 2) 177

Figure 9D7a. Distribution of Costs for DFC Policy (Model C) 179

Figure 9D7b. Distribution of Costs for DDP Policy (Model C) 179

Figure 9D7c. Distribution of Cost Differences for DFC Versus DDP (Model C) 179

Figure 9D8a. Release and Storage for 1st Reservoir (Model C, Example 1) 180

xxiv

Figure 9D8b. Release and Storage for 2nd Reservoir (Model C, Example 1) 180

Figure 9D8c. Release and Storage for 3rd Reservoir (Model C, Example 1) 180

Figure 9D8d. Release and Storage for 4th Reservoir (Model C, Example 1) 180

Figure 9D9a. Release and Storage for 1st Reservoir (Model C, Example 2) 181

Figure 9D9b. Release and Storage for 2nd Reservoir (Model C, Example 2) 181

Figure 9D9c. Release and Storage for 3rd Reservoir (Model C, Example 2) 181

Figure 9D9d. Release and Storage for 4th Reservoir (Model C, Example 2) 181

Figure 10A1. Example Demand and Supply Functions 187

Figure 10A2. Consumer and Producer Surplus 187

Figure 10A3. Impact of Non-Market Price on Consumer and Producer Surplus 188

Figure 10A4. Producer Surplus and Consumer Surplus for Water Supply 190

Figure 10B1. Elastic (a = -2), Isoelastic (a = -1), and Inelastic (a= -0.5)

Demand Functions 191

Figure 10B2. Impact of Storage on Market Equilibrium Scenarios 193

Figure 10B3. Impact of an Alternate Supply on Market Equilibrium Scenarios 193

Figure 10C1. Graphical Estimation of the Total Benefit of Water Consumption 196

Figure 10C2. Rationing Cost Versus Fraction of Normal Supply for a= -0.5 197

Figure 10D1. Estimate of Rationing Cost for a Typical Family 201

Figure 11B1. The Simple Conjunctive-Use System 207

Figure 11D1. Supply Policy: Release (TAF per Year) to Users as a Function of

Available Water 214

Figure 11D2. Pumping and Recharge Policies: Transfers (TAF per Year) from

and to Groundwater as a Function of Available Water 215

Figure 11D3. Release Policy: Release (TAF per Year) Downstream as a

Function of Available Water 218

Figure 11D4. Expected Total Cost (Million $) as a Function of Available Water

Using Foresight of Current Year's Inflows 219

Figure 11D5. "Cost-To-Go": Expected Total Cost (Million $) from Future

Inflows as a Function of Initial Storage Levels 220

Figure 11E1. Expected Annual Cost (Million $) for Different Levels of

Groundwater Development with Initially Full Reservoirs 223

Figure 11E2. Expected Annual Cost (Million $) for Different Levels of

Conjunctive Development with Initially Full Reservoirs 225

Figure 11E3. Expected Annual Cost (Million $) for Different Levels of

Groundwater Development with Initially Empty Reservoirs 226

xxv

Figure 11E4. Expected Annual Cost (Million $) for Different Levels of
Conjunctive Development with Initially Empty Reservoirs 227

Figure 11E5. Pumping and Recharge (TAF per year) with a Zero Discount Rate 229
Figure 11E6. Expected Annual Cost (Million $) for Different Levels of

Conjunctive Development with Zero Discount Rate 229
Figure AB 1. Simplified Flow Chart for the DDP code 242

XXVI

CHAPTER 1.

INTRODUCTION

The challenges of water resources management are increasing, complicating the

efforts of managers who rely on traditional heuristic methods of system operation and

planning. Not only are objectives of water management changing, but the means by

which managers can achieve these objectives are dramatically different from what they

were twenty years ago. Conflict is common as increasing demands must be balanced by

consideration for environmental qualities without the ability to tap new resources.

Conservation, conjunctive use, desalination, reclamation and other techniques for

meeting demands have replaced dam construction. With increasing competition for

limited water resources, the solution of water resources management problems will

continue to become more complex.

Mathematical modeling and optimization, also known as "systems analysis," are

increasingly useful methods in coping with these challenges. With advances in

algorithms and computing power, we have greatly expanded our ability to develop

practical solutions for realistic water management problems. In contrast, the limited

ability of earlier methods often required that practitioners resort to simplistic solutions

developed for drastically simplified water management problems. As a result, application

of these solutions was often found to be unsatisfactory [Rogers and Fiering, 1986].

This thesis is an effort to further expand the abilities and acceptance of systems

analysis in the management of water systems. It is my belief that these methods are

becoming increasingly relevant and practical because of rapid changes in water

management. In particular, this thesis demonstrates the application of systems analysis to

managing systems that combine groundwater and surface water, commonly known as

"conjunctive use." To accomplish this, this thesis present analysis methods that allow

solution of stochastic optimization problems of greater complexity than previously

possible, not just for water resources management, but also for many other management

problems that fit the general mathematical form.

A. MOTIVATION

This effort began with some straight-forward systems operation questions that

turned out not to have straight-forward answers. A local water supply agency, the East

Bay Municipal Utility District (EBMUD) of Oakland California, has been considering

structural and operational options to reduce the agency's susceptibility to water shortages

in its growing district. While working on the groundwater storage option of this project, I

became interested in understanding the operational effects of adding groundwater storage

to the existing surface reservoir system. In particular, I was interested in comparing

benefits of groundwater storage with benefits of additional surface reservoir capacity.

The first question that needed answering was how operation of the groundwater

component should differ from existing surface reservoirs. A direct comparison of

capacities was inappropriate because a groundwater component would likely face

significant constraints on rate of recharge and extraction while also offering significantly

larger storage volumes. Not until this first question was answered could the second

question, how to compare the benefits of adding groundwater storage or additional

surface storage, be answered correctly.

It was a desire to answer these questions that lead to the use of optimization and,

in particular, the application of dynamic programming (DP) methods. However,

limitations on available DP methods frustrated these efforts, prompting work to overcome

these limitations. This thesis is a summary of successful methods developed to overcome

these limitations and of their application to answer the initial questions. It does not

include the many failed methods and dead-end paths that seem to be inevitable in such a

journey.

Though the specific problem of conjunctive-use management led me to this work,

the broader potential of this work has provided the motivation to address the problem to

the degree presented in this thesis. By developing general methods to answer the above

questions, I hope to have developed methods applicable to many other water resource

management problems that we face.

1. Evolving Challenges in Water Resources Planning and Management

Increasingly rapid changes in supply, demand, and system configuration are

requiring managers to reevaluate the management of their systems. Moreover, the

objectives of water management are changing and system managers must now consider

ill-defined "costs" and "benefits" of qualities such as impacts on fisheries, riparian

ecosystems, scenery, recreation, and water quality. To meet these changing demands,

systems increasingly employ management methods that include water conservation,

system redundancy, prioritizing deliveries, and integration of alternate sources such as

groundwater, desalinated water, and recycled water. Managers find it increasingly

difficult to develop operating rules as these rapid changes reduce the base of experience

available to guide operations.

Many water-management practices result from years of experience operating

water systems. Drawing upon this experience, managers have developed operating rules

that generally do an acceptable job of reducing the risk and expected cost arising from

water shortages and floods, while increasing the benefits of, say, hydropower generation

[Bredehoefi et ah, 1995; Kelman et al, 1990].

However, with changes in supply, demand, and system configuration, operating

rules must be updated if system performance is to be maintained. With gradual changes,

managers may be able to update these rules incrementally without much degradation in

performance. Rapid changes, however, may require that managers update operating rules

much more dramatically with potentially large degradation in performance.

Even when changes are gradual, the failure to periodically update operating rules

can result in dramatic changes when their weaknesses are highlighted in a crisis. For

example, the severe 1976-77 drought in western North America resulted in drastic

revision of operating rules for many water supply agencies. Many had failed to recognize

their susceptibility to drought as demands grew in their service areas. As a result, many

agencies suffered severe shortages; and, in response, many of these have become much

more cautious in their allocation of water supplies. This has been demonstrated by

preemptive rationing initiated during the more recent periods of drought and by some

expensive new projects that have included reclaiming waste water, desalination, and

water conservation.

B. AN EXAMPLE: CONJUNCTIVE MANAGEMENT OF
GROUNDWATER AND SURFACE WATER

Systems that conjunctively manage groundwater and surface water, often called

"conjunctive use" systems, present examples where managers may find difficulty in

developing operating rules. Dam construction has become difficult—if not impossible—

because the best available sites have been used and environmental considerations have

eliminated many remaining potential sites [Lettenmaier and Barges, 1979]. Also, public

perception has turned against further dam construction. Consequently, aquifer storage

has become more attractive.

However, conjunctive use is still a relatively novel management method, and

managers may hesitate to take advantage of conjunctive-use benefits. Although both

ground and surface water resources are widely used for water supply, these sources are

most often managed independently [Lettenmaier and Burges, 1979]. In part, this may be

because management of conjunctive-use systems can be difficult. Efficient management

may not be possible using common-sense or heuristic methods because of the different

capabilities and limitations of storage in surface reservoirs and aquifers. Without

appropriate management policies, managers may be discouraged by increased uncertainty

in the risks and costs of conjunctive-use development.

1. Benefits of Conjunctive-Use

In contrast to dam construction, the public seems more willing to accept the use of

aquifers for storing water. Though this is partially due to the less obvious impact that

aquifer storage has on modifying the environment, there are real advantages to aquifer

storage, especially in areas where pumping has already depressed groundwater levels.

Aquifer storage can help restore groundwater levels and thus reduce the costs of salt-

water intrusion, land subsidence, and pumping lifts. Also, aquifer storage may avoid

evaporation and seepage losses associated with surface reservoirs, and avoid engineering

risks and costs associated with dam construction. Aquifer storage is not a panacea,

however; it also has its own associated costs, such as from pumping and conflicts over

land use and water rights.

From an operational perspective, conjunctive use is a possible method for

improving water supply reliability and efficiency. Willis and Yeh [1987, p. 241]

recognize that, "By controlling the total water resources of a region, conjunctive use

planning can increase the efficiency, reliability, and cost-effectiveness of water use,

particularly in river basins with spatial or temporal imbalances in water demands and

natural supplies."

Many of the largest water supply systems traditionally have relied entirely on

surface reservoir storage [van der Leeden et al., 1990, pp. 319-325]; thus, there may be

many opportunities for their improvement through utilization of aquifer storage. It is

likely that initial efforts to employ aquifer storage will be more cost effective than

expansion of surface-reservoir storage. Lettenmaier and Burges [1979] found that, under

certain assumptions, developing aquifer storage as a buffer against variations in stream

flow was about an order of magnitude cheaper than developing surface storage.

Systems that integrate aquifer storage and surface reservoirs should be designed to

enhance the advantages and mitigate the disadvantages of surface and subsurface storage

(Table 1 Al). Management policies can use these differences to increase the reliability

and reduce the operating cost of conjunctive-use systems. As Burges and Maknoon

[1975, p. 1] point out, "Whenever multiple sources of water with different characteristics,

as is the case with groundwater and surface water systems, are available, it may be

possible to develop an operating strategy which exploits the different characteristics of

the sources." For example, conjunctive-use systems should be better at simultaneously

meeting water supply and flood control objectives by combining the long-term storage

capability of groundwater with the short-term surge capacity of surface reservoirs.

Table 1B1. Advantages and Disadvantages of Subsurface and Surface Reservoirs

Subsurface Reservoirs Surface Reservoirs
Advantages
1. Many large capacity sites available
2. Slight to no evaporation loss

3. Require little land area
4. Slight to no danger of catastrophic

structural failure
5. Uniform water temperature
6. High biological purity
7. Serve as conveyance systems and

avoids need to establish right-of-way

Disadvantages
1. Few new sites available
2. High evaporation loss even in humid

climate
3. Require large land area
4. Danger of catastrophic failure

5. Fluctuating water temperature
6. Easily contaminated
7. Water must be conveyed by canal or

pipeline
Disadvantages
1. Water must be pumped
2. Storage and conveyance use only
3. Water may be mineralized

4. Minor flood control value
5. Limited flow at any point
6. Power head usually not available
7. Difficult and costly to investigate,

evaluate, and manage
8. Recharge opportunity usually

dependent on surplus surface flows
9. Recharge water may require expensive

treatment
10. Continuous expensive maintenance of

recharge areas or wells

Advantages
1.

2.
3.

4.
5.
6.
7.

9.

10.

Water may be available by gravity
flow
Multiple use
Water generally of relatively low
mineral content
Maximum flood control value
Large flows
Power head available
Relatively easy to evaluate,
investigate, and manage
Recharge dependent on annual
precipitation
No treatment required of recharge
water
Little maintenance required of
facilities

Source: U. S. Bureau of Reclamation, Ground Water Manual, U. S. Department of the
Interior, 1977 (referenced by van der Leeden et al., 1990, p. 648).

2. The Management Problem of Conjunctive-Use

Because few conjunctive-use systems exist, we have little experience managing

them. We cannot easily develop heuristic operating rules that are efficient, and this

increases the expected expense and risk of developing new systems. Under these

conditions, planners and managers are hesitant to develop conjunctive-use systems

because of uncertain performance and unfamiliarity with these systems.

Many managers' first exposure to conjunctive-use operations likely will occur

when aquifer storage is added to existing surface reservoir systems. In contemplating the

addition of groundwater to their system, managers currently appear to hold two extreme

views. On one hand, they view aquifer storage as equivalent to a surface reservoir. On

the other hand, they view aquifer storage as a back-up: to be recharged only when other

reservoirs are full, and to be depleted only when other reservoirs are empty.

Both views fail to recognize the different capabilities and limitations of surface

and subsurface storage (Table 1B1). In particular, surface reservoirs and subsurface

reservoirs have different storage capacities, recharge and depletion rate limits, and

operating costs. If we base management rules on the notion that groundwater provides

only a backup supply or that subsurface storage is equivalent to surface storage,

conjunctive-use systems will perform little better than sole-source systems that rely only

on groundwater or only on surface water. On the other hand, if we develop management

rules that take advantage of the capabilities and avoid the limitations of each storage

mechanism, we may significantly improve system efficiency and reliability.

3. A Solution

Systems analysis can help managers understand the use and benefits of adding

aquifer storage to a reservoir system. Systems analysis involves mathematical modeling,

simulation, and optimization to determine operating rules that maximize system

performance. Through such an analytic approach, we can resolve conflicting views about

the use of aquifer storage. Also, by determining operating rules in advance of actual

operations, we can better anticipate the benefits and costs of conjunctive-use systems and

can better compare alternative system designs. Greater ability to anticipate benefits and

costs can reduce the uncertainty associated with the development of conjunctive-use

systems.
A systems analysis approach can also allow us to incorporate a variety of criteria

and information into water system management. These include a wider consideration of

system costs such as externalities that affect third parties or the environment. These may

also include constraints that incorporate legal or public policy requirements. Systems

analysis can incorporate these other criteria much more efficiently than heuristic methods

and can allow easier evaluation of changes. In addition, systems analysis can allow water

management agencies to determine a monetary value for proposed changes in system

design or operation, aiding in public policy consideration of conflicting objectives.

Consequently, agencies and policy makers can evaluate management alternatives and

assess their tradeoffs with greater objectivity.

C. SCOPE OF THE DISSERTATION

This dissertation develops systems analysis methods and applies them to a few

management problems, concluding with the problem of conjunctive-use. The methods

and applications are both presented in generic terms to facilitate application to other

water resource management problems. Indeed, the methods are valid for many optimal

control problems in other fields, particularly those concerned with resource management.

These include energy distribution, financial planning, chemical engineering, or any field

that poses problems that fit the general mathematical form of stochastic DP. Application

of these methods is most useful when considering processes driven by uncontrolled and

uncertain inputs, just as reservoir management is driven by the uncontrolled and uncertain

inputs of precipitation and stream flow.

We can see the difficulty in controlling such systems by previewing the challenge

presented by reservoir management. The control of stochastic dynamic systems is

complicated by our need to determine controls for these systems in advance of essential

knowledge. In particular, the regulation of stream flows for water supply requires that we

make allocation decisions before we know future streamflows with certainty. As a result,

we can only hope to make allocation decisions that are the best on average after

considering all future stream flows that are possible. Also, though we may determine a

current "best" allocation, we want to update allocation decisions as future stream flows

become known; therefore, we cannot identify in advance a best trajectory that identifies

the system's future condition.

The chapters of this thesis are divided into three groups. The first group lays the

groundwork for presentation of developments and applications discussed in the remaining

chapters. The second group develops and analyses new systems analysis methods. The

final group applies these methods to a conjunctive-use problem and considers other

practical considerations associated with application of systems analysis methods.

pSH

1. Background

Chapter Two presents background on systems analysis and stochastic

optimization methods. This chapter describes the impact that uncertain inputs have on

systems analysis and provides notation that will be used in the rest of this thesis.

Chapter Three reviews optimization methods that can be used when system

models contain uncertain inputs. This chapter briefly describes each method and its

limitations, and describes a few water-resource applications.

Chapter Four presents the optimization method of discrete dynamic programming

(DDP) as an appropriate method for analysis of reservoir systems. This chapter discusses

the limitations of DDP and provides additional notation and equations used in this thesis.

The development of multilinear DDP is presented as an illustration of DDP and as an

introduction to gradient dynamic programming (GDP) presented the following chapter.

2. New Methods

Chapter Five develops new interpolation methods for application in a GDP

algorithm. These interpolation methods use both values and gradients for more accurate

approximation of a cost-to-go function used by DDP. Development is guided by the need

to produce a highly efficient numerical code, and a standard measure of computational

effort is used to anticipate the actual performance of each method.

Chapter Six applies GDP to a range of test problems. This chapter compares GDP

with multilinear DDP by contrasting the computational time and accuracy of the two

techniques. The analysis validates the expected performance discussed in the previous

chapter and identifies the potential for using Gradient DP in problems with as many as six

to eight state variables.

Chapter Seven introduces efficient numerical-integration (i.e., quadrature)

methods to calculate expected values in stochastic DDP problems. These methods use

Gaussian quadrature for numerical integration of the stochastic expected-value function.

Development is guided again by the need to produce efficient numerical code. Gaussian

quadrature is an independent method that can improve efficiency almost as dramatically

as GDP. Though independent, efficient quadrature is an important parallel development

to efficient interpolation. In many practical applications, models require a number of

stochastic variables that increases in parallel with the number of state variables.

Chapter Eight applies Gaussian quadrature with GDP and multilinear DDP using

the test problems of Chapter Six. This chapter illustrates the high-order accuracy of

Gaussian quadrature and contrasts Gaussian quadrature with other methods that have

been applied in water resources problems. The analysis validates the expected

performance discussed in the previous chapter and the potential for solving problems

with numerous stochastic variables.

3. Applications

Chapter Nine applies the GDP code to test the value of caution in reservoir

management. GDP is applied to a series of reservoir control problems characterized by

different levels of caution required for optimal control. From these applications, we can

observe that management based most-likely forecasts of future reservoir inflows is

insufficiently cautious and can result in poor system performance, particularly under

extreme conditions. Chapter Nine also demonstrates the value of a systems analysis

approach that uses DDP because of its ability to establish management policies that are

appropriately cautious.

Chapter Ten considers our ability to quantify the value of water for urban users.

Optimal control is meaningless without an explicit statement of the values used to

evaluate system performance. This can be difficult when applying systems analysis to

practical problems. This chapter presents a reasonable method that can be used to

identify water-supply values.

Chapter Eleven applies GDP to a simple conjunctive-use problem. From this

application, we can observe some of the management practices that contribute to the

efficient control of a conjunctive-use system and some of the benefits expected from

adding groundwater storage to existing surface reservoir systems. In a broader sense, this

application also illustrates the practical benefit of using DDP to identify real-time control

policies. Moreover, this application demonstrates our ability to use DDP to assess a wide

range of planning options in an integrated approach. This integrated approach allows us

to simultaneously identify optimal control policies and the expected cost for any

proposed system configuration. As a result, we can efficiently identify the best options

without evaluating each option separately.

Chapter Twelve presents conclusions. The new interpolation and quadrature

methods presented in this thesis present an opportunity to apply systems analysis to a

wide variety of problems that previously were beyond the capability of DDP. A few of

these problems are discussed, as well as future research to further advance GDP methods.

10

CHAPTER 2.

ANALYSIS OF RESERVOIR SYSTEMS

This thesis develops techniques for management of stochastic dynamic systems.

These techniques are especially useful in the management of reservoir systems that

regulate variable and uncertain streamflows for water supply, water quality, flood control,

power generation, or other purposes. Management of such systems can include a variety

of decision-making efforts, and this thesis focuses on two: the identification of effective

real-time control decisions, and the evaluation of capacity expansion decisions.

Real-time control decisions (i.e., decisions that use information as it becomes

available) are necessary for effective system operations. For example, we require real-

time water release decisions for reservoir operations. Appropriate decisions are those that

best achieve the goals of reservoir management; when failure to meet these goals is

identified as a cost (e.g., of water rationing or of flood damage), then appropriate

decisions are those that minimize cost.

Likewise, with increasing constraints on our use of water resources, capacity

expansion decisions are essential for successful system planning. For example, we may

add storage capacity to a reservoir system to reduce the likelihood of water rationing or

flood damage. Appropriate decisions are those that combine development alternatives to

achieve system goals in a cost-effective manner.

To identify and evaluate reservoir system operations and plans, we can apply

simulation and optimization in a systems analysis approach. However, systems analysis

can be difficult when we must consider the impact that uncertain inputs, such as

streamflow and demand, has on the efficient regulation of systems. Uncertainty makes it

impossible to precisely identify the future impact of management decisions, and the best

decisions are identifiable only with hindsight. As a result, efficient regulation of stream-

reservoir systems is difficult, and there is no one optimization method that we may

employ in all systems analysis efforts.

This chapter presents background on systems analysis applied to reservoir

systems, and illustrates why uncertain inputs make it difficult for us to apply systems

analysis. To apply systems analysis to reservoir systems, we need an appropriate

optimization method that can overcome these difficulties. In Chapter Four, I present one

optimization method, "discrete dynamic programming" (DDP), as an appropriate method

11

for a variety of water resource and reservoir management problems. DDP is particularly

appropriate because of its ability to represent system dynamics and constraints

realistically. I present analyses of a few of these problems starting with Chapter Nine of

this thesis.

In between, Chapters Five through Eight present techniques developed to improve

DDP. These techniques allow us to solve more complex systems analysis problems than

previously possible. Such improvements are necessary since the application of traditional

DDP requires significant and sometimes excessive simplification of system models.

Chapters Five and Seven present these techniques and Chapters Six and Eight evaluate

their performance by application to test cases.

A. USING SIMULATION AND OPTIMIZATION IN RESERVOIR

SYSTEM MANAGEMENT

To aid us in making such reservoir system operating and planning decisions, we

can develop and apply mathematical models that simulate the structure and dynamics of

reservoir systems. These models allow us to observe the performance of different control

policies and system configurations under the influence of different streamflow scenarios.

The historical record is but one possible scenario that we may use to simulate the

future. However, it is the most appealing in practice because the historical record is more

concrete and less conjectural than other scenarios that we may use. Also, when the public

applies hindsight to management decisions following an extreme event, such as a drought

or a flood, it tends to be more critical of failures occurring with extremes that resemble

historical events than of failures occurring with extremes that have not been observed

previously [Glantz, 1982]. For example, though there was considerable criticism of water

agencies in the western United States following the surprisingly severe drought of 1976-

77, it is likely that the public's criticism was somewhat muted because such an extreme

event had not previously been recorded. Now with this hindsight, a number of agencies

use this drought as a basis for water rationing decisions [EBMUB, 1992; Gilbert, 1986].

Nevertheless, it is not generally appropriate to use only the historical record of

streamflows (or other uncertain input) to test management decisions. It is unlikely that

the future will repeat the pattern of the past. In addition, the past may not be an accurate

guide to the future because of non-stationary processes that contribute to hydrologic

conditions. The impact of changing land-use and weather patterns may significantly alter

the magnitude and pattern of future rainfall and runoff. Even when conditions are

stationary, the historical record provides but one possible scenario of past streamflows

12

(when viewed in a probabilistic sense) that is not representative of the range of possible

future flows [Fiering and Jackson, 1971].

Instead of relying only on the historical record, we may use synthetic streamflow

models to generate a number of random scenarios for river basin planning [Fiering and

Jackson, \91\;Loucks et al, 1981; Salas et al, 1980]. We then attempt to make the best

decisions possible after consideration of the possible outcomes and their likelihood.

When faced with a large number of potential outcomes however, we find it difficult to

identify the most appropriate management decisions. To aid our search effort, we can

apply an optimization method that automatically identifies the "best" decisions. Thus, we

may identify the best management options more quickly and efficiently by using a

systems analysis approach than by using only simulation.

B. THE IMPACT OF STOCHASTIC INPUTS

The reason most reservoir systems exist is to moderate the variability and

uncertainty of streamflows. Streamflows are variable because they change with transient

patterns of precipitation that also vary with season and perhaps long-term trends

reflecting climate change. In addition, streamflows are uncertain because the variable

pattern of flows cannot be identified in advance (note that streamflows cannot be

uncertain unless they also are variable). We say that streamflows are "stochastic"

because they contain an erratic component that makes precise prediction of future flows

impossible. Reservoir system conditions change in response to stochastic streamflow

inputs in ways that are not completely within our control, and, as a result, management of

a reservoir system presents what we call a "stochastic dynamic control" problem.

A major challenge in the management of reservoir systems is how to anticipate

and regulate stochastic streamflow inputs that drive system dynamics. The uncertainty of

inputs is large, and we cannot identify efficient controls far in advance of actual

operations. Instead, we make control decisions only when needed, thereby allowing us to

collect as much information as we can before committing ourselves to a particular course

of action. For example, when managing a flood-control reservoir, we make release

decisions just prior to making actual releases so that we may take advantage of the most

up-to-date streamflow forecasts. Such decisions are examples of "real-time control."

1. An Example of Management Without Uncertain Inputs

It is easier to regulate a system that does not have streamflows or other inputs that

are stochastic. In such cases, we know everything, in advance, about the system and

13

there is no advantage in delaying control decisions. We say that such a system is

"deterministic" because all information about the system is (or is assumed to be)

determined precisely. As a result, we can identify, in advance, a single "best" schedule of

control decisions for the entire operating horizon. So long as our information about the

system doesn't change, we can use these controls to forecast the evolution of the system.

As a simple example, suppose we need to regulate the level of a reservoir to meet

water supply and flood control needs. If future inflows are determined precisely, we can

identify the single best schedule of releases and the associated trajectory that describes

the evolution of reservoir levels. Figure 2B1 illustrates possible trajectories that can take

us from a half-full reservoir in December (the "current" month) to an empty reservoir in

April, required perhaps to prevent flooding in May and June. The best trajectory is that

associated with a release schedule that respects constraints on system operation, and that

minimizes costs. These costs may quantify the impacts of flooding, water use, or other

purposes.

Figure 2B1. Example Trajectories for Regulation of Reservoir Level

full

empty

December January February March

2. The Effect of Uncertain Inputs on Reservoir Control

In contrast, system regulation is difficult if a reservoir system has uncertain

inputs. Uncertain inflows, for example, make it impossible to identify both future release

decisions and reservoir levels. Instead of identifying a single schedule of control

decisions, we adopt a "wait-and-see" approach to delay decisions as long as possible. By

delaying, we can observe the values of some streamflows and may be able to reduce the

uncertainty of other future flows. Using this information, we can identify releases that

better achieve system management goals. Nevertheless, we can identify the truly best

schedule of releases only with hindsight.

To continue with the simple example, suppose an unexpected storm occurs in

February. If we had identified, in advance, a single control schedule that is insufficiently

cautious, then the storm could cause flooding. Figure 2B2 illustrates the effect that such

14

an unexpected event might have on a planned trajectory. In this illustration, the storm

causes flooding because the reservoir fills and spills.

With hindsight, we can easily identify that a more cautious release schedule

would have prevented this flood; however, we cannot wait for hindsight. Instead, we

must make release decisions in advance. At best, we can make release decisions in real-

time by delaying each release decision until the month it is required. By delaying

decisions, we can observe prior months' streamflows and the resulting reservoir levels,

and perhaps we may also reduce the uncertainty of future flows. For example, we may

not be able to foresee a February storm in December, but perhaps we may be able to

anticipate the storm in January. By delaying control decisions, we can reduce the flood

damage by adjusting January's control decisions to reflect this additional information

(Figure 2B3). This is an example of real-time control because we adjust releases in real

time using information from changing conditions and forecasts.

In addition, we may prefer a more conservative control path, regardless of

whether we can improve predictions by delaying control decisions. If the impact of

infrequent flooding is unacceptably severe, we may drain the reservoir more rapidly to

make additional storage available to capture flood waters (Figure 2B4). We refer to this

preference as "caution." Cautious decisions hedge against the occurrence of extreme

events that are potentially catastrophic, even though they are rare. Under ordinary

streamflow conditions, cautious decisions may seem unduly conservative; however, in

the long run, appropriately cautious decisions should be more effective.

Figure 2B2. Effect of Unexpected Storm on Regulation

full

empty

December January February

Originally
J Planned |_

March

15

Figure 2B3. Effect of Real-Time Control and Better Foresight on Regulation

full

empty
% .> »—»

December January February March

Figure 2B4. Effect of Caution on Regulation

full

empty

December January February March

3. The Purpose of Feedback Control

For the simple reservoir example with stochastic inflows, we see that we cannot

simultaneously identify a schedule of release decisions and future reservoir levels. If we

specify release decisions in advance, then reservoir levels will vary with the cumulative

impact of inflow variability. If we specify reservoir levels in advance, then release

decisions must vary with inflows to achieve target levels.

Using real-time control, we do not specify either decisions or levels in advance.

Instead, we use a "wait-and-see" approach to delay decisions as long as possible. This

allows us to observe the impact of inflows on reservoir levels and to reduce the

uncertainty of future inflows. With this information, we are better able to choose

decisions and levels that produce the best "expected" system performance (i.e., lowest

expected cost) averaged over possible future scenarios. In other words, we "feed" this

information back into the decision making process to improve control decisions.

Whenever stochastic inputs have a cumulative impact on system characteristics

(i.e., in any real-time control problem), we must provide a mechanism for using this

information to update control decisions. This is known as "feedback control." When

using systems analysis, the mechanism for feedback control depends on the optimization

method that we use to update control decisions. In this thesis, I use the method of

16

discrete dynamic programming (DDP) for reasons that we will discuss in Chapter Four.

In addition, Chapter Three will briefly consider other optimization methods that may be

used for feedback control.

4. The Impact of Reducible and Irreducible Uncertainty

For purposes of systems analysis, it is useful to distinguish between uncertainty

that is reducible and uncertainty that is irreducible. As we have discussed, if we can

reduce the uncertainty of inputs as system operations progress, then we can improve

system control by delaying decisions. This uncertainty is dynamic and reducible, and we

should incorporate it in a system model as a stochastic input. In contrast, if we cannot

reduce the uncertainty of inputs as operations progress, then the there is no benefit from

delaying decisions. We may refer to this uncertainty as irreducible, and we may

incorporate this in system models without need for real-time control.

An input may have irreducible uncertainty if we cannot observe its impact on

system dynamics. For example, groundwater models typically contain uncertain

parameters for hydraulic conductivity and storativity. Because it is impractical to directly

obtain values for many of these parameters, we infer parameter values from indirect tests

conducted prior to modeling. Using our best estimates of these values, we create models

and apply systems analysis using deterministic optimization. In these cases, we can test

the impact of uncertainty on results by generating a number of Monte Carlo realizations.

This allows us to test the range of possible outcomes, but we still can apply deterministic

optimization to each realization.

Often, we view uncertainty as irreducible to make a problem easier to solve. In

truth, there are few uncertain inputs that have a completely unobservable impact on

system dynamics. For example, we may observe the response of groundwater flow to

control decisions. As recognized by several authors [Georgakakos and Vlatsa, 1991; Lee

and Kitanidis, 1991; Whiffen and Shoemaker, 1993], we can use this response to improve

parameter estimates and reduce uncertainty in groundwater models. Deliberate selection

of control decisions to improve parameter estimates is known as "probing" [Lee and

Kitanidis, 1991].

Though reducible and irreducible uncertainty both affect optimal control

decisions, they have different representations in system models. For clarity, this thesis

ignores the effect that irreducible uncertainty can have on reservoir management. In

particular, as an example of irreducible uncertainty, this thesis will ignore the effect that

measurement uncertainty has on optimal control. For discussion of how we may

17

incorporate irreducible uncertainty into reservoir management, one may view Stengel

[1994] or other works on optimal control.

C. DEVELOPING SYSTEMS ANALYSIS FRAMEWORK

Systems analysis involves (1) the development of a mathematical model that

simulates the essential elements of an actual system, (2) the development of a value

model that identifies management goals and that quantifies system performance, and (3)

an optimization procedure that identifies management policies that achieve the best

system performance.

A system is a group of components meant to perform a common function.

Reservoir systems consist of interconnected storage components that function to regulate

variable inputs such as streamflow or demands for water supply and power generation.

We can judge the effectiveness of system management by measuring system performance

against various criteria such as maintaining prescribed reservoir levels or meeting

demands for water. Table 2C1 identifies some goals of stream-reservoir system

management and some possible performance measures.

We need not limit system management to a single goal, and "multi-purpose"

systems are common. For example, a reservoir constructed for water supply may also be

used for power generation. We may assess the performance of multi-purpose systems by

a single quantitative measure or through a "multi-objective" analysis. Multi-objective

analysis compares tradeoffs between objectives without identifying the relative value of

each purpose explicitly [Major, 1977]. This thesis will not consider the problem of

assessing relative values of system performance for each objective, but will assume that a

single performance measure exists.

Associated with the goals and performance measures of Table 2C1, we can

identify control decisions and information that may aid selection of appropriate controls.

Identification of appropriate controls often requires consideration of information that

defines the Markovian "state" of a system. We can identify this state information by a set

of variables summarizing what we know about the present condition of a system.

Generally, the values of these state variables will change with time, subject to applied

controls and stochastic inputs.

18

Table 2C1. Common Measures of Performance, Control, and State

Goal Performance Measure Control State

Water Supply Cost of water rationing Allocation Amount stored
Long-term flow forecast

Hydropower Revenue from power Turbine Power head
generation operation Short-term flow forecast

Flood Control Cost of flood damage Release Free storage
Short-term flow forecast

Fish Habitat Fish population Release River stage
Water temperature

Recreation Deviation from desired Release Reservoir level
levels River stage

1. Mathematical Model of a Svstem

A system model is a concise mathematical description that identifies controllable

inputs, the state of facilities and other system components, uncontrolled and uncertain

inputs, system dynamics, and constraints.

DECISION VARIABLES

Regulation of a system requires the existence of system inputs that are

controllable and that can modify system dynamics. For stream-reservoir systems, the

most common and obvious inputs under our control are reservoir releases. In addition,

we may also control allocation of supplies downstream and other types of flows within a

system. We (i.e., the manager or operator of a system) regulate controllable system

inputs by control decisions that we make. We represent these decisions by variables

u = ["l. "2. "3. -]T arranged in a column vector.

STATE VARIABLES

Effective regulation of a system requires appropriate use of information about the

condition of the system. For stream-reservoir systems, this information will commonly

include characterization of reservoir levels, streamflow forecasts (including related

information such as current streamflow, snowpack measurements, soil moisture, weather

forecasts, etc.), demand forecasts, status of equipment and facilities, and so forth. This

19

T
information defines the state of a system that we represent as n variables x = [x\,... x„]

arranged in a column vector.

Because control decisions depend on a system's state, we can specify a functional

relationship u(/) = U ,(X(,>) describing a course of action based on the system's state at

time /. This relationship describes the "control policy" of a system. For example, we can

specify optimal water releases from a reservoir as a function of current reservoir levels,

streamflow forecasts, season, or other state information. We can also summarize such

control policies by "rule curves" that prescribe control decisions for system operators

[Marien et ai, 1994].

STOCHASTIC VARIABLES

Often, a variety of uncertain and uncontrollable inputs affect the evolution of a

system. For example, stochastic streamflows effect the evolution of reservoir levels and

impact control decisions. We represent these stochastic inputs as variables

s = [s\, si, -*3> —]T arranged in a column vector.
Part of our modeling effort is to identify functions that describe of the probability

distributions of these inputs. I use a function s(w) to describe a transformation of m

random normal variables w = [w\,... wm]T to the stochastic variable s. For example, if

streamflows are lognormally distributed, we may use the model

s = exp[/i + aw]

to describe the transformation of random variable vv to stochastic variable s. In this
example, parameters fi and a are the mean and standard deviation of the log-transformed

sample values of s.

Such a functional description can also depend on the state of the system. For

example, if streamflows are autocorrelated, we may use the model

s = px + exp[/i + aw]

Parameter p is a correlation coefficient and x(ti) = %,.,) is a state variable representing the

prior period's flow. When modeling a stochastic input, we can use any appropriate

function s(x,u,w,f) of state variables, decision variables, random variables, or time,

though we should prefer simple and clear models. In practice, we use random normal

variables w to represent uncertainty, and we incorporate functional descriptions of

stochastic variables s implicitly in other model equations.

20

DYNAMICS

The state of a system evolves in response to the application of controlled and

uncontrolled, uncertain inputs. We can model this dynamic behavior by a vector first-

order differential equation that describes a continuous change of state x:

&- = f(x,u,w,r)
at

The evolution of state x depends on its current value, on inputs u and w, and on the

current stage.

If we update controls periodically instead of continuously, it is easier to describe

the system's evolution for discrete values of time tj = t\,...,t^ ■ These values break a

control problem into "stages" (i.e., time intervals) of length A//, where tj+\=tj+Atj. For

each stage, we can model a system's dynamic behavior by discrete changes

■f
ft+At

Axw = I f(x,u,w,f)d/

In addition, at any discrete time tj, we can identify the state of a system by a function

X(,,+l) = T,/x(,;),u(;>),w(,;))

where X(/y) and x(,>tl) are the states at the beginning and end of stage tj, and u(,y) and w(/;)

are controlled and uncontrolled inputs applied during the stage. This equation identifies

the "transition function" of a dynamic system. To avoid subscripts, I will frequently use

the shorthand definitions

ys*<M) . XEEX«,) > u = u(',) • wsw(»>) > tstj (2C1)

Using these definition, we identify the transition function by

y = T,(x,u,w) (2C2)

Similarly, we identify the control policy and stochastic models by

u = U,(x)

s = S,(x,u,w) (2C3)

CONSTRAINTS

A system model should not allow us to select infeasible control decisions. For

example, reservoir releases cannot be negative. Feasibility may also depend on non-

physical constraints that incorporate public policy considerations, contractual obligations,

21

or other legal constraints. Sometimes however, we may neglect certain feasibility

constraints because they have a negligible impact on control policies (i.e., constraints that

are never binding, or at least not during critical periods of system operation). For

example, storage capacity in a reservoir system may be sufficiently large to have a

negligible impact on limiting allocation decisions.

We can represent inequality constraints in general form as

lower bound </(x,u,w) < upper bound

where / is any function of the variables x, u, and w (or s). For equality constraints, the

lower and upper bounds are equal. Under certain conditions, we can re-express the set of

constraints as

B,L(x,w) < u(f) < B,u(x,w) (2C4)

where BL and Bu are arrays of functions that define, respectively, the lower and upper

bounds of control variables. Subscripts on these arrays indicate that constraints may

depend on the current stage /.

With stochastic inputs, constraints on decisions are also stochastic. When the

impact of w on bounds is small, we can choose decisions that are feasible for all

reasonable values of w. However, when the impact of w is large, control decisions may

be unreasonably constrained or may have no values feasible for all w.

To avoid stochastic constraints that unreasonably restrict available control

decisions, we can make constraints deterministic by assuming foresight of w for the

current stage. This also reduces the work for each optimization to identify the best

control decisions. However, we now identify control decisions by a policy that is a

function of both the initial state and random variables for the current stage:

u(/) = U,(x,w) (2C5)

As a result, we must identify optimal decisions for each possible outcome of w that we

use to represent the stochastic distribution. As we will see, this can greatly increase the

number of optimizations that we must perform, balancing out any reduction in work for

each optimization.

FEASIBILITY OF CONTROL DECISIONS WITH STOCHASTIC CONSTRAINTS

In many hydrologic systems, the uncertainty of hydrologic variables can be quite

large, making it difficult to fix control decisions in advance, even for the current stage.

Frequent "tweaking" of control decisions is often required to adjust for changing

hydrologic values. When developing mathematical models, we would like, ideally, to use

22

stage lengths that are small enough to allow tweaking of controls in a manner similar to

actual operations. However, this may impose an unrealistically large computational

burden that requires use of longer stages.

Three approaches are available to ensure feasibility of control decisions under

conditions of uncertainty. These are to (1) identify fixed controls that are feasible for all

discrete outcomes, (2) identify controls that use some foresight of stochastic inputs, and

(3) tolerate limited occurrence of infeasible controls as a form of model error. Each of

these approaches requires simplification of the system model, and practical application

may require tweaking of the identified controls.

When using long stages, all the above approaches result in solution error.

Because the first approach requires fixed controls that are feasible for all discrete

outcomes, the range of available controls can be significantly constrained. This results in

controls that are excessively conservative (i.e., cautious) and cost more than expected

from actual operations. Because the second approach develops control decisions using

prior knowledge of streamflows in the current stage, solutions may have an unrealistic

advantage. This results in controls that are less conservative and cost less than expected

from actual operations.

The systems analysis methods presented in this thesis ensure feasibility of control

decisions by using some foresight of stochastic inputs. Specifically, these problems

assume foresight of current stochastic inputs s (or w) when identifying control decisions

u. However, this foresight is "limited," because we use it only to identify current control

decisions and not to identify the cost of current and future operations. In practical

application, the resulting control decisions can be tweaked as observations of the true

outcome are available.

ARGUMENTS FOR USING LIMITED FORESIGHT

Under most conditions, the use of limited foresight should produce better control

decisions than alternative approaches. In particular, it is appropriate to use limited

foresight when real-life changes in regulation occur more rapidly than simulated by a

model. On the other hand, when the time required to implement changes is longer than

the length of stages used in a model, it may be more appropriate to identify fixed controls

for all outcomes of current stochastic inputs. However, there is little advantage to using

stages that are shorter than the time required to implement changes. Moreover, using

numerous, short stages can impose a significant computational burden.

The following is a list of practical reasons that justify the use of foresight:

23

(1) Feasibility of Control Decisions

Not using foresight may produce stochastic constraints for which there are no

feasible decisions or for which the set of feasible decisions is unrealistically small. This

is especially true when long stages are required to reduce the computational burden.

(2) Limited Computer Resources

Limited computer resources often require us to use long time intervals in system

models. Real-time control of the true system will often be at shorter intervals, so the

assumption of foresight produces a control policy that is closer to what we should use in

practice. Also, with long time intervals, the impact of w is large and we may produce an

empty set of feasible decisions as in (1).

(3) Convergence of Solutions with Short Stages

Even when we have the luxury of using short time intervals to reduce the impact

of w on stochastic constraints, there is little benefit in not using foresight. As the impact

of w diminishes, the significance of assuming foresight also diminishes. As a result,

there will usually be a negligible difference between control policies that use foresight

and those that do not.

(4) Unboundedness

A final—and perhaps most compelling—reason for not requiring feasibility for all

reasonable w is that identification of reasonable w is arbitrary: do we bound reasonable

w using a hundred-year or thousand-year flood event? If we use wide bounds to model

extreme but rare events, then the impact of w may again become large enough to

excessively constrain control decisions.

2. Value Model of a System

It is meaningless to talk about managing a system effectively without explicitly

stating a measure of system performance. We require such a measure to compare the

performance of one control policy or system-expansion plan with any other. For

example, we may judge performance by how well inputs are regulated to minimize

deviations from desired levels or to maximize some output. To measure system

performance, we must develop a value model that explicitly quantifies this performance.

Value models are often subjective and derived from a variety of decision makers

with divergent views. As a result, identification of a single value model can be

contentious [Rogers and Fiering, 1986]. Even when we measure performance by indices

24

such as minimizing absolute deviations or minimizing the square of deviations, these

indices contain implicit judgments about the cost of deviations.

When regulating a multi-objective system, it can be particularly difficult to

identify a value model. Multi-objective systems require that we balance the costs and

benefits of different objectives that may be in conflict and that may not have a common

basis for measurement. Unfortunately, most reservoir systems require multi-objective

analysis: Even when a system is designed for a single-purpose, multiple objectives exist

because resources are limited and must be balanced with achieving the purposes of a

system.

ACCURACY OF VALUE MODELS

Though it may be difficult to provide a precise measure of system performance,

an approximate performance measure is better than none. An approximate measure can

still incorporate significant information that will result in effective system management.

For example, though we may not have a precise measure for the value of water supplies,

we do know that the value of additional water generally diminishes with increasing

supply. We can incorporate this information into an approximate value model, and better

management will result than from management without any explicit or implicit value

model.
If we have some prior knowledge about appropriate management solutions, we

can also use this to identify a value model. By using an iterative approach, we can

progressively define a satisfactory value model. If an initial model produces an

unsatisfactory solution, we can modify the model until we attain an appropriate solution.

Using this approach, we can transform soft judgments and preferences into quantified

performance measures. This also suggests that we can assess the implicit value

judgments used in pre-determined management solutions. Likewise, we can evaluate the

cost of constraints on operating and planning decisions.

In this thesis, I use a variety of value models. Chapters Six, Eight and Nine use

abstract value models used previously by other authors. Chapters Ten and Eleven use

models based on reasonable values for water supply and for the cost of system

management. Though reasonable, these value models still contain significant uncertainty.

Various authors have worked at reducing uncertainty of water supply values [Cameron

and Wright, 1990; Martin and Kulakowski, 1991; Martin and Thomas, 1986; Williams

andSuh, 1986; Young, 1973], and Chapter Ten summarizes some of the results that we

can use to provide values for the management of urban water supplies.

25

VALUE FUNCTION DESCRIPTION

We can represent a value model in general form as

&- = V(x,u,w,/)
at

This allows us to incorporate costs associated with the system state, controls, stochastic

inputs, and time. If we update controls periodically instead of continuously, we can

evaluate a "cost" for stage I as

rt+At

AV = I V(x,u,w,t)dl ■I
which we can re-express as a function

AV = C,(x,u,w) (2C6)

where C, is a "current" cost associated with stage /.

By evaluating the cost for each stage, we can assess the total cost (and

"performance") for all stages by the summation

ts
V„ = X C,(x,u,w) + FlNJx) (2C7)

The function F,Ntl represents the long-term "future" cost or preference associated with a
final state X(,vv,). For example, if we do not care about the impact of this final state on

costs after stage f/v, we can set F,N^(x) = 0 for all x(/jVtl). On the other hand, if we need to

attain some specific final state, either we can specify X(tN+l) - x(,) as a constraint, or we

can specify FfAM(x) = 0 for x(/v+l) = x'" and a penalty cost F,„+,(x) > 0 for deviations from

the target.
In this thesis, I refer to the values produced by such models as "costs." This

implies that the best operations and plans are those that "minimize" the cost from a value

function. We can incorporate revenues or other benefits as negative costs.

PERFORMANCE IN THE PRESENCE OF UNCERTAIN INPUTS

We cannot precisely evaluate the total cost by equation (2C7) when some system

inputs are uncertain. As discussed earlier, we cannot identify both control decisions and

future states. We can identify actual system performance only after we have an

opportunity to observe actual values of all inputs (i.e., with hindsight).

Instead, because we must make control decisions in real-time, we can identify

decisions that achieve the best possible "expected" performance. Expected performance

26

weighs possible outcomes of uncertain future inputs. For each control policy or schedule

of proposed controls, we calculate cost as a weighted average of all possible outcomes.

For example, if there are M possible outcomes of w in stage tj, the expected single-stage

cost is given by the sum

M
Ew{ AV } = X vk C(x,u,w<*>) (2C8)

k=\

Each parameter v* is the weight applied to the Ar'th outcome w<*> of the random variables.

When a random variable has a continuous distribution, there is an infinite number

of possible outcomes. As a result, the single-stage cost of equation (2C8) should be

evaluated by the integral

Ew{ AV } = I W(yr) { C(x,u,w) } dw (2C9) I.
Function W(w) is the probability density of w used to weight the different outcomes.

When w contains normally-distributed random variables, W(w) has a multivariate

Gaussian distribution [Keeping, 1995]. However, analytic evaluation of integrals such as

in equation (2C9) is usually difficult.

Instead, we approximate expected-cost integrals using numerical integration, or

"quadrature" using summations similar to equation (2C9) [Press et al, 1992]. To apply

quadrature to equation (2C9), we need to identify a number of discrete outcomes w^ (or

"abscissas") and appropriate weights v*. Abscissas are typically equally spaced

outcomes at the nodes of a grid spanning the random variables. Weights depend on the

abscissas, and there are several appropriate methods that we can use to evaluate these

weights. For example, we may use the probability density function to define weights

given by:

v* = n (AWJ w(wjk))} (2ci°)

This approximation is known as the trapezoidal rule [Press et al., 1992]. There are other,

more sophisticated, numerical integration methods that we will consider in Chapter

Seven.

3. Optimization of System Performance

Our goal is to regulate a system to achieve the best possible performance. Given

a system and value models for a system, our goal is to identify management decisions

27

that minimize system costs over a time horizon of interest. To identify these decisions,

we need to employ some search method. A search method that automatically identifies

the least-cost, or "optimal," decisions is also known as an "optimization" method.

Depending on the characteristics of a reservoir management problem, we may

choose to employ one of a variety of optimization methods. Problems considered in this

dissertation are appropriately addressed by relatively simple "lumped-parameter" models

because we can describe important state information—such as reservoir levels,

streamflow forecasts, etc.—by a few state variables. Also, as discussed earlier in this

chapter, reservoir management requires a cautious optimization method that can reduce

the cost of extreme events. Because of these characteristics, I have relied on the

optimization method of DDP discussed in Chapter Four.

It is difficult to solve control problems with stochastic inputs, and all optimization

methods rely on special characteristics of a problem to make it tractable. To help explain

why it is difficult to solve stochastic management problems, the remainder of this chapter

outlines the brute-force approach to finding real-time control decisions.

DIFFICULTY IN IDENTIFYING PERFORMANCE FOR ALL STAGES

With no stochastic inputs, we can identify a single optimal control schedule and
the resulting system performance in advance. For a discrete initial state, x^\, we can

evaluate the optimal schedule of control decisions u*,,),..., U*,N) and resulting system

performance V* by

V*(x(''>) = minUa|))._ U(/v){ V{x{^y\{h),..., x(,,Vt,),u(„),..., uils)) }

As before, future states are defined by transition functions and constraints. Optimal

control decisions and the resulting system performance can be identified relatively easily

using an appropriate deterministic optimization method.

With stochastic inputs, we cannot—in advance—identify a single optimal control

schedule or the exact system performance. Using feedback control, there are an infinite

number of possible control schedules, and we can only identify the best with hindsight.

Also, a value model quantifies system performance for specific inputs, so we cannot

evaluate actual performance until we know all inputs.

Instead, we identify a set of policies, one for each stage, that provide control

decisions for any possible outcome of the stochastic inputs. System performance is

evaluated as the expected performance averaged over all possible outcomes with

consistent application of the control policies. As discussed before, policies are functions

28

of the current state x that we observe and, when using limited foresight, of the current

random variables w.
The expected performance of a series of control policies {U(,,),...,U(/JV)} for N

stages is given by

E{ V} = EW(fi))..., W(,w){ VlUa,,,..., U(l„>} (2C11)

and the series of optimal control policies {U *,,),..., U*,v)} is given by

F* = minU(li),..., U(lw){ E{ V } } (2C12)

where F* is the optimal future performance expected under these policies.

In contrast to the deterministic case with no stochastic inputs, optimal control

policies and the expected system performance are difficult to identify. This is

particularly true if we use equations (2C11) and (2C12) directly. The expected value of

equation (2C11) is the multiple integration

i»+oo r+°°

E{V) = I W(vf(„))... I W(w(,w)) {V} dw(,,V)... dw(„) (2C13)
J-OO J-QQ

for a known series of control policies. Analytic solution of this equation is difficult, so

we apply numerical integration analogous to equation (2C8):

M M

Ew(ll),.... w(,,v){ V } - I v,„*,... X v,H,kM { V) (2C14)

To evaluate equation (2C14) once for an initial state x[j|} and one series of control

policies {U(,,).-,U(/A,)} requires considerable effort: With M combinations of w for

each stage, there are MN possible outcomes, each requiring an evaluation of the total cost

given by VCxJ'^x^),..., x(^,),u(fl),..., u(/jv),w(„),..., w(ljv)). In addition, we must evaluate

A^ transition functions and associated constraints. Suppose we evaluate a simple ten-stage

model with two random variables. If we consider three possible outcomes for each

random variable, the number of possible outcomes in each stage is M = 32, and the total

number over ten stages is MN = (32)10, or about 3.5 billion. This is hardly a modest

effort! As we see, the number of scenarios is essentially infinite for most realistic

problems.
For any stochastic control problem but the most trivial, it is futile to use equation

(2C11) to evaluate the total cost function and equation (2C12) to search for optimal

policies. Instead, we must identify a less general formulation and systems-analysis

method. This formulation must take advantage of problem-specific characteristics and

29

appropriate simplifying assumptions. In the absence of appropriate simplifying

assumptions, the formulation must employ assumptions judged to be least detrimental to

the accuracy and validity of resulting management decisions. As we will see in Chapters

Three and Four, one formulation involves breaking the control problem into smaller,

easier-to-solve sub-problems using one of several dynamic programming methods.

DESCRIPTION OF SYSTEM PERFORMANCE

A function that describes the expected value of V at the time when controls are

selected is also known as a "cost-to-go function" or a "future-cost function." For

convenience, we may identify the future cost function by Fh where

F„(x) = EW(;i),.„, W(/v){ VI U(ll,,..., U(,,v) } (2C15)

This function specifies the expected system performance, or cost, to go from an arbitrary

initial state x(/|) to a probabilistic final state x^,) at the desired time horizon. We wish to

identify optimal control policies {U(/|),..., U(,v)} that we can use in real time to identify

control decisions

u* = U(*)(x,w) (2C16)

Optimal control policies are those that minimize the total cost function for any initial

state of the system. The function Ft(x) depends only of the system's initial state because

everything else is determined: control decisions u are defined by control policies;

random variables w are incorporated as a weighted average; and subsequent states
X(,,),..., X(,v<.,) are defined by transition functions.

This cost-to-go function summarizes all information that we need to assess future

system performance and to make appropriate control decisions. When solved with

sufficient accuracy, this function summarizes expected future costs of system operations

and appropriately weighs the cost and risk of extreme events. Also, if we know the cost-

to-go function for the end of our current stage, we can solve a single-stage optimization

problem to identify current controls that appropriately balance current and future costs.

For example, knowledge of the future water-supply value of water stored in a reservoir

allows us to identify release decisions that balance the cost of current rationing with the

cost of expected future rationing. Chapter Three will show that development of a cost-to-

go function in each stage is the key that allows us to break dynamic control problems into

easier-to-solve sub-problems.

30

CHAPTER 3.

REVIEW OF OPTIMIZATION METHODS

FOR STOCHASTIC DYNAMIC CONTROL

Given a system and criteria for measuring the performance of the system (such as

cost), we require a systems analysis method to determine the best real-time control policy

where the "best" is defined as that policy that minimizes the total expected cost of system

operations up to some time horizon as modeled by equation (2C7). As we saw at the end

of Chapter Two, the effort required to identify such policies could be overwhelming,

and—as we might expect—there currently appears to be no general optimization method

that we can apply to solve all stochastic control problems. Instead, for each type of

control problem, it appears that we must identify an optimization method that takes

advantage of specific problem characteristics and, perhaps, appropriate simplifying

assumptions.

This chapter will present a brief summary of methods that we can use to solve

stochastic dynamic control problems. As identified by Lamond and Boukhtouta [1995, p

32], no single method can solve all problems that have the following characteristics:

(1) a large amount of data required to describe the state of a system

(2) uncertain parameters that are correlated and not normally distributed

(3) non-linear dynamics, complex objectives, and constraints

The weakness of various methods in one or more of these areas requires us to make

simplifying assumptions in order to apply them, and these assumptions may be

inappropriate for many problems. However, for a variety of reservoir management

problems (such as those presented in Chapters Nine and Eleven), we will see that discrete

dynamic programming (DDP) can be an appropriate method.

31

A. CURRENT STATUS OF SYSTEMS ANALYSIS APPLIED TO
WATER-SUPPLY MANAGEMENT

The operators of reservoir systems have continued to rely on simulation as the

principal means for deciding what control policy to use. The use of optimization methods

has been limited, primarily because of past difficulties in applying systems-analysis to

realistic system models [Rogers and Fiering, 1986], and partly because of difficulties in

quantifying the measures of system performance used in reservoir management

[Brookshire et ai, 1986].

The exception to these general observations appears to be in the application to

systems that have hydropower generation as the sole (or principal) goal of operations. In

hydropower systems, it is easy to compare the benefits attained under different policies.

Also, the simplifying assumptions have had only a reasonably small effect on the

accuracy and appropriateness of the resulting control policies. Policies obtained using

systems analysis have been successful in achieving larger hydropower benefits than well-

established policies obtained using efficient heuristic methods. In hydropower systems,

marginal improvements can be quantified, and systems-analysis methods have produced

benefits amounting to millions of dollars [Kelmcm et ai, 1990]. Systems analysis

methods have been applied to other types of systems to a lesser extent. The models and

assumptions used in hydropower management have not been found appropriate for other

types of reservoir problems.

In this thesis, systems analysis methods are developed for application to water-

supply management. This application has been motivated by my interest in ways to

efficiently manage systems that use both surface water and groundwater (i.e.,

"conjunctive use") for urban supply. The structure of water-supply systems, including

those that use both surface water and groundwater, is significantly different from the

structure of hydropower systems. As a result, water-supply systems require quite

different model formulations. Also, the assumptions that are appropriate for managing

such systems are significantly different from assumptions that are appropriate for

managing hydropower systems.

Hydropower systems frequently are characterized by extensive and highly

interconnected networks of reservoirs. Reservoir levels are frequently maintained at or

near target levels to provide an optimum hydraulic head for power generation. At a

constant head, the benefit of power generation is approximately a quadratic function of

the release. Alternate power supplies (e.g., thermal power plants) are usually tied into the

system, and the cost of curtailing power deliveries can be tolerated. These characteristics

32

permit appropriate simplifying assumptions, and various systems analysis methods have

been used to produce useful policies for managing hydropower systems.

In contrast, water-supply reservoirs frequently are managed independently or are

managed in conjunction with a limited number of other reservoirs. Reservoir levels can

vary widely, and it is rarely possible to identify a target storage level. Also, the

management goals of water-supply are different and result in different types of functions

for measuring benefits. Water supply benefits must be represented by more complex

equations that reflect the vital role that water plays in sustaining life. Because of this

vital role, extreme events that lead to water shortage have a disproportionate impact on

system goals, and, therefore, the value functions are not reducible to simple linear or

quadratic equations such as those frequently used in hydropower management. These

characteristics make the simplifying assumptions that are appropriate for hydropower

systems inappropriate for water-supply systems, and it has been possible to produce

useful policies only when managing the simplest systems.

Summary of Optimization Methods

With stochastic inputs, the best management decisions for a system are not

obvious. In particular, when future reservoir inflows are variable and uncertain, we

cannot easily identify the best water supply and flood release decisions. Also, we cannot

correctly evaluate the benefits of system expansion or other changes without stating what

the control policies for the modified system are. Since we don't have the benefit of

hindsight in making decisions about future events, the best decisions we can make are

those that achieve the best expected performance over all possible future scenarios (as

discussed in Chapter Two) weighted by their likelihood of happening.

Complex real-world systems are often impossible or very difficult to model and

solve analytically. To find a management solution, it is often necessary to excessively

simplify the model of a real system. The so called "optimum" solution of this over-

simplified model has frequently been far from the true optimal solutions of the real

system. According to Rogers and Fiering [1986], practical applications of optimization

to reservoir management have been limited, and managers have continued to rely largely

on experience, in spite of several decades of effort trying to develop systems analysis

methods. Indeed, experience appears to have been very effective in identifying

appropriate ways to manage many well-established systems [Bredehoeft et al, 1995;

Kelman et al, 1990] whose system dynamics, structures, and goals don't change much.

However, this experience is not a sufficient to guide for the management of

systems whose dynamics, structure, or goals change. These require systems analysis

33

methods to determine appropriate real-time controls and correctly evaluate the benefits

and costs of different planning options. In particular, we need controls that hedge by

balancing short-term costs with long-term expected costs that include the potential costs

of extreme events.

This chapter will touch upon some of the optimization methods that can be

applied to a stochastic dynamic control problem. The methods vary depending on the

number of state variables used to model the system and the complexity of constraints,

objectives, and other characteristics. As more detail is added to the model, we may often

be forced to accept simplifying assumptions to the point that the optimal solution of the

model is useless as a management policy for the real system. The name of the game is to

choose a model with enough detail as to be representative of the real system and to

choose a solution method that can find the optimal solution.

Table 3A1 summarizes many of the optimization methods that have been applied

to reservoir management. These are methods that require (1) a forecast of stochastic

inputs, (2) prior knowledge of appropriate control policies, or (3) a function that estimates

the expected cost of future operations. Each of these methods can be modified to allow

its application to almost any system, but the resulting control-policy will not be useful if

the assumptions of the method are not valid. Table 3A1 also identifies for each method

the maximum number of state variables that we may use to model a system.

Not included in Table 3A1 are various aggregation-decomposition methods or

hierarchical methods that may be used to simplify the model of a system and to allow

application of systems analysis to large-scale systems. Aggregation-decomposition

methods are those that "aggregate" information used to describe a system's state before

optimization and that "decompose" this information following optimization. For

example, this may be accomplished by optimization of "subproblems" used to feed to a

global optimization problem or by identification of "principal components" of the state

information [Saad and Turgeon, 1988]. Lamondand Boukhtouta [1995] summarize

some of the aggregation-decomposition methods that may be employed. Hierarchical

methods [Pereira and Pinto, 1983] are those that may be used to develop policies for

long stages (e.g., weekly or monthly) which are consistent with policies appropriate for

short stages (e.g., hourly or daily).

34

Table 3Al. Optimization Methods Used for Stochastic Dynamic Control

Method Maximum number of states and other characteristics

Forecast Based Methods
Accurate if quadratic objective, linear dynamics, normal distributions, and no
 inequality constraints

Deterministic Feedback Control

First-Order Analysis

Chance Constraints

Linear-Quadratic Control

1000

1000 - allows use of third-order polynomial
objective

1000 - allows use of probabilistic constraints

1000

Parametric Methods
Accurate if prior knowledge of control policy, quadratic objective, linear

 dynamics, normal distributions, and no inequality constraints

Regression

Neural Network

1000 - requires prior knowledge of control
policy

100 - requires prior knowledge of control
 policy

Stochastic Dynamic Programming Methods
Accurate for any type of objective, system dynamics, inequality constraints, or
 probability distributions

Parametric DP

Discrete DP

Stochastic Dual DP

Static

100 - requires prior knowledge of cost-to-go

10 - requires sufficient state discretization

100 - requires sufficient number of trial states,
strictly convex or concave cost-to-go

1000 - requires steady-state

35

B. FORECAST-BASED METHODS

Systems analysis should use optimization methods that incorporate information of

the state of the system as the system moves into the future. This allows development of a

"feedback" process that uses previous results of stochastic inputs and their impact on the

system's state to reduce future uncertainty and improve control decisions. For example,

systems analysis applied to reservoir management should use observed inflows and

storage levels to reduce the uncertainty of future inflows and improve release decisions.

Forecast-based methods incorporate this feedback using the "best" available

estimates of stochastic inputs and states to make control decisions. As time passes,

forecasts and control decisions are improved as more and more actual outcomes are

observed. Usually, a forecast is "expected" (i.e., the probability weighted) outcome of all

possible stochastic-input scenarios. Sometimes the forecast is defined as some scenario

that suits the goal of system management. For example, a "worst case" historical

scenario of reservoir inflows could be used to make control decisions that will avoid

some undesirable outcome (e.g., complete emptying or filling of a reservoir) given a

repeat of any previously observed inflows.

Deterministic Feedback Control (DFC)

DFC is the most popular forecast-based method. Control decisions are found by

optimizing a deterministic model using expected forecasts and by periodically updating

the forecasts and reoptimizing.

Because DFC can be used to generate control decisions for every state, we could

develop policies that describe control decisions as a function of state variables. With

such a set of policies at hand, decisions could be updated automatically to achieve

"closed loop" control. This is rarely done in practice as this requires, in advance, the

solution of an optimization problem for each initial and future state of the system. As a

result, the updating of control decisions using DFC is not automatic, and forecast-based

methods produce "open loop" control [Lamondand Boukhtouta, 1995, p 16]. We must

periodically reoptimize as we observe the actual outcome of inputs and states.

DFC identifies control decisions that assume perfect foresight of future inputs. As

a result, control decisions may not be cautious enough in avoiding certain low-probability

events that have catastrophic consequences. The forecasts do not warn of the possibility

of events happening until after system conditions have evolved to the point that it may

36

not be possible to avoid the consequences [Kitanidis and Andricevic, 1989]. For

example, DFC will delay taking action to avoid the emptying of a reservoir until the

forecasts of low inflows and reservoir levels indicate that complete draining is likely.

Even though managers of many reservoir systems use some form of DFC, they

also recognize that it is important to be extra cautious. Thus, managers often use ad-hoc

procedures to hedge against unacceptable, low-probability outcomes [Kitanidis, 1987].

Often, these procedures constrain system operations to avoid the worst consequences

under a simulated recurrence of extreme historical events. For example, water-supply

agencies in western North America often use the severe 1976-77 drought to evaluate their

system's vulnerability [EBMUB, 1992].

While incorporating additional caution, ad-hoc procedures may leave systems

vulnerable to extreme events beyond those previously seen. For example, before 1976,

the prolonged droughts of the 1920's and 30's were the worst drought periods on record

[Glantz, 1982], and the short, but more severe, 1976-77 drought caught many water

management agencies unprepared. Preparation for specific extreme historical events—

whose exact duplication is nearly impossible—may produce controls that are not cautious

enough, too cautious, or both depending on the conditions.

First-Order Analysis Methods

First-order analysis (FOA) methods [Stengel, 1994, pp. 436-443] can be used in

place of ad-hoc procedures to induce extra caution and protect against low-probability

events. FOA identifies cautious control decisions by including an extra term to

incorporate the first-order impact of stochastic inputs. We may expand our representation

of a control policy [Kitanidis, 1987] by the series

u* - u(0) + u(1)<r + u(2V +

where UJ^ is the deterministic control policy identified by DFC. Higher-order terms are

computed from a Taylor series expansion, assuming no constraints are binding

(constraints are applied only to the deterministic policy). It turns out that U(f) is zero, so

FOA uses the deterministic and second-order terms. In contrast, DFC makes the

assumption that the higher-order terms are insignificant and that mean values of future

inputs are sufficient to describe future uncertainty.

Higher order terms result from the impact of stochastic inputs where a is a scaling

factor of the forecasting-error covariance matrix

Q(o = Ew(0{ w(o WJ)

37

and

a1 = Trace { Q(0 }

As with DFC, control decisions depend mainly on the forecast of future states and

stochastic inputs. When a2 is zero (or when the condition of "certainty equivalence"

holds), DFC and FOA methods are exact and produce the same control policy.

By including higher order terms, we can solve a control policy that is better at

incorporating the impact of low-probability events and therefore is more cautious.

Kitanidis [1987] introduced FOA, also known as the "small-perturbation approximation,"

for the solution of stochastic reservoir control problems. FOA accounts for contingencies

and, as a result, is more cautious. Kitanidis and Andricevic [1989] showed that policies

obtained from FOA perform much better than policies obtained from DFC. Even though

DFC generates control decisions that usually perform slightly better than FOA under

average conditions, they could perform much worse under extreme conditions.

Chance Constraints

Chance constraints require that operations "succeed" with a specified level of

reliability by approximating the probability distribution of stochastic inputs using first

and second moments (i.e., mean and variance). Chance constraints do not consider the

impact of extreme events when minimizing the expected cost of operations; however,

they develop operating strategies that are more cautious than "risk-neutral" strategies that

result from using expected values of stochastic inputs. For example, Revelle et al. [1969]

and Bhaskar and Whitlatch [1987] applied chance constraints in their evaluations of

linear release-policies constrained by reservoir capacity. Even when feedback is not

important, chance constraints are useful in the presence of uncertain parameters. For

example, Wagner and Gorelick [1987] require that groundwater quality standards be met

with a specified level of reliability in the presence of uncertain aquifer properties.

Chance constraints are especially useful in problems where the goal is to

minimize the rate of system "failure," defined perhaps as an inability to meet all demands

or avoid flood damage. However, water-supply agencies are finding it impossible to

avoid "failure" as water rationing or other forms of failure become more common with

increasing demands and increasing regulatory constraints on operation. Increasingly,

efficient management of reservoir systems is shifting from reducing the likelihood of

failure to reducing the severity of failure. Though both FOA and chance constraints use a

"first-order" approximation of probability distributions, chance constraints evaluate only

the probability of achieving some goal or violating some constraint.

38

Linear-Quadratic Control

When a single nominal (i.e., optimal) target state can be identified, stochastic

inputs tend to move the system away from this state. In this case, optimal control acts to

move the system back to the nominal state [Stengel, 1994, pp. 443-451], and we can use

linear-quadratic control (LQC) to identify real-time decisions. In unconstrained systems

with a quadratic objective, linear dynamics, and normal distributions, the optimal control

policy is a linear function of deviations from the nominal state. Such systems allow us to

determine optimal control policies without the need to reoptimize after each updated

forecast. Thus, we can achieve closed-loop control.

LQC is applicable to a wide variety of problems where the purpose of control is to

correct small deviations from a pre-specified desired trajectory or condition. In such

cases, small deviations allow us to ignore constraints under most conditions and use a

quadratic first-order function to estimate the cost of deviations. For example, Wasimi and

Kitanidis [1983] and Loaiciga and Marino [1985] use LQC for daily operation of a

system of flood-control reservoirs to maintain reserved space, McLaughlin and Velasco

[1990] use LQC to track power output targets in a system of hydropower reservoirs, and

Georgakakos [1989a] uses LQC in a multiobjective system.

Advantage of Forecast-Based Methods

Forecast-based methods, and particularly DFC, are popular because they are

relatively simple to understand and implement. Because these methods use a single

scenario of future inputs, only a single optimal control schedule needs to be evaluated and

not entire policies. Also, it is much easier to find the optimal control decisions that

require evaluation over a single outcome (a "deterministic" problem) rather than control

decisions that require evaluations over the entire space of possible outcomes (a

"stochastic" problem).

Forecast-based methods can be solved using a variety of deterministic

optimization programs. Many of these methods are capable of modeling systems with

many state variables and non-linear objective functions, dynamics, and constraints.

Among these methods, differential dynamic programming is perhaps the most flexible;

and it has been applied to a wide variety of forecast-based optimization problems,

including hydropower generation, air traffic control, and various other feedback control

problems [Yakowitz, 1982]. Differential DP has also found frequent application in

multireservoir control and groundwater flow problems characterized by complex

dynamics and abundant state information. For example, Murray and Yakowitz [1979]

39

use differential DP to solve a ten-reservoir control problem, and Jones et al. [1987] use

differential DP to control nonlinear groundwater hydraulics.

Chang et al. [1992] and Whiffen and Shoemaker [1993] modify the DFC method

to incorporate feedback laws that change pumping rates directly in response to

observations. When systems have linear dynamics, we may also use linear programming

or linear-quadratic programming to allow even more large-scale (i.e., detailed) models or

to reduce the computational burden. For example, Atwoodand Gorelick [1985] linearize

the response of hydraulic head to determine pumping and recharge schedules for gradient

control using a combination of simulation and linear programming.

When caution is important, FOA (or chance-constraint) methods can be used to

add caution to DFC solutions. FOA is somewhat more difficult to implement than DFC

because we must adjust the deterministic control policy by a hedging term. The

computational effort is not significantly greater, and the method can also be applied to

problems with many state and control variables. As with DFC, FOA has found

application in multireservoir control and groundwater flow problems, especially those

characterized by complex dynamics and a large amount of data required to describe the

state of a system. For example, Kitanidis and Andricevic [1989] solve a four-reservoir

problem in which inflows are uncertain. Andricevic and Kitanidis [1990] solve a one-

dimensional flow problem with uncertain parameters to remove groundwater

contaminants. Lee and Kitanidis [1991] solve a more detailed flow problem with a

longer time horizon. Georgakakos and Vlatsa [1991] use the FOA method to manage

two confined aquifers using various performance indices in the presence of uncertain

transmissivity and boundary conditions.

Simplifying Assumptions of Forecast-Based Methods

Forecast-based methods assume that optimization of a deterministic model using a

single forecast will yield reasonable control decisions. This assumption is valid only

when controls need not incorporate extra caution or "hedging" to avoid the consequences

of extreme events; that is to say, when the condition of "certainty equivalence" holds

[Kitanidis and Andricevic, 1989].

Certainty equivalence holds for unconstrained system models with linear

dynamics, quadratic cost functions, and normally distributed inputs [Kitanidis, 1983;

Lamondand Boukhtonta, 1995, p 17]. In these cases, we can achieve close-loop control

by identifying a control policy by LQC. This can be seen in the results of Bhaskar and

Whitlatch [1980]; they observe that linear control policies result when using a two-sided

quadratic loss function but not when using a one-sided function. Certainty equivalence

40

also holds approximately for system models whose stochastic inputs cause only small

deviations from a nominal state, even when other conditions are not satisfied.

When the condition of certainty equivalence does not hold, FOA (or chance

constraints) can be used to add caution to a deterministic control policy. FOA is accurate

when a1 is "small" in some sense and when fourth and higher derivatives of the value

function have little effect on the control policy [Kitanidis, 1987]. As with DFC, FOA "is

appropriate for real-time operation problems for which the optimal release depends

mainly on the best projection of future conditions (mean values) and the mean squared

estimation error of forecasting uncertainty (variances/covariances)." In other words,

FOA is appropriate for problems with loose constraints and objective functions that are

locally third-order functions. For other problems, we are not guaranteed that control

decisions will have the appropriate level of caution.

In Chapter Nine, we will see that DFC can produce reasonable solutions when the

condition of certainty equivalence holds approximately, even when a system model

contains constraints. Chapter Nine provides a test of DFC solutions obtained by

generating a large number of random scenarios. Application of DFC to these scenarios

shows that when the condition of certainty equivalence holds at least approximately, the

observed performance of DFC is distributed about the performance anticipated by the

forecast. Nevertheless, we will also see that DFC solutions deteriorate as the impact of

constraints and cost functions moves a system model away from the condition of

certainty equivalence.

Application of Forecast-Based Methods to Water-Supplv Management

Most models that deal with reservoir system operations assume that the

streamflow forecast is error-free [Kelman et al, 1990], permitting identification of a

single set of "optimal" control decisions. This allows application of a variety of

successive approximation methods to solve high-dimension reservoir control problems

that are not tractable using other methods [Foufoula Georgiou, 1991]. In particular,

managers of reservoir systems often use some form of DFC because of its ease and

flexibility. For these systems, identification of the best forecasts of future inputs is a

major priority [Bender andSimonovic, 1994; Georgakakos, 1989b]. In systems that

allow identification of a nominal state (such as systems that have a target reservoir or

river level for short-term regulation or for hydropower generation, recreation, and

navigation), LQC can frequently be applied.

Unfortunately, forecast-based methods are inappropriate for many water-supply

management problems and for a variety of other reservoir control problems. In these

41

problems, we cannot identify a nominal state. For example, we cannot identify a nominal

reservoir level for water supply unless reservoir capacities are large relative to demands

and inflow variability. Also, the condition of certainty equivalence is not sufficiently

correct because extreme events can produce extreme, non-quadratic costs: complete

draining of a sole-source reservoir in a water-supply system is catastrophic for consumers

ofthat supply. As a result, water-supply management requires cautious control policies

that hedge against severe shortages by imposing rationing early.

Just as it is common to buy insurance that compensates us for the consequences of

fire, theft, accidents, or other unlikely events that could have severe consequences in our

personal lives, so it is for water-supply management; we buy "insurance" through

decisions that hedge against the severe consequences of extreme droughts, floods, or

other consequences. Nevertheless, we may not always be rewarded for our caution in

managing reservoir systems [Glantz, 1982], and we should balance the cost of hedging

with its long-term expected benefit.

As noted earlier, DFC solutions can significantly underestimate the expected cost

of system operations because forecasts fail to adequately consider the impact of extreme

events. When the impact of low-probability events is significant, DFC policies perform

poorly when compared with policies obtained from other more-cautious methods. These

other methods hedge against the occurrence of various contingencies [Kitanidis and

Andricevic, 1989]. FOA is one example of these other methods; however, FOA captures

only the first-order effects of uncertainty, and the resulting decisions may not be cautious

enough or sometimes even too cautious.

C. PARAMETRIC METHODS

Parametric methods present another group of optimization methods that we may

use to identify feedback control policies. These methods offer some of the advantage of

FOA by identifying decisions that are more cautious than those of DFC, and these

methods offer some of the advantage of LQC by identifying control policies that allow

closed-loop control.
"Parametric" methods reduce the problem of stochastic control to one of fitting a

limited number of parameters (e.g., coefficients) in pre-determined control-policy

functions. Similar to forecast-based methods, parametric methods incorporate feedback

by adjusting the control response to observed outcomes of stochastic inputs and state

variables. Unlike previous methods however, parametric methods do not require a

forecast and control decisions are directly given as functions of the system state alone.

42

Parametric methods dramatically reduce the effort required to solve a stochastic

control problem by using "soft" knowledge. For example, if we have some expectation

based on prior experience about the characteristics of a good control policy function, then

we may a-priori identify it as the correct functional form. Another example is modeling

which involves fitting parameters to underlying functional forms that identify a system's

structure and operation. As a result, parametric methods are frequently used in

combination with other stochastic methods to simplify system models.

To identify a control function, parametric methods identify parameters that match

some known or assumed relationship between inputs (the system's state) and desired

outputs (the "optimal" control decisions). In some cases, this relationship can be

captured by arbitrary functions that have no basis in the structure or operation of a

system, since the application of these functions is judged solely by their ability to

empirically reproduce the relationship between inputs and desired outputs. These outputs

are usually identified by deterministic optimization of historical inputs (e.g., reservoir

inflows) or other scenarios. A stochastic problem is solved when optimization identifies

parameters that minimize some measure of "cost," such as those that minimize the sum of

squared differences between control policy outputs and desired outputs.

Following is a brief outline of stochastic optimization methods that are

"parametric" because the solution process includes "fitting" parameters to pre-selected

functions. The process of fitting parameters to pre-defined control-policy functions gives

rise to methods that share similar advantages and limitations.

Regression

Regression includes a wide variety of curve fitting methods. The particular

function form of the curve and the particular fitting method depends on what prior

knowledge we have about a control policy solution. Regardless of the form and method

employed, the basic approach is to reproduce the relationship between sets of input and

output data. The simplest example is linear regression that describes a relationship

between a single input x and output y by fitting parameters {a,b} in the equation

y(x) = ax + b

to data pairs {(x('\yW), i=l,N}.

Usually, a smooth curve is unable to exactly match input and output data. For

example, random errors (that add "noise" to the relationship) and imprecise knowledge

about the correct functional form prevent a complete description of the relationship. To

identify parameters, we minimize some measure of the errors between true values y(,) and

43

estimates y(,). Typically, the best fit is identified by linear-quadratic programming to

minimize the sum of squared errors. When a better fit is required, we might use higher

order functions or functions that seem more appropriate based on the observed or the

expected relationship between x and y.

Neural Networks

Neural networks also describe a functional relationship between sets of input and

output data, but they require somewhat less prior knowledge to identify a control policy.

A neural network consists of layers of nodes or "neurons" that sum input signals to

produce an output signal. The "input" layer is the first layer of nodes that accepts signals

from the system's state. The "output" layer is the last layer of nodes that produces

control decisions. In between, there may by one or more "hidden" layers that combine

these signals. The more hidden layers and nodes used to model a system, the more

degrees of freedom that a control policy has to take into account in order to capture the

interrelationship between inputs and outputs. Input and output data are used to "train" the

neural network in an iterative process that varies the weights applied to signals between

nodes. The objective is to find weights that minimize some measure of the errors

between output from the network and the desired output from the data sets. When a

better fit is required, an improved neural network model is developed with more nodes in

a layer, more layers, or different methods of summing input signals.

Advantage of Parametric Methods

As with forecast-based methods, parametric methods are relatively simple to

implement and understand. By using soft knowledge about a control policy solution,

parametric methods allow us to significantly reduce the effort required to solve a

stochastic control problem. Also, parameters can be fitted by a wide variety of

deterministic optimization programs, and parametric methods can be applied to large-

scale stochastic control problems.

In some applications, parametric methods avoid the development of stochastic

models. This can be useful in cases where it is difficult to construct a stochastic model.

For example, the historical record may be insufficient to build a detailed stochastic model

for inputs that are highly correlated and seasonal. If the historical record is sufficiently

long, there is no need to develop synthetic scenarios to represent the relationship between

state-variable inputs and control-variable outputs.

44

Simplifying Assumptions of Parametric Methods

There is no guarantee that solutions obtained by parametric methods are truly

optimal because the control-function shape specified before design may be incorrect

[Stengel, 1994, p. 185]. Also, there are no general guidelines for function selection, other

than to try to use functions that are easy to implement numerically or that are "natural"

for the problem at hand [Stengel, 1994, p. 193].

Unfortunately, it may be difficult to test whether a particular functional form is

appropriate since we may only compare solutions using different functions (based on the

same soft knowledge). Unlike DDP (described later) which allows an increasingly fine

mesh of discrete states, there may not be a series of increasingly detailed functions that

can be used to generate solutions that converge to the true optimal solution. In addition,

increasingly detailed functions can lead to the phenomenon of overfitting as the number

of degrees of freedom in the solution structure approaches the number of available pairs

of input and output data.

Because the optimal relationship between the control policy and inputs is

unknown (since this is what we want to determine), it is common practice to use the

historical record in a deterministic optimization and to assume that the resulting

relationship can be used to approximate the true optimal relationship [Karamouz and

Houck, 1982; Karamouz and Houck, 1987; Young, 1967]. This approach is most popular

both because it can provide the needed data sets and because it avoids the need for

stochastic models of inputs. However, where the historical record is short or is not

representative of future conditions, synthetic scenarios can be generated [Karamouz et

al, 1992].
Unfortunately, the relationship between input and output data established by

deterministic optimization is not correct unless the condition of certainty equivalence

holds. Because deterministic optimization uses perfect foresight, the true optimal

relationship is the same as the average relationship only when the condition of certainty

equivalence holds. When a system is far from satisfying this condition, policies that

result from parametric methods may generate an incorrect relationship.

Application of Parametric methods to Water-Sunnlv Management

Parametric methods have found considerable application to reservoir management

problems in the literature. A significant advantage of these methods is that they can be

applied to systems with well-established simulation models or in combination with other

optimization methods to solve relatively large-scale reservoir management problems.

45

Parametric methods often permit significant simplification by using soft knowledge that

is often available from long experience operating these systems.

However, without soft knowledge that can be used to identify the functional form

of a control-policy function, parametric methods should not be used. Parametric methods

used in systems analysis of new and unfamiliar problems can result in sub-optimal

control policies. Moreover, it is likely that a fitted control-policy function will perform

poorly and result in significant losses under critical extreme conditions where intuition is

weak.

In addition, parametric methods should be applied cautiously to avoid over-fitting

limited data. This is especially true when we use detailed models, such as when we use

high-order control-policy functions, or when we use numerous layers and nodes in neural

networks. The worst models are often the most complex, making it difficult to interpret

solutions. Complex models also make it difficult to verify that control policies are

consistent and otherwise in accord with our understanding of how the system should be

operated. On the other hand, the best models are often the simplest. This is particularly

true when data values are not known with much accuracy (e.g., due to measurement

error) and detailed models may result in fitting the noise rather than the true relationship.

Careful model selection can often simplify the representation of a system without

significantly degrading the accuracy of solutions. For example, when a system contains

seasonality or other non-stationary process (e.g., a process that changes, such as from

changing system structure or changing probability distributions), it may be appropriate to

"pre-whiten" the data, removing the influence of trends or other changes.

In the case of the real-time control of reservoir systems, the input data are the

reservoir storage, prior inflows, demand, and other state information, and the outputs are

the amount to release and other control decisions. The most popular regression method

applied to the control of reservoir systems is multiple linear regression that describes the

relationship between the vector of inputs x and a control decision u = U(x) given by
n

U(\) = ao + X ajxJ

where {a;, /'= 1 ,n} are fitted parameters, or weights, applied to each state variable. Young

[1967] introduced the use of linear regression to determine release decisions that are a

linear function of inflow and storage levels. Young [1967] and Bhaskar and Whit latch

[1980] tested more complex functions and found that linear functions often perform

better in many cases. Other applications have added chance constraints and more

complex models [Bhaskar and Whitlatch, 1987; Curry et ai, 1973; Karamouz and

46

Houck, 1982; Loucks and Dor/man, 1975; Marino and Simonovic, 1981; Revelle etai,

1969; Simonovic, 1979], though most applications continue to use linear control-policy

functions. Bogle and O'Sullivan [1979] take a somewhat different approach by

identifying parameters of a pre-determined class of control-policy functions. They

constrain the control policy for reservoir releases to be a step function with two

parameters that identify critical storage levels below which releases are at a minimum

value and above which releases are at a maximum value, with linearly changing releases

between these storage levels.

Neural networks have recently received considerable attention for the real-time

control of reservoir systems [Saadet ai, 1994] and for the development of forecasts

[French et al., 1992; Karunanithi et ai, 1994; Tang and Fishwick, 1993]. Raman and

Chandramouli [1996] provide a clear and concise description of the method's application

to a simple reservoir problem. In addition, neural networks find application to a variety

of large-scale problems characterized by a large amount of state information. These

applications include aquifer parameter estimation [Rashidet ai, 1992; Rizzo and

Dougherty, 1994], groundwater remediation [Ranjithan et ai, 1993; Rogers and Dowla,

1994], and aggregation/decomposition of large-scale reservoir systems [Saadet al, 1996;

Saad etai, 1994].

D. STOCHASTIC DYNAMIC PROGRAMMING METHODS

Stochastic dynamic programming (SDP) presents a third group of optimization

methods that we may use to identify feedback control policies. Bellman [1957] coined

the term "dynamic programming" (DP) to describe "the theory of multistage decision

processes." Yakowitz [1982] noted that DP may broadly define all optimization methods

that solve time-varying or dynamic problems; however, conventional usage of the term

identifies optimization methods that solve a dynamic problem by dividing it into a series

of subproblems, one for each stage of an operating horizon.

In this section, we will consider SDP methods that develop explicit cost-to-go

functions for each stage of a stochastic control problem. If we consider enough discrete

states, then we can identify functions that accurately describe the expected cost of future

operations for any initial state. By estimating a cost-to-go function for each stage of a

stochastic control problem, SDP methods can decompose the difficult problem of finding

optimal control policies for equation (2C12) into a series of easier subproblems, one for

each stage. In contrast, deterministic DP methods (such as differential DP) do not

develop explicit cost-to-go functions since they need only identify a single control

47

schedule and not a series of control policies. Note that SDP methods can also be applied

to deterministic problems, though it is not usually practical to do so.

In each stage of the problem, the control policy is defined by decisions that

minimize the current cost of operations and the expected future cost given by the cost-to-

go function for the next stage. This means that SDP problems are usually solved using

backwards recursion, starting with the last stage (as the first subproblem) and working

backwards to the first stage. At the beginning of a stage, the expected cost for each state

is evaluated as the minimum weighted average using various scenarios to go from the

beginning state to a state in the next stage. The effort to calculate this expected cost and

to identify optimal control decisions is much less than the effort to calculate the expected

cost and control decisions for a scenario path that spans all stages of a control problem.

A more detailed illustration and discussion of SDP follow in the next chapter.

The principal challenge in applying SDP is estimating a continuous cost-to-go

function from discrete costs. SDP methods are distinguished by how they interpolate

between discrete costs and by the number of initial states that must be evaluated.

Following is a brief outline of SDP methods that use different function estimates to solve

stochastic control problems. Unlike forecast-based methods and parametric methods

discussed earlier, these methods have widely varying abilities and limitations.

Parametric Dynamic Programming

Parametric DP uses soft knowledge of the cost-to-go to identify pre-defined forms

of a cost-to-go function. Thus, the method is similar to parametric methods because it

requires some prior knowledge of a solution and because it requires fitting parameters.

However, control decisions are the direct result of optimizing system goals and not the

indirect result of a control policy fitted to reproduce a relationship between input and

output data sets. Because parametric DP does not require input and output data sets,

accurate solutions do not require the condition of certainty equivalence (so that the data

sets identify the optimal relationship) and they avoid the problem of overfitting.

As a result of using soft knowledge, parametric DP dramatically reduces the effort

required to solve stochastic control problems. Similar to parametric methods, parametric

DP requires evaluation of only a limited number of discrete states to fit parameters (if we

have identified the correct functional form and if there is no noise). In general, the

number of discrete states grows only linearly with the number of state variables. For

example, (n+l) initial states are required to fit an /z-dimensional multi-linear cost-to-go

function.

48

Bellman and Drey/Us [1962] were the first to propose parametric DP to overcome

the so called curse of dimensionality. When solving a stochastic control problem, the

curse of dimensionality refers to the exponential growth in effort with the number of state

variables. Bellman and Dreyfus suggested using orthogonal polynomials to provide a

global approximation of the cost function. However, their purpose was to reduce the

exponential growth in memory required to store cost data at grid nodes, and not

specifically to interpolate a cost-to-go function accurately. Unless polynomials are

appropriate for global approximation, cost-to-go estimates are not accurate and the use

high-order polynomials to match data may produce non-convex cost-to-go functions that

oscillate. Other authors have recognized that local approximations provide better cost-

function estimates [Foufoula Georgiou, 1991].

Gal [1979] applied parametric dynamic programming to a water supply system

with three state variables (one for storage and two for inflows during two prior stages) by

developing an iteration method to identify parameters of second-order polynomial cost-

to-go functions. However, Gal noted that "contrary to the usual dynamic programming

approach, the parameter iteration method is not fully automatic. It is expected that the

user have a good understanding and intuition about the behavior of the considered

system." Nevertheless, we may apply parametric DP to problems for which the curse of

dimensionality prevents application of DDP.

Discrete Dynamic Programming

Discrete dynamic programming (DDP) uses interpolation over a fine mesh of

discrete states to identify a cost-to-go function. In contrast to parametric DP that finds a

single global function that is applied over the entire state domain, DDP uses a local

approximation. Early applications of DDP depicted the cost-to-go as a set of nodes in a

directed-flow network, as in the traditional "stagecoach problem" [Hillier and

Lieberman, 1990]. Accurate solution development required a large number of discrete

states at nodes of a fine state-space grid, and continuous cost-to-go functions were

estimated using "nearest neighbor" interpolation (using a value at the nearest discrete

state to estimate the costs at intermediate states). In more recent applications, multi-

dimensional linear interpolation or higher-order interpolation methods [Foufoula

Georgiou and Kitanidis, 1988; Johnson et al., 1993; Kitanidis and Foufoula Georgiou,

1987] have been used to estimate the costs at intermediate states.

Higher-order interpolation methods can be more accurate and may produce

accurate cost-to-go estimates with coarser state-space grids. Kitanidis and Foufoula-

Georgiou [1987] and Foufoula-Georgiou and Kitanidis [1988] developed Gradient DP to

49

use both cost and gradient information to improve interpolation over a rectangular grid.

Gradient DP uses cubic Hermite polynomials in an interpolation algorithm that preserves

costs and gradients at nodes of the grid. They demonstrate that with a decrease in the

grid discretization interval of Ax, the error of the control policy and the cost functions
converge respectively as (Ax)3 and (Ax)4 using Hermite interpolation versus Ax and

(Ax)2 using linear interpolation. Their implementation of Hermite interpolation

produced a cost-to-go function estimate that was continuous but only piecewise smooth.

Johnson et al. [1988; 1993] avoid the need for gradients by developing cubic spline

interpolations that use node values distributed over a larger subdomain. The resulting

interpolation algorithm produces continuous first and second derivatives and allows them

to fully implement an efficient Newton-based search method.

Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) estimates a cost-to-go function

by evaluating expected costs only where needed most. At each discrete state, an

estimated cost and gradient is evaluated to define a "cutting plane." A cutting plane is an

affine function that bounds the optimal cost-to-go function. For a convex cost-to-go

function (and minimum-cost objective), a cutting plane is a lower bound. By increasing

the number of "cuts," the cost-to-go function can be estimated with increasing accuracy.

Using a linear or linearized model in a single-stage subproblem, cuts can be efficiently

identified by the dual to the linear programming problem [Gorenstin et al., 1992; Pereira

and Pinto, 1991].
SDDP iteratively improves estimates of the cost-to-go for each stage by backward

and forward loops using the Benders decomposition principle [Benders, 1962]. During a

backward loop through the stages, SDDP improves the accuracy of estimated cost-to-go

functions by adding cuts. The backwards recursion permits cost-to-go estimates using the

improved cost-to-go functions of later stages. During a forward loop through the stages,

SDDP uses trial scenarios to evaluate the simulated performance of the current cost-to-go

functions and to identify new discrete states for cuts in the next backwards loop. The

average cost of operations for the trial scenarios identifies a probabilistic upper bound on

the optimal cost-to-go function (assuming a convex function), and the certainty of this

bound increases with the number of scenarios. With continued looping backwards and

forwards, the function estimate and the simulated estimate converge, providing tighter

bounds on the true cost-to-go. Estimates are considered to be accurate when the lower

and upper bounds are deemed "close enough" to tightly bound the true cost-to-go with a

specified probability.

50

As with neural networks, SDDP has recently received considerable attention for

the real-time control of reservoir systems. Pereira and Pinto [1985] used the dual

solutions and Benders decomposition to solve a four-reservoir case study and a 37

reservoir example with five month-long stages. Pereira and Pinto [1991] coupled dual

decomposition to the SDDP method to approximately solve release decisions for a 39-

reservoir hydropower system. A variety of other applications have also been made to

other hydrothermal power generation problems [Gorenstin et al, 1992; Jacobs et al,

1995; Rotting and Gjelsvik, 1992]. More recent applications have added "importance

sampling" [Dantzig and Glynn, 1990; Infanger, 1991] to reduce the variance of upper

bounds and to improve convergence of lower and upper bounds by improving the

sampling of scenarios. Importance sampling identifies new cuts that are more significant

(i.e., that trim off more of the region between the previous function estimate and the

optimal function) than those identified by "naive" Monte Carlo sampling.

Static Dynamic Programming

The time horizon for management is often sufficiently long that control policies

achieve a steady-state solution. In these cases, longer time horizons or different final

cost-to-go functions (i.e., F#+i(x)) do not change initial control policies. Such invariant

control policies turn out to be myopic [LamondandBoukhtoata, 1995], meaning that

there is only one optimal control policy for the immediate future. Myopic policies are

particularly common when a discount rate is used to diminish the current value of future

operations. With a discount rate, both the cost-to-go function and control policies

achieve steady-state solutions.

When the optimal control policies are myopic, an infinite-time-horizon control

problem can be solved by a single-stage problem [Sobel, 1989]. In the case of seasonal

models, an infinite-time-horizon control problem can be solved by a problem with one

stage for each season. A variety of methods can then be applied to identify the optimal

control policy or cost-to-go function. Sobel [1975] notes that myopic release policies are

often linear.

Advantage of SDP

SDP methods can identify optimal solutions in spite of inequality constraints,

non-linear dynamics, complex value functions and probability distributions [Birge, 1995].

In contrast, forecast-based and parameter-iteration methods may produce solutions that

are far from optimal, especially if conditions are far from certainty equivalent. Even

FOA may not identify the optimal control policy, in spite of its ability to incorporate

51

caution. In contrast, SDP avoids these assumptions and can identify control policies that

are appropriately cautious.

SDP methods can identify the true optimal control policy for a model, and can be

used to test simplifying assumptions that may allow solution of large-scale models by

other methods. In the worst case, when we have little or no prior knowledge of a

solution, we can use DDP. With a sufficiently fine grid of the state space, we can

identify a control policy with any desired precision, even if the cost-to-go function is not

strictly convex (or strictly concave in maximization problems). In cases where we have

some prior knowledge of a cost-to-go function and need to solve problems with more

state information, we may use parametric DP, SDDP, or static DP to solve a control

policy.

Simplifying Assumptions of SDP

The effort required to apply SDP methods, particularly DDP, grows exponentially

with the number of state variables used to model a system (the "curse of dimensionality")

unless we have prior knowledge that allows the use of simplifying assumptions. As a

result, SDP is difficult or impossible to apply to new problems requiring a large amount

of data to describe the state of a system.

Nevertheless, SDP is often applied in spite of this limitation because of its ability

to identify appropriately cautious policies when a system contains constraints or complex

objectives, dynamics, or inputs. These applications assume that simple "lumped-

parameter" models provide a sufficiently accurate representation of real systems. In such

systems, the state information is aggregated into a few state variables. For example, a

single reservoir level is often used to represent the total storage of systems with numerous

reservoirs [Kelman et al., 1990; Terry et al, 1986]. In addition, a variety of aggregation

and decomposition methods may be used to preserve some detailed characteristics of

large systems while reducing the number of state variables used in optimization [Saad et

al, 1996; Saad and Turgeon, 1988; Saad et al., 1992; Turgeon, 1980; Turgeon, 1981;

Valdesetai, 1992].
However, sometimes the level of aggregation may be inappropriate. Aggregation

is always a compromise used to reconcile the need for realism and the need to solve a

problem. Though we may solve highly accurate numerical solutions using simple

models, they may be meaningless for management of real systems [Rogers and Fiering,

1986]. To solve a problem having more state variables than can be handled with DDP,

additional assumptions may be employed to allow application of parametric DP, SDDP,

or static DP. If we have additional information that permits assumptions appropriate for

52

forecast-based methods or parametric methods, then we can solve control policies for

large-scale models without aggregating system characteristics.

Application of SDP to Water-Supply Management

Application of SDP methods to reservoir management has been a topic of

considerable interest beginning with the work of Bellman and Dreyfus [1962]. Of the

SDP methods subsequently developed, DDP has been of particular interest because of its

ability to cope with problems of a general non-linear and stochastic character. As a

result, DDP is often considered synonymous with SDP when applied to stochastic

dynamic control problems.

SDP allows us to incorporate feedback with fewer simplifying assumptions.

Feedback is used to incorporate the dynamic nature of physical inputs such as streamflow

and demand. Other methods also incorporate feedback but require additional simplifying

assumptions. When these assumptions are not entirely appropriate, these other methods

produce suboptimal solutions. For example, Kitanidis and Andricevic [1989] show that

policies obtained from DDP perform better than policies obtained from FOA and much

better than policies obtained from DFC. However, they also observe that we cannot

apply DDP to complex system models to which we can apply these other methods.

DP methods also use simplifying assumptions, but usually these assumptions are

based on soft knowledge we have about a system. For example, when we have prior

knowledge of appropriate cost-to-go functional forms, we can use parametric DP. When

we have knowledge that simple lumped-parameter models are appropriate, we can use

DDP. Fortunately, we may use some of these assumptions even when we apply systems

analysis to unfamiliar problems. For example, in Chapter Eleven we consider the real-

time control of conjunctive-use systems using a simple lumped-parameter model. For

this problem and similar water-management problems, DDP is the most appropriate

method since it uses the least amount of prior knowledge and makes the fewest

simplifying assumptions.

Almost all systems have parameters whose estimated values are dynamic because

they describe a changing state of knowledge. In reservoir management problems, these

parameters are future inputs of streamflow and demand. In groundwater management

problems, these parameters are inputs from recharge and boundary conditions, but also

include estimates of aquifer characteristics. Though groundwater management problems

are constrained and have complex dynamics, the large amount of data required to

describe the state of the system requires detailed models that are beyond the ability of

current SDP methods.

53

54

CHAPTER 4.

DYNAMIC PROGRAMMING

Reservoirs exist to regulate stochastic streamflows, water demands, power

demands, and other system inputs. Because of limits on the capacity of reservoirs and

because of the potentially high cost of operation during extreme events, there is a strong

incentive to make cautious control decisions. For example, cautious water-supply

decisions hedge by rationing earlier to balance the short-term cost of this rationing with

the long-term expected cost of extreme shortages.

Dynamic programming (DP) methods can identify appropriately cautious controls

better than other optimization methods, and these methods provide great flexibility in

modeling stochastic and non-linear system characteristics. Among stochastic methods,

DP has the advantage of decomposing the overall problem into a number of simpler

problems that are solved sequentially. However, DP methods may be unable to identify

controls with many state variables. Fortunately, we can characterize a fairly large

number of reservoir management problems by limited state information contained in a

few "lumped" parameters.

In many cases though, the degree of simplification required is still more than

desired. A principle goal and result of this dissertation are the development of techniques

that reduce the degree of simplification required. A couple of these techniques are

developed in Chapters Five and Seven and the benefit of these methods is evaluated in

Chapters Six and Eight.

This chapter provides a detailed explanation and illustration of DP and the

particular method of discrete dynamic programming (DDP). The purpose of this chapter

is to identify DDP as an appropriate optimization method for reservoir-management

problems, particularly for water-supply management. Following a detailed discussion of

the DP approach to solving stochastic dynamic control problems, we develop the method

and notation for DDP used in later chapters of this thesis. Also, we will observe why the

strengths and limitations of DDP make it an appropriate method for management of

reservoir systems used for water supply.

55

A. WHAT is DYNAMIC PROGRAMMING?

The evolution of a system is identified by its changing state during the operating

horizon. This operating horizon can be divided into stages used to identify the impact of

a single set of control decisions and other inputs as in equation (2C2). Stages are defined

so that a system must pass through each stage in sequence and so that a system cannot

reach a future stage without passing through all intermediate stages. Stages usually

represent increments of time since we cannot get from a current moment to some future

moment without passing in sequence through all intermediate moments. For example, if

we currently find ourselves in the month of December, we can only go forward to the

month of January and cannot go back to the month of November. Also, we cannot get to

the month of April without passing through the months of January, February, and March

(Figure 2B1).

DP takes advantage of this division to decompose the problem of minimizing

equation (2C12) into a series of easier subproblems, one for each stage. When we

describe the state of a system by a finite number of variables, then we assume these

variables summarize all necessary information about a system's history. This

characteristic allows us to identify optimal control decisions for each stage without any

consideration of prior stages; all we need to know is a system's current state. DP takes

advantage of this structure by recursively solving subproblems, starting with the last stage

and working backwards until we arrive at the first or current stage. The solution of each

subproblem identifies a set of control policies and a cost-to-go function that identifies the

expected cost to go from any initial state.

If the control policy for each stage is optimal, the control policy for the first stage

is optimal for the whole problem. We are assured of this by the "Principle of Optimality"

[Bellman, 1957] which states that

"An optimal policy has the property that whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision."

This tells us that the control policy developed for each intermediate stage is an optimal

policy for the remaining stages.
To see this more clearly, let us consider the last stage of a DP problem. For this

last stage, we represent the total cost function as

V/A,(x,u,w) = C,„(x,u,w) + FtHJy) (4A1)

56

As discussed before, the cost-to-go function Ff/sr+I identifies the relative preference for

state X(,„+1) at the end of a time horizon used for system management. The transition

function

y«») = T(,w)(x,u,w)

identifies the ending state y(fw) = x(/^l). For any discrete state x[£)f we identify optimal

control decisions u*,^ that minimize the total expected cost of operations from the current

stage through the last stage. When random inputs are present, we cannot identify the

actual total cost of operations that we will observe, so we identify the expected total cost.

Using optimal controls, the cost-to-go from state x[|^ in the last stage is

FJxC")) = minu{ Ew{ VlN(x^,n,w) } }

This assumes we have no foresight of random inputs w(,„). Without foresight, we
identify a single vector of control decisions u(*v) that is feasible regardless of outcome

W(/jV). Solving F,N(\^) for a sufficient number of discrete states, we can estimate a cost-

to-go function F,N(x) and control policy U^x) for any initial state.

As discussed in Chapter 2, the lack of foresight may result in control decisions

that are unrealistic and over constrained. Instead, we identify controls using limited

foresight of current inputs w(,„) to identify controls. If we assume a current outcome of

these inputs w[*\, the optimal controls are those that solve

Vfw(x<'\u*,w<*>) = minu{ V^xW.u.w**)) }

The expected cost-to-go from state x[^} is then an expected cost of all possible outcomes:

F,„(x«)) = Ew{ minu{ V(x«),u,w) } } (4A2)

Using limited foresight, the control policy is also a function of current inputs w(,v). In

other words, u* = U^Cx.w).

With the solution of the t^ subproblem, we now solve the next subproblem to

identify a cost-to-go function F,„., and control policy U^_, for the second-to-last stage.

For the second-to-last stage, the total cost function is

V,w.,(x,u,w) = CV,(x,u,w) + FJy) (4A3)

Note that the total cost is only a function of the state, control decisions, and random

inputs for the current stage. Future control decisions are already established by the

control policy U,*, and the expected cost of these future decisions is summarized by the

cost-to-go function F,N. The expected cost-to-go from state x^ is

F,N,(x«>) = Ew{ minu{ V,„,(x('>,u,w) } } (4A4)

57

Solving F/AM(xW) for a sufficient number of discrete states, we can again estimate a cost-

to-go function F/AM(x) an(^ control policy U,*_, (x,w) for any initial state.

This process can be repeated for each prior stage tj = fyv-2>fy/-3>—,'i »backwards in

time until we reach the first (or current) stage. In each stage, we obtain a cost-to-go

function F,/x) and a control policy U, (x,w) identified by solving

VtJ = C,/x,u,w) + FtjJy) (4A5)

F,/x) = Ew{ minu{ Vt] } } (4A6)

The Principle of Optimality assures us that current control decisions u*r) based on the

cost-to-go function F,.+1 are optimal because all subsequent decisions are optimal. The

new cost-to-go function Ftj tells us the expected cost of system operations based on

application of optimal control policies in the current and each subsequent stage

te [tj,...,tN+l] .

By decomposing dynamic problems into subproblems, DP reduces the effort

required to solve multi-stage problems. As we saw at the end of Chapter 2, the number of

stochastic-input scenarios and the computational effort grow exponentially with the

number of stages if we apply optimization to equation (2C12) naively. By decomposing

the optimization of equation (2C12) into subproblems the effort to solve a subproblem for

each stage is independent of the number of stages. As a result, the computational effort

of DP grows linearly with the number of stages.

However, the above discussion of DP specifies neither what constitutes a

"sufficient" number of discrete states nor how we use solutions to approximate

continuous cost-to-go and control-policy functions. How we approximate these functions

significantly effects the practical application of DP, as chapter 3 briefly outlined.

The remaining sections provide a more detailed illustration of the particular DP

method of DDP and an explanation of limits on its practical application. DDP is an

appropriate method for analysis of water-supply management problems. As we

mentioned in Chapter 2, DDP is the most general DP method because it requires the least

amount of prior knowledge. Also, we observed that water-supply management problems

can often be solved using simple lumped-parameter models with limited state

information.

58

B. DISCRETE DYNAMIC PROGRAMMING

To pass a sufficiently accurate estimate of the cost-to-go function to the

subsequent subproblem, DDP solves equations (4A5) and (4A6) for a sufficient number

of discrete initial states, xf'A. These discrete states are located at the nodes of an n-

dimensional grid that spans possible states of a system. DDP estimates the cost-to-go at

intermediate states using interpolation, and the optimal cost-to-go function Ff>(x) is

estimated by interpolating functions that are connected piecewise over the /i-dimensional

domain x. The optimal control policies U,.(x,w) can be similarly estimated or can be

directly solved by minimizing equation (4A5). By using finer grids (and increasing the

number of discrete states), we can estimate the cost-to-go and control decisions with any

desired level of accuracy.

1. Illustration of the Last Stage Subproblem

For each discrete state x[j^, we estimate the expected cost-to-go, F/iV(x
(')), by

applying equations (4A1) and (4A2). This is accomplished by looping through a
sufficient number of outcomes w[*\ and finding the optimal decisions u*/v)(x('\wW) for

each. The expected cost-to-go is the probability weighted average of the cost for each

outcome.

If we solve F,N(x^) for a sufficient number of discrete states, we can estimate the

continuous functions F,N(x) for any state. Figure 3B1 illustrates a grid of discrete storage

levels (i.e., states) {x(I),..., x(A>} that we could use to model the single-reservoir problem

of Figure 2B1. Figure 3B1 also illustrates the state evolution from each discrete storage

level to a desired zero storage level at t = t^+\. In this illustration, control decisions are

inflexible since the policy is to release all water, regardless of initial storage level.

If inflows are stochastic and have a distribution such as illustrated in Figure 3B2,

we need an appropriate numerical integration method to evaluate F,N(x^) for each

discrete state xf'A. Even though control decisions are inflexible in this last stage, the

costs and constraints that apply to these decisions are stochastic. To solve equation (4A6)

using numerical integration, we use

M
F,N(x«>) =]►>*{ minu{ V,N(x«),u,w(*>) } }

Jt=i

The weights v* and outcomes w<*> (also known as "abscissas") are provided by the

particular numerical integration method that we select. The most common is the

59

trapezoidal method outlined by equation (2C10) which allows use of any desired grid of

abscissa values.
For each node x[j>} of the grid, Figure 3B3 illustrates possible values of F^/xW)

that we might evaluate. By interpolating these values at intermediate states, we can

produce a continuous estimate of the true function. For this illustration, the best storage

level is somewhere in the middle; high costs at extreme low and high storage levels could

represent the risks of water shortage and flooding when these are both goals of a system.

Figure 3B1. Discrete States and State Trajectories for the Last-Stage Subproblem

full

cr>
empty

XA

xl
<!

t

!
c

1
r>

'5

3 c
4 *N =

Figure 3B2. Sample Streamflow Distribution

A probability

stream flow

Figure 3B3. Discrete Estimate of the Last-Stage Cost-To-Go Function

F A 1 w *

l)llllIlillliJll
X1 ... \A

60

2. Illustration of the Remaining Subproblems Using Recursion

Once we have estimated the last-stage cost-to-go function, we can applying

equations (4A3) and (4A4) in the second subproblem to estimate the cost-to-go function

FtM and control policy Ur*,. Figure 3B4 illustrates possible state trajectories from a

discrete storage level \[tN ty Several trajectories are shown to emphasize that the precise

trajectory depends on the particular outcome of w (,„.,). Solving for different states, we

can again estimate a new cost-to-go function and control policy.
We repeat the process for every stage tj e {ti,...,tN} until we arrive at the first

stage. In each stage, the expected cost-to-go function F,y(x) contains all necessary

information about future stages. This function estimates the cost of future operations

starting from state X(,;.) and assuming that optimal control policies are applied in

remaining stages.

Figure 3B4. Discrete States and Sample State Trajectories for the Second-to-Last
Subproblem

"full

empty

C. LIMITATIONS OF DISCRETE DYNAMIC PROGRAMMING

DDP estimates the cost-to-go by interpolating between nodes of a grid that spans

possible states of a system, and the accuracy of estimates can be improved by using finer

grids. However, grids that achieve sufficient accuracy may impose a tremendous

computational burden. This is especially true when numerous state variables are required

to model a system. We will see that the number of discrete states and, therefore, the

effort required to solve a DDP problem grows exponentially with the number of state

variables.

This exponential growth is known as DDP's "curse of dimensionality," and has

led to a widely held view that practical application of DDP is limited to problems with

only two or three state variables [Johnson et ai, 1993; Yakowitz, 1982]. As a result, DDP

61

as originally applied is unable to solve complex problems in which the state of a system

is modeled by numerous variables [Yeh, 1985]. This has motivated efforts to find other

stochastic methods (such as discussed in Chapter 3) capable of producing cautious

control policies. More recently, this has also motivated efforts to improve DDP by using

more accurate methods to approximate the cost-to-go function. With these recent

improvements, DDP is able to solve problems with more state variables, and DDP can be

an appropriate method for a wider variety of stochastic control problems.

1. Exponential Growth with State Dimension

Consider the single-reservoir problem illustrated in Figure 4C1. If there is but

one state variable that represents the current amount of stored water, then we have a one-

dimensional DDP. To approximate a cost-to-go function for each stage, we can identify

the expected cost-to-go for each of A discrete states. Using DP, we find an optimal

release policy and an expected cost-to-go function for each stage, working backwards in

time. For this 1-D problem, the solution effort is proportional to the number of discrete

states A and the number of stages N.

Now consider the «-dimensional problem illustrated in Figure 4C2 (e.g., a

problem with multiple reservoirs or other state information). To approximate a cost-to-go

function for each stage using A discrete values for each state variable, the total number of

discrete states is A". The effort to solve this multi-dimensional problem is also

proportional to the number of discrete states. This effort grows exponentially with the

number of state variables, n, and the number discrete values, A, used to span each

variable. In addition, the effort for each discrete state grows with the dimension of the

problem since more effort is required to search for optimal control decisions.

In each stage, we conduct A" searches (optimizations) to find optimal controls for

each discrete state x'. As a result, the total effort per stage is

J = ZA" (4C1)

where n is the state-space dimension (i.e., number of state variables), A is a representative

number of discrete values used to span each state variable, and Z is the effort to

determine a solution for each of the A " nodes. If we set A = 20 to develop sufficiently

accurate control policies and cost functions, then a 2-D problem has 400 discrete states

and a 6-D problem has 64,000,000 discrete states!

Furthermore, the effort Z increases with the dimension of a problem. This effort

is a product of the time required to evaluate the total cost of equation (4A5) and the

62

number of evaluations required to find the solution of equation (4A6). In other words,

the total effort is

J = Z/ Zs Z\ A (4C2)

where Zj is the time required to evaluate the total-cost of equation (4A5), Zs is the

number of evaluations required to search for the optimal solution of equation (4A6), and

Z\ is the number of searches and other overhead required for each node. Z/ increases

with n and primarily depends on the effort to interpolate the cost-to-go function Ftj+l(y).

Zs also increases with n and depend on the solver employed to find the optimal control

decisions. Typically, Zs ~ O(/i°0 where a depends on the search routine employed. For

example, a = 0.5 might apply for an efficient Newton-based search routine and a = 1.5

might apply for a more robust simplex search routine (as we will see in Chapter 6). In

addition to Z/ and Zs, there may also be significant "overhead" effort required by the

search routine and by other elements of the code used to implement the DDP algorithm

and verify the results. In general, this overhead effort should become less significant part

of the total effort with increasing dimension.

Figure 4C1. Discrete States for a 1 -D Problem

Figure 4C2. Discrete States for a Multidimensional Problem

X s ^

^
^*

nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn
nnnnnnnnnn

t

y^

'; '/♦i

63

2. Techniques to Reduce Exponential Growth

Equation (4C1) suggests that there are three approaches that we may use to reduce

the exponential growth in effort of DDP. These are:

(1) reduce n, the number of state variables

(2) reduce A, the average number of discrete values for each state variable

(3) reduce Z, the effort required to identify decisions for each discrete state

Each of these approaches is used in practice through the selection of practical models and

optimization methods. However, each of these approaches also may require that we

compromise the validity of a solution, through our use of inappropriately simple models.

As a result, it is necessary to balance the accuracy of a model with the feasibility of

solving the mathematical problem.

The first approach is to reduce the number of state variables n. Out of necessity,

this approach is always employed when solving stochastic reservoir control problems.

Almost all examples of DDP in the water resources literature have three or fewer state

variables [Gal, 1979; Johnson et al, 1991; Karamouz and Vasiliadis, 1992; Kelman et

al, 1990; Saadand Turgeon, 1988; Saadet al, 1992], and, frequently, only one state

variable is used. For example, a common technique in hydropower models is to

aggregate the total stored water of multiple reservoirs into a single variable describing the

total hydropower potential of stored water [Kelman et al, 1990; Saad et al, 1996;

Turgeon, 1980; Turgeon, 1981; Valdesetal, 1992]. Though sometimes appropriate,

such extreme aggregation of system characteristics may, at other times, result in

unrealistic system models and control solutions.
The second approach is to reduce the number of values A used to span a state

variable. With only one or two state variables, reservoir control problems can be solved

with relatively fine state-space grids. However, coarse grids are required when solving

higher dimension problems [Esmaeil Beik and Yu, 1984], and coarse grids produce less

accurate cost-to-go estimates and control policies that may be far from optimal. For

example, Gal [1979] observed that DDP using coarse state-space grids may approximate

cost-to-go functions worse than parameter iteration using a pre-determined class of

functions. Also, because of coarse discretization and conditions that were closer to

certainty equivalent, Karamouz and Houck [1987] observe that forecast-based methods

identify more effective control decisions than DDP when applied to large reservoirs

whose storage capacities exceed 50% of mean annual inflow. Figure 4C3 illustrates the

effect that different state-space grids have on the accuracy of a cost function. Control

64

policies are especially sensitive to coarse grids because they should balance changes in

current costs with changes in future costs. Changes in future costs are identified by cost-

to-go function gradients, and estimation of these gradients is especially poor with coarse

discretizations. Esmaeil-Beik and Yu [1984] provide an illustration of the trade-off in

solution accuracy and computational effort for a single reservoir and correlated inflow.

Johnson et al. [1993] provide an analysis the accuracy of cost functions and control

policies for a range of grids applied to a four-reservoir test problem.

The third approach is to reduce the effort Z required to identify control decisions

for each discrete state. This effort depends on mathematical properties of the model and

on the search routine employed. An efficient routine applied to continuous and smooth

functions can rapidly find optimal control decisions. For example, Newton-based search

methods can converge if applied to smooth and convex cost functions. If these functions

are not smooth or convex, we may need to employ more robust, but slower, search

methods. Z also depends on the work required to evaluate a cost function with the

general form given by equation (4A5). This is especially true if the interpolation method

used to evaluate cost-to-go functions is complex. As a result, multilinear interpolation is

traditionally used since it is the simplest interpolation method that produces a continuous

estimate.

Besides these three basic approaches, there are a variety of other techniques that

may significantly reduce the computational effort of some problems. These include:

solving a sequence of problems with increasing difficulty, eliminating from consideration

uninteresting areas of the state-space, partitioning the original problem into smaller

separable problems, or creatively choosing variables used to model the system [Johnson

et al, 1988; Johnson et al, 1993]. Nevertheless, when we model large-scale stochastic

control problems, DDP becomes computationally infeasible. Until recently, we were

instead required to use an approximate deterministic model [Willis and Yeh, 1987].

Though recent advances in stochastic control methods allow us to include greater detail in

models, we still may require significant assumptions.

Because many problems cannot be simplified sufficiently and assumptions of

other methods may be inappropriate, this thesis proposes DDP methods that reduce the

number of discrete values, A, while maintaining interpolation accuracy. I accomplish this

by using interpolation methods that are more accurate than traditional linear interpolation.

Though this comes at the cost of a larger effort to evaluate interpolated values, these

methods produce smooth and convex function approximations that allow application of

efficient Newton-based search methods. What is more important is that we can

significantly reduce A while preserving solution accuracy; and this dramatically reduces

65

the exponential growth of effort J = ZAn. With these improvements, we can apply

DDP to moderately complex reservoir management problems modeled with a greater

number of state variables.

Figure 4C3. Cost Function Accuracy for Various State-Variable Discretizations

A = 5

a ̂ o

A = 20

S)

3. Cost-To-Go Interpolation Methods

Early applications of DDP used nearest-neighbor interpolation to estimate the

cost-to-go by assigning the value evaluated at the nearest node of a state space grid

[Buras, 1963]. No effort is required to evaluate the cost-to-go at intermediate states, and

the problem can be solved using techniques applied to discrete-state dynamic

programming models. However, nearest-neighbor interpolation produces models that

assume inflows and releases are multiples of the discrete unit of storage [Bogle and

O'Sullivan, 1979], and accurate solutions require a very fine discretization of the state

space, typically about A = 50 to 100. As a result, DDP using nearest-neighbor

interpolation can be accurately applied to problems with no more than one or two state

variables. Other early applications of DDP included parametric DDP using pre-defined

forms for the cost-to-go function [Bellman and Dreyfus, 1962; Gal, 1979].

Most current applications of DDP use multilinear interpolation. The effort

required to evaluate the cost-to-go at intermediate states is modest, and the problem can

be solved using a variety of robust search techniques. Multilinear interpolation

significantly improves cost-to-go estimates, and accurate solutions can use a coarser

discretization of the state space, typically about A = 10 to 20. Thus, DDP using

multilinear interpolation can be accurately applied to problems with three or four state

variables.
Recently, higher-order interpolation methods have been developed for DDP

applications [Foufoula Georgiou and Kitanidis, 1988; Johnson et al, 1993]. Though

these methods require additional effort to evaluate the cost-to-go at intermediate states,

the problem may be solved with more efficient search techniques that find solutions

quickly. These interpolation methods further improve cost-to-go estimates, and accurate

66

solutions can use a very coarse discretization of the state space, typically about A = 3 to

5. Though these methods have not seen significant application, DDP using these methods

can be accurately applied to problems with five to seven state variables.

Although not technically not DDP, SDDP methods have recently been developed

using another interpolation method of estimating. Instead of interpolation, SDDP uses

cutting planes to identify a lower bound on the cost-to-go function [Pereira and Pinto,

1991]. The advantage of cutting planes is that they avoid the use of a regularly spaced

grid and can be evaluated for an arbitrary state. In some cases, this may allow

development accurate solutions with far fewer discrete states; though in other cases, the

piecewise linear approximation of the cost-to-go function may be less accurate than high-

order interpolation methods. However, a significant advantage of SDDP is that some

estimate of a cost-to-go function can be developed, even for large-scale problems that

cannot be addressed by DDP.

Traditional DDP fails to take advantage of the smoothness or, in the earliest

applications, the continuity of the cost-to-go function. As a result, existing applications

of DDP have required fine discretization of the state variables in order to achieve accurate

estimates of the cost-to-go function and the control policies. For example, [Raman and

Chandramouli, 1996] apply DDP to a stochastic reservoir control problem using from 11

to 51 discrete reservoir storage levels. In addition, it appears that they estimate the

distribution of inflows using from 7 to 35 discrete inflow values. This high level of

discretization does not impose a large computational burden on the solution of the single

reservoir and inflow problem that they consider; however, for problems with multiple

reservoirs and/or stochastic inputs, such a high level of discretization can make the

solution intractable.

As discussed above, this thesis proposes DDP methods that reduce the number of

discrete values, A, while maintaining interpolation accuracy. To accomplish this, I will

use high-order interpolation methods that produce accurate cost-to-go estimates with

coarse discretization of the state space. These high-order methods are local

approximations that take advantage of additional information. Existing methods

accomplish this using one of the following approaches: (1) using costs at a larger number

of nodes (spline methods), or (2) using gradient information with cost information at

corner nodes (Figure 4C4). In Chapter 5, we will use the second approach to develop

high-order methods; and, in Chapter 6, we will apply these methods to problems with as

many as seven state variables. This is a sufficient number of state variables to consider a

variety of water-supply management problems without using the simplifying assumptions

required by other stochastic dynamic control methods.

67

Figure 4C4. Comparison of Methods to Improve Interpolation Accuracy

add cost data by
expanding local area

linear

f A. Hermite

0 m i A i A I * I • i>

add derivative data in
existing local area

D. MULTILINEAR INTERPOLATION

Traditionally, multilinear interpolation has been used to interpolate the cost-to-go

for states not at the nodes of the grid. Multilinear interpolation is simple and is easier to

compute than higher-order interpolation methods. Also, multilinear interpolation

produces a much better estimate than that obtained using nearest-neighbor interpolation.

In this thesis, I refer to DDP using multilinear interpolation as "multilinear DP." This

section develops multilinear DP to establish a methodology and notation for new methods

presented in the next chapter. In later chapters, multilinear DP is also used to evaluate

the improved performance of new methods.

1. Linear Interpolation in 1-D

Interpolation uses certain known information to estimate values of a continuous

function [Davis, 1975, pi 7]. For example, linear interpolation uses known values F(x<'>)

to estimate the continuous function F(x).

Interpolation produces a functional F(x) that we can use to represent the true

function. Suppose we wish to approximate a 1-D function using values F, = F(x^) at

nodes xW, /' = l,...,A . Each adjacent pair of nodes [JC<'\ ;t<'+1)] defines an interval over

which we can evaluate the approximating functional F,(x) by a weighted sum

68

Fi(x) = <t>i(x)Fi + <f>M(x)FM

To preserve known values F, and F,+i, each weighting function <j>i(x) must equal 1 at

node x'1' and 0 at the other node. The lowest-order polynomial functions that have these

properties are

<j>i(x) = (*-*«)/Ax

<pM(x) = (x(M)-x)/Ax

where Ax = x^^-x^ is the length of interval [x<-'\ JC('
+1

>]. Application of these linear

weighting functions over each interval i e {1 ,...,A-1} produces a continuous functional

F(x) that preserves function values at nodes.

2. Linear Interpolation in Multiple Dimensions

Suppose we wish to approximate a multi-dimensional function using values

F, = F(xW) at gridded nodes \^\ i = 1 ,...A . Because these nodes are gridded, they

define corners of rectangular parallelepipeds or "hypercubes" that divide the function's

domain. Figure 4D1 illustrates hypercubes of one, two, and three dimensions; and we see

that each hypercube has 2" corner nodes in an «-dimensional domain. Any value of x can

be identified as a point inside at least one hypercube (x may lie in more than one

hypercube when on a border).
Each set of corner nodes x(tf, y=j\,..., yr, define a subdomain over which we can

calculate an approximating functional. The functional is a weighted sum of corner node
values Fy given by

ft"
F,(x) = X {0j(x)Fy} (4D1)

r=r\

where <^(x) is the weight for corner node x(#. The i'th subdomain is identified by its

lower corner node x''' = x W. To preserve known values Fy, each weighting function

0j(x), y= Y\,... yj", must equal 1 at node x(tf and 0 at all other nodes. The lowest-order

polynomial function that has these properties is

0/x) = fl{\xj-x^\/Axj} (4D2)
7=1

where AXJ, j = 1,..., n, are the dimensions of the hypercube. Application of this

multilinear weighting function to each hypercube produces a continuous functional F(x)

that preserves function values at nodes.

69

Figure 4D1. Hypercubes of One, Two, and Three Dimensions

\low

»-S(Ax)-Hx>
xhigh

xhigh

Xhigh

3. Local Coordinate System

Using notation for a local coordinate system, we can specify weighting functions

that are simpler and more generic than those presented above. A local coordinate system

is useful when interpolation depends only on nodes in a neighborhood of point x. For

example, linear interpolation depends only on corner nodes of the hypercube that

immediately surrounds point x. Notation for a local coordinate system will be especially

useful in the next chapter to define other, more complex, interpolation methods.

When hypercubes are defined by a rectangular grid aligned to the coordinate

system, we can observe that the corner nodes of each hypercube are identified by two

nodes, xlow and xhish , at the lowest and highest corners defined by the coordinate system

(i.e., closest to and farthest from the origin). Other corner nodes are an exhaustive

combination of the coordinates of these two nodes. In Figure 4D2, for example,

xiow _ x(2) and xhigh = x(8) define the shaded 2-D hypercube. Combining the

coordinates of these nodes, we can identify the coordinates of the other corner nodes

{x(3),x<7)}that are located at {(.r,low^2
high), (*,high,x2

,ow)}. Also, Ax = x high - x'°w

identifies the dimensions of the current hypercube.

Using xlow and xhish, we can transform the coordinates of any location x into a
local coordinate system. In each j = 1,..., n dimension, we can transform a coordinate Xj

into a local coordinate fy by the equation

§ = (xj-xto^/Axj

If x is located in the hypercube identified by xlow, then 0 < % < 1 in all dimensions. For

example, the corner nodes x W,..., \^-n) are transformed as follows:

70

xiow = x(y.) <r> ^ = [0,0,-,0]

x<»> <=> $ = [1,0,...,0]

x<»> o $ = [0,1,...,0]

Xhigh = x(*0 «, £=[1,1,...,1]

With this notation, we can combine equations (4D1) and (4D2) to compactly

express the multilinear approximating functional. For the 2-D hypercube of Figure 4D2,

this functional is

F%) = (HiW-Z\)F2 + S1F3] + &[(1-§I)F7 + §,F8]

Point £ in the local coordinate system is a transformation of x, and {F2, F3, F-j, Fg} are

the known corner-node values.

The local coordinate system can also be used to develop other useful notation.
The local coordinate system uses xlow as the origin and specifies a normalized distance Z,

between x and corner-node xlow. We can define the normalized distance between x and

any other corner-node x W as rjW = [r/^,... r/^]T where

rf = § if xf = x}™

77Jy) = (l-^-) if xf = xf&

For example, r|(^ = £ only if x(tf = xlow. Using this notation, we can transform the

weighting-function of equation (4D2) to

m) = fl o-n/>

This notation allows us to express weighting functions that apply to all corner nodes x(#,

7= 7i.•■•%"■
In the next chapter, we will use this local-coordinate-system notation to develop

approximating functionals that use not only the value Fy at each corner-node xW, but also

the gradient Gr For this, the approximating functional F (x) is a weighted sum

Ihr

F{i\x) = X (U*)pr + [V/x)]T- Gy} (4D3)

y/Yj(x) is the weight applied to corner-node gradient Gyj = dF(x)/dr/-, x = x(A This is

known as Hermite interpolation, and application of this to DDP is called "Gradient

Dynamic Programming."

71

Figure 4D2. Local Coordinate System for Gridded 2-D Domain

?
X»

X6
i

HHP
mm,

X1 x2" lx3
X4 ^ *

m
 I_Ax

1 —>

 J k

.*-

■®
▲
*2

Ax,

;#

LOCAL COORDINATE SYSTEM:

§, = (x,-.r,>°")/Ax,

£ = (x2-^'ow)/Ax2

(0,1)

(0,0) (1,0)

72

CHAPTER 5.

NEW HERMITE INTERPOLATION
METHODS

While DDP incorporates stochastic inputs with greater accuracy and fewer

simplifying assumptions than is possible with other optimization methods, significant

limitations prevent us from addressing large-scale reservoir management problems. This

chapter presents new interpolation methods based on Hermite interpolation. Originally

proposed for application to DDP by Kitanidis [1986], Hermite interpolation approximates

cost-to-go functions with high-order accuracy and greatly reduces the exponential growth

in computational effort. The methods presented in this chapter preserve the accuracy of

the original interpolating functionals of Foufoula-Georgiou and Kitanidis [1988] while

reducing the computational effort and providing smooth transitions between subdomains

of the function.
Kitanidis and Foufoula-Georgiou [1987] coined the phrase "gradient dynamic

programming" (GDP) to describe DDP using Hermite interpolation methods. While still

more restrictive than other stochastic control methods, GDP allows solution of complex

reservoir management problems without the simplifying assumptions of these other

methods. This chapter concludes with an analysis of the effort required to implement the

new GDP methods, and Chapter Six demonstrates their application to a range of

multireservoir problems with as many as seven state variables.

A. CHARACTERISTICS OF AN EFFICIENT INTERPOLATION

The choice of interpolation method can significantly affect the solution accuracy

and the computational effort required to solve DDP control problems. To solve DDP

problems, interpolation methods should be (1) simple, allowing rapid evaluation, (2)

smooth, allowing application of efficient search techniques that converge rapidly, and (3)

accurate, allowing use of coarse grids. The first and second characteristics allow us to

find optimal control decisions quickly (i.e., small Z). The third characteristic allows us to

reduce the number of searches required (i.e., small A"). All three decrease overall effort

J and increase the number n of state variables that we are able to use in system modeling.

73

As a result, the choice of an interpolation method can significantly affect our ability to

solve complex stochastic reservoir control problems.

Low-order polynomials have significant advantages over other functions in the

construction of interpolating functionals used to approximate a cost-to-go function.

Polynomials are simple to program and easy to evaluate. This is especially useful when

used for multi-dimensional interpolation where approximating functionals are composed

of many functions. Low-order polynomials may also yield approximations that are

sufficiently smooth [Davis, 1975] to allow application of efficient quasi-Newton

optimization routines.

For example, multilinear interpolation uses first-order polynomials that are simple

and efficient. Unfortunately, multilinear interpolation is not very accurate on coarse

grids, and it produces an approximation with undefined derivatives at subdomain

boundaries. To find optimal control decisions, we must use fine grids and robust—but

slow—search methods (instead of efficient, quasi-Newton search methods that require

estimates of the gradient and Hessian of the cost-to-go function). Thus, DDP is severely

limited in its ability to address complex problems when using multilinear interpolation.

Instead, we can use polynomials of somewhat higher-order that are more accurate

and that produce smooth functionals. This is the approach taken by both spline methods

[Johnson et al., 1988; Johnson et al, 1993] and Hermite methods [Foufoula Georgiou,

1991; Foufoula Georgiou and Kitanidis, 1988; Kitanidis, 1986; Kitanidis and Foufoula

Georgiou, 1987]. In the case of spline methods, higher-order polynomials are used to

incorporate cost-to-go information at nodes some distance beyond the surrounding

hypercube. In the case of Hermite methods, higher-order polynomials are used to

incorporate gradients or other derivative information, but only at nodes of the

surrounding hypercube. In both cases, polynomials can be expressed as weights applied

to node values, and interpolating functionals are linear combinations of these

polynomials.

B. ADVANTAGES OF HERMITE INTERPOLATION

Hermite interpolation describes any method that approximates a function using

both the function values and gradients at discrete nodes of a grid. For DDP applications,

Hermite interpolation approximates the cost-to-go function with greater accuracy than

spline methods and with significantly greater accuracy than multilinear interpolation

[Johnson et al., 1993]. This greater accuracy allows use of coarse state-space grids and

dramatically reduces the exponential growth of effort required to solve DDP problems.

74

In addition, Hermite interpolation can be used to produce smooth cost-to-go

approximations that allow application of rapid, quasi-Newton search methods.

However, Hermite interpolation requires additional computational effort, both to

identify gradients at nodes and to incorporate gradient values in interpolating functionals.

Fortunately, quasi-Newton search methods use an estimate of gradients to find optimal

control decisions. This estimate is sufficiently accurate for direct use in Hermite

interpolation, and we need only provide additional memory to store these values. Also,

careful construction of interpolating functionals can minimize the effort required to

incorporate gradient values. As we will see, the effort required for the first-order Hermite

method presented here is only n-fold greater (where n is the number of state variables)

than the effort for multilinear interpolation. Spline methods use cost-to-go values at a

more extensive set of nodes than required by Hermite or multilinear interpolation, with an

effort about 2"-fold greater than the effort for multilinear interpolation.

Only recently has be benefit of higher-order interpolation methods been

recognized. Previously, the effort required to apply Hermite interpolation to higher

dimensions may have seemed excessive and likely to outweigh improvements in

accuracy. Though Hermite interpolation has been applied to a variety of finite-element

problems, including potential flow, boundary value, contaminant transport, and stress

analysis [Foufoula Georgiou, 1991], these prior applications required only one, two, or

three dimensions. Equivalent DDP problems had already been solved using tradition

multilinear interpolation.

Kitanidis [1986] first proposed Hermite polynomials to estimate DDP cost-to-go

functions. Subsequently, Hermite interpolation was applied to a one-reservoir problem

[Kitanidis and Foufoula Georgiou, 1987] and a four-reservoir problem [Foufoula

Georgiou and Kitanidis, 1988]. Spline methods were introduced by Johnson et al. [1988;

1993] to avoid the use of gradients while producing smooth interpolations that also

permit application of rapid, quasi-Newton search methods. They compared spline

methods with the Hermite method of Foufoula-Georgiou and Kitanidis, concluding that

performance of the two methods was roughly equal. In application to a series of test

problems with up to five dimensions, they found that their spline method benefited from

higher-order smoothness and more rapid convergence of search methods and that

Gradient DP benefited from higher accuracy.

This chapter presents new interpolation methods based on Hermite interpolation.

These methods maintain the high-order accuracy of the original Hermite methods of

Foufoula-Georgiou and Kitanidis while achieving higher-order smoothness, allowing

75

more rapid convergence of search methods. Also, the computational effort required to

evaluate interpolating functionals is significantly reduced.

C. CHARACTERISTICS OF WEIGHTING FUNCTIONS

The interpolation methods presented in this thesis assume that discrete states x®

are located at the nodes of a grid that spans all possible states of a system. There are V"

nodes for an n-dimensional grid, where V is the average number discrete values for each

state variable. At each node, we evaluate a value F, and a gradient G, = [G,,i,..., G/,„]T,

where G(>; = dF/dx^ is the derivative in the /'th dimension. This grid divides the domain

of a cost-to-go function into subdomains with corner nodes xW,..., x<ft"\

Over each subdomain, we interpolate the cost-to-go value and gradient using a

weighted sum of corner-node values and gradients. To preserve the cost-to-go values and

gradients and to produce continuous and smooth approximating functionals, each

weighting function 0j(x) and yrrj(x), 7= J\,-, Yi", j = U-,n , must satisfy a number of

requirements. Continuous and smooth functionals allow us to use of efficient quasi-

Newton search methods. Also, smooth interpolating functionals accurately represent true

cost-to-go functions because stochastic inputs result in a distribution of future states that

smooth out the expected cost of future operations.

1. Requirements to Preserve Node Values and Gradients in One Dimension

Suppose we wish to interpolate a one-dimensional cost-to-go function F(x) using

function values F, = F(.tW) and derivatives G, = dF/dx^ at nodes .t^ , i = 1 A . Over

an interval [x{'\ .t('+1)], the interpolating functional is given by the weighted sum

FU\x) = (pi(x)Fi + y/i(x)Gi + <pM(x)FM + y/M(x) GM

If this functional is to preserve the cost-to-go value F„ the weight 0,(.r) must equal one

and all other weights must vanish when x = JC<
()

. Likewise, if this functional is to
preserve the cost-to-go value F,-+i, the weight <pi+\(x) must equal one and all other

weights must vanish when .r = x^M\ Over the same interval, the gradient of the

interpolating functional is given by the weighted sum

G (x) = ^r-Fi + 3— G, + -3—F,+ I + —5—G/+1
dx dx dx dx

If this functional is to preserve the cost-to-go gradient G„ the weight dy/i/dx must equal

one and all other weights must vanish when x = *('). Likewise, if this functional is to

76

1 at node *(«), 0 at node x('+1> 0 at both nodes

0 at both nodes 1 at node JC<'>, 0 at node x('+1>

preserve the cost-to-go gradient G,+i, the weight dy/i+\/dx must equal one and all other

weights must vanish when x = x^i+l\ Table 5C1 summarizes these weighting-function

requirements. There are four constraints on each weighting function that can be satisfied

by third-order polynomial functions. Also, the resulting interpolating functionals are

continuous and smooth across all intervals.

Table 5C1. Weighting-Function Requirements for Interpolation in One-Dimension

Zero'th-Order Value First Derivatives

2. Requirements to Preserve Node Values and Gradients in Multiple Dimensions

Similarly, suppose we wish to interpolate a multi-dimensional cost-to-go function

F(x) using function values F, = F(xW) and gradients G, = dF/dxW at nodes x^ ,

/ = I,..„A n. There are 2" cost-to-go values and « 2" derivatives in each «-dimensional

hypercube. Over an «-dimensional hypercube with lower corner node x('), the

interpolating functional is given by the weighted sum of equation (4D3)

Yi"

F(0(x) = X i Wr + [V-/x)]T- GY) (5C1)

If this functional is to preserve a cost-to-go value Fv the weight 0y(x) must equal one and

all other weights must vanish when x = xW. Over the same hypercube, the gradient of

the interpolating functional is given by the weighted sum

d\\fy
t3x"ry +

If this functional is to preserve a cost-to-go derivative Grj, the weight dy/jj/dxj must

equal one and all other weights must vanish when x = xW. Table 5C2 summarizes these

weighting-function requirements. Using notation of the local coordinate system

presented in Section 4D3, x = x(tf when q = 0.

In an «-dimensional problem, there are potentially (1+n) 2" constraints on each

weighting function 0^(x) and y/rj(x). However, many of these constraints are redundant

since a constraint that causes a weight to vanish for one node and dimension also causes

it to vanish for other nodes and other dimensions. For example, we can satisfy the

requirements of Table 5C2 by weights that are an «-fold product of functions. Each
function of this product contains a single state variable Xj and satisfies the requirements

77

3F(,) _ £ , *<Py
~äx~ " k { 3x lr Gv} (5C2)

of Table 5C1. Thus, each weight is an n-fold product of third-order polynomials (or

higher), or a 3/z-fold product of linear terms. However, unlike the 1-D case, weighting

functions that satisfy the requirements of Table 5C2 may produce interpolating

functionals that are discontinuous and not smooth. Therefore, requirements for

continuous and smooth interpolation go beyond those that preserve cost-to-go values and

gradients at nodes.

Table 5C2. Weighting-Function Requirements for Interpolation in Multiple Dimensions

Zero'th-Order Value First Derivative in dimension x.

Vy,j(x)

1 at node x(tf,

0 at other nodes 0 at all nodes

0 at all nodes

1 at node x(#, s=j,

0 at node xW, s *;',

0 at other nodes.

3. Additional Requirements to Produce Continuous and Smooth Interpolating

Functionals in Multiple Dimensions

To ensure continuity and smoothness between hypercubes of higher dimension,

we must ensure that weighting functions satisfy additional requirements beyond those

that preserve cost-to-go values and gradients at nodes. We must also ensure that

weighting functions for adjacent hypercubes produce the same cost-to-go values and

gradients along the shared boundary. This means that the interpolating functionals on

both sides of a shared boarder must converge to the same equation.

Two conditions must be satisfied to ensure this convergence. The first condition

is that only shared nodes can be used to evaluate a boundary, and weights applied to

nodes not on the boundary must vanish. Otherwise, nodes not on the boundary can

influence estimated values and gradients along the boundary. The second condition is

that unless other properties of hypercubes (such as geometry) are shared, they cannot

influence estimated values and gradients along boundaries.

To satisfy these conditions on a regular grid (i.e., a grid with discretization

intervals of equal length), we apply two additional constraints to weighting functions.

The first constraint requires that we use interpolating functionals with consistent form for

each hypercube. Unfortunately, this prevents us from selecting among different

interpolations (such as the interpolations of Foufoula-Georgiou [1991] that can be used to

preserve convexity) based on the local character of a cost-to-go function. The second

78

constraint is that weights vanish when applied to unshared node values. This requires

that weights vanish at any location where fy = 1 in any dimension /' = 1 ,...,n (Table 5C3).

If the domain is divided by an irregular grid with discretization intervals of

variable length, the above constraints will be insufficient to guarantee continuity and

smoothness. An example of an irregular grid is an adaptive grid that uses finer

discretization intervals only where needed. With an irregular grid, we must be careful to

avoid terms that depend on hypercube dimensions. In particular, if a weight depends on

an unequal discretization interval Axk, this weight must vanish along hypercube

boundaries both where r\k = 0 and where r/^ = 1 (Table 5C4).

Table 5C3. Weighting-Function Requirements for Continuity and Smoothness on a
Regular Grid

Table 5C4. Weighting-Function Requirements for Continuity and Smoothness on an
Irregular Grid

Zero'th-Order Value First Derivative in dimension xs

1 where T) = 0,

0 where r/* = 1 any k = 1,...,«

0 where r| = 0,

0 where % = 1 any k = l,...,n

0 where r\ = 0,

0 where % = 1 any k = \,...,n

1 where t| = 0, s=j,

0 where r\ = 0, s * j,

0 where % = 1 any k = \,...,n

001)

v/n)

Zero'th-Order Value First Derivative in dimension xs

1 where r\ = 0, 0 where T]s = 0,

0 where r^ = 1 any k = \,...,n 0 where r\k = 1 any k = l,...,n

1 where T) = 0, s=j,

0 where fy = 0, 0 where r\} - 0 and r\s = 0, s ±j,

0 where r/* = 1 any k = \,...,n 0 where r/* = 1 any k = l,...,/i

D. ORIGINAL HERMITE INTERPOLATION METHOD

This section presents the multi-dimensional Hermite interpolation presented by

Kitanidis [1986] and applied to DDP by Fonfoula-Georgiou and Kitanidis [1988]. This

first application of Hermite interpolation to a DDP problem produced accurate estimates

of the cost-to-go and demonstrated an ability to solve stochastic dynamic control

problems with a greater number of state variables.

79

1. The Weighting Functions

This interpolation uses the polynomial weighting functions [Foufoula Georgiou

and Kitanidis, 1988, Appendices A and B]:

m) = RP (5D1)

Yfi\) = rij(l-7ij)P (5D2)

The terms R and P are given by the equations
n

R = 1 + X *fc 0-2*7*) (5D3)
*=i

^ = FT {1 - 77^> (5D4)
*=i

These weighing functions produce accurate cost-to-go approximating functionals F(x)

even when using coarse grids.

However, these weighing functions do not produce smooth cost-to-go

approximating functionals (i.e., the gradient estimate G(x) is not continuous). Equations

(5D1) and (5D2) do satisfy the requirements of Table 5C3 because their derivatives do
not vanish for some 77* = 1. The derivatives of equations (5D1) and (5D2) are

^ = dJk[(l.4Tls)P.Rp(s)]

^L=(l-r1j)([-3T1j)P(s), s=j

d^=dM^k]\j(Jlj.l)P{sh s*j
*** dxs\dxjl

The term P(S) is the previous product P exempting terms indicated by the subscript:
n

When TJS= I, the derivatives produce weights

d0 df]s

d^ dx

n

P(s) X i^ (1-277*)}
s k= 1, h£s

80

^ = ^W"1
77;(n..1)PW, s*j

<*** dxs\dXjJ

The derivatives are not equal to zero except for values of T| such as at the corner nodes or

when J]k = 1, k * s. As a result, weights do not always vanish when applied to nodes not

on a shared border. Nevertheless, equations (5D1) and (5D2) do produce continuous

cost-to-go approximations since the weights given by equations (5D1) and (5D2) vanish

if rfe= 1 for any &= 1,...,/! .

Discontinuous gradients between hypercubes can complicate application of

Newton-based search methods and may require that we use a more robust, but slower,

search method. For example, Johnson et al. [1993] applied a quasi-Newton search

method to their test of Gradient DP by restarting the search whenever a hypercube

boundary was crossed.

2. Analysis of the Original Hermite Interpolation Method

Johnson et al. [1993] compared the efficiency of Hermite and spline methods with

linear interpolation, demonstrating that the improved accuracy of higher-order methods

more than compensates for the increased complexity of the interpolation. They observed

a significant reduction in the computational effort required to achieve comparable levels

of accuracy. For example, computational effort was reduced by a factor of 250 for a four-

reservoir control problem. While the savings for spline and Hermite methods were

comparable, they evaluated the spline method to be slightly more efficient. In spite of the

superior accuracy of Hermite interpolation, they judged this insufficient to overcome the

effort required to calculate both function values and gradients at nodes.

However, the original Hermite method does not produce continuous derivatives,

and the quasi-Newton search method is not as effective at searching for the best control

decisions or at estimating gradients. Also, it appears that Hermite interpolation may gain

the advantage over spline methods at higher dimension than considered by Johnson et al.

[1993] . Hermite interpolation uses values only at nodes on the boarder of a subdomain,

or a total of (l+«)2" values. The spline method of Johnson et al. [1993] uses 4" node

values over a larger region. Indeed, they observe that after four state variables, the

efficiency of the spline method does not improve rapidly in comparison with multilinear

interpolation; multilinear interpolation, like Hermite interpolation, uses values only at

immediately adjacent nodes, or a total of 2" values.

The following three sections present new interpolation methods that improve on

the original method. The first is a method that uses first-derivatives in what I call the

81

"first order" Hermite method to distinguish it from methods that use higher derivatives.

Following this is a method that produces continuous second derivatives. A third section

presents a "second order" method that uses some second derivatives. This third new

method produces a more accurate interpolation that is better at preserving the convexity

of the true cost-to-go function. All of these methods take advantage of the high-order

accuracy of Hermite interpolation while producing a smooth interpolation to allow better

implementation of quasi-Newton search methods. Also, these methods are easier to

evaluate than the original Hermite interpolation method.

E. NEW FIRST-ORDER HERMITE INTERPOLATION

METHOD

This section presents multidimensional interpolation method that uses cost-to-go

values and first-derivatives to produce smooth and continuous approximating functionals.

Multidimensional interpolation may require complex interpolating functionals of high

dimension. This results from the exponential growth in the number of node values that

must be preserved. This also results from additional requirements used to enforce

continuity, smoothness, or other desirable qualities of an interpolating functional.

The weights used in this method are the lowest-order polynomial functions that

satisfy the requirements of Table 5C4. Low-order functions reduce the likelihood that an

interpolating functional will oscillate. In addition, low-order functions increase the

likelihood that an interpolating functional will be strictly convex (or concave) when the

true cost-to-go function strictly convex (or concave). Because these polynomials satisfy

the requirements of Table 5C4, the interpolation can be applied to grids with any arbitrary

discretization interval.

This method is used to produce a highly efficient numerical code that is contained

in an appendix to this dissertation. As discussed earlier, efficiency is provided by

interpolation methods that have higher-order accuracy and that are smooth. However,

efficiency is also provided by interpolation methods that are easy to evaluate. For

example, the traditional multilinear interpolation is exceptionally easy to evaluate, and

this accounts for much of its popularity in DDP. Likewise, spline and Hermite

interpolation methods use low-order polynomials and, thus, are also relatively easy to

evaluate.

This interpolation method improves upon the original multidimensional Hermite

interpolation method of Kitanidis [1986] by ensuring continuity of first derivatives over

the entire domain while also reducing the required computational effort. Continuous first

82

derivatives allow us to apply quasi-Newton search methods that also give us gradient

information for little or no extra computational effort, though it does increase storage by a

factor of n+l for an «-dimensional problem. The derivation in this section parallels the

development of multilinear interpolation in Chapter 4.

1. Hermite Interpolation in One Dimension

To produce weighting functions that are simple to evaluate, we choose the lowest

order polynomial functions that satisfy the requirements of Table 5C1. In a 1-D problem,

there are four constraints on each weighting function. To satisfy four constraints, each

weighting function must be a third-order or higher polynomial.

Third-order polynomial functions that satisfy these constraints were identified by

Kitanidis and Foufoula-Georgiou [1987] as:

<k(x) = [2(X-JC<«>) + Ax] (JC('
+1

>-JC)
2
 /(Ax)3

tö+iOO = [2(x«+lKx) + Ax] (x-xW)2/(Ax)3

y/i(x) = (jc-jt<'>) (JC<'
+1

> - x)2 /(Ax)2

W+iOO = - (xW>-x) (x-x(V)2/(Ax)2

Because these functions preserve both cost-to-go values and gradients at nodes, the

resulting 1-D interpolation is both continuous and smooth. Figure 5E1 compares 1-D

linear and Hermite interpolation for an example cost-to-go function F(x) = l/x. The first

two plots use nodes x^ e {1,4}, and the second two plots use nodes x (') e {1,2,4} .

These plots illustrate the higher-order accuracy of Hermite methods: with few nodes, the

Hermite interpolation produces an accurate and smooth approximation of cost-to-go

values and gradients.

We can simplify expression of the 1 -D weighting functions using the local

coordinate system notation of Section 4D3. Using this notation, the weighting functions

are given by

0(77) = (l+2r7)(l-n)2

Vtn) = ri(\-T])2(dri/dx)A

and their derivatives are

drj dx

83

^= (1-377) (1-77)
d77

The resulting 1-D cost-to-go value and gradient functionals over any interval [x('\ x('+1>]

are

F(& = (1+2Ö(1-5)2F,- + (3-2§Z2FM + &l-$l(l-&Gi-ZGM)(*x) (5E1)

G(£) = d£ = 6#l-$ £±L£L + (1-3©(1-Ö G,- - (2-3£)£G,+1 (5E2)
•^ AJC

Note that d<£/dx = 1/Ax.

Figure 5E1. 1-D Linear and First-Order Hermite Interpolation of the Function F(x) =x'1

True cost F(x) = \lx and gradient G(x)

Interpolated cost F(x) and gradient G(x)

Two Nodes at x = 1 and 4 Three Nodes at x = 1, 2, and 4

-0.5

2. Hermite Interpolation in Multiple Dimensions

To produce multi-dimensional weighting functions that are simple to evaluate, we

choose the lowest-order polynomial functions that satisfy the requirements of Table 5C4.

Unlike the multi-dimensional requirements of Table 5C2 that are enforced only at corner

nodes, most of the requirements of Table 5C4 are enforced along entire boundaries.
More specifically, the weights <p(r\) and \\f(r\) and their first derivatives must be zero for

any T]k = 1 an<^ even f°r some 77^ = 0. In an /i-dimensional problem, there are (l+n) 2"

cost-to-go values and first-derivatives, so there are potentially (l+n) 2n constraints on
each weighting function <pfi(.) and y/Yj(x). However, many of these constraints are

redundant since a constraint that causes a weight to vanish for one node and dimension

84

also causes it to vanish for other nodes and other dimensions. As suggested in Section

5C2, we can identify each weighting function as an «-fold product of 1-D functions. In

each dimension there are either three or four constraints that can be satisfied by second-

order or third-order polynomials. If we use only regular (i.e., evenly spaced) state-space

grids, then we may be able to reduce the order of some polynomials.

Weighting functions that are an n-fold product of 1-D functions and that produce

continuous first derivatives for either regular and irregular grids are

<Kr\) = P = fl (l+27k)(l-rfc)2

Wjin) = QjP(j) (dljfdxjY1

where Ö, = tyO-ty)2

P(fi = fl (l+2ry(l-n,)2

fc=l,foy'

The first derivatives are

^ = (1-3^X1-77,)^), s=j

^ = - 6U\-yis)QjP(sj) (dn/dxj)-1 ^, s *j

Because these satisfy the requirements of Table 5C4 (Figures 5E2 through 5E5), the

resulting multidimensional interpolation is both continuous and smooth. Figure 5E6

compares 2-D linear and Hermite interpolation for an example cost-to-go function

F(x) = (JCJ-X^"
1
 . The first two plots use nodes formed from the set of coordinates

x-() e {1,4}, / = 1,2; and the second two plots use nodes formed from the set of

coordinates x-^e {1,2,4}.

In contrast to the 1-D case, these weighting functions are not the lowest-order

polynomials that guarantee continuous first derivatives. As mentioned, the requirements

of Table 2C4 could be satisfied with second-order polynomials in some cases. However,

experimentation with weights composed of mixed second-order and third-order

polynomials did not produce interpolating functionals with noticeably lower curvature.

Also, these mixed-order weights were not able to preserve convexity and they required

85

more effort to evaluate. If grids are regular in some or all dimensions, the requirements

of Table 2C3 could be applied to further reduce the order of polynomials. I did not

experiment with weights composed of such lower-order polynomials, and this presents a

possible area for further refinements.

To demonstrate the application of these weighting functions, we can state the

closed-form approximating functional for 2-D interpolation. The 2-D approximating

functional is

F(x) =fo+fi+f2

where f0 = P^P^ + ^'(1)^1 + ^(2)^(1)^ + FwFrf

f\ = Qi[P(i)GYui+P\i)GYiA]Axl - Q'i[Pii)Gy2<l+PwGy4A]Axl

h = PmiQiG^i-Q'iG^^xi - P'amiG^i + Q'iGya]^!

Consistent with previous definitions,

when 77,=^: Pm = (l+2Wtf

Qx = £i(K,)2

and when 77, = 1-^,: P\2) = (3-2£,)£,2

Q\ = (Ki)£i2

P(1), Q2, P\{), and Q'2 are defined similarly. The derivatives of the approximating

functional are

dF _ d/0 | d/i (d/2

dxi dxi dbci dxj

where &*- = (6)&(1-SI)[/»(I£^ + P'o)^^}
«l AJC AX

&- = (l-3^)(H\)[P(i)GYui +P\i)GYiA] - (2-35i)^[P(1)Gn.i +P(i)GYA,l]
ax\

^ = (6)$I(l-|,)[Ö2(Gn.2-Cyi.2)-ß'2(Gy4.2-Gw.2)]^2.

The equation for dF/dx2 parallels that for dF/dxj.

86

Figure 5E2. 2-D Weighting Function <p(r\) Applied at a Node

Figure 5E3. 2-D Derivatives of Weighting Function (p(r\) Applied at a Node

87

Figure 5E4. 2-D Weighting Function \|/(r|) Applied at a Node

Figure 5E5. 2-D Derivatives of Weighting Function \|/(r|) Applied at a Node

88

Figure 5E6. 2-D First-Order Hermite Interpolation of the Function F(x) = Oqj^)"1

Linear

1

0.8

0.6

0.4

T0.2

►0

89

F. CONVEXITY OF THE FIRST-ORDER METHOD

Frequently, the highest costs (and highest marginal costs) are associated with

extreme states of a system and cost-to-go functions are convex. When a cost-to-go is

convex, it is likely that the total cost function (i.e., the sum of the current cost and the

cost-to-go) is a convex function of control decisions. Under these conditions, search

methods can find the globally optimal solution and will not find a "local" minimum that

yields incorrect control decisions (however, it is possible to find correct control decisions

even if a DDP cost-to-go function is not convex).

It is important that interpolation preserve the convexity of a cost-to-go function.

Unfortunately, the Hermite interpolation proposed in the previous section does not

always preserve convexity. The interpolation is convex over a subdomain of x (i.e., for

all 0 < £j< 1, / = 1 ,...,/*) only when the Hessian is positive semidefinite [Ecker and

Kupferschid, 1991, p. 271]. A function is positive semidefinite if and only if all principle

minors (i.e., the determinates of the square submatrices whose (1,1) elements are the (1,1)

element of the Hessian) are nonnegative [Ecker and Kupfer schid, 1991, p. 298].

1. Convexity of One-Dimensional Interpolation

For the 1-D case, the Hessian is a one by one matrix and there is only one

principle minor. This principle minor is the second derivative

«£| = -6- [(1-2$ ^^ + (£ hGi + (£- {)Gi+l] (5F1)
dr- A.v Ax ^ J

where <jj is the local coordinate transformation of the single state variable x. The principle

minor is a linear function of £ Thus, the principle minor is nonnegative over the domain

0 < £ < 1 if it is nonnegative at the bounding values at £ = {0,1}. Bounding values are

non-negative if and only if

2-0, + k;,+1 < ^±TIL < Uj. + 1GM (5F2)
3 3 fa 3 3

The cost-to-go approximation is convex if these constraints are satisfied for each pair of

adjacent nodes.

Figure 5E1 illustrates a function approximation using two different discretizations

of the state variable. Interpolation using the coarser discretization is not convex even

though the true function is strictly convex. In this case, the second derivative is negative

at the node .r = 4, and the upper bound constraint of equation (5F2) is violated. On the

90

other hand, interpolation using the finer discretization is convex and the constraints of

equation (5E2) are satisfied.

This illustration suggests a possible solution for non-convex function

approximations. For the example considered, the constraints are satisfied as the

discretization interval Ax decreases. In most cases, we can achieve a convex function

approximation that satisfies the constraints of equation (5F2) by selecting a discretization

interval Ax that is sufficiently small. For smooth functions (i.e., functions with

continuous first derivatives), non-convex features become small or disappear as the

values G„ G,+i, and (F,+i-F,)/Ax converge. Even if the constraints of equation (5F2) are

not satisfied, we need not continue to decrease Ax to until the cost-to-go function

approximation is strictly convex. We can tolerate some small concave features in a

function approximation because the distribution of outcomes produced by stochastic

inputs. Even if there are small concave features in a cost-to-go estimate, the distribution

of outcomes causes an averaging process that can still produce a convex total-cost

estimate.

Foufoula Georgiou [1991] also addresses the problem of interpolating a 1-D

convex function with convex interpolants. Using exponential functions, she produces

interpolants that are strictly convex. Unfortunately, the interpolants have unbounded

second derivatives and require that multiple interpolants be used. This can prevent

application to multidimensional interpolation: when different interpolants are required

for different subdomains, the resulting approximation will be discontinuous between

subdomains.

2. Convexity of Multi-Dimensional Interpolation

For multi-dimension approximating functionals, the Hessian is more complex and

evaluation of the principle minors is more difficult. For example, the (1,1) element of the

2-D Hessian is

d^£= d^_ + d^_ + d^

dx,2 dx,2 dx2 dx,2

u d2/0 6 mtuD Fn~Fn . p. ^K^Jh where -^f = -**-(l-2$i)[P{i) + " (\) J
dxr Ax\ Ax Ax

d2^ = ±^L[P(1)Gyiil +Fa)G,,,] + -2^L[Pil)G^ +P'(,)Gy4,I]
dxf Ax! At)

91

dxf Ax\ Ax\

The definitions for P(i), P\\), Q2, and Q'2 are as given previously. It is difficult to

identify simple convexity constraints as in the 1-D case.

Instead of evaluating convexity constraints for the multi-dimension interpolation,

we might guess that if the 1-D convexity constraints are satisfied for each dimension,

then the multi-dimensional interpolation is convex. This would seem reasonable since

the proposed multi-dimensional interpolating functional is the n-fold product of 1-D

functions. However, application of the proposed interpolation shows that it is not

convex. However, among the various other interpolation methods attempted (including

lower-order methods and non-polynomial methods), the proposed n-fold third-order

polynomial weighting functions perform best.

Problems with non-convexity (and with poor cost-to-go estimates) appear to be

worse when the off-diagonal elements of the Hessian are significant. As a result, the next

sections present higher-order interpolation methods that use estimates of some second

derivatives to reduce non-convex features of cost-to-go approximations. We will observe

the impact of off-diagonal elements on multi-reservoir solutions analyzed in the next

chapter.

G. A HERMITE INTERPOLATION METHOD WITH
CONTINUOUS SECOND DERIVATIVES

Higher-order interpolation methods can preserve higher-order derivatives or

produce a higher degree of smoothness. Preserving higher-order derivatives (e.g., second

derivatives) should improve accuracy, but requires higher-order weighting functions and

additional effort to evaluate and store the derivatives. Producing a higher degree of

smoothness should improve convergence of search routines and may improve convexity,

but also requires higher-order weighting functions.

This section presents a second interpolation method that produces a higher degree

of smoothness by ensuring continuity of second derivatives between subdomains.

Ideally, we would like an interpolation that produces continuous first and second to

improve the efficiency of Newton-based search methods. Also, an interpolation with

continuous first and second derivatives may preserve convexity better than the first-order

Hermite method.

92

Additional requirements on the weighting functions are required to ensure

continuous second derivatives. As with cost-to-go values and first derivatives, second

derivatives along shared boundaries must be calculated to produce the same values in

adjacent hypercubes. As a result, nodes and geometry that are not shared cannot be used

to estimate second derivatives along a boundary. Table 5G1 identifies requirements on

weighting functions <p(r\) and 1^<T|) that will produce continuous second derivatives on an

irregular grid (if a grid is regular, the constraints on 77* = 0 are not needed).

Continuity of second derivatives is accomplished without calculating the value of

second derivatives at nodes. Instead, the requirements of Table 5G1 force the second

derivatives to zero at hypercube boundaries. This may result in less accurate cost-to-go

estimates; however, this avoids the potentially difficult task of calculating and storing

these second derivatives.

Table 5G1: Weighting-Function Requirements for Second-Derivative Continuity on an
Irregular Grid

2nd Derivatives

m 0 where 77* = 0 any k = 1,.

0 where rfc = 1 any k = 1,.

v/Ti) 0 where % = 0 any k = 1,.

0 where 77* = 1 any k = 1,.

1. The Weighting Functions

Evaluating a weighting function as an «-fold product, there are five or six

constraints on each 1-D function. These are constraints on the weighing function, its first

derivative, and its second derivative at the two bounds 77* = 0 and 77* = I, where k

identifies the current dimension. As a result, each 1-D function is a fifth-order

polynomial and the weighting functions are given by
n

001) = P = Ei (l+377i+677t
2)(l-77Jt)

3

Vfl\) = QjP^drj/dxß-1

where Qj = (1+377^)77/1-77/

P^j) = fl 0+377*+677*2)(l-77*)3

k=l,k*j

93

If the grid is regular in some or all dimensions, we could define lower-order polynomials

that do not require weights to vanish when 77* = 0 for some dimensions k = l,.../i .

The 1st derivatives of the above polynomial weighting functions are

^ = (l+Srai-Srai-Tk)2^. dxs
J —-."-« S~J

^ = (^O^Kl-^QjP^drij/dxjy1 ^ s*j

and the 2nd derivatives are

0= (-60)(l-277,)77,(l-77j)/'w(^

d'Vj = (-12X3-5^)^(1-^)/^)^ s=j -v »,,»••„,•„£
s

= {dT]jldxj)A\^ (-60)(l-277,)7k(l-7k)ßy/W **/ s=<w(r
It can be easily verified that these weighting functions possess the properties of Table

5C4 and Table 5G1.

2. The One-Dimension Approximating Functional

The 1-D approximating functional and derivatives are

FU\x) = PFi + FFM + QGiAx - Q'Gi+lAx

d|^ = 30^(\-O2^±rfl + (1+5£)(1-3$(1-$2G,- - (6-5£)(2-3#£2Gl+1
fo Ax

&J±- = (60)^l-^)[(l-2^)^±i^+(^2-)G, + (^|)G/+1]/Ax
dLc2 Ax 5 5

Consistent with the definitions above,
->

whenr/ = £ /> = (l+3£+6<T)(l-£)3

Q = (l+3£)£(I-£)3

whenr7=l-£ F = (3-15£+6£ *)£3

94

Q = (4-3£)(l-£)£

Figure 5G1 illustrates this 1-D approximating functional. Comparing this figure with

Figure 5E1, we see that this interpolation is less accurate and poorly preserves convexity

of the true cost-to-go. Also, the curvature of the approximating functional increases with

smaller discretization interval Ax.

Figure 5G1. 1-D Hermite Interpolation with Continuous Second Derivatives of the
Function F(x) = x-*

True cost F(x) = l/x and gradient G(x)

Interpolated cost F(x) and gradient G(x)

Two Nodes at x = 1 and 4

d2F/dx2

0.5 .

G(x) = dF/dx
-0.5 1 /

■1.0

A
Three Nodes x = \.2. and 4

-1.0

3. The Two-Dimension Approximating Functional

The 2-D approximating functional is

F(x) = /o +/i +fi

where f0 = P(2)[/'(i)Fw + /"(1)F„] + F(2)[P(,)FÄ + F(l)F^

f\ = ßl[P(l)Gy,.l +F0)GYiA]Axl - Q'rtPwG^ +FwGYiA]Axi

fl = PukQlGyiZ-QlG^bX! - P'(2)[QlGY:,2+Q'2GYA,2]^2

95

The 2-D interpolated 1st derivative with respect to x\ is

dF = d/p | d/i x d/2

dxi dxi dxi dxi

where
^i Ax, AJCI

Fv.-Fv

^- = (1+5|,)(1-3|,)(1-§,)
2
[P(„GM+P

,
(„GB>,]

- (6-5§,)(2-3^i)^2[P(1)GÄi,+P'(,)Gy4,1]

^ = (30)^,2(l^I)
2[ß2(Gy2)2-Gy„2)-ß,2(Gy4,2-G),,2)]AJ:2/Ax1

The first derivative for dF/cLc2 parallels that for dF/dx\. Figure 5G2 illustrates this 2-D

approximating functional. Comparing this figure with Figure 5E6, we again see that this

interpolation is less accurate and poorly preserves convexity of the true cost-to-go.

Figure 5G2. 2-D Hermite Interpolation with Continuous Second Derivatives of the
Function F(x) = (xix2)"'

4. Accuracy and Convexity of Hermite Interpolation with Continuous Second

Derivatives

We see from the 1-D and 2-D examples that higher-order weighting functions

may not produce interpolations as good as the simpler first-order Hermite method. To

achieve continuous second derivatives, we produce an interpolation that is less accurate

and has more difficulty preserving the convexity of a true cost-to-go function. In large

part, this results from error induced by forcing second derivatives to zero at boundaries

96

between subdomians; however, this also demonstrates that interpolation functional

oscillate more severely when we use higher-order polynomials to produce weights.

As we observed, the interpolating functional has more difficulty preserving the

convexity of a true cost-to-go function. For the 1-D approximating functional, the second

derivative is nonnegative if

fG,+§G,+, < ^^ < ZGI + IGM
5 5 ^55

As we expect, the bounds of this equation are more restrictive than the bounds of

equation (5F2) for the first-order Hermite interpolation. For the 2-D approximating

functional, the (1,1) element of the Hessian is

£F = d%_+d%_ + d%

dxj2 dx2 dx2 dx2

d2/b 60(^2^) FyrFy, Fy-Fyi
where --"*■ = SiO-sOlAn + ^(i) J

dbcf Axi Axi Ax\

^j- = --M^\-^)[0-5^){PwGYu^P'mG^) + (2-5§,)(/»(i)GB,1+/»,(i,Gr,,)]
dxf Ax\

Hi = -^ö-§I(l-^)(l-2$,)[ß2(GBf2-G7i,2)-ß,2(Gw.2-GB,2)]^2-
dxf Axi Axi

Again, it is difficult to identify simple convexity constraints as in the 1-D case.

Instead of forcing second derivatives to zero at boundaries, we could estimate

second derivatives. From quasi-Newton search methods, we can extract estimates both of

gradients and of the Hessian; however, such an estimate of the Hessian may not be

sufficiently accurate. As an alternative, we can estimate the Hessian by finite differences

using values of the gradient at adjacent nodes. Though this estimate is rough, it should be

a significant improvement over forcing derivatives to zero as done in this section.

Though computational effort and memory both increase, the increase in interpolation

accuracy should prevent an overall increase in effort and memory.

97

H. A SECOND-ORDER HERMITE INTERPOLATION

METHOD

This section presents a third interpolation method that uses off-diagonal elements

of the Hessian to produce more accurate estimates. This additional derivative

information improves the convexity of interpolating functionals. What is more important,

this method is able to use these derivatives without increasing the order of polynomials

used by the weighting functions. However, this method does not produce continuous

second derivatives.
The off-diagonal elements of the Hessian are the elements d2F/dxjdxk where

j * k. The interpolating functional is given by the weighted sum

tt" n n

F(,)(x) = X (W*) Fr + X (VwOO GYJ + X f XYJM*) Hyj.k } } } (5H1)
r=Y\ 7=1 k=j

Table 5H identifies requirements on the second-derivative weights Xj.k00 required along

with the requirements of Table 5C4 to produce continuous and smooth interpolations.
Diagonal elements of the Hessian (i.e., d2FI±xf) are not used as this requires use of

higher-order polynomials as in the last section.

A great advantage of this second-order method is that the second-derivative

weighting function Xj,k(x) is constructed from the same 1-D polynomials used by the

first-order Hermite method. Also, the weighting functions 0(x) and y/,(x) are the same as

those used for the first-order Hermite method.

Table 5H1. Second-Derivative Weighting-Function Requirements for Continuity and
Smoothness on an Irregular Grid

Zero'th-Order Value First derivative in

dimension xs

Second derivative in

dimensions xr and xs, rts

XjJcW 1 where r\ = 0, [rj}={j,k) ,

0 where r\j = 0, 0 where r\j = 0, s*j, 0 where r\j = 0, r,s*j,

0 where rj*: = 0, 0 where T]k = 0,s*k, 0 where r/^ = 0, r,s*k,

0 where r\s = 0, si [kj) 0 where r\r = 0, rg {kj)

0 where r]s = Q,s& {kj)

0 where r\q = 1 any q 0 where J)q = 1 any q 0 where T)q = 1 any q

98

1. Shorthand Notation

To present the second-order method, we will use shorthand notation for the

polynomials used to construct the weighting functions. The following third-order

polynomials are the same 1-D polynomials used by the first-order weighting functions

used to satisfy the requirements of Table 5C4:

Oj = (l+2ty)(l-7fc)2

ßj= 77/I-77/(dTT/dx,)"1

In addition, the following second-order polynomials are derivatives of the weighting

function polynomials

da, , .. .dTj,

s' = df = c-Hxi-i-)

Using this notation, the first-order weighting functions are
n

m = p = n <*k

Yfi\) = ßjp<j)

n

where P(j) = Yl a*

The first derivatives are

^=tOsßjP(sj) s*j

And the second derivatives d2/dxrdxs, r * s, are

d20

99

_1-=*$!•«> s=j

d2W; _

2. Weighting Function for the Second Derivatives

As mentioned, the second-derivative weighting function XjJcOO IS constructed

from the same 1-D polynomials used by the first-order Hermite method. This function is

Xkfi\) = ßkßjP(kj)

Its first derivatives are

^ = P*<^(M 5=7

t; = */>'<*> s = &

^= COjßkßjPMjl J« {*,/}

its second derivatives d2/dx,dxs, r * 5, are

i&-**'«* {r,*} = {*,/}

i& = <*AVW r^k, s=j

^ = «H/WW r *■}, s = k

£&=*AVW r =j, s*k

£&" ***'<<*> r = k,s *j

d ^ - r,). /»). ßt ß. P,„.«. n r.s £ (k.i)
cM*. s

100

To verify that this weighting function and its derivatives satisfy the requirements of Table
5H, notice that all polynomials vanish when 77 = 1 and that ß and m vanish when 77 = 0.

This is appropriate since ß and a depend on the discretization interval Ax^.

I. COMPUTATIONAL EFFICIENCY OF METHODS

The effort required to solve a DDP problem is proportional to a number of

discrete states that increases exponentially with the number of state variables as described

by equation (4C1). For each discrete state, we solve a smaller optimization problem that

identifies the best control decisions for this initial state. Most execution time is spent in

the search routine used to find optimal decisions for each discrete state. As a result, we

can also reduce the total execution time for a DDP problem by reducing this search time.

The first way to reduce search time is to use an efficient search routine. The

amount of time required by each search depends on the number of times the total cost

function of equation (4A5) is evaluated. More efficient search routines (such as Newton-

based routines) can find the optimal decisions with fewer the evaluations, and can

significantly reduce the execution time.

The second way to reduce search time is to reduce the amount of time required to

evaluate the total cost function. For DDP problems with multiple state variables, the

amount of time required to evaluate the total cost function depends primarily on the time

required to interpolate the cost-to-go. Usually, the effort required to evaluate the

interpolating functional will be large compared to the effort required to evaluate the

current cost function or the state-transition function. Even in the case of crude nearest

neighbor interpolation, a significant time amount of time may be spent searching for the

correct subdomain.

To evaluate the new Hermite interpolation methods, it is useful to identify the

hypothetical effort required to interpolate using the various methods. In particular, we

are interested in seeing how the effort grows with the dimension of the interpolation (i.e.,

the number of state variables). One approach is to count the number of "flops," or

floating-point operations required to perform each interpolation [Johnson et ai, 1993]. A

flop is a floating point multiplication and an addition (with most effort due to the

multiplication).

To evaluate the cost-to-go at a state x requires effort to evaluate the weighting

functions and additional effort to apply the weights to node values. Let us first consider

the effort required to apply weights to nodes. In the case of a local approximation that

uses only immediately adjacent nodes (i.e., corner nodes of the surrounding hypercube),

101

there are 2" nodes. Thus, for multilinear interpolation, 2" flops are required to apply the

weights to the cost-to-go value at each node and sum the result. For the first-order

Hermite interpolation method, 2"(n+l) flops are required to apply the weight to the cost-

to-go value and derivatives at each node. For the second-order Hermite interpolation

method, 2""'(« 2+n+2) flops are required for the additional (n2-n)/2 second derivatives.

This does not include the diagonal elements of the Hessian and assumes that the Hessian

is symmetric (i.e., the (j,k) element equals the (k,j) element). In contrast, spline methods

require a more extensive set of nodes but do not use derivatives to estimate the cost-to-

go. In this case, there may be on the order of 4" flops [Johnson et al, 1993]. Clearly, the

effort to attain higher-order accuracy using Hermite interpolation or splines can result in

an exponential increase in interpolation effort.

Now let us consider the effort to evaluate the weighting functions. The 1 -D

functions «(r/y), ßj]j), üXfy), and b\r\j), j=l,...,n , are used numerous times in different

weighting functions. Careful programming can significantly reduce the effort to evaluate

the weighting functions by reusing in different weights the evaluation of the 1-D

functions and their products. In contrast, it is not as easy to reduce the effort of the

original Hermite interpolation [Kitanidis, 1986] because the weights cannot be

decomposed into as simple a set of functions. Table 511 identifies the effort to interpolate

the cost-to-go value using the linear and Hermite interpolation methods. The total effort

is the sum of the effort to evaluate the 1-D functions, the effort to evaluate the weights

using these functions, and the effort to apply these weights to the nodes (there are also n

divide operations required to evaluate (Ax)"1, but this effort grows only linearly with the

number state variables). With careful programming, the effort to evaluate the weights is

only twice the effort to apply the weights.

Table 512 identifies the growth in effort with dimension for multilinear

interpolation, the first-order Hermite method, and the second-order Hermite method.

These are the interpolation methods that have been included in the DDP code presented

in an appendix to this thesis, and the effort is evaluated by counting the flops in the code.

The effort to interpolate the cost-to-go F is identified for each method to provide an equal

basis for comparison. Implementation of the quasi-Newton search is more efficient if we

calculate the gradient of the cost to go analytically, and actual implementation in the GDP

code interpolates both F and G.
The next chapter will apply these three methods to a range of multi-reservoir

problems to verify the interpolation effort anticipated here and to observe the accuracy of

each method. Table 512 indicates that the first-order Hermite method requires

approximately an n-fold increase in effort to evaluate the cost-to-go. Actual

102

implementation of the first-order Hermite method interpolates both the cost-to-go and its

gradient, and this should increase the effort approximately by a factor of «2.

Equivalently, the effort of the second-order Hermite method is approximately a factor «/2

greater than the effort for the first-order Hermite method.

Table 511. Distribution of Effort for One Interpolation of the Cost-To-Go (in Flops)

Method Evaluate 1-D Evaluate
polynomials weights

Apply weights Total effort

Linear 1/j+i 2n
-3-2"

First-Order Hermite 14«

Continuous second 20«
derivatives

Second-Order 14/i
Hermite

~ 2"+1«

~ 2n+1n

~2nn2

2"(«+l)

2"(«+l)

~ 3-2"«

~ 3-2"«

2"-I(«2+"+2) -3-2"-1« 2

Table 512: Total Flops For Each Evaluation of the Cost-to-Go (per Code)

Number of Linear First-Order Hermite Second-Order Hermite
dimensions (F) (F) (FandG) (F) (FandG)

1 3 13 22 n.a. n.a.

2 10 36 94 42 116

3 23 97 328 147 526

4 48 234 1014 452 2044

5 97 547 2932 1309 7162

« -3-2" -3-2"« ~3-2n«2 ~3-2nAn2 -3-2"-1«3

103

104

CHAPTER 6.

ANALYSIS OF GRADIENT DYNAMIC

PROGRAMMING

In this chapter, we evaluate the benefit of the first-order and second-order Hermite

interpolation methods of Chapter Five. We will apply these methods to solve reservoir

control problems with a range of complexity. As a basis for comparison, we will also

apply the multilinear interpolation method of Chapter Four to solve many of the same

problems. All three methods are applied consistently and are incorporated in the

computer code included in Appendix B.

Each method is compared by evaluating the trade-off between solution accuracy

and time to execute the code. This is accomplished by applying each method to reservoir

control models using progressively finer state-space grids to approximate the cost-to-go

functions. These finer grids yield solutions of increasing accuracy but also require

increasing time to execute the code. As we will see, the solutions validate the expected

performance discussed in Chapters Three and Five and support the accurate application

of GDP to stochastic dynamic control problems with six or more state variables.

The following analysis closely parallels the analysis of Johnson et al. [1993] used

to evaluate the benefit of spline methods. Johnson et al. applied spline and linear

interpolation methods to solve reservoir control problems with between two and five

reservoirs. They also apply the original Hermite interpolation method [Foufoula

Georgiou and Kitanidis, 1988] to a four-reservoir problem and demonstrate that the

original Hermite interpolation performs about as well as spline methods. The

applications of spline and Hermite methods demonstrate that higher-order interpolation

allows us to solve stochastic DDP problems of higher dimension than possible with

traditional DDP methods.

105

A. THE SERIES OF MULTI-RESERVOIR TEST PROBLEMS

This section presents the series of increasingly complex test problems used to test

DDP using the linear and Hermite interpolation methods. First, we will consider a

traditional four-reservoir model that has been used by previous authors to test their

systems analysis methods. Second, we will consider a series of modifications to create

models with between one and seven reservoirs, extrapolating on the examples of Johnson

etal. [1993].

1. The Four-Reservoir Test Problem

Since its introduction by Larson [1968], the four-reservoir model has been used

by many authors to test stochastic control methods [Chow et al, 1975; Foufoula

Georgiou andKitanidis, 1988; Heidari et al., 1971; Kitanidis andAndricevic, 1989;

Murray and Yakowitz, 1979; Saad et al, 1992; Sobel, 1989; Yakowitz, 1982]. Of

particular interest, Johnson et al. [1993] used the four-reservoir model to assess the

performance of spline DDP methods and Foufoula-Georgiou and Kitanidis [1988] used

the model to test the original GDP algorithm.

In applications of this thesis (and in the applications of Johnson et al. and

Foufoula-Georgiou and Kitanidis), the four-reservoir model is fed by two independent

stochastic streamflows. The four reservoirs are distributed above and below the

confluence of the two streams (Figure 6A1). Upstream reservoir 1 receives flow of the

first stream. Reservoirs 2 and 3 receive flow of the second stream. Downstream

reservoir 4 receives water released from reservoirs 1 and 3. Streamflows are uncorrelated

(both with each other and in time), and the state of the system is simply described by

storage levels in each of the four reservoirs. A solution identifies the release policy for

each reservoir (as a function of storage levels) and the expected cost for any initial set of

storage levels. The optimal solution minimizes the expected cost of operations in each of

three stages. The cost of operation is a quadratic penalty of deviations from desired

releases.
The mathematical model of the four-reservoir system follows the conventions

established in Chapter Two. The four state variables x = [.rlrx2^3^4]T represent storage

in the four numbered reservoirs of Figure 6A1. The four decision variables

u = [z/i,M2,"3>"4]T represent releases from each reservoir. Two stochastic variables

w = [H>I,W2]
T
 represent the uncorrelated streamflows into reservoirs #1 and #2. These

106

streamflows are normally distributed with mean values of |i = [2,4]T and standard
deviation a = [0.5,0.75]T and are represented by discrete flows w\ e {1.5,2.5} and
w2e {3.25,4.75} weighted equally. For each of the three stages, the state transition

function y = T,(x,u,w) is linear and can be expressed in matrix form as

7/(u,x,w) =
r-i ooo] r i o o oi rio]

0-1 0 0 0 10 0 01
0 1-10 u + 0 0 10 X + 00

L l o l-ij Lo o o lj Looj
w

Releases cannot be negative (u > 0) and reservoir levels must remain between [0,12]

(0<u<12).
The cost function in each of three stages is a quadratic function of deviations from

desired releases. The desired releases in each stage are u = 1 for all reservoirs. The cost

in each of the three stages t = {0, 1,2} is
4

C,(u) = X { fl/ty,),,-!)2 }
7=1

where a = [1.1,1.2,1.0,1.3]T . The cost-to-go at the time horizon (i.e., the cost for the

terminal state) is given by the function
4

F,4(x) = X { (xrbj)2 }
7=1

where b = [5.0,5.0,5.0,7.0]T . The optimal solution minimizes the expected value of

these costs for the entire operating horizon:

F,(x) = minU(li),u(ö)fU(IJ){ ^(„.^w^f I { C(u) } +F,4(x) } }

Figure 6A1. Illustration of the Four-Reservoir Control Problem

x = storage level

u = release decision

107

2. Formulation of the Multi-Reservoir Test Problems

Modifications of the four-reservoir problem are used to create a series of multi-

reservoir models with varying complexity. Models with one to five reservoirs are those

used by Johnson et al. [1993]. Models with six and seven reservoirs are simple

extrapolations of the pre-existing models (Figure 6A2).

The current-cost functions used by the seven reservoir-system models are

Q[u] = X (afuj-l)2 }, n =1,3,4, 5, 6, 7
H

C,[u] = (W1+U2-2)2, n = 2

Note that the current-cost function used with the two-reservoir model is different from

that used with the other six models. As we will see later, this difference causes the

relationship between computational effort and accuracy to deviate from the trend

established by the other six problems. Consistent with the four-reservoir problem, the

final cost-to-go associated with the terminal state of each system is

Constraints are 0 < u, and 0 < x < 12. The coefficients a and b for each of the seven

models are given in Table 6A1.

Figure 6A2. Multi-Reservoir Systems

One Two Three Four Five Six Seven
Reservoir Reservoirs Reservoirs Reservoirs Reservoirs Reservoirs Reservoirs

AAAA
^y

108

Table 6A1. Definition of Multi-Reservoir Problems

Case Description Parameters

n=\ Reservoir below confluence of streams a=1.0, b = l

n = 2 Reservoir on each stream a = [1.0, 1.0]T

above confluence b = [5,7]T

n = 3 Reservoir on each stream above confluence a=[l.l, 1.2, 1.3]T

and reservoir below confluence b = [5, 5,7]T

n = 4 Same as (n=3) with a = [l.l, 1.2,1.0, 1.3]T

two reservoirs on stream 2 b = [5, 5, 5, 7]T

n = 5 Same as (n=4) with a=[l.l, 1.2, 1.0, 1.3, 1.1]T

two reservoirs below confluence b = [5, 5, 5, 7, 7]T

n = 6 Same as (n=5) with a = [1.1, 1.2, 1.0, 1.3, 1.1, 1.0]T

two reservoirs on stream 1 b = [5, 5, 5, 7, 7, 7]T

n = l Same as (n=6) with a=[l. 1,1.2,1.0,1.3,1.1,1.0,1.0]T

three reservoirs on stream 2 b = [5, 5, 5, 7, 7, 7, 7]T

B. COMPUTATIONAL EFFORT TO SOLVE THE SERIES OF
MULTI-RESERVOIR TEST PROBLEMS

This section presents the computational effort required to solve the seven multi-

reservoir test problems using the linear and Hermite interpolation methods. As we will

see, the effort grows exponentially with the number of reservoirs (i.e., the number of state

variables). In Chapter Four, we described this growth by the equation

J = ZAn

where Z is the effort to identify optimal control decisions for one initial state of a one-

stage subproblem. This effort grows exponentially with the number of state variables n

and the discretization A.

However, this is not the complete story since Z also grows exponentially with the

number of state variables. Chapter Four divided this effort into the product of Z/, the

time required to evaluate the total cost function, Z$, the number of evaluations required to

find the solution that minimizes the total cost, and Z\, a catch-all term for overhead and

109

other factors that influence the total effort J. Thus, we described the total effort by the

equation

J = Z\Z[ZsA

We will evaluate the computational effort to solve the seven multi-reservoir test problems

as a function of these three factors.

This computational effort will depend on the search routines employed. When

using Hermite interpolation, we will employ the quasi-Newton method of NPSOL [Gill et

al, 1986]. NPSOL iteratively searches for an optimal solution by using estimates of the

cost-function gradient and Hessian to identify a search direction and by using a line-

search routine to find new solutions. Constraints are incorporated by the Lagrange

multipliers. When using linear interpolation, we will employ the downhill simplex

method using the computer code of Press et al. [1992, pp. 402-6] in modified form (see

Appendix). In brief, a simplex is a geometrical figure consisting of n+l linearly

independent vertices (e.g., in two dimensions, any triangle is a simplex). Vertices are

added and dropped iteratively so that the simplex moves in an amoeba-like fashion to

find the minimum. Constraints are incorporated by adding to the cost function a large

penalty for constraint violations. A cost function can have discontinuous gradients since

the method does not use gradients to identify search directions.

1. Standardization of Computational Time

The raw computational time of the solutions presented in this chapter are not

directly comparable. These solutions were run on a half-dozen HP-9000 Series 700

workstations with different processor speeds. Also, computational time is in elapsed

time, not in processor time; and multiple users of these machines have an impact on the

raw computational time.

To standardize the computational time, a series of short runs was conducted to

estimate the time consumed in each interpolation of the cost-to-go function. Because this

time depends on the dimension of each problem and on the interpolation method

employed, problems were solved for each combination of the different problems and the

interpolation methods. These runs were conducted with no competition from other users

on the fastest workstation (an HP-9000 755). The reported computational times are

averages from four runs of each reservoir problem. The reported times are used to

remove the impact of different computer speeds and loads on all other runs. Following

the practice of Johnson et al. [1993], computational time and error are reported for the

first stage of the three-stage time horizon (i.e., t\).

110

The effort to evaluate the total cost equation (4A5) is the sum of efforts to

evaluate the current-cost function, the transition function, and the future cost function. In

general, the effort to evaluate the future cost function will predominate because of the

relatively large effort to interpolate the cost-to-go. As a result, the standardized time

consumed in each interpolation is a good estimate of Z/, the time required to evaluate the

total cost function.

LINEAR INTERPOLATION

Runs were conducted to solve problems with one to five reservoirs. Problems

with six or seven reservoirs required considerable computational time, even for the

crudest discretization (A = 2). Problems with four or five reservoirs could be solved with

coarse discretization; however, this does not imply an ability to solve these DDP

problems using linear interpolation. As we will see later, the multilinear DDP solutions

for the four- and five-reservoir problems contain significant error.

The time consumed in each interpolation of the cost-to-go is summarized in italics

on the last line of Table 6B1. The runs were designed to be short, but with a sufficient

number of interpolations that a stable estimate would result. As the dimension of the five

problems increases, the discretization is coarser and the accuracy is lower. The total time

per stage should not be used to infer the growth in total effort J with dimension, though

the total time per node can be used to infer the growth in effort per node Z.

Table 6B1 preserves additional information that we can use to understand the

growth in effort with dimension. For these runs and for runs presented later, the total

time per stage is three to ten times the total time consumed in evaluating interpolants,

regardless of dimension. A significant fraction of the total time is spent in program

execution and calculations other than interpolation because multilinear interpolation is

quicker and solver convergence is slower. For example, a significant fraction of the total

time is consumed simply in identifying the current subdomain for interpolation. Large

amounts of the total time are also consumed in other overhead activities, and it is likely

that this overhead could be reduce by more efficient code. However, these overhead

activities become a smaller fraction of the total time with increasing dimension. Also,

multilinear DDP is used only as a benchmark against which we measure the performance

of GDP. Thus, only limited work has been applied to reduce the overhead effort of the

multilinear DDP code.

Ill

Table 6B1. Standard Computational Times per Stage of Linear Interpolation

Reservoirs, n One Two Three Four Five

Discretization, A
nodes, A
interpolations

17
17

3356

7
49

31254

5
125

119699

3
81

188827

2
32

191649
Total time (seconds)
per stage 2.15 17.59 72.55 104.67 126.52
per node .13 .36 .58 1.29 3.95
Total time (seconds) consumed in
ID subdomain .25 1.83 8.13 12.74 16.53
Eval. interpolants
Overhead

.19
1.71

2.14
13.62

8.56
55.86

18.18
73.75

38.94
71.05

Time per interpolation ("seconds) consumed in
.00007 ID subdomain .00007 .00006 .00007 .00009

Eval. interpolants .00006 .00006 .00007 .00010 .00020

FIRST-ORDER HERMITE INTERPOLATION

Runs were conducted to solve problems with one to seven reservoirs. The time

consumed in each interpolation of the cost-to-go is summarized in italics on the last line

of Table 6B2. The discretization of each problem is the same as used with the linear

interpolation.
As expected, the time required for each interpolation is significantly greater for

the first-order Hermite method than for the linear method. In Table 6B1, the time

consumed in each interpolation is 60 to 200 microseconds (/isec); but, in Table 6B2, the

time consumed in each interpolation is 50 to 7120 /isec.

However, what is lost in interpolation effort is more than recovered by the more

rapid convergence of the quasi-Newton solver employed by GDP. Though the polytope

solver employed by multilinear DDP is more robust and can handle discontinuous

gradients, it is much slower. As a result, GDP requires fewer interpolations to find each

solution, and the total interpolation time is consistently smaller by almost an order of

magnitude. As a result, the total time per node in Table 6B1 is 0.13 to 3.95 seconds; but

the total time per node in Table 6B2 is 0.05 seconds for the one-reservoir problem to 0.25

seconds for the five-reservoir problem.

The overhead activities for GDP rapidly become a small fraction of the total time

per stage with increasing dimension. The total time per stage is over ten times the total

time consumed in evaluating interpolants for low-dimension problems, but this decreases

to less than 50% greater for the seven-reservoir problem. We can see that most of the

effort required to solve higher dimension problems is consumed in evaluating interpolants

112

of the cost-to-go function. The effort required to identify the current subdomain for

interpolation is insignificant except in low dimension problems (though not shown, this is

also true even when A > 2 and identification of the current subdomain is not trivial).

Table 6B2. Standard Computational Times per Stage of First-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven

Discretization, A 17 7 5 3 2 2 2

nodes, A 17 49 125 81 32 64 128

interpolations 522 3107 6985 5062 2095 4690 10179
Total time ("seconds')
per stage .77 4.91 12.05 11.01 8.05 24.09 102.40
per node .05 .10 .10 .14 .25 .38 .80
Total time (seconds) consumed i n
ID subdomain .03 .22 .53 .42 .22 .65 1.90
Eval. interpolants .03 .44 1.89 2.93 3.24 13.85 72.48
Overhead .71 4.25 9.63 7.66 4.59 9.59 28.02
Time per interpolation (seconds') consumed in

.00008 .00011 .00014 ID subdomain .00006 .00007 .00008 .00019
Eval. interpolants .00005 .00014 .00027 .00058 .00155 .00295 .00712

SECOND-ORDER HERMITE INTERPOLATION

As for the first-order Hermite interpolation method, runs were conducted to solve

problems with one to seven reservoirs. The time consumed in each interpolation of the

cost-to-go is summarized in italics on the last line of Table 6B3. The discretization of

each problem is the same as used with linear and first-order Hermite interpolation.

As expected, the time required for each interpolation is the largest of all methods.

In Table 6B3, the time consumed in each interpolation is 60 to 31,370 /isec. In addition,

the additional time consumed in evaluating second derivatives by finite differences is

from 110 to 15,610 //sec (though, with increasing dimension, this becomes a fraction of

the time consumed by interpolation). As a result, the total time per node is greater than

when using first-order Hermite interpolation. In Chapter 5, Section I, we predicted that

the effort per interpolation should approach a factor n greater.

113

Table 6B3. Standard Computational Times per Stage of Second-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven

Discretization, A 17 7 5 3 2 2 2

nodes, A 17 49 125 81 32 64 128

interpolations 522 3186 6488 4838 2041 4465 9694
Total time ("seconds)
per stage 1.75 6.07 14.61 17.44 16.32 85.74 477.08
per node .10 .12 .12 .22 .51 1.34 3.73
Total time (seconds) consumed in
ID subdomain .03 .23 .51 .42 .21 .60 2.05
Eval. 2'nd deriv. .06 .65 2.54 4.37 4.85 28.01 151.36
Eval. interpolants .03 .54 2.77 5.50 7.19 48.41 304.09
Overhead 1.63 4.65 8.79 7.15 4.07 8.72 19.58
Time Der interoolation ("seconds) consumed in

.00009 .00010 .00013 ID subdomain .00006 .00007 .00008 .00021
Eval. 2'nd deriv. .00011 .00020 .00039 .00090 .00238 .00627 .01561
Eval. interpolants .00006 .00017 .00043 .00114 .00352 .01084 .03137

2. Growth in Interpolation Effort with State Dimension

At the end of Chapter Five, we considered the hypothetical interpolation effort of

the multilinear and Hermite methods. The effort for all methods increases with

dimension because the increasing number and complexity of weights that must be

evaluated and applied. If the hypothetical interpolation effort provides a good

approximation of the actual time consumed in each interpolation, then the hypothetical

effort provides a good approximation of Z/, the time required to evaluate the total cost

function. They can also be used to identify inefficiency in algorithms and implementing

code.

Table 511 summarizes the hypothetical effort (in flops) to interpolate the cost-to-

go. Keeping the lower order terms to produce better estimates for the low-dimension

problems, the hypothetical time per interpolation in multilinear DDP is

Zjin - Zo(n + 3-2") (6B1)

where ZQ is a measure of computer processor speed. The hypothetical effort (in flops) for

each interpolation method in GDP is

first-order Hermite: 14« + 2"(3/i+l)

second-order Hermite: 14« + 2"-\3n2+n+2)

114

However, these do not provide good approximations of Z/. As we will discuss later, each

solution of the search routines is verified by a restart. In the case of GDP, the first call of

the quasi-Newton method is used to search for the optimal control decisions and the total

cost. The second call is then used to verify the previous solution and to estimate the cost-

to-go gradient. Thus, the second call requires a factor (n+l) greater effort to interpolate

the cost-to-go and each of the n first derivatives. The average effort for each

interpolation is the average of the effort on the first call and the effort on the second call.

Thus, the hypothetical effort in GDP is

Z,H1 » Zb(14/i + 2"(3/i+l) ö±2.) (6B2)

Z/H2 » Zb(14w + 2""'(3/2 2+/Z+2) *&) (6B3)

where Z7
H1 and Z,H2 are the hypothetical times per interpolation using first-order and

second-order Hermite methods.

Table 6B4 summarizes the observed and hypothetical effort for one to seven

reservoirs using the linear and Hermite interpolation methods. The ratios of these

provide an estimate of ZQ, the time per flop. For each interpolation method, the estimate

of ZQ decreases with the dimension of the problem as overhead effort not included in

equations (6B1) through (6B3) becomes less significant. Table 6B4 indicates that a value

of Zo of about 0.5 //sec (or around 2 million flops per second) is appropriate. This is low

for the published benchmark speed of around 60 million flops per second, and indicates

that there may be significant improvements possible with better code or compilers with

performance closer to the benchmark speed.

Nevertheless, the estimates of Zo are consistent between the different interpolation

methods. Even though the ZQ estimates using linear interpolation are two to four times

the Zo estimates using Hermite interpolation, it is likely that this is another manifestation

of the additional overhead seen in Table 6B1. When using linear interpolation, only 15%

of the computational time is consumed in calculating interpolated values. When using

Hermite interpolation, in contrast, most of the computational time is consumed in

calculating interpolated values in the high-dimension problems. Except for the impact of

some unaccounted overhead effort, it seems that equations (6B1) through (6B3) provide

good estimates of Z/ and that the interpolation methods are implemented consistently.

115

Table 6B4. Comparison Between Actual and Hypothetical Growth in Interpolation Effort

Reservoirs, n One Two Three Four Five Six Seven

Linear Interpolation
Eval. interp. (sec.) .00006 .00006
Flops per interp. 7 14
Time/flop (psec.) 8.2 4.3

.00007
27
2.6

.00010
52
1.9

.00020
101
2.0

n.a.
198
n.a.

n.a.
391
n.a.

First-Order Hermite Interpolation
Eval. interp. (sec.) .00005 .00014
Flops per interp. 26 84
Time/flop (fjsec.) 1.8 1.7

.00027
242
1.1

.00058
680

.9

.00155
1862

.8

.00295
4948

.6

.00712
12770

.6

Second-Order Hermite Interpolation
Eval. interp. (sec.) .00006 .00017
Flops per interp. 23 92
Time/flop (psec.) 2.7 1.8

.00043
362
1.2

.00114
1352

.8

.00352
4662

.8

; State

.01084
14932

.7

.03137
45026

.7

3. Growth in Number of Interpolation« i for Each Discret«

In each stage, we approximate the cost-to-go function by values at a sufficient

number of discrete states. To identify the cost-to-go for each discrete state, we use a

search routine that identifies optimal control decisions. Each search for an optimal

solution requires a number of cost-function evaluations Z$. The total search effort for

each discrete state depends on the product of Zj and Z\ to account for overhead effort that

includes verification of the solution.
Table 6B5 breaks down the total searches for each interpolation method. By

identifying the number of nodes, searches, and interpolations for each of the

standardization runs, we can calculate the average number of searches per node and the

average number of interpolations per search.

116

Table 6B5. Breakdown of Effort for Each Discrete State of a Subproblem

Reservoirs, n One Two Three Four Five Six Seven

Discretization, A 17 7 5 3 2 2 2

nodes, A 17 49 125 81 32 64 128

Linear Interpolation
searches 152 428 1128 1128 704 n.a. n.a.
searches/node 8.9 8.7 9.0 13.9 22.0 n.a. n.a.
interpolations 3356 31254 119699 188827 191649 n.a. n.a.
interp./'search 22.1 73.0 106.1 167.4 272.2 n.a. n.a.
First-Order Hermite Interpolation
searches 136 392 1000 648 256 512 1024
searches/node 8.0 8.0 8.0 5.0 5.0 5.0 5.0
interpolations 522 3107 6985 5062 2095 4690 10179
interp./search 3.8 7.9 7.0 7.8 8.2 9.2 9.9
Second-Order Hermite Interpolation
searches 136 392 1000 648 256 512 1024
searches/node 5.0 5.0 5.0 5.0 5.0 5.0 8.0
interpolations 522 3186 6488 4838 2041 4465 9694
interp./search 3.8 5.7 6.5 7.5 5.0 8.7 9.5

SEARCHES PER NODE FOR EACH INTERPOLATION METHOD

Table 6B5 shows that the minimum number of searches per node is eight. Using

limited foresight (Chapter 2), we search for a new set of control decisions for each

outcome of the stochastic variables w. Also, the solution for each outcome is verified by

at least one restart of the search routine. For the test problems presented in this chapter,

we use two discrete values for each stochastic variable, or a total of four discrete

outcomes. With at least two calls to a search routine, this requires a minimum of eight

searches per node.

The code is written so that each solution is verified by at least one restart of the

search routine. The first call is to identify control decisions and optimal cost, and the

second is to verify that the solution doesn't change. The restart is especially important

for the simplex search routine to verify that the simplex does not degenerate on the first

call [Press et al., 1992] and produce an incorrect solution. If the solution is incorrect, a

restart should identify a significantly different solution, where significance depends on

the tolerance of the simplex method. The restart is also valuable for the quasi-Newton

search routine to verify the solution and to ensure good gradient estimates: the first call

of the quasi-Newton routine identifies optimal cost and control decisions; the second call

verifies the previous solution and evaluates the gradient near the final solution.

117

Table 6B5 indicates multilinear DDP requires an increasing number of restarts as

the dimension of a problem increases. With higher dimension, the simplex appears to

have greater opportunity to degenerate, and subsequent restarts are required. The total

number of searches increases with dimension at a rate of about n0-5. In contrast, the GDP

methods require few if any restarts beyond the first, and the number of searches per node

does not increase.

INTERPOLATIONS PER SEARCH FOR EACH INTERPOLATION METHOD

Table 6B5 shows that all methods require an increasing number of interpolations

per search as the dimension of a problem increases. Multilinear DDP requires 22.1 to

272.2 interpolations for each search using the robust but slow simplex search routine.

The number of interpolations increases with dimension at a rate of about n L5. In

contrast, the GDP methods require fewer than 10 interpolations for each search, even for

the seven-reservoir problem, and the number of interpolations increases with dimension

at a rate of about n0-5. Differences between the two GDP methods are not great, though

it appears second-order method converges slightly more rapidly.

Table 6B5 also shows that the number of interpolations per search for the two-

reservoir problem appears break with the general trend, at least when using the Hermite

interpolation methods. Following a doubling between the one- and two-reservoir

problem, the number drops and increases at a slower rate for the higher-dimension

problems.

The computational time can vary considerably with the desired tolerance of the

search routine. Because errors of less than about 1% are difficult to achieve with

multilinear interpolation (without using finer grids than feasible for the four-reservoir

problem), there is little benefit in solving highly accurate function values. As a result, the

tolerance of the simplex solver is to a relative error of 10 . On the other hand, the

tolerance of the quasi-Newton solver is to a relative error of 10" because of the greater

accuracy of the Hermite methods and the rapid convergence of the quasi-Newton routine.

This additional accuracy also helps to improve gradient estimates. While this extra

accuracy entails an increase in computational effort of about 10% for GDP, the increase

is about 200% for multilinear DDP.

4. Growth in Total Effort with State Discretization

From the above discussion, we can estimate the total time to evaluate the expected

cost-to-go for each node of the state-space grid. The total time per stage is the product of

118

the time per node and the number of nodes (i.e., discrete states) use to approximate the

cost-to-go function.

Each multi-reservoir problem was solved with discretizations up to A = 17 using

the different interpolation methods. Not all combinations of dimension, discretization,

and interpolation were solved because of the large amounts of time required. Tables 6B6

through 6B8 identify the total standardized time per stage for each of the runs completed.

Also included in each table is the average time per node for each run. Unfortunately, it

appears that our standardization of computational time does not remove all impacts of

different machines and loads. Also, the overhead effort required to execute the code is

significant for low dimension problems and coarse discretizations, resulting in higher

time for each node.

Table 6B6. Impact of State Discretization on Standard Computational Time of Second-
Order Hermite Interpolation

Reservoirs, n One Two Three Four Five
Total Standardized Time for Each Stage (seconds')

25.51 A =2 .31 2.27 5.01 127

A =3 .44 3.87 19.64 105 802

A = 4 .58 6.70 37.81 306 2951

A =5 .79 9.11 72.55 709 9249

A =1 .94 17.59 201 2361 48953

A =9 1.22 28.31 384 6097 149327

A =13 1.62 67.19 1083 24547 n.a.

A =17 2.15 90.07 2474 73949 n.a.

Average Standardized Time for Each Node (seconds)
A =2 .16 .57 .63 1.59 3.95

A =3 .15 .43 .73 1.29 3.30

A =4 .14 .42 .59 1.19 2.88

A =5 .16 .36 .58 1.13 2.96

A =7 .13 .36 .59 .98 2.91

A = 9 .14 .35 .53 .93 2.53

A =13 .12 .40 .49 .86 n.a.

A =17 .13 .31 .50 .89 n.a.

119

Table 6B7. Impact of State Discretization on Standard Computational Time of First-
Order Hermite Interpolation

Reservoirs, n One Two Three Four Five Six Seven
Total Standardized Time for Each Staee ("seconds)
A =7 3.16 2.45 1.21 2.59 7.81 23.04 102

A = 3 2.86 3.33 3.14 10.52 57.66 284 n.a.

A = 4 .32 3.58 5.70 33.92 256 1556 n.a.

A = 5 .29 4.47 12.95 86.31 737 n.a. n.a.

A =7 .70 6.89 35.25 332 4593 n.a. n.a.

A =9 .37 10.52 67.19 923 16090 n.a. n.a.

A =13 .59 17.34 200 4112 n.a. n.a. n.a.

A =17 .66 29.84 453 12248 n.a. n.a. n.a.

Average Standardized Time for Fach Node (seconds)
A =2 1-58 .61 .15 .16 .24 .36 .80

A =3 .95 .37 .12 .13 .24 .39 n.a.

A =4 .08 .22 .09 .13 .25 .38 n.a.

A =5 .06 .18 .10 .14 .24 n.a. n.a.

A =7 .10 .14 .10 .14 .27 n.a. n.a.

A = 9 .04 .13 .09 .14 .27 n.a. n.a.

A =13 .05 .10 .09 .14 n.a. n.a. n.a.

A =17 .04 .10 .09 .15 n.a. n.a. n.a.

120

Table 6B8. Impact of State Discretization on Standard Computational Time of Second-
Order Hermite Interpolation

Reservoirs, n One Two Three Four Five Six Seven
Total Standardized Time for Each Stage (seconds')

3.06 9.92 87.52 A =2 .42 .10 .46 478

A = 3 .48 .45 1.62 16.50 82.03 1048 8493

A =4 .53 .94 3.73 29.88 341 5940 64025

A = 5 .59 1.30 6.81 126 1647 23100 n.a.

A =7 .68 2.84 19.16 501 8882 n.a. n.a.

A =9 1.68 4.66 41.48 1379 31228 n.a. n.a.

A =13 1.32 10.61 133 5738 n.a. n.a. n.a.

A =17 1.95 16.69 552 17442 n.a. n.a. n.a.

Averaee Standardized Time for Each Node (second
.19 .31 1.37 A = 2 .21 .02 .06 3.74

A =3 .16 .05 .06 .20 .34 1.44 3.88

A = 4 .13 .06 .06 .12 .33 1.45 3.91

A =5 .12 .05 .05 .20 .53 1.48 n.a.

A =7 .10 .06 .06 .21 .53 n.a. n.a.

A =9 .19 .06 .06 .21 .53 n.a. n.a.

A =13 .10 .06 .06 .20 n.a. n.a. n.a.

A =17 .11 .06 .11 .21 n.a. n.a. n.a.

121

C. ACCURACY OF THE SERIES OF MULTI-RESERVOIR

TEST PROBLEMS

As we saw in the last section, finer state discretization increases exponentially the

effort to solve each of the seven multi-reservoir test problems. However, in exchange for

this additional effort, finer discretization produces more accurate solutions. This section

evaluates the accuracy of solutions with the range of discretization presented in the last

section.

Accuracy of solutions is evaluated by comparing each approximate cost-to-go

function with the "exact" solution. Because we do not know the true exact solution

(except when a problem is deterministic or when the condition of certainty equivalence

holds), the exact solution is estimated by the most accurate solution available for each

reservoir control problem. In all cases, the second-order Hermite solution with the finest

discretization is used to estimate the exact solution. For problems with one to four

reservoirs, the finest discretization is A = 17; for problems with five to seven reservoirs,

the finest discretization is A = 9, A = 5, and A = 4, respectively.

To measure the accuracy of solutions, we evaluate the average absolute relative

error between the approximate cost-to-go and the "exact" cost-to-go. At each discrete

state identified by the state-space grid of the "exact" solution, the relative error is

calculated according to the formula

F(x(,)) - exact
R.fc. =

exact

Where corresponding discrete states do not exist in the approximate solutions, the cost-to-

go is interpolated multilinear or Hermite methods as appropriate.

1. Error Reduction with State Discretization

Tables 6C1 through 6C3 display the average absolute relative error (AARE) for

the linear and Hermite interpolation methods. Though not shown, the average relative

error (ARE) has the same magnitude as the AARE, though ARE is always positive for

linear interpolation and is always negative for Hermite interpolation. In other words,

linear interpolation overestimates the cost-to-go and Hermite interpolation underestimates

the cost-to-go. For linear interpolation, over-estimation is consistent with convexity of

the cost-to-go function. For Hermite interpolation, under-estimation is consistent with a

cost-to-go function with greater curvature (i.e., larger second derivatives) than used by

122

the Hermite interpolation. Hermite interpolation uses the lowest curvature consistent

with constraints at the boundaries. Indeed, when the true curvature of the cost-to-go

function is severe, the Hermite interpolation will oscillate, producing a local minimum

that is an artifact of the interpolation.

As expected, error is reduced with finer discretization. Using linear interpolation,

AARE is reduced from an average of 300% with A = 2 to about 1% with A = 17. Using

Hermite interpolation, AARE is dramatically reduced from an average of 30% with A = 2

to less than 0.002% with A = 17. Accuracy of the second-order Hermite method can be

several times greater than accuracy of the first-order method, especially with finer

discretization (this is true even if the most-accurate first-order Hermite solutions are used

to evaluate the other first-order solutions). Note that first-order and second-order

Hermite interpolations produce the same solutions for the one-reservoir problem because

the Hessian is a one by one matrix and there are no off-diagonal elements.

With greater accuracy, Hermite interpolation can use coarser state discretizations.

If an accurate solution requires an AARE of less than 2%, multilinear DDP requires

discretizations finer than A = 13. As a result, it appears impractical to accurately solve

problems with four or five state variables using multilinear DDP, except perhaps for

problems consisting of only a few stages with no more than four state variables. On the

other hand, an AARE of 2% can be achieved by GDP using discretizations as coarse as

A = 3. As a result, it appears practical to accurately solve problems with as many as six

or seven state variables using GDP.

In Tables 6C1 to 6C3, there is a trend toward somewhat higher error with

dimension. For constant values of A, the one reservoir problem yields the most accurate

solution; though problems with three or more reservoirs have relatively constant errors.

Again, solutions for the two-reservoir problem break from the trend. In all cases, the

solution error for the two-reservoir problem is significantly greater. This provides clearer

evidence of the impact that more complex cost functions have on interpolation accuracy.

For such problems, we require finer discretizations; AARE is not reduced below 2% until

A = 4 using the second-order Hermite method and until A = 5 using the first-order

Hermite method.

123

Table 6C1. Impact of State Discretization on Accuracy of Linear Interpolation

Reservoirs, n One Two Three Four Five
Averaee Absolute Relative Error (%)

216 257 A =2 77 564 293

A =3 28 183 72 79 87

A =4 12 76 34 38 42

A =5 5.759 40 19 21 23

A =7 2.778 18 8.028 9.278 10

A =9 1.518 7.482 4.209 4.913 4.749

A =13 .685 4.760 1.985 2.277 n.a.

A =17 .332 1.522 .908 1.056 n.a.

* second-order Hermite solution with finest discretization used as estimate of exact
solution

Table 6C2. Impact of State Discretization on Accuracy of First-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven

Average Absolute Relative Error (%) (*)
A=2 3.0600 61 24 33 54 48 47

A =3 .3829 8.4233 1.4916 1.8646 3.0710 1.5090 n.a.

A =4 .0903 2.6326 .3583 .3955 .6336 .2704 n.a.

A =5 .0276 1.4352 .1408 .1479 .2133 n.a. n.a.

A =7 .0017 .3178 .0366 .0387 .0485 n.a. n.a.

A =9 .0012 .1316 .0121 .0141 .0145 n.a. n.a.

A =13 .0009 .0408 .0048 .0058 n.a. n.a. n.a.

A =17 (*) .0169 .0017 .0023 n.a. n.a. n.a.

* second-order Hermite solution with finest discretization used as estimate of exact
solution

Table 6C3. Impact of State Discretization on Accuracy of Second-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven

Averape
A =2

Absolute Relative Error (%)
3.0600 62 23 31 49 48 46

A =3 .3829 6.1243 1.0534 1.1227 1.4563 1.4962 1.2326

A =4 .0903 1.8740 .2581 .0559 .3196 .2703 (*)

A =5 .0276 1.0048 .0995 .0935 .1134 (*) n.a.

A =7 .0017 .1943 .0211 .0197 .0209 n.a. n.a.

A =9 .0012 .0553 .0072 .0071 (*) n.a. n.a.

A =13 .0009 .0120 .0012 .0015 n.a. n.a. n.a.

A =17 (*) (*) (*) (*) n.a. n.a. n.a.

124

* solution with finest discretization used as estimate of exact solution

2. Error Analysis

Kitanidis and Foufoula-Georgiou [1987] compared convergence of Hermite

interpolation with that of multilinear interpolation. They demonstrate that with decreases

in the discretization interval Ax, the error of the control policy and the cost functions

converge as (Ax)3 and (Ax)4, respectively, using Hermite interpolation versus Ax and

(Ax)2 using linear interpolation. We can verify that convergence is roughly as expected

by considering each pair of solutions using

A = {(2,3), (3,5), (4,7), (5,9), (7,13), (9,17)}

Since nodes of the state-space grid are evenly spaced, each of these pairs illustrates the

improved accuracy obtained by halving the discretization interval. For each pair, we

should expect a factor of 4 reduction in error using multilinear DDP and a factor of 16

reduction in error using GDP.

Tables 3C4 through 3C6 display the actual reduction of error. These results are in

general agreement with the anticipated reductions in effort. In addition, the reduction in

effort for the second-order Hermite method is greater than for the first-order Hermite

method. If useful, we could use this result to extrapolate the accuracy of interpolation

methods using even finer discretizations.

Table 6C4. Error Reduction Obtained From Halving the Discretization Interval of Linear
Interpolation

Reservoirs, n One Two Three Four Five
Ratio of Average Absolute Relative Error

3 3 A = 2 to A = 3 3 3 3

A = 3 to A = 5 5 5 4 4 4

A = 4 to A = 1 4 4 4 4 4

A = 5 to A = 9 4 5 4 4 5

A =7 to A =13 4 4 4 4 n.a.

A =9 to A = 17 5 5 5 5 n.a.

* second-order Hermite solution with finest discretization used as estimate of exact
solution

125

Table 6C5. Impact of State Discretization on Accuracy of First-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven
Ratio of Average Absolute Relative Error
A = 2 to A = 3 8 7 16 18 18 32 n.a.

A = 3 to A = 5 14 6 11 13 14 n.a. n.a.

A = 4 to A = 7 53 8 10 10 13 n.a. n.a.

A = 5 to A = 9 23 11 12 10 15 n.a. n.a.

A =1 to A =13 2 8 8 7 n.a. n.a. n.a.

A =9 to A =17 na. 8 7 6 n.a. n.a. n.a.

* second-order Hermite solution with finest discretization used as estimate of exact
solution

Table 6C6. Impact of State Discretization on Accuracy of Second-Order Hermite
Interpolation

Reservoirs, n One Two Three Four Five Six Seven

Ratio of Average Absolute Relative Error

A =2 to A =3 8 10 22 27 34 32 37

A = 3 to A = 5 14 6 11 12 13 (*) (*)

A = 4 to A =1 53 10 12 13 15 n.a. n.a.

A = 5 to A = 9 23 18 14 13 (*) n.a. n.a.

A =7 to A = 13 2 16 18 13 n.a. n.a. n.a.

A = 9 to A = 17 (*) (*) (*) (*) n.a. n.a. n.a.

* solution with finest discretization used as estimate of exact solution

3. Solutions of the Four-Reservoir Test Problem

To put these measures of error in better perspective, we can view specific solution

results. Tables 3C7 and 3C8 display the convergence of the cost-to-go and release

decisions for the four-reservoir problem using finer discretization. Because the target

releases are below the average inflows, lower initial storage levels (x,, = [1,1,1,1]T

verses x,, = [6,6,6,6]T) permit lower releases and produce lower expected costs. In both

cases, the GDP solutions are accurate with few discrete values (A of three or four).

Multilinear DDP solutions do not reach a comparable level of accuracy until A = 13 or

A = 17. These solutions are in rough agreement with the solutions of Foufoula Georgiou

and Kitanidis [1988] in spite of a somewhat different model formulation.

126

Table 6C7. Solution Convergence with Finer Discretization for the Four-Reservoir

Problem When*'. = [6,6,6,6]T

Linear] 7irst-Order Hermite

A Fn u Ftl
u

2 209.22 1.62 2.89 2.28 2.30 42.55 1.63 2.99 2.27 2.69
3 99.29 1.98 2.42 2.42 2.83 66.91 1.45 2.72 1.92 2.47
4 88.00 1.52 2.64 2.10 2.70 68.05 1.49 2.69 2.00 2.51
5 77.44 1.61 2.62 2.13 2.53 68.03 1.47 2.68 1.99 2.53
7 72.48 1.47 2.72 2.00 2.56 68.09 1.48 2.66 2.00 2.52
9 70.63 1.47 2.67 2.08 2.50 68.10 1.49 2.67 2.00 2.52
13 68.91 1.50 2.58 2.01 2.50 68.10 1.49 2.68 2.00 2.52
17 68.62 1.59 2.66 1.98 2.51 68.10 1.49 2.67 2.01 2.52

Table 6C8. Solution Convergence with Finer Discretization for the Four-Reservoir
Problem When x„ = [1,1,1,1]T

Multilinear DP Gradient DP

A Ftl

148.03

u Ftl
u

2 1.80 2.12 1.95 .94 -.09 .98 2.50 1.23 .38
3 55.68 1.18 2.16 1.54 .52 9.92 .92 2.38 1.19 .42
4 34.86 .89 2.36 1.20 .50 11.45 .94 2.34 1.19 .42
5 25.04 .82 2.37 1.11 .50 11.67 .94 2.34 1.19 .42
7 17.41 .94 2.40 1.20 .41 11.81 .95 2.33 1.20 .40
9 14.77 .96 2.31 1.14 .42 11.80 .94 2.33 1.19 .40
13 12.87 .96 2.36 1.30 .40 11.83 .94 2.33 1.19 .40
17 12.53 .91 2.36 1.17 .41 11.82 .94 2.33 1.20 .40

D. NET PERFORMANCE OF THE DIFFERENT
INTERPOLATION METHODS

We can evaluate the net performance of the different interpolation methods by

plotting the accuracy of Tables 6C1-3 against the effort of Tables 6B6-8. The results are

presented in Figures 6D1-3. Note that at 105 seconds, each stage requires approximately

one day of run time. One day per stage is too long for most real-world problems, and the

maximum practical time is probably around 103 to 104 seconds per stage.

As expected, these figures show a trade-off between accuracy and effort. The

trade-off using linear interpolation is clearly inferior to the trade-off using either Hermite

interpolation method. It is not clear from Figures 6D2 and 6D3 if the first-order Hermite

method or the second-order Hermite method is better.

127

Also, the trade-off between accuracy and effort becomes worse with increasing

dimension. In each plot, the trade-off curves shift to the upper right-hand corner with

increasing dimension. We again see that the two-reservoir problem breaks from the trend

established by the other problems. This is especially true when using first-order Hermite

interpolation in Figure 6D2: the trade-off for the two-reservoir problem is worse than for

the three-reservoir problem except for the finest discretizations. The break from the trend

appears less significant for the second-order method, probably because it includes off-

diagonal elements of the Hessian that are significant in the two-reservoir problem.

Figure 6D1. Trade-Off Between Accuracy and Effort per Stage of Linear Interpolation

Average
Absolute
Relative
Error (%)

10-2-

10-1 101 103 105
Standardized Computation Time Per Stage (seconds)

Figure 6D2. Trade-Off Between Accuracy and Effort per Stage of First-Order Hermite
Interpolation

i i

Average
Absolute
Relative
Error (%)

10-1 " 101 103 105

Standardized Computation Time Per Stage (seconds)

128

Figure 6D3. Trade-Off Between Accuracy and Effort per Stage of Second-Order Hermite
Interpolation

i i i i ■ ■

Average
Absolute
Relative
Error

10-1 101 103 105

Standardized Computation Time Per Stage (seconds)

1. A Reformulation of the Results

To better compare the performance of each method, we can identify the amount of

time required to achieve a particular level of accuracy. Table 6D1 and Figure 6D4

identify the amount of time required to achieve 1% and 10% AARE using each of the

methods. As we can see, using linear interpolation, it can be difficult to solve even the

three-reservoir problem when high accuracy and many stages are required. In contrast,

using Hermite interpolation, it is relatively easy to solve problems with as many as six

state variables. For some problems, it may be possible to include as many as eight state

variables.

Figure 6D4 shows that the second-order Hermite method offers the best trade-off

between accuracy and effort for low-dimension problems, but the less complicated first-

order Hermite method is better for high-order problems. However, as discussed earlier,

these test problems are unrealistically simple and off-diagonal elements of the Hessian

may be insignificant for all but the two-reservoir problem. For this test problem, the

performance of the first-order and second-order Hermite methods are close. In more

realistic problems, it seems reasonable to expect that—in spite of the additional effort

required—the second-order Hermite method will perform better.

129

Table 6D1. Standardized Time per Stage to Achieve 10% and 1% Average Absolute
Relative Error

Reservoirs, n One Two Three Four Five Six Seven
Linear Interpolation Time per Stage (seconds)
10%AARE .62 24 170 2200 53000 n.a.
1%AARE 1.4 120 2200 80000 n.a. n.a.

n.a.
n.a.

First-Order Hermite Interpolation Time per Stage (seconds')
10%AARE n.a. 3.0 1.7 4.8 26 56 300
1%AARE 2.8 5.0 3.8 18 180 320 n.a.
Second-Order Hermite Interpolation Time per Stage (seconds')
10%AARE n.a. .33 .65 6.0
1%AARE .47 1.3 1.8 18

27 300 1800
130 1800 11000

Figure 6D4. Growth in Effort with Number of State Variables to Achieve 10% and 1%
Average Absolute Relative Error

105

Standardized
Computation
Time per Stage
(seconds)

103

101

10-1

Second-Order
Hermite ^

n
10%'

4-

First-Order _
Hermite

2 3 4 5 6
Number of Reservoirs (i.e., state variables)

Table 6D2. Ratio of Standardized Time Using Linear and Hermite Interpolation to
Achieve 10% and 1% Average Absolute Relative Error

Reservoirs, n One Two Three Four Five Six Seven

Linear Versus First-Order Hermite
10%AARE n.a. 8.00
1%AARE .50 24.00

100
579

458
4444

2038
n.a.

n.a.
n.a.

n.a.
n.a.

Linear Versus Second-Order Hermite
10%AARE n.a. 72.73
1%AARE 2.98 92.31

262
1222

367
4444

1963
n.a.

n.a.
n.a.

n.a.
n.a.

130

E. CONCLUDING REMARKS

The results of this Chapter demonstrate the significant computational advantage

of GDP methods compared with multilinear DDP. This results from the ability of GDP

methods to produce accurate solutions with coarse state discretizations. This also results

from the ability to use efficient quasi-Newton search routines that rapidly converge on

optimal controls and that provide useful estimates of cost-to-go gradients.

The results are less clear in defining the differences between the two Hermite

interpolation methods. The first-order method is better at identifying some solutions and

the second-order method is better at identifying other solutions. However, the short time-

horizon (i.e., three stages) and the simple cost function (i.e., quadratic and separable,

except for the two-reservoir test problem), appears to diminish the value of second

derivatives used by the second-order method. In more practical applications, we can

expect that the second-order method will perform better. Also, the second-order method

is better at preserving convexity of cost-to-go functions. As a result, the second-order

method can accurately solve multidimensional problems that the first-order method

cannot solve using the same discretization. These expectations are supported by

experience solving the conjunctive-use problem of Chapter Eleven.

The results of this Chapter support the application of GDP to reservoir control

problems with as many as six to eight state variables. Discretizations as coarse as A = 3

appear sufficient for the test problems presented in this chapter. However, application to

practical problems may require finer discretization to achieve the levels of accuracy

attained with the test problems. This is especially true when cost-to-go functions have

larger changes in curvature that are not easily approximated by third-order polynomials.

This is also true when cost off-diagonal elements of the Hessian become more significant,

as we saw in the two-reservoir problem. In these cases, it may not be possible to

accurately solve problems with more than five or six state variables.

131

132

CHAPTER 7.

METHODS OF NUMERICAL INTEGRATION

TO EVALUATE EXPECTED VALUES

We have seen that the effort required to solve a DDP problem grows

exponentially with the number of state variables. This was explicitly stated in the

equation

J = Z/ Z$ Z\ A
n

Total effort per stage grows exponentially with the number of nodes A and with the

effort to find a solution for each node. We have also seen how we reduce the rate of

growth by more accurate and efficient interpolation methods.

In the test problems considered in Chapter Six, we avoided the confounding

effects of a changing number of stochastic inputs. However, in practice, it is likely that

the number of stochastic variables will increase with an increasing number of reservoirs.

Larger-scale systems are likely to include numerous inflows that are not perfectly

correlated with each other. Also, the number of other stochastic inputs (e.g., water-

supply demands, power demands, evaporation and seepage losses, etc.) are likely to

increase. In this chapter, we consider the impact that the number of stochastic variables

has on computational effort. We also discuss effective methods that can be used to

reduce the rate of growth by more accurate and efficient methods of numerical

integration.

A. EFFECT OF STOCHASTIC VARIABLE DIMENSION ON

COMPUTATION

Up to this point, we have skated around the impact of the dimension of w or s

used to model stochastic inputs. However, this is an important component of the "curse

of dimensionality" that makes it difficult to solve high dimension stochastic control

problems. The effort required to solve stochastic control problems grows exponentially

with the number of stochastic variables and entails a trade-off between solution accuracy

and computational effort.

133

1. Effort to Evaluate Expected Values

To evaluate an expected cost-to-go, we apply numerical integration to a number

of discrete outcomes of the stochastic variables. Using "limited foresight" of stochastic

inputs, we must identify a set of optimal control decisions for each outcome. If each of m

stochastic variables has K discrete values, then there are Km discrete outcomes for each

discrete state x(l).
Note that we cannot avoid this additional effort by identifying "fixed controls"

that are feasible for all discrete outcomes (Chapter 2, Section Cl). In this case, we

replace numerous simple searches with a single difficult search for each discrete state.

Fixed controls require Km evaluations for one iteration of the search while limited

foresight requires one evaluation for one iteration. In Chapter Six, we saw that much of

the effort of DDP is consumed in evaluating the cost-to-go function. As a result, the total

effort is about the same.
At each node x(') of the state-space grid we evaluate the expected cost-to-go as

I F,,(x) = W,/w) [C,,.(x,u,w) + F//fl(y)] dw
J-oo

where W, (w) is the probability density function for the stochastic input w. State y at the

end of a stage is a result of w, control decisions u, and initial state x. In general, we

cannot analytically evaluate this integrand. Instead, we approximate the expected cost as

a probability weighted sum

I
+00 ism

W,/w) [C,/x,u,w) + F,A1(y)] dw » X (v* [C//x,u,w(*)) + FtjJyW)] }
k=\

where m is the number of stochastic variables and K is some average number of discrete

values used to span each stochastic variable.

The effort required to calculate the expected future cost is proportional to the

factor Km. Thus, the effort required to solve a DDP problem can be represented by the

equation

J = Z,ZsZ2K
mAn (7A1)

where the term Km explicitly breaks out the number of searches required to calculate the

expected value as a probability weighted summation. Z2 is the remaining overhead

effort.

134

Just as it is desirable to mitigate the exponential growth in effort with number of

state variables, it is also desirable to mitigate the exponential growth in effort with

number of stochastic variables. By using efficient numerical integration techniques, we

can greatly reduce the number of stochastic nodes K required to accurately solve a

Stochastic DP problem. For example, Figure 7A1 illustrates that a crude method of

numerical integration may result in significant error. When used to evaluate the area

under a curve, we may need a fine discretization. This error can be especially large when

applied in a DDP algorithm because the highest costs are often associated with the tails of

a distribution, where a crude method of numerical integration does poorly.

Figure 7A1. Probability Distributions for Various Discretizations of a Stochastic
Variable

p A K = 3

A
'A K = 10

O)1 CO2 CO3

Jlk»
CO1 ... co'o

2. Evaluation of Expected Values by Numerical Integration

Numerical integration, also called quadrature, has long provided methods for the

integration of functions that could not easily be computed analytically [Press et ai, 1992,

Chapter 4]. Numerical integration is the approximation of an integral by a weighted

summation

>b

g(z)dz « £ vkg(zW) (7A2) f Ja

where the goal is to accurately obtain an accurate integral value with as few function

evaluations g(z(A:)) as possible. This is accomplished by use of a sufficiently fine

discretization interval between abscissas z(k) and by selection of an appropriate method to

assign weights v;..

In a DDP problem with one stochastic variable, the abscissas are the discrete

outcomes z(*> of a stochastic variable. In DDP problems with multiple stochastic

variables, the abscissas are nodes of a "stochastic space" grid defined by the discrete

values of each stochastic variable. These nodes identify all possible outcomes z<*> for

combinations of the discrete stochastic values, just as the nodes of the state-space grid

135

identify all possible outcomes xW for combinations of the discrete state values. The

weight applied to each outcome, or node, is the product of the weights for the discrete

values,
m

vk = n vkj

assuming the stochastic variables are independent.

3. Classical Numerical Integration: The Trapezoidal Rule

The most common and straightforward numerical integration method is the

trapezoidal rule. In essence, the trapezoidal rule uses linear interpolation between

discrete outcomes to evaluate the area under a curve (Figure 7A1). In other words,

numerical integration over each interval is estimated by equation (7A2) with weights

v* = h/2, z(k)e {a,b}

Vk = h, otherwise

where h = (K-l)/ (b-a) using K equally spaced abscissas. Using unequally spaced

abscissas, the weights are

vk = 1 , z(k) = a
2(z(*+1>-ZW)

7(A-+1) . 7(k-\) ^ (k) ^ u vk = ^——^— , a<z[K'<b
2(z<*+i>-z<*>)(z(*>-z <*-!>)

Vk= 1 , z«) = b
2(z<*>-z <*-»>)

The error is ~ 0((b-a)3 f") where f" is the second derivative somewhere in each interval

of integration [Press et al, 1992, pp. 125-6]. The trapezoidal rule is the starting point in

the development of many other quadrature methods.

4. Examples of Past Efforts to Evaluate Expected Values

To evaluate expected values, past stochastic dynamic programming efforts have

often used a form of the trapezoidal rule called the extended midpoint rule. This rule

locates the abscissa halfway between the endpoints of each interval [Press et al., 1992, p.

129] and evaluates the expected value as the probability weighted average cost of all

abscissas:

136

{
M

{W(s) V(s)}ds = X { W(s lk)) As V(s W) }
Jt=i

where v* = W(s W) As is the probability weight assigned to abscissa s^. The error of

these various approaches is ~ 0((As)3 (WV)") where (WV)" is the second derivative of

the product of W(s) and V(s) somewhere in the interval containing sW.

Most commonly, equal intervals have been used to discretize the stochastic

variable. For example, Turgeon [1981] uses ten equally spaced inflows in an aggregate

reservoir. Weiner and Ben-Zvi [1982] use nine discrete inflows in a "one-reservoir"

hydropower model using hypothetical flows from the Mediterranean to the Dead Sea.

Karamouz and Houck [1987] use from two to nine intervals to evaluate the impact on

solution accuracy. Valdes et al. [1992] discretize stochastic variables using a method by

Bras et al. [1983] with conditional probabilities that depend on prior inflow. They apply

the method to a one-reservoir hydropower model using five discrete inflows. Raman and

Chandramouli [1996] use seven to thirty-five discrete inflows in DDP to contrast the

performance of a neural-network model. Esmaeil Beik and Yu [1984] represent a

distribution by 8 to 28 net inflows specified in advance. These inflows are selected "to

change storage by exactly a multiple of the [storage] interval with a one-to-one

correspondence between the resulting storage and the prescribed states." This avoids the

need for interpolation between nodes of the state-space grid. Weights on each inflow are

conditioned on release decisions and prior inflows.

Equiprobable intervals have also been used to discretize stochastic variables. For

example, Kelman et al. [1990] use a large, unspecified number of equally weighted

scenarios. Karamouz and Vasiliadis [1992] develop a method that divides the

distribution of a stochastic variable into a number of equally probable values. They apply

the method to a one-reservoir water supply model using eight flow values. When using

equiprobable intervals, abscissas may be placed at locations other than the midpoints.

In some cases, uneven intervals are selected as somehow representative of the

problem at hand. Stedinger et al. [1984] use abscissas located at the 97.5, 83.125,

59.375, 35.625, and 11.875 percentiles of the unconditional probability distributions, and

updated the weights using prior streamflows. Tejada-Guibert et al. [1993] apply a

method by Max [1960] to identify five discrete inflows that are partitioned into flows for

two hydropower reservoirs.

When analyzing large-scale systems, quadrature accuracy is sacrificed to allow

detailed system models. Often, two discrete values are used to represent a stochastic

137

variable [Gorenstin et al., 1992; Pereira andPinto, 1985; Pereira andPinto, 1991;

Rotting and Gjelsvik, 1992]. Johnson et al. [1993] approximate lognormal distributions

using abscissas at the 5, 50, and 95 percentiles and weights of 1/6, 2/3, and 1/6. Jacobs et

al. [1995] use sorting of historical flows to define three discrete values that represent

high, median, and low flow scenarios. In these examples, the selection of abscissas and

weights was heuristic and it appears that quadrature accuracy was not considered.

One exception is the application of quadrature by Foufoula Georgiou and

Kitanidis [1988]. They apply DDP to a problem with two stochastic variables and only

two discrete values for each. Using Gauss-Hermite quadrature, they achieve a high

degree of accuracy.

5. Discretization of Stochastic Variables in Past Efforts

In all examples above, either fine discretization is used to model the distribution

of stochastic variables, or the impact of discretization on solution accuracy is ignored.

Tejada-Guibert et al. [1995] evaluate the benefit of hydropower generation, noting that

"the discrete inflow approximation typically employed in SDP models often does not

provide good resolution of hydrologic extremes. If the objective function employed is

sensitive to extremes, as it is when large penalties are placed on shortages or damages

due to flooding are considered, the deviations of the SDP-generated gains from the

simulated gains are likely to be large and thus not be a good guide for reservoir release

decisions and other water and energy related marketing decisions." While this

observation identifies a common problem with many past efforts, the problem is not

inherent to stochastic dynamic programming but to the quadrature methods employed.

When the objective function is "sensitive to extremes" (i.e., when the objective

function is not quadratic), numerous discrete values may be required to "provide good

resolution of hydrologic extremes." Fine discretization of stochastic variables is required

to evaluate expected values with accuracy just as fine discretization of state variables is

used to approximate cost-to-go functions with accuracy. However, this is possible only

with one or two stochastic variables. When multiple stochastic variables are needed to

model a system, the solution effort grows almost as fast as the solution effort for multiple

state variables. The solution effort is somewhat less only because the number of

stochastic variables does not increase interpolation and solver effort (Z/ and Z$ in

Chapters Five and Six).
The effort required to calculate expected values, especially when using multiple

stochastic variables, does not appear to have been a significant consideration in past

efforts. In the examples cited, the efficiency of quadrature has not been a focus of effort.

138

Esmaeil Beik and Yu [1984] present one of the few examples of growing computational

effort with increasing discretization, but they use only a single stochastic variable. In

large part, past efforts may have been so limited in their consideration of problems with

multiple state variables that concern for the impact of multiple stochastic variables was

limited.

In problems with one stochastic variable [Esmaeil Beik and Yu, 1984; Karamouz

andHouck, 1987; Karamouz and Vasiliadis, 1992; Kelman et al, 1990; Raman and

Chandramouli, 1996; Saadet al, 1996; Stedinger et al., 1984; Tejada-Guibert et al,

1993; Valdes et al, 1992; Weiner and Ben Zvi, 1982] fine discretizations have been used.

In these cases, no fewer than five discrete values have been used to accurately estimate

expected values.
In problems with multiple stochastic variables [Gorenstin et al, 1992; Jacobs et

al, 1995; Johnson et al, 1993; Pereira and Pinto, 1985; Pereira and Pinto, 1991;

Rotting and Gjelsvik, 1992; Turgeon, 1981], only two or three discrete values are

identified for each stochastic variable. In these cases, the quadrature accuracy is

sacrificed to allow a detailed system model. As mentioned, the one exception to this is

the application Gauss-Hermite Quadrature by Foufoula Georgiou and Kitanidis [1988].

The next section discusses the advantage of Gaussian quadrature and specific methods

that are appropriate for reservoir management problems.

B. THE APPLICATION OF GAUSSIAN QUADRATURE TO
DISCRETE DYNAMIC PROGRAMMING

In "classical" methods of quadrature, numerical integration is applied first by

identifying abscissas using some heuristic method (usually evenly spaced) and second by

identifying appropriate weights. The idea of Gaussian quadrature is evaluate abscissas

and weights together. In effect, this doubles the degrees of freedom that we have to

estimate an integrand accurately [Press et al, 1992, p 140]. When an integrand is very

smooth (i.e., well approximated by a polynomial), Gaussian quadrature allows us to

achieve levels of accuracy using only half the number of abscissas of classical high-order

methods. Moreover, when an integrand fits certain useful forms, Gaussian quadrature is

exact.

Bellman and Dreyfus [1962, pp. 324] first proposed the use of quadrature as a

method to circumvent the difficulty in evaluating integrals in dynamic programming.

They propose Gaussian quadrature to calculate the coefficients of polynomials used to

approximate the cost-to-go function. They used a parametric dynamic programming

139

method to reduce the exponential growth in storage with higher state dimension, and the

expected value function fit reasonably well the form used by Gaussian quadrature. To

apply Gaussian quadrature in DDP has required cost-to-go approximations that provide

similar smoothness. Recent developments of high-order Hermite and spline interpolation

methods now offer this degree of smoothness and allow application of Gaussian-

quadrature methods.

1. Mathematical Form of Gaussian Quadrature

In equation (7A2), Gaussian quadrature assigns not only the weights v* to be

applied, but also assigns the locations Zk of the abscissas. By carefully choosing the

location of abscissas and weights, we can obtain higher-order accuracy than possible by

quadrature methods that rely on either equally-spaced or arbitrarily-spaced abscissas.

Of additional importance, for a certain class of integrands, "polynomials times

some known weighting function," numerical integration can be exact. This class of

integrands can be described by the equation

■b K

W(z)g(z)dz = X "tg(z(«) (7B1) I Ja k=\

where g(z) is a polynomial and W(z) is some known weighting function. The restrictions

are that (1) W(z) be sufficiently smooth or from the known set of weighing functions for

which Gaussian quadrature is exact, and (2) we use a sufficient number of abscissas. The

number of abscissa is sufficient if it provides degrees of freedom greater than or equal to
the number of unknowns. In other words, if we use K abscissas, quadrature is exact for

integrands with arbitrary polynomials of degree (2K- 1) or less.

2. Compatibility of Gaussian Quadrature and Hermite Interpolation

Using the Hermite interpolation of equations (5C1) or (5H1), the cost-to-go F,hl is

a piecewise third-order polynomial function in each dimension of y. If the cost-to-go

function is discretized with a sufficiently coarse grid, the apparent cost-to-go for various

outcomes of y is adequately described by a third-order polynomial, and the piecewise

nature of F,y>l will not have a significant impact.

If we consider a system with linear dynamics, no constraints, and a current cost
function Ctj represented by a third-order polynomial, then the total cost function given by

equation (4A5)

Vtj = C,,(x,u,w) + FtiJy)

140

is adequately described as third-order polynomial function of each random normal

variable w*. For initial state x' and fixed decisions u, we can identify the expected cost

by

F,/x)lu = Ew{ Vtj} = I ...I {W(w)V,/x,u,w)}dH>i...dwm (7B2)
,/-oo J-oe

This equation fits the form of equation (7B1) for each variable of w evaluated

independently. W(w) is the probability density function for a normal distribution. As we

will see, this is in the known set of weighting functions for Gaussian quadrature, and

Gaussian quadrature is exact with only two discrete values for each random variable (i.e.,

K = 2).
In modeling a system, we may transform a stochastic input s to obtain

independent random normal variables. In such cases, the transition function probably is

not a linear function of w and Vtj is not a third-order polynomial function of w. Instead,

the expected cost can be expressed as a function of s to preserve the form of equation

(7B1):

-fi F,/x)lu = Es{ Vtj } = ... {W(s) Vtj(x,u,s) }dsh..dsm (7B3)
J-oo J-oo

If the distribution W(s) is sufficiently smooth or comes from the known set of weighting

functions, Gaussian quadrature applied to equation (7B3) is exact.

It is useful to note that we may still apply Gaussian quadrature (or, more

specifically, Gauss-Hermite quadrature) using equation (7B2) even when if a

transformation of s to w results in a non-linear transition function and less smooth total-

cost function. Most transformations of w do not make Vtj significantly less smooth; and

V, may still be appropriately described as a third-order polynomial function of w. As a

result, Gaussian quadrature applied to equation (7B2) will be accurate, or may be made

sufficiently accurate with the addition of one or more abscissas.

3. Sources of Error in Applying Gaussian Quadrature to Discrete Dynamic

Programming

The integrand used to evaluate the expected cost-to-go has a reasonable fit to the

form required by Gaussian quadrature, but the fit is not exact. As a result, there are

various sources of error that may result in poor quadrature. While none of these

invalidate the use of Gaussian quadrature, the accuracy of solutions should be verified.

141

We will assess the impact of these sources of error in Chapter Eight. The following

summarizes sources of error and conditions under which errors may be significant.

PIECEWISE NATURE OF COST-TO-GO APPROXIMATIONS

Gaussian quadrature is exact if applied to integration of a polynomial times an

appropriate weighting function. In application to DDP, Gaussian quadrature is

approximate because the interpolated cost-to-go function is divided into a number of

subdomains. Even though each subdomain is described by an n-fold third-order

polynomial function, the entire domain is described by a piecewise fitting of these

functions that, in its entirety, may not be an «-fold third-order polynomial function.

However, when evaluating an expected value using quadrature, the outcomes may sample

a portion of the domain that can be approximated by some «-fold third-order polynomial

function (or other n-fold low-order polynomial).

The piecewise nature of cost-to-go approximations can have a variable impact on

quadrature accuracy. On one hand, finer subdivision of the state space can degrade

quadrature accuracy as outcomes sample more subdomians in a portion of the domain.

The cost-to-go function may appear more complex and accurate quadrature may require

finer stochastic discretization to evaluate a higher-order polynomial form. On the other

hand, finer subdivision of the state space can improve quadrature accuracy as adjacent

subdomains use interpolating functions that are more consistent. Also, finer subdivisions

reduce the likelihood that interpolation error will destroy the higher-order accuracy of

Gaussian quadrature. This can be a large problem when coarse state discretization

permits oscillation in the interpolating functions.

CHANGING CONTROL DECISIONS

We solve control decisions for each outcome of w using limited foresight

(equation (4A6)):

F,,(x) = Ew{ minu{ Vtj } }

As a result, control decisions are not fixed, and the expected total-cost function may not

fit the form of equation (7B1). Fortunately, however, control decisions usually vary

smoothly when not at a bound, and the resulting cost as a function of w is almost as

smooth. Thus, Gaussian quadrature will often be sufficiently accurate without an

increase in the number of abscissas.

142

NON-POLYNOMIAL COST AND TRANSITION FUNCTIONS

Gaussian quadrature is exact if integration is applied to equations that fit the form

of equation (7B1). As discussed above, interpolation of the cost-to-go function results in

deviations from this form. However, non-polynomial current-cost and transition

functions also result in deviations from this form, and may require additional abscissas to

achieve sufficient quadrature accuracy.

Fortunately, transition functions for many reservoir management problems are

linear. Also, the summation of the current-cost and the cost-to-go will increase

smoothness of the total cost, especially near optimal solutions. In finding the optimal

trade-off between current and future costs, control decisions will generally avoid the

most-curved, high-cost regions of a non-polynomial cost function. For example, in

Chapter Ten, we will develop a cost function that becomes infinite as water supplies

approach zero. Though this creates significant problems for quadrature when applied at

zero supply, optimal control decisions are cautious and avoid this condition.

CONSTRAINTS

Gaussian quadrature assumes that the cost function is an unbounded polynomial

function of the stochastic variables s. In application to reservoir problems, various

constraints on system operation can produce costs that are a more complex function of s.

For example, high inflows may fill a reservoir, requiring large downstream releases

producing extreme costs. In this case, a constraint on reservoir level is binding, and the

form of the cost function (as a function of inflows) may change significantly.

When stochastic inputs are described by continuous distributions (as in the case of

reservoir inflows), costs change smoothly even when constraints becoming binding.

When using quadrature, changes may not be smooth, but may kink as each outcome shifts

from non binding to binding (e.g., as we consider different initial states or as a solver

iteratively changes control decisions). This may increase quadrature error and the

number of iterations required by a solver for convergence. These potential problems can

be addressed by using finer state discretization and finer stochastic discretization.

Finer state discretization improves interpolation accuracy, especially near

boundaries of the state-space. This can significantly improve the smooth transition of

costs as constraints change from non-binding to binding at the boundary. Specifically,

accurate interpolation of gradients at a boundary prevents state variables from becoming

binding until marginal costs (with respect to control decisions) near a boundary match

marginal costs at that boundary.

143

Finer stochastic discretization improves quadrature accuracy and reduces the

sharpness of kinks as each outcome shifts from non binding to binding. With finer

discretization, the weight applied to each outcome is less. Note, however, that the

structure of DDP works in out favor to reduce the impact of kinks in a cost function. The

first is that summation of current and future costs smooth out an estimate of the total-cost

function, as discussed earlier. The second is that interpolation of a cost-to-go function

smoothes out any kinks that may exist from prior subproblems.

C. IDENTIFICATION OF GAUSSIAN QUADRATURE WEIGHTS

AND ABSCISSAS

Gaussian quadrature is exact when applied to integration of polynomials times

some known weighting function. The previous section considered how well an

interpolated cost function fits a polynomial form. This has significance for the

appropriate application of Gaussian quadrature to DDP. This section considers how well

stochastic variables such as inflow fit appropriate weighting functions. This has

significance for the appropriate application of Gaussian quadrature to reservoir

management problems.

Stochastic inputs in reservoir management problems are usually described by

continuous and smooth probability distributions that are well suited for Gaussian

quadrature. For example, streamflow, demand, loss from evaporation or seepage, and

other stochastic "inputs" are often described by normal, lognormal, or related

distributions. In this section, we will consider "known weighting functions" that are

appropriate for reservoir management problems.

1. Gaussian Quadrature with Normal Distributions

Normal distributions are often used to model stochastic inputs because they

produce models with convenient mathematical properties. These properties may allow

simpler solution of systems analysis problems, such as when the condition of certainty

equivalence holds or when we use first-order analysis (Chapter Three). Normal

distributions also are simple and their use is parsimonious. In other words, a simple

model is more appropriate when data are insufficient to justify a more complex model.

Weighting functions based on normal distributions fit the quadrature form known

as Gauss-Hermite quadrature [Press etal., 1992, p. 144]. Gauss-Hermite quadrature uses

the weighting function

144

W(z) = e'7-1

Numerical integration of the form

I K

e-z2g(z)dz = X VAS(Z(«) (7C1)

can be solved exactly for any polynomial function g(z).

In application to normally distributed stochastic input s described by mean fi and

variance a2, we scale abscissas and weights of Gauss-Hermite quadrature. The one-

dimensional form of equation (7B3) can be expressed using normally distributed inputs

as

Es{ V,.} = I {ailK)A e-(^)2/2<72 Vtj(s) ds (7C2)

If we substitute s = zoi2+fi into equation (7C2), we get

r4- K

Es{ Vtj} = KAI2 e-~2 Vtj(z(7 V2 + //) dz « K
AI2

 £ v* V,/z <% V2 + /x)
J-oo *=i

where vv = z V2 is a random variable with standard-normal distribution. The abscissas
and weights for s are the scaled values z(k)o V2 + ß and v* Kn. Table 7C1 identifies the

scaled abscissas and weights for a ~N(0,1) distribution (i.e., standard-normal) with up to

K = 9.

145

Table 7C1. Gaussian Quadrature Abscissa Locations and Weights for Standard Normal
Distribution

Abscissa and (Weight)
K=l 0

(1.0)
K = 2 -1.00 +1.00
 (-5) (-5)
K = 3 -1.73 0 +1.73

(.16667) (.66667) (.16667)
K = 4 -2.33 -0.74 +0.74 +2.33
 (.04588) (.45412) (.45412) (.04588)

A: = 5 -2.86 -1.36 0 +1.36 +2.86
 (.01126) (.22208) (.53333) (.22208) (.01126)
~K^6 332 339 ^062 +0.62 +1.89 +3.32
 (.00256) (.08862) (.40883) (.40883) (.08862) (.00256)
Y^7 3j5 337 33! Ö +1.15 +2.37 +3.75
 (.00055) (.03076) (.24012) (.45714) (.24012) (.03076) (.00055)
~K~^8 ^4~14 -2.80 -1.64 -0.54 +0.54 +1.64 +2.80 +4.14
 (.00011) (.00964) (.11724) (.37301) (.37301) (. 11724) (.00964) (.00011)
~K~=9 33l 331 -2.08 -1.02 Ö +1.02 +2.08 +3.21 +4.51
 (.00002) (.00279) (.04992) (.24410) (.40635) (.24410) (.04992) (.00279) (2.2E-5)

2. Gaussian Quadrature with Three-Parameter Gamma Distributions

When sufficient data is available to use more complex models, it may be useful to

fit the quadrature form known as Gauss-Laguerre [Press et al., 1992, p. 144]. Gauss-

Laguerre quadrature uses the weighting function

W(z) = zae-x

where parameter a is a third parameter that may be used to fit a distribution. Numerical

integration of the form

Jr+c» K

0 *='

Zae-*g{z)dz = X ng(z{k)) (7C3)

can be solved exactly for any polynomial function g(z).

Gamma distributions are appropriate for modeling a variety of hydrologic

processes. For example, the Pearson Type III distribution is a gamma distribution [Bras,

1990; Wallis et al, 1974]. Gauss-Laguerre quadrature allows modeling of stochastic

variables that are strictly positive and have significantly skewed distributions. This is

146

especially appropriate in application to hydrologic models that often incorporate non-

negative, skewed stochastic variables for streamflow and demand.

3. Gaussian Quadrature with Lognormal Distributions

Hydrologic variables are frequently modeled using lognormal distributions.

However, lognormal distributions do not fit the form of known weighting functions for

which abscissas and weights have been solved. As suggested earlier, one approach to

applying Gaussian quadrature with lognormal distribution is to apply quadrature to the

transformed variables w, and add sufficient abscissas to achieve the desired accuracy.

This approach still should produce higher-order accuracy than obtained using the

trapezoidal rule or using a heuristic method.
When the logarithm of a lognormal stochastic input s is described by mean \i and

variance a2, the one dimensional form of equation (7B3) can be expressed as

ES{V,.}= I (sai2Ky]e-^-rf/2°2Vtj(s)ds (7C4)
J-<x>

If we substitute s = Exp[zcr V2 + ji\ into equation (7C3), we get

Es{ Vt] } = I 7t-m e -z2 Vtj(e =«W2+/i) dz - rrm £ v* Vt)(e «^

Thus, the abscissas and weights are the scaled values s^ = Exp[z (*>(7 V2 + fi] and vjt KK.

Notice that the cost function is a complex non-polynomial function, and that Gaussian

quadrature may require additional abscissas to accurately identify the expected cost.

4. Gaussian Quadrature with Arbitrary Distributions

Instead of applying Gauss-Hermite quadrature to transformed variables w, we can

use a general approach to identify abscissas and weights for any distribution that is

sufficiently smooth. As a result, we can apply Gaussian quadrature without degrading the

accuracy by a non-linear transformation. The following presents a practical method for

identifying abscissas and weights for Gaussian quadrature when using an arbitrary

weighting function W(z). The method and equations are taken from Press et al. [1992,

pp. 142-4], with some adaptation of notation to that used in this thesis.

Define the scalar product

147

>b

<f\g>= I W(z)f(z)g(z)dz (7C5)
Ja

and the series of polynomial functions

P-xiz) = 0

Po(z) s 1

p_/+l(Z) = (Z - fly) p;(z) - bj Pj.\(z), / = 0,1,2,...

where ay = ü£fc ; = 0,1.2,...

fc; = ^fe-, ,'=1,2,3,...
<Pj.\\pj.\>

For an arbitrary weighting function W(z) applied over an interval [a,b], the K abscissas

for Gaussian quadrature are the roots of the pfdz) polynomial. To identify roots of the

Pfdz) polynomial, it is useful to progressively identify the roots of p\(z), pi(z), •■•, PK(Z),

since the roots of each polynomial pj(z) interleave the roots of each polynomial pj.\(z).

The weights for each abscissa Zj can be identified by the formula

v. = <^-1 ^PKA y

1 PK-\iZj) qtcizj)

where qidzj) is the derivative of pfdz) at Zj. Tables 7C2 through 7C5 identify the

abscissas and weights for a variety of lognormal distributions. We will apply these

abscissas and weights to problems in Chapter Eight to evaluate the performance of

Gaussian quadrature.
Practical techniques to evaluate these polynomials and their roots may require

some trial and error. In this thesis, the roots were identified using the mathematical

solver, Mathematica [Wolfram, 1991]. It was observed that convergence of numerical

integration applied to equation (7C5) was poor when using unbounded distributions or

distributions for which the lower bound is zero (e.g., lognormal distributions). In these

cases, it was useful to use bounds that were slightly greater than zero and sufficiently

large but not infinite. Convergence was found to be especially slow for high-order

polynomials (e.g., ninth-order or larger), and numerical error also may be significant.

However, practical application should generally require evaluation of only the second and

third-order polynomials. Somewhat higher-order polynomials may also be desired to

verify the accuracy using these coarse stochastic discretizations.

148

Unbounded highly skewed distributions can produce abscissas that are too large

for a model. This is especially true when models include prior values of stochastic

variables to incorporate autocorrelation. Under these conditions, it is practical to use

more restrictive bounds [a,b] since roots of the polynomials all lie within this interval.

Table 7C2. Abscissa Locations and Weights for Lognormal Distribution, ~LN(2.0, 0.5)

Abscissa and (Weight)
K=l 2
 OP)

K = 2 1.66 2.73
(.67876) (.32124)

K = 3 1.46 2.26 3.49
(.39360) (.56148) (.04492)

K = A 1.33 1.99 2.89 4.32
(.22328) (.60860) (.16449) (.00364)

K = 5 1.24 1.81 2.55 3.59 5.25
(.12853) (.54940) (.29685) (.02502) (.00019)

K = 6 1.16 1.67 2.31 3.17 4.38 6.31
(.07601) (.45609) (.39526) (.07033) (.00230) (6.9E-6)

K = l 1.10 1.57 2.14 2.88 3.87 5.27 7.51
(.04636) (.36379) (.44812) (. 13195) (.00964) (.00014) (1.8E-7)

AT = 8 1.05 1.49 2.01 2.66 3.51 4.66 6.28 8.87
(.02917) (.28509) (.46261) (.19758) (.02471) (.00084) (5.8E-6) (3.4E-9)

Table 7C3. Abscissa Locations and Weights for Lognormal Distribution, ~LN(4.0, .75)

Abscissa and (Weight)
K=\ 4

(1.0)
K = 2 3.43 4.99

(.63684) (.36316)
AT = 3 3.10 4.29 5.93

(.33049) (.60450) (.06501)
AT = 4 2.86 3.86 5.10 6.89

(. 16308) (.60275) (.22666) (.00752)
AT = 5 2.68 3.56 4.59 5.93 7.88
 (.08012) (.48857)(.38191)(.04878)(.00062)
AT = 6 2.53 3.32 4.23 5.34 6.80 8.92
 (.03990) (.35788) (.46621) (.12899) (.00699) (3.9E-5)
AT = 7 2.41 3.14 3.95 4.92 6.13 7.72 10.03
 (.02030)(.24865)(.47758)(.22515)(.02761)(.00072)(1.9E-6)
A" = 8 2.31 2.99 3.73 4.60 5.65 6.96 8.69 11.22
 (.01058) (. 16811) (.44044) (.31023) (.06648) (.00410) (5.6E-5) (7.6E-8)

149

Table 7C4. Abscissa Locations and Weights for Lognormal Distribution, ~LN(2.0, 1.0)

Abscissa and (Weight)
K=\ 2

(1.0)
K = 2 1.52 4.10

(.81530) (.18470)
K = 3 1.30 3.12 7.48

(.63745) (.35446) (.00809
K = 4 1.18 2.67 5.72 12.96

(.51344) (.45493) (.03151) (.00012)
K = 5 1.10 2.40 4.88 9.93 21.76

(.42937) (.50800) (.06177) (.00085) (6.2E-7)
K = 6 1.04 2.23 4.39 8.48 16.72 35.85

(.37147) (.53434) (.09172) (.00245) (8.2E-6) (1.3E-9)
K = l 1.00 2.11 4.07 7.63 14.30 27.61 58.30

(.33065)054641) (.11818)000472) (3.4E-5)(3.0E-8)(1.E-12)
K = 8 .97 2.02 3.85 7.07 12.86 23.62 44.95 93.88

(.30121) (.55105) (.14032) (.00734) (8.3E-5) (1.7E-7) (4.E-11) (4.E-16)

Table 7C5. Abscissa Locations and Weights for Lognormal Distribution, ~LN(4.0, 1.5)

Abscissa and (Weight)
K=\ 4

(1.0)
K = 2 3.14 6.62

(.75371)024629)
K = 3 2.71 5.20 10.00

(.52080) (.45930) (.01990)
K = 4 2.44 4.47 7.88 14.45

(.36491) (.55740) (.07697) (.00072)
K = 5 2.25 4.02 6.77 11.42 20.36

(.26461) (.58054) (.14957) (.00527) (1.3E-5)
K = 6 2.12 3.70 6.07 9.82 16.13 28.19

(.19912) (.56643) (.21874) (.01554) (.00017) (1.3E-7)
K = l 2.01 3.47 5.59 8.81 13.88 22.38 38.56

(.15517) (.53692) (.27632) (.03083) (.00075) (2.9E-6) (7.E-10)
K = S 1.93 3.29 5.23 8.10 12.46 19.29 30.68 52.28

(. 12478) (.50303) (.32096) (.04925) (.00197) (1.8E-5) (2.7E-8) (2.E-12)

150

CHAPTER 8.

ANALYSIS OF GAUSSIAN QUADRATURE

In Chapter Seven, we observed that Gaussian quadrature might provide high-order

accuracy in the evaluation of expected costs of DDP. Because the total-cost function is

roughly describable as an «-fold third-order polynomial function of the stochastic

variables, it appears that coarse stochastic discretizations of K = 2 may be sufficient to

obtain a high level of accuracy, even for arbitrary but smooth probability distributions.

As a result, we may only require solutions for 2m different outcomes of the stochastic

variables, significantly reducing the exponential growth in effort compared with alternate

quadrature methods.
In this chapter, we evaluate the benefit of using the Gaussian quadrature methods

of Chapter Seven. The following analysis uses a range of stochastic discretizations

applied in the multilinear DDP and GDP algorithms. In all cases, we use the four-

reservoir test problem of Chapter Six. The four-reservoir problem contains two

stochastic variables that represent independent inflows into the two uppermost reservoirs.

A. GAUSSIAN QUADRATURE ACCURACY IN ESTIMATING
THE EXPECTED COST-TO-GO

This section presents quadrature error associated with stochastic discretizations

from K = 1 (i.e., the deterministic solution) to K = 8. The measure of error is average

absolute relative error (AARE) and absolute relative error (ARE) which we used in

Chapter Six. In all cases, the state discretization is A = 4. For GDP, this is a sufficiently

fine state discretization that interpolation error is small. For multilinear DDP, this is

much too coarse for an accurate solution, but the results give some idea of the impact of

Gaussian quadrature in these applications.

1. The Stochastic Models

If the condition of certainty equivalence holds, the error associated with the K = 1

case should be approximately zero. In Chapter Six, we modeled inflows as normally

distributed ~N(2.0, 0.5) and ~N(4.0, 0.75). These normally-distributed stochastic models

151

produce results that are close to the condition of certainty equivalence, and accurate

quadrature is less important.

As a result, we will also consider additional lognormally-distributed stochastic

models that produce results that are further from the condition of certainty equivalence.

The first two stochastic models are lognormally distributed with the same mean and

standard deviation as the normally-distributed models (i.e., ~LN(2.0, 0.5) and ~LN(4.0,

0.75)). These stochastic models are used in the "lognormal" four-reservoir problem. The

second two stochastic models are also lognormally distributed, but with the variance

quadrupled (i.e., ~LN(2.0, 1.0) and ~LN(4.0, 1.5)). These stochastic models are used in

the "high-variance lognormal" four-reservoir problem.

The abscissas and weights for the normal four-reservoir problem are calculated

using Gauss-Hermite quadrature. The finest discretization used in this problem is K = 7

as this is the largest number of abscissa that does not produce a negative inflow (see

Table 7C1: an inflow is negative if the standard deviation is < (-) 4 for stream #1 or

< (-) 5.33 for stream #2). The abscissas and weights for the lognormal and high-variance

lognormal problems are calculated using the Gaussian quadrature method for arbitrary

distributions (Tables 7C2 through 7C5). The finest discretization used in these problems

is AT = 8.

2. Error Versus Stochastic Discretization

Tables 8A1 through 8A3 present the average absolute relative error (AARE) for

the normal, lognormal, and high-variance lognormal problems. For all three problems

solved using GDP, Gaussian quadrature is very accurate with a stochastic discretization

of only K = 2. Using multilinear DDP, Gaussian quadrature is also very accurate in the

normal and lognormal problems, and moderately accurate in the high-variance lognormal

problem. Note that in all cases, a stochastic discretization of K = 3 improves quadrature

accuracy only slightly, and finer discretizations produce little or no improvement.

For the normal problem, the error of the K = 1 solutions is modest (Table 8A1).

This indicates that the normal problem is close to the condition of certainty equivalence.

The lognormal problem is not significantly different, and the error of the K = 1 solution is

not significantly greater.

In contrast, the high-variance lognormal problem, the error of the K = 1 solution

is much more significant. High variance also increases quadrature error in all other

solutions. Quadrature error is roughly five times greater for the GDP solutions and

roughly forty times greater for the multilinear DDP solutions, regardless of the stochastic

discretization. Larger variance produces a wider range of outcomes, and a wider range of

152

outcomes increases the impact of constraints and the impact of state discretization (as the

outcomes sample a larger number of subdomains in the cost-to-go functions). As we will

see in Section B, the inaccurate state discretization of the multilinear problem may

contribute to the significantly greater increase in quadrature error.

It is noteworthy that, for multilinear DDP, the error of the K = 1 solution is

smaller than for the GDP methods. A likely explanation for this smaller error is that the

K = 1 solution is exact for the Gaussian quadrature when the cost function of equation

(7B1) is a "first-order polynomial." In other words, Gaussian quadrature applied to

equation (7B1) is exact when the cost function is linear in each dimension. In all three

models, multilinear DDP uses a cost-to-go function that is closest to this form.

Table 8A1. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization
(Normally Distributed Inflows)

Method: Multilinear DPP First-order GDP Second-order GDP
T=l L2621 2.8034 2.7942
K = 2 .0842 .0266 .0264
K = 3 .0384 .0105 .0102
K = 4 .0402 .0093 .0090
A: = 5 .0145 .0037 .0032
K = 6 .0241 .0070 .0067
K = I (!) (!) (!L
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each
interpolation method

Table 8A2. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization
(Lognormally Distributed Inflows)

Method: Multilinear DDP First-order GDP Second-order GDP
K=\ 1.2945 2.8238 2.8161
K = 2 .1044 .0255 .0212
K = 3 .0403 .0143 .0126
K = 4 .0328 .0080 .0074
K = 5 .0216 .0045 .0045
K = 6 .0187 .0079 .0073
K = l .0238 .0058 .0056
K = % (!) (!) (Ü
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each
interpolation method

153

Table 8A3. Error (% AARE) of Gaussian Quadrature with Stochastic Discretization
(High-Variance Lognormally Distributed Inflows)

Method: Multilinear DPP First-order GDP Second-order GDP
K=\ 7.0484 10.1995 10.1842
K = 2 1.6414 .1614 .1512
K = 3 1.1656 .0671 .0647
K = 4 .9084 .0527 .0424
AT = 5 1.0040 .0618 .0627
K = 6 1.0310 .0418 .0416
K = 7 1.0470 .0189 .0177
K = % (!) (!) (Ü
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each
interpolation method

3. Error Bias of Gaussian Quadrature

We may gain some insight into the performance of Gaussian quadrature by

observing the bias of the above errors. Tables 8 A4 through 8A6 present the average

relative error (ARE) for the normal, lognormal, and high-variance lognormal problems,

paralleling the results in Tables 8A1 through 8A3.

In all cases, the K = 1 solution underestimates the exact solution. The K = 1

solution is a deterministic solution that does not adequately incorporate the cost of

extreme outcomes. With increasing stochastic discretization, these costs are incorporated

with reasonable accuracy.

Solutions with finer stochastic discretizations have less consistent biases, but

some patterns are apparent. GDP solutions for the normal model show a consistent

pattern of alternating positive and negative bias. If we look again at Table 7C1, we see

that, when K is odd, there is a single heavily-weighted and centrally-located abscissa. In

contrast, when K is even, there is a pair of heavily-weighted and centrally-located

abscissa. As a result, solutions with even K have similar errors, and solutions with odd K

have similar errors. Though more complex, GDP solutions for the lognormal models also

consistent patterns that reflect the placement and weighting of abscissas.

In all multilinear DDP solutions for the high-variance lognormal model (Table

8A6), the biases are negative. As we will see in Section B, this may offer a clue to why

the errors increase much more dramatically for multilinear DDP than for GDP.

154

Multilinear DDP First-order GDP Second-order GDP
(-) 1.2603 (-) 2.8034 (-) 2.7942
(-).0217 (-) .0190 (-) .0204
(-) .0035 .0048 .0053

.0299 (-) .0029 (-) .0041
(-) .0070 .0011 .0012

.0241 (-) .0014 (-) .0025

(*) (*) (*)

Table 8 A4. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization
(Normally Distributed Inflows)

Method:
K=\
K = 2
K = 3
K = 4
K = 5
K = 6
K = l
* Finest stochastic discretization {K = 7) used as estimate of exact solution for each
interpolation method

Table 8A5. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization
(Lognormally Distributed Inflows)

Method:
K=\
K = 2
K = 3
K = 4
K = 5
K = 6
K = l
K = 8
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each
interpolation method

Table 8A6. Error Bias (% ARE) of Gaussian Quadrature with Stochastic Discretization
(High-variance Lognormally Distributed Inflows)

Multilinear DDP First-order GDP Second-order GDP
(-) 1.2934 (-) 2.8238 (0 2.8161

(-) .0732 (-) .0144 (-) .0100
.0164 .0015 (0-0014

(-) .0107 .0012 .0026
.0073 (-) .0006 (-) .0006

(-) .0094 .0005 .0005
(-).0173 .0002 .0012

(*) (*) (*)

Method: Multilinear DPP First-order GDP Second-order GDP
K=\ (0 7.0484 (010.1995 (-) 9.9922
K = 2 (01.1774 (0-0890 (-) .1043
K = 3 (01.0668 (-).0353 (0-0175
K = 4 (0.6709 .0250 .0001
AT = 5 (0.8847 .0535 .0322
K = 6 (0-9455 .0252 .0310
K = 1 (0.5859 .0012 .0149
* = 8 n (!) Q.
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each
interpolation method

155

4. Comparison with a Heuristic Quadrature Method

As a brief illustration of the accuracy of Gaussian quadrature, we can compare the

above results with a heuristic quadrature method. For example, Johnson et al. [1993]

approximate lognormal distributions using abscissas at the 5, 50, and 95 percentiles of the

cumulative distribution and weights of 1/6,2/3, and 1/6.

Abscissas can be located by transformation of the appropriate standard normal

deviates. The standard normal deviates can be identified from a table of the cumulative

normal density frequency distribution [Snedecor and Cochran, 1989, p. 465]. If we

define w = Ln[s], then Ln[/z,] = ßw + 0.5*0^ and a} = fis
2(Exp[al] - 1) [Bras, 1990].

These expressions can be rearranged to yield

al=Ln[a}/ß}+ I]

ßw= -0.5Ln[(<J?/ß}+\)/li~]

to identify the mean and standard deviation to apply to the standard normal deviates

before transformation back to a lognormal variable. Table 8A7 presents the abscissas and

weights of this heuristic method for the normal, lognormal and high-variance lognormal

problems.
Table 8A8 presents the solution errors using the heuristic quadrature method and

some previous solution errors using Gaussian quadrature. The results show that Gaussian

quadrature achieves significantly greater accuracy than the heuristic method. Even using

the coarsest stochastic discretization of K = 2 (the minimum to still produce a stochastic

problem), Gaussian quadrature is over ten times more accurate. To achieve similar levels

of accuracy using heuristic methods may require fine stochastic discretizations that

significantly increase computational effort.

156

Table 8A7. Abscissa Location and Weights for Heuristic Quadrature Method

Abscissas (*)
Normal Distributions
~N(2.0,0.5) 1.18 2 2.82
~N(4.0,.75) 2.77 4 5.23
Lognormal Distributions
~LN(2.0,0.5) i29 1.94 2.91

~LN(4.0,.75) 2.90 3.93 5.34

High-Variance Loenormal Distributions
~LN(2.0,1.0) 0.82 1.79 3.89
~LN(4.0,1.5) 2.06 3.75 6.80

(Weight) (.16667) (.66667) (.16667)
* Abscissas located at 5%, 50%, and 95% quantiles of each distribution. Weights are the
same for all distributions.

Table 8A8. Error (% AARE) of a Heuristic Quadrature Method and Gaussian Quadrature

Quadrature method (*): Heuristic Gaussian Gaussian
(* = 3) (K = 3) (K = 2)

Normal Distribution 2706 .0102 -0264
Lognormal Distribution -6607 -0126 -0212
High-Variance Lognormal Distribution 2.6755 -0647 -1512
* Second-order GDP in all cases. Gaussian quadrature with K = 7 (normal distributions)
and with K = 8 (lognormal distributions) used as estimate of exact solution. Error in
average absolute relative error (%).

B. IMPACT OF PIECEWISE NATURE OF COST-TO-GO
APPROXIMATIONS ON SOLUTION ACCURACY

In Chapter Seven, we observed that state discretization can have a variable impact

on quadrature accuracy. On one hand, finer subdivision of the state space can degrade

quadrature accuracy as outcomes sample more subdomians in a portion of the domain.

On the other hand, finer subdivision of the state space can improve quadrature accuracy

as adjacent subdomains use interpolating functions that are more accurate, consistent, and

less prone to oscillation. This section assesses the impact the state discretization can have

on quadrature accuracy.

157

30.8370 4.2349 2.9845 2.7235

30.6682 1.7480 .3119 .0268

30.3765 1.6577 .2899 .0102

30.5319 1.6919 .2958 .0093

30.4601 1.6802 .2939 .0030

30.5164 1.6793 .2943 .0070

30.4536 1.6827 .2946 (*)

1. Quadrature Error Versus Interpolation Error

Table 8B1 presents the total errors of solutions of the normal four-reservoir

problem using a range of state and stochastic discretizations. This total error combines

interpolation error (from coarse state discretization) and quadrature error (from coarse

stochastic discretization). To evaluate the impact of state discretization on quadrature

accuracy, we want to avoid the confounding influence of interpolation error.

Table 8B1. Total Error (% AARE) of Gaussian Quadrature with State Discretization
(Normally Distributed Inflows and First-Order Hermite Interpolation)

State discretization: A = 2 A = 3 A = 4 A = 5

K=l
K = 2
K = 3

K = 5
K = 6
K = l
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state
discretization.

2. Quadrature Error with State Discretization

Table 8B2 present the errors for the same solutions as Table 8B1 but with

interpolation error removed. For each state discretization, the finest stochastic

discretization (K = 7) is used as an estimate of the exact solution.

In this case, we see that quadrature error decreases with increasing state

discretization. Apparently, the increasing accuracy of interpolation overcomes the

increasing fragmentation of the interpolation.

Indeed, the largest errors occur when A = 2 and there is only one subdomain.

These suggest that deviations of the cost function from the desired polynomial form are

due less to discretization of the state space than to the impact of constraints. With a

coarse discretization, costs near the boundary of the state space are not very accurate,

and, when constraints become binding at the boundary, the cost function (as a function of

the stochastic variables) changes significantly. This is supported by the observation that,

when A = 2, the bias of errors is mostly negative (i.e., expected costs are lower than for

the finest discretization used as the "exact" solution). For coarse stochastic

discretizations K, fewer outcomes sample extreme costs that occur when constraints are

binding. Low expected costs estimated using coarse discretizations suggest that costs

increase disproportionately when constraints are binding.

158

As a result, inaccurate interpolation can also degrade quadrature accuracy. This is

the clue that may identify why errors increased much more dramatically for multilinear

DDP than for GDP when variance was increased (Table 8A3). Because multilinear DDP

is inaccurate with a coarse state discretization of A = 4, the form of the cost function

changes significantly when constraints become binding. With higher variance, more

outcomes sample extreme costs that occur when constraints are binding, and costs are

poorly estimated by a polynomial function.

Tables 8B2 and 8B3 present solutions for the normal four-reservoir problem using

first-order and second-order GDP. Likewise, Tables 8B4 and 8B5 present solutions for

the lognormal problem, and Table 8B6 and 8B7 present solutions for the high-variance

problem. As observed in Chapter Six, there is not a significant difference in the accuracy

of the first-order and second-order GDP algorithms. Second derivatives are not

significant for the cost function and short time horizon used by the traditional four-

reservoir problem. Nevertheless, second-order GDP has consistently lower error than

first-order GDP. These tables also show that error consistently decreases with finer state-

discretizations, though the change is not significant after A = 4.

Table 8B2. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (Normally Distributed Inflows and First-Order Hermite
Interpolation)

State discretization: A = 2 A = 3 A = 4 A = 5
K = \ 5.0831 2.9047 2.8034 2.7235
K = 2 .1435 .0600 .0266 .0268
K = 3 .0903 .0244 .0105 .0102
K = 4 .0770 .0224 .0093 .0093
K = 5 .0676 .0078 .0037 .0030
K = 6 .0536 .0182 .0070 .0070
K = 7 (*) (*) (*) (*)
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each state
discretization.

159

Table 8B3. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (Normally Distributed Inflows and Second-Order Hermite
Interpolation)

State discretization: yl = 2 A = 3 A = 4 A = 5

K=\ 4.5443 2.8160 2.7942 2.7263
K = 2 .1194 .0687 .0264 .0217
K = 3 .0777 .0280 .0102 .0089
K = 4 .0786 .0282 .0090 .0091
K = 5 .0635 .0076 .0032 .0027
K = 6 .0419 .0217 .0067 .0072

K = 7 C) (*) (*) (*)
* Finest stochastic discretization (K = 7) used as estimate of exact solution for each state
discretization.

Table 8B4. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (Lognormally Distributed Inflows and First-Order Hermite
Interpolation)

State discretization: A = 2 A = 3 vi = 4 A = 5

K=\ 5.2074 2.9307 2.8238 2.7393
K = 2 .2135 .0623 .0255 .0262
K = 3 .1567 .0275 .0143 .0118
K = 4 .0705 .0194 .0080 .0084
K = 5 .0309 .0099 .0045 .0042
K = 6 .1188 .0170 .0079 .0067
K = 7 .0946 .0149 .0058 .0055

K = 8 (*) (*) (*) (*)

* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state
discretization.

Table 8B5. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (Lognormally Distributed Inflows and Second-Order
Hermite Interpolation)

State discretization: A = 2 A = 3 A = 4 A = 5

K=\ 4.6590 2.8426 2.8161 2.7426
K = 2 .1551 .0654 .0212 .0187

K = 3 .1386 .0288 .0126 .0103

K = 4 .0601 .0243 .0074 .0076
K = 5 .0375 .0089 .0045 .0039

K = 6 .0890 .0165 .0073 .0064

K = l .0772 .0169 .0056 .0052
K = S (*) (*) (*) (*)
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state
discretization.

160

Table 8B6. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (High-Variance Lognormally Distributed Inflows and First-
Order Hermite Interpolation)

State discretization: A = 2 A = 3 A = 4 A = 5

K=l 14.2999 10.5758 10.1995 9.9888
K = 2 .8278 .1500 .1614 .1701
K = 3 .3882 .1021 .0671 .0546
K = A .2318 .1269 .0527 .0440
K = 5 .3028 .0971 .0618 .0627

K = 6 .1220 .0491 .0418 .0442
K = l .0576 .0176 .0189 .0185
K = 8 (*) (*) (*) (*)
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state
discretization.

Table 8B7. Quadrature Error (% AARE) of Gauss-Hermite Quadrature with State
Discretization (High-Variance Lognormally Distributed Inflows and
Second-Order Hermite Interpolation)

State discretization: A = 2 A = 3 A = 4 A = 5

tf=l 13.6612 10.4047 10.1842 9.9922
K = 2 .7486 .1612 .1512 .1686
K = 3 .3420 .1145 .0647 .0484
K = 4 .1626 .1269 .0424 .0336
K = 5 .2389 .1089 .0627 .0489
K = 6 .0929 .0558 .0416 .0386
K = l .0532 .0225 .0177 .0179
K = 8 (*) (*) (*) (*)
* Finest stochastic discretization (K = 8) used as estimate of exact solution for each state
discretization.

161

162

CHAPTER 9.

CAUTION IN REAL-TIME OPERATION OF
RESERVOIR SYSTEMS

Management of reservoir systems is commonly accomplished using forecasts of

stream flow and of demand. However, experience and common sense indicate that using

most likely forecasts may be an insufficiently cautious approach because the impacts of

low probability events are not adequately incorporated into management policies. As an

alternative, we can use methods that combine forecasting under uncertainty and

management, producing flexible real-time management policies that achieve an

appropriate level of caution. Using a four-reservoir test problem, we demonstrate this by

comparing operational results of forecast-based policies with the results of policies based

on stochastic dynamic programming. We observe that real-time management using

forecasts results in costs that are greater on average and that are much greater for extreme

events. This is true even when short-term forecasts are accurate, such as when stream

flows are highly auto-correlated.

A. MOTIVATION

Periodic updates of stream-flow and demand forecasts are commonly used to

arrive at management decisions in real-time, that is, as events occur. Such decisions are

often based on pre-determined operating policies but sometimes they rely on

deterministic optimization of future operations, as if forecasted flows were the only

possible input.

However, if forecasts represent the most-likely stream flows, the potentiality of

low probability events—such as extreme floods or droughts—is not adequately

incorporated into the decision process. Constraints on system operation and excessive

costs brought about by an extreme event may not be recognized until such an event

becomes imminent and options for avoiding a catastrophe become quite limited. For

example, managers of many water-supply systems hesitate to initiate rationing until

shortages are imminent.

163

To hedge against extreme events, managers of reservoir systems may modify

management policies but they have little guarantee that heuristically modified policies

correctly balance their cost with the risk of extreme events. In some cases, these policies

can even become too cautious and incur costs not justified by the avoided risk.

Mathematical modeling and stochastic optimization, in the context of what is

known as "systems analysis," can combine forecasting and management, thereby

developing management policies that are appropriately cautious. The purpose of this

chapter is to illustrate the influence that extreme events have on system performance and

the value of appropriately cautious management policies. In addition, this chapter

demonstrates that new systems-analysis methods allow us to combine forecasting and

management in relatively complex problems.

B. BACKGROUND

Operational experience indicates that forecast-based methods are insufficiently

cautious. Kitanidis and Andricevic [1989] show that policies obtained from deterministic

optimization using most likely estimates, also known as "deterministic feedback control"

(DFC), perform poorly when compared with policies obtained from either "first-order

approximation" or discrete dynamic programming. These are stochastic optimization

methods that account for contingencies and, as a result, are more cautious. Though

management policies based on most-likely forecasts may perform slightly better under

average conditions, these policies may perform much worse under extreme conditions.

As a result, many agencies constrain system operations to heuristically

incorporate greater caution in operations. One common approach is to adjust system

operations based on performance during simulated recurrence of extreme historical

events. While this approach incorporates additional caution, it may leave systems

vulnerable to extreme events beyond those previously seen. For example, the severe

1976-77 drought in western North America caught many water management agencies

unprepared. Consequently, the 1976-77 drought is now used frequently as a benchmark

of system vulnerability [EBMUB, 1992]. In addition, the use of extreme historical events

may produce system operations that are excessively cautious since they prepare for a

specific extreme event whose exact duplication is impossible.

Unfortunately, it has been difficult to identify appropriately cautious real-time

controls using available systems-analysis methods. Many existing methods applicable to

complex problems require separating forecasting from management to allow application

of deterministic optimization. Even those methods that combine forecasting and

164

management usually rely on some unique problem characteristic or other simplification.

For example, Kitanidis and Andricevic [1989] applied first-order approximation

[Kitanidis, 1987] to incorporate stochasticity using a small-perturbation approximation.

This method is more cautious, but it still may not correctly balance the cost of hedging

with the risk of extreme events when the uncertainty is large. Past difficulties in applying

systems-analysis methods to realistic system models have contributed to limited

application of these methods in practice [Rogers and Fiering, 1986].

As a result, system management has relied largely on experience. Indeed, this

approach appears to have been effective in identifying an appropriate level of caution for

many well-established systems [Kelman et al, 1990]. However, experience may not be a

sufficient guide to manage changing conditions and extreme events. For example,

constraints added to trigger additional caution when extreme events become likely may

produce controls that are insufficiently cautious, too cautious, or both depending on the

conditions.
Discrete dynamic programming (DDP) is the most general formal optimization

procedure for combining forecasting and management in reservoir control problems that

meet certain requirements. It is but one of several dynamic-programming procedures

available to solve dynamic control problems; however, it is the only one that is generally

applicable to non-linear problems, stochastic problems, and problems where the goal is to

minimize both the frequency and severity of failure. The development of new DDP

methods in Chapters Five and Seven allows us to address systems that are more complex

than traditionally possible.

C. SYSTEM MODELS

To compare real-time management policies using DFC and DDP, we use the four-

reservoir problem (Figure 6A1) and an operating horizon of twenty-four stages (N = 24)

stages. Streamflows are lognormally distributed ~LN(2.0, 1.5) and~LN(4.0, 1.5). The

policy using DFC is to select release decisions that minimize total cost for all remaining

stages assuming a perfect forecast. At the beginning of each stage, a new forecast is

generated and new release decisions evaluated. The policy using DDP is to select release

decisions that minimize the sum of current and expected future costs. Expected future

costs in each stage are estimated by cost functions developed by the DDP.

As seen in Chapter Eight, the traditional four-reservoir problem is close to

certainty equivalent. The term "certainty equivalent" means simply that uncertainty may

be neglected and decisions may be based mean values. This is due to the use of a

165

quadratic penalty function and also due to the small effect that constraints have on system

operations. We can see this more clearly by interpreting the test problems' uncorrelated

stream flows as a series of annual flow values. With this interpretation, total system

storage is 800% of average annual inflow. This ratio of storage to flow is rarely achieved

in practice and diminishes the influence that finite reservoir storage has on system

operations. As a result, the problem is close to certainty equivalent, and DFC using the

best-estimate forecast of future stream flows performs almost as well as DDP.

Because the traditional four-reservoir problem (Model A) is close to certainty

equivalent, we introduce two modifications (Models B and C). These modifications

result in models that are more realistic and that better illustrate the value of cautious

management policies and the influence that extreme events have on system performance.

1. Four-Reservoir Model with Uncorrelated Streamflows (Model A)

As in the previous applications of the four-reservoir problem, streamflows in

model A are uncorrelated. Figures 9C1 and 9C2 illustrate two different synthetic

scenarios generated according to the probabilistic model. Table 9C1 identifies moments

of the random variables and resulting Gaussian-quadrature abscissas and weights used

calculate expectations.
We may think of the costs of the four-reservoir problem as multi-purpose

penalties for not meeting water supply targets and for excessive flood releases. However,

desired releases are smaller than mean inflows, and releases are maintained small as

possible with little concern for the final reservoir level. We will see this effect later when

observing the system's response in specific scenarios.
The use of the constraints and the quadratic cost functions of the four-reservoir

problem results in a systems-analysis problem that is close to "certainty equivalent."

Under these conditions, DFC using a best-estimate forecast will do nearly as well as DDP

except for the effect of operating constraints.

Table 9C1. Parameters of Stochastic Variables for Uncorrelated Flow Model.

Stochastic Moments Numerical Integration
Variable Mean Std. dev. Abscissas Weights

j, 2.0 1.5 {1.5008,6.5070} {.9003, .0997}

s? 4.0 1.5 {3.1426,6.6240} {.7537,2463}

166

Figure 9C1. Uncorrelated-Flow Scenario for Models A and C (Example 1).

12-rstreamflow

24 stage

Figure 9C2. Uncorrelated-Flow Scenario for Models A and C (Example 2).

12-rstreamflow

24 stage

2. Four-Reservoir Model with Correlated Streamflows (Model B)

The first modification to Model A adds temporal and spatial correlation to the

model of stream flows. We add auto-correlation by augmenting the traditional four-

reservoir model with additional state variables, x5 and x6, representing stream flows of

the prior stage. Current flows are a function of these additional state variables and of

stochastic variables, s (Table 9C2). Evolution of the system in now modeled by a six-

state transition equation:

10 00.8 0
0 1 0 0 0 .8
0 0 10 0 0 x'+i - 0 0 0 10 0
0 0 0 0.8 0

LO 0 0 0 0.8J

where state variables are reservoir levels and prior stream flows. Figures 9C3 and 9C4

illustrate two different synthetic stream-flow scenarios generated according to this

probabilistic model of inflows. Moments of the random variables have been chosen to

produce stream-flow moments that match those of the uncorrelated flow model. These

random-variable moments are identified in Table 9C3. Because of the highly skewed

distributions of these random variables, Gaussian-quadrature produces large abscissas

and small weights. These values can introduce significant solution errors. To reduce

these errors, the tails of the unbounded log-normal distributions have been truncated to

-1 0 0 01 "1 01
0-1 0 0 .5 1
0 1-10 0 0

X, + 10 1-1 u, + 0 0
0 0 0 0 1 0

L o o o oJ L.5 IJ

167

produce smaller abscissas without significantly degrading expected-value calculations

(Chapter Seven).

With stream-flow correlation, constraints on reservoir capacity have a greater

effect and result in a model that is further from the condition of certainty equivalence.

We can see this more clearly by interpreting the problem's correlated stream flows as a

series of monthly flow values. With this interpretation, the model covers a 2-year period

of operations and total system storage is 67% of average annual inflow. This is more

realistic, and as we will see, the results of this model better illustrate the value of cautious

management policies.

Table 9C2. Model of Correlated Stream Flows.

Stream Flow: Mean o Model

#1

#2
2.0 1.5 0.8x5 + s\

4.0 1.5 0.8x6 + 0.5^) + sn

Table 9C3. Parameters of Stochastic Variables for Correlated Flow Model.

Stochastic Moments Max. Tail Numerical Integration
Variable Mean o Value Prob. Abscissas Weights

0.4 0.9 25.0 .000088 {.3019,7.4922} {.9867, .0132}

0.6 0.6364 25.0 <.000001 {.4583,3.4516} {.9527, .0473}

Figure 9C3. Correlated-Flow Scenario for Model 2 (Example 1).

12-rstreamfiow

24 stage

Figure 9C4. Correlated-Flow Scenario for Model 2 (Example 2).

12-,-streamflow

24 stage

168

3. Four-Reservoir Model with Higher-Order Cost Function (Model O

The second modification to Model A changes the penalty functions from

quadratic to the fourth-order:

4

F(x) = X (xj-b/

4

C(u) = X a*(«*-1.0)4

*=1

These non-quadratic penalties result in a model that is also further from certainty

equivalent. Compared with results using Models A and B, results using Model C most

dramatically display the poor performance of the DFC policy.

D. RESULTS

For each model, we compared real-time performance of the DFC policy with

performance of the DDP policy using a thousand equally-likely scenarios generated

according to the probabilistic model of inflows. In addition, we illustrate specific system

behavior under each policy by viewing representative scenarios. Each scenario consists

of synthetic flow series of 24 values for each of the two streams. State and stochastic

discretizations are sufficient to reduce error below 1% AARE.

Table 9D1 provides a quick summary of the mean, minimum, and maximum of

costs for the two models under each management policy. For each model, we can see

that operating costs under the DFC policy are generally greater because the policy is

insufficiently cautious when compared with the appropriately cautious DDP policy.

Table 9D1. Mean, Minimum, and Maximum of Cost Distributions.

Flow Model Policy Mean Median Minimum Maximum

A (traditional) DFC 1173.3 1143.6 618.0 3817.2

DDP 1122.2 1097.3 648.4 3139.2

B (correlated) DFC 1474.5 1149.3 260.6 96773.5

DDP 1361.8 1056.9 369.9 89299.4

C (non-quadratic) DFC 26743.0 19018.3 5805.9 2368884.5

DDP 20257.8 17030.8 7105.6 1103842.5

169

1. Results for the Uncorrelated Flow Model (A)

Applying the DFC policy and DDP policy to the thousand scenarios of the

uncorrelated-flow model, we can compare the policies' performance. Figure 9Dla shows

the distribution of costs resulting from DFC policy using best-estimate forecasts and

Figure 9Dlb shows the distribution of costs resulting from DDP policy. By subtracting

the resulting cost of the DDP policy from the resulting cost of the DFC policy in each

scenario, we can better compare performance of the two policies. Figure 9Dlc shows the

distribution of these cost differences for the thousand scenarios, with negative values

indicating better performance for the DFC policy and positive values indicating better

performance for DDP policy.

Neither policy performs consistently better than the other; however, on average,

the cautious DDP policy performs better than the DFC policy. DFC does well in

scenarios with low flow variability, and does better than DDP in 20.1% of the scenarios.

On the other hand, the caution of DDP does well in scenarios with high flow variability,

and DDP does better in 79.9% of the scenarios. More telling is the policies' relative

performance in extreme scenarios. In the best scenario, the DFC policy outperforms the

DDP policy by achieving a cost that is 7% (i.e., 45.5 penalty units) lower. Note that,

relative to the DDP policy, the best scenario for the DFC policy is not the scenario with

the lowest cost but the scenario that most closely matches the real-time forecasts. In

contrast, in the worst scenario, the DFC policy under-performs the DDP policy and the

resulting cost is 22% (i.e., 678.0 penalty units) higher.

Release decisions applied to specific scenarios can be observed to better assess

the forecast-based DFC policy. Figures 9C1 and 9C2 illustrate "favorable" and

"unfavorable" synthetic streamflow scenarios in the sense that the resulting costs as

measured by the penalty functions are lower and higher than average. These are not the

extreme scenarios discussed above, but more typical examples selected from among the

first ten out of the thousand.

The first scenario presents an outcome for which the DFC policy performs better

than the DDP policy. Figures 9D2a-d show, for each reservoir respectively, the release

decisions and evolution of storage levels from application of the DFC policy. For

comparison, the figures also show as dashed lines the releases and storage levels resulting

from application of the appropriately cautious DDP policy. DFC decisions maintain a

relatively constant release level throughout the twenty-four stages. Because penalties

associated with releases are greater than potential penalties associated with the ending

storage, the DFC policy tends toward the filling of reservoirs. On the other hand, DDP

170

releases are unnecessarily cautious for this scenario: higher releases are maintained until

the last few stages. During these last few stages, the DDP policy reduces releases as it is

unlikely that flows during the remaining stages will require the large available storage as

a buffer to spread out releases of large inflows. Performance costs are low under both

policies, and the DFC policy outperforms the DDP policy by 4% (i.e., 795.4 to 828.2

penalty units).

The second scenario presents an outcome for which the DFC policy performs

worse than the DDP policy. Figures 9Dla-d show, for each reservoir respectively, the

release decisions and evolution of storage levels. In this scenario, the forecast-based

DFC decisions are insufficiently cautious: reservoirs fill rapidly and less buffering

capacity is maintained to spread out release of later flows. Resulting costs are high, and

the DFC policy underperforms by 10% (i.e., 1952.1 to 1775.2 penalty units).

Figure 9Dla. Distribution of Costs for DFC Policy (Model A).

100 T# of scenarios

2000 >4000
cost

Figure 9Dlb. Distribution of Costs for DDP Policy (Model A).

100 T

2000 >4000
cost

Figure 9Dlc. Distribution of Cost Differences for DFC Versus DDP (Model A).

100 T

(magnified
horizontal scale)

-500 -100 0 100 >500
cost

171

Figure 9D2a. Release and Storage for 1st Reservoir (Model A, Example 1).

12 T Volume
storage level

24 stage

Figure 9D2b. Release and Storage for 2nd Reservoir (Model A, Example 1).

12-r

24 stage

Figure 9D2c. Release and Storage for 3rd Reservoir (Model A, Example 1).

12 -r

24 stage

Figure 9D2d. Release and Storage for 4th Reservoir (Model A, Example 1).

12

24 stage

172

Figure 9D3a. Release and Storage for 1st Reservoir (Model A, Example 2).

12 T Volume
x ^ ___________ storage level

GXZ^yy ^forecast

24 stage

Figure 9D3b. Release and Storage for 2nd Reservoir (Model A, Example 2).

12T

24 stage

Figure 9D3c. Release and Storage for 3rd Reservoir (Model A, Example 2).

12

24 stage

Figure 9D3d. Release and Storage for 4th Reservoir (Model A, Example 2).

12^

24 stage

173

2. Results for the Correlated Flow Model (B)

Figures 9D4a-c show system performance using the correlated-fiow model.

These figures parallel Figures 9Dla-c for the traditional uncorrelated-flow model.

Average cost for model B is greater than for model A, even though median costs are

roughly equal. This is largely because the cost of extreme events is much greater for

model B. The coincidence and persistence of flows resulting from cross-correlation and

auto-correlation causes extreme high combined flows and causes high flows to persist

longer, producing higher costs. This also causes extreme low flows to persist, producing

lower costs (Table 9D1). The DFC policy does better than the DDP policy in only 17.8%

of the scenarios. In the best performing scenario, the DFC policy outperforms the DDP

policy by achieving a cost that is 13% (i.e., 137.4 penalty units) lower. However, in the

worst performing scenario, the DFC policy underperforms by 8% with a substantial

difference in cost of 7474.1 penalty units.

Figures 9C3 and 9C4 illustrate two synthetic flow scenarios for the correlated-

flow model. In contrast to the uncorrelated-flow scenarios in Figures 9C1 and 9C2, we

can see that the correlated synthetic flows change less rapidly and high flows show

greater persistence. The correlated and uncorrelated scenarios of use the same seed in a

random number generator (i.e., they have the same position among the thousand

scenarios) so that differences in the streamflow models can be compared directly.

As before, the first scenario presents an outcome for which the DFC policy

performs better than the DDP policy. Figures 9D5a-d show, for each reservoir

respectively, the release decisions and evolution of storage levels. As in the uncorrelated-

flow model, the DFC policy maintains relatively constant release levels throughout the

twenty-four stages. Again, releases under the DDP policy prepare the system for high

inflows that do not happen, and high releases are maintained until the last few stages.

Costs are low under both policies, and the DFC policy outperforms the DDP policy by

11% (i.e., 656.0 to 741.1 penalty units).

The second scenario presents an outcome for which the DFC policy performs

worse than the DDP policy. Figures 9D6a-d show, for each reservoir respectively, the

release decisions and evolution of storage levels. In this scenario, the DFC policy has

failed to anticipate high flows that cause the reservoirs to fill rapidly. With the DDP

policy, reservoir filling is delayed, though available storage capacity is still lost early.

Resulting costs are high, and the DFC policy underperforms by 6% (i.e., 3056.4 to 2877.5

penalty units).

174

Figure 9D4a. Distribution of Costs for DFC Policy (Model B).

60 T # of scenarios

... I
>4000

cost

Figure 9D4b. Distribution of Costs for DDP Policy (Model B).

60

_J
>4000

cost

Figure 9D4c. Distribution of Cost Differences for DFC Versus DDP (Model B).

60 T

(magnified

horizontal scale)
MiaJkafliL^—iM« —-M

-500 -100 0 100 >500
cost

175

Figure 9D5a. Release and Storage for 1st Reservoir (Model B, Example 1).

12 -r Volume

,^^-forecast Dp 6+--

0

storage level

release

1 12 18 24 stage

Figure 9D5b. Release and Storage for 2nd Reservoir (Model B, Example 1).

12

12 18 24 stage

Figure 9D5c. Release and Storage for 3rd Reservoir (Model B, Example 1).

12^

12 18 24 stage

Figure 9D5d. Release and Storage for 4th Reservoir (Model B, Example 1).

12

24 stage

176

Figure 9D6a. Release and Storage for 1st Reservoir (Model B, Example 2).

12-r Volume

/ ^forecast \Q

storage level

DP

Figure 9D6b. Release and Storage for 2nd Reservoir (Model B, Example 2).

12

24 stage

Figure 9D6c. Release and Storage for 3rd Reservoir (Model B, Example 2).

12-r

1 12 18 24 stage

Figure 9D6d. Release and Storage for 4th Reservoir (Model B, Example 2).

12

24 stage

177

3. Results for the Non-Quadratic Penalty Model (C)

Figures 9D7a-c show system performance using the non-quadratic cost function.

These figures parallel Figures 9Dla-c and Figures 9D4a-c. Compared to Models A and

B, costs for Model C are greater because of the fourth-order penalty. Using this model,

the DFC policy does better than the DDP policy in 23.9% of the scenarios, and the poor

performance of the DFC policy is dramatic. In the best performing scenario, the DFC

policy outperforms the DDP policy by achieving a cost that is 22% (i.e., 2285.8 penalty

units) lower. However, in the worst scenario, the DFC policy underperforms and the cost

is 110% (i.e., 1.2 million penalty units) higher!

Figures 9C1 and 9C2 illustrate two synthetic flow scenarios for this model. These

are the same scenarios used in Model A. Again, the first scenario presents an outcome

for which the DFC policy performs better than the DDP policy. Figures 9D8a-d show,

for each reservoir respectively, the release decisions and evolution of storage levels for

the favorable first scenario. As seen in Models A and B, the DFC policy maintains

relatively constant release levels and the DDP policy dictates additional releases that are

unnecessary in hindsight. The DFC policy outperforms the DDP policy by 15% (i.e.,

8877.5 to 10404.2 penalty units).

The second scenario presents an outcome for which the DFC policy performs

worse than the DDP policy. Figures 9D9a-d show, for each reservoir respectively, the

release decisions and evolution of storage levels. In this scenario, the forecast-based

DFC policy allows the reservoirs to fill rapidly. In contrast, buffering capacity is

maintained under the DDP policy. Under both policies, release decisions are higher than

in model A, though they are not significantly different otherwise. Resulting costs,

however, are significantly different: the DFC policy underperforms by 53% (i.e.,

67205.4 to 43965.2 penalty units).

178

Figure 9D7a. Distribution of Costs for DFC Policy (Model C).

100 T# of scenarios

rti Ml T<——I cost
60000 >120000

Figure 9D7b. Distribution of Costs for DDP Policy (Model C).

100 T

-* cost
0 60000 >120000

Figure 9D7c. Distribution of Cost Differences for DFC Versus DDP (Model C).

100

(magnified
horizontal scale)

-15000 -3000 0 3000

cost
>15000

179

Figure 9D8a. Release and Storage for 1st Reservoir (Model C, Example 1).

12 T Volume
forecast ^ storage level

^^ </

;DDP

24 stage

Figure 9D8b. Release and Storage for 2nd Reservoir (Model C, Example 1).

12-r

24 stage

Figure 9D8c. Release and Storage for 3rd Reservoir (Model C, Example 1).

12-r

6^^---

12 18 24 stage

Figure 9D8d. Release and Storage for 4th Reservoir (Model C, Example 1).

6-

^^rrrrrrrrrrr^-—-

n

—

6 12 18 24 24 stage

180

Figure 9D9a. Release and Storage for 1st Reservoir (Model C, Example 2).

12 -r Volume

24 stage

Figure 9D9b. Release and Storage for 2nd Reservoir (Model C, Example 2).

12-r

24 stage

Figure 9D9c. Release and Storage for 3rd Reservoir (Model C, Example 2).

12

A
12 18 24 stage

Figure 9D9d. Release and Storage for 4th Reservoir (Model C, Example 2).

12

-^^JK
12 18 24 stage

181

E. CONCLUDING REMARKS ON THE CAUTIOUS
MANAGEMENT OF RESERVOIR SYSTEMS

Efficient reservoir-system operation is difficult when driven by uncertain inputs

such as stream flow. Because of limitations on practical application of existing

operations analysis methods, system managers have relied on forecast-based DFC

policies as the best available method to conduct real-time operations. Because it is

recognized that DFC policies are insufficiently cautious, heuristic constraints on system

operations have frequently been adopted. However, these provide no guarantee of

achieving an appropriate level of caution.

The results presented in this chapter demonstrate the poor performance of DFC.

Simulated real-time operational results for DFC policies have been compared with DDP

policies in a variety of problems. The first uses the well-known four-reservoir model.

Because this model is close to certainty equivalent, we have introduced two additional

models that are further from certainty equivalent. The first includes temporal and spatial

correlation. The second uses a non-quadratic cost function that heavily penalizes

deviations from target release and reservoir levels. Application of DFC and DDP to these

problems demonstrate the under-performance of DFC on average and the extremely poor

performance possible in extreme events. These results also demonstrate that, even if

more accurate forecasts are available, the information can be used with other methods

such as DDP to produce a better policy.

Except in problems that are appropriately modeled as certainty equivalent,

forecast-based policies are insufficiently cautious and generally result in poor

performance. Certainty equivalence occurs when system performance is measured by a

quadratic cost function and there are no binding constraints on operations. However,

realistic systems are not certainty equivalent. Except for systems characterized by

extremely large storage capacities and by quadratic cost functions (perhaps valid for

some hydropower systems), system performance will be significantly degraded by

application of forecast-based policies.

The modifications used to develop Models B and C are only a couple of those that

may be needed to represent many real systems with practical accuracy. Many systems

are even more severely constrained. Reservoir capacities may be even more severely

limited, or additional constraints may be required to incorporate various legal

requirements and social values. Seasonal variation in inflows will also increase the effect

of constraints on system operation. Many systems cannot be modeled using a quadratic

cost function. For example, many systems cannot tolerate the complete emptying of a

182

reservoir or the reduction of water supplies to zero, and these conditions would imply an
infinite cost. We anticipate that for many real systems, Model C represents more
accurately than Model A the importance of appropriately cautious policies.

Examples presented here also demonstrate the feasibility of applying DDP to

problems of greater complexity than generally assumed. We apply DDP to 24-stage
problems to develop the first published solution of a six-state variable DDP problem.
This has allowed us to combine forecasting under uncertainty and management in

systems analysis applied to reasonably complex multi-reservoir problems.

183

184

CHAPTER 10.

VALUATION OF WATER RESOURCES

To identify shortage costs in a value model, we need to develop an appropriate

cost function. Some reservoir management purposes, such as power generation, have

clearly defined cost or benefit functions that can be quantified by revenue generated or

costs incurred. We accept these revenues and costs in defining cost functions because

they have been determined by market mechanisms. Other reservoir management

purposes have less clearly defined costs because market prices may not be available or

easily quantified. For example, the cost of water shortage is not well defined because

water prices are not usually defined by the market.

The purpose of this chapter is to propose and apply a surrogate cost function for

shortages. This cost function allows us to explicitly state (and critique) the cost of

rationing given by the general equation

Cost of rationing = -f- P0 [Qo - Q (Q /Qo)l,a]

where PQ is a market price for an available quantity of water QQ, and a is the "elasticity"

of water demand. This equation assumes that market prices provide an appropriate

measure of the benefit of water use and that the elasticity of demand is constant.

By developing such a cost function, water management agencies can explicitly

quantify the expected impact of water rationing on consumers. What is more important,

agencies can use such a cost function to evaluate the expected benefits and costs of

different operating policies and planning scenarios. As a result, different options for

system expansion or modification can be compared with greater objectivity.

A. BACKGROUND ON MARKET PRICES

We cannot easily quantify water supply benefits without a water market. Instead,

we can simulate a market mechanism to evaluate the benefit of water use and the cost of

water shortage. In this section, we will first consider how real markets identify prices.

185

1. An Ideal Market

When the price of a commodity is free to change, it responds to market forces of

demand (i.e., desire for a commodity) and supply (i.e., willingness to sell). We generally

observe that as the price goes up, we buy less of the commodity (with the exception of

some odd commodities, called "superior goods," whose high price may create demand,

e.g., jewelry). We also observe that as the price goes up, producers of the commodity are

willing to supply more. Figure 10A1 illustrates the impact of price on the demand and

supply of a typical commodity. For some commodities however, other possibilities also

exist. For example, a commodity may have production costs that decrease with quantity

(e.g., commodities produced with economies of scale), or the quantity of a commodity

may not respond to price (e.g., commodities that cannot be produced or reproduced).

Note that there is an equilibrium unit price P* for each quantity Q that matches

demand with supply. P* identifies the "market clearing" price of a commodity. If the

price is too high (> P*), then demand is less than the supply (Pi and Q\ in Figure 10A1).

In this case, the price drops as producers compete to sell their supply of the commodity.

If prices are set too low (< P*), then demand is greater than the supply {Pi and Qi in

Figure 10A1). In this case, the price will be driven up as consumers compete for limited

supplies. If the price is not allowed to change, then rationing is required to allocate

available quantities of the commodity, perhaps through regulation by a government

agency. When supply and demand are in balance, the market clearing price efficiently

allocates the available quantities without regulation.

The supply and demand functions are surrogates for the benefits of consumption

and the costs of production. The demand function identifies a price that estimates the

benefit from consuming each additional unit of the commodity when the total supply is at

level Q. If the benefit is less, then we consume less; if the benefit is more, then we

consume more. The net benefit to consumers is the difference between the price they pay

for the commodity and the benefit they achieve from its use. Economists define this

benefit as the "consumer surplus" (Figure 10A2). Likewise, the supply function

identifies a price that estimates the cost of producing each additional unit of the

commodity when total production is at level Q. The net benefit to producers is the

difference between the cost to produce the commodity and the price they can charge.

Economists define this benefit as the "producer surplus" (Figure 10A2).

The market clearing price associated with the equilibrium between demand and

supply has the benefit of maximizing the combined consumer and producer surpluses

(i.e., the net benefit). For example, if a government applies controls to lower consumer

186

prices, then producers may respond by reducing production. Even though this may result

in a larger consumer surplus, this comes at the expense of the producer surplus (Figure

10A3). As a result, there is a net loss in total benefits to society. Also, demand ßo is

greater than supply Q (since the benefit of consumption PD is greater than the price P),

and rationing is required to allocate available quantities of the commodity.

Figure 10A1. Example Demand and Supply Functions

^ Price

/
Supply

Q\ Q
^ Quantity

Figure 10A2. Consumer and Producer Surplus

A Price

f
Supply

^ Quantity

187

Figure 10A3. Impact of Non-Market Price on Consumer and Producer Surplus

A Price

Net Loss

Q Q*
► Quantity

2. Non-Ideal Water Markets

In contrast to the ideal market presented above, the supply of water does not

usually change in response to market forces. Instead, the supply of water is constrained

by hydrologic conditions that are not affected by price. Figure 10A4 illustrates the

relationship between price and quantity when hydrologic conditions constrain supply.

This supply function also shows that an agency or other entity may establish a threshold

price required to provide any supply.
Likewise, the demand for water does not usually change in response to market

forces. Because water utilities are natural monopolies (i.e., sole source suppliers) they

have considerable power in setting prices. As a result, water supplies are typically

government owned or subject to government regulation [Zarnikau, 1994], and utilities

that manage these supplies are often non-profit or regulated-profit agencies. Thus, the

price for water is often based on some measure of capital and operating costs and not on

the cost of scarcity [Moncur, 1989; Rosa, 1991]. Because demand for water is growing

almost universally, prices are often below market clearing prices. These low prices are

popularly justified by the essential needs that water meets in human consumption, food

production, and industry. However, without a market to allocate supplies, agencies must

regulate who receives a portion of the limited supply (i.e., agencies must ration, even

under "normal" water supply conditions).
As long as the price is below the market clearing price for the available supply,

the actual price serves only to divide water-use benefits between the utility and

consumers. Under such conditions, an agency could establish a higher price as a form of

188

taxation without decreasing the benefit of water use. More likely, such taxation would

improve the efficient allocation of water supplies as the actual price is brought closer to

the market clearing price. Figure 10A4 illustrates the division of this benefit in terms of

producer and consumer surpluses. We may interpret the threshold supply price as a

"production" cost that we subtract from the producer surplus. In the short term, this may

include the costs of operating storage, transportation and treatment facilities. Over the

long term, this may also include the capital costs for these facilities.

Nevertheless, a market relationship between price and demand exists even if the

price is not allowed to change in response to market forces. As a result, we can use a

simulated market price to estimate the benefit for each unit of water. The total benefit for

consuming Q units is given by

f
rß

Total benefit = I P(Q)dQ (9A1)
/o

where P is given by the demand function as the price that consumers are willing to pay

for supply Q. To estimate the net benefit (i.e., consumer and producer surpluses), we

subtract "production" costs associated with providing water. To neglect these costs, we

consider the price raw-water (i.e., prior to treatment, delivery, and storage) to evaluate the

benefits of water use and to develop a demand function. Without these costs, the cost to

"produce" water is zero until we exhaust natural supplies.

Even when prices are not allowed to change in response to market forces in the

short term, the market equilibrium between demand and supply may influence prices in

the long term. Over time, demands and water supply conditions change; and plans for

system expansion or modification should be based on estimates of the costs incurred and

benefits achieved. When the price of water is based on operating and capital costs,

system expansion or modification may push the price higher. Given enough time, system

expansion may increase the price until a market equilibrium is achieved.

In the short term however, the market equilibrium between demand and supply

may have little influence. For example, if an agency does not adjust prices in response to

limited drought supplies, then the gap will increase between the actual price and the

market clearing price, making efficient allocation of supplies even less likely. Moreover,

if the market price is increasing due to long-term increases in demand or decreases in

supply, then there may exist a persistent gap between the actual price and the market

clearing price.

189

Figure 10A4. Producer Surplus and Consumer Surplus for Water Supply

Price

Quantity

B. ASSUMPTIONS

To measure the cost of rationing, we need to identify what benefit we derive from

water use and what loss we incur from reductions in use. We can estimate the benefit of

water using the market clearing price discussed above. Under non-market conditions,

this is a conservative estimate: non-market mechanisms used to allocate supplies in times

of shortage may not identify the best allocation for limited supplies. As a result, the

benefit from use of these supplies will be less and the cost of rationing will be more

[Mercer and Morgan, 1989].

However, water markets are not common and we generally cannot identify market

clearing prices directly. Instead, we identify price as a "willingness to pay" [Dandy,

1992] given the supply conditions. We can estimate this price using a reasonable demand

function based on indirect observations and common sense. For example, our willingness

to pay for water increases as water becomes scarce. Therefore, we should expect the

price to increase monotonically as the severity of rationing increases.

Because water is essential, we may not have much flexibility in reducing

consumption during times of shortage, even with the incentive of higher prices. We say

that demand for water is "inelastic" with changes in price because we find it difficult or

expensive to adjust to shortages. Demand elasticity is the change in the quantity

demanded as a result of changes in price. Note that we can define demand elasticity even

if we do not use price to influence demand.

190

To simulate the behavior of market prices and estimate the willingness to pay, we

can model demand using a reasonable mathematical function. In particular, we use the

mathematical definition of demand elasticity. Demand elasticity is defined as the

fractional change in demand with a small fractional change in price. Elasticities typically

have negative values since demand usually decreases with increasing price [Schiene and

Kemp, 1991]. Mathematically, we express the elasticity a as a function

«=üm(^>=dJf (MD
AP/P vriP

A/>->0

where Q is the quantity demanded and P is the price [Hanke, 1980]. For example, if the

price of water changes 1%, then the change in demand for water is a%. The closer

elasticity is to zero, the larger the change in price required to produce a change in demand

(Figure 10B1). We say that demand is "inelastic" when -1 < a < 0. In other words,

demand is inelastic when the resulting fractional decrease in demand is less than a

fractional increase in price.

Because we do not have market prices available to identify the benefit of water

use and the cost of shortages, we estimate market prices from available data. This data

includes estimates of demand elasticity and willingness to pay for water. Because this

data does not cover the full range of water supply conditions, we extrapolate using

simplifying assumptions. This section summarizes and justifies the use of these

assumptions. Even though the resulting cost function is approximate, we can judge the

appropriateness of extrapolated shortage costs since they are explicit.

Figure 10B1. Elastic (a = -2), Isoelastic («= -1), and Inelastic (a= -0.5) Demand
Functions

, Price
I OP*

< (-► Quantity
0.0 1.0

Fraction of Normal Supply (Ql(£)

191

1. Constant Elasticity

The most important assumption that we use is that elasticity is constant. A

principal and practical reason for this assumption is that evaluating elasticities is difficult

even for a single average value. Fortunately, water demand is consistently inelastic (even

though it may vary in degree) so a reasonable value should produce reasonable results.

Also, there is some evidence to suggest that, at least for urban demands, the long-term

elasticity is roughly constant over a large range of prices [Martin and Thomas, 1986].

Moreover, constant elasticity produces a demand function that is consistent with a

common-sense interpretation of water supply values (Figure 10B1). Using a constant

inelastic value for a, the price of water decreases with an increasing supply and

approaches zero as supplies become infinite (or, if we consider the impact of flooding,

the price could become negative). Also, consistent with our inability to survive without

some water, the price becomes infinite as supplies approach zero. Because water supplies

are essential to the existence of life, an infinite price is appropriate. As a result, the

assumption of constant elasticity produces a cost function that is more appropriate than

the quadratic cost functions used by other authors [Bogle and O 'Sullivan, 1979; Foster

andBeattie, 1979; Johnson et al, 1993; Kitanidis and Andricevic, 1989; Zarnikau, 1994].

A quadratic cost function implies that the price of water is finite, even as supplies

approach zero. Note also that a quadratic cost function implies that demand varies

linearly with price.

In practical situations, supplies should never approach zero and produce infinite

costs. Most water supply systems contain reservoirs, and these allow agencies to save

water for later use when the value (i.e., willingness to pay) is higher. In these situations,

the supply curve may have a positive slope for all prices (Figure 10B2). With the ability

to store water, agencies should never allow complete emptying of all reservoirs if

management is sufficiently cautious. Additionally, we can identify alternate supplies

(e.g.. trucking in water in the short term; desalination in the longer term) that we use

when supplies are scarce and prices sufficiently high. In these situations, the supply

curve of Figure 10A4 is not uniformly vertical, but has a positive slope when prices are

high (Pai, in Figure 10B3).

192

Figure 10B2. Impact of Storage on Market Equilibrium Scenarios

^Price Supply (t2) Supply^)

Q2* Q*
■ Quantity

Figure 10B3. Impact of an Alternate Supply on Market Equilibrium Scenarios

^Price Supply {hj Supply {${)

Q2* Q*
Quantity

2. Availability of Water Supplies

The supply function that we use to describe the availability of water does not

affect our estimate of a demand function or the cost of water rationing. Figure 10A4

illustrates a potential fixed-quantify supply function that represents the amount of water

available if there are no alternative supplies and there is no storage. In such situations,

available supplies cannot change with price because they are controlled by hydrologic

conditions. Comparing Figure 10A4 with Figures 10B2 and 10B3, we see different

supply functions. Rationing has the same impact on a consumers' welfare whether it is

the unavoidable result of shortage or the result of management decisions to hedge supply

decisions. Though these different supply functions produce different outcomes of

193

equilibrium price and available quantity, the demand-function relationship between price

and quantity does not change for consumers.

Over the long-term however, the impact of water rationing may depend on the

supply function. For example, a supply function associated with an ongoing condition of

scarcity should encourage conservation by water users and agencies (e.g., planting yards

with drought tolerant plants, installing low-flow toilets, regulating the type and amount of

water use), and this would change the cost of water rationing in the short-term.

3. Effect of Timing on Rationing Costs

The cost of rationing depends on the amount of time that the agency and

consumers have to adjust. The amount of time available depends both on our ability to

forecast shortages and on how rationing is phased in. If very little time is available, we

have little flexibility in changing our water use and we incur high costs. With sufficient

time or with ongoing conditions of scarcity, we may change our patterns of consumption

and/or change the water-supply system to improve its resiliency and reliability. In

general, the more time available, the better we can plan for shortages.

The availability of reservoirs makes a significant impact on the timing of

shortages. Obviously, when we are able to store water for later use, we reduce the

likelihood of shortages. In addition, we can hedge against the impact of severe shortages

by initiating rationing earlier than required by available supplies. This can provide the

agency and consumers with more time to adjust: low storage levels provide a strong

warning of impending shortage and early rationing allows consumers to adjust water use

more gradually.
As a result, the timing of shortages significantly affects the elasticity of water

demand. The more time available to adjust to shortages, the greater the elasticity of

demand (i.e., a becomes more negative). In developing the rationing cost function, we

neither make assumptions regarding the timing of shortages nor allow for the impact that

timing has on changing elasticity. It is possible to incorporate this impact in the state-

space model of a system by modeling the impact of prior rationing decisions on current

rationing costs. However, given our difficulty in identifying a single average elasticity

value, leaving this value as a constant may still be reasonable.

4. Externalities

Market prices should be used cautiously to measure for the value of water use.

Where market prices exist for a commodity, the convenience of these prices sometimes

194

results in their use without regard to other impacts and values not reflected in the price.

We call these impacts and values "externalities" because they exist outside the market.

Potential externalities include indirect community benefits that are not reflected in

the decisions of a consumer. For example, the price or reliability of water supplies may

cause industrial users to change or move plant operations without including in their

decisions the indirect impacts on jobs and taxes. In addition, prices do not have the same

impact on all consumers. In such cases, reductions in water use may depend more on an

ability to pay and less on the value of the use (although, actual prices seen by consumers

are usually based on block rates that preserve a certain base level of service for a low

cost). Given these non-ideal conditions, we may need to include other criteria to identify

efficient prices and allocations.

C. RATIONING COST FUNCTION

Given the appropriateness of the assumptions discussed above, we can identify a

demand function and a rationing cost function. To identify a demand function, we

rearrange and integrate equation (9B1) to solve price as a function of demand (assuming

constant elasticity a):

jf-ja -idß
Q

ln(P) = aA ln(ß) + c{

-i
P = c\ Qa

c\ is the combined constant of integration for the indefinite integrals. Suppose "normal"

supply in a period is ßo (perhaps established by system delivery capacity) and

corresponds to an estimated market price of PQ. We can use these values to solve for the

coefficient c\\

c\ = P0 QfX

this gives us our general form of the demand function:

P = PoiQ/Qda'1 (9C1)

assuming a constant demand elasticity a and an estimated market equilibrium at point

(PQ,Qo). This general demand function is similar to functions developed by other authors

[Dandy, 1992; Mercer and Morgan, 1989].

195

Now that we have a general demand function, we can identify a rationing cost

function. Rationing cost is the lost benefit for each unit of water that is unavailable for

consumption, either as a result of unavoidable shortages or as a result of decisions to

hedge by saving water for later use. The total benefit of consuming Q units of water is

given by equation (9A1) and is the area under the demand curve (Figure 10C1).

However, using the price function given by equation (9C1), this value is infinite for

-1 < a < 0 (i.e., whenever demand is inelastic). Since our goal is to estimate the cost of

rationing rather than the total benefit of water use, we can evaluate this cost as the

difference between the benefit of supplying water at level Q and the benefit of supplying

water at the "normal" level QQ where Q < QQ. Thus,

Cost of rationing = (benefit of go) - (benefit of Q)

This establishes the rationing cost of a normal supply ßo as zero. Thus, we can evaluate

the cost of rationing as:

Cost of rationing =
JrQo

P(Q)dQ (9C2)

Substituting equation (9C1) into equation (9C2) and integrating, we get the result

presented by Dandy [1992]:

Cost of rationing = -«- P0 [Q0 - Q (Q IQ^la) , a*-I (9C3a)
l+a

Cost of rationing = P0 Q0 In(ß) , a = -1 (9C3b)

The price given by equation (9C1) is the marginal cost of supplying one additional unit of

water given by the negative slope of the rationing cost function. In Figure 10C2 for

example, the price P0 is the negative slope of the tangent line at Q = QQ.

Figure 10C1. Graphical Estimation of the Total Benefit of Water Consumption
iPrice

► Quantity

196

Figure 10C2. Rationing Cost Versus Fraction of Normal Supply for a = -0.5

A Rationing Cost

lOPoßo

0.0 1.0
Fraction of Normal Supply (Q /Q0)

Quantity

D. APPLICATION TO AN EXAMPLE SYSTEM

We can apply the general cost function of equation (9C3a) to develop a

reasonable estimate of rationing costs for real systems. Again, this equation assumes that

demand elasticity is constant over the anticipated range of water supply conditions. To

identify the cost function, we need an appropriate reference point for market equilibrium,

and we need an appropriate estimate of demand elasticity. In this section, we will

identify reasonable parameters using an example water-supply system. We conclude this

chapter by applying the resulting cost function to the example system to assess the impact

of water rationing.

1. The Example Water supply System

To illustrate the application and results of the rationing cost function, we consider

a hypothetical water supply system that annually supplies 600,000 acre-feet of water

(roughly the water supply required for a residential district of 3,000,000 people, or about

1,200,000 families). Assuming a non-profit charter for this agency, the price of water to

consumers primarily reflects a pro-rated share of the storage, transportation, and

treatment costs. As a result, the agency finds it difficult to identify the market value of its

water supplies and the impact of rationing decisions. The agency needs an estimate of

these benefits and costs to minimize the impact of rationing and to better plan for system

expansion.

197

This hypothetical system presents water supply conditions that are similar to

expected conditions (within a few decades) for the East Bay Municipal Utilities District

(EBMUD) of Oakland, California. Except for local runoff in its district, EBMUD

currently obtains its entire supply from the Mokelumne River, located in the Sierra

Nevada Mountains. EBMUD is the largest user and manages the two largest reservoirs

on the River. Though the current demand by EBMUD is just over 200,000 acre-feet

annually, the effective demand that the district must meet is greater. The River also

provides water to meet growing demands by a variety of other users and for in-stream

flow requirements. Because EBMUD's water rights are junior to those of most other

users, it must manage the system to meet demands of all users to ensure that it can meet

demands in its own district.

2. Water Prices

In normal years, wholesale water costs range from $44 per acre-foot in San

Joaquin Valley to $237 per acre-foot in southern California [McClurg, 1992b]. During

recent mild droughts in the early 1990s, California sold water from its Water Bank for

$140-$175 per acre-foot [Howitt, 1994; McClurg, 1992a]. The more severe drought in

1976 and 1977 prompted some California communities (including Santa Barbara, Goleta

and Montecito) to build desalination plants for backup supplies that cost $1500 to $2000

per acre-foot. At a level of 25% rationing, various authors anticipate rationing costs due

to "welfare losses" to be between $40 and $180 per acre foot [Fisher et ai, 1995].

Water rates in the EBMUD district indicate that water has a high value for

consumers. In recent years, the industrial water rate for EBMUD has been between $431

and $1,307 per acre-foot scaled on prior usage [CUWA, 1991, pp. 5.6-7]. EBMUD's

ongoing Water Supply Management Program has considered a variety of efforts to

encourage conservation with costs from about $1000 to $12000 per acre-foot to increase

system yield and reliability [EBMUB, 1992, volume I, p 9.8; Fisher et ai, 1995].

However, water rates indicate the value of water consumption, and these rates are net of

raw water costs, storage, transportation, and treatment. It is likely that the net benefit

(i.e., the consumer and producer surplus) is less, even if water rates are set below market

prices.

Water shortage impacts on industry can be especially severe: California Urban

Water Agencies [1991] found significant production and employment reductions from

water rationing. In some industries, the value of water can exceed $400,000 per acre-

foot. Combined with low demand elasticity, rationing costs can be astoundingly high.

198

Though it is likely that these industrial uses have priority over other uses when rationing

is required, exceptionally severe rationing can result in high costs.

3. Demand Elasticity

While it is recognized that water demand is inelastic with changes in price, the

exact value of a is not precisely known and it can be influenced by a variety of

confounding conditions [Foster and Beattie, 1979; Gallager and Robinson, 1977;

Headley, 1963; Moncur, 1987; Schiene and Kemp, 1991]. For example, Martin [1991]

uses abundant data from the city of Tucson, Arizona, to arrive at the conclusion that a is

somewhere in the range of-0.70 to -0.26, depending on conditions such as weather and

local wealth.

Other studies have not gathered sufficient data to identify such a range of

elasticity; however, they have still found that water demand is quite inelastic, particularly

when water is scarce. Hahke [1980] estimated that elasticities are between -0.22 and

-0.16 for Perth, Australia during the dry summer months. Other authors have found the

demand for water to be inelastic with values typically between -0.7 and -0.2 [Billings and

Agthe, 1980; Danielson, 1979; Mercer and Morgan, 1989; Moncur, 1987; Moncur,

1989].

The available time for adjustment to shortage conditions can significantly

influence demand elasticity, as discussed earlier. With increasing time, elasticity should

increase (i.e., become more negative). Martin [1986] compared water demands in a

variety of consistently wealthy urban areas and found that demand has a long-term

elasticity of about a = -0.5. When these urban areas have less time to adjust to scarcity,

demand is more inelastic [Cameron and Wright, 1990; Mercer and Morgan, 1989].

Moncur [1989] studied the drought response of the urban area of Honolulu, HI and

observed a "short-run" elasticity of-0.265 and a "long-run" elasticity of-0.345. In

addition, it appears that demands may become more inelastic over time [Young, 1973],

possibly reflecting the impact of more intensive conservation efforts.

4. Assessment of Rationing Costs

Using a demand elasticity of a = -0.5 and a "normal" price (negative marginal

cost) of $200 per acre-foot, we can obtain a specific rationing cost function from equation

(9C3). Assuming at- -1, this cost of rationing is

Cost of rationing = 200 ß0 [(ß/ßo)'1 - 1]

199

Cost is in dollars and demand is in acre-feet. Note that the price of water (i.e., marginal

cost) associated with each level of demand is the slope of the cost function given by

equation (9C1). This price is

P = 200(ß/ßo)-2 = -dg
dß

where C = Cost of rationing. Applying these functions to extreme levels of rationing,

we observe that 50% rationing results in a price of $800 per acre-foot, and 90% rationing

results in a price of $20,000 per acre-foot. Rationing cost (i.e., the lost benefit of water

consumption) is $200ß0 at 50% rationing and $1800ß0 at 90% rationing.

Water rationing costs calculated by assuming a = -0.5 appear conservative

considering many authors1 estimates of short-term elasticity. Also, the prices of equation

(9C1) and costs of equation (9C3a) appear low when compared to observed price and

cost data. As noted earlier, the elasticity of a = -0.5 estimated by Martin [1986] was

more appropriate for urban areas that had ample time to adjust to long-term conditions of

water-scarcity.

As a result, short-term elasticity should be even less negative. Using a demand

elasticity a = -0.33, the cost of rationing is

Cost of rationing = 100 ß0 [(ß/ßo)"2 - 1]

The corresponding function for the price of water is

P = 200 (ß/ßo)"3

In this case, 50% rationing results in a price of $1600 per acre-foot (close to the cost of

desalination), and 90% rationing results in a price of $200,000 per acre-foot (about $0.60

per gallon, close to the cost of bottled water). The rationing cost is now $300ß0 at 50%

rationing and $9900 ß0 at 90% rationing.

5. Application to the Example System

To place these results in context, we can estimate the impact of shortage on the

hypothetical water supply system. If we assume that families in the district have similar

demands for water—in other words, they have similar uses for water, derive similar

benefits, and have a similar ability to pay for this water or to adjust to shortages—then we

can evaluate the impact of water shortages both on a single family (with representative

water demands) and on the district (as an aggregate of all users).

Assuming the system has a demand elasticity of a = -0.33, a normal price of $200

per acre foot, and a normal demand of ß0 = 600,000 acre-feet, then 50% rationing results

200

in an annual cost (or lost benefit) of $180,000,000, and 90% rationing results in an annual

cost of almost six billion dollars. Considering the severity of rationing, these costs may

be reasonable, though it may be easier to evaluate if we consider the impact per family.

We can distribute these costs to estimate the impact per family. A typical

American family consumes around ßo = 0.5 acre-foot annually. Figure 10D1 displays

the rationing cost using a = -0.33 and a PQ = $200 per acre-foot. We can see that 50%

rationing results in an annual cost of $150, and 90% rationing results in an annual cost of

$4950. In spite of the high prices, these rationing-cost estimates seem comparable to the

damage we might expect from such extreme levels of rationing.

In summary, to estimate the cost of water rationing one should consider the types

of consumption and the time over which adjustments can be made. Urban consumption

of water appears to be particularly inelastic with changes in price, resulting in high

rationing costs. When urban areas have sufficient time to adjust to water conditions, an

elasticity of a = -0.5 may be appropriate. In the short-term a = -0.33 appears

reasonable, though there is evidence that water demand can be even less elastic under

some conditions.

Figure 10D1. Estimate of Rationing Cost for a Typical Family

A Rationing Cost ($)
1000

Quantity

Supply (acre-feet)

201

202

CHAPTER 11

OPTIMAL CONJUNCTIVE-USE
OPERATIONS AND PLANS

Heuristic or intuitive rules based on experience may not be efficient when applied

to the management of water-supply systems that contain both surface and subsurface

storage. In particular, rules that assign subsurface storage the role of a back-up supply to

surface storage do not recognize the different capabilities of surface and subsurface

storage. This is the case if we recharge groundwater only after filling surface reservoirs

or if we pump groundwater only after exhausting surface supplies. We demonstrate how

to incorporate the different capabilities of surface and subsurface storage in appropriately

cautious real-time control of conjunctive-use systems and how to evaluate the benefit of

adding groundwater supplies to an existing surface-water supply system. To illustrate

this, we use the East Bay Municipal Utilities District of Oakland, California, as an

example.

A. INTRODUCTION

Increasing demands on limited water resources are leading managers to consider

innovative designs and control methods that can improve system reliability. Conjunctive

use—the coordinated management of groundwater and surface water—is an affordable

and environmentally sound method for enhancing the reliability of water supply systems

[Fisher et al, 1995; Lettenmaier and Burges, 1979]. However, the potential for using the

subsurface as a natural storage facility has not been fully recognized, and most large

water supply systems continue to depend exclusively on surface water supplies.

Managers of many systems view groundwater as providing only a back-up supply used

only in times of shortage [Lettenmaier and Burges, 1979].

A barrier to conjunctive-use methods is that it is not clear how best to operate

conjunctive-use systems. Surface and subsurface storage have operating costs and

constraints that are fundamentally different. On one hand, surface storage can be filled

and drained rapidly, while rates of recharge and pumping of groundwater are limited. On

the other hand, aquifer storage capacity considerably exceeds available surface storage in

203

many watersheds [Buras, 1963]. In addition, pumping and recharge may be costly, while

surface releases may generate hydropower benefits.

Such differences suggest that control of reservoirs and aquifers should be quite

different. For example, the potentially large subsurface storage capacity and the expense

of pumping and recharge suggest that we store water in the subsurface as insurance

against long-term water needs. In contrast, limited surface storage capacity and the low

cost of active management suggest that we use surface water supplies to meet short-term

needs during the next season or year. As Lettenmaier and Burges observe, "In contrast to

the rather long-term failure modes encountered in excessive reliance on groundwater

supplies, shorter scale (e.g., annual or seasonal) failures may result from exclusive use of

surface supplies. The difference in time scales results because typical surface storage

reservoir volumes are much smaller compared to abstractions than are groundwater

supplies" [1979, p. 1].

The active use of aquifers for storage within a comprehensive water management

program can yield significant benefits. By taking advantage of the distinctly different

characteristics of surface and subsurface storage, we may significantly improve

conjunctive-use operations and supply reliability. Also, we can identify levels of surface

storage and pumping capacity that can be traded off effectively to achieve equivalent

levels of reliability [Lettenmaier and Burges, 1979, p. 59].

This chapter will identify efficient real-time control policies for conjunctive use

using simulation and optimization, or "systems analysis." Systems analysis allows us to

identify control policies for new or modified systems for which we do not have sufficient

operating experience to rely on heuristic control methods. In particular for conjunctive

use systems, systems analysis allows us to identify control policies that efficiently ration

water supplies and allocate stored water between surface and subsurface storage.

Active management of groundwater can significantly improve the reliability of

water supplies and can reduce expected costs, in spite of pumping and recharge costs.

The results of systems analysis demonstrate that the severe impact of water shortages

requires us to make active use of both surface and groundwater storage mechanisms. The

severity of impacts grows rapidly with the degree of rationing, so we have an incentive to

incur modest rationing and operating costs when these reduce the likelihood of more

severe future rationing. In other words, efficient real-time control policies include

management decisions that "hedge," sacrificing some current water-use benefits to ensure

future benefits.

In addition, this chapter will explicitly evaluate the benefit of adding surface and

subsurface storage to an existing water supply system. By incorporating capacity

204

constraints as state variables in system models, we can evaluate the expected benefit of a

wide range of expansion alternatives while simultaneously identifying the best operating

policies. As a result, we can objectively balance the reliability and operating costs of

various options with the capital costs of these options.

B. PROBLEM DESCRIPTION

To illustrate the identification of real-time control policies and capacity expansion

benefits, we consider a system model similar to that discussed by Bur as [1963; 1972] and

summarized by Yakowitz [1982]. It is based on the system of the East Bay Municipal

Utilities District (EBMUD) of California that supplies water to communities along the

eastern edge of the central and southern San Francisco Bay [EBMUB, 1992; Fisher et ai,

1995].

1. The EBMUD System

The EBMUD system serves the residential needs of approximately 1.2 million

people, as well as the industrial, commercial, and institutional needs in the East Bay

region of the San Francisco Bay area. About 95 percent of its water supply is from the

Mokelumne River's 575-square mile watershed on the western slope of the Sierra Nevada

Mountains.

Streamflow supplies are seasonal and uncertain, and inflows to EBMUD's

reservoir system average 720 thousand acre-feet (TAF) annually (1 TAF = 1.23 million

cubic meters). Annual flow has varied between a low of 130 TAF and a high of 1,595

TAF. Average monthly flow varies from a high of over 100 TAF in May to a low of

about 30 TAF through the fall months. Typically, a year will have a month of high flow

approaching 200 TAF and a month of low flow approaching 10 TAF. At times, the

natural flow of the river has ceased.

Future streamflows can be predicted with some accuracy using available

information. The intra-annual streamflows on the Mokelumne River are seasonal and

autocorrelated, with a monthly correlation coefficient of 0.8 to 0.9. In addition, much of

the late spring and summer runoff is a result of melting snow pack, and measurements of

snow pack are available throughout the winter. Therefore, consideration of the season,

prior streamflows, and measurements of snow pack all contribute to streamflow

prediction.

EBMUD manages two reservoirs having a combined capacity of 641 thousand

acre feet (TAF) on the Mokelumne River. Up to 200 TAF of this storage is reserved for

205

flood control (under agreements with the U. S. Army Corps of Engineers), and an

additional 21 TAF is dead storage. Besides water supply and flood control functions,

these reservoirs also have a combined hydropower generating capacity of 39 megawatts.

An 82 mile aqueduct transports water to the service area for use or for storage in

five terminal reservoirs. The aqueduct has a delivery capacity of 200 million gallons per

day (mgd) by gravity flow or 325 mgd by pumping. This maximum delivery capacity

coincides with EBMUD water-rights permits to divert up to 325 mgd (364 TAF per year)

for use in its service district. The terminal reservoirs provide an additional 155 TAF of

storage capacity (with 17 TAF of dead storage).

2. Proposed Aquifer Storage

Due to increasing needs for water in the district and in the Mokelumne River

basin, EBMUD has been considering a number of options to prevent deterioration of its

water supply reliability. These options include adding subsurface storage and increasing

surface storage.
Accessible subsurface storage appears substantial. The Mokelumne River and

EBMUD Aqueduct run west from the Sierras across the Central Valley of California.

This area is underlain by extensive fresh-water bearing formations of thick sand and

gravel totaling a few hundred feet in the East and increasing to almost two thousand feet

near the Delta. Well capacities are frequently 500 to 1500 gallons per minute (gpm), with

specific capacities of 35 to 60 gpm per foot and transmissivities of 60,000 to 80,000

gallons per day per foot [DWR, 1967]. Also, there is a great amount of available space

for aquifer storage because significant development of groundwater for local agricultural

and municipal needs has depressed the water table by an average 50 to 100 feet below

pre-development levels [DWR, 1967; EBMUB, 1992].

3. System Model

The conjunctive-use model that we analyze in this chapter is a simplified

representation of the EBMUD system with an added aquifer-storage component (Figure

11B1). This model is not intended for use in systems analysis to solve specific operating

or planning problems for EBMUD, but to illustrate some of the general characteristics of

optimal control and planning of a conjunctive-use system. The simple conjunctive-use

model preserves essential components of a conjunctive-use system without including

seasonality or complex system structures. While these may be important for systems

analysis applied to the real system, they complicate our ability to observe and evaluate

the general characteristics of optimal control and planning. In the next section and the

206

concluding remarks, we will summarize additional model components appropriate to

solve specific operating or planning problems for EBMUD.

Variables used to quantify the conjunctive-use model consist of control variables,

u, state variables, x, and stochastic variables, s. Control variables include decisions to

supply water to meet demands and to allocate water between surface and subsurface

storage. State variables define the amount of water currently stored separately in surface

and subsurface reservoirs. Stochastic variables define reservoir inflows. Table 11B1

summarizes the variables of the simple conjunctive-use model and bounds on these

variables. Units are in thousands of acre feet.

The state of the system evolves under the influence of control decisions and

reservoir inflows according to the linear transition equation

X(H-D =
1 0

L 0 1
XW +

1 1-1-1
L 0 -1 1 0

u(0 +
1

10
s(0 (11B1)

This equation describes the change in surface and subsurface storage levels during any
year-long stage /. The ending surface storage is the sum of beginning storage x\^t),

inflow S\XD , and groundwater pumping «2.« > minus water supplied to users u\^,),

groundwater recharge u-^xi), and release downstream u^t) • The ending subsurface

storage is the sum of beginning storage *2,(0 and recharge minus pumping. In addition,

the state of the system evolves subject to the bounds in Table 11B1 that constrain feasible

decisions and attainable states.

Figure 1 IB 1. The Simple Conjunctive-Use System

'i inflow

/\ reservoirs

■^ flows

Q controls

aqueduct

outflow

"4) release ("3) recharge

subsurface
storage

pumping ("1) supply

users

207

Table 11B1. Variables of the Simple Conjunctive-Use Model

Variable Type Definition Min.* Max.*

"l control supply to users (annual) 0 600

"2 control groundwater pumping (annual) 0 100

"3 control groundwater recharge (annual) 0 50

"4 control release downstream (annual) 0 infinite

*1 state surface reservoir storage 0 200

*2 state subsurface reservoir storage 0 500

Si stochastic inflow from streams 0 infinite

* units in thousands of acre feet

4. Demand. Streamflow. and Storage

The effective demand that EBMUD must satisfy in managing its system is greater

than the demand in its district summarized earlier. Because EBMUD's water rights are

junior to those of most other users, it must manage its system to meet demands of all

users to ensure that it can meet demands in its own district. Demands of these senior

users are currently about 100 TAF annually, but these may significantly increase because

of growth and new streamflow maintenance requirements [EBMUB, 1992]. Annual

demands for Mokelumne water supplies are expected to increase to perhaps 600 TAF in

twenty or thirty years. Thus, annual demands in the model are a constant 600 TAF.

Streamflows in the model are lognormally distributed with a mean annual flow of

700 TAF annually and a standard deviation of 350 TAF. For simplification,

autocorrelation and snow-pack measurements are neglected as they have a minor impact

on predicting streamflows a year in advance.

The simple conjunctive-use model uses year-long stages, so we require annual

updates of supply and allocation decisions. Though the actual real-time control of the

EBMUD system requires more frequent updates of control decisions, our use of year-long

stages allows us to illustrate more clearly the impact that differences in surface and

subsurface storage have on real-time control and on evaluation of capacity expansion

options. Because existing EBMUD system storage is used to regulate both annual and

seasonal variability of Mokelumne River flows, an annual model greatly reduces the

impact that streamflow variability has on water supply reliability. To ensure that water

shortages have a reasonable impact on system operations, the model uses a reduced

surface storage capacity of 200 TAF. In contrast, subsurface storage need not be reduced

208

since limited pumping and recharge capacities (and associated costs) means that

subsurface storage has a smaller impact on seasonal variability.

Subsurface storage capacity is 500 TAF. This is significantly greater than the

surface storage capacity of 200 TAF but still less than the potential storage capacity of

aquifers in the Central Valley. It is likely that EBMUD's access to subsurface storage

would be constrained by legal and contractual arrangements and not by the physical

capacity of the aquifers, so a simple bathtub model for groundwater may be sufficient.

However, a more accurate representation of subsurface flow may be required under other

conditions and for other systems. For example, EBMUD might use the smaller

subsurface storage capacity in its own service district where it has greater access and

control. In this case, local dewatering of the aquifers can make it impossible to fully

access the available storage capacity.

To realistically solve an actual operating or planning problem for the EBMUD

system, it may be necessary to use month-long or week-long stages and to model each

reservoir separately using actual capacities. However, shorter stages increase the total

number of stages required to span the operating horizon of the problem, and added

reservoirs and stochastic inputs increase the number of state variables. All these increase

the computational effort required to solve a problem: effort grows linearly with the

number of stages and exponentially with the number of state variables. Although, we can

solve these more-complex problems using the systems analysis methods developed in this

thesis, we will concentrate on the simpler model.

5. Value Model

In each stage, the cost of control decisions, u, is a sum of costs

C(u) = shortage cost + pumping cost + recharge cost (11B2)

Shortage cost is the loss from rationing that leaves unsatisfied some demands for water

and is a function of the water supply decision u\. Pumping and recharge costs are

operating costs that result from allocating stored water between surface and subsurface

storage by a decision to pump «2 or recharge «3.

SHORTAGE COST

Identification of shortage costs can be difficult. As a result, few reservoir

management studies attempt to estimate actual shortage costs in spite of the important

impact that these costs have on hedging. For example, Fisher et al. [1995] compare the

impact of various capacity expansion alternatives of the EBMUD system by evaluating

209

only the capital and operating costs of the various alternatives. However, the impact of

shortages on operations and plans may not be correctly anticipated without a reasonable

estimate of the shortage costs.

In contrast, this study makes explicit use of a shortage-cost estimate to identify

the benefits of water use and the cost of rationing. These costs are evaluated by a cost

function that assumes that the "willingness to pay" for the use of water is a reasonable

surrogate for the benefits of water supply [Dandy, 1992]. In addition, the cost function

assumes that the elasticity of demand (i.e., its sensitivity to changes in price) for water is

constant over a wide range of prices.

We can identify a cost function given these assumptions and some additional data

on the system. Using the results of Chapter Ten, we assume an elasticity of a = - 0.33

and a price of $200 per acre-foot when we supply the full annual demand of uf1** = 600

TAF. These values are reasonable given elasticities estimated by other authors [Billings

andAgthe, 1980; Danielson, 1979; Martin and Thomas, 1986; Mercer and Morgan,

1989; Moncur, 1987; Moncur, 1989] and recent California water prices [CUWA, 1991;

EBMUB, 1992; Fisher et ah, 1995; Howitt, 1994; McClurg, 1992a; McClurg, 1992b].

Using these data in the general cost-function equation [Dandy, 1992], the total shortage

cost in a year-long stage is

shortage cost = $60,000,000 [(WI/M,™*)"
2
 - 1] (11B4)

Under "normal" conditions, there is no rationing and wi/uf13* = 1. Under water-shortage

conditions, rationing may be required due to either hedging or unavoidable shortages and

M,/w,max < 1 .

PUMPING COST

To provide an annual pumping capacity of 100 TAF, EBMUD could develop a

field of perhaps 50 to 100 large capacity wells with total capacity of about 100,000 gpm.

For pumping lifts of approximately 100 feet around the Mokelumne River and the

aqueduct, the cost of electricity [Georgakakos and Vlatsa, 1991] is about $10 to $20 per

acre-foot. These costs could increase as much as 50% when pumping at a maximum rate

based on specific well capacities. In addition, we can expect additional costs for

operation and maintenance for the well field.

For this study, we assume a marginal cost for pumping of $40 per acre-foot that

increases linearly to $80 per acre-foot when pumping at the maximum annual rate of w™3*

= 100 TAF. At this maximum pumping rate, the average cost of pumping is $60 per acre-

foot.

210

Using these costs, the total pumping cost in a year-long stage is

pumping cost = $4,000,000 {u2lu^) [1+0.5 (M2/"2
max) 1 01B5)

This cost should be sufficient to discourage unreasonable active pumping of groundwater

and should allow us to identify water supply conditions that realistically justify pumping

decisions. This does not include capital costs for installation and development of the well

field. For example, Fisher et al. [1995] estimate costs of drilling and pump installation to

be about $25,000 per well.

RECHARGE COST

The marginal cost of recharge is highly variable, depending on the methods used

and the character of sites available for implementing a recharge program. Methods may

include surface spreading, injection, and enhanced natural recharge (e.g., by structural

and institutional arrangements that replace groundwater pumping with surface supplies

during wet years). For example, the amount of land required and the maintenance of this

land for recharge is highly variable, depending on soil type, infiltration rate, and

subsurface geology.

For this study, we assume a constant marginal cost for recharge of $40 per acre-

foot. Depending on the recharge method used, this cost could represent the purchase,

transportation, or treatment of water prior to recharge, or might represent the cost of

recharge-facility maintenance. The total recharge cost in a year-long stage is

recharge cost = $2,000,000 (M3/w3
max) (11B6)

As with pumping cost, this cost should be sufficient to discourage unreasonable active

recharge of groundwater and should allow us to identify water supply conditions that

realistically justify recharge decisions. This does not include costs for land or other

capital costs for installation of recharge facilities. These capital costs are also highly

variable because of a diversity of recharge options and the cost of these options. For

example, the cost of land is highly variable. Also, the cost of establishing and

maintaining other structural and institutional arrangements can be significant due to

government regulations and the diversity of interests that must be considered.

C. EVALUATION OF OPERATIONS AND PLANS

By using mathematical models that simulate the structure and dynamics of

reservoir systems, we may simulate and evaluate proposed management options

211

conveniently. Also, by applying optimization methods, we may quickly and efficiently

identify the best options for control and planning when a range of options exists. For the

simple model, the best options are those that achieve the lowest expected cost of rationing

and operations modeled above.

The real-time control of a conjunctive-use system includes operating decisions

that ration water supplies to users and that allocate stored water between reservoirs. For

these controls to be efficient, we need to include information about the system that

identifies its state. For the simple model presented above, this information consists of

current surface and subsurface storage levels and the forecast of the current year's

inflows.

The planning of a conjunctive-use system includes analysis and implementation

of changes in system configuration, inputs, or goals. To evaluate accurately the expected

costs and benefits of these changes, we need to identify new control policies to operate

the system. For the simple model presented above, we will identify control policies and

expected costs for a range of pumping, recharge, and surface-storage capacities.

As we observed in Chapter Nine, we desire control policies that consider the

impact that current decisions have on future costs. This is important because current

control decisions limit future management options. As a result, managers have an

incentive to sacrifice some of the current performance (i.e., by incurring short-term costs)

to improve future performance. By trading some short-term benefits for long-term

benefits, managers hedge. For example, during a drought, a system manager may ration

water supplies to reduce potential damages from more severe shortages in the future.

Hedging is important when variable and uncertain inputs drive the state of a

dynamic system and the marginal cost (per unit of deviation) from the target is a non-

linear function of the deviation. For example, conjunctive-use systems are driven by

inputs of water supply and demand that often are highly variable and uncertain, and the

marginal cost of shortages can increase dramatically and non-linearly as a function of

rationing severity. When inputs are uncertain, appropriate control decisions cannot be

identified by a pre-determined control schedule because some information about future

streamfiows and other stochastic inputs is not available. Instead, we make "real time"

decisions that use information that is available when the decisions are made. Thus, the

problem is how to optimize control policies rather than control schedules.

Our goal is to identify control policies that minimize the combined expected costs

of water rationing and system operations. Total costs accumulated over a multi-year time

horizon are

212

V= Xcf,(l-r)' (11C1)
*=i

for an N year horizon using a discount rate r.

To solve the control policies of the conjunctive use problem, we apply discrete

dynamic programming using the second-order GDP method (Chapter Five). In each

stage, we calculate expected costs as a probability weighted sum of outcomes using

Gaussian quadrature (Chapter Seven). We use foresight of the current year's inflows to

identify control decisions as this more closely represents real operations that are based on

a sophisticated prediction of streamflow. Also, real operations are updated more

frequently than permitted in the simple model.

The following results are for the first stage of a hundred-year time horizon using a

4% annual discount rate (r = 0.04). In effect, these results identify the infinite-horizon,

steady-state solution that does not depend on boundary conditions at the end of the time

horizon. Because system conditions (e.g., system constraints and hydrology) are static,

we observe that control policies and the cost function converge to steady state values

after a few decades. This convergence is promoted by the discount rate; however, as we

will see later, the impact of a discount rate has only marginal impacts on control policies

and capacity expansion benefits.

D. RESULTS FOR REAL-TIME OPERATIONS

The solution of the simple conjunctive-use problem provides a set of control

policies for system operation. The solution also provides the expected total cost of water

rationing, pumping, and recharge that results from application of these policies. Control

policies are expressed as functions of the initial state (i.e., initial surface and subsurface

storage levels) and the current year's inflows, and cost is expressed as a function of the

initial state.

Because we use foresight of current inflows to identify control decisions, the

actual division between initial surface storage x\^tl) and current inflow s!,(,,) does not

influence control decisions and the expected cost. We can define "available surface

water" as the sum (x\ + ^i)(/,) to simplify illustration of the control-policy and cost-

function solutions. Note that with this definition, available surface water has no

maximum value and we will only illustrate results for available surface water less than

1000 TAF. We also define "available groundwater" simply as subsurface storage X2,(/,) •

213

1. Supply Policy

Figure 11D1 depicts the supply policy (i.e., release to users {/),(,,)) as a function

of surface water and groundwater levels. Supply is in thousands of acre feet per year and

levels are in thousands of acre feet. As surface-water and groundwater levels increase,

we see that the supply increases until a plateau at the maximum of 600 TAF per year.

Because annual pumping is limited to 100 TAF, rationing is required when

surface water supply is low even if sufficient groundwater supply is available. The

release to users must be less than the sum of available surface water and pumping. In

Figure 11D1, this is indicated by vertical portions of the contours. When available

groundwater is below 100 TAF, there is insufficient groundwater for maximum pumping.

Figure 11D1 also indicates that we should ration even when sufficient surface

water is available. At point A for example, there is sufficient water to meet all demands

with 600 TAF available surface water. Instead, only about 530 TAF is the released to

users and 70 TAF is stored to hedge against future shortages. Available water can be

released to meet current demands or can be stored to meet future demands, and we should

balance these two uses under certain conditions.

In Figure 11D1, we can see that hedging exists when surface-water level is

moderately low (approximately 400 to 730 TAF) and groundwater level is low. There is

an incentive to ration under these conditions, even if supplies and pumping capacity are

sufficient to meet all current demands. These decisions are examples of how we employ

cautious management to balance the cost of current rationing with the potential cost of

future, more severe rationing.

Figure 11D1. Supply Policy: Release (TAF per Year) to Users as a Function of
Available Water

500

Available
Groundwater,

xi (TAF) -

1000
Avalable Surface Wafer,x2 +s{ (TAF)

214

2. Allocation Between Surface and Subsurface Storage

Figure 11D2 depicts the pumping and recharge policies (£/2,(r,) and l^,,)) that

transfer water from and to groundwater as a function of surface water and groundwater

levels. In effect, these policies allocate stored water between surface and subsurface

storage. As in Figure 11D1, pumping and recharge are in thousands of acre feet per year

and levels are in thousands of acre feet. As the surface-water level decreases and the

groundwater level increases, we see that pumping increases until a plateau at the

maximum 100 TAF per year. In contrast, as the surface-water level increases and the

groundwater level decreases, we see that recharge increases until a plateau at the

maximum 50 TAF per year.

Figure 11D2. Pumping and Recharge Policies: Transfers (TAF per Year) from and to
Groundwater as a Function of Available Water

Available
Groundwater,

xi (TAF) A

1000
Available Surface Water,x2 +s{ (TAF)

PUMPING POLICY

Maximum pumping is required whenever available surface water is low and

groundwater is available. This allows us to provide the maximum supply possible during

extreme water-shortage conditions. In Figure 11D2, this is indicated by horizontal

portions of the pumping contours. When the subsurface storage is below 100 TAF,

pumping cannot exceed available groundwater.

It might be thought that pumping should be determined solely by the need to meet

current demands. However, Figure 11D2 indicates that we should not necessarily pump

at the maximum rate needed to meet current demands when groundwater is low. Instead,

we should reduce pumping when available surface water increases beyond 300 to 400

215

TAF and the groundwater level is low. These decisions coincide with supply decisions

that hedge (Figure 11D1). This means that under conditions of moderate rationing to

save water for future use, we should reduce or cease pumping to store some of this water

in the subsurface. The appropriate level of pumping depends on the available

groundwater in storage.
Likewise, Figure 11D2 indicates that we should not necessarily cease pumping if

not needed to meet current demands when the available groundwater level is high.

Instead, we should continue pumping when available surface water increases beyond 600

TAF and the groundwater level is high. For example, when there is 600 TAF available

surface water and 500 TAF groundwater (point B in Figure 11D2), there is no rationing

(see Figure 11D1) and there is sufficient available surface water to meet all demands.

Instead of halting pumping under these conditions, pumping is continued at a moderate

rate to transfer a greater portion of the remaining stored water to surface storage where it

is more readily available. This means that it is desirable to shift some water from

subsurface storage to surface storage when the groundwater level is high and surface-

water level is low. Because the pumping rate is constrained, there is a risk of severe

rationing if future inflows are extremely low and surface reservoirs are empty.

RECHARGE POLICY

Maximum recharge is required whenever available surface water is high and

groundwater is low. This is especially true when the surface-water level exceeds 800

TAF (the sum of maximum demand and surface storage); excess water above this level

must be released "unused" downstream unless it is recharged. In Figure 11D2, this is

indicated by the vertical portions of the recharge contours. When subsurface storage is

above 450 TAF, recharge cannot exceed available subsurface storage.

It might be thought that recharge should be determined solely by the availability

of excess water. However, Figure 11D2 indicates that we should not necessarily recharge

only after meeting current demands when groundwater is low. Instead, we should

recharge when available surface water is below 800 TAF and the groundwater level is

low. In particular, we should also recharge when available surface water is low enough

that supply decisions hedge (Figure 11D1). This means that under conditions of

moderate rationing to save water for future use, we should recharge to store some of this

water in the subsurface. As with pumping, the appropriate level of recharge depends on

the available groundwater in storage. For example, when there is 600 TAF available

surface water and zero groundwater, we should ration to store 70 TAF for future use

(point A, Figure 11D1). However, we also should recharge at the maximum rate (point

216

A, Figure 11D2). This means that we have a strong preference for storing water in the

subsurface when groundwater level is low. If the surface reservoir fills in the following

year, then we will lose the future benefit from current efforts to save water by rationing.

ALLOCATION

In effect, pumping and recharge decisions allocate stored water between surface

and subsurface storage. In the absence of operating costs, pumping and recharge policies

should seek allocations that give the best water supply reliability. These allocations

should be based on the different capabilities and limitations of the storage mechanisms

and the expected benefit of stored water: water stored in the surface may be "lost" if the

reservoir subsequently fills; water stored in the subsurface may be inaccessible during

severe shortages.

In this simple conjunctive-use system, we never have an incentive to pump and

recharge simultaneously. Indeed, water-supply conditions under which we should pump

and recharge may be separated by a significant gap. In Figure 11D2, this is indicated by

the unshaded gap between the pumping and recharge contours.

Because of operating costs, we should pump and recharge to achieve a better

allocation only when the benefit of an improved allocation exceeds the cost of achieving

that allocation. The benefit of improved allocation is large when water levels are low,

and we see that the gap between pumping and recharge is small. As water levels

increase, the benefit of improved allocation decreases and the gap widens.

When supplies are sufficiently large though, the gap again narrows as we recharge

to store water that would otherwise be released downstream. The benefit of recharging

this water is much greater than the benefit of recharging water that otherwise could be

stored in the surface reservoir.

3. Downstream-Release Policy

Figure 11D3 depicts the downstream release policy U^i,) ■ As before, release is

in thousands of acre feet per year and levels are in thousands of acre feet. Water is

released downstream only when available surface water levels are high, and the bend in

these contours above 450 TAF is because there is insufficient subsurface storage capacity

for maximum recharge.

The policy for downstream release is somewhat obvious since the control policy

always saves as much water in surface and subsurface storage as possible. In the simple

conjunctive-use model, rationing is frequently required because demands are such a large

fraction of average streamflow. As a result, the expected cost of rationing always

217

outweighs the cost of recharge, and a downstream release occurs only when water levels

exceed demands and opportunities for storage.

Because the system objective includes only the goals of minimizing water

rationing and operating costs, there is no benefit from releasing water downstream except

when required by capacity constraints. However, if we were to add other goals such as

flood control, release decisions would also show significant hedging to maintain available

empty storage as a buffer against peak inflows.

Figure 11D3. Release Policy: Release (TAF per Year) Downstream as a Function of
Available Water

500'

Available
Groundwater,

*2(TAF) H

US

0
(zero release)

T

^100

500 1000
Avaiable Surface Water,x2 +s{ (TAF)

4. Expected Cost of System Operations

Figure 11D4 depicts the total discounted cost as a function of available surface

water and groundwater levels. Cost is in millions of dollars and levels are in thousands of

acre feet. As surface-water and groundwater levels decrease, we see that the total cost

increases and becomes infinite as levels approach zero. Zero supply means that we have

no water for any use, even for sustaining life.

In reality, we should not expect to see the high costs that result from supplies

approaching zero. It is extremely unlikely that we will operate with critically low

supplies because (1) extremely low inflows are unlikely, (2) storage levels should rarely

approach zero with cautious management, and (3) alternate supplies are often available

when prices are sufficiently high (i.e., hauling water by trucks, desalination, and other

supply methods become cost effective).

Figure 11D4 shows that expected costs do not change when available surface

water is greater than 850 TAF because we can neither use nor store supplies greater than

218

this amount. Such large surface supplies permit us to fully meet maximum demands of

600 TAP while also permitting us to fill the surface reservoir (200 TAP) and recharge at

the maximum annual rate (50 TAF).

Figure 11D4. Expected Total Cost (Million $) as a Function of Available Water Using
Foresight of Current Year's Inflows

500-

Available ~
Groundwater,

X2 (TAF) -I

1000
Available Surface Water, x2 + s{ (TAF)

5. Cost-To-Go

Figure 11D4 plots the expected total cost of rationing and operations as a function

of surface water and groundwater levels assuming that we know current inflow S(tl). We

evaluate the cost as an expectation over all subsequent inflows {%,),...,%„) }■ In

contrast, Figure 11D5 depicts the expected total cost F as a function of initial surface and

subsurface storage levels *i and X2 assuming no foresight. We evaluate this cost as an
expectation over all current and future inflows {s(h),...,S(,N) }. This function is known as

the "cost-to-go" because it describes the expected cost to go from any initial state of the

system. The cost-to-go function is useful in dynamic programming because it describes

expected cost strictly as a function of the state. Thus, we can use the cost-to-go function

to evaluate the impact that current control decisions have on future costs through the

effect they have on the state of a system.

We can evaluate an expected cost in Figure 11D4 that assumes foresight by using

the cost-to-go function F,2(x) (which is the same as F,,(x) because of solution

convergence using a discount rate). Using foresight of current stochastic inputs s,

ftl(x,s) = minU(ri){ C„(u,s) + F,2(x) } (11D1)

where /j,(x,s) is the cost function of Figure 11D4. In a recursive fashion, F,,(x) can be

evaluated from /",,(x,s) as the probability weighted sum of current inflows,

219

Ftl(x) = X W(s)/ri(x,s) (11D2)

where W(s) is the weight applied to input s. Compared to Figure 11D4, the costs of

Figure 11D5 are less variable because of the "averaging" over possible values of current
inflow S(tl). We can see that the results of Figure 11D5 are consistent with Figure 11D4.

For example, the overall cost of about $250 million in Figure 11D5 is consistent with the

costs in Figure 11D4 when available surface water is about 700 TAF. Surface water of

about 700 TAF represent an "average" condition of streamflow and storage.

Figure 11D5 shows that, using a discount rate of 4%, the total cost of future

operations is roughly $250 million. The annual cost is 4% of the total cost, or roughly

$10 million. These costs decrease as levels increase, but costs are still significant even

when reservoirs are initially full. The time horizon is sufficiently long and the discount

rate sufficiently low that we cannot avoid or discount the cost of future shortages.

Figure 11D5 also shows that the decrease in costs with increasing levels is not

constant. The decrease in costs is greatest when storage levels are low. Furthermore, the

decrease in costs depends on the initial surface and subsurface storage levels. As we saw

in the supply policy results, the change in cost with storage is significant enough to

encourage a balancing of current benefits of water supply (to avoid current rationing)

with expected future benefits of storing water (to reduce the impact of future shortages).

As we saw in the allocation results, the change in cost with allocation between surface

and subsurface storage is significant enough to encourage operations that move toward

the best allocations.

Figure 11D5. "Cost-To-Go": Expected Total Cost (Million $) from Future Inflows as a
Function of Initial Storage Levels

500

Subsurface
Storage,
x2 (TAF)

200
Surface Storage, JC, (TAF)

220

E. RESULTS FOR CAPACITY EXPANSION

We can extend the simple conjunctive-use model to evaluate the effect of

changing system capacities. This is accomplished by converting the bounds on surface

storage, pumping, and recharge from fixed values to variables. To allow these variable

capacities, we add three additional state variables to the simple conjunctive-use model.

These three state variables represent added pumping capacity X3, added recharge capacity

X4, and increased surface storage capacity X5. We add these state variables to the

transition function of equation (11B1), setting each identically equal to its value in the

previous stage. Also, we ensure control policy solutions are valid for these capacities by

adding constraints to bound pumping and recharge decisions and to bound the surface

storage level (Table 11E1).

Changing system capacities in this manner allows us to compare the benefits and

trade-off of increasing surface storage and/or adding subsurface storage. The advantage

of this approach is that we can evaluate the benefits of an infinite number of capacity

expansion alternatives while simultaneously identifying the appropriate real-time control

policies that should be applied. As a result, we need not rely on a trial-and-error

approach to identify the best capacity expansion alternatives, each requiring a separate

control-policy and expected-cost solution.

It is difficult to view the entire solution of this planning problem because the cost

function and control policy are functions of five state variables and of current inflows.

Instead, we have identified a few representative comparisons of expansion alternatives to

view the benefits and trade-off of increased capacities. We are interested in comparing

the benefits of capacity expansion alternatives described by state variables X3, X4, and*5,

so we evaluate these alternatives assuming surface storage and subsurface storage are

nearly full initially (xii(/l) = 200 TAF and .r2,(/,) = 500 TAF). As we will see however,

the application of a discount rate means that initial conditions influence the expected

benefits, so we also evaluate the alternatives assuming reservoirs are empty initially

(*!(,,) = X2,(r,) = 0). In addition, we evaluate the cost as an expectation over all current

and future inflows using the cost-to-go function, so costs are not a function of current

inflows.

221

Table 11E1. Variables for Capacity Expansion of the Simple Conjunctive-Use Model

Variable Type Definition Min. Max.

"l control supply to users (annual) 0 600

u2 control groundwater pumping (annual) 0 *3

"3 control groundwater recharge (annual) 0 X4

"4 control release downstream (annual) 0 infinite

*1 state surface reservoir storage 0 *5

X2 state subsurface reservoir storage 0 500

*3 state pumping capacity (annual) 0 100

H state recharge capacity (annual) 0 50

*5 state surface-reservoir capacity 200 300

s\ stochastic inflow from streams 0 infinite

* units in thousands of acre feet

1. Benefits of Groundwater Development

Figure 11E1 depicts the expected annual cost of rationing and system operations

as a function of pumping and recharge capacities. Cost is in millions of dollars per year

and capacities are in thousands of acre feet per year. As capacities increase, we see that

the annual expected cost decreases from $16.5 million to $8.2 million. Using the 4%

discount rate, the total expected cost for all future operations decreases from $412 million

to $205 million (annual cost divided by 0.04). These results are for a surface storage

capacity of 200 TAF.

Besides identifying the benefit of groundwater development, we can use these

results to identify the best level of development and the optimum trade-off between

pumping and recharge capacities. The best mix of capacities depends on a balance

between the benefits and costs of building and operating pumping and recharge facilities.

For the conjunctive-use system, we should balance the benefit of lower rationing costs

with the cost of system operations and capital.

We can use the results of Figure 11 El to identify how to balance these benefits

and costs. Figure 11E1 identifies the rationing and operating costs as a function of

pumping and recharge capacities, but does not include the capital costs (e.g., cost of

installing pumps, buying land, permitting, etc.). In real applications, capital costs are

highly variable and site specific, so we simplify the illustration by assuming that marginal

costs for expanding pumping and recharge facilities are equal and constant. In other

words, each unit of additional capacity costs the same for both. Annualized capital costs

222

Figure 11E2. Expected Annual Cost (Million $) for Different Levels of Conjunctive
Development with Initially Full Reservoirs

300

Surface
Storage

Capacity,
x5 (TAF)

Pumping Capacity, x3 (TAF annual)

3. Impact of Initial Conditions on Results

Because we apply a discount rate to the cost of future rationing and system

operations, the impact of current costs is greater than the impact of future costs. As a

result, expected costs are lower if initial conditions are favorable than if initial conditions

are unfavorable. In our simple conjunctive use system, conditions are favorable if storage

levels are high and are unfavorable if storage levels are low.

Figure 11E3 depicts the expected annual cost as a function of pumping and

recharge capacities assuming that reservoirs are empty initially (xi,(r,) = *2,(ri) =^)- ^s

capacities increase, we see that the expected annual cost decreases from $19.0 million to

$13.3 million. These costs are higher than in Figure 11E1 where we assume that

reservoirs are nearly full initially. Also, the annual costs for full development of

groundwater—$8.2 million in Figure 11E1 and $13.3 million in Figure 11E3—bracket

the average annual cost-to-go in Figure 11D5 of $10 million.

225

If we again assume that marginal costs for expanding these capacities are equal

and constant as in Figure 11 El, the shaded line in Figure 11E3 identifies the optimum

trade-off of pumping and recharge capacities. In this case, we see that the best mix

includes more recharge capacity, especially at lower levels of development. Without the

ability to mine groundwater, pumping capacity is worthless without some ability to

recharge. However, at high levels of groundwater development, initial storage levels

become less significant and the best mix approaches that of Figure 11E1.

Figure 11E4 depicts the expected annual cost as a function of pumping and

surface storage capacities assuming that reservoirs are empty initially. As capacities

increase, we see that the expected annual cost decreases from $19.0 million to $10.9

million. Costs are higher than in Figure 11E2. Also, the benefit of added pumping

capacity is less because we first must recharge so that we have water to pump.

Figure 11E3. Expected Annual Cost (Million $) for Different Levels of Groundwater
Development with Initially Empty Reservoirs

Recharge
Capacity, x4

(TAF per year)

Pumping Capacity, x3 (TAF annual)

226

Figure 11E4. Expected Annual Cost (Million $) for Different Levels of Conjunctive
Development with Initially Empty Reservoirs

Surface
Storage

Capacity,
x5 (TAF)

Pumping Capacity, JC3 (TAF annual)

4. Impact of Discount Rate on Results

For the results presented above, we have assumed a 4% annual discount rate on

future costs. As a result, the impact of current costs is greater than the impact of future

costs, and costs far in the future are diminished until they no longer matter.

In spite of the impact that a discount rate has on balancing short-term and long-

term costs, small changes in the discount rate do not appear to significantly affect control

policies or expected costs. Figure 11E5 is a plot of the pumping and recharge policies

using a zero discount rate. Compared with the results of Figure 11D4 using a 4%

discount rate, we should pump less and recharge more. In addition, the supply policy

(not shown) releases less water to users. Overall, the character of the solutions using 4%

and 0% discount rates are the same, with marginal differences in the timing of rationing

and reallocation.

Figure 11E6 is a plot of the expected annual cost as a function of pumping and

recharge capacities using a zero discount rate. This cost does not depend on the initial

227

conditions since, regardless of initial conditions, expected annual costs converge to the

same values with a long enough time horizon and total costs increase linearly with time.

For the conjunctive-use problem, we observe that policies change little after a few

decades. In effect, Figure 11E6 represents the infinite-horizon, steady-state case.

Using a smaller discount rate, we should ration more frequently and maintain

higher storage levels. As a result, we expect to see annual costs that are somewhat

higher. Also, we expect to see an increase in the benefit from expanding capacities since

the somewhat larger benefit of storing water. However, we see that the expected annual

cost using a zero discount rate (Figure 11E6) falls between the favorable and unfavorable

costs expected annual cost using a 4% discount rate (Figures 11E2 and 11E4). This is

because of the larger impact that initial storage conditions have on expected costs when

using a non-zero discount rate.

In addition, there is also a greater value in storing more of this water in the

subsurface using a smaller discount rate. Limits on pumping and recharge (combined

with larger subsurface storage capacity) mean that it is likely that groundwater will be

used to meet long-term demands and surface water will be used to meet short-term

demands. With a lower discount rate, the long-term benefits of groundwater increase its

value relative to surface water. For maximum development of surface storage capacity,

Figure 11E6 shows an annual decrease in cost of $4.8 million a year ($17.8 million minus

$13.0 million). For maximum development of groundwater, the decrease is $8.0 million

a year. This compares to annual decreases of $4.4 million and $8.3 million in Figure

11E2 and of $4.4 million and $5.7 million in Figure 11E4. As expected, the benefit of

expanding surface storage capacity is greater with a zero discount rate. The benefit of

groundwater development is more difficult to compare because of the influence of initial

storage levels; however, the benefit using a zero discount rate is close to the higher value

of $8.3 million.

228

Figure 11E5. Pumping and Recharge (TAF per year) with a Zero Discount Rate

500-

Available ~
Groundwater,

x2 (TAF) J

100
; ; (max pumping)

1000
Available Surface Water,x2 +s{ (TAF)

Figure 11E6. Expected Annual Cost (Million $) for Different Levels of Conjunctive
Development with Zero Discount Rate

300

Surface
Storage

Capacity,
x5 (TAF)

Pumping Capacity, x3 (TAF annual)

229

F. CONCLUDING REMARKS ON THE CONJUNCTIVE
MANAGEMENT OF SURFACE AND GROUNDWATER

STORAGE

For many systems, including those that conjunctively manage groundwater and

surface water, it may be difficult to identify appropriate control policies and capacity-

expansion alternatives without using systems analysis techniques to identify the best

policies. Systems analysis is especially valuable when variable and uncertain inputs drive

the state of a system. In particular, conjunctive-use systems are dynamic systems driven

by inputs that often are highly variable and uncertain.

We have developed optimal control policies for a simple conjunctive-use model

by applying systems analysis. These policies identify decisions to supply water to users

and to allocate stored water between a surface reservoir and an aquifer. Because of the

year-long time step and treatment of groundwater as a "bathtub" with only one state

variable, the model is too simple for practical application to the real system. However,

modification of the simple conjunctive-use model for practical application to the real

system is not difficult, and the number of state variables required is within the ability of

new DDP methods. Also, the model captures important differences between surface and

subsurface storage, and the results do give us some understanding of effective

conjunctive-use management, particularly when the water resources of a system are

almost fully utilized.

Control policies that result from systems analysis of the simple conjunctive-use

model require information on surface and subsurface storage levels and current inflows.

Because of the impact of hedging, these control policies cannot be described by simple

heuristic rules. Hedging is apparent in decisions that ration current supplies (to balance

the current benefits of water use with future benefits) and that allocate supplies between

surface and subsurface storage (to maximize water-supply reliability).

We have demonstrated that efficient control of conjunctive-use systems requires

decisions that cannot be identified by simple rules but, instead, requires detailed control

policies that consider complete state information. When approaching full utilization of

water resources in a system (as in the conjunctive-use model), these control policies make

active use of pumping and recharge to meet demands and to allocate water between

surface and subsurface storage, in spite of associated operating costs. Also, we observe

that pumping and recharge should be managed in a manner that may conflict with

heuristic or "common sense" control. In particular, we should reduce pumping and

increase recharge when groundwater levels are low, even if insufficient surface water is

230

available to meet all demands and to fill surface reservoirs. Recharge may be appropriate

even when rationing water supplies, if groundwater levels are sufficiently low. Though

such cautious management is unexpected, we see that cautious management significantly

improves system reliability by reducing the expected cost of rationing. However, even

when the value of cautious management is recognized, the identification of system

conditions that require hedging (i.e., rationing and cautious allocation decisions) can be

difficult and contentious. Systems analysis allows us to identify these conditions using

an objective approach that produces unambiguous results.

In addition, we have demonstrated that water managers can use systems analysis

to evaluate the best mix of facilities used to expand system capabilities. Changes in

system configuration, inputs, or goals require identification of new control policies that

are suited to the new conditions. We present a systems-analysis approach that allows use

to evaluate these changes while simultaneously identifying the best control policies. We

accomplish this by augmenting the state information with variables that identify

pumping, recharge, and surface-storage capacity. This convenient approach allows us to

identify the best mix of capacities. This is a significant improvement over a trial-and-

error approach that requires use to iteratively modify system capacities and separately

evaluate control policies and an expected benefit for the modifications.

Though a simple case, the conjunctive use model has validated the application of

systems analysis to the real-time control and capacity expansion planning. In particular,

the application to the simple conjunctive-use model has permitted improved

understanding of efficient conjunctive-use operations and plans. We have used the

EBMUD system as a case study, though these results have been presented without case-

specific complexities. Modifications to the model that would permit solution of specific

problems for the EBMUD system include shorter stages and state variables for additional

storage reservoirs and parameters to improve streamflow forecasts (to incorporate

streamflow autocorrelation and correlation with snowpack measurements). Though these

modifications will increase the computational effort required to solve the conjunctive-use

problem, they are within the capabilities of the systems analysis methods employed.

In summary, we have used systems analysis to develop real-time controls for a

conjunctive-use system. These controls make use of differences between surface water

and groundwater to improve water supply reliability. In addition, we have evaluated the

benefit capacity expansion alternatives in a dynamic model with five state variables.

Based on benefit and cost comparison of these results, we observe that adding subsurface

storage to existing surface-reservoir systems can improve water-supply reliability for less

than one-tenth the cost of increasing surface storage.

231

232

CHAPTER 12.

CONCLUSIONS

Discrete Dynamic Programming (DDP) is a general optimization method that can

be used in systems analysis of complex non-linear stochastic control problems.

Unfortunately, the application of DDP is limited by the "curse of dimensionality" that

prevents its application to systems that must be described by many state variables. Using

traditional methods, the application of DDP is restricted to system models that include

two or three state variables.

This thesis presents methods that allow DDP to be applied without excessive

computational effort to stochastic control problems with as many as six to eight state

variables. This is accomplished by Hermite-interpolation methods (Chapter Five) and

Gaussian-quadrature methods (Chapter Seven) that are significantly more accurate than

traditional methods. The high-order accuracy of these methods permits development of

accurate control policies with coarse discretizations of the state variables and stochastic

variables, reducing the effort to solve stochastic control problems by several orders of

magnitude.
The enhanced ability of DDP permits the solution of stochastic control problems

that were previously beyond the ability of systems analysis. In the past, solutions could

not be obtained without making assumptions that were correct only if certain conditions

held. Frequently, these assumptions required that the condition of certainty equivalence

held. At other times, it was assumed that solutions fit pre-determined functional forms.

These various assumptions are unnecessary for DDP, and DDP produces the truly optimal

solution so long as a system is appropriately modeled by a limited number of state

variables.
To demonstrate the ability of the new methods, this thesis applies DDP to several

hypothetical problems. In the first set (Chapter Six), DDP is applied to problems with as

many as seven state variables. These problems demonstrate the high-order accuracy of

Hermite interpolation and the ability to use coarse state discretizations. In the second set

(Chapter Eight), DDP is applied to problems with diverse stochastic models. These

problems demonstrate the high-order accuracy of Gaussian quadrature and the ability to

use coarse discretization of the probability distribution of input variables. In the third set

(Chapter Nine), DDP is applied to reservoir problems with autocorrelated inflows and as

233

many as six state variables. These problems demonstrate that it is important that control

policies incorporate an appropriate level of caution to reduce the potential high cost of

extreme events. In the final set (Chapter Eleven), DDP is applied to a simple

conjunctive-use problem. This problem demonstrates that effective management of

groundwater and surface water systems requires complex policies that take advantage of

the different characteristics of the surface and subsurface storage.

This final problem also demonstrates our ability to use DDP as a planning tool to

evaluate the benefit of capacity expansion alternatives. By adding state variables to

represent variable capacity constraints, DDP is used to evaluate the expected benefits for

a range of capacity expansion alternatives while simultaneously identifying and applying

optimal control policies for each alternative. Thus, DDP can be used to select the best

alternative by a rational balancing the capital costs and operating costs. This is but one

among many applications of DDP that are now possible using a larger number of state

variables.

Building on the example of the conjunctive-use problem, we can anticipate a

variety of other applications. Some of these applications that I hope to include in future

work include:

(1) Applications that result in practical use: The DDP methods of this thesis have
practical value that can be demonstrated in application to real-world problems.
This includes application of DDP to more detailed models of the EBMUD system
or to other systems whose managers support a systems-analysis approach.

(2) Measuring the value of forecast information in real-time control: For
example, accurate measurements of precipitation can significantly improve
predictions of drought and flood, but collection of these measurements comes at a
significant cost. DDP can be used to identify cost-effective data collection
strategies.

(3) Balancing competing goals in multipurpose control: Reservoir management
usually requires consideration of multiple and conflicting objectives. DDP can
identify control policies that balance conflicting objectives if we are willing to
explicitly state the values of these objectives (such as in Chapter Ten where we
estimate the value of urban water supplies). Even when these values are
approximate, DDP can develop better multipurpose control policies than heuristic
methods. Also, this process can be reversed to identify values associated with
preferred control policies and may be used to identify policies that use
inappropriate values.

234

(4) Measuring the local costs of climate change: The scientific community is
quickly coming to a consensus on the large-scale impacts of climate change, and
global climate models may provide useful estimates on medium-scale hydrologic
trends. DDP is a systems-analysis tool that can provide the necessary connection
between these trends and their effect on local water-management. DDP is a
useful tool in identifying operations and plans that best respond to changing
hydrology, water needs, and management systems.

(5) Aquifer management modeling: Hydrogeologie models describe spatially
variable quantities that are not easily described by a few state variables.
However, additional state variables permitted by the new DDP methods may
permit the application of DDP to simple hydrogeologic models. This may be
useful, for example, when using systems analysis to identify cautious
management policies.

In addition, it seems reasonable to extend the methods and application of the

interpolation and quadrature methods of this thesis. These research opportunities may

yield further improvement in DDP or may be used to improve other stochastic

optimization methods. Some of these extensions include:

(1) Discretization of cost-to-go functions using adaptive grids: Adaptive grids
can apply fine state discretization only where needed. This can significantly
reduce the number of state-space nodes, especially for problems with complex
cost-to-go functions. Furthermore, adaptive grids can be used to automate the
discretization process.

(2) Application ofHermite interpolation and Gaussian quadrature to stochastic
dual dynamic programming (SDDP): SDDP discretizes the state space without
using a grid by locating discrete states where needed most. This can significantly
reduce the number of discrete states required to approximate a cost-to-go
function. However, interpolation of the cost-to-go by cutting planes does not
produce high-order accuracy, and it may be useful to apply a high-order Hermite
interpolation without interfering with the linear solver. Also, Gaussian quadrature
may suggest a more efficient method of selecting scenarios.

(3) Interpolation methods that preserve cost-to-go convexity: As of yet, no
computationally efficient interpolation methods have been proposed that produce
smooth function approximations while guaranteeing convexity. Using a finer grid
to discretize the function domain tends to overcome problems with convexity, but
this comes at a cost of substantially greater computational effort.

235

(4) Higher-order interpolation methods: A logical extension of the second-order
Hermite method is to include other high-order derivatives of the cost-to-go. For
example, the second-order method could be modified to include all second
derivatives of the Hessian, and not just the off-diagonal elements. While this will
increase the order of interpolating polynomials, the improved accuracy may offset
the additional effort and potential for oscillation. In addition, other non-
polynomial functions may be used for interpolation (e.g., complex exponential
functions to represent periodic component).

In summary, DDP can be applied to a range of new, more-complex applications. While

DDP is but one method for the optimal control of stochastic and dynamic systems, it has

unique abilities that make it the preferred optimization method for some applications.

This thesis takes a few tentative steps towards these applications.

236

APPENDIX A.

SUMMARY OF NOTATION

This appendix provides a summary of notation and equations in common use in

this thesis.

1. NOTATION

Authors have frequently developed notation adapted to suit their application of

systems analysis. To the extent possible, notation in this thesis adheres to that used in

existing optimal-control literature [Stengel, 1994] and that used by Foufoula-Georgiou

and Kitanidis [1988], though I have also taken some liberty to avoid confusion. Tables

A1-7 summarizes the notation presented in this thesis.

Table AA1. Notation for System Model

/ time or stage

Ar stage length

n number of state variables

m number of random variables

N number of stages

u vector of decision variables

x vector of« state variables

y vector of state variables y<o = x(,+A/)

s vector of stochastic variables

w vector of m normally-distributed random variables

B \, B ^ vectors of lower and upper bounds on decision variables
T, vector of functions describing the transition of state X(,> to x(/+A/)

S, vector of functions modeling stochastic inputs s (,)

W, probability density function

Q, covariance matrix of stochastic variables

237

Table AA2. Conventionally Defined and Non-Specific Parameters, Variables, and
Functions

ß mean

a standard deviation

a, b, c, h arbitrary parameters

f,g arbitrary function

Table AA3. Notation for Value Model and Optimal Solution

C, cost function for current stage

FlN+l cost function for terminal state

V, total-cost function

E expected value operator

u* vector of optimal control decisions

U(f) vector of control policy functions

U(*) vector of optimal control policy functions

 F, cost function for expected cost-to-go from state x(/)

Table AA4. Notation for Effort of Discrete Dynamic Programming

J total computational effort for each stage

Z total computational effort for each node

Z/ computational effort for each evaluaton of the total-cost function

Zs number of evaluations of the total-cost function in each search

Zo computer processor speed (seconds per flop)

Z\ number of searches for each node

Zi number of searches to verify solution for each node and outcome

x(,) discrete state (/) at node of the state-space grid

A number of discrete values per state variable

A" total number of state-space nodes (i.e., discrete states)

w(*> discrete outcome (k) at node of the stochastic-space grid

K number of discrete values per stochastic variable

Km total number of stochastic-space nodes (i.e., discrete outcomes)

238

Table AA5. Notation for Interpolation of the Cost-To-Go Function

xW discrete state at corner node (f) of current hypercube

Fy function value at node x(tf

Gy function gradient at node xW, Gy= dF/dxW = dF/dxM

Hj, function Hessian at node x(#

<py interpolation weight on Fy

\\fy vector of interpolation weights on G y

Xy matrix of interpolation weights onH?

xiow ^ xhigh discrete-state nodes at lowest/highest hyper-cube corners

£ location of state x in the local coordinates of a hypercube

T|(tf normalized distance of state x from node x(tf

R,P,Q arbitrary weighting functions
a, ß, Cü, 6 shorthand notation for weighting function polynomials

Table AA6. Notation for Numerical Integration of the Expected Cost-To-Go

7. arbitrary stochastic variable

PK polynomial of order K whose roots locate Gauss-quadrature abscissas

vj weight applied to the /th root of px

v,^ weight applied to the &'th outcome of the m random variables wj^

Table AA7. Notation for Rationing-Cost Function

a coefficient of demand elasticity (note: duplicate use)

P price of water (per acre foot) (note: duplicate use)

Q quantity of water (acre feet) (note: duplicate use)

P* price of water that equalizes supply and demand

 Q* quantity of water supplied or demanded at P*

2. EQUATIONS

The following is a summary of the mathematical functions used for systems

analysis in this thesis. The following functions use the notation of Tables A1-4.

Equation numbers correspond to the presentation of these equations earlier in the thesis.

239

1. System Model

Recursive definitions:

y = x(,;+l), x=x(,;.), us=u(,;) , w=w(/y), t = tj (2C1)

Transition functions: y = T,(x,u,w) (2C2)

Stochastic model: s = S,(x,u,w) (2C3)

Constraints: B^r)(x,w) < u < B^x.w) (2C4)

2. Value Model

tN

Value function: Vu = £ C,(x,u,w) + F,Nti(x) (2C7)

3. General Solution

Cost-to-go function: F,,(x) = EW(/i)v->> W(rjv){ V\U{ll),..., U(,w) } (2C15)

Control policy: u* = U(*}(x,w) (2C16)

4. Dynamic Programming Solution

Total cost function: V,. = C,/x,u,w) + FtjJy) (4A5)

Cost-to-go function: F,/x) = Ew{ minu{ Vtj } } (4A6)

5. Interpolation

Multilinear: F(0(x) = £ t H^Fr) (4D1)
y=yi

rHermite: F(0(x) = X (W> + [V/(x)]T-Gy} (4D3)
r=yi

2° Hermite:

YJ" n n

F(,)(x) = X (W ^y + Z { Vy» GyJ + X (XyjA*) HYj,k } } } (5H1)
y=yi y=i *=./'

240

APPENDIX B.

COMPUTER CODE FOR DISCRETE

DYNAMIC PROGRAMMING AND
ENHANCEMENTS

This appendix provides the code used to implement the discrete dynamic

programming methods presented in this thesis. The following code is written in

standard FORTRAN 90 with exception for the machine-dependent statements

used to track computational time. The compiler did not have a complete

implemention of the FORTRAN 90 standard, so the more restrictive FORTRAN

77 standard is used by much of the code.

1. SIMPLIFIED FLOW CHART

Figure Al provides an overview of heirarchy of the DDP routines. The ovals

indicate that routines are inside a loop, with the number of loops indicated to the top left.

Not included are the user-supplied routines that define a systems-analysis problem.

These routines feed routines used to model and solve the problem.

241

Figure ABI. Simplified Flow Chart for the DDP code

CALLDP

NSTAGES*NNODES

2*NWNODES

NCALLS

{MODEIALL
MODELSTG
ADJ MDD

COST PEN

2. INCLUDE FILES FOR COMMON STORAGE OF DATA

Include files are used throughout the code to ensure uniform specification of

variables and to allow control over the allocation of storage.

Include File I.SIZEALLO

This include file identifies parameters used to allocate memory in common arrays.

The parameters MAXNODES and MAXWNODES allocate memory to store nodes of the

state-space and stochastic-space grids. The numbers of nodes can be large with fine

242

discretization and high dimension, and may exceed available memory of a computer. The

maximum numbers of state variables MAXNX and stochastic variables MAXNW also

significantly influence required memory.

Parameters to allocate storage space:
MAXNX = max # state variables (dimensions)
maxidx = max # discrete values in any one state variable
maxnodes = max # nodes identifying discrete states of cost function
MAXNW = max # stochastic variables
maxwnodes= max # discrete realizations of the stochastic variables

INTEGER

PARAMETER
PARAMETER
PARAMETER
PARAMETER
PARAMETER

MAXNU, MAXNX, MAXIDX,
MAXNW, MAXIDW, MAXCON,
MAXSEAS, MAXSTAGES,
MAXWNODES, MAXNODES, MAXCORN

(MAXNU = 4, MAXNX = 4, MAXIDX
{ MAXNW = 2, MAXIDW = 9, MAXCON
(MAXSEAS = 12, MAXSTAGES= 50)
(MAXNODES = 2000, MAXWNODES= 100)
(MAXCORN = 256)

17)
10)

Include File I.SIZEPROB

This include file identifies common variables that specify the actual size and other

characteristics of a discrete dynamic programming problem. These values are used in

many routines to allocate memory to variables.

INTEGER

DOUBLE PRECISION
LOGICAL
COMMON /SIZEPROB/

NU, NX, NNODES, NWNODES, NW,
NSTAGES, NSEAS,
NTNLN, NCNLN,
NBASE2
DISCOUNT, TIGHT, FTOL, UTOL
GDP, NEWTON, STOCHASTIC

NU, NX, NNODES, NWNODES, NW,
NSTAGES, NSEAS,
NTNLN, NCNLN,
NBASE2,
DISCOUNT, TIGHT, FTOL, UTOL,
GDP, NEWTON, STOCHASTIC

Include File I.XNODES

This include file identifies common arrays that store the location for each state-

space node in array XN. Array IABOVE and IBELOW are used as pointers to nodes that

are immediately above and below.

INTEGER

DOUBLE PRECISION

IABOVE(MAXNX,MAXNODES)
IBELOW(MAXNX,MAXNODES)
XN(MAXNX,MAXNODES)

243

COMMON /XNODES/ IABOVE, IBELOW, XN

Include File I.SPECW

This include file identifies common arrays that store the location of each

stochastic-space node (i.e., each outcome) in array WN. Array PWN stores the weight of

each outcome and array LIKELY is used to identify whether an outcome is sufficiently

likely to be used in evaluating expected values.

DOUBLE PRECISION WN(MAXNW,MAXWNODES), PWN(MAXWNODES)
LOGICAL LIKELY(MAXWNODES)
COMMON /SPECW/ WN, PWN, LIKELY

Include File I.FNODES

For each state-space node, this include file identifies common arrays that store the

cost-to-go (array FN) and first derivatives (array FXN).

DOUBLE PRECISION FN(MAXNODES), FXN(MAXNX,MAXNODES)
COMMON /FNODES/ FN, FXN

Include File I.CONTROL

This include file identifies common arrays that store the linear constraints and

bounds on control variables U and state variables X. Note that the code is not yet adapted

to allow non-linear constraints.

INTEGER NTLIN, NCLIN, NLCON
DOUBLE PRECISION UBL(MAXNU), UBU(MAXNU),

+ UGUESS(MAXNU), USCALE(MAXNU),
+ XBL(MAXNX), XBU(MAXNX),
+ YBL(MAXNX), YBU(MAXNX),
+ ACLBL(MAXCON), ACLBU(MAXCON),
+ ACL(MAXCON,MAXNU+MAXNX+MAXNW) ,
+ ABL(MAXCON), ABU(MAXCON),
+ AA(MAXCON,MAXNU+MAXNX+MAXNW) ,
+ XO(MAXNX), WO(MAXNW)
COMMON /CONTROL/ NTLIN, NCLIN, NLCON,

+ UBL, UBU, UGUESS, USCALE,
+ XBL, XBU, YBL, YBU,
+ ACLBL, ACLBU, ACL,
+ ABL, ABU, AA,
+ XO, WO

!badj gives adjusted bounds on linear constraints with initial state
! variables held constant. Generally, badj bounds will be used,
! except when gradients can be obtained directly from solver.

244

Include File I.SPECNOW

This include file identifies common variables that store the current stage of a

problem.

INTEGER
COMMON /SPECNOW/

ISTAGE, IYEAR, ISEASON, IFIRST, IYFIRST, ISW
ISTAGE, IYEAR, ISEASON, IFIRST, IYFIRST, ISW

Include File I.CUBE

This include file identifies common arrays that store hypercube values. These

common arrays are used in interpolation subroutines to avoid passing data.

INTEGER
DOUBLE PRECISION

LOGICAL
COMMON /CUBE/

LEVEL, IXSTART, IXID(MAXCORN)
X(MAXNX), XLO(MAXNX), XHI(MAXNX),
DXOUT(MAXNX),
FC(MAXCORN), FXC(MAXNX,MAXCORN),
FXXC (MAXNX, MAXNX, MAXCORN)
XOUT

LEVEL, IXSTART, IXID, X, XLO, XHI,
XOUT, DXOUT,
FC, FXC, FXXC

Include File I.PERFORM

This include file identifies common variables that store measures used to evaluate

performance of the code.

INTEGER
DOUBLE PRECISION

v

LOGICAL
COMMON /PERFORM/

LPRINT, N_INT, N_OBJ, N_OPT, N_SOL
T_ID, T_VAL, T_WEIGH, T_INT, T_CALL, T_OBJ,
T_OPT, T_SOL
PP

LPRINT, N_INT, N_OBJ, N_OPT, N_SOL,
T_ID, T_VAL, T_WEIGH, T_INT, T_CALL, T_OBJ,
T_OPT, T_SOL,
PP

3. INTERPOLATION SUBROUTINES

Interpolated values of the cost-to-go function are evaluated in one of three

subroutines that perform multilinear interpolation, first-order Hermite interpolation, or

second-order Hermite interpolation. The subroutine rNT_FUNC selects interpolation

subroutine INT_LIN, or iNT_HCl, or INT_HC2, as appropriate. These subroutines also

call the subroutines CUBEJD and CUBEVAL2 to identify the the hypercube and node

values used in interpolation.

245

Subroutine INT FUNC

This subroutine selects the interpolation to be used. It is provided as a separate

routine to allow convenient insertion of other interpolation routines.

SUBROUTINE INT_FUNC (LEVEL, X,
+ F, FX)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Parameters for problem size.
INTEGER LEVEL
DOUBLE PRECISION X(NX)

DOUBLE PRECISION F, FX(NX)

Specifies interpolation function used to approximate the cost function.

On input, LEVEL identifies what derivatives are interpolated:
0: only f
1: f and fx

On output, if LEVEL changed to zero, this is used as a flag to indicate
that Gradient DP will not be used (for example, if linear
interpolation is used to estimate the cost function).

INTEGER HERMORD

EXTERNAL INT_LIN, INT_HC1, INT_HC2

Specify order of Hermite interpolation.

HERMORD

Call Interpolation routine.

IF (GDP) THEN
IF (HERMORD.EQ.1) THEN
CALL INT_HC1 (LEVEL,X, F,FX)

ELSEIF (HERM0RD.EQ.2) THEN
CALL INT_HC2 (LEVEL,X, F,FX)

ELSE
WRITE (*,*) '(INT_FUNC) ERROR: HERMORD =', HERMORD
STOP 'INT_FUNC'

END IF
ELSE
CALL INT_LIN (LEVEL,X, F,FX)

END IF

END

246

Subroutines INT HC2. INTHC1. and INT LIN

This subroutine uses the second-order Hermite interpolation method to evaluate

interpolated values and derivatives. These are evaluated as a weighted sum of the

discrete values and derivatives at corner nodes of the surrounding hypercube. The nodes

of the hypercube are identified by the subroutine CUBE_ID and the corner node values

are identified by the subroutine CUBEVAL2. Common storage is used to avoid passing

data between subroutines. The effort to evaluate interpolated values is divided into two

parts: (1) evaluation of weights, and (2) application of the weights to the sum for each

interpolant.

The subroutine INT_HC1 is the same as INT_HC2 except that second derivatives

are not used. Subroutine INTJHCl does not include portions of the code that evaluates

and applies second-derivatives and weights. Subroutine INT_LIN is also structure

similar to INT_HC2 except that derivatives are not used and the weighting functions are

n-fold linear functions.

SUBROUTINE INT_HC2 (LEVELINT, XINT,
+ F, FX)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Problem size parameters and tolerances.
INTEGER LEVELINT
DOUBLE PRECISION XINT(NX)

DOUBLE PRECISION F, FX(NX)

Determines interpolated function value and derivatives
using a hermite interpolation that produces continuous 1st derivatives

LEVEL identifies if derivatives are to be calculated:
only f
f and fx
f, fx, and fxx ****not yet

INCLUDE 'I.SIZEALLO'
INCLUDE 'I.PERFORM'
INCLUDE 'I.CUBE'

[Parameters to allocate storage space.
!Track performance of solver and output.
!Holds corner node values for interp.

Other local variables.

INTEGER

DOUBLE PRECISION

LEVELO, J, Jl, J2, K, Kl, IBASE2(0:NX),
I, INEW, IP
TOL, DX(NX), DXINV(NX), XI(NX),
ETAl(NX), ETA2(NX),
EEl(NX), EE2(NX),
Cl(NX), C2(NX), Dl(NX), D2(NX),

247

+
+
+
+
+
+
+

LOGICAL
REAL

El(NX), E2(NX),
Bl(NX), B2(NX), Q(NX),
Al(NX), A2(NX),
PHKNBASE2), PSI(NX,NBASE2) ,
CHI(NX,NX,NBASE2) ,
DPHI(NX,NBASE2), DPSI(NX,NX,NBASE2),
DCHI(NX,NX,NX,NBASE2)
P
SECNDS, TIMEO, TIME1

EXTERNAL CUBE ID, CUBEVAL2

N_INT = N_INT + 1
TIMEO = SECNDS(0.0)

Verify inputs.

IF ((LEVELINT.LT.0).OR.(LEVELINT.GT.1)) THEN
WRITE (*,*) '(INT_HC2) LEVEL INCORRECT,', LEVELINT
STOP

END IF

Initialize values.

TOL = 1.0E-14
LEVEL = LEVELINT
X(:NX) = XINT
LEVEL0 = LEVEL

IBASE2(0) = 1
DO J = 1,NX

IBASE2(J) = IBASE2(J-1)*2
END DO

Identify hypercube.

CALL CUBE_ID
IF ((XOUT).AND.(LEVEL.EQ.O)) LEVEL = 1

Get value at hypercube corner nodes.

CALL CUBEVAL2

Identify standardized x in the local coordinate
system.

248

TIMEl = SECNDS(O.O)

DX = XHI(:NX) - XLO(:NX)
DXINV = 1.0/DX
XI = (X(:NX) - XLO(:NX))*DXINV

Define convenient variables.

ETA1 = XI
ETA2 = 1.0 - XI
EE1 = ETA1*ETA1
EE2 = ETA2*ETA2
Al = (1.0 + ETA1 + ETA1)*EE2
A2 = (1.0 + ETA2 + ETA2)*EE1
Bl = ETA1*EE2*DX
B2 = -ETA2*EE1*DX

IF (LEVEL.GT.O) THEN
C2 = 6.0*ETA1*ETA2*DXINV
Cl = - C2
Dl = (ETA2 - ETA1 - ETA1)*ETA2
D2 = (ETA1 - ETA2 - ETA2)*ETA1

END IF

Calculate weights for each node.

Calculate weights recursively (1-D at a time) to
reduce work by using values calculated in previous
recursion. Must calculated values for nodes added
in a recursion before updating values for nodes
already added.

DPSI(1,1,2) = D2(l)
DPHK1.2) = C2(l)

DPSI(1,1,1) = Dl(l)
DPHI(1,1) = Cl(l)

PSI(1,2) = B2(l)
PHI(2) = A2(l)

PSI(1,1) = Bid)
PHI(l) = Aid)

DO J = 2,NX
Jl = J - 1
J2 = J - 2
IP = IBASE2(J1)
DO I = 1,IP

INEW = I + IP

IF (LEVEL.GE.l) THEN

Derivative weights on second-derivative values.

249

DO K = 2,J1
Kl = K - 1
DCHI(:J1,:K1,K,INEW) = DCHI(:Jl, :K1,K,I)*A2 (J)
DCHK J, :K1,K,INEW) = CHI (: Kl, K, I) *C2 (J)
DCHI(:J1,:K1,K,I) = DCHK : Jl, : Kl, K, I) *A1 (J)
DCHK J,:K1,K,I) = CHI (: Kl, K, I) *C1 (J)

END DO
DCHI(:J1,:J1,J,INEW) = DPSI(:Jl,:Jl,I)*B2{J)
DCHK J,:J1,J,INEW) = PSI(:Jl,I)*D2(J)
DCHI(:J1,:J1,J,I) = DPSI(:Jl,:Jl,I)*Bl{J)
DCHK J, :J1,J,I) = PSI(:J1,I)*D1(J)

Derivative weights on first-derivative values.

DPSI(:J1,:J1,INEW) = DPSK:Jl,:Jl,I)*A2(J)
DPSK J,:J1,INEW) = PSI(:J1,I)*C2(J)
DPSI(:J1, J,INEW) = DPHI(:J1,I)*B2(J)
DPSK J, J,INEW) = PHI(I)*D2(J)
DPSI(:J1,:J1,I) = DPSK:J1,:J1,I)*A1(J)
DPSK J,:J1,I) = PSI(:J1,I)*C1(J)
DPSI(:J1, J,I) = DPHI(:J1,I)*B1(J)
DPSK J, J,I) = PHI(I)*D1(J)

Derivative weights on function values.

DPHI(:J1,INEW) = DPHI(:Jl,I)*A2(J)
DPHK J,INEW) = PHI(I)*C2(J)
DPHI(:J1,I) = DPHK :J1,I)*A1(J)
DPHK J,I) = PHI(I)*C1(J)

END IF

Value weights on second-derivative values.

DO K = 2,J1
Kl = K - 1
CHI(:K1,K,INEW) = CHI(:Kl,K,I)*A2(J)
CHI(:K1,K,I) = CHK : Kl, K, I) *A1(J)

END DO
CHI(:J1,J,INEW) = PSK:J1,I)*B2(J)
CHI(:J1,J,I) = PSK :J1,I)*B1(J)

Value weights on first-derivative values.

PSI(:J1,INEW) = PSI(:J1,I)*A2(J)
PSK J,INEW) = PHI(I)*B2(J)
PSI(:J1,I) = PSI(:J1,I)*A1(J)
PSK J,I) = PHI(I)*B1(J)

Value weights on function values.

PHI(INEW) = PHI(I)*A2(J)
PHI(I) = PHI(I)*A1(J)

END DO
END DO

250

Calculate interpolated value.

F = 0.0
DO 1=1, IBASE2(NX)

F = F + PHI(I)*FC(I)
DO J = 1,NX

F = F + PSI(J,I)*FXC(J,I)
DO K = 1,J-1

F = F + CHI(K,J,I) *FXXC(K, J.i)
END DO

END DO
END DO

Calculate interpol ated 1st derivatives.

IF (LEVEL GE.l) THEN

FX = 0.0
DO I = 1,IBASE2(NX)

FX = FX + DPHI(:,I)* FC (I)
DO J = 1,NX

FX = = FX + DPSI(:,J,I)*FXC(J,I)
DO K = l.J-1

FX = FX + DCHI(: ,K, J,D* FXXC(K,J,I)
END DO

END DO
END DO

ENDIF

T_WEIGH = T_WEIGH + SECNDS(TIMED

Calculate interpolated 2nd derivatives.

IF (LEVEL .GE.2) THEN

WRITE (*,* ') ' (INT. _HC2) ROUTINE NOT ADAPTED'
STOP

ENDIF

Adjust if x outside the domain.

IF (XOUT) THEN
DO J = 1,NX

F = F + FX(J)*DXOUT(J)
END DO

END IF

X(:NX) = : K(:NX) + DXOUT(:NX)

251

DO J = 1,NX
IF (ABS(X(J)-XINT(J)).GT.TOL) THEN
WRITE (*,*) '(INT_HC2) ERROR INX\ J, X(J), XINT(J)
STOP '(INT_HC2)'

END IF
END DO
LEVEL = LEVELO

Verify outputs.

T_INT = T_INT + SECNDS(TIMEO)

END

Subroutine CUBE ID

This subroutine searches the state-space domain to identify the hypercube that

contains the current state. The state-space domain is defined by the grid of nodes stored

in common (in the include file I.XNODES). The corner nodes of the identified

hypercube are stored in the common (in include file I.CUBE). If the current state is

outside the bounds of the discretized state space, the distance away from the closest

hypercube is identified for extrapolation of the cost-to-go and derivatives.

SUBROUTINE CUBE_ID

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' [Problem size parameters

Identifies corner nodes of hypercube bounding x.
If x is outside domain, identifies nodes of closest hypercube and
adjusts x to the closest location at the boundary of the domain.
The original x is identified by flag xout distance dxout.

INCLUDE 'I.SIZEALLO'
INCLUDE 'I.XNODES'
INCLUDE 'I.PERFORM'
INCLUDE 'I.CUBE'

(Parameters to allocate storage space.
!State discretization.
[Track performance of solver and output.
[Holds corner node values for interpolat.

INTEGER

LOGICAL

REAL

Local variables to identify hypercube.

IBASE2(0:NX), J, IX, IXLO, I, ID(NX)
IC, IXB
P

Other local variables.

SECNDS, TIMEO

252

Initialize values.

TIMEO = SECNDS(O.O)

IBASE2(0) = 1
DO J = 1,NX

IBASE2(J) = IBASE2(J-1)*2
END DO

XOUT = .FALSE.
DXOUT =0.0

Identify low corner node ixlo of the hypercube that
contains x or is closest to x.

Let ixstart be set to previously identified cube;
often this will be close to current cube low
corner.

IF ((IXSTART.LE.O).OR.(IXSTART.GT.NNODES)) IXSTART = 1
IX = IXSTART
IF ((IX.GT.NNODES).OR.(IX.LT.l)) IX = 1

For a regular grid, ixlo is the highest node
below x. For an irregular (i.e., adaptive grid),
this node is the highest node below x that is a
low-corner node and whose associated high-corner
node is above x.

DO 1,NX

Move up if current node below x.

IF (XN(J,IX).LT.X(J)) THEN
DO

I = IABOVE(J,IX)
IF (I.EQ.O) THEN
XOUT = .TRUE.
DXOUT(J) = X(J) - XN(J,IX)
X(J) = XN(J,IX)
IX = IBELOW(J,IX)
IF (IX.EQ.O) THEN
WRITE (*,*) '(CUBE_ID) POINTERS ABOVE AND BELOW =0', IX
STOP

END IF
EXIT

ELSE IF (I.EQ.-l) THEN
write (*,*) '(cube_id) routine not adapted (1)'
stop

ELSE IF (XN(J,I).GE.X(J)) THEN
EXIT

ELSE

253

IX = I
END IF

END DO

Move down if current node above x.

ELSE IF (XN(J,IX).GT.X(J)) THEN
DO

I = IBELOW(J,IX)
IF (I.EQ.O) THEN
XOUT = .TRUE.
DXOUT(J) = X(J) - XN(J,IX)
X(J) = XN(J,IX)
EXIT

ELSE IF (I.EQ.-l) THEN
write (*,*) '(cube_id) routine not adapted (2)'
stop

ELSE IF (XN(J,I).LE.X(J)) THEN
IX = I
EXIT

ELSE
IX = I

END IF
END DO

Current node same as x.

ELSE
IF (IABOVE(J,IX).LE.O) THEN

IX = IBELOW(J,IX)
IF (IX.EQ.O) THEN
WRITE (*,*) ' (CUBE_ID) POINTERS ABOVE AND BELOW =0', IX
STOP

END IF
END IF

END IF

END DO
IXLO = IX
IXSTART = IX

Identify corner nodes.

Since node for lower corner is identified, nodes for
all other corners can be identified by pointers
from previously-identified nodes at lower corners.

IXID(:NBASE2) = -1
IXID(l) = IXLO
ID = 0
DO IC = 2,IBASE2(NX)

Identify current corner.

DO J = 1,NX
ID(J) = ID(J) + 1

254

IF (ID(J).GT.l) THEN
ID(J) = 0

ELSE
EXIT

END IF
END DO

Identify associated node.

DO J = 1,NX
IF (ID(J).EQ.l) THEN

IXB = IC - IBASE2(J-1)
EXIT

END IF
END DO
IX = IABOVE(J,IXID(IXB))

IXID(IC) = IX

END DO

Bound hypercube.

XLO(:NX) = XN(:NX,IXID(1))
XHI(:NX) = XN(:NX,IXID(NBASE2))

Verify.

T_ID = T_ID + SECNDS(TIMEO)

END

Subroutine CUBEVAL2

This subroutine uses the corner nodes identified by CUBE_ID (include file

I.CUBE) to get the cost-to-go and first derivatives used in interpolation (include file

I.FNODES). Second derivatives are calculated by finite differences using the first

derivatives and dimensions of the hypercube (include file I.XNODES)

SUBROUTINE CUBEVAL2

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Problem size parameters

Identifies corner-node values, first derivatives, and partial second
derivatives of hypercube bounding x.

INCLUDE 'I.SIZEALLO'
INCLUDE 'I.XNODES'

!Parameters to allocate storage space.
!State discretization.

255

INCLUDE "I.FNODES'
INCLUDE 'I.PERFORM'
INCLUDE 'I.CUBE'

!Future cost function.
!Track performance of solver and output.
!Holds corner node values for interpolat.

local variables.

INTEGER
DOUBLE PRECISION
LOGICAL
REAL

J, IC, ID(NX), IX, 1X1, 1X2, 1X3, NODE, N
DX(NX), DELA, DELB, DENOM, Wl, W2, W3
LININT, P
SECNDS, TIMEO

Initialize values.

TIMEO = SECNDS(0.0)

Bound hypercube.

DX = XHI(:NX) - XLO(:NX)

Identify corner node values.

ID = 0
ID(1) = -1
DO IC = 1,NBASE2

IX = IXID(IC)

Get value and gradient.

FC(IC) = FN(IX)
FXC(:NX,IC) = FXN(:NX,IX)

Identify current corner.

DO J = 1,NX
ID(J) = ID(J) + 1
IF (ID(J).GT.l) THEN

ID(J) = 0
ELSE

EXIT
END IF

END DO

DO J = 1,NX

Identify intervals for calculating Hessian.
Note: could reduce effort by over half:

(1) Hessian should be symmetric,

256

(2) Diagonal elements not needed.

1X3 = IABOVE(J,IX)
1X1 = IBELOW(J,IX)
LININT = .FALSE. !If true, only 2 nodes

! available in direction j.
IF (ID(J).EQ.O) THEN

IF (IX1.GT.0) THEN
1X2 = IX
NODE = 2
DELA = XN(J,IX2) - XN{J,IX1)
DELB = DX(J)

ELSE
1X1 = IX
1X2 = 1X3
1X3 = IABOVE(J,IX3)
IF (IX3.GT.0) THEN
NODE = 1
DELA = DX(J)
DELB = XN(J,IX3) - XN(J,IX2)

ELSE
LININT = .TRUE.
1X3 = 1X2

END IF
END IF

ELSE
IF (IX3.GT.0) THEN

1X2 = IX
NODE = 2
DELA = DX(J)
DELB = XN(J,IX3) - XN(J,IX2)

ELSE
1X3 = IX
1X2 = 1X1
1X1 = IBELOW(J,IXl)
IF (IX1.GT.0) THEN
NODE = 3
DELA = XN(J,IX2) - XN(J,IX1)
DELB = DX(J)

ELSE
LININT = .TRUE.
1X1 = 1X2

END IF
END IF

END IF

Calculate finite difference estimate of Hessian.

N = NX
IF (LININT) THEN
DENOM = 1.0/DX(J)
FXXC(:N,J,IC) = (FXN(:N,IX3) - FXN(:N,1X1))*DENOM

ELSE
DENOM = DELA*(DELA+DELB)*DELB
DENOM = 1.0/DENOM
SELECT CASE (NODE)
CASE (1)

Wl = - DELB*(2.0*DELA + DELB)

257

W3 = - DELA*DELA
W2 = - (Wl + W3)

CASE (2)
Wl = - DELB*DELB
W3 = DELA*DELA
W2 = - (Wl + W3)

CASE (3)
Wl = DELB*DELB
W3 = DELA*(DELA + 2.0*DELB)
W2 = - (Wl + W3)

END SELECT
FXXC(:N,J,IC) = DENOM *

+ (W1*FXN(:N,IX1) + W2*FXN(:N,1X2) + W3*FXN(:N,1X3))
END IF

END DO
! Average second derivates for best estimate

DO J = 1,NX
N = J-l
FXXC(:N,J,IC) = 0.5*(FXXC(:N,J,IC) + FXXC(J,:N,IC))

END DO
t^AA

END DO

Verify.

T_VAL = T_VAL + SECNDS(TIMEO)

END

4. OPTIMIZATION SUBROUTINES

The following subroutines are used to identify the solvers used to search for

optimal control decisions. In the current implementation of the DDP code, the quasi-

Newton solver NPSOL [Gill et ai, 1986] is used with Hermite interpolation, and the

solver AMOEBA [Press et ai, 1992] is used with multilinear interpolation.

Subroutine OPT SOLV

This routine calls the solver to find optimal control decisions and to verify the

results. If first derivatives are needed but not provided by the solver (e.g., if using

AMOEBA or if the accuracy of derivatives is in doubt), derivatives are estimated by a

crude finite difference approximation.

SUBROUTINE OPT_SOLVt (LEVEL,
+ U, F, FX, ERROR)

258

IMPLICIT NONE
INCLUDE 'I.SIZEPROB'
INTEGER

!Parameters for problem size.
LEVEL

DOUBLE PRECISION
LOGICAL

U(NU), F, FX(NX)
ERROR

Specifies solver to find optimal controls and resulting cost f(x)
and (if requested) gradient fx = df/dx.

On input, if ERROR = true on input, diagnostic output is to be provided
by solver.
On output, if ERROR = true, there was a problem in solver.
Solver is applied first to obtain optimum control decisions (with at
least one restart), and then to obtain objective gradient w.r.t.
state variables. This approach avoids extra numerical calculation of
gradients while searching for optimal control decisions.

On input, LEVEL identifies what derivatives are to be calculated
directly by solver (if it has the capability):
0: only u and f
1: u, f, and fx

On output, LEVEL identifies what derivative were actually calculated.
U on input is used as starting point for solver.
If GOODGRAD true, gradients by newton solver as assumed good enough,
even when there was a problem.

INCLUDE 'I.SIZEALLO'
INCLUDE 'I.CONTROL'
INCLUDE 'I.PERFORM'

[Parameters to allocate storage space.
!Constraints on control.
!Track performance of solver and output.

Other local variables,

INTEGER

DOUBLE PRECISION

LOGICAL
REAL*4

LEVELO, K, NI, MAXITER,
NT_OPT, NT_OBJ, NCHECK
DIFFMAX, USCALEO(NU),
USTART(NU), FSTART, DIFF
ERRORO, NEWTONO, DONE, SMALL, BADGRAD
SECNDS, TIMEO

EXTERNAL OPT FUNC

Identify # restarts used to verify a good solution.

MAXITER 20

Verify inputs.

IF ((LEVEL.LT.O).OR.(LEVEL.GT.l)) THEN
WRITE (*,*) ' (OPT_SOLV) INCONSISTENT LEVEL
STOP '(OPT_SOLV)'

LEVEL

259

END IF

Save initial settings,

NT_OBJ = N_OBJ
NT_OPT = N_OPT
TIMEO = SECNDS(O.O)

ERRORO = ERROR
NEWTONO = NEWTON
LEVELO = LEVEL
USCALEO = USCALE(:NU)

Get optimal control decisions.

Call solver as required to get optimal solution.
Solution will be confirmed by restart.
If discrepency occurs, solver called as needed until
solution converges or max iterations reached.

Solution of u is used to initialize solver for
subsequent calls.

LEVEL = 0
NI = 0
USTART = U
DO

NI = NI + 1

Call solver.

ERROR = ERRORO
IF (NI.GT.MAXITER-3) THEN

PP = .TRUE.
ERROR = .TRUE.

END IF
NCHECK = N_OBJ

CALL OPT_FUNC (LEVEL, U,F,FX,ERROR)

Specify desired solution accuracy.

tolerance is lOx accuracy of npsol based on ftol.

IF (NI.EQ.l) THEN
IF (F.GT.1.0) THEN
DIFFMAX = ABS (10.0*F*FTOL)

ELSE
DIFFMAX = 10.0*FTOL

END IF

260

END IF

If no problem with newton, solution not verified.
If problem, polytope solver used instead.

IF (NEWTON) THEN
IF (.NOT.ERROR) THEN

EXIT
ELSE
NEWTON = .FALSE.

Though newton error, solution is propably close.

USCALE = FTOL
END IF
END IF

Assess convergence of solution.

DONE = .TRUE.
IF (NI.EQ.l) THEN
DONE = .FALSE.
SMALL = .FALSE.

ELSE
DIFF = ABS(FSTART - F)
IF (DIFF.GE.DIFFMAX) DONE = .FALSE.

Check that number of objective calls indicate that
initial polytope was not too small.

NCHECK = N_OBJ - NCHECK
IF (NCHECK.LE.NX+NX+2) THEN

SMALL = .TRUE.
DONE = .FALSE.

ELSE
SMALL = .FALSE.

END IF
END IF

Do loop exit.

! If half of maxiter exceeded for newton method,
! remaining restarts use polytope solver.

IF (DONE) THEN
BADGRAD = .FALSE.
DO K = 1,NU

DIFF = ABS(U(K) - USTART(K))
IF (DIFF.GE.UTOL) THEN
BADGRAD = .TRUE.
WRITE (*,'(A53,E10.2,I6,20F8.2)')

+ '(OPT_SOLV) WARNING: U NOT STABLE FOR DIFF,K,X,W:',

261

+

DIFF,K,XO(:NX) ,WO(:NW)
END IF

END DO
EXIT

ELSE
IF (NI.GE.MAXITER) THEN
WRITE (*,'(A53,E10.2,6X,20F8.2)')

'(OPT_SOLV) ERROR: F NOT STABLE FOR DIFF,X,W:
+ DIFF,X0{:NX),W0(:NW)

EXIT
END IF

Adjust size of polytope for recursive soln.
Using small polytope will help convergence; however,
polytope must be sufficiently large to ensure
that all points are not within ftol. A small
number of objective calls indicates that all points
were within ftol.

IF (SMALL) THEN
USCALE = 100.0*USCALE

ELSE
DO K = 1,NU

IF (NI.EQ.l) THEN
DIFF = USCALE(K)

ELSE
DIFF = ABS(U(K) - USTART(K))

END IF
USCALE(K) = MAX(DIFF,FTOL)

END DO
END IF

Initialize to new solution for next loop.

USTART = U
FSTART = F

END IF
| AAAAAAAAAAAAAAAAAAAAAAAAAA/1

END DO

NEWTON = NEWTONO
USCALE(:NU) = USCALEO

VAAA

Get derivatives.

Gradients by newton solver if requested.

IF ((LEVEL0.EQ.1).AND.NEWTON) THEN
LEVEL = 1
ERROR = ERRORO
USTART = U
FSTART = F
CALL OPT_FUNC (LEVEL, U,F,FX,ERROR)

Verify that control solution is stable.

262

DO K = 1,NU
DIFF = ABS(U(K) - USTART(K))
IF (DIFF.GE.UTOL) THEN
BADGRAD = .TRUE.
WRITE (*,"(A91,E10.2,I6,20F8.2)")

'(OPT_SOLV) WARNING: U CHANGED WHEN *//
'USING SOLVER TO CALCULATE GRADIENTS FOR DIFF,K,X,W:',
DIFF,K,XO(:NX),W0(:NW)

END IF
END DO

DIFF = ABS(F - FSTART)
IF (DIFF.GE.DIFFMAX) THEN
BADGRAD = .TRUE.
WRITE (*,'(A91,E10.2,6X,20F8.2)')

'(OPT_SOLV) WARNING: F CHANGED WHEN '//
•USING SOLVER TO CALCULATE GRADIENTS FOR DIFF,X,W:
DIFF,X0(:NX),W0(:NW)

END IF

IF (ERROR.AND.BADGRAD) THEN
LEVEL = 0
U = USTART
F = FSTART

END IF
ELSE

LEVEL = 0
END IF

Verify outputs.

END

NT_OBJ = N_OBJ - NT_OBJ
NT_OPT = N_OPT - NT_OPT
N_SOL = N_SOL + 1
T_SOL = T_SOL + SECNDS(TIMEO)

Subroutine OPT FUNC

This routine identifies the actual solver used to identify optimal control decisions.

SUBROUTINE OPT_FUNC (LEVEL,
+ U, F, FX, ERROR)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Parameters for problem size.
INTEGER LEVEL

DOUBLE PRECISION
LOGICAL

U(NU), F, FX(NX)
ERROR

Specifies solver to find optimal controls and resulting cost f(x)
and (if requested) gradient fx = df/dx.

263

On input, if ERROR = true on input, diagnostic output is to be provided
by solver.

On output, if ERROR = true, there was a problem in solver.
On input, LEVEL identifies what derivatives are to be calculated
directly by solver (if it has the capability):
0: only u and f
1: u, f, and fx

On output, LEVEL identifies what derivative were actually calculated.
U on input is used as starting point for solver. This should not
be changed in this routine since it is already set by the calling
routines.

EXTERNAL OPT_NPSL, OPT_POLY

i

! Verify inputs.
i

IF ((LEVEL.LT.O).OR.(LEVEL.GT.l)) THEN
WRITE (*,*) '(OPT_SOLV) INCONSISTENT LEVEL = ', LEVEL
STOP '(OPT_FUNC)'

END IF

Call solver.

IF (NEWTON) THEN
CALL OPT_NPSL (LEVEL, U,F,FX,ERROR)

ELSE
LEVEL = 0
CALL OPT_POLY (U,F,ERROR)

END IF

END

Subroutine OPT NPSL

This routine sets up the data for input into the solver NPSOL.

SUBROUTINE OPT_NPSL (LEVEL,
+ U, F, FX, ERROR)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Problem size parameters and tolerances.
INTEGER LEVEL

DOUBLE PRECISION U(NU), F, FX(NX)
LOGICAL ERROR

Solves function value f(x) and, if requested, gradient fx = df/dx for
node x using NPSOL.

264

On input, LEVEL identifies what derivatives are to be calculated:
0: only u and f
1: u, f, and fx

U on input is used as starting point for solver.
On input, if ERROR = true, printout is provided.
On output, if ERROR = true, there is a possible problem with
derivatives and calling routine (solv_opt) will solve gradients by-
finite differences.

If LEVEL=0, state variables are treated as constants to avoid extra
numerical calculation of these gradients while searching for
optimal control decisions.

INCLUDE 'I.SIZEALLO'
INCLUDE •I.CONTROL'
INCLUDE 'I.SPECNOW
INCLUDE 'I.PERFORM'

!Parameters to allocate storage space.
!Constraints on control.
!Current stage id.
!Track performance of solver and output.

Arrays for transX.

DOUBLE PRECISION X(NX), W(NW), S(NW), Y(NX),
YU(NX,NU), YX(NX,NX), YW(NX,NW)

Arrays for npsol.

INTEGER

DOUBLE PRECISION

ALLOCATABLE

N, NROWA, NROWJ, NROWR,
INFORM, ITER, ISTATE,
IWORK, LIWORK, LWORK
OBJF, A, BL, BU, C, CJAC, CLAMDA,
OBJGRAD, R, V, WORK

ISTATEt:), IWORK(:), A(:,:), BL(:), BU(:),
C(:), CJAC(:,:),CLAMDA(:),
OBJGRAD(:), R(:,:), V(:), WORK(:)

Other local variables.

INTEGER
DOUBLE PRECISION
LOGICAL
REAL*4

LEVELO, NN, NB, J, NT_OBJ, I, IC, NLCONO
ADJ(NLCON)
ERRORO, TRIVIAL
SECNDS, TIMEO

EXTERNAL NPSOL, CONFUN, OBJFUN

i

i

! Determine array-size parameters needed by npsol.
! These will be used in objfun.f.
i

NN = NU + NX
NTLIN = NX - NTNLN
NLCON = NTLIN + NCLIN

NROWA = MAX (NLCON,!)

265

NROWJ = MAX (NCNLN,1)
NROWR = NN
N = NN
LWORK = 2*N**2 + N*NLCON + 2*N*NCNLN + 20*N + ll*NLCON + 21*NCNLN
LIWORK = 3*N + NLCON + 2*NCNLN
NB = N + NLCON + NCNLN

ALLOCATE (ISTATE(NB), IWORK(LIWORK), A(NROWA,NN), BL(NB), BU(NB),
+ C(NROWJ), CJAC(NROWJ,NN),CLAMDA(NB),
+ OBJGRAD(NN), R(NROWR,NN), V(NN), WORK(LWORK))

Initialize variables.

NT_OBJ = N_OBJ
TIMEO = SECNDS(O.O)

LEVELO = LEVEL
ERRORO = ERROR
NLCONO = NLCON

Identify linear constraints.

! Add state bounds to linear constraints where
! transition function is linear.

LEVEL = 1
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

+ ISTAGE,IYEAR,ISEASON,U,X,W,
+ S,Y,YU,YX,YW)
LEVEL = LEVELO

AA = 0.0
ABL =0.0
ABU =0.0

ABL(:NTLIN) =YBL(:NTLIN)
ABU(:NTLIN) = YBU(:NTLIN)
AA(:NTLIN, :NU) =YU(:NTLIN,
AA(:NTLIN,NU+1 :NU+NX) =YX(:NTLIN,
AA(:NTLIN,NU+NX+1:NU+NX+NW) =YW(:NTLIN,

Add specified linear constraints.

ABL(NTLIN+1:NLCON) = ACLBL(:NCLIN)
ABU(NTLIN+1:NLCON) = ACLBU(:NCLIN)
AA(NTLIN+1:NLCON,:NU+NX+NW) = ACL(:NCLIN,:NU+NX+NW)

Identify constraints and initial solution.

Identify decison bounds.

BL = 0.0

266

BU = 0.0
BL(:NU) = UBL(:NU)
BU(:NU) = UBU(:NU)
V(:NU) = U(:NU)

IF {LEVEL.EQ.O) THEN
N = NU

ELSE
N = NU + NX
BL(NU+1:N) = X0(:NX)
BU(NU+1:N) = X0(:NX)
V(NU+1:N) = X0(:NX)

END IF

Get constraint bound adjustments.

ADJ = 0.0
DO J = 1,NW
ADJ = ADJ + AA(:NLCON,NU+NX+J)*W0(J)

END DO

IF (LEVEL.EQ.O) THEN
DO J = 1,NX
ADJ = ADJ + AA(:NLCON,NU+J)*X0(J)

END DO
END IF

Identify non-trivial constraints.

1 = 0
A = 0.0
DO IC = 1,NLCON

TRIVIAL = .TRUE.
DO J = 1,N

IF (AA(ICJ) .NE.0.0) TRIVIAL
END DO
IF (.NOT.TRIVIAL) THEN

'1 = 1 + 1
BL(N+I) = ABL(IC) - ADJ(IC)
BU(N+I) = ABU(IC) - ADJ(IC)
A(I,:N) = AA(IC,:N)

END IF
END DO
NLCON = I

.FALSE.

Call npsol.

IWORK = 0
WORK =0.0
CALL NPSOL (N, NLCON, NCNLN, NROWA, NROWJ, -NROWR,

+ A, BL, BU,
+ CONFUN, OBJFUN,
+ . INFORM, ITER, ISTATE,
+ C, CJAC, CLAMDA, OBJF, OBJGRAD, R, V,
+ IWORK, LIWORK, WORK, LWORK)

267

if (p) then
write {i

write(*,
write(*,
write(*,
write (*,
end if

') (opt_npsl) npsol output'
(al6,20il4)')
(al6,20el4.8)
(al6,20el4.8)
(al6,i!4)')

'istate:
)'objgrad:
)'clamda:
'inform:

istate(:n+nlcon)
objgrad(:n)
clamda(:n+nlcon)
inform

Save values.

U = V(:NU)
F = OBJF
IF (LEVEL.NE.O) THEN

FX = CLAMDA(NU+1:NN)
END IF

Determine if gradients can be used.
Normally, inform should be 0, but because of "kinks'
in the future cost function, poor convergence may
result. If the effect is minor, inform will be 1;
if major, inform will be 6 or 7
and the resulting gradients are not correct enough.

Experience shows that at least 2 restarts are
required when inform=6.

Even if inform is 1, gradients may not be correct
enough, but, because of extra work involved,
minos gradients considered to be good enough
unless a problem is identified in calling routine.

IF ((INFORM.EQ.0).OR.(INFORM.EQ.1)) THEN
ERROR = .FALSE.

ELSE IF ((INFORM.EQ.6).OR.(INFORM.EQ.7)) THEN
ERROR = .TRUE.
IF (INFORM.EQ.7)

+ WRITE (*,*) ' (OPT_NPSL) USER DERIV INCORRECT, INFORM = 7'
ELSE

Other errors are fatal.

WRITE (*,*) ' (OPT_NPSL) FATAL ERROR: INFORM =', INFORM
IF (INFORM.EQ.2) THEN
WRITE (*,*) 'NO FEASIBLE POINT FOUND FOR LINEAR '//

+ 'CONSTRAINTS AND BOUNDS'

WRITE (*,*)
WRITE (*,*)
DO I = 1,N
WRITE (*,

END DO

'BOUNDS ON VARIABLES:'
'BL,BU'

(2F8.2)') BL(I), BU(I)

WRITE (*,*) 'ORIGINAL:'
WRITE (*,*) 'ABL, ABU :: AA'
DO I = l,NLCON
WRITE (*,'(2F8.2,A2,3 0F6.2)')

' : : ' , AMI, :NU+NX+NW)
END DO

ABL(I), ABU(I)

268

WRITE (*,*) 'ADJUSTED FOR XO AND W:'
DO I = l,NLCON
WRITE (*,'(2F8.2,A2,30F6.2)') BL(N+I), BU(N+I),

+ '::', A(I,:N)
END DO

ELSE IF (INFORM.EQ.3) THEN
WRITE (*,*) 'NO FEASIBLE POINT FOUND FOR NONLINEAR

CONSTRAINTS'
ELSE IF (INFORM.EQ.4) THEN
WRITE (*,*) 'MAJOR ITERATION LIMIT REACHED'

ELSE IF (INFORM.EQ.9) THEN
WRITE (*,*) 'AN INPUT PARAMETER IS INVALID'

END IF

If fatal error, call npsol again to produce
diagnostic output before stopping.

PP = .TRUE.
if (level.eq.O) then
write (*,'(a41,10x,i4,f9.4,7x,i5,30fl4.8)')

'(opt_npsl) inform,time,nOb,u,x,w,f:',
inform,secnds(timeO),nt_obj ,
u,xO(:NX),w0(:NW),f

else
write (*,'(a44,7x,i4,f9.4,7x,i5,30f14.8)')

'(opt_npsl) inform,time,nOb,u,x,w,f,fx:',
inform,secnds(timeO),nt_obj,
u,xO(:NX),w0(:NW),f,fx

end if
CALL NPOPTN ('VERIFY LEVEL =3')
CALL NPOPTN ('MAJOR PRINT LEVEL =30'
CALL NPOPTN ('MINOR PRINT LEVEL = 30'
CALL NPSOL (N, NLCON, NCNLN, NROWA,

A, BL, BU,
CONFUN, OBJFUN,
INFORM, ITER, ISTATE,
C, CJAC, CLAMDA, OBJF, OBJGRAD, R, V,
IWORK, LIWORK, WORK, LWORK)

)
)
NROWJ, NROWR,

write(*,'(al6,20il4)') 'istate: ', istate(:n+nlcon)
write(*,'(al6,20el4.8)')'objgrad:', objgrad(:n)
write(*,'(al6,20el4.8)')'clamda: ', clamda(:n+nlcon)
write(*,'(al6,il4)') 'inform: ', inform

STOP '(OPT_NPSL)
END IF

Reset variables.

NLCON NLCON0

NT_OBJ = N_OBJ - NT_OBJ
N_OPT = N_OPT + 1
T OPT = T_OPT + SECNDS(TIMEO)

269

DEALLOCATE (ISTATE, IWORK, A, BL, BU,
+ C, CJAC, CLAMDA, OBJGRAD, R, V, WORK)

Verify outputs.

+
+
+

if (error0.or.error.or.pp.or.p) then
if (level.eq.O) then
write (*, ' (a41,10x,i4,f9.4,7x,i5,30fl4.8) •)

'(opt_npsl) inform,time,nOb,u,x,w,f:',
inform,secnds(timeO),nt_obj ,
U,xO(:NX),wO(:NW),f

else
write (*, ' (a44,7x,i4,f9.4,7x,i5,30fl4.8) •)

'(opt_npsl) inform,time,nOb,u,x,w,f,fx:' ,
inform,secnds(timeO),nt_obj,
u,x0(:NX),wO(:NW),f,fx

end if
end if

END

Subroutine OPT POLY

This routine sets up the data for input into the solver AMOEBA.

SUBROUTINE OPT_POLY (U, F, ERROR)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB'

DOUBLE PRECISION
LOGICAL

!Problem size parameters and tolerances.

U(NU), F
ERROR

Solves function value f(x) and using a polytope method,
more traditionally known as the downhill simplex method
(not the same as the simplex method of linear optimization).

Routine sets up and calls ameoba as solver (from Numerical Recipes).
U on input is used as starting point for solver.
If ERROR = true on input, printout is provided.
Restart is required to confirm all solutions, but should not require
much computation if already close to solution.

Does not calculate derivatives.

INCLUDE 'I.SIZEALLO'
INCLUDE 'I.CONTROL'
INCLUDE 'I.SPECNOW'
INCLUDE 'I.PERFORM'

[Parameters to allocate storage space.
[Constraints on control.
[Current stage id.
[Track performance of solver and output.

Arrays for transX.

270

INTEGER
DOUBLE PRECISION

LEVEL
X(NX), W(NW), S(NW), Y(NX),
YU(NX,NU), YX(NX,NX), YW(NX,NW)

Arrays for ameoba.

INTEGER ,.
DOUBLE PRECISION

ITER, MP, NP
PM(NU+1,NU), YM(NU+1)

Other local variables.

INTEGER
LOGICAL
REAL*4

J, JLO, NT_OBJ
ERRORO
SECNDS, TIMEO

DOUBLE PRECISION OBJVAL
EXTERNAL OBJVAL, AMOEBA

NT_OBJ = N_OBJ
TIMEO = SECNDS(0.0)

Add State bounds to linear constraints where
transition function is linear.

LEVEL = 1
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

+ ISTAGE,IYEAR,ISEASON,U,X,W,
+ S,Y,YU,YX,YW)

AA = 0.0
ABL =0.0
ABU =0.0

ABL(:NTLIN) = YBL(:NTLIN)
ABU(:NTLIN) = YBU(:NTLIN)
AA(:NTLIN, :NU) = YU(:NTLIN,
AA(:NTLIN,NU+1 :NU+NX) =YX(:NTLIN,
AA(:NTLIN,NU+NX+1:NU+NX+NW) =YW(:NTLIN,

Add specified linear constraints.

ABL(NTLIN+l:NLCON) = ACLBL(:NCLIN)
ABU(NTLIN+l:NLCON) = ACLBU(:NCLIN)
AA(NTLIN+l:NLCON,:NU+NX+NW) = ACL(:NCLIN,:NU+NX+NW)

Initialize variables.

ERRORO
ERROR =

ERROR
.FALSE.

MP NU + 1

271

NP = NU

PM(MP,:) = U(:NU)
DO J = 1,NU

PM(J,:) = PM(MP,:)
PM(J,J) = PM(MP,J) + USCALE(J)

END DO

DO J = 1,MP
YM(J) = OBJVAL (PM(J,:))

END DO

Call solver.

CALL AMOEBA (PM,YM,MP,NP,NP,FTOL, OBJVAL,ITER)

Save values,

JLO = 1
DO J = 2,MP

IF (YM(J).LT.YM(JLO)) JLO = J
END DO

U = PM(JLO,:)
F = YM(JLO)

Verify outputs.

NT_OBJ = N_OBJ - NT_OBJ
N_OPT = N_OPT + 1
T OPT = T_OPT + SECNDS(TIMEO)

END

Subroutine OBJFUN

This routine feeds results of OBJ_CALC to the solver NPSOL.

SUBROUTINE OBJFUN (MODE, N, V, OBJF, OBJGRD, NSTATE)

IMPLICIT NONE
INTEGER MODE, N, NSTATE
DOUBLE PRECISION OBJF
DOUBLE PRECISION V(N), OBJGRD(N)

Provide objective and gradients for NPSOL as a function of
decision variables u, state variables x, and stochastic variables w.

Arrays: u=v(:NU). If n=NU, x is fixed and x=xO passed in common.
Otherwise, n=NU+NX, x is variables and x=v(NU+l:NU+NX).

272

Gradients: total where V(u,x,w) = C(u,x,w) + F(y), y = T(u,x,w) ,
p.d.f. of w is f(x), and u and x are independent (du/dx = 0).

INCLUDE 'I.SIZEPROB'
INCLUDE 'I.SIZEALLO"
INCLUDE 'I.CONTROL'

!Problem size parameters and tolerances.
!Parameters to allocate storage space.
[Constraints on control.

INTEGER
DOUBLE PRECISION

h

LOGICAL

EXTERNAL

LEVEL
U(NU), X(NX), W(NW),
OBJFU(NU), OBJFX(NX)
P, LARGE

OBJ CALC

Distinguish between x fixed and x variable.
Also identify what gradients are needed.

IF (N.EQ.NU) THEN

LARGE = .FALSE.
U = V
X = X0(:NX)
W = W0(:NW)
IF (MODE.EQ.0) THEN

LEVEL = 0
ELSE

LEVEL = 1
END IF

ELSE IF (N.EQ.NU+NX) THEN

LARGE = .TRUE.
U = V(1:NU)
X = V(NU+1:N)
W = W0(:NW)
IF (MODE.EQ.0)

LEVEL = 0
ELSE

LEVEL = 1
END IF

THEN

ELSE

WRITE (*,*) ' (OBJFUN) N, NU, AND NX DISAGREE:', N, NU, NX
STOP

END IF

Calculate objective value and gradients.

273

CALL OBJ_CALC (LARGE,LEVEL,U,X,W, OBJF,OBJFU,OBJFX)

OBJGRD(:NU) = OBJFU
IF (LARGE) OBJGRD(NU+l:) = OBJFX

END

Subroutine OBJVAL

This routine feeds results of OBJCALC to the solver AMOEBA.

FUNCTION OBJVAL (U)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Parameters for problem size.
DOUBLE PRECISION OBJVAL, U(NU)

Returns value of objective function for ameoba, the numerical recipies
polytope optimization routine.

INCLUDE 'I.SIZEALLO' !Parameters to allocate storage space.
INCLUDE 'I.CONTROL' !Constraints on control.

INTEGER LEVEL
DOUBLE PRECISION X(NX), W(NW),

+ OBJF, OBJFU(NU), OBJFX(NX)
LOGICAL LARGE

EXTERNAL OBJ_CALC

LARGE = .FALSE.
LEVEL = 0
X = X0(:NX)
W = W0(:NW)
CALL OBJ_CALC (LARGE,LEVEL,U,X,W, OBJF,OBJFU,OBJFX)
OBJVAL = OBJF

END

Suhroutine ORT CALC

This routine solves the objective function as the sum of a current cost and a cost-

to-go (evaluated by interpolation). This routine also adds a penalty for constraint

violations when using AMOEBA.

SUBROUTINE OBJ_CALC (LARGE, LEVEL, U, X, W,
+ OBJF, OBJFU, OBJFX)

274

IMPLICIT NONE
INCLUDE 'I.SIZEPROB'
INTEGER
DOUBLE PRECISION
LOGICAL

DOUBLE PRECISION

!Problem size parameters and tolerances.
LEVEL
U(NU), X(NX), W(NW)
LARGE

OBJF, OBJFU(NU), OBJFX(NX)

Calculates objective V=objf=C(u,x,w)+F(y) and partial derivatives
w.r.t. controls u and state x.

On input, LEVEL identifies what derivatives are to be calculated:
0: only u and f
1: u, f, and 1st (applies only when using NEWTON solver)

On output, LEVEL identifies if derivatives were calculated
If LARGE = false, x is fixed and only dV/du calculated.
If LARGE = true, x is variable and dV/du and dV/dx are calculated.

V(u,x,w) = C(u,x,w) + F(y), y = T(u,x,w), p.d.f. of w is f(x).
Note that u and x are evaluated as independent variables (du/dx=0)
Note that w and x are evaluated as independent variables (dw/dx=0)
Also, y=T(u,x,w) is incorporated implicitly:
dF/du = [dy/du][dF/dy], dF/dx = [dy/dx][dF/dy].

INCLUDE ' I.SPECNOW
INCLUDE 'I.PERFORM'

!Current stage id.
!Track performance of solver and output.

Local variables for transX.

INTEGER
DOUBLE PRECISION

VLEVEL
S(NW), Y(NX),
YU(NX,NU), YX(NX,NX), YW(NX,NW)

Local variables for cost_now.

DOUBLE PRECISION C, CU(NU), CX(NX), PEN

Local variables for cost_pen.

DOUBLE PRECISION CPEN

Local variables for int_func.

DOUBLE PRECISION F, FY(NX)

Other local variables.

INTEGER
DOUBLE PRECISION
LOGICAL
REAL

EXTERNAL

VLEVELO, J, K
DRMULT, FU(NU), FX(NX)
P
SECNDS, TIMEO, TIME1

TRANSX, INT_FUNC, COST_NOW, COST_PEN

275

Verify inputs.

IF ((LEVEL.LT.O) .OR. (LEVEL.GT.1>) THEN
WRITE (*,*) ' (OBJ_CALC) INCONSISTENT LEVEL
STOP

END IF

■, LEVEL

N_OBJ = N_OBJ + 1
TIMEO = SECNDS (0.0)

Identify derivatives needed.

Level identifies if 1st or 2nd derivatives needed.
Vlevel identifies if which derivatives are needed,
depending on the size of the problem (i.e., if
solver is using variable x in order to get df/dx
directly from solver vice from finite differences
in opt_solv.

IF (LEVEL.EQ.O) THEN
VLEVEL = 0

ELSE
VLEVEL = 1
IF (LARGE) VLEVEL = 2

END IF
VLEVEL0 = VLEVEL

Get current cost.

CALL COST_NOW (VLEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W,
+ C,CU,CX,PEN)
IF (VLEVEL.NE.VLEVELO) THEN
WRITE (*,*) ' (OBJ_CALC) NOT ADAPTED FOR dC BY FINITE DIFF'
STOP '(OBJ_CALC)'

END IF

Get end-of-stage state y.

Y = 0.0
YU = 0.0
YX = 0.
CALL TRANSXt (VLEVEL,NU,NX,NW,NTNLN,

+ ISTAGE,IYEAR,ISEASON,U,X,W,
+ S,Y,YU,YX,YW)
IF (VLEVEL.NE.VLEVELO) THEN
WRITE (*,*) ' (OBJ_CALC) NOT ADAPTED FOR dY BY FINITE DIFF'
STOP '(OBJ_CALC)'

276

END IF

If using polytope algorithm (i.e., not newton)
then add penalty cost for constraint violation.

IF (.NOT.NEWTON) THEN
CALL COST_PEN (LEVEL,U,X,W,Y,PEN, CPEN)
C = C + CPEN

END IF

Get cost-to-go by interpolation of future cost func.

TIME1 = SECNDS(O.O)

CALL INT_FUNC (LEVEL,Y, F,FY)

T_CALL = T_CALL + SECNDS (TIMED

Calculate total cost.

DRMULT = 1.0 - DISCOUNT

OBJF = C + F*DRMULT

IF (VLEVEL.GE.l) THEN
FU = 0.0
DO J = 1,NX

FU = FU + YU(J,:)*FY(J)
END DO
OBJFU = CU + FU*DRMULT

END IF

IF (VLEVEL.GE.2) THEN
FX = 0.0
DO J = 1,NX

FX = FX + YX(J,:)*FY(J)
END DO
OBJFX = CX + FX*DRMULT

END IF

Verify outputs.

T OBJ = T_OBJ + SECNDS (TIME0)

END

277

Subroutine COST PEN

This routine evaluates the penalty for constraint violations when using the solver

AMOEBA. Because the solver does not include constraints directly, the code uses a

large penalty to push control decisions back into the feasible region.

SUBROUTINE COST_PEN (LEVEL, U, X, W, Y, PEN,
+ CPEN)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Problem size parameters and tolerances.
INTEGER LEVEL
DOUBLE PRECISION U(NU), X(NX), W(NW), Y(NX), PEN

DOUBLE PRECISION CPEN

Returns penalty cost of decisions u that violate control bounds or that
result in a violation state bounds on y given initial state x and
stage istage.

Penalty is a polynomial function of violations
When applied with polytope solver, penalty consists of linear and
quadratic terms. Quadratic term assists convergence and linear
term ensures that constraint is satisfied.

When applied with Newton-based solver, penalty consists only of
third order term to ensure continuity of derivatives up to 2nd order.
Newton-based solvers may not converge without sufficient smoothness.

INCLUDE 'I.SIZEALLO' !Parameters to allocate storage space.
INCLUDE 'I.CONTROL' [Constraints on control.
INCLUDE 'I.PERFORM1 [Track performance of solver and output.

INTEGER K, J
DOUBLE PRECISION DIFF, ADJ(NCLIN)

Verify inputs consistent with routine.

IF ((.NOT.NEWTON).AND.(LEVEL.NE.O)) THEN
WRITE (*,*) ' (COST_PEN) LEVEL <> 0 FOR NON-NEWTON SOLVER'
STOP '(COST.PEN)'

END IF

IF (NX-NTNLN+NCLIN.NE.NLCON) THEN
WRITE (*,*) ' (COST_PEN) # LINEAR CONSTRAINTS INCONSISTENT'

+ NX-NTNLN, NCLIN, NLCON
STOP '(COST_PEN)'

END IF

278

Check for violation of bounds and calculate cost.

CPEN =0.0

Newton solver penalty.

IF (NEWTON) THEN

WRITE (*,*) ' (COST_PEN) CALLED WITH NEWTON = TRUE'
STOP '(COST_PEN)'

Non-Newton solver penalty.

ELSE

Penalty for violating bounds on decisions u.

DO K = 1,NU
IF (U(K).LT.UBL(K)) THEN
DIFF = U(K) - UBL(K)
CPEN = CPEN - PEN*DIFF

ELSE IF (U(K).GT.UBU(K)) THEN
DIFF = U(K) - UBU(K)
CPEN = CPEN + PEN*DIFF

END IF
END DO

Penalty for violating bounds on state y.

DO J = 1,NX
IF (Y(J).LT.YBL(J)) THEN
DIFF = Y(J) - YBL(J)
CPEN = CPEN - PEN*DIFF

ELSE IF (Y(J).GT.YBU(J)) THEN
DIFF = Y(J) - YBU(J)
CPEN = CPEN + PEN*DIFF

END IF
END DO

Penalty for violating linear constraints.

ADJ = 0.0
DO K = 1,NU
ADJ = ADJ + ACL(:NCLIN,K)*U(K)

END DO
DO J = 1,NX

ADJ = ADJ + ACL(:NCLIN,NU+J)*X(J)
END DO
DO J = 1,NW
ADJ = ADJ + ACL(:NCLIN,NU+NX+J)*W(J)

END DO

279

DO K = 1,NCLIN
IF (ADJ(K) .LT.ACLBL(K))
DIFF = ADJ(K) - ACLBL(K)
CPEN = CPEN - PEN*DIFF

ELSE IF (ADJ(K) .GT.ACLBU(K))
DIFF = ADJ(K) - ACLBU(K)
CPEN = CPEN + PEN*DIFF

END IF
END DO

END IF

THEN

THEN

5. MAIN SUBROUTINE AND ACCESSORIES

These routines set up and manage the overall solution of a DDP problem. In

addition, the following includes a few accessory routines are used repeatedly for data

verification.

Subroutine DYNPROG

This routine control overall flow of the solution, including identification of the

model, evaluation of the solution for each stage, and output.

SUBROUTINE DYNPROG
IMPLICIT NONE

Determines the future-cost (a.k.a. cost-to-go) function for a
stochastic dynamic programming problem.

Future-cost function is an interpolated function with domain spanned by
nodes stored in a list nnodes long. Each node has the following
associated characteristics:

xn location of node
fn function value at node
fxn function gradient at node
iabove pointer to nodes above in each dimension
ibelow pointer to nodes below in each direction

Nodes and values are contained in a linked list that points to nodes
immediately above and below in each dimension. The following is a
special case:

--Nodes on the edge of the domain: an adjacent node will be 0

INCLUDE 'I SIZEPROB'
INCLUDE ' I SIZEALLO'
INCLUDE 'I CONTROL'
INCLUDE •I SPECNOW
INCLUDE ' I XNODES'
INCLUDE ' I FNODES'

!Problem size parameters and tolerances,
!Parameters to allocate storage space.
[Constraints on control.
!Current stage id.
[State discretization.
[Future cost function.

280

INCLUDE ' I.SPECW
INCLUDE 'I.PERFORM'

!Stochastic realizations.
!Track performance of solver and output.

Local variables to get cost function in START.DAT.

INTEGER
DOUBLE PRECISION
ALLOCATABLE ::

IOS, NUR, NXR, ISTAGER, IA, IB
X, F, FX

IA(:), IB(:) , X(:), FX(:)

Local variables for modelall.

INTEGER
LOGICAL
CHARACTER*10

INTEGER

DOUBLE PRECISION
CHARACTER*11

Local

DOUBLE PRECISION

Local

ILAST
RESTART
LABELS(MAXSEAS), FTOLCHAR

Local variables for modelstg.

NDX(MAXNX), NNNEW,
IANEW(MAXNX,MAXNODES),
IBNEW(MAXNX,MAXNODES)
XDX(MAXIDX,MAXNX), XNNEW(MAXNX,MAXNODES)
NAMERUN, NAMECTG

variables to hold current cost function.

FNNEW(MAXNODES), FXNNEW(MAXNX,MAXNODES)

variables for node val.

INTEGER
DOUBLE PRECISION
LOGICAL

LEVEL, IX
U(MAXNU)
ERROR

Other local variables,

INTEGER
DOUBLE PRECISION
REAL
LOGICAL

LEVELO, I, J, N
FNMIN, FNAVG, TT_ID, TT_VAL, TT_WEIGH, T_TOT
SECNDS, TIMEO, TIME1, TIME2
P

EXTERNAL GETMODEL, NPOPTN, FINALCTG,
NODE_VAL, ADJ_MOD,
EXACT, EXACT_DIFF, OUTPUT

TIMEO = SECNDS(0.0)

Get parameters that specify characteristics of problem for all stages.

Model parameters.

281

Parameters are stored in common.

CALL MODELALL (NU,NX,NW,NTNLN,NCLIN,NCNLN,LPRINT,
+ RESTART,NSTAGES,NSEAS,LABELS,ILAST, IFIRST, IYFIRST,
+ DISCOUNT,TIGHT,FTOL,UTOL,FTOLCHAR,
+ STOCHASTIC,GDP,NEWTON)
NBASE2 = 2**NX
NTLIN = NX - NTNLN
NLCON = NTLIN + NCLIN

Specify npsol optional parameters.

c CALL NPOPTN ('DIFFERENCE INTERVAL = 0.01')
C CALL NPOPTN ('DERIVATIVE LEVEL = 3')
c CALL NPOPTN ('DIFFERENCE INTERVAL = 1.0')
C CALL NPOPTN ('FUNCTION PRECISION = '//FTOLCHAR)
C CALL NPOPTN ('CENTRAL DIFFERENCE INTERVAL = 1.0')

CALL NPOPTN ('VERIFY LEVEL = NO')
C CALL NPOPTN ('MAJOR ITERATION LIMIT = 100')

CALL NPOPTN ('MAJOR PRINT LEVEL = 0')
c CALL NPOPTN ('HESSIAN = YES')

1
<0

IF (GDP) THEN
LEVEL = 1

ELSE
LEVEL = 0

END IF
LEVEL0 = LEVEL

Identify if gradients needed, and how calculated.

LEVEL tells if and how gradients are calculated:
0: none (only u and f) (not applicable to GDP)

fx by solver
fx by finite diff (even if given by solver)

Set up cost function for final stage.

Identify year and season of last stage.

ISTAGE = NSTAGES + 1
CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON)

WRITE (*,*) ('-',1=1,70)
WRITE (*,*) ' (DYNPROG) BEGINNING STAGE ',ISTAGE, ' '//

,. ' SEASON/YEAR: ', ISEASON, '/', IYEAR
WRITE (*,*) ('-',1=1,70)

If restart, future cost function from START.DAT.

282

IF (RESTART) THEN

WRITE (*, ' (/,X,43A,A45) ') C-M=l,40),
+ •(DYNPROG) READING LAST STAGE COST FUNCTION'

! Open data file with prior solution.

OPEN (10,FILE='START.DAT',STATUS='OLD',IOSTAT=IOS)
IF (IOS.NE.0) THEN
WRITE {*,*) '(DYNPROG) CANNOT OPEN START.DAT'
STOP '(DYNPROG)'

END IF
WRITE (*,*) '(DYNPROG) IOSTAT FOR OPENING START.DAT = ', IOS

! Verify data file consistent with current model.
! Note: data file can have different discretization.

READ (10,'(4I8,E20.14)') NUR, NXR, NNODES, ISTAGER
IF ((NUR.NE.NU).OR.(NXR.NE.NX)) THEN
WRITE (*,*) '(DYNPROG) INCONSISTENT DATA FILE; NU,NX,NNODES:'
WRITE (*,*) NUR,NU,NXR,NX
STOP '(DYNPROG)'

END IF
IF (ISTAGER.NE.NSTAGES) THEN
WRITE (*,*) "(DYNPROG) LAST STAGE INCONSISTENT WITH DATA FILE'
WRITE (*,*) ISTAGER, ILAST

C STOP '(DYNPROG)'
END IF

! Read in array values.

ALLOCATE (IA(NX), IB(NX), X(NX), FX(NX))
YBL = 1.0E20
YBU = -1.0E20
DO IX = 1,NNODES

READ (10,'(I8,20E20.14)') J, X
XN(:NX,IX) = X(:NX)
DO J = 1,NX

YBL(J) = MIN (YBL(J),X(J))
YBU(J) = MAX (YBU(J),X(J))

END DO
END DO
DO IX = 1,NNODES

READ (10,'(18,2018)') J, IB, IA
IBELOW(:NX,IX) = IB(:NX)
IABOVE(:NX,IX) = IA(:NX)

END DO
DO IX = 1,NNODES

READ (10,'(I8.20E20.14)') J, F, FX
FN(IX) = F
FXN(:NX,IX) = FX(:NX)

END DO
DEALLOCATE (IA, IB, X, FX)

CLOSE (10,IOSTAT=IOS)
WRITE (*,*) '(DYNPROG) IOSTAT FOR CLOSING START.DAT = ', IOS

283

If not restart, future cost function from finalctg.

ELSE

WRITE (*,'(/,X,40A,A48)') ('-',1=1,40),
+ '(DYNPROG) CALCULATING LAST STAGE COST FUNCTION'

Get parameters for final cost function.

CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS,
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC,
+ UBL,UBU,UGUESS,USCALE,
+ NDX,NNODES,IBELOW,IABOVE,
+ XBL,XBU,YBL,YBU,XDX,XN,
+ NWNODES,WN,PWN,LIKELY,
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG)

DO IX = 1,NNODES
CALL FINALCTG (NX,XN(:NX,IX), FN(IX),FXN(:NX,IX))

p = .true,
do j = 1,NX

if ((xn(j,ix).ne.xbl(j)).and.(xn(j,ix).ne.xbu(j)))
+ p=.false.

end do
if (p) write (*, ' (a26,i6,20f10.2) ')

+ '(dynprog) ix/x/f/fx:',
+ ix,xn(:NX,ix),fn(ix),fxn(:NX,ix)

END DO

Write future cost function for current stage.

OPEN (1,IOSTAT=IOS,FILE=NAMERUN//'.dat',STATUS='NEW')
WRITE (*,*) '(DYNPROG) IOS FOR OPENING '//NAMERUN//'.dat = ', IOS
WRITE (1,'(6I8)') NU, NX, NNODES, NSTAGES, IYEAR, ISEASON
DO I = 1,NNODES
WRITE (1,'(I8.20E20.14)') I, XN(:NX,I)

END DO
DO I = 1,NNODES
WRITE (1, ' (18,2018) ') I, IBELOW(:NX,I) , IABOVE(:NX,I)

END DO
DO I = 1,NNODES
WRITE (1,'(I8,20E20.14)') I, FN(I), FXN(:NX,I)

END DO
CLOSE (1,IOSTAT=IOS)
WRITE (*,*) '(DYNPROG) IOS FOR CLOSING '//NAMERUN//'.dat = ', IOS

Adjust values as desired.

TIME2 = SECNDS(O.O)

N = NNODES

284

CALL ADJ_MOD (ISTAGE,IYEAR,ISEASON,
+ IBELOW(:NX,:N),IABOVE(:NX,:N),
+ XN(:NX,:N),FN(:N),FXN(:NX,:N))

WRITE (*,*) 'TIME TO ADJUST STAGE = ', SECNDS(TIME2)

END IF

Verify gradients of final_ctg.

IF (NEWTON) THEN

| * * * * *

END IF

Add nodes as desired for accuracy and convexity.

Add additional nodes as required to ensure that
interpolated values depend only on corner points of
surrounding hypercube.

WRITE (*,*} 'TIME TO SET UP MODEL = ', SECNDS(TIMEO)

Loop though each stage and state.

TT_ID =0.0
TT_WEIGH =0.0
T TOT =0.0

STAGES: DO ISTAGE

TIME1

NSTAGES,1,-1

SECNDS(0.0)

Identify year and season of current stage.

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON)

WRITE (*,'(//,70A)') ('-',1=1,70)
WRITE (*,*) ' (DYNPROG) BEGINNING STAGE ', ISTAGE, ' '//

h ' SEASON/YEAR: ',ISEASON,'/' ,IYEAR
WRITE (*,'(70A)') ('-',1=1,70)

Get parameters for current stage and initialize grid

TIME2 = SECNDS(0.0)

285

CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS,
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC,
+ UBL,UBU,UGUESS,USCALE,
+ NDX,NNNEW,IBNEW,IANEW,
+ XBL,XBU,YBL,YBU,XDX/XNNEW,
+ NWNODES,WN,PWN,LIKELY,
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG)

WRITE (') 'TIME TO ID STAGE SECNDS(TIME2)

Get nodes needed for interpolation.

TIME2 = SECNDS(O.O)

WRITE (*, ' (X,40A,A45) ') { ' - ' ,1=1,40),
'(DYNPROG) SOLVING GRID VALUES FOR NEW STAGE'

N INT = 0
N OBJ = 0
N OPT = 0
N SOL = 0
T ID = 0 0
T VAL = 0 0
T WEIGH = 0 0
T INT = 0 0
T CALL = 0 0
T OBJ = 0 0
T OPT = 0 0
T SOL = 0 0

Start with initial discretization.

DO IX = l.NNNEW
LEVEL = LEVELO
ERROR = .FALSE.
U(:NU) = UGUESS(:NU)
CALL NODE_VALt (LEVEL,IX,XNNEW(:NX,IX),

END DO
U(:NU),FNNEW(IX),FXNNEW(:NX

WRITE (*,'(A29,F10.5,I9,F10.2)
T_ID/DBLE(N_INT), N_INT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_VAL/DBLE(N_INT), N_INT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_WEIGH/DBLE(N_INT), N_INT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_INT/DBLE(N_INT), N_INT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_CALL/DBLE(N_INT), N_INT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_OBJ/DBLE(N_OBJ), N_OBJ

WRITE (*,'(A29,F10.5,I9,F10.2)
T_OPT/DBLE(N_OPT) , N_OPT

WRITE (*,'(A29,F10.5,I9,F10.2)
T_SOL/DBLE(N_SOL), N_SOL

WRITE (*,'(A29,F10.5,I9,F10.2)

IX),ERROR)

'ID TIME = '
T_ID
•VAL TIME = '
T_VAL
'WEIGH TIME = '
T_WEIGH
'INT TIME = '
T_INT
'CALL INT TIME
T_CALL
'OBJ TIME = '
T_OBJ
'OPT TIME = '
T_OPT
"SOLVE TIME = '
T_SOL
'NODE TIME = '

286

SECNDS(TIMEl)/DBLE(NNODES),NNODES,SECNDS(TIME1)

TT_ID = TT_ID + T_ID
TT_VAL = TT_VAL + T_VAL
TT_WEIGH = TT_WEIGH + T_WEIGH
T_TOT = T_TOT + SECNDS(TIMEl)

WRITE (*,*) "TIME TO SOLVE STAGE = ', SECNDS(TIME2)

Add nodes as desired for accuracy and convexity.

Add additional nodes as required to ensure that
interpolated values depend only on corner points of
surrounding hypercube.

Update future cost function.

Done after developing new function since
this will replace the old function in common.

NNODES = NNNEW
IABOVE = IANEW
IBELOW = IBNEW
XN = XNNEW
FN = FNNEW
FXN = FXNNEW

Adjust values as desired.

TIME2 = SECNDS(0.0)

N = NNODES
IF (LEVEL0.GT.0) THEN
CALL ADJ_MOD (ISTAGE,IYEAR,ISEASON,

+ IBELOW(:NX,:N),IABOVE(:NX,:N),
+ XN(:NX,:N),FN(:N),FXN(:NX,:N))
END IF

WRITE (* , *) 'TIME TO ADJUST STAGE , SECNDS(TIME2)

Calculate tracking parameters.

FNMIN = FN(1)
FNAVG = FN(1)
DO IX = 2,NNODES

FNMIN = MIN (FNMIN,FN(IX))
FNAVG = FNAVG + FN(IX)

END DO
FNAVG = FNAVG/DBLE(NNODES)

287

If deterministic, compare with exact solution.

IF (.NOT.STOCHASTIC) THEN
TIME2 = SECNDS(O.O)

IF (NSTAGES-ISTAGE.LE.10) CALL EXACT
WRITE (*,*) 'TIME TO COMPARE EXACT = ',SECNDS(TIME2)

END IF

Output nodes.

TIME2 = SECNDS(0.0)

WRITE (*,'(41A,A20,I4)') (' = ' , 1 = 1, 40) , '>',
+ 'SOLUTION STAGE',ISTAGE
WRITE (*,*) 'SEASON/YEAR: ',ISEASON,'/',IYEAR
WRITE (*,'(2(A10,F10.4),A10,F12.6)')

+ 'FNMIN=*,FNMIN, 'FNAVG=', FNAVG

CALL OUTSTAGEt (NU,NX,NW,NSEAS,ISTAGE,IYEAR,ISEASON,
+ XBL(:NX),XBU(:NX))

WRITE (*,*) 'TIME TO OUTPUT STAGE = ', SECNDS(TIME2)
WRITE (*,*) 'TIME FOR STAGE = ', SECNDS(TIMED
WRITE (*,*) 'TOTAL TIME = ', SECNDS(TIMEO)

Write future cost function for current stage.

OPEN (l,IOSTAT=IOS,FILE=NAMERUN//'.dat',STATUS='NEW')
WRITE (*,*) '(DYNPROG) IOS FOR OPENING '//NAMERUN//'.dat = ', IOS
WRITE (1,'(6I8)') NU, NX, NNODES, NSTAGES, IYEAR, ISEASON
DO I = 1,NNODES
WRITE (1, ' (I8.20E20.14) ') I, XN(:NX,I)

END DO
DO I = 1,NNODES
WRITE (1,'(18,2018)') I, IBELOW(:NX,I), IABOVE(:NX,I)

END DO
DO I = 1,NNODES
WRITE (1,'(I8,20E20.14)') I, FN(I), FXN(:NX,I)

END DO
CLOSE (l,IOSTAT=IOS)
WRITE (*,*) '(DYNPROG) IOS FOR CLOSING '//NAMERUN//'.dat = ', IOS

I AAA

END DO STAGES

Summarize run time.

WRITE (* , *) 'TOTAL ID TIME = ' , TT_ID
WRITE (*,*) 'TOTAL VAL TIME = ', TT_VAL
WRITE (* , *) 'TOTAL WEIGH TIME = ' , TT_WEIGH

288

WRITE {* , *) 'TOTAL SOLUTION TIME = ', T_TOT
WRITE (*,*) 'TOTAL TIME = ', SECNDS(TIMEO)

Final output for first stage (istage = 0).

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON)

WRITE (*,*) ('-',1=1,70)
WRITE (*,*) ' (DYNPROG) SUMMARY STAGE ',ISTAGE,' '//

¥ • SEASON/YEAR: ',ISEASON,*/',IYEAR
WRITE (*,*) ('-',1=1,70)

Get parameters for current stage.

CALL MODELSTG (NU,NX,NW,NTNLN,NCLIN,NCNLN,NSTAGES,NSEAS,
+ ISTAGE,IFIRST,IYFIRST,STOCHASTIC,
+ UBL,UBU,UGUESS,USCALE,
+ NDX,NNNEW,IBNEW,IANEW,
+ XBL,XBU,YBL,YBU,XDX,XNNEW,
+ NWNODES,WN,PWN,LIKELY,
+ ACL,ACLBL,ACLBU,NAMERUN,NAMECTG)

NWNODES = 1
WN(:,1) = 0.0
PWN(l) =1.0
LIKELY = .FALSE.
LIKELY(1) = .TRUE.

i

! Get solution using median values of stochastic
variables.

i

CALL OUTFINAL (NX,NW,ISTAGE,IYEAR,ISEASON, XBL(:NX),XBU(:NX))

STOP '(DYNPROG) DONE'
END

Subroutine MODELALL

This routine collects the model of a problem and verifies that the data are

consistent. Only those data that are independent of the stage are collected by this routine.

SUBROUTINE MODELALL (NU, NX, NW, NTNLN, NCLIN, NCNLN, LPRINT,
+ RESTART, NSTAGES, NSEAS, LABELS,
+ ILAST, IFIRST, IYFIRST,
+ DISCOUNT, TIGHT, FTOL, UTOL, FTOLCHAR,
+ STOCHASTIC, GDP, NEWTON)

IMPLICIT NONE
INCLUDE 'I.SIZEALLO' !Parameters to allocate storage space.
INTEGER NU, NX, NW, NTNLN, NCLIN, NCNLN, LPRINT,

+ NSTAGES, NSEAS, ILAST, IFIRST, IYFIRST

289

DOUBLE PRECISION
LOGICAL
CHARACTER*10

DISCOUNT, TIGHT, FTOL, UTOL
RESTART, STOCHASTIC, GDP, NEWTON
LABELS(MAXSEAS), FTOLCHAR

!Specify parameters of the system model for all stages.
i

! Local variables for specprob.

INTEGER NTLIN, NLCON, IYLAST

! Other local variables.

INTEGER MMMDV, MMMDIM, MMMWDIM, MMMCON, MMMSEAS, I

EXTERNAL SPECPROB, SIZETEST

I

WRITE (*,*) '(MODELALL) BEGIN'

Initialize variables.

MMMDV
MMMDIM
MMMWDIM
MMMCON
MMMSEAS

= MAXNU
= MAXNX
= MAXNW
= MAXCON
= MAXSEAS

Get user specified parameters that describe model.

CALL SPECPROBt (MMMSEAS,
+ NU,NX,NW,NTLIN,NTNLN,NCLIN,NCNLN,
+ RESTART,NSTAGES,NSEAS,LABELS,IFIRST,ILAST,
+ IYFIRST,IYLAST,LPRINT,
+ STOCHASTIC,GDP,NEWTON,DISCOUNT,TIGHT,FTOL, UTOL)

Verify parameters specified correctly.

CALL SIZETEST (NU, 1 MMMDV, (MODELALL) NU
CALL SIZETEST (NX, 1 MMMDIM, (MODELALL) NX
CALL SIZETEST (NW, 0 MMMWDIM, (MODELALL) NW
CALL SIZETEST (NTLIN, 0 NX, (MODELALL) NTLIN
CALL SIZETEST (NTNLN, 0 NX, (MODELALL) NTNLN
CALL SIZETEST (NCLIN, 0 MMMCON, (MODELALL) MAXCON
CALL SIZETEST (NCNLN, 0 0, (MODELALL) NCNLN
CALL SIZETEST (NSTAGES ,0 10000, (MODELALL) NSTAGES
CALL SIZETEST (NSEAS, 1 MMMSEAS, (MODELALL) NSEAS
CALL SIZETEST (IFIRST, 1 NSEAS, (MODELALL) IFIRST
CALL SIZETEST (ILAST, 1 NSEAS, (MODELALL) ILAST

IF (NTLIN+NTNLN.NE.NX) THEN
WRITE (*,*) '(MODELALL) NTLIN + NTNLN <> NX'

290

STOP '(MODELALL)'
END IF

NLCON = NTLIN + NCLIN
IF (NLCON.GT.MMMCON) THEN
WRITE (*,*) '(MODELALL) NLCON > MAXCON'
STOP '(MODELALL)'

END IF

IF (.NOT.RESTART) THEN
IF (NSTAGES.EQ.O) THEN
WRITE (*,*) '(MODELALL) NSTAGES = 0 WITHOUT RESTART'
STOP '(MODELALL)'

END IF

I = IYFIRST + INT ((IFIRST+NSTAGES-D/NSEAS)
IF (IYLAST.NE.I) THEN
WRITE (*,*) '(MODELALL) IYFIRST AND IYLAST DISAGREE',

¥ IYFIRST, IYLAST, I
STOP '(MODELALL)'

END IF

I = MOD (IFIRST+NSTAGES-1,NSEAS) + 1
IF (I.EQ.NSTAGES+1) 1=1
IF (I.NE.ILAST) THEN
WRITE (*,*) '(MODELALL) IFIRST AND ILAST DISAGREE',

¥ IFIRST, ILAST, I
STOP '(MODELALL)'

END IF
END IF

IF (STOCHASTIC.AND.(NW.LE.O)) THEN
WRITE (*,*) ' (MODELSTG) STOCHASTIC MODEL WITH NW <= 0'
STOP '(MODELALL)'

END IF

IF ((.NOT.GDP).AND.NEWTON) THEN
WRITE (*,*) '(MODELALL) MULTILINEAR DP CANNOT USE NEWTON SOLVER'
STOP '(MODELALL)'

END IF

IF ((DISCOUNT.LT.0.0).OR.(DISCOUNT.GT.1.0)) THEN
WRITE (*,*) '(MODELALL) DISCOUNT NOT IN [0,1],', DISCOUNT
STOP '(MODELALL)'

END IF

IF (TIGHT.LT.0.0) THEN
WRITE (*,*) '(MODELALL) TIGHT < 0,', TIGHT
STOP '(MODELALL)'

END IF

WRITE (*,*) 'SPECPROB OK'

Get character string for ftol.

OPEN (1,STATUS='SCRATCH')

291

WRITE (1,'(E10.2)') FTOL
REWIND (1)
READ (1,'(A10)') FTOLCHAR
CLOSE (1)

Echo model parameters.

WRITE (*,*)

END

WRITE (*
WRITE (*
WRITE (*

WRITE (*
WRITE (*

WRITE (*
WRITE (*
WRITE (*
WRITE (*
WRITE (*
WRITE (*

WRITE (*
WRITE (*
WRITE (*

WRITE (*

WRITE (*

WRITE (*
WRITE (*
WRITE (*
WRITE (*
WRITE (*

WRITE (*
WRITE (*

)
C-\I=1,40)
■(MODELALL) USER SPECIFIED MODEL'
('-',1=1,40)

) 'DISCOUNT RATE =, DISCOUNT
*)

*) 'GDP, TIGHT =', GDP, TIGHT
*) 'NEWTON SOLV=', NEWTON
*) 'STOCHASTIC =', STOCHASTIC
*) 'PRECISION OF OBJECTIVE FUNCTION =',FTOL
*) 'PRECISION OF CONTROLS =', UTOL

'RESTART = ', RESTART
'#STAGES=',NSTAGES, ', #SEASONS =',NSEAS
'DATES (SEASON/YEAR): ',
IFIRST,'/',IYFIRST,
ILAST,'/',IYLAST
'YEARS OF OPERATION =',
DBLE(NSTAGES)/DBLE(NSEAS)

*)

*)

'»DECISION VARIABLES =', NU
'#STATE VARIABLES =', NX
'#STOCHASTIC VARIABLES =', NW
'#LINEAR CONSTRAINTS =', NCLIN

■) 'LPRINT =', LPRINT
)

WRITE (*,*) '(MODELALL) END'

Subroutine MODELSTG

This routine collects the model of a problem and verifies that the data are

consistent. Those data that can change with the stage are collected by this routine. This

routine is structured to allow adaptive grids in later work.

SUBROUTINE MODELSTG (NU, NX, NW, NTNLN, NCLIN, NCNLN, NSTAGES,
+ NSEAS, ISTAGE, IFIRST, IYFIRST, STOCHASTIC,
+ UBL, UBU, UGUESS, USCALE,
+ NDX, NNODES, IBELOW, IABOVE,

292

+
+
+

XBL, XBU, YBL, YBU, XDX, XN,
NWNODES, WN, PWN, LIKELY,
ACL, ACLBL, ACLBU, NAMERUN, NAMECTG)

IMPLICIT NONE
INCLUDE 'I.SIZEALLO'
INTEGER

i-

LOGICAL

INTEGER

DOUBLE PRECISION

+
+
+

I
+
+
+
+
+

LOGICAL
CHARACTER*11

!Parameters to allocate storage space.
NU, NX, NW, NTNLN, NCLIN, NCNLN,
NSTAGES, NSEAS, ISTAGE, IFIRST, IYFIRST
STOCHASTIC

NDX(MAXNX), NNODES,
IBELOW(MAXNX,MAXNODES),
IABOVE(MAXNX,MAXNODES),
NWNODES
UBL(MAXNU), UBU(MAXNU),
UGUESS(MAXNU), USCALE(MAXNU),
XBL(MAXNX), XBU(MAXNX),
YBL(MAXNX), YBU(MAXNX),
XDX(MAXIDX,MAXNX),
XN(MAXNX,MAXNODES),
WN(MAXNW,MAXWNODES), PWN(MAXWNODES),
ACL(MAXCON,MAXNU+MAXNX+MAXNW),
ACLBL(MAXCON), ACLBU(MAXCON)
LIKELY(MAXWNODES)
NAMERUN, NAMECTG

Specify parameters of the system model for the current stage.

Parameters of the stochastic model (e.g, for streamflow) are applied to
the multivariate random normal variables in the w transition function.

INCLUDE 'I.PERFORM' !Track performance of solver and output.

Local variables for specU.

INTEGER IYEAR, ISEASON

Local variables for specX.

INTEGER MMMIDX, KSTAGE, KYEAR, KSEASON

Local variables for specW.

INTEGER
DOUBLE PRECISION

LOGICAL

MMMIDW, MODELW(NW), NDW(NW)
WMEAN(NW), WSTDV(NW), WSKEW(NW),
WDW(MAXIDW,NW), PROBW(MAXIDW,NW),
SWLO(NW), SWHI(NW), PROBMIN
GAUSQUAD

Other local variables .

INTEGER J, IDX, ID(MAXNX), IBASENX(MAXNX),
I, IW, IXB, N,
Nl, N2, N3, N4, N5, N6, N7

293

DOUBLE PRECISION DX(MAXIDX,MAXNX), ALARGE, VALOLD, PTEST
LOGICAL P

EXTERNAL IDNOW, SPECU, SPECX, SPECW, SPECLCON,
+ SIZETEST, SW_GQ, SW_TRAP

WRITE (*,*) '(MODELSTG) BEGIN'

P = .FALSE.
IF (LPRINT.GE.l) P = .TRUE.
IF (ISTAGE.EQ.NSTAGES+1) P = .TRUE.

Get user specified parameters that describe model.

ALARGE = 1.0E+20

ID year and season of current and following stage.

CALL IDNOW (ISTAGE,IFIRST,IYFIRST,NSEAS, IYEAR,ISEASON)
KSTAGE = ISTAGE + 1
CALL IDNOW (KSTAGE,IFIRST,IYFIRST,NSEAS, KYEAR,KSEASON)

Get number of decision variables, bounds, and guess.

UBL = -ALARGE
UBU = ALARGE
N = NU
CALL SPECU (NU,ISTAGE,IYEAR,ISEASON,

+ UBL(:N),UBU(:N),UGUESS(:N),USCALE(:N))

Verify parameters specified correctly.

DO J = 1,NU
IF (UBL(J).GE.UBU(J)) THEN
WRITE (*,*) '(MODELSTG) UB: ', UBL(J), ' NOT < ', UBU(J)
STOP '(MODELSTG)'

END IF
END DO

IF (P) WRITE (*,*) 'SPECU OK'

Get bounds on end-of-stage state variables.

MMMIDX = MAXIDX
N = NX
CALL SPECX (MMMIDX,NX,KSTAGE,KYEAR,KSEASON,

+ YBL(:N),YBU(:N),NDX(:N),XDX(:,:N))

294

Verify parameters specified correctly.

DO J = 1,NX
IF ((YBL(J).NE.XDX(1,J)).OR.(YBU(J) NE.XDX(NDX(J),J))) THEN
WRITE
WRITE
WRITE
WRITE
STOP

END IF
END DO

{*,*) '(MODELSTG) Y BOUNDS
(*,'(11X.4A10)') 'DIM',
(*,'(11X,2I10,2F10.2)') J,
(*,'(11X,2I10,2F10.2)') J,
(MODELSTG)'

MUST BE AT HI
'NX','BOUND'

1, YBL(J)
NDX(J), YBU(J)

AND LOW NODES'
,'NODE'
, XDX(1,J)
, XDX(NDXfJ),J)

Get bounds on state variables and (initial)
discretization.

MMMIDX = MAXIDX
N = NX
CALL SPECX (MMMIDX,NX,ISTAGE,TYEAR,ISEASON,

+ XBL(:N),XBU(:N),NDX(:N),XDX(:,:N))

Verify parameters specified correctly.

DO J = 1,NX
IF ((XBL(J) .NE.XDXd, J)) .OR. (XBU(J) .NE .XDX (NDX (J) , J))) THEN
WRITE (*,*) '(MODELSTG) X BOUNDS MUST BE AT HI AND
WRITE (*,'(11X,A10,A10)') 'BOUND', 'NODE'
WRITE (*,'(11X,F10.2,F10.2)') XBL(J), XDX(1,J)
WRITE (*,'(11X,F10.2,F10.2)') XBU(J), XDX(NDX(J),J
STOP '(MODELSTG)'

END IF
END DO

DX = 0.0
DO J = 1,NX

IF (NDX(J).LT.2) THEN
WRITE (*,*) NDX(:N)
WRITE (*,*) '(MODELSTG) NDX NOT > 2'
STOP '(MODELSTG)'

END IF
DO IDX = 1,NDX(J)-1

LOW NODES'

DX(IDX,J) = XDX(IDX+1,J) - XDX(IDX,J)
IF (DX(IDX,J).LE.0.0) THEN
WRITE (*,'(20E8.2)') XDX(IDX
WRITE (*,*) '(MODELSTG) DX <
STOP '(MODELSTG)'

END IF
END DO

END DO

IDX+1,J), DX(IDX,J)
0: XDX OR NDX INCORRECT',J,IDX

NNODES = 1
DO J = 1,NX

NNODES = NNODES * NDX(J)
END DO
N = MAXNODES
CALL SIZETEST (NNODES,1,N,
DO J = 1,NX

'(MODELSTG) NNODES

295

CALL SIZETEST (NDX(J),1,MMMIDX, '(MODELSTG) IDX ')
END DO

IF (P) WRITE (*,*) 'SPECX OK'

Get stochastic variables, discretization, and
significance level required.

MODELW = 0
WMEAN = ALARGE
WSTDV = ALARGE
WSKEW = ALARGE
NDW = 0
WDW = ALARGE
PROBW = ALARGE
PROBMIN =0.0
MMMIDW = MAXIDW
N = NW
CALL SPECWt (MMMIDW,NW,ISTAGE,IYEAR,ISEASON,

+ MODELW,WMEAN,WSTDV,WSKEW,
+ NDW,WDW,PROBW,SWLO,SWHI,PROBMIN,GAUSQUAD)

Verify parameters specified correctly.

DO J = 1,NW
IF (WMEAN(J).EQ.ALARGE) THEN
WRITE (*,*) '(MODELSTG) WMEAN NOT ASSIGNED FOR W(',J,')'
STOP '(MODELSTG)'

END IF
IF (STOCHASTIC) THEN

CALL SIZETEST (MODELW(J) ,1, 2 , '(MODELSTG) MODELW ')
CALL SIZETEST (WSTDV(J),0,ALARGE,'(MODELSTG) WSTDV ')
IF (WSTDV(J).EQ.ALARGE) THEN
WRITE (*, *) ' (MODELSTG) WSTDV NOT ASSIGNED FOR W(' ,J, ') '
STOP '(MODELSTG)'

END IF
IF (MODELW(J).GE.3) THEN

IF (WSKEW(J).EQ.ALARGE) THEN
WRITE (*,*) ' (MODELSTG) WSKEW NOT ASSIGNED FOR W(',J, ') '
STOP '(MODELSTG)'

END IF
END IF

VALOLD = -ALARGE
PTEST =0.0
N = MAXIDW
CALL SIZETEST (NDW(J),1,MMMIDW, '(MODELSTG) NDW ')
DO I = 1,NDW(J)

IF (WDW(I,J).EQ.ALARGE) THEN
WRITE (*,*) '(MODELSTG) WDW NOT ASSIGNED, W(',I,J,')'
STOP '(MODELSTG)'

END IF
IF (WDW(I,J).LE.VALOLD) THEN
WRITE (*,*) '(MODELSTG) WDW NOT IN ORDER, W(',I,J,')'
STOP '(MODELSTG)'

END IF

296

VALOLD = WDW(I,J)
IF (PROBW(I,J).EQ.ALARGE) THEN
WRITE {*,*) ' (MODELSTG) PROBW NOT ASSIGNED, W(',1,J, ') '
STOP '(MODELSTG)*

END IF
PTEST = PTEST + PROBW(I,J)

END DO
IF (ABS(PTEST-1.0).GT.PROBMIN) THEN
WRITE (*,*) "(MODELSTG) PTEST <> 1.0,', J, PTEST-1.0
STOP '(MODELSTG)'

END IF

IF (.NOT.GAUSQUAD) THEN
IF (SWLO(J).GE.SWHI(J)) THEN
WRITE (*,*) '(MODELSTG) SWLO > SWHI,', J
STOP '(MODELSTG)'

END IF
END IF

END IF
END DO

IF (STOCHASTIC) THEN
N = NINT(PROBMIN)
CALL SIZETEST (N,0,1,
NWNODES = 1
DO J = 1,NW
NWNODES = NWNODES * NDW(J)

END DO
N = MAXWNODES
CALL SIZETEST (NWNODES,2,N,

ELSE
NDW = 1
NWNODES = 1

END IF

(MODELSTG) PROBMIN ')

(MODELSTG) NWNODES ')

IF (P) WRITE (*,*) 'SPECW OK'

Get linear constraints on end-of-stage state.

ACLBL = -ALARGE
ACLBU = ALARGE
CALL SPECLCON (NU,NX,NW,NCLIN,KSTAGE,KYEAR,KSEASON,

+ ACL(:NCLIN,:NU+NX+NW),
+ ACLBL(:NCLIN),ACLBU(:NCLIN))

Verify parameters specified correctly.

DO I = 1,NCLIN
IF (ACLBL(I).GE.ACLBU(I)) THEN
WRITE (*,*) "(MODELSTG) ERROR BOUNDS: ACLBL NOT < ACLBU'
WRITE (*,*) ' ENDING STAGE =', KSTAGE,KYEAR,KSEASON
WRITE (*,*) ACLBL(I), ' NOT < ', ACLBU(I)
STOP '(MODELSTG)'

END IF
END DO

297

Get linear constraints.

ACLBL = -ALARGE
ACLBU = ALARGE
CALL SPECLCON (NU,NX,NW,NCLIN,ISTAGE,IYEAR,ISEASON,

+ ACL(:NCLIN,:NU+NX+NW),
+ ACLBL(:NCLIN),ACLBU(:NCLIN))

! Verify parameters specified correctly.

DO I = 1,NCLIN
IF (ACLBL(I).GE.ACLBU(I)) THEN
WRITE (*,*) '(MODELSTG) ERROR BOUNDS: ACLBL NOT < ACLBU'
WRITE (*,*) ' STAGE =', ISTAGE,IYEAR,ISEASON
WRITE (*,*) ACLBL(I), ' NOT < ', ACLBU(I)
STOP '(MODELSTG)'

END IF
END DO

WRITE (*,*) 'SPECLCON OK'

i

!Convert values to variables needed and evaluate other values that need
! to be calculated only once.
i

i

Get character string to identify current run.

IF ((NDX(l).GT.99).OR.(NDW(l).GT.9).OR.(ISTAGE+1.GT.999)) THEN
WRITE (*,*) '(MODELSTG) ERROR IN CREATING FILE NAMES'
WRITE (*,*), NDX(l), NDW(l), ISTAGE
STOP '(MODELSTG)'

END IF
IF ((NX.GT.9).OR.(NW.GE.9)) THEN
WRITE (*,*) '(MODELSTG) ERROR IN CREATING FILE NAMES', NX, NW
STOP '(MODELSTG)'

END IF

Nl = INT(NDX(1)/10)
N2 = NDX(l) - 10*N1
N3 = INT(NDW(1)/10)
N4 = NDW(l) - 10*N3

OPEN (1,STATUS='SCRATCH')

N5 = INT(ISTAGE/100)
N6 = INT((ISTAGE - 100*N5)/10)
N7 = INT(ISTAGE - 100*N5 - 10*N6)
REWIND (1)
WRITE (1,'(Al,311,Al,3II,Al,211)')

+ 't',N5,N6,N7,'x',NX,N1,N2,'w',NW,N4
REWIND (1)
READ (1,'(A11)') NAMERUN

298

N5 = INT((ISTAGE + 1J/100)
N6 = INT((ISTAGE + 1 - 100*N5)/10)
N7 = INT(ISTAGE + 1 - 100*N5 - 10*N6)
REWIND (1)
WRITE (1,'(A1,3I1,A1,3I1,A1,2I1)')

+ 'f,N5,N6,N7,'x',NX,N1,N2,'w',NW,N4
REWIND (1)
READ (1,'(All)') NAMECTG

CLOSE (1)

Get state-space grid.

IBASENX(l) = 1
DO J = 2,NX

IBASENX(J) = IBASENX(J-1)*NDX(J-1)
END DO

No links initially: added as they are created.

IBELOW = -1
IABOVE = -1

Positions and pointers to adjacent nodes.
On the edge of the domain, adjacent node will be 0,

IBELOW(:NX,:NNODES) = 0
IABOVE(:NX,:NNODES) = 0

ID = 1
ID(1) = 0
DO I = l,NNODES

DO J = 1,NX
ID(J) = ID(J) + 1
IF (ID(J).GT.NDX(J)) THEN

ID(J) = 1
ELSE

EXIT
END IF

END DO

DO J = 1,NX
XN(J,I) = XDX(ID(J),J)
IF (ID(J).GT.l) THEN

IXB = I - IBASENX(J)
IBELOW(J,I) = IXB
IABOVE(J,IXB) = I

END IF
END DO

END DO

Calculate locations and weights for each dimension.

299

IF (STOCHASTIC) THEN

ELSE
NDW = 1
WDW(1,:NW) =WMEAN(:NW)
PROBW =0.0
PROBW(l,:NW) =1.0

END IF

Get multivariate locations and weights for each node

PWN =0.0
LIKELY = .FALSE.
IF (GAUSQUAD) LIKELY = .TRUE.
ID = 1
ID(1) = 0
DO IW = l.NWNODES

Identify current node's position.

DO J = 1,NW
ID(J) = ID(J) + 1
IF (ID(J).GT.NDW(J)) THEN

ID(J) = 1
ELSE

EXIT
END IF

END DO

Identify and calculate node's probability weight.

PTEST =1.0
DO J = 1,NW

WN(J,IW) = WDW(ID(J),J)
PTEST = PTEST*PROBW(ID(J),J)

END DO
PWN(IW) = PTEST

Identify if node is likely.

IF (PTEST.GT.PROBMIN) LIKELY(IW) = .TRUE.

END DO

Verify probabilities sum to one.

PTEST =0.0
DO IW = l.NWNODES

PTEST = PTEST + PWN(IW)
END DO
IF (ABS(1.0-PTEST).GT.PROBMIN) THEN
WRITE (*,*) ' (MODELSTG) PROB < 1.0' , PTEST, 1.0-PTEST
STOP '(MODELSTG)'

300

END IF

Verify likely probabilities sum to one.

PTEST =0.0
DO IW = l.NWNODES

IF (LIKELY(IW)) PTEST = PTEST + PWN(IW)
END DO
IF (ABS(l.O-PTEST).GT.10.0*PROBMIN) THEN
WRITE (*,*) '(MODELSTG) LIKELY PROB < 1.0', PTEST, 1.0-PTEST
STOP '(MODELSTG)'

END IF

Echo model parameters.

+
+

IF (P) THEN
WRITE (*,'(X,20A,A11,20A,A40)')

('-',1=1,20), NAMERUN, ('-',1=1,20)
'(MODELSTG) MODEL FOR STAGE'

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

) '»DECISION VARIABLES =', NU
(A8,20F8.2)') 'MIN U:', UBL(:NU)
(A8,20F8.2)') 'MAX U:', UBU(:NU)
(A12,20F8.2)') 'TRIAL SOLN:', UGUESS(:NU)
(A14,20F8.2)')'LENGTH SCALE:',USCALE(:NU)

')

*) '#STATE VARIABLES =', NX
'(A8,20F8.2)') 'MIN X:', XBL(
'(A8,20F8.2)') 'MAX X:', XBU(
'(A16,20I4)') 'DISCRETIZATION

WRITE
WRITE
WRITE
WRITE
WRITE
DO J = 1,NX
WRITE (*, ' (A6,I2,A2,20F8.2) ')

'XDX(',J,'):',XDX(:NDX(J),J)
END DO

NX)
NX)

NDX(:NX)
'TOTAL INITIAL NODES =', NNODES

DO J = 1,NX
WRITE (*,'(A6,I2,A2,20F8.2)')

'DX(',J,'):',DX(:NDX(J)-1,J)
END DO
WRITE (*,*)

WRITE (*,*) '#STOCHASTIC VARIABLES =', NW
WRITE (*,'(A16.20I4)') 'DISCRETIZATION:',NDW(:NW)
WRITE (*,*) 'TOTAL NODES =', NWNODES
WRITE (*,*) 'GAUSSIAN QUADRATURE = ', GAUSQUAD
IF (GAUSQUAD) THEN
WRITE (*,'(A12,A10,A18)')

'IW','PROB','DISCRETE STDV''S'
DO I = 1,NWNODES
WRITE (*,'(6X,I6,F10.6,20F6.2)')

I, PWN(I), WN(:NW,I)
END DO

ELSE
WRITE (*,'(A12,A8,A8,A18)')

301

+ ■IW','PROB','LIKELY?','DISCRETE STDV''S'
DO I = l.NWNODES
WRITE (*, ' (6X,I6,F8.5,L8,20F6.2) ")

+ I, PWN(I), LIKELY(I), WN(:NW,I)
END DO

END IF
WRITE (*,*)

WRITE (*,*) '#LINEAR CONSTRAINTS =', NCLIN
IF (NCLIN.NE.O) WRITE (*,*) 'BL, BU :: A'

DO I = 1,NCLIN
WRITE (*,'(2F8.2,A2,30F6.2)') ACLBL(I),ACLBU(I)

+ '::', ACL(I,:NU+NX+NW)
END DO

WRITE (*,*)

WRITE (*,*) '(MODELSTG) END'
END IF

END

Subroutine NODE VAL

This routine identifies the expected cost-to-go and first derivatives for an initial

state. This includes evaluation of control decisions and costs for each outcome of the

stochastic variables (i.e., nodes of the stochastic-space grid). Gradients are evaluated by

a crude finite-difference method if needed and not provided by other routines.

SUBROUTINE NODE_VALt (LEVEL, IXNODE, X,
+ U, F, FX, ERROR)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB' !Problem size parameters and tolerances.
INTEGER LEVEL, IXNODE
DOUBLE PRECISION X(NX)

DOUBLE PRECISION U(NU), F, FX(NX)
LOGICAL ERROR

Calls user specified solver to find optimal control u and associated
cost-function value f(x) for initial state x. If requested, gradient
fx = df/dx is calculated.

Values calculated as weighted average of stochastic variable outcomes.
Gradients taken directly from solver if they appear correct; otherwise,
gradient calculated by finite differences.

On input, LEVEL identifies what derivatives are to be calculated:
0: none (only u and f)
1: fx

On output, LEVEL identifies how derivatives actually were calculated
(if derivatives requested).

On input, if ERROR = true on input, diagnostic output is to be provided
by solver.

On output, if ERROR = true, there was a problem with solver.

302

U on input identifies starting solution. Not reinitialized for current
x on guess that solutions for different iw will be closer than uguess.

U on output identifies weighted average of solutions for each iw. It
DOES NOT identify an actual solution unless deterministic (nwnodes=l).

INCLUDE 'I.SIZEALLO'
INCLUDE "I.CONTROL"
INCLUDE 'I.SPECW'
INCLUDE 'I.SPECNOW
INCLUDE 'I.PERFORM'

!Parameters to allocate storage space.
!Constraints on control.
!Stochastic realizations.
!Current stage id.
!Track performance of solver and output.

Local variables for transx.

DOUBLE PRECISION

Local

DOUBLE PRECISION

Local

DOUBLE PRECISION

Local

LOGICAL

Local

S(NW), Y(NX),
YU(NX,NU), YX(NX,NX), YW(NX,NW)

variables cost_now.

C, CU(NU), CX(NX), PEN

variables for transw.

SW(NW), W(NW)

variables for opt_solv.

ERRTEST

variables for finite difference calculations.

INTEGER
DOUBLE PRECISION

LOGICAL

INTEGER

J, L
UHOLD(NU), FHOLD,
DEL, DELINV1, DELINV2, DELINV,
XDEL(NX), Fl, F2, Ul(NU), U2(NU)
SKIP

Other local variables.

DOUBLE PRECISION
+

+

+

+

LOGICAL
REAL*4

EXTERNAL

IW, LEVELO, K,
NT_SOL, NT_OPT, NT_OBJ, NT_INT
XHOLD(NX), WHOLD(NW),
DUMMY, SUMF, SUMFX(NX), SUMU(NU),
ADJ(NLCON),
ERRTOL, ERRTST, G,
Cl, C2, Yl(NX), Y2(NX)
FDIFF, ERRORO
SECNDS, TIMEO

COST_NOW, TRANSX, OPT_SOLV

! Specify interval for finite differences.
! Used for override of solver gradients and for
! verification of gradients in cost_now and transx.

303

DEL = l.OE-08

Specify tolerance for finite diff verification.

ERRTOL = 1.0E-04

Verify inputs.

IF ((LEVEL.LT.O).OR.(LEVEL.GT.l)) THEN
WRITE (*,*) '(NODE_VAL) INCONSISTENT LEVEL = ', LEVEL
STOP

END IF

IF (NTNLN.NE.O) THEN
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR.NON-LINEAR TRANSITION'
STOP '(NODE_VAL)'

END IF

Save initial settings.

NT_INT = N_INT
NT_OBJ = N_OBJ
NT_OPT = N_OPT
NT SOL = NSOL

ERRORO = ERROR
LEVELO = LEVEL
XHOLD = X

Initialize values.

TIMEO = SECNDS(O.O)

DUMMY = 9.9E20
DELINV1 = 1.0 / DEL
DELINV2 = 0.5 * DELINV1

Find optimal u and cost for each w.

SUMU =0.0
SUMF =0.0
SUMFX =0.0
ERROR = .FALSE.

DO IW = l.NWNODES
IF (LIKELY(IW)) THEN
WHOLD = WN(:NW,IW)
W = WHOLD

304

Check current cost function.

LEVEL = 1
C = DUMMY
CU = DUMMY
CX = DUMMY
PEN = DUMMY
CALL COST_NOW (LEVEL,NU,NX,NW,

+ ISTAGE,IYEAR,ISEASON,U,X,W,
+ C,CU,CX,PEN)

IF (LEVEL.NE.l) THEN
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR dC BY FINITE DIFF'
STOP '(NODE_VAL)'

END IF
IF (C.EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) C MISSING FROM COST_NOW'
STOP '(NODE_VAL)'

END IF
IF (PEN.EQ.DUMMY) THEN
WRITE {*,*) ' (NODE_VAL) PEN MISSING FROM COST_NOW'
STOP "(NODE_VAL)'

END IF
DO K = 1,NU

IF (CU(K).EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) CU(',K, ') MISSING FROM COST_NOW
STOP '(NODE_VAL)'

END IF
END DO
DO J = 1,NX

IF (CX(J).EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) CX(',J, ') MISSING FROM COST_NOW'
STOP '(NODE_VAL)'

END IF
END DO

Check transistion function.

LEVEL = 1
Y = DUMMY
YU = DUMMY
YX = DUMMY
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y,YU,YX,YW)

IF (LEVEL.NE.l) THEN
WRITE (*,*) ' (NODE_VAL) NOT ADAPTED FOR dY BY FINITE DIFF'
STOP '(NODE_VAL)'

END IF
DO J = l.NX

IF (Y(J).EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) Y(',J,') MISSING FROM TRANSX'
STOP '(NODE_VAL)'

END IF

305

DO K = 1,NU
IF (YU(J,K).EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) YU(',J,K,') MISSING FROM TRANSX'
STOP '(NODE_VAL)'

END IF
END DO
DO K = 1,NX

IF (YX(J,K).EQ.DUMMY) THEN
WRITE (*,*) '(NODE_VAL) YX(',J,K,') MISSING FROM TRANSX'
STOP '(NODE_VAL)'

END IF
END DO
DO K = 1,NW

IF (YW(J,K).EQ.DUMMY) THEN
WRITE (*,*) ' (NODE_VAL) YW(',J,K,') MISSING FROM TRANSX'
STOP '(NODE_VAL)'

END IF
END DO

END DO

Solve for current w.

IF (NEWTON) THEN
LEVEL = LEVELO
FDIFF = .FALSE.

ELSE
LEVEL = 0
IF(LEVELO.NE.O) FDIFF =

END IF
ISW = IW
ERRTEST = ERRORO

.TRUE.

X0(:NX) = X
WO(:NW) = WHOLD
CALL OPT_SOLVt (LEVEL, U,F,FX,ERRTEST)

IF (ERRTEST) ERROR = .TRUE.

IF ((NEWTON).AND.(LEVEL.NE.LEVELO)) THEN
WRITE (*,'(A78)')

+ '(NODE_VAL) SOLVER DID NOT PROVIDE GRADIENTS, '//
+ 'SWITCHING TO FINITE DIFFERENCES'

FDIFF = .TRUE.
END IF

Calculate derivative by finite differences
if required but not provided by opt_solv.

Save values,

UHOLD = U
FHOLD = F

IF (FDIFF) THEN

306

LEVEL = 0
DO J = 1,NX

XDEL = X
DELINV = DELINV2
DO L = 1,2

ID neighboring x used to calculate finite diff.
Central diff approximation used unless outside
the domain of x defined by the disretization.

SKIP = .FALSE.
IF (L.EQ.l) THEN

XDEL(J) = X(J) - DEL
IF (XDEL(J).LT.XBL(J)) THEN

Fl = FHOLD
Ul = UHOLD
DELINV = DELINV1
SKIP = .TRUE.

END IF
ELSE

XDEL(J) = X(J) + DEL
IF (XDEL(J).GT.XBU(J)) THEN

F2 = FHOLD
U2 = UHOLD
DELINV = DELINV1
SKIP = .TRUE.

END IF
END IF

Solve for neighboring x if not outside domain.

IF (.NOT.SKIP) THEN

Solve for xdel.

X0(:NX) = XDEL
W0(:NW) = WHOLD
ERRTEST = ERRORO
CALL OPT_SOLVt (LEVEL, U,F,FX,ERRTEST)

Save values.

IF (L.EQ.l) THEN
Fl = F
Ul = U

ELSE
F2 = F
U2 = U

END IF
END IF

END DO

Calculate finite difference values.

307

FX(J) = (F2 - F1)*DELINV
UX(J,:) = (U2 - U1)*DELINV

END DO

Reset to initial solution.

U = UHOLD
F = FHOLD

if (error) write (*,'(a26,50x,30fl4.8)')
+ '(node_val) u,x,w,f,fx:',
+ u,xO(:NX),wO(:NW),f,fx

END IF

Get cost for current w.

SUMU = SUMU + U*PWN(IW)
SUMF = SUMF + F*PWN(IW)
IF (LEVEL0.EQ.1) SUMFX = SUMFX + FX*PWN(IW)

Verify user supplied gradients.

Check cost_now gradients.

LEVEL = 1
X = XHOLD
W = WHOLD
DO K = 1,NU

U = UHOLD
U(K) = UHOLD(K) - DEL .
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W,

C1,CU,CX,PEN)
U(K) = UHOLD(K) + DEL
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W,

C2,CU,CX,PEN)
G = (C2 - CD *DELINV2
ERRTST = ERRTOL*(1.0 + ABS(Cl) + ABS(G))
IF (ABS(CU(K)-G).GT.ERRTST) THEN
WRITE (*,*) ' (NODE_VAL) CU <> G',CU(K) ,G,CU(K)-G

') 'IX,IW,K:',IXNODE,IW,K
') 'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON
■) 'C1,C2,DEL:', Cl, C2, DEL

WRITE (*
WRITE (*
WRITE (*
WRITE (*
WRITE (*
WRITE (*

) 'U
') 'X
•) 'W

UHOLD
X
W

STOP '(NODE_VAL)'
END IF

END DO

U = UHOLD
W = WHOLD
DO K = 1,NX

X = XHOLD(:NX)
X(K) = XHOLD(K) - DEL
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X,W,

308

C1,CU,CX,PEN)
X(K) = XHOLD(K) + DEL
CALL COST_NOW (LEVEL,NU,NX,NW,ISTAGE,IYEAR,ISEASON,U,X, W,

C2,CU,CX,PEN)
G = (C2 - C1)*DELINV2
ERRTST = ERRTOL*(1.0 + ABS(Cl) + ABS(G))
IF (ABS(CX
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
STOP

END IF
END DO

('

('

K)-G).GT.ERRTST) THEN
') '<NODE_VAL) CX <> G',CX(K),G,CX(K)-G

'IX,IW,K:',IXNODE,IW,K
•ISTAGE,IYEAR,ISEASON: ' , ISTAGE,IYEAR,ISEASON
'C1,C2,DEL:', Cl, C2, DEL

')

'U
'X
'W

u
XHOLD
W

(NODE_VAL)

Check transX gradients.

LEVEL = 1
X = XHOLD
W = WHOLD
DO K = 1,NU

U = UHOLD
U(K) = UHOLD(K) - DEL
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y1,YU,YX,YW)

U(K) = UHOLD(K) + DEL
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y2,YU,YX,YW)

DO J = 1,NX
G = (Y2(J) - Yl(J))*DELINV2
ERRTST = ERRTOL*(1.0 + ABS(YKJ)) + ABS(G))
IF (ABS(YU
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
STOP

END IF
END DO

END DO

{'

('

J,K)-G).GT.ERRTST) THEN
*)
*)

')

'(NODE_VAL) YU <> G',YU(J,K),G,YU(J,K)-G
'IX,IW,J,K:',IXNODE.IW,J,K
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON
'Y1,Y2,DEL:', Yl(J), Y2(J), DEL

UHOLD
X
W

(NODE_VAL)'

U = UHOLD
W = WHOLD
DO K = 1,NX

X = XHOLD
X(K) = XHOLD(K) - DEL
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y1,YU,YX,YW)

X(K) = XHOLD(K) + DEL

309

CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,
+ ISTAGE,IYEAR,ISEASON,U,X,W,
+ S,Y2,YU,YX,YW)

DO J = 1,NX
G = (Y2(J) - Y1(J))*DELINV2
ERRTST = ERRTOL*(1.0 + ABS(Y1(J)) + ABS(G))
IF (ABS(YX(J,K)-G).GT.ERRTST) THEN
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
STOP

END IF
END DO

END DO

(' r)

'(NODE_VAL) YX <> G',YX(J,K),G,YX(J,K)-G
'IX,IW,J,K:',IXNODE,IW,J,K
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON
'Y1,Y2,DEL:', Y1(J), Y2(J), DEL
■u
'X
'W

(NODE_VAL)

U
XHOLD
W

U = UHOLD
X = XHOLD
DO K = 1,NW
W = WHOLD
W(K) = WHOLD(K) - DEL
CALL TRANSXt (LEVEL,NU,NX,NW,NTNLN,

ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y1,YU,YX,YW)

WHOLD(K) + DEL
(LEVEL,NU,NX,NW,NTNLN,
ISTAGE,IYEAR,ISEASON,U,X,W,
S,Y2,YU,YX,YW)

W(K)
CALL TRANSXt

DO J = 1,NX
G = (Y2(J) - Y1(J))*DELINV2
ERRTST = ERRTOL*(1.0 + ABS(YKJ)) + ABS(G))
IF (ABS(YW(J.K)-G).GT.ERRTST) THEN

'(NODE_VAL) YW <> G',YW(J,K),G,YW(J,K)-G
'IX,IW,J,K:',IXNODE,IW,J,K
'ISTAGE,IYEAR,ISEASON:',ISTAGE,IYEAR,ISEASON
•Y1,Y2,DEL:', Yl(J), Y2(J), DEL

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
STOP

END IF
END DO

END DO

(*
(*
(*
(*
{*
(*
(*

'U
'X
"W

u
X
WHOLD

(NODE_VAL)

END IF
END DO

U = SUMU
F = SUMF
FX = SUMFX
LEVEL = LEVELO

Verify outputs.

310

NT_INT = N_INT - NT_INT
NT_OBJ = N_OBJ - NT_OBJ
NT_OPT = N_OPT - NT_OPT
NT SOL = N_SOL - NT_SOL

END

Subroutine ADJ MOD

This routine adjusts cost-to-go values and gradients to ensure convex

interpolation. It is assumed that if node values are consistent with a convex function,

then the interpolation should try to preserve this convexity. This is accomplished by

adjusting the gradients and, if necessary, the cost-to-go to satisfy the one-dimensional

convexity constraints of Chapter Five. This prevents small oscillations or numerical error

from creating false local minima that become significant with additional recursions (i.e.,

stages).

SUBROUTINE ADJ_MOD (ISTAGE, IYEAR, ISEASON, IBELOW, IABOVE,
+ XN, FN, FXN)

IMPLICIT NONE
INCLUDE 'I.SIZEPROB'
INTEGER

v
DOUBLE PRECISION

!Parameters for problem size.
ISTAGE, IYEAR, ISEASON,
IBELOW(NX,NNODES), IABOVE(NX,NNODES)
XN(NX,NNODES),
FN(NNODES), FXN(NX,NNODES)

Adjusts cost function solutions using user-supplied constraints, and,
if gdp, then adjusts gradients to produce a convex Hermite interpolat.

ix = 1 is assumed to be the lowest node in the domain.
Each node ix has the associated characteristics:

xn location of node
fn function value at node
fxn function gradient at node

Nodes and values are contained in a linked list that points to nodes
immediately above and below in each dimension. The following are
special cases:

--Nodes on the edge of the domain: an adjacent node will be 0
--Interpolated nodes used for continuity: an adjacent node will be -1
G used for finite difference gradients.

Local variables for specf.

DOUBLE PRECISION FMIN, FMAX, FXMIN(NX), FXMAX(NX)

Other local variables.

INTEGER MAXITER, MIDITER, NITER,
v IX, J, IXB, IXA, KEY, IXBB, IXAA

311

DOUBLE PRECISION
+
+
+
+
+
+
+
+

I
+
+

LOGICAL

ERRTOL, TOL, FNEW, ACCEL,
FO(NNODES), FX0(NX,NNODES),
FHOLD(NNODES), FXHOLD{NX,NNODES) ,
X, XB, XA, F, FB, FA, FX, FXB, FXA, GB, GA,
GA3, GAMIN, GAMAX, GB3, GBMIN, GBMAX,
D, DA, DB, DENOM, FRAC,
FXCA1, FXCA2, FXCB1, FXCB2,
XBB, XAA, GBB, GAA,
FDIFF, FXDIFF(NX)
CONVEX(NX,NNODES),
NOCHANGE, DONE,
CA1, CA2, CB1, CB2, FINALTRY, SKIP

EXTERNAL SPECF

ERRTOL = 1.0E-15
MAXITER =21
ACCEL =2.0

Set end-of-sharing iteration at which entire
adjustment is taken by current node, if possible.

MIDITER

Save inputs.

WRITE (*,*) ' (ADJ_MOD) BEGIN, STAGE =', ISTAGE
F0 = FN
FXO = FXN

Get bounds on function values.

FMIN = -1.0E20
FMAX = 1.0E20
FXMIN = -1.0E20
FXMAX = 1.0E20

CALL SPECF (NX,ISTAGE,IYEAR,ISEASON, FMIN,FMAX,FXMIN,FXMAX)

Verify parameters specified correctly.

IF (FMAX.LT.FMIN) THEN
WRITE (*,*) '(MODELSTG) FMAX < FMIN', FMAX, FMIN, FMAX-FMIN
STOP '(MODELSTG)'

END IF
DO J = 1,NX

IF (FXMAX(J).LT.FXMIN(J)) THEN
WRITE (*,*) '(MODELSTG) FXMAX < FXMIN', J, FXMAX(J), FXMIN(J)
STOP '(MODELSTG)'

END IF
IF ((FMIN.NE.-1.0E20).OR.(FMAX.NE.1.0E20)) THEN

IF ((FXMIN(J).GT.0.0).OR.(FXMAX(J).LT.0.0)) THEN

312

WRITE
WRITE

• STOP
END IF

END IF
END DO

(*,*) '(MODELSTG) FX = 0.0 MUST BE WITHIN BOUNDS'
(*,*} ' CHANGE FXMIN,FXMAX:', FXMIN,FXMAX
(MODELSTG)'

!Adjust function values.
;

i

! Adjust consistent with specf.
i

DO IX = l,NNODES
F = FN(IX)
IF (F.LT.FMIN) THEN
WRITE (*,'(A20,I6,2F16.8,E8.2)')

i- ' (ADJ_MOD) F < FMIN', IX, F,
F = FMIN

ELSE IF (F.GT.FMAX) THEN
WRITE (*, ' (A20,I6,2F16.8,E8.2) ')

f- ' (ADJ_MOD) F > FMAX' , IX, F,
F = FMAX

END IF
FN(IX) = F

END DO

FMIN, F-FMIN

FMAX, F-FMAX

Write non-convex nodes grouped by dimension.

DO J = 1,NX
DO IX = l.NNODES

IXB = IBELOW(J,IX)
IXA = IABOVE(J,IX)
IF ((IXB.GT.O).AND.(IXA.GT.O)) THEN

F = FN(IX)
X = XN(J,IX)
XB = XN(J,IXB)
FB = FN(IXB)
XA = XN(J,IXA)
FA = FN(IXA)

IF (XB.GE.X) THEN
WRITE (*,*) ' (ADJ_MOD) ERROR 1 DIVIDE', XB, X
STOP '(ADJ_MOD)'

END IF
IF (X.GE.XA) THEN
WRITE (*,*) ' (ADJ_MOD) ERROR 2 DIVIDE', X, XA
STOP '(ADJ_MOD)'

END IF

GB = (F -
GA = (FA

FB) /(X -
- F)/(XA

XB)
- X)

313

TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB))
TOL = MIN(TOL,1.0)
IF (GB-TOL.GT.GA) THEN
WRITE (*,'(A53,I6,I4,2F14.8,E10.4,3F12.4,20F10.2)')

+ ' (ADJ_MOD) ***NOT CONVEX*** IX,J,GB>GA,DIFF,B/F/A,X: ',
+ IX,J,GB,GA,GB-GA,FB,F,FA,XN{:,IX)

END IF

END IF
END DO

END DO

Adjust values for convexity.

Assumes lack of convexity due to error in interpol.
Values adjusted iteratively using adjacent nodes.

NITER = 0
DO
NITER = NITER + 1
IF (P) WRITE (*,*) '(ADJ_MOD) BEGINING VALUE ITERATION', NITER
NOCHANGE = .TRUE.
FHOLD = FN

DO IX = l,NNODES
F = FHOLD(IX)
DO J = 1,NX

IXB = IBELOW(J,IX)
IXA = IABOVE(J,IX)
IF ((IXB.GT.O).AND.(IXA.GT.O)) THEN
X = XN(J,IX)
XB = XN(J,IXB)
FB = FHOLD(IXB)
XA = XN(J,IXA)
FA = FHOLD(IXA)

FNEW = (FBMXA-X) + FA* (X-XB)) / (XA-XB)
IF (FNEW.LT.FHOLD(IX)) THEN
NOCHANGE = .FALSE.
F = MIN(F,FNEW)

END IF
END IF

END DO
IF (F.LT.FMIN) THEN
NOCHANGE = .FALSE.
F = FMIN

END IF
FN(IX) = F

END DO

IF (NOCHANGE) THEN
EXIT

ELSE IF (NITER.GE.MAXITER*20) THEN
WRITE (*,*) ' (ADJ_MOD) WARNING: MAX ITERATIONS EXCEEDED'
EXIT

END IF

314

END DO

Write changed nodes.

DO IX = 1.NN0DES
FDIFF = FN(IX) - FO(IX)
TOL = ERRTOLM1.0 + ABS(FN(IX)) + ABS(F0(IX)))
TOL = MIN(TOL,1.0)
IF (ABS(FDIFF).GT.TOL)

+ write (*,•(a33,3x,i6,3fl2.4,40fl0.2)•)
+ ■(adj_mod) ix,f(old/diff/new),x:',
+ ix,fO(ix),fdiff,fn(ix),xn(:,ix)
END DO

Verify adjusted values consistent with convex func.

CONVEX = .TRUE.
DO IX = l.NNODES

DO J = 1,NX
IXB = IBELOW(J,IX)
IXA = IABOVE(J,IX)
IF ((IXB.GT.O).AND.(IXA.GT.O)) THEN
X = XN(J,IX)
F = FN(IX)
XB = XN(J,IXB)
FB = FN(IXB)
XA = XN(J,IXA)
FA = FN(IXA)

GB = (F - FB)/(X - XB)
GA = (FA - F)/(XA - X)

IF (GB.GT.GA) THEN
CONVEX(J,IX) = .FALSE.
TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB))
TOL = MIN(TOL,1.0)
IF (GB-TOL.GT.GA) THEN
WRITE (*,'(A53,I6,I4,2F14.8,E10.4,3F12.4,20F10.2)')

+ '(ADJ_MOD) ***NOT CONVEX*** IX,J,GB>GA,DIFF,B/F/A,X:',
+ IX,J,GB,GA,GB-GA,FB,F,FA,XN(:,IX)

END IF
END IF

END IF
END DO

END DO

Adjust function gradients.

Adjust consistent with specf.

315

DO IX = l.NNODES
IF ((FN(IX).EQ.FMIN)-OR.(FN(IX).EQ.FMAX)) FXN(:,IX) = 0.0
DO J = 1,NX

FX = FXN(J,IX)
IF (FX.LT.FXMIN(J)) THEN

IF <FX+ERRTOL.LT.FXMIN(J)) THEN
WRITE (*,'(A22,I6,I4,2F14.8,E10.2)')

f '(ADJ_MOD) FX < FXMIN',IX,J,FX,FXMIN(J),FX-FXMIN(J)
END IF
FX = FXMIN(J)

ELSE IF (FX.GT.FXMAX(J)) THEN
IF (FX-ERRTOL.GT.FXMAX(J)) THEN
WRITE (*,'(A22,I6,I4,2F14.8,E10.2)')

i- ' (ADJ_MOD) FX > FXMAX1 , IX, J, FX, FXMAX (J) ,FX-FXMAX(J)
END IF
FX = FXMAX(J)

END IF
FXN(J,IX) = FX

END DO
END DO

Calc. finite diffs and verify consistent with specf.

DO IX = l,NNODES
F = FN(IX)
DO J = 1,NX

X = XN(J,IX)

IXB = IBELOW(J,IX)
IF (IXB.GT.O) THEN
XB = XN(J,IXB)
FB = FN(IXB)
GB = (F - FB)/(X - XB)
TOL = ERRTOLM1.0 + ABS(GB))
TOL = MIN(TOL,1.0)
IF (GB+TOL.LT.FXMIN(J))

+ WRITE (*,'(A26,I6,I4,2F14.8,E10.2)')
+ '(ADJ_MOD) ERROR: GB < MIN',IX,J,GB,FXMIN(J),GB-FXMIN(J)

END IF

IXA = IABOVE(J,IX)
IF (IXA.GT.O) THEN
XA = XN(J.IXA)
FA = FN(IXA)
GA = (FA - F)/(XA - X)
TOL = ERRTOLM1.0 + ABS(GA))
TOL = MIN(TOL,1.0)
IF (GA-TOL.GT.FXMAX(J))

+ WRITE (*,'(A26,I6,I4,2F14.8,E10.2)')
+ '(ADJ_MOD) ERROR: GA > MAX',IX,J,GA,FXMAX(J),GA-FXMAX(J)

END IF
END DO

END DO

316

! Adjust gradients when using Hermite interpolation.
i

! Note: since no absolute reference, adjust values
! only at current node and let values at adjacent
! nodes be adjusted in their turn.

FINALTRY = .FALSE.
IF (GDP) THEN
NITER = 0
DO

j

NITER = NITER + 1
WRITE (*,*) ' (ADJ_MOD) BEGINING GRADIENT ITERATION', NITER
DONE = .TRUE.
FXHOLD = FXN

Adjust gradients consistent with convex function.

DO IX = 1.NN0DES
F = FN(IX)
DO J = 1,NX

Get useful values.

X = XN(J,IX)
FX = FXHOLD(J,IX)

IXB = IBELOW(J,IX)
IF (IXB.GT.O) THEN
XB = XN(J.IXB)
FB = FN(IXB)
FXB = FXHOLD(J,IXB)
GB = (F - FB)/(X - XB)

END IF

IXA = IABOVE(J,IX)
IF (IXA.GT.O) THEN
XA = XN(J,IXA)
FA = FN(IXA)
FXA = FXHOLD(J,IXA)
GA = (FA - F)/(XA - X)

END IF

Adjust lower bound gradient.

IF (IXB.LE.O) THEN
IF (FX.GT.GA) THEN
DONE = .FALSE.
TOL = ERRTOLM1.0 + ABS(GA))
TOL = MIN(TOL,1.0)
IF (P.AND.(FX-TOL.GT.GA))

+ WRITE (*,'(A22,I6,I4,2F14.8,E10.2)')
+ '(ADJ_MOD) FX > GA ',IX,J,FX, GA,FX-GA

IF (FXA.GT.GA) THEN
FX = GA - TOL

317

ELSE
FX = GA

END IF
END IF

! Adjust upper bound gradient.

ELSE IF (IXA.LE.O) THEN
IF (FX.LT.GB) THEN
DONE = .FALSE.
TOL = ERRTOLM1.0 + ABS(GB))
TOL = MIN(TOL,1.0)
IF (P.AND.(FX+TOL.LT.GB))

+ WRITE (*, ' (A22,I6,I4,2F14.8,E10.2) ')
+ '(ADJ_MOD) FX < GB ',IX,J,FX, GB,FX-GB

IF (FXB.LT.GB) THEN
FX = GB + TOL

ELSE
FX = GB

END IF
END IF

! Adjust internal gradient.
! No change if finite diff indicates not convex.

ELSE IF (CONVEX(J,IX)) THEN
IF (GB.GT.GA) THEN
WRITE (*,*) '(ADJ_MOD) ERROR 1:', J,IX,FB,F,FA,GB,GA
STOP '(ADJ_MOD)"

END IF

TOL = ERRTOLM1.0 + ABS (GA) + ABS(GB))
TOL = MIN(TOL,1.0)

IF (FX.GE.GB) THEN
IF (FX.GT.GA) THEN
DONE = .FALSE.
IF (P.AND.(FX-TOL.GT.GA))

+ WRITE (*, ' (A22,I6,I4,2F14.8,E10.2) ')
+ '(ADJ_MOD) FX > GA ',IX,J, FX,GA, FX-GA

IF (GB+(TOL+TOL).LT.GA) THEN
FX = GA - TOL

ELSE
FX = 0.5*(GB + GA)

END IF
END IF

ELSE IF (FX.LE.GA) THEN
IF (FX.LT.GB) THEN

DONE = .FALSE.
IF (P.AND.(FX+TOL.LT.GB))

+ WRITE (*,'(A22,I6,I4,2F14.8,E10.2)')
+ '(ADJ_MOD) FX < GB ',IX,J, FX,GB ,FX-GB

IF (GB+(TOL+TOL).LT.GA) THEN
FX = GB + TOL

ELSE
FX = 0.5*(GB + GA)

END IF

318

END IF

ELSE
FX = 0.5*(GB + GA)
IF (GB-TOL.GT.GA) THEN
WRITE (*,*) ' (ADJ_MOD) ERROR: GB>GA',IX,J,GB,GA,FX
STOP '(ADJ_MOD)'

END IF
END IF

END IF

FXN(J.IX) = FX

END DO
END DO

Adjust gradients for convex function interpolation.

Adjustments to gradients at both ends of an interval
are made in proportion to their deviation from the
finite difference gradient. The combined
adjustment on both nodes should result in convex
interpolation.

Tight is passed in common.

FXHOLD = FXN
DO IX = l,NNODES

F = FN(IX)
DO J = 1,NX

SKIP = .FALSE.

Get useful values.

X = XN(J,IX)
FX = FXHOLD(J,IX)

IXB = IBELOW(J,IX)
IF (IXB.GT.0) THEN
XB = XN(J.IXB)
FB = FN(IXB)
FXB = FXHOLD(J,IXB)
GB = (F - FB)/(X - XB)
GB3 = (3.0 + TIGHT + TIGHT)*GB
GBMAX = (1.0 + TIGHT)*FXB + (2.0
GBMIN = (2.0 + TIGHT)*FXB + (1.0

END IF

TIGHT)*FX
TIGHT)*FX

IXA = IABOVE(J,IX)
IF (IXA.GT.0) THEN
XA = XN(J,IXA)
FA = FN(IXA)
FXA = FXHOLD(J,IXA)
GA = (FA - F)/(XA - X)
GA3 = (3.0 + TIGHT + TIGHT)*GA
GAMAX = (1.0 + TIGHT)*FX + (2.0
GAMIN = (2.0 + TIGHT)*FX + (1.0

TIGHT)*FXA
TIGHT)*FXA

319

END IF

Adjust lower bound gradient.

IF (IXB.LE.O) THEN
TOL = ERRTOLM1.0 + ABS(GA3))
TOL = MIN(TOL,1.0)
IF (GAMIN-TOL.GT.GA3) THEN
DONE = .FALSE.
D = GA - FX
DA = FXA - GA
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVED (1)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DA.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DA (1)', IX,J,DA
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (2.0 + TIGHT)*D + (1.0 + TIGHT)*DA

ELSE
DENOM = (2.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FX = GA
KEY = 81

ELSE
IF (DENOM.GT.0.0) THEN

FRAC = (GAMIN - GA3)/DENOM
FX = GA - DM1.0 + FRAC)

ELSE
FX = GA

END IF
KEY = 1

END IF
ELSE IF (GAMAX+TOL.LT.GA3) THEN

DONE = .FALSE.
D = GA - FX
DA = FXA - GA
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVED (2)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DA.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DA (2)', IX,J,DA
SKIP = -TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (1.0 + TIGHT)*D + (2.0 + TIGHT)*DA

ELSE
DENOM = (1.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FX = GA
KEY = 82

ELSE
IF (DENOM.GT.0.0) THEN

320

FRAC = (GA3 - GAMAX)/DENOM
FX = GA - DM1.0 - FRAC)

ELSE
FX = GA

END IF
KEY = 2

END IF
if (p) write (*,'(a35,3i6,8x,3f22.16,10f9.2)•)

+ ' (adj_mod) key,ix,j,f,fxhold, fx,x: ' ,
+ key,ix,j,f,fxhold(j,ix),fx,xn(:,ix)

END IF

Adjust upper bound gradient.

ELSE IF (IXA.LE.O) THEN
TOL = ERRTOL*(1.0 + ABS(GB3))
TOL = MIN(TOL,1.0)
IF (GBMIN-TOL.GT.GB3) THEN

DONE = .FALSE.
DB = GB - FXB
D .= FX - GB
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVE D (3)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DB.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DB (3)', IX,J,DB
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (2.0 + TIGHT)*DB + (1.0 + TIGHT)*D

ELSE
DENOM = (1.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FX = GB
KEY =83

ELSE
IF (DENOM.GT.0.0) THEN

FRAC = (GBMIN - GB3)/DENOM
FX = GB + DM1.0 - FRAC)

ELSE
FX = GB

END IF
KEY = 3

END IF
ELSE IF (GBMAX+TOL.LT.GB3) THEN

DONE = .FALSE.
DB = GB - FXB
D = FX - GB
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVED (4)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DB.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DB (4)', IX,J,DB
SKIP = .TRUE.

END IF

321

IF (NITER.LT.MIDITER) THEN
DENOM = (1.0 + TIGHT)*DB + (2.0 + TIGHT)*D

ELSE
DENOM = (2.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN
FX = GB
KEY = 84

ELSE
IF (DENOM.GT.0.0) THEN
FRAC = (GB3 - GBMAX)/DENOM
FX = GB + DM1.0 + FRAC)

ELSE
FX = GB

END IF
KEY = 4

END IF
END IF

Adjust internal gradient.
If cannot id satisfactory gradient, use reasonable
value, and let other values adjust in looping.

ELSE IF (CONVEX(J,IX)) THEN
IF (GB.GT.GA) THEN
WRITE (*,*) '(ADJ_MOD) ERROR 2:', J,IX,FB,F,FA,GB,GA
STOP '(ADJ_MOD)'

END IF

TOL = ERRTOLM1.0 + ABS(GA3) + ABS(GB3))
TOL = MIN(TOL,1.0)

IF (GAMAX+TOL.LT.GA3) THEN
CA2 = .TRUE.
D = GA - FX
DA = FXA - GA
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVE D (5)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DA.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DA (5)', IX,J,DA
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (1.0 + TIGHT)*D + (2.0 + TIGHT)*DA

ELSE
DENOM = (1.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FXCA2 = GA
ELSE

IF (DENOM.GT.0.0) THEN
FRAC = (GA3 - GAMAX)/DENOM
FXCA2 = GA - DM1.0 - FRAC)

ELSE
FXCA2 = GA

END IF

322

END IF
ELSE

CA2 = .FALSE.
FXCA2 = (GA3 - FXAM2.0 + TIGHT))/(1.0 + TIGHT)

END IF

IF (GAMIN-TOL.GT.GA3) THEN
CA1 = .TRUE.
D = GA - FX
DA = FXA - GA
IF (D.LT.0.0) THEN
WRITE {*,*) 'NEGATIVED (6)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DA.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DA (6)', IX,J,DA
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (2.0 + TIGHT)*D + (1.0 + TIGHT)*DA

ELSE
DENOM = (2.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FXCA1 = GA
ELSE

IF (DENOM.GT.0.0) THEN
FRAC = (GAMIN - GA3)/DENOM
FXCA1 = GA - DM1.0 + FRAC)

ELSE
FXCA1 = GA

END IF
END IF

ELSE
CA1 = .FALSE.
FXCA1 = (GA3 - FXA*(1.0 + TIGHT))/(2.0 + TIGHT)

END IF

IF (GBMAX+TOL.LT.GB3) THEN
CB2 = .TRUE.
DB = GB - FXB
D = FX - GB
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVED (7)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DB.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DB (7)', IX,J,DB
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (1.0 + TIGHT)*DB + (2.0 + TIGHT)*D

ELSE
DENOM = (2.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FXCB2 = GB
ELSE

323

IF (DENOM.GT.0.0) THEN
FRAC = (GB3 - GBMAX)/DENOM
FXCB2 = GB + D*(1.0 + FRAC)

ELSE
FXCB2 = GB

END IF '
END IF

ELSE
CB2 = .FALSE.
FXCB2 = (GB3 - FXB*(1.0 + TIGHT))/(2.0 + TIGHT)

END IF

IF (GBMIN-TOL.GT.GB3) THEN
CB1 = .TRUE.
DB = GB - FXB
D = FX - GB
IF (D.LT.0.0) THEN
WRITE (*,*) 'NEGATIVED (8)', IX,J,D
STOP '(ADJ_MOD)'

END IF
IF (DB.LT.0.0) THEN

WRITE (*,*) 'NEGATIVE DB (8)', IX,J,DB
SKIP = .TRUE.

END IF
IF (NITER.LT.MIDITER) THEN
DENOM = (2.0 + TIGHT)*DB + (1.0 + TIGHT)*D

ELSE
DENOM = (1.0 + TIGHT)*D

END IF
IF (ABS(DENOM).LE.TOL) THEN

FXCB1 = GB
ELSE

IF (DENOM.GT.0.0) THEN
FRAC = (GBMIN - GB3)/DENOM
FXCB1

ELSE
FXCB1 = GB

END IF
END IF

ELSE
CB1 = .FALSE.
FXCB1 = (GB3

END IF

GB + DM1.0 - FRAC)

FXBM2.0 + TIGHT))/(1.0 + TIGHT)

If finaltry, adjustments are not bounded to
prevent non-convex interpolation in neighboring
domains (in order to allow adjustments to
propogate through domains that are ok).

However, adjustments must still be bounded
by finite-difference gradient of these neighboring
domains.

IF (FINALTRY) THEN
IF (CA2) THEN

IXAA = IABOVE(J,IXA)
IF ((IXAA.GT.0).AND.(CONVEX(J,IXA))
XAA = XN(J,IXAA)
IF (XA.GE.XAA) THEN

) THEN

324

WRITE (*,*) ' (ADJ_MOD) ERROR 3 DIVIDE', XA, XAA
STOP '(ADJ_MOD)'

END IF
GAA = (FN(IXAA) - FA)/(XN(J,IXAA) - XA)
FXCA2 = MIN(FXCA2,GAA)

END IF
END IF

IF (CAD FXCA1 = MAX(FXCA1,GB)

IF (CB2) FXCB2 = MIN(FXCB2,GA)

IF (CB1) THEN
IXBB = IBELOW(J,IXB)
IF ((IXBB.GT.O).AND.(CONVEX(J,IXB))) THEN
XBB = XN(J,IXBB)
IF (XBB.GE.XB) THEN
WRITE (*,*) ' (ADJ_MOD) ERROR 4 DIVIDE', XBB, XB
STOP '(ADJ_MOD)'

END IF
GBB = (FB - FN(IXBB))/(XB - XBB)
FXCB1 = MAX(FXCB1,GBB)

END IF
END IF

END IF

Note: adjustment for violation in either pair
of constraints [cbl,ca2] or [cb2,cal] can cause
violation of other constraint in pair.

Note that constraint pairs [cbl,cb2] or [cal,ca2]
cannot be violated at same time.

Also, if constraint pairs [cbl.cal] or [cb2,ca2]
are violated together, adjustment for one
constraint will be in correct direction for other.

IF ((CB2.OR.CA1).AND.(.NOT.SKIP)) THEN
DONE = .FALSE.
IF (FXCB2+T0L.LT.FXCA1) THEN !no problem with conflict

IF (CB2) FX = FXCB2
IF (CA1) FX = FXCA1
IF (CB2.AND.CA1) THEN lvalues close.

(*
(*
(*
(*
(*
(*
{*
(*
(*
(*

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

END IF
KEY =11

ELSE
IF (.N0T.CB2)

FX = FXCB2
KEY = 12
IF (FINALTRY) THEN

IX,J=',IX,J '(ADJ_MOD) WARNING CB2 & CA1,
'FXCB2,FXCA1', FXCB2,FXCA1
*FXCB1,FXCA2', FXCBl,FXCA2
'IXB,XB,FB,FXB', IXB,XB,FB,FXB
'IX, X, F, FX ', IX, X, F, FXHOLD(J,IX)
'IXA,XA,FA,FXA', IXA,XA,FA,FXA
'GB,GB3', GB,GB3
'GBMIN,GBMAX', GBMIN,GBMAX
'GA,GA3', GA,GA3
'GAMIN,GAMAX', GAMIN,GAMAX

THEN

325

FX = FXCA1
KEY = 22

END IF
ELSE IF (.N0T.CA1) THEN

FX = FXCA1
KEY = 13
IF (FINAL/TRY) THEN
FX = FXCB2
KEY = 23

END IF
ELSE IF (FXCB2-TOL.GT.FXCA1) THEN
DA = GA - FXCA1
DB = FXCB2 - GB
D = GA - GB
IF (DA.LE.0.0) THEN

FX = GA
ELSE IF (DB.LE.0.0) THEN

FX = GB
ELSE

FX = GA - DA*D/(DA + DB)
END IF
KEY = 14

ELSE
FX = 0.5*(GB + GA)
KEY = 15

END IF
END IF

ELSE IF ((CBl.OR.CA2).AND.(.NOT.SKIP)) THEN
DONE = .FALSE.
IF (FXCA2+TOL.LT.FXCB1) THEN !no problem with conflict

IF (CB1) FX = FXCB1
IF (CA2) FX = FXCA2
IF (CB1.AND.CA2) THEN lvalues close

(' WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

END IF
KEY =16

ELSE
IF (.NOT.CB1) THEN

FX = FXCB1
KEY = 17
IF (FINALTRY) THEN

FX = FXCA2
KEY = 27

END IF
ELSE IF (.NOT.CA2) THEN

FX = FXCA2
KEY = 18
IF (FINALTRY) THEN

FX = FXCB1

'(ADJ_MOD) WARNING CB1 & CA2, IX,J=',IX,J
'FXCB1,FXCA2", FXCB1,FXCA2
'FXCB2,FXCA1', FXCB2,FXCA1
'IXB,XB,FB,FXB', IXB,XB,FB,FXB
'IX, X, F, FX ', IX, X, F, FXHOLD(J,IX)
■IXA,XA,FA,FXA', IXA,XA,FA,FXA
•GB,GB3', GB,GB3
'GBMIN,GBMAX', GBMIN,GBMAX
'GA,GA3', GA,GA3
'GAMIN,GAMAX', GAMIN,GAMAX

326

KEY = 28
END IF

ELSE IF (FXCA2-T0L.GT.FXCB1) THEN
DA = GA - FXCA2
DB = FXCB1 - GB
D = GA - GB
IF (DA.LE.O.O) THEN
FX = GA

ELSE IF (DB.LE.O.O) THEN
FX = GB

ELSE
FX = GA - DA*D/(DA + DB)

END IF
KEY = 19

ELSE
FX = 0.5*(GB + GA)

END IF
END IF

END IF
END IF

FXN(J,IX) = FX
IF (SKIP) FXN(J,IX) = FXHOLD(J,IX)
IF (FN(IX).EQ.FMIN) FXN(J,IX) = 0.0

END DO
END DO

I AAA

! Determine nodes changed.

NOCHANGE = .TRUE.
DO IX = l,NNODES

DO J = 1,NX
TOL = ERRTOLM1.0 + ABS (FXN (J, IX)) + ABS (FXHOLD (J, IX)))
TOL = MIN(TOL,1.0)
IF (ABS(FXN(J,IX)-FXHOLD(J,IX)).GT.TOL) THEN
NOCHANGE = .FALSE.

END IF
END DO

END DO

I Determine if done.

IF (DONE) EXIT

! If not done, but no change, go to finaltry.

IF (NOCHANGE) THEN
WRITE (*,*) ' (ADJ_MOD) WARNING: NOT DONE, BUT NO CHANGE'
IF (FINALTRY) THEN

EXIT
ELSE
NITER = 0
FINALTRY = .TRUE.

END IF
END IF

! If not done, but maxiter reached, go to finaltry.

327

IF (NITER.GE.MAXITER) THEN
WRITE (*,*) '(ADJ_MOD) WARNING: MAX ITERATIONS EXCEEDED'
IF (FINALTRY) THEN

EXIT
ELSE
NITER = 0
FINALTRY = .TRUE.

END IF
END IF

END DO
END IF

Write changed nodes.

! If not done, but maxiter reached, go to finaltry.

DO IX = 1,NN0DES
NOCHANGE = .TRUE.
FDIFF = 9999.99
FXDIFF = 9999.99
TOL = ERRTOLM1.0 + ABS(FN(IX)) + ABS(F0(IX)))
TOL = MIN(TOL,1.0)
IF (ABS(FN(IX)-FO(IX)).GT.TOL) THEN
NOCHANGE = .FALSE.
FDIFF = FN(IX) - FO(IX)

END IF
DO J = 1,NX

TOL = ERRTOLM1.0 + ABS (FXO (J, IX)) + ABS (FXN (J, IX)))
TOL = MIN(TOL,1.0)
IF (ABS(FXN(J,IX)-FXO(J,IX)).GT.TOL) THEN
NOCHANGE = .FALSE.
FXDIFF(J) = FXN(J,IX) - FXO(J,IX)

END IF
END DO
IF (.NOT.NOCHANGE) THEN
write (*,'(a36,i6,3fl2.2,40fl0.2)')

+ '(adj_mod) ix,f(o/d/n),x,fx(o/d/n):',
+ ix, fO(ix), fdiff, fn(ix),
+ xn(:,ix),fxO(:,ix),fxdiff,fxn(:,ix)

END IF
END DO

WRITE (*,*) '(ADJ_MOD) END'

END

Subroutine IDNOW

This routine identifies the year and season of the current stage.

SUBROUTINE IDNOW

IMPLICIT NONE
INTEGER

(ISTAGE, IFIRST, IYFIRST, NSEAS,
IYEAR, ISEASON)

ISTAGE, IFIRST, IYFIRST, NSEAS

328

INTEGER IYEAR, ISEASON

Identify year and season for current stage.

INTEGER I, IY, NY

I = ISTAGE
IY = 0
IF (I.LE.O) THEN

DO
1=1+ NSEAS
IY = IY + 1
IF (I.GT.O) EXIT

END DO
END IF
NY = (IFIRST+I-2)/NSEAS
IYEAR = IYFIRST + NY - IY
ISEASON = IFIRST + I - 1 - NY*NSEAS

END

Subroutine SIZETEST

This routing verifies that the value of a user-supplied variable lies within

permitted bounds.

SUBROUTINE SIZETEST (N, MINN, MAXN, TITLE)

IMPLICIT NONE
INTEGER
CHARACTER*20

N, MINN, MAXN
TITLE

IF (N.LT.MINN) THEN
WRITE (*,*) TITLE,
STOP

END IF

, VIOLATES MINIMUM SIZE: ', N, '<', MINN

IF (N.GT.MAXN) THEN
WRITE (*,*) TITLE,
STOP

END IF

, VIOLATES MAXIMUM SIZE: ', N, '>', MAXN

END

329

6. MODEL SPECIFICATION SUBROUTINES

The following routines specify parameters and functions that define the structural

model, stochastic model, and solution method. Copies of these files can be grouped in

separate files, each file identifying a different system.

Subroutine CALLDP

This routine calls the main subroutine.

PROGRAM CALLDP
IMPLICIT NONE

i

IGets optimal future cost function using GDP.
i

CALL DYNPROG

STOP '(CALLDP) DONE'
END

Subroutine SPECPROB

This routine specifies the size of a problem and the solution methods to be used.

SUBROUTINE SPECPROBt (MAXSEAS,
+ NU, NX, NW,
+ NTLIN, NTNLN, NCLIN, NCNLN,
+ RESTART, NSTAGES, NSEAS, LABELS,
+ IFIRST, ILAST, IYFIRST, IYLAST, LPRINT,
+ STOCHASTIC, GDP, NEWTON,
+ DISCOUNT, TIGHT, FTOL, UTOL)
IMPLICIT NONE
INTEGER MAXSEAS

INTEGER NU, NX, NW,
+ NTLIN, NTNLN, NCLIN, NCNLN,
+ NSTAGES, NSEAS,
+ IFIRST, ILAST, IYFIRST, IYLAST, LPRINT
DOUBLE PRECISION DISCOUNT, TIGHT, FTOL, UTOL
LOGICAL RESTART, STOCHASTIC, GDP, NEWTON
CHARACTER*10 LABELS(MAXSEAS)

Specify dimensions of problem and parameters for stochastic model.

Parameters of the stochastic model (e.g, for streamflow) are applied to
the multivariate random normal variables in the transition function.

330

Other local variables.

Specify dimensions of problem.

NU = 4
NX = 4
NW = 2

NTLIN =
NTNLN =
NCLIN =
NCNLN =

!number of decision variables.
!number of state variables.
Inumber of stochastic variables.

!number of linear transistion equations.
Inumber of non-linear transistion equations.
Inumber of linear contraints.
Inumber of non-linear constraints.

Specify if a restart of prior run.

If restart, save last stage cost func as START.DAT

RESTART = .FALSE.

NSTAGES = 3

NSEAS = 1

IFIRST = 1
IYFIRST = 1

ILAST = 1
IYLAST = 4

Specify number of stages.

Specify number of seasons.

Specify season and year of first stage.

Specify season and year of final ctg.

Specify discount rate.

Note: ensure dr is consistent with stage length

DISCOUNT = 0.00

331

Specify season labels.

GDP = .true.
TIGHT =0.0

Specify if stochastic problem.

STOCHASTIC = .true.

Specify interpolation mode.

Specify interpolation mode and precision of
objective function and controls.

Objective precision used by solver for assessing
convergence.

Control precision used by routine that calls solver
and tests for consistent solution on recursive
calls of solver.

Note that required precision will vary with solver
and with characteristics of problem. Start with a
small number and increase as required.

For Newton-based solvers, higher precision does not
require much time; but, other solvers may require
significantly more time to achieve convergence.

Note for NPSOL: if objective is > 1, ftol is a
relative vs. absolute precision.

c
c

NEWTON = .true.
FTOL = 1.0E-12
UTOL = 1.0E-04
FTOL = 1.0E-06
UTOL = 1.0E-02

Specify level of printing for output.

LPRINT = 0

END

Subroutine SPECU

This routine identifies the bounds and other parameters for decision variables.

Bounds can change with the stage of a problem.

SUBROUTINE SPECU (NU, ISTAGE, IYEAR, ISEASON,

332

IMPLICIT NONE
INTEGER

DOUBLE PRECISION

BL, BU, UGUESS, USCALE)

NU, ISTAGE, IYEAR, ISEASON

BL(NU), BU(NU),
UGUESS(NU), USCALE(NU)

Specify parameters that describe the decision variables of the system
and bounds for the current stage.

Also specify an initial guess for solution of decision variables and
a characteristic length scale.

The initial guess will be used as a starting point in the optimization
routine. The characteristic length scale will be used to specify:
(1) other near solutions if needed (i.e., for polytope algorithm)
(2) interval for finite difference approximations

Other constraints on decisions are expressed in the transistion
equation and linear/nonlinear constraints.

Verify number of decision variables.

IF (NU.NE.4) THEN
WRITE (*,*) ' (SPECU) INCORRECT NU =', NU

STOP
END IF

Specify bounds.

BL 0.0

Provide initial guess of solution and length scale.

UGUESS =0.0

USCALE =1.0

END

Subroutine SPECX

This routine specifies the bounds for state variables and the grid of discrete values

used to span the domain of the cost-to-go function. Bounds and discretization can change

with the stage of a problem.

SUBROUTINE SPECX (MAXIDX, NX, ISTAGE, IYEAR, ISEASON,
BL, BU, NDX, XDX)

333

IMPLICIT NONE
INTEGER MAXIDX, NX, ISTAGE, IYEAR, ISEASON

INTEGER NDX(NX)
DOUBLE PRECISION BL(NX), BU(NX),

+ XDX(MAXIDX,NX)

i

!Specify parameters that describe the state of the system, bounds,
! and the discretization(grid) of the state space for the current stage.
!Order of state variables must agree with transx.
i

Verify number of state variables.

IF (NX.NE.4) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NX =', NX
STOP

END IF

Specify bounds.

BL = 0.0
BU = 12.0

Specify (initial) discretization of state variables.

! Note: bounds on state variables are assumed to be
! the maximum domain bounded by discretization below.

NDX(:)
XDX(1,
XDX(2,
XDX(3,
XDX(4,

END

) = 0.0
) = 4.0
) = 8.0
) =12.0

Subroutine SPECW

This routine specifies the quadrature abscissas and weights applied to stochastic

variables (i.e., the grid of discrete values used to span possible outcomes). Assumes that

stochastic variables are independent but, otherwise, have any discrete or continuous

distribution that can be approximated discretely. Abscissas and weights can change with

the stage of a problem.

SUBROUTINE SPECWt (MAXIDW, NW, ISTAGE, IYEAR, ISEASON,
+ MODELW, WMEAN, WSTDV, WSKEW,
+ NDW, WDW, PROBW,

334

+ SWLO, SWHI, PROBMIN, GAUSQUAD)

IMPLICIT NONE
INTEGER MAXIDW, NW, ISTAGE, IYEAR, ISEASON

INTEGER MODELW(NW), NDW(NW)
DOUBLE PRECISION WMEAN(NW), WSTDV(NW), WSKEW(NW),

+ WDW(MAXIDW,NW), PROBW(MAXIDW,NW),
+ SWLO(NW), SWHI(NW), PROBMIN
LOGICAL GAUSQUAD

Specify model and discretization of current stochastic variables.
Also specifies method used to calculated expected values (quadrature).

Model of stochastic variables are specified as independent random
variables with know probability distribution. If stochastic inputs of
the real system are correlated, this correlation must first be
identified and a stochastic model produced that allows identification
of stochastic variables with correlation removed.

Discretization and weights can be determined by Gaussian Quadrature
(recommended) or by evenly spaced values corresponding to standard
deviations from swlo to swhi. If evenly spaced values are used,
weights are determined by interpolation of the multivariate normal
distribution using the trapezoidal rule.

Stochastic distribution for each stochastic variable should be
specified by MODELW (for model of distribution) and by WMEAN, WSTDV,
and WSKEW (for first three moments). Available models are:

1: normal (Gaussian) (2-parameter model)
na 2: lognormal (2-parameter model)
na 3: 3-parameter lognormal (WSKEW = C)

For two-parameter models, the third parameter is ignored. Generally,
the third parameter is used for the skew of the distribution (except
for three-parameter lognormal distribution).

If desired model not available, abscissas and weights used to calculate
expected values can be specified directly.

DOUBLE PRECISION FACTOR

Verify number of stochastic variables.

IF (NW.NE.2) THEN
WRITE (*,*) ' (SPECW) INCORRECT NW =' , NW
STOP

END IF

For each season and each stochastic variable, specify distribution.

!Currently unable to calculate Gaussian quadrature locations and weights
! internally from distribution. Must provide these in WDW and PROBW.

335

If a stochastic variable is normally distributed and
Gaussian Quadrature is used, 2 discrete values will
generally be sufficient.

MODELW(l) = 1 Istreamflow 1
WMEAN(l) = 2.0
WSTDV(l) =0.5

NDW(l) = 2
WDW(1,1) =1.5
WDW(2,1) =2.5
PROBW(l,l) =0.5
PROBW(2,l) = 0.5

MODELW(2) = 1 istreamflow 2
WMEAN(2) =4.0
WSTDV(2) = 0.75

NDW(2) = 2
WDW(1,2) =3.25
WDW(2,2) = 4.75
PROBW(l,2) =0.5
PROBW(2,2) = 0.5

! For each season, specify distribution.

SELECT CASE (ISEASON)

CASE (13:)

WRITE (*,*) ' (TRANSW) SELECTED INVALID SEASON =', ISEASON
STOP '(SPECW)'

CASE (:0)

WRITE (*,*) '(TRANSW) SELECTED INVALID SEASON =', ISEASON
STOP '(SPECW)'

END SELECT

[

! Specify if Gaussian Quadrature is to be used.
j

! If gausquad = true, then sdlo, sdhi, and probmin
! are not used.

GAUSQUAD = .true.

! Specify discretization of stochastic variables.

SWHI = 1.645

336

SWLO = -1.645

Specify min probability weight used.
This will also be used as the maximum deviation from
1.0 of summation over all probability weights.

PROBMIN = 0.0001

END

Subroutine TRANSX

This routine identifies the state transition function for the current stage.

Derivatives should also be provided to avoid calculating finite difference estimates.

SUBROUTINE TRANSXt
h

h

IMPLICIT NONE
INTEGER

H

DOUBLE PRECISION

DOUBLE PRECISION

(LEVEL, NU, NX, NW, NTNLN,
ISTAGE, IYEAR, ISEASON, U, X, W,
S, Y, YU, YX, YW)

LEVEL, NU, NX, NW,
NTNLN, ISTAGE, IYEAR, ISEASON
U(NU), X(NX), W(NW)

S(NW), Y(NX),
YU(NX,NU), YX(NX,NX), YW(NX,NW)

Specifies transistion function y = T(u,x,w) and derivatives.

State variables must be arranged so that linear transistion functions
come before non-linear.

On input, LEVEL identifies partial derivatives needed. Can be used to
avoid unnecessary calculation when derivatives not needed.
0: none (only y)
1: dy/du
2: dy/du, dy/dx, dy/dw

On output, LEVEL identifies derivatives actually calculated.
Derivatives that are needed but not calculated here will be
approximated by finite difference.

Notes: Do not include state constraints to condition y.
State constraints are incorporated by specLCon.
Include the effect of state variables on prediction of
stochastic inputs here; stochastic variables w are independent
of x.

INTEGER

Other local variables.

J

337

! Verify parameters are consistent with current model.
i

IF (NU.NE.4) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NU =', NU
STOP

END IF
IF (NX.NE.4) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NX =', NX
STOP

END IF
IF (NW.NE.2) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NW =', NW
STOP

END IF
IF (NTNLN.NE.O) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NTNLN =', NTNLN
STOP

END IF

Set desired parameters.

Model stochastic inputs.

S(l) = W(l)

Variable s allows clearer identification of
actual stochastic inputs without auto-correlation
and cross-correlation removed. Also allows
forecast generation.

Identify transition functions and gradients,
yx(i,j) = dy(i)/dx(j) (also for yu,yw).

Note: the first (NX-ntnln) transistion function are
used to create linear constraint equations.

YU = 0.0
YX = 0.0
YW = 0.0

Y(l) = X(l) - U(l) + W(l)
YX(l.l) = 1.0
YU(l.l) = -1.0
YW(1,1) = 1.0

Y(2) = X(2) - U(2) + W(2)
YX(2,2) = 1.0
YU(2,2) = -1.0
YW(2,2) = 1.0

Y(3) = X(3) - U(3) + U(2)

338

YX(3,3) = 1.0
YU(3,3) = -1.0
YU(3,2) = 1.0

Y(4) = X(4) - U(4) +
YX(4,4) = 1.0
YU(4,4) = -1.0
YU(4,3) = 1.0
YU(4,1) = 1.0

U(3) + U(l)

END

Subroutine SPECLCON

This routine identifies linear constraints other than the bounds on decision

variables and state variables.

SUBROUTINE SPECLCON (NU, NX, NW, NCLIN,

IMPLICIT NONE
INTEGER

DOUBLE PRECISION

ISTAGE, IYEAR, ISEASON,
A, BL, BU)

NU, NX, NW, NCLIN,
ISTAGE, IYEAR, ISEASON

A(NCLIN,NU+NX+NW),
BL(NCLIN), BU(NCLIN)

Specify linear constraints as a linear function of decision variables,
state variables, and stochastic variables for the current stage:

bl <= A*[u,x,w] <= bu
Constraints can be equality or inequality as specified by bl and bu.

For equality constraints, bl=bu.
Constraint coefficients in A must be in the order:

(1) decision variables
(2) state variables
(3) stochastic variables

Controls u represent management decision. Because
actual realization of stochastic variables may
affect feasibility of those decision, it may be
desirable to allow adjustment of actual controls
applied for certain realizations of stochastic
variables (e.g., an insufficient release decision
that results in a reservoir spilling, effectively
changing the actual control by causing an increase
in the release. These adjustments are made in the
transition function specified in trans.f.

This can cause problems with finding opt solution:
(1) The resulting objective will usually not be
convex unless a sufficient penalty is applied to
deviations from the management decisions.
(2) The resulting objective will not be smooth,
resulting in poorer convergence of the solver.

339

Therefore, this is not allowed.

Verify number of decision and state variables.

IF (NU.NE.4) THEN
WRITE (*,*) "(SPECLCON) INCORRECT NU =', NU
STOP

END IF
IF (NX.NE.4) THEN
WRITE (*,*) "(SPECLCON) INCORRECT NX =' , NX
STOP

END IF
IF (NW.NE.2) THEN
WRITE {*,*) '(SPECLCON) INCORRECT NW =' , NW
STOP

END IF
IF (NCLIN.NE.O) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NCLIN =', NCLIN
STOP

END IF

Set A, matrix of linear constraint coefficients.

i

! Set bounds on linear and nonlinear constraints.
i

END

Subroutine COST NOW

This routine calls identifies the current-cost as a function of decision variables U,

state variables X, and stochastic variables W.

SUBROUTINE COST_NOW (LEVEL, NU, NX, NW,
+ ISTAGE, IYEAR, ISEASON, U, X, W,
+ C, CU, CX, PEN)

IMPLICIT NONE
INTEGER LEVEL, NU, NX, NW,

+ ISTAGE, IYEAR, ISEASON
DOUBLE PRECISION U(NU), X(NX), W(NW)

DOUBLE PRECISION C, CU(NU), CX(NX), PEN

Returns cost of decisions u given initial state x and stage istage.

On input, LEVEL identifies derivatives needed. Can be used to avoid
unnecessary calculation when derivatives not needed.
0: only c

340

1: c, dc/du
2: c, dc/du, dc/dx

Note that derivatives dc/dw are not needed; w is independent of u, x.
On output, LEVEL identifies derivatives actually calculated.
Needed derivatives that are not calculated here will be approximated
by finite difference.

INTEGER K
DOUBLE PRECISION A(NU), DEV

! Verify inputs consistent with routine.
j

IF (NU.NE.4) THEN
WRITE {*,*) ' (COST_NOW) NU INCONSISTENT, ', NU
STOP

END IF

IF (NX.NE.4) THEN
WRITE (*,*) ' (COST_NOW) NX INCONSISTENT, ', NX
STOP

END IF

IF (NW.NE.2) THEN
WRITE (*,*) ' (COST_NOW) NW INCONSISTENT, ', NW
STOP

END IF

i

Set desired parameters.

A(l) = 1.1
A(2) = 1.2
A(3) = 1.0
A(4) = 1.3

i

! Calculate current cost function and derivatives

Calculate cost and derivatives.

C = 0.0

DO K = 1,NU
DEV = U(K) - 1.0
C = C + A(K)*DEV*DEV
CU(K) = 2.0*A(K)*DEV

END DO

CX = 0.0

341

Set penalty cost for violating a constraint.

Penalty is only applied when using polytope solver
(i.e., not gdp).

Value should be great enough to force optimal
controls into feasible region.

PEN = 1000.0

END

Subroutine FINALCTG

This routine calls identifies the final (or terminal) cost as a function of the final

state X.

SUBROUTINE FINALCTG (NX, X,
► F, FX)

IMPLICIT NONE
INTEGER NX
DOUBLE PRECISION X(NX)
DOUBLE PRECISION F, FX(NX)

Provides use specified function value f(x) and gradient fx = df/dx for
the final-stage future-cost function.

INTEGER J
DOUBLE PRECISION A(NX)

Verify inputs consistent with routine.

IF (NX.NE.4) THEN
WRITE (*,*) '(COST_NOW) NX INCONSISTENT, \ NX
STOP

END IF

Set desired parameters.

A(l) = 5.0
A(2) = 5.0
A(3) = 5.0
A(4) = 7.0

Calculate current cost function.

342

F = 0.0
FX = 0.0
DO J = 1,NX

F = F + (X(J) - A(J))**2
FX(J) = 2.0*(X(J) - A(J))

END DO

END

Subroutine SPECF

This routine provides an opportunity to adjust solution values during each stage.

Adjustments can be used to partially correct errors that may accumulate. This may be

useful to cut off oscillations of the interpolation.

SUBROUTINE SPECF (NX, ISTAGE, IYEAR, ISEASON,

IMPLICIT NONE
INTEGER

DOUBLE PRECISION

FMIN, FMAX, FXMIN, FXMAX)

NX, ISTAGE, IYEAR, ISEASON

FMIN, FMAX, FXMIN(NX), FXMAX(NX)

Specify maximum and minimum function values and gradients.
Calculated values are adjusted based on values provided here and
output is provided whenever adjustments needed.

Verify inputs consistent with routine.

IF (NX.NE.4) THEN
WRITE (*,*) '(SPECF) NX INCONSISTENT, ', NX
STOP

END IF

Check and modify control and cost function values.

END

Subroutine OUTSTAGE

This routine provides an opportunity for output of data during each stage. Data is

accessed throught common arrays.

SUBROUTINE OUTSTAGEt (NU, NX, NW, NSEAS, ISTAGE, IYEAR, ISEASON,
+ XBL, XBU)

343

IMPLICIT NONE
INTEGER

h

DOUBLE PRECISION

NU, NX, NW, NSEAS,
ISTAGE, IYEAR, ISEASON
XBL(NX), XBU(NX)

Provides opportunity to prepare and write output at each stage.

LOGICAL

Create flag to ensure update of routine.

IF (NU.NE.4) THEN
WRITE (*,*) '(OUTPUT) ROUTINE NOT ADAPTED TO NU=', NU
STOP

END IF

IF (NX.NE.4) THEN
WRITE (*,*) ' (OUTPUT) ROUTINE NOT ADAPTED TO NX=' , NX
STOP

END IF

IF (NSEAS.NE.l) THEN
WRITE (*,*) ' (OUTSTAGE) ROUTINE NOT ADAPTED TO NSEAS=' , NSEAS
STOP

END IF

Specify stages for printout.

P = .FALSE.

END

Subroutine OUTFINAL

This routine provides an opportunity for final output of data, including 2-D grids

of control policy decisions or of the cost-to-go. Data is accessed throught common

arrays.

SUBROUTINE OUTFINAL (NX, NW, ISTAGE, IYEAR, ISEASON,
+ XBL, XBU)

IMPLICIT NONE
INTEGER
DOUBLE PRECISION

NX, NW, ISTAGE, IYEAR, ISEASON
XBL(NX), XBU(NX)

!Solves grid of controls u(x) and cost F(x) for stochastic variables w.
!If level = 1, also solves grid of derivatives dF/dx.

344

Variables needed by gridsolv.

INTEGER
DOUBLE PRECISION
LOGICAL

LEVEL, Jl, J2, Nl, N2
XGLO(NX), XGHI(NX), W(NW)
P

Other local variables.

EXTERNAL GRIDSOLV

Verify parameters are consistent with current model.

IF (NX.NE.4) THEN
WRITE (*,*) ' (SPECLCON) INCORRECT NX =' , NX
STOP

END IF

IF (NW.NE.2) THEN
WRITE (*,*) '(SPECLCON) INCORRECT NW =' , NW
STOP

END IF

Specify interpolated grid.

Grid spans (jl,j2) dimensions between xglo:xghi
at (nl,n2) points.

Grids evaluated for each combination of xglo:xghi
for j not in {jl,j2}.

P = .FALSE.
LEVEL = 0

Specify dimensions and discretization.

Jl = 5
J2 = 3
Nl = 11
N2 = 21

Specify random variables.
Specify bounds
Get grid.

XGLO = XBL
XGHI = XBU
W(l) = 600.0
CALL GRIDSOLV (P,LEVEL,Jl,J2,Nl,N2,XGLO,XGHI,W)

END

345

346

REFERENCES

Andricevic, R., and P. K. Kitanidis, Optimization of the pumping schedule in aquifer

remediation under uncertainty, Water Resources Research, 26(5), 875-885, 1990.

Atwood, D. F., and S. M. Gorelick, Hydraulic Gradient Control for Groundwater

Contaminant Removal, Journal of Hydrology, 76(1/2), 85-106, 1985.

Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.

Bellman, R. E., and S. E. Dreyfus, Applied Dynamic Programming, Princeton University

Press, Princeton, 1962.

Bender, M., and S. Simonovic, Time-series modeling for long-range stream-flow

forecasting, Journal of Water Resources Planning and Management, 126(6), 857-

870, 1994.

Benders, J. F., Partitioning procedures for solving mixed variables programming

problems, Numerical Mathematics, 4, 238-252, 1962.

Bhaskar, N. R., and E. E. Whitlatch, Jr., Derivation of monthly reservoir release policies,

Water Resources Research, 16(6), 987-993, 1980.

Bhaskar, N. R., and E. E. Whitlatch, Comparison of Reservoir Linear Operation Rules

Using Linear and Dynamic Programming, Water Resources Bulletin, 23(6), 1027-

1036, 1987.

Billings, R. B., and D. E. Agthe, Price Elasticities for Water: A Case of Increasing Block

Rates, Land Economics, 56, 73-84, 1980.

Birge, J. R., Models and model value in stochastic programming, Annals of Operations

Research, 59, 1-18, 1995.

Bogle, M. G. V., and M. J. O'Sullivan, Stochastic Optimization of a Water Supply

System, Water Resources Research, 15(4), 778-786, 1979.

Bras, R. L., Hydrology, Addison-Wesley, Reading MA, 1990.

Bras, R. L., R. Buchanan, and K. C. Curry, Real time adaptive closed look control of

reservoirs with the High Aswan Dam as a case study, Water Resources Research,

19(1), 33-52, 1983.

Bredehoeft, J. D., E. G. Reichard, and S. M. Gorelick, If it works, don't fix it: benefits

from regional groundwater management, in Groundwater Models for Resources

Analysis and Management, A. I. El-Kadi ed., pp. 101-121, CRC Press, Boca

Raton, 1995.

347

Brookshire, D. S., L. S. Eubanks, and C. F. Sorg, Existence values and normative

economics: Implications for valuing water resources, Water Resources Research,

22(11), 1509-1518, 1986.

Buras, N., Conjunctive Operation Of Dams and Aquifers, Journal of the Hydraulics

Division Proceedings of the American Society of Civil Engineers, 89, 111-131,

1963.

Buras, N., Scientific Allocation Of Water Resources, Water Resources Development and

Utilization - a Rational Approach, Elsevier, New York, 1972.

Burges, S. J., and R. Maknoon, A systematic examination of issues in conjunctive use of

ground and surface waters, Charles W. Harris Hydraulics Laboratory, University

of Washington, Department of Civil Engineering, 44, 1975.

Cameron, T. A., and M. B. Wright, Determinants of Household Water Conservation

Retrofit Activity: A Discrete Choice Model Using Survey Data, Water Resources

Research, 26(2), 179-188, 1990.

Chang, L. C, C. A. Shoemaker, and P. L. F. Liu, Optimal Time-Varying Pumping Rates

for Groundwater Remediation: Application of a Constrained Optimal Control

Algorithm, Water Resources Research, 28(12), 3157-3173, 1992.

Chow, V. T., D. R. Maidment, and G. W. Tauxe, Computer Time and Memory

Requirements For DP and DDDP In Water Resource Systems Analysis, Water

Resources Research, 11(5), 621-628, 1975.

Curry, G. L., J. C. Helm, and R. A. Clark, Chance-constrained model of system of

reservoirs, Journal of the Hydraulic Division, American Society of Civil

Engineering, 99(HY12), 2353, 1973.

CUWA, Cost of Industrial Water Shortages, Spectrum Economics, Inc. for California

Urban Water Agencies, San Francisco, CA, 1991.

Dandy, G., Assessing the Economic Cost of Restrictions on Outdoor Water Use, Water

Resources Research, 28(7), 1759-1766, 1992.

Danielson, L. E., An analysis of residential demand for water using micro time-series

data, Water Resources Research, 15(4), 763-767, 1979.

Dantzig, G. B., and P. W. Glynn, Parallel processors for planning under uncertainty,

Annals of Operations Research, 22, 1-21, 1990.

Davis, Interpolation and Approximation, Dover Publications, Toronto, Ontario, 1975.

DWR, San Joaquin County Ground Water Investigation, California Department of

Resources, Bulletin No. 146, 1967.

EBMUB, Updated Water Supply Management Program, East Bay Municipal Utility

District, 1992.

348

Ecker, J. G., and M. Kupferschid, Introduction to Operations Research, Krieger

Publishing, Malabar, Florida, 1991.

Esmaeil Beik, S., and Y. S. Yu, Optimal Operation of Multipurpose Pool of Elk City

Lake, Journal of Water Resources Planning and Management, 110(1), 1-14,

1984.

Fiering, M. B., and B. B. Jackson, Synthetic Streamflows, American Geophysical Union,

Water Resources Monograph 1,1971.

Fisher, A., D. Fullerton, N. Hatch, and P. Reinelt, Alternatives for managing drought: A

comparative cost analysis. Journal of Environmental Economics and

Management, 29(3), 304-320, 1995.

Foster, H. S., Jr., and B. R. Beattie, Urban Residential Demand for Water in the United

States, Land Economics, 55(1), 43-58, 1979.

Foufoula Georgiou, E., Convex Interpolation for Gradient Dynamic Programming, Water

Resources Research, 27(1), 31-36, 1991.

Foufoula Georgiou, E., and P. K. Kitanidis, Gradient Dynamic Programming for

Stochastic Optimal Control of Multidimensional Water Resources Systems, Water

Resources Research, 24(8), 1345-1359, 1988.

French, M. N., W. F. Krajewski, and R. R. Cuykendal, Rainfall forecasting in space and

time using a neural network. Journal of Hydrology, 137, 1-37, 1992.

Gal, S., Optimal Management of a Multireservoir Water Supply System, Water

Resources Research, 15(4), 737-749, 1979.

Gallager, A. R., and R. W. Robinson, Influence of Metering, Pricing, Policies and

Incentives on Water Use Efficiency, Australian Water Resources Council,

Technical Paper No 72, 1977.

Georgakakos, A. P., Extended Linear Quadratic Gaussian Control: Further Extensions,

Water Resources Research, 25(2), 191-201, 1989a.

Georgakakos, A. P., Value of streamflow forecasting in reservoir operation, Water

Resources Bulletin, 25(4), 789-800, 1989b.

Georgakakos, A. P., and D. A. Vlatsa, Stochastic Control of Groundwater Systems,

Water Resources Research, 27(8), 2077-2090, 1991.

Gilbert, J. B., Preparing short- and long-term measures for mitigation of droughts, Water

Supply, 5(1), 101-110, 1986.

Gill, P. E., W. Murray, M. A. Saunders, and M. H. Wright, User's Guide for NPSOL

(Version 4.0): A Fortran Package for Nonlinear Programming, Department of

Operations Research, Stanford University, Technical Report SOL 86-2, 1986.

349

Glantz, M. H., Consequences and responsibilities in drought forecasting; the case of

Yakima, 1977, Water Resources Research, 18(1), 3-13, 1982.

Gorenstin, B. G., N. M. Campodonico, J. P. da Costa, and M. V. F. Pereira, Stochastic

optimization of a hydro-thermal system including network constraints, IEEE

Transactions on Power Systems, 7(2), 791-7, 1992.

Hanke, S. H., A Cost-Benefit Analysis of Water Use Restrictions, Water Supply and

Management, 4(4), 269-274, 1980.

Headley, C. J., The Relation Of Family Income and Use Of Water For Residential and

Commercial Purposes In the San Francisco-Oakland Metropolitan Area, Land

Economics, 39(4), 441-49, 1963.

Heidari, M., V. E. N. Te Chow, P. V. Kokotovic, and D. D. Meredith, Discrete

Differential Dynamic Programming Approach to Water Resources Systems

Optimization, Water Resources Research, 7(2), 273-282, 1971.

Hillier, F. S., and G. J. Lieberman, Introduction to Operations Research, McGraw-Hill,

New York, 1990.

Howitt, R. E., Empirical analysis of water market institutions: The 1991 California water

market, Resource and Energy Economics, 16, 357-371, 1994.

Infanger, G., Monte Carlo (importance) sampling within a Benders decomposition

algorithm for stochastic linear programs, Annals of Operations Research, 39, 69-

95, 1991.

Jacobs, J., G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and J. Stedinger,

SOCRATES: a system for scheduling hydroelectric generation under uncertainty,

Annals of Operations Research, 59, 99-133, 1995.

Johnson, S. A., J. R. Stedinger, and C. A. Shoemaker, Computational improvements in

dynamic programming, Forefronts, 4(7), 3-7, 1988.

Johnson, S. A., J. R. Stedinger, C. A. Shoemaker, Y. Li, and J. A. Tejada-Guibert,

Numerical solution of continuous-state dynamic programs using linear and spline

interpolation, Operations Research, 41(3), 484-500, 1993.

Johnson, S. A., J. R. Stedinger, and K. Staschus, Heuristic Operating Policies for

Reservoir System Simulation, Water Resources Research, 27(5), 673-685, 1991.

Jones, L., R. Willis, and W. W. G. Yeh, Optimal Control of Nonlinear Groundwater

Hydraulics Using Differential Dynamic Programming, Water Resources

Research, 23(11), 2097-2106, 1987.

Karamouz, M., and M. H. Houck, Annual and Monthly Reservoir Operating Rules

Generated By Deterministic Optimization, Water Resources Research, 18(5),

1337-1344, 1982.

350

Karamouz, M, and M. H. Houck, Comparison of Stochastic and Deterministic Dynamic

Programming for Reservoir Operating Rule Generation, Water Resources

Bulletin, 23(1), 1-9, 1987.

Karamouz, M., M. H. Houck, and J. W. Delleur, Optimization and Simulation of Multiple

Reservoir Systems, Journal of Water Resources Planning and Management,

118(1), 71-81,1992.

Karamouz, M., and H. V. Vasiliadis, Bayesian Stochastic Optimization of Reservoir

Operation Using Uncertain Forecasts, Water Resources Research, 28(5), 1221-

1232,1992.

Karunanithi, N., W. J. Grenney, D. Whitley, and K. Bovee, Neural networks for river

flow prediction, Journal of Computing in Civil Engineering, 8(2), 201-220, 1994.

Keeping, E. S., Introduction to Statistical Inference, Dover Publications, New York,

1995.
Kelman, J., J. R. Stedinger, L. A. Cooper, E. Hsu, and S. Q. Yuan, Sampling Stochastic

Dynamic Programming Applied to Reservoir Operation, Water Resources

Research, 26(3), 447-454, 1990.

Kitanidis, P. K., Real-Time Forecasting of River Flows and Stochastic Optimal Control

of Multireservoir Systems, Iowa Institute of Hydraulic Research, The University

of Iowa, IIHR report no 258, ISWRRI completion report no 133, 1983.

Kitanidis, P. K., Hermite Interpolation on an «-dimensional rectangular grid, St. Anthony

Falls Hydraulics Laboratory, Univ. of Minn., 1986.

Kitanidis, P. K, A first-order approximation to stochastic optimal control of reservoirs,

Stochastic Hydrology and Hydraulics, 1(3), 169-184, 1987.

Kitanidis, P. K, and R. Andricevic, Accuracy of the first-order approximation to the

stochastic optimal control of reservoirs, in Dynamic Programming for Optimal

Water Resources Systems Analysis, A. O. Esogbue ed., pp. 373-385, Prentice Hall,

Englewood Cliffs, New Jersey, 1989.

Kitanidis, P. K, and E. Foufoula Georgiou, Error Analysis of Conventional Discrete and

Gradient Dynamic Programming, Water Resources Research, 23(5), 845-858,

1987.

Lamond, B. F., and A. Boukhtouta, Optimizing future hydro-power production using

Markov decision processes, Laval University, Document of Work 95-44, 1995.

Larson, R. E., State Increment Dynamic Programming, Elsevier, New York, 1968.

Lee, S. I., and P. K. Kitanidis, Optimal Estimation and Scheduling in Aquifer

Remediation with Incomplete Information, Water Resources Research, 27(9),

2203-2217, 1991.

351

Lettenmaier, D. P., and S. J. Burges, Reliability of cyclic surface and groundwater

storage systems for water supply: A preliminary assessment, University of

Washington, Department of Civil Engineering, Technical Report 64, 1979.

Loaiciga, H. A., and M. A. Marino, An Approach to Parameter Estimation and Stochastic

Control in Water Resources With an Application to Reservoir Operation, Source

Water Resources Research, 21(11), 1575-1585, 1985.

Loucks, D. P., and P. J. Dorfman, An evaluation of some linear decision rules in chance-

constrained models for reservoir planning and operation, Water Resources

Research, 11(6), 777-782, 1975.

Loucks, D. P., J. R. Stedinger, and H. A. Haith, Water resource systems planning and

analysis, Prentice-Hall, Engelwood Cliffs, NJ, 1981.

Major, D. C, Multi-Objective Water Resources Planning, American Geophysical Union,

Water Resources Monograph 4, 1977.

Marien, J. L., J. M. Damazio, and F. S. Costa, Building flood control rule curves for

multipurpose multireservoir systems using controllability conditions, Water

Resourses Research, 30(4), 1135-1144, 1994.

Marino, M. A., and S. P. Simonovic, Single Multipurpose Reservoir Design: A Modified

Optimal Control Problem by Chance-Constrained Programming, Advances in

Water Resources, 4(1), 43-48, 1981.

Martin, W. E., and S. Kulakowski, Water Price as a Policy Variable in Managing Urban

Water Use: Tucson, Arizona, Water Resources Research, 27(2), 157-166, 1991.

Martin, W. E., and J. F. Thomas, Policy Relevance in Studies of Urban Residential Water

Demand, Water Resources Research, 22(13), 1735-1741, 1986.

Max, J., Quantizing for minimizing distortion, IRE Transactions on Information Theory,

IT6, 7-12, 1960.

McClurg, S., Unresolved Issues in Water Marketing, Western Water, May/June, 4-11,

Water Education Foundation, 1992a.

McClurg, S., Urban Water Costs, Western Water, March/April, 4-11, 1992b.

McLaughlin, D., and H. L. Velasco, Real-time control of a system of large hydropower

reservoirs, Water Resources Research, 26(4), 623-35, 1990.

Mercer, L. J., and W. D. Morgan, Welfare Effects of Alternative Water Rationing

Schemes: a Case Study, Source Water Resources Bulletin, 25(1), 203-210, 1989.

Moncur, J. E. T., Urban Water Pricing and Drought Management, Water Resources

Research, 23(3), 393-398, 1987.

Moncur, J. E. T., Drought Episodes Management: The Role of Price, Water Resources

Bulletin, 25(3), 499-505, 1989.

352

Murray, D., and S. Yakowitz, Constrained differential dynamic programming and its

application to multireservoir control, Water Resources Research, 15(5), 1017-

1027, 1979.

Pereira, M. V. F., and L. M. V. G. Pinto, Application of decomposition techniques to the

mid- and short-term scheduling of hydrothermal systems, IEEE Transactions on

Power Apparatus and Systems, PAS-102(11), 3611-3618, 1983.

Pereira, M. V. F., and L. M. V. G. Pinto, Stochastic Optimization of a Multireservoir

Hydroelectric System: A Decomposition Approach, Water Resources Research,

21(6), 779-792, 1985.

Pereira, M. V. F., and L. M. V. G. Pinto, Multi-stage stochastic optimization applied to

energy planning, Mathematical Programming, 52(2), 359-375, 1991.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes

in FORTRAN: the art of scientific computing, Press Syndicate of the University

of Cambridge, Cambridge, 1992.

Raman, H., and V. Chandramouli, Deriving a general operating policy for reservoirs

using neural network, Journal of Water Resources Planning and Management,

122(5), 342-347, 1996.

Ranjithan, S., J. W. Eheart, and J. H. Garrett, Jr., Neural network-based screening for

groundwater reclamation under uncertainty, Water Resources Research, 29(3),

563-574, 1993.
Rashid, A., A. Aziz, and K.-F. V. Wong, Neural-network approach to the determination

of aquifer parameters, Ground Water, 30(2), 164-166, 1992.

Revelle, C, E. Joeres, and W. Kirby, The Linear Decision Rule In Reservoir

Management and Design. I. Development of the Stochastic Models, Water

Resources Research, 5(4), 767-777, 1969.

Rizzo, D. M., and D. E. Dougherty, Characterization of aquifer properties using artificial

neural networks: Neural kriging, Water Resources Research, 30(2), 483-497,

1994.
Rogers, L. L., and F. U. Dowla, Optimization of groundwater remediation using artificial

neural networks with parallel solute transport modeling, Water Resources

Research, 30(2), 457-481, 1994.

Rogers, P. P., and M. B. Fiering, Use of Systems Analysis in Water Management, Water

Resources Research, 22(9), 146s-158s, 1986.

Rosa, D. J., Water pricing to achieve efficient allocation among competing users, in

Water resources planning and management and urban water resources, J. L.

353

Anderson ed., pp. 376-380, American Society of Civil Engineers, New York,

1991.

Rotting, T. A., and A. Gjelsvik, Stochastic dual dynamic programming for seasonal

scheduling in the Norwegian power system, IEEE Transactions on Power

Systems, 7(1), 273-9, 1992.

Saad, M., P. Bigras, A. Turgeon, and R. Duquette, Fuzzy learning decomposition for the

scheduling of hydroelectric power systems, Water Resources Research, 32(1),

179-186, 1996.

Saad, M., and A. Turgeon, Application of Principal Component Analysis to Long-Term

Reservoir Management, Water Resources Research, 24(7), 907-912, 1988.

Saad, M., A. Turgeon, P. Bigras, and R. Durquette, Learning disaggregation technique for

the operation of long-term hydroelectric power systems, Water Resources

Research, 30(11), 3195-3202, 1994.

Saad, M., A. Turgeon, and J. R. Stedinger, Censored-Data Correlation and Principal

Component Dynamic Programming, Water Resources Research, 28(8), 2135-

2140, 1992.

Salas, J. D., J. W. Delleur, Y. Yevjevich, and W. L. Lane, Applied Modeling of

Hydrologie Series, Water Resources Publications, Littleton, Colorado, 1980.

Schlette, T. C, and D. C. Kemp, Setting Rates to Encourage Water Conservation, Water

Engineering and Management, 138, 25-29, 1991.

Simonovic, S., Two-Step Algorithm for Design-Stage Long-Term Control of a

Multipurpose Reservoir, Advances in Water Resources, 2(1), 47-49, 1979.

Snedecor, G. W., and W. G. Cochran, Statistical Methods, Iowa State University Press,

Ames, Iowa, 1989.

Sobel, M. J., Reservoir Management Models, Water Resources Research, 11(6), 767-776,

1975.

Sobel, M. J., A multi-reservoir model with a myopic optimum, in Dynamic Programming

for Optimal Water Resources Systems Analysis, A. O. Esogbue ed., pp. 309-315,

Prentice Hall, Englewood Cliffs, New Jersey, 1989.

Stedinger, J. R., B. F. Sule, and D. P. Loucks, Stochastic Dynamic Programming Models

for Reservoir Operation Optimization, Water Resources Research, 20(11), 1499-

1505, 1984.

Stengel, R. F., Optimal Control and Estimation, Dover Publications, New York, 1994.

Tang, Z., and P. A. Fishwick, Feedforward neural nets as models for time series

forecasting, Journal of Computing, 5(4), 374-385, 1993.

354

Tejada-Guibert, J. A., S. Johnson, A., and J. R. Stedinger, Comparison of Two

Approaches for Implementing Multireservoir Operating Policies Derived Using

Stochastic Dynamic Programming, Water Resources Research, 29(12), 3969-

3980,1993.

Tejada-Guibert, J. A., S. A. Johnson, and J. R. Stedinger, The value of hydrologic

information in stochastic dynamic programming models of a multireservoir

system, Water Resources Research, 31(10), 2571-2579, 1995.

Terry, L. A., T. A. Pereira, T. A. Araripe Neto, L. F. C. A. Silva, and P. R. H. Sales,

Coordinating the energy generation of the Brazilian national hydrothermal

electrical generating system, Interfaces, 16, 16-38, 1986.

Turgeon, A., Optimal Operation of Multireservoir Power Systems with Stochastic

Inflows, Water Resources Research, 16(2), 275-283, 1980.

Turgeon, A., A Decomposition Method For The Long-Term Scheduling Of Reservoirs in

Series, Water Resources Research, 17(6), 1565-1570, 1981.

Valdes, J. B., J. Montbrun-Di Filippo, K. M. Strzepek, and P. J. Restrepo, Aggregation-

Disaggregation Approach to Multireservoir Operation, Journal of Water

Resources Planning and Management, 118(4), 423-444, 1992.

van der Leeden, F., F. L. Troise, and D. K. Todd, The Water Encyclopedia, Lewis

Publishers, Chelsea, Michigan, 1990.

Wagner, B. J., and S. M. Gorelick, Optimal Groundwater Quality Management Under

Parameter Uncertainty, Water Resources Research, 23(7), 1162-1174, 1987.

Wallis, J. R., N. C. Matalas, and J. R. Slack, Just a moment!, Water Resources Research,

10(2), 211-219, 1974.

Wasimi, S. A., and P. K. Kitanidis, Real-Time Forecasting and Daily Operation of a

Multireservoir System During Floods by Linear Quadratic Gaussian Control,

Water Resources Research, 19(6), 1511-1522,1983.

Weiner, D., and A. Ben Zvi, A Stochastic Dynamic Programing Model for the Operation

of the Mediterranean-Dead Sea Project, Water Resources Research, 18(4), 729-

734,1982.

Whiffen, G. J., and C. A. Shoemaker, Nonlinear Weighted Feedback Control of

Groundwater Remediation Under Uncertainty, Water Resources Research, 29(9),

3277-3289, 1993.

Williams, M., and B. Suh, Demand for Urban Water by Customer Class, Applied

Economics, 18(12), 1275-1289, 1986.

Willis, R., and W.-G. Yeh, Groundwater Systems Planning and Management, Prentice

- Hall, Inc., Englewood Cliffs NJ, 1987.

355

Wolfram, S., Mathematica, Addison-Wesley, Champaign, Illinois, 1991.

Yakowitz, S., Dynamic Programming Applications in Water Resources, Water Resources

Research, 18(4), 673-696, 1982.

Yeh, W. W.-G., Reservoir management and operations models: A state-of-the-art review,

Water Resources Research, 21(12), 1797-1818, 1985.

Young, G. K., Sr., Finding Reservoir Operating Rules, Proceedings American Society of

Civil Engineering Journal Hydraulics Division, 93(HY6), 297-321,1967.

Young, R. A., Price elasticity of demand for municipal water: a case study of Tucson,

Arizona, Water Resources Research, 9(4), 1068-1072,1973.

Zarnikau, J., Spot market pricing of water resources and efficient means of rationing

water during scarcity (water pricing), Resource and Energy Economics, 16(3),

189-210,1994.

356

