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1.0      INTRODUCTION 

Progress is reported for the past three years of a research program on advanced diagnostic 
techniques for combustion gases and plasmas. The techniques studied are based on laser 
spectroscopy, particularly spectrally-resolved absorption and laser-induced fluorescence. Laser 
sources include tunable cw diode lasers and tunable (or fixed-frequency) pulsed lasers. The cw 
lasers are spectrally narrow, allowing study of innovative techniques based on spectral 
lineshapes, while the pulsed lasers provide intense bursts of photons needed for techniques based 
on light-scattering phenomena. Accomplishments of note include: successful development of 
wavelength-multiplexing schemes which allow diode laser absorption measurements of multiple 
flow parameters along a common optical path; the first application of frequency-doubled diode 
lasers for combustion species measurements; establishment of a simple and sensitive means of 
imaging temperature in flows of air seeded with acetone; innovation and validation of a 
fluorescence-based plasma diagnostic for static pressure and kinetic temperature; and 
development and demonstration of a new class of sensors, based on multiplexed diode laser 
absorption, for near-real-time combustion control. 



2.0 PROJECT SUMMARIES 

Included in this section are summaries of work conducted in each of seven project areas. 
Additional details may be found in the publications listed in Sections 3.1 and 3.2. Reprints of 
these papers are available on request. Personnel involved in these projects are listed in Section 
4.0. 

2.1 Plasma Diagnostics 

Over the three-year course of this program we continued to explore the use of cw 
semiconductor diode lasers as light sources for fluorescence diagnostics of temperature, number 
density and velocity in laboratory plasmas. This class of lasers is of high scientific interest 
owing to their unique ability to provide an economical source of rapidly tunable, narrow- 
linewidth, cw laser light in the visible and near-IR spectral regions. Owing to their rugged nature 
and compatibility with a rapidly growing range of fiberoptic components, these lasers also offer 
considerable promise for new diagnostic methods and for laser-based sensors in engineering 
systems, leading ultimately to new strategies for control of propulsion systems. 

Our primary accomplishment was the development of a new laser-induced fluorescence 
(LIF) diagnostics strategy for sensing plasma temperature and pressure, shown schematically in 
Fig. 1. The concept involves probing a combination of excited-state transitions in an inert 
atomic species, with one transition involving a non-metastable lower state and the other 
involving an adjacent, metastable state. The basic idea is that the lineshape of the absorption 
transition involving the metastable state will be predominantly Doppler-broadened, and hence a 
simple function of the kinetic temperature of this species, while the lineshape for the absorption 
transition from the non-metastable state will be dominated by resonance broadening, and hence a 
simple function of the number density of the species. With the temperature known, the number 
density measurement may also be seen as a pressure measurement. 

We have investigated this diagnostics concept in a simple low-pressure discharge, shown 
in Fig. 2, with the capability to vary the gaseous composition and pressure. The experimental 
arrangement is conventional for cw LIF measurements, other than the fact that two diode laser 
sources, one for each of the transitions monitored, are employed. Our studies have focused on 
xenon as the test gas, owing both to the current interest in xenon for ion thruster propulsion 
systems, and to the fact that xenon spectroscopy has not received much previous attention. 
Figure 3 provides an energy level diagram for xenon, and indicates the two 6s-6p transitions of 
interest at 823 nm (involving the metastable lower state) and 828nm (non-metastable state). As 
may be seen, the spectrum of xenon is complicated by the existence of several isotopes (nine 
stable isotopes including three with greater than 20% abundance) and the hyperfine splitting of 
most energy levels. 
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Experiments were conducted over a range of conditions in the low-pressure discharge in 
order to evaluate the diagnostics strategy for temperature and pressure. An example result, 
obtained using the 823 nm transition to infer kinetic temperature, is shown in Fig. 4. The relative 
positions and the relative intensities of the 21 hyperfine-split lines are indicated in the figure. 
Each of the 21 theoretical lines is individually broadened and the resulting intensities added to 
construct an excitation spectrum similar to the LIF data, with temperature as the only variable. 
The resulting temperature, 31 OK in this case, is in good agreement with expectation. Similar 
lineshape fits for the 828 nm transition allowed inference of the static pressure in the cell, and 
these data were found to agree well with the measure pressure. The only deficiency observed 
with the diagnostic method was that, at pressures above about 25 torr, the relationship between 
the resonance-broadened linewidth and pressure became slightly nonlinear. This is a result of 
incipient breakdown in the simple linear theory (for resonant-collision line broadening) which 
was used; an improved theory allowing for nonlinear contributions could be applied to correct 
for this minor effect. 

In summary, we have developed a new plasma diagnostic strategy based on spectrally 
resolved LIF which offers the ability for nonintrusive measurements of two useful parameters, 
namely kinetic temperature and static pressure, with high spatial resolution. The use of diode 
laser excitation for such measurements implies that the diagnostic system can be cost effective 
and is also compatible with remote measurements through use of optical fibers. Further details 
of this work can be found in publications 12 and 24 in Sec. 3.1. 

Q—Vpbsorption 

collection optics 

monochromator 

PMT 
iW[V»N polarizer 

*=• chopper fiber ring photodiode 
detector 

J828nm 

FIG. 2. Experimental setup. 
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2.2      Diagnostics for High-Enthalpy Air 

Atomic nitrogen and oxygen are important constituents in many high temperature 
environments such as in hypersonic air flows and propulsion plasmas. For example, in equilibrium 
air at 1 atm and 3500 K, the mole fraction of O-atoms exceeds that of molecular oxygen, and above 
about 7000 K, the atomic species N and O are the primary components of air. Gases at such high 
temperatures can have significant populations in excited electronic states, thereby suggesting the 
use of either laser absorption or laser-induced fluorescence to monitor gaseous properties through 
detection of the strong and optically accessible electronic transitions. 

Semiconductor diode laser diagnostics have been developed capable of probing the 
electronically excited state transitions of atomic nitrogen and oxygen to determine both the kinetic 
temperature and the number density of the species in the absorbing states. Experiments were 
conducted behind reflected shock waves in a pressure driven shock tube using scanned-wavelength 
and fixed-wavelength strategies. The electronically excited transitions probed were at 821 nm for 
atomic nitrogen and at 777 nm for atomic oxygen. 

The scanned-wavelength experiments allow determination of spectral lineshapes which 
contain important environmental information such as the kinetic temperature and the number 
density of the absorbing species. Fully-resolved spectral lineshapes for both nitrogen and oxygen 
atoms were recorded while scanning the diode laser at 6 to 8 kHz. Multiple lineshapes were 
obtained for the flowfield during the given test time. At high temperatures, the width of the line is 
dominated by Doppler broadening, and thus a measurement of linewidth is easily converted to a 
value for the translational (i.e. kinetic) temperature of the gas. The integrated area under the 
measured spectral absorption coefficient curve yields the number density of atoms in the absorbing 
(i.e. lower) state, from which we can invoke a Boltzmann distribution to infer an "electronic" or 
population temperature, assuming that the density of the species is known. It is important to note 
that the two temperatures inferred with these methods, i.e. the kinetic and electronic temperatures, 
may differ in gases at very high temperatures where radiative and collisional transfer processes are 
not in balance, and such difficulties motivate the need for diagnostics sensitive to these different 
temperatures in gases with very high enthalpies. 

An energy level diagram for the relevant N-atom transitions, and a representative single- 
sweep data trace (converted from time to laser frequency) are shown in Fig. 5. The absorption data 
are converted through Beer's law to a plot of the spectral absorption coefficient and then best-fit 
with a Voigt profile. The kinetic and population temperatures obtained for this case (9000 versus 
9300 K) are in close agreement as the flow has reached equilibrium during the test time available. 

A plot of the comparison of kinetic, population, and calculated temperatures determined 
from atomic nitrogen absorption lineshapes for different experimental conditions is shown in Fig. 
6. All three temperatures show good agreement with one another to within experimental error. 
This implies that the flow behind the reflected shock wave is in local thermodynamic equilibrium 
(LTE). 

Further details of this work on diagnostics for gases at very high temperatures are available 
in the publications cited in Sec. 3.1 and 3.2. 
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Fixed-frequency experiments were also conducted for electronically excited transitions of 
atomic nitrogen and oxygen. These measurements provide data on the continuous time-history of 
excited-state densities as the shock-heated gas undergoes dissociation, electronic excitation, 
ionization, and recombination. Such data will facilitate the development of kinetic models for the 
nonequilibrium behavior of air in hypersonic flows. 
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2.3      Multiplexed Diode Laser Absorption 

Early in this grant period we conceived a new approach for diode laser absorption based 
on the use of multiple laser sources, i.e. "wavelength-multiplexing". A multiplexed diode-laser 
sensor system is capable of monitoring several wavelength regions simultaneously, using either 
scanned- or fixed-wavelength laser-absorption spectroscopy techniques, thereby enabling 
measurement of multiple gasdynamic parameters along a common path. Thus far we have used 
this strategy to sensitively measure temperature, H20, 02 and CH4 in various combustion gases, 
high-speed flows and static cells, typically with either two or three diode lasers operating 
simultaneously. 

Figure 7 (left side) schematically illustrates the generic setup used to record multiple 
gasdynamic parameters along a single path, based in this case on the simultaneous measurement 
of H20, 02 and temperature. In the scanned-wavelength implementation of this method, two 
InGaAsP lasers were current tuned at a 2-kHz rate across H20 vibrational transitions near 1343 
and 1392 nm, while an AlGaAs laser was simultaneously scanned across an 02 transition near 
760 nm. Gas temperature was determined from the ratio of single-sweep integrated line 
intensities of H20. Species mole fractions (for H20 and 02) were determined from the measured 
integrated line intensities and inferred temperature. In the fixed-wavelength method, the 
wavelength of each laser was fixed near the peak of an absorption feature. Gas temperatures 
were inferred at a 1-MHz rate from the ratio of measured peak line intensities. The right side of 
Fig. 8 compares temperature measurements recorded in the post-flame gases of a premixed H2- 
02 flame and a heated cell. The excellent agreement between the laser-based measurements 
obtained using scanned- and fixed-wavelength methods with those recorded with thermocouples 
demonstrates the effectiveness of the multiplexed diode-laser sensor system and the potential for 
rapid, continuous measurements of gasdynamic parameters in flows with difficult optical access. 
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Fig. 7. Schematic for multiplexed diode-laser 
absorption diagnostic for simultaneous measurements 
of temperature, H20 and 02. 

Fig. 8. Temperature results for multiplexed 
diode laser diagnostic. 
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control 

2.4      Diagnostics for Combustion Sensing and Control 

Over the past few years, significant 
advances have been made in our laboratory to 
develop multiplexed diode-laser sensors for 
combustion sensing and control. A multiplexed 
sensor system, comprised of multiple diode-laser 
sources, enables simultaneous monitoring of 
absorption at several wavelengths, thereby 
allowing simultaneous determination of multiple 
gasdynamic parameters and/or species 
concentrations. These measurements can be made 
remotely and at multiple locations through the use 
of fiber optics. Figure 9 illustrates possible 
applications to a gas turbine engine, where the 
sensor system could be applied for measurements 
of inlet mass flux, combustion efficiency, and 
thrust, as well as control of both combustion 
instabilities and the infrared signature. 
Accomplishments at Stanford have included air 
mass flux sensing in a supersonic stream by O2 
absorption, measurement of momentum flux (thrust) in a high-speed combustion flow via H20 
detection, simultaneous monitoring of H20, 02 (or CH4), and temperature in a benchtop 
combustor, and combustion control using temperature and H20 concentration. 

fiber-optic 
components 

tunable 
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Fig. 9. Proposed application of sensor system to 
gas turbine combustor. 
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Fig. 10. Schematic diagram of the multiplexed diode-laser sensor for in situ and fast-sampling 
measurements. 

Figure 10 illustrates the experimental arrangement used in recent work to investigate and 
develop new sensing concepts for both in situ measurements of temperature, H20, and C02 
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concentration, as well as fast sampling measurements of important pollutants such as CO and 
NOx. The in situ diagnostic, using diode lasers tuned to absorption features in the near IR (1.4 
urn) absorption spectrum of water vapor, allowed simultaneous measurements of temperature 
and H20 concentration from the ratio and absolute magnitude of the absorption signals. These 
near-real-time measurements (currently conducted at a repetition rate of 3 kHz) have been used 
to maintain desired temperature set points (Figure 11), and minimize temperature fluctuations 
(Figure 12) in a benchtop combustor. 

This capability was recently utilized in the active control system for a prototype 
shipboard waste incinerator being developed at the Naval Air Warfare Center (NAWC), China 

Lake, CA (Figure 13). The NAWC researchers 
(T.P. Parr, E.J. Gutmark, K.J. Wilson, D.M. 
Hanson-Parr, K. Yu, R.A. Smith, and K.C. 
Schadow) chose to use pulsed air injection to 
maintain the compactness and robustness 
required for successful application of this 
incineration system aboard Naval ships. The 
air modulation led to coherent air vortices at 
the dump plane of the combustor. By precise 
timing of the combustible waste (fuel) 
injection into these vortices, a high degree of 
mixing was obtained, reducing the emission of 
CO and other harmful pollutants to near 
equilibrium levels. Proper injection resulted in 
large coherent temperature oscillations at the 
forcing frequency (T^), large temporally- 
averaged H20 concentration, and low levels of 
CO, as indicated in Figure 14, measured at 
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NAWC (50-kW combustor) by Stanford researchers. A closed-loop control system used T^ 
values to optimize the timing of the fuel injection. 
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Control Room Incinerator 

Fig. 13 Schematic diagram of the multiplexed sensor applied to the 50-kW facility at NAWC. 
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Recent work has involved 
improving the bandwidth of the 
closed-loop system and exploring 
new control strategies in a 5-kW 
model of the NAWC combustor. A 
sample result, shown in Figure 15, 
illustrates the ability of the closed- 
loop system to rapidly vary the 
amplitude and phase of the fuel 
injection (relative to the air injection) 
to optimize the coherence of the 
temperature oscillations (maximum 
Trms). Concurrently, the H20 
concentration at the measurement 
location was maximized by lowering 
the allowable forcing amplitude (steps 
in lower frame). This combined 
strategy resulted in efficient, 
premixed combustion, as evident 
from the lack of soot luminosity, over 

time scales as short as 100 ms, and excellent overall performance, as evident by the near 
equilibrium H20 concentration, over somewhat longer time scales (-10 sec). Further details of 
this diode-laser sensor research may be found in paper 14 in Sec. 3.1, and papers 14-17 and 28- 
30 in Sec. 3.2. 
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The successful demonstration of rapid closed-loop control in realistic combustion 
systems illustrates the high potential of diode-laser absorption sensors for improved 
measurement and control of combustion and propulsion systems, including applications that 
require remote and non-intrusive monitoring. These sensors should prove useful for both ground- 
based and flight-based systems. 
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2.5      PLIF of Acetone for Temperature Imaging 

An effort combining fundamental photophysical studies and modeling has led to the 
development of acetone PLIF temperature imaging as an immediately applicable diagnostic 
technique for flows of interest to the combustion community. The comparative ease of 
application of acetone PLIF, and the large and potentially easily interpretable signals that result, 
has made it popular in recent years for measurements of concentration, especially as an indicator 
of mixing. Recognition, however, of the significant dependences of fluorescence signal on 
temperature and excitation wavelength (and the weak dependence on pressure), prompted 
experimental studies (see papers 21 and 26 in Sec. 3-1) to characterize these effects. The results 
of these studies enabled the development of single- and dual-excitation-wavelength strategies for 
temperature measurement with acetone PLIF (paper 21). Modeling of acetone fluorescence 
(paper 26) in conjunction with the photophysics experiments has broadened acetone PLIF 
diagnostic capability to include quantitative dual-parameter measurement (e.g., temperature and 
mixture fraction, or temperature and pressure) in various flowfields. 

The transitions in the acetone molecule that make PLIF viable and attractive are shown in 
Fig. 16. Ultraviolet laser excitation pumps molecules from the ground singlet state to the first 
excited singlet, with subsequent fluorescence in the visible back to the ground state, which can 
be detected with an unintensified CCD camera. Notably, the fluorescence efficiency is limited 
by a rapid intersystem crossing to the non-fluorescing excited triplet state, rather than by 
collisional interactions with other molecules, resulting in a more easily interpretable fluorescence 
signal. Temperature and wavelength dependences in the fluorescence signal appear through the 
excitation efficiency (described by the absorption cross-section, a) and the fluorescence 
efficiency (described by the fluorescence quantum yield, <|)), with an additional inverse 
temperature dependence in the number of acetone molecules found in a given volume (the 
number density, nacetone). Analysis of these processes revealed that a straightforward single- 
excitation-wavelength temperature measurement strategy would be effective in conditions of 
uniform pressure and acetone seeding, while a dual-wavelength approach would be useful when 
these conditions were not met. The achievable temperature sensitivities for idealized 
experimental conditions are shown in Fig. 17 for the two approaches using candidate excitation 
wavelengths. 

The effectiveness of the single-wavelength technique for imaging of temperature to 
within several degrees Kelvin is demonstrated in Figs. 18 and 19. For the low speed flow of 
acetone-seeded air over a heated cylinder shown in Fig. 18, the excellent single-shot sensitivity 
of the technique is highlighted by a banded, repeating color table. Laser excitation is at 248 nm 
- 40 mJ in a 0.5 mm thick sheet. The ability of acetone PLIF to resolve instantaneous 
temperature structure is shown in Fig. 19, for 266 nm excitation. The jet-in-crossflow pictured 
has both streams uniformly seeded with acetone. The temperature variations associated with jet 
instabilities are evident at a Reynolds number of 100. 

Preliminary validations of dual-wavelength imaging in steady flows with nonuniform 
acetone seeding have been followed by applications in turbulent flowfields that require near- 
simultaneous detection of fluorescence resulting from successive excitation at 248 and 308 nm. 
In such conditions, fluorescence modeling (paper 26) indicates that the dual-wavelength 
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approach offers the potential for simultaneous measurement of two parameters. This might, for 
instance, involve simultaneous imaging of pressure and temperature in a supersonic expansion, 
or temperature and mixture fraction in an optically-accessible engine cylinder. A laboratory 
demonstration of the technique has involved the use of a CCD camera with interline transfer 
architecture (on loan from Prof. Mungal's research group) to record separate fluorescence 
images of a heated, turbulent jet from respective excitation pulses at 308 and 248 nm, with as 
little as 1 microsecond separation between frames. 
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Figure 18. Single-shot temperature image in a heated cylinder flow, generated with the single-wavelength 
technique using 248 nm excitation. 
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2.6      Frequency-Doubled Diode Laser Diagnostic 

The commercial availability of diode lasers has been limited to distinct spectral windows 
within the overall spectral range between 630 nm to 2.0 microns. As a consequence, various 
species that are important for combustion and propulsion monitoring and control applications 
remain inaccessible to absorption measurements. Recent development in quasi-phase-matched 
second harmonic generation (QPM-SHG) using LiNb03 waveguides has enabled both high 
nonlinear optical conversion efficiency and the capability of operating at any desired wavelength 
within the transparency range of the crystal, ideal for diode-laser applications We have 
collaborated with the Applied Physics Department at Stanford to access a prototype diode-laser 
system generating approximately 100 nW of tunable output near 394.5 nm from a 8 mW external 
cavity diode laser near 789 nm. The newly available wavelength region enables access to atomic 
transitions of aluminum and gallium as well as to ro-vibronic transitions of N02, an important 
combustion-generated pollutant. We conducted N02 absorption experiments using the prototype 
diode laser system near 394.5 nm and a diode laser near 670 nm, which is the shortest 
wavelength at which we have been able to obtain sustained, single-mode output using 
commercially available tunable diode lasers. The results obtained demonstrate the utility of 
near-UV diode-laser systems for sensitive measurements of N02 over a range of temperatures 
(296 K to 774 K) and total pressures (0.024 atm to 1 atm). 
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Fig. 20. Room temperature absorption spectra of N02 between 250 nm and 700 nm. 

Figure 20 shows the room temperature absorption spectrum of N02 between 250 nm and 700 
nm, highlighting the potentially increased sensitivity near 400 nm over measurements near 630 
nm. We performed N02 absorption measurements at the two indicated spectral regions at 
various temperatures (296 K to 774 K) and pressures (0.024 atm to 1 atm). Figure 21a shows the 
measured high-resolution spectra of N02 from 670.184 nm to 670.241 nm at 296 K (0 055 atm 
1.96%N02inAr). ' 
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Fig. 21a. High-resolution absorption spectra of N02 referenced to 670.241 nm (296 K, 0.055 aim, 1.96% N02in 
Ar). Fig. 21b. High resolution absorption spectra of N02 referenced to 394.548 nm (300 K, 0.14 arm, 1.91% 

N02 in Ar) 

By contrast, Fig. 21b shows the measured N02 absorption spectra from 394.493 to 394.548 nm 
at 300 K (0.14 atm, 1.91% N02 in Ar). The average measured cross section near 394.5 nm 
exceeds those obtained near 670.2 nm by a factor of 60 at room temperature. Fig. 22 shows the 
variation of the absorption coefficients in the two spectral regions as a function of temperature. 
The N02 absorption coefficient near 394.5 nm exceeds those near 670.2 nm by approximately a 
factor of 25 over the entire temperature range between 298-500 K, thereby confirming the merit 
of near-UV wavelengths for enhanced N02 detection. In summary, N02 detectivities of 5 ppm 
(670.2 nm) and 0.1 ppm (394.5 nm) are achievable in a 10-cm path, based on the measured 
minimum detectable absorbance of l.lxlO"4 (20-kHz bandwidth (-3dB), 1-ms measurement 
time). Further details of this work may be found in publication paper 29 in section 3.1. 
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Fig. 22. Average absorption coefficients in the two spectral regions near 394.5 nm and 670.2 nm as a 
function of temperature. 

The potential for sub-ppm N02 detection of frequency-doubled diode laser sources suggests 
that this diagnostic strategy will find important applications in combustion development and 
emissions monitoring applications. Further, through use of fiberoptic transmission, it will be 
possible to monitor N02 at multiple locations using a single laser source. 
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2.7      Diagnostics for High-Pressure Gases 

Progress has been made on two projects to develop high-pressure laser diagnostics. The 
first program, an extension of work conducted previously for NASA-Lewis, aimed at PLIF 
measurements of NO and 02 in the post-flame region of a high-pressure, lean-burning 
combustor. The problem to be resolved is that the spectra of NO and 02 are highly overlapped in 
the spectral region (near 225 nm) best suited for measuring low levels of NO. The problem is 
seriously exacerbated by collision broadening of NO and 02 spectral features at pressures of 
interest (10-50 atm) in "high-pressure combustors and the fact that the concentrations of NO (10- 
100 ppm) are much smaller than the 02 concentrations (10%). We have assembled a computer 
code incorporating the latest information on line positions, strengths and shapes (including 
pressure shifts), and have used the code to simulate absorption and fluorescence spectra for a 
variety of excitation and detection strategies. One attractive approach involves detection of the 
PLIF signal in two (or three) spectral channels following excitation at the single wavelength. 
Our simulations indicate that this approach can allow simultaneous monitoring of NO, 02 and 
temperature. Further work on this topic is planned as part of a new grant from AFOSR. 

The second project was focused on monitoring H20 and temperature at high pressures 
using diode laser absorption. A critical element of this work was assembly of a code for 
calculations of water vapor spectra over a wide range of conditions. Example calculation of H20 
spectra for representative conditions of interest are shown in Fig. 23 which documents the role of 
pressure broadening, namely to eliminate regions of negligible absorption for pressures of 5 atm 
and higher. The latter finding invalidates the most common diode laser absorption strategy, 
which utilizes wavelength-scanning to record the full shape of isolated transitions. 

As a replacement for the scanned-wavelength technique, we expect to utilize multiple 
laser sources fixed at selected wavelengths (i.e., fixed-wavelength technique) to monitor H20 in 
high pressure environments. The water vapor code has been exercised to identify optimum 
wavelength pairs which can be used to measure temperature (through the ratio of absorption) in 
cases where pressure is known, and optimized candidates for a third wavelength have been found 
for measurement of pressure for the general case of simultaneous monitoring of temperature, 
water vapor concentration and pressure. Experiments have been performed at pressures up to 20 
atm and temperatures up to 473 K to verify the high pressure spectral code. Experiments in a 
shock tube are currently planned to verify the code at pressures up to 50 atm and temperatures up 
to 1500 K. 

In the process of this research effort, a comprehensive understanding of line shape 
phenomena that become important at high pressures has been developed. Both the impact and 
additive approximations conventionally employed in modeling line shapes may break down at 
high pressures. We have shown that the impact approximation can be used to accurately model 
regions of the H20 line shape near the line center at high pressures. The use of the additive 
approximation in the modeling of H20 absorption features has been validated experimentally for 
number densities up to 18 Amagat. Shown in Fig. 24 are the comparisons between the recorded 
data, at 473 K, and the simulations performed with line shapes based on the impact (Voigt) and 
additive approximations. Details of this work can be found in paper 25 in Sec. 3.1. 
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5.0      SIGNIFICANT INTERACTIONS 

In addition to the interactions associated with the presentations and publications listed in 
Section 3, we have had numerous visitors to our laboratory during the past three years. Foreign 
visitors have come from Germany, France, Great Britain, Canada, Spain, Finland and Japan; 
industrial and national laboratory visitors have included representatives from Rocketdyne, 
Aerometrics, Physical Sciences, Inc., Boeing, Metrolaser, AEDC, NASA Ames, NASA Lewis, 
Sandia, Lawrence Livermore, General Motors, Nissan, Hitachi, Kao Corporation and Toyota. 
Professor Hanson has given invited presentations on AFOSR-sponsored diagnostics research to 
several industrial laboratories, universities, and government groups in the U.S., Europe and 
Japan. Members of our group have provided technical information and advice, by telephone and 
mail, to several external researchers interested in duplicating or extending our diagnostics 
concepts. 

Interest in the potential application of advanced laser diagnostic techniques developed at 
Stanford to various practical problems continues at a high level, and several notable transitions 
have been accomplished. During the past four years, we have collaborated with researchers at 
NASA-Ames to implement our diode laser diagnostics schemes in their 16-inch shock tunnel test 
program on advanced scramjet combustors; and we have engaged in a series of collaborative 
projects with Metrolaser to apply and transfer Stanford's expertise with PLIF imaging and diode 
laser absorption. For example, Metrolaser now markets a dual-camera PLIF system developed at 
Stanford. Another company, PSI, has hired three recent Ph.D. graduates of our High 
Temperature Gasdynamics Lab as part of their growing effort to develop and apply laser 
diagnostics, much of which is based on techniques pioneered at Stanford. The use of acetone as 
a flow tracer for PLIF imaging, a concept developed at Stanford, has quickly been adopted by 
research groups in the U.S., Europe and Japan, including researchers at AF Wright Labs. 
Finally, we have collaborated during the last year of this program with researchers at NAWC to 
implement diode laser-based sensors for near-real-time combustor control. 

6.0      INVENTIONS 

None. 
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