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Part I 

Project Summary 



This document is the final technical report for the Cronus/Mach Inte- 
gration Project. The work for the project was performed over the period 
from June 1993 through March 1996. This project was funded by the U.S. 
Air Force Rome Laboratory (RL) under contract F30602-93-C-0033. 

The objective of this effort is to integrate the capabilities of the Cronus 
distributed computing system with the capabilities of the Mach kernel to 
achieve superior functionality, performance and usability. This report was 
written by BBN together with its subcontractor, Trusted Information Sys- 
tems (TIS). 

Our work focused on investigating how Mach mechanisms can be in- 
tegrated with Cronus. Our approach to the Cronus/Mach integration is 
different from the usual approach taken to port Cronus to a new platform. 
Because Cronus is required to operate on a variety of operating systems, 
generally the approach taken is to choose implementation mechanisms that 
offer the most portability to a wide variety of platforms. As a result, a 
typical port of Cronus to a new UNIX platform requires only minor code 
changes. However, frequently under this approach, we cannot use the most 
effective or efficient mechanisms provided by the native operating system. 
Under this effort, we investigated how Mach mechanisms such as Mach IPC 
and POSIX threads can be integrated into Cronus in sophisticated ways to 
produce a new, highly functional distributed environment. 

The Mach platform for our investigations is the Mach 3.0 (Microkernel). 
Its key features include (1) complete multiprocessor support; (2) multiple 
threads of control within a single address space; (3) interprocess communi- 
cation; (4) flexible memory management via application-specific "external 
pagers"; (5) support for multiple operating environment "personalities" (e.g 
INIX, MS-DOS). 

Our investigations are summarized as follows: 

• BBN examined the viability, benefits and disadvantages of porting the 
Cronus communication protocols to the x-kernel framework. Replac- 
ing Cronus's current socket based implementation with an x-kernel 
based implementation would provide a dramatic increase in Cronus's 
communication performance on Unix platforms. 

• BBN investigated mechanisms for priority based manager task schedul- 
ing. A priority ordered thread based implementation would offer 
improved scheduling of operation invocations over the existing non- 
preemptive tasking mechanism by ensuring that each operation gets 



an equal amount of processor time. Various thread packages were 
examined, with POSIX pthreads selected as the package offering the 
most advantages. 

• BBN investigated the tradeoffs of using a non-canonical data repre- 
sentation for communicating between client and manager located on 
the same platform. This approach has the benefit of improved perfor- 
mance when a direct connection between client and manager is made; 
however, in the case where an invocation is handled by the kernel this 
benefit is balanced out by increased data transmission overhead. 

• TIS explored the use of Mach inter-process communication to in- 
crease the efficiency of Cronus communication, and to integrate local 
Cronus/Mach communication, distributed Cronus/Mach communica- 
tion, and distributed communication between Mach and non-Mach 
Cronus hosts. 

• TIS investigated the potential uses of Mach external paging mecha- 
nisms, with the goal of combining Cronus and Mach functionality to 
provide distributed typed shared memory mechanisms that are consis- 
tent with Cronus's object oriented client server concept of operation. 

BBN was requested by Rome Laboratory to investigate two additional 
distributed computing technologies related to Cronus. These investigations 
examined two important developments in distributed computing: (1) the 
Open Software Foundation's Distributed Computing Environmant, which 
has gained popularity and a small customer base as a distributed envi- 
ronment; (2) the Object Management Group (OMG)'s Common Object 
Request Broker Architecture (CORBA) specification for communicating be- 
tween objects on different platforms. The CORBA and OSF/DCE investi- 
gations, similar to the Mach investigations described above, examine ways 
in which Cronus can be integrated with a commercially available technology. 

• BBN examined the similarities and differences between Cronus and the 
OSF Distributed Computing Environment, which are two functionally 
similar distributed computing environments. 

• BBN examined the similarities and differences between Cronus and 
the Object Management Group's CORBA specification. 



The reports covering each of these areas of investigation have been pre- 
viously reported and submitted as part of the Cronus/Mach Integration 
Interim Technical Report for this activity. It is available as BBN Report 
No. 8089, February 27, 1995. 

As a result of these earlier investigations BBN suggested and Rome Labo- 
ratory agreed that the focus of the remaining effort be on enhancing Cronus 
to support the CORBA specifications of the Object Management Group. 
The resulting system, known as Corbus, supports the CORBA 2.0 specifica- 
tion for C mappings and for C++ mappings including exceptions. Corbus 
is described in the Corbus System/Segment Specification, SOftware Design 
Document, User's Manual, Operator's Manual, Tutorial, and Release Notes 
all of which were separately delivered as part of this effort. 

As a complementary activity to the CORBAization of Cronus, TIS in- 
vestigated the issues involved with the integration of Corbus with the Mach 
microkernel. The result of this investigation is reported as section 2 of this 
final report. 



Part II 

Corbus and Mach: 
Advanced System Platforms 

for Distributed Object 
Computing 



Chapter 1 

Introduction 

Corbus is a CORBA-compliant Object Request Broker (ORB), a software 
system which provides an infrastructure for the execution of distributed 
object applications. CORBA is the Common Object Request Broker Archi- 
tecture, defined by the Object Management Group (OMG), a consortium 
of operating system (O/S) and application vendors. OMG is defining stan- 
dards for distributed object application interoperability based on CORBA. 
In addition to the primary ORB function, Corbus provides additional fea- 
tures that are derived from its history as an advanced technology develop- 
ment vehicle. It has been used for distributed client/server object-oriented 
applications. One such feature is a set of tools that includes software gener- 
ation tools which embed application-specific, object-management software 
in a generalized server framework. The server framework includes platform- 
independent subsystems for distributed object naming, data replication, and 
data storage and management. 

Because of its advanced features and its nature as a mature base for 
research, Corbus can combine two complementary roles in the future. First, 
Corbus can be a vehicle for continuing integration of advanced system fea- 
tures into distributing computing. Second, Corbus can provide a basis for 
distributed computing in government/military settings that have require- 
ments that are not met by commercial ORBs. In these settings, distribution 
requirements can be met by Corbus, with environment-specific extensions 
and/or integration of other advanced capabilities. 

Mach is a microkernel base for O/Ss. It is currently the subject of re- 
search at a variety of organizations, as well as the basis of several emerging 
commercial O/Ss. Besides being at the heart of several research and com- 



mercial O/Ss, Mach is also a platform for the development and deployment 
of systems with a variety of advanced capabilities. Corbus, by being hosted 
on a Mach-based system, can benefit from a wide range of Mach-based tech- 
nologies via the advanced capabilities of such technologies. By utilizing such 
capabilities, a Corbus/Mach system can provide distributed object comput- 
ing along with the benefits of these advanced technologies. 

This report describes a number of such advanced system capabilities, 
and how Corbus can leverage off of them to provide their benefits to dis- 
tributed applications. For a few of these capabilities—such as the mega- 
multiprocessing of Mach SMP machines—Corbus can provide application- 
level benefits with little more required than hosting Corbus on the Mach- 
based platform. In other cases, Corbus internals must make use of the 
capabilities of the underlying Mach system, either of the Mach kernel or of 
software based on it. 

The next section presents the overall Corbus/Mach architecture and sub- 
sequent sections describe one area of advanced system capability, its benefits 
to distributed object applications, and how Corbus can utilize specific fea- 
tures to provide new capabilities to applications. 



Chapter 2 

Architecture 

Direct use of Mach functionality is the keystone of the architecture of a Mach 
system for Cor bus. This section describes the high-level functional require- 
ments for Corbus, and how they can be satisfied in a way that allows Corbus- 
based, CORBA-compliant applications to benefit from advanced system ca- 
pabilities deployed on Mach systems. This section provides background for 
and a description of the basic Corbus/Mach approach, and describes the 
primary functional requirements of Corbus and how those requirements are 
met in a Mach system. In addition, the architecture and interactions of 
Corbus/Mach components are described, and additional detail about each 
component is provided. Taken together, these descriptions provide an infor- 
mal high-level view of the following areas of documentation for a potential 
Corbus/Mach development: system concept, system requirements, system 
architecture and top-level component decomposition, inter-component in- 
terface definition, and per-component requirements. 

2.1     Background 

Mach is an 0/S microkernel that originated in research at Carnegie Mellon 
University (CMU). One of Mach's primary advantages is the minimality 
of the services of the microkernel: process management, virtual memory, 
interprocess communication (IPC), and devices. Only these services are 
implemented by supervisor-mode software, and hardware-dependencies are 
isolated to specific microkernel subsystems. All other system functions may 
be implemented in user-mode processes, with several resulting benefits of 
portability, maintainability, and flexibility.    User-mode O/S software can 



utiüze low-level microkernel features, rather than having to implement them 
as an integral part of high-level system features. As a result, Mach has been 
used as the basis for a variety of 0/S implementations (including Unix, 
DOS, and Macintosh 0/S). It continues to serve as the basis for further 
development of commercial O/Ss by major vendors. 

The most common architecture for Mach-based systems is for application 
software for a given 0/S, e.g., Unix, to execute on a Mach-based system 
solely by interacting with the user-mode 0/S software, e.g., a Unix server. 
A Unix server is a single Mach task1 which implements all Unix system 
features for Unix application software running in Mach tasks. Application 
software is unaware of the existence of the Mach microkernel. As a result, 
Unix software can run unchanged with a Unix server on Mach, and requires 
only the addition of library software to direct Unix system calls to the Unix 
Server. However, applications cannot make direct use of Mach features. 

Therefore, there is a tradeoff at the application level between two goals: 
(1) application-level usage of Mach features, with the consequence that the 
application is dependent on Mach; and (2) having a Unix application that 
runs on both Mach and non-Mach systems. As a result, for Unix and other 
other 0/S personalities,2 applications are completely reliant on an 0/S per- 
sonality. This approach meets the second goal, but places complete responsi- 
bility on the 0/S personality for utilization of Mach features. Unfortunately, 
this has a negative impact on the utilization of advanced system capabilities 
since such utilization must be done by modifying the 0/S software, albeit 

0/S software that runs in Mach tasks. 

i-The term task is used to refer to Mach's process-like abstraction. Mach tasks differ 
from the proceses of other O/Ss primarily in that tasks are inherently multi-threaded, and 
in that threads, memory, and IPC capabilities are first-class kernel abstractions just as 

tasks are. . . 
2The term O/S personality is used to describe the implementation of an U/b interlace 

on a Mach system. An O/S personality may be implemented as a single server that 
implements O/S-specific services (as in OSF/1), or as multiple O/S-specific servers, or 
as multiple "personality-neutral" servers. Also, there may be some element of "O/S 
emulation" by embedding a significant amount of O/S functionality in library software 
used by every process. The term O/S personality abstracts away from these details when 
it is not important whether a personality server, or emulation, or some combination is 

used. 



2.2    Approach 

Corbus, as application middleware, is in a position to take a different stance 
on the tradeoffs identified above. Corbus/Mach is enabled by the basic 
nature of Corbus as an ORB. That is, application-level software uses the 
facilities of an underlying 0/S to implement general, distributed system- 
wide services of object-oriented communication. As is usual with ORBs, 
application-level software provides O/S-independent services in support of 
object-oriented client/server distributed applications. These services are 
O/S-independent in the sense that one ORB may have several implementa- 
tions on different 0/S bases, but all would present the same ORB interface 
to applications. 

Corbus/Mach foUows similar principles. That is, it can use underlying 
0/S features. In the case of Mach, the underlying O/S features include the 
functionality of the Mach microkernel and other advanced system software 
deployed on it. Like other ORBs, Corbus has O/S-dependent portions of the 
implementation, and Corbus/Mach includes the use of Mach features. Also, 
Corbus/Mach presents the same CORBA interfaces to applications, thus 
shielding applications from dependence on Mach, and allowing applications 
to benefit from ORB usage of Mach features. 

As a result of this strategy, Corbus avoids the trade-offs described above. 
Mach and Mach-based advanced capabilities can be used transparently by 
middleware-level ORB software. Neither Mach-based 0/S personality soft- 
ware nor applications need to be modified in order to take advantage of 
these capabilities. 

Having established this Corbus/Mach strategy, the architectural goal 
is to meet Corbus functional requirements while minimizing dependence 
on 0/S personalities. By minimizing such dependence, the Corbus/Mach 
architecture removes 0/S servers from the client/server dataflow path. As 
a result, the client-server dataflow path includes only Corbus, the Mach 
microkernel, and other support software implemented on the microkernel. 

0/S heterogeneity is another factor relevant to the use by Corbus/Mach 
of services of an 0/S personality. If Corbus/Mach's use of Mach features 
is tightly intertwined with use of additional features of an 0/S personality, 
then the Mach benefits to Corbus would not generally apply to Mach sys- 
tems, but would instead be specific to a particular Mach system including 
a particular 0/S personality. Isolation of 0/S dependencies, to the greatest 
extent possible, is needed to ensure the broad applicability of Corbus/Mach 
results. 

10 



2.3    Requirements 

Of the Corbus/Mach system base issues described in this section, most is- 
sues stem from the functionality that Corbus requires from a base system in 
order for the base system to provide a complete Corbus operating environ- 
ment. The requirements are grouped into broad areas, according to which 
component of a Corbus environment to which they apply. 

There are three major components: 

Core: the Corbus ORB Core, which implements a client/server communi- 
cation infrastructure. The Core is embodied primarily in a separate 
process which acts as a message switch that receives object requests 
from clients; locates objects; sends object requests to object man- 
agers; receives object service replies from managers; and sends replies 

to clients. 

Client: a program that makes object requests. It consists of three basic 
parts: client application-specific software that invokes operations on 
objects; the application-specific client stub library which implements 
each operation invocation by sending a request message and receiving 
a reply message; and the Corbus client communication library (CCL), 
which implements object requests and replies in terms of general com- 
munication protocols. 

Manager: a program that implements object requests. It includes Cor- 
bus communication library software as well as server-side stubs and 
application-specific software that implement the operations on the ob- 

jects it manages. 

The following list describes the various areas of requirements, which of 
the three major components has the requirement, and whether the required 
functionality can be implemented by the Mach microkernel or some other 
component. 

Process support is needed to run Corbus' operating environment compo- 
nents (Core, clients, and managers). The Mach kernel's task/thread 
subsystem provides process support, which 0/S personalities directly 
use to implement processes. That is, Mach provides process support 
in a manner independent of 0/S personalities. 

Inter-Process Communication (IPC) is needed to facilitate communi- 
cation between the Core, managers, and clients on the same host. The 

11 



Mach microkernel provides a flexible IPC service that is suitable for 
Corbus. 0/S personalities also provide their own IPC mechanisms. In 
some personality implementations, IPC is implemented via Mach di- 
rectly between the communicating processes, while in other instances, 
IPC uses more indirect mechanisms implemented by O/S personality 
software. For Corbus/Mach, Mach IPC can be used for Corbus com- 
munication within one host. As a result, there is no need to use an 
0/S personality-specific IPC mechanism. 

Networking Facilities and Protocols are needed to provide communi- 
cation between the Core, managers, and clients on different hosts. The 
Mach microkernel does not provide networking, though 0/S person- 
alities, e.g., Unix, do provide it. In order for Corbus/Mach to avoid 
dependence on a particular 0/S personality for networking, communi- 
cation protocol service must be obtained from an independent protocol 
server that is not integral to an 0/S personality. The University of 
Arizona's x-kernel has been used as a protocol server on Mach and is 
a promising candidate for Corbus/Mach. The x-kernel's role in the 
Corbus/Mach architecture is described below. 

File Service is needed by the Core for stable storage of a few types of con- 
figuration data; it is also needed by Corbus managers to store object 
data. Clients do not require file service as part of Corbus functionality, 
though a client program is free to use files for other purposes. The 
Mach microkernel does not provide file service, but 0/S personalities 
do. In order for Corbus/Mach to avoid dependence on a particular 0/S 
personality for storage, the Core and managers must obtain file ser- 
vice in one of two ways: either from an independent file server that is 
not an integral part of an 0/S personality; or via an O/S-independent 
interface to the file services of various 0/S personalities. 

Client Environment is the term used to describe the broad array of ser- 
vices required by a Corbus client, which can only be met by the full 
services of an 0/S personality. Essentially, a Corbus client is an ap- 
plication program for a particular 0/S, but it incorporates Corbus 
libraries in order to make object invocations. However, clients gener- 
ally do much more than make object invocations. Clients implement 
a user interface and rely on the 0/S to support it. The 0/S typi- 
cally starts a user's login session; launches application software, e.g., 
a client program; provides programs with access to devices, e.g., mon- 

12 



Requirement: of Corbus component Met by: 

Process Core, clients, managers Mach microkernel 

IPC Core, clients, managers Mach microkernel 

Network Core, clients, managers x-kernel 
Füe Core, managers file server 

File clients 0/S personality 
Other clients 0/S personality 

Figure 2.1: Corbus Requirements Mapping to Mach Components 

itor, keyboard, and mouse; and implements a implements a terminal 
display or bit-mapped graphic display using theses devices, etc. In 
addition, client programs may make use of other 0/S features, e.g., 
stable storage of user interface preferences. 

The following table summarizes the allocation of these requirements from 
Corbus components to other components of a Corbus/Mach system. 

Note that although client programs are dependent on 0/S services, the 
Corbus client communication library is not, because it can obtain IPC and 
network service independent of 0/S personalities. In other words, the client- 
side part of Corbus software can be independent of O/S personalities, even 
though clients as a whole may or may not be, depending on the way in which 
the non-Corbus part of the client is implemented. 

2.4     Corbus/Mach Architecture 

This section describes a progression of Corbus/Mach architectures based 
on the foregoing requirements analysis. Figures 2.2, 2.3, and 2.4 illustrate 
three distinct Corbus architectures. Figure 2.2 shows the standard Corbus 
configuration on a native kernelized 0/S. Figure 2.3 illustrates a similar 
situation wherein an 0/S personality server on Mach provides the same 
services as a monolithic 0/S kernel. Unix is used here as an example because 
it is a significant Corbus 0/S personality. With a native Unix system, 
the Core, clients, and managers are all Unix processes and use Unix IPC. 
Both clients and managers can communicate with the Core, which uses 
network protocols to send/receive messages to/from remote hosts' Cores. 
The Core and managers use Unix files to store data and clients use other 
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Figure 2.2: Corbus on Native Unix 

Unix services to provide user interface and other functionality. The same 
arrangements apply to the Unix server on Mach, except that the Core, 
clients, and managers are all Mach tasks, which interact with the Unix 
server via a Mach kernel mechanism to redirect system calls to the Unix 
server. The Unix server interacts with the Mach kernel to obtain resources 
(including network and file devices) which it uses to implement 0/S features. 

Figure 2.4 illustrates a departure from the pure Unix server approach, 
in that Corbus components use Mach features as well as Unix features. Fig- 
ures 2.4, 2.5, and 2.6 show a progression from this point of departure. In 
Figure 2.4, local Corbus communication is implemented not by Unix IPC, 
but by Mach's message-based IPC. As a result, Corbus components com- 
municate directly with one another rather than via the Unix IPC. Besides 
eliminating one 0/S dependency from Corbus, this approach notably short- 
ens the client-server communication path. Without using Mach IPC, all 
Corbus client/server communication must go via both the the Unix server 
and the Corbus Core, resulting in eight hops: from client to Unix-server to 
Core to Unix-server to manager to Unix-server to Core to Unix-server to 
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dient. With Mach IPC, the Unix server is removed from this dataflow path, 
and the number of hops is reduced by half. 

In Figure 2.5, Corbus uses the x-kernel as a protocol server, thus elim- 
inating the dependency on an O/S personality for network service. The 
x-kernel uses Mach kernel service to access a network device. The Core uses 
Mach local IPC to communicate with the x-kernel to obtain Internet Proto- 
col (IP) service, which is used to communicate with the Core on other hosts. 
The final progression is shown in Figure 2.6, where the Core and managers 
use an independent file server rather than the file service of the Unix server. 
As a result, there is no 0/S dependency of the Core, or the client commu- 
nication library, or the application-independent parts of Corbus managers. 

As a result of this progression of architectures, there is a different over- 
all dataflow between Corbus/Mach and other Mach software. Figures 2.7 
and 2.8 illustrate these differences. Figure 2.7 shows the dataflows between 
Corbus components in a Unix-only architecture, while Figure 2.8 shows the 
dataflows that result from the use Mach or Mach-based capabilities for IPC, 
networking, and files. 

2.5     Components 

This section discusses the various software components that may be used as 
part of the Corbus/Mach system base 

2.5.1    Mach Microkernel 

The Mach microkernel provides the mechanisms for running software in pro- 
cesses. It implements threads of execution in tasks which are composed of 
virtual memory mappings, intertask communication capabilities, and capa- 
bilities for device access. 0/S personality software, the Core, clients, and 
managers all run in Mach tasks. In addition, 0/S personalities may provide 
O/S-specific process management functionality implement in terms of con- 
trol of tasks. For example, Unix client processes would be part of a process 
group that could be killed when a user's login session ends. Corbus does 
not require any additional O/S-specific process management for Core, client, 
or manager Corbus functionality. The Mach microkernel provides the IPC 
mechanism for local communication among the Core, clients, and managers. 

In addition, the Mach microkernel provides access to devices upon which 
other software builds high-lever service. 0/S personalities and the x-kernel 
use network devices to implement network protocols and communication 
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Figure 2.7: Dataflows of Corbus/Mach and Unix Server 
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Figure 2.8: Dataflows of Corbus/Mach 
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services. Likewise, 0/S personalities and file servers use disk devices to 
implement file services. 

2.5.2 The x-kernel Protocol Server 

Research at the University of Arizona has produced the i-kernel [1], a gen- 
eral, extensible framework for modular implementation of network protocols. 
The existing i-kernel implementation of the IP suite can be used to meet 
Corbus's networking requirements, rather than having Corbus/Mach rely on 
an O/S's networking. 

An additional and promising feature of the i-kernel is that it has been 
used as the basis of an implementation of Mach IPC in a network environ- 
ment [2]. By using this MachNetlPC implementation in Corbus, the same 
Mach IPC service can be used for both local Corbus communication and for 
Corbus communication between Corbus/Mach hosts. This can be a signif- 
icant change when considered in conjunction with potential Corbus/Mach 
IPC usage. Unlike most kernels on which Corbus is based, Mach is specif- 
ically designed to enable point-to-point communication between any two 
processes running on a single host. Therefore, it is natural to optimize lo- 
cal Corbus communication to enable direct client/manager communication 
via Mach IPC, and to largely eliminate the intermediary role of the Core 
wherever possible. Use of networked Mach IPC, in turn, allows remote 
client /manager communication without using the Core in an intermediary 
role. Because Mach was designed for this sort of communication, it would not 
carry the potentially heavy resource usage penalties that would accrue from 
arbitrary client/manager communication in other systems, e.g., exhaustion 
of available network domain sockets in a Unix system. 

However, the Corbus/Mach Core would still need to facilitate communi- 
cation with non-Mach Corbus hosts, and would therefore require standard 
Internet protocols. The i-kernel provides these protocols, and the Cor- 
bus Core could use them for non-Mach Corbus communication. 

2.5.3 Independent File Server 

Use of an independent file server would allow the Core and managers to 
avoid functional dependence on an 0/S personality for file service. If a 
Corbus/Mach implementation used one particular personality for file service, 
then the use of another personality would require modification to the Core 
and manager software.  A independent file server for Mach would obviate 

22 



this difficulty. 
There are several candidates for an independent file server for Cor- 

bus/Mach. Both Hurd and Mach/US (described below) have a separate 
file server which might be usable separate from a complete 0/S implemen- 
tation. The Mach/US file server, in particular, was designed to implement 
a general, "personality-neutral" file service that operates in a separate task 
from other above-microkernel system services. Trusted Information Sys- 
tems' TMach system [4] also includes a separate "personality-neutral" file 
server that could be built for separate use. 

Another approach to Corbus file service employs a file service that is ob- 
tained from an 0/S personality. Dependence on on 0/S personality would 
be prevented by the use of minimal, portable, O/S-independent file service 
for Corbus. Rather than using an 0/S file service interface directly, Core and 
manager software would use this O/S-independent interface. The goal for 
this interface would be to abstract away from any O/S-specific implementa- 
tion details, so that the associated implementation of this interface would be 
cleanly separated from other Corbus software. There would be multiple im- 
plementations for this interface, each in terms of a different underlying 0/S 
file service. Each Corbus/Mach host would use an implementation which is 
based an 0/S file service provide by an 0/S personality on that host. As a 
result, Corbus/Mach Core and manager software would have a common file 
service interface on all types of hosts, and would not be dependent on any 
one 0/S personality for file service. 

Such a compromise approach is feasible because file access is directly in- 
volved in the main work of an ORB: providing a client/server communication 
infrastructure. Therefore, it is still possible to enhance that infrastructure 
on Mach hosts in order to take advantage of communication-oriented ad- 
vanced system capabilities. This would occur even though stable storage is 
provided by an O/S personality component that is not part of the Corbus 
system and would not be enhanced as part of Corbus/Mach. 

The drawback of this approach is that no file system-oriented advanced 
capabilities can be brought to bear to enhance the capabilities of Corbus 
managers. (With respect to the Core, file system enhancements would likely 
make little difference because the Core makes minimal use of files.) However, 
use of advanced file system technology may be problematic not only for 0/S 
personality software, but also for the candidates for independent file server 
described above. Just as it is not feasible to make Corbus-specific extensions 
to the file system of an 0/S personality, it may not be feasible to make such 
extensions to independent file server software. Nevertheless, it is much more 
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likely that independent file servers, as research vehicles, may incorporate 
advanced capabilities that would benefit Corbus managers; work with O/S 
personalities focuses more on performance than advanced capabilities. 

Finally, a new stand-alone Mach-based file server for Corbus is another 
approach to the integration of advanced file service capabilities. This ap- 
proach would be attractive if desirable capabilities were not present in any 
Mach-based O/S personalities or file servers, but could be integrated into 
Corbus/Mach file server. The requirements for such a server would be mod- 
est, because Corbus uses only basic file access and manipulation features: 
the Core stores some configuration and state data in a small, fixed set of 
files; and each Corbus manager stores its object data in a single file for 
each managed type. Thus, the requirements for a hierarchical file system 
are minimal, as are the requirements for file manipulation, which consist of 
reading, seeking, and writing. 

2.5.4    O/S Personalities 

There are several O/S personalities currently available on Mach, and com- 
mercial O/S vendors are developing more. The following list is a summary 
of currently available personality software for Mach. In addition, DOS and 
Macintosh O/S personalities were developed for Mach 2.5, an older version 
of Mach. Note also that the Mach Portable Operating Environment (POE) 
is not on the list. Prior to the inception of the Cronus/Mach project, POE 
was a identified as the candidate for a Mach system base. However, POE 
failed to progress to being a viable robust system base. 

Mach/UX is a Mach-based Unix environment available from CMU as part 
of the standard CMU Mach 3.0 distribution. Unix functionality is 
implemented in a single server running as a task on the Mach kernel. 
The Unix server is largely composed of Unix kernel code (and hence 
requires licensing), repackaged to run in a Mach task rather than in 
supervisor mode. 

OSF Mach is actually several Mach/Unix systems available from OSF, 
all of which include the same sort of single-server, repackaged Unix 
kernel code as Mach/UX. Unlike Mach/UX, OSF systems are still 
active research vehicles. 

Mach/US is a Mach-based Unix environment recently made available from 
CMU [3]. A result of several graduate students' thesis work, Mach/US 
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is an almost complete reimplementation of Unix using multiple sepa- 
rate servers and an emulation library. Mach/US is a recent develop- 
ment and is not as stable as more established systems. 

Hurd is the Free Software Foundation's (FSF's) Mach-based operating sys- 
tem that is available under the FSF's GNU General Public License [6]. 
The general motivation behind Hurd is to provide a Unix implemen- 
tation, but one that is easily customizable both by reconfiguration 
of system components, and by user environment customization. Al- 
though Hurd has some distinctive features that would be useful for 
Corbus, experimentation with Hurd outside of FSF has shown that 
Hurd is not yet complete or robust enough to support non-trivial ap- 
plication software such as Corbus. 

Lites is a Mach-based Unix single server that is composed entirely of un- 
encumbered code, primarily from the 4.3BSD-Lite distribution [7]. 
repackaged for Mach by graduate students at the Helsinki University 
of Technology, the University of Utah, the University of California at 
Berkeley, and CMU. Although ongoing work addresses robustness of 
some less central areas of Unix functionality, Lites is complete, re- 
leased, and in daily use by several Mach research groups. 
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Chapter 3 

Mach IPC for Cor bus 
Communication 

In the Corbus/Mach architecture described in the previous section, the com- 
munication functionality of Corbus was exactly the same as in the standard 
Corbus architecture. The key features of the Corbus/Mach architecture are 
Mach-specific changes to the system components that Corbus components 
use for system service. Having made the first architectural step to use of 
Mach features, it is then possible to change the functionality of Corbus/Mach 
to make more sophisticated use of Mach features. This section describes the 
first of those changes: the use of Mach IPC for direct client/server com- 
munication. This change to the basic Corbus communication architecture 
enables other changes. 

3.1     Background and Goals 

The primary role of the Corbus Core is to facilitate communication between 
clients and servers of distributed object-oriented applications. Therefore, 
Mach-specific enhancements of Corbus communication capabilities would 
provide direct benefit to a primary area of Corbus functionality. However, 
it is essential that such enhancements do not affect the overall functionality 
of Corbus, either in the way that applications interact with Corbus, or in 
the way that Corbus meets its overall system goals, e.g., heterogeneity and 
scalability. 

Therefore, Corbus/Mach communication enhancements must follow two 
goals: 
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• All functional changes must be "under the covers" of the application 
programming interface (API) implemented by Corbus, so that appli- 
cation software can work as is on Corbus/Mach systems and still reap 
the benefits of Corbus/Mach communication enhancements. 

• All functional changes must preserve the use and correct operation of 
existing Corbus mechanisms for heterogeneous communication, repli- 
cation, location, and so on. 

To meet these goals, Mach IPC changes to the Corbus communication infras- 
tructure will be limited to the interaction of the following three components 
of Corbus: 

1. The Corbus Core, which runs as a separate process that acts as a 
message switch and object locator; 

2. The Corbus Client Communication Library (CCL), which implements 
client object requests in terms of communication with the Core; and 

3. The Corbus Server Communication Library (SCL), which implements 
the server side of client/server communication in terms of communi- 
cation with the Core. 

These three components remain in Corbus/Mach, but the interactions be- 
tween them can be optimized significantly by using Mach mechanisms. But 
because the changes effect only the interactions but not the application API, 
the changes meet the first goal above. The second goal is met because these 
changes do not affect the purpose or mechanisms of other parts of Corbus, 
e.g., canonical data typing for heterogeneous communication. 

3.2    Basic Approach 

The basic change to Corbus communication on Mach is to allow Corbus 
clients and server to communicate without their messages being switched 
through the Core. Thus, the role of the Core would change from being a 
message switch (which includes object location functionality) to a location 
broker. 

3.2.1    Message Switch vs. Location Broker 
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To understand the nature of the change in the Core's role from message 
switch to location broker, it is necessary to understand the distinction be- 
tween the two roles. This distinction is illustrated in Figures 3.1 and 3.2. 
Both figures show the relationships of three processes: a client, a server, 
and the Core. Figure 3.1 shows the relationships in the standard Corbus 
communication architecture. When the client makes an object request, the 
CCL sends a request message to the Core, which receives it and forwards 
it to the server that manages the requested object. The server processes 
the requested operation on the object, and computes the result of the op- 
eration. Then SCL sends the result in message to the Core, which receives 
it and forwards it to the client that made the request. This series of steps 
happens for the first interaction between a given client and a given servers, 
and also for subsequent interactions. During those subsequent interactions, 
there may be less work for the Core to do in terms of object location and 
contacting the server; however, the dataflows between the three processes 
are the same. 

Figure 3.2 shows the relationships that apply with direct client/server 
IPC. The right half of the figure shows that for subsequent interactions, 
the client and server communication without the intervention of the Core. 
The client's CCL constructs messages and sends them to the server, and the 
server's CSL receives them just as if they had come from the Core as in Fig- 
ure 3.1. Figure 3.3 shows the significant savings in local IPC overhead that 
is realized with direct client/server communication— half as many kernel 
calls and context switches with direct client/server communication (on the 
right side of the figure) as with message switching (on the left side of the 
figure). 

However, Figure 3.2 does not show how this direct client/server com- 
munication connection came into being. This communication initialization 
would have happened as part of the processing of the first message between 
the client and the server. The Core has an important role to play here, 
because the Core has the ability to locate the correct server for the client's 
object request, while the CCL does not. Therefore, there is some interaction 
between the CCL and the Core for object invocations for which the CCL 
does not know the appropriate server. The nature of that interaction is 
central to understanding the Corbus/Mach Core as a location broker. De- 
tails of this role are described in Section 3.2.3, which will fill in the gap in 
Figure 3.2. 
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3.2.2    Core as Message Switch 

Before discussing the advantages of the Corbus/Mach Core as a location 
broker , it is worth examining why the Core is a message switch in the 
standard Corbus architecture. The reasons are largely historical. Corbus is 
based on technology developed by a predecessor system, Cronus, which was 
developed for earlier O/Ss which were limited in two ways. 

First, these O/Ss were not designed for general IPC between potentially 
large numbers of processes. For example, in early versions of Unix, the only 
alternative to parent/child process communication via pipes was via message 
queues or shared memory segment, of which there was a fixed, small number; 
as a result, there could be only a few pairs of processes in communication at 
any one time. Rather than having every client connect directly to servers, it 
made more sense to centralize control of scarce IPC resources in one message 
switch process with which every client and every server communicated. 

Second, these O/Ss were also limited in terms of the amount of network 
communication that could be sustained. Again using Unix as an example, 
there was a small fixed number of sockets that could be open at any one time 
to provide a network connection between two processes on different hosts. 
With direct client/server network communication, there could be multiple 
clients connecting to a server on another host, thereby using multiple con- 
nections between the hosts. Again, centralized control of scarce communi- 
cation resources made sense— one host's message switch could maintain a 
single connection with another host's message switch, and multiplex on that 
connection all client requests bound for the other host. 

More modern O/Ss are less constrained in terms of communication re- 
sources. This is especially true of Mach, which was explicitly designed with 
IPC as a primitive feature on which most other system functions can be 
based. While network communication is not the province of the Mach mi- 
crokernel, several network protocol servers have been build for Mach, of 
which the x-kernel is the most recent and successful. The i-kernel in par- 
ticular is well-suited to avoid resources consumption problems because of 
its flexibility of configuration. For example, the z-kernel implementation 
of networked Mach IPC includes a protocol module which provides higher- 
layer protocols with connection semantics, while using caching techniques 
to maintain a suitable balance of actual host-to-host connections.1 

It is interesting to note that a similar connection-caching approach was adopted in 
Cronus, with the significant difference that instead of the system-wide optimization of 
connections of the r-kernel,  Cronus only optimized usage of the subset of connections 
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However, Mach is hardly alone among O/Ss in being rich in local IPC 
and network communication resources. As is shown by the widely deployed 
OSF Distributed Computing Environment, it is now quite feasible to perform 
distributed computation in which clients connect directly servers. Therefore, 
there is a case to be made for a movement away from message switching that 
is independent of Mach. However, there are two features of Corbus/Mach 
that make location brokerage brokerage particularly attractive. First, with 
direct client/server communication being via Mach IPC, there other IPC- 
related features of Mach that can be brought to bear. Second, some of 
these features can be used to leverage off of the location caching approach 
of Corbus. Both these features are elaborated on in subsequent sections. 

3.2.3    Core as Location Broker 

The role of the Core as a location broker is to return to clients the informa- 
tion that they need to contact servers directly. Notionally, this would take 
the form of an object location request from the client to the Core; the Core 
would reply with the needed information, and the client would use it to send 
its object request message directly to the server. 

However, there is some question as to the optimal implementation of 
location brokerage with the existing Corbus system. One way, of course, is 
to implement it as described above and shown in Figure 3.4. Another way 
is to add location brokerage to the existing message switching function of 
the Core. That is, the Core would switch messages when a client sends it 
a request, but in addition to the server's reply, the Core would also return 
location information. As a result, the CCL would send a request directly to 
a server if it knows how, but if not it would send the request to the Core, 
get the reply, and save the returned location information; the next time that 
client's CCL processed a request for the same server, it would use the saved 
location information to send the request message directly. This approach is 
illustrated in Figure 3.5. 

There is little to recommend one of the approaches over the other, in 
that both have the same communication overhead. The first approach keeps 
the Core simpler, but then the Core already has the functionality needed 
for the second approach.   Also, the first approach would require an addi- 

available to the Cronus message switch. The lesson of this comparison is that the Mach/z- 
kernel environment provides more of this kind of transport-protocol-level functionality 
(and provides significant capabilities for adding more), leaving application-protocol-level 
software like Corbus free of these lower-level concerns. 
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tional "Location Request" message in the Corbus Operation Protocol (the 
protocol that the Core, clients, and servers all use to send object request 
and reply messages). Given that the switching functionality exists and the 
additional message type does not, it would seem preferable to adopt the 
second approach. 

There is a third approach that would seem superior to both of these 
approaches. It eliminates one of the messages by having the server reply 
directly to the client. Object requests go from client to Core to server, 
but replies (with location information) go directly from server to client. 
This savings in overhead is potentially quite significant in that some clients 
may only contact servers a few times (or even only once) so that the cost 
of the first request is a significant proportion of the overall client/server 
communication overhead. 

However, this third approach turns out not to be lower in overhead, 
because of relatively recent changes to Mach IPC mechanisms, described in 
the next section. Therefore, the third approach is not a superior alternative, 
and the second approach— retaining the Core's switching function for initial 
object requests which also serve as location requests— seems the best. 

3.2.4    Synchronicity in Mach IPC and Object Requests 

The third approach uses an asynchronous communication model, i.e., one 
in which messages are one-way communications between two points. This 
model matches that of the asynchronous IPC mechanism on Mach. However, 
Mach IPC is most often used for the synchronous communication between 
clients and servers, i.e., the client sends a request message and waits for a re- 
ply message. As with ORBs in general, Corbus client/server communication 
is usually synchronous, though with notable exceptions. 

As a result, Mach IPC is in a somewhat unusual situation: asynchronous 
IPC is most often used to implement synchronous Remote Procedure Calls 
(RPCs) with paired asynchronous messages. Because of this situation, there 
has much work in optimizing Mach IPC for synchronous messaging, i.e., 
RPC. The result of this work is that most Mach systems under continuing 
development are now optimized for RPC. In terms of the third approach 
described above, three one-way messages turn out to have a higher commu- 
nication overhead than two pairs of request/reply messages. 

The optimization for RPC was originally developed in the University of 
Utah's thread migration work [9], which allowed the existing Mach message 
interface to be used for both asynchronous messages and synchronous RPCs. 
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In OSF's adaptation of the Utah work, the Mach message interface was re- 
tained as is for asynchronous messages, and a new kernel interface for RPCs 
was added. In commercial versions of Mach currently being developed (such 
as the IBM microkernel) the Mach message interface is retained, but used 
only for synchronous RPCs. The result is both a performance enhancement 
and a simplification of the Mach kernel. Asynchronous messaging is sup- 
ported by building it from synchronous RPCs, in an inversion of the original 
Mach message approach. An asynchronous message is simply an RPC that 
deposits a message on the server side, and returns immediately to the client. 
Because of the use of thread migration techniques, this form of messaging 
is actually lower in overhead than the original Mach message mechanism. 

In all these cases, both synchronous and asynchronous communication 
is supported. This is a critical result for Corbus. Although the majority of 
ordinary client/server communication is synchronous RPC, Corbus also uses 
asynchronous messaging. The Corbus asynchronous message facility, the 
"Futures" mechanism, is a key advancing computing techniques inherited 
from Cronus, and is also used to significant advantage in related systems 
such as Photon. Therefore, advances in Mach communication have enabled 
a significant performance benefit for the synchronous communication at the 
heart of Corbus ORB functionality, while still supporting the asynchronous 
client/server communication facility of Corbus. Further details of thread 
migration and Mach IPC will be discussed in Section 7. 

3.3    Details of Approach 

There are several significant details to the basic approach to location bro- 
kerage and direct client/server communication, particularly the details of 
usage of Mach IPC for interactions between the Core, the CCL, and the 
SCL. These interactions can be categorized into these areas: registration 
with the Core of both the CCL and SCL; use by the Core of registration in- 
formation, for purposes of message switching; manager-to-client (SCL-CCL) 
communication; and client-to-manager (CCL-SCL) communication. 

Prior to discussion of these four areas is a review Mach IPC concepts. 
Following discussion of these four areas is discussion of some additional 
refinements of the overall approach. 
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3.3.1    Mach IPC Concepts 

Mach IPC is a mechanism whereby one task can send a message to another 
task over a communication channel called a port. Access to ports is granted 
and protected by the Mach kernel. A task can only use a port if the kernel 
has granted it a capability for that port. These capabilities, called port 
rights, come on two basic kinds: send and receive. A holder of a send 
right can send messages over the port, while a holder of a receive right can 
receive messages sent on the port by holders of send right. In addition to 
being used to send and receive messages, port rights themselves can also 
be sent in messages. When a port right is sent in a message, the sender 
loses the right, and receiver gains it. Such port right transfer is one of three 
ways that a port right can be granted; another occurs when a task creates a 
port and the kernel returns to the creator the receive right for the port; yet 
another occurs when a task creates a task, and the child task inherits the 
parent's port rights (unless the parent prevents this). In addition to being 
used and transferred, send rights may be duplicated, so that a holder of a 
send right to that port can transfer a send right for that port to another 
task, while still retaining a copy of the right. Receive rights may not be 
duplicated. As a consequence, potentially several tasks can send messages 
over ports, while only one task receives those messages. 

Asynchronous message sends are commonly used to implement RPCs, 
in the following manner. The RPC caller creates a port (or reuses a port 
to which it already has the receive right) and uses it as a reply port. The 
RPC caller constructs the RPC call, bundles it into a message, attaches a 
send right to the reply port, and sends the message over another port. The 
RPC caller then waits on a message receive call using the receive right for 
the reply port. The RPC callee holds a receive right for RPC call port, and 
so receives the RPC message, including the reply port send right. After the 
RPC callee has done its RPC processing, it bundles the RPC results into 
a message, and sends it back to the RPC caller using the send right to the 
reply port. 

Mach thread migration and true synchronous RPC mechanisms work in 
a similar but simpler manner, since no reply port is involved. A task that 
is willing to accept RPC calls uses a receive right to wait for RPCs, in a 
manner similar to the way in which a task uses a receive right to wait for 
an asynchronous message. A holder of a send right to that port uses the 
send right to send a message containing the RPC call. However, this send 
is also a blocking receive, all-in-one kernel call, unlike the two separate but 
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paired asynchronous unblocking kernel calls used to implement RPC. While 
the RPC caller is blocked, the callee receives the call message, performs the 
RPC processing, constructs a reply message, and then sends this message. 
The reply message send is not via a reply port, but via an RPC return 
mechanism that simulates the use of a reply port without the need for the 
client to explicitly create it, send it, and wait on it. 

In subsequent detailed discussions, any synchronous communication is 
described without the details of the reply port, although either mechanism 
(true synchronous or paired asynchronous messages) could be used. 

3.3.2    Corbus Registration 

Every Corbus client and server must register with the Core, in order to 
announce itself as a user of Corbus facilities, and to enable the Core to 
deliver messages to it. The registration mechanism rests on the ability of 
any task to obtain a send right to a port received by the Core. Given that 
any task has such a port right, a potential Corbus client or server could use it 
to communicate with the Core and register. The first time a Corbus client 
or server performed used Corbus interface, the CCL or SCL would send 
a registry message to the Core and would include in the message a send 
right to a port received by the registering task. Additionally, servers would 
identify themselves as object managers and use type IDs to indicate the 
type(s) managed. Subsequent to such registration, the client or server could 
send messages the Core using the same port was used for registry. Servers 
receive object requests on the port supplied to the Core during registration. 
Clients receive replies on the port supplied to the Core during registration. 
If a Mach RPC mechanism is used, then clients do not require explicit port 
over which they receive replies. 

Before leaving the topic of Corbus registration, it should be stated that it 
might be possible that every potential Corbus client or server could initially 
connect the Core. One common way to do this in Mach is via a local server 
registry service, with which the Core would register itself, and through which 
other tasks could lookup the Core and obtain a port to it. Of course, this 
local registry service would also depend on every task having a port to a 
local registry service task. This is usually accomplished by the mechanism 
of Mach system initialization and inheritance of port rights from parent task 
to child task. Mach system initialization is performed in part by the Mach 
init task, which is started by the Mach kernel at bootstrap time. All Mach 
tasks are descendants of the Mach init task and can inherit port rights from 
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it.2 The init task can startup a server for the local registry service and can 
arrange for the inheritance of descendant tasks of a right to a port received 
by it. 

3.3.3    Core Use of Registry Information 

As a result of registration, the Core obtains and maintains two related forms 
of information about port rights. Each client and server has a Corbus ID 
(called a process UID). The Core associates a process UID with each port 
right it obtains from clients and servers during registration. The second 
form of port information concerns types. The Core associates each type 
with the process UID of the manager of the type. Therefore, the Core can 
map from to type to manager to port for communication with the manager. 

This information is used by the Core when it switches messages. When 
the client makes an object request and the CCL hasn't yet contacted the 
manager of the object, the CCL sends the object request message to the 
Core. The Core attempts to determine the process UID of the manager of 
the object. This determination is made on the basis of a cache of mappings 
between object UIDs and manager process UIDs. If there is no mapping for 
the requested object, then the Core obtains the requisite information via 
the means of object location. In some cases, the result of object location 
will be a process UID of a local manager for which the Core already has 
a port. In other cases, the result of object location will be a process UID 
of a remote manager, and also a port right that can be used to contact 
the remote manager. In other cases, the result of object location will be a 
process UID of a manager on a non-Mach host for which there is no Mach 
port right. 

In the first two cases, the Core uses the port right to send the object 
request message to the manager. Also, when the Core receives a reply from 
such a manager, the Core returns to the client not only the reply message 
but also the port right for the manager. 

The reception of the reply from the manager is one area that is signif- 
icantly impacted by the use of migrating threads for true RPC in Mach. 

2The actions of the Mach init task are system-dependent, in the same manner in which 
the Unix /etc/rc.local file is way to describe system-specific bootstrap activities. In fact, 
on some Mach systems, the Mach init task simply starts a Unix server, and lets the rest of 
system initialization be done out the /etc/rc mechanism. Furthermore, the Lites system 
has a mechanism whereby a task can request a Mach port to the task running a Unix 
process, by specifying the Unix process ID. In any case, there are many possibilities for 
system initialization and registration. 
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In an asynchronous messaging-passing model, object request messages and 
manager reply messages are separate messages. For each kind of message, 
the Corbus Core has a separate interface to the CCL and SCL. For object 
request messages, the "Invoke" interface requires an object UID which is 
located as described above. The Core includes in its forwarded object re- 
quest messages an additional datum: the process UID of the client that sent 
the message. For manager reply messages, the "Send" interface requires a 
process UID for the client to which the message is addressed. For correct 
delivery, manager's specify the process UID that was in the object request 
request message to which it is replying. When the Core receives a message 
via the "Send" interface, it does not locate the UID, but rather simply looks 
up the port associated with it, and uses the port to deliver the message. 

In a synchronous RPC model, there is no need for an explicit reply port 
or an explicit interface for replies. Instead, message switching takes place 
in the form of two RPCs, one nested inside of the other. The first RPC is 
the CCL sending the object request message to the Core. While the client 
is blocking on this RPC, the Core (having located the object and obtained 
a port right to it) makes another RPC, this time to the objects manager. 
When the manager replies, it simply uses the kernel interface to return from 
an RPC; no explicit message send is required. As a result of the RPC 
return, the Core unblocks and receives the reply message. After adding to 
the message the manager's port, the Core likewise returns from the first 
RPC. As a result, the client unblocks, and the CCL receives both the reply 
message and the port right to use to contact the manager directly. 

3.3.4    Server-to-Client Communication 

The Corbus communication activity of servers consists of the CSL receiv- 
ing receiving request messages, and sending replies to them. In the Cor- 
bus/Mach communications architecture, there are two cases of this activity. 
First, the request message is from the the Core, and the CSL sends the reply 
to it; second, the request message is from the client, and the CSL sends the 
reply to it. In either case, the CSL sends the reply to the same compo- 
nent that sent the object request being replied to. The issue for Corbus is 
whether the CSL needs to keep additional information in order to be able 
to reply to the same source as the request. 

Figure 3.6 shows the role of the CSL in the standard Corbus architecture. 
All messages are received from and sent to the Core, so there is no need for 
the CSL to determine how to send the reply message. However, the server 
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software must tell the Core where to deliver the reply message. Therefore, 
the process UID from the request message's sender-UID field must be used 
as the target UID for the reply message. 

Figure 3.7 shows the role of the CSL in the Corbus/Mach architecture, 
when asynchronous messaging is used to implement Corbus request/reply 
communication. Because the reply might go directly to a client, the request 
message might contain a reply port, of which the CSL must keep track. 
This is shown in Figure 3.7 as a table relating client process UIDs to reply 
ports from clients. When the CSL receives a Mach message from a client, 
it stores the enclosed reply port with the client's process UID in the table. 
When a reply is sent, the reply target process UID is looked up in this 
table; the resulting reply port is used to send the reply message. This extra 
work is necessary to keep track of separate destinations of reply messages; 
the multiplicity of destinations is the consequence of direct client/server 
communication. 

Figure 3.8 shows the role of the CSL in the Corbus/Mach architecture, 
when synchronous messaging (RPC) is used. Because there is no need for a 
reply port, the server can send the reply message simply by returning from 
the Mach RPC. From there, the Mach kernel ensures that the reply message 
is delivered to the same task that sent the request message. This delivery 
is accomplished by means of a kernel implementation technique known as 
thread migration. When the client makes its RPC call and blocks, the client 
thread's execution resources are reused in the server; no scheduling context 
switch occurs. The kernel maintains, as part of the thread state, the client 
task to which the thread will unwind to when it returns from its processing 
in the server. Thus, so long as the thread that received the request message 
is also used to "send" the reply message via RPC return, the server does 
not need to keep track of clients. This result applies not only to client reply 
ports, but also to client process UIDs. 

In order for Corbus servers to support the Futures mechanism, the Cor- 
bus server framework must support both forms of message reception, asyn- 
chronous and synchronous. The synchronous form uses RPC for efficient 
handling of the synchronous client/server interaction. The asynchronous 
form requires the use of reply ports so that the client can send the message 
(with reply port), continue processing, and eventually pick up the server's 
response using the reply port. On the server side, management of reply 
ports (as shown in Figure 3.8) is the only difference between synchronous 
object request RPCs and asynchronous Futures object requests. 
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3.3.5    Client-to-Manager Communication 

The Corbus communication from clients to servers consists of clients sending 
objects requests to object managers, and receiving manager replies. As 
described above, a client's CCL may or may not be able to directly contact a 
requested object's manager, and if not then the CCL uses the services of the 
Core to route the object request and receive location information. Therefore, 
one of the CCL's key functions in Corbus/Mach is handling object requests 
according to the following logic: 

1. A client makes an object request using a standard Corbus applica- 
tion interface, and the client's CCL implements the interface with the 
following steps. 

2. The CCL looks up the requested object's UID in a table of UIDs and 
port send rights. 

3. If the UID is found, then the associated port is used to send the object 
request. 

4. If the UID is not found, then the object request is sent using a send 
right to a port received by the Core. 

5. When the reply arrives, the CCL checks the message for a manager 
request port send right. If found, then a new entry in the UID/port 
table is made. This new entry contains the UID of the object, and the 
port from the reply. Next time there is a request for this object, the 
port will be found and used as in step 3. 

6. The CCL takes data from the reply message and returns to the client 
via the application interface. 

Again, support for the Futures mechanism requires the use of asyn- 
chronous communication as well as synchronous communication. In the 
synchronous case of object request RPCs, the client API is simply a pro- 
cedure call, inside of which a request is sent, the reply is awaited, and the 
reply returned. Such RPCs can be implemented either using true RPC with 
thread migration, or using pairs of one-way Mach messages. 

In the case of asynchronous Futures calls, the client API is a procedure 
call to an invocation of a object request. Such procedures send off an object 
request message, and return a handle which can be used to claim the reply 
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at some later time. Such invoke calls are implemented with a message send, 
including a reply port. The returned handle is an API-level descriptor for 
the reply port. The claim of a Future is simply implemented as a message 
receive using the reply port. 

Note that Futures functionality may also be implemented with migrat- 
ing threads for RPC. An RPC could be used to convey the request message 
with reply port to the server, and immediately return to the client. Likewise, 
the server reply would use the reply port to use RPC to deliver the reply 
message to the client and return immediately to the server. 

For the client to properly receive the reply message, the CCL would have 
to not only use a reply port, but also allocate kernel resources to "wait" to 
receive the reply RPC on the reply port. This "wait" is not done by the 
client thread that make the Futures invocation. The invoking thread simple 
performs a few kernel calls, and then proceeds with other processing. These 
kernel calls set up a kernel resource called an "empty thread" that enables 
an RPC to be received by using the replying server's thread resources. The 
replying server's thread executes in the client task, and delivers the message. 
The sequence of steps would be: 

1. A client makes an object Futures invocation, and the client's CCL 
implements the interface with the following steps. 

2. The CCL sends the request message, together with a send right to a 
reply port. 

3. The CCL allocates kernel resources and binds them to the reply port 
so that the reply message can be received. 

4. The CCL returns the Futures handle to the client. 

5. The client continues its work. 

6. Meanwhile, the server has completed the request, and used the reply 
port to send the reply message. The server thread migrates to the 
client, deposits the reply message, and returns. 

7. Later on, the client software claims the future. 

8. The CCL maps the futures handle to a port and a message received 
on that port. The CCL takes data from the reply message and returns 
to the client via Futures claim interface. 
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3.3.6    Objects, Managers, and Ports 

In the foregoing discussion of CCL and Core interaction, the CCL uses 
the Core's object location service to contact an object's manager directly 
for any subsequent requests on the same object. While this is valuable 
optimization, it applies only to objects for which a client makes multiple 
requests. However, the optimization can be extended to cases where a client 
makes a request for an object that it has never requested before, but the 
object is managed by a server that the client has contacted before for service 
on another object. 

This further optimization is based on the separation between the two 
tables described in Section 3.3.3: one table relating object UIDs and man- 
ager process UIDs, and another table relating manager process UIDs to port 
rights. The reason for the separation is that two objects can be managed by 
the same server, so the same port is used for the communication of requests 
on either object. 

The same data separation of data can be performed in the CCL. Instead 
of keeping a single table relating object UID to port right, the CCL could 
keep two tables in the same manner as the Core. The Core's object location 
information, provided to the CCL, would include both the port right and 
the manager process UID. With this additional information, the CCL could 
perform a new function: if CCL were able to determine the process UID of 
the manager of a first-time-referenced object, it could check to see whether 
it already had a port right to communicate with the manager. If so, then 
the object request could be sent directly, even though it was the first time 
the client had requested that object. 

Another way of viewing this potential for first-time object request opti- 
mization is that the use of Mach IPC allows the separation of two aspects of 
location brokerage: identification of the object's manager, and acquisition of 
communication resources to the manager. The distinction is an important 
one because the first aspect is purely informational in nature, while the sec- 
ond aspect requires a system call to acquire the communication resources. 
In Corbus/Mach, this acquisition would be means of IPC with the Core to 
obtain a send right to a port received by the manager. Likewise, a client 
might also use IPC with the Core to obtain object location data, i.e., the 
information about what server managed the requested object. If so, then 
there is no real optimization, since the Core must be consulted for every 
first time object invocation. 

However, there is another way for clients to location information, using 
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a mechanism which, like IPC, is a core feature of the Mach kernel: shared 
memory. By sharing memory with the Core, clients can share the location 
information kept in cache by the Core. As a result, the CCL can do a cache 
lookup to determine whether it can find the object's manager and whether 
it already a port right for the manager. The CCL need only call on the 
Core if the object's manager hasn't yet been located or if the CCL doesn't 
yet have a port to the located manager. Details of this arrangement are 
described in the next section. 

3.3.7    CCL Sharing of Location Cache 

This section describes the use of Mach shared memory techniques for client 
access to cached location information. Use of cached location information 
by the CCL is based on the following observation: if a client's CCL already 
has a Mach port for a manager M as a result of having invoked on an object 
01, and if the client can determine that an object 02 is managed by the 
same manager M, then the client can communicate directly with M for the 
first invocation on 02, rather than having to rely on the Core as a message 
switch. 

There are a variety of Mach memory techniques that can be used for 
sharing of the location cache between the Core and a client's CCL. A critical 
factor of the sharing mechanism is the nature of the data access required. 
In the simplest access model, the CCL needs read-only access, while the 
Core needs read-write access, and writes by the Core must be readable by 
the CCL. While the out-of-line message approach is the simplest way to do 
quick sharing between two communicating Mach tasks, it does not ensure 
that ongoing writes are readable, unless the Core were to periodically refresh 
the CCL with a new message with out-of-line data for the location cache. 

Rather than incurring the complexity of such refreshment functionality, 
a slightly more complex alternative involves the use of the location cache as a 
Mach memory object. Every piece of task virtual memory is part of memory 
object. Each memory object is managed by a memory manager, either the 
Mach default pager, or by an external memory manager such as a memory- 
mapped file server. Various tasks can map the same memory object, and 
shared access to a memory object yields common access to shared memory. 

To set up shared memory-object access, the Core would arrange for 
its location cache to be in a region of its virtual address space inside one 
memory object, to which the Core has retained a memory-object descriptor 
port. When a client registers with the Core, the Core sends it a copy of the 
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send right to this port. Using this port, the CCL calls on the Mach kernel to 
map the memory object into the client address space. In order to minimize 
coordination between the Core and CCL, the memory-object is mapped in 
read-only mode. Subsequently, the CCL can read data from the location 
cache just the same as with any other region of the client's address space. 
Updates to the location cache by the Core will immediately be reflected in 

the client's address space. 
Having set up this shared memory relationship during client registra- 

tion, there is little or no overhead to either Core or CCL during subsequent 
operation. And because of the availability to the CCL of the location in- 
formation, each client will have to use the Core as a message switch and 
locator significantly less. Core involvement will only be necessary in two 
circumstances: a client requests an object which is managed by a server 
that the client has not yet worked with a client requests an object that is 
not in the location cache. 

Both these circumstances can be further optimized as described in the 

next sections. 

3.3.8    CCL Location Caching 

An additional refinement of the location mechanism is client-side caching of 
location information. That is, each CCL could keep its own private location 
cache. The reason for such private caches is that when there are many 
different clients doing requests many different objects, the amount of time 
an object's location stays in the Core's cache may be shorter than the time 
interval between repeated requests on that object by the same client. As 
a result, although the client is requesting the same object repeatedly, the 
object gets located repeatedly because its location doesn't stay in the shared 
cache long enough. This behavior can be particularly sub-optimal for clients 
operated by humans who examine several times each of a small number of 

objects 
Therefore, a private cache would be way for client to save for itself the 

location information that it may need again later. As a result, the private 
cache becomes the primary repository of saved location information for a 
client; and the shared cache becomes a means by which one client can cheaply 
obtain location information previously obtained at some cost for another 
client. When an object isn't in the private cache, but is in the shared 
cache, the location information can simply be copied in memory from the 
shared cache to the private cache, thus increasing the likelihood that the 
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information will be available the next time the client needs it. In addition, 
when an object is not in either the local or the shared cache, the CCL sends 
the object request to the Core for object location and message switching. 
In such cases, the CCL can update its shared cache from the information in 
the reply. 

With clients being able to rely on their own private cache, there would 
be less frequent turnover of the data in the shared cache, resulting in a 
greater likelihood that the shared cache information actually gets used by 
more than one client. This in turn maximizes the benefit of shared location 
information: because location information can be expensive to obtain, it 
is desirable make the information available to all clients once it has been 
obtained for one client. 

It should be noted that although CCL private location caching involves 
extra processing and storage overhead, this overhead is not required. There 
could be different versions of the CCL, one that does no private location 
caching, and others that do caching, each with a different cache management 
approach. It would be an option open to client software developers to choose 
a CCL which performs private location cache management in the way that 
best meets the operational assumptions of the client software. 

3.3.9    CCL Port Caching 

Another refinement to CCL-Core location interaction is client-side caching 
of port rights to object managers. Without such caching, the CCL obtains 
manager port rights from the Core, one by one as the CCL contacts a man- 
ager that it hasn't contacted before. For clients which access a small number 
of managers a large number of times, this one-by-one approach is simple and 
adequate. For other clients, it would be advantageous to use client-specific 
information to anticipate which managers the client will need to commu- 
nicate with, and to provide the CCL with the requisite port rights before 
object requests occur. 

Such pre-supply of manager port rights could be done during client reg- 
istration. The CCL could include in its registration request a list of types 
that the client will be using. (This list would be a build-time configuration 
item for the CCL, which the client software developer could choose to spec- 
ify.) The Core would include in its reply a list of triplets: type, process UID 
of manager, and port. 

The managers which the Core would include in such a reply would be 
dependent on system configuration and history. If the local host is running a 
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manager of a requested type, the Core will know about it as a result of man- 
ager registration. Object location of remotely managed objects is another 
way that the Core would know of a manager about which the Core could re- 
turn information to a registering client. Another client may previously have 
requested an object of a type which a registering client has requested. As a 
result of locating this object, the Core will have obtained the process UID 
of and a port right for a manager of that type. If the object is still in the 
location cache, then the Core can include information about the manager 
(including the port right) in the registration reply. If the object has gone 
out of the location cache, however, then the Core would be unable to do so. 
To prevent such an occurrence, the Core could maintain a separate cache 
which contains information only about the manager, what type it manages, 
and a port for the manager. Since the number of managers is typically often 
than the number of objects, manager-only location information would tend 
to remain in its separate cache for a longer amount of time. 
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Chapter 4 

IPC Distribution and 
Heterogeneity 

The discussion in Section 3 does not completely address distributed appli- 
cation operation in an environment composed of heterogeneous hosts. This 
section addresses how the approach presented in Section 3 can be extended 
to such an environment. 

The first significant issue is the use of the same IPC mechanisms between 
multiple Corbus/Mach hosts. Because the major goal of Corbus is support 
of distributed applications, i.e., client/server applications in which client and 
server may be located on different hosts, the advances described in Section 3 
would be less significant if they applied only to Corbus functionality within 
one host. Fortunately, these advances can be extended into a distributed 
environment of multiple Corbus/Mach hosts. 

The second and equally significant issue is that Corbus/Mach commu- 
nication mechanisms must still support interaction with non-Mach systems 
that use Corbus. Such support, with some benefit from Mach-based tech- 
nology, is also a critical area of Corbus/Mach operation in a distributed 
heterogeneous environment. 

4.1    Distributed Mach IPC 

The style of direct client/server communication described above can be ex- 
tended to a distributed Corbus/Mach environment. The key technology for 
this extension is the implementation of a network communication service 
that provides the same features as Mach's local IPC, i.e., a transparent, 
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networked extension of Mach IPC. This MachNetlPC service is provided by 
a new component, the NetlPC Server. A NetlPC Server runs on every host 
to supplement the IPC functionality of the Mach kernel. As a result, there 
is a Mach IPC service that operates the same both locally and remotely; it 
is provided by the kernel and the NetlPC Server. 

4.1.1    MachNetlPC and x-kernel 

There have been several implementations of Mach IPC in a network, e.g., 
[13], but the most recent one, and the one that is the basis of continu- 
ing Mach work, is based on the University of Arizona's x-kernel [12]. The 
x-kernel operates as a protocol server for Mach, providing the network pro- 
tocol service using the Mach kernel's device and IPC functionality. The 
MachNetlPC implementation is a set of Mach-specific protocol implemen- 
tations within the overall protocol framework of the i-kernel. It is built 
on general-purpose protocols also provided within the framework. These 
general-purpose protocols are also directly available, most notably the In- 
ternet protocols used to communicate with non-Mach Corbus hosts. Thus, 
the i-kernel functions both as a MachNetlPC Server for Corbus/Mach and 
as a Protocol Server which enables non-Mach interaction within a heteroge- 
neous environment. Just as significant, the x-kernel's dual role also allows 
it to be the focus of Corbus/Mach usage of other Mach-based advanced 
capabilities for distributed and networked systems. 

The x-kernel's ability to be such a focus is derived from its basic purpose: 
The x-kernel is an implementation of a highly modular framework which can 
include an arbitrary layered graph of protocols. Among the protocols of the 
standard x-kernel distribution are common protocols, e.g., TCP/IP, but the 
purpose of the x-kernel is to provide easy extensibility by the addition of 
new protocols. 

Flexibility is also a key factor; a protocol graph can be configured to use 
different protocols under different circumstances for optimal performance. 
For example, rather than a one-size-fits-all transport layer, a lightweight 
protocol can be used for communication between hosts on the same ethernet, 
while TCP can be used when the communicating hosts are internetworked. 

Finally, the implementation of the x-kernel framework itself (rather than 
the protocols within) concentrates on addressing issues common to protocol 
layering—such as optimization of data buffering, copying, marshaling, etc.— 
so that protocol implementations need not do this. Thus, the flexibility, 
extensibility, and efficiency of the x-kernel make it an excellent vehicle for 
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developing and deploying protocols at all levels, as well as configuring them 
as needed for specific host configurations. 

An additional point about the i-kernel is its nature as a server running 
on the Mach kernel. While this is very beneficial in the sense that the Mach 
kernel is not modified to add new functionality, there is the potential per- 
formance drawback that the network protocol software isn't running in the 
kernel's hardware state that permits direct access to the network device. 
However, just as there have been various approaches to NetlPC implemen- 
tation, there have been several approaches to overcoming the lack of direct 
device access. There are a few such approaches that are currently being 
used, and could be used on a Corbus/Mach host. One of them, with which 
the x-kernel has been tested, is kernel co-location. In this approach, a task 
can run in the same address space as the kernel— without any modification 
to the code—by virtue of Mach kernel calls being short-circuited into proce- 
dure calls to the kernel's trap handler. This permits a significant efficiency 
gain without requiring a modification to the kernel [10]. 

A final point about i-kernel MachNetlPC is that it was specifically de- 
signed for transport of RPCs. The original implementation [12] was on 
Mach systems with asynchronous message IPC, but this implementation is 
the basis of work on Mach systems that include thread migration for true 
RPC. [11] [5] As a result of integration with thread migration, the i-kernel 
MachNetlPC will take advantage of a true RPC abstraction in Mach IPC 
and thereby implement a distributed RPC service for transport of RPCs be- 
tween Mach hosts. Throughout this section, we refer to IPC and messages 
without distinction as to whether or not thread migration is used is used for 
RPC. 

4.1.2    NetlPC Server 

Clients and servers send and receive IPC using local IPC, regardless of 
whether the sender and receiver are on the same host. If they are on dif- 
ferent hosts, then some network communication is necessary to move the 
data between the hosts. The NetlPC Server insulates message senders from 
knowledge about the locality of message destinations. Senders do not have 
to decide whether to use IPC for local communication, or network protocols 
for remote communication. Instead, both messages for both local and re- 
mote destinations are sent with the same interface. When communication is 
local, the sender holds a send right for a port for which the receiver holds the 
receive right. A message is sent via Mach IPC and the NetlPC Server is not 
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involved. When communication is remote, the NetlPC Server acts as a local 
stand-in for the remote task. On the sender's host, the NetlPC Server holds 
the receive right for the port that the sender uses— although the sender is 
not aware of the existence of the NetlPC Server. On the receiver's host, the 
NetlPC Server holds a send right for the port monitored by the receiver. 
The two NetlPC Servers use network protocols to move messages between 
hosts. 

Figure 4.1 illustrates the basic role of the NetlPC Server for communi- 
cation between Corbus-on-Mach hosts. A message sender sends a message 
and the local receiver is the NetlPC Server, which forwards the message to 
the NetlPC Server on the destination host. There, the NetlPC Server deliv- 
ers the message to the receiver. As a result, tasks can simply use whatever 
port rights that have to send and receive message via local IPC; the NetlPC 
Server delivers remote messages, but does not interfere with local IPC. 

Acting in this role of intermediary, the main function of the NetlPC 
Server is to maintain the state information needed to map local ports to 
global identifiers called NetPortlDs. The illustrated message transmission 
includes a mapping from the local port over which the message was sent, to a 
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NetPortID and the host which manages the NetPortlD.1 The NetlPC Server 
performs this mapping for each message it receives, appends the NetPortlDs 
to message (shown inside the network message box in the Figure 4.1) and 
sends the message over the network to the host that manages the NetPortID. 
There, the receiving NetlPC Server maps the NetPortID to a local port and 
delivers the message via local IPC on that port. 

Because port rights can be transferred in Mach IPC, and because the 
IPC can span hosts, port rights must in some sense be transportable between 
hosts. In practice, this means that when a task does IPC to a remote task 
using a message including a port right, the NetlPC Server acquires the port 
right and the port bound to a NetPortlD. Because port receive rights can 
be transferred in IPC, the destination host of a particular NetPortID can 
change. Thus, a significant part of the NetlPC Server's port management 
is tracking the movement of port rights. 

A final point about NetlPC needs to be made about the mechanism by 
which a task can acquire a port right for a port that is managed by the 
NetlPC Server for the purpose of distributed IPC. Some sort of registry 
service is needed. In the z-kernel MachNetlPC implementation, a common 
Mach registry service is included, which uses network communication to 
allow lookups on other hosts. The simplest way to relate this service to how 
it would be used in Corbus/Mach. 

Use of a registry service in Corbus/Mach is a four-step procedure. First, 
the Core on every host would register with local registry service and provide 
a port for the registry service to give to tasks doing a lookup. Second, the 
Core would look up other instances of the Core on other hosts. On each 
other Corbus/Mach host on which a host needs to communicate, the Core 
will perform a lookup on that Core host. Third, the local registry service 
will forward the lookup request to the requested host and that host's registry 
will return a send right for that host's Core. Because the registry service 
uses MachNetlPC for this forwarding and reply, the right associated with 
the port of the other host's Core (or rather a right for a NetPortID bound 
to that port) gets sent over the network in the lookup reply. The requesting 
Core receives a reply message containing a send right for a port held by 
the NetlPC Server and mapped to a NetPortID. Fourth, as a result of the 
registry and lookup, two or more host's Cores can communicate and freely 
transfer more port rights to one another. Therefore, each Core can transfer 

The NetlPC Server's maintenance of these mappings is shown as information about 
NetPortlDs and hosts inside the NetlPC Server bubble. 

56 



port rights that can be used for distributed IPC to other tasks on their 
hosts, e.g., Corbus clients and servers.2 

4.1.3    Core Usage of MachNetlPC 

The Core's primary use of the network is to send Locate requests and receive 
Locate replies, and send forward object requests and receive object replies. 
When a Corbus/Mach host's Core performs either location or forwarding to 
another Corbus/Mach host, the communication can take place via Mach- 
NetlPC rather than by the Internet protocols that standard Corbus uses.3 

The benefit of MachNetlPC is that port rights can be transferred, to 
enable more direct communication. There is little extra protocol overhead 
needed to do this. In standard Corbus, there are two cases of object request 
transmission: local and distributed. In the local case, the request is send 
in the Corbus Operation Protocol (OP) via local IPC. In the distributed 
case, the OP message is embedded in a Corbus Inter-Host Protocol (IHP) 
message, which is sent via TCP/IP. In Corbus/Mach, the OP message is sent 
via Mach IPC in both cases. The difference is that in the distributed case, 
the message is forwarded to another host by the NetlPC Server, without the 
need for IHP. The MachNetlPC protocol is analogous to IHP, in the sense 
that both are protocols used to carry OP messages between hosts and that 
both use TCP/IP, 

Figure 4.2 illustrates the primary ways that MachNetlPC is used by 
the Core. Distributed message switching is used as an example. The 
scenario involves two hosts, A and B, a client on one, a server on another, 
and a Corbus Core on both. There are four steps in dealing with an object 
request. In the first step, the client makes an object request and the CCL, 
not knowing the manager for the object, sends the request to the Core. 

In the second step, the Core also does not know the location of the 
object and so, performs a Locate operation. Part of the Locate operation 
is the exchange of messages between the the Core of Host A (the client's 
host) and the Core of Host B (the server's host that manages the object). 

2Note that this communication initialization is little different than a standard TCP 
communication setup via a well-known TCP port number. A bind to the well-known port 
number is like registering with the port number as that name, and the lookup on another 
host is like a connect to that host using the well-known port number, The difference is 
that the registry protocol is layered on top of MachNetlPC and thus the communication 
between hosts facilitates Mach IPC communication (including transfer of port rights) 
between the hosts. 

'Internet protocols are used as transport protocols for the MachNetlPC protocol. 
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The messages between the two Cores are transported via MachNetlPC. This 
communication uses ports that were set up during initial contact between 
the Cores of different hosts. In the reply to Host A's Core, Host B's Core 
includes a send right to a port (P) which is received by the server that 
manages the object being located. Host B's Core received a send right to 
this port when the server registered with the Core as the manager of the 
object type of the object being located. MachNetlPC translates this send 
right for P on Host B into a send right for a port P on Host A. 

In the third step, Host A's Core uses the newly-acquired send right for P 
to forward the client's object request to the server and to receive the reply. 
Again, MachNetlPC is used to transport the message from the Core on Host 
A to the server on Host B and vice versa. 

In the fourth step, Host A's Core forwards the reply to client, thus 
completing the object request/reply. The Core adds a send right for P to 
this forwarded reply message. As a result of the client's acquisition of this 
port right, the client can later use MachNetlPC to contact the remote server 
without the intervention of either host's Core. Such an object/request reply 
is shown as step 5 in Figure 4.2. 

As a result of using MachNetlPC to exchange port rights, two processing 
steps have shorter dataflow paths. The path of step 5 is shorter than the 
standard Corbus path for client to remote server.4 This the distributed 
analog of local direct client/server IPC without the assistance of the Core. 
The path of Step 3 is shorter than the standard Corbus path for Core to 
remote server.5 In both of these comparisons, x-kernel is used in the same 
role in Corbus/Mach that an 0/S kernel is in standard Corbus. This is 
because the x-kernel and an 0/S kernel are software that implement network 
protocols and use a network device for communication. Also, both can run in 
a privileged processor state by means of the Mach kernel/server co-location 
mechanism mentioned earlier. 

4.2    Heterogeneity in Corbus/Mach 

Corbus/Mach hosts can operate in a heterogeneous environment, including 
hosts of various hardware architectures and 0/S platforms. This heterogene- 

4The standard path is client to Core to kernel/network/kernel, then to Core and to 
server. The Corbus/Mach path is client to z-kernel/network/as-kernel, then to server. 

BThe standard path is Core to kernel/network/kernel, then to Core and to server. The 
Corbus/Mach path is Core to i-kernel/network/z-kernel, then to server. 

59 



ity has two effects on the use of Mach IPC mechanisms in Corbus. First, 
the use of Mach IPC mechanisms must account for differences in hardware 
architecture between Corbus/Mach hosts. Second, the use of Mach IPC 
mechanisms must encompass the use of the existing communication mecha- 
nisms on non-Mach hosts and Corbus software on those hosts. 

4.2.1    Heterogeneity of Corbus/Mach Hosts 

A Corbus/Mach distributed computing environment should be able to in- 
clude Mach hosts of various hardware architectures. Multi-architecture sup- 
port for client/server distributed communication is already a part of Corbus. 
The Corbus cantypes facility allows Corbus messages to be sent between 
hosts in such a way that the data format of the messages is interpretable 
by hosts of any hardware architecture. All messages are converted from the 
native data representation of the sender's host to the canonical hardware 
independent representation of cantypes. Likewise, received messages are 
converted from cantype format to native format before being processed. 

However, the use of cantypes sometimes imposes unnecessary overhead. 
When a client and server on the same host exchange messages, cantypes are 
not necessary because both client and server have the same data represen- 
tation. The same is true when the client and server are on different hosts, 
but both have the same hardware architecture. 

This extra overhead can be eliminated in many cases by using extra 
information about the destination of messages. This technique is not par- 
ticularly dependent on Mach facilities and can be adopted by Corbus on 
other systems. However, the use of Mach IPC in Corbus/Mach allows this 
technique to be easily implemented. 

The simplest case of heterogeneity to address is when both the client 
and server are on the same host. When a client's CCL sends a message 
to a server that it knows is local, it can dispense with cantype conversion. 
Instead of cantype conversion, the CCL sends the message data in local data 
format shared by the client and server stubs. Additionally, the CCL must 
include information in the message that indicates that it is not in cantype 
format. Based on this indication that the request is not on cantype format, 
the server's SCL would not convert the reply into cantype format. 

The main issue with this approach is the means by which the CCL 
knows that cantype conversion is unnecessary. The Core can convey this 
information to CCL, in those cases where the CCL uses the Core for message 
switching and object location.  The Core knows when an object's manager 
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is local, and in such cases, the Core can indicate this as part of the location 
data that it returns to the CCL. The Core knows when an object's manager 
is local because of two facts: (1) the Core knows about all local managers 
via Corbus registration; and (2) the Core performs object location. When 
it finds a server that manages an object, it can tell when the server is local 
because it knows all the local managers. 

The next case of heterogeneity to address is when client and server are 
different hosts of the same architecture type. In such cases, it is necessary 
to identify the architecture type of the host for each Corbus/Mach manager. 
One way to make this identification is for the CCL, SCL, and Core to add 
an architecture tag to each message.6 However, it would suffice for such 
a tag to be included only in locate reply messages from the Corbus/Mach 
Core of one host to another. The Core receiving such a message would not 
only keep the port right associated with the manager to which the location 
reply message refers, but would also keep the architecture tag. Then, when 
the Core forwards an object reply to the CCL, it can determine if the object 
manager is running on a host with the same architecture type as the local 
host. This determination would be based on a comparison of the tag value 
with the local architecture type. When the tag matches, the Core would 
indicate the to CCL that cantype conversion is not needed. This indication 
would be added to the object reply message along with the port right for 
the client to use to contact the server directly. As a result, the CCL would 
forego cantype conversion. 

A final approach to architecture typing is to forego the use of architecture 
tags in favor of out-of-band information. That is, each Core would have as 
part of its configuration, a list of host addresses for hosts that have the same 
architecture type as the local host. Then, instead of checking an architecture 
tag in object reply messages, the Core checks the source host address and 
compares it to the list. 

An additional note about this approach to cantype optimization concerns 
interaction with non-Mach Corbus hosts. When the Corbus/Mach Core in- 
teracts with the Corbus Core of a non-Mach host, the non-Mach Corbus may 
not have CCLs and SCLs that can accept non-cantype encoded messages. 
Hence, the Corbus/Mach Core must take care to inform the CCL about an 
like- architecture server only when it knows that the version of Corbus on 
the other host is a version that supports this optimization. Therefore, it is 
important for the Core to check software version number as well as architec- 

6The use of such a tag in MachNetlPC is discussed in [12]. 
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ture type. As with architecture type, the version information can be either 
sent in the message itself or stored out-of-band in each Core's configuration 
data. 

4.2.2    Distributed Communication With Non-Mach Corbus 

Corbus runs on a variety of 0/S platforms; this variety is another form 
of heterogeneity that Corbus/Mach must accommodate. The Corbus/Mach 
Core must distinguish between Mach and non-Mach hosts and interact in an 
appropriate manner with hosts of each kind. There are two main features of 
Corbus/Mach communication with Corbus on non-Mach systems. The first 
feature is the use of the standard Corbus communication architecture, in 
which the Core is a message switch for all object requests and replies. The 
second is the use of the standard communication protocols used by non- 
Mach Corbus Cores. The distinction between Mach and non-Mach hosts 
occurs in four primary contexts: 

Core Communication Initialization: When the Corbus/Mach Core ini- 
tiates communication with another host's Core, the Corbus/Mach 
Core must first check whether the other host is a Mach host. If so, 
the communication can be initialized via MachNetlPC, as described in 
Section 4.1.2. If not, then communication must be established using 
TCP. 

Object Location: When a Corbus/Mach Core sends out an object loca- 
tion request to another host, it must do so using the form of commu- 
nication set up during Core communication initialization and accept 
replies using the same mechanism. Also, the Corbus/Mach Core must 
be able to accept object location requests using both forms of commu- 
nication. In replying to such requests from other Corbus/Mach hosts, 
the Corbus/Mach Core should include a manager port right. But in 
replying to non-Mach hosts, no such Mach-specific information should 
be added. 

Object Request Forwarding: When a Corbus/Mach Core receives a lo- 
cation reply from a non-Mach host, the Core cannot add a port right 
for the manager to the forwarded reply. Therefore, the Corbus/Mach 
Core/CCL interface should allow this. In such cases, it will not be 
possible for the CCL to directly send a subsequent object request to 
the manager.   This is because of the lack a port right.   As in other 
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cases where the CCL lacks a port right for a manager, the CCL sends 
the object request message to the Core for forwarding. When the Core 
is forwarding an object request to a non-Mach host, the Core should 
use the standard Corbus communication mechanism established dur- 
ing Core communication initialization. 

Object Requests Forwarded: In addition to sending forwarded requests 
to Mach and non-Mach hosts, the Corbus/Mach Core must be able to 
receive forwarded object requests from both host types, using either 
MachNetlPC or Internet protocols, as appropriate. 

Because the Corbus/Mach Core must communicate with the Cores of 
both Mach and non-Mach hosts, the Core's state information must reflect 
the difference in host type. Actually, the difference in state information is 
rather slight. In the case of a non-Mach host, the Core must maintain the 
host's IP address and the TCP/UDP port number used to connect to that 
host's Core (usually the same established port number). In the case of a 
Mach host, the Core must also maintain the host's IP address in order to 
use it in a request to obtain a Mach port right to the Core on that host. 
Also, a port number must be maintained, although instead of a TCP/UDP 
port number, the number is the numeric handle for a Mach port send right. 

A final issue for heterogeneous inter-host Corbus communication is the 
standard Corbus feature of direct client/server large message delivery. The 
feature is available for clients and servers to bypass the message switching 
function of the Core, though the Core (or Cores, if the client and server 
are on different hosts) must be involved in setting up the direct connection. 
Unlike the direct client/server connection of Corbus/Mach, this feature is 
suitable only for cases in which the volume of client/server traffic is large. 
This feature does not scale well, in the sense that it is not feasible for every 
client and server to have a direct connection. This is due to because of 
the expense that would be incurred by significant usage of communication 
resources. In Corbus/Mach, by contrast, direct client/server communication 
is tied to local IPC, and the x-kernel MachNetlPC implementation takes 
care of optimizing on such resource usage issues as the number of open TCP 
connections. 

Nevertheless, direct large message communication is a part of the stan- 
dard Corbus communication capability and Corbus/Mach must support it. 
Therefore, the Corbus/Mach Core must support the inter-Core communi- 
cation necessary to set up direct client/server connections. Likewise, the 
Corbus/Mach CCL and SCL must support the use of TCP to accept and 
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initiate large message connections. As a result, a server on a Corbus/Mach 
host can accommodate a non-Mach Corbus client's request for a direct con- 
nection for large message delivery. As with the Core, the CCL and SCL 
obtain TCP service from the x-kernel. 

4.3    Heterogeneity and Dataflows 

This section summarizes the dataflows and architecture of a Corbus/Mach 
host, taking into account the effects of distributed Corbus communication 
via MachNetlPC and of direct large message delivery. 

Corbus/Mach local dataflows are illustrated in Figure 4.3 which is a 
modified version of Figure 2.8. Figure 4.3 adds new dataflows (solid arrows) 
that are the result of the IPC optimizations described in this section. Also 
shown are the dataflows (dotted lines) that are retained from Figure 2.8. 

There are four new dataflows. First, Corbus clients and object man- 
agers on the same host can use Mach IPC to communicate directly. Illus- 
trated as the "Local object requests/replies" dataflow, these interactions 
are based on information from the Core which acts as a location broker. 
Second, Corbus clients can use the i-kernel's MachNetlPC service to com- 
municate directly with object managers on separate hosts, as illustrated in 
the "Requests/Replies to/from remote Corbus/Mach managers" dataflow. 
Third, Corbus object managers can use MachNetlPC to communicate di- 
rectly with clients on separate hosts, as illustrated in the "Requests/Replies 
from/to remote Corbus/Mach clients" dataflow. These interactions obvi- 
ate the need for the Core to perform message switching for much of the 
distributed client/server communication between Corbus/Mach hosts. 

Finally, the Core/client and Core/manager dataflows remain, but exist 
for the Core to switch object requests and replies for which the client does 
not have the ability to communicate directly with the manager. There are 
two distinct kinds of such cases. One case is when the object request goes to 
a manager on a Corbus/Mach host and the reply contains a Mach port right 
that enables direct client/server communication in the future. The other 
case is when the manager is on a non-Mach Corbus host and the Core must 
perform message switching for all object request messages. 

Figure 4.4 shows a revised architecture with additional component inter- 
faces that reflect these dataflows. Clients and managers now communicate 
directly with one another via local-IPC. Clients and managers also use lo- 
cal IPC to communicate with the x-kernel in order to use the MachNetlPC 
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service to communicate with managers and clients on other hosts. Clients 
and managers still communicate with the Core for both object location and 
message switching to non-Mach Corbus hosts. Finally, there is a new arc 
between clients and mangers, labeled "Mach external memory management" 
to show a memory sharing relationship between clients and object managers. 
This new relationship is the topic of the next section. 
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Chapter 5 

Mach Shared Memory for 
Corbus Communication 

Previous sections of this report have focused on client/server interaction 
using a message-based paradigm in which communication takes the form of 
an RPC,1 i.e., synchronous messaging between a caller/requester/client and 
callee/responder/server. This paradigm is generally useful because some 
form of local or distributed messaging is available or can be constructed in 
the environments that are used for client/server computing. However, there 
is another paradigm for client/server communication that is less general 
than messaging, but which is more powerful and beneficial for certain types 
of applications. This paradigm is based on memory sharing between client 
and server. A shared-memory approach is strongly supported by Mach's 
memory management features. 

The following paragraphs describe a shared-memory approach for Cor- 
bus. The fundamental concept of operation is to use Mach memory man- 
agement to allow a Corbus object manager to share memory with its clients. 
This sharing makes the data representation of objects managed by the man- 
ager available to clients. As a result, client software can access the object 
data directly. Such direct object data access contrasts with the indirect ac- 
cess of the message-passing paradigm, in which the object manager accesses 
the data on the client's behalf, as specified by the client in an object request 
message. 

'The term Remote Procedure Call (RPC) is most often used loosely, without regard 
for whether a particular RPC involves one party of the RPC actually being remote from 
a another, in the sense of being on a different host. 
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5.1     Comparison of Shared Memory and Message 
Passing 

A critical feature of shared-memory approach in Corbus is that it does not 
change the existing object request interface currently used by Corbus clients 
and servers. The same object request interface is used by a client, regard- 
less of whether the client/server communication mechanism operates via 
message passing or by shared memory. In both cases, the interface is imple- 
mented by an autogenerated library specific to the particular object-oriented 
application of which the client and server are a part. Each such library im- 
plements the object request interface for the particular application, using 
the services of an underlying library for client communications. In message- 
passing cases, the application-specific library (often called a "client stub li- 
brary") implements each kind of application-specific object request in terms 
of a message-passing communication library such as the Corbus CCL. In 
memory-sharing cases, the application-specific library implements the same 
request interface, but implements requests by direct access to and compu- 
tation on shared memory containing object data. 

An important distinction between these two styles of operation is the 
placement of the operation code. In a message-passing server, the server 
first receives an object request message from the client, and then performs 
the requested operation using the message data and the object's representa- 
tion data. The result of the server's computation is sent back to the client 
library, which extracts result data from the reply message and returns the 
results via the object request interface. With a shared memory manager, 
the client has direct access to the object representation data; the client per- 
forms the operation using both the object data and the parameters of the 
object request. The results of this client-side computation are passed back 
via the object request interface, just as if the results had arrived in a reply 
message from the object's manager. 

Because of these similarities, the client programming interface is un- 
changed by the shared memory approach, but library code is more com- 
plex. To avoid terminological confusion, we refer to this application-specific 
client library software by using the terms "client proxy code" or the "client's 
proxy." These terms are in distinction to the client application code, which 
is the new software that is written by the client developer, and which uses the 
object request interface provided by that application's client proxy. Thus, 
the term "client" refers to a process that is executing a body of software 
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composed of both client application code and client proxy code. 

5.2    Client/Server Shared Memory Example 

The following figures illustrate the two cases, and the various specific steps 
taken in each. Both show an example of client/server interaction in a fanciful 
application which implements operations on colored objects. In the example, 
a client invokes the operation Get Color on a specific object, referred to as 
Foo. There are no input parameters for the operation (other than the target 
object), and only one output parameter, which is stored in a data structure 
referred to as FooColor. 

In both figures, the upper oval represents the client process, and the 
lower oval represents the manager process. Within the client process, a 
horizontal line separates the client application code (in the upper part) from 
the proxy library (in the lower part) that implements the interface to the 
manager's services. Within the manager process, a horizontal line separates 
the Object Database (ODB) code and data (in the lower part) from the rest 
of the manager (in the upper part) which implements the various operations 
on the object. The ODB implements access to the actual representation 
data of each object, and stores this data in files. Object data can be copied 
from storage to memory, and the memory used to perform operations on the 
data. 

Figure 5.1 shows the usual Corbus message-passing approach. The client 
application code calls the Get Color procedure to request the Get Color op- 
eration on the object Foo, and to store the result in FooColor. (This call 
is illustrated as an arrow crossing the boundary into the proxy library, and 
returning back across the boundary to point to FooColor.) The GetColor 
procedure is implemented in proxy code which constructs and sends an ob- 
ject request message. (The message send is illustrated by the arrow from 
the client to the manager, the message in a box by the arrow.) The manager 
receives the message, and processes it. Part of the processing is to retrieve 
the representation data of the object that was invoked. The data is managed 
by the ODB, which stores object data in files. (The retrieval is illustrated 
as dashed lines which cross the ODB code boundary, and which connect the 
ODB data to the actual memory that contain the data after the retrieval has 
been done.) Once the data is retrieved, the operation is performed by calling 
the operation subroutine called DoGetColor. This DoGetColor subroutine is 
the code that actually performs the computation of the GetColor operation. 
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Figure 5.1: Corbus Object Request via Message 
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DoGetColor uses the message and the object data to compute the result of 
the operation, i.e., the object's color. (DoGetColor's access of the object 
data is illustrated as an arrow connecting it to the in-memory object data.) 
This data is copied to the operation's results, which are embedded in a reply 
message. The reply message is then sent to the client. (The reply message 
send is illustrated by the arrow from the manager to client, the message in a 
box by the arrow.) Back in the client's proxy code, the message is received, 
the operation results extracted, and returned as output data of the opera- 
tion invocation call. At this point, the client execution returns to the client 
application code, which stores the results in FooColor, and then goes about 
its other business. 

Figure 5.2 shows the shared-memory approach. As before, the client 
application code makes a call to the proxy interface in order to call the 
GetColor operation. Although the proxy interface used is the same as that 
of the message passing approach, the implementation is different. Instead 
of sending a message, the library code directly accesses the object data 
to perform the operation in the client process. In fact, the code used to 
perform it may be a very similar DoGetColor subroutine. As before, the 
manager has the representation data of the requested object; this data this 
data is used by DoGetColor. However, in this case, DoGetColor executes 
in the client and data access takes place in the client's memory. With 
Mach memory-management features, the manager's object data is memory- 
mapped into the client's address space. (The mapping is illustrated by a pair 
of dotted lines connecting the object data in the client with the object data 
in the manager.) As a result, DoGetColor can use in-memory object data 
in the same manner as the first case. Then, after DoGetColor computes the 
operation results, the results are returned as output data from the proxy 
to the client application code, just as if it had been extracted from a reply 
message. 

5.3    Initial Memory Mapping 

The above example of a client-side operation on a memory-mapped object 
is incomplete in that it assumes that the object is already mapped to the 
client's memory. However, in order for client-side object computation to 
work as described, the client (or rather the client's proxy library) must 
first contact the manager to set up the shared memory arrangement. This 
takes place by an exchange of messages with the manager, which happens 
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for each object the first time a client invokes an operation on the object. 
This communication facilitates the mapping into the client's address space 
of the shared memory, which is managed by the manager. Subsequently, 
any number of operations on that object can be processed by the client. 

Each time a client makes the first use of an object, it makes an initial 
memory mapping. Therefore, each client's proxy code maintains a list of all 
the objects that it has already memory mapped. When a client performs 
an operation on an object, the proxy code first checks to see if it has been 
mapped. If so, then the proxy code proceeds with the operation. If not, 
then the proxy code sets up the mapping and operation proceeds. 

To set up the memory mapping for an object, the client must contact 
the manager and request its cooperation. This request takes the form of 
an object request message for an operation we will call "Map" for the sake 
of exposition. The following list outlines the steps necessary for the first 
operation on a memory-mapped object. 

1. Client application code invokes the GetColor operation on object Foo. 

2. Client's proxy: 

(a) Can't find Foo in the list of memory mapped objects. 

(b) Invokes the Map operation on Foo, sending Map request message 
to the manager. 

(c) The manager: 

i. Receives Map message and checks for Foo in list of currently 
memory-mapped objects, 

ii. If the manager had previously created a port as the descriptor 
for Foo, that port it used; otherwise, a new port is created 
and associated with Foo. 

iii. Composes a reply message, which includes a port right for 
the Mach port that the manager uses as a handle for the 
memory associated with Foo. 

iv. Sends reply message. 

(d) Client's proxy receives manager's reply message. 

(e) Makes a kernel call to map the object, using the port right from 
the reply message; this causes the kernel to map into the client's 
address space an area which will hold Foo's object data. 
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(f) Adds new item in list of memory mapped objects and stores Foo 
and its memory address in the new item. 

(g) Uses address to perform the Get Color operation on Foo. 

(h) Returns results of operation as output of the call of GetColor. 

3. Client application code uses results of operation. 

When the kernel performs a memory-map request, it uses or creates 
an instance of a kernel construct called a memory-object. Memory-object 
descriptor port is the term given to the port that the client used in the 
memory-map kernel request. When the manager returns a memory-object 
descriptor port right to the client's proxy, the port may represent a memory- 
object which another client has already mapped. When two clients request 
an operation on the same Corbus object, the manager returns a memory- 
object descriptor port for the same memory-object. If this occurs, the man- 
ager is already managing the memory-object for the previous client; the new 
client will share that memory with the previous client. Because the man- 
ager implements a one-to-one mapping between Corbus objects and Mach 
memory-objects, it also implements sharing of object data between all clients 
that have memory-mapped an object. The result is that any change to the 
memory-object is immediately reflected in the address space of all the clients 
that have memory-mapped access to the object. 

5.4    Memory Management 

The above-described shared memory usage is invisible to the client applica- 
tion code, which simply calls an operation-invocation procedure and accepts 
the results. Below this interface, the client proxy code maps memory-objects 
and accesses the mapped memory to implement client-invoked operations. 
The client proxy's memory-object activities are limited to two interactions: 
first, requesting memory-object descriptor port from the manager; second, 
requesting the kernel to map the memory represented by the port. How- 
ever, there is a whole range of additional memory management activity that 
is invisible to the client proxy code. A description of these other areas of 
activity should serve to highlight the remainder of the issues to be discussed. 

In Mach, when a task maps a memory-object, a three-way relationship 
is established.   There are three roles played by the task that maps to the 
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object. We refer to the first of these roles as the client2. The second of the 
three roles is played by another task, which we will refer to as the pager, 
which interacts with the client to give the client a send right to a Mach 
port. The pager retains the receive right to the port, so that any Mach 
messages sent over the port (using a send right to the port) will be received 
by the pager. Thus, the pager gives the client the capability to send it 
messages. However, in a memory management relationship, the client does 
not use the port to send messages. Rather, the client uses the port's send 
right as a parameter to the kernel interface function which it calls to map 
the memory represented by the port. As a result of receiving this port 
right, the kernel—the third player— can send messages to the pager. The 
kernel uses this port right to communicate with the pager to cooperatively 
manage the memory-object. Such kernel-pager interaction uses the Mach 
External Memory Management Interface (EMMI) protocol. Once the client 
has mapped the memory-object, it need have no further contact with the 
kernel or the pager. The kernel and the pager will use the EMMI to facilitate 
the client's use of the memory-object by direct memory access. 

The first EMMI interaction occurs when the client performs a memory 
access at an address in the region of its address space into which the memory- 
object was mapped. Initially, little or none of the memory-object data is 
placed in memory for the client access. When the client accesses an address 
at which there is no data, the client performs a page fault, i.e., client's thread 
of execution traps to the kernel because there is no data for it to access. At 
this point, the kernel obtains the data for the page of memory that contains 
the faulted address. 

The kernel's page data fetch is performed by sending a message over the 
memory-object representative port for the memory-object which contains 
the page with the faulted address. The pager receives the message, and 
replies to the kernel with a message containing the page data. The kernel 
places the page data in memory and resumes the client's thread of execution, 
which then accesses the data. 

Other kernel-pager interactions are for other aspects of memory manage- 
ment. For example, the kernel may wish to eliminate the in-memory page 

2We use the term "client" in this context because of the way memory-objects would 
be used in Corbus. The Corbus tasks that map memory-objects would be Corbus clients, 
which map a memory-object in order to access the data contained in a Corbus object. How- 
ever, in Mach systems, any task can map a memory-object, irrespective of a client-server 
relationship. Thus, our use of "client" results from Corbus's client-server architecture and 
the use of Mach memory management within that architecture. 
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of one memory-object's data in order to make room for another. If the page 
has been modified, the kernel sends the page of data back to the pager, so 
that the pager may store it until it is fetched again. Such page flushes may 
occur not only when the kernel initiates a page-out, but also when a pager 
wishes to revoke a page for reasons of its own. Pagers may also push a page 
to the kernel to override the data currently in memory. Other EMMI inter- 
actions involve the management and enforcement of memory access modes 
on memory-objects. 

5.5    Object Managers and Mach Pagers 

This section explains the role of a Corbus object manager in EMMI. The 
kernel will demand memory-object page contents from some component act- 
ing as a pager. Because the memory-object's contents are the representation 
data of a Corbus object, those demands from the kernel must be met by a 
component that has access to the contents of a Corbus object. The natu- 
ral candidate for the pager in this context, therefore, is the object manager 
itself. 

A shared-memory Corbus object manager would act as a Mach external 
pager, maintaining a mapping between each memory-object that it pages 
and a Corbus object that it manages. When the manager receives page 
data request from the kernel, the manager determines which Corbus ob- 
ject corresponds to the memory-object in question and returns the object 
data. Since Corbus object data is stored by the manager in its Corbus Ob- 
ject Database (ODB), the manager must implement a correspondence from 
ODB data to the data associated with the Mach memory-object that it has 
associated with Corbus object. 

However, there is still an open question as to where the pager/manager 
obtains the object data it needs to respond to a kernel demand for page 
data. At one level, the answer is that the manager gets the data from the 
ODB. However, there remains the lower-level question about the nature of 
the storage used by the ODB. The most straightforward approach to storage 
would be to use the services of a file server, either a standalone file server or 
a Unix server. This approach is workable, but has the drawback that every 
page data request would result in communication between the pager to the 
file server. Thus, this communication and the file server's processing would 
be inserted into the page fault handling loop.3   For some kinds of object, 

sThe use of the Unix file service would entail the additional overhead that several file 
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however, this would provide an acceptable level of performance. 
An obvious variant of this approach is for the pager/manager to cache 

object data in memory to avoid going to the file server for every page data 
request. This this raises the possibility that cached object-data would be in 
paged-out pages. A client page fault would result in a page data request to 
a pager/manager which would process the request by accessing paged-out 
cached object data. Then a second page fault would occur and the default 
pager, which manages the memory of most tasks, would page in the needed 
page for the pager/manager's use. Only then could the pager/manager 
respond to the kernel's original page data request for the client. Such nested 
page faults may offer better performance than the above approach and would 
require additional complexity for uncertain benefits. 

A second approach would be for paging to be performed not by the 
object manager, but by another task. For example, it is fairly common 
on Mach systems to use external paging to provide memory-mapped file 
service. If object data were stored in memory mapped files, then the object 
manager need not retrieve data for memory-mapped object clients. Instead, 
the object manager simply sends the client a memory-object representative 
port for the file containing the object data for the object requested by the 
client. The client then uses the port to map a memory object containing the 
object data; the file server/pager performs the external paging. The manager 
itself stays entirely out of the loop in terms of memory-mapped object data 
access. However, the manager may have other duties, e.g., using the same 
file to access object data to fulfill object requests made via messaging by 
clients that do not access objects via memory-mapping. 

This memory-mapped file approach, while feasible (assuming that a 
memory-mapped file service is available, such as that offered by some Unix 
servers), has a drawback that results from the Corbus ODB's storage of all 
data in a manager's objects in one file. It is probably not desirable to give 
every client memory-mapped access to all objects at one. 

Another alternative is for the manager to use a different kind of pager, 
a very simple one that defines memory-objects that are backed to a paging 
store which is released when the memory-object is deallocated. When a 
client requests a memory-object representative port for a particular Corbus 
object, the manager would create such a memory-object, fill it with Corbus 

service calls may be necessary to obtain the object data, due to the need to position the 
seek pointer. Other file services may be more convenient for pagers, if the file service 
interface allows the specification of an offset and extent to be retrieved. 
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object's data (obtained in a conventional manner from a file server), and 
return the representative port to the client. Prom then on, the pager handles 
all the memory management needed for the client's access to the object. 
Again, the object manager is out of the loop. 

The primary drawback of this approach is that the Mach default pager, 
through a design oversight, does not provide the mechanism for tasks to 
manipulate memory-objects paged by the default pager. As a result, a 
separate external pager is required, though one that performs exactly the 
same sort of paging. Another drawback is that the entire Corbus object data 
must be obtained from the file server for insertion into the memory-object, 
even though the client may only access part of the object. 

A final alternative is for the object manager to be the pager and in 
addition to managing the actual storage of object data. The ODB would 
still use a file service interface to manipulate object data, but this interface 
would not be implemented by communication with another server. Rather, 
the interface would be implemented by a library that is part of the manager 
itself. This library would implement the functionality of storing files on a 
raw disk partition device, and offer a simple interface for reading and writing 
from files. This would be the file service interface used by the ODB (though 
perhaps with an additional interface layer as discussed in Section 2.5.3). 

In this last approach, the object manager would be acting very much like 
a memory-mapped file server because the manager actually manages the disk 
storage of objects. The difference would be that instead of implementing 
memory-mapped access to a simple object like a file, the object manager 
would implement memory-mapped access to whatever type of application- 
specific object(s) the manager supports. 

The basic tradeoff of this final approach is between the costs of allocating 
a disk partition to every such manager, benefits of keeping paging, object 
management, and object data storage all in one task per application. The 
benefits are significant and probably worth the administrative overhead of 
having several tasks each managing a disk partition. There are obvious 
limits to the number of such pager/managers that there could be on a given 
host; the specific limit is based on the storage capacity of the host. However, 
these limits would not be substantially different than in the case where all 
the object managers on a host shared one file server. The main difference 
is that in the latter case, there is no need to apportion disk space on a per- 
application basis because all applications share the same large disk partition 
managed by the file server. 
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5.6    Memory-Object Data Representation 

As described above, the major role of a Corbus object manager as a Mach 
pager is in relating ODB data to the page data requests that manager re- 
ceives from the kernel. This section describes the approach to the relation- 
ship between ODB and page data. For the other approaches in which the 
manager is not a pager, there is a similar requirement for the manager to 
store object data in a way that the pager can relate ODB data to page 
data. For purposes of the simplest exposition, however, we describe the 
ODB-data/page-data management approach as it applies to an object man- 
ager that is also a pager. Note that the discussion makes no assumptions 
about how the ODB actually stores object data, e.g., via a file server or by 
managing a disk partition itself. 

A Mach memory-object is a collection of pages of data that can be 
mapped into the virtual address space of potentially several Mach tasks. 
Once a client has mapped a memory-object, it has access to all the data. 
However, among all the pages in the client's address space that are allo- 
cated to a given memory-object, some pages may not be paged-in, i.e., 
backed by real memory. When a task attempts to reference a paged-out 
page of a memory-object, a page fault occurs. When the kernel services the 
page fault, it contacts the pager for the object to request the data for the 
specific faulted page of the memory-object. The kernel does not interpret 
the returned data in any way, so what the pager returns is entirely at its 
discretion. 

Therefore, a Corbus object manager can represent an object in a Mach 
memory-object in any way it likes. So long as the manager and the client 
proxy code agree on how to interpret the data, the client's access to the 
object will work correctly. At a minimum, the manager must maintain a 
correspondence between each Mach memory-object it has created, and the 
Corbus object that it represents. Then, when the kernel sends a memory- 
object data request to the manager, it can extract the Corbus object's data 
from the ODB, locate the requested page within the data, and return that 
page of data to the kernel. 

However, there remains the question of the relationship between the 
ODB data and the page of data returned to the kernel. One simple option 
would be the following: use the ODB in the usual way to put the object's 
data into its in-memory data structure form; compute the size of the struc- 
ture and the requisite page offsets; and return a page of data as is. This 
would have the effect that the client would access data in the memory-object 
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Client Manager/Pager 

Figure 5.3: Pager Use of ODB 

in the same form as the manager would. As a result, the code for client-side 
operations would be very similar to the code used to do operations in the 
manager in the usual message-passing approach. 

This latter point is very significant for the process of manager genera- 
tion. The manager developer typically writes a set of operation subroutines, 
each of which implements an operation using the in-memory data structure 
form of the object which was invoked. In this simple external paging model, 
the object data representation is the same in the shared-memory client as 
it would be in a manager which implemented the normal Corbus message- 
passing style of object access. As a result, the same kind of operation sub- 
routines would be usable as is in client proxy code. This result is significant 
because it means that the paging model has no impact on manager software 
development. 

Figure 5.3 more specifically illustrates the role of the ODB in external 
paging. The manager/pager is separated into three different parts: an upper 
part which handles messages traffic; a middle part which manages memory- 
objects; and a lower part which consists of the ODB software. The two lower 
layers show how each memory-object corresponds to one Corbus object; the 
data in the memory-object are the same as the object's data in the ODB. 
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Different objects' data are differentiated in the figure by different shading. 
The critical difference between the two lower layers' management of ob- 

ject data is that in a memory-object the data starts at the beginning of a 
page. Pages are illustrated as a sequence of boxes of the same size. The 
data within the page are shaded, and the start of the data is placed on the 
left edge of the leftmost page. Thus, each memory-object's rightmost page 
has an unshaded right portion which illustrates a part of the page that is 
not used to contain object data (none of the objects happens to have data 
the size of which is an exact multiple of the page size). 

In contrast to the memory-objects, the ODB object data is not laid out 
in accordance with page boundaries. The ODB layer illustrates the ODB 
data itself, which is shown as an array of storage in which various object's 
object data is laid out sequentially, with some gaps between objects to allow 
for growth of object data. In addition, the ODB storage is shown as divided 
into equal-size units of a page's worth of data. This division into page-size 
units is to illustrate the way that the page boundaries are not significant to 
ODB data layout. A single page's worth of ODB storage could contain object 
data more than one object, which is not the case with memory-objects. 

The primary relation between the ODB object data and the memory- 
object is the act of reading data from the ODB and putting it in a memory- 
object. This act is illustrated by the "ReadObject" call to the ODB, shown 
as an arrow connecting the ODB data and the memory-object. A Read- 
Object call is made by the memory-object software, when it creates a new 
memory-object for a Corbus object. Although not illustrated, a correspond- 
ing WriteObject is also performed when the memory-object data is changed 
per client updates. 

The final feature of the manager/pager part of the figure is the associ- 
ation between each memory-object and a Mach port which represents the 
memory-object. Hence, it also represents the Corbus object whose data is 
contained by the memory-object. Each port is illustrated as being named 
by a single letter enclosed in a double circle (reminiscent of a porthole on a 
ship). 

The larger illustration shows a series of steps of the client-manager inter- 
actions involved in the client's receiving the memory-object corresponding 
to a Corbus object. The first step is a Mach message send shown by a arrow 
labeled "1" which goes from the client to the manager, and surmounted by 
rectangle which represents the client's message. The message is a request to 
memory-map a Corbus object, the name of which is "qux" which is simply 
an illustration of the Corbus UID that denotes the object.  In the second 
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step, the manager receives the message and attempts to relate the name to a 
memory-object for the named Corbus object. Failing this, the manager cre- 
ates a new memory-object for qux and performs a ReadObject for qux to get 
the data into the memory-object. This is represented by the arrow labeled 
"2" and "ReadObject" and going from the ODB to the memory-object. The 
third step is the manager's reply to the client, which is a message send like 
step one. The manager's reply message contains a port right for the port 
"R," which is the port associated with qux's memory-object. The fourth 
step is the client's use of R in a call to the microkernel to request that 
the associated memory-object be mapped. This is illustrated by the arrow 
labeled "4" and "vm_map(R)" and going from the client to the microkernel. 

Subsequent unillustrated steps do not directly involve the client: inter- 
actions between the microkernel and the pager/manager to get the memory- 
object data and change the client's address space to contain it. Note that 
the ReadObject in step two is not really necessary. A particular manager 
may wish to supply all the page data of the object at the time it is memory- 
mapped in order to save the client some page faults. However, this is purely 
discretionary; if no data were read and map time, client reads would result 
in page faults to the kernel, page data requests from the kernel to the pager, 
and ReadObject by the pager to get page data. 

The aspect of the ODB to discuss is the mechanisms employed when 
a client writes an object. Writes to memory-mapped Corbus objects are 
writes to the corresponding Mach memory-object. When the client updates 
the memory-object data, the data is eventually copied back to the pager by 
the kernel. Then, there is an inconsistency between the ODB data and the 
memory-object data shown in the middle layer of the manger. Therefore, 
the manager performs a WriteObject ODB call in order to store the new 
version of the memory-object data. 

The WriteObject call simply uses the address of the memory-object data. 
The ODB code can determine the size of the object data and write only 
the memory-object data that comprises the object data, while ignoring the 
unused space on the last page of the memory-object. The placement in 
the ODB storage of the new object data is the responsibility of the ODB 
code, which does not need to be concerned with the page boundaries of 
the memory-object data. The object data can be moved within the ODB 
storage, e.g., if the object grew larger than its previous size, plus the gap 
between it and the next object in ODB storage. Just as the ODB code is 
ignorant of page boundaries, so so, too, is the memory-object code ignorant 
of ODB storage layout.  The ODB code provides the memory-object code 
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with the object data without requiring the memory-object code to know 
anything except the name of the object. The pager needs to take no specific 
action to coordinate memory-object management with ODB management. 

5.7    Client Object Sharing and Synchronization 

In any shared-memory situation, some amount of synchronization is required 
to ensure that multiple writers do not interfere with one another by writing 
the same shared data. Computer science literature is replete with synchro- 
nization approaches that are equally applicable to synchronization among 
multiple threads in one process's address space and synchronization among 
multiple processes which share regions of real memory in separate process 
address spaces. 

A simple approach to synchronization of shared memory is to implement 
a single mutual exclusion lock based on synchronization data stored in part 
of the memory-object itself. This is typically done in a fixed-size region at 
the start of the memory-object's memory. Any task which has access to the 
memory-object would also have access to the lock and can check to see if 
another task has acquired the lock. In addition, it can attempt to acquire the 
lock using mutual exclusion mechanisms of the kernel or hardware. Locking 
techniques such as [14] have been used in Mach systems [15] to implement 
common locking strategies such as a single-writer lock, where only one party 
at a time possesses the lock, and all parties write only when in possession 
of the lock. 

A simple strategy like this prevents simultaneous writing (in multi- 
processor systems) and conflicting sequential writing (in single processor 
systems), though at the cost of a single mutex for the whole object. More 
complex locking strategies can be implementing using the same techniques, 
with the difference that instead of having using a region of shared memory 
to hold data for one lock for the whole object, the region wholes data for 
several locks for different disjoint subsections of the memory-object. This 
approach is not as general as a single global lock because the definition of the 
subregions must take into account the data format of the memory-object. 
In Corbus terms, such a definition would be based on the application-type- 
specific data layout of an object's representation data. For example, with 
sequential block-structured objects, each of several locks could govern a 
(possibly dynamic-sized) sequence of blocks. In highly-structured record- 
like objects, each of several locks could governs a distinct field (or group 
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of fields). Finally, locks need not be single-writer locks, if it is appropri- 
ate (in terms of an application's requirements) to tolerate some amount of 
conflicting writing as the price of permitting some fixed number N > 1 of 
simultaneous writers. 

In Corbus terms, any locking strategy would be implemented in applica- 
tion-specific proxy code. That is, the implementation of each specific op- 
eration would reflect whether the operation writes the object data and if 
so acquires the requisite lock. A minimal approach (in terms of application 
development) would be to provide a general single writer lock mechanism for 
all objects; application developers would need only to add a lock-acquisition 
call at the start of each write operation's implementation code. More com- 
plex approaches would involve either application-specific hand-crafted code, 
or the use of more complex autogeneration techniques based on IDL an- 
notation which specify which fields or regions are required for a specific 
operation. 

5.8    Replication 

Object replication is a powerful feature of Corbus, and is related to shared- 
memory access to objects because such objects can be replicated. With 
object replication, there are multiple copies of an object, each of which is 
managed by a separate object manager on a separate host. Replication 
processing is performed as part of the computation of an operation on a 
replicated object. Replication processing is largely independent of the oper- 
ation, and is usually carried out before the operation computation. Repli- 
cation processing focuses primarily on the consistency of the object data 
which will be used to perform the operation. 

Consistency refers to a comparison of the object data of the various 
replicas (as each copy of a replicated object is called). When an operation 
on a replicated object is requested, replication processing may determine 
that the current replica (the one to be used in the requested operation) does 
not contain the most recent version of the object. As a result, some some 
reconciliation processing may be necessary. 

For replication of memory-mapped objects, the main replication issue 
focuses on the placement of replication processing in memory-mapped ob- 
ject access. The issue arises from the fact that object managers are not 
directly involved in operation computations on memory-mapped objects. In 
contrast, for objects that have a message-passing client-server interface, the 
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object manager carries out both the operation computation and the repli- 
cation processing. Such managers cooperate to keep the replicas consistent 
and to propagate changes from one replica to another. For example, before a 
manager carries out a client's request, the manager may communicate with 
the managers of other replicas in an attempt to obtain the most up-to-date 
version of the object. 

Therefore, in the message-passing approach, replication processing and 
operation processing are closely related areas of object manager function- 
ality. However, in the memory-mapped approach, operation processing is 
performed in the client's proxy. There can be multiple instances of the proxy 
code operating on the single memory-object that contains the data of the 
shared object's replica. As a result, there is an issue as to when and where 
replication processing is to be done, and how it is to be related to oper- 
ation processing. Shared-memory access to replicated objects requires an 
approach that allocates replication processing to either the client proxy, the 
manager, or some combination of the two. 

5.8.1    Manager Replication Processing 

One approach to shared-memory object replication is to leave replication 
processing in the manager, just as it is for objects with a message-passing 
interface to clients. In this approach, clients carry out operations, based 
on shared-memory access to object data. For replicated objects, however, 
clients would first request replication processing before proceeding with an 
operation. 

The replication processing requests would take the form of exchanging 
messages with the manager of the replicated object. Clients would request 
replication processing for an object, and would wait for a reply from the 
manager. Once replication processing has been completed, the manager 
replies, the client receives the reply and then perform the operation on the 
object. Because of the blocking nature of client's requests for replication 
processing, the term "replication RPC" is used to refer to this client/server 
interchange. This replication RPC is exactly analogous to the way that a 
message-passing object manager makes a procedure call to perform repli- 
cation processing before carrying.out an operation. The difference in this 
shared-memory approach is that the procedure call is an RPC called in 
the client; but in both cases the object manager performs the replication 
processing. 

Assessment of this approach can be clouded by a seeming contradiction. 
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If the goal of shared-memory objects is to minimize messaging between client 
and server, then this replication approach conflicts with shared-memory 
goals by adding more messaging between client and server. However, it 
is more accurate to say that the goal of shared-memory objects to lower the 
computational overhead client/server messaging; messaging itself isn't the 
focus, rather, messaging overhead is the focus. 

A significant portion of messaging overhead involves the transportation 
of message data, including copying to and from client, server, and kernel ad- 
dress spaces. Shared memory eliminates the need to transport data between 
client and server to carry out an operation request because the client can 
access to the object data need for operations. Replication RPCs, however, 
need to carry a minimal amount of data, and so would impose little data 
transport overhead. 

Another part of messaging overhead is the switches in execution context 
between client and server, sometimes including suspension of both client and 
server while another process executes. Mach thread migration techniques 
have virtually eliminated this overhead with an RPC mechanism that shifts 
execution from client to server and back again without a scheduling context 
switch. (See Section 7 for more details). 

As a result of these factors, a replication RPC can approach a local 
procedure call in terms of overhead. Context switch overhead is reduced to 
the expense of one kernel interface call, while message transport overhead is 
reduced to the ID of the object which is to be replicated. Furthermore, even 
this overhead could be reduced if the object manager allocates a specific 
port for replication RPCs for each object. In that case, a client would not 
need to pass any data to the object manager in a replication RPC. 

As a result of these optimizations, manager replication processing for 
memory-mapped objects compares favorably to the approach of objects with 
a message-passing interface. With manager replication of shared-memory 
objects, operation processing is carried out by separate processes linked 
by an efficient RPC mechanism. This RPC mechanism need not be pro- 
hibitively higher in overhead than the procedural-call interface between 
replication processing and operation processing done in the same process 
(either a message-passing manager doing both or a memory-mapping client 
doing both). The additional cost of a replication RPC (as compared with 
an actual procedure call) is small enough to justify the combined use of 
replication and memory-mapped access, without undermining the benefits 
of either. 
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5.8.2    Client Replication Processing 

Although it is feasible to split replication processing and operation process- 
ing client and manager, it seems worthwhile to examine an approach in which 
a memory-mapping client does both replication and operation processing. 
In this approach, a client would assume the object manager's role in coordi- 
nating the consistency of the current replica with other replicas. However, 
only one client at a time could be the coordinator for that replica, in order 
to maintain the Corbus replication mechanism in which each replica has one 
coordinator. Therefore, different processes would be coordinating replica- 
tion for a specific replica at different times. As a result, several complicating 
factors would be have be handled. 

First, the rotation of coordinator responsibilities would make it challeng- 
ing for other replica's coordinators to determine the current coordinator of 
a given replica. Such determination would require the maintenance of some 
state data that identifies the current coordinator. In addition, there would 
have to be a mechanism for other coordinators to access this data. 

Second, each client would have to be careful about relinquishing its co- 
ordinator role. Even if a client had completed its use of an object, it might 
still be performing replication activities initiated by the coordinator of some 
other replica of that replicated object. Such overlapping requests could de- 
lay relinquishment of the coordinator role, thus delaying other clients from 
performing operations. 

A third complexity factor is the need to maintain the state of replication 
processing so that the state can be transported with the coordinator role. 
Such a mechanism might use forwarding of replication requests (from other 
replica's coordinators) or binding outstanding requests with the token to 
be acquired by another client to become the replica's coordinators. This 
would require additional computational overhead, state data management, 
and inter-client protocols. 

There are more complicating factors that could arise from yet other al- 
ternatives, e.g., approaches in which an object's manager and one client at a 
time share the coordinator role. The above three complicating factors, how- 
ever, should demonstrate that the additional functional requirements and 
computational overhead lead to significant overhead. The costs are likely to 
outweigh the relatively modest cost that shared-memory manager replica- 
tion has in comparison to the basic Corbus approach (manager processing 
of replication of objects with message-passing interfaces). 

There is another complexity factor in addition to those derived from the 
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requirement for the current coordinator client to work with other coordina- 
tors. This additional complexity is simply the work required for the clients 
of one replica to ensure only client at a time acts as coordinator. At least two 
locks would be required (one for coordinator of a replica, and one for a coor- 
dinator that can propagate updates), as well as additional state information 
to prevent a new coordinator from repeating the replication processing just 
completed by the previous coordinator. 

Network communication is the final factor in comparing of the client- 
coordinator approach with the manager-coordinator approach. The previ- 
ous section has established that manager coordination imposes only modest 
overhead on shared-memory object access. Attempts to minimize this over- 
head (either by client coordination or other schemes) overlook the fact that 
overhead of client/manager communication is often a minor component of 
the overhead of replication processing. In many cases, the bulk of overhead 
results from network communication with other replicas' managers and the 
time required for the replication computation performed by them. As a re- 
sult, even if considerable complexity achieved a reduction in the client/server 
component of replication processing, this reduction would be small when 
compared with replication processing as a whole. 

Therefore, this client approach to replication processing, while not im- 
possible, adds additional overhead the same as the manager approach, does 
share with the manager approach some additional overhead. The manager 
approach, having the virtue of simplicity (the replication RPC being the 
only new aspect), seems superior. 

5.8.3    Read Operations 

Read operations require replication processing to determine whether the 
replica to be read from actually contains the most recent version of the 
replicated object's data. The number of other replicas to be consulted can 
range from zero to all other replicas, depending on the amount of risk of 
outdated reads that the application can tolerate. An alternative approach 
to replication is made possible by this use of replication processing for read 
operations. 

For comparison, consider the way that a shared-memory object read 
operation would include replication in the manager-coordinating approach. 
The client's proxy code, before performing the read operation on shared 
memory, would perform a replication RPC to the object manager. The man- 
ager would contact the managers of other replicas and if necessary, would 
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obtain current object data from them and update the local replica's data. 
For any page of the corresponding memory-object that is affected by such 
updates, the manager/pager would "push" the page, i.e., request the kernel 
to refresh the page contents with newly-provided page data. The manager 
would then return from the RFC and the client would resume processing 
with a fresh copy of the object data. 

A second approach combines read-operation replication processing with 
the paging functionality of the manager/pager. Replication processing would 
not be done for every client request but rather, for every page request. This 
approach would change the semantics of replication, but could be an alter- 
native mechanism beneficial for some applications. The different semantics 
result from the different breakdown of responsibilities in the shared-memory 
approach: object requests are handled by client proxies rather than man- 
agers, while managers maintain the object data and perform replication 
processing. In this approach, the manager could perform replication pro- 
cessing for every page data request from the kernel. For each object request, 
the manager would identify the managers of other replicas of the object, and 
would engage in network communication with other replicas' managers be- 
fore replying to the kernel's request. Any required object data updates 
would be performed, and the page data then returned to the kernel. 

A more likely approach would be for the manager to reply immediately to 
the kernel, thus avoiding delays in handling until the completion of network 
communication with other replica's managers. In this alternative, the man- 
ager would engage in replication processing after servicing the page data 
request. If the requested page were affected by an update resulting from 
replication processing, then the read operation would have proceeded with 
out-of-date data, but subsequent read operations would use the updated 
data. 

However, this approach would not be suitable for all applications, for 
example, those with frequent write operations. Frequent writes would result 
in frequent out-of-band updates which might effect a read operation whose 
execution caused the page fault. As a result, the pager would always be 
trying to catch up on the updates, and the clients are always seeing out- 
of-date data. Therefore, this second approach may serve some applications 
very well, but it may not be optimal for others. 

A final note about this alternative approach concerns the frequency of 
updates. Updates are entirely dependent on page data requests because 
replication processing is initiated only by page data requests. It is possible 
for all of the pages of an object to remain resident for an arbitrary amount of 
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time, so that a significant time passes before a page-out and subsequent page- 
fault causes replication processing for the object. As a result, several read 
operations may occur on out of date object data. To ameliorate the potential 
for such behavior, the manager could undertake replication processing at 
other times, and in a way that is related to client operations. A proxy's 
execution of a client request could signal the manager in some way, so that 
the manager could perform some replication processing to ensure that the 
local replica isn't out-of-date. This signal could either be a message (an 
asynchronous one that the client wouldn't wait on), or an increment of an 
event counter in the same shared memory region used to hold lock data. In 
the former case, the manager would have to listen for such messages. In the 
latter case, the manager would have to map the memory and periodically 
check it. 

Use of this page-based approach to replication processing is consistent 
with the standard operation-based approach. Both approaches could be 
implemented by Corbus software, either in server library code, or library 
code used by IDL-generated client code for shared-memory object access. 
Either approach could used on a per-application basis, depending on which 
approach is deemed more valuable by the application developer. 

5.8.4    Write Operations 

Note that sensitivity to read operations on out-of-date data application- 
specific. Some applications may tolerate some amount of reading an out- 
of-date replica in return for not having to delay read operations with a 
replication RPC. Write operations are fundamentally different. Clients can- 
not forego replication processing. If a client failed to make a replication 
RPC before writing the data in its memory, then it might update an object, 
thus resulting in inconsistent replicas. Part of the function of replication 
processing of write operations is to prevent such inconsistent updates. An 
irreconcilable set of replicas results from inconsistent updates that could 
occur if clients of all replicas skipped making a replication RPC, deferring 
replication processing the object's manager to perform at a later time when 
the written pages are flushed back from the kernel. 

Another significant difference between read and write operations is that 
write operation replication processing entails two additional aspects. As 
with read operation replication processing, the manager communicates with 
some or all of the other replicas' managers in an attempt to obtain the 
current value of the object data. With write operations, this communication 
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also establishes a lock, so that the other contacted managers won't initiate 
additional write operations on the object until the current one is finished. 
Another aspect of write operations is a second round of communication 
with the other replica's managers. This second round propagates the newly- 
written data, and releases the lock. 

The following is the sequence of steps for a write operation on a replicated 
memory-mapped object. 

1. Client proxy receives procedure call for operation on object. 

2. Client proxy makes replication RPC to manager. 

3. Manager obtains lock and perhaps up-to-date object data. 

4. Client proxy performs write operation. 

5. Client proxy makes a second replication RPC to manager. 

6. Manager pulls the pages of the object that have been written. 

7. Manager releases lock and propagates new object data. 

8. Manager stores new version of object data using pulled pages. 

9. Client proxy returns operation results to client software. 

This list of steps shows two main features. First, some replication processing 
must be done before the operation, in order to ensure proper locking with 
other replicas. Second, some replication must be done after the operation, 
to propagate the updated object data. 

An additional factor relates to pulling of effected pages in step 7. It 
is possible that the kernel will push dirty pages to the manager/pager. If 
pushed pages are for an object for which the manager has not obtained a 
lock from other replicas, then the push resulted from a misbehaving client 
that performed a write operation without making a replication RPC. In 
such cases, the manager could treat these pushed pages as a result of write 
operations, by obtaining a lock and propagating the values. However, if the 
client wrote and out-of-date version, then an inconsistent replica results. 
Therefore, the manager must drop the pushed pages and invalidate the data 
resulting from client's unlocked write operation. 
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5.9    Paging and Data Propagation 

A more fundamental consideration for replication is the amount of messag- 
ing done between the manager/pager and the kernel. For both read and 
write operations, the manager may find a newer version of the object in 
another replica. In such cases, the pager would push pages of new data to 
the kernel. It may be that the amount such kernel/pager messaging would 
be more than the amount of messaging done with message-passing inter- 
face between client and object manager. Therefore, an application-specific 
comparison of messaging overhead is necessary for analyzing the tradeoffs 
between message-passing and shared-memory approaches to replicated ob- 
jects. 

The key aspects for such tradeoffs assessments are: the degree of read 
consistency required, the degree of write consistency required, and the likeli- 
hood of replication processing finding that the local replica is out of date. In 
cases where write operations are more frequent, most operations will already 
use replicas with current versions, because the local replica was involved in 
the last write operation and hence had the latest object data propagated 
to it. Additionally, background update mechanisms may execute frequently 
enough with respect to the frequency of operations so that few operations 
encounter out-of-date replicas. 

Nevertheless, there may be applications in which a significant propor- 
tion of operations on replicated objects encounter out-of-date replicas. As 
a result, many operations would require replication processing to update 
pages with newer object data. For such applications, the use of both repli- 
cation and memory-mapping may not be useful. In other cases, there may 
be applications for which there is a low frequency of requests requiring up- 
dates before operation processing, but for which but update propagation 
after write operations is a significant expense. That is, for write opera- 
tions, the pager must pull dirty pages in order to get the new object data to 
propagate to other replicas. In some cases the amount of kernel/pager mes- 
saging might outweigh the amount of messaging that would be done with 
a message-passing interface. For such applications, both replication and 
memory-mapping also may not be useful; alternatively, a hybrid approach 
could be beneficial. In such a hybrid approach to shared-memory access to 
replicated objects, read operations would use memory-mapped data, while 
write operations would be done via a message-passing interface. 

However, such judgements must also take into account the distributed 
environment in which the replication happens. Some replicas may be stored 
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on hosts that have high communication costs with respect to other replica's 
hosts, in terms of limited bandwidth, latency, unreliability, etc. In such en- 
vironments, the cost of local messaging for pushing and pulling pages may 
be far outweighed by network communication costs for replication process- 
ing. Therefore, it may be that for one group of operations, shared-memory 
access is wins over message-passing for operations which require no updates 
(or small updates), while for another class of operations the extra local mes- 
sage overhead is not a significant component of the cost of the operation. 
For such applications, it may be sensible to retain a shared-memory ap- 
proach because the benefit to first class of operations is significant while the 
detriment to the second class is dwarfed by other detrimental factors. 
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Chapter 6 

Remote Object Data 
Caching 

6.1    Introduction 

Remote object data caching occurs when object data is shared between a 
client and server that reside on different host. Such sharing is particularly 
beneficial for applications which use objects that are large, or extensible, 
or have serial or array-like structures. For example, file data caching is a 
critical element of network and distributed file systems such as NFS and 
Sprite. In terms of benefit to distributed applications, remote object data 
caching has similar results as local shared memory between client and object 
manager. Object data is available to client proxy software to access directly, 
rather than depending on messaging for operation requests and replies be- 
tween client and manager. That is, both techniques share the same goal 
of optimization of message traffic and local access to object data. Just as 
distributed messaging is more costly than local messaging, reduction of the 
distributed messaging overhead has a greater benefit in distributed applica- 

tions. 
This chapter describes how remote object data caching techniques can 

be implemented in Corbus, so that applications can reap the benefits with- 
out having to be aware of the mechanisms involved. Two basic approaches 
are compared, one of which takes advantage of Mach's external memory 
management facilities. More details and tradeoffs concerning the Mach ap- 
proach are also described. In particular, requirements for distributed data 
consistency are discussed, as are options for handling heterogeneity between 
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clients and object managers. 

6.2    Data Caching in a Distributed Environment 

The basic concept with object data caching is that some or all object data 
resides in the client address space, so that the client proxy code can directly 
access the data in order to implement client object requests. The local 
shared-memory approach described in Section 5 is a particular instance of 
this approach. By taking advantage of locality of client and object manager, 
the management of the cache (containing the entire object) can be done by 
the object manager acting as a Mach pager. 

In a distributed environment where clients and object managers may 
be on different hosts, some kind of network communication is necessary 
to manage client-side object data caches. Object data must be sent from 
manager to client. Client updates must be sent back to the manager and 
also propagated to other clients of the same object. Client updates must also 
be coordinated to prevent the multiple simultaneous updates from creating 
inconsistent versions of the object data. 

The most common approach to remote data caching is joint manage- 
ment of the cache by client proxy code and manager code. Many network 
and distributed file systems use some variant of this technique. When client 
requires file data, the client proxy communicates with the remote file server, 
obtains the data, and caches it in memory for later use. If the same data is 
accessed before it is flushed from the cache, then the subsequent access re- 
quires no communication because the data is already in the client's memory. 
If the client's access includes writing the data, the client proxy first obtains 
a single-writer lock from the file server; when the writing is complete, the 
updated data is sent back to the file server along with the lock release. The 
file server then updates the caches of other clients accessing the file. 

This client cache management approach has two drawbacks that can be 
addressed in a Mach system. First, the client/manager interaction requires 
a cache management protocol. While such protocols are relatively simple in 
distributed file systems, the generalization is difficult when this technique is 
employed in a reusable way for distributed object applications. The protocol 
would have to take into account the application-specific structure of object 
data. This generalization of file caching for arbitrary types of application 
data poses real challenges for IDL-based software generation tools. In order 
to obviate this difficulty, it may be simpler to cache each object's data in its 
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entirety, so as to not have to generate code to fetch and cache portions of 
objects. While simpler, this may incur unnecessary overhead resulting from 
obtaining object data that is never used. 

A second drawback is that cache data can be paged out because the man- 
agement of the cache as object data (performed by application software) is 
uncoordinated with management of the cache as data in the client's memory. 
As a result, paging overhead can be part of the cost of a cache search, and 
even after a successful search the required data may still need to be paged 
in. This potential for undesirable paging activity is a result of making client 
software perform cache management. 

The Mach memory management approach to cache management entirely 
removes cache management responsibility from the client, and unifies cache 
management with memory management. Object data is cached in client 
memory that is paged by the object manager, just as in the local shared 
memory case described in Section 5. Object data can be obtained on a page- 
by-page basis (rather than having to be obtained for the entire object), and 
this can be done without any knowledge of the application-specific structure 
of the data. Paging and caching are combined. That is, a given page of 
object data is in cache if it is paged in, and out of cache if not. Thus, cache 
hits are synonymous with ordinary memory access, and cache misses are 
synonymous with page faults. Pages of data are only obtained as needed. 

While this unification of functionality is simpler than the file system 
caching approach, it still shares the same basic requirement for consistency of 
object data in the face of potentially multiple conflicting writers on different 
hosts. This consistency requirement is one of the two principle differences 
between paged remote object data caching, and local shared memory of 
object data. The other principle difference is that in the former case, the 
pager/manager is on a separate host from the client and the kernel-pager 
communication takes place via distributed rather than local IPC. 

Another significant factor with this approach is the heterogeneity of 
client and object manager hosts. An object-based generalization of the file 
caching approach can deal with heterogeneity fairly easily. Manager and 
client proxy exchange object data of entire objects at a time. Despite other 
drawbacks of this approach, a benefit is that it allows the object data to 
be encoded in a canonical type by the sender, and converted to local for- 
mat before being placed in cache (when the client is the receiver) or object 
storage (when the manager is the receiver). 

In the Mach paging approach, however, the Mach kernel is the receiver 
of messages from the object manager.   The kernel has no facility for de- 
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coding application-specific canonical types. Rather, the kernel simply takes 
page data from the pager/manager, and places the data as is into the client 
virtual address space. As a result, general support for heterogeneity in the 
paging approach requires more complexity of mechanism. As the following 
sections show, this complexity may not be warranted, especially when con- 
sidering that heterogeneity factors include differences in hardware, operating 
systems, page size, word size, byte ordering, and subtler differences in data 
layout resulting from different compilers or linkers. 

6.3    Consistency Management 

This section describes the need for consistency management in the Mach 
paging approach to remote object data caching, and means to address this 
need. The similarities and differences between cache management and lo- 
cal shared memory are stressed, since these drive the need for additional 
requirements beyond those of local Mach paging. 

6.3.1     Local vs. Distributed Consistency 

In any shared-memory scheme, data consistency and coordination are im- 
portant issues. Mach's external paging mechanism automatically provides 
data consistency when a pager and its clients reside on the same host. This 
results from the fact that when multiple clients map the same memory ob- 
ject, each client's virtual addresses for that object map to the same physical 
addresses. Thus, a change to a memory object is immediately reflected in 
the memory of every client that has mapped the object. No other propa- 
gation of updates is needed. This direct sharing requires some coordination 
of writes to a memory object if there are multiple writers and if collisions 
are undesirable. Such coordination mechanisms are fairly straightforward in 
the case when a pager and its clients are on the same host. 

In a distributed system, a pager may have clients on different hosts. For 
distributed clients, local consistency and coordination mechanisms are in- 
sufficient. Clients on different hosts lack this local memory sharing of clients 
on the same host. As a result, when a client on one host updates mapped 
data, the clients on the other host do not automatically see the updated 
data. Thus, two different hosts may have inconsistent versions of the same 
memory-object which contains the data of some Corbus object. Some form 
of data propagation is required to ensure that each client's version of object 
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data is consistent with other clients' versions of the data. Therefore, the dis- 
tributed use of external paging in Corbus/Mach requires new functionality 
for distributed consistency and coordination of memory object access. 

Propagating the new page data is the principle action that a pager must 
take in response to a page write-back. This process is illustrated in Fig- 
ure 6.1. When a pager receives a write-back message from the kernel on one 
host, the pager must determine if there are other kernels that have a copy of 
the memory-object referenced by the write-back message. If so, then these 
kernels' versions of the page data is out-of-date and the pager must send the 
newly written-back page data to them. 

In Figure 6.1, two hosts are shown, with the pager residing on Host A. 
There are three clients of the pager, two on the pager's host and one on 
Host B. The pager holds the data for a memory object that is schematically 
named foo. Foo's data is mapped into the address space of each client via 
a dialogue between the pager and the kernel. Since clients exist on two 
machines, the pager communicates with each machine's kernel. Each kernel 
arranges for the memory object's data to be in each client's address space. 
This memory mapping is illustrated by dashed lines between each client's 
virtual address space containing the memory object and the kernel-managed 
real memory. 

Initially, the three clients have the same view of foo's data. Then, assume 
that one of Host A's clients writes part of foo's data in its own address space. 
Because the clients on Host A share the same real memory, this write is 
visible in the writer's address space and in the address space of the other 
Host A client. However, the client on Host B is ignorant of the change to 
foo until the pager propagates the new data via communication with Host 
B's kernel. 

This simple approach to propagation ensures that changes to a memory- 
object on one host are propagated to other hosts. However, this approach 
is insufficient for handling a whole class of potential collisions. The reason 
for this inadequacy stems from the fact that several kernels may be send 
messages to a pager and the order in which the pager receives them influences 
the way in which the page data is stored. 

For example, suppose two clients on different hosts have mapped the 
same object and write to the same page. Suppose that Client A's kernel 
writes back the page first, the pager receives it, and propagates this value 
to Client B's kernel, thus nullifying the write made by the second client. 
Alternatively, the Client B's kernel may have sent a write-back message after 
the first kernel does, but before the pager handled the first kernel's write- 
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Figure 6.1: Pager Propagation of Dirty Pages 
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back message. In this case, the pager will first handle Client A's version and 
then Client B's version. On Host B, the data first gets changed from Client 
A's version to Client B's version. It is then changed back to Client A's. 

6.3.2    Potential Solutions 

There are a variety of ways to do locking as part of consistency processing, 
regardless of the type of environment. However, the distributed case is 
unique for two reasons. First, when two parties share local real memory, a 
lock can be considered representative of shared data. This is not the case 
with distributed shared memory; one must lock a segment of memory before 
it can be shared. This amounts to a Catch-22 problem. Therefore, some 
fundamental part of the locking scheme involves message passing between 
a client and a server. Second, the distributed case requires that newly- 
updated object data be propagated among all of the pertinent servers lest 
a client perform an operation based on out-of-date data. Hence, there must 
be a way to identify what has been changed upon object updates and then 
those changes must be propagated throughout the system. Note that these 
actions would occur after a lock has been released by a client. 

There are many different approaches to pushing and/or pulling changes 
in conjunction with locking. The literature of distributed shared memory 
(DSM) techniques is replete with various approachs. Though developed 
originally in the context of a DSM abstraction for parallel programming us- 
ing multiple cooperating networked hosts, the DSM techniques apply just 
as well to object consistency. That is, the memory containing an object's 
data can be treated as a DSM space spanning the various hosts which have 
a client accessing the object. IDL tools would generate software to use one 
of these DSM approaches to consistency. More variety in consistency ap- 
proach can derive from more sophisticated IDL tools, i.e., multiple possible 
approaches could be offered as alternatives to application developers. 

Approaches to consistency may also vary with regard to which system 
component will actually do the push/pull of changes, e.g., Mach in object 
pager/manager. If the Mach pager/manager manages the lock, then it can 
distribute object data changes when a client releases that lock. Reference 
Figure 6.1 Data Propagation, for a example of how this might be done. 
Clients obtain a lock from the pager/manager via messaging, and only then 
perform the update. After completing the update the client releases the 
lock, again via a message to the remote pager/manager, the manager prop- 
agates the changes by pulling the dirty pages from the client's kernel, and 
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pushing them to the kernels of other clients. A single-writer lock is the sim- 
plest approach to locking, though several alternative locking approaches are 
presented in Section 5.7. 

6.4    Caching in Heterogeneous Environments 

In a heterogeneous environment, the client and manager can exist on differ- 
ent hosts, which can have different hardware architectures. Heterogeneity 
of hosts is a significant complicating factor in distributed object cache man- 
agement via Mach external paging. The approach described above works 
well in cases where the client and object hosts are homogeneous, because 
the data is transmitted in the form native to the common host type. The 
various benefits of this approach result in part from the lack of involvement 
of the client in cache management. 

However, this same lack of client involvement creates difficulties for cases 
of heterogeneity of client host and object host. Transmission of object data 
between client host and object host must be able to take into account po- 
tential differences between the two hosts. In these cases, object data must 
be transmitted in the form of host-independent canonical data encodings, or 
cantypes, because the client and manager would otherwise interpret the ob- 
ject data differently. Reception of cantyped object data is performed by the 
kernel, rather than client library software. However, the client can include 
application-specific library software for converting canonical data, while the 
Mach kernel cannot. The Mach kernel can only take the page data supplied 
by the pager, and write it into the client's memory. If the pager supplies 
data in a canonical format, then the data will remain in canonical format in 
memory, rather than being translated. Therefore, new techniques must be 
applied to the management of canonical data in distributed Mach memory 
management. 

The following sections describe some techniques for managing cantyped 
object data. Although there are a variety of issues, the basic tradeoff is 
fairly straightforward. There are several alternative approachs, each with 
positive and negative points: 

• Benefit from a memory-mapped object data cache without the cost of 
cantypes, but be restricted to support for homogeneous cases. 

• Benefit from a memory-mapped object data cache, but pay in in- 
creased complexity and deceased performance by always transmitting 
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data in cantype format. 

• Transmit data in cantype format only when needed, and increase per- 
formance in some cases while increasing overall complexity. 

• Forego the benefits of memory-mapped caching in favor of the simplic- 
ity of client-library cache management and cantype translation. 

In each case, there is a tradeoff to be made. Subsequent discussion of design 
approaches should provide more information that is useful for making an 
informed decision among the various choices. 

6.4.1    Manager Maintenance of Cantype Data 

Cantype management is the main source of complex requirements for pager/ 
managers to efficiently perform object data caching in a heterogeneous en- 
vironment. There are inherently high costs associated with a client's use 
of a memory-object containing cantype data. The cost arises from the fact 
the cantype format of the shared data differs from the native format used 
by the operation subroutines that actually perform the operations on the 
object data. 

When object data is transmitted in cantype form, there is an extra step 
in a manager's response to a memory-object data request. After the manager 
gets the data from the ODB and puts it into a data structure, it must convert 
the data structure into its cantype representation. It is this octet-sequence, 
rather than the byte sequence of the data structure, from which the manager 
draws the page of data that is returned to the kernel. Thus, object data 
exists in three versions: the actual ODB data, the in-memory representation 
of the ODB data, and the in-memory cantype version of the object data. 
These must managed jointly. 

Clearly, there are performance issues associated with this approach. The 
main tradeoff involves object updates. If a manager maintains an in-memory 
copy of an object's cantype value, then the corresponding ODB data will 
be out of synch when the in-memory cantype value is updated. As a result, 
the manager must maintain consistency between the ODB object data and 
the in-memory cantype object value. This maintenance could be done using 
either one of two approaches. The first employs a consistency check for each 
memory-object data request. The second requires a consistency update for 
each update of the ODB value. The consistency check is a comparison of the 
object version between the ODB value and the cantype value. In cases of a 
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mismatch, the cantype value would be recomputed based on the new ODB 
value. The consistency update checks to determine if there is an in-memory 
cantype value for the object being updated. If so, the cantype value would 
be recomputed. 

The simplest approach is to eliminate maintenance of the in-memory 
cantype version, by eliminating this version. The manager would perform 
this ODB-access and data-conversion for every memory-object data request 
and every memory-object data-flush. If objects of the type tend to be small, 
e.g., less than a page after conversion, then the cost of the lookup and 
conversion may be sufficiently low, thereby justifying the additional work 
of maintaining an in-memory cantype copy. For larger objects it may be 
desirable to save the results of the ODB-access and data-conversion for later 
use in order to avoid redoing large ODB-accesses and conversions. 

The usefulness of such functionality is dependent on the relative fre- 
quency of Corbus object update operations versus memory-object data re- 
quests. The former is governed solely by client behavior, but the latter also 
depends on paging behavior. A memory-object data request occurs only if 
a client tries to access an object. This can be repeated if the required page 
gets paged out before the next access to the object. 

It appears that there is no single approach to optimizing the processing 
necessary to use cantype data in external paging. One cannot extrapolate 
from expected client behavior to a useful approach due to the role of paging. 
Therefore, the best approach is for the manager to be adaptive. For each 
object, the manager should note the frequencies of update and page requests, 
and maintain the consistency of in-memory cantype values for objects with 
a high page request rate and a low update rate. 

A relatively small amount of work would be required to track object 
updates and page requests. Also, the handling of each page request would 
include a lookup of the object in a cache of cantype values. This extra effort 
may be worth the benefit of an approach that avoids excessive computation 
of cantype values. However, it is conceivable that for some types of objects 
and client access patterns, this effort would result in little additional effi- 
ciency. Hence, from a development point of view, the manager code should 
perform cantype value computation for every page request until performance 
issues justify use of a more sophisticated technique. 
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6.4.2 Homogeneity Optimization 

It is possible for a pager/manager to differentiate between, and provide 
service to, heterogeneous clients and homogeneous clients. (Mechanisms for 
performing the differentiation are described in Section 4.2.1.) The benefit 
applies to cases where the client and manager are on homogeneous hosts, and 
therefore can forgo conversion to cantypes by the manager and conversion 
from cantypes by the client. However, doing so entails a non-trivial level 
of complexity. The complexity stems from the requirement for the pager to 
maintain two different memory-objects for each Corbus object. 

One memory-object would contain a cantype representation of the Cor- 
bus object data, while the other would contain a native representation of the 
Corbus object data. For heterogeneous clients, the pager would provide a 
memory-object with cantype data, while for homogeneous clients the pager 
would provide a memory-object with native representation data. Heteroge- 
neous clients accessing a given object would share the same cantype-based 
memory-object, and homogeneous clients would share the native object. 
However, clients of a given Corbus object would no longer share the same 
memory-object that contains the Corbus object's data. Because there could 
be two memory-objects for one Corbus object, the two memory-objects and 
the ODB would need to be synchronized. 

This combined approach would not be significantly impacted by a change 
to Corbus whereby the ODB stores object data in cantype format. Such a 
change would relieve the manager of the burden of converting object data 
to cantype format. However, the result would be increased complexity. To 
avoid requiring clients on the same type of host to access the object data in 
cantype format, the manager must convert from the ODB cantype format to 
the native format for a homogeneous client. Thus, the manager would still 
have to convert cantype and native representation types, but the conversion 
would be optimized. 

6.4.3 Client Processing of Cantypes 

As the foregoing shows, there are some complex requirements for pager/ 
managers to efficiently perform cache management in a heterogeneous en- 
vironment. If this complexity made matters simple for clients, then the 
manager's extra work might well be worthwhile. Unfortunately, this is not 
so, because there are inherently high costs for a client using a memory-object 
containing cantype data. 

105 



The cost arises from the fact the cantype format of the shared data dif- 
fers from the native format used by the operation subroutines that actually 
perform the operations on the object data. In order to use the usual kind 
of operation subroutines, the shared-memory cantype object data must be 
copied to native-representation structure. 

An alternative approach is to use the cantype data as is. To do so, a 
new and different kind of operation subroutine would be needed— resulting 
in a significant change to the manager development methodology. Even 
with such a change, conversion would still occur in order to get and set 
parts of object data using the native representation values specified by the 
programming language used. Note that such partial translations may need 
to be supported by new autogenerated code which can traverse the entire 
cantype form in order to find the required field. Also, partial translations 
can be problematic when a write to a field causes the size of the cantype 
data to increase. 

Therefore, there is some unavoidable cost. To better understand this 
cost, consider the comparison with a normal Corbus manager that provides 
message-passing access to objects. When a client invokes an operation, 
the client proxy code converts the operation parameters to cantype format, 
and includes them in the message which it sends to the manager. For the 
manager to perform the requested operation, it must convert these cantype 
parameters to the manager's native representation (which may be different 
from the client's native representation) in which the invoked-upon object's 
data is maintained, and which the operation subroutine uses. Likewise, 
output parameters must be converted to cantype format by the manager 
before sending the reply message, and client proxy code must convert back 
from cantype format before returning the operation results to the client code. 
By contrast, the situation is reversed in a shared-memory approach. The 
operation parameters, specified in native format, do not need to be converted 
to cantype format because the operation is performed locally in the proxy 
code. However, the object data comes from the manager in cantype format 
and must be converted to the native format for use with the parameters by 
the operations subroutine. 

Therefore, some amount of conversion to and from cantypes is neces- 
sary in heterogeneous cases whether the manager uses a message-passing 
approach or a shared-memory approach. However, there are two critical 
differences. First, the entire set of object data must be converted for the 
shared-memory approach, rather than the parameter data. In many cases, 
the object data is larger than the parameter data of most or all operations 

106 



provided by the manager. Thus, there is the requirement for what is likely 
to be more computation for cantype conversions. In specific, the client proxy 
code must convert the cantype data in the memory-object to a native rep- 
resentation structure that is used by the operation subroutines. For each 
operation, this conversion must be done before calling the operation sub- 
routine. For write operations, the reverse translation must also be done to 
propagate the newly written object value. 

Second, the parameter cantype conversion are transitory. That is, the 
converted input parameters are used only in the operation they are part of, 
and the cantype input parameters are not used after the conversion. The 
inverse is true for cantype conversion of output parameters in the message- 
passing approach. By contrast, the shared-memory approach would require 
conversion of the entire object data for every operation, and this converted 
object data would be used for each operation on that object. The larger 
the object is, the more efficient it would be to keep an in-memory copy of 
the native representation of the object, in parallel with the shared-memory 
cantype representation. 

Keeping such a native-representation copy could reduce the number of 
wholesale conversions of the object data, but of course there would be a 
requirement for consistency with the cantype copy which is the actual data of 
the memory-object. Thus, the client proxy code would be doing conversions 
that are similar to what the manager is doing. That is, before the client 
proxy code calls an operation subroutine, there must be a check of the 
memory-object cantype data, to see if it has been changed (by another 
client) since the last operation, and if so to replace the in-memory native- 
representation copy with a freshly translated version of the cantype data. 

6.5    Analysis of Approaches 

As the preceding text shows, there is considerable and unavoidable over- 
head from translating to and from cantype data by both the manager and 
client proxy code. The lesson learned from examining client requirements 
is that an efficient distributed typed shared memory mechanism in Corbus 
is feasible among homogeneous hosts. On the other hand, heterogeneous 
distributed typed shared memory requires greater complexity of mechanism 
and decreased performance. There simply is no single mechanism for effec- 
tive memory-mapped access to object data in a distributed heterogeneous 
environment. However, selective application of specific techniques can pro- 
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vide significant benefit in some cases. 

6.5.1    Homogeneous Client/Manager Approach 

To define what these cases are, it useful to recognize a further kind of het- 
erogeneity: not all hosts in a Corbus system will be Corbus/Mach hosts. 
Corbus/Mach managers must still offer service to non-Mach Corbus clients. 
Therefore, even if a particular manager could effectively serve all Corbus/Mach 
clients in a memory-mapped mode of service, the manager would still have 
to offer an ordinary Corbus message-passing service to non-Mach clients. 
Therefore, one approach to heterogeneity is for memory-mapping object 
managers to offer memory-mapped services only to Corbus/Mach hosts on 
homogeneous hosts. Message-passing service would be provided to clients 
on heterogeneous Mach hosts and non-Mach hosts. 

This approach essentially dispenses with the complex requirements and 
approaches to them that were presented in the previous section. This obser- 
vation does not rule out cases where some of these approaches may provide 
enough benefit to justify the cost of heterogeneous distributed object cache 
management via paging. However, it is important to note that none of these 
complexities is strictly required for meaningful homogeneous use of paging 
for cache management. 

Another important observation is to recognize the role of Corbus object 
replication. Clients of hosts of several different types can still benefit from 
memory-mapped service from a manager. Each different host type would 
have one manager on a host of that type offering memory-mapped service 
to clients on hosts of the same type. The various different managers would 
each be managing a replica of the same object, using the existing replication 
mechanisms of Corbus, and the approach described in Section 5.8 for com- 
bining paging and replication. The only new functionality required would 
be some awareness of each replica manager of the host type of other replica 
managers. This information would be used when the location mechanism 
resulted in a client on a host of type A contacting a manager of a host of type 
B. In these cases, the manager could forward the client to another replica 
manager on a host of type A, so that the client can get memory-mapped 
service. 

A final note about replication and distributed memory-mapping is a 
comparison with replication and local memory-mapping discussed in Sec- 
tion 5.8. The primary difference is that client/manager IPC for replication 
processing is not local RJPC but distributed RPC. This difference implies 
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some additional overhead. This increase in overhead is not likely to be 
significant, however, because the main bulk of the manager's replication 
processing involves distributed IPC with various replica managers on other 
host. One further instance of distributed IPC is not likely to increase the 
cost of replication beyond its benefit. 

6.5.2    A Combined Approach 

Another alternative strategy is to dispense entirely with distributed memory- 
mapping because of its difficulties with heterogeneity, and instead rely on 
some variant of the technique of client library management of caches as 
in Sprite, Photon, and NFS. However, doing so would unnecessarily forgo 
the benefits of distributed memory-mapping in homogeneous cases. A com- 
bined approach would utilize memory-mapping in homogeneous cases, and 
for heterogeneous cases would utilize client cache management rather than 
message-passing as in the previous section.. 

This approach would require some additional complexity in the manager 
and client proxy code, but the complexity would be of two separate mech- 
anisms, each relatively simple and each used when appropriate. And two 
mechanisms are required in any case because of non-Mach Corbus hosts, as 
the previous section showed. (Note that non-Mach hosts can utilize the client 
caching approach because client caching does not rely on any Mach mecha- 
nisms.) Therefore, this combined approach simply substitutes client caching 
for messaging in heterogeneous cases of applications for which caching has 
already been identified as a benefit. For other applications where caching 
is not beneficial, the message-passing approach would still be used. Both 
the message-passing approach and the combined caching approach would 
be available as alternatives to application developers using the Corbus IDL 
tools. 

Regardless of which approach to remote object data caching is chosen, 
Corbus can build an object data distribution infrastructure into client/server 
code. 
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Chapter 7 

Real Time 

7.1    Introduction 

Modern real-time systems feature kernel-level thread management and adapt- 
able scheduling functionality. A real-time system must complete a function 
at the proper time, accounting for computation time, resource access time, 
and other factors. Distributed system functionality is essential for real-time 
systems that require resource redundancy for fault tolerance. The Mach 
microkernel can meet these needs of real-time systems. It is also capable 
of distributed real-time functionality since it is extensible to a distributed 
environment in the manner required for Corbus/Mach. 

Mach is capable of providing real-time system support, which falls into 
two areas, for distributed applications built on Corbus. First, a Mach sys- 
tem base can support real-time computation scheduling. Second, Mach 
thread management can provide scheduling coherence, a critical property 
of client/server real-time computing. 

7.1.1    Real-time Scheduling 

Real-time scheduling is supported in the Mach kernel by the use of a schedul- 
ing policy that schedules computation based on real-time properties such 
as deadline, priority, elapsed time, etc. However, different real-time envi- 
ronments often require different real-time scheduling policies. Therefore, 
the incorporation of a real-time policy is insufficient to demonstrate broad 
applicability to a range of real-time environments. As a result, scheduler 
replaceability has been a focus of real-time Mach research. 
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More recent research [5] demonstrates the insertion of a real-time schedul- 
ing policy into the Mach kernel, as a worked example that real-time sched- 
uler replacement is feasible. Ongoing work at IBM [16] promises to merge 
scheduler replaceability with IBM's commercial microkernel development. 
As a result, a real-time Corbus/Mach system can be supported by a Mach 
microkernel that provides real-time scheduling. 

7.1.2    Scheduling Coherence 

Scheduling coherence is a distributed computation property in which all 
processing is scheduled in the same way, regardless of where the processing 
occurs. This is critical for real-time computation, lest separation of com- 
putational responsibilities come at the expense of uncoordinated execution. 
Priority inversion is an example of such a lack of coordination; it has been 
a significant factor in research of multi-threaded, client/server, real-time 
computation [17]. 

Scheduling coherence is particularly important in client/server compu- 
tation, where real-time requirements are often asserted by client software. 
This client software may call several different servers to perform the compu- 
tation. When clients wait for servers to complete a portion of some real-time 
computation, the resulting synchronous client/server communication is re- 
ferred to a Remote Procedure Call (RPC). Hence, scheduling coherence and 
RPCs are closely related. 

Recent Mach developments, especially thread migration, have led to 
Mach's ability to provide scheduling coherence. Therefore, Corbus/Mach 
can take advantage of this feature, together with real-time scheduling, to 
provide distributed object applications with real-time support. 

Subsequent sections describe thread migration and several consequences 
of it for real-time-capable client/server software: coherent scheduling mech- 
anisms, elimination of scheduling context switch for RPCs, new mechanisms 
for server threads, and data copying optimizations. 

7.2    Thread Migration 

Scheduling coherence is provided as a result of thread migration, a Mach 
IPC optimization approach pioneered at Carnegie Mellon University [22][23] 
as part of the decentralized real-time scheduling investigation, and subse- 
quently refined at the University of Utah [9]. The Open Software Foun- 
dation (OSF) has implemented thread migration in the RPC feature of its 
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real-time Mach microkernel [11]. Commercial microkernel work at IBM has 
used thread migration as the essential Mach IPC mechanism. Any of these 
migrating-thread Mach kernels can be used as the basis for Corbus/Mach. 

The remainder of this section is organized as follows. A detailed dis- 
cussion of thread migration is followed by a description of the scheduling 
coherence consequences of thread migration. Finally, an example of migrat- 
ing thread RPC that preserves scheduling coherence is provided. 

7.2.1    A New Thread Model 

There are two parts of a migrating Mach thread: an empty thread and 
a shuttle. A shuttle is the actual schedulable point of execution and an 
empty thread is the state of the thread pertinent to a specific task. When a 
shuttle is executing in a task, it has access to everything in the task's address 
space and it has some execution context within that address space. When a 
shuttle migrates from one task to another, that execution state is preserved, 
but remains inactive until the shuttle returns to the task. While the shuttle 
is executing in that other task, it has no special access to anything in the 
previous task. 

An empty thread is the task-specific state of a single thread. An empty 
thread contains most of what is relevant about a thread at any given time; 
thus, the bulk of thread data are permanently bound to a task. The shuttle 
is the part of the thread that moves from empty thread to empty thread. 
Because the shuttle is just the scheduled point of execution, the only thread 
attributes that move between tasks are the scheduling attributes carried by 
the shuttle. 

In order for a shuttle to migrate into a task, the task must have a vacant 
empty thread to which the shuttle can be bound. When a shuttle enters 
an empty thread, it carries no state from the previous task, other than the 
shuttle's scheduling attributes. The same is true when a shuttle exits an 
empty thread to return to the previous task. Also, once a shuttle has exited 
an empty thread, that empty thread retains no state of that shuttle. The 
information flow between the calling task and the callee task of a migrating- 
thread RPC is restricted to the thread's attributes, the calling task's RPC 
message, and the callee task's reply message. These two messages are exactly 
the same information that is passed in IPC without thread migration. 
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7.2.2 Scheduling Coherence As A Consequence of Thread 
Migration 

The originally-intended benefit of the above RPC approach was to optimize 
RPC processing by the elimination of a context switch between the client 
and server threads. Scheduling coherence is a side-effect of the server's use 
of the clients shuttle, and hence the client's scheduling attributes. With 
scheduling coherence, the server executes in the same scheduling context 
as the client it is servicing, so no priority mismatches can occur. When 
the server thread completes its computation and returns from the RPC, the 
shuttle reverts to the client which then resumes execution- again, in the 
same scheduling context. 

7.2.3 Client and Server RPC Processing 

In the original Mach IPC model, executing threads would block on a kernel 
call to receive a message from a port. In server implementations, the follow- 
ing series of events were common: create a port (and obtain the receive right 
for it); make send rights to the port available to clients; create threads; and 
set each of them to execute the same procedure. First, the procedure would 
execute a blocking message receive on the port, wait until the message ar- 
rived, and then process the client's message and send a reply message. This 
sequence would be repeated when another message is received. A client, on 
the hand, sends a message to a server, and then does a blocking receive to 
wait for the server's reply message. 

With the migrating threads approach, client and server processing is 
somewhat different. When a client uses migrating threads RPC to con- 
tact a server, the RPC is in a manner that appears to the client software 
as very similar to that described above: send a message, and wait for a 
reply. However, the kernel's migrating-thread RPC implementation moves 
the shuttle from the client's suspended thread to a thread in the server. In 
order to receive the RPC and the shuttle, the server software's port and 
thread processing is somewhat different than in the original model. For 
migrating threads, servers create empty threads. An empty thread has a 
dormant execution state and an undefined shuttle. When the server initial- 
ization software creates an empty thread, the empty thread is associated 
with a port and with some procedure to execute once an RPC on that port 
is made. When a client calls an RPC using a send right to a port, the kernel 
selects an empty thread bound to the receive right of the port. That empty 
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thread receives the shuttle and starts executing the previously associated 
procedure to process the RPC data. 

In order to receive RPCs, real-time servers must allocate empty threads 
and bind them to both port receive rights and RPC-handling code. By doing 
so, servers can receive migrating- thread RPCs and perform computations 
for clients in a coherently scheduled manner. This is the only real-time- 
specific aspect of server processing that is general to object managers. In 
many cases, this is the only real-time aspect of server processing. In some 
cases, a server may place real-time constraints on its own processing, irre- 
spective of clients' real-time requirements. A more likely case is a server that 
asserts real-time constraints when it is acting as a client to another server. 
However, such cases would be instances of application-specific real-time be- 
havior of a service implementation, rather than generic server processing. 

There is little impact on the existing Corbus code base as a result of 
this real-time requirement for object servers. Corbus object managers are 
built on a base of reusable code, called the manager skeleton, into which 
two structures are inserted. These are the IDL-generated communication 
software and empty procedure stubs, which developers fill with application- 
specific software. For thread migration and real-time, IDL-generated code 
would simply use the migrating threads IPC service. In some cases, this 
would not necessitate a change. For example, the IBM microkernel's IPC 
service is inherently coherently scheduled due to use of thread migration; 
therefore, no special IPC interfaces are needed. 

7.3    Elimination of Scheduling Context Switch 

The original intent of thread migration was to optimize synchronous message 
passing between clients and servers on Mach. Scheduling coherence was 
a beneficial result applicable to real-time systems. Thread migration also 
eliminates another part of the original Mach IPC model: the context switch 
between message sender and receiver. Since the context switch may have a 
negative effect on real-time computation, this is another benefit of thread 
migration. 

A context switch occurs when one thread stops executing and the kernel 
initiates execution of another thread. The problem inherent with a context 
switch in RPC is that there is no guarantee that once the client thread 
suspends, the server thread will be the next to execute. Hence, given a set 
of real-time processing requirements, a scheduling context switch poses a 
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performance issue. One thread may be available to receive data but does 
not execute due to a lack of scheduling priority. The context switch could 
lead to undesirable and potentially unbounded delays in that processing. 

Thread migration eliminates this potential delay between client message 
send and server message receive. The message send and receive occur in a 
single continuous thread of execution, in which the shuttle binds the client 
thread to the server thread. In addition, eliminating the scheduling context 
switch improves performance. It removes the kernel overhead associated 
with complete thread suspension and yielding to the scheduler in order to 
run a new thread. 

7.4    Subsystem Registry 

Subsystem registry is another real-time relevant optimization that results 
from thread migration. The focus of the optimization is the kernel's copying 
of RPC parameters. When the kernel copies RPC parameters from the client 
to the server and vice versa, it can copy only a data structure that is known 
to it. In Mach, the primary data structure is the Mach message. Hence, 
RPC parameters must be packed into a message on the client side via an 
activity known as marshalling. Likewise, on the server side, parameters can 
be used only after unmarshalling code unpacks the message into the original 
RPC parameters, each with its own type. Hence, data must be copied 
in three steps: the client copies from parameter form to message form; the 
kernel copies the message from the client to the server; the server copies from 
message form to parameter form. This process is repeated in reverse order 
upon the return of the RPC from the server to the client. A great deal of 
computational overhead is involved in marshalling and unmarshalling. This 
process  is illustrated in Figure 7.1. 

A "signature" may be defined as an RPC's list of parameters, including 
the type of each parameter. The signature provides information about the 
size and address of parameter data that must be moved by the kernel. A 
process may "register" a signature with the kernel so that the kernel can 
use the information to correctly copy parameters between RPC sender and 
receiver. Also, Mach signatures contain the location within parameter data 
of Mach port right values, which the kernel must translate as part of the 
copy. (Mach port rights are represented by integers which are mapped by 
the kernel to actual ports using a process-specific mapping similar to virtual 
memory mapping.) 
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Figure 7.1: Dataflow of RPC Marshalling 
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A subsystem registry is used in an RPC interface to provide a presenta- 
tion interface. It gives the kernel a data structure in which to copy parame- 
ters for a specific interface call from a client thread stack to a server thread 
stack. A subsystem registry may be defined as a data structure registered 
with the kernel by an RPC recipient. It ensures that the kernel has the 
information needed to copy RPC parameters and to call the appropriate 
RPC-handling functions of the RPC recipient. 

This concept is closely related to the way in which an empty thread 
operates when it receives a message and how a thread is started. Each pre- 
sentation interface has a signature associated with it. As stated above, this 
signature is expressed in the IDL; it consists of a parameter list. Since the 
server's initial RPC processing need not focus on unmarshalling and pro- 
cess determination for parameter data, it has a different focus. Server code 
can directly process a particular RPC; however, software must examine the 
RPC to determine which interface is involved and which server subroutine 
to call, and to branch to that subroutine. A subsystem registry contains 
the information needed for the kernel to perform this role. Hence, server 
code consists only of entries to RPC interface handlers. The kernel initiates 
server thread processing in the handler appropriate for each message. 

In addition to the performance advantages of a subsystem registry, a 
reduction in development complexity is also gained. For a long time, IDL 
tools have taken an IDL interface definition and Used the signature as the 
basis for the generation of marshalling and unmarshalling code. Given the 
ability to inform the kernel about signatures, marshalling code is unneces- 
sary. Though a subsystem registry is application-dependent, a developer 
does not need to write code to deal with the interface. The developer could 
use an IDL generator to generate code to perform the subsystem registry 
functions. 

Instead of marshalling code, IDL-generated code would provide the sig- 
nature to the kernel when an RPC is called. The kernel would scan the 
signature of the RPC to locate the parameter block, which contains the def- 
inition of the signature. The parameter block is then copied onto the shuttle 
stack. Once a signature has been registered by the server, then subsequent 
copying of the signature data is unnecessary. 
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7.5    Original Mach Message Model vs. Migrating 
Thread Model 

This section reviews the RPC processing changes that result from using 
thread migration techniques in the Mach kernel. In each step, the processing 
in the original message model is stated and contrasted with the consequences 
of thread migration. 

1. Application code calls RPC function. 

2. In the original mode, client-side RPC stub functions accept RPC pa- 
rameters and marshalls them into the message structure. When sub- 
system registry is used in conjunction with migrating thread RPC, 
marshalling is not needed. 

3. Client-side RPC function calls kernel interface to send message, or 
with subsystem registry send the RPC data as parameters rather than 
a message. 

4. Kernel processing. With thread migration, the following kernel pro- 
cessing becomes unnecessary: 

(a) The kernel no longer needs to save message, and later copy the 
message data to the server task that is the recipient of the RPC. 
Instead the kernel copies RPC data without delay from the client 
to the server. With subsystem registry, the kernel can copy the 
RPC data in parameter form rather than as a message, this elim- 
inating the need for marshalling. 

(b) The kernel no longer does context switch from sending thread to 
some other thread. Instead, the thread's shuttle remains as the 
current scheduling context, but is moved to the server task. 

(c) The kernel no longer needs to do a context switch to the server 
thread because the shuttle movement has already started the ex- 
ecution of server code. 

5. In server-side RPC function, a server no longer needs to unmarshall 
and can go directly to application-specific code to process the RPC 
parameters, perform some computation, and derive the RPC return 
results. 
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6. The server finishes processing. Both the shuttle and the RPC return 
data flow back to the client in the same manner as steps (1) to (5). 

7.6    Distributed RPC and Heterogeneity 

The Corbus/Mach distributed IPC (dIPC) service will be based on an ex- 
isting x-kernel implementation of networked Mach IPC (MachNetlPC). The 
dIPC service is the same as the microkernel's IPC; however, it provides for 
communication between tasks residing on different hosts in a distributed 

system. 
The dIPC subsystem will be composed of separate micro-protocol mod- 

ules bound together within the x-kernel protocol framework. Data moves 
through the graph in two passes. The first pass takes place on the sending 
host, where data moves from top to bottom. At the top, clients perform 
IPC. At the bottom, data traverses the network. The second pass occurs on 
the receiving host, where arriving data moves from bottom to top; network 
data is reassembled into IPC data which is sent to the receiver via local IPC. 

The dIPC service will implement scheduling coherence by providing dis- 
tributed emulation of local thread migration. This emulation is needed 
because the Mach microkernel is unaware of other hosts. Hence, a Mach 
thread cannot truly migrate to another host. However, the dIPC server can 
transport over the network the data that is required for a remote thread to 
execute just as if it were part of a migrating thread chain on another host. 

When the dIPC server handles an IPC message that is the outgoing part 
of a migrating thread RPC, some specific actions are needed to maintain 
scheduling coherence. With each message's data that is transmitted to an- 
other host, the dIPC server must also send the sending thread's scheduling 
attributes. This information is used by the receiving dIPC server to perform 
distributed emulation of thread migration. 

Once a thread migrates into the dIPC server and the outgoing message 
data is transmitted, the thread goes to sleep. On the receiving machine, the 
dIPC server uses a local thread to act for the sending thread on the other 
machine. This thread migrates from the dIPC server to the message's des- 
tination task. Before doing so, the dIPC server ensures that this thread has 
the same scheduling attributes as those that arrived with the message, i.e., 
the scheduling attributes of the sending thread. As a result, the receiving 
host's RPC processing is scheduled coherently with the computation in the 
sending thread on the other host. 
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It is important to keep in mind that many real-time systems have dif- 
ferent scheduling requirements. As a result, one scheduler cannot support a 
wide range of real-time systems. Hence, scheduler replaceability (described 
in Section 1.1) is a critical Mach real-time feature. Because scheduling pol- 
icy modules can be replaced at build time, Corbus can provide distributed 
application support for real-time software with a range of real-time require- 
ments. 

Due to Mach's flexibility with respect to real-time scheduling algorithms, 
an additional element of heterogeneity may arise in a distributed system. 
Not every host in a real-time distributed system may have the same real- 
time scheduling policy. Therefore, dIPC protocols must be able to detect 
when a host receives RPC data from another host that uses a different 
scheduling algorithm. This is necessary to prevent the receiving host from 
misinterpreting dIPC protocol data as scheduling parameter data and mak- 
ing use of spurious scheduling parameters. At a minimum, each host must 
maintain a list of other hosts known to have the same algorithm. More com- 
plex approaches include cognizance of multiple scheduling algorithms and 
attempts to perform partial mapping of parameters from one host's policy 
onto another host's policy. This latter approach attempts to approximate 
scheduling coherence. 

7.7    Summary of Corbus Real-Time Factors 

The following are recommendations for a Mach-based implementation of 
real-time requirements in a client-server environment such as Corbus. 

• Employ a microkernel that readily supports real-time functionality. To 
this end, the microkernel must possess the following features: 

- Migrating threads. These are used to perform IPC. 

- Real-time scheduling policy. If such a policy does not exist cur- 
rently, then the microkernel should be amenable to the addition 
of a new policy. 

Clients should use a migrating thread IPC service to implement RPCs 
with a server. This would be part of the client-side code generated via 
the IDL. 
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• The server should use the empty-thread functionality described in Sec- 
tion 2.1 to receive and process RPCs. This functionality would be part 
of server-side code generated from IDL. 

• The system should use an x-kernel MachNetlPC implementation, which 
includes a protocol for the transport and use of scheduling parameters. 

• The kernel should be able to identify network messages bearing RPCs 
with scheduling parameters from a heterogeneous host with a different 
scheduling policy. 

• If subsystem registry techniques are employed, the IDL tools will be 
used to generate code for the subsystem registration mechanism, rather 
than for marshalling and unmarshalling. 

If these recommendations can be implemented in a Mach base for Corbus, 
then real-time support can be almost transparent to application software, 
with the exception that some client software may need to assert timeliness 
requirements. Additional real-time work on object-oriented quality of ser- 
vice (described in Section 8) may eliminate this need for real-time awareness 
of distributed object software. 
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Chapter 8 

Quality of Service for 
Objects 

8.1     Introduction 

Quality of Service for Objects (QuO) [18] [19] is an object-oriented resource 
management framework that BBN has recently applied to CORBA. QuO 
extends network-level Quality of Service(QoS) mechanisms by the addition 
of application-level mechanisms for resource management on a per-object 
basis. Because Corbus shares the CORBA orientation of QuO, Corbus is a 
natural candidate for the implementation of QuO mechanisms in a CORBA- 
compliant distributed application framework. Corbus's object-oriented na- 
ture and its application-level approach to distributed computing match the 
basic assumptions of QuO. Furthermore, Corbus/Mach offers additional 
benefits for an application platform with QuO mechanisms. 

At the application level, QuO facilitates negotiations in support of three 
key benefits that are useful for Corbus applications — real-time operation, 
fault tolerance, and adaptive operation. In each of these cases, Corbus/Mach 
mechanisms offer significant enabling technology for each of these benefits. 

The following sections provide background on QuO and Corbus, de- 
scribe the Mach-specific aspects of the Corbus/Mach approach to QuO, and 
describe particular uses of QuO mechanisms that could be deployed in a 
Corbus/Mach system. 

122 



8.2    Background 

The background for Corbus/Mach QuO is in three parts: Quality of Service 
in general, Quality of Service for Objects, and the way that the Corbus 
architecture can accommodate QuO. 

8.2.1 Quality of Service 

Quality of Service is a technique for system resource management in which 
various aspects of resource utilization are the basis for negotiations between 
resource providers and resource consumers. The purpose of implementing a 
QoS scheme is that a system's efficiency can be improved by tuning resource 
management to best accommodate the requirements of the resource con- 
sumers, given the capabilities of the resource providers. These requirements 
and capabilities are specified via "agreements" or "contracts" and address 
various aspects of resource utilization. By enforcing QoS contracts, "guar- 
antees" regarding expected system behavior can be achieved. Although a 
guarantee might not be the most favorable for a system's or application's 
consumer, at the least it improves predictability about the application's or 
system's behavior. 

The resources that might benefit from QoS management include services 
and system objects. Currently, communications researchers employ QoS 
schemes that address services at the socket level. For example throughput 
is an aspect of network service that might be specified in a socket-level QoS 
contract. In this case, bits per second would be an appropriate attribute for 
specifying and measuring service requirements. 

The drawback of QoS is that it is too low-level. It does not address at- 
tributes that are important at the application level. This lack is a motivation 

for QuO. 

8.2.2 Quality of Service for Objects 

BBN's research into Quality of Service for CORBA objects [19] extends 
the above kind of QoS scheme so that it is suitable for the object-oriented 
design that is more and more frequently the basis for application programs. 
For example, whereas socket-level QoS might address usage characteristics 
such as network bandwidth, QuO can also address characteristics such as 
end-to-end delay, availability, and ordering. 

Focusing on the application level has several important implications for 
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QuO. First, an obvious benefit of QuO is that application-level aspects of 
resource utilization may be specified in QuO contracts. For example, at the 
application level, resource utilization might be specified in object requests 
per second. Second, while network-level QoS is useful for performance at- 
tributes that are applicable to host-to-host connections, QuO is relevant to 
end-to-end communications. This is well-suited to RPC-type communica- 
tions. 

[19] describes a strategy for implementing QuO for the CORBA stan- 
dard, although it does not describe implementation mechanisms in detail. 
For QuO, system-level usage patterns and requirements are specified by 
means of a description language (QDL) that is an extension of CORBA's 
Interface Description Language (IDL). QDL is used to specify connection 
states and two aspects of such states: performance guarantees, and QoS 
requirements. 

For each state transition, QDL is also used to define a "handler" and 
to associate the handler with the transition. The binding occurs at connec- 
tion time and then the handler associated with a transition will be called 
whenever the connection state changes. A QDL processor is used to build 
application-specific libraries that interact with ORB software to enforce the 
specifications. Such application-specific library code, sometimes called ap- 
plication proxy code, is more than a simple RPC stub library. Rather, 
QDL-derived proxy software includes additional functionality to call on ORB 
mechanisms that provide QoS functionality. 

As a result of this approach, QuO support is implemented in a proxy 
software layer that lies above the layer of ORB software, but below the 
object request interface used by application client software. This layering 
preserves portability—a key goal for Corbus— by hiding behind the object 
request interface all the usage of the QuO mechanisms which may vary from 
system to system. 

The enforcement of QuO agreements is implemented above the ORB 
layer by layers of smart proxies which are produced by processing the QuO 
agreement specifications. The QuO proxies are extensions to the ORB's 
proxies. QuO proxy software and ORB proxy software together facilitate 
communication with objects. 

8.2.3    Corbus and QuO 

The Corbus software architecture is structured in a way that can both ac- 
commodate the basic QuO approach, and utilize the advantages of the Cor- 
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bus/Mach communication architecture. 
The most central Corbus ORB software consists of three primary com- 

ponents: library software that resides in server programs (the SCL), library 
software that resides in client programs (the CCL), and the Core which is 
separate software that handles message routing and object location. Ap- 
plication proxy software is layered on top of the CCL. Application client 
software calls object method invocation procedures. These procedures are 
implemented in proxy software which calls on the CCL to make object re- 
quests and receive replies from object managers. 

Specification language tools are the means by which proxy software is 
created. Corbus uses the same COR.BA IDL that the QuO work is based 
on. Therefore, it is feasible to extend Corbus's IDL tools to process QDL 
annotations in IDL specifications in order to generate application-specific 
QuO software for application proxies. This QuO software would be in addi- 
tion to the RPC stub functionality of application proxies that are currently 
generated by the Corbus IDL tools. 

A convenient way to incorporate QDL connection contract annotations 
in IDL specifications is by embedding them within comments. QDL anno- 
tations require only a very simple syntax to specify the connection states, 
handlers, and QoS attributes. For example: 

\\ Actual comment text 

\\ BEGIN QDL extensions to IDL 

\\ LowDelayConnectionl <- ( ObjectA, 

\\     Attributes( Priority = 99; 

\\ Delay = 50; 

\\ MethodsPerSecond = 100) 

\\     Handlers( Statel-to-State2 = Handlerl; 

\\ State2-to-State3 = Handler2) ); 

\\ END QDL extensions to IDL 

\\ BEGIN other extensions to IDL 

w ... 
\\ END other extensions to IDL 
\\ Text ending the CORBA IDL comment block 

The Core is the part of Corbus that actually calls on the O/S and net- 
working services to move client/server data. Client and server processes 
themselves communicate only with the local Core, using the functionality 
of the CCL or SCL to do so.   Therefore, the Core is the part of Corbus 
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that is suitable for the functionality of using QoS features to enforce QuO 
agreements. 

8.3    Corbus/Mach Approach to QuO 

The separation between the Core and the application proxy is a separation 
between the software that is aware of QuO agreements (the proxy) and the 
software that is capable of using QoS mechanisms (the Core). Because of this 
architectural separation, there are two different ways that QoS mechanisms 
can be used in Corbus/Mach for QuO. 

8.3.1    Two Approaches 

In both approaches, application proxy software would make QoS-aware use 
of communication services, as in the basic QuO architecture. Proxy software 
would implement object method invocations by packing the various param- 
eters into an object request message, and sending that message via call to 
some communication service. In addition, the proxy's use of the communi- 
cation service would include the specification of object-specific QoS informa- 
tion. The difference between the two approaches is the difference between 
the communication service called on by the proxy software. 

In the first approach, the Corbus CCL is used as in standard Corbus, 
as a means of forwarding object requests to the Core, which uses the actual 
system communication service. Therefore, object-specific QoS data would 
have to send to the Core by the CCL in addition to object request messages. 
The Core would perform all QoS usage in support of QuO requirements, 
based on information forwarded to it by the CCL. 

The second approach would be an extension of the overall approach 
described in Section 3, in which the CCL would make direct use of O/S 
and network services for communication, eliminating (in many cases) the 
Core as an intermediate party. As a result, clients and servers can take 
responsibility for their own QuO agreements, rather than relying on the 
Core. When communicating with servers, a client's CCL can send the object 
request message itself. The CCL would directly use communication services 
and use object-specific QoS data to enforce QuO agreements. 

Because of the centrality of the Core in the Corbus architecture, the 
Core must have a role in maintaining and enforcing QuO agreements. The 
second approach simply moves part of this role from the Core to the CCL 
in cases where this is expedient.   Such expedient cases are those where a 
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client's CCL already has the ability to communicate directly with an object's 
managers, as a result of the Core's handling of a previous request on that 
object. Therefore, the distinction between the two approaches is that the 
first approach is used when a client makes its first request on an object, 
while the second approach is used for subsequent requests. 

In the approach of Section 3, the Core is not a pure location broker, but 
also acts as a message switch for object requests for which object location 
is required. As a result, the Core is involved in the initial communication 
between client and object manager. Therefore, the Core is involved in the 
definition of QuO contracts, and maintenance of QuO agreements for initial 
object requests. In a slightly alternative approach, the Core would not act 
in this QuO role if it were to act purely as a location broker, i.e. inform- 
ing the client where the manager is, and letting the client make the initial 
communication. 

In addition, the first approach must be used in cases where the object's 
manager is on a non-Mach Corbus host. In these cases, the object manager 
is not able to receive direct communication with the client, and therefore 
the Core must act in its intermediary role. In other words, the Core must 
act as a message switch (and not merely as a location broker) in heteroge- 
neous cases. In addition, the Core may have to deal with the possibility that 
non-Mach Corbus hosts may not support QuO in a compatible manner be- 
cause the underlying O/S does not provide the same QoS mechanisms that 
are available on Corbus/Mach hosts. If this is the case, then it would be 
necessary for a Corbus/Mach host's QuO specification to note those hosts 
with which there can be no QoS agreements. 

Additional sophistication would be needed to support partial QoS agree- 
ments between Corbus/Mach hosts and non-Mach Corbus hosts that support 
a subset of the desired QoS agreement. In this case, a message-switching 
Core would need to note, for each connection, the expected level of support 
for QoS. If the IDL extensions to support QuO are embedded within stan- 
dard IDL comments, as described above, then it would be a simple matter 
to include notations to support interoperability among heterogeneous hosts, 
including non-QoS hosts. 

Negotiation in support of communication among distributed Corbus/Mach 
hosts could be implemented by an z-kernel implementation of MachNetlPC. 
Negotiation is discussed further in Section 8.3.3. 
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8.3.2 QoS Mechanisms on Corbus/Mach 

The QoS mechanisms upon which QuO is based are largely implemented in 
communication protocols. For Corbus/Mach hosts, the x-kernel provides an 
excellent place for protocol software to execute. A key feature of the x-kernel 
is that it is designed for extensibility and for adding new functionality with- 
out changing existing protocol implementations. Because QoS mechanisms 
can interact with existing communication protocols, the x-kemel's modu- 
larity and protocol composability are critical to ease of deployment of QoS. 
Because of the x-kernel's extensibility, support for QoS agreements could 
be added with minimal interference with existing protocol implementations. 
QoS support on Corbus/Mach can also be straightforwardly integrated with 
the basic communication service between Mach hosts: the x-kernel imple- 
mentation of MachNetlPC which was designed for transport of RPCs and, 
therefore, shares QuO's focus on end-to-end communication. 

For communication between Corbus/Mach and non-Mach Corbus hosts, 
the x-kernel's framework will likely simplify the modification of the existing 
communication protocols in order to support QoS. As noted above, this 
support will vary from connection to connection, depending on each non- 
Mach Corbus host's level of support for QoS attributes. 

8.3.3 Negotiation of QoS 

Several types of negotiation can be envisioned for Corbus/Mach. This sub- 
section explores the possibility of QoS negotiation and identifies some po- 
tential uses. 

The purpose of QoS negotiation is to achieve optimal connections by 
trading off QoS attributes in response to existing constraints. Connections 
may be optimal only from the point-of-view of an object designer or they may 
be optimal from the points-of-view of both object clients and object servers, 
subject to any relevant external constraints. Thus an "optimal" connection 
might actually provide fairly poor QoS, but if the only alternative is no 
connection, then poor QoS is optimal. 

We use the term, "negotiation," to describe a range of decision-making. 
Ideally, the range of potential negotiation should extend to balancing the 
changing needs and capabilities of both clients and servers. This would 
require an enhancement to QuO in which clients' also levy requirements, as 
do servers. However, useful negotiation can also be achieved using the one- 
sided agreements of QuO, in which only constraints on clients are specified, 
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rather than also specifying clients' requirements. 
In support of QoS negotiation, several object connections may be denned 

and opened. Each connection might provide a different blend of QoS, strong 
in some aspects but weak in others. Several connections might be viable at 
a single point in time. For example, there could be several connections that 
are all capable of guaranteeing the desired level of throughput for a given 
client. For many clients, that level of service might be sufficiently "optimal" 
that no further negotiation is warranted. For other clients, it might be 
important enough to achieve a higher level of some other QoS attribute that 
a different connection, providing an alternative combination of levels of QoS, 
is worth negotiating for. 

Handlers may be invoked in response to the changing state of a connec- 
tion. In order to support QoS negotiation, the role of the handlers could be 
expanded. It is the handlers that will accomplish negotiations by initiating 
connections with the desired combinations of QoS attributes. Rather than 
responding only to invocations that result from changes in system state, 
handlers can initiate connection upgrades as more optimal connections be- 
come viable. In the case of two-sided negotiation, one way for a client to 
acquire knowledge about the viability of connections would be via polling, 
at some interval. Alternatively, servers could "advertise," via a broadcast 
mechanism, the combinations of QoS that could be provided. 

The flexibility of the i-kernel protocol framework supports richness in 
the nature of negotiation of QoS attributes among clients and servers. As 
described in Section 4.1, at different times different parts of a protocol graph 
may be utilized. It was explained that this provides support for varying 
strengths of transport protocols. By the same token, this flexibility can 
support varying strengths of QoS. For communication with a host about 
whose QoS much is known, more complex negotiations can take place. For 
communication with lesser-known hosts, simpler negotiations are warranted. 

8.4    QuO Features for Corbus/Mach 

Because Corbus is a CORBA-compliant ORB, and because QuO has already 
been defined for CORBA, there are potentially several ways in which QuO 
can be beneficially used in Corbus. This section describes the benefits of 
QuO usages in three contexts: real-time operation, fault tolerance, and 
adaptive behavior. Different aspects of QuO support each of these benefits. 
For real-time operation, the ability of QuO to incorporate and augment QoS 
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attributes is beneficial. For fault tolerance, it is the state transition handlers 
that provide the benefit. For adaptive operation, the benefit is that the 
status of the QoS attributes is made visible at the application layer, so the 
support comes from both of the above aspects. 

8.4.1 QuO for Real-Time Operation in Corbus Applications 

Real-time operation is a significant factor in achieving interoperability among 
heterogeneous systems. Process scheduling becomes especially difficult be- 
cause different real-time systems are likely to have different scheduling re- 
quirements.1 Real-time scheduling may be based on attributes that don't 
exist for non-real-time schedulers. Likewise, the scheduling attributes of one 
real-time system may not be present in another system. Therefore, there is 
a significant issue not only for propagating scheduling requirements between 
client host and object manager host, but also for dealing with variations in 
real-time behavior of different systems. 

For Corbus, QuO resource management provides a simple mechanism 
to incorporate additional scheduling attributes in support of real-time op- 
eration. For example, with a priority-based scheduler, a priority attribute 
would be added to the system's other QoS attributes. Thus, a client's us- 
age pattern would need to include a description of priority requirements in 
addition to other expected scheduling information. Processing the current 
status of the deadline could require the modification of existing scheduler 
mechanisms, but QuO also provides hooks for such processing. A differ- 
ent handler could be called as a connection's deadline interval approaches a 
critical threshold. 

8.4.2 QuO for Fault Tolerance in Corbus Applications 

Although partial failures and complete failures are facts of life in most dis- 
tributed applications today, the ability of applications to function in the face 
of failure is not impressive. What is needed is a method for describing and 
quantifying expectations about service and resource provision and usage. 

'Several areas of O/S research, including the Mach-based Triad system [5], are ad- 
dressing the use of a replaceable scheduling framework. Such a framework within the 
Mach kernel would separate the actual scheduling mechanisms from the algorithm that 
determines order of execution. The algorithm software interacts with the actual scheduling 
mechanism via a well-defined modular interface. As a result, the real-time requirements of 
various systems can be met by the insertion into the framework of the particular algorithm 
required for a system. 
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QuO lends itself readily to describing performance attributes that affect a 
system's ability to function when the services and resources it relies on fail 
to some extent. But the main benefit of QuO for fault tolerance is that, by 
means of handlers and handler generators, QuO improves a system's ability 
to function under adverse conditions. 

The QuO mechanism that supports fault tolerance in the ability to asso- 
ciate handlers with connection status transition specifications. The handlers 
are invoked when the associated transition occurs. 

The object orientation of QuO might also be considered a "mechanism" 
that improves fault tolerant operation. Object orientation enables QuO to 
abandon the monolithic QoS management schemes of (non-object-oriented) 
client-server systems. With QuO, each object manages its own QuO at- 
tributes, in a sense. Server designers, who know the capabilities, weaknesses, 
and requirements of their server and its objects, can best design handlers to 
cope with failures. 

With respect to fault tolerance, the main distinction between the lo- 
cal and distributed cases is that the distributed case introduces vastly many 
more possibilities for partial failures. This enhances the value of QuO's abil- 
ity to address fault tolerance. With respect to implementation, distributed 
objects by means of proxies. If an object's proxy can provide locally QoS 
information, then the local client has an advantage in coping with failures 
in the remote version of the object. 

8.4.3    QuO for Adaptive Behavior in Corbus Applications 

Adaptive behavior in the operational phase of a system's life cycle is desir- 
able for several reasons, all of which derive from the necessity and difficulty of 
predicting conditions and circumstances that might arise during that phase. 
Systems need to be designed so that they can perform to the required extent 
given 1) predicted deviations from the most desirable operating conditions, 
2) unexpected, but known, anomalies, and 3) unknown adverse conditions. 
All of these can negatively affect the availability of resources and the perfor- 
mance of servers. Assuming that some variance in these is tolerable (at least 
in some operational modes), the ability of a system to adapt to variations 
that result from these three circumstances improves its ability to perform 
under these circumstances and can help ensure optimum operating efficiency. 

The need for system adaptivity is one of the key motivations of BBN's 
research into QuO. Many distributed applications operate in an environment 
that is dynamic. Even CORBA's interoperability does not provide sufficient 
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support in this regard. As an example, it is noted that without the ad- 
vent of QuO, most non-multimedia-based distributed applications required 
complex and tedious hand-tuning in order to handle variations in resource 
performance and availability. 

For Corbus, adaptive behavior is a desirable characteristic in part be- 
cause it furthers the goal of interoperability. If a Corbus application can 
assimilate knowledge about variances in performance among its distributed 
hosts, then the degradation of its overall performance in the face of such 
variances may be reduced (or at least reduceable). 

QuO supports this ability of systems to adapt by providing a means of 
specifying multiple or multi-state patterns of resource usage and resource 
provision by clients and servers. 

The QuO mechanism that can be used to provide support for system 
adaptivity is the QoS Description Language's (QDL's) system state spec- 
ifications. These specifications describe the status of a client's connection 
(possibly one of many) to an object with respect to the attributes covered 
by the QoS agreement. To enable applications to adapt to changes in the 
operating environment, the actual status of QoS attributes is made avail- 
able by QuO at the application level. This enables an application to cope 
with variances in resource availability by altering its behavior in pre-defined 
ways. 

Although adaptive behavior is generally considered with respect to dis- 
tributed systems in which each host must cope with variability in all the 
others, QuO can easily support adaptive behavior among co-located clients 
and servers. Adaptivity in local communication is achieved by means of 
handlers that may be associated with transitions between states. These 
handlers were described in Section 8.2.2. 

The key advantage of QuO for adaptive behavior is the ability to take 
advantage of knowledge about external usage characteristics, i.e. character- 
istics of another process, application, or host. In the case of communication 
between Corbus/Mach and non-Mach hosts, one can assume that the non- 
Mach hosts are hosts whose performance has not been quantified in terms 
of a QuO contract. In this case, the benefit is scant, but the use of QuO 
at least offers an application the ability to specify its lack of knowledge. In 
some cases, it is likely that even this small increase in knowledge will yield 
some benefit in interoperation. 
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Chapter 9 

Distributed Object Security 

9.1    Introduction 

Many distributed systems have a requirement to provide controlled access 
to a defined set of resources, e.g., finance and personnel data, in accordance 
with a specific security policy. At the same time, budgetary and system 
management constraints may limit the amount of hardware that can be 
purchased and managed, thus eliminating separate systems as a solution. 
Depending on user and system requirements, it may also be desirable to 
support automated, controlled sharing of certain types of data between sys- 
tems or separate user groups. 

These basic security requirements can be met by a secure access con- 
trol scheme implemented via the establishment of separate domains of ex- 
ecution. Definition of separate domains can be accomplished using Mach 
microkernel mechanisms that specifically support domain separation. These 
mechanisms can be used in a Corbus/Mach system without interfering with 
Corbus functionality. In addition, these Mach mechanisms can provide dif- 
ferent operating system (0/S) personalities within each domain. As a re- 
sult, Corbus-based application software can be deployed on its required 0/S, 
while users within a domain can use the 0/S interface with which they are 
most familiar. 

This section provides an outline of the Mach approach to domain sepa- 
ration, and illustrates how it can operate without impact on Corbus mech- 
anisms. 
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9.2     Security Identifiers 

The security identifier (or secID) is the Mach mechanism that can be used 
to establish separate domains of execution among distributed systems and 
applications. This mechanism is a simple ID tag that has been implemented 
in the IBM microkernel, the OSF Mach++ kernel [21], and recently applied 
[5] to the OSF real-time kernel [11]. The Mach kernel assigns also, spell out 
IPC and RPC? each task a secID upon creation, and tags all IPC (whether 
messages or RPCs) with the secID of the sending task. The Mach kernel 
does not interpret secIDs or base any access control decisions on them; 
rather, it ensures secID integrity and makes secIDs available to higher-level 
components such as servers. 

Use of secIDs for high-level components falls into two basic categories. 
The first category is definition of secIDs. When a task is created, the Mach 
kernel assigns the new task its secID in either one of two ways. The default 
way is for the secID to be inherited from the task which requested the new 
task's creation. The second way involves the use of a kernel privilege which 
allows a task holding the privilege to dictate the secID of tasks it creates. 
Granting of this privilege to tasks is a function of the system initialization 
mechanism. Subsequent use of the privilege is dependent on the functional- 
ity of the privileged tasks. Normally, a task's secID will be based on some 
security-relevant attributes of the task, and the mapping between the secID 
and those attributes will be maintained by some component related to the 
component or components which define secIDs. 

The second category of secID usage is message tags. Receivers of Mach 
IPC can examine the message or RPC for the sender's secID that the kernel 
tagged into the IPC. This secID can be interpreted (possibly by recourse 
to some service mapping secIDs to security-relevant attributes), and the 
interpretations used by the receiver to determine the processing related to 
the IPC. For example, access control components can base access control 
decisions on secID information. 

Distributed secIDs message tagging is performed by the MachNetlPC 
Server, described in Section 4. In addition to its transfer of message/RPC 
data and port rights, the MachNetlPC Server also transports the IPC sender 
secID from sender to receiver. First, when the MachNetlPC Server receives 
IPC from a local task, it extracts that task's secID. Second, when the Mach- 
NetlPC Server sends the IPC data over the network, it includes that secID. 
Third, the receiving MachNetlPC Server extracts the secID from the net- 
work message containing the IPC. Fourth, when the MachNetlPC Server 

134 



delivers the IPC to a local task, it tags the local IPC with the extracted 
secID. To do this tagging, the MachNetlPC Server uses a kernel privilege to 
override the default inheritance of a message's secID from the sending task. 
This privilege is needed only by the MachNetlPC Server. 

9.3    Domain Definition 

The concept of domain definition is presented in the following paragraphs 
in terms of both a single host environment and a distributed environment. 
Multiple domains per person and controlled sharing between domains are 
also discussed. 

9.3.1    Single Host Environment 

Figure 9.1 illustrates a simple type of domain definition, i.e., one host with 
two separate domains. In this example, there is neither distributed nor secu- 
rity ID functionality; the distributed case is described below. Each domain 
consists of its own O/S personality, Corbus clients and object managers, 
and a Corbus Core. Each domain's Core sets up clients and managers to 
communicate within that domain. The two Cores (one in each domain) are 
unaware of each other's existence, and no modifications to the software are 
needed. 

There is no inter-domain communication. Separation between the do- 
mains is ensured by the fact that capabilities for communication between 
the domains, i.e., port rights, are not granted by the Core. During system 
initialization, the Mach system initialization task creates each domain as an 
O/S personality (or personalities), a Corbus Core, and one or more Corbus 
managers. Within each domain, the Core and managers can communicate 
with one another, and the O/S personality(s) given a capability for commu- 
nication with the Core. Clients are created by an O/S personality, after a 
user starts a session on a display device managed by the personality. Client 
tasks can only communicate with the following tasks: personality task(s); 
any tasks that the personality task(s) can communicate with, i.e. the Core; 
and any further tasks that the Core can communicate with, i.e. object 
managers. Because no task in one domain is given a port right for a task 
in another domain, further tasks created in a domain are similarly isolated 
from other domains. If a NetName server is used (as described in Section 3) 
in Corbus/Mach, there would be a separate server in each domain. Because 
each NetName Server is part of a domain (and isolated within it just as the 
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Figure 9.1: Separate Domains on One Host 
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other tasks are), the name service cannot be used to establish communica- 
tion between domains. 

9.3.2    Distributed Environment 

A distributed environment would be one in which there are several hosts 
similar to that shown in Figure 9.1, but with two changes. The first change 
is the addition of the Mach NetlPC Server, which would provide Mach IPC 
between these hosts. There would be one NetlPC Server per host, with 
the NetlPC Server placed in the lower architectural layer with the Mach 
kernel. The second change is the role of the NetName Server. As mentioned 
in Section 4, this service (or one similar to it) should be used to enable 
the Corbus Core on each host to to be contacted by the Cores of other 
hosts. This initial contact is the initial step that enables forwarding of object 
requests between hosts. A secID-aware NetName Server, in combination 
with the secID functionality of the NetlPC Server, would enforce domain 
separation on client/server interactions between hosts. The secID-aware 
NetName Server, in order to serve multiple domains and enforce separation 
between them, is placed in the lower architectural layer (with the Mach 
kernel and NetlPC server) as illustrated in Figure 9.2, rather than being 
instantiated in every domain as in Figure 9.1. 

In a distributed environment, each domain would be given a separate 
secID, and each task in each domain would be created with the secID of the 
domain it is in. For tasks created during system initialization, startup soft- 
ware would assign secIDs using the secID privilege described above. None 
of the tasks in a domain would be given this privilege, so that every one 
created in the domain later would inherit the secID of the domain. 

During system initialization, the Corbus Core makes NetName requests 
to obtain ports to Cores on other hosts. The following series of steps il- 
lustrates the secID-relevant functionality of this initialization. The notation 
Core1 A denotes the Core in domain 1 on Host A. Similarly, NetName A and 
NetlPC A refer to the NetName and NetlPC Servers on Host A. These lack 
a domain superscript notation because they are not in a domain but rather 
underly all of them as shown in Figure 9.2. 

1. In each domain on each host, the Core performs a NetName registry 
under the name "CorbusCore." Note that the NetName Server allows 
multiple entities to register under the same name on the same host as 
long as these entities have different security IDs. 
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Figure 9.2: Separate Domains on One Host 
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2. Core1 A requests a NetName lookup for the name "CorbusCore" and 

the host B. 

3. NetNameA forwards the lookup request to NetNameß 

4. NetlPCA transports the forwarded request to NetlPCß, including 
the secID for Domain 1. 

5. NetlPCß delivers the forwarded lookup request to NetNameß, in- 
cluding setting the sender secID tag to the secID for Domain 1. 

6. NetNameB examines the name in the request (specified by Core1 A) 

and the secID of the request (added by NetlPCA) and finds a port 
for Corelß. 

7. A right to this port is returned by NetNameß in a message that goes 
from NetNameß to NetlPCß to NetlPCA to NetNameA to Core1

A, 
which receives the port right and can subsequently communicate with 

Core1ß. 

As a result of this series of steps, a Core can establish distributed commu- 
nication with Cores on other hosts, but only in cases where the Cores have 
the same secID. This restriction is enforced by the secID-aware NetName 
Server, and supported by the NetlPC Server's secID tagging feature. 

Note that other host configurations are possible as well. For a user that 
has access to only one domain, a workstation may well be configured with 
only that one domain. The user can execute client software that commu- 
nicates with object managers on other hosts that have the same domain as 
the client. The only security-related software on such hosts would be the 
code in the NetlPC server that tags every outgoing network message with 
the secID of the single domain of the workstation. 

9.3.3    Multiple Domains Per Person 

The architectural views described above can be modified so that individual 
people can operate in multiple domains, though not simultaneously. On 
hosts like those illustrated in the above figures, it is possible for one person 
to be able to operate in multiple domains, if there are multiple domains in 
which a person can start a session with a personality. However, because the 
domains are strictly separated, each display device (e.g. terminal, console, 
networked virtual terminal) is allocated to exactly one domain (and perhaps 
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to one personality within it). Therefore, for a user to actually use access to 
multiple domains, the user must use multiple physically distinct displays. 
This section describes how this restriction can be overcome so that one 
user workstation could, be used to access multiple domains from the same 
workstation console device. A practical example of this would be a person 
needing to access both the finance domain and the general corporate domain 
in which employees communicate via email. 

This multi-domain capability would require the addition of a small new 
security-aware component that manages multiple sessions. The responsi- 
bility of this new Session Manager component would be the control of the 
console display device.1 The Session Manager would allow dynamic enforce- 
ment of separation, in contrast to the static form of separation established 
during system initialization when each display is allocated to one domain 
for the life of system. Instead, the session would ensure that the console 
display is accessible to one domain at a time. In other words, the user can 
use the console display to have a session in one domain, and then switch 
to a session on another domain with the same display device. This allows 
users to operate in multiple domains from one desktop, rather than having 
a separate monitor/keyboard/mouse allocated statically for each separate 
domains the user can operate in. 

Requirements for this component would include access from the Mach 
microkernel to the display device(s) and the ability to pass access to the 
device(s) to 0/S personality software. In addition, the Session Manager 
would require a means by which the user (or the personality software acting 
on behalf of the user) can indicate that the current session is done, and the 
Session Manager should resume control of the display in order to query the 
user about which domain to operate in for the next session. Given these 
requirements, the Session Manager would be able to operate outside 0/S 
personalities and domains in order to time-multiplex access by the domains 
to the console device. 

Impact on the other components would be as follows. The NetName 
and NetlPC Servers would not be effected at all. The system initialization 
software would have to start up the Session Manager, give it the ability to 
control the console, and give some communication capability to either be 
signaled by personalities, or to signal them.   Personality software may be 

The Session Manager could also control multiple display devices, for hosts which have 
several terminals. For purposes of explanation, however, we assume that the host in 
question is a workstation with only one display device. 
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effected, in that it might need to yield access of the display device to the 
Session Manager. However, personality software need not be effected, if the 
Session Manager can control the execution of personality software. That 
is, the user could signal the Session Manager (perhaps via special keystroke 
sequence recognized by the display device driver), and the Session Manager 
would suspend execution of the current session, and start a new session in 

a new domain. 

9.3.4    Controlled Sharing Between Domains 

Controlled data sharing between domains would occur when a client in one 
domain performs an object request for an object managed by server in an- 
other domain. In order to control these interactions, there must be a new 
component that permits or denies requests based on which domain the re- 
quest is from and which domain the request is to. This component, called the 
Domain Object Request Switch (DORS) for the current discussion, would 
enforce a policy which describes all of the allowed cases of one domain being 
able to make a request on an object of another domain. 

The primary interface of the DORS would be with the Cores of the 
various domains on a host, as illustrated in Figure 9.3. A Core in one domain 
would be able to forward to the DORS an object request for an object in 
another domain. The DORS would accept these requests, determine whether 
the request is permissible, and if so would send the request to the Core of 
the target domain. If there were no instance of the target domain on the 
local host, the DORS could use the NetName service to find a Core of the 
requisite domain on another host. This in turn requires that the secID of the 
DORS be some distinguished value that the NetName Server will recognize 
and allow lookup to any domain. 

A similar control flow in the reverse direction would occur for replies to 
object requests. Each reply would be tied to a particular request, and the 
DORS would forward the reply from the object manager's domain's Core to 
the client's domain's Core. Additional interaction between the DORS and 
the target domain Core may be required to ensure that the object manager 
is the only entity in the target domain that is able to send a reply back 
into the original domain. For example, the restricted port rights of the IBM 
microkernel (port rights that can only be transferred once) could be used to 
enforce this restriction. 

Aside from the existence of the DORS, the other significant change for 
controlled sharing is a change to the Core itself. In all other functionality 
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described in this chapter, no Corbus software needed to be changed for 
Corbus to function in a multi-domain environment. In this case, however, 
the Core is required to do two new actions: first, use a new mechanism 
to identify object requests that are for another domain; second, use the 
interface with the DORS to send such requests and to receive replies to 
them. A variety of approaches could be used for identification of the target 
domain of a request. Perhaps the simplest is for object handles to include 
an indication of the object's domain. 
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