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Abstract

An automatic target recognition classifier is described that uses a set of
dedicated vector quantizers (VQs) in the wavelet domain. The background
pixels in each input image are properly clipped out by a set of aspect win-
dows. The extracted target area for each aspect window is then enlarged to
a fixed size, after which a wavelet decomposition is used to split this region
into several subbands. A dedicated VQ codebook is then generated for each
subband of a particular target class at a specific range of aspects. Thus, each
codebook consists of a set of feature templates that are iteratively adapted
to represent a particular subband of a given target class at a specific range
of aspects. These templates are then further trained by a modified learn-
ing vector quantization (LVQ) algorithm that enhances their discriminatory
characteristics. Finally, a path selector was designed to speed up the recog-
nition process at the expense of a tolerable degradation in the recognition
rate.
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1. Introduction

1.1 Background

Human beings are usually very good at recognizing different targets, even
in a relatively crowded and changing environment. However, human per-
formance deteriorates drastically in a low-visibility environment or after an
extended period of surveillance. Furthermore, certain working environments
are either inaccessible or too hazardous for human beings. To compensate
for such limitations of human operators, an accurate and versatile automatic
target recognition (ATR) system is needed. For example, an ATR system
in a battlefield could alert graveyard-shift watchmen with accurate informa-
tion about any approaching vehicle, so that appropriate responses could be
made in a timely fashion. Similarly, a robust ATR system could reduce the
workloads of fighter pilots or tank commanders significantly by suggesting
effective responses in real time. In the civilian sector, mission-specific ATR
systems have been constructed for a number of tasks, including autonomous
vehicle navigation, automobile manufacturing and inspection, and orchard
sprayer systems in agriculture [1].

Despite their diversity, all ATR applications require an efficient and re-
liable target recognition method. Unfortunately, the development of such
a method is often hampered by the large number of target classes and
aspects, long viewing ranges, obscuration, high-clutter background, differ-
ent geographic and weather conditions, sensor noise, and variations caused
by translation, rotation, and scaling of the targets. Furthermore, a range
of factors—similarities between the signatures of different targets, limited
training and testing data, camouflaged targets, nonrepeatability of target
signatures, and the difficulty in using the contextual information whenever
it is available to the recognition system—make the recognition problem even
more challenging. ATR applications for military purposes are especially sus-
ceptible to these challenges, because in comparison to civilian applications,
military applications tend to be operated at a wider range of hostile condi-
tions, and it is much harder to collect an adequate and suitable set of data for
training and testing purposes. Similar difficulties also occur in other recog-
nition tasks, such as human face recognition [2,3] and handwriting recogni-
tion [4,5].
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In this report, we use Comanche second-generation forward-looking infrared
(FLIR) image chips as our training and testing sets. These images were
collected at different sites (Ft. Hunter-Liggett, CA; Yuma, AZ; and Ft.
Grayling, MI), seasons (winter and summer), times of day (day and night),
and operational conditions of the target (hot and cold). These data are as-
sumed to have come from an “unfamiliar environment” (according to the
definition given by Dasarathy [6]), because the identification of the train-
ing data might not be reliable (with a level of reliability that is not known
a priori). Owing to the inherent characteristics of a FLIR sensor, the sig-
natures of the targets within the scene are severely affected by rain, fog,
and foliage [7]. Fortunately, a number of FLIR image enhancement tech-
niques can be used to preprocess the FLIR input images before detection
and recognition. Lo [8] examined six of these techniques: threshold zonal
filtering, statistical differencing, unsharp masking, prototype automatic tar-
get screener technique, constant variance, and histogram equalization. He
found that the variable threshold zonal filtering technique performed most
satisfactorily, followed by the prototype automatic target screener technique
and unsharp masking.

A complete ATR system may consist of several algorithmic components,
such as preprocessing, detection, segmentation, feature extraction, classifi-
cation, prioritization, tracking, and aim-point selection [9]. In this report,
we assume that the locations of the potential targets are determined a priori
by a high-performance target detection algorithm (a cuer) with a very low
false-alarm rate. An example of such a detection algorithm is the ATR rela-
tional template matching (ARTM) algorithm proposed by Kramer et al [10].
The boxes in figure 1 indicate the potential target areas (target chips) that
were detected by the ARTM algorithm. Our focus is to correctly classify
each target in these locations into one of the known target types, which es-
sentially is a target classification or recognition task. Therefore, the actual
inputs to our classifier are target chips that were extracted from the detected
regions and assumed to be clutter-free. Examples of fairly good quality tar-
get chips for a truck at various viewing aspects are shown in figure 2. For a
given input image, the outputs of our classifier are the class likelihoods for
all target types considered. These outputs can then be used by later stages,
such as prioritization and aim-point selection.

Generally, a target recognition problem can be attempted with one or a
combination of the statistical, structural/syntactic, and neural networks
approaches [11]. For example, the nearest neighbors or K-means unsuper-
vised classification methods are typical examples of nonparametric statisti-
cal techniques, which assume that one can define K reasonable clusters for
a given data set by minimizing a distance measure between the data and
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Figure 1. An example FLIR image taken in a typical environment. Boxes indicate potential
target areas detected by ARTM algorithm.

0° 45° 90° 135°

180° 225° 270° 315°

Figure 2. Selected target chips of a truck at various aspects.
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the centroids of the clusters [12]. A number of studies have been carried
out to improve the learning rule and performance of these clustering tech-
niques [13,14]. A supervised sibling of the K -means clustering technique is
the learning vector quantization (LVQ) algorithm [15,16]. In the LVQ algo-
rithm, a class identity reference vector is available for each training sample,
and the clustering is performed with respect to a distance measure along
with the class label. Besides these traditional recognition methods, model-
free neural network based methods are also gaining popularity because of
their learning capability and massively parallel implementation [17–23].

Recently, we proposed an ATR classifier that employed both the statistical
and neural network approaches [24,25]. In that classifier, a number of vector
quantizers (VQs) and multilayer perceptrons (MLPs) were modularly cas-
caded to perform the target recognition task. The inputs to the VQs in that
classifier were image blocks extracted from the target chips in the spatial do-
main. However, because of the high dimensionality of input images and the
scarcity of the training data, it is often necessary to further reduce the data
dimensionality by transforming the input data into a more compact feature
space before the classification process. For example, in a texture classification
task, McLean [26] first transformed the input image block into the spatial
frequency domain with a discrete cosine transform (DCT). With these local
spatial frequency features, he performed the transform vector quantization
for the combined purpose of texture coding and classification. Besides the
DCT, principal component analysis (PCA) [27] and the most discriminating
features (MDF) method [28] are among the other techniques that have been
used for dimensionality reduction in a target recognition task. In this report,
we reduce dimensionality using a wavelet decomposition process [29].

In many situations, it is quite beneficial to break up a complex classifica-
tion task into several smaller and easier subtasks. For instance, Anand et
al [30] used a modular network architecture to reduce a K -class classifica-
tion problem into K two-class problems, with a separately trained network
for each two-class problem. With this decomposition of task complexity,
they reported a faster convergence on the simpler modules and noted the
feasibility of parallel processing. As the computing hardware and software
have become more available for parallel processing, many researchers have
proposed massively parallel computing architectures that are specifically
optimized for image processing [31–33]. We incorporate modularity into our
classifier by constructing functionally similar processing paths and allowing
them to operate in parallel and independently from each other.
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1.2 Research Objectives

The goal of the proposed ATR classifier described in this report is to rec-
ognize military targets in FLIR imagery. The schematic diagram, shown in
figure 3, shows the four stages of our classifier: a set of aspect windows of
different size, a stage in which the extracted area is enlarged to a fixed size, a
stage for wavelet decomposition of the enlarged extraction, and a dedicated
VQ for each subband within each aspect window.

In the first stage, an aspect window is a background-clipping rectangle whose
size is determined by the type of target and the range of aspects that it op-
erates on. These aspect windows are needed for accurate extraction of the
target pixels from the input image, so that the irrelevant background pixels
that carry little information about the target are removed before further
processing occurs. After the background removal in the first stage, each ex-
tracted target area is enlarged in the second stage into a fixed dimension
that is common to all the aspect windows. In the third stage, the enlarged
extraction is decomposed into four subbands based on a wavelet decompo-
sition process [34]. This decomposition process subdivides the complexity of
the recognition task and reduces the dimensionality of the VQ in the follow-
ing recognition stage. The generalization capability is also improved through
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Figure 3. Proposed automatic target recognition classifier.
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various manipulations of these orthogonal subbands. After the wavelet de-
composition, the final stage uses a set of VQ codebooks for feature match-
ing and target recognition. In this stage, the target recognition problem is
treated as a template matching task through a similarity-metric–based ap-
proach. A set of subband templates or code vectors is constructed for each
subband of a particular target at a specific range of aspects. Each set of
code vectors forms a codebook, representing the target signatures for a given
subband of a particular target at a specific range of aspects.

During the testing phase, each subband of the extracted target area is rep-
resented by a similarity measure that compares the given subband with the
best-matching code vector from the corresponding codebook. A commonly
used similarity measure is the mean squared error (MSE). We can infer the
class of an input image by the MSEs obtained from comparing all the sub-
bands with the code vectors in the corresponding codebooks. The class of
the subband codebooks that produce the smallest overall MSE is expected
to be the class of the input image.

In section 2, we discuss in detail each component of the proposed ATR
classifier and the algorithms for training them. Experimental results are
presented in section 3. A brief comparison of our recognition results with
the performance of another compatible ATR classifier is provided in section
4. Finally, some conclusions are given in section 5.
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2. Wavelet-Based ATR Classifier

2.1 Aspect Windows and Extraction Enlargement

Normally a target is surrounded by some background information that is
irrelevant for the correct recognition of the target. This background in-
formation tends to create unwanted variations during the training phase,
which could later become problematic noise in the testing or the recognition
phase. Therefore, proper removal of the unwanted background is essential
for achieving good recognition performance.

The size and shape of target silhouettes often differ significantly at differ-
ent viewing aspects. For each target, the classifier uses several rectangu-
lar windows of different size in order to remove the background informa-
tion. For example, by using the ground-truth silhouettes that are gener-
ated by computer-aided design (CAD), the classifier can cluster the silhou-
ettes of each target into three different window categories representing the
front/rear, oblique, and side views of the target; thus, a total of eight as-
pect windows is needed (one front view, one rear view, two side views, and
four oblique views), as shown in figure 4. Because the height of a particu-
lar target does not change over the viewing aspects, the window clustering
process is based solely on the width of silhouettes. We use the K -means
algorithm to perform this clustering process. Since the size of the silhou-
ettes for the side views (around 90◦ and 270◦) changes relatively slowly at
different viewing aspects, the classifier uses a broader range of aspects for
the side aspect windows (a range of 70◦) than for the head and tail aspect
windows (a range of 40◦). Assuming that the target in each image has been
shifted to the center of the image and scaled to a fixed range, the unwanted
background is properly clipped away by these aspect windows. An example
of this background clipping is illustrated in figure 5. In the proposed algo-
rithm, the segmentation of the target from the background and the target
classification are performed simultaneously. This process differs from many
existing ATR methods that separately perform target segmentation followed
by a classification of the segmented area. Obviously, such classifiers need a
correct target segmentation for a successful recognition by the subsequent
stages.
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Figure 4. Partition of aspects into eight sets for a target chip.

Figure 5. Background clipping of several input images. (Top) Original images of a truck
viewed at 0◦, 45◦, and 90◦, respectively. (Bottom) Corresponding extracted target areas
after proper background removal.

After the background removal, the extracted target area is enlarged to a
fixed size. This fixed dimension should be slightly larger than the largest
aspect window, so that interpolation can be used for all the aspect windows,
and no crucial information in the extracted area will be lost by the enlarge-
ment process. This enlargement enables a more uniform similarity measure
in terms of dimensionality, and hence legitimizes the comparison between
winning code vectors from different aspect windows during the LVQ train-
ing and testing phases. Without this enlargement, smaller aspect windows
may have an advantage in finding a good match with an input image, even
if that input image indeed belongs to a bigger aspect window.
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2.2 Wavelet Decomposition

Wavelets are mathematical functions that separate data into several different
frequency components, and then represent each component with a resolution
matched to its scale. Compared to traditional Fourier methods, wavelets
are more suitable in analyzing physical situations where the signal contains
discontinuities and sharp spikes [34]. The biggest difference between these
two kinds of transforms is that the individual wavelet functions are localized
in space, while the Fourier sine and cosine functions are not. Because of
the wavelets’ space-localization property, many functions are sparse when
transformed into the wavelet domain. Because of this sparseness, wavelets
have been shown to be very useful in detecting features in images [35,36],
image compression [37–39], texture discrimination [40], removal of noise from
time series [41], and so forth.

The quadrature mirror filter (QMF) was first introduced by Croisier et al [42]
as a tool that allows alias-free reconstruction of the signal in the absence
of quantization errors. More recently, Vetterli and Herley [43] described the
relationships among wavelets, filter banks, and multiresolution signal pro-
cessing in greater detail. We implemented the wavelet decomposition in this
report through QMF using the simplest Haar filter family [44]. Because of
the small size of the target chips in our experiments and the efficiency of
the ATR classifier, only the Haar two-tap even-length filters were used. In
spite of its simplicity and differential discontinuity, the Haar basis can still
perform reasonably well in an image compression task if it has good impulse
and step response properties, as in the case of two-tap filters (Villasenor et
al [45]). Villasenor et al also found that even-length filters have significantly
less shift variance than odd-length filters and possess superior impulse re-
sponse performance, so that even-length filters can perform much better in
preserving the location, shape, and intensity of impulses (sharp edges). These
properties make the Haar two-tap filters well suited to a target recognition
task.

Based on the wavelet decomposition method described above, the enlarged
extracted area of each aspect window is decomposed into four subbands of
equal size. An example of the decomposition is shown in figure 6. We nor-
malize each subband by subtracting the mean of that subband and then
dividing each pixel by its standard deviation. This way, unwanted varia-
tions among similar samples of a particular subband, such as differences in
brightness and contrast, can be reduced. This normalization step is critical
to securing consistent input information for the VQ.
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Figure 6. Wavelet decomposition of a truck (left) into four subbands using Haar two-tap
filters (right).

2.3 Vector Quantizers

The Voronoi or nearest neighbor VQ belongs to a special class of VQ whose
partition is solely determined by a codebook and a distortion measure [46].
If the MSE distortion measure d(X,Y) is defined as the mean squared Eu-
clidean distance between two vectors X and Y, of dimension k, such that

d(X,Y) =
1
k
||X−Y||2 =

1
k

k∑
i=1

(xi − yi)2 ,

then a partition cell Ri of a Voronoi VQ of L levels is defined as

Ri = {X : d(X,Yi) ≤ d(X,Yj) | j = 1, 2, . . . , L; j 6= i } ,

where Ri consists of all the points X in Rk space that have the least distor-
tion when reproduced with the code vector Yi. All partition cells are formed
by the intersections of half-spaces that are determined by the code vectors
explicitly.

For each aspect window, four independent codebooks are constructed, one
for each subband. The number of levels L for each subband codebook is
determined by the variability of the information within that subband. The
total MSE for an aspect window is a function (such as a simple summation)
of the best MSEs produced by the code vectors from the four codebooks
associated with that aspect window. Since the extracted target area is en-
larged to a fixed dimension, the code vector size k is the same for all the
codebooks in all the aspect windows. Therefore, the total MSE measure can
legitimately be used for distortion comparisons between the codebooks of
different aspect windows.

The resulting VQ codebooks are indeed a powerful form of constrained VQ,
which is usually referred to as a product code VQ [46]. To visualize the idea,
assume an enlarged extraction W of dimension m > 1. Let X1,X2, . . . ,Xb

be a set of subbands that are functions of W and jointly determine W.
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There are functions fi for i = 1, 2, . . . , b such that W can be decomposed
into subband Xi according to Xi = fi(W) for i = 1, 2, . . . , b. Each X is
sometimes called a feature vector because it represents some characteristics
of W while still partially describing W. Each feature vector assumes values
in a more compact region of m-dimensional space or has a lower dimension-
ality, and hence should be easier to quantize than W. For each i, let Ci be
a codebook with Ni code vectors, which contains the reproduction values
for Xi. A product code VQ is then a VQ that finds the indices of the closest
centroids X̂i ∈ Ci, i = 1, 2, . . . , b, in order to completely represent W. The
resulting set of indices is called a product code, because the requirement
that X̂i ∈ Ci for all i is equivalent to saying that the overall reproduced
vector (X̂1, . . . , X̂b) is in the space defined by the Cartesian product C of
the b codebooks, that is, (X̂1, . . . , X̂b) ∈ C = C1 × C2 × · · · × Cb. The set
of all possible reproduction vectors for W is then defined by the set of all
possible combinations taking any code vector from each of the b codebooks,
that is, N =

∏b
i=1Ni possible reproduction vectors in all. The W is indeed

encoded with this huge set of reproduction vectors. However, this codebook
is not optimal in general, because its code vectors are constrained by the
structure of the reproduced overall vector (X̂1, . . . , X̂b) and the individual
component codebooks Ci.

For these Voronoi VQs, the training is performed independently for each
codebook. Only the training data that belong to a given target class and
aspect window are used to train the codebooks that are dedicated to the sub-
bands in that target class and aspect window. To construct and initialize
the codebooks, we cluster the training data for a given codebook according
to a predefined cluster boundary. Clusters or code vectors with a very low
population are discarded, so that the codebook is sufficiently small but still
contains the more popular feature templates. Nonetheless, we keep at least
10 code vectors for each codebook in order to maintain a minimal distin-
guishing capability and to compensate for any overly small cluster boundary.

The K -means algorithm [47] is used to train each Voronoi VQ independently
by updating each code vector in each codebook with the average of all the
data that are closest, in terms of Euclidean distance, to that code vector.
The goal of this learning process is to capture, by minimizing the average
distortion, the contextual similarities among the samples that belong to a
particular subband of the intended target and aspect window. The training
stops when no more changes have been made to any of the code vectors.
After the K -means training, the code vectors of a codebook will represent
the most general structures extracted for all the input targets that belong to
that particular subband of a given target class and aspect window. Figure 7
shows all the code vectors of the four codebooks that belong to the left view
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of a truck, after the K -means training process. The edges of the target are
relatively blurred in these code vectors, because similar input images do not
always have the same sharp edges and rarely occur at the same location.

Since the average distortion is minimized, a Voronoi VQ works fairly well in
data compression. However, this type of VQ does not perform well as a clas-
sifier since different classes often overlap in the feature space. As a result, the
independently trained codebooks can have very similar code vectors, which

(a) (b)

(c) (d)

Figure 7. Content of codebooks for left view of a truck after K -means training process: bands (a) LL, (b) HL, (c) LH,
and (d) HH. (L refers to low-pass decomposition and H to high-pass decomposition.)
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may lead to misclassification when ambiguous input images are encountered.
A better method is needed to cleverly alter the half-spaces of those over-
lapping partitions that originated from different Voronoi codebooks, so that
the recognition performance can be improved.

2.4 Learning Vector Quantization

One of the popular methods to globally modify the decision boundaries of a
Voronoi VQ is supervised LVQ. Many variants of LVQ have been proposed
and applied for classification purposes, as was shown by Kohonen [15,16].
The version of the LVQ algorithm proposed in this report is modified from
a variant called LVQ2.1, proposed by Kohonen [15]. In LVQ2.1, the updates
are performed on two code vectors, Yi and Yj , that are nearest to a training
image block X, provided that one of these code vectors belongs to the correct
class, while the other belongs to a wrong class, and X falls within an update
zone defined around the mid-plane of Yi and Yj . Assuming that di and dj
are the Euclidean distances of X from Yi and Yj , respectively, this update
zone is defined as the region where

min

(
di
dj
,
dj
di

)
> T ,

and T is a threshold whose value is usually chosen between 0.5 and 0.7,
depending on the application. This update zone restricts the updates to
only those highly ambiguous pairs of code vectors that are around the class
decision boundaries. Assuming X belongs to the same class as Yi and not
to Yj , the two code vectors are updated as follows:

Yi(t+ 1) = Yi(t) + α(t)[X(t)−Yi(t)] ,
Yj(t+ 1) = Yj(t)− α(t)[X(t)−Yj(t)] .

This iterative process will decrease the Euclidean distance for Yi and in-
crease it for Yj . The α is the learning rate, usually with an initial value
around 0.1, which may be decreased gradually in the course of training.

We now explain the modified LVQ algorithm that is used in our target classi-
fication technique. Suppose that we have a classification problem consisting
of K target classes and W aspect windows for each class. Let the enlarged
extracted target area be decomposed into B subbands for each aspect win-
dow, and say that there are P patterns in the training set. Several variables
are defined and the modified LVQ algorithm is summarized as follows:

The variables {Xpkwb, Ckwb, Lkwb | p = 1, 2, . . . , P ; k = 1, 2, . . . ,K; w =
1, 2, . . . ,W ; b = 1, 2, . . . , B } denote the subband b of the aspect window w

13



of class k for the training pattern p, the codebook dedicated to the subband
b of aspect window w of target class k, and the number of code vectors in
Ckwb , respectively. Also, the variables {Vkwbl, Akwbl, Ukwbl, Ekw | k =
1, 2, . . . ,K; w = 1, 2, . . . ,W ; b = 1, 2, . . . , B; l = 1, 2, . . . , Lkwb } denote the
lth code vector in the codebook Ckwb, the total error gradient accumulated
for updating Vkwbl, the frequency of such accumulations in an epoch, and
the total MSE produced by the aspect window w of target class k for a given
input pattern.

Step 1: Given the training input pattern p′ that belongs to the window
w′ of class k′, compute the best total MSE obtained by matching all the
B subbands with the best-matching code vectors in their corresponding
codebooks:

Ekw =
B∑
b=1

(
Lkwb
min
l=1
||Xp′kwb −Vkwbl||

)
,

for k = 1, 2, . . . ,K; w = 1, 2, . . . ,W . Functions other than a simple summa-
tion can also be used in the calculation of Ekw, such as summing only the
best b < B MSEs. For this input pattern, find E∗, the minimum total MSE
obtained among all the aspect windows, and Et, the total MSE produced
by the codebooks that belong to the window w′ of class k′:

E∗ = min
∀kw

Ekw and Et = Ek′w′ .

Now compute the distance for the updating neighborhood, D, which is a
function of E∗, such as

D = E∗ × constant .

Step 2: For each Ekw, if Et < D and Ekw < D while both Et and Ekw are
one of the four smallest total MSEs for this pattern, then for b = 1, 2, . . . , B,
calculate

Akwbl′ = Akwbl′ + α(Xp′kwb −Vkwbl′) if k = k′ and w = w′ ,

Akwbl′ = Akwbl′ − α(Xp′kwb −Vkwbl′) if k 6= k′ ,

Ukwbl′ = Ukwbl′ + 1 if (k = k′ and w = w′) or k 6= k′ ,

where l′ is the index of the winning code vector in codebook Ckwb in response
to the input image data Xp′kwb and α is the learning rate of the LVQ.

Step 3: Repeat steps 1 and 2 for all P training input patterns. Update all
the codebooks by

Vkwbl = Vkwbl +
Akwbl

Ukwbl
if Ukwbl 6= 0

for k = 1, 2, . . . ,K; w = 1, 2, . . . ,W ; b = 1, 2, . . . , B; l = 1, 2, . . . , Lkwb . This
forms an LVQ epoch.
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Step 4: Clear A and U. Repeat steps 1 through 3 until the codebooks
converge (that is, no more unintended code vectors satisfy the conditions in
step 2) or a predefined number of epochs has been reached.

The neighborhood defined in step 1 for selecting the code vectors to be
updated is illustrated in figure 8 for a two-dimensional vector space. The dot
in the middle of this figure, labeled X, represents an input training pattern
under consideration. The single triangle represents the group of codebooks
that are dedicated to the correct aspect window and target type of this
sample, with a total MSE of Et away from X. The squares represent the
groups of codebooks that are dedicated to other target types. One of these
groups lies closest to X, scoring a minimum total MSE of E∗. Several other
groups are also very close to X, and they could find a better match to X than
the intended group. The goal of LVQ is to pull the triangle closer to X, while
pushing the squares farther away from X. As we can see in step 2, no action
is taken for the groups of codebooks that belong to the correct target type
but are associated with wrong aspect windows (i.e., k = k′ and w 6= w′). The
reason is that the wrong windows of the correct target often share certain
characteristics of the correct window. Therefore, updating those codebooks
in either direction may be harmful to their intended functionalities. On the
other hand, there is no harm in having a wrong aspect window of the correct
target type be closest to X, as our goal is to detect the correct target type
of X, not its aspect.

In essence, this modified LVQ algorithm computes the appropriate decision
boundary adjustments by clustering the errors caused by the adjacent code
vectors. This method works well if some meaningful features have already
been formed during a previous learning process, such as the K -means train-

E*

E

X D

t

Figure 8. Neighborhood for updating procedure described for a two-dimensional vector
space. Dot in center represents a training pattern. Triangle and squares represent groups
of codebooks that belong to correct and wrong target class types for this input training
pattern, respectively.
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ing (as in this case). Otherwise, the updating neighborhood defined in step
1 may not be able to effectively avoid the adverse influence of the outliers
that are embedded in the training set. Moderately large α values can be used
in this method without causing stability problems, because of the averaged
gradient error updates in step 3. Hence a quick and stable convergence can
be achieved. As a result of boundary adjustment, an intended group of code-
books would be more likely to yield the lowest total MSE for its intended
input image. Figure 9 shows all the codebooks that represent the left view

(a) (b)

(c) (d)

Figure 9. Content of codebooks for left view of a truck after 29 epochs of LVQ training: bands (a) LL, (b) HL, (c) LH,
and (d) HH.
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of a truck after 29 epochs of the LVQ training. Compared to figure 7, the fea-
tures in figure 9 acquired stronger contrast and sharper edges. Apparently,
the LVQ algorithm enhanced the discriminability at those regions that are
critical for classification purposes. The LVQ training process also rearranged
the order of code vectors based on their usage frequency and removed those
code vectors with a very low usage frequency.

2.5 Processing Path Selector

Instead of passing an input image through all the processing paths avail-
able, as shown in figure 3, it is possible to use only a subset of these paths
to process each input image without incurring a significant degradation in
the target recognition rate. For instance, if we search only the 40 most likely
paths out of 80 processing paths available in a classifier, the total computa-
tional cost could be reduced by nearly 50 percent. However, the degradation
in the recognition rate may be less than 1 percent. In this way, the efficiency
and response time of the proposed ATR classifier can be greatly improved.
To realize this efficient scheme, we add a processing path selector at the
input stage of the ATR classifier, as shown in figure 10. To avoid an ex-
cessive computational overhead, we want the path selector to be very fast
and simple. Nonetheless, it must also be effective in capturing the correct
path of the input image, even when only a small number of paths should be
activated at any moment.

To build the path selector, we create a most representative image for each
aspect window by taking the mean of all training images that pertain to
that processing path. In other words, a Voronoi codebook with a single code
vector is constructed for each processing path. As in the VQ stage, the
algorithm removes the mean and variance of each input image before it is
used in the path selector, so that the unwanted variations in brightness and
contrast can be reduced. If we want to find the n most likely paths for an
input image, we first compute and sort the MSEs between the input image
and all the representative images. Then we select all the processing paths
whose representative images have accounted for the n lowest MSEs. Usually
the input image can find a good match with the representative image of its
correct path and hence produces a relatively low MSE.

Since our path selector is a shape classifier in general, we can use the pro-
posed LVQ algorithm to enhance its classification performance. Because
there is only one code vector per processing path and no wavelet decom-
position necessary, the LVQ training in this case will be much simpler and
quicker than the one in the previous subsection. On the other hand, it might
sometimes be difficult to produce a correct, clear-cut matching between a
single representative image for a given aspect window and the input images
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Figure 10. Proposed ATR classifier with a processing path selector.

corresponding to that aspect window. Therefore, a larger pool of candidates
should be considered for updates in step 2 of our LVQ algorithm. Instead
of updating only the best four candidates, the number of top candidates
in the updating pool should be increased to, say, half the processing paths
available in the classifier.
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3. Experimental Results

To demonstrate the performance of the proposed ATR classifier, we imple-
mented a 10-class problem. FLIR images of 10 targets were obtained at every
5◦ on a horizontal plane and scaled to a 2-km viewing range. The input im-
ages are 10-bit grey-scale images of size 40×75 pixels, which are assumed to
have been extracted from the whole scene by an automatic cueing algorithm.
For the sake of simplicity, only four aspect windows per target class (head,
tail, and two sides) were created in the following experiments unless stated
otherwise. The size of these aspect windows ranges from 18×29 to 29×65.
The training set contains a total of 13,860 images, with 874 to 1468 images
per target class. These images were taken with targets in the open and they
make up the “SIG” database. On the other hand, the test set consists of
3456 images from a database called “ROI”; this set has only 5 of the 10
target classes, and there are 577 to 798 images for each of these five target
classes. The ROI data were taken under less favorable conditions, such as
with targets in and around clutter, with different backgrounds, and under
various weather conditions; hence, these data are very challenging. Typical
examples of the SIG and ROI images are shown in figure 11. These images
are fed directly to the classifier without any other preprocessing or filtering.

HMMWV BMP T72 M35 ZSU23

M1M3M113M602S1

HMMWV BMP T72 M35 M60

Figure 11. Examples of target types: 10 types taken from SIG database (top and center
rows); these target chips are relatively easy to recognize. Last row shows five target types
taken from ROI database; these images are highly cluttered and very difficult to recognize.
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3.1 Proposed Method and Variants

The algorithm first decomposes each enlarged extracted area into four sub-
bands using the Haar two-tap filter. A dedicated codebook of variable size
is constructed for each of these subbands for a given aspect window. The
Voronoi quantizers converge after 22 epochs of K -means training. The chance
that the correct aspect window of the correct target gives the lowest total
MSE (window recognition rate) is 96.05 and 63.14 percent for the SIG and
ROI data, respectively. On the other hand, the target recognition rate, which
is the chance of correctly identifying the target class regardless of its aspect
window, is 98.11 and 69.68 percent for the SIG and ROI data, respectively.

In order to increase the discriminatory power of the classifier, we trained
these Voronoi VQ further for 35 epochs with the modified LVQ algorithm
proposed in this report. The Ekw in step 1 of the proposed LVQ algorithm
was computed as the sum of the top three MSEs for each aspect window, so
that a less reliable MSE (usually the one associated with the HH band) was
ignored. In order to differentiate the usefulness of information associated
with each subband, the algorithm weights the MSE produced by each sub-
band appropriately before the top-three selection process above. The best
target recognition rates achieved were 99.72 and 75.12 percent for the SIG
and ROI data, respectively. The target recognition performance for each
epoch of LVQ training is shown in figure 12. This figure shows that the per-
formance of the training set saturated around 99.75 percent after 30 epochs
of training, and that of the testing set deteriorated gradually after reaching
its peak at the 29th epoch.
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Figure 12. Target recognition performance of LVQ over epochs.
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To demonstrate the superiority of the proposed method, we trained and
tested three variants of this ATR classifier with the same data sets. In the
first variation, the extraction enlargement stage is omitted. Different aspect
windows assume different sizes for their subbands and code vectors. The total
MSE is computed based on the top three subband MSEs that are normalized
by the number of pixels in their corresponding subbands. We call this the
no-enlargement variant. In the second variation, the wavelet decomposition
stage is omitted. The whole enlarged extraction area is used to build a single
codebook for each aspect window. Hence the size of all code vectors is the
same as the size of the enlarged extraction. We refer to this procedure as the
one-band variant. Finally, the joint-band variant concatenates all the four
subbands together and then builds a single codebook for these concatenated
bands; hence, the advantages of product code VQ no longer exist.

Table 1 shows the best performances of the K -means and the LVQ train-
ing of these three variants, together with the proposed method. The pro-
posed method clearly outperformed all three variants in terms of recogni-
tion performance and generalization capability. The performance of the no-
enlargement variant is the closest to the proposed method, trailing by just
about 1 percent in all categories. Omitting the enlargement stage and per-
forming comparison with smaller code vectors, this variant is computation-
ally more efficient than the proposed method. Therefore, the no-enlargement
variant might be used when the efficiency of recognition is very critical. On
the other hand, the joint-band variant required almost the same amount of
computational resources as the proposed method, but its performance is sig-
nificantly worse than that of the proposed method. Without the advantages
of product code VQ, the joint-band variant is less useful in any situation.
Finally, being deprived of the benefits of wavelet decomposition and prod-
uct code VQ, the one-band variant performed the worst in all categories.
Comparing the one-band variant to the joint-band variant, we can see that
the wavelet decomposition alone has accounted for a 7.15-percent difference
in the test performance.

Table 1. Best window and target recognition rates after K -means and LVQ training achieved by proposed method
and its three variants. (Best rates in bold.)

Recognition rate for various methods (%)

Training Data Proposed No enlargement One band Joint band

Window Target Window Target Window Target Window Target

SIG 96.05 98.11 95.81 98.00 88.77 92.60 92.11 95.18K -means
ROI 63.14 69.68 61.43 69.16 40.80 47.92 55.06 61.55

SIG 98.22 99.72 98.06 99.70 94.20 97.60 95.58 98.36LVQ
ROI 70.43 75.12 68.61 73.90 56.28 62.53 63.89 69.68
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3.2 Data and Aspect Windows

In previous experiments, the test performance on the ROI database was
significantly lower than on the SIG database. These results suggest that
the ROI database may contain many unique characteristics that are too
difficult to capture from the samples of the SIG data. Hence we formed a
new training set by randomly selecting 80 percent of the images from both
the SIG and ROI databases. The remaining 20 percent of images in both
databases constituted a new testing set. We retrained the proposed ATR
classifier with the new training set.

As shown in the fourth column of table 2, the target recognition rates after
the K -means training were 96.89 and 88.88 percent for the training and
testing set, respectively. With LVQ training, the best target recognition
rates went up to 99.47 and 93.53 percent for the training and testing sets,
respectively. Compared to the best results in table 1, the target recognition
rate after LVQ training improved from 75.12 to 93.53 percent with the new
test set, while the recognition rate on the training set remained almost the
same. Of the ROI images in the new test set, 91.03 percent were correctly
recognized. Therefore, after learning some characteristics of the ROI data,
the classifier can now perform almost as accurately with the ROI as with
the SIG test images.

In all the experiments discussed so far, four aspect windows were created for
each target type. We also investigated the effect of increasing the number of
aspect windows on the recognition performance of the classifier. The clas-
sifier was reconfigured so that eight aspect windows were created for each
target class, as illustrated in figure 4. The new data sets just described were
used to train and test this new configuration. After the K -means training,
the target recognition rates were 96.84 and 88.45 percent for the training
and testing sets, respectively. After the LVQ training, the corresponding
rates were raised to 99.28 and 93.01 percent, respectively. Compared with
the best target recognition rates in the four-window configuration, there was

Table 2. Performance of proposed ATR classifier configured with four and eight aspect windows, respectively. New
training and testing sets that consist of both SIG and ROI target chips were used. (Best results in bold.)

Performance with different number of aspect windows (%)

Training Data Four aspect windows Eight aspect windows

Window Target Window Target

Train 94.88 96.89 93.54 96.84K -means
Test 82.96 88.88 78.52 88.45

Train 98.12 99.47 96.69 99.28LVQ
Test 87.58 93.53 82.41 93.01
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about 0.19 and 0.52 percent degradation in the training and testing sets, re-
spectively. The number of processing paths was doubled from 40 to 80 in
this case, but the average codebook size was nearly halved, from 30.4 to 16.6
code vectors.

Therefore, adding oblique windows did not bring the expected improvement
in performance, while the amount of computation was increased by about
9 percent, based on the total number of code vectors processed per input
image. One possible reason for the slightly poorer performance is the re-
duction of the training data per codebook during the formation of Voronoi
quantizers. In addition, the oblique windows, having the smallest range of
aspects (a range of 25◦), may not have captured features embedded in their
inputs that were sufficiently distinctive for the input images to be correctly
identified.

3.3 Processing Path Selector

We tested the processing path selector with both the four- and eight-window
configurations. In both cases, the best codebook array obtained after the
LVQ training was used in the VQ stage. We set the path selector so that
the top 1/4, 1/2, 3/4, or all of the available processing paths were used for
a given input image. The target recognition rates obtained with different
sets of processing paths activated are given in table 3 for both the four- and
eight-window configurations.

With only a subset of processing paths activated, we can see that the degra-
dation in performance is indeed very small. For instance, with only 20 out
of the 80 paths activated in the eight-window configuration, the test perfor-
mance decreased by merely 3.35 percent. This degradation was further re-
duced to 0.78 percent when 40 out of the 80 paths were used. It is interesting
to observe that with half or less of the processing paths activated, the eight-
window configuration outperformed the four-window configuration. There-
fore, the eight-window configuration could be a better alternative than the
four-window configuration in situations where operational efficiency is a real
concern.

Table 3. Target recognition rate achieved when different sets of processing paths are chosen by a path selector.

Performance with different sets of paths used (%)Configuration Data
Top 1

4
Top 1

2
Top 3

4
All paths

Four windows Train 91.45 96.93 98.87 99.47

(40 paths) Test 86.89 91.94 92.95 93.53

Eight windows Train 94.72 98.09 98.99 99.28

(80 paths) Test 89.66 92.23 92.93 93.01
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4. Comparison with Other Results

Considering the amount of training and test data used in our recognition
problem, the results obtained in our experiments are quite good. Since there
is neither a standard set of ATR system requirements nor a common FLIR
testing set for ATR problems, it is relatively difficult to compare our results
with most existing ATR classifiers. For most ATR classifiers described in
the literature, the authors generally considered only a few target classes
(five or fewer) and used very small training and testing sets (fewer than 100
samples).

Fortunately, we can make a suitable comparison with the results published
by Mirelli and Rizvi [48], because we and they used identical SIG and
ROI databases. (No other published results use the same databases.) The
schematic diagram of Mirelli and Rizvi’s complete ATR classification system
is shown as figure 13. They used a group classifier to determine the general
shape of an incoming target, followed by 14 similar multilayer convolution
neural networks (MLCNNs) that were optimized to recognize targets of par-
ticular size and shape. Each MLCNN consists of four layers that are made
up of 25 to 50 convolutional kernels, so that each is a rather complex module
by itself. The outputs of these MLCNNs were combined by another MLP to
produce the final recognition score. In a 10-class problem, the best recogni-
tion result Mirelli and Rizvi obtained for the complete ROI testing set was
73.41 percent, which is slightly lower than the 75.12 percent that our clas-
sifier obtained under the same conditions. As they reported a 2.2-percent
improvement brought by the final MLP alone, we expect that our result can
also be further improved by the addition of an appropriate postprocessor at
the end of our processing paths.
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5. Conclusions

A sad lesson learned by our armed forces during Operation Desert Storm
is the difficulty of distinguishing between friendly and hostile vehicles or
equipment under poor visibility conditions. Consequently, more than half
of the American casualties were inflicted by so-called “friendly fire.” To
overcome similar problems in the future, we need ATR systems that are
effective and efficient in distinguishing enemy and friendly targets under
adverse environmental conditions. For this reason, a number of ATR research
projects are actively carried out by the U.S. Army Research Laboratory. In
the long run, these efforts could significantly contribute to the safety of our
troops and the security of our nation.

In this report, we propose an ATR classifier that consists of several aspect
windows, an extraction enlargement procedure, a wavelet decomposition,
and a set of product code VQs. Background noise and effective dimension-
ality are greatly reduced by the variable-size aspect windows. As shown by
the performance of the no-enlargement method, the extraction enlargement
is necessary to achieve higher recognition rates with a more compatible sim-
ilarity measure between the aspect windows. Wavelet decomposition of the
enlarged extraction subdivides the complexity of the recognition task, ex-
tracts target features at different perspectives, and enables the use of a prod-
uct code VQ. The K -means algorithm and a modified LVQ algorithm have
been used to capture intra-target similarities and to enhance inter-target
discriminability. We tested three variants of the proposed ATR classifier in
order to examine the effects of the extraction enlargement procedure, the
wavelet decomposition, and the product code VQ. Each of these three pro-
cedures was one component of the proposed method. We constructed each
variant by omitting one of the three procedures. It was found that all the
three variants resulted in recognition performance that was worse than the
proposed method; therefore, each of the stages is critical to the proposed
method.
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