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Abstract. We investigate the eigenvalue spacing distributions for ran-
domly generated 4-regular Cayley graphs on SL2 (]Fp) by numerically cal-
culating their spectra. We present strong evidence that the distributions
are Poisson and hence do not follow the Gaussian orthogonal ensemble.
Among the Cayley graphs of SL2 (lFp) we consider are the new expander
graphs recently discovered by Y. Shalom. In additionFwe use a Markov
chain method to generate random 4-regular graphsfand observe that the
average eigenvalue spacings are closely approximated by the Wigner sur-
mise.
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1. Introduction. One of the most remarkable numerical discoveries
of the recent past is Odlyzko's finding that the spacings of the zeros of
the Riemann zeta function closely follow the Gaussian unitary ensemble of
random matrix theory [15]. As a result of this workrattention has turned
to the spacing distributions for the spectrum of other natural classes of
operatorsTin the hope of making similar connections with other number
theoretic objects.

One direction of related work is towards the analysis of the eigenvalue
spacing distribution for the Laplacian on different manifolds; see [17] for a
survey of many recent results of this type and an extensive bibliography.
The motivation for our work comes from the particular case of interest
of the Laplacian on SL2 (2)\IlI where IH denotes the hyperbolic upper

half plane. This is the main example of an arithmetic surfacerwhich is
a hyperbolic surface given as the quotient of the upper half plane by an
arithmetic subgroup of SL 2 (R).

In generalFthe statistical behavior of eigenvalue spacings for natural
families of operators falls into two main classesf Poisson and the Gaus-
sian ensemble. The Gaussian orthogonal ensemble (GOE) governs random
symmetric matrices while the Gaussian unitary ensemble (GUE) applies
to random complex Hermitian matrices. The density of the spacings in
the Poisson caserwhere the spacings are normalized to have unit meanris
exponentialre-XFand for the Gaussian orthogonal ensemble the density is
well-approximated by the Wigner surmise x-"-T-

2/4 [13]. More generallyP
Katz and Sarnak [7] have recently investigated the eigenvalue spacings for
the classical groupsfas well as connections to zeta functions for curves over
finite fields. Diaconis and Shahshahani [3] have analyzed the eigenvalue dis-
tribution for a randomly chosen matrix from classical groups. The physical
interpretation of eigenvalues is as energy levelsFand Poisson behavior of the
spacings is usually thought of as characteristic of integrable systemsfwhile

GOE corresponds to chaotic systems (cf. [114113] and the many references
therein).

Computations of Schmit [19] indicate that the spacing distribution for
SL 2 (Z)\H should be Poisson. More generallyf recent work of Luo and
Sarnak [12] and Rudnick and Sarnak [16] indicates that this is the case for

any arithmetic surface. The exact behavior of the spacings in this case is
still an open question.

In this paper we investigate the eigenvalue spacings for the adjacency
matrices of various Cayley graphs on SL 2(]Fp)Fnaturally thought of as dis-
crete approximations to the spectral behavior in the continuous setting of
SL2 (2)\IHI. This sort of analogy is suggested by the machinery developed
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in the successful application of Selberg's Theorem [20] to the discovery of
expander graphs built as Cayley graphs of SL2(IFp). Here the main tool

is the transfer of the lower bound on the first positive eigenvalue of the
Laplacian to a uniform bound on the first nonzero eigenvalue for a family
of graphs obtained as quotients of Cayley graphs on SL2(•). See [10] for

an excellent treatment of this construction and a thorough bibliography.

The results in this paper are of two types. On the one hand we com-
pute the spacing distributions for particular Cayley graphs on SL2(Fp).
These computations include generator sets to which Selberg's Theorem
would applyFas well as some sets to which it would not apply. We also
compute the distributions for random 4-regular Cayley graphs on SL2(]Fp)
(for a fixed prime p). In all cases we find close agreement with Poisson
behavior. For comparison we have also computed the spectra for randomly
generated 4-regular graphsFusing Markov chain methods to generate the
graphs. These all closely follow the GOEFand this is in agreement with the
extensive computations performed by JakobsonFMillerFRivin and Rudnick
[5]. Our computations on SL2(]Fp) are only made possible by the Use of
representation theory for the groups SL2(]Fp) (see Section 2). In brietTwe

compute the spectrum as the union of spectra of individual Fourier trans-
forms of the characteristic function of the generating set. The second type
of computation we carry out investigates the spectra of some of these in-
dividual transforms. This includes the spectrum of the expander graphs
built as the action of SL2(Fp) on the projective line. AgainFin all cases the
distributions appear to exhibit Poisson behavior.

After outlining our use of Fourier analysis in Section 2Fwe present our
computations in Section 3. We summarize our results as two conjectures

in Section 4.

Acknowledgements. Thanks to Peter Sarnak for suggesting some of
these computationsFand to Persi DiaconisFDmitry JakobsonFRavi Kannan
and Danny Sleator for helpful discussions.

2. Cayley graphs and Fourier analysis. As in [8Ig]Fto analyze
the spectrum of Cayley graphs we exploit the fact that the adjacency ma-
trix can be viewed as the Fourier transform of the generators at the right
regular representation. Any representation is equivalent to a direct sum of
irreducible representations. Since we are able to compute Fourier trans-
forms at any irreducible representation for SL2(]Fp)Fwe are able to recover
the complete spectrum by only computing the spectrum of the individual
Fourier transforms. For SL2(Fp)Fall multidimensional representations are

roughly of degree pFversus O(p3)Fthe size of the regular representation.

To say this more preciselyF let G be a finite group and let S C G
generate G. The Cayley graph X = X(GS) for G with respect to $ is
the undirected graph with vertex set equal to GFsuch that there is an
edge between a and b in X if and only if as = b for some s E S U $-1.

EquivalentlyPthe adjacency matrix of X(G, $) has a one in the (a, b) entry
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if and only if as = b for some s E S US- 1 . Let Preg denote the right regular
representation of Grcomputed with respect to the basis of delta functions
on G. Then it is not difficult to see we have the following expression for
the adjacency matrix of X(G, S)Fdenoted r(G, S):

(2.1) F(G,S) = E peg(s).
sESUS-1

The righthand side of (2.1) is also the Fourier transform of the character-
istic function for S U S-1.

Direct computation of the spectrum of the IGI x JGJ matrix F(G, S) re-
quires O(IGI3) operations (cf. [24]). For SL2(mFp)rsince ISL2 (Fp)I = O(p 3 )r
this means 0(p 9 ) operations. This cost quickly becomes prohibitive. How-
everFby using the tools of representation theoryfwe may instead compute
the elements of an equivalent block diagonal matrix and realize the entire
spectrum as the union of the spectra of the blocks.

More preciselyPrepresentation theory gives a simultaneous block diag-
onalization of the matrices preg(S) as

B(R (s) 0 ... 00 B2 (S) ... 0
(2.2) P g(s) . . •• .

0 0 ... Bh (S)

with
Pi (s) o ... o

0 p i(s) ... 0

(2.3) Bi(s) 0 ) . ". .

0 0 ... pi(s)

where P1, . • •, Ph are a complete set of irreducible matrix representations of
G with deg(pi) copies of pi(s) on the diagonal. ConsequentlyF

(2.4) spectrum(X(G,S)) J spectrum _ Pi(s))
i=1 sESOU-

The degree of the largest irreducible representation of G is bounded above
by IG1112 (cf. [21]). Thusrby using the basis which gives (2.2) and (2.3)Pwe
are able to reduce the computation from 0(1GI3) operations to a potentially
more manageable 0 (IGI • (maxi deg(pi))) < O(IG13/ 2) operations.

For G = SL2 (]FP)Fthe irreducible representations of SL2 (IFp) occur in
two familiesPthe discrete series and principal series. The distinction de-
pends upon the restriction of an irreducible representation to the Borel
subgroup B < SL2 (]Fp) of upper triangular matrices. An irreducible repre-
sentation of SL2 (IFp) is said to be from the principal series if its restriction
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to B contains the trivial representation. Otherwisef it is said to be from

the discrete series. The principal series representations occur as compo-
nents of induced 1-dimensional representations from Bfwhich are almost

always irreducible. This gives the trivial representationfone representation
of degree prtwo representations of degree (p + 1)/2r and (p - 3)/2 repre-

sentations of degree p + 1. The discrete series is less easily explainedfbut

suffice it to say here that the representations are in close correspondence
to the characters of the non-split torus in SL2 (]Fp) (cf. [14]rCh. 2fSection
5). There are two such representations of degree (p - 1)/2 and (p - 1)/2
representations of degree p - 1.

Explicit representations are needed to apply (2.2) and (2.3). These
can be found in [14] and [23] and are the basis of our implementation
(cf. [8]). Knowledge of the representations of SL2 (lFp) gives the irreducible
representations of PSL2 (IFp). More preciselyFif p is an irreducible matrix
representation of SL 2(IFp) and -I is in the kernel of prwhere I 1( 0)F
then p is constant on cosets SL2 (]Fp)/{±I} and as such gives an irreducible

representation of PSL2 (IFp). Under this identificationrthe set {P I {±I} C
ker(p)} gives a complete set of inequivalent irreducible representations of

PSL2 (lFp). We use this correspondence when calculating the spectra for
the Ramanujan graphs constructed by LubotzkyP Phillips and Sarnak in

Section 3.

Remark. In the case in which S U S1 is a union of conjugacy of
classes of Grthe adjacency matrix can be completely diagonalized and the
eigenvalues can be computed as certain character sums over G [2].

3. Numerical evidence. The main results of this note are computa-
tions of the spacings for various Cayley graphs on SL2 (IFp)rmade possible
by the techniques outlined in Section 2. As we stated in the introductionF
our computations are of two types:

(1) The computation of spacing distributions for particular 2-generator

Cayley graphs on SL2 (IFp).
(2) The computation of spacing distributions for particular Fourier

transforms for 2-generator Cayley graphs on SL2 (IFp).

Within these computations we distinguish among various kinds of gen-
erators; global or Selberg generators are generators for families of Cayley
graphs obtained as projections of a single Cayley graph on SL2 (Z); non-

Selberg generators are an infinite family of generators for SL2 (IFp) as p -+ 00

that are not the projection of a single set of generators for SL 2 (Z); ran-
dom generators are a pair of generators for SL2 (]Fp) generated by a simple
randomized algorithm. In generalFrandom generators are non-Selberg.

For a generating subset S C SL2 (lFp) we denote the eigenvalues (with-
out multiplicities) of F(G, S) as A0 > A, > ... > ANFand let P(S) denote
the "empirical" cumulative distribution function for the eigenvalue spac-
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ingsfso that

(3.1) P(S)N= [Aj N•S
j=1

where [a < b] is one if a < b is true and is zero otherwise. We assume the
eigenvalues are normalized so that the spacings have mean one:

1 N
(3.2) •(Aj- 1 - Aj) = 1.

j=1

Besides the computations of the various P(S)Fwe also include some
new data on a particularly interesting non-Selberg generating pair recently
discovered by Y. Shalom [22]. These turn out to be (in terms of the nu-
merical analysis of the second-largest eigenvalue) among the best expanders
built as Cayley graphs of SL2 (Fp) discovered to date.

3.1. Random graphs. In this section we present sample results from
our calculations of the spacing distributions of random 4-regular graphsF
where the curves show GOE behavior (see also [5])Fand 4-regular Cayley
graphs of SL2 (lFp) for randomly chosen generating pairsfwhere the behavior
is Poisson.

To choose generating pairs of SL2 (IFp) uniformly at randomfwe use the
algorithm described in [8]. This algorithm first selects two group elements
a, b E SL2 (Fp) uniformly at random using the Bruhat decomposition of
SL2 (Fp)Fand then checks whether {a, b} generates the group by verifying
that {fr(a), 6r(b) does not generate one of the six possible subgroups of
PSL2 (]Fp)Fwhere 7r : SL 2 (]Fp) -+ PSL2 (lFp) is the natural projection. We
refer to [8] for details.

We generated random Cayley graphs using this algorithm for p > 150F
and observed that all of the graphs closely followed the exponential distri-
bution. In Figure 3.1 we show the cumulative distribution function for a
typical example.

Remark. In Figure 3.1Fas in all of the cumulative distributions that
we presentrwe have omitted the spectral gap k - A1 from the calculations.
Asymptoticallyfas p -- oothis gap does not contribute to the cdffalthough
it changes the mean of the distribution.

To generate random 4-regular graphs (not Cayley graphs) we used a
Markov chain method. In generallthe states of the Markov chain are the
(labeled) k-regular graphsl' and two graphs can be connected by a single
step of the random walk if and only if the symmetric difference of their
edges is a cycle of length 4. The random walk can be described in terms of
the incidence matrices of the graphs. Recall that the incidence matrix of a
graph F(E, V) is the I VI x EI matrix I(F) where the column corresponding
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FIG. 3.1. The cumulative distribution function P(S) for the eigenvalue spacings of the

single, randomly chosen generating pair a = (0,1 144) b = (114 12") for SL2 (F 15 7 ).
The curve does not include the spacing between the first and second eigenvalues, which
in this case was 1 - 0.879090. The dashed line is the curve 1 - e-'.

to edge (i, j) has a 1 in the ith and jth rowrand 0's elsewhere. If I is the state
of the random walkPtwo rows 1 < i, j _• IVI and two columns 1 < k, I < IEl
are chosen uniformly at random. If lik = Ijl = 1 and Iij = Ijk = 0 then
the chain moves to the state with hk = Ij = 0 and Iii = Ijk = 1 unless
a double edge is formed by doing so. SimilarlyFif Iik =Ij 0 and

Il = Ijk = 1 then the chain moves to the state with Ik =Ij 1 and
lil= I'k = Ofagain unless a double edge would be formed by this move.
In all other cases the walk remains in the same state.

It is proved in [6] that this random walk is rapidly mixingr'using the
technique of canonical paths to estimate conductance. While this results
in a polynomial algorithm in the size of the graphsl the exponent is too
large to enable this result to yield a stopping criterion for the graphs we
generate. As a matter of practicalityfwe simply run the chain for a large
(10') number of steps to generate each graph. After stopping the chainF
we test to make sure the graph is connected (it is with high probability).

Since the Cayley graphs for SL 2(1F157) yield on the order of 251M00
eigenvalues and 191000 intervalsFwe generated 10 random 4-regular graphs
on 21000 vertices and averaged the intervals to obtain comparable statistics.
The resulting cumulative distribution function is shown in Figure 3.2fwhere
it is compared with the Wigner surmise.



LEVEL SPACINGS FOR SL2 (IFP) 7

0.9

0.8

0.7

0.6

0.5

0.4 /

0.3

0.2

0.1 10 4-regular graphs on 2000 vertees
Wigner surmise - -

0
0 0.5 1 1.5 2 2.5 3

FIG. 3.2. The cumulative distribution function P(S) for the eigenvalue spacings of the
10 4-regular graphs on 2,000 vertices, generated by running the Markov chain for 108

steps. The average value of N1 was 0.863389. The dashed line is the cdf for the Wigner

surmise, 1 - exp(- --- ).

3.2. Explicit generators. When we computed the spacing distribu-
tions for both Selberg and non-Selberg type generatorsFand for the gener-
ators recently discovered by Shalom [22]Fwe found that they followed the
Poisson behavior very closely. The generators for SL2 (]Fp) we used were the
following:

(3.4) 1( 3 ( 0)j non-Selberg

(3.) {1+w -1)( 2w +Wi') Shalom

where w is a primitive cube root of unity (mod p). For p = 1991'the
distribution for Shalom's generators is shown in Figure 3.3. The curves for
the other generators are very similar.

The second-largest eigenvalue A1 is shown for a few of the small primes
p = 1 (mod 4). in Table 3.2. These numbers indicate thatPexcept for the
known Ramanujan graphsf these generators are perhaps the best explicit
4-regular graphs for SL2 (IFp) that have been obtained. For PSL2 (lFp)Fthe
explicit Ramanujan graphs of LubotzkyFPhillips and Sarnak have better
separation. For comparisonfthe second-largest eigenvalue for the LPS gen-
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FIG. 3.3. The cumulative distribution function P(S) for generators (3.5) with p = 199,
so a = (107 198 , b 18r 3 ).The second-largest eigenvalue is 0.886048.

/ 1 107 107

erators

(3.6) x3 -+ ±

where i = V'--rare shown for several values of p 3 (mod 4) in Table 3.2.
Not all of the spacing distributions that we observed for SL2 (1Fp) were

so closely Poisson. As an examplelthe plot in Figure 3.4 shows the spacing
distribution for the Selberg type generators

(3.7) { 10 1) (O1 1)

for p = 199. We believe that the discrepancy can be attributed to the
expansion properties of the graph. (The difference cannot be attributed
to gaps in the spectrumrsince other than the gap 4 - Althe spectrum
is "continuous.") The second-largest eigenvalue for this graph is A,

0.977554.

3.3. Individual transforms. The data presented above strongly in-
dicates that the average spacing associated with the Fourier transforms of
the delta function supported on the generating set is asymptotically Pois-
son. In this section we investigate the behavior of the individual transformsf
and present sample calculations for the LPS graphs Xp,q [11118]. Of partic-
ular interest is the transform at the principal series representation induced
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IP q Ip Al1

13 0.921721 109 0.908280
19 0.864292 127 0.886755
31 0.879056 139 0.887515
37 0.894603 151 0.880739
43 0.894659 157 0.888702
61 0.882493 163 0.881105
67 0.890386 181 0.890412
73 0.903236 193 0.887729
79 0.881429 199 0.886048
97 0.899836 211 0.881852
103 0.883868 223 0.882423

TABLE 3.1
\ 1 for a sequence of Shalom's expanders.

p A,
13 0.832880
37 0.863086
61 0.865375
73 0.862093
97 0.864023

109 0.863180
157 0.861790
181 0.863598
193 0.862532
229 0.865491
241 0.864479

TABLE 3.2

\ 1 for 4-regular Ramanujan graphs (3.6) on PSL2 (]Fp). The Ramanujan bound is

,3/2 ; 0.8660254.
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FIG. 3.4. P(S) with generators a=(a 1'),b = ( f •) for SL2 (]F19 9 ). The second-

largest eigenvalue is ),1& 0.977554.

from the identityrsince this is associated with a graph on the projective
line.

To explainrwe recall that SL2(IFq) acts on the projective line Ph(]Fq) -

{0, 1, . . ., q - 1, oo} by fractional linear transformations:

(a b) aw+b
d) cw+d'

Let B denote the Borel subgroup { 0b-- } and let the matrices

su 1 U u = 0,1,...,q-1 land soo --- 0
s= -1 -u ) 1""

be a fixed set of coset representatives of B\SL2 (IFq)Fwhich we identify with
IP'(]Fq). In [8] we constructed the principal series representations of SL2 (Fq)

by inducing characters from Bfand expressing these matrices in terms of
their action on {s,}. Very brieflyfif V : ]F• -+ C is a character of BFthen
the induced representation p,0 = 1"B is given as

(3.8) pP (g)s. = (f(U, M)Sg. "

for some function f(u, s) E IFx. In particularr] s(pl) is the adjacency
matrix P(1IP(lFq), S); we refer to [8] for details. If F(PSL2(Fq), S) is a good
expanderrthen F(IP1(iFq), S) is also a good expander since its spectral gap is
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FIG. 3.5. P(S) for individual Fourier transforms, for LPS generators with p = 37 and
q = 1009. Top row: two principal series representations, action on projective line on

the left. Bottom row: two discrete series representations.

at least as large. In particularFthe explicit Ramanujan graphs for PSL2 (]Fq)

restrict to give Ramanujan graphs on IlP(IFq) [18].
From a computational point of viewfthe discrete series representations

are more expensive to construct. HoweverFour experience has shown that
the spectral properties of the principal and discrete series representations
are almost identical. In Figure 3.5 the spacing distribution is shown for
the 38-regular LPS graphs X 37,1"0 9 for PSL2 (IFioog) at two principal series
and two discrete series representations.

4. Summary. We have computed the cdf for the eigenvalue spacings
of a variety of Cayley graphs on SL2 (IFp). When the graphs are good ex-
pandersrthe distributions are Poissonleven on the level of the individual
Fourier transforms. The data suggests and supports the following conjec-
ture.

Conjecture 1. Let Xp = X(PSL2 (Fp),S) be a family of k-regular

Cayley graphs such that ,Al(Fp) -4 2v/k 1/k asp -- oo. Then asymptoti-
cally as p -4 oo, the distributions of the eigenvalue spacings for Xp and its

individual Fourier transforms 8s (p) are Poisson.

AdditionallyFour randomly generated 2-generator Cayley graphs on
SL 2(IFp) also exhibit Poisson behavior. In light of our previous experiments
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[819] which suggest that a randomly chosen 2-generator Cayley graph on
SL2 (]Fp) is a good expanderFthis too suggests a relationship between ex-
pansion and Poisson spacing. In this spirit we anticipate a "central limit
theorem" for random 2-generator Cayley graphs on SL2 (]Fp).

Conjecture 2. For c > 0, as p -+ oc the probability of choosing a pair
of generators S for SL2 (IFp) with lIP(S) - (1 - e-')11 > c goes to zero.

Availability of Software. All of our computations were performed
on HP 735/125 and DEC 3000 Model 600 Alpha workstationsFusing soft-
ware written in the C language. The code will be available via the web
page www. cs. dartmouth. edu/-rockmore/GFT.

REFERENCES

[1] M. BERRY, Some quantum to clasical asymptotics, in Chaos and Quantum Physics,

M.-J. Giannoni, A. Voros, and J. Zinn-Justin (eds.), Elsevier Pub., NY, 1991,
pp. 252-303.

[2] P. DIACONIS, Group Representations in Probability and Statistics, Inst. of Math.

Stat., Hayward, CA, 1989.
[3] P. DIACONIS AND M. SHASHAHANI, On the eigenvalues of random matrices, J. Appl.

Probab., 31A (1994), 49-62.
[4] M. GUTZWILLER, Quantum chaos, Scientic American, January 1992, pp. 78-84.
[5] D. JAKOBSON, S. MILLER, I. RIVIN AND Z. RUDNICK, Eigenvalue spacings for

regular graphs, IMA, this volume.
[6] R. KANNAN, P. TETALI, AND S. VEMPALA, Simple Markov-chain algorithms for

generating bipartite graphs and tournaments, ACM Symposium on Discrete
Algorithms, 1997, to appear.

[7] N. KATZ AND P. SARNAK The spacing distributions between zeros of zeta functions,

preprint, 1996.
[8] J. LAFFERTY AND D. ROCKMORE, Fast Fourier analysis for SL 2 over a finite field

and related numerical experiments, Experimental Mathematics 1 (1992), pp.

115-139.
[9] J. LAFFERTY AND D. ROCKMORE, Numerical investigation of the spectrum for

certain families of Cayley graphs, in DIMACS Series in Disc. Math. and Theor.
Comp. Sci., Vol. 10, J. Friedman (ed.), (1993), pp. 63-73.

[10] A. LUBOTZKY, Discrete Groups, Expanding Graphs, and Invariant Measures,

Birkhiuser, Boston, 1994.
[11] A. LUBOTZKY, R. PHILLIPS AND P. SARNAK, Ramanujan graphs, Combinatorica,

8 (1988), pp. 261-277.
[12] W. LUO AND P. SARNAK, Number variance for arithmetic hyperbolic surfaces;

Comm. Math. Phys., 161 (1994), 419-432.
[13] M. L. MEHTA, Random Matrices, Academic Press Inc., San Diego, 1991.
[14] M. NAIMARK AND A. STERN, Theory of Group Representations, Springer-Verlag,

NY, 1982.
[15] A. ODLYZKO, On the distribution of spacings between zeros of zeta functions, Math.

Comp., 48 (1987), pp. 273-308.
[16] Z. RUDNIK AND P. SARNAK, The behavior of eigenstates of arithmetic hyperbolic

manifolds, Comm. Math. Phys., to appear.
[17] P. SARNAK, Arithmetic chaos, Israel Math. Conf. Proc., Vol. 8, (1995), pp. 183-

236.
[18] P. SARNAK, Some Applications of Modular Forms, Cambridge Univ. Press, Cam-

bridge, 1990.



LEVEL SPACINGS FOR SL2(]Fp) 13

[19] C. SCHMIT, Quantum and classical properties of some billiards on the hyperbolic
plane, in Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn-
Justin (eds.), Elsevier Pub., NY, 1991, pp. 333-369.

[20] A. SELBERG, On the estimation of Fourier coefficients of modular forms, Proc.
Symp. Pure Math. 8 (1965), pp. 1-15.

[21] J. P. SERRE, Linear Representations of Finite Groups, Springer-Verlag, NY, 1986.
[22] Y. SHALOM, Expanding graphs and invariant means, preprint, 1996.
[23] A. SILBERGER, An elementary construction of the representations of SL(2, GF(q)),

Osaka J. Math. 6 (1969), pp. 329-338.
[24] J. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, 1965.


