
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5540--97-7991

Design and Assurance Strategy
for the NRL Pump

MYONG H. KANG

ANDREW P. MOORE

IRA S. MOSKOWTTZ

Center for High Assurance Computer Systems
Information Technology Division

December 31, 1997

Dire «BwwxwHwnn,«

Approved for public release; distribution unlimited. 19980105 063

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect othis
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Informatim Operations and Reports 1215 Jefferson
Davfc Highway Suite1204 Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

December 31, 1997

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

Design and Assurance Strategy for the NRL Pump

6. AUTHOR(S)

Myong H. Kang, Andrew P. Moore, and Ira S. Moskowitz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
Arlington, VA 22217-5660

5. FUNDING NUMBERS

PE-61153N15

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/5540-97-7991

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Developing a trustworthy system is difficult because the developer must construct a persuasive argument that the system
conforms to its critical requirements. This assurance argument, as well as die software and hardware, must be evaluated by an
independent certification team. In this paper, we present the external requirements and logical design of a specific trusted
device, the NRL Pump, and describe our plan, called the assurance strategy, to create the eventual assurance argument. Our
assurance strategy exploits currently available graphical specification, simulation, formal proof, and testing coverage analysis
tools. Portions of the design are represented by figures generated by the Statement tool-set, and we discuss how those tools, and
covert channel analysis, will be used to show that the logical design conforms to its external requirements. We conclude with
some remarks on a possible physical architecture.

14. SUBJECT TERMS

Computer device

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

25

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-891
Prescribed by ANSI Std 239-18

298-102

CONTENTS

1. INTRODUCTION 1

2. NRL PUMP OVERVIEW 2

3. ASSURANCE STRATEGY 4

4. NOTATION 6

5. SYSTEM REQUIREMENTS-EXTERNAL VIEW OF THE PUMP 7

System Configuration and Administration 8
Recovery 9
Message Classes and Connection Establishment Procedure 10

6. LOGICAL DESIGN-INTERNAL STRUCTURE OF THE PUMP 12

Connection Table 13
Connection Buffer 13
Main Thread (MT) 14
Trusted High Thread (THT) 15
Trusted Low Thread (TLT) 16
Error/Failure Handling and Audit 17
Power Failure 18
Connection Failure 18
Audit 19

7. ANALYSIS OF THE LOGICAL DESIGN 19

8. SUMMARY AND FUTURE WORK 20

REFERENCES 21

in

Design and Assurance Strategy for the NRL Pump
Myong H. Kang, Andrew P. Moore, and Ira S. Moskowitz7

Center for High Assurance Computer Systems

Information Technology Division, Mail Code 5540

Naval Research Laboratory

Washington, DC 20375

Abstract

Developing a trustworthy system is difficult because the developer must construct a
persuasive argument that the system conforms to its critical requirements. This assurance
argument, as well as the software and hardware, must be evaluated by an independent
certification team. In this paper, we present the external requirements and logical design
of a specific trusted device, the NRL Pump, and describe our plan, called the assurance
strategy, to create the eventual assurance argument. Our assurance strategy exploits
currently available graphical specification, simulation, formal proof, and testing coverage
analysis tools. Portions of the design are represented by figures generated by the
Statemate toolset, and we discuss how those tools, and covert channel analysis, will be
used to show that the logical design conforms to its external requirements. We conclude
with some remarks on a possible physical architecture.

1. Introduction
In the last few years, the landscape of multilevel secure (MLS) computing has changed
dramatically. Researchers and practitioners in the information security arena realize how
difficult it is to build general purpose high-assurance MLS computers and software. Over
the past 20 years, only a handful of high-assurance MLS computers has been built. Those
high-assurance computers are rarely used in operational environments because

• they are relatively expensive,

• they lack user friendly features and development environments,

• they lag current commercial systems because of the time required for evaluation and
certification, and

• they do not provide scalable solutions for secure distributed computing.

Despite the lack of satisfactory solutions, information security has become a more
important issue because of the trend to open and distributed computing, which increases
the vulnerability of the system to attack. Hence, it is increasingly important to develop
scalable security solutions that do not depend on general purpose MLS systems. Such

'Research supported by the Office of Naval Research
Manuscript approved June 27, 1997

security solutions should use commercial products for general purpose computing and
special purpose trusted devices for the separation of data at different security levels. This
paper describes the software design and the assurance strategy of a high-assurance
security device, the NRL Pump, which is one of the security components for a proposed
security architecture [KFM].

2. NRL Pump Overview

In 1993, Kang and Moskowitz introduced the Basic NRL Pump [KM93]. Further results
[KML] extended the Basic NRL Pump to the network environment — the Network NRL
Pump, which is the focus of this paper. For brevity, we refer to the Network NRL Pump
simply as "the Pump" in this paper.

Suppose messages are sent from an enclave operating at a low security level (Low) to an
enclave operating at a high security level (High). The security requirement is that
information may be sent from Low to High, but not the reverse. Although this
requirement seems simple, it is often quite difficult to satisfy. Applications sending
messages from Low to High require an acknowledgement (ACK) that the message was
successfully transmitted. This ACK is required both for reliability and recoverability. One
might think that with the ACK as benign as possible, basically just last message
successfully received, there would be no security problem since we are not
allowing any information to be padded into the ACK. However, if the timing of the ACK
to Low is under the control of High we have the possibility of a covert communication
channel [L]. To be precise, we have a potential timing channel [L][W][MM92][MM94].
That is, High can send information, in the sense of Shannon [S], to Low by varying the
ACK arrival times to Low, after Low has sent a message to High.

Perhaps this channel seems a minor vulnerability, but related channels have been
demonstrated to have significant capacities in real systems [G], and if all other means of
communication are cut-off then an exploiter may use the only means possible — the
timing of the ACKs. The potential damage caused by timing channels such as this has
been well studied in [KM95]. The Pump limits this timing channel without constraining
throughput. It also enforces a fairness criterion among the different users.

The Pump places a non-volatile buffer between Low and High. A system in Low sends a
message to the Pump. The Pump stores this message in this buffer and sends an ACK to
the sender. The timing of the ACK is stochastically modulated based upon a moving
average of past High activity. The Pump asynchronously forwards the message to High.
Details of the Pump algorithms are documented elsewhere [KML].

The Pump is configured as a single hardware box that has interfaces to a High LAN, a
Low LAN, and an Administrator Workstation (which is used to load configuration
information into the Pump and to monitor its operation as necessary). The Pump supports
a specialized protocol (the Pump Protocol) across the LAN interfaces.

The ability to support a variety of applications is provided by software called wrappers,
which runs on the application systems in the Low and High enclaves, that communicate
with the Pump over their respective LANs. Each wrapper is further divided into an

application-dependent part, which can be tailored to support the particular set of objects
or calls the application it expects to see, and a Pump-dependent part, which is a library of
routines that implement the Pump protocol. These functions can be called as required by
the application-dependent routines. Note that only application programs that can operate
with very little information returned to the sender from the receiver (e.g., applications that
use asynchronous communication) can use the Pump, since the reverse path is limited to
simple ACKs.

Low Admin High
LAN T AM

Low Enclave 1
/ \
(data \

High Enclave

/
data ^

Pu mp
„fc,

i

L°w 1 wrapper
application |

l i i i- t-t
wrapper

High
application

i

Statistically
► w

4 ACK
i

buffer |
<" \Modulated! f* /

VACK/ X y'

Figure 1: The Pump, wrappers, and applications

Figure 1 shows the Pump with its administrator workstation, the Low and High LANs,
and the wrappers and applications with which the Pump communicates. Confidentiality
properties of the Pump depend solely on itself and not on the wrappers. Wrapper
software, both application-dependent and Pump-dependent parts, is not security critical
and can be altered or replaced without affecting system security.

Each wrapper consists of two parts: a Pump specific part and an application specific part.
The Pump specific part supports Pump Application Programming Interface (API) on one
side and the Pump protocol on the other side. The application specific part of the wrapper
provides application specific protocol on one side and Pump API on the other side as
shown in Figure 2.

Application
protocol

< ►

' Application specific part:

Functions that satisfy application
specific protocol requirements,
and send data or ACK that come
from the application through
Pump API

<
Q.
E
Q-

Pump Specific part:

Converts Pump API
call to Pump protocol
and hides Pump
protocol specific
bookkeeping

Pump
protocol
< ►

Figure 2: The Structure of wrappers

Some examples of Pump API function calls are connectToPump (highAddress) ,
sendData(message) , sendACK(id) ,etc.

Note that the low wrapper is a proxy of the high application program that (1) receives
messages from the low application program and delivers them to the Pump, and (2)
receives ACKs from the Pump and generates application specific ACKs. Also note that
sometimes one application message from a low application may be transformed into
several Pump messages. Similarly, the high wrapper is a proxy of the low application
program that (1) receives a message from the Pump and delivers it to the high application
program and (2) receives application specific ACKs and converts them to Pump specific
ACKs.

Our current interest is to demonstrate the use of the Pump in a SINTRA [FKMCL]
database. Low is one database and High is another database; data in Low is to be
replicated to High. The databases are Sybase databases and a Sybase replication server is
used in conjunction with the Pump to forward data from Low up to High.

3. Assurance strategy

Information systems that effectively and inexpensively counter security threats isolate the
security-critical function of the system architecture in simple, well-defined and reusable
components. A detailed explanation, called the assurance argument, describes why this
isolation is effective and why the critical components are trustworthy. The critical
components are trusted to correctly carry out the security-critical function. The
development of a trustworthy system is not easy because an assurance argument must be
constructed by the developer and evaluated by an independent certification team. The
argument must instill high confidence that the system does what it is supposed to do, and
only what it is supposed to do. Constructing a convincing assurance argument requires a
comprehensible development process and an implementation that clearly conforms to its
critical requirements.

Judicious use of formal methods can strengthen a system's assurance argument, because
the tools of mathematics and logic can be applied to assure that critical properties hold.
Many evaluation criteria for trusted computer products and systems reflect this fact [T]
[C] [I]. However, increasing the formality of an argument does not necessarily make it
more convincing to an independent certifier unfamiliar with these tools. Constructing a
persuasive and cost-effective argument often requires the use of many different
languages, methods and tools — both formal and informal. Formal specifications and
analyses must be intuitively presented in the context of the overall assurance argument or
much of their power to persuade may be lost [MP].

The process that we have adopted for developing the Pump integrates the specifications
and analyses with structured system documentation. This process clarifies the relationship
between the refinement of Pump functionality and the argument that the Pump satisfies
its critical requirements. Figure 3 illustrates our process for constructing the Pump's
assurance argument.

Specification
Level

System
Requirements

Logical
Design

Physical
Architecture

Module Interface
Specification

Module
Internal Design

Module
Implementation

Pump Assurance
Argument

Network Interconnection
Requirements

Human Review

Critical
Requirements

Covert Channel Analysis^
Model Checks, Simulation

Detailed
Logical Design

Logical/Physical Mapping,
Traceability Checks

 Physical
Architecture

Human Review

Access Program

Requirements

EVES Specification and Proof

Access Program
Design

Testing, Coverage Analysis

Access Program
Implementation

Figure 3: Pump assurance strategy overview

Languages,
Tools

Statemate
Activity Charts

StatemateActivity
and State Charts

Statemate
Module Charts

Verdi

Verdi, EVES

C++,Whitebox
DeepCover

The primary levels of system refinement and documentation are shown along the left side
of Figure 3. Along the right side are the specification languages and tools that contribute
to the implementation, analysis and verification of the Pump, e.g., I-Logix Statemate™
graphical specification and simulation tools [HLNPPSST], ORA Canada's Verdi/EVES
formal verification environment [CKMPS][KPSCM] and Reliable Software
Technology's Whitebox DeepCover™ testing coverage analysis tools [RST]. The result
of integrating the use of the languages and tools on the right into the levels of system
documentation on the left will be the Pump's assurance argument, which corresponds to
the center of Figure 3 (the area between the arrows). Slanted arrows indicate a refinement
of a specification to a more detailed specification or implementation; vertical arrows
indicate a translation of a specification from one semantic domain to another at a
comparable abstraction level. The increase in width of the argument from top to bottom
reflects additional detail specified and reflected in the assurance argument at the lower
levels.

A variety of formal and informal techniques allow reasoning across five semantic
domains: English narrative, Statemate logical design, Statemate physical design, formal

Verdi PDL specification, and C++ code. The network interconnection requirements are
expressed in English. The Pump's critical requirements are also expressed in English but
in terms of the primitives of a functional view of the Pump specified graphically in
Statemate activity charts. This logical view of the Pump is refined using a combination
of Statemate activity and state charts, which details the behavioral view of the Pump. The
activities and behavior of the logical design are mapped to a physical architecture
described in terms of Statemate module charts. This physical architecture is mapped to a
Verdi specification of the interface function (i.e., access program) requirements of each
module. This specification provides the "oracle" to which the implementation must be
shown to conform. Verification proceeds either through formal proof using the EVES
verification system or by thorough testing using the Whitebox DeepCover tool for
coverage analysis. The type of verification performed depends on the complexity and
type of the requirement, -e.g., functional, security, performance, etc., and the complexity
of the code. The theory of software testability [VM] may be used to determine the
likelihood that testing will uncover flaws in the implementation.

We have studied the behavior and vulnerability of the Pump algorithms during normal
operation [KML], but not during connection initialization, error handling, or error
recovery. Implementation may introduce vulnerabilities such as the overuse of Pump's
resources due to the high consumption by a single connection or the revelation of the
number of active connections. We are developing a fully functional Pump prototype that
reflects the logical design of the Pump to study these vulnerabilities within the
operational environment. Functions that need to be clarified include:

• administrative requirements of the Pump, such as initialization of the Pump,
connection establishment procedure, and monitoring the activities of the Pump; and

• error handling and audit requirements.

The Pump's assurance strategy must yield easy-to-understand mappings from the critical
system requirements to the design. To support these mappings, the Pump design is based
on the following principles:

1. Define clearly the task of each module (i.e., thread or object in the logical design
prototype),

2. Separate modules that interact with Low from modules that interact with High,
called low and high modules respectively, and

3. Reduce as much as possible communication between low modules and high modules
so that the security (especially confidentiality) can be easily monitored and verified.

4. Notation
Sections 5 and 6 of this paper present an overview of the system requirements and logical
design, which are the first two levels of specification of the Pump shown in Figure 3.
Section 7 describes the analyses performed on these specifications including a covert
channel analysis, a Statemate analysis of their logical consistency and completeness, and
Statemate simulations. The last section discusses future work involving the refinement of
the logical design to the physical implementation of the hardware Pump, as will be
carried out in the last four levels of refinement in Figure 3.

The language of Statemate forms the basis for the specifications that follow. Table 1
presents the primary graphical notation used in this paper. Two types of Statemate
graphical charts are used: activity charts, which represent a functional view akin to data
flow diagrams, and state charts, which represent a behavioral view akin to state machine
diagrams. State charts describe the behavior and control of activities in an activity chart;
thus, an activity chart may be associated with a controlling state chart as shown in the
table. Statemate distinguishes two types of flows between activities in an activity chart:
flows of data items, which are represented by solid arrows, and flows of control (events
or conditions), which are represented by dashed arrows. An arrow between states in a
state chart must be labeled with a trigger that causes the state transition. These triggers
have the general form E[C]/A, where E is an event (an observation of the system that
occurs instantaneously), C is a condition (an observation that is either true or false), and
A is an action (which may cause other events to trigger or conditions to change). For
example, in Figure 9, E/A is CONNECTION_RQSTD/get! (CNCT_RQST, LO_RQST)
where the get! call receives LO_RQST message from CNCT_RQST queue.
Statemate also has various connectors that permit graphically decomposing triggers into a
series of branches. These connectors are used solely to clarify the specification by
reducing the number and length of arrows between states.

@x

Y<X

- an activity named X

- an activity named X that is refined in a lower level chart also named X

- an instance Y of a generic (parameterized) activity X

x (@Y) - an activity X with controlling state chart Y
-————-1
x_ _ _ _ j - an activity X that is external to the chart being elaborated

- a place to store data item X

 - a state named X (Note rounded edges)

| @x | - a state X that is refined in a lower level state chart also named X

("ÄT^-HITI . a flow 0f data jtem x from activity (or data store) A to activity (or data store) B

GO—NX] - a flow of control element X from activity A to activity B

LAJ—HJU - a trigger X that causes transition from state A to state B

i 1

: * I

Table 1: Statemate Graphical Notation

5. System Requirements — External View of the Pump

In this section, we treat the Pump as a black box and describe its requirements from an
outsider's point of view. The Statemate activity chart showing the data flows from this

viewpoint is shown in Figure 4.

i

t

PUMP
ADMIN L ADMIN_RQST f

,_APP1 ■ ^^

LOW
WRAPPERS

CNCT_RQST
0PUMP

HI_MSG

HIGH
WRAPPERS HA_MSG

HA_ACK

^HA_MSG

HA_ACK

J HIGH ' r- APPl '

CNCT_RSP • .._." ^^*^^ LO
WRP1

HI
WRP1

LA_ACK

LO MSG HI_ACK

LA_MSG
- ... ^i ^^*^ LO

WRP"2

 >
LO_ACK HI

WRP2
•LOW y^^ ». HIGH « < APP2 ^" — « ^^^ ._APP2 ■

, ■ LA_ACK < k

CUR _TIME

CLOCK

Figure 4: External View of the Pump

System Configuration and Administration

The Pump can be thought of as simple network router that connects a low network to a
high network. However, we do not want the Pump to act as a general-purpose router that
can accept a message from a lower security level process and route that message to any
high security level process. Allowing such uncontrolled behavior can cause security and
availability problems. For example, any low process could establish a connection to any
high process and thus waste Pump resources. In addition, a low Trojan Horse process
could "ping" high (Trojan Horse) processes to see if such processes exist or not. The
Pump should prevent such arbitrary exploitation of the Pump for security and availability
reasons, but at the same time should provide flexible services to many applications for
usability.

To avoid these problems, we require processes that use the Pump to register their
addresses with the Pump administrator. The Pump administrator, who will verify the
legitimacy of the registration, can enter the addresses of registered processes into the
Pump's configuration file. This configuration file can be changed and reloaded anytime
during the normal operation of the Pump.

Note that, in general, the Pump communicates with COTS applications only via wrappers
that understand both the Pump and application protocols. Hence, the Pump's registered
processes are most likely the low and high wrappers. When the wrapper is registered, it
also identifies the type of application (either recoverable or non-recoverable, see below)
with which it interfaces.

The Pump has a configuration file that contains:

1. Pump initialization information (e.g., window size, and maximum number of
connections)

2. Registered low and high processes, and the type of applications that the process
interacts with (i.e., either recoverable or non-recoverable), and

3. A set of allowable connections. This information is used for network access control
when a low process sends a connection request to the Pump.

A Pump administrator, who is cleared for high data, manages this file. Since the Pump
checks the configuration file only when a connection is established, this file can be re-
loaded dynamically.

The Pump has an external administrative interface for loading configuration files,
requesting the status of the Pump, etc. When the Pump administrator requests the status
of the Pump, it returns the status of active and aborted connections (e.g., how long the
connection was active, idle time). When the idle time of a connection is too long, the
Pump administrator has the option to "kill" the connection.

The Pump also maintains a well-known port to which a low process can send a
connection request to a specific high process. This is shown as the CNCT_RQST and
CNCT_RSP flows in Figure 4.

Recovery

The Pump must provide a recoverable service. That is, once a Low wrapper receives an
ACK from the Pump for a given message, it must be able to safely assume that the
message will be delivered to the corresponding High wrapper by the Pump, even if power
failures or system crashes occur, either in the Pump or the High Wrapper.

Not all applications require the same kind of recoverable service, however, and the
Pump's external interface permits applications to request a recoverable or non-
recoverable connection; this choice determines how the Pump behaves if the connection
is aborted. For example, suppose the Pump delivers messages between an FTP client and
server. FTP is not a recoverable application; so, if there is an abnormal disconnection in
the middle of a file transfer, the FTP client and server do not expect any recovery when
they resume the connection. However, if a connection is abnormally broken between a
Sybase replication server and SQL server, they do expect recovery after the connection is
resumed because they are recoverable applications.

Different recoverable applications have different recovery procedures, so their wrappers
must maintain the necessary information for recovery. In the case of a Sybase replication
server and SQL server, they exchange the last message that the replication server sends to
the SQL server for synchronization. Hence, the wrapper of the replication server has to
keep the last message. Since the wrapper cannot predict when the connection will be
aborted, it has to write every message to persistent storage. In general, the low and high
systems in which the wrappers reside are not recoverable systems. Maintaining persistent
messages in a non-recoverable system is usually a very expensive operation (e.g., the
need to write every message to disk and synchronize).

The Pump is a recoverable device, hence, maintaining an extra persistent message for
recoverable connection is not as expensive as maintaining a persistent message in a non-
recoverable system. Therefore, the Pump is designed to maintain the last message it

receives from Low if the connection is recoverable and the connection is abnormally
disconnected, even if all other messages are already delivered to High. However, the
Pump cannot keep the last message forever. Hence, the Pump will maintain the last
message from the aborted recoverable connection only for T (a configuration parameter)
hours. The administrator of the Pump can always reclaim the resources from the aborted
connection after T hours. Upon receiving the command from the administrator to reclaim
the resources for the, aborted connection, the Pump tries the last effort to "flush" the
undelivered message to High and then claims the resources.

The normal recovery procedure for an aborted recoverable connection is as follows. After
Low and High re-establish the connection, the Pump delivers all undelivered messages
from the previous session to High. The Pump then sends the last message that it
delivered to High (which is exactly the last message it received from Low) back to Low
for synchronization purposes (unless that message was the connection close request, in
which case nothing is delivered to Low). After this synchronization, Low sends new data
messages to the Pump. Of course, there may be cases where the last messages do not
provide sufficient information for synchronization. For such applications, the wrappers
have to maintain extra information for synchronization.

Message classes and connection establishment procedure

For recoverability reasons, the Pump is designed to operate at the application layer
[KMMP]. Hence, it communicates to Low and High through its own protocol (i.e., Pump
message). There are two classes of Pump messages: data messages and control messages.
The inheritance structure of message classes in OMT notationfR] is shown in Figure 5.

pumpMsg

I
dataMsg

controlMsg

I
connectionRequest connectionValid connectionExit

connectionRejected connectionGranted

Figure 5: Message inheritance structure in OMT notation

Every Pump message has 7 bytes of header field and an arbitrary length of data field, as
shown in Figure 6.

10

2 bytes
(data length)

1 byte
(type: either

data or control)

4 bytes
(extra header)

arbitrary length data field
(data length field in the header

specifies its length)

Figure 6: Pump message structure

The first two bytes specify the length of the data field, and the next byte tells the type of
message: data or control. The next 4 bytes of the header will have different meanings for
different types of messages, such as connection ID and message ID for data messages,
and the type of control message and version number for control messages. Control
messages are exchanged mainly to set up Low to High connections through the Pump.
Data messages are used to send data from Low to High.

When Low sends a connection request message (connectionRequest) to the Pump,
it identifies itself with its own address and the type of application (i.e., recoverable
application or non-recoverable application). It also specifies the high address that it
wishes to connect to. The Pump will check the configuration file to determine if the
request is permitted. If the Low and High addresses match with the connectivity table in
the configuration file, the Pump will send the connection valid message (i.e.,
connectionValid) to Low. If the connection request was originated from an
unregistered low process then the request is ignored. If a registered Low process requests
a connection that is not specified in the configuration file (i.e., illegal connection request),
a connection rejected message (connectionRejected) will be sent to Low. When
Low receives a connectionValid message, it disconnects the current connection and
is ready to accept a new connection from the Pump. This redundant connection procedure
is intended to verify Low's address2. Low will use this new connection to transmit data.

Registered high processes are always ready to accept a connection from the Pump. Once
the Pump validates the connection request from Low, it initiates a new connection to
High by relaying the connectionRequest message that came from Low to High.
High validates the request and sends a connectionValid or
connectionRejected message to the Pump. When the new connection is
established, the Pump sends a connectionGrant message with initialization
parameters to High. If the connection is recoverable and the previous connection is
abnormally disconnected then the Pump will send undelivered messages from the
previous session to High. If the connection to High is successfully established and all
undelivered messages are cleared then the Pump establishes a connection to Low and

2 There is always a danger that a "bad process" can send a connection request by pretending that it is some
other process. To prevent such attacks, a strong authentication mechanism (e.g., digital signature) could be
used. The current implementation of the Pump does not use a strong authentication mechanism because: (1)
using digital signatures for every message would be too costly in terms of performance, (2) audit can detect
suspicious activities (e.g., a legitimate connection request is refused due to the active connection between
the same Low and High, suspiciously long connection time), and (3) such mechanisms can be provided
external to the Pump.

11

sends connectionGrant message to Low. If the connection is recoverable and the
previous connection is abnormally disconnected then the Pump will send the last data
message it received from Low for synchronization purposes. If the last message is the
connection close request, then the Pump does not send any message to Low for
synchronization purposes. If the connection to High cannot be established or all
undelivered messages from the previous session cannot be cleared then the Pump
establishes a connection to Low and sends connectionExit message to Low.
connectionExit messages are sent to Low and High when the Pump is ready to shut
down the connection due to any error or administrator's request.

Once the Low to High connection is established, the data message is used to send
information from Low to High. ACK is a special data message that has zero data length
(i.e., the first two bytes of the message are zero) that can be sent from High to the Pump,
and from the Pump to Low.

There is another special data message that requests normal "connection close" from Low
to the Pump, and from the Pump to High. This message is used at the end of normal data
transmission. Logically it should be a control message. However, this special message has
to propagate from Low to High through the Pump in sequence (i.e., all true data messages
have to be delivered to High before this message is delivered to High). When designing
the Pump, one does not want to introduce an extra communication channel from Low to
High for this connection close message. By sending the connection close message as a
data message through the established connection, we not only avoid the need for an out-
of-band signal, we can assure that it will be processed in the correct order (i.e., by the
time High receives this message, all other data messages should be processed). Hence, the
data type message from Low (Pump) with data length zero is interpreted as connection
close request by the Pump (High). Note that, in general, the connection close message is
create by low wrappers not by low applications.

6. Logical Design — Internal Structure of the Pump

In this section, we describe the internal structure of the Pump. The Pump has three types
of threads: the main thread (MT), trusted low threads (TLT), and the trusted high threads
(THT). The Pump also has three types of data structures: connection table (one per
Pump), connection buffer (one per active or aborted connection), and Pump messages,
which were introduced in section 5. The rest of the structures are introduced in this
section. We especially emphasize the mapping of the function from the system
requirements to the threads and objects of the logical design. The high-level structure of
the Pump is shown in Figure 7.

12

LOW
WRAPPERS

" ■ CNCT_RQST

L0_WRP1

LO_WRP2

CNCT_RSP

LO_MSG(l)(1)

LO^ftCK(l) (1)

LO_MSG(l)<2)

LO_ACK(l)(2)

LO_MSG(2)(1)

LO_ACK(2)(1)

LO_MSG(2)(2)

L0_ACK(2)(2)

< PUMP
, ^ADMIN

ADMIN_RQST o ADMIN_RSP
PUMP

*MAIN_LOG •
-, « CNCT_TBL ' ■ CONFIG *

eMT_CTL

CNCT11<PUMP_C0NNECTI0N

CNCT12<PUMP_C0NNECTI0N

CNCT21<PUMP_C0NNECTI0N

CNCT22<PUMP_C0NNECTI0N

JCUR_TIME

|CLOCK '

HI_MSG(1)(1)

HI_ACK(1)(1)

HI_MSG(1)(2)

HI_ACK(1)(2)

HI_MSG{2)(1)

HI_ACK(2)(1)

HI_MSG(2)(2)

HI_ACK(2)(2)

HI_WRP1

HI_WRP1

HI WRP2

Figure 7: Internal structure of the Pump

Connection Table

The Pump maintains a connection table that records the status of all active and aborted
connections. If there is a legal connection in the configuration file, there is a maximum of
one entry in the connection table (i.e., if the connection is neither active nor aborted then
there is no entry in the connection table). Each entry in the connection table records the
status of the connection (active or aborted), the address of its connection buffer, the
addresses of High and Low, pointers to THT and TLT (null if the connection is inactive),
and the time of the last activities of either THT or TLT.

Connection buffer

Each connection between a low sender and a high receiver has one FIFO bounded buffer
controlled by a monitor and accessed by two threads: TLT, which puts messages in the
buffer and THT, which removes them. The connection buffer stores an array of handles of
data messages and a variable that records the moving average of the outgoing message
rate (THT's consumption rate) used by TLT to control the stochastic delay for ACKs to
Low.

13

■ CNCT_TBL •

■

CNC^ENTRvf JCNCT_ENTRY

ACKs will be
sent to Low
after TLT
stores data
to buffer and
stochastic
delay expires

PUMP_CONNECTION

write if buffer
is not full

Mq« TH 1 1

read if buffer
is not empty

> LOW ', LO_MSG @TLT
 t
. COR CNT

©BUFFER

MSG OUT .
@THT

HI MSG • HIGH .

! " LO ACK 1 M
. LAST MSG

 »

. COR MAVG

HI_ACK ' •
' c • -

TLT jABORT."
« ■

■ TLT_WAKE
■ , THT

■

JABORTED

i •

THT' READY '
■ «

f •

, TLT ABORTED

eCONNECTION_CTL

|CUR_TIME
- . . L . . t
'CLOCK •

Figure 8: A Pump Connection

A connection buffer is created when a new, valid connection is requested from a Low to a
High, if there is no pre-existing connection buffer from an aborted connection between
the same pair of Low and High ports. A connection buffer is deleted when a connection
terminates normally (with a connection close message).

Main thread (MT)

The role of MT is to initialize the Pump, which includes reading the configuration file,
and to keep track of relevant information for each connection. MT also listens to the well-
known port of the Pump to which Low sends connectionRequest messages as
described in Section 5. In response to a valid request, MT first spawns a connection that
consists of THT, TLT, and connection buffer. MT then sends a connection valid message
(connectionValid) to Low. In response to an invalid request,
connectionRejected will be sent to Low. Note that if the connection request is
from an unregistered low process then MT ignores the request. The rest of the connection
set up procedures are performed by both THT and TLT. After exchanging necessary
control messages, Low starts sending data messages. Another responsibility of MT is to
populate the connection table as it spawns a connection (e.g., status of the connection,
pointers to THT, TLT, and connection buffer). The essential behavior of MT is shown in
Figure 9.

14

MT_PROCESSING>

WAITING
_FOR_RQST

ERROR LOGGED
/put!TCNCT_RSP,

CNCT_RJCT)

(CONNECTION ROSTD]
/get!(CNCT KQST,

LO_RCST)

CONNECTION_CREATED
/put!(CNCT_RSP,

CNCT_VALID)

VALIDATING
_REQUEST>

CREATING
_CONNECTION>

tnot IS_VALID]

Figure 9: Behavior of main thread (MT)

Trusted high thread (THT)

When a new THT is spawned, it establishes a connection to High by sending
connectionRequest. After it receives connectionValid message, THT then
sends connectionGrant message that contains connection id, maximum message
size, etc. THT then delivers any leftover data messages in the buffer from the previous
(aborted) session to High. When the buffer is empty, it awakens TLT. THT keeps
delivering messages as long as there are messages in the connection buffer. THT also
updates the moving average based on ACK times from High. THT and TLT use a sliding
window scheme with window size w that is specified in the configuration file (i.e., THT
can send up to w data messages from the buffer without receiving ACKs from High). The
Pump protocol requires High to send ACKs to THT in the same order it receives
messages. If High violates the Pump protocol (e.g., by sending an out-of-sequence ACK),
THT sends connectionExit message to High, disconnects it from High, and logs
High's misbehavior. The essential behavior of THT is shown in Figure 10.

15

[(DISCONNECT
or TLT_ABORTED)

and BFR_EMPTY
and WIN_EMPTYJ

PSD&JEteC

ACK_CHECKED _
[not ACK_VALIDr

THT_PROCESSING

[BFR_EMPTY and
ACK_AVAILABLE]

Figure 10: Behavior of trusted high thread (THT)

Trusted low thread (TLT)

When a TLT is created, it waits for THT to awaken it (i.e., wait until all undelivered
messages from the previous session are delivered to High if the connection is a
recoverable one). TLT then establishes a connection to Low and sends a
connectionGrant message to Low. If the application is a recoverable one and the last
message exists (which is not connection close message) that was received from the
previous session (i.e., there was an abnormal disconnection in the previous session) then
TLT also sends the last message it received from Low. TLT then starts to receive data
messages from Low. Upon receiving a data message, it verifies message ID, connection
ID, allocates memory, and then stores the handle of the message in the connection buffer.
TLT also computes a stochastic random delay [KML] based on the moving average of
THT's message consumption rate.

16

TLT receives up to w data messages without sending any ACKs to Low. TLT must
acknowledge messages in the same order they are received from Low, despite the
probabilistic delay. To maintain the order and the timing of the delayed ACKs, TLT
maintains ACKId and ACKQueue. When TLT computes the delay, it stores the time
value when the next ACK should be sent out in ACKQueue. All the time values in
ACKQueue will be sorted in ascending order. As soon as the current time passes, the first
time value in the queue, an ACK with ACKId should be sent out and ACKId should be
incremented.

If the Pump has to close a connection abnormally (e.g., it receives a message with a
wrong connection id), it will send a connectionExit message to Low. The essential
behavior of TLT is shown in Figure 11.

[THT ABORTED
or TDISCONNECT

and NO_ACKS)]

fDATA_TMOUT]
/TLT_ABORT

{not MSG_VALID]
/TLT_ABORT

TLT_PROCESSING>

(not ACK_READY]
RELAYING
_EXPIRED_ACKS>

ACK_SCHEDOLED

WAITING
FOR_MSG> (not MSG_AVAILABLE]

COMPUTING
_DELAY>

[MSG_AVAILABLE)

MSG_STORED
MSG_CHECKED

[MSG_VALID] STORING
_MSG>

Figure 11: Behavior of trusted low thread (TLT)

Error/Failure Handling and Audit

Error handling is one of the most difficult parts of the design process because there is no
theory or best way to handle errors. One important question that must be answered is
"How smart should the Pump be for error recovery?" The smarter the Pump has to be, the
more complex the software will be, and the harder it will be to assure that it behaves
correctly. Hence, the Pump provides sufficient, but minimal, error recovery.

The Pump is designed to handle two specific failures: power failure and connection
failure. The Pump's modules are designed to handle different types of failure

17

independently and differently. We describe how each thread handles different types of
failures. If more than one failure occur in series, the action for each failure will be
activated in the order of failures. The error handling philosophy of the Pump is simple.
Avoid allocating resources for messages that cannot be delivered to High. Hence,

1. If the source of the failure is the Pump then stop receiving messages from Low and try
to deliver as many messages as possible to High.

2. If the source of the failure is the high side then stop receiving messages from Low
immediately,

3. If the source of the failure is the low side then deliver as many already received
messages as possible to High.

Power failure

The Pump has an uninterruptable power supply (UPS) that can send a power failure
signal to the Pump. Each thread behaves as follows when it detects a power failure signal
(and before each thread terminates itself):

• TLT: It immediately empties ACKQueue by sending all necessary ACKs to Low
immediately (regardless of the delay calculations) and then sends
connectionExit message.

• THT: It continually empties the connection buffer by delivering data messages to
High for a certain fixed period of time (i.e., this fixed time depends on the ability of
the UPS). When the connection buffer is emptied or the fixed time is over, it sends a
connectionExit message to High. If the connection is a recoverable one, it marks
the connection aborted and saves undelivered messages (i.e., connection buffer).

• MT: It immediately stops receiving connectionRequest from Low. It then
waits until all THTs and TLTs terminate themselves. It then saves the connection
table for the recovery.

Connection failure

Connection failure for the Pump can occur in two ways: Low-to-Pump connection (called
Low connection) failure and Pump-to-High connection (called High connection) failure.
Once a connection from Low to High is established, MT does not play any role for
handling connection failure.

When a Low connection fails:

• TLT: When TLT detects the Low connection failure, it error logs the failure.

• THT: It continues to empty the connection buffer by delivering data messages to
High. When the connection buffer is emptied, it checks whether TLT is terminated.
As soon as it detects that TLT is terminated, it sends a connectionExit message
to High. If the connection is a recoverable connection and the last message is not a
connection close request, it marks that the connection as aborted and saves the
connection buffer.

18

When a High connection fails:

• THT: When THT detects the High connection failure, it error logs the failure. If the
connection is a recoverable one and the last message it sends was not the connection
close request then it marks the connection as aborted.

• TLT: As soon as TLT detects that THT has died, it immediately empties ACKQueue
by sending all necessary ACKs to Low and then sends a connectionExit
message. It then saves the connection buffer if the connection is a recoverable one.

Audit

Audit processes should be flexible so that the Pump administrator can control the
overhead associated with the audit. One possibility is to specify the level of audit in the
Pump configuration file. Some items that need to be audited are:

• Errors: Any event that causes the Pump to send a connectionExit message (e.g.,
connection failure and protocol failure) should be audited.

• Some normal activities, such as connection/disconnection, should be audited.

• Some exceptional Pump internal status statistics (e.g., buffer full) should be audited.

7. Analysis of the Logical Design

The logical design summarized in this paper has been specified within the Statemate
toolset and has passed the correctness/completeness checks that Statemate requires. Of
course, this does not insure that the design conforms to the Pump's critical requirements.
This requires human review, a detailed covert channel analysis, and simulation of the
logical design. We are currently soliciting comments on our design and have just started
detailed conformance testing using the Statemate simulator. The rest of this section
discusses the security of the logical design, including its covert channels.

The Pump is a secure one-way communication device that minimizes any direct or
indirect communication from High to Low. From the above description of the Pump, it is
clear that only THT talks to High, and MT and TLT talk to Low. However, MT only talks
to Low during connection set up. Once the connection is set up, only TLT talks to Low.
Although THT and TLT are trusted software, it is desirable to reduce any interaction
between THT and TLT for assurance reasons. If there is any communication, it needs to
be monitored carefully.

In the design of the Pump, there is no direct communication between THT and TLT.
There are only three indirect communication paths between THT and TLT through shared
memory during normal operation (i.e., not during connection set up or exit).

19

high
security

level

low
security

level

moving
average buffer buffer

counter

Figure 12: The pattern of interactions between THT and TLT

Only two of the three paths (see Figure 12) need to be monitored, because one path is a
one-way upward path. The two other paths from THT to TLT and their impact upon Low
have been extensively studied in the other Pump papers.

A major part of the security design for the Pump is its ability to mitigate covert timing
channels from High to Low. However, some information can still be sent from High to
Low because (1) Pump notifies Low when a connection is down and (2) recovery
processes may be manipulated to leak some data. In designing a secure device that has
any sort of realistic functionality it is impossible to eliminate all covert communication
from High to Low (see the Small Message Criterion in [MK]). We minimize this
additional covert channel by enforcing a minimum time x between connection
reestablishment and auditing of any connections that abort often. Hence, we have at
worst introduced an additional covert channel with a capacity on the order of (number of
connections) bits per x . Furthermore, any covert channel that attempts to send
meaningful amounts of information by using a disconnect/connect strategy will be easily
detected by our audit process.

8. Summary and Future Work

In this paper, we have presented the software design and outlined the assurance strategy
for the NRL Pump. We have focused on system requirements and logical design steps and
described the mapping between them. The Pump software is structured so that it is easy to
understand the mapping not only between system requirements and logical design, but
also between logical design and physical architecture.

Our future work includes the design of a physical architecture. Since there are three
distinct threads (i.e., MT, TLT, and THT) and objects that are shared among them, it may

20

be reasonable to map those three threads into three processors. In that case

• one processor handles connection requests from Low and the communication to the
administrator (i.e., MT is mapped to this processor),

• one processor handles all other communication to Low (i.e., TLT), and

• the last processor handles all communication to High (i.e., THT).

If only two processors are used then one processor can handle all communication to Low
(e.g., connection requests and data from Low) and other processor can handle all
communication to High and to the administrator.

References
[CKMPS] D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink, "Reference

Manual for the Language Verdi," Technical Report TR-91-5429-09a, ORA Canada,
Ottawa, Ontario, September 1991.

[C] Canadian Trusted Computer Product Evaluation Criteria. Version 3.0e. January 1993.

[FKMCL] J. Froscher, M.H. Kang, J. MeDermott, O. Costich, and C. Landwehr, "A Practical
Approach to High Assurance Multilevel Secure Computing Service," Proceedings of the
Tenth Computer Security Applications Conference (1994).

[G] Girling, C. Gray. Covert Channles in LANs. IEEE Trans, on Software Engineering, Vol.
SE-13 (2) Feb., 1987.

[HLNPPSST] D. Harel, H Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. "Statemate: A Working Environment for the
Development of Complex Reactive Systems," IEEE Transactions on Software
Engineering, 76(4):403-414, April 1990.

[I] Information Technology Security Evaluation Criteria. Provisional Harmonised Criteria,
ISBN 92-826-3004-8. Luxembourg, 1991.

[KFM] M.H. Kang, J. Froscher, and I.S. Moskowitz, "An Architecture for Multilevel Secure
Interoperability," pp. 194-204, Proc. 13'h Annual Computer Security Applications
Conference, Dec. 1997, San Diego, CA, IEEE CS Press.

[KM93] M.H. Kang and I.S. Moskowitz, "A Pump for Rapid, Reliable, Secure Communication,"
Proc. First ACM Conf. on Computer and Comm. Security (1993).

[KM95] M.H. Kang and I.S. Moskowitz, "A Data Pump for Communication," NRL Memo
Report 5540-95-7771, September 29, 1995.

[KML] M.H. Kang, I. S. Moskowitz, and D. Lee, "A Network Pump," IEEE Trans, on Software
Engineering, 22(5: 329-338, (May, 1996).

[KMMP] M.H. Kang, I.S. Moskowitz, B.E. Montrose, J.J. Parsonese, "A Case Study of Two
NRL Pump Prototypes," pp. 32-43, Proc. 12'h Annual Computer Security Applications
Conference, Dec. 1996, San Diego, CA, IEEE CS Press.

[KPSCM] S. Kromodimoeljo, B. Pase, M. Saaltink, D. Craigen, and I. Meisels, "EVES: An
Overview. Technical Report CP-91-5402-43, ORA Canada, Ottawa, Ontario, February,
1993.

[L] B.W. Lampson, "A Note on the Confinement Problem," Comm. ACM, Vol. 16, No. 10,
pp. 613-615, 1973.

[MK] I.S. Moskowitz and M.H. Kang, "Covert Channels — Here to Stay?," Proc.
COMPASS'94, 1994.

21

[MM92] I.S. Moskowitz and A.R. Miller, "The Channel Capacity of a Certain Noisy Timing
Channels," IEEE Trans. Information Theory, Vol. 38, no.4, pp. 1339-1344, July 1992.

[MM94] I.S. Moskowitz and A.R. Miller, "Simple Timing Channels," Proc. 1994 IEEE
Computer Soc. Symp on Research in Security and Privacy pp. 56-64, Oakland, Ca., 1994.

[MP] A.P. Moore and C.N. Payne, "Increasing Assurance with Literate Programming
Techniques,"," Proc. 1996 Computer Assurance Conference (COMPASS '96)„ pp. 187-
198, Gaithersburg, Md., 1996.

[PM] C.N. Payne and A.P. Moore, "An Experience Modeling Critical Requirements," Proc.
1994 Computer Assurance Conference (COMPASS '94), pp. 245-255, Gaithersburg,
Md., 1991.

[R] J. Rumbaugh, et. el. Object Oriented Modeling and Design, Prentice Hall (1991).

[RST] Reliable Software Technologies, "Whitebox DeepCover: User Reference Manual," RST
Corporation, Suite 250, 21515 Ridgetop Circle, Sterling, VA 20166, 1996.

[T] DoD Trusted Computer System Evaluation Criteria. DoD 5200.28-STD. 1985.

[S] C. Shannon and W. Weaver, "The Mathematical Theory of Communication," University
of Illinois Press (1949).

[VM] J. Voas and K. Miller, "Software Testability: The New Verification. IEEE Software,
72(3): 17-28, May 1995.

[W] J.C. Wray, "An Analysis of Covert Timing Channels, " Proc. 1991 IEEE Computer Soc.
Symp on Research in Security and Privacy pp. 2-7, Oakland, Ca., 1991.

22

