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ABSTRACT

The Department of Defense proclamation that all simulations comply with High
Level Architecture (HLA) standards prompted the U.S. Army Training and Doctrine
Command (TRADOC) Analysis Center (TRAC) to investigate the feasibility of including
Janus in future HLA Federations. Janus, one of the Army’s most extensively used
models, is an stochastic high—resoiution simulation. As a procedural legacy model coded
prior to the rise of object-oriented programming, there are cons_idcrable challenges for
Janus to meet HLA requirements.

This thesis proposes a methodology to produce a HLA Simulation Object Model
(SOM) for procedurally implemented legacy simulations. The result obtained by using
this methodology is a general object model and one or more SOMs. The general object
model provides a full object-oriented template of the legacy simulation that is unrestricted
by the model’s code or the minimum requirement for interoperability. The SOM is
derived from the general object model.

This research indicates that procedural legacy simulations can comply with the
HLA SOM requirement. In order to achieve this compliance, it is advantageous to first
develop the general object model. Additionally, it is important to include an analyst in
the SOM development process if federation outputs will be used for analysis.

SOM development facilitated the identification of additional steps necessary to
make Janus HLA compliant. This effort will continue with a review of the SOM by
Janus code experts and work on a software service that will allow Janus to communicate

with other simulations in the HLA specified format.







THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.
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EXECUTIVE SUMMARY

As one of the nation’s largest users of simulation models, the Department of
Defense (DoD) is immensely interested in simulation interoperability. Recent advances
in technology have demonstrated weaknesses in the current standards for models to
communicate and interact. After an intensive period of research, in August 1996 the
Defense Modeling and Simulation Office (DMSO) released a standard for simulatioﬁ
interoperability called the High Level Architecture (HLA). The DoD has proclaimed that
all simulation models must comply with the HLLA standards by fiscal year 2001 or be
retired.

The high cost of developing new simulations that comply with the HLA rules for
simulation in;[eroperability has prompted many DoD agencies to review the feasibility of

‘modifying currently used models to comply with the HLA standards. The first step
toward making a simulation model HLLA compliant is to document the model’s
capabilities in a document called the Simulation Object Model (SOM).

This thesis proposes a methodology to produce a SOM for a procedurally
implemented legacy simulation. The methodology was developed from a theoretical
perspective and produces a conceptual mapping of the legacy simulation from a
procedural state to an object representation. Using this methodology, object model
development is not restricted by the structure aﬁd implementation of the simulation code.
In addition, the mbdeler is free to use both operational experience and knowledge of
object model methodologies to produce the object model.

The result obtained by using this methodology is a general object model and one

- or more SOMs. The general object model provides a full object-oriented template of the
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legacy simulation without restricting the representation to that subset of the simulation’s
capabilities required for interoperability. The SOM is derived from the general object
model by removing those aspects of the general object model not necessary for simulation
interoperability or required for some other purpose by the federation. In this manner, one
simulation model may have many SOMs with each SOM targeted at a specific federation
or analysis need.

There are potential difficulties incurred by using this methodology. Since the
simulation code is not used to derive the model, there may be errors of omission.
However, this potential for errors must be weighed against the benefit obtained by the
conceptual approach to building the object models. To identify any such errors, the
general object model will be reviewed by Janus code experts to verify that the model
accurately represents the Janus simulation.

The research and experience resulting from this thesis clearly indicates that
procedural legacy simulations, and Janus in particular, can comply with the HLA SOM
requirement. In order to achieve this compliance, it is advantageous to first develop a
general object model that provides a full representation of the legacy simulation. An
analyst can use the general object model to determine if a particular simulation is
appropriate to quantify his measures of effectiveness (MOE). Producing the general
object model also provides greater confidence that no important aspects of the legacy
simulation were overlooked in producing the SOM. Finally, the general object model
captures the important qualities of the legacy simulation and can serve as a template for

future simulation development.
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The HLA guidance gives SOM developers significant flexibility regarding
what information will be included in the SOM. Since the analyst must use the model to
quantify some specified MOE, an analyst should be included during SOM development if
the model will be used in a situation requiring analysis of model outputs. This allows the
analyst to ensure that information relevant to capture his MOEs are included in the SOM
and will be distributed so that other simulations can also capture that information.

The effort to bring Janus into compliance with the HLA standards will continue.
After the object model is reviewed by Janus code experts, tentative plans are in place to
begin work on a software service that will allow Janus to communicate with other
simulations in the HLA specified format. This project has generated significant interest
as a viable means to extend the use of Janus into the HLA énvironment.

The DoD has invested many resources toward the development and
implementation of the HLA. While the concept has proven viable, there is much work
remaining before HLA can be considered matured. .This thesis has identified some
difficulties with modifying a legacy simuiation so that it can operate using the HLA.
Some larger difficulties such as time synchronization and standard object representation

between simulations are yet to be solved.
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I. INTRODUCTION

As one of the nation’s largest users of simulation models, the Department of
Defense (DoD) is immensely interested in simulation interoperability. Budgét constraints
in recent years have forced the military toward large scale use of simulations and
wargames for training, testing, and development of new warfighting equipment and
techniques. Advances in technology have allowed several different simulation models to
interoperate producing a more complex and realistic representation of the modern
battlefield.

For several years, a process called Distributed Interactive Simulation (DIS) has
been the standard for simulation interoperability. Recent changes in simulation model
applications have demonstrated weaknesses in DIS. Most notably, as tﬁe demand for
communication between large complex models increased, limitations in network
bandwidth and CPU power became apparent in DIS. After an intensive period of
research, in August 1996 the Defense Modeling and Simulation Office (DMSO) released
a standard for simulation interoperabiiity called the High Level Architecture (HLA). The
Department of Defense has p?oclaimed that all simulation models must comply with the
High Level Architecture standards by fiscal year 2001 or be retired.

The high cost of developing new simulations that comply with the HLA rules for
simulation interoperability has prompted many DoD agencies to review ;the feasibility of
modifying currently used models to comply with the HLA standards. The first step
toward making a simulation modellHLA compliant is to document the model’s

capabilities in a document called the Simulation Object Model (SOM).




This thesis describes the process used to develop a general object model and a
HLA SOM for a U.S. Army high resolution, close-combat model called Janus. More
importantly, this thesis explores the creation of these models from an analyst’s
perspective. It describes issues, results, and conclusions directed toward the future use of
legacy simulations for analysis within the HLA environment.
A. BACKGROUND

1. The Janus Combat Simulation

Janus is a high resolution, interactive, six-sided, closed, stochastic, ground combat
simulation. First developed at Lawrence Livermore National Laboratories to model
nuclear effects, the Army’s Training and Doctrine Command (TRADOC) Analysis Center
(TRAC) at White Sands Missile Range (TRAC-WSMR) accepted responsibility for
further development of Janus and produced a modified Janus to meet Army high
resolution combat model requirements. Since its fielding in 1978, Janus has been used
extensively within the U.S. Army for both training and analysis. Outside the U.S. Army,
Janus is used for analysis by RAND Corporation, the United States Marine Corps, and By
the armed forces of the United Kingdom, Australia, Canada, France, and Germany. Janus
is coded in the procedural FORTRAN 77 programming language and has undergone J
numerous revisions [1]. Major changes in Janus occurred with version 4.0 which
integrated terrain features (roads, water, buildings, vegetation, other man-made features)
into the Janus environment. In addition to depicting these features on the Janus graphical
terrain, algorithm adjustments in Janus code included consideration for these terrain
features in Janus search and detection algorithms and probability of hit and probability of

kill calculations. The current version of Janus is version 6.X which adds a multi-sided




-

capability (previously Janus allowed only two opposing forces). Janus 6.X allows up to
six sided force interactions [2]. The next step, a “distributed” version of Janus (version
8.0), is currently under development at TRAC-WSMR.

As a high resolution simulation focused on ground combat, Janus models entities
down to the individual soldier and vehicle or aircraft level. Up to fifteen homogeneous
entities can be aggregated for display and control. Entity interactions with these
aggregated units are handled by Janus as if they were individuals. Janus can run at
various time scales. It can run in real time as a wargame or man in the loop simulation, or
faster than real time for data generation. The limiting factor in the time scale is the
number of entities in the scenario. The Janus search and detection algorithm is
computationally demanding and slows the run time as the number of entities increases.
(1]

a. Janus as an Analysis Tool

Janus has been highly successful as a tool to analyze the effectiveness of
new military systems and tactical doctrines. Two components stand out as key elements
of Janus’ success as an analyst’s tool: the database and the post-processor.

The robustness of the database allows the analyst to easily model new
military systems and provides the ability to model new and proposed developments to
existing systems. It includes nearly every ground vehicle, dismounted system, and Army
rotary wing aircraft in U.S. and allied inventories. Most comparable threat nation systems
are also portrayed. Systems that are not in the database can be easily created. Over 350
attributes are available in the database for the analyst to model platforms, weépon

systems, sensors, projectiles, barriers, and weather. The Attribute/Parameter Table




(Appendix A) provides the reader with a more detailed assessment of the attributes
available in the Janus database to model different entities. The most current version of
Janus provides rcpreseﬁtation of limited types of fixed wing aircraft and precision guided
munitions. [1]

The Janus Post-Processor provides detailed data on entity interactions that
occurred during the execution of a given scenario. These output reports include an
artillery fire report, indirect fire ammunition expenditure report, direct fire reports,
detection tables, coroner’s report, and killer/victim scoreboard. Additionally, Janus
provides a supplementary program called the Janus Analyst Workstation. This tool
allows the analyst to re-execute scenarios in an “instant replay” format and view events
graphically as they occurred. The Janus Analyst Workstation also provides statistical
output that is synchronized with the run time of the scenario, providing the analyst with
another data analysis tool. [2]

b. Janus Support Requirements

Janus is designed to run on either a VAX computer with a Virtual Memory
System (VMS) operating system or a Hewlett-Packard workstation with the UNIX
operating system. Under the UNIX operating system, Janus can support up to sixteen
different participant workstations. [1]

c. Limitations of Janus

Janus has some limitations for use in analysis. It does not model the area
fire effects of direct fire weapons and it does not detail the effects of nuclear weapons
beyond the physical effects of a nuclear blast [1]. In its current version, Janus requires

man-in-the-loop interaction to change several entity states to include mounting passengers




on a carrier entity, dismounting passengers from a carrier entity, changing from non-
breaching to breaching state, changing chemical protective over-garment status, and
changing hold fire status. While these limitations prevent detailed analysis of some
specific systems, Janus is well suited for analysis of most scenarios.

2. Distributed Interactive Simulation

Recent advancements in technology have allowed two or more separate
simulations to interoperate using Local Area Network (LAN) or Wide Area Network
(WAN) connections. The architecture that has provided simulation interoperability is
called Distributed Interactive Simulation (DIS). DIS has made it possible to use
distributed simulations for training and analysis. Individual tank simulators may now be
linked to high resolution simulations like Janus. The soldiérs in the tank simulator fight a
battle against Janus entities in a realistic “virtual battlefield environment.” Perhaps most
importantly, DIS can link simulations from the different branches of service, providing a
vastly improved joiht training and analysis capability.

Distributed interactive simulation éapability focuses on the standardization of
Protocol Data Units (PDUs), packets of information passed from one simulation to the
other. Each PDU contains enough information about the entities in one simulation so
those entities can be represented in other simulations. The potential to apply DIS to
military simulations was realized in 1990. The DIS standards have been revised at semi-
annual DIS Workshops designed to improve and extend the protocols. These workshops
are modeled after computer and electrical engineering industry standards and includes

liaison with the Institute for Electrical and Electronics Engineers (IEEE) [3].




Theré are limitations to DIS, however. As greater numbers of entities are
iptroduced to distributed simulations, the number of PDU transmissions increase.
Current network capabilities can not support the quantity of PDU transmissions necessary
to execute distributed simulations with large numbers of entities. Even, as technology
improves and network capabilities are able to carry more PDUs, large entity simulations
will still be limited by CPU ability to process large quantities of PDUs efficiently. This
CPU limitation results in conflicts in time management between simulations. [4] Finally,
although DIS provides acceptable interoperability between high resolution simulations
with relatively few entities, forward thinking analysts and simulation specialists realized a
future need to provide interoperability between high and low resolution simulations. DIS
does not support interoperability of high and low resolution simulations. These DIS
limitations lead to the development of HLA.[6] Since the release of the DoD HLA
documentation in August, 1996, proponents of DIS have begun transition work toward
the next generation DIS called DIS++ which will be HLA compliant. [5]

3. High Level Architecture

The Defense Modeling .and Simulation Office (DMSO) has the lead role within
the Department of Defense for guiding the U.S. Armed Forces toward the most effective
use of Distributed Simulation technology. Development of HLA began in 1994 when the
DMSO began to look at developing a new architecture for future DoD wide simulations.
In January, 1995 the Architecture Management Group (AMG), a working group of
simulation experts and computer scientists subordinate to the DMSO, began to develop
the baseline definition of HLA. The AMG completed and released the baseline HLA

documentation in August 1996. [6] In September 1996 the Department of Defense




decreed that all DoD simulations will comply with HLA standardization requirements or
be replaced or excluded from Distributed Simulations by the first day of FY 2001 [7].

a. Components of HLA

HLA standardizes the procedures for forming joint interoperating
simulations by providing a set of rules for interoperability, a Run Time Interface (RTI)
which avoids bandwidth and CPU limitations, and a specified representation of individual
simulations and groups of simulations with the Object Model Template (OMT). In HLA,
a federate refers to an individual simulation being considered for inclusion in a group
simulation. A group of individual simulations becomes a federation when connected
through a Run Time Interface and network. The OMT facilitates simulation
interoperability by providing object model depictions of the federation called the
Simulation Object Model (SOM) and Federation Object Model (FOM). The SOM is an
object-oriented model of an individual simulation that is similar to computer science
industry object-oriented design standards. The HLA SOM consists of an object class
structure table, an object interaction table, an attribute/parameter table, and a FOM/SOM
Lexicon (data dictionary). [8] The SOM may optionally include a component structure
table, an object associations table, and an object model metadata. The object model
metadata is a description of the developmental history of the SOM and execution
requirements of the simulation [9].

The FOM includes the same components as the SOM, but is an object

model template of the federation created by connecting two or more federates.




b. The Role of the SOM and FOM

Each simulation is described for interoperability using its SOM. The SOM
is a “contract” that specifies what the distributed simulation can provide to other
simulations and a statement of what it requires in return. Simulations being considered
for inclusion in a federation are reviewed for compatibility by compéring their individual
SOMs. The result of this comparison is the FOM. The FOM is built from data derived
from the individual SOMs, but represents the federation that is formed when the
individual simulations interoperate. The FOM is a “contract” between the individual
members of the federation that describes what information will be passed between
members during the simulation execution.

¢. HLA Summary

A typical HLA federation consists of one or more federates. Each federate
uses the HLA RTI and the FOM to send (publish) and request (subscribe to) bbject
attribute updates and interactions. Federates subscribe to object attributes and interactions
of interest in the FOM and publish those object attribute updates and interactions of
interest to other federates. The RTI is used to send and receive the object attribute updates
and the interactions through the network. Subscription is thus a filtering process that .
reduces the network load by interchanging only data of interest during the federation
execution. Once the object update is passed to a federate via the RTI the object is
appropriately portrayed in the subscribing federate. The object classes in the FOM contain
the attributes and interactions to which federates may subscribe and the attributes and

interactions that federates may publish. Since HLA uses an object representation for the




SOM and FOM, the object class structure plays an important role in subscription and
publication. This topic is revisited in Chapter II.

4. Object-Oriented Modeling and Design

The HLLA Object Model Template is based on contemporary object-oriented
modeling and design concepts [8]. Object-oriented design is a method of representing
entities as distinct units called objects. An object consists of a specified data structufe
(essentially a record) which contains all of the attributes of the entity, and a set of
functions (called methods in object-oriented lexicon) that operate on the object’s data.
[10] An object can represent a tank, soldier, or sensor, and can represent less well
defined entities such as terrain and weather. An object representing a tank can have other
objects (a seﬁsor or weapon system) as component parts.

Basic principles of object-oriented design include encapsulation, inheritance, and
polymorphism. Encapsulation is the separation of an object’s interface and its
implementation. One consequence is that an object’s attributes should only be changed
by the methods that belong specifically to that object. Some of these methods are
exposed to allow interactions between objects. Encapsulation prevents corruption of
information or object attributes by a mistake in the code or user execution of the program.

Inheritance means that an object can be derived from another (possibly more
abstract) object. We can think of an objeqt’s ﬁierarchy as a parent-child or lineage
relationship. Thé parent object is defined by its attributes and methods. A descendant of
this parent object inherits all the parent’s attributes and methods, but will normally define
additional attributes and methods. For example, we could specify an object called a

“ground vehicle” that contains all the basic attributes that are common to all ground




vehicles in the Army. These would include a maximum speed, fuel capacity, crew size,
and a sensor. We cannot introduce one of these vehicles to the battlefield because it does
not represent a real combat system, and so we refer to it as an “abstract” object.

However, we can use it to define child objects that are “concrete.” Two descendants of
this object are a tracked vehicle and a wheeled vehicle. A tracked vehicle object has all of
the attributes of a ground vehicle plus additional attributes that more clearly define it
(weapon system, armored protection for crew, smoke generating capability). Figure 1

depicts this inheritance relationship.

Ground Vehicle
Attributes:
Max Speed
Fuel Capacity
Location
Crew Size
Sensor Type
Tracked Vehicle Wheeled Vehicle
Attributes: Attributes:
Max Speed Max Speed
Fuel Capacity Fuel Capacity
Location Location
Crew Size Crew Size
Sensor Type Sensor Type
Weapon System [
Armor Protection
Smoke Generator

Figure 1. Simple Object Inheritance.

In Figure 1, the tracked vehicle is a descendant of the ground vehicle object and,
since it is an object that we could introduce to the battlefield, we refer to it as a concrete
object. Inheritance allows us to easily define new concrete objects by selecting the
appropriate parent object and adding only selected new attributes or changing attribute

values rather than creating a new entity from scratch.
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Polyfnorphism allows descendant objects to use the methods of the parent object,
~ but in a way appropriate for the descendant. For example, the ground vehicle object may
have a method called MOVETO that calculates the distance and time to move to a
specified new location. Inheritance provides the tracked vehicle and the wheeled vehicle
with this method without creating two new MOVETO methods. Polymorphism allows us
to modify inherited methods to fit the characteristics of the descendant without changing
the name of the method. The MOVETO method inherited by the tracked vehicle would
calculate the distance and time to move to a new location, but we could include a routine
that also calculates the fuel expended in the move. We now have a modified method that
is more appropriate for the descendent object since we are interested in tracking the fuel
consumption of the tracked vehicle.

Representation of individual simulations allows an analyst or trainer to efficiently
review the OMT component tables to determine what entities are represented in a
particular simulation and how the entities are represented. For example, the
representation of a tank may be determined by reviewing the OMT attribute/parameter
table. While the HLA OMT str.ucture is based on object-oriented models, there are some
notable differences between the two. These differences are largely in the design of the
OMT and the conceptual assumptions about how the federation will operate. While a
pure object-oriented design requires the specification of all the methods associated with
each class of object, the HLA OMT does not. Also, the HLA OMT requires an object
interaction table, but does not include additional information about state transitions and
sequencing of events that object-oriented methodologies require. These differences

between the HLA OMT and object-oriented modeling methods represent differences in
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the way the simulation (program) is portrayed on paper. However, perhaps a more
significant difference is the way in which encapsulation and polymorphism are handled in
HLA. The conceptual framework of HLA allows the passing of object attributes from
one federate to another and allows the receiving federate to change the attribute. This
directly violates the encapsulation of an object’s attributes. Proponents of HLA argue
that this allows a federate with a historically validated (better) algorithm to model sf)eciﬁc
events or interactions for all the federates resulting in a more accurate federation
representation of the real world. [8]

B. STATEMENT OF THESIS

The DoD has rﬁade it clear that future military simulations for training and
analysis mu;t be HLA compliant. All military organizations that are proponents for
individual simulations have been directed by DoD to review their simulations over the
next several months to determine if the simulations can be made HILA compliant.

The Janus combat simulation offers to future HLA federations an extensive and
successful background of use by many military érganizations. Because of this historical
success and the U.S. Army’s significant investment in Janus, there is a substantial
incentive for Janus to participate in future HLA federations. However, Janus, as a legacy
model, provides some significant challenges in meeting the HLA requirements. Janus is
coded in a procc_dural language with no well-documented object model definition. This
thesis develops a Simulation Object Model of Janus that conforms to HLA standards and
facilitates the use of Janus in future Distributed Simulations. More importantly, it will
describe the rationale and methodology for creating a Simulation Object Model (SOM) of

a high resolution, combined arms combat simulation from an analyst’s perspective.
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This thesis also outlines precisely which characteristics of Janus have made it so
successful for analysis and research. Even if Janus does not survive in its present form, it
can pass on a legacy of modeling knowledge and insight to future models.

This thesis consists of four chapters and five appendices. Chapter II describes the
methodology used to create the Janus SOM, discusses additional work necessary to verify
the SOM representation of Janus, and discusses issues with SOM development and
analysis. Chapter III provides a summary of the SOM development methodology,
provides an assessment of the SOM product, compares the methodology to another
proposed SOM development process, and discusses additional work necessary to make
Janus fully HLA compliant. Chapter IV offers conclusions and recommendations
directed toward those who may be interested in producing SOMs for legacy simulations
and includes a discussion of future work that may occur as a result of this research.
| Appendix A provides examples of Janus object model tables. Appendix B provides
Pascal code necessary to produce presentable hard-copy output in Appendix A.

Appendix C displays the Janus object class hierarchy trees. Appendix D describes the
Janus target acquisition algorithm. Appendix E is the Janus Tutorial which was

developed to facilitate an understanding of the Janus simulation.
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II. METHODOLOGY
A. CONCEPT

Modeling Janus as an HLA SOM was approached from a theoretical perspective.
The SOM represents a conceptual mapping of Janus from its procedural implementation
to an object representation. Unlike other SOMs currently available for review, the Janus
SOM is targeted for the Modeling and Simulation Resource Repository (MSRR) rather
than a specific federation. The baseline product of this methodology is the general object
model. The general object model is a complete representation of the simulation that
provides the flexibility to incorporate Janus into any number of future HLA federations.

The general object model provides a means of representing the entire Janus model
in a modern, object-oriented form and results in a more complete SOM development
process. The set of objects, attributes, and interactions considered was not restricted to
those suggested by the HLA SOM. The general object model includes objects and private
attributes not required for simulation interoperability, but it is a complete object model
representation of Janus from which the SOM can be easily extracted. The object classes
in the SOM will be a subset of the classes in the general object model, and the attributes
and interactions included in the SOM will be a subset of those in the general object
model.

Janus is coded in FORTRAN, which is not an object-oriented language. There are
no declarations or syntax that allow easy identification of “objects,” let alone
specification of the attributes that define thése objects. Nevertheless, careful examination
of the Janus commands, database, interactions, and algorithms allowed production of an

object representation of Janus, including attributes and interactions. Detailed refinement
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of this working set of objects and interactions resulted in the full general conceptual
model.

Building the object model was also approached from an analyst’s perspective to
facilitate its use in the HLA environment to capture appropriate data (output from a
simulation run) to answer quantitative questions. Thus, a key objective was for the Janus
object model to capture those quaﬁties of Janus that have made it a successful analysis
tool for twenty years.

B. BUILDING THE GENERAL OBJECT MODEL

1. The Object Class Structure

The initial Object Class Structure Table is depicted using an organization chart
format. This simple format provided a clearly defined class hierarchy and structure for
later documentation in the HLLA object model template tables. Two important class
hierarchies will be discussed in detail. The first was developed by grouping platforms by
physical characteristics to form classes in a parent-child' hierarchical structure.

The platform sub-tree of this class hierarchy is based primarily on the Janus
database which lists each platform the user might introduce into a scenario. Examples of
these platforms include the M1A1 Abrams tank, the M2 Bradley Infantry Fighting
Vehicle, and the individual rifleman. These platforms, comprising the concrete platform
objects in Janus, were grouped by common attributes and physical characteristics into
parent classes. Successive levels of parent classes grouped in the same manner produced
a tentative hierarchy of abstract classes culminating at the platform superclass. The
resulting object class structure is depicted at Figure 2 with shaded boxes representing

concrete classes and unshaded boxes representing abstract classes.
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Platform
Superclass

Aircraft
Platform

Ground Vehicle {
Platform

Wheeled
Platform

Towed
Platform

Legend:

Figure 2. Platform Class Hierarchy.

The second approach to producing a platform class hierarchy used the
functionality of each platform as the basis for a parent-child hierarchical structure.
Unlike the previous class hierarchy, the concrete objects were first grouped by Battlefield
Operating System (BOS) function, and then further sub-grouped by common attributes.
The battlefield opefating systems distinguish the role of the platform in combat and
include: Intelligence, Command and Cont.rol, Maneuver, Mobility/Survivability, Air
Defense, Fire Support, and Combat Service Support. This is perhaps a more pure object-
oriented representation of the Janus simulation and is more suitable for analysis since the
analyst is more interested in the functionality of an object than in its physical
characteristics. For example, if he is studying the effects of indirect fire, he probably
does not care if the artillery piece is towed or tracked. This second platform class
hierarchy illustrates the flexibility of the HLA simulation object model to provide more
than one appropriate model of a simulation for military analysis and training. The analyst

can use this flexibility to produce alternate class hierarchical structures that focus data
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collection toward quantifying his measures of effectiveness (MOE). See Figure 3 for the

BOS platform class hierarchy and Appendix C for other Janus class hierarchies.

Platform
Superclass

Maneuver
Platform

Fire Support
Platiorm

Dismounted
Platform

Ground Veh E3
Platform

Aircraft
Plattorm

Figure 3. Refined Platform Class Hierarchy.

Although it is not required under the HLA, a terrain class hierarchy was included
to produce ia more complete Janus object model. In order to represent the terrain in Janus
as a class of objects, one must understand how the terrain and the combat platforms
associate through the Janus algorithms. From the Janus graphical display, one can
discern five basic terrain components: elevation, roads, buildings (towers, etc.), bodies of
water, and vegetation. The terrain surface is partitioned into grids with an elevation
assigned to each grid cell. The number and size of cells are determined and then fixed
within a particular database to support a scenario. The normal cell size is 100 meters by
100 meters. The elevation associates with platform entities in three ways. First, the
terrain elevation restricts the speed that platform entities aré allowed to move. Rapidly
changing elevation reduces an entity’s movement speed due to the slower movement rate |
required for steep terrain. Second, the terrain elevation influences Line of Sight (LOS)
calculations in the Janus search and detection algorithm. The search and detection
algorithm uses the elevation of each intervening cell between the searching entity and a

potentially detected entity to determine LOS. If a terrain cell between the searching
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entity and the target entity is higher in elevation at any point than a straight line drawn
between the entities, then LOS does not exist and no detection can take place. Finally,
the terrain elevation object associates with platform entities by providing the platform
entities with their appropriate elevation. As a platform entity moves over the terrain, the
platform entity periodically updates its location. The longitudinal aﬁd latitudinal update
comes from the entities previous location, direction of movement and velocity, but the
elevation coordinate comes from the terrain. Roads and bodies of water similarly interact
with platform entities.

The roads, buildings, vegetation, and water are a separate surface feature layer.
The surface feature layer also associates with the battlefield platform entities through the
search and detection algorithm. After determining that LOS between two entities is not
obstructed by terrain elevation, the algorithm adjusts the probability of detection
appropriately based on the type of vegetation or building.

Atmospheric conditions are classified as objects in much the same manner as the
terrain. Dust clouds, smoke, and fog all affect the detection algorithm in the same
manner as vegetation and buildings. If the detection algorithm identifies one of these
objects in the LOS between two objects, it degrades the probability of detection an .
appropriate amount based on the cloud thickness and type.

The barriers superclass was derived from the Janus initial parameters screen
which allows the user to allocate barriers of six different types to each force in a scenario.
While these barrier objects are depicted on the Janus graphical display symbolically like

the combat platforms, barriers are not found in the Janus database.
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Other object classes in the Janus object model are sensor objects, weapon system
objects, and ordnance (ammunition) objects. These are components of the platform class
and were ideﬁtified from the Janus database. An example Object Class Structure Table is
included at Appendix A.

2. Attribute/Parameter Table

The Attribute/Parameter Table is perhaps the most difficult of the OMT
components to construct for a legacy model implemented in a procedural language. In the
Janus architecture, every platform entity carries all the attributes available in the platform
model. In object-oriented terms, for platform entities, Janus really only has one object
class. Every object is an instantiation of this class with only certain attributes filled with
values. The values of these attributes define the type of object such as an A-10 fixed-
wing aircraft or an individual soldier with a rifle.

Finding all these attributes requires detailed knowledge of the Janus database,
commands, graphical display, and to a lesser degree, algorithms. For example, Janus
platform entities can be suppressed. An éntity that is suppressed has been engaged with
direct or indirect fire and is unable to move or respond to the engagement for an amount
of time specified by the user during initialization. This response is meant to model a
situation where a soldier is receiving enemy fire of such intensity or precision that he is
unable to move or return fire. However, there is no attribute in the database or command
in the Janus command interface that alerts the user of this capability. One must study the
Janus User’s Manual in detail in order to identify this suppression state variable.

Another example is the location attribute. Each entity carries an attribute that

tracks its current location (sometimes the last location prior to initiating latest
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movement). Again, this attribute is not in the database, commands, or graphical display.
However, each entity must store its current location to support search and detection
calculations and determine engagement outcomes. Tables 1 and 2 depict the basic
platform entity attributes identified from the user’s manual, graphic display, and

command interface.

User's Manual/Graphical Display
Status(Fully Operational/Casualty)
Suppressed

Entity Number

Smoke (VEES)

Passenger Status

Direction

Location

Destination

Speed

Table 1. Attributes Identified byUser’s Manual/Graphical Display.

Command Interface
Sprint

Hold Fire

Defilade

MOPP

Breach

Helicopter Pop-up

Table 2. Example Attributes Identified by Command Interface.

Every platform entity in Janus, from the individual soldier to the M1 tank, is
defined by values entered in these available attributes. After building a class hierarchy
and identifying the attributes that define platform objects in Janus, the next step was
verify the attributes are correctly distributed at appropriate levels in the class hierarchy.
First, those platform class attributes common to all platforms were identified. Examples
of these attributes are crew size, location, and maximum movement speed. These became
the attributes of the base platform object class (grandfather of all platform class objects).
Only those additional attributes necessary to fully describe an object class were included
at each descendant level. In other words, only attributes that correspond to the actual

object were listed for that class. This process required reexamination of the Janus
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database to determine which attributes were being used to describe the different
platforms, and also required a working knowledge of the military platforms themselves.
In some cases, the object model builder must be familiar enough with the platforms
modeled to make decisions about appropriate attributes. For example, although Janus
will allow any platform to generate engine smoke as a battlefield obscurant (even an
aircraft), one familiar with military vehicles knows that only a small number of platform
types can generate engine smoke.

Capturing all the attributes that describe the classes of objects and distributing
them appropriately through the class hierarchy is only a small part of the detail necessary
to complete the attribute/parameter object model table. Each attribute or parameter listed
in the table requires 10 other entries. These entries are:

Datatype - integer, real, boolean, etc.

Cardinality - quantity of this attribute/parameter owned by the platform.

Units - units of the attribute (i.e. maxspeed would be KPH).

Resolution - smallest increment in the attribute/parameter value that the

simulation can distinguish (Janus cannot distinguish between 25 KPH and 25.01

KPH). ’ )
* Accuracy - maximum deviation between published attribute/parameter value '
and intended value.

e Accuracy Condition - conditions required for accuracy condition to hold.

® Update Type - can the value for the attribute/parameter change.

® Update Condition - if the attribute/parameter value can change, what

condition causes the change.

® Transferable/Acceptable - can the attribute/parameter be transferred to another

federate and can this federate receive this attribute/parameter from another

federate and do anything useful with it.

® Updateable/Reflectable - can the simulation broadcast updates in the

attribute/parameter or reflect changes in attributes broadcast by other federates.

These data required for each attribute or parameter are critical to facilitating
interoperability between federates. During SOM comparison and FOM development one

can identify differences in how the proposed federates represent attributes and resolve
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conflicts thaf may otherwise have gone undiscovered. For example, one type of conflict
would occur if each proposed federate platform object had an attribute for speed, but the
units of one federate was kilometers per hour, while the other federate was in nautical
miles per hour. This mismatch of units will be identified when the SOMs are reviewed to
develop the FOM. FOM developers could decide what unit of measure will be used by
the federation. Simulations that do not use the appropriate units would be required to
implement a routine that translates outgoing attribute updates into the proper units for the
federation, and another routine to translate incoming attribute updates into the appropriate
units for internal use. These routines could be added to the simulation code, or as a
service that runs in conjunction with the HLA Run Time Interface (See Chapter III,
paragraph B.1. for the discussion of a similar translation architecture).

Since the bulk of the attributes and parameters came from the Janus database,
most of the required information for each attribute or parameter could be obtained from
the database. For example, values in the database for the parameter optical contrast were
represented to four decimal places (i.e., 0.3500), implying a real datatype. Since there is
only one optical contrast value‘in the database for each platform, the cardinality is one.
From the target acquisition algorithm, it is noted that the optical contrast is the difference
between the optical signature of the object and the background optical signature divided
by the background optical signature so the optical contrast is unitless. See Appendix D
for a discussion of the Janus target acquisition algorithm. Based on the four decimal
places allowed in the database, the resolution of the attribute was determined to be 0.0001
(resolution to four decimal places). Since Janus would publish this attribute simply by

pulling the value from the database without manipulation, the accuracy is “perfect”
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(always publish the exact value that is entered in the database), and the accuracy
condition is “always” (there are no special conditions necessary to achieve this accuracy).
The optical contrast is a fixed value in the database, so the update type is considered to be
“static” (cannot be updated), and the update condition would be “none” (no update
condition). The last two attribute/parameter characteristics, Transferable/Acceptable and
Updateable/Reflectable, cannot be entered into the object model template with perfecf
accuracy since the ability of Janus to Transfer/Accept and Update/Reflect attributes is
dependent upon the RTI implementation. Entries for these attribute characteristics should
be revisited during development of a RTI service.

3. Interaction Table

_ There. are three places in the Janus simulation to identify interactions between
objects. The first source is the graphical interface. During a Janus simulation run, many
interactioné are portrayed graphically on the Janus battlefield screen. Engagements are
the primary interactions depicted between platform entities. Between barriers and
platform entities, interactions result in the destruction of the platform entity or the halting
of the platform entity’s movement.

The second source for interactions is the Janus command interface. The user can
direct a platform entity to mount onto another platform entity or to dismount from another
platform entity. Also, a platform entity that is capable can be commanded to breach a
barrier object, or generate a smoke cloud. The user can command artillery and mortar
platforms to execute indirect fire missions with the potential to suppress or destroy
platform entities, or to generate smoke clouds. Finally, the user can direct a resupply

platform to transload supplies to a combat platform. The Janus Tutorial (Appendix E)
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produced to facilitate research for this thesis provides the reader with a basic
understanding of the Janus command interface.

The third source for interactions is the Janus user’s manual. An example of an
interaction discovered in the user’s manual is the production of a dust cloud by an indirect
fire object. The user’s manual reveals that artillery rounds impacting with soil creates a
dust cloud even if the rounds are not specifically designed to generate smoke. Table 3

depicts the primary interactions identified in Janus.

Platform vs. Platform

Engage with Direct Fire (Graphics Screen)

Mount on/Dismount from Platform (Command Interface)
Resupply Combat Platform (Command Interface)
Radar/Aircraft Acquisition (User’s Manual)

Platform vs. Barrier

Encounter Obstacle (Graphics Screen)

Encounter Minefield (Graphics Screen)

Breach Minefield (Command Interface)

Platform vs, Atmosphere

Generate VEES Smoke Cloud (Command Interface)
Generate Grenade Smoke Cloud (Command Interface)
Generate Large Area Smoke Cloud (Command Interface)
Indirect Fire Ordnance vs. Atmosphere

Generate Smoke Cloud (User’s Manual)

Generate Chemical Cloud (User’s Manual)

Indirect Fire Ordnance vs. Barrier

Emplace FASCAM Minefield (User’s Manual)

Indirect Fire Ordnance vs. Area

Casualty Generating Impact (Graphics Screen/User’s Man.)
Barrier vs. Atmosphere

Generate Smoke Cloud (Algorithm/Graphics Screen)
Atmosphere vs. Platform

Chemical Cloud Contamination (User’s Manual)

Table 3. Interactions.

After all the interactions portrayed by Janus had been identified, the next step was
documenting the initiating and receiving classes. Some of these associations are fixed
and easily portrayed. For example in every case, a smoke pot object interacts with the
atmosphere by changing the attributes of a smoke cloud object (giving it volume, density,
etc.). In other cases, the association is less well defined. The direct fire engagement

interaction between platform objects can be turned on or off by the Janus user. An M1
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Abrams tank modeled by Janus must be specifically authorized to engage other objects in
the database by platform type (BMP, BTR-60, T-80 Tank). Therefore, this interaction
reflected in the interaction table portrays engagement interactions that Janus is capable of
initiating, sensing, or reacting to rather than what may be allowed during any specific
Janus scenario run.

In some cases the attributes associated with the initiating and receiving object
classes were identified by inspection (i.e., Alive/Dead Status for the receiving platform in
a direct fire engagement). Other attributes were more difficult to identify and required
inspection of the algorithms and user’s manual. During this phase, several attributes were
identified that were previously overlooked. An example is the mount platform
interaction. The Janus user’s manual specifies that a passenger entity cannot engage
other entities (the mounted entity is in hold fire status). Additionally, an entity with
another entity mounted on it can be identified visually on the battlefield graphics screen.
This implies that the carrier entity knows that an object is mounted on it, and therefore
must have an attribute (“passenger status”) which is a binary variable indicating whether
or not a passenger is mounted. Other examples of attributes identified during completion
of the interaction tables are ammunition quantity on hand and fuel quantity on hand. .

Finally, interaction parameters are those attributes and parameters necessary for
the appropriate algorithm to process the interaction and adjust the attributes of the
initiating and receiving objects. Again, several attributes and interaction parameters were

identified that had previously been overlooked.

26




4. SOM Lexicon

The OMT Lexicon required research into the definitions of object parameters and
attributes. Most of this information was found in the Janus Database Manager’s Manual,
Janus User’s Manual, or by inspection. Some cases such as the transmission factor
attribute in the atmosphere class of objects required a detailed inspection of the target
acquisition algorithm.

5. Associations Table

There are two primary associations in Janus: the terrain/platform association and
the weapon system/ordnance association.

All platform entities are associated with the terrain elevation object. As a
platform moves across the terrain, the platform updates the elevation component of its
location through this association. This association is important for the Janus object
model, but not for the Janus SOM since the terrain object will not typically be included in
the SOM.

Ordnance objects are associated with weapon system objects. The weapon system
object fires or launches the ordnance object. One could argue that this relationship is an
interaction rather than an association, being a momentary relationship rather than a lasting
relationship. However, the relationship between ordnance and the weapon system is a
usage relationship characterized by the HLA OMT Extensions Reference, Version 1.0, as
an association rather than an interaction.

6. Component Structure Table

The component structure table followed directly from the object class structure

table. The Janus database clearly specifies that each platform has three sensor objects and
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zero to fifteen weapon system objects. If the platform contains a weapon system object, it
necessarily must have appropriate ordnance objects. Ordnance objects were considered a
component of the platform rather than the weapon system because the quantity of
ordnance is more closely associated with the platform than with the weapon system.
Different platforms may carry the same weapon system but different types or quantities of
ordnance objects. The Janus database allows each platform entity to carry any number of
ordnance objects (limited only by user discretion).

7. Object Model Metadata

The object model metadata table is simply a history of the simulation,
documentation of the SOM development, and proponent for the SOM. This table was
completed for the general model so that it could be incorporated in the SOM without
change.
C. BUILDING THE SOM

Producing an HLA SOM from the general object model of Janus consists
primarily of removing those items not necessary for the SOM. Since the SOM is meant
only to facilitate interoperability between individual simulations, to comply with the HLA
those pieces of the general object model that will not play a part in inter-simulation
operation are excluded from the SOM. This section describes the reasoning used to pare

down the general object model to arrive at an HLA compliant SOM.

1. The Object Class Structure
The class hierarchy table requires very little refinement to produce the SOM from
the general object model. Since the terrain representation is typically internally

represented in all federates, the terrain base object and all descendent objects are removed
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from the gcﬁeral object model. All other objects are important to producing an accurate
representation of Janus through HLA and are included to produce the class structure table
for the SOM.

2. Attribute/Parameter Table

The Attribute/Parameter Table is the one most subject to modification to produce
the SOM. Since the parameters support interactions, all parameters in the table are
included in the SOM. There are two categories of attributes that must be included in the
SOM: 1) attributes that support interactions, and 2) attributes necessary to represent the
functionality or current state of the object they define in another federate.

Those attributes that were not in the above two categories were removed from the
general object model. Removed attributes include: maxspeed, weapon range, chemical
transmit factor, swim type, fuel tank size, and many others. The eliminated attributes
share the following characteristics; 1) they all contain fixed values with no potential for
dynamic change, 2) they are not necessary to resolve potential interactions, 3) they are
not necessary to portray the Janus objects functionality in another federate.

3. Interaction Table |

All interactions available in Janus have the potential to occur between federates in
a federation run and therefore are included in the SOM.

4. SOM Lexicon

The SOM Lexicon simply defines all those objects, attributes, and parameters

retained from the general object model to form the SOM.
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5. Association Table

The terrain object/platform entity object association is eliminated from the
Association Table since the terrain object is not retained in the SOM. See paragraph
I1.C.1 for explanation of terrain object exclusion from the SOM. Other associations
would be eliminated if they did not support interoperability. This would occur if an
association existed between objects in Janus, but no potential existed for the same
association to occur between an object in Janus and an object in another federate. There
are none in this case.

6. Component Structure Table

Similar to the Association Table, component relationships that do not support
interoperability are removed. In this case, all component relationships were included in
the SOM.

7. Metadata

Entries in the Object Model Metadata change only if they refer specifically to the
SOM. All information describing the simulation and its history remains unchanged.
D. AFTER SOM TABLE COMPLETION

While significant work has gone into the development of the Janus SOM, it is not
yet a finished product. The general object model and the SOM are still only approximate
models of the Janus simulation. Two additional reviews are required to refine the object
models and assess the feasibility of RTI implementation. The first is a detailed review of
the general object model and SOM by competent Janus experts to confirm that they are a
valid representation of the Janus simulation. The second is a review by a potential RTI

implementer to verify that it is feasible to implement an interface to the RTI. This
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interface must extract appropriate data from Janus and use the RTI services to publish
that data during federation execution as portrayed in the SOM. The interface must process
information to which the Janus federate subscribes and use this data in Janus in a
meaningful way. These reviews will likely identify deficiencies in the general object
model and SOM that will require correction and these reviews will yield the legitimate
‘object models. This section describes a proposed SOM review process consisting of a
quality review and an implementation review.

1. Review by TRAC-WSMR

As the proponent agency for the Janus simulation, TRAC-WSMR employs
analysts, senior programmers, and managers with thousands of hours of experience using
Janus as an analysis tool and with reviewing, refining, and improving Janus code.
TRAC-MTRY is coordinating to arrange a TRAC-WSMR review of both the general
object model and the SOM. The TRAC-WSMR review will ensure that the rhodels are
an accurate representation of the Janus simulation. Additionally, the TRAC-WSMR
review will assess how well Janus as a federate can interoperate with other likely
federates.

2. Assessment by RTI Developer

The RTI implementer will review only the SOM. This review will ensure that the
information required to support the SOM representation can be extracted from Janus and
provided through the RTI. Since Janus is not a distributed model, the RTI interface must
monitor dynamic attribute updates and interactions in Janus, extract this information in
the appropriate format, and publish it using the RTI services. When receiving subscribed

data from other federates, the RTI interface must transform these updates into a form
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understood by the Janus simulation. This review will require detailed knowledge of the
Janus simulation code and HLA RTI software. It will require a significant effort to
implement the RTT interface. While this implementation is required to validate the
implementation feasibility and measure the performance characteristics for the SOM, this
review can effectively estimate the feasibility of implementation.
E. ISSUES WITH THE SOM AND ANALYSIS

One of the potential benefits of the HLA as described in the introduction is to
provide the analyst with distributed simulation capabilities that include increased
numbers of entities without bandwidth and CPU limitations. Additionally, with the HLA
an analyst could form a federation for a specific study using the most widely accepted
models for every separate system portrayed in the federation. In other words, if the
analyst is studying Patriot air defense missile system performance against the most
modern fighter aircraft, he could use the simulation that best portrays the Patriot system
as one federate and the simulation that best portrays modern aircraft as another federate.
In theory, this federation would result in é better model than one developed from scratch.
This section provides a look at some of the issues that must be considered when
producing an HLA SOM that may impact on the federate or federation’s use as an
analysis tool.

1. The Analysis Federate

The analysis federate has been proposed as a method of capturing data across a
federation during the course of a federation run [12]. The analysis federate subscribes to
those object classes whose updates and interactions will allow quantification of selected

measures of performance. It simply records object updates and interactions as they occur.
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Thus, the analysis federate will operate very much like the Janus post-processor.
However, it will be much more flexible that the Janus post-processor because it can
subscribe to any information published by the federation. For example, if the analyst is
only interested in Air Defense weapon performance, he need only subscribe to Air
Defense and Aircraft platform updates. On the other hand, if the analyst is interested in
resupply operations (not provided by the Janus post-processor), he can subscribe to
Combat Service Support platform updates. Additionally, the analyst is not required to co-
locate with one of the federates to gather data. The analysis federate need only be
connected through a RTI to the federation network.

The alternative to the analysis federate is to capture data to quantify measures of
effectiveness at the individual federate level and consolidate the data by some other
means. While data consolidation may not always be necessary, there could be difficulties
with the consolidation process should it be necessary.

The analysis federate has great potential to let the analyst take advantage of the
power and flexibility of the HLA. However, if the specific data required are not
published, the analysis federate is useless. This leads to a discussion of the value of
including or excluding additional pieces of the general object model in the SOM to
support the federate’s use as an analysis tool.

' 2. Including Additional Object Attributes in the SOM

The analysis federate proposal and similar passive data collection federate

proposals make the case for additional information in the SOM beyond that necessary to

facilitate interoperability among federates. In order to conduct a meaningful analysis of
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the data produced by a federation run or series of runs, additional information may be
needed in the SOM.

An example of this is detection data. In a study to measure force performance as a
function of sensor capabilities, it may be important to capture data such as what time
entity O1 on side 1 detected entity 101 on side 2, the locations of the entities when the
detection occurred, the type of sensor used in the detection, and other factors associated
with the detection. Since the relationship between the detecting and detected entities is
not an interaction, association, or component relationship, the parameters and attributes
that support this event are not included in the SOM under the interaction, association, or
component tables. The detecting entity has an attribute called target_list that consists of
an array filed with the enemy force entities that are currently acquired.- This list is
updated when a detection occurs. However, because the detection event does not affect
federation interoperability, it would not be included in the attribute/parameter table of the
SOM or FOM, and therefore, would not be published. This detection data may be
captured in one or more federates for the entities belonging to that federate only. One
way to capture detection data across an entire federation run is to publish the target_list
updates for each federate and capture this data in the analysis federate.

To facilitate the collection of detection data, the target_list attribute could be
included in the SOM. In the same way many other attributes that do not affect
interoperability may be included in the SOM to facilitate data collection and
consolidation. Unfortunately, a single SOM that attempts to include all possible

attributes that may be necessary for future data collection requirements could become to
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unwieldy and inefficient. Publishing all the attribute updates in the general object model
could result in similar bandwidth and CPU limitations that occur in DIS.

One possible solution to the data collection/attribute inclusion dilemma is to
develop more than one SOM for a single prospective federate. This concept will be
discussed in more detail in the next paragraph.

3. The Multi-SOM Concept

The general object model provides a comprehensive view of the Janus simulation.
Since the federation’s FOM draws from the individual federate SOMs, one could
consider using the gene;al object model as a universal SOM for Janus. However, there
are two problems with this approach. First, the federation developers would have to wade
through the géneral object model to identify only the appropriate objects, interactions,
attributes, and parameters necessary for the particular federation. Second, while the
general object model includes numerous attributes that could potentially be useful in
quantifying different measures of effectiveness, it also includes many attributes that will
probably never be necessary for these types of studies and clearly are not needed to
facilitate interoperability. Different SOMs can be derived from the general object model
to support a variety of analysis requirements. A sensor analysis specific SOM could be
designed to publish that information necessary to interoperate and include detection data
and sensor attributes. A weapon system analysis SOM could provide additional
publishable attributes associated with weapon system performance. This multi-SOM
concept would be efficient. Attributes unnecessary to a particular project and to federate
interoperability are not included in the project-specific SOM. The result is a streamlined

federate selection and FOM development process.
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4. Excluding Interactions from the SOM

If objects from other federates are expected to interact with the Janus federate’s
objects, these interactions must be included in the SOM. An interaction could be
excluded from the SOM if the interaction will not play a role in the federation
interoperation. This would occur if objects in Janus had no potential to perform a
specific interaction with objects in other federates.

However, like the argument to include attributes not necessary to interoperability,
it could be important to include these interactions in the SOM to support data gathering
by publishing the interaction data whether or not the interactions occur within the Janus
federate or between the Janus federate and another federate.

F. CHAPTER SUMMARY

The goal of this chapter was to provide the reader with a thorough understanding
of the General Conceptual Object Model methodology for producing a HLA SOM. The
methodology produces an object model of a legacy simulation that is not restricted by the
implementation of the procedural legacy code. Since the object model was produced
from a conceptual approach, it is necessary for Janus code experts to review the model to
ensure that it accurately represents the Janus simulation. This review will identify
possible errors of omission, as discussed in the following chapter. Additionally, since
Janus was not developed to be a distributed simulation, a review by a potential RTI
service implementer is necessary to ensure that it is feasible for Janus to publish and
subscribe to that data indicated in the SOM.

Before a fully HLA capable Janus can be used as an analysis tool, there are issues

to address concerning the HLA and analysis. Proposals such as the analysis federate and
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Multi-SOM concept, and concerns about what aspects of a simulation are included in the

SOM should be clarified before HLA federations are used for analysis.
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III. RESULTS
A. ASSESSMENT OF THE SOM AND SOM DEVELOPMENT PROCESS

This section reviews the methodology used to develop the SOM, discusses the
results of the SOM development process, and compares the methodology to a SOM
development process proposed by Lutz [11].

1. Synopsis of General Conceptual Model Methodology

The methodology used to create the Janus SOM can be Viewed in general as a
two-step process. First, the general object model is built from the simulation. Second,
the SOM is extracted from the general object model.

Development of the general object model requires a working knowledge of the
simulation being modeled. In this case, the user’s manual, graphic user interface,
database, database manual, and software design manual provided sufficient knowledge of
the simulation to produce the general object model.

The basic steps in the general object model development were (also see Figure 4):

o Identify all the instantiable objects in the simulation.

Identify all the attributes used to define the instantiable objects.

Develop an object class structure.

Assign the attributes to the appropriate class level for each object class.

Identify all possible interactions and associated interaction parameters. (This

procedure also identifies some additional object attributes previously

overlooked)

e Review the total set of object attributes to include those attributes identified
while working on interaction data and verify that new attributes do not reveal
additional attributes that were previously overlooked.

e Review the interaction table and verify all necessary attributes and parameters
are noted.

e Use above information to complete object model tables.
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It must be noted that the above steps produced the bulk of the information
necessary to complete the object model tables. Not included above are development of
the component structure table, association table, object model lexicon, and the additional
information necessary to define attributes/parameters (datatype, units, accuracy, etc.).
The component structure and associations were identified after the process outline;d above
was complete and before work on the tables began. The object model lexicon and
attribute parameter definitions were entered as the tables were produced using the Aegis
Research Object Model Development Tool (OMDT) software [16]. The OMDT allows
the user to enter object model lexicon and attribute/parameter definitions from the object
class structure table. In this way, the OMDT greatly simplifies the task of entering this
information and avoids the difficulty of switching frequently from attribute/parameter
table to object model lexicon table and back to make appropriate entries.

After the general object model was completed, it was a relatively simple matter to

Identify All Instantiable Objects

2

Identify All Attributes Available to
Define the Objects

. Assign Attributes to Appropriate
Develop Object Class Structure »’ Objects and Hierachal Levels in
Object Class Structure

Identify Interactions and Interaction [ Complete
Parameters/Attributes o = Object Model

Figure 4. Graphic Representation of Object model Development Methodology.
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extract the éppropriate table entries to create the HLA SOM. As discussed earlier, there

' may be compelling reasons to include additional information in the SOM above the
minimal requirements for simulation interoperability. Additionally, should it bé deemed
necessary or appropriate, multiple SOMs could easily be extracted from the general object
model each targeted at a specific HLA federation.

2. Results of the SOM Development Process

Despite the many hours and thought that have gone into the SOM development
process outlined in this thesis, there may be errors or omissions in the completed Janus
general object model and SOM due to the complexity of the Janus simulation and the
approach chosen. This section is a self assessment of the accuracy of the methodology
and the quality of the finished general object model and SOM prior to review by Janus
model experts.

Errors of omission are most likely to occur in the attribute/parameter table and the
interaction table since Janus uses hundreds of attributes to define the many classes of
objects. As pointed out in the Chapter II, an overwhelming percentage of these attributes
were easily identified by revie\;ving the database, graphic user interface, user’s manual,
and software design manual. However, some attributes could only be identified by
inference. The existence of this small set of attributes indicates there may be others that
were overlooked. Similarly, there may be interaction parameters that were omitted from
the interaction table.

Because the approach to SOM development was conceptual, there is some chance
that small numbers of object attributes and interaction parameters may have been

overlooked. Another approach would have been to produce the general object model and
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SOM by reviewing the Janus code. However, there are two primary benefits to using the
conceptual approach. First, object model development is not restricted by the structure
and implementation of the simulation code. The modeler is free to use both operational
experience and knowledge of object model methodologies to produce an object-oriented
representation of the simulation. This facet of the conceptual approach seemed to be
particularly advantageous while working with a procedurally implemented legacy
simulation such as Janus.

The second benefit of the conceptual approach is reduced object model
development time. While Janus is well documented, the time required to gain a working
knowledge of the Janus code (consisting of over two hundred thousand lines) and then to
follow the coae to produce an object representation would have been prohibitive.

3. Comparison with other Object Model Development Processes

Luté [11] details a methodology to generate both SOMs and FOMs to facilitate
federation interoperability. This section will compare his methodology with the General
Conceptual Object Model method described in this thesis.

The eight step SOM development process proposed by Lutz is displayed in
Figure 5. The following paragraphs briefly describe each step in Lutz’s process.

Step 1: Determine Publishing Capabilities for Object/Interaction Classes. This
step requires identification of those object and interaction classes that the model can
publish. Lutz makes the point that “determination of these classes is driven by the
specific intrinsic functionalities that the simulation sponsor/developer considers to be

useful to and can make available to future federations.”
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Products

Object Class Object Attribute/ . oMt
. Extensions

Table Table Table : Tables

OMT Components

Figure 5. SOM Development Process. [11]

Step 2: Determine Subscription Requirements for Object/Interaction Classes.
Lutz identifies two categories of objects/interaction classes to which the simulation may
subscribe. One category contains those classes of objects and interactions that are present
within the simulation and can be published as well as portrayed (reflected) in the
simulation from another federate’s published data. The second category of class
subscription requirements contains those classes of objects and interactions that are not
internal to the simulation, but can be reflected within the simulation from data published
by another federate. For example, Janus does not portray a submarine object. If another
federate publishes data describing a submarine object and Janus can receive that data and
portray the submarine object in the Janus scenario, then a submarine object can be added
to the Janus class hierarchy.

Step 3: Determine Publishing Capabilities for Attributes/Parameters. This step
identifies all attributes and parameters necessary to characterize the object and interaction

classes determined in step 1. Lutz notes that “this entails specifying the complete set of
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public objecf characteristics that can be explicitly supported by the simulation, and are
cpnsidered to be potentially useful in future federations” [11].

Step 4: Determine Subscription Requirements for Attributes/Parameters. This
step repeats step 3 for those object and interaction classes identified in step 2.

Step 5: Prepare Object Class Structure Table. This step consists of mapping each
object class identified in step 1 to an object class hierarchy in the object class structure
table.

- Step 6: Prepare the Object Interaction Table. The interaction class table is
completed with the interaction classes identified in his steps 1 & 2 and the appropriate
attributes/parameters identified in steps 3&4.

Step 7: Prepare Attribute/Parameter Table. The attribute/parameter table is
completed with data identified in steps 3 & 4.

Table 4 compares the General Conceptual Object Model methodology with that
presented by Lutz. One can see that the two methodologies for producing an HLA object
model are similar in many respects. The primary differences are in the development of
the object class structure table, .the sequence in which the attribute/parameter table is
completed, and in step 9. Lutz points out that “it should be noted that this suggested
sequence of development activities is not the only process which can lead to efficient and
robust object model construction ... many deviations from this process are possible which

can lead to successful results” [11].
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General Conceptual Object Model

Step Lutz SOM Development Process Methodology
1 Determine Class Publishing Capabilities Identify All Instantiable Objects
2 Determine Class Subscription Requirements | Not Considered in this Document*®
3 Determine Attribute/Parameter Publishing Identify All Attributes Available to Describe
Capabilities Objects
4 Determine Subscription Requirements for Not Considered in this Document*
Attributes/Parameters '
5 Prepare Object Class Structure Table Build Class Hierarchy based on Common
: Attribute Object Groupings; Simultaneously
Prepare Attribute portion of
Attribute/Parameter Table
6 Prepare Object Interaction Table Identify Interaction Parameters and Prepare
. Object Interaction Table; Simultaneously
Prepare Parameter portion of
Attribute/Parameter Table
7 Prepare Attribute/Parameter Table Not Necessary
8 Prepare Object Model Template Extensions Same
9 None Reduce the General Object Model to Produce
a SOM Appropriate for Federation Needs

Table 4. Comparison of Object Model Development Processes.

*The methodology in this thesis does not include consideration of either category of subscription
requirements. First, the purpose of this project is to develop object models of Janus (both a general object
model and a SOM) and the focus throughout has been internal to Janus. Second, since all publishable
objects and interactions must be subscribable also, the first category of subscription requirements is already
accounted for in the Janus object and interaction class structure tables. Finally, an attempt to enumerate all
the possible classes of objects that may be portrayed in future federations that may be subscribable by Janus
would be impractical and certainly incomplete. "

B. ADDITIONAL WORK TO BE HLA COMPLIANT

Four of the five HLAl rules for simulation federates rely on the SOM. SOM
completion satisfies rule 6 (the first five rules apply to federations). Subsequent
implementation work will satisfy the remaining four federate rules (The ten HLA rules
are listed in Table 5). Distributed Janus developers at TRAC-WSMR and TRAC-MTRY
must review the Janus SOM to identify potential model related impleméntation
difficulties not anticipated by the SOM developers. This section describes the remaining
work required to make Janus comply with the HLA federate rules 7 through 9; HLA

federate rule 10 will not be discussed.
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Rules for federations are:

Federations shall have an HLA Federation Object Model (FOM), documented in accordance
with the HLA Object Model Template (OMT).

2 In a federation, all representation of objects in the FOM shall be in the federates, not in the
runtime infrastructure (RTI).

3 During a federation execution, all exchange of FOM data among federates shall occur via the
RTIL

4 During a federation execution, federates shall interact with the runtime infrastructure (RTI) in
accordance with the HLA interface specification.

5 During a federation execution, an attribute of an instance of an object shall be owned by only
one federate at any given time.
Rules for federates are:

6 Federates shall have an HLA Simulation Object Model (SOM), documented in accordance
with the HLA Object Model Template (OMT).

7 Federates shall be able to update and/or reflect any attributes of objects in their SOM and send
and/or receive SOM object interactions externally, as specified in their SOM.

8 Federates shall be able to transfer and/or accept ownership of attributes dynamically during a
federation execution, as specified in their SOM.

9 Federates shall be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOM. .

10 Federates shall be able to manage local time in a way which will allow them to coordinate data

exchange with other members of a federation.

Table 5. HLA Rules.

1. RTI Service Interface

Janus was developed long before the concept of distributed simulation was

envisioned. Therefore, there is no built-in ability to publish or receive data updates

included in the Janus code. To satisfy HLA rules 7 through 9, a system must be

established that provides appropriate communication between the internal Janus

simulation and the HLA RTI. Currently, there are two proposed methods of establishing

acceptable communications between Janus and the HLA RTI.

One proposed method is to chahge the Janus code to translate object updates as

they occur into a format the HLA RTI understands and then output these updates to the

RTI. This also requires code changes allowing Janus to receive updates from the RTI,
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translating them into a Janus understood format, and incorporating these updates into the

Janus simulation run (See Figure 6) .

Janus to RTI

Service
(Changes to
Janus code)

Janus RTI

Figure 6. Janus to RTI Service Method 1.

' The second proposed method of establishing communications between Janus and
the RTI is to minimally change the Janus code to output object updates that occur within
Janus and receive updates from the RTI that are then input to the simulation run. This
method requires an additional service running in conjunction with the RTI that translates
Janus updates into a format that the RTI understands and does the reverse for other
federate updates coming into Janus (See Figure 7).

RTI Service Method 1 includes éigniﬁcant modification to the Janus code, but
does not require the additional translator to run in conjunction with the RTI. RTI Service
Method 2 is an extension of the J-LINK work currently underway at TRAC-MTRY using
DIS architecture (J-LLINK described in Chapter I). An advantage of this method is that it

requires minimal revision of the internal Janus code.
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Janus

Janus Output
Code

—

Janus Input
Code

RTI

RTT to Janus
Service

(Separate from
RTI code)

Figure 7. Janus to RTI Service Method 2.

2. Inclusion in a Federation

The final test of Janus’ transition to HLA compliance will be the successful
inclusion of Janus in an HLA federation. This test is likely to be six months to a year
away since work has not yet begun on the Janus/RTI communication service. Current _
work on distributing Janus will facilitate the development of an effective communication

service. TRAC-MTRY is currently considering the problem of developing an RTI

Service for Janus based on the SOM developed through this research.

C. CHAPTER SUMMARY
Chapter II provided the reader with a detailed view of the General Conceptual
Model methodology. The synopsis in this chapter was intended to provide the reader

with a concisely packaged view of the process. It also serves as the starting point for a

look at the results of using this approach to create a HLA SOM.

There is a potential danger incurred by using this methodology. Since the

simulation code is not used to derive the model, there may be errors of omission.
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However, this danger must be weighéd against the benefit obtained by the conceptual
approach. To eliminate the danger of omitting critical aspects of the simulation, the
general object model will be reviewed by Janus code experts to verify that the model
accurately represents the Janus simulation.

The Lutz [11] object model development process provides an opportunity to '
.compare the General Conceptual Object Model methodology with another proposed
procedure to create a HLA SOM. When comparing the two methods, it is important to
remember that the Lutz process is intended to work with any simulation model.
Conversely, the General Conceptual Model methodology speciﬁcally addresses
procedurally coded legacy simulations developed prior to the advent of distributed
technology.

The work necessary to deliver a fully HLA capable Janus is just beginning. In
addition to the SOM, it will be necessary to build a RTI service that will alloW Janus to
communicate through the HLA RTI with other federates. Current work within the TRAC
organization to develop a DIS capable Janus could facilitate the production of a RTI

service.
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IV. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

This section provides conclusions and recommendations for model proponents
who desire to bring their legacy simulations into compliance with the HLA requirements.
The research and experience resulting from this thesis clearly indicates that it is possible
for procedural legacy simulations, and Janus in particular, to comply with the HLA rule
requiring a SOM. In order to achieve compliance with this rule, it is advantageous to first
develop a complete conceptual model of the legacy simulation. Finally, if the model will
be used in a federation requiring analysis of model outputs, an analyst should be included
during SOM development.
B. JANUS COMPLIANCE WITH THE SOM REQUIREMENT

The research conducted to produce this document indicates that Janus can
cerfainly meet the HLA SOM requirement. The SOM is a significant step toward
transitioning Janus into HLA compliance. Additional steps for Janus to conform to the
remaining HLA requirements are likely to be more costly. SOM development for Janus
provided significant insight into the size of these costs by providing a means to identify
the additional steps necessary to make Janus HLA compliant. A decision to proceed with
additional work to produce an HLA compliant Janus model must consider these costs. In
this case, the HLA SOM provides a feasibility gauge that can be used to measure the cost
and complexity of further HLA investment in Janus. Legacy model proponent
organizations may benefit from detailed review of their simulations for possible

compliance with HLA. Beginning this review by producing a fully developed SOM at
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relatively low cost will aid the propénent in determining the cost effectiveness of further
investment in HLA compliance.
C. ADVANTAGES OF THE GENERAL OBJECT MODEL"

In many cases it will be appropriate to produce a general conceptual model of a
legacy simulation prior to producing an HLA SOM. Building the géneral conceptual
| object model of Janus prior to producing the SOM required more time and detail than
simply building the SOM. This section explains the reasons why it was appropriate to
spend the additional resources to produce the general model.

1. Facilitate Model/Federate use in Analysis

As described in chapter I, one of Janus’ great strengths is the flexibility to model
many different platforms. The Janus database provides hundreds of attributes to specify
the functionality and characteristics of many types of militarily important platforms. A
primary benefit of the general object model is that it provides the military analyst with a
full representation of Janus’ ability to model objects. Conversely, the HLA SOM is a
subset of the general object model that may include only small portions of the general
model. An analyst attempting to identify an appropriate model to include in a federation
needs to find a simulation that will allow him to quantify some specific MOE. The .
analyst may overlook a potential federate as a candidate if using only the SOM to
identify the model’s capabilities, but may identify an appropriate simulation through its
general object model.

2. Avoid Omitting Valuable/Critical Aspects of the Model

Since Janus has no inherent object representation and it was not practical to

produce a SOM by reviewing the Janus code, the general conceptual model provided a
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means to minimize the possibility that an important piece of Janus was not overlooked.
As pointed out earlier, the methodology chosen does not guarantee that the general object
model will perfectly describe Janus prior to the review by TRAC-WSMR. However,
producing a thoroughly researched general object model increases the chances that all
relevant information is included in the SOM prior to any external review.

3. Capture Janus Conceptually for Development of Future Models

While Janus is still widely used both as an analysis tool and for training, even avid
Janus supporters have come to realize that Janus is likely near the end of its service life.
The U.S. Army is actively seeking a replacement model for Janus. In this light, the
general object model of Janus provides an object-oriented look at the minimum standard
for a Janus réplacement. Additionally, if deemed appropriate, the general object model of
Janus could be used as a starting point for the development of an entirely new model.

D. INCLUDE AN ANALYST IN SOM DEVELOPMENT

It is advantageous to include an analyst during SOM development, rather than
only a programmer or implementer. As a minimum, the analyst should be an active
member of any SOM development team. This is more important if the simulation model
is to be used as an analysis tool.

The programmer or implementer can certainly produce an object model of a given
model quickly and efficiently. However, it is the analyst who must use the model to
quantify measureé of effectiveness. As pointed out by Lutz, the model proponent has
significant latitude in what is included in the SOM based the projected use of the model
[11]. The analyst brings to the SOM development process an understanding of the kind

of studies in which the model may be included, what measures of effectiveness the model
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may be expected to quantify, and therefore what is important to include in the SOM.
Chapter III, paragraph E provides some understanding of the types of issues an analyst
must consider as he determines what should be included in a SOM.
E. DISCUSSION

The software tool used to document the Janus general object model and SOM for
this research was the AEgis Research Corporation Object Model Development Tool
(OMDT) [16]. The OMDT was developed by AEgis Research Corporation at the request
of the DMSO to streamline the process of documenting HLA object models. While the
OMDT provides a convenient means of capthring the Janus object models in the DMSO
specified format, it does not allow manipulation of the tables for output. Consequently,
the printed output from the OMDT cannot be scaled to fit presentably in hard copy. A
Pascal program provided the means to overcome this deficiency and provide examples of
the general object model tables in this document. The Pascal code for this program is
included at Appendix B.
F. CONCLUSIONS AND FUTURE WORK

The significant result of this research is the methodology to produce a HLA
Simulation Object Model for procedural legacy simulations. Currently, two
methodologies have been presented for this purpose: that proposed by Lutz as a generic
approach applicable to all models [11]; and the General Conceptual Object Model
method for procedurally coded models presented in this thesis. These two methodologies
were compared in Chapter III. At some point, others will develop methodologies
appropriate for specific model types or perhaps, like Lutz, appropriate for a wide range of

models including those coded using either procedural or object-oriented languages. As
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work in the SOM development field continues, periodic reviews of all proposed processes
will produce refinements in the General Conceptual Object Model methodology.

The effort to bring Janus into compliance with the HLA standards will continue at
TRAC-MTRY. After the object models are reviewed by TRAC-WSMR and a potential
RTI service implementer, TRAC-MTRY has tentative plans to begin work on the RTI
service. This project has generated significant interest within the TRAC organization as a
viable means to extend the use of Janus into the HLA environment. Other parallel work
includes a proposal to develop a proto-type analysis federate at TRAC-MTRY and use the
HLA capable Janus to validate tﬁe analysis federate concept.

The DoD has invested many resources toward the development and
implementation of the HLA. The HLA concept was validated in the summer of 1996
using proto-federations produced for that purpose. While the concept proved viable,
there is much work remaining before HLA can be considered matured. This thesis has
identified some difﬁculties with modifying a legacy simulation so that it can operate
using the HLA. Some larger difficulties ~are yet to be solved.

One such problem is the federate object representation of platforms.‘ The object
representation of entities, elements of nature, and man-made objects which is
fundamental to the HLA could result in difficulties in federation development. If similar
platforms from two different federates have significantly different object representations,
it may not be worth the trouble to modify one or both potential federates to achieve an
acceptable level of interoperability. As an example, suppose one potential federate
portrays a smoke cloud as a series of geometric shapes (trapezoids) with 16 attributes.

The other potential federate portrays a smoke cloud as circle with some radius and height

55




(two attribufes). It will require a detailed subroutine in one of the federates to translate
between the two different object representations of the smoke cloud so that it is depicted
accurately in both federates. In this case, even if the subroutine is added so that both
federates can portray the smoke cloud, it is obvious that they are both not really “secing”
the same smoke cloud (one is a circle or cylinder while the other is a series of trapezoids).
The Army is addressing this problem with a project called the Standard Army Model and
Simulation Objects Study. The project’s goal is to identify standard object
representations of those objects most likely to be used in future Army simulations thereby
avoiding conflicts in object representation in future simulation models.

While the HLA promises to allow significantly broader interoperability between
simulation models, the future will reveal the true benefit of the HLA. The shortcomings
in DIS that lead to the HLA were not apparent during the early years of DIS. In the same

manner significant flaws in the HLA concept may not become visible for several years.
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APPENDIX A. Examples of Completed Object Model Tables

Object Class Structure Table

Class 1

Class 2

Class 3

Class 4

Base_Platform(S)

Maneuver_Platform(S)

MAircraft_Platform(S)

RotaryWing_Platform(PS)

FixedWing_Platform(PS)

MGroundVehicle_Platform(S)

MTracked_Platform(PS)

Whelled_Platform(PS)

MDismounted_Piatform(S)

Rifieman(PS)

CrewServedWeapon(PS)

Intel_CandC_Platform(S)

FireSupport_Platform(S)

-

CounterBattery_Platform(PS)

Cannon_Platform(PS)

CmbtServiceSpt_Platform(PS)

MobSurviv_Platform(PS)

AirDefense_Platform(PS)

Barrier(S) Type1Minefield(PS)
Type2Minefield(PS)
TankDitch(PS)
Crater(PS)
Abatis_Wire(PS)
Smokepot(PS)
NaturalObstacle(PS)
Terrain Road
Building_ManMade
| Vegetation
Elevation
Water
Cloud(S) SmokeCloud(S) SmokePotCloud(PS)
VEESCIloud(PS)
GrenCloud(PS)
IndirectFireSmkCloud(PS)
LargeAreaSmkCloud(PS)
ChemicalCloud(PS)
Ordnance Dirct Fire
IndirectFire - HE(PS)
RAP(PS)
ICM(PS)
HC_Smoke(PS)
WP_Smoke(PS)
BS_Smoke(PS)
Chem(PS)
PGM_1(PS)
PGM_2(PS)
FASCAM(PS)
TGM(PS)
WeaponSystem DirectFireWpn
InfirectFireWpn
Sensor ThermalSensor
OpticalSensor
RadarSensor BlueADARadar
RedADARadar
CounterBatteryRadar
MineClearSys
Weather(PS)
MineFieldBreach(PS)
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APPENDIX B. PASCAL CODE FOR ATTRIBUTE/PARAMETER TABLE
The AEgis Research Object Model Development Tool (OMDT) facilitates
production of object model tables in the appropriate HLA.OMT format. However, the
OMDT does not allow manipulation of the table for output. Consequently, the printed
output from the OMDT cannot be scaled to fit presentably in hardcopy.
The OMDT file can be opened} as a text file. A typical section of the OMDT file

is shown at Listing 1 in the text file format.

(Class (Name "Base_Platform")

(PSCapabilities S)

(Description "Superclass of all objects that will comprise the military forces participating in a planned
simulation")

(Attribute (Name "MovementDirection")
(DataType "any")
(Cardinality "1")
(Accuracy "perfect")
(AccuracyCondition "always")
(UpdateType Conditional)
(TransferAccept N)
(UpdateReflect UR)
(DeliveryCategory RELIABLE)

. (MessageOrdering TIMESTAMP)

)

(Attribute (Name "Location")
(DataType "any")
(Cardinality "1")
(Accuracy "perfect™)
(AccuracyCondition "always")
(UpdateType Conditional)
(TransferAccept N)
(UpdateReflect UR)
(DeliveryCategory RELIABLE)
(MessageOrdering TIMESTAMP)

Listing 1. Example of OMDT file in Text Format.

The following Pascal program was used to produce a text file from the OMDT file
that could be opened in Microsoft Excel and imported to Microsoft Word. The hard copy

output is seen at APPENDIX A:
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{*******‘k*******************************************}

{
{
{
{
{
{
{
{
{
{

Larimer, Larry R.
Thesis
OMDT Output Tool

(*.omd) and creates a text file in HLA

}
}
}
}
}
This program reads an AEgis Research OMDT file }
}
Attribute/Parameter table format. }

}

}

LA RS R RS S SRS RS SRS SRS R Rt RRR s RS LRSS R

Program OMDTOutput;

Uses Wincrt;

Type LineType = String[2551};

Var Line,
Temp,
Whole: LineType;
Inputfile,
Outputfile: String[40];
Infile,
Outfile: Text;
Stop: Integer;

Procedure Attribute(Var Input,Output:Text;Var WholeP: LineType);

Var Tab: Stringll];

Count,
StopP:Integer;
TempP,

LineP,

Attrib: LineType;

Begin
Attrib:='";
Tab:=#9;

Attrib:=Attrib+WholeP;
Readln(Input,LineP); {DataType}
LineP:=Copy{(LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
StopP:=Pos(')"',LineP);
TempP:=Copy (LineP, 12, StopP-12-1);
Attrib:=Attrib+Tab+TempP;
Readln(Input,LineP); {Cardinality}
LineP:=Copy(LineP,Pos (' (',LineP),Length(LineP)-Pos('(',LineP)+1);
StopP:=Pos(')',LineP); .
TempP:=Copy (LineP, 15, StopP-15-1) ;
Attrib:=Attrib+Tab+TempP;
Readln (Input,LineP);
LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
If (LineP[2]='U') and (LineP[3]='n') then begin {Units}
StopP:=Pos(')',LineP);
TempP:=Copy (LineP, 9, StopP-9-1) ;
Attrib:=Attrib+Tab+TempP;
Readln (Input,LineP) ;
LineP:=Copy{(LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]='1"') and (LineP[10]='o') then begin {Resolution}
StopP:=Pos(')',LineP);
TempP:=Copy (LineP, 14, StopP-14-1};
Attrib:=Attrib+Tab+TempP;
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Readln(Input, LineP);
LineP:=Copy(LineP, Pos (' (',LineP),Length(LineP)-Pos ("' (',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]='Y') and (LineP{10}=' ') then begin {Accuracy}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 12, StopP-12-1) ;
Attrib:=Attrib+Tab+TempP;
Readln (Input,LineP);
LineP:=Copy(LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]l='r') and (LineP[10]='C') then begin {Accuracy Condition}
StopP:=Pos(')',LineP);
TempP:=Copy (LineP, 21, StopP-21-1) ;
Attrib:=Attrib+Tab+TempP;
Readln (Input,LineP);
LineP:=Copy (LineP, Pos (' (',LineP), Length(LineP)-Pos('(',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]l='t') and (LineP[10l='p') then begin {UpdateType}
StopP:=Pos (') "',LineP);
TempP:=Copy (LineP, 13, StopP-13) ;
Attrib:=Attrib+Tab+TempP;
Readln(Input,LineP) ;
LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos('(',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]='t') and (LineP[10]='n') then begin {UpdateCondition}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 19, StopP-19-1) ;
Attrib:=Attrib+Tab+TempP;
Readln(Input,LineP);
LineP:=Copy(LineP,Pos (' (',LineP),Length(LineP)-Pos('(',LineP)+1);
End

Else begin
Attrib:=Attrib+Tab;
End;

If (LineP[6]='s') and (LineP{10]='A') then begin {TransferAccept}
StopP:=Pos(')',LineP);
TempP:=Copy (LineP, 17, StopPk-17);
Attrib:=Attrib+Tab+TempP;
Readln (Input,LineP);
LineP:=Copy{(LineP,Pos (' (',LineP),Length(LineP)-Pos("'(',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
Eng;
If (LineP[6]l='t') and (LineP[10]='f') then begin {UpdateReflect}
StopP:=Pos(')',LineP);
TempP:=Copy (LineP, 16, StopP-16) ;
Attrib:=Attrib+Tab+TempP;
Readln(Input,LineP);
LineP:=Copy{(LineP,Pos (' (',LineP),Length(LineP)-Pos('(',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]='r') and (LineP[10]='i') then begin {Description}
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End;

Readln(Input) ;
End;
If (LineP[6]='v') and (LineP[10]='C') then begin {DeliveryCategory}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 19, StopP-19) ;
Attrib:=Attrib+Tab+TempP;
Readln(Input, LineP);

LineP:=Copy(LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Attrib:=Attrib+Tab;
End;
If (LineP[6]='a') and (LineP[10]='r') then begin {MessageOrdering}
StopP:=Pos (') ',LineP);

TempP:=Copy (LineP, 18, StopP-18) ;
Attrib:=Attrib+Tab+TempP;
Readln (Input);

End;

Writeln(Output,Attrib);

Procedure Parameter (Var Input,Output:Text;Var WholeP: LineType);

Var

Tab: Stringll];
Count,
StopP:Integer;
TempP,

LineP,

Parameter: LineType;

Begin
Parameter:='"';
Tab:=#9;

Parameter:=Parameter+WholeP;
Readln(Input, LineP) ;
LineP:=Copy(LineP, Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
If(LineP[2]='0"') and (LineP[3]='r') then begin {Order}
Readln (Input,LineP);
LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos (' (', LineP)+1);
End;
If (LineP[6]='T') and (LineP[10]=' ') then begin {DataType}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 12, StopP-12-1) ;
Parameter:=Parameter+Tab+TempP;
Readln(Input,LineP);
LineP:=Copy (LineP,Pos('(’',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Parameter:=Parameter+Tab;
End;
If (LineP[6]='1i') and (LineP[10]='i') then begin {Cardinality)}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 15, StopP-15-1) ;
Parameter:=Parameter+Tab+TempP;
Readln (Input,LineP);

LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin

Parameter:=Parameter+Tab;
End;

If(LineP[2]='U') and (LineP[3]='n') then begin {Units}

StopP:=Pos (') ',LineP);

TempP:=Copy (LineP, 9, StopP-9-1) ;

Parameter:=Parameter+Tab+TempP;

Readln (Input, LineP);

LineP::Copy(LineP,Pos('(',LineP),Length(LineP)—Pos(‘(',LineP)+l);
End
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Else begin

Parameter:=Parameter+Tab;

End;

If (LineP[6]='1') and (LineP[10]='o') then begin {Resolution}
StopP:=Pos (') ',LineP);
TempP:=Copy (LineP, 14, StopP-14-1);
Parameter:=Parameter+Tab+TempP;
Readln(Input,LineP);

LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Parameter:=Parameter+Tab;
End;
If (LineP[6]='r') and (LineP[10]=' ') then begin {Accuracy}
StopP:=Pos (') ',LineP);

TempP:=Copy (LineP, 12, StopP-12-1) ;
Parameter:=Parameter+Tab+TempP;
Readln(Input, LineP);

LineP:=Copy(LineP,Pos (' (',LineP),Length(LineP)-Pos (' (',LineP)+1);
End
Else begin
Parameter:=Parameter+Tab;
End;
If (LineP[6]='r') and (LineP[10]='C') then begin {AccuracyCondition}
StopP:=Pos (') ',LineP);

TempP:=Copy (LineP, 21, StopP-21-1) ;
Parameter:=Parameter+Tab+TempP;
Readln (Input, LineP);

LineP:=Copy (LineP,Pos (' (',LineP),Length(LineP)-Pos('(',LineP)+1);
End
Else begin
Parameter:=Parameter+Tab;
End;
Writeln(Output, Parameter) ;

End;

{********************Driver*******-k*******************}

Begin
Writeln('What is the input file name?:');
Readln (Inputfile);
Assign(Infile, Inputfile);
Reset (Infile);
‘Writeln('What is the output file name?:');
Readln(Outputfile);
Assign(Outfile,Outputfile);
Rewrite(Outfile) ;
While not SEEKEOF (Infile) Do Begin
Line:='";
Readln(Infile,Line);
Line:=Copy (Line,Pos (' (',Line),Length(Line)-Pos('(',Line)+1);
If (Line[6]='s') and (Line[l0]='a') and (Line[2]='C') then begin{Class Name}
Stop:=Pos (') ',Line);
Temp:=Copy (Line, 15, Stop-15-1) ;
Whole:=Temp;
End;
If (Line[6)='i') and (Line[l10]='e') then begin {Attribute}
Stop:=Pos (') ',Line);
Temp:=Copy (Line, 19, Stop-19-1);
Whole:=Whole+#9+Temp;
Attribute(Infile,Outfile,Whole);
Whole:='";
End;
If (Line(6)='r') and (Line[10}='i') and (Line[2]='I') then begin
{Interaction Name}
Stop:=Pos (') ',Line);
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Temp:=Copy(Line, 21, Stop-21-1);
Whole:=Temp;
End;
If (Line[6]l='m') and (Line[l10]='r') then begin {Parameter}
Stop:=Pos(')',Line);
Temp: =Copy (Line, 19, Stop-19-1) ;
Whole:=Whole+#9+Temp;
Parameter (Infile,Outfile,Whole);
Whole:='";
End;
End;
Close(Infile);
Close(Outfile);
End.
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APPENDIX C. JANUS OBJECT CLASS HIERARCHY
The following diagrams outline the superclasses and subordinate class hierarchies
identified in Janus:

NOTE: Shaded leaves indicate instantiable objects. Numbers in parenthesis indicate

attributes.
Platform
Superclass

Aircraft
Piattorm

Rotary Wing
Platform

Ground Vehicle
Platform

L_

Wheeled
Platform

Towed
Platform

Fire Support
Platform
25

Maneuver
Platform

Dismounted
Platform

Ground Veh
Platform

Aircraft
Piatform

Modified Platform Class Hierarchy

Barrier
Superclass
1
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Terrain
Superclass
C (6

Cloud
Superclass

Ordnance
Superciass

Indirect Fire
Object
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Sensor
Superclass

Radar
Sensor
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APPENDIX D. JANUS TARGET ACQUISITION ALGORITHM

This appendix explains the Janus target acquisition algorithm to give the reader a
better understanding of the process required to identify dynamic attributes and
parameters.

A. GENERAL

Janus uses a common target acquisition algorithm often referred to as the Night
Vision Electro-Optical Laboratory (NVEOL) Model. The model requires inputs from the
prospective target platform, atmospheric objects, and the sensor object conducting the
search. [13]

The NVEOL target acquisition model is probabilistic. The probability of target
detection is based on the number of resolvable cycles a sensor can distinguish across the
minimum dimension of the target and the amount of time the target is in the sensor field
of view.

B. EXPLANATION OF RESOLVABLE CYCLES

Figure D-1.
When looking at the box with horizontal lines in Figure D-1 one can easily

distinguish the number of white and black lines. The distance between black lines is

analogous to the wavelength of one “cycle” in the NVEOL model. As the lines in the
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figure are brought closer together, it becomes increasingly difficult to distinguish between
them. This is illustrated by comparing Figure D-1 to Figure D-2. At some point, as the
lines are further compressed, the sensor is no longer capable of distinguishing between

the lines. The figure becomes a blur of washed out lines.

Figure D-2.

The minimum cycle length that the sensor can distinguish defines the sensitivity
or capability of the sensor [15].
C. VARIED CONTRAST

This minimum cycle length varies with the contrast between the target and the
background. | A sensor that can distinguish a cycle length of 10 centimeters when the
lines are black and white may require 20 centimeters when the lines are different shades

of gray as in Figure D-3.

Figure D-3.
D. MEASURE OF SENSOR PERFORMANCE

The model accounts for the size and range of the target by specifying the number
of cycles that are produced across the targets minimum dimension. Because the number
of cycles will decrease as range increases, the number of cycles measured across the

target is defined by the angle 6 shown in Figure D-4. Note that for any given angle 6
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there is a fixed number of cycles that will be viewed by the sensor regardless of the range

to the target.

Height of
Target
0 -
‘ ' Target
Observer/Sensor
Range from
Observer to
Target
Figure D-4.

The sensitivity of the sensor is defined for use in the model as the number of
cycles per milliradian that the sensor can distinguish at a given contrast level.

/
Spacial frequency = ———CM—
miliradians

Where spatial frequency is cycles per milliradian, and Cycles is the cycle length in
meters. For example, if the cycles per milliradian is 1, and the angle from the sensor
across the target is 9 milliradians, the sensor will distinguish 9 cycles across the target.
See angle 6, at Figure D-5. If the target is further from the sensor, the angle 8 will be

smaller, and a fewer number of cycles will cross the target. See angle 6, at Figure D-5.

Figure D-5.

Since the angle 6 is 1 milliradian when the target dimension is 1 meter and range

is 1000 meters, O is easily approximated with the following formula:
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_ target dimension

0

target range
Where target dimension is in meters and target range is in kilometers. Note that this is
specific to Janus, some models measure target range in meters. The units used for range
are dependent upon how the model is parameterized.
Given the angle 8 and the number of cycles per milliradian that the sensor can
distinguish, the next step is to determine the number of resolvable cycles across the

target. This is calculated as follows:

#cycles=0 (Lles_)
miliradian
This result (#cycles) is how many resolvable cycles the sensor will distinguish across the

target. The more resolvable cycles, the greater the chance of detection. See Figure D-6

below. [14]

High Performance Low Performance
Sensor - 9 cycles  Sensor - 4 cycles
across target across target

Figure D-6.

E. SIGNATURE AT THE TARGET
The contrast between the target and its background form a ratio which is called

the target signature. For optical sensors, this ratio is as follows:

|target brighness — background brightness|

target signature = -
background brightness
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Target brightness and background brightness are in lumens (a measure of the light energy
reflected off a surface). This ratio defines the signature of the target at the target location
and obviously takes on .values greater than 0. A very large target signature value indicates
distinct contrast between target and background (essentially black and white). As the
target signature value approaches 0, the target and background blend together. When the
target signature equals O, the targét is indistinguishable from the background. [15]
F. ATTENUATION IN THE ATMOSPHERE

The target signature must travel through the atmosphere to reach a searching
sensor. The target signature is affected by normal atmospheric conditions as it moves
along the line of sight between the target and the sensor. Additionally, the target

signature may be affected by one or more cloud objects. See Figure D-7.

Target _ Observer/Sensor

Figure D-7.

The attenuated signature that arrives at the target is characterized by the following

equation:

ag=I¢ Xa, Xa;
as-  is the attenuated signature that arrives at the sensor.
t; - is the target signature (contrast).
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a, - 1s the attenuation due to normal atmospheric and solar conditions.

a. - 1sthe attenuation caused by any smoke cloud that may be between the sensor and

the target.

There are two attenuation effects for normal weather considered in the Janus
target acquisition algorithm. These are attenuation caused by the air as the image is
transmitted to the sensor and the solar effects. Solar effect is the degrading of the target
signature due to the location and angle of the sun. These effects are incorporated into one
formula resulting in the “transmission” or attenuation due to normal atmosphere as
follows [14]:

1

"1+ SGR* () 1) @

ayu

a,- 1is the attenuation due to normal atmospheric conditions.

SGR- is the sky-to-ground-ratio - a measure of the target image dispersion due to the
angle of the sun and interaction between the sun and any cloud cover.

o - is the attenuation caused by the atmosphere (air density, air motion, etc.).
R - is the range from the target to the sensor.

The atmospheric attenuation always takes on values between 0 and 1. Note that as
R, SGR, or a¢ increase while holding the other two variables constant, the value of
atmospheric attenuation decreases. [14]

Attenuation due to one or more smoke clouds between the sensor and target is !
modeled by the a. component of the attenuated signature equation. When Janus checks
for line of sight between the sensor and target any smoke clouds between the two are

included in the a. component. a, like the a, takes on values between O and 1. Dense
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or thick smoke produces a low value for a., while thin smoke produces values of a.

close to 1.
One can see from the attenuated signature equation (equation 1) that if the value

of both a, and a, are 1 then the attenuated target signature = the target signature.
Conversely, if the values of a, and a, are both small, a significantly reduced signature

will arrive at the sensor.

As described previously, the NVEOL model measure of sensor capability is the
minimum resolvable cycle that the sensor can distinguish. The minimum resolvable
cycles is quantified using the cycles per rniiliradian or spatial frequency. Also discussed
previously,A the spatial frequency for a given sensor varies with the contrast between the
target and the background. Sensor performance data is stored in the Janus database as
minimum resolvable contrast/spatial frequency pairs. Twenty such data pairs, with
straight line interpolation between pairs, form a curve called the Minimum Resolvable
Contrast (MRC) curve (Figure D-8).

The attenuated target signature is entered in the MRC curve and the corresponding
spatial frequency (cycles/mr) is calculated. As illustrated in Figure D-8, an attenuated
signature of 0.3 results in a spatial frequency of approximately 1.657.

Recall from paragraph D that the number of cycles the sensor can distinguish
across the target is calculated first by determining the angle® from the target minimum

dimension and range, then by taking the product of 8 and the spatial frequency. (Hoock)
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Minimum Resolvable Contrast Curve
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Figure D-8.
‘Following the example from the previous paragraph, assume a sensor has received
an attenuated contrast of .3 and the associated spatial frequency is 1.657 cycles per
milliradian. Given that the angle 8 is 2 milliradians as in Figure D-9, then the number of

cycles the sensor can distinguish across the target is 3.314.

Exposed Target
Heiiht= 1 meter

Observer/Sensor
Target to Sensor
Range = 500 meters

Figure D-9.
G. DETERMINING PROBABILITY OF TARGET DETECTION

The probability that the target will be detected is a function of the number of

. cycles across the target. Experimentation has shown that the fraction of observers who
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will eventually detect a specific target given an infinite amount of search time can be

modeled as follows:

1+RF)

%)
p =g @)

Where R is the ratio —N— ,and E=27+0.7 —N—
. NS0 N50

N = the number of cycles across the target (3.314 in the previous example).
N50 is the number of cycles across the target corresponding to a .5 probability of target

detection given an infinite amount of search time. Janus uses 1.0 for the N50 value. [13]

Once the value for P, is determined, Janus generates a uniform random number
on the interval O to 1 and compares the random number to P, . If the random number is
less than P_, then the target is further considered for detection. If it is greater than P,

then the target is no longer considered for detection.

After the target passes the P, test for detection, Janus uses the exponential
distribution to model the probability of target detection as a function of time. The P,

value is used to estimate the rate of detection for this exponential distribution in the

following way:

L , for N <2
34 N50
A=3"" N N 3)
—, for—>2
(63(N50)) N50

This value of A, entered in the standard exponential cumulative distribution

function results in the following probability of detection as a function of time:
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Pooea(t)=1-€7" )
where t is the amount of time the target has spent in the sensor’s field of view.
Each target detection cycle Janus evaluates the probability of detection against
new uniform [0,1] random number until the target is either detected or is no longer
available for detection (target dies, mounts another platform, moves out of detection

range, etc.). [14]
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APPENDIX E. JANUS TUTORIAL

JANUS TUTORIAL 1

1. INTRODUCTION

The amphibious task force commander clears his throat and everyone comes to order.
The commander begins, “You’ve all been briefed on the situation. Make sure you
understand my intent. I want a deep helicopter strike to the south followed by an
amphibious landing in the center supported by naval gunfire. In the north, rotary and
fixed wing air assets will conduct a supporting attack.,...” Commanders and staffs can
train for such a scenario using Janus, a legacy simulation which possesses many proven
features.

2. JANUS OVERVIEW

Janus is a high resolution interactive ground combat computer simulation. It allows you
to simulate the combat interaction of friendly and enemy forces. Each element is viewed
on the Janus screen as an icon. The icon may represent one or more pieces of equipment.
For example, one icon may represent one tank, or it may represent a platoon of tanks.
This tutorial will show you how to tell the difference.

3. TUTORIAL OVERVIEW

This document is a tutorial for the beginning Janus user on the HP workstation. We
provide a step-by-step method to learn the fundamentals of Janus quickly. The first time
user should follow the tutorial in sequence. The more experienced user can skip any '
section that is not relevant. This document does not cover all functions of Janus. We
introduce the basic functional commands and features of the model that allow you to use
Janus as a research tool.

4. COMMANDS

During the execution of Janus, the primary input method for commands is a three-key
mouse. The three-key mouse and the keyboard provide four basic Janus command inputs.
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The 3-key mouse has four
control outputs. Each key
performs a separate control
function. Viewing the
mouse from above, the left
key is the #1 key, the center
key is the #2 key, the right
key is the #3 key, and any
key together with the “shift
key” on the keyboard is the
#4 key.

—

_. 4 - “shift key” + any mouse key

The Janus users manual assigns colors to these mouse command functions:

#1 key - white key
#2 key - yellow key
#3 key - blue key
#4 key - green key

We will use the following commands and terms frequently in this tutorial:

“left click” - (the most common control function) press the #1 key.
“center click” - press the #2 key.

“right click” - press the #3 key.

“shift click” - press any key while holding the shift key down.
“double click” - press the appropriate key twice rapidly.

“icon” - a graphical representation of a piece of equipment. The

icon may represent one or more elements. For example, one icon may represent a platoon
of tanks or only one tank.

“icon window”’- a fully reduced window (looks like an icon).
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We will often use the preceding control functions together with a reference to a specific
icon, command function, or geographic feature. For example: “left click an icon” means
to move the mouse on its pad until the screen cursor is positioned on an icon, then press
the left mouse key.

5. OTHER COMMANDS

There are two “enter” keys on the keyboard. In Janus, these keys have different
functions. We will refer to the enter key located in the main section of the keyboard,
usually just above the right shift key, as the “return” key. We will refer to the other enter
key, located in the expanded section of the keyboard on the numeric keypad at the far
right, as the “enter” key.

6. LOGGING ON

Each HP terminal in the computer lab is associated with a specified number of Janus
workstations. Before logging-on, you must know the workstation numbers for your
terminal. Make note of the workstation numbers because they will become important
later in the tutorial. (Your workstation number is located in the XASSIGN.DAT file in
the HP file manager).

Note to first time UNIX users: If at any time while in an “hpterm” or “xterm” window
~ (these windows are described later) and you are unable to make the screen respond to
your commands, the screen appears to freeze, or you have generally lost control of the
situation, push the “control” key and the “C” key at the same time. This will terminate
any program that is currently running and allow you to start over from the beginning.

To log-on: With the mouse, left click on the space provided for your username. The
blinking cursor should now appear in the leftmost area of the username space. Type your
username in the space provided and press the ‘tab’ key on the keyboard. The blinking
cursor should now appear in the space provided for your password. Type your password
in the space provided and press the return key.

A U. S. Government warning message should appear with an hourglass ‘icon’ in the
center of the screen followed shortly by an HP ‘desktop’ screen. At the extreme bottom
of the desktop and just to the left of center, there is a computer console icon (looks like a
computer). Left click on this computer icon. A window should appear with the word
“hpterm” centered at the top (this is called an hpterm window). At the top of the hpterm
window there is a prompt (“>”") followed by a blinking cursor. Type the word “xterm”
(no quotation marks) and press the return key. (See below.)

hpl>xterm (return)

Now a new window will appear labeled “xterm” (this is an xterm window).
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After the xterm window opens, you may now minimize the hpterm window using the
following procedure:

1. Left clicking on the “e” at the upper right corner of the hpterm window (next
to the small box in the extreme upper right corner).

2. The hpterm window should reduce to an icon window which is at the upper
left corner of your screen (labeled “hpterm” at the bottom).

Return to the xterm window by left clicking anywhere inside of it. Now type “menu” as
shown below and press the return key:

hpl>menu (return)

This will start Janus and the following Janus User Options window will appear:

Vereion: b Frogect: dema

t gl A Fooscut ron

Frant Data o View on S
Copy Scenar 16 Files ...
felote Files

Feviens Files

Foomoy e Hemnant Brooe

Friter Option: ¥
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You are now logged-on and ready to proceed in Janus.
7. JANUS ADMINISTRATIVE COMMANDS

This main Janus menu screen lists several command options, two-letter option codes, and
a user prompt at the bottom of the screen which reads “Enter Option”. For this tutorial,
we will only be concerned with the “Program Execution” option which has the two-letter
code “PE”. Type “PE” at the Enter Option prompt and press the return key as follows:

Enter Option: PE (return)

The following Program Execution screen will appear:

Veralon: whll Frojoct: domo

Peer v airnn brlten Tabuler SCenian 1o Ve 1Hication

[ ratin Feliton i L aphi Seenal 1o Yer 1P Leation L.
".|:4u|l_u_.1 Fditen s el 1

Lonadmt g e Bate Brawe L. . EHE U L

Imitralice woenar o Jarus Eozcurion

Flesr g S0 e Tos Jarm= Hir Work o tation
Foroe Detloltion f

CHU Dhver Loy Fdut

Frater fOption:

This screen allows you to edit and adjust many aspects of the scenario prior to a run. For
now we are only interested in the “Janus Execution” option (two-letter code “JE”). Type*
“JE” at the Enter Option prompt and press the return key as follows:

Enter Option: JE (return)
The following line should appear in the xterm screen that you started earlier:

Enter the Scenario Number for this run (1-999): [ ]

Highlight the xterm screen by moving your mouse pointer anywhere on the xterm screen
and left click once. This tutorial was designed around scenario 311, an amphibious
landing at Camp Pendleton, CA, so this is the scenario we recommend. Enter the number
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of the scenario that you wish to run inside the square brackets and then push the return as
follows:

Enter the Scenario Number for this run (1-999): [311] (return)

A new line will appear asking for a run number between 1 and 99. The “run number” is
an administrative control that allows you to vary your scenario and capture output from
different variations in separate output files. For now, the run number you select is not
important. We recommend run number 1. Enter the appropriate number in the square
brackets and press the return key as follows.

Enter the Run Number for this run (1-99): [01] (return)
At this point there are two possible outcomes:

1. Two new lines appear which read:

RUN number XXX has already been made.
Enter XX to stop, or press RETURN to continue [ 1
If this occurs, a previous student has run the scenario using the same run number that you
just inputted. Simply press the return key to continue (you will write over the previous
student’s output file, but that’s OK).
2. One new line appears which reads:
Enter XX to stop, or press RETURN to continue | 1
If this occurs, simply press the return key to continue.
Next, a Janus Run Types Menu will appear which prompts you to select a run type. We
want a NORMAL Run, so type a “1” at the Select Run Type and press the return key as
follows:
Select Run Type [ 1 ] (return)
Now, the xterm window will display lines indicating that files are being read by the HP

system, and a new menu will appear titled “Janus RUNTIME SCREENS”. The window
looks as follows:
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This screen allows you to review information about friendly and enemy forces associated
with this specific scenario, allocate Janus workstations, allocate obstacle resources to
units, and review some of the parameters Janus uses to operate. Additionally, we will
start our Janus run from this screen. For now, we are only concerned with Janus work
station assignments, and starting the simulation.

Select SCREEN II : Work Station Assignments option (two letter code “22”), enter the
code by typing “22” at the Select Option prompt, and press the enter key (this is where we
begin to use the numeric keypad enter key):

Select Option -- > 22 (enter)
The screen will now change to “Janus SCREEN II”. This screen allows the user to set

the proper work station numbers so that the friendly and enemy forces in your scenario
appear on your monitor. Make your screen look as follows:
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b Symmb Graph A5 Syeb br aph
Mumber  Side Group Size  Tablers Mumber Side Group S12e Tablets
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Prees "FNTER" when screen update is complete,

You must verify that the two work station numbers you were given are listed in the WS
Number columns and that these two work station numbers correspond to Side 1 (friendly
forces), and Side 2 (enemy forces). For example, if your work station numbers are 1 and
5, then there should be a “1” and a “5” in the WS Number column with either a “1” or a
“2” in the Side column for work station 1, and a “1” or a “2” (whichever is not associated
with work station 1) in the Side column for work station 5. If the workstation numbers
do not match yours, change them. (Janus is capable of playing up to six sides. Ensure
workstations are properly assigned when playing multiple sides). Press the return key and
the blue blinking cursor will cycle through the positions on the screen. If you go too far,
you can use the “backspace” key to cycle backwards through the positions (or you can
move the mouse pointer over the location of the option you need to change and left click).
When the blue blinking cursor is over the number to be corrected, type in the correct
number.

NOTE: You cannot assign two “sides” to one work station. You should have at least two
work station numbers and each of these numbers should be assigned a different “side”.

The “Group”, “Symb Size”, and “Graph Tablets” positions should be assigned the
numbers “1”, *“9”, and “1”, respectively (just as you see in the screen representation
above). If they are not correct, change them to the appropriate numbers. (See chapter 6,
Software User’s Manual, Version 6.3, for descriptions of “Group”, “Symb Size”, and

“Graph Tablets”).

When all work station numbers are correct , then press the enter key. This will return you
to the Janus RUNTIME SCREENS menu.
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8. PREPARATION FOR MAP ENVIRONMENT

You are now ready to enter the map environment. Find the two-letter code for “Begin
Janus” (it should be “JJ”), enter the code at the Select Option prompt and press the enter
key:

Select Option -- > JJ (enter)
At this point you will see in the xterm window that Janus is reading the terrain files and
setting up the “Battlefield Graphics windows.” You will know that the setup is complete

when the following two conditions are met:

a. The text in the xterm window will read:

Scenario XXX Forces:

Arty DF Total

Side Units Units Units
1 30 147 177

2 13 165 178

NOTE: Your numbers may not match the above example - they are scenario
dependent.

b. An “icon window” will appear for each of the “sides” you set up in the Janus
Workstation menu. For example, if you are running a scenario with “side 1”
and “side 2”, and you set up Janus Screen II (Workstation menu) to display
both “sides” on your HP workstation, then there should be two icon windows
in the upper left corner of the screen labeled “side 1” and “side 2”.

9. HIGH RESOLUTION BATTLEFIELD GRAPHICS

Note: Janus uses digitized terrain developed by the Defanse Mapping Agency (DMA).
The terrain appears in a form familiar to military users displaying elevation contours,
roads, rivers, vegetation, and urban areas.” The colors used in the model are slightly
different than used on military topographic maps; elevation contours are brown, rivers
and other bodies of water are blue, roads are brown or gray with white outlines, urban
areas are yellow and vegetation is green. Other features such as pipelines, power lines,
railways and fences can also be portrayed.

Now, double left click on the icon labeled “side 1”. The resulting window should look

similar to the figure below. The right side of the screen is an interface panel which you
will use to control the forces displayed on the map.
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You can “resize” the battlefield graphics screen by moving the mouse pointer to the upper
right corner of the screen until the pointer changes to a “corner symbol”. When the
corner symbol appears, left click with the mouse, hold the key down, and move the mouse
to the left and down to make the screen smaller. We suggest you shrink the side 1 screen
to fit in the lower left corner of the monitor.

Now, double left click on the icon labeled “side 2”. The resulting window displays the
side 2 initial positions just like the side 1 screen. You can also resize this screen in the
same manner that you resized the side 1 screen. We recommend you grasp the upper left
hand comner of the side 2 screen and move it to the lower right corner of your monitor
workspace. Your computer monitor should now look like this:

xterm
window

side 1 side 2
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You are now ready to issue initial “orders” to the units on the screen. Further instructions
for deployment, assignment of sectors of fire, establishment of routes, etc., will be
covered in the next section of this tutorial.

10. SCENARIO PREPARATION COMMANDS

The following section describes the Janus interface panel. It will explain how to input
commands to battlefield units. The scenario we are working with (scenario 311) portrays
an amphibious assault landing at Camp Pendleton, CA. The landing force (side one) is
composed of several battlefield systems, including Amphibious Assault Vehicles and
LCACs each carrying an M1 tank. The defending force (side 2) consists of tanks, air
defense weapons, and barriers positioned in a valley along the coast of Camp Pendleton.
Enlarge the side 2 Battlefield Graphics Window and familiarize yourself with the position
of the forces. Note that there are three entities in the upper left hand corner of the screen.
There is a T-80 tank, an artillery piece, and a Hind helicopter. You will be experimenting
with the Janus Interface Panel commands using these battlefield systems. These
instructions will guide you through each command and familiarize you with operating in
the Janus environment. You should read through section 1 (administrative commands) of
the Interface Panel and then move on to section 2 (maneuver plan) where you will begin
to input commands to the units on the battlefield.

At this time, you may want to run the Camp Pendleton scenario so that you can
visualize what a complete Janus scenario run looks like. In order to do this, go to
paragraph 14 (Start Simulation) on page 23 of this tutorial. Follow the start steps and
watch the complete amphibious assault. When all the action is complete (approximately
simulation time 75:00) or when you have seen enough action, stop the simulation using
the procedure outlined in paragraph 15 (Stop Simulation and Log Off) on page 23.
Paragraph 15 also outlines the correct log. off procedure you will follow at the conclusion
of your Janus session.
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11. JANUS INTERFACE PANEL

3
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Before beginning any scenario, the user must take certain
preliminary steps. To enable the user to do so, Janus
displays options along the right side of the screen in the
form of the menu you see here (the Janus Interface Panel).
The commands are selected by moving the mouse cursor
over the command and clicking the left mouse key. This
menu appears at the right of the terrain map for both side 1
and side 2 forces. The menu has the five sections listed
below:
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b. MINE DENSITY. The three options in this section are: L for low (40
mines), M for medium (80 mines), and H for high (160 mines). They refer to

the density in a 50,000m2 area. Mine density applies to FASCAM and
vehicle-emplaced minefields, but not to hand-emplaced minefields. |

c. FLIGHT MODE. Flight mode 1 causes aircraft to fly low and slow and
flight mode 2 causes aircraft to fly high and fast.

d. TIMER. The TIMER function is used with other functions to plan future
events such as prearranged artillery fire or scheduled unit movements.

e. ENG AREAS ON. When enabled, this function activates engagement areas

for direct fire weapons. Units will engage other units within engagement areas
according to the firing criteria specified previously on Janus Screen IV.
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f. FLOOR. The FLOOR function sets the current floor number for buildings.
This function is used in conjunction with MOUNT, DISMOUNT, and LOS.

SECTION 2 - MANEUVER PLAN

a. DEPLOY Command: The Deploy command allows you to reposition your
forces prior to the start of the simulation. Use the deploy command now to
reposition the Tank, Artillery Piece, and Helicopter that are positioned in the
upper left corner of the side 2 graphics display. You can place them wherever you
like for now. Later, you will want to deploy them tactically for inclusion in the
simulation battle.

1.

2.

Left click on the Deploy command.

Left click on the icon you want to move (NOTE: the cursor cross
disappears and the mouse freely moves the icon about the window).

Move the icon to the new position and left click. The cursor cross now
returns and the icon is located at the new position.

Do not forget to check the element’s new field of view (see VIEW
command in the following section) to ensure that the weapon system is
oriented in the desired direction.

b. EXT Command: Routes can be entered prior to the start of the simulation and
changed while the simulation is in progress. To assign a route to a unit:

1.

Left click the EXT command in the Maneuver Plan function group.
This should highlight the command.

Left click on the icon whose route you are building. A white triangle
should appear over the icon. Wherever you move the cursor, an orange
line follows.

. Move the orange line to the next checkpoint and left click. A new

triangle should appear where you clicked with a white line connecting
the two triangles. In this way you can plot routes as a succession of
straight line segments.

At the final checkpoint for the route, center click. This will end the
route planning for that unit and the orange line that follows the cursor
will be turned off.

Refer to the ALT and DEL commands, Sections 2b. and 2c.
respectively, to alter or delete a route.
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When you are finished setting routes, left click the “CLEAR” command in section 5 of
the Interface Panel to clear the screen of all route lines. Try creating routes for each your
three battlefield systems on side 2.

NOTE: There are two different types of white triangles which form the corners of your

routes.

1. A GO triangle looks like the one shown here:

2. A STOP triangle looks like this:

3. STOP triangles are designed to hold a unit at the stop location for a specific
period of time before the unit is allowed to move to the next leg of its route.
Timed triangles are beyond the scope of this tutorial.

4. To change a STOP triangle to a GO triangle (or vice versa):

c. ALT Command: Allows you to alter a previously entered route.

1.

Left click on the EXT command.

Left click on the icon you wish to change. This displays the icon’s
current route.

Right click on the triangle you want to change from a STOP to a GO

triangle. The triangle should change to a GO triangle. The same
procedure works for changing a GO triangle to a STOP triangle.

Left click on the “ALT” Command. This should highlight the
command.

Left click on the icon whose route you wish to alter. The icon’s
current route will be displayed in white.

You may now left click on, and move any triangle except the one
covering the icon.

Place the triangle in the new location and center click.
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d. DEL Command: Allows you to delete a single leg from a previously entered
route.

1. Left click on the “DEL” Command.

2. Left click on the icon whose route you want to alter. The icon’s
current route will be displayed in white.

3. Left click on the triangle you want to delete and it will disappear -
leaving that portion of the route that exists without the triangle you
deleted.

e. CAN Command: If you want to cancel a route:
1. Left click the task force number of the unit you wish to affect.
2. Left click the “CAN” command. The command should be highlighted.
. 3. Left click on the icon whose route you want to delete. The current
route will apper in white. Left click again and the route should be
removed. The unit becomes stationary.
f. SHOW Command: If you want to view the routes again:

1. Left click the task force number of the unit whose route you want to
see. The number should be highlighted and task force numbers will
appear over all units on the simulation screen that are part of that task

force.

2. Left click on the “SHOW” command. The assigned routes for the task
force you’ve selected will be displayed in orange.

g. XINL Command: Allows ybu to give different icons the same route so that
they follow behind one another (not needed for this tutorial).

h. XONL Command: Allows you to give different icons the same route so that
they move abreast (not needed for this tutorial).

i. STOP and GO Commands: These commands allow you to stop an entire task
force’s movement, or start an entire task force’s movement.

1. Leftclick on the task forces you want to effect.
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2. Left click on the GO command and the entire task force will initiate
movement (any current STOP triangles will change to GO triangles).

3. Left click on the STOP command and the entire task force will stop
movement (current GO triangles will change to STOP triangles).

j. LOS Command: Displays an element’s field of view and what it can see (Line
of Sight).

1. Left click on the LOS command. The command should now be
highlighted.

2. Left click on the icon for the element you want to check.

3. A sector arc will appear that shows the line of sight in the field of view
that was last assigned to that unit (see section 3 - View command).
The dashed white line indicates the center of the sector between left
and right lateral limits. The orange lines are areas where vision is
unimpeded while deadspots (areas the element cannot see) are
represented by missing segments in the orange radial lines. The
maximum visibile range of the element is represented by the far white
arc. The maximum range of the primary weapon system is represented
by the purple arc.

4. To check the LOS for a location with no icon, move the cursor to the
new position and click. A full 360 degree field of view will appear. If
you find this position’s LOS to be more favorable, then deploy (see
para 1 below - Deploy command) the unit to the center of the LOS
circle and recheck the element’s LOS to verify proper placement.

k. MOUNT Command: Allows you to mount one system on another for
movement and protection (infantrymen to mount in fighting vehicles, tanks to
mount in LCACs, etc.). This function will not be used in this tutorial.

1. DISMOUNT Command: Allows you to dismount one system from another.
m. PREPOS Command: Allows you to establish prepared positions that will

increase your elements’ survivability and concealment. Janus will allow youup to
600 prepared positions. The positions are depicted on the graphics screen as

follows:
Infantry Prepared Position ®
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‘Vehicle Prepared Position

Helicopter Pop-up Position

1. To create a prepared position, left click on the PREPOS command,
move to the location where you want to place the prepared position.
Left click to create an infantry prepared position. Center click to
create a vehicle prepared position. Right click to create a helicopter
pop-up position. If you place a prepared position on top of an icon, the
icon is now in a prepared position.

2. To remove a prepared position, left click on the PREPOS command,
then shift click on the prepared position you want to remove.

SECTION 3 - STATUS

This section allows you to change several of your units’ parameters, review data
concerning friendly forces, adjust you units’ field of view and other functions.

a. UNIT/TASK/BLDG. The first commands under Status are the Unit/Task/Bldg
commands. These commands determine the scope of the changes you make in
parameters. For example, if you left click on Unit, then left click on NBC, and
then left click on one icon, only that icon will be effected. However, if you
left click first on Task (task force), then on NBC, and then on an icon, all the
elements in that icon’s task force will be effected. Likewise, if you first left
click on Bldg, any adjustments you make to an icon that is inside a building,
will also effect all other elements that are inside the building.

b. HF. This function changes the hold fire status of a unit. If a unit is in a HF
status, that unit will not engage enemy units until HF is disabled. After left
clicking the desired TASK number in section 1, UNIT in section 3, and HF,
the map will display the HF status of the corresponding units. There will be a
white “V” under the icon of units that are in HF status, and a white line under
units that are not in HF status. The user can change the HF status of a unit by
clicking on the unit icon. You can change an entire task forces’ HF status by
highlighting TASK (instead of UNIT) prior to clicking on the unit icon.

c. NBC. If NBC is enabled (“V” displayed), the unit is in protective gear. NBC
status is enabled/disabled similar to HF.
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. BRE. If BRE is enabled (“V” displayed), those units with breach capability
will begin conducting breaching operations, even if no minefield/obstacle is
in the vicinity of the enabled unit. Breaching units move slower than non-
breaching units. BRE status is enabled/disabled similar to HF.

. SPR. If SPR is enabled (“V” displayed), those units are in a sprint mode and
will move at maximum possible speed. SPR does not affect flying units. SPR
status is enabled/disabled similar to HF.

DEFL. If DEFL is enabled (“V” displayed), those units are in full defilade.
When in full defilade, the unit cannot engage enemy units except in self
defense, although they can see the enemy. Units in full defilade are not visible
until the enemy is within 50 meters. Units in partial defilade (white line
displayed) will engage the enemy. DEFL status is enabled/disabled similar to
HF.

. REPORT KILLS. Selecting KILLS displays original number of friendly
systems by type, remaining systems, system losses, and total losses. Selecting
KILLS with the center mouse key gives information for selected task force.
Selecting KILLS with the left key gives the same information for all forces
assigned to the workstation. Selecting KILLS with the right key gives the
same information for the entire side.

. REPORT TF. Selecting TF with the center mouse key displays a text report
on the currently selected task force. Selecting TF with any other mouse key
displays the unit number of each unit in the selected task force on the map
below the icon. ‘

REPORT INFO. Selecting INFO and selecting a specific icon with the
center mouse key, displays the same text report as TF for the selected icon.
Selecting an icon with the left key displays the unit’s grid location. Selecting
an icon with the right key displays the unit’s routes. Selecting an icon with
the shift click key displays the unit’s ammunition status.

FRIENDS. When the user plays fratricide, Janus disables FRIENDS. When
the user does not play fratricide, the FRIENDS report displays all same-side
units assigned to other workstations and all different side units that are not
enemies, if line of sight exists between them and a unit of your workstation.

. ARTY. Selecting ARTY with the left, center, or right mouse key displays
currently planned artillery missions. Selecting ARTY using shift click
displays all target reference points.

INTEL. Selecting INTEL with the center mouse key draws a line between the
detecting units and all units they currently detect. Selecting INTEL with the
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left key displays the last 25 units detected within the last ten minutes which
are no longer detected. Selecting INTEL with the right key displays
aggregation level and formation of each currently detected unit.

. CLDS. Janus can simulate smoke pots. The user inputs smoke into the

scenario using JANUS SCREEN III. The smoke pot symbols are a square
with a smoke insignia inside. Smoke pots are deployed during the preparation
phase of the scenario using the DEPLOY command. The smoke pots must be
activated after you start the simulation by clicking the SETOBS command and
then clicking on the smoke pot symbol. After clicking on the smoke pot
symbol, the symbol will disappear. The CLDS command allows the user to
turn the smoke display on and off. When you activate CLDS, all smoke
clouds appear on the screen in the form of a circle. When CLDS is off, no
smoke symbols appear on the screen, but smoke is still in effect.

. ROTATE VIEW/FORM. These functions allow the user to orient unit view

fans and unit formations. Select the desired function, then select the unit icon
to be adjusted. Adjust the view or formation by positioning the cursor in the
desired direction on the map and clicking the center mouse key.

. BAR. Janus can simulate three different barriers/obstacles. They are road

craters, abatis, and minefields. The user inputs barriers/obstacles into the
scenario using JANUS SCREEN III. Minefields are represented by
rectangular with dimensions as set in the database. Road craters are
represented by two diagonal slashs inside a circle. Abatis are represented by
an upside down “V” with an attached line. Barriers/obstacles are deployed
during the preparation phase of the scenario using the DEPLOY command.
Prior to deploying the barriers/obstacles, the user should set their orientation.
To set orientation, first click the BAR command. Notice the small white
circle in the bottom right corner of the window. The circle represents the
barrier’s radius and the white line represents the barrier’s orientation. Moving
the cursor to any point on the circle and clicking on the circle changes the
barrier’s orientation. Now deploy the barrier/obstacle by clicking DEPLOY
and moving the cursor to the barrier/obstacle you wish to deploy. Click that
barrier/obstacle and move the cursor to the desired location on the map and
click again. The barrier is then deployed with the previously set orientation.
Both abatis and road craters must be activated after you start the simulation by
clicking the SETOBS command and then clicking on the abatis or road crater
symbol. Notice that both abatis and road crater turn from white to purple after
activation. :

. GROUP RE-ORG. This function allows the user to change a unit’s task

force number. Select the desire TASK number, select RE-ORG, then select
the desired unit icon. Janus will display the new task force number next to the
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selected icon. RE-ORG may also be used to transfer units from one
workstation to another.

q. ENG AREAS CREATE. To create an engagement area, select CREATE and
left click on the desired map locations to define the area. Middle click on the
final point.

r. ENG AREAS DELETE. To delete an engagement area, select DELETE then
select the desired engagement area.

SECTION 4 - ARTILLERY PLANNING

This section describes the basics of how to plan artillery. We will ignore most of the
commands under artillery planning since they are beyond the scope of this tutorial. For
this simulation, you will fire only HE, no timed missions, no priority targets, and no
converging sheafs. You will use the Janus Battlefield Graphics window along with the
Artillery Planning section of the interface panel. Experiment with these commands using
your artillery piece. Note: In order for your artillery piece to receive and fire missions, it
must be at a stop triangle (see maneuver plan section and ensure your artillery piece is at a
stop triangle before proceeding).

a. PLAN Command: This command allows you to set-up fire missions.

1. Left click on the PLAN command. It should now be highlighted and
artillery capable elements on the battlefield are highlighted with a
white X as below:

2. Left click on one of the artillery capable icons and two concentric
circles will appear with the icon at the center. The large circle
represents the maximum range of the artillery piece for high explosive
munitions. The small circle represents the danger close distance (an
artillery piece will not fire within this small circle).

3. Move the cursor away from the artillery piece. Note that an orange
line connects the cursor to the artillery icon. Choose a target that is
outside of the small (danger close circle), but inside of the large
(maximum range) circle. Left click on the target. The orange line now
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disappears and a white dashed line appears in its place. Additionally,
there is now a target reference point at the target location with a fire
mission number next to it. The artillery element you picked will fire
this mission first when the simulation is started, followed in sequence
by any additional fire missions you add.

b. CANCEL Command: This command allows you to cancel a previously
planned fire mission.

1. Left click on the CANCEL command.

2. Left click on the icon whose fire mission you want to cancel. The
‘white circles will appear along with the lines and target reference
points which represent that artillery piece’s fire missions.

3. Identify the mission you want to cancel and left click on the target
reference point which represents that mission. The mission should
disappear (it is now cancelled).

c. To exit the artillery planning mode, left click on any of the commands in the
MANEUVER PLAN command group (section 2).

'SECTION 5 - ADMINISTRATIVE CONTROLS
a. ZOOM. This function allows you to magnify portions of the map. Select the
desired magnification by clicking on the zoom scale then click on the map
location to be magnified. The counter next to ZOOM indicates the zoom

scale.

b. PREV/NEXT. These functions allow you to easily switch between the
previous (PREV) screen and the original (NEXT) screen.

c. M. This function corresponds to the standard military map scale of 1:50,000.
Select M, then click on the desired map location. The resulting screen will be

in the standard military map scale.

d. CLEAR. This function removes temporary text, displays, and graphics from
the screen.

e. GRID. This function superimposes a UTM grid system on the screen.

f. HELP. When this function is selected before another menu option, Janus will
display a brief explanation of that option.

109




g. ADMIN. Right clicking on the ADMIN function displays an administrative
menu. Menu options include saving the prepared plan, increasing the scenario
speed, or ending the scenario.

h. CAC. This function allows the user to draw Command and Control graphics
on the screen.

i. START. When this function is selected, the Planning Phase ends and the
Execution Phase begins. All workstations must pick START before the
Execution Phase may begin.

SECTION 6 - CLOCKS. This section displays the simulated time of day in 24-hour
form, and the elapsed time in minutes and seconds from the start of the simulation.

12. SCENARIO PLANNING

You are now ready to input your plan to the units on the screen. This section of the
tutorial includes basic scenario planning. Scenario topics covered include pre-
deployment locations, routes, prepared positions, barrier emplacement, artillery fire
missions, and close air support. (This tutorial assumes that the user has already created
the scenario forces in the force development editor. See chapter 3, Software User’s
Manual, Version 6.3, for force development).

a. Pre-deployment Locations. When the user develops a new force, the unit
icons are initially placed in a line at the upper right or left corners of the map
(you saw this earlier with your three battlefield systems). Janus places the
new force icons there so the user can easily find and move them to the desired
start/pre-deployment locations. Move the units using the previously described
DEPLOY command on the interface panel (along the right side of the screen)
to tactically appropriate positions given your knowledge of the upcoming
battle. Repeat this process until all pre-deployment locations are set. Ensure
each unit icon is oriented in the proper direction using the LOS and VIEW
commands.

b. Routes. Assign routes to unit icons using the EXT command on the interface
panel.

c. Prepared Positions. When preparing a defensive plan, place desired units in <
prepared positions utilizing the PREPOS command. Ensure these units have !
- proper line of sight using the LOS and VIEW commands.

d. Barrier Emplacement. Deploy barriers similar to deploying units using the
DEPLOY command. Ensure that the barriers are oriented in the proper
direction using the BAR command. Note that abatis and craters are not
obstacles until set after the simulation begins.
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e. Artillery Fire Missions. Use the ARTY PLAN command to plan all artillery
fire missions. This tutorial covers only HE, immediate fire missions. (See
chapter 7, Software User’s Manual, Version 6.3, for Artillery Planning
involving converged sheafs, timed targets, and priority targets).

f. Close Air Support. Select desired FLIGHT MODE command. Select desired
aircraft icon and provide a suitable route using the EXT command.
(Helicopters can be programmed to pop up at points along a route by using the
POP command after the simulation begins. See chapter 9, Software User’s
Manual, Version 6.3, for POP command instructions).

13. PLAN SAVE

When you have accomplished all the scenario planning, you may want to save the
scenario positions. Saving the prepared scenario is important if you want to play the same
scenario repeatedly. To save the scenario, click the ADMIN command, then select Plan
Save (PS) or NEW SCENARIO SAVE (NS) from the ADMIN menu. Select desired save
option and return. Janus will return to the map window.

14. START SIMULATION

To start the simulation, select the START command on the interface panel for all “sides”.
The xterm window will appear. The screen will prompt you to type “RR” when ready.
Type “RR” then return. The next prompt is whether you want to perform a PLAN SAVE
now. (This is another method to save the scenario). Type ‘““Y” then return to save the
plan. The screen will then ask for the checkpoint frequency. (Frequency “3” is
recommended. If you are not saving the run, the frequency can be left blank.). Type
frequency then return. This completes the START process and the simulation begins.
You can now experiment with the Janus interface panel commands during the simulation
run.

15. STOP SIMULATION AND LOG OFF
After the simulation run has begun, you may stop the simulation and exit at any time.

Stop and exit the simulation by right clicking on the ADMIN command in section 5 of the
Janus interface panel. This will bring up a window that looks as follows:
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To end the simulation, enter the two letter code “EJ” at the prompt at the bottom of the
ADMIN window, and press the enter key. This will end the simulation run and bring you
back to the Program Execution screen. Place the mouse pointer anywhere on this
Program Execution screen and right click. Now, you are returned to the Janus User
Options menu. Enter “XX” at the Enter Option prompt at the bottom of the screen and
press return or enter. You have now exited Janus and you should only see the HP desktop
with an icon bar across the bottom of the screen. In the extreme lower right corner of the
icon bar is an icon key titled “EXIT”. Left click on the “EXIT” key and a “Logout
Confirmation” window will appear in the middle of the computer screen. Left click on
“OK” and the system will automatically log you off and return to “prepared to log-on”
status. You have now successfully completed this tutorial.

16. CONCLUSIONS

This tutorial is an adequate introduction to the Janus simulation. It will accustom you to
Janus and allow you to conduct a simple combat scenario. As you become more familiar
with Janus, you may want to explore the more complicated and realistic aspects of the
system.
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