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ABSTRACT

The behavior of the electric field together with the electron and ion densities in the

vicinity of a non-emitting, plane anode is investigated. The selected approach involves non-

linear analysis techniques on the continuum equations for steady-state, isothermal conditions

where both ionization and two-body recombination are included. Ions, created through

electron bombardment of neutral atoms, are repelled toward two stagnation regions: within

or near the sheath boundary and near the plasma interface. These equilibria form as a result

of the chemistry present: recombination establishes the latter while ionization stipulates the

former. As presented, the sheath is fundamentally unstable - ions are driven toward the

negative electrode. Using nitrogen data for a numeric example, the following observations

are made: a sufficiently strong applied electric field pushes the ion density toward that of the

electrons through a well - a constrictive phenomenon. Both a transition region, dominated

by density gradients, and a diffusion-driven zone are found to move the system toward the

plasma interface. The characteristics of this process are influenced by the applied electric

field, but the instability of the chemistry-induced stagnation regions precludes numeric

convergence. Insufficient dissipation may prevent the stability of the anode fall model as

presented. Suggested improvements to the model descriptions include considering the effects

of temperature gradients, magnetic fields, three-body recombination, diffusion written in

terms of the electric field, multi-dimensionality and/or time-dependencies.
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Nomenclature

Da Ambipolar diffusion coefficient
De Electron diffusion coefficient
Di Ion diffusion coefficient

D OiUndisturbed plasma diffusion coefficient of species: ion, electron

Dt Transition diffusion coefficient
q Electron charge
Fe Electron frictional force
Fi Ion frictional force
k Boltzmann constant
C:o Pernittivity of free space
m Electron mass
M Ion mass

no LUndisturbed plasma density of species: ion, electron

ne Electron density
A. Ion density
T. Electron temperature
Ti Ion temperature
TO Undisturbed plasma temperature
ve Hydrodynamic electron velocity
vi Hydrodynamic ion velocity
y Space coordinate for the plasma model
E Electric field
E. Undisturbed plasma electric field

fe Electron collision (elastic) frequency
X Ion collision (elastic) frequency
v Ionization coefficient function: Townsend's first coefficient
vo Ionization coefficient numerical value-': Townsend's first coefficient
a 2  Electron-Ion (Two-body) recombination coefficient
Ae Electron Mobility

Ion Mobility
Je Electron Current
JI Ion Current

Joi, Undisturbed plasma current due to species (ion, electron)

Ln, Ln Lj,. Appropriate characteristic length scales

bar notation Variables with bar notation: non-dimensional

Bold notation Variables with bold notation: vectors

[ ] notation Non-dimensional parameter groupings
A, Jacobian Eigenvalues, I=1,2,3,....
xD Debye Shielding, planar surface

A, V Jacobian Matrix and associated eigenvector/manifold

Table 1: Nomenclature
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I. INTRODUCTION

Whenever an object starts moving in a given direction, a second object must be

present which accepts the reaction of the force that accelerates the first, so says Newton's

third law of motion. When a spacecraft moves through empty space, the accelerating forces

act between the vehicle and the mass of the propellant expelled. In 1895, the distinguished

Russian rocket pioneer Konstantin Eduarovitch Tsiolkovskii derived the famous "Tsiolkovskii

equation," the basis of all theoretical work on rocket propulsion. Relating the burnout

velocity of a rocket with its exhaust velocity and its mass ratio, this "rocket equation" shows

how important it is for the exhaust velocity of a rocket motor to be as high as possible. [Ref

1: pp. 2-3]

Since mankind's advent into space, several types of space flight propulsion systems

have been developed to include chemical, nuclear, electric and solar propulsion devices with

the majority of spacecraft to date employing chemical rockets. While the science and

technology of chemical rockets developed at a rapid pace, the idea of using the benefits of

Maxwell's relations to eject charged particles from a thrust chamber progressed slowly with

long intervals between periods of creative thought. In 1945, Herbert Radd recommended the

use of fast electrically accelerated particles to reduce fuel mass and in 1946, Jakob Ackeret

analyzed the performance capability of a spacecraft by arguing that the total kinetic energy

carried away by the exhaust beam corresponded to a reduction of the mass of the vehicle

according to E=me2. Hence, assuming that a certain fraction of the vehicle mass is converted

into kinetic beam energy, the total propellant mass can be calculated which in turn leads to

a maximum terminal velocity of the spacecraft, a result which is independent of particle size,

time of propulsion, conversion method and magnitude of the vehicle. In essence, the

optimum exhaust velocity is determined simply by maximizing the terminal velocity. [Ref. 1:

pp. 2-3]

Propulsive devices that use Maxwell's Law's differ from chemical systems: the latter

is characterized by having the same energy and propulsive sources, while in the former the

energy conversion method differs from that of propulsion. In essence, electric propulsion

I I I II I I II 1 u1



systems allow greater carrying capacity with shorter flight times. For example, the Hohmann

transfer time from a Low-Earth-Orbit (LEO) to the orbit of Pluto requires approximately 45

years if chemical means are considered; an electrically propelled vehicle, in comparison,

requires approximately three years. [Ref 1: p. viii]. The large difference in mass payload ratio

(final mass/initial launch mass) obtained is highlighted by an analysis for a Mars mission: a

chemical system using a high impulse Hohmann trajectory from LEO delivers approximately

10% to 18% of the launch mass to the Martian surface [Ref. 2: pp. 152], while an electric

system using a low impulse spiral trajectory could deliver 20% to 60% of the launch mass,

depending on the desired transit time. With effective exhaust velocities as high as 10,000 m/s,

electric propulsion thus offers the performance envelope needed for manned interplanetary

missions. [Ref. 2: pp. 37]

Electric propulsion systems are divided into three categories: 1) electrostatic, where

acceleration is achieved through the interaction of coulombic fields with charged propellant

particles, 2) electrothermal, where propellant heated electrically is expanded

thermodynamically through a nozzle, and 3) electromagnetic, where acceleration is achieved

through the interaction of the Lorentz force with highly ionized gases (plasma). Of the types

of electric propulsive thrusters available, electrothermal devices include the resistojet and

arcjet. It should be noted that the current necessary to form the plasma in these devices also

allows the magnetic field to accelerate the gas. These systems (and for that matter, any

device using a thermal nozzle) are, however, limited by the amount of heat that can be added

to the flow and are thus ultimately dependent on the materials used. As electromagnetic

(EM) thrusters rely on Lorentz interactions to accelerate the flow, these devices are not

limited in the sense of electrothermal systems and therefore offer different operational

characteristics. The various types of EM thrusters available include the ion engine and plasma

thrusters (wide variety to include electrodynamic, magnetoplasma-dynamic or MPD, pulsed-

plasma, Hall accelerator, Lorentz force accelerator, pulsed coaxial thruster, plasma arcjet,

pulsed ablative thrusters, to name just a few). [Ref. 2: pp. 565-596] The MPD thruster is

relevant to this work.

MPD systems are a relatively recent addition to the electric propulsion family,
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originally discovered when peculiar behavior of an electrothermal arcjet thruster was

investigated. Researchers found that without significant mass flow-rate applied, the arcjet

continued to operate in a mode clearly unique: pressure within the thrust chamber was too

low for the device to be choked, and so it was theorized that an induced magnetic field from

the high arc current accelerated the plasma flow - the magnetoplasmadynamic thruster was

"born." [Ref. 3]

The area of research to which MPD thrusters are applied is termed

magnetohydrodynamics (MIMD), the field of physics that investigates how moving conductive

(electrolytic) fluids behave while subjected to applied electric or magnetic fields. The fluids

involved must be conductive, or ionized sufficiently to pass a current, and in the case of an

MPD, the fluid must reach a plasma state. MED devices behave analogously to motors or

generators and can either add or remove energy from the fluid in exchange for electrical

energy; systems developed include the MHI tunnel drive for submarines and the MHID

turbine. Magnetoplasmadynamic (MPD) thrusters are currently being considered for

application to primary propulsion system on robotic and piloted interplanetary missions; the

high specific impulses offered by MPD devices can reduce launch mass requirements by over

a factor of two compared to chemical system if the power to thrust conversion efficiency is

over 50%. [Ref 4]

MPD thrusters are classified by considering two major features: 1) the power supply

which defines the continuous, quasi-steady and pulsed MPD systems, and 2) the magnetic

field which characterizes the' self-field and applied-field MPD thrusters [Ref. 3]. A

continuous, or steady-state, thruster is one in which the propellant flow and current

throughout the device are continuous,, thereby allowing the system to reach a high

temperature equilibrium state. The quasi-steady thruster does not reach equilibria since it

uses a continuous gas flow with rapidly pulsed current, through which high amounts of energy

are provided in short bursts. The pulsed thruster is similar to the quasi-steady MPD system

except it uses less frequent pulses; equilibrium flow is also not reached and consequently low

temperature materials may be used for constructing such a device. The applied- and self-field

thrusters define the way in which the primary accelerating field (magnetic) is affected. The
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applied-field system employs a large current in an external coil, or large permanent magnets,

to accelerate the plasma whereas in the self-field device the current not only ionizes the gas

but also creates the field that accelerates the resulting plasma.

The magnetoplasmadynamic thruster was originally discovered in the 1960's, and yet

much work remains to understand its fundamental operation. For example, the steady state,

self-field MPD thruster operated by the University of Southampton, U.K., was originally

developed to simulate the atmosphere effects on structures in LEO, an environment

dominated by highly reactive atomic oxygen. The MPD is suited to simulate such conditions

as it offers a unique combination of high thrust and high exit velocity. The Southampton

MPD presently operates at power levels in the range 6-17 kW but suffers from electrode

erosion, instabilities, a contaminated beam and short run-times. Work on this thruster has

identified electrode erosion as a major problem, making the device unsuitable for its intended

function. Specifically, the mode of erosion differs from that seen at other institutions and the

levels of erosion are higher and exhibit a rate increase not seen with other devices. [Ref 5]

Electrode erosion, current spotting, frozen flow loses and electrode power deposition are just

several factors that limit the performance of MHD devices [Ref 6, 7]. Specifically, anode

power deposition is the single largest power loss mechanism in MPD thrusters operating at

sub-megawatt power levels. [Ref. 8, 9, 10, 11, 12]

To gain further insight to MPD phenomena, computer codes that accurately describe

observed data from steady-state MPD thrusters have been developed [Ref 13, 14, 15].

However, these codes do not adequately describe observed data from quasi-steady thruster

experiments. It has been suggested that the lack of proper electrode modeling (i.e., sheaths

and fall potentials) in these codes may explain this discrepancy [Ref 16]; perhaps the difficult

set of coupled, nonlinear partial differential equations involved has limited analytical work to

model the anode sheath and ambipolar regions. For example, Hugel [Ref 17] and

Subramanian [Ref. 18] address the influence of the sheath region, but do not model the

electric field, temperature or sheath fall voltage. Hence, the focus of this work: analysis of

the anode voltage drop region.
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H. LITERATURE REVIEW

The principal voltage loss mechanism near an electrode can be divided into two main

classes: ohmic and sheath losses. Ohmic resistivity occurs because of the finite conductivity

of a real plasma, particularly thermal boundary layers, degree and kinetics of ionization and

Joule heating. Sheath drops are caused by Debye shielding which forms a space charge field

adjacent to the electrode [Ref 19: pp. 200-204]. Furthermore, material problems restrict the

temperatures at which the electrodes can operate. In many cases cooling of the electrodes

is required since the plasma, in order to maintain a high ionization, must be hotter than the

working temperatures of most materials. This temperature difference between the electrodes

and the plasma further aggravates the voltage losses because of the presence of the thermal

boundary layers. As has been shown, voltage losses can exceed 50% of the total power

output, with sheath drops accounting for a large fraction of this loss. [Ref. 6, 7]

The tool most commonly used for measurement of local plasma properties is the

electrostatic probe, a small electrode which may be biased positively or negatively with

respect to the plasma in which it is immersed. Such work is relevant to non-emitting anodes

which, though heavily biased, also probe and disturb the plasma locally. As a result, most

analytical work on sheath phenomena is embodied in probe theory investigations where the

effects of an electrode (probe) locally disturb a quiescent plasma. [Ref 20,21: pp. 1-7, pp.

8-9]

In 1924 Langrnuir pioneered the use of electric probes, giving the first sound

mathematical basis to this diagnostic technique. The analysis of electrostatic probes in

collision-dominated (higher pressure) plasmas began with Davydov and Zmanovskaja [Ref

22] who assumed that a quasi-neutral diffusion controlled region extended to within one mean

free path of the probe where it was matched to the edge of a free-fall sheath; a transition

region between the two regimes was not attempted, however. Ecker, et al. [Ref 23]

attempted matching the solution in the collision-dominated region directly to that in the free-

fall sheath using variational principles, work which was criticized by Cohen [Ref 24] based

on mathematical grounds: something was forced to fit via some artificially imposed boundary;
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matching between separate regions was accomplished through variational principles and

consequently was not asymptotic in nature [Ref. 24].

Existing sheath solutions are limited to special case simplifications. Several solutions

are available for spherical probes by Kiel [Ref 25], whose analysis neglected diffusion, Barad

and Cohen [Ref. 26], Su and Lam [Ref 27], as well as by Cohen [Ref. 24, 28]. The latter

group carried out the first completely systematic analyses of spherical probes in collision-

dominated plasmas. These researchers assumed the continuum-equations valid everywhere

in the plasma right up to the probe surface; their results showed both the sheath and the quasi-

neutral regions appeared naturally from the diffusion equations. In these efforts, two major

assumptions prevail: the plasma was assumed so lightly ionized that only charge-neutral

interactions were accounted, and the continuum equations were postulated with an isothermal

formulation. For cool, nonequilibrium plasmas, however, charge-charge collisions must be

considered [Ref 29: p. 165]. To that end, McKee and Mitchner [Ref 30] investigated a

collisionless sheath with constant transport properties that also included ionization as well as

recombination effects in the ambipolar region. Exploring spherical probe theory further,

Cohen and Schweitzer [Ref 31] then extended Cohen's original asymptotic analysis [Ref 24]

for the entire region, an analysis which allowed for weak ionization and recombination effects

while also assuming constant transport coefficients. Su and Sonin [Ref 32] next formulated

a spherical probe theory by considering the effects of electron-ion collisions by approximating

diffusion coefficients as a function of the neutral particle density, a density assumed as

constant. Barad and Cohen '[Ref 26] then presented a continuum theory (for spherical

probes) in which non-constant transport coefficients were used, coefficients based on charge-

charge collisional assumptions. This analysis, however, did not incorporate ionization or

recombination effects. In work similar to Lam's original theory for flow of weakly ionized

gases [Ref 28], Stahl and Su [Ref 33] use the same approach of separating the sheath,

ambipolar region and free stream; their methods prove the existence of a sheath on a flat

probe, yet plasma chemistry is not considered (ionization and recombination). It should be

noted that both Su and Lam [Ref 27], for spherical probes, and Stahl and Su [Ref 33], for

flat probes, consider transition regions to match the inner sheath to the outer quasi-neutral

6



or ambipolar zones - albeit both research groups neglected plasma reactivity in their

formulations. In related work, Godyak and Sternberg [Ref. 34] applied the ionization

potential as the boundary condition for both the plasma and the sheath in an effort to

understand the electrodynamic properties of the plasma-sheath boundary for the cathode; their

analysis, however, assumed constant ionization for the plasma reactivity with recombination

neglected.

It may be inferred from these efforts that anode-voltage-drop-region analyses remain

insoluble due not only to the nonlinear nature of the equations, but also to the transitional

nature of particle motion in most sheaths. In an extensive review of probe theory, Chung,

Talbot and Touryan [Ref 20] state that a general solution for determining charge density and

species temperature for probes small relative to boundary layer thicknesses is not available.

Additionally, Nasser [Ref 35] discusses an elementary theoretical approach to the glow

discharge problem by introducing a set of one-dimensional governing equations (continuum) -

the electron and ion current equations, the net production of electrons and ions, and the

Poisson equation. According to Nasser, these equations should have a solution, but most

attempts to achieve such have failed, with the difficulty lying in the boundary conditions [Ref

35: p. 412]. Voltage losses at electrode boundaries and surface erosion, together with sheath

effects which influence ionization, play an important role in plasma devices and must be

controlled in designs of practical interest. Particularly, thermal arcjets and MIPD accelerators

deposit between 15% and 80% of the input power into the anode. This presents not only a

severe performance penalty, but also introduces thermal design problems since the heat thus

generated must be radiated away from the thruster surfaces [Ref, 7, 9].

Completely satisfactory solutions to the anode voltage drop phenomena do not exist

for several plasma conditions; one such case involves steady, collisional, low-temperature

isothermal discharges [Ref 36]. For instance, the effect of several parameters on the region

require further study, including the influence of temperature, the role of the problem

dimensionality as well as the effect of plasma chemistry. It remains unclear, moreover, as to

the exact cause of the anode spots which have been observed for various MPD thruster

operating conditions, a behavior which appears roughly as periodic oscillations [Ref 6, 7, 9].
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A one-dimensional, collisional, equilibrium solution can satisfactorily reproduce the observed

electric field and charge density distributions for the entire anode voltage drop region where

the electron temperature equals that of the heavy species [Ref. 36]. However, this model

cannot describe any decrease in current density away from the surface, or current constriction,

at the anode surface which might be necessary in non-equilibrium. A two-dimensional model,

developed by Biblarz and Dolson [Ref 6], represents these phenomena, in the absence of

species ionization and recombination, and predicts the voltage drop in the region: the sheath

accounted for a majority of the anode voltage drop [Refs. 6, 7, 36].

Since the pioneering work of Tonks and Langmuir (relating to low-pressure

discharges), the anode description has remained as one of the classic problems in plasma

physics. In this work, the high density problem is generalized to any electrode surface in

contact with a partially-ionized plasma when the current flow is sufficiently small: the

problem of a non-emitting electrode (probe) in contact with a thermally generated plasma.

An anode is explicitly considered along with a non-emitting cathode and the governing one-

dimensional continuum equations are formulated. The electrodynamic behavior of plasma

reactivity in the electrode regions is then discussed with considerations given to three distinct

zones of the anode voltage drop regime: inner or space-charged sheath, transition and outer

or quasi-neutral ambipolar zones.
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MI. GOVERNING EQUATIONS AND NUMERICAL DATA

A. GOVERNING EQUATIONS

A flat electrostatic probe immersed in a high-density, flowing, partially-ionized gas is

considered. For plasmas of moderately high density and low degree of ionization (as applied

to discharge lasers and MHD devices), the plasma region affected by an electrode, i.e., the

electrode region, can be considered of the boundary-layer type with the transport of charges

approximated as one-dimensional. Traditionally, the electrode region is further separated into

two distinct zones, as delineated by the species densities: a sheath and an ambipolar region,

both which may be of the order of tenths or even hundredths of a millimeter in extent [Ref.

6] where the sheath extent is driven by variation of the electric field and the quasi-neutral

region extent is influenced by the influences of chemistry.

The problem is formulated by considering the hydrodynamic continuum equations for

two species, ions and electrons. Induced and applied magnetic fields are neglected with

energy conservation implicitly satisfied since heat transfer, radiation, Joule heating and surface

emission effects are at first neglected (for example, B=O, VT,=O, VTi=0, J.E=0).

The equations below are assumed valid throughout the entire domain of interest, to

include the electrode (probe) surface. Table (1) lists the nomenclature used:

a (Mni v. ) +Mn v.Vvi=qniE-kT.Vn -Mnif1 v. -F E.1at •"Equation (I a)
C9(mneVe)atnv +mne VeVVe=-qneE-kTeVne -mn efe ve Fe Equation(lb)

V'E= -_q ( ni -n e)

Equation (2)

Vj, = qV ( n, v.) Equation (3a)

Vje= qV (n e V e) Equation (3b)

V (ni v1 ) =Vfle-aCline Equation (4a)

V (n e ve ) =- vn e +a 2 ni ne Equation (4b)

V'J=0 ' J=ji+Je Equation (5)
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Equations (I a) and (lb) describe the momentum-transfer between the ions and electrons with

neutrals: the left-hand side represents the unsteady and convective contributions,

respectively, while the right-hand side symbolizes coulombic, pressure, collisional and

frictional forces, respectively. Next, the electrode is considered as a positive, non-emitting

surface (anode). Through this process, a flow of negative charges is induced toward the plate

and a flow of positive charges is repelled away from the plate; the anode, in completing the

arc current with the cathode, collects incoming electrons while driving all positive charges

toward the negative surface. This separation of charge in the anode fall region produces a

divergence of the electric field and a variation of potential away from the plate, as given by

equation (2) (the variation of potential is readily deduced from Gauss's equation (2)). The

current densities are denoted by equations (3a) and (3b) in terms of the species flux of

charged particles per unit area. Equations (4a) and (4b) are then the continuity equations for

the ion and electron flux as caused by the ionization and electron-ion (two-body)

recombination processes: positive ions are produced within the anode fall region by electron

impact with neutrals and conversely, positive ions combine with negative electrons to form

neutrals. Equation (5) is the conservation of total charge; the sum of the species currents

remains constant for a one-dimensional formulation. Hence, from set (1-5), the anode model

presented in this work is developed with the following assumptions:

1. Steady state; free-stream plasma is neutral with uniform charge densities (Saha
equilibrium).

2. Mean free path of the charged particles is small compared to the sheath thickness
which in turn is much smaller than the dimensions of the body; the sheath is treated
as a continuum.

3. Chemical equilibrium in the boundary layer; the two-body recombination
coefficient is held constant over the entire anode fall region as a first approximation
[Ref. 29: p. 238]. Further, the ionization coefficient is treated as Townsend's first
coefficient.

4. There is no applied magnetic field and induced magnetic field effects are neglected
(low Magnetic Reynolds number) - consequently no ion slip.
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5. No continuum radiation losses, no ion emission, no significant Joule heating.

6. Isothermal: VTI'=VTj=VTo=0 and Te=Ti-To. The true electron temperature will
either be close to the anode surface temperature or the free stream temperature since
thermal equilibrium is assumed in the boundary layer. Because of the relatively small
number of collisions that the electrons suffer in the boundary layer, it is frequently
argued that the electron temperature is close to the free stream temperature [Ref 37].

7. Diffusion velocities of the ions and electrons due to electric field interactions are
small in comparison with their thermal velocities; diffusion coefficients are assumed
constant.

8. End effects, in the case of a planar surface, are neglected.

9. Under the assumption of a highly biased probe, it is possible to ignore convection
not only in the very thin transition region, but also in the sheath region, even for
sheaths with the same order of thickness as the boundary layer [Ref. 33]. Assuming
perfectly elastic collision between the species and neutrals, essentially a constant
collisional frequency is assumed sufficiently large so that the convective derivative in
(1) can be neglected.

10. With the assumptions of steady state and negligible convection, a spatially
homogenous fluid results.

For a semi-infinite plane with coordinate outward from the planar positive surface so

that V-d/dy, set (1-5) thus becomes:

d (n.)
0= qn E-kT Mn. f. v,

i i dy Mn 1f v

dyO=-qneE-kT d -rannf

d (E) -q (ny -n.)
dy ee

d(E)_ q
d(Ji) -1i=vn - U2 n n

dy q e 2e

dy q ) ne + o2 ni le

d (J) =0 = J=Ji+Je
dv
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Here, equations (3a) and (3b) have been incorporated with equations (4a) and (4b). Using
k T.

species mobilities, itie- q and the diffiusion coefficients, De.,e, (the Einstein

relation I•L,,, qTj ), species momentum conservation can be re-written in terms of species

flux, Pr,, where Fick's law of diffusion is a special case (E=0 so that IKe=O). Specifically, (1)

and (2) become

n. =v. ]. n. E- D. Vn. Equation(6)

i 1e ie ,e e ee 2, e i,e

Essentially, diffusion is a random process in which a net flux from dense regions to less dense

regions occurs simply because more particles begin their motion in the more dense area - the

flux is proportional to the density gradient. [Ref 38: pp. 135-13&] But as the species travel

toward the electrode, reactivity occurs - ions and electrons recombine while electron collision

with neutrals breaks neutrality adding charges to the electrode region; flow neutrality is

broken and the fluid is no longer a plasma. Thus, under constant-property conditions, the

species continuity equations together with Gauss's equation describe the flux of charges in

the vicinity of an electrode or plasma probe. [Ref 33, 39] With the application of the Einstein

relation, set (1-5) are re-cast to give the model used in this work, the geometry for which is

shown in Figure (1):

SSheath i iQuasi-Neutral ýPlasma
• - Region N: (Ambipolar) jRegion

§: Region

Figure 1: Geometry of Anode Fall Region
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To obtain the mathematical model used in this work, the definition of the diffusion coefficient

is used to re-write the species elastic collision frequencies, f,=[kTo]/[Djrr,] for isothermal

conditions, and the current density is defined as js=qrnv, where s=i, e. The resulting equations

(1-5) are then solved for their highest derivative terms:

d(ni) [q ]E- _ ý 1 Equation (7a)
dy lkTo T LqJ D

d(nfe)[ q nE r1]lL Equation (7b)
dy [k? jfle + -dy kToJ I Uq1 jlý

d(E) = (n - n,)d Equation (8)
dy -EEOJ~

d(- =- q]vfle + [qaj ] i~ne Equation (9a)dy
d(i) r a
dy +qvne - Equation (9b)

In the formulation of equations (7-9), 14 variables result (three universal constants

included). Before analysis of this system, the equations must be written in terms of

dimensionless variables and proper parameters. For this work, both the Buckingham Pi

Theorem and Fractional Analysis techniques were applied (Appendix A). The Buckingham

method, although a useful tool for revealing the dimensionality of the problem, does not bring

forth the physical effects which influence system behavior. On the other hand, fractional

analysis coupled with the use of the governing equations, begins to give physical meaning to

the dimensionless parameters obtained.

Using undisturbed plasma values for normalizing the variables gives three primary

length scales for the system modeled by equations (7-9) since

no,=no= n, j,=j,, =j, for the undisturbed, neutral

plasma: LE, L, =L, =L, L.= =L. . The results are summarized in Table 2 with
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the length scales listed in Table 3:

Governing Equations Non-dimensional Non-dimensional Parameters
[Equations (7-9)] Parameters via via Undisturbed Plasma

Buckingham Pi's Values

7] b-[2q] a= 'Efn- } b=q DoqJdn1-e)- Jdq d 727g 1= [qE
0
L" d j___

a +e WE[-1r 1I 6 kZ0 ' bk T.1 4,t 6q kT°

d( -) * u

-rL hd 1 7qvqa 2no.no. d

d____r__ _ _ _o_
where D., -D , qvn°RL5; qj= nL

1-- 1 J-- • -o o A

[ L fI q,,

•3 •6 9 ___2 _ 1 3 ___6

Table 2: Non-dimensional Parameters

Sheath: I Transition Zone: Ambipolar Region:
Space-Charge Dominant jNumber Density Gradient Equilibrium Near

LjDominant j Plasma Boundary
g , +' [in

d"- qE o=v I

SkI.-

Sqv on o

L-'." qv on o

Table 3: Length Scales via Fractional Analysis
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It should be noted that the length scales LE, L, and Lj are in agreement with reference 50 if

the species conduction currents in the undisturbed plasma are written in terms of thermal

velocities and the above electric field and number density scales are combined to form the

Debye shielding length for planar surfaces ( LEL=,,=D"2 ).

B. NUMERICAL DATA

To gain further insight into the physical models presented, numerical analyses were

conducted with data from reference 36 for 6000'K nitrogen; data for the ionization and two-

body recombination coefficients are found in Appendix B.

[Data Value

Temperature (OK), T. 6.0000e+03

Total Current (mA/cm2), J: used forj,, Joe 1.0000e+02

Undistubed Plasma Charge Density (1/m3), n,: used for noi, no, 1.0000e+19

Undisturbed Plasma Total Density (1/m3), N: 2.0000e+24

Undisturbed Plasma Electric Field (V/m), E, 1.2000e+04

E/N (Vcm2) 6.00OOe-17

Pressure (N/rm), p: from [p=NkTj 1.6560e+05

Two-body recombination coefficient (m3Is), a2: [Ref. 40] 1.00OOe-13

Ionization coefficient (1/s), v: from [Ref. 41 ] with v/N= 10i` (m3ts) for above 1.0000e+06

E/N converted to Td (1Td=10 21Vm2)

Ion Diffusion Coefficient (mN2/s): DiN=4.46(101,)T0
12 from [Ref. 42: pp. 2-28] 1.7274e-04

Electron Diffusion Coefficierit (m 2/s): Dj/Dm/M 3.1665e-01

Table 4: Numerical Data for Analysis - Nitrogen
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IV. PHYSICAL MODEL

A. SPACE-CHARGE REGION: SHEATH

Voltage losses at electrode boundaries, surface erosion and sheath effects play an

important role in plasma devices and must be controlled in designs of practical interest.

Particularly, thermal arcjets and MPD accelerators deposit between 15% and 80% of the

input power into the anode. This presents not only a severe performance penalty, but also

introduces thermal design problems since the heat thus generated must be radiated away from

the thruster surfaces. [Ref. 7, 9] So a natural question: what happens at the anode?

Near a surface (anode) in contact with a plasma there is a region, the sheath, in which

the electric field is strong and in which the electron number density is much larger than that

of the ions (see Figures (2) and (3)).

Anode Faill
Cathode Fall Region (see
Region Figure 3) v-

nx<n ei 0: n- nc-~saha n s,~
.-. OI •, n i<<no/.---•.. 1,

Positive Column -) "i

0V Sheath a Quasi-Neutral Plasma
Cathode (-) Anode (+) Region " (Ambipolar) Region

SRegion

Figure 2: Axial Potential Profile for a High Figure 3: Qualitative Spatial
Current Arc Between Two Electrodes (not Distribution of Species Densities -
to scale) [after Ref. 3: p. 114] Anode Fall Region (not to scale)

Figure (3) shows the qualitative behavior, in the anode fall region, of the spatial

distribution of species densities; it is expected that from the wall outward, the densities

approach one-another, eventually reaching Saha equilibrium at the plasma boundary. The
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overall shape of the curves (Figure (3)) stem purely from the density flux d_ = - a2n
dt

in the absence of any other types of influences. However, it is usually the interaction of a

systems' many parts, not the action of each piece independently, that determines the final

system behavior.

The mathematical model developed for the sheath, whether anode or cathode, depends

on the details desired: whether surface effects are considered, whether induced or external

magnetic fields are included, as to how the flow chemistry is modeled, among others. For the

cathode, sheath models usually adopt the assumptions that electrons are in equilibrium with

the electric field and that the ionization in the sheath can be neglected [Ref 34]. In

comparison, the electrons in the anode fall must supply by ionization enough ions to account

for the ion current that flows out of the positive column toward the cathode [Ref. 43: pp. 59-

60]; electrons emerge from the column, are attracted by the anode, gain energy through the

voltage drop and ionize neutrals. The extent of the anode sheath is then determined by the

space charge distribution and by the magnitude of the gas ionization potential [Ref. 35: p.

420]; hence, the associated length scale for the sheath is governed by that which results from

the dimensional analysis of the Gauss equation (8).

Moreover, after a current flow is established between the plates, the anode region may

exist in a vapor that issues from the electrodes. In vacuum arcs, Miller [Ref 44] characterizes

the anode region as operating in one of five distinct modes, ranging from a passive, low

current mode to a high current, fully developed spot mode. These observed instability

phenomena are similar to those noted in MPD thrusters - anode spot formation at high current

clearly limits anode lifetime [Ref. 6, 7, 9, 17]. What could cause such "spotting?"

In a comprehensive review of anode-spot phenomena, Miller suggests [Ref 44] that

a sudden increase in the voltage noise frequently indicates that an anode foot-print could be

forming or that a transition into the anode-spot mode could be occurring. Further, this abrupt

change in voltage has been associated with a sudden change of ion density in the region near

the anode, a density decrease that would leave the local electron space charge uncompensated
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and thus produce a low-conductivity region. The sudden increase in voltage would then

reflect this local shortage of ions - an ion depletion region or ion starvation region. Even-

though the most suitable model for the anode region is still actively debated, the general idea

of the appearance of an ion deficiency region near the anode as triggering the transition into

the anode-spot mode has been fairly supported. [Ref. 44] So, to better understand the

processes involved within the anode fall, equations (7-9) are modified as follows:

Because the anode-spot instability is likely related to the species density distribution

within the anode fall region, the role of net charge production, the chemistry, should be

critical to the overall system behavior: from equations (7-9), the species densities are

influenced by both coulombic interactions as well as by the currents and consequent

production phenomena, the fine balance between ionization and recombination. Therefore,

the current densities as given by equations (9a-9b) are combined with the species densities,

equations (7a-7b): the latter are differentiated with respect to the spatial variable in this effort.

The result gives for the space-charge region a system of two second order, ordinary, non-

linear, coupled differential equations with one first order, coupled, ordinary differential

equation. The non-dimensional parameters given in the bracket notation are listed in Tables

2 and 10:

d (nd [1 d(Wi) +- [.ŽL-fnn
d;72  ii dy +[ Da , --Dn v Equation (10a)

-[C) + [dh-cenin, ncf,2 [ , Equation(10b)dF dy7; _ D, D, l
d(E)= [elni-[f1 ne Equation (10c)

19



Essentially, the conservation laws are combined: species momentum now reflects the

influence of charge production terms. Here, the left-hand side of equations (10a-10b) is the

rate of change of the number density gradient, an accelerating behavior. The gradient of the

species number density is found in the first term on the right-hand side of set (1 a- lOb), a rate

influenced by the strength of the electric field as measured by the imbalance between the

species number densities, the Gauss equation (1Oc). The first term of the right-hand side of

(10a-10b) describes the interaction of coulombic and gradient forces, the influence of the

equation of motion as described in the earlier formulation of (1-5); the third term completes

the formulation of motion in this model. The general concept of energy conservation begins

to take shape with the second and fourth terms of (1Oa-0Ob): The former has included two-

body recombination effects as diminished not only by coulombic interactions, but also by

diffusion. The fourth term illustrates a source of energy to the system, ionization, again as

influenced by diffusion. Essentially, the accelerating terms on the left-hand side of(1Oa) and

(10b) are described by balances of motion (gradients) and energy (ionization, recombination)

where the exchange of energies is brought about and influenced by diffusion processes. It

should stand to reason that as the species density gradient increases, energy losses should

become more dominant until the gradients diminish their contribution to the flow:

recombination should begin to take hold until eventually equilibrium is restored, balancing

diffuision with energy source and sink.

B. TRANSITION ZONE: QUASI-NEUTRALITY

In order to determine the behavior of the anode fall, boundary conditions have to be

applied to equations (7-9) or to set (10). In the case of the positive column and the cathode

fall region, it is known [Refs. 45, 46, 47, 48] that for the isothermal case, the spatial

derivatives of the particle density and the drift velocity become singular if the drift velocity

attains the ambipolar sound speed [Ref 49, pp. 77-86; 50]. This apparent singularity appears

near the wall, marking the end of the quasi-neutral region and the beginning of the space-

charge sheath adjacent to the wall; the ambipolar solution breaks down because the space

charge density cannot become larger than the local density of ions or electrons. [Ref 50; 33;

52: pp. 202-204]. Hence, researchers have always chosen the ion sound speed as the
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appropriate bound for the ion velocity. This condition seems a natural compromise between

Bohm's criterion for the collisionless sheath which requires the ion velocity exceeds or is at

least equal to the ion sound speed and Persson's criterion for an ambipolar flow at the plasma

boundary, which states that the ion velocity is in fact less than the ion sound speed. However,

these criteria are incompatible as was shown by Godyak and Sternberg. [Ref. 34] For

example, in the numerical treatment of the plasma-wall problem without plasma-sheath

separation, the ion velocity reaches ion sound speed in the region where plasma neutrality is

violated [Ref. 51: p. 51].

It seems that since there is no strict boundary between the plasma and the sheath, it

is not obvious which boundary conditions work the best; much controversy remains for the

negative electrode. Attempts have been made to bridge or to remove these apparent

discontinuities by introducing a transition layer [Ref. 27] or by choosing various plasma-

sheath boundary conditions [Refs. 45, 34]. For example, Godyak and Sternberg [Ref. 34]

show that the usual choice of choosing the ion sound speed as the boundary, leads to

discontinuities of the potential, plasma density and velocity gradients. These workers

therefore introduced as their boundary condition a specific value of the electric field that

provides a breakdown of the neutrality at the plasma boundary and so treated the sheath and

ambipolar model separately, attaining a smooth transition between sheath and plasma - for the

cathode region. In their model, however, only constant ionization was assumed for species

production.

Fundamentally, the issue of transition in the cathode region remains somewhat

controversial, a subject even more unclear when the positive electrode is considered, where

essentially scant information is available. But a transition to ambipolar diffusion must occur

[Ref. 52: pp. 64-68], a transition where the electric field domination shifts to that of a density

gradient driven region, an area where now the length scale for the number density becomes

important.

To capture this effect and to retain the role of charge production in the dynamical

behavior of the system, equations (7) are again differentiated allowing the species densities

to be written in terms of the production terms. Applying the quasi-neutral condition,
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ni~ne , then gives the transition model, equation (11) which can also be obtained from the

sheath formulation, set (10).

d2(') (.Di-De[a]gd + ( Ie)fbjdh] 2 " _-g 1

Equation (11)

In comparison to equations (lOa-lOb), the space-charged model, the effects of

diffusion are clearly seen not only on the rate of change of the number density or density

gradient term (first term of (11)), but also on the energy balance terms, recombination

(second term of(11)) and ionization (third term of 11). Furthermore, coulombic interactions

are no longer evident in the energy balance, playing only a secondary role in the density

gradient description (first term of (11)).

A key character of equation (11) is that ambipolar diffusion is not yet fully formed,

a consequence of the transition region in which perhaps the instability of the sheath,

electrostatic repulsion of ions, is carried forth by gradient effects so that ions are further

pushed from the positive plate. The growth in densities away from the plate then affects their

free diffusion, a process evolving into ambipolar diffusion.

C. AMBIPOLAR REGION

When the density of electrons and ions becomes large enough, their mutual Couloinb

fields affect their free diffusion. This modification can be written in terms of the space charge

field as given by:

F. ni v . 1, , e n fle E-D, Vn. Equation (6)
i, e i, e a, e i,e it,e i,e

From (6), it is seen that should the species flux densities not be equal, a significant charge
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imbalance would arise. For example, if the plasma is much larger than a Debye length, it must

be quasi-neutral and the diffusion rates of the species would adjust themselves so that the

same rate from the plasma into the region of quasi-neutrality is achieved: the electrons have

a larger thermal velocity as compared to the ions and tend to leave the plasma first. A

positive charge is thus left behind creating an electric field of such polarity as to retard the

loss of electrons and to accelerate the loss of ions: the plasma, by its very definition, is a

neutral fluid. [Ref 38: p. 139] From this formulation, the ambipolar diffusion coefficient can

be determined as Da where the Einstein relation may be applied to write

mobilities in terms of diffusions. It should be pointed out that the ratio D/g represents a

measure of energy [Ref 52: pp. 60-63], and that if T.=Ti, as is assumed in this work, the

ambipolar electric field tends to enhance the diffusion of ions by a factor of two, a diffusion

that is primarily controlled by the slower species: Da-2Di. The primary function of the

ambipolar field is then to serve as an energy-exchange mechanism for transferring random

kinetic energy from the electrons to the ions such that the ion diffusion continues away from

the positive plate. [Ref 45]

The model for the ambipolar region is thus formulated, again following naturally from

equation (10) or from equations (7-9), the sheath model: proceeding as before, equations (7)

are differentiated with respect to the spatial variable allowing set (9) to contribute to the

densities. However, unlike previous, now set (7) is multiplied by the respective species

diffusion coefficient, the result which gives one second order, ordinary differential equation

for the density in terms of not only the necessary chemistry, but also in terms of the ambipolar

diffusion, Da.:

2 d2 , [_= 12 - [n+dn Equation(12)

In comparison with equation (11), it is immediately seen that the density gradient
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contribution, the rate of change of number density, is no longer evident. The only terms

remaining in (12) are those of charge production; the system chemistry. As the flow

approaches equilibrium near the plasma boundary, the number density must approach that of

Saha so that the definition of "plasma" is upheld.

The physical model in summary: the electric field pushes the flow from the electrode

surface toward the density gradient dominated region in which the density gradient pushes the

system toward the plasma boundary where eventually energy conservation must be satisfied.

Ionization must balance recombination such that Saha equilibrium is attained at the plasma

boundary. It is in this region that the largest of the length scales has influence: the current

or ionization scale. This last scale defines the extent of the anode fall region, a region where

flow chemistry becomes paramount, determining plasma equilibrium.

But is the anode fall stable? Previous attempts [Ref. 53] at numerical analysis have

proven challenging at best. So a better understanding of the nature of equations (7-9) and

sets (10-12) is needed: in the next chapter, non-linear analysis techniques are applied to

mathematical models presented previously.
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V. ANALYSIS

A. LOCAL ANALYSIS

To begin the analysis of the anode fall, non-linear methods as briefly outlined in

Appendix C are used: further information on particular ideas can be found in references 54

and 55, among others.

1. Space-Charge Region: Sheath

To begin an analysis of either equations (7-9) or equations (10), non-linear methods

as outlined in Appendix C are used: first, equations (10) are written as a system of first order

differential equations, then stagnation points within both systems, equations (7-9) and the first

order formulation of equations (10), are determined. Next, the local behavior about these

stagnation regions in terms of system characteristics is evaluated, leading to a qualitative

stability picture of the system dynamics.

a. Equilibrium (Stagnation) Regions

First equations (7-9) and equations (10), the anode sheath models are

analyzed (non-dimensional parameters are given in Table 2):

di=[a]1?i-[b]' d"l' -[L .E [ Equations (7a)-(7b)

d(ý =[e ]i-n. Equations (8)

d()d• . - [g ]"Fle + [hd( 1 ).n [ tid. • ]n Equations (9a)-(9b)

whereD -DD

d ~ i d2i)[d -ai In f]2 - bl

djj-2 i dyS tO e O Eqainlb
d(E_ [e]- [- [f]iie Equation (Oc)
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The original model, equations (7-9) can immediately analyzed, whereas equations (10)

have to be recast as a set of coupled, first-order differential equations.

d(Wj)

d57
d(x,) -2

-a + f+ 1ael-2 [iniev
dy t Di + Oi Equation (10a)

S_C

dx2Kri + [ .d -ceel~n, + [fcAn [A- ]e
d1  De LeDe Equation (lOb)

d(E) [eP~i - [~-
dT7 JlZ w Equation (1 Oc)

To find the stagnation points within these first-order system, the derivative terms are each set

to zero and non-dimensional parameters from Table 2 are applied. The results give for the

equilibrium criteria:
1. From equations (8) and (10c), ni * =ij * =n* as expected; this result is then

incorporated into equations (9a-9b) as well as (1Oa-10b).

vv
2. Similarly, from equations (9a-9b) and (I0a-10b), nf*=0 or n*- 0 a

a 2 n.

stagnation point appears when i * =n* * = =0 and when the plasma boundary

is approached. The latter condition immediately emphasizes the flow chemistry,
ionization and recombination. Without recombination, the second stagnation would
not be present, as seen from either equations (9a-9b) or equations (10a-10b) with
d/dy[ ]=0. The former equilibrium, on the other hand, seems artificial at first, unless

the species densities behave such that they cross when ne * =n i *=nj 0

immediately implying a quasi-neutral condition since equation (8) or equation (10c)

require ni<= * '=-*= at stagnation. In general, the fixed points found stem purely

from the chemistry behavior, equations (9a-9b) and consequently (1Oa-0Ob) in which
ionization and two-body recombination are the only processes included. If, on the
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other hand, three-body recombination is added to the equations, then additional
stagnation regions become evident since equations (9a-9b) are now cubic. The

equilibrium region near n-= =if* = 0 still remains, however. Similarly, if

ionization is the only production term considered in the sheath model, then the
stagnation region near the plasma boundary "disappears." The condition

n*e =ni =i*= 0 remains for all cases: ionization only, ionization with two-body

recombination, ionization with two- and three-body recombination. So it appears that
continuity (equations (9)) requires flow equilibrium when perhaps quasi-neutral
conditions are initially met, at the sheath boundary, and when the plasma interface is
approached. It is recombination that establishes the latter while the presence of
ionization stipulates the former.

3. The current densities at the equilibrium position can be found by using n- * = 0

V V VoV
or n = with equations (7a-7b): if n -* , then

a 2 n0  a2 n10

* o i *V and j,, E Vo

since noi =no, = no when n* =n-* =n * Here, the influence of not only

ionization and recombination, but also of diffusion on the current density distributions

are clearly seen. Similarly, from equations (7a-7b), Ji,e *= 0 V i*=0

4. Charge conservation is usedto isolate the value of the electric field at stagnation

Vov
near the plasma boundary, where =- . That is,

a 2no

V-J=0 ==*J=j,+j,=Jo or j'+je =l gives
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Je +Ji -

[k]o0 a . j { T .= o

[ q2 E0D.vo [q 2EOD v
kTo j [ Toaajo

from which E / is obtained graphically since the right-hand side of this expression

simply represents a constant. Applying the Arrhenius function [Ref. 52: pp. 94-109]

for the ionization, v - e EI= _V and using numerical data for nitrogen
0V

yields E '0.54 . Fromthis, j'e=0.99816,j*;0.0005445, n-*=0.15695

These results show the relative magnitude of the electron and ion currents within the

anode fall, j,))ji as expected. If, on the other hand, I, 0 V n* = 0 is used, an

inconclusive result is obtained: E cannot be isolated from either equations (7-9)

or equations (10). Further, v -~e I= v does not permit zero field. Therefore,
Vo

it seems reasonable that a finite field should exist over the entire range of the anode
sheath. Von Engel [Ref 56: pp. 12-20] highlights such arguments: a finite field must
be allowed, which could then introduce a potential trough. A virtual anode is thought
to exist if the space charges have the same sign as the nearby electrode, with the
emitting surface located at the potential minimum [Ref. 56: pp. 14-17].

The fixed points found in the model represented by equations (7-9) and in part by set (10) are

listed in Table 5 below, featuring the role of ionization, recombination and diffusion in the
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existence of the fixed point near the plasma boundary. Again, continuity (equations (9))

seems to require flow equilibrium when perhaps quasi-neutral conditions are initially met, the

sheath boundary, and when the plasma interface is reached. It is the recombination

phenomena that establishes the latter stagnation region while the presence of ionization

stipulates the former.

Variable **

Near the Near the Plasma Interface Numerical
Sheath Value for

Boundary Nitrogen

, 0 0.15695
n 2'ov

a2n0

0.54
E E1

finite q E~v0 Dj + q2E vDe
kT Ta 2o kTo0%o,

7e 0 0.99816Se~- Iq 2EoDeYo '-

Je [-kT j

-* 0 =[2 " 0.0005445

Table 5: Stagnation Regions in General Sheath Model - Ionization with Two-body
Recombination
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b. Jacobian at the Equilibrium Positions

To determine the system characteristics about its fixed points, a local Taylor

series expansion is carried out about the equilibrium of interest (Appendix C); the rate of

change of the flow is given in terms of the Jacobian, which for equations (7-9) becomes:

0 0

0 -[CIE -JIWe d

g,..•r:[•l -II o o
[h]n-, -[gj-v+fh];T,. -- 2o

-Ulkf Ui] V- U]n• 0 0

Here, six variables affect the system dynamics: ion and electron number densities,

electric field, species diffusivities, and ionization. Of these, the diffusion coefficients are

assumed constants, so essentially four variables drive the behavior: species densities, electric

field and consequently ionization. If Ainner is evaluated at the stagnation points, the

resulting eigenvalues describe the dynamics in the neighborhood of the fixed point (Appendix

C). Specifically, at the plasma boundary equilibrium with nitrogen data:

1 =1.376704 X 2 = 0
XA3 = 0.630455 1 4 = -1.37437
XA5 = -0.63279

For this case, the eigenvalues are real and distinct, leading to a multi-dimensional type of

"saddle" behavior (Appendix C). The stagnation region near the plasma boundary is unstable:

the largest eigenvalue is positive, indicative of exponential growth. Appendix D fists the roots
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of the characteristic polynomial of i inner . It appears 1, gives exponential growth - the

process of ion repulsion from the positive plate forces the instability of the sheath. The sheath

drives the system toward the first stagnation criterion, toward quasi-neutrality.

Provided a finite field exists when n =i.* =i- = 0 then the fixed point in its

vicinity gives a similar qualitative behavior: the eigenvalues of the resulting Jacobian are given

by

X1 =[a]E X =0

A4 5 -- [c]E ([c]) 2-4[- wheree
2 2 V

These eigenvalues are always real with two characteristics equal while the remaining are

distinct: Table 6 lists some numerical examples for nitrogen data.
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0.04 3.00 10.00

I = [a]E 0.04 3.00 10.00

1,=0 0 0 0

1,=0 0 0 0

-0.04 -2.9986 -9.99947

A [c ]E [C IE ) 2_ 4_ d

4 2 2

-0 -0.0014 
-0.00053

1'5 [ cI__E + ' [l -4ý D,,

2 2

Table 6: Eigenvalues of Stagnation Region rh=n•=n=0 with Finite Field - Numerical Values
for Nitrogen

Again, the essential feature of the sheath is instability: ions are driven from the

positive wall as required by electrostatics. The stagnation region near fle* =l* =ifl* = 0 is

unstable, perhaps pushing the system away toward the recombination induced equilibrium

near the plasma boundary. It is the strength of the initially applied electric field that imposes

the stability characteristics for the fixed point nie* = n-* =h-= 0 . This leads to the

following question: is the sheath model, as presented by either equations (7-9) or set (10),

an example of a system in which a certain type of "fixed point" is always present, a stagnation

region satisfying quasi-neutrality and thereby representing the sheath boundary? If so, does

this equilibrium present a type of transcritical bifurcation (see Appendix C) whose stability

perhaps depends on the initially applied electric field? The foregoing does suggest so.

The precarious nature of the fixed points found in the sheath model suggest that

numerical integration methods will not prove fruitful over the entire domain of the anode fall.

32



However, by exploring the various regimes of equations (7-9) in the form of the second order

differential equations given by equations (10), further insight into the anode fall could be

expected.

2. Transition Zone: Quasi-Neutrality

Previously, it has been shown that the sheath is inherently unstable, that the ions are

electrostatically repelled from the electrode (anode) surface. If through that process quasi-

neutrality occurs, then for steady-state conditions either density gradients or diffusive

processes have to drive the system toward the plasma boundary since the condition of

ni-ne stipulates the electric field be constant; so something else has to continue driving

the ions away from the anode wall. Equation (11) highlights the density gradient and is

considered next as a set of coupled first-order differential equations:

d 2() Di -De[] df + ID) ! -- +dh] -2 D- ) [bi+dgfl-vd• 2 D i + D -,dTD D ,)i+D

Equation (11)

which give

d(Q) -

djY ) Di+De) (1+[b.++h]2 1 bi +dlu
d) x;) DD [, i+- xD [ g1

Equation (11)

where the electric field is constant due to quasi-neutral conditions, n- -ne
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a. Equilibrium (Stagnation) Regions

To find the stagnation points within these first-order system, the derivative

terms are each set to zero and non-dimensional parameters from Table 2 are applied. The

results gives for the equilibrium criteria:

1. Setting d [ ]/dy=O in equation (11) immediately gives the previously found
vv

stagnation condition near the plasma boundary: n*- ° . The fixed
•2/o

point ni= 0 again seems to present a mathematical phenomenon since equation

(11) does not describe the sheath condition. If quasi-neutral arguments are again

used, then perhaps the condition n-*=0 may have meaning - the plasma shields

itself against external influences (electric field), and so, quasi-neutral characteristics

are fundamental to its definition. The stagnation region at n = 0 does, perhaps,

present a physical phenomenon: the onset of quasi-neutrality or the sheath boundary,
found as a consequence of ionization present in the sheath model and in equations
(11), the "transition" model.

2. The magnitude of the constant electric field, and therefore constant ionization, at
the start of the quasi-neutral transition is determined by the matching conditions when

ni-n . These criteria are either found through analytically matching equations (10)

with equations (11) for some small parameter(s), or numerically. Numeric methods
will be considered later in this work. Suggestions toward an analytic matching
attempt are provided in paragraph B below.

b. Jacobian at the Equilibrium Positions

To determine the system characteristics about its fixed points, a local Taylor

series expansion is carried out about the equilibrium of interest (Appendix C); the rate of

change of the flow is given in terms of the Jacobian, which for equation (11) becomes:
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1°0 10

Since the electric field becomes constant at the onset of quasi-neutrality at the sheath

boundary, the electric field thus locks in the behavior of the transition region. To determine

these stability characteristics, the general eigenvalues of A transition are determined:

aE(Di-DDe) ia2 E2(Di -De) 2 -4v(D1 +De)(bi +dg) +8fi(Di +D,)(bI + dh)
1,2 2(Di+De) 2(Di+De)

where the non-dimensional parameters are listed in Tables 2 and 10. These eigenvalues

determine the dynamical behavior of the transition when transition is evaluated at a

fixed points, albeit the electric field strength is determined from the sheath as the system

reaches n"ne. By inspection of the first term found in these eigenvalues, the following

is observed:

1. If the field is positive, then the system displays exponential decay, stability; but
electrostatics demands that ions be repelled from the positive plate. This leads to the
expectation that the transition zone is also unstable, similar to the sheath.
Consequently, the field should be negative at the point of quasi-neutrality.

2. Using the stagnation criteria for n 0 with finite field indicates that the

characteristics should display stable behavior for positive field, the diffusion difference
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(Di-De) is negative, and unstable behavior for negative field. The initially applied

electric field strength then does determine the stability of the fixed point f (=0

an equilibrium which appears when ionization is present in the model.

Vvv
3. To find the behavior near the plasma boundary when n- - , nitrogen

a2 o

data along with an arbitrary selected field strength, E(&.T_,) = -5.00 are used to

give the eigenvalues X1=-0.041 and X2=5.026: the eigenvalues are real, distinct and
predict a saddle-type behavior near the plasma boundary - a robust linearization (see
Appendix C). For this case, the flow field, locally, is characterized by a very strong
unstable manifold corresponding to ;2. A similar result was found by analyzing the
sheath model presented by either equations (7-9) or equations (10).

4. On the other hand, if the sheath behavior at quasi-neutral formation gives a

positive field, e.g., E(je ) = 5.00 , then the Jacobian eigenvalues predict stability

locally about the fixed point: X1=0.021 and 4=-5.013 where now the saddle behavior
is marked with a strong, stable manifold, contrary to the sheath analysis earlier.

Thus, the criteria found at the onset of quasi-neutrality at the sheath boundary form

the initial conditions imposed upon the transition zone and hence govern the stability

vv
characteristics of the fixed points at ii* =0 and n * o

a 2 no

3. Ambipolar Region

In the sheath, ions are repelled electrostatically until quasi-neutrality occurs, where

chemical processes balance such that the ion density approaches that of the electrons - the

electric field becomes constant. If this balance does not reflect total charge neutrality, i.e.,

Saha equilibrium, then other processes (the field is now constant) must drive the system

toward such equilibrium; however, a stabilizing mechanism must be available once the
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densities are near the plasma boundary. So as the species density gradient increases, energy

losses should become more dominant until the gradients diminish their contribution to the

flow: recombination should begin to take hold until eventually equilibrium is restored,

balancing diffusion with energy source and sink - ambipolar diffusion becomes the vehicle

which takes the flow density toward the plasma stagnation. To translate these physical

processes to a mathematical model, quasi-neutral conditions, ný-ne , are applied to the

sheath equations (10) from which equation (12) results naturally, highlighting the ambipolar

diffusion in its full form:

2 d2 (u)_ [b n2 _bi+-dg nv Equation(12)
dT 2  zD DeJ zD e

or

2 d(;T) x
d37

d(xl)_ [bj +dh] n-2 [bi+dglW Equation (12)
D.z•DeJ D eJ

where the electric field is constant due to quasi-neutral conditions, nine

a. Equilibrium (Stagnation) Regions

To find the stagnation points within this first-order system, the derivative

terms are each set to zero and non-dimensional parameters from Table 2 are applied. The

results gives for the equilibrium criteria:

1. Setting d [ ]/dy=O in (12) immediately gives the previously found stagnation

vv
condition near the plasma boundary: n-* 0 0

a2 no
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2. Similar to the transition zone, the fixed point in* =0 again presents a

mathematical phenomenon until physical arguments are applied as before.

* = 0 perhaps indicates the onset of quasi-neutral conditions.

The magnitude of the constant electric field, and therefore constant ionization, at the

start of the quasi-neutral ambipolar region continues from the transition zone and again locks

in the behavior of the ambipolar region: the initial field strength determines the initial

conditions for, and consequently the stability of, the transition zone. The way in which the

density gradient then develops influences the initial conditions to the ambipolar region. All

in all, the initially applied electric field strength impacts the stability of the anode fall, in

entirety - the electric field directly influences ionization and hence the stagnation found near

the onset of quasi-neutrality.

b. Jacobian at the Equilibrium - Analysis

To determine the system characteristics about its fixed points, a local Taylor

series expansion is carried out about the equilibrium of interest (Appendix C); the rate of

change of the flow is given in terms of the Jacobian, which for equation (12) becomes:

0 1
Aambip.,ar, (Lj Ai If1 .L.~ ýL

Dz D5 2 Di Dz e

with general eigenvalues

11,2 :+-2DiDe -2nu(Dbj +Djdh) +V(D, bi +Ddg)

2DiDe

If the stagnation conditions near the plasma boundary are applied, it can be easily be seen that

the ambipolar eigenvalues are always real and distinct, again predicting the saddle-type
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behavior (Appendix C). In comparison to both the sheath and the transition zone, the electric

field no longer is found explicitly part of the Jacobian eigenvalues, however an implicit role

is still evident in terms of the ionization. Furthermore, diffusion and chemistry are part in all

eigenvalues, from sheath to ambipolar.

Proceeding as before, the Jacobian is evaluated at the plasma boundary stagnation,

vvn. _ , using nitrogen data. The initial field strength is chosen arbitrarily; "initial" is
a 2 no

defined as that condition found at the onset of the ambipolar region as determined by

matching criteria between sheath and transition, at the beginning of quasi-neutrality. The

resulting Jacobian eigenvalues or characteristics are again robust (system non-linearities do

not change the qualitative nature of the flow ) [Ref. 54: p. 163]. That is, if

E(>.••) =-5.00 , X1,2=± 37.13, whereas if E(j>•) = 5.00 , X1,2 = + 30.4. Although

the eigenvalues are real and distinct, they are of the same magnitude: exponential growth is

exactly offset by exponential decay - a hallmark of energy conservation or homoclinic

behavior (see Appendix C). The phase portrait for equations (12), iy) vs d[i)
dy

using nitrogen data, is shown in Figure (4).
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Figure 4: Phase Portrait for Ambipolar Region, Equation (12), with Nitrogen Data for 64
Different Initial Conditions using Ionization and Two-Body Recombination

Can the stagnation near the plasma boundary be reached? Is this region stable? The

behavior of the ambipolar region is driven by the initial conditions as applied to equations (12)

as shown by figure (4): if the initial conditions are such that region I is dominant, then the

manifolds of the stagnation near the plasma boundary, the saddle behavior (see Appendix C),

confine the system trajectories. If, on the other hand, the initial conditions are such that

region II is dominant, then the system will become unstable. The manifolds of this

linearization form the threshold, at least locally, which perhaps determines the requirements

for quasi-neutrality - the homoclinic trajectories, as given below:
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Vsddie manifold [d(W)]
dy•

- -2Wi(Debj+Didh)+iv(Debi+Didg)1
1

Here, the contributions of ambipolar diffusion, ionization and two-body recombination are

clearly seen; two-body recombination is found in the non-dimensional parameters [h] and [j].

More often than not, these homocinic trajectories can be volatile: any numeric round-off

error incurred through whatever computational algorithm used, will induce sufficient non-

linearities that will prevent the solution from being "pinned" to these manifolds, the manifolds

will break. Even if it were possible to achieve this exact trajectory, the initial conditions

imposed by matching the transition region to the ambipolar equation will most likely make

such efforts challenging. That is, the initial conditions provided to the quasi-neutral region

by the sheath determine the behavior of the ambipolar evolution: either stable periodicity as

shown by region I in Figure (4), or exponential growth as indicated by region 1I. In either

case, the behavior of the sheath ultimately determines the behavior of the outer regions and

therefore the anode fall, in general.

4. Comments/Oiservations

The preceding suggests that:

1. Ions, created through electron bombardment of neutral atoms throughout the
anode fall region, are repelled electrostatically from the positive electrode toward a
location of quasi-neutrality at the sheath boundary as well as toward an unstable
stagnation region near the plasma interface. These equilibria form as a result of the
chemistry present. That is, continuity (equations (9)) seems to require flow
equilibrium when quasi-neutral conditions are initially met within the sheath, and when
the plasma boundary is reached. It is recombination that establishes the latter while
the presence of ionization stipulates the former. Fundamentally, the sheath as
formulated is inherently unstable - ions are driven out of the system, toward the
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negative electrode: it is the role of the anode, alter all, to provide the positive current
"to the cathode [Ref. 43: p. 59].

2. At the moment of quasi-neutrality, when nin'e, there appears a conservative

phenomenon, such that the energy growth is matched by the energy loss - a chemical
balance. Is the sheath model as presented, an example of a system in which a certain
type of "fixed point" is always present, a stagnation region satisfying quasi-neutrality?
If so, does this equilibrium present a type of transcritical bifurcation whose stability
depends on the initially applied electric field? The brief analysis given in this chapter
does suggest such behavior - the onset of quasi-neutral characteristics, the sheath
boundary, might be indicative of a transcritical bifurcation.

3. The quasi-neutral balance, however, is insufficient to provide the necessary
stability condition to ensure the system progresses toward, and remains in the close
vicinity otf the plasma boundary fixed point. As such, any numeric solutions will most
likely be difficult to achieve. That is, the initial conditions provided to the quasi-
neutral region by the sheath determine the behavior of the ambipolar evolution: either
stable periodicity as shown by region I in Figure (4), or exponential growth as
indicated by region II. In either case, the behavior of the sheath ultimately determines
the behavior of the outer regions and therefore the anode fall, in general.

B. ANALYTICAL MATCHING - SUGGESTIONS

The analytic analysis presented in this chapter suggests that the anode fall model used

in this work does not represent sufficient dissipation, preventing the system from adjusting

itselfý to adhere, to the "stable manifold" of the stagnation region near the plasma boundary.

The model is most likely incomplete in its physical representation. Perhaps analytically

matching the second order sheath equations to the transition set which are then matched to

the ambipolar equation, may reveal an inconsistency between some of the physically

represented terms. Albeit this process seems challenging at first, perhaps some of the ideas

suggested next could be applied:

1. Three length scales have been found when equations (7-9) were non-
dimensionalized (Appendix A and Table 3). Three "small" parameters could then be
used to match equations (10-12) as follows: Assume the sheath equations (10)
behave rapidly over a very small distance, hence a fast changing parameter should be
applied, 1/8zO(LE). Further, assume the ambipolar model (12) as varying slowly in
comparison, ezO(Ln or L1). In between is a region of transition where rl=e/6. But
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where are these equations matched?

3. To determine the location of matching, the fixed points found from equations (7-9)
could be used as a starting point. The linearization of equations (10-12) about these
stagnation regions, then provides the criteria for matching: the respective manifolds
describe the number density and the density gradients evident near these fixed points.
The interpretation: the manifolds given by the linearization about the fixed points
gives the conditions for matching, criteria which must be met by the preceding region
as the system is driven into the next zone. The manifolds for the fixed point near the
plasma boundary have already been presented in section A.3. above. The manifolds

for the fixed point near the sheath boundary can be found from Atransition by

using any symbolic mathematic utility such as MAPLE or MATHCAD. The
following is an illustration of the above concept:

Transition Model: Ambipolar Model:

Linearization Manifolds Linearization Manifolds

Determine Sheath to Determine Transition to

Transition atch. AmbipolarMatch
.....................

---------- IW.r----------Santo o;dr

n Stagna • Stagnation i.....

Distance from Wall

3. The initial conditions that are used for the sheath, however, remain a "shooting"
problem. Perhaps a numeric iteration scheme where many initial conditions are tested
might reveal some pattern for better selecting these conditions.
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VI. NUMERICAL RESULTS FOR NITROGEN

Using available MATLAB 4-5-stage Runge-Kutta algorithms, both equations (7-9)

and equations (10), as first order differential equations, are integrated numerically. The data

thus obtained were then exported into a Quattro-Pro spreadsheet for plotting and easier

analysis.

1. Length scales (Table 3) to determine the non-dimensional parameters:

LE < L,<,.

LE_= 0E kT0 L o ,
, L,, qE0  J.- qv0n0'

2. Non-dimensionalized initial conditions (Table 4 lists the numerical data for
nitrogen):

i01 1012 - (10 4)0(yT=0)=- 10_iO) EYj=o)= c
n. nn y E0

7(T=0)=_q2DeE(y=O)e(=O), y=O q2DiE(T= O)ni(Y=0)

ik(7o)=kT 0

The drift currents are used to generate the appropriate initial conditions at the
electrode wall since at the wall, the field induced motion will exceed that induced
thermally; it is assumed that initially any density gradients are zero. To gain insight
as to the impact of initial conditions on the system, the initial electric field is varied
from 0.01 to 20(10') V/m. The results are given below. Of note, the method used
to non-dimensionalize the variables (see Appendix A) gives rather small "non-
dimensional numbers" in terms of magnitude, especially when the integration results
shown are "close" to the electrode wall.
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A. SPACE-CHARGE REGION, SHEATH

In overview: For E(O) < Ethreshold = 0.0 4  ,the ion density behaves as expected,

increasing monotonically, being primarily influenced by its gradient. Both the low initial field

strength and the ion density gradient are insufficient, however, to push the species toward

quasi-neutrality when ni-n.. When E(0) ,Ethreshold= 0.04 , the initial field becomes

strong enough to affect the ion density as compared to its gradient; the ions are pushed

toward what appears as a density trough. Furthermore, for certain initial values of

An= Ini - nj vs E(0) , the ions are pushed past their minimum density point,

eventually approaching the electron density distribution, after which both densities remain

close in magnitude for a short distance; essentially, for adequately strong initial electric field,

quasi-neutrality is formed for a brief distance. The quasi-neutral characteristic is inherent

within the energy balance found in the ions, the balance between ionization and

recombination; without this balance, the space-charge region remains.

1. Varying Initial Conditions: Impact on System Behavior

To gauge the impact of various initial conditions, specifically combinations of species

density and electric field, on the sheath dynamics, equations (10) were integrated for

nr(O)=108 [1/m 3], n.(0)=1012 [1/m 3] and E(0)=6(10 4) [V/m] using the length scales as given

in Table 3. These conditions were chosen after varying the initial conditions as will be

described below.

Specifically for the ion density in the sheath:
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Ion Density vs Distance from Wall
Varying Initial Electric Field
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Figure 5: Ion Density vs Distance - E(O) __ Ehrmeshold

Figure (5) shows the ion density vs distance from the electrode wall for distances very

close to the electrode surface - in comparison, see Figure (8) given later in this chapter.

Again, the non-dimensionalization used makes the magnitudes for the density rather small,

but these magnitudes represent non-dimensional quantities and so should be multiplied by n,

(see Table 4).

At the electrode wall, in its immediate vicinity, there are at least two major vehicles

which drive the system away from the wall in steady-state: the initial electric field strength and

the density gradient, such that if the field strength is low enough, the gradient dominates the

system whereas if the field strength is high enough, the gradient influence becomes secondary

in nature. Figures (6)-(7) depict the magnitude of the ion density gradient vs distance from

the electrode wall and the electric field vs distance, respectively. Comparison with Figure (5)

leads to the speculation that for low electric field strength, E(0) <Etheshod = 0. 0 4  , the
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ion density is governed by its gradient, whereas when E/(0) = Ethreshold = 0.04 ,the electric

field drives the ions from the wall. When E(0) =0.04 the boundary is reached where

initial density gradient effects are surpassed by those of the field (Figures (5) and (6)). As

shown in Figure (5), the ion density appears to increase from the electrode wall for low initial

field; yet this growth does not continue for very long. Essentially, the field strength is

insufficient to drive the density further while the density gradient is too weak to provide the

necessary impetus for the ion and electron densities to match. In general, Figures (5)-(7)

show results for integrated variables in close vicinity of the electrode surface - in comparison,

see Figure (8).

Ion Density Gradient vs Distance
Varying Initial Electric Field
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Figure 6: Ion Density Gradient vs Distance - E(0) • Eteshold
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Electric Field vs Distance
Varying Initial Electric Field
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Figure 7: Electric Field vs Distance: E(O) _ Eteshold

A density minimum occurs whith the initial electric field strength increases (Figure

(8)). Moreover, the density decline reaches a minimum according to the electric field strength

imposed. A constriction is suggested where the location and magnitude of these minima

appear affected by the initial field strength as shown in Figure (8).

Ion Density vs Distance From Wall
Varying Initital Electric Field

2-~

E 07r-2- _ : ,
0O -4-••

-6 0) > 0.04 [non-dim] . Sufficiently strong
"-8. initial field pushes

ions past density
1:3 -12 ' ,minimum
C
o -14

O.OOE+O0 1.00E-06 2.00E-06 3.OOE-06 4.00E-06 5.00E-06
Distance from Electrode Wall [m]

M•t0) [non-dim] ]

- 4.75E+00- 4.83E+00- 4.92E+00- 5.00E+00- 5.08E+00

ne(O): 10^12 [1/m3], ni(O): 10^8 [I/m3]

Figure 8: Ion Density vs Distance - E(O) > EtmShold
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Figure (8) suggests the extent of the sheath as order 10('6), in agreement with the

theory which requires the shielding to be of Debye length: X,=[EokTo/q 2no]'. But only

sufficiently strong initial electric field intensities are able to push the ion densities past their

wells, past their constriction (Figure (8)).

In comparison, the electrons in the anode sheath behave as expected, being less

influenced by electrostatic repulsion than the ions. Figure (9) shows that for very low initial

field strength, the electron density increases monotonically, but only very slightly.

Electron Density vs Distance from Wall
Varying Initial Electric Field
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Figure 9: Electron Density vs Distance - E(O) • Ehrshold

So, it is expected that increasing initial field strength should give rise to increasing

electron density - this is the general case (Figure (10)). The electron density does decrease

very slightly before the location of ion minimum is reached as illustrated by Figures (1 0)-( 11);

Figure (11) represents a more detailed view of Figure (10) in the region before ion minimum.

Similar to the ion density, only sufficiently large initial field magnitudes push the electron

density past the location of ion well (Figure (10)). From a physical standpoint, it should be

remembered that both species are affected by electrostatic forces: the ions, however, are

influenced to a much greater extent due to the electrostatic repulsion required when like

charges are sufficiently close; qualitatively, these are the observations found in the preceding
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analysis (Chapter V).

Electron Density vs Distance From Wall
Varying Initial Electric Field
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Figure 10: Electron Density vs Distance - Near and Past Density Minimum E(O) > Ea.ýhojd
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If the initial field is sufficiently strong to push the ion density past its minimum, the minimum

occurs when the electric field curvature changes: that is, the field curvature as written in terms

of its potential A- ((V) changes signs. Shown in Figure (12) are the results for
d572

E(O) 5.08 with n,(0) = 108 l() 02[L

Densities & Electric Field vs Distance
Varying Initial Electric Field

10I Sheath Ambipolar10 • 11Forms I

E5-

wn -5 .on density minimum at j.. -- -

~E ionization potential: - - F ) >_ 0.0 5.08"-10 where field curvature (0)> 0.04 = 5.08
Q changes [non-dim]
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Ine(0)=10^12 [l/m3]; ni(O)=l0^8 [/m3]

Figure 12: Densities & Electric Field vs Distance - E(0) > Et.hjotd=5.08

Although a quasi-neutral region forms when the initial electric field is sufficiently strong so

as to push the ions past their well, the number density near the plasma boundary is not

reached: = 0.15695 as compared to the maximum density achieved

when ni.-ne where n" is on the order of l0 3 . Since ni-ne requires E = constant,

something else is needed to drive the system toward the plasma stagnation - some form of
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transition. To summarize the effect of initial conditions:

It appears that the anode fall is comprised of diverse behavior, in part determined by

the initial conditions chosen: there appear ranges of An =n - ne I vs E (0) for which

both equations (7-9) and equations (10) naturally form a region of quasi-neutrality whereas

for other ranges of An = In, - n, I vs E(0) , there seems insufficient initial energy to

push the ion density past its minimum. To gauge this effect, equations (10) were integrated

again but now E(O) was varied from 0.01 to 20(104) [V/m] for fixed An ranging between 109

to 1016 [1/in]. Figure (13) shows the results in semi-logarithmic format: the data points are

plotted for which E(0) is sufficient to drive the ion density past the minimum, toward the

electron density. From this plot, a type of "cut-off' region seems to form: to the left, the ions

remain locked in their density well, to the right, the ions are driven past this minimum toward

n/i - ne•

Initial Conditions: E vs Delta n
Sheath Equations
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Figure 13: How to Begin Selecting Initial Conditions E vs An: An-In1 -no

53



For the region of initial conditions for which ni - ne is reached, an interesting

result appears when the ion density is plotted against the corresponding ion density: a type

of phase portrait for the ions. Specifically, a multi-dimensional homoclinic-behavior results

(see Appendix C), a characteristic commonly associated with energy conservation: for

sufficient initial field, energy requires a balance between gains and losses, between ionization

and recombination. So, if the initial conditions are such that the ion density is pushed past its

well toward quasi-neutrality, the event of ni - ne closes the homoclinic orbit and energy

is balanced: a comparison between the case E(O)=5.00 and E(O)=4.17 is shownin

Figure (14).

Anode Fall: Phase Portrait
Ions.E 30 ,

"t" For sfficient initial field, ions
.LD are pushed past density -

" o0- energybalance

4)-20,

,,--14 -12 -10 -8 -6 -4 -2 0 2'
Ion Density [non-dim]

[lf(o) [•on-di.1 I Ine(O)=10-12 [1/m3]; ni(o)=10-8 [1/W)3]
-5.OOE+00 - 4t7E+O0

Figure 14: Anode Fall with Sufficient Initial Field - Phase Portrait for Ions

The integrated results of equations (10) not only provide the species density behavior,

but also their gradients. As such, a natural question arises as to the behavior of species drift

and random currents: the behavior of the species under the influences of an electrostatic field

(potential) as compared to the behavior in an environment free of potential.
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2. Drift and Random Currents

The species densities are not constant throughout a region which is influenced by an

electric field; a uniform electric field applied to a cloud of constant charge q will produce a

directed motion along with a variation of the concentration. From this principle, the species

drift currents are found [Ref. 57: pp. 53-55]:

Jo, j drifti. = qn ie ieVavg drift,.

.D d
=qnon,. 1J,,epi.EO E - ',' ..(n,."ie)

D e1
-qn0 nh, Deq EoE Die d -(EoTe) Equation (13)=+qnoenik kTo noi,,.ni,e L EdY",°

where the Einstein relation for mobility has been applied. To obtain the random current, the

thermal velocity is used such that

ri T0 Equation (14)

The effect of varying initial conditions, An vs E(O), are again determined in similar procedures

as for the species densities above as shown next. First, the ion currents are considered:

For field strengths E(O )<Ethreshold = 0.04 , the random ion current increases,

following the tendencies of the ion density (see Figure (5)). When the initial field is increased

such that E(O) _> Ethrehod = 0.04 ,the random and drift currents intersect as a function

of the rate of decrease or strength of initial field. Again, the random current (equation (14))

follows the density distribution for isothermal conditions. Figure (15) summarizes these

results for locations "close" to the electrode surface.
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Ion Current Density: Random & Drift
Varying Initial Electric Field
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Figure 15: Random & Drift Ion Current Density vs Distance - E(O) _g Ethrehold

If the initial electric field is sufficiently large so as to push the ions past their density

well, the drift current follows accordingly. Furthermore, the random current follows the ion

density as shown in Figure (16).

Ions: Currents, Gradient, Density
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Figure 16: Ions - Drift & Random Currents, Density & Gradient vs Distance - E(O)=5.08
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Of-note isithat-ion bothAhe-drift-and-random-currents eem ,to approach "4iing

value-as& the realm- of q~uasi-neutrality is approached;., perhaps the- saturation current as

theorized by Child and Langmuir [Ref. 58: p. 238]. Next, the electron currents are

considered:

For sufficiently large initial field, the rapid variation in the electron density gradient

(see Figure (11)) is markedly observed in the corresponding electron drift current - Figure

(17). Additionally, the electron random current does not intersect the electron drift current,

in comparison to that of the ions. Instead, the random electron current follows the tendencies

of the electron density (Figure (18)) where the negative charge of the electron reverses the

magnitude of the electron density plot (see Figure (11)), in comparison to the ion results.

Furthermore, when a sufficiently large initial field is applied, the electron drift current

increases past the point (spatial coordinate) of the density minimum, diverging spatially from

the random current (Figure (19)).
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Electron Current Density: Random
T Varying Initial Electric Field
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B. NUMERICALLY MATCHING

Although a quasi-neutral region forms when the initial electric field is sufficiently

strong so as to push the ions past their well, the number density near the plasma boundary is

not reached: n= 0.15695 as compared to the maximum density achieved

when ni - ne where n- is on the order of 10"'. Since ni ne requires E = constant,

something else is needed to drive the system toward the plasma stagnation - some form of

transition, for without it, the species densities diverge (Figure (20, 21)).

Anode Fall
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Figure 20: Anode Fall - Without Numeric Matching
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Anode Fall
Without Matihing
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Figure 21: Anode Fall - Without Numeric Matching (Expanded View)

In steady-state with isothermal conditions, with the electric field constant when

n - ne , there remain two primary phenomena which could drive the density toward the

plasma equilibrium: density gradient or ambipolar diffusion. To obtain the overall effect, first

the sheath equations as given by set (10) are matched numerically to the final ambipolar

equations, (12) using for the matching conditions n, in that result from equations (10)

provided the initial field is sufficiently strong to allow the ions to proceed past their density

well; the results for E(0)=6.1(10k) [V/m] and nr(0)=108 [1/i 3] with n"(0)=1012 [1/& 3] are

shown in Figure (22).
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Figure 22: Anode Fall - Numeric Matching without Transition

The density remains below the plasma boundary stagnation (Figures (22, 23))-

ambipolar diffusion is insufficient to drive the density toward the plasma boundary. The

cosinusoidal behavior shown is determined by the matching conditions imposed by the sheath

equations (10) upon the ambipolar equation (12) - Chapter V.
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Figure 23: Anode Fall - Numeric Matching without Transition (Expanded View)
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If, on the other hand, a full transition region is considered in which the density

gradient is the primary source to drive the system, then the plasma boundary density is

approached. The transition equations do not, however, reflect the impact of the density

growth on free diffusion - the formation of ambipolar diffusion. Hence, using the plasma

boundary stagnation, n * =0.15695 , along with the electric field intensity at the onset of

nt~ne as initial conditions (or matching conditions) to equations (12), the transition

equations (11) are numerically matched to the ambipolar formulation, set (12). Figure (24,

25) illustrates the results for E(O)=6. 1(104) [V/m] and ni(0)=108 [1/n?] with n.(0)=lO02 [1/n].
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Figure 24: Anode Fall - Numeric Matching with Transition
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Anode Fall
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Figure 25: Anode Fall - Numeric Matching with Transition (Expanded View)

The ambipolar region shown in Figures (24, 25) clearly shows the very sensitive

nature of this zone; the initial conditions to the transition region the consequent matching to

the ambipolar zone determine the characteristics of this latter region (see Chapter V, Figure

(4)). Specifically, the behavior of the anode fall region, as modeled by equations (7-9) and

equations (10-12), is governed by the initial conditions imposed to the transition by the

sheath. The ultimate condition that determines the anode fall characteristics, however, is the

initial field strength imposed upon the region: if the field is sufficiently strong, the ion density

is pushed past its well toward quasi-neutrality - these matching conditions, for the transition

equations, determine the rate of density increase and consequently the initial conditions for

the ambipolar equations. These criteria will then impose the behavior for the ambipolar

region, whether the manifolds of the plasma boundary stagnation restrict the system

characteristics, or whether the realm of instability is entered (see Chapter V and Figure (4)).
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VIIL SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

Voltage losses at electrode boundaries, surface erosion and sheath effects play an

important role in plasma devices and must be controlled in designs of practical interest.

Particularly, thermal arcjets and MPD accelerators deposit between 15% and 80% of the

input power to the anode. -This presents not only a severe performance penalty, but also

complicates the thermal design problems since the heat thus generated must be radiated away

from the thruster surfaces. [Ref. 7, 9] A natural question arises: what is the behavior found

in the anode region? Perhaps a restatement of the qualitative picture of the anode, as offered

by Ingold [Ref 43: pp.59-63], serves as an answer:

1. The anode fall voltage is on the order of the ionization potential of the gas since
electrons must be accelerated to an energy sufficiently high so that an ion current for
the positive column is provided.

2. The anode fall region is determined primarily by space-charge and secondly by the
ionization requirerfients.

Moreover, in a comprehensive review of anode-spot phenomena, Miller [Ref. 44]

suggests that a sudden increase in the voltage noise frequently indicates that an anode foot-

print could be forming or that a transition into the anode-spot mode could be occurring.

Further, this abrupt change in voltage has been associated with a sudden change of ion density

in the region near the anode, a density decrease that would leave the local electron space

charge uncompensated and thus produce a low-conductivity region. The sudden increase in

voltage would then reflect this local shortage of ions - an ion depletion region or ion

starvation region. Even-though the most suitable model for the anode region is still actively

debated, the general idea of the appearance of an ion deficiency region near the anode as

triggering the transition into the anode-spot mode has been fairly supported.

So to expand these qualitative portraits of the anode fall, this work investigated the

nature of the voltage drops in the vicinity of a non-emitting, positive electrode. The selected
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approach involves non-finear analysis techniques of the continuum governing equations for

steady-state, isothermal conditions in one dimension, where both ionization and two-body

recombination processes are considered. The following conclusions and observations are

offered:

B. CONCLUSIONS

Ions, created through electron bombardment of neutral atoms throughout the anode

fall region, are repelled electrostatically from the positive electrode toward a location of

quasi-neutrality at the sheath boundary, as well as toward an unstable stagnation region near

the plasma interface. These equilibria form as a result of the chemistry present. That is,

continuity (equations (9)) seems to require flow equilibrium when quasi-neutral conditions

are initially met within the sheath and when the plasma boundary is reached. It is

recombination that establishes the latter while the presence of ionization stipulates the former.

Fundamentally, the sheath, as formulated, is inherently unstable - ions are driven out of the

system, toward the negative electrode. The stagnation regions were obtained analytically,

through non-linear analysis techniques; to test these results, nitrogen data were used in a

numerical algorithm from which the following observations are made:

At the electrode wall, in its immediate vicinity, at least two major processes repel the

positive ions away from the wall in the isothermal, steady-state case: the initial electric field

strength and the initial density gradient. If the field strength is low enough, the gradient

dominates the system and the ion density behaves as expected, increasing monotonically for

a short distance. If the field strength is high enough, the gradient influence becomes secondary

in nature, the field then driving the species densities. However, the low initial field strength

and ion density gradient are insufficient to push the species toward quasi-neutrality, when

n,-ne. On the other hand, when the initial field becomes sufficiently strong as compared to

the species density gradient, the ions are pushed toward what appears as a density trough.

Furthermore, for certain initial values of An = Ini - n, vs E(0) , the ions are pushed past

their well, eventually approaching the electron density in magnitude but not merging: for

sufficiently strong initial field, quasi-neutrality forms in a self-consistent way. Further, if
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conditions permit the ions to traverse their density well, their constriction, then at the moment

of quasi-neutrality, when nn , there appears a conservative phenomenon for the ions,

where energy growth is matched by energy loss - a chemical balance.

At the onset of quasi-neutrality, however, the ensuing species densities do not match

the plasma neutrality requirements (Saha). Thus, a transition region must drive the system

toward the plasma boundary: for steady-state conditions, the primary mechanism is the

density gradient. When the species density becomes large enough, mutual Coulomb fields

affect free diffusion and ambipolar diffusion results. The ambipolar field then continues to

drive the ions away from the positive plate; the initial conditions to the transition region, the

consequent matching to the ambipolar zone, determine the characteristics of this latter region.

Specifically, the behavior of the anode fall region, as modeled by equations (7-9) and

equations (10-12), is governed by the initial conditions imposed to the transition by the

sheath. The ultimate condition that determines the anode fall characteristics, however, is the

initial field strength imposed upon the region: if the field is sufficiently strong, the ion density

is pushed past its well toward quasi-neutrality - these matching conditions for the transition

equations determine the rate of density increase and consequently the initial conditions for the

ambipolar equations. These criteria then determine whether the manifolds of the plasma

boundary stagnation restrict the system, or whether the realm of instability is entered. As

such, any numeric solutions will most likely be challenging, a result observed when, using

nitrogen data, the various anode fall regions are numerically matched.

Both the analysis and the numerical results suggest that the anode fall model used in

this work does not represent sufficient dissipation, preventing the system from adjusting itself,

to adhere, to the "stable manifold" of the stagnation region near the plasma boundary. The

model is most likely incomplete in its physical representation: either temperature gradients,

diffusion written in terms of the electric field, full time dependencies or quasi-steady

formulation, magnetic field effects and/or three-body recombination effects may provide the

necessary dissipation.
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C. RECOMMENDATIONS

To improve upon the results obtained in this work, further considerations should be

given to:

1. Species temperature variation throughout the fall region, specifically in the sheath.

2. Diffusion perhaps written as a function of the electric field instead of as assumed

constant for each species.

3. Full time-dependent and/or quasi-steady formulations for the anode fall.

4. The effect of three-body recombination on the stagnation regions found, as well
as the influences of magnetic fields on the system behavior.

This work presents a broad overview of many subjects, many of which really need

further investigation, among them:

1. Analytically matching the second order sheath equations to the transition set and
to the ambipolar equation; essentially, the analytic analog of the numeric matching
ideas presented in this work. The results of such mathematical treatment might reveal
that, in fact, more physics is needed in equations (7-9).

2. Further investigation of the sensitivity to initial conditions for the ion density well
as well as quasi-neutral zone formation; a wider range of initial conditions should be
tested in the hopes of finding some better relation between An versus E which would
be of aid in any numeric endeavor. Such analysis should also focus on a variety of
gases, not be limited to nitrogen; possible candidates include xenon and argon.

3. Generation of a current versus voltage curve, I-V curve, by integrating the electric
field data and using the current calculations given in this work. Does the result match
the literature?
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APPENDIX A. NON-DIMENSIONALIZATION

Mathematical derivations are frequently burdened by complicated functions of the

constants in the problems. Before the mathematical analysis is carried out, a preliminary

dimensional analysis may not only reveal the ways in which some of the constants enter into

the final solution, but also unveil significant dimensionless products of a problem. Then the

original differential equations may be expressed in terms of dimensionless notation, a method

particularly useful since model laws are usually derived from the differential equations that

govern phenomena. [Ref 59: p. 144] Dimensional analysis is a process in as much influenced

by art as it is by scientific methods: two principles were applied to this work - the

Buckingham Pi Theorem and Fractional Analysis coupled with the physical requirements

brought by the governing equations themselves.

A. BUCKINGHAM PI THEOREM

The Pi Theorem may be stated as "The number of dimensionless products in a

complete set is equal to the total number of variables minus the rank of their dimensional

matrix." [Ref. 59: p. 31] In using the Pi Theorem, the following conditions should be fulfilled:

[Ref. 60: p. 20]

1. The list of dimensional parameters must contain all of the parameters of physical
significance including all independent parameters and one dependent parameter.

2. The non-dimensional pi's as finally composed should contain, at least once, each
of the parameters in the original list.

3. The list of dimensions used to compose the physical parameters must be
independent, or else provision must be made to compensate for the redundancy.

There are infinitely many different complete sets of dimensionless products that can

be formed from a given set of variables. Insofar as Buckingham's theorem is concerned, any

such complete set is admissible, with some sets more useful than others. So how may a

complete set of dimensionless products be most advantageously selected at the outset?
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1. Arrangement of Variables and Terminology

As Buckingham has pointed out, the maximum amount of experimental control over

the dimensionless variables is obtained if the dependent variable does not occur in more than

one dimensionless product, a product referred to as the "dependent dimensionless variable

or pi" [Ref 59]. Using a dimensional matrix as outlined in reference 59, the preceding

condition will be realized, as nearly as possible, if in the dimensional matrix the first variable

is the dependent variable, the second variable is that which is easiest to regulate

experimentally, the third variable is that which is next easiest to regulate experimentally, and

so on. [Ref. 59: p. 39] Consequently, the variables describing equations (7-9) are arranged

as follows: E=x1, nh=x 2, ne=x 3, j-=x4, y=x5 , D,=x6,, v ix7 , Ix, Di=x9, k~x10, To--x11, a2=x 12,

'Eo-x 1 3, and q=x 14 where E represents the electric field, n,, characterize the ion and electron

number densities, respectively, j,, are the ion and electron current densities, respectively, y is

the geometry coordinate length, D,, characterize the ion and electron diffusivities,

respectively, and v is the ionization coefficient. Universal constants and those variables held

constant are entered last in the matrix since these are not deemed "experimentally

controllable": k is the Boltzmann constant, a 2 the two-body recombination coefficient, and

co the permittivity of free space with q as the charge. The entries of the matrix are next made:

the dependent variable, i.e., the first entry in the matrix, is the electric field, since in terms of

voltage applied, it governs the space charge development. The second and third entries into

this matrix represent the number density distributions and govern the current development.

All other variable entries are made arbitrarily, the only requirement being that arrangement

which gives a linearly independent solution for x1 ....x,4. To complete the dimensional matrix,

each variable and constant is written in terms of the fundamental units of mass (M), length

(L), time (t), charge (Q) and temperature (0); the matrix outlining the coefficients of these

units for each variable becomes:
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En IT Iy De v D k I a, _ Iq

[M] 1 0 0 0 0 0 0 0 0 1 0 0 -1 0

[IL 1 -3 -3 -2 1 2 0 -2 2 2 0 3 -3 0

[t] -2 0 0 -1 0 -1 -1 -1 -1 -2 0 -1 2 0

[Q] -1 0 0 1 0 0 0 1 0 0 0 0 2 1

[01 0 0 0 0 0 0 0 0 0 -1 1 0 0 0

Table 7: Variables in Terms of Fundamental Units

There will be 14-5--9 dimensionless pi's (number of variables minus the number of units

necessary to describe them). In fact the rank of this matrix is five which not only reflects the

number of fundamental units necessary, but also the five constants of the problem: k, T., q,

E, a2 . Solving for the variables xi for i=10.. 14, in terms of the variables Y for j=l ..9 results

in the homogenous, linear, algebraic equations. By taking this equation set into matrix format

and solving for each variable x, where i=1..9, the homogeneous, linearly independent non-

dimensional pi's can be determined:

X10=-2 xi -3 x2 -3 x 3 -5 x4 +X 5 -x6 -3 x7 -5 x, -x 9

x11 -2xi -3 x2 -3x 3 --5 x 4 +x -x 6 -3 x7 -5 x8 - x
x12=-x 4 -x 6 -x 7 -x 8 -x 9

x 13 = -x 1 -3 x2 -3 x 3 -5 x4 + x 5 -x 6 -3 x7 -5x 8 -x 9

x 14 =3 x1 + 6 x2 + 6 x3 + 9 x 4 - 2 x. + 2 x6 + 6 x7 + 9 x, + 2 x9

X, X2  X3  X4  X5  X6  X7  X8 X9  X i0 XlI X12  X13 X14

1(m) (A I N)IDe) I(V ii) (Di) (k) (T.) (a2) (__ (C_

1 0 0 0 0 0 0 0 0 -2 -2 0 -1 3

0 1 0 0 0 0 0 0 0 -3 -3 0 -3 6

0 0 1 0 0 0 0 0 0 -3 -3 0 -3 6

0 0 0 1 0 0 0 0 0 -5 -5 -1 -5 9

0 0 0 0 1 0 0 0 0 1 1 0 1 -2

0 0 0 0 0 1 0 0 0 -1 -1 -1 -1 2

0 0 0 0 0 0 1 0 0 -3 -3 -1 -3 6

0 0 0 0 0 0 0 1 0 -5 -5 -1 -5 9

0 0 0 0 0 0 0 0 1 -1 -1 -1 -1 2

Table 8: Buckingham Pi's - Matrix Formulation
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Non-dimensional Relationship Between Non-dimensional Buckingham Pi's

Variables Variables, Buckingham Pi's and

Undisturbed Plasma Values

E = E 
q_ _

Eo ( kTo) 2E

ni i=="i-"K-[ n.]
E.,

0n

n.e n., = 7c3 n,, = n 7E q2

J =. e4je 7_- q9

J ( kT)eo a 2

i-i 9""it 5  -q9
i=75E (kT,) 5 E5° a2

yy =,-ny- -Y L are characteristic (T- ) E(
L length scales q 2

Dq2D. D" =7 D, n ° 7-ko)%

DD D7 De -2L q 2Doi 7 (k 0 )E 0 a2

vi Vi t=79  vi= 6 719 -

Vi. (kT ) 3 EI 2

Table 9: Relationship Between Non-dimensional Variables, Buckingham Pi's and
Undisturbed Plasma Values

When these pi's are inserted into the appropriate governing equations, each term in the

equation will have a non-dimensional parameter affecting it. For example, the dimensional

Gauss dEq (ni -ne) written with Buckingham Pi's gives
dy E0
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7rdE=[ q ]n_[q ]ln or
7EI dT "L2o L 3J e

dE 7Eq 71 q~It

It is the constants and pi's within the brackets that form the non-dimensional parameters.

2. Pi Theorem - Results and Conclusions

Although the Pi Theorem forms a good framework for discussing the nature of units,

dimensions and related topics, the theorem, when used as the only means toward analysis,

suffers from several deficiencies:

1. No direct means for finding the pertinent pi's is available and dimensional analysis
itself provides little framework for incorporating relevant physical information.

2. The theorem alone does not provide conditions under which one or more pi's can
be neglected or for which sets of dimensionless groups may be combined.

So another method must be used to make the problem non-dimensional.

B. FRACTIONAL ANALYSIS

There is another common method of dimensional analysis that is intrinsically the same

as the foregoing technique but differs from it in that the differential equations are expressed

in dimensionless forms by applying, among others, a characteristic length L and/or a

characteristic time period tr, such that x_= -x, T= t ; that is, all variables are non-L" •

dimensionalized by introducing appropriate characteristic values - fractional analysis. [Ref.

59] A fractional analysis is any procedure for obtaining some information about the answer

to a problem in the absence of methods or time for finding a complete solution, a method

from which an approximate analytical or numerical solution can be obtained [Ref, 60].

Specifically:
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1. What is the physical meaning of each of the governing parameters and variable?
What are the qualitative effects of an increase or decrease in any given parameter or
variable?

2. Can we find the conditions under which the effects of certain parameters can be
neglected either in a given region or for a particular problem? If so, does this lead to
governing equations that are more tractable so that they can be solved even though
the general equations cannot be solved?

3. Are there any combinations of two or more non-dimensional parameters or
variables, or transformations of variables, which lead to fewer independent quantities
or which simplify the correlations achieved?

To answer these questions, the confines of traditional dimensional analysis, as a tool

by itselW are exceeded and other methods must be employed. One such method incorporates

dimensional analysis with governing equations as advocated by Sedov [Ref. 61]. Sedov has

clearly shown that important information can be obtained by simultaneous use of the

governing equations together with dimensional analysis. Consequently a systematic

methodology is needed to obtain information directly from the governing equations without

actually solving them, a methodology involving three primary ideas: [Ref 60: p. 66-70]

1. Normalization based on governing equations; making equations and conditions
non-dimensional in terms of non-dimensional variables of standard magnitude.

2. Absorption of parameters.

3. Combination of variables.

To carry out such procedures, a clear understanding of the physical information

inherent in the equations is essential. Of equal importance is using a standard procedures for

transforming the variables to non-dimensional form and standard magnitude; it is not

sufficient to make governing equations non-dimensional in any arbitrary way. So of the three

processes stated above, normalization is the most important. [Ref 60]

Here, normalization is defined as making the governing equations and conditions non-
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dimensional in terms of non-dimensional variables of standard magnitude. To carry out a

normalization, two steps are usually required: 1) making all the variables non-dimensional in

terms of the appropriate scales of the problem; 2) dividing through the equation by the

coefficient of one term to make the equation dimensionless (unit-free) term by term. Further,

the method for choosing the scaling is critical as this choice will permutate throughout the

ensuing analysis. To this end, the following procedure is used (after Kline):

1. Define all dependent non-dimensional variables so that they are approximately
unity over a finite distance and nowhere exceed approximately unity in the domain of
concern; in this work, the undisturbed plasma values are used, denoted by a "o"
subscript.

2. Define all independent non-dimensional variables so that their increment is
approximately unity over the same domain of concern (0 to 1, 1 to 2, etc, in the new
variables).

As a result, the dimensionless groups formed are usually composed from the boundary

conditions; from the characterizing sizes or scales of the body; and from the physical

constraints of the original equation such as system properties, physical constants or both.

In general, it is not known in advance, which choice of pi's gives the most useful set of

parameters but it is obvious that the fewer pi's required to specify the behavior, the more

useful the result will be. So, how to reduce the number of pi's and consequently parameters?

[Ref 60: pp. 75-94] The choice of length or time-scales coupled with physical insight are the

first step in this effort, an effort leading to a "modified fractional analysis."

C. MODIFIED FRACTIONAL ANALYSIS: ANODE FALL

1. Non-dimensional Parameters

The derivative term found in the governing equations for the anode fall, equations

(7-9), is important since without which the conditions at the plasma boundary could not be

satisfied. So to make all the variables non-dimensional in terms of the appropriate scale, the

equations are divided through by the coefficients of the derivative terms to form the necessary

system parameters where both Buckingham Pi's and undisturbed plasma values were used to

normalize the variables. Following is a list of the results obtained:
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Governing Equations Non-dimensional Non-dimensional

[Equations (7-9)] Parameters via Parameters via Undisturbed

Buckingham Pi's Plasma Values

d(~)=[a i~f_-[b]q b- a= q b 1 EL =

d.( i_)a - =1 6kT [ 5qJ kTD 5 qnoDo,

d(,) 7E dq h 14qi
e_____ +_[_dqE'L

d(7 LD c nkTl, d 7 jJ[kT 4nDJ
L ~) I[e 1w -i 1 L-~6o fNne 6 E e1ý ['aL~ 6q]E

d~e) -- g]7ic+[]i' tl q 1qn LE_ [qn. LEI

d,_1.) 6 r :rq '1 j_ 2=:5qrx 1 'q' <l-[ qvo , ] [-7=qa'n<'n<0L']gJ2 EsIae [f thhe Lenh S e

wher Die abzeove h aibe hr normajized~ usn 0nditre lasavle ic

1=' 1n n [ a~

3. n3U6  7[ a236  qIqnnL1

Non-dimensional Parameters

2. Estimate of the Length Scales

In the above, the variables where normalized using undisturbed plasma values since

the Buckingham's Theorem does not reflect the physics at hand: for example, the process of

ionization affects the number density distribution in the sheath resulting in electric field

variations and consequently influencing the current distribution. It would be difficult for one

length scale to capture each of these behaviors. Consequently physical reasoning must be the

foundation from which to estimate the length scales of the problem.

The neutral plasma is shielded from the space-charge region through coulombic

effects, effects which should drive the length scales affecting the associated momentum

exchange processes. The first term on the right-hand side of equations (7a) and (7b) model

these effects and are used to estimate the length scale affecting the number density

distribution: Ln, L, . Specifically,
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d~i.)[a1•'-[b]" Equation (7a)

di)-[c]1 ,E+[Fdl js Equation (7b)
d5 LDe

where [a] and [c] are the coefficients for the coulombic terms summarized in Table 2 (main

body of this work). Through the process of non-dimensionalization, the parameters are 0(l)

and the length scales become: Lk E-0o L = - Similarly, the length scale for the
qEo' , -qEo

electric field comes strictly from Gauss, equation (8), where either term can be used to

estimate the electric field length scale since the undisturbed plasma value for n0 is the same

for both ions and electrons:

d(E)= [e ] -[f]ne Equation (8)
dT

Using the non-dimensionalization result that all parameters are 0(1), LE= E- E, where
qn 0

the parameters [e] and [f] are again given in Table 2.

Within the sheath, the ionization process outweighs the recombination loss, so in

equations (9a) and (9b) the ionization term, the first term on the right-hand side of the

equations, is used to estimate the current density length scales:

d(j,) = [g + [h nui-, Equation (9a)

d(j,) =[ _ [j], Equation (9b)

That is, the non-dimensional parameters [g] and [i] (Table 2) estimate the length scales for
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the appropriate current density: Lj- = , Lj.- Essentially, the current scale
q v, n., qvno,

reflects the influence of ionization.

3. Dimensionless Products - Groupings

Occasionally transforming dimensionless products to achieve greater control of the

variables is desired or may form a useful grouping: the various results formed through non-

dimensionalizing the Navier-Stokes equations are examples. The following combination of

parameters have been found from equations (10-12):
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Parameter Groupings Groupings in Terms of Problem Constants

from Equations (10-12)

[bg "bi LniLivono0SDi - Dno,

Fb j bj Z n:o,

D[ DJ De

[d g ] [ g " _ L no

[D ~D,

L L L n

Al adh n,Y,o 2no

D ý D .e D ,,

[ae] [aeI= Lflq 2L'noi- LLJE

kToO )D 2

2 Ln L

~cf] {cfl= LTq Eo~ D 2

[qý qf] Lnq 2 L n L LJ
kT,,E0  D

IeI [ce]= L,,q 2 L~no0  LJ

Table 10: Non-dimensional Parameter Groupings

79



4. Summary

Fractional analysis coupled with the use of the governing equations indicates that

potentially five length scales are present, one for each of the governing equations; however,

by using undisturbed plasma values for the normalization, three length scales result: a scale

reflecting the conservation of momentum, one for the variation of the electric field, and the

third for charge conservation. Of these three lengths, the electric field scale is the smallest,

indicating the extent of the sheath as the space-charge region defines this region. The number

density scale, on the other hand, acts over the entire range of the anode fall and so should be

larger in magnitude than that for the electric field scale. The largest of the length scales is the

current scale since the current follows the variation in species density according to js=qnlvý

where s=i,e:

Sheath: Transition Zone: Ambipolar Region:

Space-Charge Dominant Number Density Gradient Equilibrium Near Plasma

Dominant Boundary

LE-an0 LE =LL . L.,, = qn,_

LE= -qýo, L =-qn 0 n qE 0  " on
0 "

kT, Joi.
L-,qE0  Lj4 qv~n0,

Lj4-

Length Scales via Fractional Analysis
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APPENDIX B. IONIZATION AND TWO-BODY RECOMBINATION DATA
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APPENDIX C. NON-LINEAR DYNAMICS - AN OVERVIEW

When exact closed-form solutions of a physical system as modeled by appropriate

differential equations are difficult to obtain, or when the exact solution is too complicated to

be useful, then the first step toward an approximate solution is local analysis. The results of

such analysis are valid only in a sufficiently small neighborhood of a point, so ultimately a

uniform approximation to the behavior of the solution over an entire interval may be found

by piecing together regions where the local behavior is known through global analysis

techniques involving perturbative and asymptotic methods. The following is a brief overview

and adaptation of references 55 and 54 as well as class notes, reference 62.

A. LOCAL ANALYSIS: THE BASICS

If the general system given by

4 (xl,.. .,x,,)

S=f ,( x,,...,x,,)

is visualized as trajectories flowing through an n-dimensional phase or velocity space with

coordinates (x1,..,x.), differential equations can be interpreted geometrically as vector fields,

where now the velocity of the flow, the rate of change of the system behavior, can be plotted

and the corresponding equilibria (stagnation or fixed points) of the system determined where

the flow velocity is zero: the fixed points are calculated when the first variation tends to

zero - calculus of variations. Linearization techniques, local Taylor series expansion about

the stagnation, can now be used to find the stability about these points. Such analysis

contains qualitative information about the dynamical behavior of the system leading to an

overall explanation as to "why things happen the way they do."
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In general, the behavior of a one-dimensional dynamical system i =f(x) is

considered as a fluid flowing along the real line with local velocityf(x). This imaginary fluid

is referred to as the phase fluid and the real line is the phase space. In higher dimensions, a

similar situation occurs. The solution to i1 =fz(xJ,...',x) V i =1,2,.*.,,n given an

arbitrary initial condition x. is then represented by the trajectory of the flow in n-dimensional

space as determined by the function under investigation. The collection of these trajectories

are referred to as a phase portrait whose appearance is controlled by the fixed points

(stagnation, equilibria or zeros) x* as defined byf(x*)=O. This fixed point is defined as stable

if all sufficiently small disturbances away from it dampen out as t--o. Conversely, unstable

equilibria are those for which disturbances grow in time.

B. LINEAR STABILITY ANALYSIS

An n-th order differential equation can be expressed as a system of n first-order

equations by appropriate changes in the variables. To determine the rate of decay to a stable

fixed point, linearization techniques about the equilibria are applied. For example, let x* be

a fixed point and let rj(t)=x(t)-x* be a small perturbation away from x*. To see whether the

perturbation grows or decays, a differential equation for 1I is formed:

-d(x -x*)= since x* remains constant by definition of stagnation points.

Consequently,

7 d=(x-x*)=-=f(x)=f(x*+i1) where f(x*+1l)•f(x*)+nf(X*)+O(rl2 )
dt
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Noting thatf(x*)=O, fj = rJ'(x *) +O(TI2 ) Moreover, iff '(x*)*0, then

= nf'(x*) is the linearization about x* where the perturbation rl(t) grows

exponentially if f'(x*)>O and decays exponentially providedf'(x*)<O. In essence, the slope

or the rate of change off'(x*) at the fixed point determines the stability of the stagnation.

If the dimension of the dynamical system is more than one dimensional, the procedure

for stability analysis is similar but now a multi-variable Taylor series expansion is used for the

linearization technique. Consider a two-dimensional non-linear system where the general

form of a vector field on the phase plane is given by

X2=f 2 (x1,X2 )

withf1 andf 2 as given functions. In vector notation, x=(xl,x2 ) andf (x) = [f (x)f2 (x)]. Here,

x represents a point in the phase plane and _t is the velocity vector at that point. By

flowing along the vector field, a phase point traces out a solution x(t), corresponding to a

trajectory winding through the phase plane. Essentially the entire phase plane is filled with

trajectories since each point can play the role of an initial condition. For nonlinear systems,

however, it remains a challenging task to find these trajectories, the solutions, analytically.

Even when explicit solutions are available, their form is often intractable and provide limited

insight: the importance of a qualitative analysis to understand the characteristics, the

dynamical behavior, of a system becomes apparent.

Consider the system

x=f(x,y)
j,=g(x,y)
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and suppose that (x*,y*) represents an equilibrium position, i.e.,f (x*,y*)=O and g (x*,y*)=O.

To begin linearization, let u=x-x* and let w=y-y* be components of small perturbations away

from the stagnation. To see whether the disturbance grows or decays, a differential equation

for u and w must be found similarly to the one-dimensional method above (noting that x* and

y* remain constant by definition of equilibrium):

I =: =f(x* +uyv* +w)=f(x*.v*)+ +a (./)+w a (/)+O(u2,w2,uw)a ay
=fa (x)+wfa +/fo( u2, w,,w)

ax ay

ax ay
and

=g(x * y*) a a 0 2 2UW

=U_ (g) +W ±(g) +O(u),w 2,Uw)
ax ay

where partial derivatives in the preceding are all evaluated at (x*,y*). That is, the effects of

the perturbations (u,w) evolve according to the linearized system:

-(g) -(g) .
-ax ay (x %Y)

The matrix of partial derivatives evaluated at the stagnation (x*,y*) is termed the Jacobian

matrix, the multi-variable analogue of the derivativef'(x*) developed for the one-dimensional

system. Furthermore, if the quadratic terms found in O(u,wu, uw) are sufficiently small, then

the behavior of the linearized system can be analyzed through study of the Jacobian matrix

alone.
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C. CLASSIFICATIONS OF FIXED POINTS

To classify all possible phase portraits that can occur given an arbitrary Jacobian

matrix, it should be noted that the coordinate axes play a critical geometric role; they

determine the direction of the flow as t-±-o, containing straight-line trajectories. A trajectory

starting on one of these axes stays on that axis forever and exhibits simple exponential growth

or decay along it. For the general case, however, the analog of these straight-line trajectories

has to be found, so trajectories of the form x(t) = e t V , where V*0 is some fixed vector,

are sought with X as a growth rate, also to be determined. If such solutions exist, they

correspond to exponential motion along the line spanned by the vector V. The conditions on

X and V are determined by the eigenvalues and corresponding eigenvectors of the Jacobian

matrix, respectively. That is, the characteristics of the linearized system are determined by

the nature of the Jacobian eigenvalues.

1. Robustness of Linearization

The stability of a fixed point can be classified in terms of robust or marginal cases.

Robust cases are those for which the stability does not change under the influence of small

non-linear terms such as repellers (sources), attractors (sinks) or saddles. Specifically,

repellers are those fixed points for which the Jacobian displays positive real parts for all

eigenvalues, attractors are those characteristics which display negative real parts for all

eigenvalues. Saddles occur when one eigenvalue is real and positive while the other is real

and negative. Marginal stability results when both eigenvalues are imaginary (centers) or

when at least one of the eigenvalues is zero. For marginal stability, then, at least one of

eigenvalues satisfies Re(X)=O whereas for robust stability, Re(X)*O; that is, for marginal

stability, the trace of the Jacobian matrix is zero or the flow divergence is zero, implying that

the flow volume is preserved.

2. Real, Distinct Eigenvalues

In general, trajectories approach the origin of the phase portrait tangent to the slow

eigendirection, the direction spanned by the eigenvector with the smaller Al!. If PA21<1X1 , then

the trajectories approach X2 as t--o:
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Fast

\

Real, Distinct Eigenvalues -
0<142 <1,X 11 and X1, X2<0

"Node"

If all eigenvalues are positive and distinct, then the behavior locally about the respective

stagnation is termed "unstable node", whereas if all eigenvalues are negative and distinct, then

the dynamics about the fixed point is called "stable node".

What happens when one of the eigenvalues is positive while the other is negative?

If X>O, the corresponding eigensolution grows exponentially; if X<O, the eigensolution decays

exponentially. The stable manifold corresponds to the line spanned by the eigenvector formed

by )<O, whereas the unstable manifold corresponds to the line spanned by the eigenvector

formed by X>0. The combination of such behavior forms the "saddle" where trajectories are

attracted toward the stable manifold and repelled as the unstable manifold is approached:

Y
Stable 

Unstable

Real, Distinct Eigenvalues -
)'I<O, )2>0 "Saddle"
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3. Complex Eigenvalues

The eigenvalues of the Jacobian determine the local dynamical behavior of the system:

the eigensolution x(t) = cl eXit V +C 2e V2 is affected by the eigenvalues according

to the behavior of e?. If j12=coi&, then the system is influenced by eaY• where a is the real

component of the complex eigenvalue (damping) and W is the imaginary component, WO.

By Euler's formula, e---cos(ot)+i[sin(wt)] and so x(t) becomes a cosinusoidal function with

exponential growth, instability, according to e"t if a>O, or with exponential decay, stability,

if a<O. Such behavior is termed "spiral", unstable or stable depending on whether energy is

supplied to the flow or taken from the flow.

x

Complex Eigenvalues:
AX1,2 =a'-kit "Spiral"

1f on the other hand, the eigenvalues are purely imaginary, a=O, then all solutions are

periodic with period T=2n/wA where the oscillations have constant amplitude.

Y

Sx

Imaginary Eigenvalues:
X1,2 =±-iAot "Center"
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Centers, or systems with purely imaginary eigenvalues, occur generally where energy

is conserved, corresponding to a state of neutrally stable equilibrium, or a position of

minimum energy, although the linearization represented is not robust. Small non-linear terms

can change the characteristics from periodicity to exponential growth or decay (see below).

4. Real, Equal Eigenvalues

Suppose that ).,=42=),, the eigenvalues of the system are equal. Two possibilities now

exist: either there are two independent manifolds corresponding to X., or there is only one.

If two independent manifolds exist, then they span the plane and so every vector forms

a manifold with this same eigenvalue k. If XO, all trajectories are straight lines through the

corresponding equilibrium position which is now termed a "star", stable or unstable if ,<O

or if ý>O, respectively:

Real, Equal Eigenvalues:
X1=X2=X>0 "Star"

If the eigenspace corresponding to the eigenvalue X is one dimensional, i.e., there is

only one manifold corresponding to ., the corresponding fixed point is a "degenerate node":

as t-.±• where all trajectories become parallel to the one available eigendirection. Essentially,

this behavior results when two distinct manifolds are scissored together with some of the

trajectories becoming trapped in the collapsing region between the two eigendirections, while

the surviving trajectories are pulled around to form the degenerate node with stability

determined according to 1.<0 or X>0. The degenerate node is a borderline case between a

spiral and a node; the trajectories are trying to wind around in a spiral (complex eigenvalues),

but insufficient energy is present to complete the winding:
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S~x

Real, Equal Eigenvalues with One
Manifold: X 1,2 =X

5. Miscellaneous

a. Small Non-linear Terms Change Linearization Stability-Sometimes

In the presence of non-linear terms, the character of marginally stable fixed

points can change: centers, stars and degenerate nodes all satisfy the criterion Re(.X)=O. For

example, if the linearization predicts a center, the influence of non-linear effects causes the

phase portrait to show a stable or unstable spiral, a stable or unstable node; the presence of

non-linear terms violate Re(X)=O by either adding or removing energy from the system,

driving it away from the conserved state (center). Similarly, stars and degenerate nodes can

also change their character, but unlike centers, non-linear effects change only the character

of the star or degenerate node, not their stability: stable star to stable spiral or stable node,

for example.

The phase portrait is structurally stable if its topology is not changed by arbitrary small

perturbations to the vector field: the phase portrait of a saddle point is structurally stable, but

that of a center is not since an arbitrary small amount of damping converts the center to a

spiral. Essentially, if the phase portrait changes its topological structure as a parameter is

varied, a bifurcation is in progress.

b. Example: A Glider

Consider a glider flying at speed v at an angle 0 to the horizontal. Its motion

is governed approximately by the dimensionless equations
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d-v =-sin(0) -Dy 2

dt

v d_ =_-cos (0) + v2

dt

where the trigonometric terms represent the effects of gravity and the v2 terms represent the

effects of drag and lift. Here, it is desired to find the effects on the glider performance as the

drag parameter, D, is varied.

To begin the analysis, first a local analysis is performed about any stationary points

(fixed points) that occur when the derivative terms are set to zero. These fixed points are

then used to evaluate the linearization (Jacobian) so that the system characteristics about the

stagnation can be determined in terms of eigenvalues and eigenvectors. The results are

summarized:

Fixed Point J Comments [Jacobian Eigenvalues

(nat, 1) n=0,2,4,6,... •x2-2D±- 4D 2 -8
2

(nrn,- 1) n=0,2,4,6,... X -2D± /4D 2 - 8
"12 2

From the preceding, it is seen that if the drag D>2 in non-dimensional terms, the eigenvalues

of both fixed points will always be real and distinct. The associated dynamical behavior,

locally, can therefore be characterized as a stable node for the fixed point (nir,l) and as an

unstable node for (nat,-1). If D>, then the trace of the Jacobian (sum of respective

eigenvalues) will always be less than zero for the fixed point (nrt, 1), while the instability for

(nnt,-1) is shown by the exponential growth of the oscillation component of the associated
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system eigenvalues (trace>0).

If 2_D_>0, the eigenvalues are complex and hence the local dynamics of the system

is represented by stable spirals for (nrt,1) and an unstable spiral for (nrc,-1). Similarly, the

stability/instability is evident through the exponential decay/growth of the oscillations

characterized by the real component of the respective eigenvalues. It should be noted that

when D=2, the eigenvalues are real and equal, however. Consequently, the system behavior

should be that of a star or a degenerate node: a spiral (unstable or stable, depending on the

eigenvalues), is found instead. Here is evidence that nonlinear terms in the system can change

the local behavior from that which is predicted by the linearization analysis.

If D=O, the case of no drag, then the eigenvalues for the fixed point (nit, 1) with n--O

will be imaginary, reflecting pure oscillation of the system and consequently periodic solutions

with period T=2nt/a. The resulting equilibria are characterized as centers and describe the

lowest energy or power state of the system, the glider moving in a potential field, gravity,

without any other influences. That is, the glider moves along lines of constant energy, along

a curved flight path with a radius of curvature equal to the absolute altitude, experiencing the

standard "fictitious" forces due to relative motion (centripetal acceleration, for example).

In general, for D>O, the case of increasing drag, the centers at (nnr, 1) transition to

stable spirals/nodes, whereas the centers at (nT,-1) transition to unstable spirals/nodes. From

an eigenvalue consideration, both dampening and oscillations are now evident; the eigenvalues

are complex with exponential decay for the stable spiral/node and exponential growth for the

unstable spiral/node. In essence, drag tends to offset the lift generated, as expected. This

example shows that if the phase portrait changes its topological structure as a parameter is

varied, a bifurcation is in progress.

D. BIFURCATIONS

As indicated, the stability of a fixed point can change; such qualitative changes in

dynamics are referred to as bifurcations. Bifurcations provide models of transitions and

instabilities as some control parameter is varied, the onset of coherent radiation in a laser, for

example. Of the many types of bifurcations possible, only Saddle-node and Transcritical, are

outlined here.
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The saddle and transcritical bifurcations occur when one of the eigenvalues equals

zero, involving the collision of two or more fixed points. These types of bifurcations have

analogs in one, two and higher dimensions since the important behavior for these dynamics

are confined to a one-dimensional subspace along which the bifurcation occurs, when

ReQ,)=O, while in the extra dimensions the flow is either simple attraction or repulsion from

that subspace.

1. Saddle-Node Bifurcations

The saddle-node bifurcation is the basic mechanism by which fixed points are created

and destroyed. For instance, as a parameter is varied, two fixed points move toward each

other, collide and mutually annihilate. The prototypical example of a saddle-node bifurcation

is given by the system )ý= -X where r is a small parameter determined by the
--y

problem at hand. Here, the motion is decoupled with the y-direction assumed arbitrarily as

exponentially decaying. The fixed points for this system are (x *y ) = (±V/f,0)

stagnation points which exist in the xy plane when r>O, coalesce when r=O and do not exist

(in xy space) when r<O. Upon further analysis, it is seen that the bifurcation is fundamentally

one-dimensional, with the fixed points sliding toward each other along the unstable manifold

of the saddle point at (x *, y = (-Vr,O) where r>O.

For two-dimensional system, and for higher-dimensional systems, the flow is limited

not only by fixed points (stagnation), buts also by closed orbits and the unions of fixed points

and the trajectories connecting them. The latter are referred to as heteroclinic orbits when
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they connect distinct points and homoclinic orbits when they connect a point to itself For

example, if the physical system is such that the unstable manifold of a saddle node intersects

with its stable manifold, the resulting orbit is called "homoclinic:" the connection of the

unstable manifold (X>0) and the stable manifold (A<O) of the saddle point is common in

conservative systems but can also occur in non-conservative systems. When the system

dynamics are such that additional damping is introduced, the tendency is for the homoclinic

orbit to break, causing the unstable manifold to have components which approach the fixed

point at the origin of the phase portrait as t--oo. This fixed point is then a sink, with

eigenvalues -aiX where a is the damping. [Ref 55: p. 45]

2. Transcritical Bifurcation

There are certain scientific situations where a fixed point (stagnation) must exist for

all values of a parameter and can never be destroyed. For example, in the logistic equation

there is a fixed point at zero population, regardless of the value of the growth rate; the laser

rate equation (classical) is another example for which a fixed point always exists. However,

such a fixed point may change its stability as the parameter is varied. The transcritical

bifurcation is the standard mechanism for such changes in stability, with normal form given

=rx=Jx 2
by: where r is control parameter determined by the problem. TheY=--Y

difference between the saddle-node and transcritical bifurcations is that in the latter, the fixed

points do not "disappear," their stability changes instead. Consider, for example, the laser

rate equation [Ref 54: p. 54]:

-n =gain - loss= GnW-kn

=Gn(fWo-an) -kn= GWon - aGn2 -kn

=(GW -k)n-(aG)n
2

where n(t) represents the number of photons, W characterizes the rate with which a single

excited atom spontaneously generates a photon per second offset by the number of photons
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per second that drop back to the ground state, a; W, is the pump strength. G is the gain

coefficient, and -K shows the rate at which photons are lost in the laser by scattering or

impurities. For the laser rate equation shown, two equilibria exist: nl*=O and

*GWo -k
n.* aG But what does this mean? Shown below are the phase portraits with

the fixed points indicated:

i4,

W~.c,•kG W* -AIG W* >&]G

When Wo< k/G, GWo-k<O, nl*=0 is stable and for low levels of incident energy (weak

pumping) the solution n,*=O must be valid since n(t), the number of photons generated, must

always be positive. Consequently, there can be no laser action - the laser acts like a lamp.

When the laser is pumped at a greater intensity such that now (GWo-k)>O or Wo>k/G holds,

the solution with n>O becomes possible and laser action is attained. The system undergoes

a transcritical bifurcation when Wo=k/G, the laser threshold for this model. When Wo>k/G

the lamp becomes a laser and the fixed point nl*-O loses stability, driving the system toward

n2*. The pumping intensity elevates the inversion population: a critical threshold exists when

Wo=k/G below which laser action cannot occur (insufficient pumping energy and

consequently insufficient inversion) and the laser acts like a lamp. Above the threshold, laser

action occurs since sufficient energy is now available to raise the atoms to higher energy
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levels so that the number of photons generated are enough to cause lasing. At the threshold,

at the transcritical bifurcation point, the stability of the system origin becomes unstable,

driving the dynamics toward greater population inversion and consequently toward the second

fixed point. In fact, there are certain scientific situations where a fixed point (stagnation) must

exist for all values of a parameter and can never be destroyed although it changes its stability

character; the laser is such an example, for it is the stagnation at the origin that drives the

system toward the lasing threshold at the bifurcation point. [Ref. 63]
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APPENDIX D. CHARACTERISTICS OF SHEATH EQUATIONS

The Jacobian to equations (7-9),

[a]!E 0 [a];T[•

0 -[CIEi [1I] 0

A. = [e] -[f] 0 0 0iýnner ý

[h]ni- -[g]>5+[h]nI g~ 0 0

-i]U [e ] -U] Ul [l-2 0 0
E

has the following characteristic polynomial:

characteristic polynomial= a 5 + PX4 + yX3 + •X 2 + 11X + E =0

where
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a=DDE2  .DDeE [c-a

.Y= 2 jý-dh~i [dg]j} -

-2 D .bj]ne + 2DiDe{-[eani [cfne I

EDiDelac1

C=E De[bCICnie E 3D,{[adhj1, - [adg]j}

E 3 DiD{-[eac]ii + [afc]n e} +

n eiDe[ebi]o -te itD,[fgd

, iD,,[ecbi]V +

E2 niie dhbiliV - [bidgj-V4 +

EneDi[afdg]-v +

in22De[bjCfJ +

E2 Dýn~n [dhajj - ni[aedgjiv n 1 [2 aeJJl +

E 2De { iinie[c eb]] - [eCe b ij I
=n nine [ebigd]B - [edhibliv - ne2 [hdfibjiv - [ibfgd]4ý

To find the solutions to the characteristic polynomial, at least one of the roots has to

be known apriori. To this end, the Jacobian is evaluated for the fixed point found when

k* =n,* = i*=0 (see Table 5 in the main body of this work) but with E retained as

a non-zero variable (see Chapter V). The resulting Jacobian eigenvalues for the fixed point

for this condition become:
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X1=[a]E X2,3 0

2 2De

To find the general eigenvalues of the Jacobian then, the characteristics

A1 =[a] E and A2 =0 are assumed as solutions. By factoring the characteristic

polynomial with these results and neglecting any remainder terms gives the approximate and

complicated solutions to the characteristic polynomial:

Z1 =[a]E- 12=O

3 3 X2{1 + { y {1• 2} -z1 3 +- z
ll~~~~3 2-'+2- 1 3"X T

X4= {1+4=}2- 1 2 - X 2 V-l / 3 fl.+ Y- {I- Y}X} +-

x5=-1{1+ Y3 +}X2 - 1{13-+X2} + y 3 {{1+ Y 2-1 - {1-• X}2}+

with
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X= Y1 (i!+1C -Y2-

1+ 2

Z= -I±( .+K)

where

K = [a]E, Y1 =( +KK + - Y2 =YI +

If numeric data nitrogen is applied to the stagnation region near the plasma boundary (Tables

4, 5) and the results substituted into these roots, an order of magnitude comparison can be

performed with the actual results obtained (the exact evaluation of Jacobian at the fixed point

in question):

Jacobian Evaluated at 1.376704 0 0.630455 -1.37437 -0.63279
Plasma Boundary
Stagnation

Approximate Solutions 1.41467 0 0.54 -1.41262 -0.54205
to Jacobian at Plasma
Boundary Stagnation I I I I

Table 11: Sheath Equations - Jacobian Characteristics Evaluated at Plasma Boundary
Equilibrium

It seems that X, dominates the exponential growth seen during any numeric simulation - the

process of ion repulsion from the positive plate forces the instability of the sheath.
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