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A STRAIN-BASED FORMULATION FOR THE 
COUPLED VISCOELASTIC/DAMAGE BEHAVIOR 

Khaled Abdel-Tawab and Y. Jack Weitsman 

Department of Mechanical and Aerospace Engineering and Engineering Science 

The University of Tennessee, Knoxville, TN 37996 

ABSTRACT 

A strain-based thermodynamics framework is proposed for modeling the continuum 

damage behavior of viscoelastic materials. Damage is represented by an internal 

state variable in the form of a symmetric second rank tensor. The effect of damage on 

the constitutive behavior is introduced through direct coupling between the damage 

variable and the viscoelastic internal state variables. This approach accounts for 

time-dependent damage as well as damage-induced changes in material symmetry. 

Also, damage evolution is modeled by employing the concept of damage surfaces. 



1. INTRODUCTION 

The growing interest in the use of polymeric materials (e.g. plastics and polymeric 

composites) for structural applications mandates appropriate knowledge of the me- 

chanical behavior as well as the durability of these materials. It is well-known that 

polymeric materials creep viscoelastically. In addition, experimental investigations 

(e.g. Suvorova, 1985; Schapery, 1989; Tuttle et a/., 1995; Smith and Weitsman, 1996) 

indicate that polymeric composites may undergo distributed damage in the form of 

a multitude of microcracks. The objective of this article is to establish a framework 

for the constitutive modeling of the foregoing features of material behavior. Such 

framework is essential for a reliable engineering design. 

Up to the present time, most of the efforts for modeling distributed damage 

have been directed toward brittle materials exhibiting elastic behavior and metals 

exhibiting plastic or creep response (e.g. Krajcinovic, 1996). Less attention has 

been paid to the modeling of damage in viscoelastic materials. Notably, Schapery 

(1981, 1994, 1996a) established a basic formulation for viscoelastic response that 

is accompanied by microstructural changes, such as profuse microcracking. The 

microstructural changes are represented in Schapery's work by means of a set of 

internal state variables whose evolutionary laws are motivated by considerations of 

viscoelastic fracture mechanics. It may also be mentioned that Weitsman (1988) 

attempted to model the coupling between viscoelasticity and damage for a special 

class of linear viscoelastic materials. 

In a recent article by the present authors (Abdel-Tawab and Weitsman, 1996) 

a stress-based formulation for modeling the coupling between viscoelasticity and 

distributed damage was developed and applied to a swirl-mat polymeric composite. 

The effect of damage on material behavior was introduced through the concept of 

effective stress. Also, damage evolution was related by the empirical Kachanov- 

Rabotnov forms (Kachanov, 1986), which are best suited for monotonic creep load- 

ings. For more complex loading histories the concept of damage surfaces (Krajci- 

novic, 1996) offers a more versatile approach to damage evolution. 



It is well-known that damage surfaces are better expressed in strain space than 

in stress space (Ju, 1989; Krajcinovic, 1996). This concept, which seems particularly 

appropriate for viscoelastic response - where creep occurs at all stress levels, pro- 

vided a motivation for the present strain-based formulation of viscoelasticity coupled 

with damage. An additional motivation is the fact that strain-based viscoelastic con- 

stitutive models are more convenient for implementation into finite element codes 

than stress-based ones (e.g. ABAQUS, 1996). The present formulation employs 

concepts of continuum damage mechanics as well as several existing concepts of the 

thermodynamic theory of viscoelastic materials (Biot, 1954; Schapery, 1964). This 

format accounts for time-dependent damage as well as damage induced changes in 

material symmetry. 

In Section 2 of this article, we present a general thermodynamics framework that 

accounts for both viscoelastic and damage processes. We proceed by modeling the 

coupling between these two processes in Section 3. In Section 4, damage evolution 

is modeled through the concept of damage surfaces and is illustrated by a simple 

example in Section 5. Section 6 concludes with a summary and some remarks 

pertinent to the present work. 

2. THERMODYNAMICS FRAMEWORK 

Consider a polymeric material and let jr (r = 1,2,..., R) denote R scalar valued 

internal state variables representing the internal degrees of freedom of molecular mo- 

tion in the polymeric chains. The internal state variable representing damage can 

be related in terms of tensorial quantities of even ranks, which can be associated 

with the spatial distributions of microcracks (Krajcinovic, 1996). For simplicity, the 

damage variable is chosen as a symmetric second rank tensor Uij with dimensionless 

components. This damage variable is capable of simulating changes in material sym- 

metry such that an initially damage free Isotropie material may become, at most, 

orthotropic upon damage formation (Cordebois and Sidoroff, 1982; Lemaitre, 1992). 

Despite the shortcomings of the abovementioned damage variable (e.g. Lubarda and 



Krajcinovic, 1993), it was adopted by several workers in the field of damage me- 

chanics (e.g. Cordebois and Sidoroff, 1982; Murakami and Imaizumi, 1982; Chen 

and Chow, 1995) due to its relative simplicity and applicability to practical circum- 

stances. It should be mentioned that the present formulation can be readily modified 

to accommodate damage variables of other tensorial ranks. Throughout this arti- 

cle the subscripts r and q are reserved for scalar quantities; and a, 6, c, d, i,j, k, /, m 

and n are associated with tensorial quantities and cover the range 1,2,3. Also, the 

summation convention is implied over the range of repeated indices unless stated 

otherwise. 

Viscoelasticity and damage are irreversible thermodynamic processes. For a 

closed system and small strains, the entropy production inequality can be written 

in the form (Coleman and Gurtin, 1967) 

•      hiTi _^ + <7..g.i_5T__L_ii >o, (1) 

where tp is the Helmholtz free energy (per unit volume), crtj - components of a 

suitably defined volume averaged stress tensor, Sij - components of the infinitesimal 

strain tensor, S - entropy (per unit volume), T - temperature, hi - components of 

the heat flux vector, Tj = dT/dxi - components of the temperature gradient, and 

X{ - space coordinates. Also, in (1) an overdot signifies differentiation with respect 

to time. 

Consider a Helmholtz free energy of the form 

ip = ij>(eij,jr,uab,T). (2) 

The function ip is assumed to be continuous and sufficiently differentiable with 

respect to its arguments. Considerations of the entropy production inequality in (1) 

together with the functional dependence in (2) give the following familiar relations 

dip , . 



and 
h   T 

rr7r + fu^ab-^ > 0, (5) 

where TT and Qab are the thermodynamic forces conjugate to the internal state 

variables 7,. and uab, respectively, and are given by 

r'~g- (6) 

and 

fU = -£*-. (7) 

Finally, from the dissipation inequality (5) we have the following requirements 

rr7r>o, (8) 

rr öv + tiab Loab > 0. (9) 

Inequality (8) must be satisfied whenever viscoelastic deformation occurs, while 

when deformation is accompanied by damage inequality (9) should be satisfied as 

well. 

3. CONSTITUTIVE MODELING 

3.1. General Formulation 

In this section a constitutive model is formulated for the case of linear viscoelastic 

behavior coupled with damage. For simplicity, attention is restricted to the case of 

isothermal behavior. The extension to the general case of nonisothermal conditions 

can be made following the same approach adopted here. The formulation will be 

first established for fixed strain e^ and damage uab and subsequently extended to 

fluctuating e,-j and ioab. 

For fixed Sij and uab an irreversible thermodynamic process is triggered in the 

material, which prompts the viscoelastic internal state variables 7,. to drift sponta- 

neously toward their equilibrium values 7®. Under isothermal conditions, all 7^ are 



independent of temperature, hence 

7r
e = 7te.-;,"afc). (10) 

These equilibrium values are assumed to be continuous and sufficiently differentiate 

functions of their arguments. Assuming that all 7,. and 7^ are sufficiently small, a 

Taylor series expansion for i\) about 7^ takes the form 

1 

2 
</> = & + ö *r< (7r " it) (79 - 79

e) + H.O.T. , (11) 

where 

is the value of V> at equilibrium, 

is a symmetric matrix considered to be constant, and H.O.T. refers to higher order 

terms neglected due to smallness of -yr and 7'. In the above relations, and in the 

sequel, the subscript "e" implies that a quantity is calculated at 7,. = 7^ Vr. Note 

that at equilibrium xp is minimum (Callen, 1960; Prigogine, 1967), and hence 

and 

1prq S-frS-fg    >   0 . 

Consequently, there is no linear term in (11) and iprq is a positive definite matrix. It 

should be mentioned that an expansion similar to that in (11) was previously used 

by Lubliner (1972). 

Employing the usual assumption of viscous-like resistance (Biot, 1954; Schapery, 

1964), let 

i r  —  ttTq 7cj , \^-^) 



where, according to Onsager's principle (Callen, 1960; Fung, 1965), aTq is a sym- 

metric matrix. Substitution of (12) into inequality (8) gives 

arq ir 7? > 0 . 

Hence, the matrix aTq is positive semi-definite. Note that in the general case aTq is 

a function of temperature, but since we are considering only isothermal conditions 

then arq is constant. 

Equations (6), (11) and (12) yield 

drg lg + ^rq lq  = Aq 1q  ■ (13) 

Since arq is a constant symmetric positive semi-definite matrix and tßrq is a constant 

symmetric positive definite matrix, it is possible to rewrite (13) in a diagonalized 

form (Meirovitcb.,1967) as 

Ar 7r + tyr 7r = ^r 7^ (no  sum over r) , (14) 

where -yr are transformed internal state variables, each being a linear combination of 

the original internal state variables •jq. The parameters 7^ are the equilibrium values 

corresponding to jr and are obtained from 7* by the same linear transformation as 

that for 7r. Also, Ar and tyr are constants such that Ar > 0 and \Pr > 0. 

For fixed strain and damage, the solution of equation (14) is 

lr =7r (1 — e t'TT\ (no  sum over r) , (15) 

where rr are relaxation times given by 

TT — —— (no  sum over  r) . (16) 

In terms of the transformed internal state variables, expansion (11) can be rewritten 

as 

* = ^ + \  E  *r (7r - llf + H.O.T. (17) 



The viscoelastic strain can now be obtained by substituting (17) into (3) bearing in 

mind that 7,., and hence 7,., are to be kept fixed during the partial differentiation 

indicated in (3). Employing (15) we then obtain 

where 

Ar = Ar(eti,o;afc) = - #r (7r
e)2 (no sum over  r) . (19) 

The first term on the right hand side of (18) represents the long-term (rubbery) 

part of the behavior, and the second term represents the transient (time-dependent) 

part. 

Motivated by previous works on linear elasticity with damage (e.g. Lemaitre 

and Chaboche, 1985; Lemaitre, 1992), we now recast the formulation in a format 

that retains a linear viscoelastic relaxation modulus and introduces the effects of 

damage by mapping the stress and strain into "damage effective" stress and strain, 

respectively. To this end, consider first the transient part in (18). Expanding Ar in 

terms of strain around the reference state, e}f = 0, up to quadratic terms to retain 

linearity one obtains 

A' = HäS^)„£i'£i" (20) 
where the subscript 0 implies that a quantity is calculated at the reference state. 

Note that the constant term in (20) vanishes since (7^)0 = 0, and hence 7^ = Ar = 0 

at the reference state. In addition, the linear term in (20) is discarded since it 

corresponds to a residual stress at the reference state, which is disregarded in the 

present formulation. 

A more specific functional form for Ar can be obtained by realizing that the 

internal molecular motions represented by jT occur on a much smaller dimensional 

scale than that of damage represented by uab. This suggests that all 7*, and hence 

all 7^ and Ar, are likely to be affected by damage in a common manner; i.e. they 

have common dependence on u>ab. Consequently, we can rewrite (20) in the form 

Ar = - Pi jab &Cr
abcd Pcdki ei3 en V r . (21) 



In (21), ACijkl is a double symmetric fourth rank tensor (i.e. ACjjkl — AC]ikl = 

AC;jlk = ACj;Ki), and Pijkl = Pijki(^ab) is a double symmetric fourth rank tensor 

valued function of the damage variable iüab such that 

at uab — 0      —>•      Pijki = Iijki , (22) 

where 

Iijki = Ty {öik öjl + Oil $jk) , 

is the unit fourth rank tensor and 6{j is Kronecker delta. 

Using (21), the transient part of (18) takes the form 

£ |^ e-t/T' = Pi3ab ACabcd(t) Pcdki ekl, (23) 

where 

ACzjkl(t) = j:ACljkle-^. (24) 
T 

From (18), (22) and (23) it is clear that Adjki is the undamaged transient (time- 

dependent) stiffness tensor. 

Consider now the long-term part of (18). The equilibrium Helmholtz free energy 

tpe can be expanded around the reference state in the form 

t-H-Stl«""- (25) 

Following common practice in continuum damage mechanics (e.g. Lemaitre and 

Chaboche 1985; Lemaitre, 1992), we further assume that ipe depends on damage in 

the separable form 

^e =  2 QiJ°l> ^abcd Qcdkl £ij Ski , (26) 

where Qijki = Qijkii^ab) is a double symmetric fourth rank tensor valued function 

of uab such that Qijki = Iijki at toab = 0, and consequently Cfjkl is the undamaged 

long-term (rubbery) stiffness tensor which is typically positive definite (Fung, 1965). 

Using (26), the long-term part of (18) takes the form 

dsij 
Qijab Clbcd Qcdkl Ski , (27) 



Relations (23) and (27) indicate that the long-term part of the behavior can in 

general depend on damage in a manner that differs from that of the transient part. 

However, for simplicity, we assume here that both parts have the same dependence 

on damage so that 

Qijki = Pijki ■ (28) 

Assuming that the inverse P-~^ exists, define the following "damage effective" stress 

and strain tensors 

&ii = Pm°H- (29) 

£ij = Pijki Ski, (30) 

then relation (18) can be rewritten in the compact form 

&ij = Cijki(t)£ki, (31) 

where 

Cijki(t) = Cfjk[ + Adjki(t), (32) 

is the overall (long-term and transient) stiffness tensor of the undamaged material. 

Relations (29) and (30) are consistent with the formulations of the concepts of 

effective stress and effective strain (e.g. Cordebois and Sidoroff, 1982; Simo and Ju, 

1987), where the mapping tensor for the effective stress is taken to be the inverse of 

that of the effective strain. Also, note that both äjj and £,j are symmetric due to 

the hypothesized double-symmetry of Pijki- 

Relation (31) suggests that for a given damage level cja&, instantaneous mapping 

of the actual stress <Jki and strain Ski according to (29) and (30), respectively, lead to 

new stress a,j and strain iij quantities that are related by the usual linear viscoelastic 

constitutive relation for fixed strain (e.g. Fung, 1965). Upon hypothesizing time- 

translation invariance, and since &ij is linear in e«, a straightforward application of 

the superposition principle (Pipkin, 1986) to expression (31) yields 

de i 
&ij = /    Cijki(t - T) —— dr . (33) 

JO- ÜT 

10 



Allowing for spatial variations of stress and damage the total derivative d/dr inside 

the integral is replaced by a partial derivative d/dr, holding the spatial coordinates 

Xi fixed. Thus 

*ii = Jl Ci3kl{t - T) ^dr . (34) 

Equation (34) is the stress-strain constitutive relation for the coupled linear vis- 

coelastic/damage behavior, and can be expressed in terms of the actual stress and 

strain as 

Vij = Pa* jl CaUt ~ r) d^£kl)dr . (35) 

It should be noted that at t = 0 

Cy«(0) = C?.H = C\3kl + E ACT-« , (36) 
r 

where C°jkl is the initial (elastic) stiffness tensor which is positive definite (Fung, 

1965). For the special case of isotropic virgin material response, the overall stiffness 

tensor djki takes the form (Fung, 1965) 

Cijki{t) = 2 G(t) Iijki + K(t) - \ G(t) Sij Ski, (37) 

where G(t) is the overall shear modulus and K(t) is the overall bulk modulus given, 

respectively, by 

G{t) = G0 + AG(t), (38) 

and 

K{t) = K0 + AK{t). (39) 

In the above expressions G0 and K0 are the instantaneous shear and bulk mod- 

uli, respectively; and AG(t) and AK(t) are the transient shear and bulk moduli, 

respectively, obtained from (24) as 

AG(t) = J2 A(?re
_i/Tr , (40) 

r 

and 

AK(t) = Y, AKre-^ , (41) 

11 



where AG> and AA^r are positive constants. 

3.2. The Dissipation Inequality 

The thermodynamic force üab conjugate to coab can be obtained by substituting 

;i7) into (7) using (21), (26) and (28) 

where Cijki is given by 

Since 

~        ftp s-\              p        /"** "-i-mnkl {Ac>\ 
^^ab ^ijcd ^cdmn     7j £ij £kl i \^^/ 

OLOab 

^ = ^-El^i' (43) 
T      \lr / 

»S{%)m    *'• 
then Cijki is bounded by C?w and C°jkl corresponding, respectively, to the upper 

and lower limits of ^r/lr- Since Cfjkl and C°jkl are positive definite then it follows 

that Cijki is also positive definite. 

Employing (6) and (7), the dissipation inequality (9) can be expressed as 

2^ Ar 7r — Pijab Cabcd Pcdkl £ij £kl   >   0 , (44) 
T 

where 
A                9 Pcdkl   . ,._. 

■TcdAr/ = "~ Wmn • (45) 
Wmn 

Noting that the first term on the left-hand side of (44) is always non-negative, then 

a sufficient but not necessary condition to satisfy (44) is 

— Pijab Cabcd Pcdkl      —►      positive semi — definite . (46) 

3.3. The Mapping Tensor 

The functional form of the mapping tensor P^i is restricted by the requirement 

that Pijki is double symmetric in addition to the requirements in (22) and (44). In 

12 



general, Pijki is an anisotropic fourth rank tensor function of uab. However, due 

to the complexity of anisotropic functional forms (Zheng, 1994) and the fact that 

damage-induced anisotropy (or, more precisely, orthotropy) can be deduced from a 

symmetric second rank damage tensor, then the more complex anisotropic functional 

form may be avoided. 

Following Murakami and Imaizumi (1982), a simpler representation of Pijki can 

be obtained by taking it as an isotropic fourth rank tensor function of u)ab. A further 

simplification of the representation of Pijki is obtained by considering a case of dilute 

concentration of microcracks in which P^ki is linear in ujab. In this case, P^i can 

be written as (Murakami and Imaizumi, 1982) 

Pijki = ci 8ij Ski + c2 (Sik Sji + Su Sjk) + c3 Sij LOki + c4 Ski Vij 

+ c5 (Sik wji + Su ujk + Sjk Ma + Sji ujik) + H.O.T., (47) 

where ca (a — 1,2,..., 5) are constants. 

From (47), it is clear that double symmetry of Pijki dictates that c3 = c4. Also, 

the requirement in (22) renders ca = 0 and c2 = 1/2. To determine c3 = c4 and 

c5, we consider the special case of isotropic damage in which the ensuing damage 

pattern does not affect the symmetry of the virgin material. In this case damage is 

represented by a single scalar CJ so that 

ujab = LüSab    ;     0 < iü< 1, (48) 

and the mapping tensor P^ki takes the form (Simo and Ju, 1987) 

Pijkl = (1 - LO) Iijkl, (49) 

which is the inverse of the corresponding mapping tensor that maps the applied 

stress into the Kachanov effective stress in the case of scalar damage (e.g. Kachanov, 

1986). The functional form in (49) can be recovered from (47) by setting c3 = c4 = 0 

and taking c5 = —1/4. Thus, the simplest possible form of P^ki becomes 

Pijki = Iijki - j (Sik Uji + Su Lüjk + Sjk uju + Sji u>ik). (50) 

13 



It is interesting to note that P^ obtained from (50) indeed coincides with one of 

the forms proposed by Chen and Chow (1995) for the tensor that maps the applied 

stress into an effective stress. 

The complete formulation of the constitutive model requires an expression for 

the evolution of the damage tensor LO^ such that (44) is satisfied. Such an expres- 

sion can be formally derived from thermodynamic considerations (e.g. Lemaitre and 

Chaboche, 1985; Lemaitre, 1992), but the usefulness of such approach seems to be 

restricted to elastic response with damage. In practice, the form Of the damage evo- 

lution equation depends on the material considered and the applied loading. This 

dependence is better correlated within the concept of damage surfaces (Krajcinovic, 

1996) as discussed in the following section. 

4. DAMAGE EVOLUTION 

The approach adopted here for describing damage evolution follows closely that pre- 

sented by Simo and Ju (1987) and Lubarda and Krajcinovic (1995). This approach 

has two main ingredients. First, a damage surface is introduced in strain space to 

distinguish between the material states associated with evolving damage and those 

with stationary damage. Second, a damage potential is assumed to exist, from which 

the constitutive law of damage growth (i.e. the damage rate ioab) can be derived. 

To characterize damage evolution, i.e. damage loading conditions, a damage func- 

tion f(eij,K,) is introduced so that 

f{eij,K)<0, (51) 

where K is a positive scalar damage threshold history parameter and at the initial 

onset of damage K — K0. The equality in (51), i.e. / = 0, corresponds to strain states 

that lie on the damage surface and for which damage can evolve. For simplicity, the 

function / is chosen in the simple isotropic hardening form 

f(eij, K) = F{sij) - K , (52) 

14 



where T is a scalar function of the strain. 

Introduce a monotonic scalar function G(ttab) sucn that the damage rate can be 

expressed as 

UJab = A ^r— . (53) 

where A is a monotonically increasing positive scalar, i.e. 

A > 0 . (54) 

Physically, A represents a measure of the cumulative damage at the considered 

instant of the deformation process. The function Q is referred to as the "damage 

potential". 

Following Simo and Ju (1987) let 

X = k, (55) 

and define damage loading/unloading conditions according to relations (51) and (54) 

together with 

A/ = 0. (56) 

Thus, if / < 0 then A = 0 and from (53) no damage evolution takes place, i.e. the 

so-called damage unloading from the current state of strain on the damage surface 

takes place.   If / = 0 and A = 0 then damage neutral loading occurs.   Finally, if 

A^O then / = 0 and damage loading takes place. 

During damage loading, the consistency condition 

/ = 0 , (57) 

must always be satisfied. From (52) and (57) we have 

•       df ■ , = — ei3. (58) 

Assuming that no damage healing occurs, i.e. the damage surface can only expand, 

then K is obtained from (52) and (55) as 

K = max \K0, ./"max} ■> (59) 

15 



where fmax is the maximum value of T over the entire loading history. Substitution 

of (58) and (55) into (53) yields 

Uab = ^r~ ^— en . (60) 
Oilab  OSij 

Thus, specification of the functional forms of T and Q completes the formulation for 

the damage evolution. In practice, these functional forms depend on the material 

considered and the ensuing damage pattern. Example functional forms will be 

presented in the following section. 

In the damage evolution equation (60) the thermodynamic force Qab is given 

by expression (42) in which Cijki is given by (43). Thus an explicit expression for 

ttab requires evaluation of the ratio yv /-y®. This ratio can be determined from the 

differential equation 

±(±) + (L + J- *£)  (JL) = I (no  sum over  r) , (61) 
dtWr) Vr 2Ar     dt   )    \%) TT 

{ ), K      ) 

where Ar is given by (21). Equation (61) is obtained after simple algebraic manip- 

ulations of equation (14) and making use of (16) and (19). 

It should be noted that ücj, depends on w0& explicitly through Pmnki and also 

implicitly through the ratio -)v /-y*. Thus, in practice, equations (34), (60) and (61) 

need be implemented incrementally where for given strain and time increments an 

iterative procedure is required for determining the corresponding damage increment. 

5. ILLUSTRATIVE EXAMPLE FOR THE DAMAGE FUNCTIONS 

Two scalar functions T(sij) and G(ftab) are needed in (60) to obtain an explicit 

damage evolution relation. The simplest possible representation of these functions 

is to take each as an isotropic function of its tensor argument. Thus 

T = HIlJUl), (62) 

and 

g = g(i?j?j"), (63) 
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where if, if and if are the isotropic invariants of the corresponding second rank 

symmetric tensor ßij. These isotropic invariants can be written as (Zheng, 1994) 

h = ßkk , 

h = yßij ßij > 

and 

Ig = det[/y , 

where $ ■ is the deviatoric part of ßij 

ßij = ßij - ö ßkk f>ij ■ 

To simplify matters, discard the dependence of T on If - this is a customary 

constitutive assumption in damage modeling (Krajcinovic, 1996). Further, J- is 

expressed in the following simple form (Lubarda and Krajcinovic, 1995) 

F = Fle'ije'ij+F2elk, (64) 

where Fi and F2 are constants. 

Considering the case of isotropic damage, P^i can be taken in the form (49) and 

(60) should reduce to the simple form 

Lüab =d>Sab. (65) 

It follows that Q can depend only on Jp, i.e. on the trace of Oaj,, so that 

"an-  ~ öab ■ 

Consider the case of a dilute concentration of microcracks where the interaction 

between microcracks as well as the effect of accumulated microcracks on further 

microcrack formation can be neglected. In this case, the rate of damage evolution 

ü may be taken to be independent of the accumulated damage u>.  Dependence of 
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Co on LO, however, is implicit in Qcc. Thus, to eliminate dependence of Co on u the 

function Q is taken to be linear in ttcc 

g = GÜcc, (66) 

where G is a constant. Expression (66) can be thought of as the first term in a 

Taylor series expansion of Q (the constant term in such expansion is immaterial 

to the present formulation). Thus addition of higher order terms in the expansion 

introduces dependence of w on w, 

Under damage loading conditions Co > 0 and the left hand side of the dissipation 

inequality (44) becomes 

]T Ar 7r + (1 - u) Co djki Sij Ski, 
T 

which is always positive since Cijki is positive definite. Thus the requirement of 

positive dissipation is identically satisfied. Substitution of (64) and (66) into (60) 

and use of (65) yield damage evolution in the form 

Co = a e'ij i'{j + ß £kk ekk , (67) 

where 

a = 2FrG       and        ß = 2F2G 

are free parameters that need to be determined from the damage evolution pattern 

in a considered problem. The first term on the right hand side of (67) represents 

the effect of the deviatoric part of the behavior on damage evolution, whereas the 

second term represents the effect of the hydrostatic part. 

6. CONCLUDING REMARKS 

In this article a thermodynamically consistent framework was proposed to model the 

coupling between linear viscoelastic deformation and microcrack damage. The effect 

of damage was incorporated into the constitutive equations in a form consistent with 
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the well-known effective stress and effective strain concepts, and damage evolution 

was related by the concept of damage surfaces. 

Several tensorial ranks for the damage variable can be employed in the context of 

the present formulation. However, for simplicity, in this article damage is represented 

by a symmetric second rank tensor. This representation is capable of simulating 

some changes in material symmetry induced by microcrack damage. A more general 

representation is to take the damage variable in the form of a double symmetric 

fourth rank tensor coabcd- Such a representation is capable of simulating general 

damage-induced changes in material symmetry (Krajcinovic, 1996). This, however, 

complicates construction of the functional forms for the mapping tensor Pijki and 

the damage potential Q\ since both have to be functions of double symmetric fourth 

rank tensors {uabcd in the case of Pijki and the conjugate thermodynamic force £labcd 

in the case of Q). For fourth rank tensors, the definite forms of the integrity bases 

and invariants are not yet well established (Zheng, 1994). 

An important remark is that in the present formulation the thermodynamic 

force conjugate to damage depends on the viscoelastic internal state variables as 

can be seen from relations (42) and (43). This differs from previous formulations 

by Schapery (1981, 1996a,b), where the thermodynamic force conjugate to damage 

is taken to be independent of the viscoelastic internal state variables and to depend 

only on the elastic (instantaneous) part of the deformation. The argument put forth 

by Schapery is that based on a viscoelastic fracture mechanics analysis (Schapery, 

1984) it was found that the driving force for existing cracks is independent of the 

viscoelastic internal state variables. However, damage evolution occurs not only by 

the extension of existing microcracks, but also by the nucleation of new microcracks. 

In this general case, it is expected that the state of the viscoelastic deformation in the 

material should have a direct effect on the formation of new microcracks. Hence, the 

thermodynamic force conjugate to damage is expected to depend on the viscoelastic 

internal state variables. This is also in agreement with the internal state variable 

formulation for the coupled elastoplastic-damage behavior (e.g. Ju, 1989; Hansen 
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and Schreyer, 1994). 
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