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Abstract 

This report describes two novel approaches to pose invariant object representation and recogni- 

tion. The first section describes an efficient approach to pose invariant pictorial object recog- 

nition employing spectral signatures of image patches that correspond to object surfaces which 

are roughly planar. A complete affine invariance of the signatures is achieved by a log-log sam- 

pling configuration in the frequency domain. Based on Singular Value Decomposition (SVD), 

the affine transform is decomposed into slant, tilt, swing, scale and 2D translation. Unlike pre- 

vious log-polar representations which were not invariant to slant (i.e. foreshortening only in 

one direction), our new configuration yields complete affine invariance. The proposed log-log 

configuration can be employed both globally or locally by Fourier or Gabor transforms. A novel 

model based affine invariant segmentation scheme enables to isolate and recognize several objects 

in cluttered images. The actual signature recognition and 3D pose estimation is performed by 

multi-dimensional indexing in a pictorial dataset represented in the frequency domain. Experi- 

mental results with a dataset of 26 models show 100% recognition rates in a wide range of 3D 

pose parameters and imaging degradations: 0 — 360° swing and tilt, 0 — 82° of slant (more than 

1:7 foreshortening), more than 3 octaves in scale change, window-limited translation, high noise 

levels (0 dB) and significantly reduced resolution (1:5). 

In the second section, a novel method for representing 3-D objects that unifies viewer and 

model centered object representations is presented. A unified 3-D frequency-domain representa- 

tion (called Volumetric/Iconic Spectral Signatures - V/ISS) encapsulates both the spatial struc- 

ture of the object and a continuum of its views in the same data structure. The frequency-domain 

image of an object viewed from any direction can be directly extracted employing an extension 

of the Projection Slice Theorem, where each Fourier-transformed view is a planar slice of the 

volumetric frequency representation. The V/ISS representation is employed for pose-invariant 

recognition of complex objects such as faces. The recognition and pose estimation is based on 

an efficient matching algorithm in a four dimensional Fourier space. Experimental examples of 

pose estimation and recognition of faces are also presented. 
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Analysis of Image using Gabor kernels at different scales and orientations 
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Multi-dimensional Indexing for Affine Invariant Recognition and Pose Estimation 

Figure 1: Block diagram of pictorial recognition scheme. 

1    Pictorial Recognition of Objects Employing Affine In- 
variance in the Frequency Domain 

1.1    Introduction 

This section describes a method for pose invariant pictorial recognition of 3D objects employing 

frequency domain techniques. By the term pictorial recognition we mean that the recognition 

is achieved by matching in feature space a given image to a model dataset which consists of 

various object pictures. Even though such a pictorial model dataset contains only few aspects 

for each 3D object represented, it is still possible to achieve robust recognition of objects in a 

wide range of viewing directions and distances - if one employs pose invariant matching methods 

as illustrated in this section. Hence, the number of pictures required to represent an object in 

the database could become quite small. 

If we treat pixel values as real numbers, we can regard each picture of an object instance as a 

point in RM, where M is the number of pixels in the picture. As the parameters of the object's 

pose vary, the point in the M-dimensional space RM traces out a /-dimensional manifold, where 
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I is the number of pose parameters. Additional parameters that relate to illumination and sensor 

characteristics may further increase the /-dimensionality. Different objects generate different 

manifolds in RM. In this setting, object recognition can be posed as finding the closest point of 

any of the manifolds to a given test image. If the point is close enough to one of the manifolds, 

we can claim that the given test images belongs to a particular object whose manifold was the 

one matched. 

The problem with this approach is that such setting requires construction of a large number 

of very complex manifolds which correspond to changing views of objects as a function of their 

pose in space. A drastic simplification is necessary to render such an approach practically 

implementable. One feasible suggestion is to find a pictorial representation which is invariant 

to the largest number of pose parameters. For each parameter eliminated, we can reduce the 

dimensionality and simplify the overall representation. 

Many approaches have been suggested in the area of invariant pictorial representation and 

recognition. Best fitting to the real problem are methods employing perspective projection in- 

variants. Such is the work of Jacobson and Wechsler [41] who employed 4D Wigner distribution 

[41] combined with back projection to achieve perspective invariance in 6 dimensional search 

space. Since perspective invariance leads to unmanageable complexity (of 4D correlation in 6D 

search space), it is advantageous to approximate the perspective transformation by simple ones 

such as the affine transformation. Although affine transformation is only an approximation of 

perspective transformation, it reflects quite accurately the real 3D geometric distortions of a 

planar object when the dimensions of the object are relatively small compared with the distance 

between the imaging system and the object itself. Several previous works suggested affine in- 

variant recognition of planar objects based on invariant moments [20] [19] and contours [39] [8]. 

In real imagery, both types of methods require accurate segmentation and edge grouping and 

therefore they are quite sensitive to illumination, noise, clutter, partial occlusion and perspective 

geometrical distortions. On the other hand, our approach which is based on representing the 

pictorial dataset in the frequency domain has few advantages. First, it allows to eliminate planar 

translation effects in the imaging plane by considering only the magnitude of the Fourier (or Ga- 

bor) transform. Second, the representation of noise and clutter in the frequency domain can be 

easily filtered and removed. And third, as demonstrated in Section 1.4.2, the frequency based sig- 

natures are quite tolerant to distortions that arise from inaccurate segmentation, multiplicative 

illumination effects and the actual perspective imaging. 

Once the planar translation effects are removed from the representation, the next task is to 

achieve invariance to the other pose parameters, i.e. the three rotational degrees of freedom and 

the remaining translation parameter, i.e. translation normal to the imaging plane (translation 
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along the optical axis). In Section 1.2 and in [7] [6] [5] [1] [3], we show that if we limit ourselves 

to pose-invariant recognition of planar objects and surfaces, the above parameters can be rep- 

resented by slant, tilt, swing and scale parameters1. By the term slant, we refer to the angle 

between the normals to the image plane and the object-plane. The tilt is defined as the angle 

between the X-axis in the image plane and the axis of intersection of the object-plane with the 

image plane (tilt axis). In an orthographic projection of planar shapes, slant causes foreshort- 

ening only along the normal to the tilt axis in the image plane, while distances along the tilt 

axis remain unaltered. Previous approaches developed for pictorial recognition which are based 

on log-polar representations in the frequency domain [14] [11] [43] [22] or in the spatial domain 

[40] are not invariant to uneven distortion caused by foreshortening. The log-polar configuration 

is invariant only to scale and rotation, i.e. similarity transformation. However, the similarity 

transform is only a subset of the complete affine transform and cannot represent all the geometric 

distortions caused by orthographic projection. 

In this section, an affine-invariant representation is achieved by sampling the frequency do- 

main representation in a novel configuration which is logarithmic in two orthogonal axes, i.e 

log-log configuration. As elaborated Section 1.2 the log-log configuration is invariant to trans- 

lation, slant and scale. Invariance to the remaining degrees of freedom i.e. to tilt and swing 

(rotation around the optical axis) is attained by a union of swung log-log configurations. As 

described in Section 1.2 and in [7] [6] [5], it is feasible to derive the spectral signatures by several 

methods that include short-term Fourier transform, Gabor transform and also two dimensional 

Gaussian derivatives. All these methods are intended to obtain a spatially local representation of 

image patches in the frequency domain. Local representations enable to independently recognize 

several image patches in the same image. Hence, an object which is composed of several roughly 

planar surfaces can be robustly recognized by recognizing a few of its surfaces or parts. 

We choose to use the Gabor kernels since Gabor functions yield the smallest conjoint space- 

bandwidth product permitted by the uncertainty principle of Fourier analysis [17] [41]. This 

allows us to derive local frequency characteristics of image patches since Gabor kernels form a 

complete basis for signal representation. Since the local Gabor signature obtained is still sensitive 

to location of the centers, we develop in Section 1.4.2 a model based affine invariant segmentation 

method. This approach enables to segment image regions with predetermined shape (rectangular, 

circular etc.) with any affine distortion. The segmentation method is based on image convolution 

with a set of basis functions derived by Karhunen-Loeve (K-L) transform. To achieve more 

accurate segmentation, an additional stage of flexible matching is also included. The signature 
xIn this section, we use the terms "slant" and "tilt" to denote plane rotations in orthographic projection. To 

avoid confusion, we comment that these terms are usually employed in the context of perspective projections. 
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Figure 2: Invariance of signatures to swing and tilt of the shape. For the displayed swing and tilt of 
the airplane shape, the oriented kernel pairs A-A', B-B', C-C, and D-D' yield invariant signatures. 
Note that since the kernels have symmetry properties, it is required to implement only one quadrant 
of kernels spanning 90 degrees of orientation to achieve 360 degrees of swing and tilt invariance. 

of each segmented region is then derived independently and objects can be recognized even in 

cluttered scenes as demonstrated in Section 1.4.2. 

In Section 1.2 we provide a mathematical description of the affine invariant representation 

both in the spatial and frequency domains. In Section 1.3 we describe the recognition techniques 

and in Section 1.4 we illustrate the experiments which achieve quite a robust recognition in a 

wide range of viewing conditions. 

1.2    Affine-Invariant Spectral Signatures (AISSs) 

Our overall approach is based on pictorial recognition of image patches that correspond to object 

surfaces that are approximately planar. As elaborated later, object surfaces can be recognized 

in a general 3D pose. The class of objects that can be recognized is not limited to convex 

objects and also includes concave objects or objects with holes, etc. As long as an object has 

at least one approximately planar surface with distinctive features, it may be recognized by this 

approach. As experimental results demonstrate in Section 1.4, many non-planar objects which 

have approximately flat shapes such as hands, airplanes, etc. are robustly recognized with our 
approach as well. 

We use the affine transformation to simulate transformation of a planar shape that undergoes 

3D rotation and 3D translation, and is then orthographically projected onto the image plane and 
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scaled (reduced or increased in size). A point X. = (x,y)T in the coordinate system of the shape 

is affine-transformed to a point in imaging plane's coordinate system 2d == (^o> Va)r according 

to the following formula: 

XQ 

Va )-c{'.)<iHzz){'.Mi) 
where matrix C represents tilt and slant operation, (g,h)T denotes translation. This general 

formulation represents any orthographic projection plus scaling of planar shapes. Such a projec- 

tion approximates perspective projections quite accurately if the viewing distance of the shape is 

relatively large with respect to the shape's dimensions. Based on Singular Value Decomposition 

(SVD), the matrix C can be decomposed as follows: 

C11C12I 

, C21 c22J 

( cos(<f>)    sm(4>)\(^   0  Wcos(r) -sin(r)\ 
^-sinfa) cas{4>))\  0   >/\2) \an(r)   cos(r) ) W 

where XY and A2 are eigenvalues of CC7, <t> and r are angles related to eigenvectors of CC7 

and CFC. In practical situations, C is usually a nonsingular matrix, so Ai and A2 have positive 

values. If we arrange the eigenvalues so that Ax > A2, the eigenmatrix A can be posed as 

A=^(J ,/sik) <3> 
According to Eq. (1) and Eq. (2), any orthographic projection of points on a plane can be 

represented by a sequence of transformations which include translation, tilt1, slant, scale and 

swing (rotation around the optical axis). To represent 3D rotation of a plane it is necessary to 

use slant and tilt transformations in which the shape is posed on a plane which is slanted and 

tilted with respect to the imaging plane. Slant angle is measured between the normals of the 

imaging and shape planes. Tilt is defined as the angle between the the X-axis in the imaging 

plane and line L created by the intersection of the imaging and shape planes (the tilt axis L). 

Here, this angle is defined as r in Eq. (2). <j> in Eq. (2) represents shape swing within the imaging 

plane. The slant angle a corresponds to shape foreshortening in the imaging plane along the 

axis normal to the line L. The foreshortening ratio is equal to cos(a) = i/A^/Ai. In contrast 

to slanting, scaling causes uniform foreshortening (or enlargement) in the imaging plane in all 

directions. The scale factor is equal to Xx in Eq. (3). The above parameters of translation, swing, 

scale, slant and tilt completely represent the scaled orthographic projection. 

When a planar object undergoes affine transformation, the frequency spectrum of its image 

is also transformed by a similar set of transformations.   Given a function f(X) with Fourier 
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Transform as F{u,v), its affine transformed version /a(2Q = f(C~lX.-C-1(g,h)T) has the 
frequency spectrum as follows: 

\Fa(u*,va)\ = \C\\F(u,v)\ 

(ua\( cos(<j>)   sin(<£)VAr1/2     0   Ycos(r)-sin(r)Ytz\ 
\va)    \-sm(<f>)cos((f>)J\    0     A2-

l/2Xsin(T)   cos(r) ^t/J (4) 

Thus, the effect of affine transformation on the spectrum is almost the same as that of the affine 

transform on the object in spatial domain except for two major differences: First, the spectrum 

is inversely scaled and slanted. Secondly, shape translations parallel to the image plane do not 
affect the spectrum. 

The coordinate transformation in Eq. (4) can be rewritten as 

(cos(<f>) - sin(<£)\ Ua\ = (\rl/2     0   Ycos(r) - sin(T)Vu\ 
^sin(<£)   cos(<f>) )[vaJ     {    0     Ar^sinfr)   cos(r) )[v) & 

From Eq. (5), sampling the affine transformed shape's spectrum ^.(u,, va)\ along two orthog- 

onal directions at angles <j> and 0 + TT/2 results in a spectral representation we call spectral signa- 

ture Na{uuu2,<j>), where ux = \ogr{\uacos{<j>) - vasin(»|) and u2 = logr(|uasin(«£) + vacos(<f>)\). 

Sampling the original shape's spectrum \T(u, v)\ along two orthogonal directions at angles r and 

r+yr/2 results in the model's spectral signature N(u}uu2, r), where ui = logr(|ucos(r)-usin(r)|) 

and u2 = logr(|tzsin(r) + vcos(r)|). The two spectral signatures thus derived are related as 

Na(uuuj2,<l>) = \C\N(u>i - auu2 - a2,r), where at = logr(v/ÄT) and a2 = log^yOQ. We note 

that the signature is not altered due to slanting and scaling but only is translated in (Wl)W,) 
plane (see in Fig. 4 and Fig. 5). 

It is noted here that a 2D Cartesian version of the Mellin transform - implemented here in 
the frequency domain - which is defined as 

Ma(tu6i 4>)=ß\Fo(ua cos(0) - va sinf», uasin(0) + va cos(»)| 

(«.cost» - va sxn{<f>))^-\ua sin(^) + va cos(<j>)pb-ldua dva (6) 

also achieves invariance to slanting and scaling which result in linear phase shifts proportional 
to ln(>/A7) and ln(>/A^). 

Ma(Si, &,<{>) = \C\(-^)-*(^=)-*M(SUZ2,T) (7) 

Ma(&,6,0) is the Mellin transform of |^.(«a,t;a)| with axis direction at <ß. Mfa, far) is the 
Mellin transform of the original spectrum \F(u,v)\ with axis direction at r. 
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The estimation of slant and scale parameters from the relative phase shift between Ma(fi, &, <j>) 

and M(£i, £2, T) is quite difficult. On the other hand, these parameters are easier to estimate from 

the relative shift between our spectral signatures N(ui,u>2, r) and Na{u)\yUi, <f>) in (ui,u?) plane. 

Hence, the signature Na(u}\,ui,<}>) from the affine transformed object is a shifted version of the 

signature N(ui,u2, r) from the object itself except for a scalar \C\. The shift in the 2D signature 

plane (u^u^) directly depends on the slant and the scale included in the affine transformation. 

In order to account for the remaining two rotational degrees of freedom, i.e. swing and tilt, we 

generate for the affine transformed object a set of signatures {Na(ui,w2,0i);O0 < 61 < 360°} 

which have equally spaced orientations and which span the range of 360 degrees. A set of signa- 

tures {N(ui,U2,02);O° < 62 < 360°} for the model are also created in the same way. Among the 

set of pictorial signatures generated, there exists one which matches the signature of the model 

object except for a translation in the (ui, u2) plane - which represents scale and slant differences. 

Figure 1 displays a block diagram of the overall system. The image is correlated with a 

set of Gabor kernels. The frequencies of the kernels are derived from a logarithmic sampling 

according to Eq. (8) and Eq. (9). This set is centered at various 'interest locations' which 

correspond to approximate centers of prominent image patches2. A set of spectral signatures 

is then generated. Each signature represents a local image patch. These signatures are then 

independently recognized using Multidimensional Indexing (MDI). The 3D pose (slant, tilt, swing 

and scale) of each recognized patch is also obtained as a by-product. 

The affine-invariant representation presented in this section is based on a set of elliptical 2D 

Gabor kernels defined as 

gfaf»'0l(x,y) = e 3   Wm
+»yJ. 

cos0,      on*, 
-sinfl,   cos0,  / I « / W 

where fx, fy are frequency coefficients, fx,fy = 1...N/. The standard deviations aXm and oYn of 

these elliptical kernels vary in a geometrical progression with the indices m and n as 

oxm = 7m-1<7o; oYn = T""
1
^; m,n = l...Nc (9) 

where the geometric ratio 7 > 1 and the smallest standard deviation a0 are constants. The 

indices m and n define a signature space (m, n) and also determine the sampling points in the 

(U)UüJ2) plane for a given set of <r0, fx and fy . In addition, the Gabor in Eq. (8) is modulated 

in two orthogonal axes (which have orientation 0j denoted by Xt and Yt) by a complex sinusoid 
2As described in Section 1.4.2, these patches are first segmented from the image and the signature obtained is 

thus not sensitive to the exact locations of the center nor to neighboring image regions 
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Nl'V 

Figure 3: Partial subset of kernels Ke' (fx = 1 and fy = 1) for orientation 0, = 0 degrees in spatial 
domain (left) and the configuration of corresponding kernels in frequency domain (right). Each subset 
KBl completely spans the frequency domain. 

with periods proportional to the deviations of corresponding Gaussian profile. The parameter 6t 

denotes the orientation of the kernel and uniformly spans the range [0,360) degrees in discrete 
steps / = l...Ng. 

The above scheme generates a subset of modulated Gaussian kernels K^'f*'6' = iaf*>h$i 

; m,n- l...Na} with identical orientation 6t and identical frequency coefficients (denoted by fx 

and fy), but with varying aspect ratio and size (indexed by aXm and aYn). For each orientation 

8i, we have a cumulative subset K6' of kernels which includes all the frequency coefficients, i.e., 

fx,fy = l—Nf- The complete set of kernels K consists of the union of all the subsets K9' swung 

to different orientations 0, ; / = l..Ne that uniformly span 360 degrees. In practice it is required 

only to generate kernels that span one quadrant (90 degrees) of orientation. All the other kernels 

can be constructed from this reduced set using symmetry properties. An example of one subset 

of kernels Ke> with 0, = 0 degrees is illustrated in Fig. 3 (left, only the real parts of the kernels). 

The frequency spectrum of this subset of kernels is also illustrated in Fig. 3 (right), and shows 

that each subset of kernels K6' completely spans the band-limited frequency domain of interest 
and is logarithmically spaced as needed. 

When a local image patch I(x, y) is correlated with this configuration of kernels, it generates 

a set of multi-dimensional spectral signatures {Sfz'f*>6l;fx, fy = 1...N/ , I = l...Ne} composed of 

the correlation (projection) coefficients of all the kernels. Explicitly, 

SfxM(aXm,aYn) = | < gLfvA(x,y),I(x,y) > | (10) 



J. Ben-Arie 11 

©! 

ffi 

Ö>2 

slant about y-axis m 

i 
Figure 4: Shifting property of the spec- 
tral signature in the (o^u^) plane with 
respect to scaling and slanting of an ar- 
bitrary shape. 

ORIGINAL 

/           ,'   '•■****-*'"!-"- 

,. it** i; — 

\ \ V\\V'V.'*\.. "A.\ .  ';_ '" ^.y: 
- ''. "• *■■ \ **■' "C""-^'// /   ,- 

0)2 
'■■■■'.'"''■s' /    ; B -•■' 

•            •           \ .-•-' j 

"--           • " ..- ; 

. "■■••. ■              *■** 
._ " 

SLANTED & TILTED 

0)2 

mm^-> 
 ■'-'.;:..'"-..-■!' ' .• .'—'   .,■■'  ■■■ / y 

•■-.. A;,. •   '" • • -~.'^'' _/" / /'/ /"■-., 

":>-'::-J l: ' /     ,  y  /   :' 

■-. B J 1 

.-■'     _,.••'          J   / /'"*"*""■•-.. 

■•■-..._ ""~ —• 

■•-"""/"'    .../•"" 

—'""'   ^ " 
0)1 »I 

Figure 5: Contour plots of the signature for the original object (left) and shifted spectral signature 
obtained for the slanted and tilted object (right). The contour plots demonstrate invariance to slant 
and tilt except for a shift in the signature space. The labels A and B illustrate the shift in the 
signature. 
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for m,n= l...Na, where | • | denotes modulus of a complex number. 

The property of slant-invariance arises from the fact that when the image patch corresponds 

to a slanted shape, say in axis Xi, its signature S**'**'8' shifts in the direction of the slant, i.e. 

0J2, with respect to the signature of the unslanted shape. Also, when the shape is scaled, all the 

signatures {S'* •'»•'' ; / = l...Ng} shift equally, i.e. diagonally, in the (wi,^) plane. Hence, any 

combined slant and scale results in a corresponding shift in the (u>i,a>2) plane. Fig. 4 illustrates 

these properties of the signature. Fig. 5 displays contour plots of the signature of the airplane 

model and the corresponding signature when the airplane is slanted by 60 degrees with a tilt of 15 

degrees. It is easily observed (see the labels A and B on the plots displayed for easy registration) 

that the signature does not change except for a translation in the (wi,^) plane. The translation 

between a model signature and the image signature can be used to compute the relative 3D pose 

between the two. The difference in W\ and u-z can be directly translated into relative slant and 

scale. The other angular pose parameters of tilt and swing can also be retrieved as described 

below. The X and Y coordinates are derived from the image, and the depth parameter can be 

derived from the scale. 

Since shapes can be slanted and tilted in any orientation in space, one has to generate a subset 

of kernels for each tilt direction and for each orientation, which forms two rotational degrees of 

freedom. These two degrees of freedom are dealt with by using the complete set of kernels K 

both for the model signature and for the image signature. This is demonstrated in Fig. 2, where 

it is shown that even if the model is tilted and swung, there is exact correspondence between 

four of the model signatures (marked by labels A through D) and four of the image signatures 

(marked by labels A' through D'). This invariance to swing and tilt is possible only because 

both the model and the image are processed by subsets of kernels at different orientations. In 

Section 1.4, it is experimentally found that sampling of 7.5 degrees in 0t achieves a sufficient 

interpolation to accommodate any intermediate values of tilt and swing. 

From Eq. (10), we see that the signatures are related only to the magnitudes of the complex 

correlation coefficients, the phase information being completely eliminated. Thus, the signatures 

obtained are - to a large extent - invariant to limited translation of the object within the localized 

Gabor support (approximately ±<r). 

Hence, the combined set of kernels K, composed of all the subsets Ke' sufficiently covers 

scale, slant, tilt, swing, and translation, i.e. all affine transformation parameters that simulate 

the scaled orthographic projection. 
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1.3    Affine-Invariant Recognition by Multi-Dimensional Indexing 

Our recognition scheme is based on the affine-invariant nature of the spectral signatures described 

in Section 1.2. As explained above, when the shape is slanted with a tilt axis of orientation 9i, the 

signature Sfz,fy'e' - which corresponds to the tilt orientation 0/ - undergoes simple shifts in the 

(u}i,U2) plane that correspond to scale and slant transformations. The purpose of the indexing 

scheme is to robustly identify the image patch from its set of signatures. Each signature 5^-M' 

corresponds to a combination of orientation 0/ and the frequency coefficients fx, /„. A robust 

recognition scheme is required since the signatures could be partially distorted due to illumination 

variations, due to the discrete nature of the orientation or due to the limited range of scales. 

Furthermore, irrelevant clutter in the receptive field and partial occlusion can result in additional 

distortions. 

In order to overcome these signature distortions, we implement a voting scheme using the 

spectral signatures, based on MDI [13]. MDI basically relies on the same principles as the 

geometric hashing method [28]. The main difference is that the indices for the hash table have few 

dimensions which correspond to few invariant shape characteristics. The low dimensionality of 

geometric hashing causes overcrowding of bins, and the hash table sometimes saturates even with 

a small number of objects. On the other hand, MDI improves the robustness of the recognition 

(which is expressed as the ratio of the highest vote to the next highest vote). This result was 

also observed by [34]. The innovation of our indexing scheme is that it is implemented in the 

frequency domain using spectral signatures. Additional merits of MDI are that the retrieval 

size of the database is considerably increased, the overcrowding of bins in the hash table is 

almost eliminated, and coarser quantization can be used without reducing discrimination. We 

experimentally found that the large dimensionality in the indexing space does not significantly 
increase the search times. 

In our indexing scheme, the hash table is updated by each model using all its signatures 

5/II/*,öI 11-dimensional indices are generated for the models (to each index, an additional nine 

dimensional information vector is also attached). Every index corresponds to a pair of points 

in the signature space (n,m) with respect to three pairs of different relative frequencies (fx,fy). 

The indices are based on the following parameters: the offset of the second point with respect 

to the first point (two dimensions), the directions of the gradients of the signature at these two 

points (six dimensions), the amplitude ratios of the signature values at these two points (three 

dimensions). A hash table is used to store all the indices and the additional information vectors 

of the models. The additional information vectors include elements such as the angle fy of the 

kernels and the coordinates of the first point (n, m) that are used for deriving pose information. 
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The relative pose, which corresponds to relative shift of the first points of model indices with 

respect to the first points of object indices in n and m, and the angles of the kernels are derived 

in the process of indexing as by products. These numbers can subsequently be translated to the 

relative slant, tilt, scale and swing between the image patch and the model. 

In Eq. (4), we see that the affine transform introduces a pose dependent shift of the signatures 

as well as a scalar \C\. Using the ratio of amplitudes as part of the multi-dimensional index 

eliminates the effect of this scalar and also yields invariance to multiplicative variations of image 

intensity. 

1.4    Experimental Results 

1.4.1    Recognition of Single Patch Isolated Objects 

This section describes experimental results using the above mentioned approach for affine- 

invariant recognition. In these experiments, according to the notation of Eq. (9) in Section 1.2, 

the kernels g^fv'B'(x,y) employ a set of Standard Deviations {oxm,0Yn = 8...24}, a set of rel- 

ative frequency coefficients {(fx,fy) = (1,1), (4,4), (7,7)}, and 24 orientations 0, in steps of 7.5 

degrees. For a given image patch I(x,y), a set of spectral signatures Sfx'f*'e' is generated by 
correlating it with the above kernels. 

As elaborated in Section 1.2, these signatures are used along with a MDI scheme for affine- 

invariant recognition. For each model to be included in the hash table, signatures are generated 

using the kernels gfcJ»A{x, y), and the set of 11-dimensional indices are computed. Each index is 

included as an entry in the hash table along with the pose parameters of the model, represented 

by n, m and 0/. Given an image patch to be recognized invariant to affine transformation, its 

signatures and 11-dimensional indices are generated in an identical fashion. These indices are 

then compared with indices in the hash table and each matching index adds one vote for the 

corresponding models pointed to by a pointer in that entry. In addition, pose information is 

derived as described in Section 1.3. The total number of votes accumulated by each model (with 

pose) over all the indices of the test image is the matching score for that model. 

We use a dataset of 26 objects (displayed in Fig. 6) in our initial experiments. Since the 

experiments are mainly performed to test the pictorial affine invariant recognition scheme in 

this section, every object in the dataset is considered as a single patch. These models consist of 

randomly selected, real gray-level images (128 x 128) of objects with some amount of texture as 

well. A hash table is created using a single set of signatures from each model. Experiments are 

performed under varied conditions of slant, tilt, scale and swing and yield close to 100% correct 
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Figure 6: 26 model objects in the dataset. Close to 100% recognition is achieved over a wide range 
of slant, tilt, scale, and swings. Note that many of the models (such as hands) are quite similar in 
appearance and are still correctly classified. 

Figure 7: Two test images that correspond to affine-transformed models (compare to airplane and 
truck in Fig. 6). 

recognition rates as illustrated in figures 8, 9, 11 and 14. In addition, the pose of each model is 
also estimated correctly in all experiments. 

Robust recognition is achieved over a range of more than 3 octaves of scaling, slant angles of 
more than 80 degrees (foreshortening ratio of 1:7), and image swing and shape tilt of 360 degrees. 
Two of the successfully recognized test images are displayed in Fig. 7. 
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Figure 8: Correct recognition rates for scaled objects. The experiments 
are performed with 26 models and all the test objects are scaled versions of 
the models at different scales from 1 octave to -3 octave (e.g. from scale 
factors of 2 down to 0.125). 

In recognition experiments in varied scale, as illustrated in Fig. 8, the method achieves 100% 

recognition rate even when images are down scaled by 2.5 octaves. It should be noted that the 

images scaled halfway in between the decimation interval for our Gabor kernels are still correctly 

recognized. The maximum error in pose estimation is 1.09 of the scale factor. In swing and 

tilt experiments, the recognition rates are examined for the full 360° and are found to be 100%. 

Due to the constant recognition rates, graphs are not presented for tilt and swing. In slant 

experiments, the images are foreshortened only in one direction. Minimal foreshortening factor 

is around 0.0743, which corresponds to a slant angle of 85.4 degrees. Fig. 9 shows the correct 

recognition rates for different slant angles. 

Figure 10 illustrates three test images that are noisy versions of the corresponding model 

in Fig. 6. Experiments are carried out with additive white noise, low-frequency colored noise 

(normalized low pass cutoff frequency = 7r/2), and high-frequency colored noise (normalized high 

pass cutoff frequency = 7r/2). For each kind of noise, we experimentally find the largest noise level 

at which successful recognition with correct pose estimation is obtained. As seen in Fig. 10, the 

test image is successfully recognized in all three cases at very high noise levels, demonstrating that 

the scheme is quite robust to additive noise. The Gabor kernels capture the image information 
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Figure 9: Correct recognition rates for slanted objects. The model dataset 
consists of 26 objects and all the test objects are slanted versions of the 
models at different slant angles from 0° to 86°. 

Figure 10: (a) Successfully recognized test image with additive white noise (SNR=-1.8 dB), (b) 
Successfully recognized test image with additive low-frequency colored noise (SNR=5.0 dB), (c) The 
test image is recognized even though it is hardly seen (additive high-frequency colored noise of SNR=- 
17.0 dB). 

mostly in the low and middle frequencies, and thus the scheme is almost insensitive to high- 
frequency noise (Fig. 10(c), SNR=-17 dB) since this noise is outside the frequency range of the 
kernels. The scheme is also quite resistant to white noise (up to SNR=-1.8 dB), and less resistant 
(up to SNR=5dB) to low-frequency noise for the same reason. Thus, we can conclude that the 
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The model dataset consists of 26 objects and the test objects are noisy 
and scaled versions of the models at three different scales. 

overall recognition scheme is quite robust to the effects of additive noise and clutter.  Fig. 11 

gives the correct recognition rates for white-noise corrupted images with different levels of SNR. 
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Figure 12: (a) The signature of the noiseless truck model for Fig. 10. (b) The signature of the noisy 
image in Fig. 10c. Only the high frequency regions are affected while the low and middle frequency 
responses still allow for robust recognition. 

In order to explain the surprisingly good recognition in high frequency noise, we demonstrate 
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Figure 13: (a) Original high resolution model (128x128). (b) Medium resolution test image (64x64). 
(c) Low resolution test image (32 x 32). 

the effects of high frequency noise on the signature in Fig. 12(a) and Fig. 12(b). As observed, the 

noisy signature in Fig. 12(b) (which corresponds to picture in Fig. 10(c)) is affected only at only 

two boundaries while the rest is almost identical to the signature in Fig. 12(a). This explains 

why the computer is still able to recognize the image in Fig. 10(c) which looks completely noisy 
to the human eye. 

Figures 13(b-d) illustrate test images that have reduced resolution with respect to the model 

image in Fig. 13(a) (which is 128 x 128 in size). Experiments were performed over all the 26 

models for each of these resolutions. To simulate affine transformation in addition to the effects 

of reduced resolution, all the test images correspond to model images and are scaled by a factor 

of 0.8 and swung by 30 degrees. Over all the 26 models in the dataset, the medium resolution 

(64 x 64) set of test images (see Fig. 13(b)) yields 100% successful recognition with the correct 

pose estimated in all tests. In the low resolution (32 x 32) experiments of Fig. 13(c), 96% of 

the test images were successfully recognized along with accurate pose estimation. These results 

show that the representation and recognition scheme is quite robust to significant degradation 

that correspond to lower resolution. Such degradation could occur from large viewing distances. 

In Fig. 14, the correct recognition rates under different levels of resolution reduction are given. 

1.4.2    Recognition of Multiple Patches and Non-Isolated Objects Using Model Based 
Segmentation 

In all the experiments described in Section 1.4.1, we consider every image as a single patch. For 

recognition of multiple objects in one image, we first have to obtain the spectral signature for 

every local patch. Most objects encountered in daily life are composed of a number of primitive 
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Figure 14: Correct recognition rates for objects at different resolutions. 
The experiments are performed with 26 object models and the test objects 
are derived from the models through low-pass filtering and down-sampling. 

standard shapes. Hence, it's assumed that a large set of man made objects (which include most 

objects in our model dataset) can be represented by a small set of standard primitives. In 

our case, we prefer simple primitives such as rectangles, semicircles etc. that can approximate 

many man made flat surfaces. For detection of such primitives in the image, it is advantageous 

to use their boundaries (edges) since this information is more stable in varying conditions of 

illumination. 

For the detection of standard primitives that may vary in their proportions, sizes and orien- 

tations, is it necessary to generate a set of boundary models. These models cover the boundaries 

of standard primitives with strips to allow for local variations (as in Fig. 16(a)). When an edge 

map of an image is convolved with the set of strip models, the peaks detected indicate possible 

existence of shapes similar to the corresponding model set. In order to detect primitive parts in 

the image with affine-invariance, the set of strip models must include all the affine-transformed 

versions of each primitive part. Since the number of strip models in the library might be very 

large, an efficient representation approach needs to be developed. 

We choose to employ here the Karhunen-Loeve (K-L) transform which is commonly used as an 

optimal compression technique for images. For this application, the K-L transform is employed 

to compress strip models. A large number of strip models (approximately 44,000 templates) are 
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Figure 15: (a) Recognition of neighboring objects (airplane and mouse) in background clutter, (b) 
Convolution score of the edge map of the image with the semi-circular strip template set. (c) 
Convolution score of the edge map of the image with the rectangular strip template set. 

Figure 16: (a) Initial estimation of shapes and poses. The rectangular and semicircular strip models 
that correspond to peaks found in Fig. 15(b) and Fig. 15(c) are overlaid on the the image with their 
correct affine transforms, (b) Final results after flexible matching. 

approximated by only 10 eigentemplates. The eigentemplates are then convolved with the edge 
map of the image. Fig. 15 shows the convolution scores of the edge map with the K-L based set 
of strip templates. At each point, the score denotes the highest score of the convolutions of all 
strip models with the edge image. As seen in Fig. 15, sharp peaks are obtained for a slanted 
semi-circle (Fig. 15(a)) and a rectangle (Fig. 15(b)). The peaks of the convolution provide a 
robust model based segmentation of the image as illustrated in Fig. 16(a). It also provides an 
affine invariant initial identification of the primitives in the image and their poses. 
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At a second stage, for more accurate segmentation, an algorithm of a flexible matching of 

the primitive parts to the real edges in the image is employed. The principle of elastic matching 

implemented is similar to the snakes [15]. But our flexible matching algorithm differs in the 

aspect that our primitives models are attached to a virtual elastic sheet that is distorted to 

match the exact shape beneath it. When the elastic sheet finally locks on to the real image, 

the shape of the corresponding part is determined. Fig. 16(b) shows the final result of flexible 

matching for the image. The primitive parts are also found the same way in the model dataset. 

The signatures of the segmented parts in the image are then matched against the primitive 

parts of the models. Since the parts are segmented and isolated, the signatures obtained are 

not affected by neighboring objects and the background. For example, we display the objects 

that match rectangular primitives in our 26 model dataset of Fig. 6 and their matching scores 

with the segmented mouse in Fig. 17. Even though the segmentation of the mouse in Fig. 16(b) 

includes small parts of the airplane wings, the matching scores of the signatures clearly classifies 

it correctly. Based upon the segmentation results, the airplane and the mouse are successfully 
recognized. 

This approach is run on a Pentium Pro (200 MHz) personal computer. 28224 eleven dimen- 

sional indices are generated for each image patch. In the experiments of isolated object recog- 

nition, average recognition time is around 20 seconds. It takes around 3.5 minutes to recognize 

objects in cluttered images. A detailed and general analysis of time and memory requirements 

for multidimensional indexing can be found in [13]. 

Figure 17: The models matching the rectangular primitive.  The matching scores of the mouse in 
Fig. 16(b) to these models are: 0.53, 0.59, 0.50, 0.45, 0.50 and 0.80 for a) to f). 

1.5    Conclusion 

We present here an approach for affine-invariant object recognition by pictorial recognition of 

image patches that correspond to object surfaces that are roughly planar. Each surface can 

be recognized separately invariant to its 3D pose, employing novel Affine-invariant Spectral 

Signatures (AISSs).   The 3D-pose invariant recognition is achieved by correlating the image 
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with a novel configuration of Gabor kernels and extracting local spectral signatures. The local 
spectral signature of each image patch is then matched against a set of pictorial models using 
Multi-Dimensional Indexing (MDI) in the frequency domain. Affine-invariance of the signatures 
is achieved by a new log-log sampling configuration in the frequency domain which can be 
represented by short-term Fourier transform or by Gabor transform in two orthogonal axes. In 
our experiments, we find that spectral signatures have a significant discriminative power even 
without phase information. 100% correct affine-invariant recognition is obtained in a range of 
more than 3 octaves of scaling and slant angles of more than 80 degrees, with image swing and 
shape tilt of 360 degrees with a dataset of 26 gray-level models. Experiments also reveal that 
the method works with severe additive white and colored noise (SNR of -17 dB to 5 dB) and 
degraded resolution. To overcome the problem of recognition of non-isolated objects, we develop 
a model based segmentation scheme. This scheme enables to extract isolated signatures of image 
regions, which are affine projection of a set of basic geometric shapes such as rectangle, triangle, 
semicircle etc. 
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2 A Volumetric/Iconic Frequency Domain Representa- 
tion for Objects with application for Pose Invariant 
Face Recognition 

2.1    Introduction 

A major problem in 3-D object recognition is the method of representation, which actually de- 

termines to a large extent, the recognition methodology and approach.   The large variety of 

representation methods presented in the literature do not provide a direct link between the 3- 

D object representation and its 2-D views. These representation methods can be divided into 

two major categories:  object centered and viewer centered (iconic).   Detailed discussion are 

included in [25] and [21].  An object centered representation describes objects in a coordinate 

system attached to objects. Examples of object centered methods of representation are spatial 

occupancy by voxels [25, pp.   468-469], constructive solid geometry (CSG) [25, pp.  468], su- 

perquadrics [32] [9], etc. However, object views are not explicitly stored in such representations 

and therefore such datasets do not facilitate the recognition process since the images cannot 

be directly indexed into such a dataset and need to be matched to views generated by per- 

spective/orthographic projections. Since the viewpoint of the given image is a priori unknown, 

the recognition process becomes computationally expensive.   The second category i.e.  viewer 

centered (iconic) representation is more suitable for matching a given image with such a dataset, 

since the dataset also is comprised of various views of the objects.   Examples of viewer cen- 

tered methods of representation are aspect graphs [26], quadtrees [21], Fourier descriptors [45], 

moments [23], etc.  However, in a direct viewer centered approach, the huge number of views 

needed to be stored renders this approach impractical for large object datasets. Moreover, such 

an approach does not automatically provide a 3-D description of the object.  For example, in 

representations by aspect graphs [26], qualitative 2-D model views are stored in a compressed 

graph form, but the view retrieval requires additional 3-D information in order to generate the 

actual images from different viewpoints. In principle, viewer centered aspect graph approaches 

do not offer significant advantage over object centered approaches. In summation, viewer cen- 

tered and object centered representations have complementary merits that could be augmented 

in a merged representation - as proposed in this section. 

A first step in unifying object and viewer centered approaches is provided by our recently 

developed Affine Invariant Spectral Signatures (AISS) approach [7] [6] [5], which is based on an 

iconic 2-D representation in the frequency domain. However, the AISS is fundamentally different 

from other viewer centered representations since each 2-D shape representation encapsulates all 
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the appearances of that shape from any spatial pose. It also means that the AISS enables to 

recognize surfaces which are approximately planar, invariant to their pose in space. Although 

this approach is basically viewer centered, it has the advantage of directly linking 3-D model 

information with image information, thus merging object and viewer centered approaches. Hence, 

to generalize the AISS it is necessary to extend it from 2-D or flat shapes to general 3-D shapes. 

Towards this end, we describe in Section 2.2, a novel representation of 3-D objects by their 3-D 

spectral signatures which also captures all the 2-D views of the object and therefore facilitates 

direct indexing of a given image into such a dataset. 

As a demonstration of the V/ISS representation, it is applied for estimating pose of faces 

and face recognition in Section 2.3. Range image data of a human head is used to construct the 

V/ISS model of a simulated "generic" face. We demonstrate that reconstruction from slices of 

the V/ISS results are accurate enough to recognize faces from different spatial poses and scales. 

In Section 2.3, we describe the matching technique by means of which a gray scale image of a 

face is directly indexed into the 3-D V/ISS model based on fast matching by correlation in a 4 

dimensional Fourier space. In our experiments (described in Section 2.5), we demonstrate how 

the range data generated from a model is used to estimate the pose of a person's face in various 

images. We also demonstrate the robustness of our 2-D slice matching process by recognizing 

faces with different poses from a dataset of 40 subjects, and present statistics of the matching 
experiments. 

2.2    Volumetric/Iconic Spectral Signature 

In this section, we describe a novel formulation that merges the 3-D object centered representation 

in the frequency domain to a continuum of its views. The views are also expressed in the frequency 

domain. The following formulation describes the basic idea. 

Given an object O, which is defined by its spatial occupancy on a discrete 3-D grid as a set 

of voxels {V(x, y, z)}, we assume without loss of generality, that the object is of equal density. 

Thus, V(x, y, z) = 1 V {a;, y,z} e O and V(x, y, z) = 0 otherwise. The 3-D Discrete Fourier 

Transform (DFT) of the object is given by 

V(u, v, w) = ?{V(x, y, z)} = £ £ f^Vix, y, z)e-?ir{™W*) (11) 
u=0 v=Q w=0 

where j = yf-i. The surface of the object is derived from the gradient vector field 

Ft F) Ft 
VV(x,y,z) = [kx— + ky— + k2—]V(x,y,z) , (12) 
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where kx, ky and fc, are the unit vectors along the x, y and z axes. The 3-D Discrete Fourier 

Transform (DFT) of the surface gradient is given by the frequency domain vector field: 

T{D(x, y, z)} = Jjj(kxti + kyv + kzw)V(u, v, w). (13) 

Let the object be illuminated by a distant light source3 with uniform intensity T and direction 

i = ixkx 4- iyky + izkz. We assume the surface has an albedo A(x,y,z). For a voxel based 

description, the gradient magnitude | VV |« K (constant). VV may be estimated as V * VG. 

Thus the surface normal is the given by ^. We assume that O has a Lambertian surface with 

constant albedo. Thus points on its surface have a brightness proportional to 

Bi{x,y,z) =   Bt(x,y,z) + Br(x,y,z) 

TA..   d   .  d   .  d....        . ., A. 

" -Y[,'d^^'ä^nx'%z) (14) 

where ßt and B~ are the positive and negative parts. The function Bj(x, y, z) is not a physically 
XX X 

realizable brightness and is introduced only for completeness of Eq. (14). The separation of 

the brightness function into positive and negative components is used to consider only positive 

illuminations. The negative components are disregarded in further processing, as this function 

is separable only in the spatial domain. As elaborated in Section 2.2.1, Bi~ can be eliminated 

using a local Gabor transform. 

It is also necessary to consider the viewing direction when generating views from the V/ISS. 

The brightness function B^(x,y,z) is decomposed as a 3-D vector field by projecting onto the 

surface normal at each point of the surface. This enables the correct projection of the surface 

from a given viewpoint. As noted earlier, the surface normal is given by ^. Thus the new 

vectorial brightness function 23» is given by 

TA 1 
Bt(x, y,z) = —[i- VV(x, y, z)} -VV(x, y, z) . (15) 

The 3-D Fourier transform of this model is a complex 3-D vector field Vj(u, v, w)=Jr{Bi(x, y,z)}. 

The transform is evaluated as: 

TA 2ir 1   27T 
Vi(u,v, w) = -TTI-TTUXU + iyV + izw)V(u,v,w) * —j—(kxu + kyv + k2w)V(u,v,w)     (16) 

where * denotes convolution. Variation in illumination only emphasizes the amplitude of V» in 

the (ix, ty, iz) direction, but does not change its basic structure. The absolute value of Vi(u, v, w) 

is defined as the Volumetric/Iconic Spectral Signature (V/ISS). 

'Additional light sources can be easily handled using superposition. 
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Figure 18: The Projection-Slice Theorem: A slice of the 3-D Fourier Transform of a rectangular block 
(on the right) is equivalent to the 2-D Fourier Transform of the projection of the image of that block 
(on the left). 

2.2.1    Projection Slice Theorem and 2-D Views 

The function Vi(u,v,w) is easily obtained, given the object O. To generate the view of the 

object, we resort to 3-D extensions of the Projection-Slice Theorem [24] [36] that projects the 

3-D vector field Vi(u, v, w) onto the central slice plane normal to the viewpoint direction. Fig. 18 

illustrates the principle by showing the slice derived from the 3-D DFT of a rectangular block. 

Orthographically viewing the object from a direction c = cxkx + Cyky + czkz, results in an image 

Ic(x',y'), which has a 2-D DFT given by Ic(u',v'). To find Ic{x?,y') and its DFT Ic(u',v'), 

it is necessary to project the vector brightness function Bf{x,y,z) along the viewing direction 

c after removing all the occluded parts from that viewpoint. The vectorial decomposition of 

the brightness function along the surface normals as given by Eq. (15) compensates for the 

integration effects of projections of slanted surfaces. This explains the necessity of using a 

vectorial frequency domain representation. 

Removing the occluded surfaces is not a simple task if the object O is not convex or if the 

scene includes other objects that may partially occlude O. For now, we shall assume that O is 

convex and is entirely visible. This assumption is quite valid for local image analysis where a 

local patch can always be regarded as either entirely occluded or visible. Also, for local analysis 

B^(x, y, z) is not a major problem. The visible part of B^(x, y, z) from direction c, denoted by 
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Bic(x, y, z), is given by 

TA 1 
Bic(x,y,z) = — hwr[i-VV(x,y,z)} -hwr[c-VV(x,y,z)]. (17) 

where hwr[a] is the "half wave rectified" value of a, i.e. hwr[a] = a if a > 0 and hwr[a] = 0 if 

a <0. 

Now Vjc(u, v, u;) can be obtained from Bjc(x, t/, z) simply by calculating the DFT, 

Vic(u, v, w) = F{Bic{x, y, z)} . (18) 

The image DFT lc(u', v') is obtained using the Projection-Slice Theorem [24] [36] by slicing 

Vic(u, v, w) through the origin u = v — w — 0 with a plane normal to c, i.e. ucx + vCy + wcz = 0. 

Xc(u', v') is derived by sampling V^c(u, v, w) on this plane. An example of such a slicing operation 

is illustrated in Fig. 18. Note that Vjc actually encapsulates both the objects 3-D representation 

and the continuum of its view-signatures, which are stored as planar sections of | V;c \. As we 

see from Eq. (16), variations in illumination only emphasizes the amplitude of V^ in (ix,iy,ix) 

direction, but do not change its basic structure. Thus, it is feasible to recognize objects that 

are illuminated from various directions by local signature matching methods as described in 

Section 2.2.3, while employing the same signature. 

2.2.2    Local Signature Analysis in 3-D 

Local signature analysis is implemented by windowing Bi with a 3-D Gaussian centered at 

location (nx,py,tiz) and proceeding as in Eq. (15) on the windowed object gradient. Such local 

frequency analysis removes the self-occluded parts. Therefore, we use in our frequency analysis 

and representation, the Gabor Transform (GT) instead of the DFT. The transition required from 

the DFT to the GT is quite straightforward. The object O is windowed with a 3-D Gaussian to 

give 
BiG = g[Bi) = ^eH^)'^)*^)')> . (19) 

The equivalent local V/ISS is given by 

ViGK V, W) = V»(U, V, W) * [C-(^)a3K«ff«)a+(w,)a+(^.)al . ^[«/ix+vMv+^jJ (20) 

The important outcome from this are: 1) The Radon transform and the Projection-Slice Theo- 

rem [24], [36] can be still employed for local space-frequency signatures of object parts. 2) In local 

space-frequency analysis, Bi almost always does not contain a problematic B~ part, which can 

be eliminated by the windowing function. We note that for most local surfaces, [B»-c] ~ £• as 

the local analysis approximates the hwr[-] function with respect to viewing direction c. Hence, 

the V/ISS of Bjc is a general representation of a local surface patch of V(x, y, z). 
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2.2.3    Indexing using V/ISS 

As explained in Section 2.2.1, the V/ISS is a continuum of the 2-D DFT of views of the model. 

To facilitate indexing into the V/ISS data structure, we consider the V/ISS slice plane ucx + 

vcy + wcz - 0, where [cx, Cy, cx]T are the direction cosines of the slice plane normal. We define a 

4-D pose space in the frequency domain which consists of the azimuth a and elevation e, defining 

the slice plane normal with respect to the original axes, the in-plane rotation 9 of the slice plane 

and the scale p which changes with the distance to the viewed object. Fig. 20 illustrates the 

coordinate system used. [cx, Cy, cz]T are related to the azimuth a and elevation c as follows 

Cx cos a cos e 

°y = sin a cos e 
cz sine 

-TT/2 < a < TT/2 

-71-/2 < e < TT/2 
(21) 

We note again that slices of the V/ISS are planes which are parallel to the imaging plane. 

Thus the image plane normal and the slice plane normal coincide. By using 3-D coordinate 

transformations (see Fig. 20) we can transform the frequency domain V/ISS model to the 4-D 

pose space (a,e,9,p). Let (u,v,w) represent the original V/ISS coordinate system and (ü,v,w) 

be the coordinate system defined by the slice plane. The slice plane is within the 2-D coordinate 

system (u,v), where w is the normal to the slice plane (and also the viewing direction). The 

relation between these two systems is given by 

(22) 

V/ISS slices, being 2-D DFT's of model views are further transformed to polar coordinates by 

considering the in plane rotation 9 (equivalent to the image swing or rotation about the optical 
axis), and the radial frequency 77. 

u cos a sin e — sin a cos a cos e u 
V = sin a sin e cos a sin a cos e V 

w — sine 0 sine w 

u 
V 

rf 
cos 6 
sin# -TT/2 <9<n/2 

77   =   Vu2 + v2 r0<r < Tnax (23) 

The radial frequency 77 is transformed logarithmically to attain exponential variation of 77. Thus 

(24) 

The full transformation of the coordinate system to the 4-D pose space is given by 

p = loga ^ 

u 
v 
w 

= rQa
p 

cos 9 cos a sin e — sin 9 sin a 
cos 9 sin a sin e - sin 0cos a 

— sin 9 cos e 
(25) 
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Thus the 4-tuple (a, e, 0, p) defines all the points in the 3-D V/ISS frequency space («, v, w). We 

observe that the space defined by the 4-tuple (a, e, 0, p) is redundant in the sense that infinite 

number of 4-tuples (a, e, 0, p) may represent the same (it, v, w) point. However, this represen- 

tation has the important advantage that every (a,e) pair defines a planar slice in V^c(u,v,w). 

Moreover, every 9 defines an image swing and every p defines another scale. Thus the (o, c, 0, p) 

representation significantly simplifies the indexing search for the viewing poses and scales. Now, 

the indexing can be simply implemented by correlation in the frequency domain to immedi- 

ately determine all pose parameters by linear shifts in (a, e, 0, p) space. The significance of this 

transformation to the 4-D pose space is in using the following properties. The polar coordinate 

transformation within the slice allows rotated image views to have 2-D frequency domain signa- 

tures which shift along the 9 axis. Similarly the exponential sampling of the radial frequency rj 

results is scale changes causing linear shifts along the p axis. Thus the new coordinate system 

given by (a, e, 0, p) results in a 2-D frequency domain signature which is invariant to view point 

and scale and results only in linear shifts in the 4-D pose space so defined. A particular slice 

corresponding to a particular viewpoint is easily indexed into the transformed V/ISS by using 

correlation. 

2.3    Pose Estimation and Recognition of Human Faces 

Recognition of human faces is a hard problem for machine vision, primarily due to the complexity 

of the shape of a human face. The change in the observed view caused by variation in facial pose is 

a continuum which needs large numbers of stored models for every face. Since the representation 

of such a continuum of 3-D views is well addressed by our V/ISS representation, we present 

here, the application of our V/ISS model for pose-invariant recognition of human faces. First we 

discuss some of the existing work in face recognition in Section 2.3.1 followed by our approach 

to the problem in Section 2.3.2. We present our results in face pose estimation (Section 2.4) and 

face recognition (Section 2.3) and compare our results in face recognition to some other recent 

works using the same database [31]. 

2.3.1    Face Recognition: A Literature Survey 

Recent works in face recognition have used a variety of representations including parameterized 

models like deformable templates of individual facial features [44] [38] [16], 2-D pictorial or 

iconic models using multiple views [12] [10], matching in eigenspaces of faces or facial features 

[33] and using intensity based low level interest operators in pictures. Recent significant works 

in face recognition have used convolutional neural networks [29] as well as other neural network 
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Figure 19: Reconstructions of a model face from slices of the V/ISS are shown for various azimuths 
and elevations. Note that all facial features are accurately reconstructed indicating the robustness of 
the V/ISS model. 

approaches like [18] and [42]. Hidden Markov Models [37], modeling faces as deformable intensity 

surfaces [30], and elastic graph matching [27] have also been developed for face recognition. 

Parameterized models approaches like that of Yuille et al. [44], use deformable template 

models which are fit to preprocessed images by minimizing an energy functional, while Ter- 

zopoulos and Waters [38] used active contour models of facial features. Craw et al. [16] and 

others have used global head models from various smaller features. Usually deformable models 

are constructed from parameterized curves that outline subfeatures such as the iris or a lip. An 

energy functional is defined that attracts portions of the models to pre-processed versions of the 

image and model fitting is performed by minimizing the functional. These models are used to 

track faces or facial features in image sequences. A variation is the deformable intensity surface 
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model proposed by Nastar and Pentland [30]. The intensity is defined as a deformable thin plate 

with a strain energy which is allowed to deform and match varying poses for face recognition. A 

97% recognition rate is reported for a database with 200 test images. 

Template based models have been used by Brunelli and Poggio [12]. Usually they operate by 

direct correlation of image segments and and are effective only under invariant conditions of scale 

orientations and illumination. Brunelli and Poggio computed a set of geometrical features such 

as nose width and length, mouth position and chin shape. They report 90% recognition rate on 

a database of 47 people. Similar geometrical considerations like symmetry [35] have also been 

used. A more recent approach by Beymer [10] uses multiple views and a face feature finder for 

recognition under varying pose. An affine transformation and image warping is used to remove 

distortion and bring correspondence between test images and model views. Beymer reports a 

recognition rate of 98% of a database of 62 people, while using 15 modeling views for each face. 

Among the more well known approaches has been the eigenfaces approach [33]. The principal 

components of the database of normalized face images is used for recognition. The results report 

a 95% recognition rate of 200 faces from a database of 3000) However, variation in face pose is 

limited. More recent reports on a fully automated approach with extensive preprocessing on the 

FERET database indicate only 1 mistake on a database of 150 frontal views. 

Elastic graph matching using the dynamic link architecture [27] was used quite successfully 

for distortion invariant recognition. Objects are represented as sparse graphs with vertices labels 

with multi-resolution spectral descriptions and graph edges associated with geometrical distances 

form the database. A recognition rate of 97.3% is reported for a database of 300 people. 

Neural network approaches have also been popular. Principal components generating using an 

autoassociative network have been used [18] and classified using a multilayered perceptron. The 

database consists of 20 people with no variation in face pose or illumination. Weng and Huang 

used a hierarchical neural network [42] on a database of 10 subjects. A more recent approach uses 

a hybrid approach using self organizing map for dimensionality reduction and a convolutional 

neural networks for hierarchical extraction of successively larger features for classification [29]. 

The reported results show a 3.8% error rate on the ORL database using 5 training images per 

person. 

In [37], a HMM-based approach is used on the ORL database. Error rates of 13% were 

reported using a top-down HMM. An extension using a pseudo two-dimensional HMM reduces 

the error to 5% on the ORL database. 5 training and 5 test images were used for each of 40 

people under various pose and illumination conditions. 
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2.3.2    V/ISS model of faces 

fc> 

/    UCx+VCy+WCz = 0 , 

T * * • • • * •. 

W 

Figure 20: The frequency domain coordinate system in which the slice plane is defined. (cx,Cy,cz) 
are the direction cosines of the slice plane normal, which has an azimuth a and an elevation e. 
Image swing is equivalent to in plane rotation 9, and viewing distance results is variation in the radial 
frequency rj of the V/ISS function. 

In our V/ISS model, we present a novel representation using dense 3-D data to represent a 
continuum of views of the face. As indicated by Eq. (18) in Section 2.2, the V/ISS model encap- 
sulates the information in the 3-D Fourier domain. This has the advantage of 3-D translation 
invariance with respect to location in the image coupled with faster indexing to a view/pose of 
the face using frequency domain scale and rotation invariant techniques. Hence, complete 3-D 
pose invariant recognition can be implemented on the V/ISS. 
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Range data of the head is acquired using a Cyberware range scanner. The data consists of 

256 x 512 range information from the central axis of the scanned volume. 360° of longitude is 

sampled in 512 columns and heights in the range of 25 to 35 cm is sampled in 256 rows. The data 

is of the heads of subjects looking straight ahead at 0° azimuth and 0° latitude corresponding to 

the x-axis. This model is then illuminated with numerous sources of uniform illumination thus 

approximating diffuse illumination in a well-lit room. The resulting intensity data in converted 

from the cylindrical coordinates of the scanner to Cartesian coordinates and inserted in a 3-D 

surface representation of the head surface as given by Eq. (14). 

The facial region of interest to us is primarily the frontal region consisting of the eyes, lips 

and nose. A region corresponding to this area is extracted by windowing the volumetric surface 

model with a 3-D ellipsoid with a Gaussian fall off centered at the nose. The parameters of the 

3-D volumetric mask are adjusted to ensure that the eyes, nose and lips are contained within it, 

with the fall off beyond the facial region. The model thus formed is a complex surface which 

consists of visible parts of the face from an continuous range of view centered around the x-axis 

or the (0°,0°) direction. The resulting model then corresponds to Eq. (17) in our V/ISS model. 

Applying Eq. (18), the V/ISS of the face is obtained. The V/ISS model is then resampled into 

the 4-D pose space using Eq. (25) as described in Section 2.2.3. Reconstructions of a range of 

viewpoints from a model head, from the V/ISS slices are shown in Fig. 19. We see from the 

reconstructions, that all relevant facial characteristics are retained thus justifying our use of the 

vectorial V/ISS model. This model is used in the face pose estimation experiments. 

2.3.3    Indexing images into the V/ISS 

Images of human faces are masked with an ellipse with Gaussian fall-off to eliminate background 

textures. The resulting image shows the face with the eyes nose and lips. The magnitudes 

of Fourier transform of the windowed 2-D face images are calculated. The windowing has the 

effect of focusing on local frequency components (or foveating) on the face, while retaining the 

frequency components due to facial features. The Fourier magnitude spectrum make the spectral 

signature translation invariant in the 2-D imaging plane. The spectrum is then sampled in the 

log-polar scheme similar to the slices of the V/ISS. As most illumination effects are typically 

lower frequency, band pass filtering is used to compensate for illumination. 

The spectral signatures from the gray scale images are localized (windowed) log-polar sampled 

Fourier magnitude spectra. The continuum of slices of the V/ISS provide all facial poses, and 

band-passed Fourier magnitude spectrum provides 2-D translation invariant (in the imaging 

plane) signatures.  Log-polar sampling of the 2-D Fourier spectrum allows for scale invariance 
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Table 1: Pose estimation errors for faces with known pose.  Note these are the averaged absolute 
errors for angles and standard deviation of the ratio of estimated size to true size for scale. 

Azimuth Error 
4.05° 

Elevation Error 
5.63° 

Rotation Error 
2.68° 

Scale Std. Dev. 
0.0856 

(translation normal to the imaging plane) and rotation invariance (within the imaging plane). 

This is because a scaled image manifests itself in Fourier spectrum inversely proportional to 

the scale and a rotated image has a rotated spectrum. Thus scaled and rotated images have 

signatures which are only linearly shifted in the log-polar sampled frequency domain. 

The pose of a given image is determined by correlating the intensity image signature with the 

V/ISS in the 4-D pose space. The matching process is based on indexing through the sampled 

V/ISS slices and maximizing the correlation coefficient for all the 4 pose parameters. The 

correlation is performed on the signature gradient which reduces dependence of actual spectral 

magnitudes and considers only the shape of the spectral envelope. The results take the form of 

scale and rotation estimate along with a matching score from 0 to 1. 

Similar approaches have been very sucessfully used to match Affine Invariant Spectral Signatures 

(AISS) [1] [3] [7] [6] [5]. References [1] and [3] already include detailed noise analysis with white 

and colored noise which shows robustness to noise levels of up to 0 dB SNR. 

2.4    Face Pose Estimation 

To verify the accuracy of the pose estimation procedure, the method is first tested on images 

generated from the 3-D face model. 20 images of the face in Fig. 19 are generated using random 

viewpoints and scales from uniform distributions. The azimuth and elevation are in the range 

[-30°, 30°], the rotation angle is in the range [-45°, 45°] and the scale in the range [0.5,1.5]. 

These are indexed in the V/ISS pose space. The results are summarized in Table 1. An example 

of the correlation peak for the estimated pose in azimuth and elevation is shown in Fig. 2.4 for 

the test image in Fig. 2.4. The corresponding reconstructed face from the V/ISS slice is shown 

in Fig. 2.4. 

In addition, we also show the results of pose estimation of face images of the subject with 

unknown pose and illumination in Fig. 24. 
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Figure 21: A test im- 
age with pose parameters 
(14°, -8°, 41°, 1.4). 

Figure 22: The correlation 
maximum in the azimuth- 
elevation dimensions of the 
pose space. The peak is quite 
discriminative as seen by rel- 
ative brightness. 

Figure 23: The recon- 
structed image from the slice 
which maximizes the cor- 
relation. Pose parameters 
(10°,-10°, 40°, 1.414). 

Table 2:  Face recognition using the ORL database.  Recognition rates are given for 5, 6, 7 and 8 
images as V/ISS slices. 

Number of Slices 5 6 7 8 
Recognition Rate 92.5% 95.6% 96.6% 100% 

2.5    Face Recognition Results 

In this section, we describe experiments on face recognition based on the V/ISS model. The 

ORL database [31] is used. The ORL database consists of 10 images of each of 40 people taken 

in varying pose and illumination. Thus there are a total of 400 images in the database. 

We select a number of these images varying from 5 to 8 as model images and the remaining 

images form the test set. The model images are windowed with an ellipse with a Gaussian fall- 

off. The recognition is robust to the window parameters selected, provided the value of a for 

the Gaussian fall-off is relatively large. The images are 112 x 92 pixels. The window parameters 

chosen were 30 pixels for the longer elliptical axis aligned vertically and 22 pixels for the shorter 

axis aligned horizontally and a = 15 pixels. Each window is centered at (60,46). This allows 

for faster processing rather than manually fitting windows to each face image. Thus, the same 

elliptical Gaussian window was used on all model and test images even though its axes does 

not align accurately with the axes of all the faces. The windowed images are transformed to 

the Fourier domain and then sampled in a log-polar format, now correspond to slices in a 4-D 

V/ISS pose space. The test images are then indexed into the dataset of slices for each person. 
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Figure 24: Using the V/ISS model, the pose of the face in the above images is estimated 
and the faces are recognized. The estimated poses are given in terms of the 4-tuple az- 
imuth a, the elevation c, the relative swing (rotation) 8, and the relative scale r0 * ap. 
The results are A:(+15°,+20o,+8o,1.6818), B:(+10°,-10o,+4°,1.0), C:(+0°, -5°, -4°, 1.834), 
D:(+15°, +25°, +4°, 1.0), E:(+20°, -5°, 0°, 1.414) and F:(+15°, +0°, -4°, 1.6818). 

The recognition rates using 5, 6, 7 and 8 model images are summarized in Table 2. As can be 

seen, a recognition rate of 92.5% is achieved when using 5 slices. This increases to 100% when 

using 8 slices in the model. A few of the test images that are recognized are shown in Fig. 25. 

Computationally each face indexing takes about 320 seconds when using 5 slices and up to about 

512 seconds when using 8 slices. The experiments are performed on a 200 MHz Pentium Pro 

running Linux. 
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Figure 25: Shown are images of 25 faces from the set of test images which are used for the face 
recognition task using our matching scheme. 

2.6    Summary and Conclusions 

We present a novel representation technique for 3-D objects unifying both the viewer and model 

centered object representation approaches. The unified 3-D frequency-domain representation 

(called Volumetric/Iconic Spectral Signatures - V/ISS) encapsulates both the spatial structure of 

the object and a continuum of its views in the same data structure. We show that the frequency- 

domain representation of an object viewed from any direction can be directly extracted employing 

an extension of the Projection Slice theorem. Each view is a planar slice of the complete 3-D 
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V/ISS representation. Indexing into the V/ISS model is shown to be efficiently done using a 

transformation to a 4-D pose space of azimuth, elevation, swing (in plane image rotation) and 

scale. The actual matching is done by correlation techniques. 

The application of the V/ISS representation is demonstrated for pose-invariant face recogni- 

tion. Pose estimation and recognition experiments is carried out using a V/ISS model constructed 

from range data of a person and using gray level images to index into the model. The pose esti- 

mation errors are quite low at about 4.05° in azimuth, 5.63° in elevation, 2.68° in rotation and 

0.0856 standard deviation in scale estimation. The standard deviation in scale is taken for the 

ratio of estimated size to true size. Thus it represents the standard deviation assuming a scale 

of 1.0. Face recognition experiments are also carried out on a large database of 40 subjects with 

face images in varying pose and illumination. Varying number of model images between 5 and 8 

is used. Experimental results indicate recognition rates of 92.5% using 5 model images and goes 

up to 100% using 8 model images. This compares well with [37] who reported recognition rates 

of 87% and 95% using the same database with 5 training images. The eigenfaces approach [33] 

was able to achieve a 90% recognition rate [29] on this database. It also is comparable to the 

recognition rates of 96.2% reported in [29] again using 5 training images per person from the same 

database. These are highest reported recognition rates for the ORL database in the literature. 

The V/ISS model holds promise as a robust and reliable representation approach that inherits 

the merits of both the viewer and object centered approaches. We plan future investigations in 

using the V/ISS model for robust methods in generic object recognition. 
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