
NAVAL POSTGRADUATE SCHOOL
Monterey, California

19980102 156
THESIS

VIDEO CONFERENCING
USING

PACKET RADIO TECHNOLOGY

by

Narongchai Nimitbunanan

June 1997

Thesis Advisor:
Second Reader:

Chin-Hwa Lee
Supachai Sirayanone

Approved for public release; distribution is unlimited.

Bfi'O ^AHT7IN8EBCTBD

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 1997
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

VIDEO CONFERENCING USING PACKET RADIO TECHNOLOGY
5. FUNDING NUMBERS

6. AUTHOR(S)

Nimitbunanan, Narongchai

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Information and its effective delivering means are becoming more and more important in today's
world. Video-conferencing is a highly effective means to deliver information since it is interactive. This
thesis studies the packet-radio-networking technology that can be used to support video-conferencing
applications. The popular networking protocols, i.e. the Amateur X.25 (AX.25), the Transport Control
Protocol/ Internet Protocol (TCP/IP), and other protocols, widely used in packet radio technology are
described. By using the File Transfer Protocol (FTP) of the TCP/IP standard, the average speed and time of
various file sizes across a half-duplex radio channel, a full-duplex emulated-radio channel, and a RS-232 link
were collected and analyzed. Finally, comparisons were made among channels, including the effects of an
additional routing node.

SUBJECT TERMS
Video Conferencing, Packet Radio, Amateur Packet Radio, AX.25, TCP/IP, TNC, Routing

15. NUMBER
OF PAGES

102

16. PRICE
CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20.
LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

VIDEO CONFERENCING USING PACKET RADIO TECHNOLOGY

Narongchai Nimitbunanan
Second Lieutenant, Royal Thai Air Force

B.S., U.S. Air Force Academy, 1995

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1997

Author: / VW

Approved by

Chin-Hwa Lee, Thesis Advisor

Supachai Sirayanone, Second Reader

~¥=

Frederic H. Levien, Chairman
Information Warfare Academic Group

in

IV

ABSTRACT

Information and its effective delivering means are becoming more and more

important in today's world. Video-conferencing is a highly effective means to deliver

information since it is interactive. This thesis studies the packet-radio-networking

technology that can be used to support video-conferencing applications. The popular

networking protocols, i.e. the Amateur X.25 (AX.25), the Transport Control Protocol/

Internet Protocol (TCP/IP), and other protocols, widely used in packet radio technology are

described. By using the File Transfer Protocol (FTP) of the TCP/IP standard, the average

speed and time of various file sizes across a half-duplex radio channel, a full-duplex

emulated-radio channel, and a RS-232 link were collected and analyzed. Finally,

comparisons were made among channels, including the effects of an additional routing

node.

VI

TABLE OF CONTENTS

PAGES

I. INTRODUCTION j

A. PROJECT OVERVIEW !

B. INTRODUCTION 2

C.GOALS 4

D. APPROACH 5

H. BACKGROUND 7

A. PACKET RADIO BACKGROUND 7

1. History of Packet Radio 7

2. The AX.25 Protocol 9

B. PACKET RADIO NETWORKING 18

1. Network Operating System (NOS) 18

2. Networking Schemes 19

a. NET/ROM 20

b.ROSE 21

c. TCP/IP 21

in. EXPERIMENTAL SET-UPS 24

A. THE TNOS SOFTWARE 24

1. An Introduction to TNOS 24

2. Installing the TNOS 25

3. I/O Device Interfacing 27

vn

4. Setting Up the FTP Session 28

5. Setting the TNC Parameters 28

B. THE HARDWARE . 30

1. The Terminal Node Controller(TNC) & The D4-10 Transceiver 30

2. The PC and its FIFO 33

3. Hardware Interfaces & Low Level Protocols 35

TV. RESULTS 37

A. DATA PACKETS 37

B. EXPERIMENT* 1 : HALF-DUPLEX RADIO CHANNEL 41

C. EXPERIMENT # 2 : HARD-WIRED FULL DUPLEX 48

D. EXPERIMENT # 3 : ENHANCED HARD-WIRED FULL DUPLEX .55

E. EXPERIMENT # 4 : ROUTING EFFECTS 61

V. DISCUSSION 67

A. TIME COMPARISON 67

B. SPEED COMPARISON 69

VI. CONCLUSION AND FUTURE WORKS 75

APPENDIX A: CONFIGURATION FILES 77

APPENDIX B: COLLECTED DATA POINTS 85

LIST OF REFERENCES 91

INITIAL DISTRIBUTION LIST 93

vin

I. INTRODUCTION

A. PROJECT OVERVIEW

Information is becoming more and more important in the modern days' day-to-

day activities, whether they be civilian activities or military activities. The means to

deliver information has evolved rapidly over the past years. It is true that information

superiority is becoming another important pillar of any combat type of operations.

Hence, there is a need for better means of delivering vital information effectively,

reliably, and on-time, because these can result in life or death in combat situations.

Traditionally, information is mostly delivered over voice/audio type of systems, in real-

time or near real-time. However, 'a picture is worth a thousand words' as an old Chinese

saying, hence, it may be beneficial to find a better mean to deliver essential information

both in traditional voice/audio and in life-interactive-video, in a real-time, or near real-

time mode.

In a shipboard situation, such as in a battle group where there are many ships

traveling together in an open sea. The live-interactive-video conferencing may be very

useful in communicating with each other among various ships. Combat effectiveness

and/or logistic support activities may be improved by implementing this type of system

as a mean to deliver effective, reliable, on-time, and secure information among ships in

the same battle group or to a different group nearby. The system studied here is the

packet radio network, which can be used as a backbone or as a medium to deliver the

information among ships. The system will have a number of nodes or routers installed

on each ship. And, the information would be sent out by a source, which may be one of

many ships in the battle group, and then would be routed through these nodes/routers

installed on the ships, from ship-to-ship until it reaches the desired destination. However,

the implementations of this system is not only restricted to a sea-based platforms but can

also be implemented on lands where many nodes/routers are installed on the vehicles,

which may be either moving or stationary.

B. INTRODUCTION

Since our objective is to conduct video conferencing over a packet radio network

in an economic way, there are two important issues we need to consider. First is what

type of hardware/software we need to capture, encode/decode, and display acceptable

video-quality images. And, second is what type of networking supports we need as a

medium to deliver the data. A practical and economic way to deal with the first issue is

to utilize the Desk-Top-Video-Conferencing (DTVC) technology due to its low-cost and

availability in today's market. A good source for DTVC software/hardware vendors is

listed by C.E. Hendricks and J.P. Steer [17]. There are many available commercial

hardware/software packages in today's market such as Cu-SeeMe, Picture Tel,

Connectrix, VideoLabs, and etc. But, to deal with the second issue, which is the focus in

our study, we need to find out what type of radio networks and supports needed to

accomplish our objective.

For flexibility and compatibility with the industrial standards and today's markets,

our system is intended to support the Transport Control Protocol/Internet Protocol

(TCP/IP) in many networking environments such as the Wide Area Network (WAN),

Local Area Network (LAN), the Internet, and the Packet Radio Networks, etc. The

implementations of our system will probably be in a packet-switching type of networks.

In 1994, J. Harju, V.P. Kosonen, and C. Li studied the quality and performance of DTVC

technology in the interconnected LANs environments with TCP/IP carriers [18]. The

team found out that there is a slight degradation in video quality with increasing number

of nodes and/or switches. However, our study only focus on the effects of one

node/router positioned between links with the TCP/IP protocol riding over another

protocol i.e. the Amateur X.25 protocol (AX.25). The AX.25 protocol is widely used in

the Amateur Packet Radio Networks and has many good features to support delivery of

data over a radio-networking scheme. Also, during 1995, C.P. Bandy, D.B. Koch did

some experiments on transmitting stilled images over a low-bandwidth transmission

system [9]. Their system emulated a packet-radio transmission by using telephone

modems. The system demonstrated promising results for delivering quality stilled images

over a low-bandwidth channel. In our experiments, however, we actually transmit data

packets over a real half-duplex packet-radio channel, and also over a emulated full-duplex

radio channel.

There are a couple of reasons which make this project very interesting; the

flexibility of the system and the possibility of a practical video-conferencing system at a

very low-cost. This project will require little or no development cost at all, since all the

technologies, both hardware and software components, are already available at low costs

in today's market. The intended system would use mostly Commercial-off-the-Shelf

products with little or no software modifications to suit the needs.

C. GOALS

The overall goal of this project is to study a prototype system which may be used

to implement an interactive video-conferencing application by using a packet radio

networking scheme. The long-term goal is to incorporate commercially available video-

conferencing software/hardware to our packet-radio networking backbone. The video-

conferencing software/hardware components should support standard protocols such as

Serial-Line-Interface Protocol (SLIP), TCP /IP, Point-to-Point Protocol (PPP), and etc.

Hence, we should be able to incorporate these components in some kind of a Network-

Operating-System (NOS) software which will be used to run on the nodes/router.

However, the scope of the study in this paper is only to investigate the

capabilities, possibilities , and limitations of various components and transmission

mediums required to support such a system. Hence, the initial study explained in this

thesis is limited to only study the behaviors of the data being transmitted through the

amateur radio channel (i.e. the 440-MHz UHF band). The amateur packet radio utilizes

the AX.25 protocol, and the existing TCP/IP networks implemented through the directly

connected RS-232 line. In addition, routing behavior of the packets through both

Channels are studied because the overall goal of this continuing project is to conduct

video-conferencing over the hybrid networks i.e. the packet-radio networks and the

existing conventional TCP/IP networks (or other wired networks).

D. APPROACH

The approach used in this study is to study the channel's data transmission

behavior by sending some data using a packet-radio protocol between various nodes

connected by various types of mediums i.e. the RS-232 line, the radio half-duplex

channel, and the radio full-duplex channel. First, the data packets are sent through the

UHF radio channel with a maximum speed of 19.2 K-baud. Then, the channel is

improved by emulating it as a full-duplex radio channel. With an emulated channel, to

study the routing effects, the data packets are routed through both the link, a RS-232 line

connected between the two nodes running under a Network Operating System (NOS), and

the emulated-radio full-duplex channel. The application protocol used in this

experiments is the File-Transfer-Protocol (FTP). Various file sizes are created and sent

through the channels. Then, the performance parameters, i.e. the time in seconds and the

average speed in Bytes/second for each file transfer operation, are recorded. All the

networking nodes in our experiments are running under the Tampa Network Operating

System (TNOS), which is just a version the original KA9Q Network Operating System

(KA9Q NOS), written by Phil Karn [6].

This thesis is organized into six major chapters. The first chapter, Chapter I,

describes the project in a big picture, including approach used and objectives of our

studies. Chapter II gives the readers some backgrounds needed to understand

fundamental technologies in this field; the packet radio and networking. Chapter III

explains the experimental set ups, used in our study. Then, the results are explained in

Chapter IV. Chapter V discusses the results and compare them with other experiments.

Lastly, Chapter VI concludes the experiments and recommends future research efforts.

II. BACKGROUND

A. PACKET RADIO BACKGROUND

Amateur Packet Radio is an on-going development technology in the amateur

radio world. Both the software and hardware are currently being developed and tested by

the amateur packet radio enthusiasts.

1. History of Packet Radio

The data packet technology was developed and put into practical use during

1960'swith the ARPANET project [1]. However, the amateur world of packet radio did

not benefit from the development of this technology until during the 1970's. The first

amateur packet radio operations began in Montreal, Cadana, and followed by the

Vancouver Amateur Digital Communication Group (VADCG) [1].

In today's radio mateur world, for some simple reasons; practicalities and

economics, the packet radio technology is increasingly becoming popular. Packet radio

contains wide varieties of applications for amateur radio broadcast ranging from near

real-time converse mode, remote telnet, file transfer service (FTP), simple mail transfer

protocol (SMTP), or even, transferring stilled images in a near real-time environment.

These applications are possible because this type of technology, through a 'free' amateur

radio band, is able to provide flexibility and capabilities of conventional digital

communication networking at an incredibly low-cost.

For an example, an amateur packet-radio operator can sent the information

through the amateur radio network to a node at may be 2500 miles away with little

investment in the equipment. The minimum components of the equipment to conduct

such operations are the terminal node controller (TNC), a computer or a terminal, and a

2-meter transceiver. These equipments are already available in the market at low costs.

In this experiment, the PC computers under DOS are already available, hence, the only

additional equipments needed are, the TNC, the transceiver, and the software to transmit

radio signals in a network environments.

Further more, there are still a few more reasons that make packet radio more and

more popular; transparency, error correction, and automatic control [1]. Transparency is

provided by the packet radio technology to the end users. Each user make a connection to

the other station, then the data input by the user will be sent to appear at the destination

node automatically. This is done by the Terminal Node Controller (TNC). The TNC

receives input data through the interface from the data input terminal i.e. the computer

running a software packet, or a dum terminal, then, it automatically divides the data into

packets and put the overheads onto each packet (usually an AX.25 protocol overheads).

The TNC, then, keys up the transmitter and send the packets through the radio wave

carriers i.e. UHF/VHF, or microwave, etc.

In additions, the TNC hardware also provides automatic error detection scheme.

If the information is corrupted during transmission through the medium, it will

automatically send a request for retransmission to the transmitter. Hence, only correct

data are received, stored, and displayed to the operator. A typical packet radio station

with various components and interfaces are shown in Figure 1 below.

Transmitter
Push to Talk

Antenna

Personnel
Computer
(or Dum
Terminal)

 . »

Receiver

Terminal Node
Controller
<TNC>

Mic. Audio

Radio (Tx/Rcvr) Speaker Audio

Ground Ground

Serial Connection Radio Connection

Figure 1: A Packet Radio Station [1]

One of the packet-radio features that makes the technology very interesting is that

it has a shared channel capability [1]. This means that many users can share the same RF

channel at the same time. This capability is possible because of the utilization of a

special protocol designed for amateur packet radio called the AX.25 protocol (the

Amateur X.25 protocol). The AX.25 protocol identifies the channel accessibility by

using the TNC to sense if any station is transmitting, and, if it is so , it will wait until the

channel is free. This scheme is called the CSMA or 'Carrier Sense Multiple Access'.

2. The AX.25 Protocol

The AX.25 protocol, or the Amateur X.25 protocol, was developed based on the

conventional X.25 protocol, used widely in the wired network. The X.25 protocol is

modified due to its own lacking of some necessary features which are needed in the

wireless radio types of operations. The AX.25 adds a digipeater field for extended range

by other stations repeating the packets over and over again until the packets reach the

destination [1]. Also, the AX.25 protocol's packet format adds the sender's callsign and

the receiver's callsign to every packet, which is very useful for identification purposes

[1].

The AX.25 is a link-layer protocol that is able to support various types of

communication links. According to the OSI model [3], the AX.25 link-layer is just right

above the physical layer, hence, it is independent of higher level and can support many

communication schemes regardless of the existence of many other higher levels [2]. The

independence of its link layer from higher-level layers is because it already have

capabilities for reliable transfer of information across the physical link layer i.e.

synchronization, error control, and flow control. These capabilities are minimum

requirements for establishing a link and are providing the amateur radio operator with a lot

of flexibility due to small overhead losses required by higher-layer OSI models. Typical

implementation of the OSI model is as shown in Figure 2.

10

Application Layer

AX.25 Link Layer

Application Layer

Presentation Layer Presentation Layer

Session Layer Session Layer

Transport Layer Transport Layer

Network Layer Network Layer

Data Link Layer Data Link Layer

Radio Link Physical Layer Physical Layer

Figure 2 : The OSI Model [3]

This protocol, the AX.25, also follows the recommendations of the Consultative

Committee on International Telegraphy and Telephony X.25 (CCITT X.25) [3], but it is

different in the extended address field, designed to support operations in a radio

environment [2]. In addition, the AX.25 also adds an Unnumbered Information frame

i.e. a UI frame. The shared-RF channel is also implemented in the AX.25 protocol,

following the CCITT recommendation Q.921, supported by the distinguished and

extended address field [2].

The improved features of the AX.25 protocol allow the protocol to support more

than one link layer per communication device, provided that the device is able to handle

more than one link establishment, and also allows the protocol to be able to operate well

in either 'half-duplex' or 'full-duplex' radio environments [2].

11

Once the data from the higher level are processed and sent to the lower level

before passing it to the physical level (i.e. the link layer), the data are divided into small

blocks of information called 'frames', which are composed of various smaller subsections

called 'fields'. There are typically three types used by the AX.25 protocol; the

Unnumbered frame (the U frame), the Information frame (the I frame), and the

Supervisory frame (the S frame). The constructions of the three types of frames are

shown in Figure 3.

Hjj»
01111)10 112/560 bits

Control
S bit.

res
16 bits Olli 1110

U-frame and S-frame structures

n.r:
HI i 111 10

•\Jdi ■:>.<;
M2/5fi0bit,

CIUUJO!

8 bits
prn

x bits
Information

N *8 bits
FCS

16 bits
Flag

01111110

I-frame structure

Figure 3: The U, S, and I Frame Formats [2]

From the above frame formats, there are many field types inside the frames, and

each is responding to specific function. The flag field is 8-bit or 1 octet long and has a

unique specific bit sequence -- '01111110' (or, 7E Hex.). This specific bit sequence is

12

put at the beginning and the end of a frame to indicate that the information between the

two flags is some kind of a frame. Hence, this unique bit sequence cannot appear

anywhere else except in the flag fields. The mechanism that guarantee the non-

reappearance of the unique flag bit sequence is called the 'bit stuffing' operations. Bit

stuffing is done by monitoring the transmitted frame to see if there is any five l's in

sequence, if there is, then a '0' bit is stuffed right after the five T sequence. And, at the

receiving DXE, it will utilize the same mechanism to monitor the frame's bit sequence,

but, this time, instead of adding another '0', it will discard any '0' bit right after the five

consecutive ' 1' sequence. This operation guarantees that there will not be any flag field

pattern appearing anywhere inside the frame which may cause confusion and errors to the

receiving DXE. After the beginning flag field, there is an address field which contains

two sub-fields indicating both the source and destination addresses of the specific frame.

In additions, if there are repeaters for the purpose of extended range along the way

between the source and destination, the addresses of the repeaters are also encoded into

the address field. Once, the frame reaches the destination, it may be interrupted by

various sources of interference along the path, which may cause the frame errors. Hence,

the AX.25 protocol provides mechanisms for error checking in the FCS field. The FCS,

or the Frame Check Sum field contains a 16-bit sequence, and is calculated by both the

receiver and the transmitter. The identical FCS fields on both ends indicate that there are

no error, otherwise the frame is corrupted by the medium if the FCS fields are not

13

matched. In this case, the receiver may discard the error frame and send a request for

retransmission.

The other field inside the frame which is very important is the control field. It is

used to identify what type of frame it is i.e. either the U-frame, the I-frame, or the S-

frame. The Information-Transfer frame, or the I-Frame, is responsible for transferring of

the actual data contained in its information field [2]. To identify all the I-frame from

other types, the bit # O's in its control field is set to zero. The I-frame's control field also

contains the sender's send sequence number, N(S), which is the send sequence number of

the current frame. This number is updated just right before the frame is being

transmitted. The sender's device has an internal send state variable to keep track of the

next sequential number of the next frame which is to be transmitted. And, this internal

variable is used for updating the send sequence number prior to transmitting the frame.

The I-frame's control field is encoded as follows.

Control Bit Sequence Number

7 6 5 4 3 2 I 0

-> «-

N(R.) P N(S) 0

Figure 4 : The I-Frame's Control Field Format [2]

14

The N(R.) is the received sequence number which exists in both the I-Frame and

the S-Frame. This number implies the complete and proper operations of the received

frames up to the N(R.) -1 frame. Also, same as updating the N(S), the N(R.) is also

updated accordingly to the device's internal received state variable, in which, the variable

contains the next expected number of the incoming frame. The P-bit is actually the P/F bit

(Poll or Final Operations). The Poll mode is used to request an immediate reply to a

frame, and, the reply to this specific frame is done by resetting the Poll bit to a Final bit.

Other than the I-frame, the S-frame is also playing an important role in

establishing and maintaining the links. The S-frame provides many valuable services

such as acknowledging, requesting retransmission in case of errors , and providing link-

level window control [2]. The S-frame is distinguished from others by setting bit # 0 of

the control field to one, and bit # 1 to zero. In the S-frame's control field, there are a few

encoding mechanisms which are really important in its operations; they are RR, RNR,

and REJ. The RR is 'Receiver Ready' used to indicate that the sender of the RR is ready

to receiver more I frames. It also implies that the frames up to N(R.) -1 is properly

received and acknowledged. The RNR is 'Receiver Not Ready', in contrast to the RR, it

is used to indicate that the sender's device is busy and not being able to receive more I

frames at that time. And also, the I frames which are indexed higher than N(R.) -1 may

be lost or unacknowledged. The REJ is 'Reject Frame' which is used to indicate that the

frame may be duplicated or is out of sequence, and it is rejected by the receiver. The

15

REJ is also, at the same time, used to request retransmission of the frames starting with

the frame indexed with N(R.) and above.

Another interesting frame format used for the AX.25 protocol is the Unnumbered

frame format (the U-frame). This type of frame allows more control of the link in

additions to the typical Supervisory frame (S-frame). The U-frame is also responsible for

establishing and terminating the link connections, and it also allows some other unusual

flow operations [2]. The U-frame's control field is used to indicate either the frame is a

command or response frame. There are six important encoding schemes for its control

field formats, they are the SABM, DISC, DM, UA, FRMR, and the UI.

The SABM is the 'Set Asynchronous Balanced Mode' command. It is used to set both

DXE's into an asynchronous balanced mode [2]. In the shared-RF channel with the

AX.25 protocol, the DXE is used to replace both the master device i.e. the DCE , or the

Data Communicate Equipment and the slave device i.e. the DTE, or the Data Terminal

Equipment. This is because the AX.25 treats both devices as equal importance, not

unequal as in the classical master/slave scenario for the typical unbalanced mode of

operations. To accept the SABM request and confirm the setting of an asynchronous

balanced mode, the DXE must issue the UA (Unnumbered Acknowledge) at the earliest

opportunity. Once the link is established, if any DXE wants to terminate the link, it, then,

has to issue the DISC command (the Disconnect Command), and wait for the UA

response from the other DXE before it enters the disconnect state. When the received

frame cannot be processed and the retransmission of that specific frame will not solve the

16

problem, the DXE will response by sending the FRMR (Frame Reject Response) to the

sender containing the information field that indicates the cause of rejection. This scenario

usually occurs when the received frame does not contain the FCS (Frame-Check-Sum)

field, or from many other causes. In some cases, one of the DXE may try to send other

frames other than the SABM or the UI while they are in the disconnected mode. Then,

the DXE will response to the sender with the DM (the Disconnected Mode) response

telling the other DXE that it is still in the disconnected mode and also requesting a set

mode command. Another case that the DXE issues the DM response is when it receives

the SABM mode and is not yet being able to establish a connection at this time.

There are some cases when the DXE wants to send frames bypassing the link

layer 's normal information flow control. The UI (Unnumbered Information) frame

allows the DXE to do just that. The UI frame contains the PID (Protocol Identifier) and

the information field which is independent of normal flow control, and, hence, it can be

passed back and forth freely [2]. But, since the UI frames are unnumbered and above the

normal flow control, they will not be acknowledged by the receiving DXE, this causes

unrecoverable UI frames when lost. However, the UI frame can request an indirect

acknowledgment by setting its P-bit to ' 1'. The set P-bit causes the receiving DXE to

response with a DM frame while in the disconnected mode and with either a RR or a

RNR frame while in the information transferring state.

17

B. PACKET RADIO NETWORKING

1. Network Operating System (NOS)

Packet radio technology is a way to send information in some sort of packet

format, which encapsulates data with protocols and source/destination addresses,

including some information regarding the path along the way. The real benefit of packet

radio technology is that the information can be send to the destination by using a

networking scheme, giving the operators more flexibility, efficiency, and effectiveness in

delivering the information. The software package that supports the implementations of

packet radio technology in a networking scheme is called the Network Operating System

(NOS). There are many Network-Operating-System (NOS) software packages available

today to support the implementations of this kind of technology such as the NET/ROM,

KA9Q NOS , WNOS, JNOS, and TNOS, etc. However, many of the software packages

are based on the original KA9Q NOS, written by Phil Karn [6], but with some

modifications and enhancements. The main attraction for the NOS is that it supports an

internationally agreed standard, which gives it the ability to operate in many existing

networks and interfaces such as the packet radio networks, the telephone lines, the Local

Area Networks, and the TCP/IP networks (i.e. the Internet) [5]. This makes the NOS as

a very powerful communication tool because information can be routed in both the

conventional wired-networks and the more flexible radio-networks.

18

The flexibility of the NOS comes from its supports of many protocols such as the

ARMPnet (the Amateur TCP/IP Packet Radio Networks), NET/ROM, and the AX.25.

The packet format is as shown in Figure 5.

AX.25
Header

NET/ROM
Header

IT
Header

TCP
Header

DATA

Figure 5 : NOS Multi-Protocol Frame Format [5]

From the format above, hence, there are at least three routing schemes

possible by the NOS; AX.25 routing, NET/ROM routing, and TCP/IP routing. The NOS

has commands to set up routing for these protocols. The 'ax25 route add' command can

be used to set up a digipeater routing scheme, which will be explained later. The

NET/ROM and the TCP/IP routing schemes can be accomplished by the NOS commands

'netrom route'and'route' [5].

2. Networking Schemes

As mentioned earlier, packet radio is flexible and very useful because the

information can be efficiently routed through various networks to reach the desired

destinations. There are many networking schemes used in packet radio technologies

such as the digipeaters, KA-nodes, NET/ROM, ROSE, TCP/IP, and the TexNet [1]. A

digipeater is simply a repeater. It is only used to extend the range of the packets by re-

transmitting any packet that is addressed to itself to the next digipeater, if any, or to the

19

destination node. The downfall of the digipeaters is that the source station has to wait for

the acknowledgment from the final destination node. If there are many digipeaters along

the path, it may waste precious time. One improvement is made over this scheme by

allowing each digipeater to be able to acknowledge the received packet, hence, the

acknowledge is executed at each link instead of the whole path. This makes the transfer

of information a llittle more robust than just a simple digipeater scheme. This scheme is

called the 'KA-nodes' type of operations.

a. NET/ROM

The first two schemes, mentioned earlier, are not really a real networking

type of operations. The first attempt to set up a networking scheme is by using a local

station connected to the user, then, the local station can connect the user to the others

through that local station. And, if the destination is out of the local range, then, the

NET/ROM local station will try to make a connection to another local station nearby

again and then again, if necessary, until it can reach the desired destination. The local

station, in this case, is called the NET/ROM station. The NET/ROM is a firmware i.e.

the software installed on a chip [1], which is responsible for routing and making

necessary connections. This method makes the information transfer more efficient since

each user is only connected to its own local station instead of connecting to a distant

destination.

20

b. ROSE

Another routing scheme other the NET/ROM, ROSE uses a static routing

table [1]. The ROSE protocol maintains a static list of nodes that it can reach. And, if

any user wants to utilize the list maintained by the ROSE switches along the way, then,

he or she must specify the addresses of the ROSE switches in their digipeater fields until

the packets can reach the other user maintained by a final ROSE switch. The trade-offs

between the NET/ROM automatic routing scheme and the ROSE's static routing scheme

is the reliability and maintenance. The ROSE protocol is more reliable because each

node maintain a specific list that it can reach for sure, unlike the NET/ROM which may

try to reach an reachable node. However, the NET/ROM can update its list automatically

as a new node makes a contact with the NET/ROM station, without having to manually

update the routing list. But, when conditions change and some nodes which are no

longer reachable, the NET/ROM station will falsely still maintain those nodes as

reachable ones.

c. TCP/IP

Another popular protocol is the TCP/IP protocol (Transport Control

Protocol/Internet Protocol) which is supported by the various packet radio technologies

such as the original KA9Q NOS (KA9Q Network Operating System), JNOS, and the

TNOS (Tampa Network Operating System). The TCP/IP allows flexibility and

compatibility in routing the packets through various existing networks. Also, there are

many facilities already existed in the TCP/IP protocol such as FTP, Telnet, SMTP

21

(Simple Mail Transfer Protocol), and NNTP (Net News Transfer Protocol), etc. The

implementation of TCP/IP routing scheme into the amateur packet radio world is by

having the AX.25 rides on the top of the TCP/IP protocol.

When the AX.25 is integrated with the TCP/IP networks, the NOS

supports such integration by using the TCP/IP links as a wormhole to route information.

The command that is supported by the NOS to do the wormhole routing is the 'AXIP'

command which implies 'AX.25 over IP networks'. This command can also be used

with the 'attach' command to make the NOS recognizing the interface. The 'attach axip

...' command creates a RFC 1226 compatible AX.25 frame encapsulator for transmission

of the AX.25 frames over the internet [6], which makes the IP wormhole routing

possible. The AX.25 wormhole routing over IP networking scheme is shown in Figure 6.

22

AXIP
vuirmholc

(AX.25 over II'j

Figure 6 : AX.25 over TCP/IP Links [5]

23

III. EXPERIMENTAL SET-UPS

Since it is desirable to study some data-transfer characteristics and performance

over different channels. A test bed with a radio channel was set up in the laboratory.

Hence, several communicating nodes were set up with various communicating

mediums between them. Firstly, we want to study the data-transfer behaviors over a

simple radio channel. Two nodes connected with a half-duplex radio medium were

used. Secondly, we want to improve the performance of the data-transfer measured

from the first set-up, so, an emulated full-duplex radio channel with optimum allowable

hardware configurations was used. And, thirdly, we want to study the routing effects

across the node, so, we incorporated an additional node and perform data-transfer

operations across the router. However, some specific hardware and software

components needed to be correctly configured and interfaced are described here.

A. THE TNOS SOFTWARE

1. An Introduction to TNOS

TNOS, or the Tampa Networking Operating System, is a multi-threaded program

that is able to handle the TCP/IP standard protocol in a radio environment, and, was

written by Brian A. Lantz [4]. The software was developed from the original version

KA9Q NOS, and, has many foundations and many features alike, but, with additional

24

enhancements. To make the explanations simple, we will be referring to NOS instead of

the TNOS because NOS is more general and original.

NOS is a complex software package that supports most of the widely used

communication protocols over the internet such as the TCP/IP, TELNET, FTP, SMTP,

and over the packet radio network such as AX.25, NET/ROM, and PBBS mail [5]. The

NOS can act as a gateway, a router, or simply a digipeater, and is platform-independent,

which means that all these protocols can run on any operating system such as the PC,

UNIX/XENIX, DEC VAX on VMS, or a Sparc workstation on SunOS, etc. [5]. Since it

has an internal multitasking operating system, the software package can act

simultaneously as a client, a server, and a switch for the three set of the protocols i.e. the

TCP/IP, AX.25, and the NET/ROM [6]. This means that while the local user is

accessing other systems through the network, other users in the network can also,

simultaneously, utilize the local system's resources [6].

2. Installing the TNOS

In our experiments, the TNOS is running on a PC platform, under Windows 95 or

Windows 3.11. The reason that we run the TNOS .EXE under Windows 3.11 and

Windows 95 is because the software needs a DPMI (DOS Protected Mode Interface),

which already exists under the Microsoft Windows 3.11 & 95 [7]. The DPMI is needed

because it has capabilities to collaborate between the multitaskers and other Protected

mode utilities [7]. The TNC is interfaced to the PC through a serial port i.e. the

25

asynchronous COM ports; COM1-COM4. The TNC is operating in a KISS mode which

means that it simply passes all the information from radio to be processed by the TNOS

software package inside the PC. The overall picture is as shown in Figure 7.

TNOS

Network Services
(FTP, TELNET, etc.)

TCP UPD
IP

NET/ROM
AX.25

I
Packet

Assembly/Disassembly
(PAD)

TNC (KISS MODE)

KISS Mode
Command
Interpreter

HDLC

Modem

UART
Chip

(FIFO)

Radio
Control

Antenna

Radio
Transceiver

Personal Computer
(PC)

Asynchro-
nous

COM.
Port

Terminal Node Controller Radio
(TNC) Transmitter/Receive

Figure 7 : The TNOS Software Interfaces [5]

The TNOS software package is distributed freely through various internet sites

such as at the 'ftp://ftp.lantz.com/tnos/current' or at the 'ftp.ucsd.edu' in the

'/hamradio/packet/tcpip' directory [4]. There are a couple of files needed to be

downloaded; the base supported file and the execution file (TNOS.EXE). The supported

file is in a '.ZIP' format, and it can be decompressed by using a free unzip shareware, i.e.

the PKUNZIP.EXE with the '-d' option, which will put all the decompressed files into

their corresponding directories. Once the TNOS.EXE file is downloaded into a platform

i.e. a PC in our set up, then, its autoexec.nos is needed to be configured to meet specific

needs for each user. When the TNOS.EXE is running, at first, it will automatically look

26

for the 'autoexec.nos' file which should contain all the configuration information needed

for operating the network correctly. And, if the file does not exist, the user, then, has to

input the detailed configurations manually line-by-line during the executing program.

The example of the autoexec.nos is given in Appendix A.

3. I/O Device Interfacing

There are some important configurations needed to be carefully set up before we

can operate the software correctly for our data-transfer experiments; these are the 'attach'

command, the 'ftpusers' file, and the 'domain.txt' file, etc. These files are also given in

Appendix A.

In our experiments we want to utilize the FTP session supported in the TNOS

software to transfer the files of various sizes, and then study the file transfer

characteristics through various channels and environmental settings. To accomplish this

purpose, the TNOS software must be able to interface with the PC's I/O devices through

their corresponding device drivers. In our case, we use the PC's asynchronous COM

ports as our I/O devices. The TNOS software package can acknowledge the COM ports

through its 'attach' command The attach command allows the TNOS software to

interface to various hardware device drivers such as the asynchronous COM ports, the

Ethernet, and the Modem, etc. [6]. The attach command loads up the specific device

driver through its corresponding device's I/O port address. Hence, the attach command

will need to know the COM port's base I/O address, including its interrupt request level

27

(IRQ), the desired protocol to be used through that specific COM port, and some other

important parameters such as the buffer size and the packet length.

4. Setting Up the FTP Session

Another important set-up before we can utilize the FTP protocol in our

experiments is the 'ftpusers' file. Once the TNOS software is correctly installed, this file

is under the '../etc/' directory. It maintains the allowed list of user names and their

corresponding passwords, including their allowed directories and types of operations i.e.

'read files','create new files', or 'write/delete existing files' [5]. Also, given a domain

name, and the user is trying to make a connection to another station, the software will

need to know the IP address of such station. TNOS deals with this matter by having a

look-up table to translate the desired domain names into their corresponding IP addresses

contained in the 'domain.txt' file which can either be automatically updated, by the

software itself, or, manually updated, by the user. Once the software is installed, this file

is under the '../spool/' directory.

5. Setting the TNC Parameters

In our experiments, the TNC is needed to be set into the KISS mode. The TNOS

has the 'comm' command that is able to set up the TNC to do such thing. Before

switching the TNC into a KISS mode, to prevent unrecognized parameter-settings, the

TNC should be reset into its default values before changing other parameters to other

settings. The string 'reset', sent directly from TNOS to the TNC, will result in resetting

28

the TNC. The command that is able to send strings directly to the TNC is the 'comm'

command, i.e. the communication command. To switch the TNC into the KISS mode,

the strings 'int kiss', i.e. meaning 'interface kiss', must be sent to the TNC.

Other than the 'comm' command, there is another command that is able to

communicate directly with the TNC and set the TNC's parameters to different settings.

The TNC parameter settings can be changed by executing the 'param' command, i.e. the

parameter command. The TNC's TXDELAY, PERPIST, SLOTTME, and many other

parameters can be set by using this command.

In our experiments, the TNC is operating under a KISS mode (Keep-It-Simple-

Stupid Mode). The frame format at each interface is shown in Figure 8.

TNC Port Number

Control Code

/
FEND KISS

TYPE
AX.25 NET/

ROM
IP TCP DATA FEND

AX.25 NET/
ROM

IP TCP DATA

Figure 8 : The KISS Frame Format [5]

29

As shown by the in Figure 8, the KISS TNC simply passes all the data to the PC

through the asynchronous port for the data to be processed at a higher level [5]. Hence,

the TNC is only responsible for the RF channel access and frame conversion. The TNC

controls the RF channel access properties by settings its two parameters; the 'PERSIST'

and the 'SLOTTEV1E'. The RF channel is accessible when the TNC does not detect any

carrier on the air. Then, it will start a timer with the length of time specified by the user

through the 'SLOTTIME' parameter. Once, the timer is out, then, the TNC will generate

a random number between 0 - 255. The random result will be compared with the user's

specified 'PERSIST' parameter. If the generated random number is less than or equal to

the user's setting PERSIST value, it will then key up the transmitter and transmitter the

packets out over the channel. For frame conversion, the TNC simply puts or strips off the

frame's start & finish characters i.e. the 'FEND' characters. All the decisions regarding

routing, access permission, digipeating and all other higher level protocols are made at a

higher level in TNOS, not at the TNC level.

B. THE HARDWARE

1. The Terminal Node Controller (TNC) & The D4-10 Transceiver

The Terminal Node Controller (TNC) and radio used in our experiments are the

Katronics Data Engine and a 10- watts high-speed transceiver i.e. the D4-10 UHF Wide-

Band Transceiver [19]. The transceiver operates in a high-speed packet radio mode on

the UHF band (430.55 MHz). When combining the D4-10 transceiver with the

30

Katronics Data Engine, there are two possible speeds; the 9600 baud rate or the 19200

baud rate [19]. The Data Engine has an internal DE19K2/9K6 modem which is capable

of generate the 'data carrier detected (CD)' signal from the received data stream, and is

very useful for many of its operations [19].

There are quite a few fundamental mechanisms concerning radio operations which

needed to be well understood before we can operate the radio channel efficiently; the

'Push-To-Talk', the TXDELAY', and the 'Carrier Detected (CD)'. In general, when a

typical HAM radio operator wants to transmit a radio signal, the operator must push the

transmitter button and then talk. This operation is called the 'Push-to-Talk' operation,

and is executed whenever the operator wants to modulate the data and transmit the signal

over a radio channel. However, before the signal is transmitted in the form of a radio

wave through the air, the transmitter must be fully powered-up to its maximum power

setting to achieve its maximum signal strength. The time delay during powering-up the

transmitter is called the transmitting delay (TXDELAY). Once, the signal is transmitted

and is arriving at a receiver, the receiver will have some delay-time, called the 'Squelch

Time' [19], before it acknowledges the presence of the received signal and, then,

produces a CD signal. This delay-time should also be accounted for in the TXDELAY

setting. Once, the signal is detected, then the CD will be pulled-down low by the

transceiver and output to the TNC to start demodulating the signal [19]. However, the

CD may be generated by the firmware inside the TNC instead, which is a feature in all the

Katronics Data Engines [19].

31

As mentioned earlier, the TNC in our experiments, operates in a KISS mode

which allows all the higher-level protocols to be processed in the TNOS software.

However, some hardware parameters inside the TNC must be optimally set up to achieve

a maximum performance. These hardware parameters are the TXDELAY,

PERSISTENCE, SLOTTIME, modem (half or full-duplex), and KISS [19]. Setting

these parameters can largely affect the data-transfer performance of the RF channel.

Generally, the smaller the TXDELAY, the better the performance due to less wait-time

for the sender before keying-up its transmitter. Also, the larger the PERSIST value, the

faster the data transfer because there is more chance for the sender to key up the

transmitter. However, the receiver's buffers may be flooded, if the PERSIST value is set

too high because the resceiver and its corresponding Central-Processing-Unit (CPU) may

not be able to process the received data fast enough. Hence, there may be some lost

characters due to overflowing the buffers. The lost characters will cause transmission

errors and requesting for retransmission. The effect of data retransmission is negative to

the data transfer performance of the channel.

Another important hardware parameter setting is the SLOTTIME. The

SLOTTIME is the time period between the PERSIST algorithms to generate a random

number. The SLOTTIME should be long enough to allow the packets to be processed at

both ends i.e. the transmitter and the receiver, including the round-trip-estimated time on

both ends. Again, intuitively, the smaller the SLOTTIME, the more frequently the

transmitter makes its decisions whether it wants to transmit the packets or not (by

32

generating a random number and compare with the setting PERSIST value). And,

further more, there is another TNC hardware parameter setting, called the 'modem', that

can be set to enhance performance of the data transfer process over a radio channel by

setting at full-duplex. If the FULLDUP is turned on, then the TNC will operate in a full-

duplex mode. It means that, between the two communicating nodes, they will not have to

wait for the channel to be free before anyone of them can transmit or receive

acknowledgment data since they both have different channel of their own. Unlike

operations in the half-duplex environments, with full-duplex environments both

communicating nodes can transmit and receive data at the same time, which really

improves the performance of the data transfer. In real life, for a full-duplex radio, there

may be two frequencies needed for such operations. Also, when the operator wants the

TNC to process some low-level protocols supported by its built-in firmware, not as just a

dum hardware passing all the information to the TNOS at a higher level, the TNC can be

commanded to exit out of a KISS mode by using the 'KISS' command.

2. The PC and its FIFO

The three PC's used in our experiments are IBM compatible with various Intel

CPU's; the 66-Mhz 486DX, 200-Mhz Pentium™, and the 75-Mhz Pentium. The two

PC's with the Intel 66-Mhz 486DX CPU and the 200-Mhz Pentium™ CPU are running

under Windows 95. These two PC's, in our experiments, are named PC # 1 and PC # 2,

consequently. The other PC with the Intel 75-Mhz Pentium CPU is running under

Windows 3.11, which is named PC # 3 in our experiments.

33

There is a very important issue in putting various PC's together to work in a

networking environment through their asynchronous I/O devices s i.e. modem and serial

interfaces, which is the buffer size supported by the UART chip at their corresponding

FIFO's (First-In-First-Out buffer). The UART is an abbreviation for 'Universal

Asynchronous Receiver/Transmitter' [7]. The buffer mismatch may result in difficulties

in transferring data through the asynchronous device due to lost data.

The performance of the UART chips depend on how fast they reset after an

interrupt request for data transfer from the CPU. The original National Semiconductor

8250 chip, with a 1-byte buffer, resets in 1000 ns. [7], which is good enough in the old

days where the CPU was not as fast as today. If the UART chip does not reset before the

next CPU's interrupt request, there may be problems. However, with faster and faster

CPU in today's market, the UART must have much faster reset time to satisfy the CPU's

interrupt speed. The UART chip store data on in its buffer and wait for the CPU's

interrupts to transfer data. The newer 16450 UART chip, also with 1-byte buffer, has

some speed improvement - 200 ns. reset time [7]. This helps out a lot when working

with faster CPU such as the 486 CPU and later. But, again, the new problems occur with

increasing multitasking environments, such as those running under Windows 3.11 and

Windows 95, and, with higher performance (i.e. speed) of data transfer device - 9.6

Kbaud rate and 19.2 Kbaud rate, etc. The problems originate when the 1-byte buffer is

full and the UART chip is not able to transfer data to the CPU at that time because the

CPU is processing other task (i.e. multitasking environment), and there is more data

34

coming. Hence, the UART chip may be forced to discard the data, which, in our

experiments, may cause some lost characters and requests for data retransmission. The

overall result is a slower speed for the FTP operation.

However, the newer UART chip, the 16550 chip, solves this problem by adding

more buffers to store data to be transferred at later time. The 16550 UART chip has a

16-byte buffer, which can be set to any size between l-> 16-byte size in the software

(under Windows 95 in our experiments). But, the interfacing between these PC's with

different buffer sizes is a problem because the 1-byte buffer may be overflowed and,

hence, causes lost characters. In our experiments, PC # 1 has a 8250 UART chip, and

both PC # 2 and PC # 3 have 16550AF UART chips. We solved the buffer mismatch

problem by setting the 16550AF UART chip to operate with only 1-byte buffer for both

receiving and transmitting. This 1-byte buffer setting works well and solves the buffer-

overflowed problem in our experiments. The TNOS software provides a mean to check

the asynchronous device status through the 'asystat' command. By using this command,

if there is a buffer-overflowed situation, then, the number of lost characters will show up

under the display 'hw over' i.e. meaning 'hardware overflow'.

3. Hardware Interfaces & Low Level Protocols

NOS (including TNOS) supports many interfacing devices such as serial ports

(COM 1-COM4), Modem Control, Ethernet Adapters, Clarkson Drivers, PACcom PC100,

DRSI PCPA 8530 driver, High Speed DRSI/HAPN driver, Semi-port and Multi-port

35

KISS TNC, and etc. [5]. Also, there are a number of protocols supported by NOS to

interface with such devices; for examples, the KISS protocol for TNC control, the SLIP

protocol and the PPP protocol for serial-link point-to-point telephone links, the NRS

protocol for NET/ROM control, and the Ethernet and ARCnet protocols for Ethernet

adapters.

The SLIP (Serial-Link-Internet-Protocol) protocol can be used between a poit-to-

point type of operations. The SLIP does not need a link header since the connection is

only point-to-point. The IP datagrams are simply encapsulated with the SLIP frames

[6]. Also, another useful protocol, used for Point-to-Point links, is the PPP protocol. The

PPP encapsulates the datagrams in an HDLC-like frame, which is an Internet standard

that is compatible with the CCITT (Consulative Committee in International Telegraphy

and Telephony) standards [3,6]. HDLC is an abbreviation for 'High-level data link

control', specified by the ISO 3309,4335 [3]. The HDLC frame contains, consequently;

an 8-bits flag field, 'at least' 1-octet address field, 8- or 16-bits control field, variable-

length information field, 16- or 32-bits Frame-Check-Sequence (FCS), and again, lastly,

the 8-bits flag field.

In our experiments, we use the KISS-mode TNC to interface with the PC using

the AX.25 protocol to communicate with the other nodes. Also, we interface the two

PC's together by using the AX.25 protocol over the asynchronous I/O devices.

36

IV. RESULTS

Since we want to study some data-transfer characteristics and performance over

various channels, including their interactions with a radio channel, hence, there are some

communication nodes needed to be set up with the desired mediums between them.

Firstly, to study the data-transfer behaviors over a radio channel, we set up two nodes

connecting with a half-duplex radio medium. Secondly, to improve the performance of

the data-transfer from the first set-up, an emulated full-duplex radio channel with

optimum allowable hardware configurations was used. And, thirdly, to study the routing

effects across the node, so, we incorporated an additional node and performed data-

transfer operations across the router.

A. DATA PACKETS

By using the 'trace' command, the data packets can be seen and recorded for later

analysis. The 'trace' command enable the software to trace all the packets passing

through the asynchronous I/O device (i.e. at the local COM port). The maximum

transfer unit (MTU), a hardware dependent parameter, used for the data packets in our

experiments is a 512-bytes size (specified by the attach command). Hence, each packet

will have 472 bytes of data at the TCP level, because the TCP/IP cost an overhead of 40

bytes. The level hierarchy from higher-to-lower levels are TCP level -> IP level ->

AX.25 level -> KISS level, as shown in Figure 9.

37

Peseta er Re &C(L\ vtr

W«d Apr 1« 17:02:22 1997 - axO sent:
KISS: Port 0 Data
AX25: NP31->NPS2 UI pid-IP (Oxcc)
IP: len 512 44.1.1.l->44 .1.1. 2 Ihl 20 Ctl 254 proc TCP
TCP: 20-»102S Seq xfaOe-fOOl Ack x3e€OcO01 ACK Wmd 2048 Data 472
OOOO 9c aO *S £4 40 40 «0 9c «0 a6 £2 40 40 61 03 cc . £rd6«'. iböSa.L
0010 45 00 02 00 00 Sd 00 00 fe 06 €0 96 2c 01 01 01 E I..-."
0020 2c 01 01 02 00 14 04 01 fa Oc fG 01 3* 60 CO 01 z,p.>'B.
0030 50 10 08 00 56 66 00 00 2a 2a 2a 2a 2a 2a 2« 2a P...Xt..
0040 2* 2a 2a 2a 2a 2a 2a 2a 2a 2a 2* 2a 2a 2a 2a 2a
0050 2a 2* 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0060 2a 2a 2a 2a 2a 2a 2a 2a-2a 2a 2a 2a 2a 2a 2a 2a •
0070 2a 2a 2a Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •••.. *
0060 2a 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2« 2a
0090 2a 2a 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOaO 2a 2a 2a 2a 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OObO Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OCcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2o 2a
OOdO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
00*0 2a 2a 2a 2a 2a 2a 2a 2e 2a 2a 2« 2a 2a Od Oa 2a
0010 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •" —
01OO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •
0110 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0120 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a Od Oa 2a 2a 2a 2a
0130 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a * •
0140 2a 2a 2a 2a 2a 2o 2a 2« 2a 2a 2a 2a 2a 2a 2a 2a •
0150 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0160 2a 2a 2a 2a 2a 2a 2a Od Oa 2a 2a 2a 2a 2a 2a 2a
0170 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a '• •
OlßO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0190 2« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2
OlaO 2a 2a 2a 2a Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OlbO 2a 2a 2a 2a 2a 2a 2a 2a 2« 2a 2a 2a 2a 2a 2a 2a •
OlcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OldO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
01«0 2a Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OlfO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a *•*
0200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

Wed Apr 16 17:02:23 1997 - «X0 recv:
KISS: Pore 0 Data
AX25: NPS2->NPS1 UI pid-IP COxcc]
ZP: leu 40 «. 1.1. 2->««. 1. 1. l ihl 20 tel 254 proc TCP
TCP: 1025->20 Seq x3e60c001 Ack xfaOefldS ACK Wnd 2048
0000 9c aO a6 62 40 40 eO 9c aO a6 64 40 40 61 03 cc tbeS" td^d- L £-~
0010 45 00 00 28 00 12 00 00 £e 06 62 b9 2c 01 01 02 E (H-4 X

0020 2c 01 01 01 04 01 00 14 3« 60 cO 01 fa Oe fl d9 >:« » "ny
0030 50 10 OS 00 Sf 70 00 00 p _"'

SCiYU-t
■>

ac

W«d Apr 16 17:21:49 1997 - axO reev:
KISS: Port 0 Data
AX25: HPS1->NPS2 DI pld-IP (Oxcc)
IP: Ian S12 44.1.1-.1-J-44.1.1.2 ihl 20 ttl
TCP; 20->102S S*q xfa0«£001 Aex x3«60c001
0000 9c *0 e6 64 40 40 «0 9c aO a£ 62 «0
0010 45 00 02 00 00 5d 00 00 f* 06 60 96
0020 2c 01 01 02 00 14 04 01 £a 0« fO 01
0030 50 10 06 00 58 66 00 00 2a 2a 2a 2a
0040 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0050 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0060 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0070 2a 2a 2a Od Oa 2a 2a 2a 2a 2a 2a 2a
0080 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0090 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOaO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OObO Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOdO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOaO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
00« 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0100 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0110 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0120 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a Od Oa
0130 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0140 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0150 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

0160 2a 2a 2a 2a 2a 2a 2a Od Oa 2a 2a 2a
0170 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0180 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0190 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OlaO 2a 2a 2a 2a Od Oa 2a 2a 2a 2a 2e 2a
OlbO 2a 2a 2a 2a 2a 2a 2a 2a 2e 2a 2a 2a
OlcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OldO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OleO 2a Od Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a
OlfO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0200 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

Wed Apr 16 17:21:49 1997 - axO aer.t:
KISS: Port 0 Data
AX2S: NPS2->HPS1 UI pid-IP (Oxecl
IP: Ian 40 44.1.1.2->44.1.1.1 ihl 20 ttl 254 prot TCP
TCP: 102S->20 Seq x3«60c001 Ack xiaOafldS ACK Wnd 2041
0000 9c aO a6 62 40 40 «0 9c aO a6 €< 40 «0 61 03 cc
0010 45 00 00 28 00 12 00 00 f« 06 62 b9 2c 01 01 02
0020 2c 01 01 01 04 01 00 14 3* 60 cO 01 fe 0« fl d?
0030 SO 10 08 00 5f 70 00 00

2S4 prot TCP
ACK Wnd i048 Data 472
40 61 03 cc . td99" . fcbflea.l.
2c 01 01 01 E]..-.'
3« 60 cO 01 x.p.>*«

2a p...xf ••-••••• 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a *
2a 2a 2a 2a
2a 2a 2e 2a
2a 2a 2a 2a
2a 2a 2a 2a .
2a 2a 2a 2a
2a 2a 2a 2a •
2a Od Oa 2a
2a 2a 2a 2e
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a ••••
2a 2a 2a 2a

2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a
2a 2a 2a 2a •••* *
2a 2a 2a 2a *•*-.
2a 2a 2a 2a
2a 2a 2a 2o
2a 2a 2a 2a
2a 2a 2a 2a • ..••
2a 2a 2a 2e
2a 2a 2a 2a

Figure 9 : Data Packet Transfer

The data-packet transfer example is a typical interaction between the sender and

the receiver whenever there is a transfer of data. First, the data packet is sent by the

sender through the 'axO' port device. Then, the receiver receives the packet at its local

'axO* port device. Then, the receiver will send an acknowledgment to the sender to allow

38

the sender to continue to send the next data packet. The data, in our experiments, is a

series of the '*' string characters, coded as '2a'. All the actual data is displayed in 16-

bytes blocks numbered starting from 0000 -» 0200. At the lowest level, i.e. the KISS-

protocol level between the PC and the TNC, it only maintains a port number and a control

code (the format is as shown in Figure 8). In our case, as shown in Figure 9, the KISS

level has a port numbered as '0'. And, the control code specifies a data type. At the next

level, the AX.25 level, it maintains only a call-sign, a type of frame format, and a 'pid,

i.e. a protocol identification. In our case, the frame format is a UI frame, and, the pid is

an IP (or, an internet protocol), and the call-signs used for source and destination stations

are NPS1 and NPS2, consequently. The IP level specifies the length of the data packet,

512-bytes long in this case. This level also specifies the DP addresses for both the source

and destination. The UI frame is an 'Unnumbered Information' frame, which allows the

frames to pass freely at the AX.25 level, since they are unnumbered. And, this allows

the frames to be processed at higher levels i.e. the TCP/IP levels.

Since, the UI frames are processed at a higher level than the AX.25 level, the error

checking is done at the TCP level in our case. If there is an error, then the TCP will

report the error and automatically request a retransmission of the error packet. And, until

it gets an error-free packet, it will then send an acknowledgment packet to the transmitter

to allow the next sequential packet to be sent. Figure 10 is an example of a Frame-

Check-Sum (FCS) error detected at the TCP level. The TCP level reports a FCS error,

39

and, automatically, request a retransmission. It then waits for the same packet to be

sent and correctly received before it sends an acknowledgment packet.

re-

R. -\^Y~

Tuc Apr 15 16:03:29 1997 - «0 recv:
KISS: Port 0 Data
AX25: NPS1->NPS2 U! pid-lP (face)
IP: lco 256 44.1.1.I->44.1.1.2 ihl 20 tu 254 procTCP
TCP: 20-M027 Scq x28463t>01 Ackx5a2c7001 ACK Wnd 2048 Data 215 CHECKSUM
ERROR (43)
0000 9c 10 26 64 40 40 cO 9c »016 62 40 40 61 03 cc . &d@@\ &b@@a.L
0010 45 00 01 00 00 3e 00 00 fc 06 61 b5 2c 01 0101 E...>..-.i5....
0020 2c 01 01 02 00 14 04 03 28 46 3b 01 5a 2c 70 01 (F;.Z,p. i
0030 50 1008 00abff00002a2a2a2a2a2a2a2a P._+... I
0040 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a I
0050 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2l 2a 2a •
0060 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0070 2a2a0d0a2a2a2a2a2a2a2a2a2a2a2a2a ••.. •
0080 2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a •••••
0090 2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a •
OOaO 2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a0d
OObO Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a .•
OOcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •
OOdO 2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a2a
OOeO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a Od Oa 2a 2a
OOfO 2a 2a 2a 2a 2a 2a 2a 2a la 2a 2a 2a 2a 2a 2a 2a
0100 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

F6S

<r—'

^*^r^ns^r\{^\cn

>x"CA-

— missj^ di^^^^

Tue Apr 15 16:03:42 1997 . axO rccv:
KISS: PonO Data
AX25: NPS1->NPS2 Ul pid=IP (Oxcc)

IP: len 256 44.1.I.1->44.1.1.2 ihl 20 tu 254 proi TCP
TCP: 20-> 1027 Scq x28463b01 Ack x5a2c7001 ACK Wod 2046 Dau 216
0000 9ca0a6 64 40 40e0 9ca0a6 62 4040 6103cc &d@@' &b<?S>aL
0010 450001O0O03f0000feO661b42c0I010I E i - a4
0020 2c01 01 0200 14 04 03 28 4« 3b01 5a2c7001 (T-£p
0030 50100800abff00002a2a2a2a2a2a2a2a t\ ■■'—■'-
0040 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •
0050 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0060 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

0070 2a 2a OdOa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
0080 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •••
0090 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOaO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a Od
OObO Oa 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a •
OOcO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOdO 2a 2a 2l 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a
OOeO 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a OdOa 2a 2a
00(0 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a2a •"•••
0100 2a 2a 2a 2a'2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a

A>ic Kfict i \ -i <Xq m <j Yl t

Tue Apr 15 16:03:42 1997 - ixC sec::
KISS: Port 0 Data
AX25: NPS2->NPS1 UI pid=l? (Oxcc)

IP: lea40 44.1.1.2.>44.1.1.1 iu 20ul 254 protTCP
TCP: 1027->20 Seq !5a2e7001 Aclt x28463bd9 ACK Wod 2048
0000 9ciOi6 62 4O40cO9caOa6 64 40 4O6103cc . &b«<?\ &d®fc3 L
0010 45 00 00 28 00 52 00 00 fe 06 62 79 2c 01 01 02 E (A -by
0020 2c 01 01 01 04 03 00 14 52 2c 70 01 28 46 3b d9 Z.D (FT
O030 50 10 08 00 lb 6c 00 00 p...j

Figure 10 : An FCS Error

40

In this case the MTU is of 256-byte size, when accounted for a 40-bytes TCP/IP

overhead, then there should be at least 216 bytes of data. But, the first data packet, as

shown in Figure 10, contains only 215 bytes of the '*' characters. Hence, the TCP

reports a FCS error, and automatically requests for a retransmission for the same packet.

When the packet is re-transmitted and received correctly with 216 bytes of data, as

shown at the TCP level of the middle packet in Figure 10, the receiver then responses

with an acknowledge to notify the sender to proceed with the next sequential packet

B. EXPERIMENT # 1: HALF-DUPLEX RADIO CHANNEL

To study the data transfer behavior over a radio channel, the two nodes are set up

as shown below. We decide to use a hardware flow control at the COM ports instead the

software flow control because of superior performance. The hardware flow control is

accomplished by selecting the 'Hardware Flow Control' option at the COM ports and

setting the corresponding TNC's parameters i.e. DTR = 1 & RTS = 1 on an asynchronous

(asy.) line.

Katronics D4-10
(Transceiver)

PC #2

Antenna

\ / PC#1

TNOS

Radio
« ►

TM:
(KISS)

Katronics
Data Engine

Approx. 1-meter distance

Figure 11: A Half-Duplex Radio Channel

41

The TXDELAY on the TNC is set to 20 (x 10-ms unit time), i.e. 200 ms, to allow

enough time for the radio to be fully powered up. Also, the PERSIST value is set to be

127, which is approximately half of a chance for transmitting. At this point, the half-

duplex radio is used, and the TNC's parameter, 'modem', must be set to half duplex i.e.

by using the TNC command 'modem ,half.

The data was collected and shown in Figure 12 to 15. There are 16 files with

various sizes ranging from 185 bytes, 336 bytes, 612 bytes,.., 1.884 Mbytes,

consequently. Each consecutive file is roughly double the size of the previous file. There

are four trials needed to be collected for each file due to the nature of a stochastic-

transmitting process (which depends on the setting PERSIST value). Then, the averages

in both speed and time of the four trials are derived. The speed in Bytes/second and

transfer time in seconds used in the FTP operation are reported in the system at the end of

each file transfer operation.

The parameter settings for Experiment # 1 are shown in Table 1. In the table, DTS

is 'Data-Set-Ready'. RTS is 'Read-to-Send'. TXDELAY is 'Transmission Delay'.

PERSIST is a 'Persistence' Value. SLOTTIME is a "Slot Time'. TXT AIL is

'Transmission Tail Time'. And, lastly, FULLDUP is 'Full Duplex'.

42

PARAMETER SETTING

DTS 1

RTS 1

TXDELAY 20

PERSIST 127

SLOTTIME 10

TXTAIL 0

FULLDUP 0(off)

Table 1: Exp. #1 Parameter Settings

Once all the parameters were set, the data samples for both the time transfer and

speed versus file sizes were collected and plotted. The transfer time versus file sizes are

shown in Figure 12 and Figure 13. And, the speed versus file sizes are shown in Figure

14 and Figure 15.

43

Transfer Time versus File Size

Four Trials
lOOOO

D.2 0.6 2.5 9.8 -41.5 186.6 529.6 1268.8
0.4 1.2 4.9 20.S 89.9 283.3 980.7 1884.5

Size (Kbytes in Log Scale)

Figure 12 : Exp. # 1 Transfer Time versus File Size

44

Transfer Time versus File Si

Average of the four trials
10000

0.2 0.6 2.S 9.S +1.S 166.6 529.6 1268.6'
0.-4 1.2 -4.9 20.6 B9.9 263.3 960.7 1S84.5

Size (Kbytes in Lxsg Scale)

Figure 13 : Exp. # 1 Average Time versus File Size

45

Speed versus File Size

Four Trials
lOOO

s
CO

100

0.2 0.6 2.5 9.8 41.5 186.5 529.6 1268.6
0.4 1.2 4.9 20.8 59.9 283.3 960.7 1884.5

File Size (Kbytes in Log Scale)

Figure 14 : Exp. # 1 Speed versus File Size

46

Speed versus File Size

Average
1000

3
CO

g*

100
0.2 0.6 2.5 9.8 41.5 186.6 529.6 1268.6

0.4 1.2 4.9 20.8 69.9 283.3 960-7 1884.
File Stze (Kbytes in Log Scale)

Figure 15 : Exp. # 1 Average Speed versus File Size

In the plots, both the X-axis and Y-axis are in LOG scale, and the time transfer

shows linearity with respect to increasing file sizes. This is agreed with our expectation

because there is a fxxed-size overhead associated with each data packet, and, hence, with

more data, it should should require more time to transfer the file in a linear fashion. For

the average speed curve, it seems that the speed curve is saturated at some specific value

after the file size is larger than 19.2 Kbytes. By taking the average of the last six data

samples of the speed curve, we estimated the settled speed to be 486.70 bytes/sec.

47

By observations of both the transfer time and the speed curves, the data points are

varied in a noticeable manner. This is because the nature of the stochastic process

affected by the setting of the PERSIST value.

C. EXPERIMENT #2: HARD-WIRED FULL DUPLEX

To improve performance of data-transfer through the radio channel, the two

TNC's can be set to operate at a full-duplex mode. This will require two channels for the

TNC to be able to transmit and receive at the same time. Hence, the radio must be able to

operate at two different frequencies, one for receiving and the other for transmitting.

However, our radio does not have such capabilities. Therefore, we emulated a full duplex

environment for the two TNC's by directly connecting the two TNC's together and

bypassing the radio transceivers. This emulation gives us a full-duplex like-radio

channel, although we do not have a true full-duplex radio channel. The main difference

between a real full-duplex radio channel and our 'emulated' full-duplex channel is the

radio wave interference which may occur in the real channel. In our experiments, the

interference is assumed to be minimum, since we operate in a controlled environment i.e.

our laboratory. Also, fading channel is assumed to be very small, since the distance

between the two nodes is very short i.e. approximately 1 meter. The set up for an

emulated-radio full-duplex channel is shown in Figure 16.

48

PC #2

Directly connected DB-9 connectors

PC#1

TNOS

i >

TNOS

TNC
(KISS)

TNC
(KISS) jnio i-ir/i ■ , ^

FULL DUPLEX CHANNEL

Approximately 1-meter distance

Figure 16 : A Emulated-Radio Full Duplex Channel

The connection between the two TNC's are made directly between the two 9-pins

DB-15 connectors attached to the two Katronics Data Engines at port # l's. The hard-

wired diagram between the two connectors is shown in Figure 17.

| DB-15 Connector DB-15 Connector |

Transmit Data Pin 3 Pin 3 Transmit Data

Receive Data Pin 2 Pin 2 Receive Data

Push-to-Talk Pin 1 Pin 1 Push-to-Talk

Carrier Detect(CD) Pin 8 Pin 8 Carrier Detect (CD)

Ground Pin 9 Pin 9 Ground

Figure 17 : TNC Hard-Wired Connections

The parameter settings for Experiment # 2 are shown in Table 2. Notice, the only

difference from Experiment # 1 is the FULLDUP set to 1, which enables the full-duplex

channel between the two TNC's.

49

PARAMETER SETTING

DTS 1

RTS 1

TxDelay 20

PERSIST 127

SLOTTIME 10

TXTAIL 0

FULLDUP 0

Table 2 : Exp # 2 Parameter Settings

Once the all the parameters were set, the data samples for both the transfer time

and speed versus file sizes were collected and plotted. The transfer time versus file sizes

are shown in Figure 18 and Figure 19. And, the speed versus file sizes are shown in

Figure 20 and Figure 21.

50

Transfer Time versus File Size

Four Trials
lOOOO;

CO
g» lOOO:

3
JBB_

100;

10:

0.2 O.e 2.5 9.3 41 .S 166.« 52S.6 1268.6
0.4 1.2 4.9 20.B 89.9 2S3.3 960.7 1884.5

Size (Kbytes in Log Scale)

Figure 18 : Exp # 2 Transfer Time versus File Size

51

Transfer Time versus File Size
average

er»

10000:

1000

100

lOi

0.2 0.6 2.5 9.8 41.5 1S6.6 529.6 12SS.S
0.4 1.2 4.9 20.S 89.9 283.3 9©0,7 13S4.5

Size (Kbytes)

Figure 19 : Exp # 2 Average Time versus File Size

52

Speed versus File Size
Four Trials

■toooo

100 0.2 Ol6 2.5 9.8 41.5 1B6.6 S29.6 1268.6
0.4 1.2 4.9 20.8 89.9 283.3 960.T 1884.

Size (Kbytes in Log Scale)

Figure 20 : Exp. # 2 Speed versus File Size

53

Speed versus File Si
Average

10000:

S2.
m
g 1000:

Cl.

~2*"

1 QO l 1 ■ 1 l i i 1 1 1 1 1 1 1 ■ l
0.2 O.e 2.5 9.8 41.5 186.6 529.6 1260.8

O.A 1-2 4.9 20.8 ©9.9 283.3 960.T 1684.
Size (Kbytes in Log Scale)

Figure 21: Exp. # 2 Average Speed versus File Size

From the time transfer and speed curves, it seems that the FTP process is

smoother than that in Experiment # 1. This is because the channel is a hard-wired full-

duplex channel, in which, there is very little interference compared to the true radio

channel. For the speed curve, it seems more clear than those in Experiment # 1 that the

speed curve starts turning into a saturated speed at roughly 19.2-Kbytes file size. And, by

taking the average of the last six data samples of the speed curve, the average saturated

speed is 1344.9 Bytes/sec.

54

D. EXPERIMENT #3: ENHANCED HARD-WIRED FULL DUPLEX

In Experiment # 2, the channel is already a full-duplex channel but without a real

radio transmitter. Hence, there are some parameters that can be set to achieve optimal

performance; the TXDELAY and the PERSIST value. The TXDELAY can be set to 1

because there is no need to delay the data before transmitting for powering-up the

transceiver, since there is no radio transmitter needed. Also, since the channel is

relatively cleaner than that in Experiment # 1 due to hard-wired full-duplex environment,

hence, the PERSIST value can be set to its maximum value (255) to maximize the chance

for transmitting data, which increases the data rate i.e. speed. The parameter settings are

shown in Table 3.

Once all the parameters were set, the data samples for both the transfer time and

speed versus file sizes were collected and plotted. The transfer time versus file sizes are

shown in Figure 22 and Figure 23. The speed versus file sizes are shown in Figure 24

and Figure 25.

55

PARAMETER SETTING

DTS 1

RTS 1

TxDelay 1

PERSIST 255

SLOTTIME 10

TXTAIL 0

FULLDUP 1

Table 3 : Exp. # 2 Parameter Settings

56

Transfer Time versus File Size

Four Trials
10000

*m—tm-
0.2 O-B 2.S B.S 41 .S 185.6 529.6 1268.6

O.A. 1.2 4.9 20.8 89.9 283.3 960.7 1884.5
Size (Kbytes in Log Scale)

Figure 22 : Exp. # 3 Transfer Time versus File Size

57

Transfer Time versus File Size

average

SS
52.

1000

lOO;

10

Figure 23 : Exp. # 3 Average Time versus File Size

58

10000

1000

lOtH—r

Speed versus File Size

Four Trials

D.4 1.2 4,9 20.S 89.9 2S3.3 90O.7 166-4.
Size (Kbytes in Log Scale)

Figure 24 : Exp. # 3 Speed versus File Size

59

Speed versus File Size

Average
lOOOO

1000

100-1—T
O.S 0.6 2.S 9.8 41.5 186.6 529.6 1268.6

0.4 1.2 -4.9 20.8 89.9 283.3 960.7 1884.
Stee (Kbytes in Log Scale)

Figure 25 : Average Speed versus File Size

From the time transfer and speed curves for Experiment # 3, it is clear that there is

some speed improvement when optimal parameters are used. The average speed from the

last six data samples is 1528.25 bytes/sec.

60

E. EXPERIMENT #4: ROUTING EFFECTS

In additions to EXP # 2, we want to study the effects of routing when there are

more than two nodes involved. Hence, we make some modifications and add a router,

PC # 1, between PC # 2 and PC # 3 as shown in Figure 26.

PC#3

JNOS

:HFO
TSC

fKISS)

PC#2

FULL DUPLEX CHANNEL
Approximately 1 ft distance

(Directly connected DB-9 connectors)

RS-232 Line
(Full-Duplex Channel)

PC#1

Figure 26 : Adding a Routing Node

As shown in Figure 26, PC # 1 is set up as a router between the two PC's. The

FTP operations are conducted between PC # 2 and PC # 3. The files are transferred from

PC # 3 to PC # 2. A route table is created and maintained at PC # 1 by using the TNOS'

'route add' command.

An additional interface between PC # 2 and PC # 1 is the RS-232 line, which was

added to the set up of EXP # 2. The RS-232 line is an industry-standard physical

interface. It is intended for communicating no more than 50 feet at 20,000 bps [7].

61

There is an important issue in dealing with the RS-232 line, it is the selection of the flow-

control scheme. There are two flow-control schemes used to prevent buffer overflows;

the software flow control (XON/XOFF and ENQ/ACK), and the hardware flow control

(DSR, CTS, and CD) [7]. The software flow control is executed by sending a 'STOP'

character back and forth to notify the device that the buffer is already full. In contrast, the

hardware flow control simply just deactivate the line to prevent/stop buffer overflows.

The RS-232 link in our experiments is implemented by using two 25-pin connectors. The

connection is as shown in Figure 27.

25-pin Submin-D
Connector

25-pin Submin-D
Connector

Transmit Data Pin 2 Pin 2 Transmit Data

Receive Data Pin 3 Pin 3 Receive Data

Request to Send (RTS) Pin 4 Pin 4 Request to Send (RTS)

Clear to Send (CTS) Pin 5 Pin 5 Clear to Send (CTS)

Data Set Ready (DSR) Pin 6 lllll
i >

Pin 6 Data Set Ready (DSR)

Ground Pin 7 Pin 7 Ground

1 $ '\s ^\.^ Carrier Detect (CD) Pin 8 Hill Pin 8 Carrier Detect (CD)

Data Terminal Ready Pin 20 Pin 20 Data Terminal Ready

Ring Indicator Pin 22 Pin 22 Ring Indicator

Figure 27 : RS-232 Line Connection

62

As seen in Figure 27, there are two lines connecting the two end nodes. Hence,

the RS-232 interface in the above configuration is able to transmit and receive data

simultaneously, and so, acting like a full-duplex channel. The rest of the pins, not shown

in Figure 27, are not connected, because there is no need to utilize them in our

experiments.

With optimal parameters setting, another router is added between PC # 2 and PC #

3 as described in the Experimental set-up. The data points were again collected and

plotted. The transfer time versus file sizes are shown in Figure 28 and Figure 29. The

speed versus file sizes are shown in Figure 30 and Figure 31.

Transfer Time versus File Size
(Routing)
Four Trials

1 GO

-a
8

lOOOO

1000

1GO

io

o.2 o.6 2.s 9.e 41 .s tee.e 529.6 1268.6
0.4 1.2 4.9 20.8 89.9 283.3 960.7 1884.

Size (Kbytes in Log Scale)

Figure 28 : Exp. # 4 Transfer Time versus File Size

63

Transfer Time versus File Size
(Routing)
AVERAGE

10000

lOOO

100

10

0.2 0.6
0.4 1

2.5 9.6 A1.5 186.6 529.6 126e.6
.2 4.a 20 .a 89.9 283.3 S60.7 1884.5

Size (Kbytes in Log Scale)

Figure 29 : Exp. # 4 Average Time versus File Size

64

Speed versus File Size
(Routing)
Four Trials

lOOOO-T . ^

as

CD

S 1000: m.m *m- w» ■ -

OQ

TO n ^^^^ co

Ol2 Ol© 2.S S.S 41.5 1S6.6 529.6 1266.6
0.4 1.2 -4-9 20.8 69.8 2B3.3 9SO.T 1884.E

Size (Kbytes in Log Scale)

Figure 30 : Exp. # 4 Speed versus File Size

65

Speed versus File Size
(Routing)
Average

10000

at
-m o
CO

o

i 1000

CD

•Q.
to

O.A 1.2 4.9 KX8 89.9 2B3.3 960.7 1884.5
Size (Kbytes in Log Scale)

Figure 31: Exp. # 4 Average Speed versus File Size

The average speed taken from the last six data point, in Figure 29, is 1000.2

Bytes/sec. There is a big drop in speed due to routing, compared to previous average

speed curves.

66

V. DISCUSSION

A. TIME COMPARISON

The averages of the four curves, time transfer, are plotted and compared as shown

in Figure 32.

Time Transfer versus File Si
Time Comparison

Cf.G 2.5 9.8 <H.S 18G.G 529.6 12B8.6
0-4- 1.2 4.9 20.8 39.9 283.3 960.7" IBS

Size (Kbytes in Log Scale)

Figure 32 : Transfer Time Comparison

67

Figure 32 compares the time-average curves used in each experiment. From the

time comparison curves as shown in Figure 32, the relative performance of each curve is

related to its own position relative to others. For an example, Curve # 1 (from Exp. # 1) is

at a higher position as compared to Curve # 4 (from Exp. # 4), which means that the

Curve # 4 has a superior performance, since it requires less time to deliver a file of the

same size.

From observations of the 4 curves, it seems that they follow the same trend even

though their shapes are a little different. Curve # 1 is a straight-line shape and different

from others because it is the only real radio channel. The other curves show superior

performance than Curve # 1 because they are all full-duplex channels. Also, Curve # 2,

Curve # 3, and Curve # 4 have similar shapes due to their similarities in the experimental

set-ups. Curve # 3 has the same shape with Curve # 2 because they both have the same

set-up. However, Curve # 3 has a superior performance than Curve # 2 because it has an

optimal set of parameters. In addition, Curve # 4 has a very similar shape, as compared

to Curve # 2 and # 3, this is because Curve # 4 has most of its the set-up like of those

curves but with an additional routing delay.

From comparing Curve # 2, # 3, and # 4, it seems that at each region of the

curves, they tend to follow a specific value of local slope i.e. they almost have the same

slopes at some local range of file sizes. This local-slope phenomenal may be a result of

the window size and/or the MTU size, used in our experiments with respect to the file

size.

68

B. SPEED COMPARISON

For speed comparison analysis, the average speed curves of Experiment # 1

through Experiment # 4 are plotted in the same graph to demonstrate their relative

performance. The plot is shown in Figure 33.

Speed versus File Size

10000:

at
s

ay
en
o

o
at
jo
CO

CO.

~Z3
aj <u
a.

CO

1000:

Speed Comparison

-Exp.#3 -
Exp.#2 ;Exp.#4

Exp.#1

1O0 r-
0.2 o'.e

__j j_

0.-+
2.S 9.S 4-1.5 186.6 529.6 126S.6"

1 -2 4.9 2CL8 89.9 2:83.3 960.7 188
Size (Kbytes in Log Scale)

Figure 33 : Speed Comparison

Figure 33 shows the speed comparison between the four experiments. In this

case, higher performance is shown in a higher vertical position of the curve. A higher-

69

curve position indicates a faster channel. And, as expected, like those curves in Figure

32, the performance for each curve from highest-to-lowest is Curve # 3, Curve # 2,Curve

Curve # 4, and Curve # 1. The reasons are the same as those explained for Figure 32. In

addition, from the observations of the curves, it is clear that, in our experiments, the full-

duplex channels, Curve # 2, Curve # 3, and Curve # 4, are superior in performance than a

half-duplex channel, Curve # 1.

Also, the turning corner before saturation of each curve is close to the number of

19.2-Kbytes file size. This number is related to our channel's maximum capacity of 19.2

Kbaud rate as provides by our TNC's. Before this point on the X-axis, there is an

increase in speed as the file size is increasing until it reaches the channel maximum

capacity of 19.2 Kbaud. The speed is increased, at the region of small file size below the

channel's full capacity, because at those region the data is smaller than the pipe (i.e. an

analogy for our channel capacity). Hence, the more data there is, the more the channel

can deliver. However, once the data size is larger than our pipe, then no matter how

large our data is we can only put certain amount of information into the pipe at one time

because the pipe has a fixed size (i.e. as compared to our channel's Baud rate). Hence, it

causes a speed saturation as shown in a flat region on each curve.

In addition, from observing the curves it is clear that an additional routing node

tremendously adds delay to the speed. The increase/decrease in performance, as

compared to each other, is shown in Table 4.

70

Experiments EXP. # 1 EXP. #2 EXP. #3 EXP. #4

Speed (Bytes/sec.) 486.7 1,344.9 1,528.25 1,000.2

Speed (Bits/sec.) 3,893.6 10,759.2 12,226.0 8,001.6

Improvements xl x2.76 x3.14 x2.05
(x times as Compared to Exp. # 1)

Table 4 : Speed Comparison

From analyzing Table 4, it is seen that the emulated-radio full-duplex channel as

in Exp. # 2 and Exp. # 3 improves the speed by approximately 3 times higher than that of

the radio half-duplex channel in Exp. # 1. Also, the routing node, in Exp. # 4, causes a

performance drop to only 2.05 times higher than that of Exp. # 1. Hence, there is a

tremendous drop in the performance due to routing.

Our maximum performance as shown in Exp. # 3 is 12.226 Kbits/sec. The rest of

the bandwidth, i.e. 6.97 Kbits/sec, is probably consumed by the overheads, i.e. mainly

the TCP/IP & AX.25, used in transferring the data across the mediums. Hence, the

overhead cost in our experiments is relatively large compared to our available

bandwidth.

71

In a video-conferencing application as desired in our project, the implementation

may be possible only if a very effective compression scheme can tremendously reduce

the size of the data stream to fit our maximum capacity. It is mentioned in the study by

[9], that a high quality compression technique may be able to compress the data to below

1/50 the size of the original data. Assuming that this type of compression scheme is

available and implemented with our existing system, we would be able to support a

channel of more than 50 x 12.226 Kbits/sec. (i.e. 611 Kbits/sec).

With this possible maximum capacity of 611 Kbits/sec, we may be able to support

many image-delivery implementations such as delivering a quality stilled-image in a

reasonable time, as studies in [9], and, may be in a distance learning application as

studied in [14]. In delivering a quality tilled-image for a medium-quality image

resolution of the size 230,400 bytes [9], our system would delivery in about 151

seconds, which is an acceptable time for this kind of application.

However, for a video-conferencing type of system, time of delivery is much more

sensitive than just delivering a stilled image. The quality of video depends on the frame

rate , i.e. number of frames per second (fps), showing on the display. A full broadcast

television in North America using an NTSC standard requires about 30 fps [14].

However, this fps requires too much bandwidth. Hence, many compression standards

are used to tremendously reduce the data size to fit the available bandwidth for vedio-

conferencing type of application such as the H.221, H.230, H.261, and H.320, etc. [17].

Also, in the video-conferencing type of applications, an acceptable video quality may not

72

require as high fps as in a full quality video (i.e. it requires about 30 fps). The minimum

recommendations, from the study of a distance learning type of applications [14], for the

frame rate is 6 fps and for the resolution needed is 320x240-pixels. This application

would require a bandwidth of 375 Kbits/sec [14]. Hence, our system with a

compression ratio of approximately 4:1 would be enough to support such applications.

73

74

VI. CONCLUSION AND FUTURE WORKS

In our experiments, we implemented a half-duplex radio channel and performed a

data transfer performance study. We found out that the data rate was very low and may

not support video-conferencing applications. Hence, improvements were made, in

experiments # 2 and # 3, by using a emulated-radio full-duplex channel. The result was

an increase in performance about 3 times higher than in experiment # 1. Then, the

routing effect was studied by adding a routing node between the link, the effect was a

decrease in performance from experiments # 2 and # 3 down to about 2 times higher than

in experiment # 1. From looking at the data rate supported by our system, it is possible

that, with an advanced compression technique, the system will be able to support a video-

conferencing type of applications over a full-duplex radio channel operating under a

NOS.

However, before a real implementation of this type of system, there are more

issues to be studied such as the security aspects of such a system, the integration of the

packet-radio-networking backbone with commercial video-conferencing

software/hardware packages. One way to improve security, within our experiences with

the TNOS, is that we may be able to add a secure encryption/decryption scheme to the

TNOS software. It is possible and practical to download the TNOS software source code

from the internet site and add some security mechanisms to it before recompiling the

75

modified source code. Also, the integration of the video-conferencing to the backbone is

possible, provided that they both support the same industrial standards such as the TCP/IP

protocol, or etc.

76

APPENDIX A: CONFIGURATION FILES

77

autoexec.nos file for TNOS 2.20 nps2 01/14/96
By Narongchai Nimitbunanan

Specify Hostname
Local host's name. It is used only in the greeting messages
of the various network sservers.
It DOES NOT set the system's IP address.

hostname nps2.ampr.org

Set the local AX.25 address
ax25 mycall nps2

Set thet default local IP address
ip address 44.01.01.02

#User
ax25 user nps2

########### Set AX25 parameters it I! III! I! 111!
AX25 protocal version 2 which uses the poll/final bits
This protocal is used when attempts to make new connections
ax25 version 2

Number of frames that will be allowed to remain
unacknowledged at one time on new AX25 connections
ax25 maxframe 1

Poll threshold- used to control retransmission behaviors
Default value is 128
ax25 pthresh 128

Packet lenght - if the I-field (Information field) is greater than this, then
it will be fragmented at the ax25 level. ^
This parameter should be less than or equal to the MTU size
ax25 paclen 256

> Double MTU size
ax25 paclen 512

Number of times trying to establish a connection.
ax25 retries 15

Set the INITIAL value of roundtrip time in milliseconds when
a new connection is established.
ax25 irtt 2000

78

Set the AX25 idle 'keep alive' timer in millisec.
ax25 t3 60000

Set the AX25 link 'redundancy' timer in sec.
ax25 14 1800

Set timer type for retransmission and recovery
ax25 timertype linear

Set the number of byte that can be pending on an AX25 recieve queue
beyond which I-frame will be answered with RNR (Reciever Not Ready)
ax25 window 2048

Set the AX25 retransmission "backoff limit for each successive
transmission to prevent 'congestive collapse' on a loaded channel.
ax25 blimit 5

?????
ax25 smartroute off

?????
ax25 maxwait 9000

Set the text and time interval in seconds between broadcasts.
Text
ax25 bctext "Testing Beta release 01/15/97, TNOS/DOS version 2.20"
Time interval
ax25 bcinterval 30

Standard PC asychronous interface (com port)
Using com2 address 0x2f8, intrp. request 3, ax25 protocal
, and a kiss TNC, MTU is 256 bytes
By defaults IP datagrams are sent in UI frame

COM1 -- This is a modem (modO) in NPS2
#attach asy 0x3f8 4 slip modO 1024 256 19200

#COM2
attach asy 0x2f8 3 ax25 axO 1024 256 19200
> COM2 with double Buffer Size (2048) & Double MTU (512)
#attach asy 0x2f8 3 ax25 axO 1024 256 19200
attach asy 0x2f8 3 ax25 axO 2048 512 19200

Serial Line Internet Protocol on COM 2
#attach asy 0x2f8 3 slip axO 2048 512 19200

Set the interface description to the strings specified
ifconfig axO description "440 MHz-19200 baud, TCP/IP network, D4-10 transiever"

79

Attach an Ethernet Interface —> enO, txqlen = 8, mtu = 1500
attach packet FxFOO ethernet 8 1500
ifconfig enO ipaddress 131.120.20.166

Add a permanent entry in to the look-up table
address resolution protocol (arp) maps the IP address into
the subnet(link) address to the specific IP address
arp add 44.01.01.01 ax25 nps 1 axO
arp add 44.01.01.03 ax25 nps3 axO

Ethernet arp
arp add 131.120.20.165 ether nps 11 enO

Add the default entry into the routing table
route add default axO 44.01.01.01
route add nps2 axO 44.01.01.02
#route add nps3 axO 44.01.01.03
Ethernet router
route add nps 11 enO 131.120.20.165

Invoke a device-specific control routine. On a KISS TNC interface,
this sends control packets to the TNC
Enable the hardware control
param axO DTR 1
param axO RTS 1
trace axO 211

Domain name server
domain dns on # Turn on
domain ttl 7200 # Time-to-live of domain name server in sec.
domain addserver 44.01.01.01 # npsl is also a domain name server—hostid
domain maxwait 60000 # Set time-out for the dns
domain suffix ampr.org. # Default domain name suffix
domain translate off # Turn off the translation from IP address

dot notation into a symbolic name
domain subnet off # Translate subnet IP address and broadcast addresses
domain verbose off # Flag controlling return of a full name
domain update on # Uodate domain file
domain cache size 200 # Local memory cache size
domain cache clean on # Set the discard of expired resource records
domain cache wait 600 # Set the interval in sec. to wait for additional

activity before updating the domain.txt file

TCP Global parameters
tcp irtt 1500
tcp window 4096
tcp mss 966
tcp timer linear
tcp syndata on

80

tcp maxwait 60000
tcp trace on # Turn on trace for tcp level

ifconfig encap mtu.576

Global IP parameters
ip ttl 255

This parameter is not used for TNOS v. 2.21
ip encapnew on

Server
start ax25

Converse
start convers 3600

Finger Server
start finger

#FTP
start ftp

telnet
start telnet

Start all kinds of servers
#start info
#start news
#start remote
#start smtp
#start ttylink
#start tutor

smtp parameters
#smtp timer 600
#smtp max 4
#smtp trace 0
#smtp usemx on
#smtp batch on
#smtp header on
#smtp sendlzw on
#smtp reclzw on
#smtp bidcheck on
#smtp notify on
#smtp quiet off
#smtp t4 600

81

FTP parameters
ftype i
ftptdisc 600
ftpmaxclients 2

Converse parameters
conv mycall nps2
conv hostname nps2
conv interface axO
conv header on
conv hmaxq 8192
conv umaxq 1024
conv t4 600
conv maxwait 120
conv motd "This is the CONVERS MODE"
conv sysinfo "New TNOS server nps2.ampr.org"

Switch the TNC into the KISS mode
#comm axO " " ■
#comm axO "int kiss"
#comm axO "reset"

TxDelay
param axO 1 20
#param axO 1 1

Persist 0 -> 255
param axO 2 127
#param axO 2 255

#param axO 3 10
#param axO 4 0

Half-Duplex
param axO 5 0
Full-Duplex
#param axO 5 1

#Time measurement in sec.
isat on

Recoding for telnet
record on

82

This file is created by Nimit... as a test file
#23 Jan 1997

Anonymous login requires no password
guest * /tnos21 7

#Test
NOTICE*****
After the first run the password 'nimit' is hashed to be
the 'number code' below and re write back to the replace the
given password below
Permission 7 is read(l) + write(2) + delete(4) = 7

npsl 46a9c5c3a3a021954125a6145cc05350/tnos21 7
nps3 f3fd23386703a8d550c81bad8ef7ebf9/tnos21 7

83

This is a domain.txt file.
This file translates the CALLSIGN into IP addresses
A means 'Address'

nps3.ampr.org. IN A 44.1.1.3
npsl.ampr.org. IN A 44.1.1.1
nps2.ampr.org. IN A 44.1.1.2
npsll.ampr.org. IN A 131.120.20.165
nps22.ampr.org. IN A 131.120.20.166

84

APPENDIX B: COLLECTED DATA POINTS

85

EXp-*l

Bytes

File Size in various scales

Kbytes Iog_b10 log_b2
Time (SEC.)

trial #2 trial#3 trial*') Sum avg.

Speed 9bytes/Sec.O

T#1 T#2 T#3 T#4 sum avg

185 0.2 -0.7 -2.4 1 1 1 1 4 1 165 185 159 176 6SS 171.25
386 0.4 -0.4 -1.4 1 1 1 1 4 1 278 266 282 267 1093 273.25
612 0.6 -0.2 -0.7 2 2 2 2 8 2 258 247 253 221 979 ' 244.75

1222 1.2 0.1 0.3 3 3 7 2 15 3.75 401 394 154 419 1368 342
2460 £5 0.4 1.3 75 4 7 4 90 22.5 32 515 334 532 1413 353.25
4900 4.9 0.7 2.3 7 7 22 7 43 10.75 682 692 213 654 2241 ■ 560.25
9780 9.8 1.0 3.3 12 29 12 27 80 20 755 328 753 354 2190 547.5

20759 20.8 1.3 4.4 34 24 41 40 139 34.75 595 845 501 424 2365 591.25
41518 41.5 1.6 5.4 51 53 53 128 285 71.25 803 774 778 322 2677 669.25
89869 89.9 2.0 6.5 141 142 228 141 652 163 634 632 393 636 2295 573.75

186565 186.6 2.3 7.5 391 419 516 395 1721 430.3 476 444 361 471 1752 438
283261 283.3 2.5 .8.1 444 584 547 686 2261 565.3 637 484 517 421 2059 514.75
529601 529.6 2.7 9.0 1010 810 937 975 3732 933 524 653 565 542 2284 571
960696 960.7 3.0 9.9 2062 1423 2252 2801 8538 2135 465 674 426 342 1907 476.75

1268621 1268.6 3.1 10.3 2331 3252 2988 1944 10515 2629 544 390 424 652 2010 502.5
1884471 1884.5 3.3 10.9 3493 4951 3808 7108 19360 4840 539 380 494 256 1669 417.25

86

E><P-*1

Bytes

File Size in various scales

Kbytes Iog_b10 log__b2
Time {SEC.)

trial#1 tria!#2 (rial#3 trials Sum avg.

Speed bytes/Sec.

T#1 T#2 T#3 T#4 sum

185 0.2 -0.7 -2.4

386 0.4 -0.4 -1.4

612 0.6 -0.2 -0.7

1222 1.2 0.1 0.3

2460 2.5 0.4 1.3

4900 4.9 0.7 2.3

9780 9.8 1.0 3.3

20759 20.8 1.3 4.4

41518 41.5 1.6 5.4

89869 89.9 2.0 6.5

186565 186.6 2.3 7.5

283261 283.3 2.5 8.1

529601 529.6 2.7 9.0

960696 960.7 3.0 9.9

1268621 1268.6 3.1 10.3

1684471 1884.5 3.3 10.9

1 1 1 1 4 1 159 166 196 197 718 179.5
1 1 1 1 4 1 280 279 271 279 1109 277.25
2 2 2 2 8 2 258 254 272 268 1052 263
3 3 3 2 11 2.75 396 394 406 441 1637 409.25
4 4 4 4 16 4 504 503 550 551 2108 527
6 6 6 7 25 6.25 724 728 797 670 2919 729.75

10 10 9 9 38 9.5 890 893 1028 1029 3840 960
20 17 17 17 71 17.75 1016 1207 1207 1192 4622 1155.5
37 31 31 31 130 32.5 1116 1311 1307 1308 5042 1260.5
79 65 65 65 274 68.5 1137 1367 1370 1368 5242 1310.5

167 134 134 132 567 141.8 1111 1388 1391 1403 5293 1323.25
238 200 200 200 838 209.5 1188 1411 1431 1409 5439 1359.75
449 378 372 395 1594 398.5 1178 1399 1422 1340 5339 1334.75
814 675 703 676 2868 717 1179 1422 1364 1420 5385 1346.25
076 894 929 891 3790 947.5 1178 1417 1364 1423 5382 1345.5
606 1323 1327 1322 5578 1395 1172 1424 1420 1425 5441 1360.25

87

EX p. -ft 5

File Size in various scales

Byles Kbytes Iog_b10 log__b2
Time (SEC.)

trial#1 trial#2 lrial#3 trial#4 Sum avg.

Speed byies/Sec.

T#1 T#2 T#3 T#4 sum

185 0.2 -0.7 -2.4

386 0.4 -0.4 -1.4

612 0.6 -0.2 -0.7

1222 1.2 0.1 0.3

2460 2.5 0.4 1.3

4900 4.9 0.7 2.3

9780 9.8 1.0 3.3

20759 20.8 1.3 4.4

41518 41.5 1.6 5.4

89869 89.9 2.0 6.5

186565 186.6 2.3 7.5

283261 283.3 2.5 8.1

529601 529.6 2.7 9.0

960696 960.7 3.0 9.9

1268621 1268.6 3.1 10.3

1884471 1884.5 3.3 10.9

2

3

4

8

15

28

60

123

186

354

636

835

1240

2 2 2 8 2

3 3 3 12 3

4 4 4 16 4

8 8 8 32 8

15 15 15 60 15

28 28 28 112 28

59 62 59 240 60

123 121 120 487 121.8

183 183 183 735 183.8

342 342 353 1391 347.8

623 624 620 2503 625.8

825 838 835 3333 833.3

1225 1225 1225 4915 1229

274 279 276 262 1091

377 386 375 377 1515

397 393 386 383 1559

541 544 550 547 2182

733 722 721 724 2900

1005 990 984 998 3977

1181 1216 1187 1218 4802

1322 1374 1358 1375 54 29

1463 1461 1465 1470 5659

1491 1511 1437 1498 S937

1507 1508 1534 1543 6092

1518 1543 1545 1545 6151

1493 1546 1547 1499 6085

1509 1540 1538 1548 6135

1518 1537 1512 1518 6085

1519 1537 1537 1537 6130

272.75

378.75

389.75

545.5

725

994.25

1200.5

1357.25

1464.75

1484.25

1523

1537.75

1521.25

1533.75

1521.25

1532.5

Ex p* 3 4
Full-Duplex Radio Simulated Link

File Size in various scales Time (SEC.) Speed bytes/Sec
Bytes Kbytes Index T#1 T#2 T*3 T#4 Sum avg. Index T*l T#2 T#3 T#4 sum avg

185 0.185 1.) 1 1 1 1 4 1 . ,
191 178 167 ie4 720 180

386 0.386 2.) 1 1 1 l 4 1 2) 230 280 292 292 1144 286
612 0.612 3.) 2 2 2 2 8 2 3.) 270 230 273 270 1043 260.75

1222 1.222 4.) 3 3 3 3 12 3 4.) 392 353 396 352 1493 373.25
2460 2.46 5.) 5 5 5 5 20 5 5.) 467 461 467 462 1857 464.25
4900 4.9 6.) 7 7 7 7 28 7 6.) 675 668 666 669 2678 669.5
9780 9.78 7.) 12 12 12 12 48 12 7.) 802 797 802 601 3202 800.5

20759 20.759 8) 22 22 22 22 88 22 8.) 923 924 912 922 3681 920.25
41518 41.518 9.) 42 42 42 42 168 42 9.) 983 976 983 9e2 3924 981

89869 .89.869 10.) 88 88 88 88 352 88 10.) 1016 1020 1016 1017 4069 1017.25
186565 186.565 11.) 226 196 184 191 797 199.3 11.) 822 949 1011 975 3757 939.25
283261 283.261 12.) 272 272 288' 278 1110 277.5 12) 1040 1038 980 1018 4076 1019
529601 529.601 13.) 519 529 528 517 2093 523.3 13.) 1019 1000 1002 1023 4044 1011
960696 960.696 14.) 942 965 956 943 3806 951.5 14.) 1019 994 1004 1018 4035 1008.75

126B621 1268.621 15.) 1249 1245 1250 1257 5001 1250 15.) 1015 1018 1014 1008 4055 1013.75
1884471 1884.471 16.) 1862 1875 1865 1862 7464 1866 16.) 1012 1004 1010 1012 4038 1009.5

89

£ OYY\pc\if\£OYl

File Size in various scales

Bytes Kbytes Iog_b10 log_b2

-0.7 -2 A

-0.4 -1 4

-0.2 -0.7

0.1 0.3

0.4 1.3

0.7 2.3

1.0 3.3

13 4.4

1.6 5.4
2.0 6.5
2.3 75

2.S 8.1
2.7 9,0

3.0 9.9

3.1 10.3

3.3 10.9

185 0 2

386 0.4

612 0.6

1222 1.2

2460 2.5

4900 4.9

9780 9.8

20759 20.8

41518 41.5

89869 89.9

186565 186.6

283261 283.3

529601 529.6

960696 960.7

1268621 1268.6

1884471 1884.5

CompL. son

Time avg.

1 # 2 #3 #4

2 2

1

1

1

2

3.75 2.75 2 3

22.S 4 3 5

10.75 6.25 4 7

20 9.5 8 12

34.75 17.75 15 22

71.25 32.5 28 42

163 68.5 60 88

430.3 141.8 121.8 199.3

565.3 209.5 183.8 277.5
933 398.5 347.8 523.3

2135 717 625.8 951.5

2629 947.5 833.3 1250

4840 1395 1229 1866

Comparison

Speed Avg

1 # 2 # 3 #4

171 25 179.5 272.75 180

273 25 277.25 378.75 286

244.75 263 389.75 260.75
342 409.25 545.5 373.25

353.25 527 725 464.25
560.25 729.75 994.25 669.5
547.5 960 12O0.S 800.5

591.25 1155.5 1357.25 920.25
669.25 1260.5 1464.75 981

573.75 1310.5 1484.25 1017.25
438 1323.25 1523 939.25

514.75 1359.75 1537.75 1019
571 1334.75 1521.25 1011

476.75 1346.25 1533.75 1008.75

502.5 1345.5 1521.25 1013.75

417.25 1360.25 1532.5 1009.5

90

LIST OF REFERENCES

1. Jones, Greg, Introduction to Packet Radio, http://www. tapr. org/html
pktfaq. html#non -AX. 25

2. Buthod, Bill, AX.25 Packet-Radio Link-Layer Protocol:
Version 2.0 October 1984, http://www.tapr.org/tapr/html/ax25.html

3. Stallings, William, Data and Computer Communications,
Macmillan Publishing Company, Englewood Cliffs, NJ, pp. 421-417, 1991.

4. Dent, Mike, TNOS Frequently Asked Questions: Version 0.2 Started 2 7th March
1995, http://www. lantz. com/tnos/

5. Wade, Ian, NOSintro: TCP/IP over Packet Radio, Dowermain Ltd.
UK, pp. 1-70, 1992.

6. Karn, Phil, and Lantz, Brian A., Tampa Network Operating System User
Reference Manual, http://www.lantz.com

7. Minasi, Mark, The Complete PC Upgrade & Maintaince Guide 7th Edition,
SYBEX Inc., Alameda, CA, 1996.

8. Tischer, Michael, and Jennrich, Bruno, PC Intern: The Encyclopedia of System
Programming, Abacus, USA, pp.231-246, pp. 513-552, 1980.

9. Bandy, Peter C, and Koch Daniel B., "A LOW BANDWIDTH, STILL IMAGE
TRANSMISSION SYSTEM", 0-708-2642-3/95/$4.00 @ 1995 IEEE. Electrical and
Computer Engineering Department, University of Tennessee, 1995.

10. Only, Martin, and Kleinholz, Lutz, "Multimedia Medical Conferencing: Design
and Experience in the BERMED Project", 0-8186-5530-5/94/$3.00 @ 1994
IEEE, German Heart Institute Berlin, Augustenburger Platz 1, Berlin, Germany
1994.

11. Lu, Yen-Wen, and Bagchi, Kallol, and Burr, James B., "A Comparison of
Different Wormhole Routing Schemes", 0-8186-5292-6/94/$3.00 @ 1994 IEEE.
Department of Electrical Engineering, Standford University, 1994.

12. Pomalaza-Raez, Carlos, "A DISTRIBUTED ROUTING ALGORITHM FOR
MULTICAST PACKET RADIO NETWORKS WITH UNI- AND BI-
DIRECTIONAL LINKS", 0-7803-2004/94/$4.00 @ 1994 IEEE. Department of
Engineering, Purdue University, 1994.

91

13. Gibbon, J.F., and Litüe, T.D.C, "Real-Time Data Delivery for Multimedia
Networks", Proc. 18th Annual (
1993, Minneapolis, MN, 1993.
Networks", Proc. 18th Annual Conference on Local Computer Network Sept.

14. Kies, Jonathan K., and Williges, Robert C, and Rosson Mary B., Controlled
Laboratory Experimentation and Field Study Evaluation of Video Conferencing
for Distance Learning Applications, June 1996, http://www.hci.ise.vt.edu
/~hci/htr/HCIL-96-02/HCIL-96-02.htrnl

15. Lin, Chunhung R., and Gerla, Mario, Multimedia Transport in Multihop Dynamic
Packet Radio Networks, 0-8186-7216- 1/95/S4.00 @ 1995 IEEE, University of
California, Losangeles, CA, 1995.

16. Hudson, Rhett D., DT-5 Enabling Technologies Desktop Video Conferencing:
Introduction to Desktop Video Conferencing, http://www.visc.vt.edu/succeed
/videoconf.html#introduction

17. Hendricks, Charles E., and Steer, Jonathan P., Videoconferencing FAQ,
http://www.bitscout.eom/FAQTOC.HTM#BSl

18. Harju, Jarmo, and Kosonen, Ville-Pekka, and Li, Changhong, "Quality and
Performance of a Desktop Video Conferencing System", 0-8186-6680-3/94/$4.00
@ 1994 IEEE, Lappeenranta University of Technology, Lappeenrata, Finland,
1994.

19. Katronics RF Data Communications Specialists, D4-10 UHF Wide-Band
Transceiver Operator's Manual, Katronics Inc., Lawrence, KS, 1991.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center.
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411RyerRd.
Monterey, CA, 93943-6218

3. Chairman, Code IW
Information Warfare Academic Group
Naval Postgraduate School
Monterey, CA, 93943

4. Professor Chin-Hwa Lee, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA, 93943

5. Professor Supachai Sirayanon, Code MR
Department of Meteorology
Naval Postgraduate School
Monterey, CA, 93943

6. 2LT. Narongchai Nimitbunanan, Royal Thai Air Force.
213/3 Srisuk Road, Soi Swangmit
Udornthani Pro vice, 41000
Thailand

93

