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ABSTRACT

The dynamic analysis of large, complex structural systems is
computationally intensive and therefore prohibits the use of optimization
procedures, which are both iterative and complex with respect to variable
search patterns. The solution to this problem is through the use of time and
frequency synthesis techniques. They provide a means of rapidly recalculating
a system's changed response due to structural modifications, as dictated by the
optimization procedure. The efficiency is gained through the fact that the
synthesis methods are independent of model size, in that only those model
degrees of freedom where changes are made are required in the analysis.
Furthermore, these methods are exact in their formulation, including the
treatment of non-proportional damping. These structural synthesis
techniques are developed in the context of optimal design of shock and
vibration isolation systems. Their utility and value is demonstrated in the
optimal design of an isolation system for a 109 dof non-proportionally
damped structural system. In the course of the optimization, the synthesis
techniques make possible 80 transient, frequency response, and static analyses
in 2 hours and 39 minutes (desktop computer), while yielding an isolation
design which satisfies all design constraints.
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I. INTRODUCTION

With the development of the finite element (FE) method, and the

advancement of computer technology, it is now possible to design and

analyze complex engineering systems. Through FE techniques, a detailed

mathematical model of a complex structural dynamic system may be

developed, and the static and dynamic responses determined. The

'traditional' procedure for conducting a finite element analysis (FEA) of a

structure is to first assemble the system matrices. These system matrices are

the mass, stiffness, and damping matrices, which constitute the FE model of

the complete structure. The next step would be to determine the system

responses using various solution techniques. This is the most

computationally demanding phase of the FEA process. The results are then

processed and interpreted. As a result of this analysis, the engineer may wish

to change some aspect of the design and perform the analysis again. Even

more useful would be the use of some type of optimization scheme to find

the optimum design change while concurrently performing the FEA.

However, if the 'traditional' method of FEA is used, every time a design

variable is changed, the affected system matrices must be reassembled and the

entire solution phase must be reaccomplished. Depending on the complexity

of the system, and the number of different design parameters which may be

changed, this route would be computationally impractical. As a result, the



designer may only be able to iterate through the design process a few times,

and be left with a design which is less than optimum.

Therefore, more efficient techniques for calculating a system's

responses after modifications have been made, must be introduced. One such

technique is the use of synthesis procedures to obtain the modified system

responses. These synthesis procedures involve the use of the, structure's

baseline (pre-modification) responses, the modifications made to the

structure's mass, stiffness, and damping matrices, and the equations which

link the two to obtain the modified/synthesized responses. The advantage of

this is that the system matrix assembly and solution phase of the FEA process

must only be accomplished once. A smaller set of change matrices are

assembled, and along with the presynthesized responses and computationally

efficient synthesis equations, the synthesized responses are obtained.

The two types of sythesis techniques to be featured in this thesis are

frequency domain synthesis, and time domain synthesis. Frequency domain

synthesis makes use of the baseline frequency response functions (FRFs) to

calculate the new FRFs after the structure has been modified. Time domain

synthesis uses the impulse response functions (IRFs) of the baseline structure,

the coupling forces from the modification, and the convolution integral. The

combination of these produces a nonstandard nonhomogeneous Volterra

integrodifferential equation (VIDE) of the second kind which is solved in

order to calculate transient responses of the modified structure. The use of

2



these techniques greatly reduce the computer computation time and allow for

the application of optimization techniques to complex engineering systems.
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II. FINITE ELEMENT FORMULATIONS

As mentioned previously, the initial step in the FEA process is to create

a finite element model of the structure to be analyzed. In this study, different

finite element types are used to ensure the validity and universal applicability

of the synthesis techniques, and to assist in the synthesis formulations. For

simplicity, linear lumped mass-spring systems were used. Its formulation is

based on the use of Newton's laws to derive the equations of motion for each

particle of mass [Ref. 1]. These systems allowed for the initial general

formulation of the synthesis techniques and the building of a checking system

to ensure its accuracy. In order to illustrate more realistic systems, systems

formed from beam elements and plate elements were used. The beam

element formulation is based on Euler-Bernoulli beam bending, and the use

of Hermitian shape functions [Refs. 2 & 3]. The plate element formulation is

based on shear deformation which includes both the transverse shear energy

and the bending energy [Ref. 31. One very important anomally about the plate

shear deformation formulation is that, the unconstrained stiffness matrix (K)

is rank deficient by the number of degrees of freedom per node, plus one.

When solving the eigenvalue problem to obtain the system's natural

frequencies (0On) and mode shapes, one additional "spurious" rigid body mode

is obtained which disrupts all modal calculations. Therefore, to avoid this

problem, all analyses done using the plate were done on a constrained to

5



ground system to eliminate all rigid body modes. The constraints were then

subsequently synthesized out during the analysis in order to obtain the truly

desired responses.

6



III. FREQUENCY DOMAIN STRUCTURAL SYNTHESIS

The following background information on frequency domain

structural synthesis is taken from references [4 & 5]. This portion of the thesis

will outline the methodologies and formulations of the frequency synthesis

technique and the classical techniques used to check its accuracy.

Frequency domain techniques were demonstrated as early as 1939 by G.

Kron in his book on the tensor analysis of electrical networks. Since then,

numerous formulations and application techniques have been used and

documented. The advantages in computational time, and the flexibility of

this technique, have also been well documented [Ref. 6]. The solutions

obtained through this method are exact with no approximations.

As mentioned previously, frequency domain structural synthesis is a

methodology whereby changes can be made to a given structure, and its new

frequency response function (FRF) can be formulated through the use of a

single synthesis equation. This is quite different from the classical method of

evaluating a structural change through the reconstruction of the basic

elements which define the structure, and then using an impedance inversion

or modal superposition technique on the new structure. The frequency

synthesis technique may be divided into two major classes, coupling and

modification. Coupling is the joining of a totally independent uncoupled

structure to the given structure. Modification is the addition of redundant

7



load paths in the given structure. Each of the two classes of synthesis may be

either direct or indirect. For the indirect case, there is the existence of an

interconnection impedance element between substructures in a coupling

operation, and degrees of freedom in a modification operation. In the direct

case, the coupling and modification is done without the impedance element

existing, therefore making the modification synonymous to applying a

constraint.

This thesis will focus on the indirect modifications to a given structure.

It will allow for the inclusion of a spring stiffener or a viscous damper

between two points, a lumped mass on the structure, and implementing a

base excitation to the structure. A generalized computer program will be

presented, which will allow for any of the above mentioned changes to be

accomplished on some baseline structure. The program then returns the FRFs

for all dofs where changes have occurred and any other dofs that may be of

interest to the user.

A. GENERALIZED FREQUENCY RESPONSE

The initial step in obtaining the new synthesized FRFs for the modified

structure, is to have the FRFs for the baseline structure. The following

equations are for a system which is excited by a force on the structure or by a

base excitation. These formulations are also used to verify the accuracy of the

synthesis after a modification has been made.

8



Consider the following two degree of freedom system:

kP ko

-N . ýný__F(t)

c CC

xVOt ";It)

Figure 3.1 Two Degree of Freedom Mass-Spring-Damper System

where:

mp= mass of a plate

mc = mass of computer equipment

kP = isolator stiffness between plate and ground

kc = isolator stiffness between plate and computer equipment

xP(t) = plate displacement as a function of time

xc(t) = computer displacement as a function of time

F(t) = excitation force

Applying Newton's 2nd law, the equations of motion for this system may be

9



written as:

[MP Oj{5I} +[C'+C' -cc]{ip + [k.k -klP X {P (3.1)mdlXc L-c0 - j~0 -k0 kc jxc0j

Generalizing this formulation to an ndof (number of degrees of freedom)

system where the external force may occur at any dof, and using a more

compact matrix and vector notation, the 2nd order system of linear equations

for an ndof structure can be written as:

[M]{x} + [Cf]{} + [K]{x} = {F} (3.2)

Assuming a harmonic forcing function and consequently a harmonic steady-

state response:

{F(t)} = {F}e' {x(t)} = {,yeja' (3.3)

where:

{F} & {X} are the amplitudes of the harmonic forcing function and

response.

Taking the first and second derivatives of the response {x(t)}, and substituting

into equation (3.1) and simplifying:

[K + iQC- _ 2 2M]{X} = {F} (3.4)

[Z(O)]{X} = {F} (3.5)

[Z(92)] is known as the impedance matrix. Multiplying both sides of the

equation by [Z(92)]-' and denoting this as frequency response function (FRF)

10



matrix [H(Q)], equation (3.5) becomes:

{X} = [H(f))]{F} (3.6)

where:

Hl H 12  ... Hlxndof

[H()] = H21 H22 ... H2xfdf(= : ... , :(3 .7)

[H-dafX 1 Hndof x2 ""Hndof x ndof

and in elemental form

Hij =(3.8)
1~F.

The FRF matrix [H(92)] is both complex valued, and frequency dependent. The

advantage of this formulation in this work is that it can be used to check the

frequency synthesis method when damper modifications are made to the

structure. These damper modifications represent non-proportional damping,

which is not easily handled in modal coordinates.

The modal coordinate formulation of the FRF matrix begins from the

same general equations of motion presented in equation (3.2), and the

assumptions of harmonic excitation and response in equation (3.3). It also

includes the assumption of a harmonic modal response:

{q(t)} = {i}e' (3.9)

and the linear modal transformation:

{x(t)} = [4]{q(t)} (3.10)

11



where [(D] is the assembles matrix of mass normalized mode shapes. By

applying equations (3.3), (3.9), & (3.10), to equation (3.2) and simplifying:

[-L2EM][D] + j94C][0] + [K][4]]}= {} (3.11)

Premultiplying equation (3.11) by [(I) ]T:

-K 1 ]+ [ 2CoTW (07 ]{ 15-1 (3.12)

where it is recognized that:

[0]T [M] [D] = [I] (3.13)

[4]T [C] [1] = [2ýco] (3.14)

[4)]T [K] [(D] = [oi (3.15)

[4)]T (F) = (g) (3.16)

Sis the modal damping factor, co is the natural frequency, and the subscript r

represents each mode. Rewriting equation (3.12) and solving for the modal

displacement yields:

= [_•2 j2 2• 1 (• . (3.17)

Using equations (3.10) & (3.16), equation (3.17) is transformed back to physical

12



coordinates:

=[ID][ 1 (] (3.18)
2 +

From equation (3.6):

{H(92)} =[D] [ ot2 j22 - +D j2]*rt (3.19)

and any element of the FRF matrix may be represented as:

H m2) 2 • 2 +(3.20)H+()= •_,o•r - '22+ 1,40,2

Although this modal coordinate formulation does not handle non-

proportional damping, it does provide for the ability to sum over a subset of

the complete modes, rather than summing over all modes for the FRF. The

number of modes necessary to correctly capture the response is dependent on

the frequency range of interest. The lower the frequency range of interest, the

less number of modes necessary. The obvious advantage of this procedure is

that for large dof systems, this summation may be truncated, and

computational time saved. However, the question of how many modes are

enough must be considered and truncation criteria must be established. The

modal formulation will be the one used for the synthesis techniques.

Recognizing the modal truncation issue, this thesis uses all modes in its FRF

calculations.

13



Now consider the following two degree of freedom system:

kb kc

I i--H D-
cb CC

y(t) xP(t) xC(t)

Figure 3.2 Base Excited Two Degree of Freedom Mass-Spring-Damper System

where:

kb= isolator stiffness between plate and base

y(t) = base excitation displacement

all other variables are the same as in the system illustrated in Figure
3.1.

Applying Newton's 2nd law, the equations of motion for this system may be

written as:

In P {3p}+[Cb+Cc -Ccj{*p}+rkb+ kc kJl x, f= 0 kb JLA

(3.21)

Generalizing this formulation to an ndof system where the base excitation

may occur at any dof, and using a more compact matrix and vector notation,

the 2nd order system of linear equations for an ndof structure can be written

14



as:

[M]{I} + [c]{*} + [K]{x} = [Cb ]{y} + [Kb ]{y} (3.22)

Following the same procedure as with the FRF formulation for a force

excitation on the structure, and assuming a harmonic base excitation

({y(t)} = {Yle~at), the following result is obtained:

{X} = [K + PC - fL22M]l[K + P.ŽCb]{Y} (3.23)

Since the base excitation {JY is the same at all dofs, Y can be factored out and

the result is:

{X} = [K + jC - 02M]'[Kb + PCb]{1}Y (3.24)

and

{H} = [K + j.QC - L22M]-'[Kb + jQCb ]{1} (3.25)

In this instance the collection of FRFs is not a matrix but rather a vector

where in elemental notation:

Hi = Xi (3.26)

In some instances, the base excitation and desired response may not both be

displacements. One different combination could be an interest in obtaining

the output displacement response due to a given base acceleration. From the

assumption of a harmonic base excitation and response:

{y(t)} = {Y}ei {x(t)} = {X}eiat (3.27a&b)
{e(t)} = {_Ce 2 = 2{(t)} = Pt =-_22Xe (3.28a&b)

15



IR =x =(I K

The following table uses the above relationships between acceleration and

displacement to illustrate possible combinations and how to handle each.

Y
x [H]

Table 3.1 Response and Base Excitation Relationships

The modal formulation for base excitation is not needed since the

synthesis method for a base excitation or force excitation, uses the previous

modal FRF formulation exclusively.

B. FREQUENCY DOMAIN SYNTHESIS-FORMULATION

Now consider the following general ndof (number of degrees of

16



freedom) structure, to which structural modifications are to be made:

b5

Figure 3.3 General NDOF Structural System

The letters i, c, and b represent the physical coordinate system for the

structure where:

i iset - the set of internal dofs where no changes occur, but there is an

interest in knowing FRF information about these dof.

c cset - the set of dofs where changes have occurred.

b bset - the set of dofs where the structure is indirectly connected to a

base excitation.

Using equation (3.6) and the previously described coordinate system for

rearrangement and partitioning, the structural system is described in the

frequency domain at each frequency as:

[xi] [[H_,j

x, [H6E] [He]j [Hcb] fo (3.30)

!.x [H [H bc] : [H bb] ,n f•1

17



Before modification, the force vector refers to externally applied forces

to the structure. However, following modification, there exists coupling

forces between the cset and bset dofs. By definition, the iset dofs do not

experience these coupling forces. Therefore, the partitioned forces may be

rewritten as:

fi =g t  
(3.31a)

f": = fýt + f, f,': _ A Z':x (3.31b)
fb = fbt+f ~ _Ab(•-y (3.31c)

where:

f - the coupling forces due to structure modification.

[AZ] - the impedance matrix which is equal to [AK + j92AC + K22AM].

x* - generalized (synthesized) responses after modification.

Substituting equations (3.31) into equation (3.30), and recognizing that the

presynthesized responses {x. x¢ xb}T are those due to the external forces only,

the following result is obtained:

ri x iF [H ] [H1 i] 1Z 0[H ij] [H il,]1IF A j o 1ro 0{xi} x 111L c [H6J[~] Oj[Jxb + [Hc] [H61 0l [AZb: YA71
{x x1 [ [Hbb] jlxi [[HbC] ] [Hb]rz

(3.32a)

Denoting two additional coordinate sets 'e' and 'z' where:

e - eset = iu cu b

z a zset = cub

18



and [AZ] is the total impedance matrix. Equation (3.32a) can be rewritten as:

{xe}* = {xe} - [H j[AZ]{Kx}* + [Heb][AZb]{Y} (3.32b)

From equation (3.32b) it can be seen that there are two unknown synthesized

responses in this one equation. Another independent equation can be

generated from equation (3.32a) without introducing any additional

unknowns. By observing the bottom two rows of equation (3.32a), the

following relationship is derived:

{xzJ* = {xz}- [H.][AZ]{x. 1* + [Hzb][AZb]{y} (3.33)

Solving for {x,}" and substituting that expression into equation (3.32b) yields

the general expression for the responses of the synthesized structure.

{xe}* = {x1} -7[H.][AZ]([I + H2 2AZ]-'{xl} + [I + HAZI'[H•][AZb ]{y})+ [Heb ][AZb]{y}

(3.34)

From the general equation for frequency response, it is recognized that:

{xe} = [H.]{f•t} {xN} = [H.]{f~t} (3.35a&b)

Equation (34) is therefore rewritten as:

Ix, = [He ]j{fýx} - [Hj[AZ]([I + HAZ]Y1[H.j{f:'-} + [I + H.A•]'[HbI[AZb]{y}) + [HFb][AZb]{y}

(3.36)

As can be seen from equation (3.36), the synthesized response is now in terms

of the known FRFs of the presynthesized structure, known impedance due to

modifications, and known force and base excitations.
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Now that the complete general frequency response synthesis equation

has been derived, consider the case where there is no base excitation applied

to the structure. By letting {y) = 0, the general synthesis equation becomes:

{Xe} = ([H.]- [H.][AZ][I + HZAI-[H.]){f.t} (3.37)

Since no base excitation exists, the impedance between the structure and base

(AZb), is reduced to a 'c' dof to ground change. Therefore the bset dofs are

really additions to the cset: z = c u b = uc = c and AZb= AZ,. Also

recognizing that {Xe}* = [H]*{feIt}, the synthesized FRF matrix at each

frequency can be written as:

[H.]* = [H.] - [H.][AZc][I + HccAZj]-'[Hce] (3.38)

Now consider the case where there are no external forces applied to the

structure. By letting {f:t} = 0, the general synthesis equation becomes:

{xe}* = ([Heb][AZb] - [H,][AZ][I + HZA]-'[H~b][AZIb]){y} (3.39)

Factoring out the base excitation magnitude y and applying equation (3.6) yet

again:

{He}* = ([Heb][AZb] - [H.][A][I + H,,A7]-'[H•b][AZb]){1} (3.40)

In elemental notation, the FRF vector represents the following at each

frequency:

{He}* = {X.1 (3.41)
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Equations (3.38) and (3.40) show how the new synthesized FRFs are

obtained from the presynthesized FRFs and the impedance caused by

structural modifications. These synthesis equations are exact, and there are no

limitations to the modification values. The change may even be negative to

represent the removal of mass or removal of an interconnection element

from the structure.

C. FREQUENCY DOMAIN SYNTHESIS COMPUTER CODE

The computer language used for the frequency domain synthesis and

all other computer coding in this thesis is MATLAB V.4.2c.1. The goal in the

formulation of the frequency domain synthesis computer programs is to

perform the synthesis for an indirect modification operation to a given

structure. The program allows for the inclusion of a spring stiffener or a

viscous damper between two dofs, a lumped mass addition on the structure,

and implementing a base excitation to the structure. The program then

returns the FRFs for all dofs where changes have occurred and any other dofs

that may be of interest to the user. Appendix A shows the computer codes

used to perform the frequency domain synthesis, and perform a comparative

analysis of the synthesis versus classical methods. The term classical is

synonymous to the traditional method of reformulating the elemental

matrices following a modification.
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The programs presented in Appendix A can be segregated into three

categories. The first is the calculation of the synthesized FRFs due to an

external force excitation on the structure, and their comparison to the

classically calculated FRFs. The second is the calculation of the synthesized

FRFs due to a base excitation on the structure, and their comparison to the

classically calculated FRFs. Both of these programs use the impedance

inversion method to calculate the presynthesized FRFs, and the classical FRFs

following modification. The third category is the calculation of the

synthesized FRFs where the different aspects of the synthesis technique have

been modularized into MATLAB functions. This modularization assists the

process in running more efficiently, and allows for the universal use of the

frequency synthesis technique. This is crucial since the ultimate goal of the

technique is to be used efficiently in another process (i.e. optimization). Since

efficiency is of concern, the modal method of calculating the presynthesized

FRFs is used.

The following is a diagram of the flowpath of the modularized

22



frequency synthesis programs:

L oadFRFs

change~m

Figure 3.4 Flowpath of the Modularized Frequency Synthesis Programs

A more detailed description of each function is contained within Appendix

A.

D. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate the use of the frequency

domain synthesis technique and validate its accuracy. The computational

efficiency of this technique has already been well documented [Ref. 6],

therefore a time comparison is not done. The three structural systems

previously described, mass-spring-damper, beam and plate, are used to

accomplish this goal.
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1. Mass-Spring-Damper System

Consider the following mass-spring-damper system:

-- l k = 1000 lb/in
k , ,k k24= 250 lb/in

II-- m = 0.259 lb-s2/in
.1000 In Fi(t) 30= 2 lb-s/in

I_. =C30

I 7 -S A-hx(t) '

Figure 3.5 Mass-Spring-Damper System Experiencing Force Excitation

The solid elements represent the original structure and the dashed elements

represent modifications. The subscript 'i' in the excitation force represents the

dof where the excitation is applied. Although not shown in the figure, the

original structure is proportionally damped using [C] = a[K]. The

modifications are arbitrarily selected and the addition of the damper element

represents nonproportional damping. The following is the resultant

synthesized and classically determined FRF H32(QŽ) which represents the

response magnitude at dof 3 due to a force at dof 2.
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Frequency Response Function (H32)

10.2

1-o

310-

E

LLU-

10-4

10-

0 2 4 6 8 10
Frequency (Hz)

Figure 3.6 Force Excitation Mass-Spring-Damper System FRF

From the graphs produced, it can been seen that the plots are identical,

proving that the synthesis technique is exact, and that the computer coding

for the arbitrary changes is correct. These results were produced using the

fsynstr.m program.
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2. Beam System

Now consider the following beam system:

kb = 1000 lb/in
_____________________ _c13,0o:20 lb-s/in

'-, m 1 =.5 lb-s2fin
K kb m 1 1 '-C' c13,0

Ly(t) ' y(t1 )

Figure 3.7 Beam System Experiencing Base Excitation

where the beam parameters are:

Length: L = 5 ft Width: w = 3 in Height: h= 4 in

Young's Modulus: E = 10e6 psi

density: p = 2.53e-4 lbf-secA2/inA4

The free-free beam which is discretized into 10 beam elements, 11 nodes, and

22 dofs, represents the original structure. The modifications are represented

by the dashed lines. Just as in the previous example, proportional damping is

used to form the original [C] matrix and all changes to the beam are arbitrary.

The following is the resultant synthesized and classically determined FRF

H13(K2) which represents the response magnitude at dof 13 due to the base

excitations.
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Frequency Response Function (H13)
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Figure 3.8 Base Excitation Beam System FRF

Just as before, it can be seen that the two plots are identical. These results were

produced using the fsynbase.m program.

3. Mass-Plate System

Up until now the structures use to demonstrate the frequency synthesis

technique were relatively simple with relatively small number of dofs. The

true test of the technique and the computer code is in their applicability to

relatively large structures. Therefore, consider the following computer-plate
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system:

Akb= 1e4 lb/in
Ac, = 1 lb-s/m
Ako = 500 lb/m
Ac, = 1 lb-s/in k.

Cb y•• y(t) - I

Figure 3.9 Plate-Mass System Experiencing Base Excitation

where the computer and plate parameters are:

Plate: Width: w = 5 ft Depth: d = 5 ft Thickness: t = 1 in

Young's Modulus: E = 30e6 psi Poisson's Ratio: v = 0.3

Density: p = 7.35e-4 lbf-secA2/inA4

Computer: Weight: W = 100 lbs

In this case, the original structure is represented by the free-free plate

with the attached computer located off center and above the plate. The plate is

discretized into 25 plate elements, 36 nodes, and 108 dofs. The computer is

modeled as a single lumped mass in the translational direction only, and

increases the total number of nodes and dofs to 37 and 109 respectively. The

modifications are represented by the dashed lines and are comprised of
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changes to the isolators between the base and the plate. Just as in the previous

example, proportional damping is used to form the original [C] matrix, and

any changes to the system are arbitrary. However, since the manipulation of

this system in an optimization routine is the ultimate goal of this research,

the isolator elements which will act as optimization variables are chosen for

modification. Therefore, modifications were also performed on the isolators

between the plate and the computer. The modularized program which uses

the modal method of calculating the original FRF will be used in this

instance. However, the classical method will also be used as a check system.

The following is the resultant synthesized and classically determined FRF

H109(0) which represents the response magnitude at dof 109 (the computer)

due to the base excitations.
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Figure 3.10 Free-Free Plate-Mass System FRF (Modal Synthesis)

From the plots it is easily observed that the synthesis method and the

classical method do not yield the same results. After successfully performing

countless other frequency synthesis analysis on all three structures, and

successfully re-running this same analysis where the original FRF is obtained

using impedance inversion methods vice modal methods (Fig. 3.11 shows),
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Frequency Response Function (H109)
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Figure 3.11. Free-Free Plate-Mass System FRF (Impedance Synthesis)

it is concluded that the problem lies in the use of the modal method of

calculating the original FRF. After observing the mode shapes and natural

frequencies of the original free-free plate-mass system, the existence of an

additional spurious rigid body mode is discovered. The existence of this rigid

body mode vice a flexible mode makes the FRF calculations incorrect. After

unsuccessful attempts at trying to replace the rigid body modes naturally

generated by this finite element formulation, with rigid body modes created

using the Graham-Schmidt method [Ref. 2], the decision to constrain the

plate-mass and then remove the constraints using synthesis is reached. What

this accomplishes is to eliminate the rigid body modes entirely and allows for

the proper calculation of the original FRF. However, there is a computational
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price to pay with the addition of four more load paths to contend with in the

calculations. This is however, a very minute price to pay when compared to

using the impedance inversion method.

The following is the resultant modally-synthesized and classically

determined FRF H109(WŽ), when the original plate-mass structure is exactly as

before, but with 1000 lb/in spring-to-ground elements located at all four

comers. In the process of the analysis, these elements are synthesized out of

the structure. Other modification values are still the same as before.

Frequency Response Function (H109)
102

10•

*101

10-1

E

r 102

10.3

10 4 L , 1
0 50 100 150 200 250 300

Frequency (Hz)

Figure 3.12 Corners-to-Ground Plate-Mass System FRF (Modal Synthesis)

It can be seen from these plots that eliminating the rigid body modes in the

original structure, and then synthesizing the constraint elements out is an
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accurate means of avoiding the problem with the rigid body modes. Another

verification of the ability to synthesize out elements is that fact that these

plots also match the plots in Figure 3.11 (free-free plate-mass system); as well

they should. This will therefore be the method used in order to handle the

dynamic analysis of the plate-mass system.
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IV. STATIC DISPLACEMENT SYNTHESIS

When using optimization procedures for the design of a system, there

are usually various aspects of the design problem which are at odds with one

another. For example, in the design of a support beam, the aspect to be

optimized may be the weight of the beam. One method to reduce weight

would be to reduce the beam's cross sectional area. However, since this is a

support beam and will therefore be carrying some sort of load, a reduction in

cross section results in an increase in stress. Since there are material

limitations on the amount of stress the beam can experience, the reduction in

cross sectional area is constrained by the stress limit.

For a shock and vibration isolation system, one aspect of the design

which should be considered is the static sag or displacement of the system.

The static sag could be used in the optimization problem as a constraint

which limits the amount the isolator stiffness may be modified. Since the

solution for the static response of a structure involves the inverse of the

stiffness matrix ([K]U), for large structures, it would not be computational

efficient to perform this operation every time the optimization variables are

changed. Therefore, some sort of synthesis technique must be employed to

alleviate the need to calculate [K]-' directly. This portion of the thesis explores

the methodologies and formulations for the use of frequency domain

synthesis in the calculation of static displacement. From henceforth, this
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technique will be referred to as static displacement synthesis. Classical

techniques such as Guyan model reduction are used to check the accuracy of

these formulations.

A. GENERALIZED STATIC DISPLACEMENT

From Newton's 2nd law, the static equations for an ndof system is:

{F} = [K](x} (4.1)

By defining the force vector as the weight of the structure, and assuming that

there are no external forces on the structure, the displacement vector {x}

represents the static displacements of the structure due to its own weight.

Therefore, the static displacements of the structure due to its own weight

equals:

{xist = [K]I{F) = [K]-'[MI g} (4.2)

where (g) represents a vector where the gravitational constant appears at all

dofs that are affected by gravity (i.e. vertical translational dofs).

Equation (4.2) returns the static displacements at all dofs of the

structure. The size of the stiffness matrix of which the inverse is taken is ndof

by ndof. Since the repetitive calculation of [K] is unsatisfactory due to the

possibility of its large size, and a relatively small subset of the static

displacements of the structure are desired, the use of model reduction and

static condensation schemes are investigated.
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B. GUYAN REDUCTION / STATIC CONDENSATION

The following concepts and equations for model reduction are taken

from references [2 & 7]. The Guyan reduction defines a transformation matrix

[T] which can operate on a subset of the structure's displacements and return

the full ndof set of displacements for the structure.

{x} [T]{Xal1 (4.3)

where:

[T] (4.4)

a aset - those dofs arbitrarily selected as the set of active dofs.

o oset - the remainder of the dofs omitted from the aset.

Substituting equation (4.3) into equation (4.1), and premultiplying both sides

of the equation by [T]T yields:
IF) = [IK]{Xa} (4.5)

where:

[fK] = [T]T [K][T] (4.6a)

{F} =[T]T {F} (4.7a)

Therefore, the static displacements of the desired dofs equal:

{xal = [KP-(F} (4.8)
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It can be seen from equation (4.8) that the main cost of obtaining the desired

static responses of the system is now the inverse of the reduced stiffness

matrix [k] which has size of aset by aset vice the inverse of the full stiffness

matrix which has size ndof by ndof. There is a definite improvement in

computational efficiency, but the issue of forming the transformation matrix

[T], which contains the inverse of the sub-matrix [K.] still exists. For a large

structure, the size of the aset will usually be substantially less than the size of

the oset, thereby making [K.]"' a time demanding operation. In an

optimization procedure, [K']-' can be performed prior to the iterations begin,

and passed into the iteration portion of the optimization program. Even

though [Koo]-' must only be performed once, the formation of [T] is still

undesirable due to the possibility that FRF data is readily accessible and the [K]

matrix is unavailable. Therefore, a method of obtaining the reduced stiffness

matrix and reduced force vector from FRF data is desired.

C. STATIC DISPLACEMENT SYNTHESIS FORMULATION

During the derivation of the frequency domain synthesis, the eset

coordinate set was defined as iucub. This means that the eset includes the set

of all dofs that the user is interested in, dofs where modifications occur, and

dofs where a base excitation is attached. In other words, when looking at the

structure as a whole, eset is synonymous to the set of active dofs or aset.
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1. Formulation of Reduced Stiffness Matrix [IU]

Using the aset/oset coordinate system previously described but with

the eset equaling aset, the expanded version of equation (4.6a) is written as:
[k] = [K, - K -K] (4.6b)

Now using the same eset/oset coordinate system and the fact that [H] = [ZI-1,

the following relationship is written:

[ [Hi][H 1=[z] 1 [[z__
]ii -4•T~•L :.]J L -- I1]j (4.9)

[[Hoe]: [H.]JL[Zo]: [z,]J o:[f
Carrying out the matrix multiplication of equation (4.9), the first row yields

the following two relationships:

HeZe + HeoZoe = I HeZeo+ HeoZo = 0 (4.10a&b)

Solving for H,o in equation (4.10b) and substituting it into equation (4.10a)

yields:

HeeZee - HeZeoZooqZ =I (4.11)

Solving for He yields:

[He] = [Zee - ZeoZoo-'Zoe]-' (4.12)

Recognizing that Z = K +PC - K22M, and applying the static condition that

[Hee (0)] = [Kee - KeoKO"'Ko39 (4.13)
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From equations (4.6b) & (4.13), it is determined that:

[I] = [H, (0)]-1 (4.14a)

Therefore, since the reduced stiffness matrix can be determined from an FRF

matrix, when a structure is modified, the new reduced stiffness matrix can be

determined from a synthesized FRF matrix.

[K] = [HL(0)]-' (4.14b)

2. Formulation of Reduced Force Vector {F*j

Recognizing that IF) = [M]{1}g the expanded version of equation (4.7a)

in eset/oset partitioning is:

{ [M' - KeoKoo-IM o, Mw,, -KeoKj-1M .{1}g (4.7b)

Another very important concept of Guyan reduction is the reduced mass

matrix.

[Iý[] = [T]T [MI[T] (4.15a)

= [M1 - KIeKe,-M,•, M - KeKO,-MO, ][KK1 (4.15b)

By comparing equations (4.7b) and (4.15b), it can be seen that:

(F) = [Mfl{le}g (4.16)

if and only if

[I.KooK{1 } = [Titfle I = Mile}1 1(.7
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where {ie) is an eset length vector of all ones, and (1.) is an oset length vector

of ones and zeros, with ones at the translation dofs and zeros at the rotations.

In effect, what equation (4.17) is stating is that for every row of the

transformation matrix, the sum of its columns is exactly one or zero. In

general, this occurrence is not true. It is very dependent on which dofs are

chosen as the eset. Therefore, it must be determined which dofs are allowable

choices for the eset in order for this formulation to work.

Consider the general stiffness matrix of a restrained structure:

KR = KU + KG (4.18a)

where KU represents the stiffness matrix of the unconstrained structure and

KG represents the grounded stiffness matrix. Equation (4.18a) can be rewritten

in eset/oset partitioning format as:

[K.]=$-]['-.u K -- 0 (4.18b)
11K 1 0 0

The zeros in the grounded matrix are due to the fact that grounds produce no

off diagonal information. Now a displacement vector is chosen which

satisfies the static equations of equilibrium where only forces appear in the

active or eset dofs, and which produces no strain energy internal to the

restrained structure.

[K R]{ = [Ku]{'} + [K G]{J} [[Kee ~ ]{f4= (4.19)
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From equation (4.19) it can be seen that:

[Ku]{ }= {o} (4.20a)

The vector which satisfies equation (4.19) is already chosen by default. The

vector {ý} equals the previously defined {o. Therefore, (We) = [1eJ andIeto fly . hrfre1{0 -{• n

Mo}) = {li.

Now consider the following portion of equation (4.19):

[1 _._ . _ (4.19)

0 0

Repartitioning this equation into translational and rotational dofs:

[ [K •] 0 0 ]J{e}RT 11
0 [Kr {'-OlT

{We 0 1%IT I{F'C (4.21)
L o o [K•,],, !1{o}J

where:

{ge}R -- {lelR (4.22)

{PO} IFIR {4
{o}IRJ o

Case I - Taking the third row of equation (4.21) yields:
[K,]T{O}T = [K•]T{10}T = {1 } (4.23)

Since [K.] is a diagonal matrix, the only way equation (4.22) is true is if

[K]T =[0]. Therefore, this proves that there cannot be any translational
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grounds in the oset. Consequently, this means that all translational grounds

must be in the eset.

Case II - Taking the fourth row of equation (4.21) yields:
[KG]R{'O1R = [KG]R{0} = {0} (4.24)

Equation (4.24) is always true regardless of [K G]R. Therefore, this shows that

there are no restrictions on rotational grounds being in the oset. Thus far it

has been determined what must be in the eset, all translational grounds. It

must now be determined what else is allowed in the eset.

Consider the zero internal strain energy requirement:

[IK:[Ke j ] I u{=Of} (4.20b)

Taking the first row of equation (4.20b) following matrix multiplication

yields:

[Ku ]{We = -[Ku ]{TO } (4.25a)

Repartitioning this equation into translational and rotational dofs:

Kuj I I{e}T K ___I __ [KU] ITL
=[J -T [_K-,_ (4.25b)Kue] T [Ku ]R K u ]z: e

Case III - if eset includes evgr translational dof and no rotational dofs,

equation (4.25b) becomes:

[[Ku] - [KKU
O 1 I -IT eo OIT (4.26)
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After matrix multiplication, equation (4.26) requires that:

[Ke]r{le}T = {N} (4.27)

which means that for every row, the sum of the translational dof columns for

an unrestrained structure equals zero. This condition is always true.

Therefore, this shows that all translational dofs are allowed to be included in

the eset.

Case IV - if eset includes e translational dof and one rotational dof,

equation (4.25b) becomes:
• U I r UK 

U T

[K~lr [K e l} [0 [Kui] {0} ].

After matrix multiplication and the fact that [Ku]rIle }T = {o}, equation (4.28)

requires that:

[Ku ]{R 1le}R = {0} (4.29)

Since there is only one rotation in the eset, the dimensions of [Ku,]TR are the

# of eset translations by 1. Consequently, in order for equation (4.29) to be

true, [K,]eTR must always equal zero. By the definition that this case includes a

rotational dof value in the eset, [Ku]T. # [0]. Therefore, one rotational dof

may not be included in the eset.

Case V - if eset includes ever translational dof and greater than one

rotational dof, the same requirement (equation 4.29) as stated in Case IV

exists. However, for this case, [K •]TR does not have to identically equal zero,
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but the sum of the columns for every row of [ IT. must equal zero. In

general, this sum is not zero. Therefore, it is concluded that no rotational dofs

can be included in the eset.

Case VI - if eset includes a subset of all translational dofs, equation

(4.25b) becomes:

[eKe e]o~ o [-~~[~]h{IoT} (4.30)0 0/- ill" =- 0 10} I

After matrix multiplication and rearrangement, equation (4.30) requires that:
[K�~]r1}e +[Ku]T{le}T = {0} (4.31)

Equation (4.31) is the same as if summing all translational columns of an

unrestrained structure for every dof in the eset. From Case II (equation 4.27),

it is seen that this sum is zero and equation (4.31) is satisfied. Therefore, this

shows that any subset of all the translational dofs may be included in the eset.

As a result of Cases I-VI, the following requirements on the choices of

eset dofs for static displacement synthesis are summarized:

(1) eset must include all translational grounded dofs

(2) structure may be grounded anywhere

(3) any subset of, or all translational dofs may be included in the eset

(4) no rotational dofs are allowed in the eset

For the work to be presented in this thesis, the requirements necessary for the

reduced force vector to be determined from the reduced mass matrix are met.
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Therefore, the task is now to derive a methodology for extracting [1EM] from

FRF data.

3. Formulation of Reduced Mass Matrix [M1i

Since [He(0)] = I<]-", it follows that.

[He(0)] = [K - C22Mr]- (4.32)

Taking two derivatives of equation (4.32) with respect to 92 yields:

d_ dHe Q dH-d 2 H() " [ Q21{]-1[2[M] d- + d[K- Q2 1{]-1[21] + d [2D][K -2

(4.33)

Applying the static condition of K2=0 to equation (4.33), and solving for [Ml:

[M] = lk] dH() [K] (4.34a)2 d

or rewritten in terms of the synthesis process:

[M] = I[H (0)]1 d2H• H(O)[HL(o)]-1 (4.34b)

From equations (4.34a&b), the unknown second derivative of the eset FRF at

zero frequency is present. The calculation of this value will be handled using

the following forward finite differencing scheme with error order O(A22):

d2H, (0) = -HL (f23) + 4He (22) - 5H, (01l) + 2HL (0) (4.35)
dK22 (&.Q)2

The accuracy of this calculation is very sensitive to the size of AK2. The proper

choice of AQ2 is dependent on the relative magnitudes of the mass and
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stiffness matrices. It was found for this work that AU = 0.1 provided a very

accurate estimation of d2H .(0) However, this value is not universal and the

proper selection of Ai2 should be based on individual structures.

From the previously discussed requirements on the conversion of [Mýf]

to (F), it can be seen that static displacement synthesis is not arbitrary in the

selection of which dofs may be included in the eset. However, this restriction

does not apply to which dofs can be chosen to be modified, but only to

whether static displacement information can be obtained about these dofs. For

example, modifications to rotational dofs may be made to a structure and the

synthesized FRF obtained. As a result of this, rotational dofs exist in the eset,

which is not allowed. The solution to this dilemma is to re-synthesize the

structure with no changes and only translational dofs in the iset. What this

does is remove the rotational dofs from the eset and condense the FRFs prior

to using them to obtain the reduced stiffness matrix and force vector.

Therefore, the static displacement method is really not restrictive in its

application, but rather in what information it can provide.

D. STATIC DISPLACEMENT SYNTHESIS COMPUTER CODE

The goal in the formulation of the static displacement synthesis

computer programs is to first perform the frequency domain synthesis for an

indirect modification operation to a given structure. The program allows for
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the same type of modifications to the structure that were presented in the

frequency domain synthesis chapter of this thesis. The program then uses the

synthesized FRFs and returns the static displacements for all dofs designated

in the eset.

The reason why the frequency domain synthesis is performed here

seperately vice using the FRFs obtatined from doing a frequency domain

synthesis problem is two fold. First of all, there is no damping effect for a

static problem. Therefore, the synthesized FRFs must be generated with zero

damping. Secondly, if we want to determine the static displacement for a base

excitation problem, the base excitation form of frequency domain synthesis is

not what is desired. The correct form of the frequency domain synthesis is the

force excitation synthesis equation, with the base excitation interconnection

elements considered as springs to ground. Furthermore, an entire spectrum

of FRF information is not necessary for static displacement calculations.

Primarily only the static condition of 92=0 is needed. However, in this

implementation, the synthesized FRFs at the first four frequencies are needed

for the finite differencing calculation of d2 HL(0)
dj22

Appendix B shows the computer codes used to perform the static

displacement synthesis, and perform a comparative analysis of the synthesis

versus classical Guyan reduction methods. The programs presented in

Appendix B can be seperated into two categories. The first category is a
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program which uses the classical Guyan reduction techniques to calculate

static displacement. The second category is the calculation of the synthesized

static displacements where the different aspects of the synthesis technique

have been modularized into MATLAB functions. The following is a diagram

of the flowpath of the modularized static displacement synthesis programs:

Load FRRs

change~m

Load Structure Calculate FRFs •_Modifications Form Impedance •_Perform Synthesis

Figure 4.1 Flowpath of the Modularized Static Displacement Synthesis

Programs

It can be seen that the flowpaths for static displacement and frequency domain

synthesis are very similar. This is done intentionally so that all synthesis

techniques can be driven by the same modifications to a structure. A more

detailed description of each function is contained within Appendix B.

E. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate the use of the static

displacement synthesis technique and validate its accuracy. The mass-plate

49



structural system used in the frequency domain synthesis example, along

with the changes that were made to the structure, is also used here to

illustrate static displacement synthesis. The following tables are comparisons

of the reduced matrices, vectors, and static displacements calculated using

frequency synthesis and Guyan reduction.
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[ki] [H* ()]-'

1.0e+04 *

1.1518 -0.0000 -0.0000 0.2276 -0.3794 0.0000

-0.0000 1.0000 -0.0000 -0.0000 -0.0000 0.0000

-0.0000 -0.0000 1.0000 -0.0000 -0.0000 0.0000

0.2276 -0.0000 -0.0000 1.3415 -0.5691 0.0000

-0.3794 -0.0000 -0.0000 -0.5691 1.4985 -0.5500

0.0000 -0.0000 0.0000 0.0000 -0.5500 0.5500

Table 4.1a Static Displacement Synthesis Reduced Stiffness Matrix

[Ik] = [T]T [K][T]

1.Oe+04 *

1.1518 0.0000 -0.0000 0.2276 -0.3794 0

0.0000 1.0000 -0.0000 0.0000 -0.0000 0

-0.0000 -0.0000 1.0000 -0.0000 0.0000 0

0.2276 0.0000 0.0000 1.3415 -0.5691 0

-0.3794 -0.0000 -0.0000 -0.5691 1.4985 -0.5500

0 0 0 0 -0.5500 0.5500

Table 4.1b Guyan Reduction Reduced Stiffness Matrix
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d 2H (0) _-H () + 4HL(q) - 5HL(g) + 2HL(0)
dQ2  (AQ)2

1.0e-07 *

0.0671 0.0294 0.0294 0.0271 0.1094 0.1470
0.0294 0.0588 0.0147 0.0294 0.0593 0.0593
0.0294 0.0147 0.0588 0.0294 0.0593 0.0593
0.0271 0.0294 0.0294 0.0774 0.1414 0.1978
0.1094 0.0593 0.0593 0.1414 0.3567 0.5049
0.1470 0.0593 0.0593 0.1978 0.5049 0.8242

Table 4.2a Static Displacement Synthesis 2nd Derivative Matrix

d 2H"(0)dHe()= [IK][2MIIK]]

1.Oe-07 *

0.0671 0.0294 0.0294 0.0271 0.1094 0.1470
0.0294 0.0588 0.0147 0.0294 0.0593 0.0593
0.0294 0.0147 0.0588 0.0294 0.0593 0.0593
0.0271 0.0294 0.0294 0.0774 0.1414 0.1978
0.1094 0.0593 0.0593 0.1414 0.3568 0.5049
0.1470 0.0593 0.0593 0.1978 0.5049 0.8242

Table 4.2b Guyan Reduction 2nd Derivative Matrix
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[Mil1 ,H(0)]1 -d 2H-(0) .[H (0)]1

0.1928 0.0903 0.0903 -0.0492 0.0422 -0.0000

0.0903 0.2940 0.0735 0.0620 0.1417 -0.0000

0.0903 0.0735 0.2940 0.0620 0.1417 -0.0000

-0.0492 0.0620 0.0620 0.1537 -0.0095 -0.0000
0.0422 0.1417 0.1417 -0.0095 0.4215 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.2588

Table 4.3a Static Displacement Synthesis Reduced Mass Matrix

[!A] = [T]T[M][T]

0.1928 0.0903 0.0903 -0.0492 0.0422 0
0.0903 0.2940 0.0735 0.0620 0.1417 0

0.0903 0.0735 0.2940 0.0620 0.1417 0
-0.0492 0.0620 0.0620 0.1537 -0.0095 0

0.0422 0.1417 0.1417 -0.0095 0.4215 0
0 0 -0 0 0 0.2588

Table 4.3b Guyan Reduction Reduced Mass Matrix
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Synthesis: {F*} = [1MI{le}g Guyan: {F} = [T]T {F}

-141.6000 -141.6012
-255.6080 -255.6102
-255.6080 -255.6102

-84.5960 -84.5966
-285.0197 -285.0226

-99.9984 -100.0000

Table 4.4 Reduced Force Vectors

Synthesis: xe[* Guyan:

-0.0296 -0.0296
-0.0256 -0.0256
-0.0256 -0.0256
-0.0316 -0.0316
-0.0714 -0.0714
-0.0895 -0.0895

Table 4.5 Static Displacements (in.)
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From Tables 4.1 - 4.5, it can be seen that the static displacement synthesis

calculations match those of the Guyan reduction at every step of the process

on its way to calculate static displacement.
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V. TIME DOMAIN STRUCTURAL SYNTHESIS

The following background information on time domain structural

synthesis is taken from reference [8]. This portion of the thesis will outline

the methodologies and formulations of the time synthesis technique and the

classical techniques used to check its accuracy. There will also be a time

comparison study done in order to quantify the computational efficiency of

the synthesis technique.

As mentioned previously, time domain structural synthesis is a

methodology whereby changes can be made to a given structure, and its new

transient response determined as the solution of a nonstandard

nonhomogeneous Volterra integrodifferential equation (VIDE) of the second

kind. This integral equation is the result of the combination of the impulse

response functions (IRFs) of the baseline structure, the reaction forces

generated from the modification to the structure, and the total dynamic

response of the original system in terms of the convolution integral. This

greatly differs from the classical method of evaluating a structural change. In

the classical method, the basic elements which define the structure are

reconstructed, and then a modal superposition, convolution integral or direct

integration technique is used on the new structure to solve for the response.

The motivation for the development of the time domain structural

synthesis technique stems from the advantages and flexibility that is enjoyed
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through the use of the frequency domain structural synthesis technique. The

time domain synthesis can be divided into the same two classes of

modification and coupling, direct or indirect. Some of the advantages and

flexibility shared by the two methods are: 1) the formation of an exact

solution, with the ability to handle damping modifications; 2) arbitrary model

reduction in the sense that only information about those dofs which are

needed is retained; 3) the solution phase of the finite element analysis is only

done once, and the new synthesis model elemental or system matrices are

never formed.

Just as with the frequency domain synthesis, this thesis will only focus

on indirect modifications to a given structure. It will also allow for the

inclusion of a spring stiffener or a viscous damper between two points, a

lumped mass on the structure, and implementing a base excitation to the

structure. A generalized computer program will be presented, which will

allow for any of the above mentioned changes to be accomplished on some

baseline structure. The program then returns the transient response for all

dofs where changes have occurred and any other dofs that may be of interest

to the user.

A. GENERALIZED TRANSIENT RESPONSE

The following equations are for determining the total dynamic

response of a system which experiences some sort of excitation. These
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formulations are taken from references [1 & 21, and are used to verify the

accuracy of the synthesis after a modification has been made.

1. Convolution Integral Method

The convolution integral equation for determining the total dynamic

response of a system is as follows:

{x(t)} = {x(t)}h + f[h(t - l)]{F(T)}d•d (5.1)

where:

{x(t)}h - homogeneous solution which contains the constants of
integration

h(t) - matrix of impulse response functions (IRFs)

F(t) - excitation force

, - dummy time variable

The IRF matrix is determined modally using the equation:

[W01t) = PDI] •ecr or sin coirt [(DI]T (5.2)

element of the IRF matrix may be represented as:

hi(t)= X_0,•t- e r r Sin od rt (5.3)
r
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This is a relatively efficient means of calculating a structure's dynamic

response. However, this method is based on the principal of superposition

which is valid for linear systems only. Also the modal method of obtaining

the IRFs does not readily handle non-proportional damping. Therefore, if a

damping change to the structure is made, or if a non-linear interconnection

element is used (time domain synthesis with non-linear elements is possible,

but will not be explored in this study), the response cannot be determined

using the convolution integral method.

2. Direct Integration Method

The direct integration method of calculating a system's dynamic

response is able to handle the shortcomings experienced by the convolution

integral method. However, the price is paid in the computational time

necessary for this solution. For the work illustrated in this thesis, MATLAB's

ODE45.m function is used for this calculation [Ref. 9]. In order to use this

function, the 2nd order ordinary differential equations (ODEs) of motion:

[M]{J} + [C]{xl + [K]{x} = {F} (3.2)

must be rewritten as a system of 1st order ODEs. The following is the general

matrix equation which converts any linear system's equations of motion to a
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1st order system.

fill 0 -[']hf {z}J1 (5.4)
0 [M]J[FJ [K][Ci{ 2 J

where:

(zi) = IX)

{Z2} = {X} {1'}2{1•}

ODE45.m solves for the vector [(z1} {z2}]T which are the system's response

displacements and velocities using an adaptive time stepping procedure.

B. TIME DOMAIN SYNTHESIS FORMULATION

Consider again the exact same general ndof structure which was

introduced in Chapter 3 / Section B, and to which structural modifications are

to be made:

b

~ jY( t )

Figure 5.1 General NDOF Structural System
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Using the convolution integral, equation (5.1), and the previously

defined sets, iset, cset, bset, zset, eset for partitioning, the total dynamic

response of the system can be written as:

[xi] [Xj lt[[hli(t-~r)] J[hic(t-.r)] [hib (t '0)] if 17(0
Lx = xl J/[c(t---)] [h'o(t-T•] [ch•(t---)]J Fc(r)jd1- (5.5)

Before modification, the force vector refers to externally applied forces

to the structure. However, following modification, there exists coupling

forces between the cset and bset dofs. By definition, the iset dofs do not

experience these coupling forces. Therefore, the partitioned forces may be

rewritten as:

F eXF (5.6c)

x= F t + F x = - (AMcy: + ACc;* + AKcx:) (5.6b)
Fb = F1 ' + F= Fbex'- [ACb(*b -r)+ AKb(xb - y)] (5.6c)

where:

f* - the coupling forces due to structure modification.

[AM], [AC], [AK] - the modification matrices

x*, ;*, 3R, - generalized (synthesized) responses after modification.

Substituting equations (5.6) into equation (5.5), and recognizing that the

presynthesized responses {x1 xb XT are those due to the external forces only,
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the following result is obtained:

l~bJ ~ )]~[h~,t - [[A~c] 0 5Z-}j[[AC] [0cl]]{4 }+[o[Axbl0{ 4ly}x,
Xý X•J [oLh,(t-- -011~i-)jx 0t0J 0 0 C['&C]Aiý - Y+ 0 C[AKb]AX; - Y

(5.7)

Equation (5.7) is the nonstandard nonhomogeneous VIDE of the second kind.

In order to obtain the solution for this equation, the integral is discretized

using a trapezoidal quadrature rule. Also by assuming that there are no

external excitations to the structure, {F}xt = 0, equation (5.7) becomes:

{} [ + [AFC H (5.8a)
x [ L 'ý]Ab-]J-- OJ I F + lFA<b j

or

{xe}* =-[A.]{F.} (5.8b)

The elemental form of the quadrature matrix is

A( ()0 0- 0 0 0

A t (h1 j) At (h)• t 0 0 0
[n~]=Ad 2h 2 t{ (5.9)

At (hij2  At(hi) ,  At-(h•)0 o 0

0
At (h{) At(h1 j) At(hij) At [(h1 j)

where the subscript n represents the number of time steps, and the coupling
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forces equal:

{ =}[ 0 0{0C} (5.10a)

fF = [ Ac b] o 1[~ c (5.10b)

fiF~ 0 [ACb]Jl~*' - Sr

{A _[A y] 1{. (5.1Oc)

Equation (5.8b) can be rearranged and placed in the general form of

[A] {x*} = {b} where {x*} can be solved for directly using various methods.

However, due to the possible large size of [A], it is advantageous to leave

equation (5.8b) as is, and solve for {x*l by iteration. The iteration procedure is

as follows:

1) assume the force vector (F.}

2) calculate the response vector {xe)*

3) use {xe}* to calculate {•e)}, {i}P,and a new {Fz)

4) use the new {Fz) and calculate a new {x})*

5) repeat steps 3 & 4 until {Xe)*ne, - (Xe}old < convergence tolerance

Although the time domain structural synthesis is exact in its

formulation, approximations have now been introduced through the

solution techniques of the trapezoidal quadrature, and the iteration method.

Not only is the convergence important, but the stability of this solution is also
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of concern. The stability and convergence is dependent on the norm of A,,

and the magnitude of the modifications AM, AC, AK. The norm is defined as

the largest singular value of the matrix and in this case is driven by the value

of At. The smaller the value of At, the better the stability and faster

convergence is reached. The larger the value of the modifications, the greater

the possibility for instability in the solution. Therefore, due to the solution

technique, there are now limitations on the modification values. Inherent to

and dependent on the computer system used, there will be limitations on the

amount of time which can be covered by this analysis due to memory

capabilities.

C. TIME DOMAIN SYNTHESIS COMPUTER CODE

The goal in the formulation of the time domain synthesis computer

programs is to perform the synthesis for an indirect modification operation to

a given structure, allowing the same type of modifications presented

previously in the frequency domain synthesis chapter of the thesis. The

program then returns the transient response for all dofs where changes have

occurred and any other dofs that may be of interest to the user. Appendix C

shows the computer codes used to perform the time domain synthesis, and

perform a comparative analysis of the synthesis versus classical methods.

The programs presented in Appendix C can be segregated into two

categories. The first is the calculation of the synthesized transient responses
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due to a base excitation on the structure, and their comparison to the

classically calculated responses. One of the programs in this category uses the

convolution integral method in order to check the synthesis, while the other

uses direct integration. The second category is the calculation of the

synthesized transient responses where the different aspects of the synthesis

technique have been modularized into MATLAB functions. The following is

a diagram of the flowpath of the modularized time domain synthesis

programs:

SL.oad IRFs

change.m

changemn Imodalmn changem anie

teimpmodaly delta.m

Input Base
Excitatidn

fBlastForcingmn

Figure 5.2 Flowpath of the Modularized Time Synthesis Programs

A more detailed description of each function is contained within Appendix C.
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D. ILLUSTRATIVE EXAMPLES

The purpose of this section is to illustrate the use of the time domain

synthesis technique and validate its accuracy. A computational time

comparison will be done between the synthesis and classical methods in order

to assess the computational efficiency of this technique. The three structural

systems previously described, mass-spring-damper, beam and mass-plate, are

used to accomplish this goal.

1. Mass-Spring-Damper System

Consider the following mass-spring-damper system:

m2  k k = 1000 Wlbin
m = 0.259 lb-s2/in

k Ak= 250 lb/in
Akb = 250 lb/in

, _- _ I Am 2 = .02 lb-s2/in
C1-: kb Acb=21b-s/in

y(t) . _- Y(t) = Y 0(et - e-30°t)

L... 1YO = 1

Figure 5.3 Mass-Spring-Damper System Experiencing Base Excitation

The solid elements represent the original structure and the dashed elements

represent modifications. Although not shown in the figure, the original

structure is proportionally damped using [C] = o[K]. The modifications shown

are arbitrarily selected.
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a. Spring Modification Only

The following figure is the resultant synthesized and classically

determined transient response x2(t) which represents the response at dof 2

due to the base excitation. For this example neither the mass nor the damper

modification was included.

Transient Time Response at dof 2
0.3

0.2 ................................................

0.1 ...... ............ ............... ...............

-0.3

-02. ............i.. .. . .. . .....

0 0.05 0.1 0.15 0.2
time (sec)

Figure 5.4 Transient Response Mass-Spring-Damper System

From the graph produced, it can been seen that the responses are identical,

proving that the synthesis technique is exact, and that the computer coding

for the arbitrary changes is correct. These results were produced using the

tsynconv.m program.
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h Spring & Mass Modifications

The previous example is now repeated but with the mass change

at dof 2, Am2 = .02 lb-s2/in included. The following figure shows the results of

this additional modification.

Transient Time Response at dof 20.3

0.2 - -

02.1...... .................. .......................

E 0.1............... * .......... ........ ...........
-0.1

CL

-0.2 yn . ..;

-0.3
0 0.05 0.1 0.15 0.2

fime (sec)

Figure 5.5 Transient Response Mass-Spring-Damper System w/Spring-Mass

Modification

From the graph produced, it can been seen that the mass modification had no

effect on the accuracy of the solution. However, the addition of the mass

modification did have a large impact on the computational time required for

the synthesis method. This will be discussed in more detail later.

69



c. Spring & Damper Modifications

The spring modification only example is now repeated but with

a damper change at the base Acb = 2 lb-s/in included. The following figure

shows the results of this additional modification.

Transient Time Response at dof 2
0.3

0.25 ........ ...... ...... . .......... . ..

02...2............... ...............................

0.15 ................... .............. ...............

E
0 0 --- -----.. ......................... ..
" 0 .... ........ .... ... ................. .. ...........

-0.015• ' ...... .... .... ............. .... i.. . .. . ..-0.05

0 0.05 0.1 0.15 0.2

time (sec)

Figure 5.6 Transient Response Mass-Spring-Damper System w/Spring-

Damper Modification

From the graph produced, it can been seen that the responses are identical

with respect to the resolution of the plot graphics. Also, to further validate

the correctness of the computer algorithms, the effect of the added damper

can be seen when comparing Fig. 5.4 & Fig. 5.6. Since the non-proportional

damper change was made to the structure, the direct integration method was
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used to obtain the classical solution. Although there was no real effect in the

accuracy of the solution, the effect in computational time is profound for the

classical method. These results were produced using the tsynode45.m

program.

d. Spring, Mass, & Damper Modifications

The example is now repeated with all modifications included.

The following figure shows the results of these modification.

Transient Time Response at dof 2

0.3 0.25....... ............................
0.25.......... ........................

0.15............................ .

"~ 0.1

-0.05

0.o................. ...........-------- I---------

-0.05......... . ................................................

-0.1..............................

-0.15
0 0.05 0.1 0.15 0.2

time (sec)

Figure 5.7 Transient Response Mass-Spring-Damper System w/Spring-Mass-

Damper Modification
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Just as in all the other cases, it can been seen that the responses are extremely

close to identical. These results were also produced using the tsynode45.m

program.

2. Beam System

Now consider the following beam system:

Akb= 1000 lb/in
Ac 13,0 = 2 lb-s/in

Sy(t) = Yo(e-" - e"3 )
L kb -- . Yo=1

Y(0) " • y(t)

Figure 5.8 Beam System Experiencing Base Excitation

The beam parameters and finite element modeling of the above structure is

identical to that used in the frequency domain synthesis chapter of the thesis.

The modifications shown are arbitrarily selected.

a. Base Spring Modification Only

The following figure is the resultant synthesized and classically

determined transient response x,,(t) which represents the response at dof 11

due to the base excitations. As can be seen from Fig. 5.7, this is not a dof where

change has occurred or where the base excitation is attached, but just a dof
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where there is interest in the response. For this example the damper

modification Ac, 3,0 was not included.

Transient Time Response at dof 11

0.3

" 0.2 .......... : .......... ;..... ... .... "... ....... --.......

• .0.1 - -- - - .. . .. . .. ...... . ...........

•0 .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .

-0.2.
0 0.005 0.01 0.015 0.02 0.025 0.03

time (Sec)

Figure 5.9 Transient Response Beam System

From the graph produced, it can been seen that the responses are not

identical, but follow each other with relatively little *error. The difference

between the two methods can be attributed to the numerical solution of the

synthesis method. As the time step for analysis is decreased, the numerical

solution approaches the exact solution. However, the use of smaller time

steps is restricted by computer memory limitations.
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b. Damper Modification

The previous example is now repeated but with the damper

change at dof 13, Ac13,0 = 2 lb-s/in included. The following figure shows the

results of this additional modification.

Transient Time Response at dof 11
0.4

0.3 -- : ........

0.2 ... . .

CDQD 0.1 ...... ...... .............

0 .. ---. ........... , ........... : .......... ........... ...........

-0.1 . ......... ...... .• -r . ............ . . . .:........... -- - - - - ...........

-0.2
0 0.005 0.01 0.015 0.02 0.025 0.03

time (sec)

Figure 5.10 Transient Response Beam System w/Damper Modification

From the graph produced, it can been seen that the responses are not

identical, but follow each other with relatively little error. The same line of

reasoning as in the undamped case is applicable here also. A smaller time step

yields more accurate data but, memory limitations inhibits its usefullness.
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3. Mass-Plate System

Now consider the following mass-plate system:

Akb = le4 lb/in
Acb = 5 lb-s/in
Ake = 500 lbfm

Ac. = 5 lb-s/in C k
y(t) = Y°(e' 1 t - e 3 )
Yo = 1 100'1-1

'00000 .O y(t)

Cb Lkb y(t) y(t)

Figure 5.11 Plate-Mass System Experiencing Base Excitation

The plate parameters and finite element modeling of the above structure is

identical to that used in the frequency domain synthesis chapter of the thesis.

The modifications shown are arbitrarily selected, but are in accordance with

the changes which will be made during an optimization problem.

a. Spring Modifications Only

The following figure is the resultant synthesized and classically

determined transient response X109(t) which represents the response at dof 109,
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the computer, due to the base excitations at the plate's comers. For this

example none of the damper modifications are included.

Transient Time Response at dof 109
0.8

0 .4 ~ ~ ~ ~ . . .. . . . . . . . . . . . . . . . . . . . . . . .

Ea

0 0 .....0 0 .0 0.03.... 0..0 0 ...0 006 0... 07.

-0. .. ..... ...: .. ..... ...... ... .. .. ---- ---

-0.4 ......... " . ......... .. . ............. .. ... • ....... .. . .......

-0.4 .6nls.• ..

-"0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

time (sec)

Figure 5.12 Transient Response Mass-Plate System

From the graph produced, it can been seen that the responses are not identical

but follow each other with relatively little error. The error difference between

the two methods can be atfributed to the numerical solution technique, and

the step size of the time vector. As the step size decreases, the synthesis

solution approaches the exact solution. However, memory limitations on the

computer system used for this research, prohibit meaningful use of a smaller

time step.
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h. Spring & Damper Modifications

The spring modifications only example is now repeated but with

the prescribed damper changes at the base and between the computer and the

plate. The following figure shows the results of these additional

modifications.

Synthesized Transient Time Response at dof 109
0.8

0.6 0.0 . 02. 0 .0 0. . 05.0.06 00

m e0.4 .-.-

-0.26. . . . .. . . . . . ..

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
time (sec)

Figure 5.13 Transient Response Mass-Plate System w/Spring-Damper

Modifications

Due to the size of this model and the damper modifications being made, it

was not possible to compare the synthesis solution with a classical solution.

The computational time required for a classical solution would be great.

However, from comparing Figs. 5.11 & 5.12, the slight effect of the additional
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damping can be seen in the peak amplitude of the response, giving some

credence to the solution. Also, the other previously run damper modification

examples show that this technique does in fact work.

4. Computational Time Comparisons

The following table is a compilation of all the computation times that

it took for the previously presented examples to complete its process.

Synthesis Classical Methods

Convolution Integration At
(secs) (secs) (secs) (secs)

Mass- No Damper 15.62 1.28 .001
Spring No Mass

Damper 23.12 379.32 .001
No Mass

Mass 194.05 1.27 .001
No Damper

Mass 197.89 339.55 .001
Damper

Beam No Damper 107.38 8.56 .0003

Damper 183.75 5687.88 .0003

Mass-Plate No Damper 27.39 15.77 .0008

Damper 99.99 t - o .0008

Table 5.1 Synthesis vs. Classical Computational Times
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From the table, it can be observed that for smaller structures, the classical

method seems more efficient. This is due to the fact that the advantage of the

iteration method is lost when dealing with small structures. The

computational time for the iteration solution, or in other words the synthesis

technique, is driven by the magnitude of the time step and the number of

time steps. On the other hand, the classical methods' solution times are

driven by the model size. Therefore, depending on the time step size, a very

small and very simple model may take a very long time to solve using time

domain synthesis.

Another interesting aspect of the comparison is how sensitive the

synthesis technique is to mass changes. Since the mass change does not add

additional dofs to the model, the classical method's computational time is not

increased by this modification. On the other hand, a mass change for the

synthesis method constitutes the use of the calculated second derivative of

the synthesized response. This derivative is accomplished using a finite

differencing scheme and inherently adds the possibility of additional

instability to the solution.

As previously alluded to, the finite differencing could be the reason

why the synthesis method is greatly affected by mass changes. However,

damper changes, which also prompt the use of finite differencing, did not

substantially increase computational time for the synthesis method. This is in

contradiction to the thought that the increased instability is caused by the
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finite differencing scheme. Another factor which plays into the convergence

and stability of the solution is the magnitude of the modification. Relative to

each other and this problem, the mass change may be of greater magnitude

than the damper change and therefore costs more in computational time.

The largest and most noticeable disparity is in the time required to

classically calculate the dynamic responses following a damper modification.

The direct integration method is very inefficient and becomes basically

unusable for very large complex models, or in the use of an optimization

routine.
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VI. OPTIMIZATION

The following background information and the motivation for this

chapter can be attributed in part to reference [7]. Inherent to the operation of

military vehicles, whether they operate on land, sea or in the air, is the

presence of a shock and vibration environment. Computer and electronic

equipment located on these vehicles can malfunction or be damaged as a

result of the severe effects of this environment. Therefore, the need arises for

a properly designed isolation system, which will absorb the shock and

vibrations and therefore protect the equipment. This is an especially

important concept in today's military with the relatively recent practice of

using Commercial-Off-The-Shelf (COTS) equipment vice the traditionally

expensive shock and vibration hardened military equipment.

In general, it is relatively straightforward to design an isolation system

to protect against shock only or vibration only. However, these two designs

are in direct conflict with each other [Ref. 1]. Therefore, in the presence of

both types of excitations and various other constraints, the optimal design of

an isolation system becomes more complicated. The need then arises for

some sort of optimization scheme which will minimize the response of the

component to be protected, while simultaneously satisfying the constraints

which have been placed on the system.
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The complexity of this problem does not necessarily end here. If the

structure to be isolated and the isolation system to be designed is large and

complex, the analysis process to calculate the desired responses can be very

computationally demanding. Furthermore, if there are multiple design

variables which may be altered in order to achieve the desired result, the

search patterns for the optimal solution are more complex, which leads to

more iterations of the optimization process. The combination of these two

factors can lead to the conclusion that the optimal design of a large complex

isolation system is impractical.

With the previously presented arguments in mind, the use of

computationally efficient synthesis techniques for the calculation of the

system's response is the obvious answer. Since the structure is large and

complex, analysis time could be relatively long. The larger the system, the

greater the number of possible design variables. This means that the search

for the optimal solution is even more complex, and will require more

iterations. This portion of the thesis will demonstrate the use of the

previously presented structural synthesis techniques in the optimal design of

a shock and vibration isolation system. A general computer algorithm will be

formulated and used in order to illustrate the use of structural synthesis in

optimization design.
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A. GENERAL OPTIMIZATION PROBLEM FORMULATION

In an optimization problem, the quantity to be maximized or

minimized is termed the objective function. The quantities which may be

altered in order to find this optimal value are termed the design variables.

The constraint functions are also a function of the design variables, and three

different types of constraints may exist in an optimization problem. The first

type is an inequality constraint, where the value calculated from the

constraint function is less than or equal to some prescribed limit. The second

type is an equality constraint. Here the value calculated from the constraint

function must be equal to some prescribed value. The third constraint type is

side constraints. This is when upper and lower limits are placed on the design

variables. In a constrained optimization problem, the objective function is

maximized or minimized, while ensuring that the user defined values of the

constraint functions are not violated.

For the design of an isolation system, the minimization of the

equipment's response over some frequency range, due to vibration, could be

the main concern. At the same time, the entire structure's response due to a

shock input, and the static displacement or 'sag' of the system could be

constrained. The physical parameters which can be modified to achieve this

goal could be the stiffness and damping values of the isolators. The design of

this isolation system can be converted to the following optimization problem:
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Minimize (Objective Function):

Computer response due to random vibration

Subject to (Constraints):

Maximum static displacements < limit

Maximum dynamic isolator stretch due to shock < limit

Maximum computer acceleration due to shock < limit

Min and max changes in the isolator stiffness values < limit

Min and max changes in the isolator damping values < limit

Design Variables:

Changes in the isolator stiffness values

Changes in the isolator damping values

1. Calculation of Objective Function

Since the objective function is based on the response due to random

vibrations, the input base excitation is in the form of a power spectral density

(PSD) function. The response is therefore calculated as the mean square value

in terms of the system response function (FRF), and the PSD of the input. The

equation for the mean square value of the response is given as [Ref. 10]:
2

2= .IH(f)I S(f)df (6.1)

From equation (6.1), it can be seen that the most accurate means of

minimizing this equation would be if the input PSD, S(f), is known. Since the
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goal is to formulate a general optimization program, it is not inconceivable

and is appropriate to assume S(f) to be constant over some frequency, f, < f <

f 2. Therefore, minimizing the mean square response over the appropriate

frequency range is equivalent to minimizing:

F = ff2 •H(f)Adf (6.2a)

It can be seen that for every iteration of the optimization process, the

calculations involved in equation (6.2a) must be performed. If the FRFs of the

baseline structure is provided or calculated prior to the iterations begin, the

frequency domain structural synthesis technique may be used to calculate all

subsequent FRFs and the objective function is properly written as:

F = f (fdf (6.2b)

2. Calculation of Constraints

The first constraints mentioned are the maximum static displacements

of the structure. Since these values must also be recalculated every iteration,

an efficient means of doing so needed. Various reasons make this problem a

prime candidate for the use of static displacement synthesis:

"* the static displacement at select locations vice the entire structure is

desired, therefore calling for some type of reduction or

condensation technique.

"• the elemental and system matrices of the structure may not be

available.
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"* the modal solution of the eigenvalue problem has already been

accomplished.

"* the isolator stiffness, which are design variables, act in vertical

translation direction only (isolator damping has no effect on static

problem).

Another constraint is the maximum dynamic isolator stretch due to

the shock input. In order to calculate this constraint, the transient response of

the structure at the dofs where the isolators are connected must be obtained.

The displacement of the base input as a function of time must also be known.

Since the change in the isolator damper represents nonproportional

damping, the direct integration method would be used to solve this problem.

This calculation would be terrible, in reference to computing time for a single

iteration of the optimization process. Despite other reasons, this alone is

enough motivation for the implementation of the time domain synthesis

technique for the calculation of the dynamic responses. The last constraint,

the computer acceleration, is obtained by simply applying a finite differencing

scheme to the computer's displacement time history. All the above

mentioned constraints are known as inequality constraints, and will satisfy

the general normalized form g.(X) <0 [Ref. 11].
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3. Design Variables

There are limits on the amount in which the isolator stiffness and

damping can be changed. For example, the lower bound for the change in an

isolator stiffness should not be equal to the negative of the original value of

the isolator. If it is, the optimization program might use this value and this

constitutes the total removal of the isolator and changing the basic structure

of the system. The upper bound for the change is limited by what is physically

realistic. These type of constraints on the design variables are known as side

constraints [Ref. 11].

The relative value of design variables to one another is very important

when considering the efficiency and reliability of the numerical optimization

process [Ref. 11]. The function space of the problem, which is defined by the

design variables, should be as symmetric as possible. When looking at the

design variables, isolator stiffness and isolator damping, it can be seen that

effective changes to isolator stiffness are on the magnitude of thousands,

while the isolator damper changes are on the magnitude of ones. This large

disparity creates a very nonsymmetric function space. In order to alleviate

these problems, the design variables are scaled so that their magnitudes are

comparable. A symmetric function domain allows for the faster

determination of the optimization by decreasing the number of iterations

necessary to find the optimal solution[Ref. 11].
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B. OPTIMIZATION COMPUTER CODE

The optimization tool used to solve this problem is the MATLAB

optimization toolbox 1.0d. More specifically, the function constr.m, which is

designed for optimization of a constrained, nonlinear, multivariable

problem, is used. This function uses the Sequential Quadratic Programming

(SQP) method in order to solve this problem [Ref. 121. The SQP method is

used in order to determine search directions for the design variables at every

iteration [Refs. 11 & 12]. One of the limitations of this, and other traditional

nonlinear optimization codes, is that they may only give local solutions.

Also, when the problem is infeasible, constr.m attempts to minimize the

maximum constraint value. What this can lead to is, the problem iterating to

the user defined iteration limit, the search pattern extending outside the

bounds of the design variables, and no optimum solution ever being found.

Therefore, the user must have good understanding of the problem and the

constraints imposed upon it.

The goal in the formulation of the optimization computer programs is

to provide a means of determining the optimal changes in isolator values, in

order to minimize some dynamic response, while simultaneously satisfying

all prescribed constraints. These programs first allow for the loading of a

general finite element model of the structure. This baseline structure is given

in terms of its FRFs and IRFs, or in terms of its system matrices from which

the baseline FRFs and Ifs must be calculated. Modifications to the baseline
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structure which will act as design variables are then designated. User defined

initial values of design variables and constraint values are designated. During

the optimization process, all structure responses will be calculated using

structural synthesis techniques. With minor coding adjustments, the ability

to interchange objective function and constraints exists. For example the

optimization program could be the minimization of the computer's

acceleration due to shock, while the response to a random vibration input is a

constraint. Appendix D shows the computer codes used to perform this

process. The following figure is a diagram of the flowpath of the optimization

program.
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Figure 6.1 Flowpath of the Optimization Program
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C. ILLUSTRATIVE EXAMPLE

The purpose of this section is to illustrate the use of the structural

synthesis techniques in the optimization of a shock and vibration isolation

system. The figure below shows the mass-plate structural system which was

used in the previous examples and is also used here.

Figure 6.2 Plate-Mass System Experiencing Base Excitation

1. Problem Formulation

The following is the formal problem statement of the optimization

problem:

Minimize: F(Akb,AkC, Acb, Acc)=Jf0 IH*(f)I df
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1 zPstat

max zP-stat

zc _stat 1•0
max zCstat
-kp stretch

Subject to: g 3 - ma1 k<stretch-1 0
max k -stretch

94 = kstec 1<0
max kcstretch

- C-accel 1•0
max zcaccel

-4000 <Akb • 5000
-4000 <Akc < 5000

0< ACb •5
0_<Ace_<5

where:
H*(f) = frequency response function of the computer
zp.stat = plate static displacement [in]
zc-stat = relative static displacement between computer and plate [in]
maxzpstat = maximum allowable plate static displacement [in]
maxzcstat = maximum allowable static displacement between

computer and plate [in]
k- stretch = isolator stretch between base and plate due to shock [in]
k•_stretch = isolator stretch between plate and computer due to shock

[in]
max kP-stretch = maximum allowable isolator stretch between base and

plate [in]
max kcstretch = max allowable isolator stretch between plate and

computer [in]
zaccel = absolute acceleration of computer due to shock [in/s 2]
max zcaccel = max allowable absolute acceleration of computer [in/s]
Akb, A k, Acbi Ac• = the design variables.

92



The following is information that must be provided to the

optimization program for its execution, and for the understanding of the

user. The following table lists the initial, lower bound, and upper bound

values for the design variables.

Alb Akc 4cb ACC
initial value 1000 1000 1 1
lower bound -4000 -4000 0 0
upper bound 5000 5000 5 5

Table 6.1 Optimization Inputs

From the table it can be noticed that an initial value for the design variables is

used. Since the optimization routine locates local minimum, the start

position of the search is very important. The baseline values for the isolator

elements which are to be modified are:

initial kb = 10000 lb/in
initial k, = 5000 lb/in
initial cb =0 lb-s/in
initial c, =0 lb-s/in

The constraint values for the inequality constraint are:

maxzp~stat = -0.08 in
maxzcstat = -0.03 in
max k-stretch = 1.0 in
max kcstretch = 1.0 in
max z~accel = 30g's
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2. Optimization Results

The previously described problem is executed using the isomain.m and

isosub.m programs. During the execution of the optimization program,

output information is provided through the MATLAB Command Window

(Table 6.2).

f-COUNT FUZNCTION MAXg STEP Procedures

5 36012.1 1.40603 1
10 15494 0.0364448 1
15 6969.56 -0.0262839 1
22 6691.27 -0.0370827 0.25
29 6372.67 -0.0682749 0.25
34 6372.59 -0.0693421 1
39 6370.5 -0.0631356 1 mod Hess(2)
44 6370.49 -0.0687934 1 mod Hess
49 6370.49 -0.0689084 1 mod Hess(2)
54 6370.48 -0.067107 1
59 6370.47 -0.0527099 1 mod Hess
64 6370.45 -0.0667607 1
69 6370.44 -0.0687255 1 mod Hess(2)
74 6368.61 -0.0685718 1 mod Hess(2)
79 6368.61 -0.0688113 1 mod Hess
80 6368.61 -0.0667838 1 mod Hess

Table 6.2 Optimization 1.0d Generated Output

Once the optimization program terminates successfully, post

processing occurs and the following figures and summary information is

provided. The first figure is a graph of the value of the design variables at

each iteration.
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Figure 6.3 Values of the Design Variables

The next figure is a graph of the absolute value of the isolators at each

iteration of the optimidzation process.
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Figure 6.4 Absolute Values of the Isolator Elements

The next figure is a graph of the FRF of the computer before the optimization

begin, and at its termination.
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Figure 6.5 Computer FRF Before and After Optimization

The effect of the changes to the structure, particularly the damping additions,

can definitely be seen in this figure. The objective function is defined as the

area under this curve after it is squared. Therefore, by lowering the peak

values of the response, the objective function is ultimately lowered. The next

figure is a plot of how the value for the objective function changed as a

function of the optimization iterations.
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Figure 6.6 Values of the Objective Function

From Fig. 6.6, the dramatic effects of the optimization can really be seen. The

initial value of the objective function was 36012.1 and after the isolator

modifications the objective function equals 6368.31. The following

information is a summary of the optimization process and is displayed at the

MATLAB Command Window:

Optimization Terminated Successfully

Active Constraints:
ans = 3

The recommended change in base isolator stiffness (lb/in) is --->
finaldelkb = 2.3271e+03 lb/in
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The recommended change in computer isolator stiffness (lb/in) is --->
finaldelkc = 4.0849e+03 lb/in

The recommended change in base isolator damping (lb/in/s) is -- >
finaldelcb = 2.7678 lb-s/in

The recommended change in computer isolator damping (lb/in/s) is --->
finaldelcc = 4.6266 lb-s/in

Constraints:
g, = -0.1814 g2= -0.6334 g3 = -0.5237 g4 = -0.6981 g5 = -0.0668

elapsedtime = 9.5550e+03 secs = 2hrs 39min

It can be seen from the presented information that it took the

optimization program 80 iterations to recommend the presented changes to

the structure in order to optimize its response against random vibrations, and

meet the established constraint criteria. The most notable portion of this

example is that it accomplished this task on a 109 dof structure, which

underwent non-proportional damping changes at every iteration, in only 2

hours and 39 minutes. In other words, this program performed 80 transient

response analyses, calculated the static displacement 80 times, and calculated

the frequency response function and the integral of that curve 80 times, for a

109 dof structure.
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VII. CONCLUSIONS / RECOMMENDATIONS

The main objective of this thesis was to investigate the use of

structural synthesis techniques as rapid reanalysis procedures in the optimal

design of large shock and vibration isolation systems. In order to use these

synthesis techniques liberally, an investigation into the accuracy of the

methods, and the computer algorithms formulated, had to be accomplished.

It is important to mention at this point that the time and frequency structural

synthesis methods used in this study, primarily covers base excitations. This

is a new extension of the more familiar synthesis formulations. The static

displacement synthesis, is however a completely new development. These

formulations had to be general enough to handle different structures and to

handle various types of modifications to the structure. The synthesis

techniques were then coupled with an optimization routine, and together

they were used in finding the optimal changes to a given isolation system.

A. CONCLUSIONS

From the various analyses conducted, the following conclusions can be

drawn:

1. The frequency domain structural synthesis technique is a very

efficient and accurate method of calculating the new FRFs of a

structure following indirect modifications. It is nonrestrictive and
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arbitrary as to where and what type of modifications can be made to

the structure.

2. The static displacement structural synthesis is also a very efficient

and accurate method of calculating the new static displacement of a

structure following modifications. The accuracy of this method does

depend on the use of a finite differencing scheme which in turn is

dependent on the variable step size. It is also found that this method

is restrictive in its use. Certain criteria, which are identified in

Chapter IV of this work, must be met in order that this synthesis

technique can be applied properly. For the isolation problems

presented in this work, the required criteria were met.

3. The time domain structural synthesis technique is an efficient and

accurate method of calculating the new transient response of a

structure following indirect modifications. It is nonrestrictive and

arbitrary as to where and what type of modifications can be made to

the structure. However, since numerical techniques are used to

solve for the responses, some error of approximation is entered into

the solution. As the time step is decreased, the numerical solution

approaches the exact solution. However, current solution

algorithms are restricted by memory requirements.

4. In finding the optimal design of a relatively large shock and

vibration isolation system, the use of the synthesis techniques
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proved to be an invaluable asset in the optimization routine. With

the use of the synthesis techniques, in 2 hours and 39 minutes, it

was possible to perform 80 FRF, static displacement, and transient

analyses on a 109 dof system, which was non-proportionally

damped. To get an idea of how efficient this is, recall from the time

domain synthesis analysis (Chapter V), that it took approximately 1

and 1/2 hours to calculate one transient analysis of a 22 dof beam

structure.

B. RECOMMENDATIONS

Throughout this study, some weaknesses of the techniques, and

opportunities to enhance the techniques were touched upon.

Recommendations to address these weaknesses, and take advantage of these

opportunities include:

* All modal analyses were done to include all modes of the structure.

A modal truncation criteria should be established, and studies

should be done to ensure that these criteria hold up for synthesis

also. This way it would be possible to take advantage of time saving

aspects which are inherent to modal superposition techniques.

* Use actual FRF and IRF data from a real structure, and predict

structural responses due to modifications.
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"* Build CAD models to validate damping modifications to large

structures.

"* Investigate to obtain a general rule for choosing the optimum AQ to

be used in finite difference scheme to calculate static response.

Another option would be to investigate the use of the closed form

2nd derivative of H* to obtain d2H H(O)

df2

"* Implement relaxation schemes for the iterative solution in time

domain synthesis. Also a study should be done in order to

determine what the proper time step size should be to ensure

convergence and stability.
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APPENDIX A. FREQUENCY DOMAIN SYNTHESIS COMPUTER

CODES

The following is a list and a brief description of the main MATLAB

computer codes that were written in order to perform the frequency domain

synthesis calculations.

" fsynstr.m - performs the frequency domain synthesis on a structure which

experiences an external force excitation directly on the structure, and

compares this solution to the FRF calculated using classical methods.

"* fsynbase.m - performs the frequency domain synthesis on a structure

which experiences a base excitation, and compares this solution to the FRF

calculated using classical methods.

"* fsynmain.m - the main program which calls the modularized frequency

synthesis programs and does the post processing of the results.

"* change.m - loads the baseline structure to be modified, allows for

modifications to the baseline structure, and calls the function delta.m

"* delta.m - forms the modification matrices which will be used to form

impedance matrices or determine coupling forces.

"* modal.m - solves for the structure's natural frequencies, mode shapes and

other modal matrices and vectors.

"* frfmodal.m - calculates the structure's FRFs.
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"* frfsynth.m - performs the synthesis on the baseline structure and returns

the synthesized FRFs.

"* frf sift.m - selects the FRF that the user wants to perform post processing

on.

The full codes are contained on subsequent pages.
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fsynstr.m

% This program is designed to calculate FRFs by inverting the impedance matrix.
% Changing the mass, stiffness, and damping matrices, new FRFs will be calculated by
% reformulating the matrices, and using the synthesis method in the frequency domain.%

clear

% Formation of the elemental matrices
%
nel=4;
nn=nel+l;
dof=nel+l;

ndk=l;
knel(l)=O;
for spring=l:ndk;

kcon(spring)=100;
knel(spring+l)=4;

for ele=knel(spring)+1 :knel(spring+1)
kcon__ele(ele)=kcon(spring);

end
end

ndm=l;mnel(1)-- -,
for mass=1:ndm;

m(mass)=100/386.4;
mnel(mass+l)=5;

for ele=mnel(mass)+1 :mnel(mass+1)
mele(ele)=m(mass);

end
end

% Formulation of global stiffness, damping and mass matrices from elemental matrices

Kglo=zeros(dofdof);
Cglo=zeros(dof,dof);
Mglo=zeros(dof,dof);
for n=1:nel

kele=kconele(n)*[ 1 -1
-1 1];

rcl=n;
rc2=n+1;
Kglo(rc 1 :rc2,rc 1 :rc2)=Kglo(rc 1 :rc2,rc 1 :rc2) + kele;

end
Mglo=diag(mele);
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alpha=-O; beta-=.0005;
Cglo=alpha*Mglo + beta*Kglo;

bc=2;
if bc=1l

K=Kglo(2:dof,2:dof);
K((dof- 1),:)=[];
K(:,(dof- 1))=[];
M=Mglo(2:dof,2:dof);
M((dof-1),:)=[];

C=Cglo(2:dof,2:dof);
C((dof- 1),:)=[];
C(:,(dof- 1))=[];
ndof=dof-2;

elseif bc=2
K=Kglo(2:dof,2:dof);
M=Mglo(2:dof,2:dof);
C=Cglo(2:dof,2:dof);
ndof=dof- 1;

elseif bc==3
K=Kglo(2:dof,2:dof);

K(:,(dof- 1))=[];
M=Mglo(2:dof,2:dof);

C=Cglo(2:do,2:doO;
C(:,(dof- 1))=[];

ndof=dof-2;
else

K=Kglo; M=Mglo; C=Cglo;
ndof=dof;

end

% This portion of the program is designed to accept changes to the original
"% structure and recalculate the FRF using classical method of reforming [M],
"% [K], and [C] matrices using the inverse of the impedence matrix. Also
"% recalculates the FRF using structural synthesis in the frequency
% domain.

change~model=1;
while change,_model=1I;

KSc=K; Msc=M; (I~c=C; % initializes change matrices to
% original matrices

changek=2; changec=2; changem=2; % initializes logic variables
% to 'no' status
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chk=O; chc=O; chm=0; % initializes counter for # of changes
% to matrices

kdofl=[]; kdof2=0l; % initalizes the matrices which keep
cdofl=[]; cdof2=[]; % track of the dofs where changes occur
mdof=l-;

cset=O; % initializes cset matrix to zero to avoid null index error in
% handling the spring to ground if no changes are made to the
% structure.

changek--input( Would you like to change your stiffness matrix? l=yes 2--no ');
while changek==1

chk=chk+1; % counter for determining # changes to stiffness matrix.
lk(chk)--input('input value of added spring (lbs/m) ');
kdofl (chk)--input('input constrained dof where 1st end of added spring is applied ');
kdof2(chk)=input('input dof where 2nd end of added spring is applied or 0 for ground') ;

"% comparison of change dof with the c-set matrix and formation of
"% new c-set matrix.

if kdofl(chk),-cset
cset=[cset kdofl (chk)];

end
if kdof2(chk)-,cset

cset=[cset kdof2(chk)];
end

% Classical method of reformulatting the [K] matrix.

K-c(kdofl (chk),kdofl (chk))=K-c(kdofl (chk),kdofl (chk)) + lk(chk);
if kdof2(chk)-=0

K c(kdofl (chk),kdof2(chk))=K c(kdofl (chk),kdof2(chk)) - lk(chk);
Ksc(kdof2(chk),kdofl (chk))=K-c(kdof2(chk),kdofl (chk)) - lk(chk);
Ksc(kdof2(chk),kdof2(chk))=Kc(kdof2(chk),kdof2(chk)) + lk(chk);

end

changek=input('Are there any other changes to the stiffness matrix? 1=yes 2=no );

end

changec--input(QWould you like to change your damping matrix? 1=yes 2=no ');
while changec-1

chc=chc+l; % counter for determining # changes to damping matrix.
flag_c=l; % mapping matrix flag
lc(chc)=input('input value of added damper (lbs-sec/in) ');
cdofl(chc)--input('input constrained dof where 1 st end of added damper is applied ');
cdof2(chc)=input('input dof where 2nd end of added damper is applied or 0 for

ground ');
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"% comparison of change dof with the c-set matrix and formation of
"% new c-set matrix.

if cdofl1(chc)-=cset
cset=[cset cdofl1 (chc)];

end
if cdof2(chc)--cset

cset=[c set cdof2(chc)];
end

% Classical method of reformulatting the [C] matrix.

CsC(cdof 1 (chc),cdof 1 (chc))=QCs(cdoflI (chc),cdof 1 (chc)) + lc(chc);
if cdof2(chc)-=-O

C s(cdofl1(chc),cdof2(chc))-=-Cc(cdofl1(chc),cdof2(chc)) - lc(chc);
Cs(cdof2(chc),cdofl1(chc))--C~c(cdof2(chc),cdofl (chc)) - lc(chc);
Cs_(cdof2(chc),cdof2(chc))=Cýc(cdof2(chc),cdof2(chc)) + lc(chc);

end
changec--input('Are there any other changes to the damping matrix? 1 =yes 2=no )

end

changem-input('Would you like to change your mass matrix? I1=yes 2=no )
while changem=1-

chm=chm+1; % counter for determnining # changes to mass matrix.
lm(chm)=input('input value of added mass (1bs-secA2/in) ');
mdof(chm)--input('input constrained dof where mass is added )

"% comparison of change dof with the c-set matrix and formation of
" new c-set matrix.

if mdof(chm)-=cset
cset=[cset mdof(chm)];

end

% Classical method of reformulatting the [M matrix.

M-c(mdof(chni),mdof(chm))=M-c(mdof(chm),mdof(chm)) + lm(chm);

changem--input( tAre there any other changes to the mass matrix? 1=yes 2=-no')
end

% Handling of spring added to ground

ground = find(cset=-O);
cset(ground)= ;
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"% Formulation of iset matrix which is the set of dofs other than

"% those in the cset matrix where response information is desired.

iset=input(tWhat dofs other than those where change occured, are you interested in? ');

% Formation of eset matrix which is i U c.

eset=[iset cset];

% Choosing the FRF interested in

resp-dof--input( What response dof are you interested in? ');
inp-dof--input("What input dof are you interested in? ');
frfindex=find(eset---respdof I eset---inp-dof);
if respjof---inp-dof

frf index=[frf_index frf index];
end

% Structural Synthesis method of calculating FRF

% Calculation of unchanged FRF

freq=.01:,O1:10;
omega=2*pi*freq;
j=length(omega);
for w=l:j

Z=K+i*omega(w)*C-omega(w)A2*M;
H=inv(Z);

"% Rearrangement of original [H] to form [Hee], [Hec], [Hcc], [Hce]
"% Also provides for if user makes no changes to the model

Hee=H(eseteset);

if cset=--[]
Hec=O; Hcc=O; Hce=O;

else
Hec=H(eset,cset);
Hcc=H(cset,cset);
Hce=H(cset,eset);

end

% Formation of [deLK], [deLC], [delM], & [delZ]

delK=zeros(length(cset)); % intializes the change matrices
delC=zeros(length(cset)); % to zero and sets their sizes
delM=zeros(length(cset)); % as [cset x cset] matrix

if chk---O
for a=1 :chk

indexkl=find(kdofl(a)==cset); % finds where in cset matrix
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indexk2=find(kdof2(a)==cset); % the change in k occurs

delK(indexkl ,indexk 1)=del-K(indexkljndexkl) + lk(a);
delK(indexkl ,indexk2)=del-K(indexkl ,indexk2) - llc(a);
delK(indexk2,indexkl)=del-K(indexk2,indexkl) - lk(a);
delK(indexk2,indexk2)=deLK(indexk2,indexk2) + lk(a);

end
end

if chc-=-O
for a=1I:chc

indexcl-find(cdofl(a)=-cset); % finds where in cset matrix
indexc2=find(cdof2(a)==cset); % the change in k occurs

delC(indexcl1,indexcl)=deLC(indexcl1,indexc 1) + lc(a);
delC(indexcl ,indexc2)=deLC(indexcl1,indexc2) - lc(a);
delC(indexc2,indexc 1)=deLC(indexc2,indexc 1) - lc(a);
del_-C(indexc2,indexc2)=deLC(indexc2,indexc2) + lc(a);

end
end

if chm-=O
for a--l:chm

indexm7-f~ind(mdof(a)==cset); % finds where in cset matrix
% the change in k occurs

delM(indexm,indexm)=del M(indexm,indexrn) + lm(a);
end

end

if cset-=[]
delZ=O;

else
del_-Z--delK+i*omega(w)*del-C-orega(w)A2*del-M;

end

H-star--Hee-Hec*delZ*inv(eye(size(Hcc,l)) + Hcc*delZ)*Hce;

% Capturing the FRF interested in at each frequency swept thru

hstar(w)=H~star(fiffjndex(1),frfjndex(2));

% Classical method of calculating the FRF by reassembling [Z] and taking the
% inverse.

Z-c=K-c+i*omega(w)*C c-omega(W)A2*M-c;
H-c=inv(Z-c);
H-c=H-c(eset,eset);
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% Capturing the FRE interested in at each frequency swept thru.

h-c(w)=H~c(frfindex( 1),frf-index(2));

end

% Plotting of FRF using Classical & Frequency Synthesis Methods

semilogy(freq,abs(hs),'r--',freq,abs(hstar), tb')
title([UFrequency Response Function (H',int2str(resp.Aof,int2str(inp-dot),')')

ylabel('FRF Amplitude (in/Ib)')
xlabel(¶Frequency (Hz)')
legend('Classical','Synthesis')

change-model--input( Would you like to change your model again? 1 =yes 2=no')
end
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fsynbase.m]

"% This program is designed to calculate FRFs by inverting the impedance matrix.
"% Changing the mass, stiffness, and damping matrices, new FRFs will be calculated by
"% reformulating the matrices, and using the synthesis method in the frequency domain.

clear

% loading of the baseline structure

disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)
[M_KC,p]=uigetfile('*.mat','Load [M], [K], [C]');
load (MKC)
dofs=l:ndof;

changemodel=1;

while change model==l;

changek=2; changec=2; changem=2; % initializes logic variables to 'no' status

flagk--0O; flagsc=O; flagm---O; % initializes change flag

chk=O; chc=O; chm--O; % initializes counter for # of changes to matrices

cset--O; % initializes cset matrix to zero to avoid null index error in
% handling the spring to ground if no changes are made to
% the structure.

Hey-star=[]; HVsc=[]; % (re)initializes these matrices to an empty matrix
% to avoid matrix size differences each time the
% model is changed.

Ksc=K; Me=M; Csc=C; % initializes change matrices which will be
"% used in the classical method, to the original
"% matrices.

Kb=zeros(size(K,1)); % initializes the spring, and damper to base matrices
Cb=zeros(size(C, 1)); % to zero.

"% Designation where base excitation is located, and the spring constant which
"% connects the substructure to the base which is moving.

bset=input('At what dof(s) are your structure excited? ');
for b-spring=l:length(bset);

kb(b-spring)=input(fprintf('input the value of the spring constant which connects dof
%g to the base ',bset(bspring)));
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end
cb=zeros(1,length(bset)); % initializes the damper constant which connects the

% substructure to the base which is moving, to zero.

"% Correcting the classical [K] & [Kb] matrices to include the spring element
"% connecting the substructure to the base(s).

for b-spring= 1 :length(bset);
K-c(bset(bspring),bset(b._spring))=Kc(bset(bspring),bset(b-spring))+...

kb(b-spring);
Kb(bset(b-spring),bset(b-spring))=Kb(bset(b spring),bset(b spring)) +...

kb(bQspring);
end

changek=input( Would you like to change your stiffness matrix? 1=yes 2=no ');
while changek=l

chk=chk+l; % counter for determining # change of K matrix
flagk=l;
lk(chk)=input('input value of added spring (lbs/in) ');
kdofl (chk)--input('input constrained dof where 1st end of added spring is applied ');
kdof2(chk)=input('input dof where 2nd end of added spring is applied, b for base, or

0 for ground ');

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. This should handled when asked where the structure is excited.

if kdofl (chk)-=bset & kdof2(chk)=='b'
while kdofl(chk)-=bset & kdof2(chk)='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
modelchange--input(Was this change correct? 1=yes 2=no ');

if modelchange==l
error('Go back and change your basic model.')

else
kdof1 (chk)=input('input constrained dof where 1st end of added damper is

applied ');
kdof2(chk)=input('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground ');
end

end
end

"% updates the base spring constant and does not count these changes
"% in the cset matrix.
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if (find(kdofl(chk)=-bset))-'-U & kdof2(chk)=='b'
base=find(kdof 1(chk)=--=bset);
kb(base) = kb(base) + lk(chk);

else
if kdofl(chk)--cset % comparison of change dof with the c-set

cset=[cset kdofl (chk)]; % matrix and formation of new c-set matrix.
end
if kdof2(chk)--cset

cset=[cset kdof2(chk)];
end

end

% Classical method of reformulatting the [K] matrix.

K c(kdofl(chk),kdofl (chk))=K_c(kdofl (chk),kdofl (chk)) + lk(chk);
if kdof2(chk)-=0 & kdof2(chk)-='b'

K-c(kdofl (chk),kdof2(chk))=Ksc(kdofl (chk),kdof2(chk)) - lk(chk);
Ksc(kdof2(chk),kdofl (chk))=K.c(kdof2(chk),kdofl (chk)) - lk(chk);
K-c(kdof2(chk),kdof2(chk))=Ksc(kdof2(chk),kdof2(chk)) + lk(chk);

end

% Classical method of reformulatting [Kb] matrix.

if kdof2(chk)=--'b'
kbb=lk(chk);
Kb(kdofl (chk),kdofl (chk))=Kb(kdofl (chk),kdofl (chk)) + kbb;

end

changek--input('Are there any other changes to the stiffness matrix? 1=yes 2=no ');
end

changec--input('Would you like to change your damping matrix? l=yes 2=no ');
while changec=1

chc=chc+l; % counter for determining # changes to damping matrix.
flagsc=1;
lc(chc)--input('input value of added damper (lbs-sec/in) ');

cdofl(chc)--input('input constrained dof where 1st end of added damper is applied ');
cdof2(chc)=input('input dof where 2nd end of added damper is applied, b for base, or

0 for ground ');

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. This should handled when asked where the structure is excited.

if cdofl(chc)-=bset & cdof2(chc)=='b'
while cdofl(chc)-=bset & cdof2(chc)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
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modeLchange--input('Was this change correct? 1 =yes 2=no )

if model-change=1-
error('Go back and change your basic model.')

else
cdofl1 (chc)--input('input constrained dof where 1 st end of added damper is

applied ');
cdof2(chc)--input('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground )
end

end
end

% Updates the base damper constant and does not count these changes
% in the cset matrix.

if (find(cdofl (chc)==bset))-=[] & cdof2(chc)=='b'
base=find(cdofl(chc)==bset);
cb(base) = cb(base) + lc(chc);

else
if cdofl (chc)-=cset % comparison of change dof with the c-set

cset=[cset cdofl(chc)]; % matrix and formation of new c-set matrix.
end
if cdof2(chc)~-=cset

cset=[cset cdof2(chc)];
end

end

% Classical method of reformulatting the [C] matrix.

QCs(cdofl (chc),cdof 1 (chc))=QCs(cdof 1 (chc),cdof 1 (chc)) + lc(chc);
if cdof2(chc)'-=0 & cdof2(chc)-=b'

Cs-(cdofl (chc),cdof2(chc))=-Cc.(cdofl1(chc),cdof2(chc)) - lc(chc);
Cs-(cdof2(chc),cdofl(chc))--Cýc(cdof2(chc),cdofl (chc)) - lc(chc);
Cs-(cdof2(chc),cdof2(chc))=Cýc(cdof2(chc),cdof2(chc)) + lc(chc);

end

% Classical method of reformulatting [Cb] matrix.

if cdof2(chc)=='b'
cbb=lc(chc);
Cb(cdofl (chc),cdofl (chc))=Cb(cdof 1 (chc),cdof 1 (chc)) + cbb;

end

changec=mnput('Are there any other changes to the damping matrix? 1 =yes 2=no')
end

changem=input( Would you like to change your mass matrix? 1 =yes 2=no )
while changem=1

chm=chm+1;
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flag_m=l;
lm(chm)-=input('input value of added mass (lbs-secA2/in) ');
mdof(chm)--input('input constrained dof where mass is added ');

"% comparison of change dof with the c-set matrix and formation of
"% new c-set matrix.

if mdof(chm)-=cset
cset=-[cset mdof(chm)];

end

% Classical method of reformulatting the [M] matrix.

M-c(mdof(chmn),mdof(chm))=M-c(mdof(chm),mdof(chm)) + Im(chm);

changem=input('Are there any other changes to the mass matrix? 1=yes 2=no );
end

% Handling of spring added to ground

ground = f'md(cset---O);
cset(ground) = 0;
"% Formulation of iset matrix which is the set of dofs other than

"% those in the cset matrix where response information is desired.

iset--nput('What dofs other than those where change occured, are you interested in? ');

% Formation of zset (c U b) and eset (i U c U b) matrices.

zset=[cset bset]; eset=[iset cset bset];

% Choosing the FRF interested in

resp.dof=input(CWhat response dof are you interested in? ');
frf_index=find(eset---resp_dof);

% Choosing the type of input and out FRF interested in

inprype-input(Is the base excitation in the form of: l=displacement or 2=acceleration
9);

resp-type=input('What type of response are you interested in: 1-=displacement or
2=acceleration ');

% Structural Synthesis method of calculating FRF

% Calculation of unchanged FRF

freq=.01:1:250+.Ol;
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omega=-2*pi*freq;
j=length(omega);
for w=1:-j

Z--K+i*omega(w)*C-omega(w)A2*M;
H--inv(Z);

% Rearrangement of original [H] to form [Heb], [Hez], [Hzz]j, [Hzb]

Heb=-H(eset,bset);
Hez=H(eset,zset);
IHzz=H(zset,zset);
Hzb=H(zset,bset);

* Formation of [deLKc], [del-Cc], [deL-Mc], [deLZc], [deLZb]
* & [del-ZI

del_-Kc--zeros(length(cset)); % intializes the change matrices
delCc=zeros~length(cset)); % to zero and sets their sizes
delMc=zeros(length(cset)); % as [cset x cset] matrix

if flagYk=1
for a=1I:chk

if (find(kdofl(a)==bset))-=(] & kdof2(a)=='b'
indexkl=IIH; % provides for base changes to not be
indexk2=fl; % included in delKc matrix

else
indexkl=find(kdofl(a)=--cset); % finds where in cset matrix
indexk2=find(kdof2(a)==cset); % the change in k occurs

end

delKc(indexkl ,indexkl)=del-Kc(indexkl ,indexkl) + llc(a);
delKc(indexkl~indexk2)=del-Kc(indexkl,indexk2) - lk(a);
delKc(indexlc2,indexkl)=del-Kc(indexk2,indexkl) - llc(a);
delKc(indexk2,indexk2)=del-Kc(indexk2,indexk2) + llc(a);

end
end

if flagsc=1
for a=1l:chc

if (find(cdofl(a)=-bset))-=f & cdof2(a)=='b'
indexcl=[l;
indexc2=fl;

else
indexcl=find(cdofl(a)==cset); % finds where in cset matrix
indexc2--find(cdof2(a)==cset); % the change in C occurs

end

delCc(indexc 1 indexcl )=del Cc(indexc 1 indexc 1) + lc(a);
delCc(indexcl ,indexc2)=del:Cc(indexcl ,indexc2) - lc(a);
delCc(indexc2,indexcl1)=del-Cc(indexc2,indexc 1) - lc(a);
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delCc(indexc2,indexc2)=deLCc(indexc2,indexc2) + lc(a);
end

end

if flag-m=l1
for a=l1:chm

indexm--fmd(mdof(a)=--cset); % finds where in cset matrix
% the change in k occurs

delMc(indexm,indexm)=deLMc(indexm,indexm) + lm(a);
end

end

delZb=diag(kb+i*omega(w) *cb); % diag is used in the event >1 base
% excitation is present

delZc=delKc+i*omega(w)*del-Cc-omega(wyA2*deLMc;

delZ=-[ del-Zc zeros (size(deLZc, 1),size(deLZb,2))

zeros(size(deLZb,l1),size(deLZc,2)) delZb];

% Base excitation Frequency synthesis equation

Hey~star(:,w)=(IHeb*del_Zb -Hez*del Z*inv(eye(size(Hzz, 1))+Hzz*del-Z)*...
Hzb*delZb)*ones(1 ,length(bset))Y;

if inp-type=--1 & resp tye2
Hey-star(:,w) = Hey-star(:,w)*(-omega(W)A2);

elseif inp, ype==2 & respjypV=
Hey-star(:,w) = Hey-star(:,w)*(- 1/omega(w)A2);

end

% Classical method of calculating the FRF by reassembling [Z] and taking the
% inverse.

ll1=eye(size(Mc, 1));
YV=ones(1 ,ndot)';
Z C=(K c+i*omega(w)*C c omega(W)A2*M C):
H c--inv(Zsc);
FCV-(:,w') =(HE-c*(Kb+i*omega(w)*Cb))*YV;

if inp-type=--l & resp..type=-2
HVý-c(:,w) = HVsc(:,w)*(-omega(W)A2);

elseif inp-type=--2 & respjtype==l
HVý-c(:,w) = HK-s(:,w)*(-1/6mega(w)A2);

end
end
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% Plotting of FRF using Classical & Frequency Synthesis Methods

semilogy(freq,abs(HVsc(resp...of,:)),'r--',freq,abs(Hey...star(frfjindex, :)),'b')
title([7Frequency Response Function (H',int2str(resp-dof),Y)'I

if inp-type==1 & resp-type=2
ylabel(QFRF Amplitude (g/in)').

elseif inp-type==2 & resp-type==1
ylabel(¶FRF Amplitude (iri/g)')

else
ylabel(FRF Amplitude (unitless)')

end
xlabel(Trequency (Hz)')

legend('Classical','Syndiesis')

change-model--input('Would you like to change your model again? Il=yes 2=noY)
end
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I fsynmain.m I

"% This program is designed to calculate the new FRFs of a system after changes in the
"% mass, stiffness, and damping matrices have been made. The new FRFs will be
"% calculated using the synthesis method in the frequency domain.

clear

"% loads the baseline structure to be modified, allows for modifications to the baseline
"% structure, and calls the function deltam

load change

% Designation of the frequency range and step size

% initial step size end

freqinput = [ .01 1 250+.01 ];
freq=freq-jnput(1):freq-input(2):freq input(3);
omega=2*pi*freq;

[wn,phi,zeta,Mmodal,phi-norm,Cmodal] = modal(M,K,C);
[hee] = frfmodal(wn,phi,zeta,Mmodal,omega,eset);

[h~star] = frfsynth(hee,kb,cb,omega,excite,eset,iset,bset,delKcdelCc,delMc);

% Choosing the type of input and output FRF interested in

if excite==2
inp vype=input('Is the base excitation in the form of: 1=displacement or 2=acceleration

resp-type-input('What type of response are you interested in: 1=displacement or
2=acceleration ');

if inp-type==1 & resp-type-=2
h_star = h-star * (-omega(w)A2);

elseif inp-type=--2 & resp-type==l
h_star = hstar * (-1/omega(w)A2);

end
end

resp-dof=input('What response dof are you interested in? ');

if excite=2
inp-dof=];

else
inp-dof=input( What input dof are you interested in? )

end
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[H-starjdesired] = frf-sift(eset~resp-slof~inpjlof~excite,h-star);

semilogy(freq',abs(H~star -desired),'g')
title(['Synthesized Frequency Response Function H',int2str([resp-lof inp-dof]) I
if inp ype==l1 & resp-type==2

ylabel('FRF Amplitude (g/in)')
elseif inp-type==2 & resp..sype=1l

ylabel(CFRF Amplitude (inlg)')
else

ylabel(FRF Amplitude (unidless)')
end
xlabel(CFrequency (rad/s)')
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"% This program provides for the loading of the baseline structure, accepts the user changes
"% to the [M], [K], and [C] matrices, calls the function delta.m, and stores this information
"% to be loaded from another program.

clear

changek=2; changec=2; changem=2; % initializes logic variables
% to 'no'

status

flag-k--O; flagOc---; flagm=O;

chk=O; chc=O; chmi=O; % initializes counter for # of changes to matrices

cset=O; bset=0l; % initializes cset matrix to zero to avoid
"% null index error if no changes are made to
"% the structure and bset to empty matrix to
"% prevent error in the event this is not a
"% base excitation and bset does not exist.

kdofl=[]; kdof2=[l; % initalizes the matrices which keep
cdofl=[]; cdof2=0; % track of the dofs where changes occur
mdof=0;

llk=O; lc=O; lm=O; % initializes the value of added prarmeters

kbO--O; cbO=O; % initializes kb and cb to zero to prevent error in the event
% this is not a base excitation and kb & cb does not exist.

b=num2str('b'); % allows b to be entered as a numerical value, but
% declares b a string variable to used for
% comparisons in logic statements.

disp('Are there already reduced FRF & IRF matrices in the correct format available,')
disp('or does the presynthesized FRF &IRF matrices need to be generated using the dof')
disp('locations where you desire to change the structure? ')
FRFIRF=input('l=reduced FRF/IRF already exists 2=generate reduced FRF/IRF ');

% Protects against user making an error in choosing how FRF & IRF is obtained.

if FRFIRF-=[l 2]
while FRF IRF-=[1 2]

disp('Error in choosing how FRF/IRF is obtained. Choose 1 or 2.')
FRFIRF=input(' 1--reduced FRF/IRF already exists 2=generate reduced FRF/IRF ');

end
end
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% Loading the presynthesized FRF/IRFs, corresponing frequency vector, and vector of
% dofs in the eset if reduced FRF/IRF already exists. Loading of M, K, & C matrices if
% FRF/IRF needs to be generated

if FRFIRF=-1
disp('Select the file which contains your presynthesized FRF/IRFs, a corresponding

frequency ')
disp('vector, and the vector of all the dofs that will be in your eset vector.')
pause(2)
[hee dofsomega,p]=uigetfile('*.mat','Load [FRF], [IRF], {dofs), (omega)');

load (hee-d.dofsomega)

else
disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)
[M_KC,p]=uigetfile('*.mat','Load [M], [K], [C]');

load (MKC)
dofs= 1 :ndof;

end

excite---input(How is the structure excited? l=system 2=base ');

% Protects against user making an error in choosing the type of excitation.

if excite-=[1 2]
while excite--=[1 2]

disp(Error in choosing type of excitation. Choose 1 or 2.')
excite=input('How is the structure excited? l=system 2=base ');

end
end

if excite==2
% Designation where base excitation is located.

bset=input('At what dof(s) are your structure excited? ');

% Protects against user making an error in choosing the location of the base excitation.

for bdof=1 :length(bset)
if bset(bdof)--dofs

while bset(bdof)-=dofs
fprintf('Error in choosing location of base excitation at dof %g.\n',...

bset(b-dof))
disp('Either the dof chosen does not exist on your structure, or is not')
disp('included in your list of dofs for the eset vector. ')
bset(bQdof)=input(fprintf('Choose again the dof for base exitation %g ',...

b-dof));
end
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end
end

% Designation of the spring constant which connects the substructure to the base and
% protection against user making an error in choosing the value of the constant(s).

for b.spring= 1:length(bset)
kbO(b-spring)--input(fprintf('input the value of the spring constant which connects dof

%g to the base ',bset(b._spring)));
kbOzero=find(kbO--=O- );
if length(kbO)-=b..spring I kbOzero-=[-

while length(kbO)-=b-spring I kbOQzero-[ ]
fprintf('You made an error in entering the value for dof %g base

excitation spring constant.\n',bset(b..spring))
kbO(b-spring)=O;
kbO(b..spring)=input(fprintf('Re-input the value of the spring constant

which connects dof %g to the base ',bset(b..spring)));
kbOzero=find(kbO=O);

end
end

end

cbO=zeros(1,length(bset)); % initializes the damper constant which connects the
% substructure to the base which is moving, to zero.

end

changek=input( Would you like to make stiffness modifications to the structure? 1=yes
2=no ');

while changek=1

% Designation of the spring change and protection against user making an error in
% choosing the value of the constant(s).

chk=chk+l; % counter for determining # changes to stiffness matrix.
lk(chk)--input('input value of added spring (bs/in) ');
if length(lk) -chk

while length(lk)-=chk
disp('You made an error entering the value for the stiffness change.')
lk(chk)=-O;
lk(chk)--input('Re-input value of added spring (lbs/in) ');

end
end

"% User selection of where stiffness changes occur. Protects against user making an
"% error in choosing the locations of spring changes.

kdofl(chk)--input('input dof where 1 st end of added spring is applied ');
if kdofl (chk)-=dofs

while kdofl (chk)-=dofs
disp('Error in choosing location of 1st end of added spring. Either the dof

chosen does')
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disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
kdofl (chk)=input(Re-input constrained dof where 1 st end of added spring is

applied ');
end

end

kdof2(chk)--input('input dof where 2nd end of added spring is applied, b for base, or 0
for ground ');

if kdof2(chk)--dofs & kdof2(chk)--0 & kdof2(chk)-='b'
while kdof2(chk)-=dofs & kdof2(chk)---0 & kdof2(chk)-='b'

disp(Error in choosing location of 2nd end of added spring. Either the dof
chosen does')

disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
kdof2(chk)=input('Re-input dof where 2nd end of added spring is applied, b for

base, or 0 for ground ');
end

end

if excite=1 & kdof2(chk)='b'
while excite==l & kdof2(chk)-V'b'

disp(Error in choosing location of 2nd end of added spring. You did not
designate this')

disp('as a base excitation structure. Therefore b is not a dof option.')
kdof2(chk)=input('Re-input dof where 2nd end of added spring is applied, b for

base, or 0 for ground ');
end

end

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. This should be handled when asked where the structure is excited.

if excite==2 & kdofl(chk)-=bset & kdof2(chk)=-'b'
while kdofl (chk)-=bset & kdof2(chk)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
model-change=input('Was this change correct? 1=yes 2=no ');
if model.change=-- 1

error('Go back and change your basic model.')
else

kdofl(chk)=input('Re-input constrained dof where 1st end of added spring is
applied ');

kdof2(chk)=input('Re-input dof where 2nd end of added spring is applied, b
for base, or 0 for ground ');

end
end

end
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% Provision for base spring constant changes to not be included in the cset matrix.

if excite=2 & (find(kdofl (chk)==bset))-=[] & kdof2(chk)=='b'
cset=cset;

else
if kdofl(chk)--cset % comparison of change dof with the c-set

cset=[cset kdofl (chk)]; % matrix and formation of new c-set matrix.
end
if kdof2(chk)--cset

cset=[cset kdof2(chk)];
end

end

changek--input('Are there any other stiffness modifications to the structure? 1=yes 2=no');
end

changec=input( Would you like to make damping modifications to the structure? 1=yes
2=no ');
while changec=1

% Designation of the damper change and protection against user maldng an error in
% choosing the value of the constant(s).

chc=chc+l; % counter for determining # changes to damping matrix.
lc(chc)--input('input value of added damper (lbs-secfm) ');
if length(lc)--chc

while length(lc)-=chc
disp('You made an error entering the value for the damper change.')
lc(chc)--0;
lc(chc)--input('Re-input value of added damper (lbs-sec/in) ');

end
end

% User selection of where damper changes occur. Protects against user making an error
% in choosing the locations of damper changes.

cdofl (chc)--input('input constrained dof where 1st end of added damper is applied ');
if cdofl (chc)-=dofs

while cdofl (chc)-=dofs
disp(_'Eror in choosing location of 1st end of added damper. Either the dof

chosen does')
disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
cdofl (chc)--input('Re-input constrained dof where 1st end of added damper is

applied ');
end

end

cdof2(chc)=input('input dof where 2nd end of added damper is applied, b for base, or 0
for ground '),
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if cdof2(chc)--dofs & cdof2(chc)-=O & cdof2(chc)-='b'
while cdof2(chc)-=dofs & cdof2(chc)-=O & cdof2(chc)-='b'

disp('Error in choosing location of 2nd end of added damper. Either the dof
chosen does')

disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
cdof2(chc)=input('Re-input dof where 2nd end of added damper is applied, b for

base, or 0 for ground ');
end

end

if excite=--= & cdof2(chc)=-'b'
while excite==l & cdof2(chc)=="b'

disp(Error in choosing location of 2nd end of added damper. You did not
designate this')

disp('as a base excitation structure. Therefore b is not a dof option.')
cdof2(chc)--input(Re-input dof where 2nd end of added damper is applied, b for

base, or 0 for ground ');
end

end

% Let's the user know that he is not allowed to make dof(s) to the base changes which
% are not included in the bset. A change from these dof to base constitutes an addition
% of excitation points. This should be handled when asked where the structure is
% excited.

if excite==2 & cdofl (chc)-=bset & cdof2(chc)=='b'
while cdofl(chc)-=bset & cdof2(chc)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
model-change=input('Was this change correct? l=yes 2=no ');

if model change=1
error('Go back and change your basic model.')

else
cdofl (chc)=input('Re-input constrained dof where 1st end of added damper is

applied ');
cdof2(chc)=input('Re-input dof where 2nd end of added damper is applied, b

for base, or 0 for ground ');
end

end
end

% Provision for base damper constant changes to not be included in the cset matrix.

if excite==2 & (find(cdofl (chc)==bset))-=[] & cdof2(chc)=-b'
cset=cset;

else
if cdofl (chc)--cset % comparison of change dof with the c-set

cset=[cset cdofl(chc)]; % matrix and formation of new c-set matrix.
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end
if cdof2(chc)--cset

cset=[cset cdof2(chc)];
end

end

changec=input('Are there any other damping modifications to the structure? l=yes 2=no');
end

changem=input( Would you like to make a mass modification to the structure? 1=yes
2=no');
while changem=1

% Designation of the mass change and protection against user making an error in
choosing the

% value of the constant(s).

chmi=chm+ 1; % counter for determining # changes to mass matrix.
lm(chm)-input('input value of added mass lbs-secA2/in) ');
if lengthIm)-=chm

while length(lm),-chm
disp('You made an error entering the value for the mass change.')
lm(chm)=O;
lm(chm)=input(Re-input value of added mass (lbs-secA2/in) ');

end
end

"% User selection of where mass changes occur. Protects against user making an error in
"% choosing the locations of mass changes.

mdof(chm)=input('input constrained dof where mass is added ');
if mdof(chm)--dofs

while mdof(chm)--dofs
disp(Trror in choosing location of mass change. Either the dof chosen does

not')
disp('exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ')
mdof(chm)=input('input constrained dof where mass is added ');

end
end

if mdof(chm)~=cset % comparison of change dof with the c-set matrix
cset=[cset mdof(chm)]; % and formation of new c-set matrix.

end

changem=input('Are there any other mass modifications to the structure? l=yes 2=no ');
end

% Handling of spring added to ground to eliminate zero from cset
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ground = find(cset---0);
cset(ground) = [];

disp(TIhe following is a list of dofs were you have made changes to your structure.')
disp(This represents your (cset) vector:')
disp(cset)

"% Formulation of iset matrix which is the set of dofs other than
"% those in the cset matrix where response information is desired.

if FRFIRF•=1
disp('Since you inputed your own FRF/IRF matrices, your iset is chosen as all dofs

remaining')
disp('in your eset/dof vector after extracting the cset vector.')
iset=dofs;
for a=l :length(cset)

extract(a)=find(cset(a)==dofs);
end
iset(extract)=[];

else
iset=input('What dofs other than those where change occured, are you interested in? ');

end

% Formation of zset (c U b) and eset (i U c U b) matrices.

zset=[cset bset]; eset=[iset cset bset];

[delKc,delCc,delMckb,cb] =
delta(cset,bset,kdofl ,kdof2,lk,cdofl,cdof2,lc,mdof,lm,kbO,cbO);

save change M K C ndof delKc delCc delMc kb cb iset cset bset zset eset excite
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moja]
function [wn,phi,zeta,Mmodal~phinorm,Cmodal] = modal(M,K,C)

% This function is designed to calculate the natural frequencies and
% mode shapes

ndof=size(M, 1);
[PIHI,lam]1=eig(M\ýK);
for j=l :ndof,

lambdaOj)=lam~jj);
end
[wn,I]=sort(sqrt(lambda));
wn--rot9O(wn,- 1);
for j=l :ndof;

phi(: j)=PHI(:,Ioj));
end

% Formulation of modal mass and damping matrices

Mmodal=phi'*M*phi;
phi-norm=phi/(Mmodal.A.5);
Mmodal=diag(Mmodal);
Cmodal=phi'*C*phi;
Cmodal=diag(Cmodal);
%zetaO=O.O;
%zeta=zetaO*ones(l,length(Cmodal)); % Constant modal damping ratio

zeta=-Cmodal./(2*Mmodal.*wn); % Modal damping ratio derived
% from proportional damping matrix [C]
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frfmodal.m

function [h] = frfmodal(wn,phi,zeta,Mmodal,omega,frf-dof)

"% This function is designed to calculate the FRF using mode shapes and
"% summing the FRF over a number of modes.

ncol=(length(frftdof)*(length(frf-dof)+l))/2;

% Calculation of frequency response function

h=zeros(length(omega),ncol); % Initialization to zero, and sizing
% of the freq x lower

triangle matrix.

h_old--O; h-new=O; % initialization of the matrices to
"% be used to determine when modal
"% convergence has occured.

h_check=1; % Initialization of the stop criteria for summing the
"% modes

nmodes=size(phi); b=O; % Defining the number of modes that exist and
"% initializing b which keeps track of the
"% of modes used for convergence of the FRF.

HOdprime aa=zeros(length(frf-dof));

for b=l :nmodes

% Elimination of unnessecary elements and rearrangement of original
% mode shapes (phi) to form (phi-red) and [numjred] which is now an
% frf_dof x frf_dof matrix.

numrred=phi(frfdofb)*phi(frfdofb)';
for w=l :length(omega)

den=(wn(b)A2 - omega(w)A2 + 2*i*zeta(b)*wn(b)*omega(w))*Mmodal(b);
H_red=nurnmred./den;

% Changes the [Hjred] FRFs from an frf_dof x frfdof matrix to
% a freq x lower triangle matrix.

H_!owtri=tril(Hred); % pulls out the lower triangle
% and places zeros everywhere else

symtry = find(Hlowtri==O); % finds zero values in the
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% lower triangle matrix

H lowtri(symtry) = 0; % deletes all values of zero and
% turns the remaining elements
% into a 1 x length(lower triangle)
% vector

h_mode(w,:)=Hjlowtri; % saves the lower triangle vector
% at each freq. These FRFs are for
% a single mode only.

end

h h + hmode; % Summing of each modal FRF

end
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I frfsynth~

function [hLstar] = frfsynth(hee~kb,cb,omega,excite,eset,iset,bset,....
delKc~deL-Cc~delMc)

"% This function is designed to calculate the new FRF using the synthesis
"% method.

for w=1 :length(omega)
count=-O; % initializes the counter which keeps track of

% which column of the bee matrix is to be
% placed into the refomnation of matrix [flee]

for col = 1 :length(eset) % reforms the [flee] lower
for row = col:length(eset) % triangle matrix

count=count + 1;
Hee-lowtiri(row,col)=hee(w,count);

end
end

% reforms the original symmetric [flee] matrix

Hee=Hee-lowtri;
[symjrow,sym-col] = find(Hee-Iowtri--=O);
for n=1 :length(symj-ow)

Hee(sym-jow(n),symsol(n))=Hee(symc-ol(n),symryow(n));
end

e=1 :length(eset);
c=length(iset)+1 :length(eset)-length(bset);
b=length(eset)-length(bset)+1 :length(eset);
z=length(iset)+1 :length(eset);

"% Rearrangement of [flee] to form [Hec], [ficci, [fice] if the structure
"% is system excited.

if excite==1
Hec=Hee(e,c);
Hce=Hee(c,e);
Hcc=Hee(c,c);

end

% Rearrangement of [flee] to form [Heb], [Hez], [fizz], [Hzb] if the
% structure is base excited.

if excite==2
Heb=Hee(e,b);
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Hez=Hee(e,z);
Hzz=Hee(z,z);
Hzb=Hee(z,b);

end

% Formation of [deLZc], [deLZb] & [delZ]

delZc=delKc+i*omega(w)*delCc-omega(w)A2*delMc;

if excite-=2
delZb=diag(kb+i*omega(w)*cb); % diag is used in the event

% >1 base excitation
% is present

delZ=[ del_Zc zeros(size(deLZc, 1),size(deLZb,2))
zeros(size(delZb, 1),size(deLZc,2)) del_Zb];

end

% Determining which synthesis equations are to be used

if excite==1

% Structure excitation Frequency synthesis equation

H_star=Hee-Hec*delZc*inv(eye(size(Hcc, 1)) + Hcc*del_Zc)*Hce;

else
% Base excitation Frequency synthesis equation

h star(:,w)=(Heb*del_Zb -
Hez*delZ*inv(eye(size(Hzz, 1))+Hzz*delZ)*Hzb*delZb)*ones(1,length(bset))';

end

if excite=-1

"% Changes the [I-*] FRFs from an eset x eset matrix to a freq x lower
"% triangle matrix, and creates an index matrix which keeps track of
"% the original coordinates of the FRFs in the [H*] matrix.

Hstarlowtri=tril(HWstar); % pulls out the lower triangle and places
% zeros everywhere else

symtry = find(Hstarlowtri=--O); % finds zero values in the lower
% triangle matrix

Hstarlowtri(symtry) = [; % deletes all values of zero and turns the
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% remaining elements into a 1 x length(lower

% triangle) vector

h-star(w,:)=Hstar-lowtri; % saves the lower triangle vector at each freq

end
end

if excite==1

"% changes hstar matrix so freqs are in each column and the FRFs are
"% in the rows

h~star=flipud(rot90(h~star));

end
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frfsift.m

function [H-stardesired] = frfsift(eset,resp-dofinp_.Oofexcite,hstar)

"% Locates the positions in the eset that the response and input dofs are referring.
"% These locations correspond to the matrix location row and column of the desired
"% FRF in the [H*] matrix which is eset x eset and partitioned. Or these locations
% refer to the row of the [H*] matrix which is eset x 1 for a base excitation.
% These indices sift through the [h*] matrix rows to find the desired FRF.

"% Creates an index matrix which keeps track of the original coordinates of the FRFs
"% in the [HIstar] matrix.

count=0, % initializes the counter which keeps track of
"% which column of the h matrix the lower triangle [HLred]
"% FRF went into

for col = 1:length(eset) % creates a matrix which matches up
for row = col:length(eset) % each element of the lower triangle

count=count + 1; % H_star matrix with the rows in the
hstarindex(count,:)=[row col]; % hstar matrix that they were placed in.

end
end

frf_index=find(eset=---respjdof I eset----inp-dof);

% prevents index error in the event response dof and input dof are the same

if resp-dof==inpdof
frfindex=[frl index frf index];

end

if excite== 1

"% Uses hstarindex and finds the row in the lower triangle x freq matrix that the
"% desired FRF is located.

frf_row=find((frfindex(1)=--hstar_index(:,l) & frf index(2)==hstarindex(:,2)) I
(frfindex(1)==hstarindex(:,2) & frf index(2)==hstarindex(:,l)));

H_stardesired = hstar(frfrow,:);

else
H_stardesired = h_star(frfindex,:);

end
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APPENDIX B. STATIC DISPLACEMENT SYNTHESIS COMPUTER

CODES

The following is a list and a brief description of the main MATLAB

computer codes that were written in order to perform the static displacement

synthesis calculations.

"* Guyan xstat.m - uses Guyan reduction methods to calculate the static

displacements on a structure.

"* ssynmain.m - the main program which calls the modularized static

displacement synthesis programs and does the post processing of the

results.

"* statchange.m - loads the baseline structure to be modified, allows for

modifications to the baseline structure, and calls the function statdelta.m

"* statdelta.m - forms the modification matrices which will be used to form

impedance matrices.

"* modal.m - solves for the structure's natural frequencies, mode shapes and

other modal matrices and vectors.

"* frfmodal.m - calculates the structure's FRFs.

"* statsynth.m - performs the synthesis on the baseline structure and returns

the synthesized static displacements.

The full codes are contained on subsequent pages. Any codes that were
previously presented will not be repeated.
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IGuyan_xstat~

"% The purpose in this program is to use Guyan reduction methods in order to calculate the
"% static sisplacements, on a structure.

clear

load fe-add

% Stiffness changes to the structure

K(3,3)=K(3,3)-1000; K(18,18)=K(18,18)-1000;
K(93,93)=K(93,93)- 1000; K(108, 108)=K(1 08,108)- 1000;

K(3,3)=K(3,3)+1e4; K(18, 18)=K(1 8,1 8)+1e4;
K(93,93)=K(93,93)+l1e4; K( 108, 108)=K(108, 108)+l1e4;

K(66,66)=K(66,66)+500; K(109, 109)=K(109, 109)+500;
K(66, 109)=K(66, 109)-500; K(109,66)=K( 109,66)-500;
tic
g=ones(size(M, 1), 1)*(-386.4);
for rot=1 :3:size(M,1)-3
g(rot)=0;
end
for rot=2:3:size(M, 1)-2

g(rot)=0O;
end

F=M*g;

dofset=1 :ndof;

oset=dofset;
aset=[3 18 93 108 66 109];
for a=1 :length(aset)

kIll(a)=find(aset(a)==dof~set);
end
oset(kill)=fl;
nset=[aset oset];

Knn=K(nset,nset); Fnn=F(nset);
Kaa=K(aset,aset); Kao=K(aset,oset); Koo=K(oset,oset); Koa=K(oset,aset);
Toa=(-l1)*inv(Koo)*Koa;
T=[eye(length(aset));Toa];

Kred -Guyan=T'*Knn*T; FredGuyan=T'*Fnn;
xstatLGuyan=KredLGuyan\Fred Guyan;
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Issynmain.m
"% This program is designed to calculate the new static displacements of a system after
"% changes in the mass, stiffness, and damping matrices have been made. The new static
"% displacements will be calculated using the static displacement synthesis method

clear

load statchange
stat_omega=. 1 :.1:.4;
C=zeros(size(C));

[stat wn,statphi,stat-zetastatMmodal] = modal(MK,C);
tO = clock,
[stathee] = frfmodal(staLwn,staLphi,statzeta,statMmodal,staLomega,eset);

[zstat,Fred,Kred,Mred,Hstar0_dp] = statsynth(stat-heekbstacomega,eset,iset,bset,....
del KcdeLMc);

tl = clock;
stat_syn_.ime=etime(tl ,tO)
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statchange.m

"% This program provides for the loading of the baseline structure, accepts the user changes
"% to the [M], [K], and [C] matrices, calls the function statdelta.m, and stores this
"% information to be loaded from another program.

clear

changek=2; changec=2; changem=2; % initializes logic variables
% to 'no'

status

flag k=0; flagOc---; flag__m=O;

chk--O; chc=O; chm--O; % initializes counter for # of changes
% to matrices

cset=O; bset=D; % initializes cset matrix to zero to avoid
% null index error if no changes are made to
% the structure and bset to empty matrix to
% prevent error in the event this is not a
% base excitation and bset does not exist.

kdofl=[]; kdof2=0; % initalizes the matrices which keep
cdofl=[]; cdof2=[]; % track of the dofs where changes occur
mdof=[];

lk=O; lc=O; lm=O; % initializes the value of added prarmeters

kbO--O; cb=O; % initializes kb and cb to zero to
% prevent error in the event this is not a
% base excitation and kb & cb does not exist.

b=num2str('b'); % allows b to be entered as a numerical value, but
% declares b a string variable to used for
% comparisons in logic statements.

"% Used to set the range of possible dofs for the user to choose when making changes
"% to his structure.

disp('Is there already a reduced FRF matrix in the correct format available,')
disp('or does the presynthesized FRF matrix need to be generated using the dof')
disp('locations where you desire to change the structure? ')
FRF=input('l---reduced FRF already exists 2=generate reduced FRF ');

% Protects against user making an error in choosing how FRF is obtained.

142



if FRF--=[1 2]
while FRF-=[1 2]

disp('Error in choosing how FRF is obtained. Choose 1 or 2.')
FRF--input('l--,reduced FRF already exists 2=generate reduced FRF ');

end
end

% Loading the presynthesized FRFs, corresponing frequency vector, and vector of dofs in
% the eset if reduced FRF already exists. Loading of M, K, & C matrices if FRF needs to
% generated

if FRF=1
disp('Select the file which contains your presynthesized FRFs, a corresponding

frequency ')
disp('vector, and the vector of all the dofs that will be in your eset vector.')
pause(2)
[hee dofsomega,p]=uigetfile('*.mat','Load [FRF], {dofs), (omega)');

load (hee..dofsomega)

else
disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)
[MKC,p]=uigetfile('*.mat','Load [M], [K], [C]');

load (MKC)
dofs= 1 :ndof;

end

excite=input(How is the structure excited? 1=system 2=base ');

% Protects against user making an error in choosing the type of excitation.

if excite-=-[1 2]
while excite-=[1 2]

disp('Error in choosing type of excitation. Choose 1 or 2.')
excite=input('How is the structure excited? 1=system 2=base ');

end
end

if excite=2
% Designation where base excitation is located.

bset--input('At what dof(s) are your structure excited? ');

% bset=l;

% Protects against user making an error in choosing the location of the base excitation.

for bdof=l:length(bset)
if bset(bjdof)--dofs

while bset(b-dof)-=dofs
fprintf(tError in choosing location of base excitation at dof %g.\n',...
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bset(bjdof))
disp(Either the dof chosen does not exist on your structure, or is not')
disp('included in your list of dofs for the eset vector. ')
bset(bdof)=input(fprintf('Choose again the dof for base exitation %g ',...

b_dot));
end

end
end

% Designation of the spring constant which connects the substructure to the base which
is moving.

% and protection against user making an error in choosing the value of the constant(s).

for b-spring-l :length(bset)kbo(brspring)=input(fprintf('input the value of the spring constant which connects dof

%g to the base ',bset(b-spring)));
kbOzero=fmd(kbO---O);
if length(kbO)-=-b-spring I kbOzero-=[]

while length(kbO)-=b~spring I kbO0_ zero-=[
fprintf('You made an error in entering the value for dof %g base

excitation spring constant.',bset(bspring))
kbO(bspring)=O;
kbO(b~spring)=input(fprintf('Re-input the value of the spring constant

which connects dof %g to the base ',bset(b-spring)));
kbOzero=find(kbO==O);

end
end

end

cb=zeros(1,length(bset)); % initializes the damper constant which connects the
% substructure to the base which is moving, to zero.

end

changek=input( Would you like to make stiffness modifications to the structure? 1=yes
2=no ');
while changek==l

% Designation of the spring change and protection against user making an error in
choosing the

% value of the constant(s).

chk=chk+l; % counter for determining # changes to stiffness matrix.
lk(chk)=input('input value of added spring (bs/in) ');
if length(lk)-.chk

while length(lk)-=chk
disp('You made an error entering the value for the stiffness change.')
lk(chk)--O;
lk(chk)=input('Re-input value of added spring (lbs/in) ');

end
end
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% User selection of where stiffness changes occur. Protects against user making an
%error in choosing
% the locations of spring changes.

kdofl (chk)=input('input constrained dof where 1 st end of added spring is applied ');
if kdofl(chk)-=dofs

while kdofl (chk)-=dofs
disp(Error in choosing location of 1st end of added spring. Either the dof

chosen does')
disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
kdofl (chk)=input(Re-input constrained dof where 1st end of added spring is

applied ');
end

end

kdof2(chk)-input('input dof where 2nd end of added spring is applied, b for base, or 0
for ground ');

if kdof2(chk)-=dofs & kdof2(chk)---0 & kdof2(chk)-='b'
while kdof2(chk)-=dofs & kdof2(chk)---0 & kdof2(chk)-='b'

disp(Error in choosing location of 2nd end of added spring. Either the dof
chosen does')

disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
kdof2(chk)--input('Re-input dof where 2nd end of added spring is applied, b for

base, or 0 for ground ');
end

end

if excite==1 & kdof2(chk)=='b'
while excite==l & kdof2(chk)=='b'

disp(Error in choosing location of 2nd end of added spring. You did not
designate this')

disp('as a base excitation structure. Therefore b is not a dof option.')
kdof2(chk)=input('Re-input dof where 2nd end of added spring is applied, b for

base, or 0 for ground ');
end

end

% Let's the user know that he is not allowed to make dof(s) to the base changes which
% are not included in the bset. A change from dof to base constitutes an addition of
% excitation points. This should be handled when asked where the structure is excited.

if excite=--=2 & kdofl1 (chk)-=bset & kdof2(chk)=='b'
while kdofl (chk)-=bset & kdof2(chk)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
modeLchange=input( Was this change correct? 1=yes 2=no ');

if model-change==1
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error('Go back and change your basic model.')
else

kdofl (chk)=input('Re-input constrained dof where 1st end of added spring is
applied ');

kdof2(chk)--input('Re-input dof where 2nd end of added spring is applied, b
for base, or 0 for ground ');

end
end

end

% Provision for base spring constant changes to not be included in the cset matrix.

if excite=-2 & (find(kdofl (chk)==bset))-=[] & kdof2(chk)=='b'
cset=cset;

else
if kdofl(chk)--cset % comparison of change dof with the c-set

cset=[cset kdofl(chk)]; % matrix and formation of new c-set matrix.
end
if kdof2(chk)--cset

cset=[cset kdof2(chk)];
end

end

changek--input('Are there any other stiffness modifications to the structure? 1=yes 2--no

end

changec=input( Would you like to make damping modifications to the structure? l=yes
2=no ');
while changec=l

% Designation of the damper change and protection against user making an error in
choosing the

% value of the constant(s).

chc=chc+l; % counter for determining # changes to damping matrix.
lc(chc)--mput('input value of added damper (lbs-sec/in) ');
if length(lc)--chc

while length(lc)-=chc
disp('You made an error entering the value for the damper change.')
lc(chc)=O;
lc(chc)=input('Re-input value of added damper (Ibs-sec/im) ');

end
end

"% User selection of where damper changes occur. Protects against user making an error
"% in choosing the locations of damper changes.

cdofl (chc)=input('input constrained dof where 1 st end of added damper is applied ');
if cdofl (chc)-=dofs
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while cdofl (chc)-=dofs
disp(TError in choosing location of 1st end of added damper. Either the dof

chosen does')
disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ' )
cdofl (chc)=input('Re-input constrained dof where 1st end of added damper is

applied ');
end

end

cdof2(chc)-input('input dof where 2nd end of added damper is applied, b for base, or 0
for ground ');

if cdof2(chc)--dofs & cdof2(chc)---O & cdof2(chc)-='b'
while cdof2(chc)--dofs & cdof2(chc)---O & cdof2(chc)-='b'

disp(Error in choosing location of 2nd end of added damper. Either the dof
chosen does')

disp('not exist on your structure, or is not included in your list of dofs for the')
disp('eset vector. ')
cdof2(chc)=input('Re-input dof where 2nd end of added damper is applied, b for

base, or 0 for ground ');
end

end

if excite==1 & cdof2(chc)=--'b'
while excite==1 & cdof2(chc)=='b'

disp('Error in choosing location of 2nd end of added damper. You did not
designate this')

disp('as a base excitation structure. Therefore b is not a dof option.')
cdof2(chc)-input('Re-input dof where 2nd end of added damper is applied, b for

base, or 0 for ground ');
end

end

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from these dof to base constitutes an addition

of
% excitation points. This should be handled when asked where the structure is excited.

if excite==2 & cdofl(chc)-=bset & cdof2(chc)='b'
while cdofl(chc)-=bset & cdof2(chc)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp('If this is what you desire, go back and include this dof as an excitation

point.')
model-change=input( Was this change correct? 1=yes 2=no ');

if model change==1
error('Go back and change your basic model.')

else
cdofl (chc)=input('Re-input constrained dof where 1st end of added damper is

applied ');
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cdof2(chc)=input('Re-input dof where 2nd end of added damper is applied, b
for base, or 0 for ground ');

end
end

end

% Provision for base damper constant changes to not be included in the cset matrix.

if excite=2 & (f'md(cdofl(chc)==bset))-=f] & cdof2(chc)="b'
cset=cset;

else
if cdofl (chc),-cset % comparison of change dof with the c-set

cset=[cset cdofl(chc)]; % matrix and formation of new c-set matrix.
end
if cdof2(chc)--cset

cset=[cset cdof2(chc)];
end

end

changec=input('Are there any other damping modifications to the structure? 1=yes 2=no

end

changem=input('Would you like to make a mass modification to the structure? l=yes 2=no

while changem=l

% Designation of the mass change and protection against user making an error in
choosing the

% value of the constant(s).

chm=chm+l; % counter for determining # changes to mass matrix.
lm(chm)=input('input value of added mass (bs-secA2/in) ');
if length(lm)-=chm

while length(lm)-chm
disp('You made an error entering the value for the mass change.')
lm(chm)=O;
lm(chm)=input(Re-input value of added mass (lbs-secA2/in) ');

end
end

"% User selection of where mass changes occur. Protects against user making an error in
"% choosing the locations of mass changes.

mdof(chm)=input('input constrained dof where mass is added ');
if mdof(chm)-=dofs

while mdof(chm)--dofs
disp('Error in choosing location of mass change. Either the dof chosen does

not')
disp('exist on your structure, or is not included in your list of dofs for the')
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disp('eset vector. ')
mdof(chm)=input('input constrained dof where mass is added ');

end
end

if mdof(chm)-=cset % comparison of change dof with the c-set matrix
cset=[cset mdof(chm)]; % and formation of new c-set matrix.

end

changem-input('Are there any other mass modifications to the structure? 1=yes 2=no ');
end

% Handling of spring added to ground to eliminate zero from cset

ground = find(cset----);
cset(ground) = [];

disp("The following is a list of dofs were you have made changes to your structure.')
disp('This represents your (cset) vector:')
disp(cset)

"% Formulation of iset matrix which is the set of dofs other than
"% those in the cset matrix where response information is desired.

if FRF=--=
disp('Since you inputed your own FRF matrix, your iset is chosen as all dofs remaining

disp('in your eset/dof vector after extracting the cset vector.')
iset=dofs;
for a=1 :length(cset)

extract(a)=find(cset(a)==dofs);
end
iset(extract)=[];

else
iset=input('What dofs other than those where change occured, are you interested in? ');

end

% Formation of zset (c U b) and eset (i U c U b) matrices.

zset=[cset bset]; eset=[iset cset bset];

[deLKc,delMc,kbl = statdelta(cset,bset,kdofl,kdof2,lk,mdoflm,kbO);
save statchange M K C ndof delKc delMc kb iset cset bset zset eset excite
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[3jtdelta~)

% The purpose of this function is to form the modification matrices

function [deLKc,del-Mc~kb] = statdelta(cset,bset,kdof 1 kdof2,lk,mdof~lm~kbO)

% Formation of [deLKcII, [deLCc], & [del-Mc] and updating of kb & cb

del_-Kc=zeros~length(cset)); % intializes the change matrices
delMc--zeros~length(cset)); % to zero and sets their sizes

% as [cset x cset]
matrix

kb=kbO; % initializes the base excitation spring constant
% to the initial value inputed when structure was
% formed.

if kdofl-=[]
for a=1 :length(kdofl)

if (find(kdofl(a)==bset))-=fl & kdof2(a)=='bt

base=find(kdof 1 (a)==bset);
kb(base) = kb(base) + Jk(a);

else
indexkl--fid(kdofl(a)==cset); % finds where in cset matrix
indexk2=find(kdof2(a)==cset); % the change in k occurs

del_-Kc(indexkl ,indexkl)=deL Kc(indexklindexkl) + lk(a);
del_-Kc(indexkl ,indexk2)=delKc(indexkl ,indexk2) - lk(a);
del_-Kc(indexk2,indexkl)=delKc(indexk2,indexkl) - lk(a);
delKc(indexk2,indexk2)=del Kc(indexk2,indexk2) + lk(a);

end
end

end

if mdof-=[]
for a=1l:length(mdof)

indexm--fmd(mdof(a)==cset); % finds where in cset matrix
% the change in M occurs

del -Mc(indexm,indexm)=del-Mc(indexm~indexm) + lm(a);
end

end
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statsynth~m

function [z~stat,Fred,Kred,Mred,HstarO dp] = statsynth(hee,kb,omega~eset,iset,bset,....
del-Kc,del-Mc)

% This function is designed to calculate the new static displacement using the synthesis
% method.

pull=I1;

for w=l :length(omega)
count=-O; % initializes the counter which keeps track of

% which column of the bee matrix is to be
% placed into the refomation of matrix [Hlee]

for col = l:length(eset) % reforms the [Hee] lower
for row = col:length(eset) % triangle matrix

count=count + 1;
Heeý-lowtri(row,col)=hee(w,count);

end
end

% reforms the original symmetric [Flee] matrix

Hee=Hee-lowtri;
[symnjow,syms-ol] = find(Hee-lowtri==O);
for n=l :ength(sym....ow)

Hee(sym.row(n),sym-sol(n))=Hee(sym-sol(n),symryow(n));
end

e=1 :length(eset);
c~length(iset)+l :length(eset); %-length(bset);

"% b=length(eset)-length(bset)+1 :length(eset);
"% z=~length(iset)+l :length(eset);

"% Rearrangement of [Heel to form [Hec], [Hcc], [Hce] if the structure
"% is system excited.

"% if excite== 1
Hec=Hee(e,c);
Hce=Hee(c,e);
Hcc=Hee(c,c);

% end

% Formation of [del-Zc], [deLZb] & [del-Z]
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delZc--delKc-omega(w)A2*deLMc;

delZb--diag(kb); % diag is used in the event >1 base excitation
% is present

deL-Z=[ delZc zeros(size(del-Zc,l),size(delZb,2))
zeros(size(deL-Zb, 1),size(deLZc,2)) delZb];

% Structure excitation Frequency synthesis equation

H-star--Hee-Hec*delZ*inv(eye(size(Hcc,1)) + Hcc*delZ)*Hce;

"% Checks to see if there are any redundant dofs in the eset due to changes and
"% bset occurring at the same dofs. If there is redundancy, it is located in
"% eset, and these rows and columns are deleted from H_star. This is done
"% because the redundant dof column(s) and row(s) in H-star creates a singular
"% matrix which is not invertable and Kred cannot be determilned.

for u=1 :length(bset)
locate=find(bset(u)==eset);
if length(locate) > 1

pull=[pull locate(2)];
end

end

H~star(pull,:)=EI;
H~star(:,pull)=fl;

if w=1l
Kred--inv(iE-star);
HO=H~star;

end
if w=-2

H1=I-star,
end
if w==3

H2=H-star;
end
if w==4

H3=Histar;
end
HstarOf-dp=(-H3+4*H2-5*H1 +2*HO)./(omega(2)-omega(1))A2;
Mred=.5*Kred*HstarO-dp*Kred;

end

ga=ones(size(Mred, 1),l1)*(-386.4);
Fred=Mred*ga;
z-stat=Kred\Fred;
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APPENDIX C TIME DOMAIN SYNTHESIS COMPUTER CODES

The following is a list and a brief description of the main MATLAB

computer codes that were written in order to perform the time domain

synthesis calculations.

"* tsynconv.m - performs the time domain synthesis on a structure which

experiences a base excitation. The dynamic responses are compared to the

responses calculated using the classical convolution integral method.

"* tsynode45.m - performs the time domain synthesis on a structure which

experiences a base excitation. The dynamic responses are compared to the

responses calculated using the classical direct integration method.

"* tsynmain.m - the main program which calls the modularized time

synthesis programs and does the post processing of the results.

"* change.m - loads the baseline structure to be modified, allows for

modifications to the baseline structure, and calls the function delta.m

"* delta.m - forms the modification matrices which will be used to form

impedance matrices or determine coupling forces.

"* modal.m - solves for the structure's natural frequencies, mode shapes and

other modal matrices and vectors.

"* impmodal.m - calculates the structure's IRFs.

"* buildA.m - builds the quadrature matrices.
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"* fBlastForcing.m - inputs the base excitation as a function of time.

"* timesynth.m - performs the synthesis on the baseline structure and

returns the synthesized transient responses.

"* time sift.m - selects the dynamic response that the user wants to perform

post processing on.

The full codes are contained on subsequent pages. Any codes that were
previously presented will not be repeated.
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I tsynconv

"% The purpose of this program is to perform the time domain synthesis on a structure and
"% compare the dynamic responses to those calculated using a convolution integral method.

clear

disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)

[MKC,p]=uigetfile('*.mat','Load [M], [K], [C]');
load (MKC)

dofs=l:ndof;
C--OO*C;

[wn,phi,zeta,Mmodal,phi-norm] = modal(M,K,C);

changek=2; changec=2; changem=2; % initializes logic variables
% to 'no' status

flag-k=O; flag-c--O; flag-m--O;

chk--O; chc--O; chm--O; % initializes counter for # of changes
% to matrices

cset--O; % initializes cset matrix to zero to avoid null index error in
% handling the spring to ground if no changes are made to
% the structure.

Heystar=U; HVsc=[]; % (re)initializes these matrices to an empty matrix
% to avoid matrix size differences each time the
% model is changed.

K_c=K; MSc=M; Csc=C; % initializes change matrices which will be used in
% the classical method, to the original matrices.

Kb=zeros(size(K,1)); % initializes the spring, and damper to base matrices

Cb=zeros(size(C,1)); % to zero.

K_vec = zeros(ndof,1);

b=num2str('b'); % allows b to be entered as a numerical value, but
"% declares b a string variable to used for
"% comparisons in logic statements.

clear M K C

% Designation where base excitation is located, and the spring constant which
% connects the substructure to the base which is moving.
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bset=input('At what dof(s) are your structure excited? ');
for b spring=l:length(bset);

kb(b-spring)=input(fprintf('input the value of the spring constant which connects dof
%g to the base ',bset(b..spring)));

end
cb=zeros(1,length(bset)); % initializes the damper constant which connects the

% substructure to the base which is moving, to zero.

"% Correcting the classical [K] & [Kb] matrices to include the spring element
"% connecting the substructure to the base(s).

for b-spring=l:length(bset);

K-c(bset(b-spring),bset(b-spring))=K-c(bset(b-spring),bset(b-spring))+kb(b-spring);
Kb(bset(bspring),bset(b-spring))=Kb(bset(b_spring),bset(bLspring)) +

kb(&.spring);
K_vec(bset(bIspring))=K-vec(bset(b-spring)) + kb(b-spring);

end

changek--input('Would you like to change your stiffness matrix? 1=yes 2=no ');
while changek==1

chk=chk+l; % counter for determining # changes
flag-k=1;
lk(chk)--input('input value of added spring (bs/in) ');
kdofl (chk)=input('input constrained dof where 1st end of added spring is applied ');
kdof2(chk)=input('input dof where 2nd end of added spring is applied, b for base, or

0 for ground ');

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. This should handled when asked where the structure is excited.

if kdofl (chk)%=bset & kdof2(chk)=='b'
while kdofl(chk)-=bset & kdof2(chk)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp(lf this is what you desire, go back and include this dof as an excitation

point.')
modelchange-input(Was this change correct? l=yes 2=no ');

if model_change==l
error('Go back and change your basic model.')

else
kdofl (chk)=input('input constrained dof where 1 st end of added

damper is applied ');
kdof2(chk)=input('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground ');
end

end
end
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"% updates the base spring constant and does not count these changes
"% in the cset matrix.

if (find(kdofl (chk)=--bset))-=[] & kdof2(chk)=='b'
base=fmd(kdofl(chk)=-bset);
kb(base) = kb(base) + lk(chk);
K.vec(kdofl (chk))=K-vec(kdofl (chk)) + lk(chk);

else
if kdofl(chk)-=cset % comparison of change dof with the c-set

cset=[cset kdofl(chk)]; % matrix and formation of new c-set matrix.
end
if kdof2(chk)-=cset

cset=[cset kdof2(chk)];
end

end

% Classical method of reformulatting the [K] matrix.

K-c(kdofl (chk),kdofl (chk))=Kc(kdofl (chk),kdofl (chk)) + lk(chk);
if kdof2(chk)-=O & kdof2(chk)-='b'

K c(kdofl (chk),kdof2(chk))=Ksc(kdofl (chk),kdof2(chk)) - lk(chk);
Ksc(kdof2(chk),kdofl (chk))=K__c(kdof2(chk),kdofl (chk)) - lk(chk);
K-c(kdof2(chk),kdof2(chk))=K-c(kdof2(chk),kdof2(chk)) + lk(chk);

end

% Classical method of reformulatting [Kb] matrix.

if kdof2(chk)='b'
kbb=lk(chk);
Kb(kdof1 (chk),kdofl (chk))=Kb(kdofl (chk),kdofl (chk)) + kbb;

end

changek=input('Are there any other changes to the stiffness matrix? 1=yes 2=no ');

end

changec=input( Would you like to change your damping matrix? 1=yes 2=no ');
while changec=1

chc=chc+ 1; % counter for determining # columns in mapping matrix.
flag_c=l; % mapping matrix flag
lc(chc)=input('input value of added damper (lbs-sec/in) ');

cdofl(chc)=input('input constrained dof where 1 st end of added damper is applied ');
cdof2(chc)=input('input dof where 2nd end of added damper is applied, b for base, or

0 for ground ');

% Let's the user know that he is not allowed to make dof(s) to the base changes which
% are not included in the bset. A change from dof to base constitutes an addition of
% excitation points. This should handled when asked where the structure is excited.

if cdofl (chc)-=bset & cdof2(chc)=='b'
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while cdofl(chc)-'=bset & cdof2(chc)=='b'
disp('Connecting this dof to the base is changing the basic model.')
disp('Lf this is what you desire, go back and include this dof as an excitation

point.')
model-change--input(Was this change correct? 1 =yes 2=no')

if model-change=1l
error('Go back and change your basic model.')

else
cdof 1 (chc)--input('input constrained dof where 1 st end of added damper is

applied ');
cdof2(chc)=input('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground')
end

end
end

"% Updates the base damper constant and does not count these changes
"% in the cset matrix.

if (find(cdofl (chc)==bset))-=[] & cdof2(chc)=='b'
base--find(cdofl1(chc)==bset);
cb(base) = cb(base) + lc(chc);
C-vec(cdofl (chc))=Cý-yec(cdofl (chc)) + lc(chc);

else
if cdofl. (chc)-=cset % comparison of change dof with the c-set

cset=[cset cdof 1 (chc)]; % matrix and formation of new c-set matrix.
end
if cdof2(chc)--cset

cset=-[cset cdof2(chc)];
end

end

% Classical method of reformulatting the [C] matrix.

QC~(cdof1. (chc),cdofl (chc))=Csc(cdofl. (chc),cdof 1 (chc)) + lc(chc);
if cdof2(chc)-=0 & cdof2(chc)-='b'

C s(cdofl1(chc),cdof2(chc))=-QC~(cdofl1(chc),cdof2(chc)) - lc(chc);
Cs(cdof2(chc),cdofl(chc))--Cc(cdof2(chc),cdofl (chc)) - lc(chc);
Cs(cdof2(chc),cdof2(chc))=Cs-(cdof2(chc),cdof2(chc)) + lc(chc);

end

% Classical method of reformulating [Cb] matrix.

if cdof2(chc)='b'
cbb=lc(chc);
Cb(cdof 1 (chc),cdof 1 (chc))=Cb(cdofl (chc),cdofl (chc)) + cbb;

end

changec-input(CAre there any other changes to the damping matrix? I1=yes 2=no')
end
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changem--input( Would you like to change your mass matrix? 1=yes 2=no ');
while changem==1

chm=chm+1;
flagm-= 1;
lm(chm)=input('input value of added mass (lbs-secA2/in) ');
mdof(chm)--input('input constrained dof where mass is added ');

"% comparison of change dof with the c-set matrix and formation of
"% new c-set matrix.

if mdof(chm)-=cset
cset=[cset mdof(chm)];

end

% Classical method of reformulatting the [M] matrix.

Msc(mdof(chm),mdof(chm))=MKc(mdof(chm),mdof(chm)) + lm(chm);

changem--mput('Are there any other changes to the mass matrix? 1=yes 2=no ');
end

% Handling of spring added to ground

ground = find(cset==O);
cset(ground) =0;

% Formulation of iset matrix which is the set of dofs other than
% those in the cset matrix where response information is desired.

iset--input( What dofs other than those where change occured, are you interested in? ');

% Formation of zset (c U b) and eset (i U c U b) matrices.

zset=[cset bset]; eset=[iset cset bset];

% Choosing the FRF interested in

respAof=input( What response dof are you interested in? ');
frf_index=find(eset--respdof);

% Formation of [delKc], [delCc], [delMc], [del_Zc], [delZb]
% & [del_Z]

delKc=zeros(length(cset)); % intializes the change matrices
delCc=zeros(length(cset)); % to zero and sets their sizes
delMc=zeros(length(cset)); % as [cset x cset] matrix

if flagk-= 1
for a= 1:chk
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if (find(kdofl(a)==bset))--=[] & kdof2(a)=='b'
indexkl=fl; % provides for base changes to not be
indexk2=[]; % included in delKc matrix

else
index~kl--find(kdofl(a)==cset); % finds where in cset matrix
indexk2=find(kdof2(a)=-cset); % the change in k occurs

end

delKc(indexkl,indexkl )=del-Kc(indexkl1,indexkl) + llc(a);
delKc(indexkl ,indexk2)=deLKc(indexkl ,indexk2) - Lk(a);
delKc(indexk2,indexkl )=del-Kc(indexk2,indexkl) - Ik(a);
delKc(indexk2,indexk2)=del-Kc(indexk2,indexk2) + llc(a);

end
end

if flagsc=1
for a= 1:chc

if (find(cdofl(chc)==bset)>-=U & cdof2(a)=='b'
indexcl=[];

indexc2--[];
else

indexcl=find(cdofl(a)==cset); % finds where in cset matrix
indexc2=find(cdof2(a)=-cset); % the change in C occurs

end

delCc(indexc 1 ,ndexc 1 )=del-Cc(indexc 1 ,indexc 1) + lc(a);
delCc(indexc 1,indexc2)=del-Cc(indexc 1,indexc2) - lc(a);
delCc(indexc2,indexcl1)=del-Cc(indexc2,indexcl) - lc(a);
delCc(indexc2,indexc2)=del Cc(indexc2,indexc2) + lc(a);

end
end

if flag.m==1
for a=1 :chm

indexm=find(mdof(a)==cset); % finds where in cset matrix
% the change in k occurs

delMc(indexm,indexm)=del Mc(indexm,indexm) + lm(a);
end

end

delKb=diag(kb); % diag is used in the event >1 base
excitation

delCb=diag(cb); % is present

% Time Step:

start-t = 0.0;
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%del t = 0.0005; % plate times
%endjit = .04;

del -t =0.0003; % beam times
end-t =.03;

%del -t =0.001; % spring times
%end-t =.2;

time = [star~t -del -t:end~t]; % Time points
nstep = length(time); % No. Time points

% Calculate Impulse Response Functions:

synjtO = clock;
[himp] = impmodal(wn~phi,zeta,Mmnodal,time,zset);
clear wn phi Minodal zeta

% Setup and Solve Integral Equation for x2*(t):

A = zeros(nstep);
globalA = zeros(length(zset)*size(A, 1));

count=0O;
col = 1+count:nstep+count;
for acnt = 1:size(himp, 1);

for icnt~rows = 2: nstep;
[wts] = ffrapzWts(icnt~rows);

ed A(icntjrows,1:icnt rows) = del-t *wts .* fliplr(himp(acnt,l :icnt-rows));

row = col(1)+count:cololength(col))+count;
globalA(row,col)=A;
globalA(col,row)=A;
count = count +nstep;

if rowolength(row)) == size(globalA)
col = col + nstep;
count = 0;

end

end
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clear A

"% Checks to see if there are any redundant dofs in the eset due to changes and
"% bset occurring at the same dofs. If there is redundancy, it is located in
"% eset, and these rows and columns are deleted from H~star. This is done
"% because the redundant dof column(s) and row(s) in H-star creates a singular
"% matrix which is not invertable and Kred cannot be determined.

for u=1 :length(bset)
locate=find(bset(u)==zset);
if lengtholocate) > 1

pull=[pull locate(2)];
redundant=[redundant locate(l)];

end
end

pulLstart=pulI*nstep-(nstep-l);
pulLend=pull*nstep;
delete-lof4J;
for v=1 :length(pull)

deleteý-dof=[delete-dof pull-start(v):pullsnd(v)];
end
globalA(delete-dof,:)=II1;
globalA(:,delete-dof)= El;

ff =ones(size(globalA,l1), 1);

Yo = 1.0; % Amplitude of base motion
[Y,Ydot] = fBlastForcing(Yo,time', 'bist', 0);

tol = le-4;
dif = 100;

for icnt = 1:300

X = -globaIA*ff;

if icnt >= 2
[ii,jj] = max(abs(xlastl - X)
dif = max(abs(xlastl~jj) - Xj))

end

xlastl = X

if dif < tol
disp('Breaking'); break

end

[ff] = Synth-force(X,Y,Ydot,del-Kc,del-CC,del-Mc,kb,cb,nstep,del-tbset,cset);
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end

syn.-tl = clock,

timesynjiOme=etime(syntl ,syn tO0)

% Classical Method to Solve for Response:

clas,_tO = clock;
Xchk = zeros~length(zset),length(time));
[wn~c,phi c,zetas,Mm~fodal-cphi-norms] modaI(M-c,Ksc,Cc);
%zetasc=0&

for icnt-modes = 1 : ndof,
zeta-mode=zeta-c(icnunmodes);
[mode irf = fModaIIRF(wn~c(icnt~modes), zeta-mode, time);
fmodal = phi-normsc(:,icnt.modes)' * K...ec * Y;

Xchk = Xchk + phi~normks(zset,icnt...modes) * fConvTrap(modejrf,fmnodal',del~t);
end

clas -ti = clock;
clas,-syn-sime=etime(clasj-l ,clasj)

% Plotting of Transient Response using Classical & Frequency Synthesis Methods

resp-index=find(zset---resp--of);

plot(time,Xchk(respjindex(l1),:),'r--',time,X(( 1:nstep)+(resp-index( 1)-i )*nstep),'b')

grid
title([Transient Time Response at dof ',int2str(resp--dof)])
ylabel('displacement (in)')
xlabel('time (secY))
legend('Classical','Synthesis')
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I tsynode45.m

% The purpose of this program is to perform the time domain synthesis on a structure and
% compare the dynamic responses to those calculated using a direct integration method.

clear

disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)

[MKC,p]=uigetfile('*.mat',Toad [M], [K], [C]');
load (MKC)

dofs=1 :ndof;
C=.OO*C;

[wn,phi,zeta,Mmodal,phi-norm] = modal(M,K,C);

changek=2; changec=2; changem=2; % initializes logic variables
% to 'no' status

flag-k=O; flag-c=O; flag-m--O;

chk--O; chc=O; chm=O; % initializes counter for # of changes to matrices

cset=0; % initializes cset matrix to zero to avoid null index error in
% handling the spring to ground if no changes are made to the
% structure.

Hey-star=[]; HVsc=[]; % (re)initializes these matrices to an empty matrix
% to avoid matrix size differences each time the
% model is changed.

Ksc=K; Me=M; Cs=C; % initializes change matrices which will be used in
% the classical method, to the original matrices.

K_vec = zeros(2*size(KSc, 1), 1);
C_vec = zeros(2*size(CQc,1),l);

Kb=zeros(size(K,1)); % initializes the spring, and damper to base matrices
Cb=zeros(size(C,1)); % to zero.

b=num2str('b'); % allows b to be entered as a numerical value, but
% declares b a string variable to used for
% comparisons in logic statements.

clear M K C

"% Designation where base excitation is located, and the spring constant which
"% connects the substructure to the base which is moving.
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bset=input('At what dof(s) are your structure excited? ');
for b-spring=l :length(bset);

kb(b-spring)=input(fprintf('input the value of the spring constant which connects dof
%g to the base ',bset(b&spring)));

end
cb=zeros(1,length(bset)); % initializes the damper constant which connects the

% substructure to the base which is moving, to zero.

"% Correcting the classical [K] & [Kb] matrices to include the spring element
"% connecting the substructure to the base(s).

for b.spring=l:length(bset);

K-c(bset(b-spring),bset(b.-spring))=K-c(bset(b-spring),bset(b-spring))+kb(b-spring);
Kb(bset(b_spring),bset(bspring))=Kb(bset(b-spring),bset(b.spring)) + kb(bQspring);
K_vec(size(Kc, 1)+bset(bspring))=K.vec(size(K_c, l)+bset(b__spring)) + kb(b-spring);

end

changek=input( Would you like to change your stiffness matrix? l=yes 2=no ');
while changek=l

chk=chk+l; % counter for determining # columns in mapping matrix.
flag-k=l; % mapping matrix flag
lk(chk)--input('input value of added spring (lbs/in) ');
kdofl (chk)--input(input constrained dof where 1st end of added spring is applied ');
kdof2(chk)=input('input dof where 2nd end of added spring is applied, b for base, or

0 for ground ');

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. This should handled when asked where the structure is excited.

if kdofl% (chk-=bset & kdof2(chk)=='b'
while kdofl(chk)-=bset & kdo22(chk)=='b'

disp('Connecting this dof to the base is changing the basic model.')
disp(lf this is what you desire, go back and include this dof as an excitation

point.')
modelchange=input('Was this change correct? 1=yes 2=no ');

if modelchange-=l
error('Go back and change your basic model.')

else
kdofl (chk)=input('input constrained dof where 1st end of added damper is

applied ');
kdof2(chk)=input('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground ');
end

end
end

% updates the base spring constant and does not count these changes
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% in the cset matrix.

if (find(kdofl.(chk)=-bset))-=fl & kdof2(chk)=='b'
base=find(kdofl1(chk)==bset);
kb(base) = kb(base) + llc(chk);
K_vec(size(Ksc,l1)+kdofl (chk))=K-vec (size(K c,1 )+kdofl (chk)) + lk(chk);

else
if kdof 1 (chk)-=cset % comparison of change dof with the c-set

cset=[cset kdofl(chk)]; % matrix and formation of new c-set matrix.
end
if kdof2(chk)-=cset

cset=[cset kdof2(chk)];
end

end

% Classical method of reformulatting the [K] matrix.

Ksc(kdof 1 (chk),kdof 1 (chk))=Ksc(kdof 1 (chk),kdofl (chk)) + llc(chk);
if kdof2(chk)-=O & kdof2(chk)-='b'

K-c(kdofl (chk),kdof2(chk))=K c(kdofl1(chk),kdof2(chk)) - llc(chk);
KsC(kdof2(chk),kdofl (chk))=Ksc(kdof2(chk),kdofl1(chk)) - lk(chk);
K s.(kdof2(chk),kdof2(chk))=K-c(kdof2(chk),kdof2(chk)) + lk(chk);

end

% Classical method of reformulatting [Kb] matrix.

if kdof2(chk)= t'b'
kbb=lk(chk);
Kb(kdofl (chk),kdof 1 (chk))=Kb(kdofl (chk),kdof 1 (chk)) + kbb;

end

changek--nput('Are there any other changes to the stiffness matrix? I1=yes 2=no')

end

changec=input("Would you like to change your damping matrix? 1 =yes 2=not)
while changec=1l

chc=chc+1; % counter for determining # columns in mapping matrix.
flagsc=1; % mapping matrix flag
lc(chc)--input('input value of added damper (lbs-sec/in) )

cdof l(chc)--input('input constrained dof where 1st end of added damper is applied )
cdof2(chc)=input(t input dof where 2nd end of added damper is applied, b for base, or

0 for ground ');

"% Let's the user know that he is not allowed to make dof(s) to the base changes which
"% are not included in the bset. A change from dof to base constitutes an addition of
"% excitation points. T'his should handled when asked where the structure is excited.

if cdof 1 (chc)'-=bset & cdof2(chc)=='b'
while cdof1(chc)-=bset & cdof2(chc)=='b'
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disp('Connecting this dof to the base is changing the basic model.')
disp('Jf this is what you desire, go back and include this dof as an excitation

.point.')
model-change=input(tWas this change correct? 1 =yes 2=-no )

if model~change==1
errorC'Go back and change your basic model.')

else
cdof 1 (chc)=-input(input constrained dof where 1 st end of added damper is

applied')
cdof2(chc)--nput('input dof where 2nd end of added damper is applied, b

for base, or 0 for ground )
end

end
end

% Updates the base damper constant and does not count these changes
% in the cset matrix.

if (find(cdofl(chc)==bset))-=[] & cdof2(chc)=='b'
base=find(cdofl(chc)==bset);
cb(base) = cb(base) + lc(chc);
Cyvec(size(QCs, 1)+cdof 1 (chc))=Q~vec(size(Q-c, 1 )+cdofl (chc)) + lc(chc);

else
if cdofl(chc)--cset % comparison of change dof with the c-set

cset=[cset cdof 1 (chc)]; % matrix and formation of new c-set matrix.
end
if cdof2(chc)--cset

cset=-[cset cdof2(chc)];
end

end

% Classical method of reformulatting the [C] matrix.

QCs(cdof 1 (chc),cdofl (chc))=QCs(cdofl1 (chc),cdofl (chc)) + lc(chc);
if cdof2(chc)-=0O & cdof2(chc)-='b'

Csc(cdofl1(chc),cdof2(chc))=C -c(cdofl1(chc),cdof2(chc)) - lc(chc);
C c(cdof2(chc),cdofl(chc))=Cýc(cdof2(chc),cdofl (chc)) - lc(chc);
Cs(cdof2(chc),cdof2(chc))=Cýc(cdof2(chc),cdof2(chc)) + lc(chc);

end-

% Classical method of reformulating [Cb] matrix.

if cdof2(chc)=='b'
cbb--lc(chc);
Cb(cdofl (chc),cdofl (chc))=Cb(cdofl (chc),cdof 1 (chc)) + cbb;

end

changec-input('Are there any other changes to the damping matrix? 1 =yes 2=no )
end
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changem--input( Would you like to change your mass matrix? 1=yes 2=no ');
while changem=l

chm=chm+l;
flagm=l;
lm(chm)--input('input value of added mass (lbs-secA2/in) ');
mdof(chm)=input('input constrained dof where mass is added ');

% comparison of change dof with the c-set matrix and formation of
% new c-set matrix.

if mdof(chm),-cset
cset=[cset mdof(chm)];

end

% Classical method of reformulatting the [MN matrix.

Msc(mdof(chm),mdof(chm))=M.c(mdof(chm),mdof(chm)) + lm(chm);

changem=input('Are there any other changes to the mass matrix? l=yes 2=no ');
end

% Handling of spring added to ground

ground = find(cset---O);
cset(ground) = 0;

"% Formulation of iset matrix which is the set of dofs other than
"% those in the cset matrix where response information is desired.

iset--input('What dofs other than those where change occured, are you interested in? ');

% Formation of zset (c U b) and eset (i U c U b) matrices.
%
zset=[cset bset]; eset=[iset cset bset];

% Choosing the FRF interested in

respjdof=input(CWhat response dof are you interested in? ');
frfindex=find(eset--respdof);

% Formation of [delKc], [delCc], [delMc], [delZc], [delZb]
% & [delZ]

delKc=zeros(length(cset)); % intializes the change matrices
delCc=zeros(length(cset)); % to zero and sets their sizes
delMc=zeros(length(cset)); % as [cset x cset] matrix

if flag-k= 1
for a= 1:chk

if (find(kdofl(a)==bset))-=[] & kdof2(a)=='b'
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indexkl=[]; % provides for base changes to not be

eleindexk2=fl; % included in delKc matrix

indexkl--find(kdofl(a)==cset); % finds where in cset matrix
indexk2=find(kdof2(a)==cset); % the change in k occurs

end

delKc(indexkl ,indexkl)=deLKc(indexkl ,indexkl) + lk(a);
delKc(indexkl ,ndexk2)=del-Kc(indexkl ,indexk2) - lk(a);
delKc(indexk2,indexkl )=deLKc(indexk2,indexkl) - lk(a);
delKXc(indexk2,indexk2)=del-Kc(indexk2,indexk2) + llc(a);

end
end

if flagsc==1
for a=-1:chc

if (find(cdofl(chc)==bset))~=fl & cdof2(a)=='b'
indexcl=fl;
indexc2=Ej;

else
indexcl=find(cdofl(a)==cset); % finds where in cset matrix
indexc2=find(cdof2(a)==cset); % the change in C occurs
end

delCc(indexcl ,indexcl1)=deLCc(indexcl1,indexc 1) + lc(a);
delCc(indexc 1,indexc2)=deLCc(indexc 1,indexc2) - lc(a);
delCc(indexc2,indexcl1)=deLCc(indexc2,indexc 1) - lc(a);
delCc(indexc2,indexc2)=deLCc(indexc2,indexc2) + lc(a);

end
end

if flag m==1
for a=1I:chm

indexm-find(mdof(a)==cset); % finds where in cset matrix
% the change in k occurs

delMc(indexm,indexm)=del Mc(indexm,indexm) + lin(a);
end

end

delKb=diag(kb); % diag is used in the event >1 base excitation
delCb=diag(cb); % is present

% Time Step:

start -t = 0.0;
%del -t =0.00025; % plate times
%end-t =.02;
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del -t = 0.0003; % beam times
end-t = .03;

%del -t =0.001; % spring times
%end~t =.2;

time = [start -t:del~t:endj]; % Time points
nstep = length(time); % No. Time points

% Calculate Impulse Response Functions:

syn-tO = clock;
[himp] = impmodal(wn~phi,zeta,Mmodal,time,zset);
clear wn phi Mmodal zeta

% Setup and Solve Integral Equation for x2*(t):

A = zeros(nstep);
globalA = zeros(length(zset)*size(A, 1));

count=0;
col = 1-icount:nstep-icount;
for acnt = 1 :size(himp, 1);

for icnt~rows = 2 :nstep;
[wts] = f~rapzWts(icnLrows);

A(icntjrows, 1 :icntjrows) =del-t *wts .~ flipkr(himp(acnt, 1 :icntjrows));
end

row = col( 1)+count:coloength(col))+count;
globalA(row,col)=A;
globalA(col,row)=A;
count = count +nstep;

if row(length(row)) ==size(globalA)

col = col + nstep;
count = 0;

end

end

clear A
%disp(sprintf('Norm(globalA) =%5.3f,norm(globalA)))
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ff = ones(length(zset)*nstep,1);

Yo = 1.0; % Amplitude of base motion
[Y,Ydot] = fBlastForcing(Yo,time', 'bist',. 0);

tol.= le-4;
dif = 100;

for icnt = 1:300

X = -globalA*ff;,

if icnt >= 2
[ii,jj] = max(abs(xlastl - X)
dif = max(abs(xlastl(jj) - j);

end

xlastl = X;

if dif <tol
disp('Breaking'); break

end

[ff] =Synthjforce(X,Y,Ydot,del Kc,del Cc~delMc~kb,cb,nstep,del-t,bset,cset);

end

syn~ji = clock;

time-syn-jime=etime(syntil,synj0;)

% Classical Method to Solve for Response:

clas-tO = clock;
save structure K-c Cc M -c K vec C-vecYo
Xchk0=zeros(2*ndof, 1);
[tchk,Xchk]=ode45('scndjtojrst',startjt,end-t,Xchk0);
clas -ti = clock;
clas,-synjiýme=etime(clastl ,clastO)

% Plotting of Transient Response using Classical & Frequency Synthesis Methods

resp-index=find(zset=--respd-of);
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plot(tchk,Xchk(: ,resp~dof(l1)),'r--',time,X((l1:nstep)+(resp index( 1)-i )*nstep),'b')
grid
title([Trransient Time Response at dof ',int2str(resp-dof)])
ylabel('displacement (in)')
xlabel('time (sec)')
legend('Classical','Synthesis')
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tsynmain.m I
% This program is designed to calculate the new transient responses of a system after
% changes in the mass, stiffness, and damping matrices have been made.
% The new responses will be calculated using the synthesis method in the time domain.

clear

load change
% Designation of the frequency range and step size

% initial step size end

t_input=[ 0.0 0.0004 .07 ];

time = tjnput(1):tinput(2):tjinput(3);
nstep = length(time); % No. Time points

[wn,phi,zeta,Mmodal,phinorm] = modal(M,K,C);
clear M K C

synjtO = clock;

[himp] = impmodal(wnphi,zeta,Mmodal,time,zset);
clear wn phi zeta Mmodal

[globalA] = buildA(himp,bsetzset,nstep,tinput(2));

Yo = 1.0; % Amplitude of forcing function
[Y,Ydot] = fBlastForcing(Yo,time', 'blst', 0);

[Xstar,icnt] = timesynth(globalA,zset,Y,Ydot,delKc,delCc,delMckb,cb,....
nstep,Linput(2),bsetcset);

syn-tl = clock;

time..synjtime=etime(synt 1,syn-t0)

% Plotting of Transient Response using Classical & Frequency Synthesis Methods

resp-dof=input('What response dof are you interested in? ');

[X-stardesired] = time-sift(zsetresp-dofXstar,nstep);

plot(time,X-star desired,'b')
grid
title(['Synthesized Transient Time Response at dof ',int2str(resp-sdof)])
ylabel('displacement (in)')
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xlabel('time (sec)')
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I impmodal.m

function [himp] = impmodal(wnphi,zeta,Mmodal,t,imp_.dof)

"% This function is designed to calculate the IRF using mode shapes and
"% summing the IRF over a number of modes.

ncol=(length(impdof)*(length(imp*dof)+l))12;

% Calculation of impulse response function

himp=zeros(ncol,length(t)); % Initialization to zero, and sizing
% of the freq x lower triangle matrix.

nmodes=size(phi); b=O; % Defining the number of modes that exist and
% initializing b which keeps track of the
% of modes

for b=l:nmodes

"% Elimination of unnessecary elements and rearrangement of original
"% mode shapes (phi) to form {phLred) and [numred] which is now an
"% impdof x impjdof matrix.

numjred=phi(impjdof,b)*phi(imp-dof,b)';

if wn(b) > le-3 % Then elastic mode

wd = wn(b) * sqrt(1 - zeta(b)A2);
modeirf = exp(-zeta(b)*wn(b)*t) .* sin(wd * t) / (Mmodal(b)*wd);

elseif wn(b) <= le-3 % Rigid body mode

modeirf = t/Mmodal(b);

end

"% Changes the [num-red] matrix from an impdof x impdof matrix to
"% a 1 x lower triangle vector.

H_lowtri=tril(num_red); % pulls out the lower triangle
% and places zeros everywhere else

symtry = find(Hjowtri=--O); % finds zero values in the
% lower triangle matrix

H_lowtri(symtry) = % deletes all values of zero and
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% turns the remaining elements
% into a 1 x length(lower triangle)
% vector

for cnt=1 :length(Hjowtri)
himpmjode(cnt,:)=H lowtri(cnt)*mode~irf;

end

lump hilmp + himp-mode;
end
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I buildA.m I
function [globalA] = buildA(himp,bset~zset,nstep,de.s)

"% The purpose of this program is to build the trapezoidal quadrature matrices to be used
"% for the solution of the VIDE

A = zeros(nstep);
globalA = zeros(length(zset)*size(A, 1));

count=-O;
col = 1+count:nstep+count;
for adilt = 1:size(himp,1);

for icnt~rows = 2: nstep;
[wts] = ffrapzWts(icnt-rows);

A(icntjrows, 1 :icntcrows) =del-t *wts .~fliplr(himp(acnt, 1 :icnt-rows));
end

row = col( 1)+count:cololength(col))+count;
globalA(row,col)=A;
globalA(col,row)=A;
count = count +nstep;

if row(length(row)) =-- size(globalA)
col = col + nstep;
count = 0;

end
end

"% Checks to see if there are any redundant dofs in the eset due to changes and
"% bset occurring at the same dofs. If there is redundancy, it is located in
% eset, and these rows and columns are deleted from H-star.

for u= 1:length(bset)
locate=find(bset(u)=zset);
if length(locate) > 1

pull=[pull locate(2)];
redundant=[redundant locate(1)];

end
end

pull -start=pull*nstep-(nstep- 1);
pull end=pull*nstep;
delete dof=rl;
for v= 1:length(pull)

delete-dof=[delete-dof pull-start(v):pullsend(v)];
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end
globalA(delete-dof,:)=fl;
globalA(:,deletq-dof)=[];
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I fBlastForcing.m I

function [fof_t,fdot] = fBlastForcing(Fo,time, type, plotit);

% Usage: [f.oft,fdot] = fBlastForcing(Fo,time, type, plotit);

% Choices: sine blst step

% type = 'step' STRING Variable

% If use 'sine', fdot also returned.

"% This function returns a forcing function which is
"% a "blast" function.

% F(t) = Fo * (exp(-at) - exp(-bt))

% where a and b are constants which shape the blast,
% and Fo is the amplitude of the blast.

"% The variable "plotit" is a switch which if set = 1 will
"% cause the f(t) to be plotted, if set to anything else
"% will not plot.

"% Choices: sine blst step

"% type = 'step';

if type == 'blst';

% disp(' Blast forcing used...')
a = 100.0;
b = 300.0;
fLof t = Fo * (exp(-a*time) - exp(-b*time));
fdot = Fo * (-a*exp(-a*time) + b*exp(-b*time));

elseif type == 'step';

% disp(' Step forcing used...')
f-of-t = Fo * ones(size(time));
fdot = ];

elseif type == 'sine';
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% disp(' Sine forcing used...')
W = 5; % Hertz
f_oft = Fo * sin(2*pi*W*time);
fdot = Fo * (2*pi*W)*cos(2*pi*W*time);

end,

if plotit-= 1;
figure(gcf+l)

if type =- 'sine';
plot(time,f oft,time,fdot);grid

else
plot(time,f of*);grid

end
pause

% lf
end

% End function.
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timesynth~m

function [X-star~icnt] = timesynth(globalA,zset,Y,Ydot,deL-Kc,deLCc,deLMc,kb,cb,...
nstep,deLt,bset,cset)

"% This function is designed to calculate the new dynamic response using the synthesis
"% method.

ff = ones(size(globalA,l1), 1);
tol = le-2;
dif = 100;

for icnt = 1:300

X-star = -globaIA*ff;

if icnt >= 2
[ii,jj] = max(abs(xlastl - X-star));
dif = max(abs(xlastl(jj) - X-star~jj)));

end

if icnt>=300
ii

dif
end

xlastl = X-star-

if dif < tol
%disp('Breaking');

break
end

% icnt
[fft]=

Synth-jorce(X-star,Y,Ydot,del-Kc,del-Cc,delMc kb,cb,nstep,deLt,bset,cset);

end
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time sift.m

function [X_star_desired] = timesift(zsetresp-dofX-starnstep)

% The purpose of this program is to sort through the synthesized transient
% responses and return the one in which the user is interested in.

resp-index---find(zset---resp-dof);

X_stardesired = X_star((1:nstep)+(resp-index(1)- 1)*nstep);
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APPENDIX D. OPTIMIZATION COMPUTER CODES

The following is a list and a brief description of the main MATLAB

computer codes that were written in order to perform the optimization of a

shock and vibration isolation system.

* isomain.m - the main program which loads the baseline structure to be

optimized, and allows for the designation of the design variables. Also, if

necessary, calls various modularized functions such as modal.m,

frfmodal.m, impmodal.m, fBlastForcing.m, buildA.m. It then allows for

the optimization inputs, the use of the MATLAB Optimization function

constr.m, and the post processing.

"* modal.m - solves for the structure's natural frequencies, mode shapes and

other modal matrices and vectors.

"* frfmodal.m - calculates the structure's FRFs.

"* impmodal.m - calculates the structure's IRFs.

"* buildA.m - builds the quadrature matrices.

"* fBlastForcing.m - inputs the base excitation as a function of time.

"* isosub.m - the subroutine program which is called by the MATLAB

Optimization function constr.m. This is where the optimization iterations

occur, the design variables change, and the system's responses are

calculated. This program calls the functions delta.m, frfsynth.m,
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statdelta.m, statsynth.m and timesynth.m. It then calculates the

normalized constraint values.

"* delta.m - forms the modification matrices which will be used to form

impedance matrices or determine coupling forces.

"* frfsynth.m - performs the synthesis on the baseline structure and returns

the synthesized FRFs.

"* statdelta.m - forms the modification matrices which will be used to form

impedance matrices.

"* statsynth.m - performs the synthesis on the baseline structure and returns

the synthesized static displacements.

"* timesynth.m - performs the synthesis on the baseline structure and

returns the synthesized transient responses.

The full codes are contained on subsequent pages. Any codes that were
previously presented will not be repeated.
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I isomain.m

clear
clear global
diary isomain.dia
tic

global kdofl kdof2 cdofl cdof2 mdof iset cset bset zset eset kbO cbO hee omega ...
opt-omega excite respdof inpdof resp-index stat-omega stathee iter ...
deLvars delf Hdesired_0 del_H_desired globalA Y Ydot t-input nstep

% Loading of Structure to be Optimized

disp('Are there already reduced FRF & IRF matrices in the correct format available,')
disp('or does the presynthesized FRF & IRF matrices need to be generated using the dof')
disp('locations where you desire to change the structure? ')
FRFIRF=input('l=reduced FRF/IRF already exists 2=generate reduced FRF/IRF ');

% Protects against user making an error in choosing how FRF/IRF is obtained.

if FRFIRF~=[1 2]
while FRFIRF-=[1 2]

disp('Error in choosing how FRF/IRF is obtained. Choose 1 or 2.')
FRIF_IRF=input('l=reduced FRF/IRF already exists 2=generate reduced FRF/IRF ');

end
end

if FRFIRF= 1
disp('Select the file which contains your presynthesized FRF/IRFs, a corresponding

frequency ')
disp('and time vectors, and the vector of all the dofs that will be in your eset vector.')
pause(2)
[hee-dofsomega,p]=uigetfile('*.mat','Load FRF/IRF')

load (hee-dofsomega)

disp('Also select the file which contains your presynthesized FRFs with zero damping')
disp('for the purpose of calculating static displacement.')
pause(2)
[stat heep]=uigetfile('*.mat',TLoad Static FRF')

load (stat-hee)

else
disp('Select the file which contains your [M], [K], and [C] matrices')
pause(2)
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[MKC,p]=uigetfile('*.mat','Load [M], [K], [C]');
load (MKC)
dofs= 1 :ndof;
kcO=-K(109,109);

end

% Designation of Optimization and Synthesis DOFs

kdofl=[]; kdof2=[]; % initalizes the matrices which keep
cdofl=[]; cdof2=[]; % track of the dofs where changes occur
mdof=[];

b=num2str('b'); % allows b to be entered as a numerical value for the
dof

"% choices; but declares b a string variable to
used for

"% comparisons in logic statements.

kdofs=input('Input dof pairs for stiffness changes for optimization ');
if kdofs=[]

kdofl=[]; kdof2=[-;
else

kdofl=kdofs(:,1); kdof2=kdofs(:,2);
end

cdofs--input('lnput dof pairs for damping changes for optimization ');
if cdofs=-[]

cdofl=[]; cdof2=E-;
else

cdofl =cdofs(:, 1); cdof2=cdofs(:,2);
end

mdof=input('Input dofs for mass changes for optimization ');

% Formation of Partitioning and Arrangement Vectors

excite=input(How is the structure excited? l=system 2=base ');

% Formation of {bset}

cset=O; bset=[]; % initializes cset matrix to zero to avoid
"% null index error if no changes are made to
"% the structure and bset to empty matrix to
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% prevent error in the event this is not a
% base excitation and bset does not exist

kbO=O; cbO=O; % initializes kb and cb to zero to prevent error in
% the event this is not a base excitation and kb & cb does
% not exist.

if excite-=2
% Designation where base excitation is located.

bset=input('At what dof(s) are your structure excited? ');

"% Designation of the spring and damper constants which connects the substructure to the
"% base which is moving.and protection against user making an error in choosing the
"% value of the constant(s).

for b-spring=l:length(bset)
kbO(btspring)=input(fprintf('input the value of the spring constant which connects

dof %g to the base ',bset(býspring)));
kbOzero=find(kbO----);
if length(kbO)-=b-spring I kb0_.zero-=[]

while length(kbO)-=b-spring I kbO0zero-=[]
fprintf(You made an error in entering the value for dof %g base excitation

spring constant.\n',bset(b-spring))
kbO(b-spring)=O;
kbO(b-spring)-input(fprintf('Re-input the value of the spring constant which

connects dof %g to the base ',bset(b-spring)));
kb0_zero=f'md(kbO=•O);

end
end

end
cbO=zeros(1,length(bset)); % initializes the damper constant which connects the

% substructure to the base which is moving, to zero.
end

% Formation of {cset} vector

if kdofs-=[]
for chk=1 :length(kdofl)

% Comparison of change dof with the c-set matrix and formation of new c-set matrix.
% Does not count changes to the base spring constant in the cset matrix.

if excite=-2 & (find(kdof 1 (chk)==bset))-=[] & kdof2(chk)=--'b'
cset=cset;

else
if kdof 1 (chk)-=cset

cset=[cset kdof 1 (chk)];
end
if kdof2(chk)-=cset

cset--[cset kdof2(chk)];
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end
end

end
end

if cdofs-=[]
for chc=1 :length(cdofl)

% Comparison of change dof with the c-set matrix and formation of new c-set matrix.
% Does not count changes to the base damper constant in the cset matrix.

if excite=2 & (find(cdofl(chc)=bset))-=[] & cdof2(chc)='b'
cset=cset;

else
if cdofl(chc)--cset

cset=[cset cdofl (chc)];
end
if cdof2(chc)--cset

cset=[cset cdof2(chc)];
end

end
end

end

if mdof-=[]
for chm=l:length(mdof)

% Comparison of change dof with the c-set matrix and formation of new c-set matrix.

if mdof(chm)-=cset
cset=[cset mdof(chm)]; % and formation of new c-set matrix.

end
end

end

ground = find(cset----); % Handling of spring added to ground to
eliminate
cset(ground) = []; % zero from cset

% Formation of (iset) vector

if FRFIRF==1
disp('Since you inputed your own FRF/IRF matrix, your iset is chosen as all dofs

remaining')
disp('in your eset/dof vector after extracting the cset vector.')
iset=dofs;
for a=1 :length(cset)

extract(a)=fmd(cset(a)==dofs);
end
iset(extract)=O;

else
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% iset=input( What dofs other than those where change occured, are you interested in?
I);

iset=[];
end

% Formation of zset (c U b) and eset (i U c U b) matrices.

zset=[cset bset]; eset=[iset cset bset];

"% Formulation of original [M], [Himp], for Freq & Time Synthesis and Static
"% Displacement

if FRFIRF-=2

% Designation of the frequency and time range and step size

% initial step size end

freq-[ .01 10 le3+.01 1;
t_input = [ 0.0 0.001 .05 ];

omega=freq(1):freq(2):freq(3);
time = tjinput(1):t~input(2):t-input(3);
nstep = length(time); % No. Time points

[wn,phi,zeta,Mmodal,phi-norm,Cmodal] = modal(M,K,C);
[hee] = frfmodal(wnphi,zeta,Mmodal,omega,eset);
[himp] = impmodal(wnphi,zeta, Mmodal,time,zset);

% Information for static displacement synthesis

statzeta = 0*zeta;
stat&omega = .E E4;

[statjhee] = frfmodal(wnphi,stat-zeta,Mmodal,stat~omega,eset);

end
clear M K C

% Time Synthesis

% Builds the matrix A which uses trapezoidal weights to integrate the IRFs

[globalA] = buildA(himp,bsetzset,nstep,tjinput(2));
clear himp
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% Forms the base excitation vectors of displacement and velocity

Yo = 1.0; % Amplitude of forcing function
[Y,Ydot] = fBlastForcing(Yo,time', 'blst', 0);

% The Optimization

% Designates the frequency over which the optimization will be conducted

if FRFIRF-=2
disp('Since you generated the FRF/IRFs through this optimization program, your FRF)
disp(frequencies and IRF times are automatically chosen as the freq. and time range')
disp('for your optimization.')
optLomega=omega;

else
opt~freql=input( What is the initial frequency over which to evaluate this problem');
opt-freq2-input('What is the final frequency over which to evaluate this problem');
disp(The frequency increment is automatically chosen to match the FRF freq.

increment')
opLomega=opt-freql :omega(2)-omega(1):optjfreq2;

end

% Selecting the FRF that is to be minimized.

resp-dof=input('What response dof are you interested in? ');

if excite=2
inp-dof=-l;

else
inp-dof=input( What input dof are you interested in? ');

end
resp-index=find(zset---resp-dof);

"% Setting the number of of optimization variables, their initial values, and

"% their upper and lower bounds.

numoptvar=input('Iow many optimization variables do you have? ');

delO=[1 1 11];

% del-kp delkc deLmp

% delkb delkc del_cb delcc

dellb= [ -4 -4 0 0 ];
delub=[ 5 5 5 5 ];
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"% Initializing the matirices which will keep track of how the design variables
"% and objective function changes for every optimization iteration for the
"% purpose of plotting.

deLvars = [H; deLf = []; delH desired = [I;

iter=O; % Sets the number of iterations counter at zero

% Calling of constr.m routine to perform optimization
% on subroutine isosub.m

options(l)=l;
options(14)=200;
toc

tic
[del] =constr('isosub',delO,options,dellb,delub);

% OUTPUT

load optdata

final_deLkb = deLvars(length(del-vars),l);
final del kc = deLvars(length(delvars),2);
final del cb = delvars(length(delvars),3);
final del cc = deLvars(length(deLvars),4);

disp(The recommended change in base isolator stiffness (b/in) is ---> '),finaldelkb
disp(The recommended change in computer isolator stiffness (bfm) is ---> '),finaldel_kc
disp(The recommended change in base isolator damping (lb/in/s) is ---> '),final del cb
disp(The recommended change in computer isolator damping (lb/in/s) is --->
'),finaldelcc
disp('Constraints:')
disp(g)

iterations=1 :iter,

% Plot of FRF to observe how it changes during the optimization

figure(l)
semilogy(omega,abs(del H desired(1,:)),'--r',omega,abs(del H desired(2,:)),'m')
title('Optimized Frequency Response Function [H*]')
ylabel(-'RF Amplitude (unitless)')
xlabel('Frequency (rad/s)')
legend('Before','After')

figure(2)
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subplot(2, 1,1)
plot(iterations,del -vars(:, 1),'--r',iterations,del-vars(:,2),'m')
title('Change in Variables vs. Iterations')
ylabel(Isolator Stiffness (lb/in)')
legend('del-kb','del-kc')

subplot(2, 1,2)
plot(iterations,del -vars(: ,3) ,--r',iterations,del-vars(:,4),m')
title('Change in Variables vs. Iterations')
xlabel('# of iterations')
ylabel('Isolator Damping (lb-s/in)')
legend('de1-cb','delcc')

figure(3)
5U plot(2,1,1) nsde 1as: )+kbO(1),'--r',iterations,de1 vars(:,2)+kcO,'m')

title('Change in Isolation Constants vs. Iterations')
ylabel('Isolator Stiffness (lb/in)')
legend('k..base','kscorputer')

subplot(2, 1,2)
plot(iterations,del -vars(: ,3),'--r',iterations,deLvars(:,4),'m')
title('Change in Isolation Constants vs. Iterations')
xlabel('# of iterations')
ylabel('Isolator Damping (lb-s/in)')
legend('c-base','cscomputer')

figure(4)
semilogy(iterations,del&f,'r)
title('Change in Objective Function vs. Iterations')
ylabel('Magnitude')
xlabel('# of iterations')

figure(5)
plot(time,X-star((l1:nstep)+(resp-index(1 )- 1 )*nstep),'b')
grid
title(['Synthesized Transient Time Response at dof ',int2str(resp-doO])1
ylabel('displacement (in)')
xlabel('time (sec)')

figure(6)
plot(time,Xaccel-star/386.4,'m')
grid
tidle(['Synthesized Transient Time Response at dof ',int2str(resp-dof)])
ylabel('acceleration (g's)')
xlabel('time (sec)')

toc
diary off
% end Iso-main.mi
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I isosub~mI

function [ffg]--iso-sub(del)

global kdof 1 kdof2 cdof 1 cdof2 mdof iset cset bset zset eset kbO cbO hee omega...
opcomega excite resp-dof inp..of resp-index stat..omega, stat-bee iter del-vars...
del-f H-desired_0 delH-desired globalA Y Ydot UL-nput nstep

iter--iter + 1; % counts number of iterations

% Initialization and assigning of the optimization variables to changes which are made to
% the structure. Spring and damper constants are scaled to even out the domain.

lk=-O; lc=0; lm=0;

del -kb=1e3*del(1); del -kc= 1e3*del(2);
del-cb=1*del(3); del-cc=1*del(4);

llc(1 :4)=deL-kb*ones(1,4); llc(5)=del-kc;
lk(6:9)=- 1e3*ones(1 ,4);
lc(1 :4)=del-cb*ones(1 ,4); lc(5)=deLcc;

% Formulation of FRF and Calculation of mean square acceleration

[del-Kc,deLCc,deLMc,kb,cb]
delta(cset,bset,kdofl ,kdof2,lk,cdofl1,cdof2,lc,mdof,lm,kb0,cbO);

[h star] = frfsynth(hee,kb,cb,omega~excite,eset,iset,bset~deLKc,deI Cc,del MC);

[Hidesired] = fifsift(eset,resp dof~inp dof~excite,h star);
cut-freq=Ilfind(omega<optsomega(1)) find(omega>opc-omegaalength(optLomega)))];
HLdesired(cucfreq)=[];
HLobjective=(abs(Hjesired)).A2;
[f]=simp l3Lo--bjectve,opt..pmega(2)-optomega(1))

% Plot Generation

"% Saving a matrix of the optimization variables, objective function, and FRF in order to
"% plot how they changed during the optimizatiion.
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if iter ==1
del vars = [del~kb del~kc del-cb del~cc];
H desired_0 = H_desired;
del' = f]

else
del-vars = [del-vars;del-kb del~kc del~cb del-cc];
delH-desired = [H-desired_0, H...desired];

deli' = [del-ff];
end

clear bee H_desired_0 H-desired

% Calculation of plate and computer static defection

[stat-delKc,stat del Mc,statý-kb] = statdelta(cset,bset,kdofl kdof2,lk,mdof~lm~kbO);

[z~stat,Fred,Kred,Mred,HstarO~dp] = statsynth(statii ee,stat -kb,stat omega ..
eset,iset,bset,stat-delKc,stat-delMc);

% Calculation of dynamic response due to shock

[X~star,icnt] = timesynth(globalA,zset,Y,Ydot,del-Kc,del Cc delMc kb,cb,....
nstep,t-input(2),bset,cset);

fprintf('icnt = %g',icnt)

%disp( T~inish time synthesis')

% Calculation of normalized constraint values

maxzp stat=-.08; maxzc -stat=-.03;
maxkp -stretch=l; maxkc siretch=l1;
ma~xzc accel=30*386.4;

zp-stat=z stat([l 3:6]); % pulls out the static displacements for the plate
zp-stat=-(mnax (abs(zp stat))); % and determines where the maximum displacement

% is min command used because static displacement
% is negative

zc-stat=.-(abs(z stat(2)) - abs(z-stat(1))); % calculation of the relative static
% displacement between the plate and
% computer
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"% calculation of the maximum relative dynamic displacements between the plate and the
"% base and the computer and the plate

kp-stretch = X-Star(2*nstep+1:6*nstep) - [Y;Y;Y;Y];
kpstretch = max(abs(kp~stretch));
kc-stretch = X-star(nstep+1:2*nstep) - X-star(1:nstep);
kc-stretch = max(abs(kc;stretch));

% calculation of the maximum absolute acceleration of the computer

Xaccel-star = fddot(X...star((l1:nstep)+(resp jndex(1)- 1)*nstep),tjinput(2));
zcý.accel = max(abs(XacceLstar));

g(1)=zp~stat/maxzp....stat - 1;
g(2)=zcqstat/maxzcý-stat - 1;
g(3)=kp-stretch/maxkp-stretch - 1;
g(4)=kc-stretch/maxkcý-stretch - 1;
g(5)=-w...accel/maxzcý-accel- 1;

save opt data del-vars, del-f iter delH-desired g z-stat p.-stretch kc-stretch zc-accel
X-star Xaccel_star
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