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Chapter 1 

Executive Summary 

This executive summary contains a concise overview of the grant purpose, problem statement 
and proposed solution, the research objective, and the technical approach used to achieve this 
objective. Experimental setups, performance results, and conclusions are also summarized. 

1.1    Grant Purpose 

The purpose of this ONR grant is to support the evaluation of the performance of a particular 
joint compression/classification algorithm called nearest neighbor residual vector quantizer 
(NN-RVQ) classification on data obtained from a variety of sensor types and for a variety 
of applications. NN-RVQ is based on a recent mathematical development called direct sum 
successive approximations (DSSA). DSSA can be used as a technical foundation for data 
compression or pattern recognition algorithms, or for a single algorithm that does both. 
DSSA uses an unconventional mathematical data analysis/synthesis process to construct 
structured pattern dictionaries that can be efficiently searched (in terms of computation and 
memory). These patterns can be used as codevectors in vector quantizers (VQs) used for 
data compression, and as templates in nearest neighbor classifiers used for data classification. 
The purpose of this grant is to assess the performance of NN-RVQs when they are used for 
classification, compression, or joint classification and compression of various types of sensor 
data. 

1.2    Problem Statement 

There are two underlying problems addressed by this research: 

1. The Data Classification Problem: The excessive computational resources required 
for real-time classification of data onboard sensor platforms.  The need for real-time 



classification is motivated by the requirements for an onboard data-prescreen capabil- 
ity for discriminating a general class of targets from clutter, or a complete onboard 
target recognition capability that is capable of identifying specific targets or threats. 
Solutions to the real-time, onboard, data classification problem seek to maximize clas- 
sification performance when the algorithm is restricted in memory and computational 
complexity. 

The Data Compression Problem: The lack of sufficient bandwidth required to 
transmit data at a high rate from a remote sensor to the data user, or equivalently, 
the lack of sufficient computer memory required to store large volumes of measured 
sensor data. Solutions to the data compression problem seek to represent data with 
more efficient binary representations. 

1.3    Proposed Solution 

GTRI proposes to use DSSA as the basis for algorithms that can be used for target recogni- 
tion, for data compression, or both in memory and computation restricted signal processing 
algorithms that solve the data classification and compression problems. The DSSA design 
process is similar to the K-means algorithm often employed in clustering data and con- 
structing exemplars for use in nearest neighbor classifiers, and for constructing codevectors 
for use in vector quantizer data compression algorithms. The primary difference between 
the K-means algorithm and the DSSA clustering algorithm is that DSSA provides a rel- 
atively small set of exemplar basis functions that can be used to form a much larger set 
of "structured" templates for nearest neighbor classification. The templates are the direct 
sums of variable numbers of over-determined basis functions that are formed by adding a 
new basis function one stage at a time in a memory- and computation-efficient manner. This 
progressive process of building templates forms a sequence of successive approximations of 
measured sensor data. GTRFs technical approach is to use DSSA basis functions to form 
templates for use as templates in nearest neighbor classifiers, and for use as codevectors in 
vector quantizers. 

1.4    Research Objective 

The object of this research is to determine the feasibility of performing DSSA-based com- 
pression and/or classification of data from a variety of image and signal sensors. This grant 
has been structured by ONR to permit flexibility as to exactly what sensors, data, and 
applications are evaluated by GTRI. The use of DSSA for classification does not require 
feature extraction1. DSSA may be incorporated into NN-RVQ classifiers in such a way that 
direct classification of data samples is possible.  Thus, DSSA classifiers can be easily and 

1This does not preclude the use of a DSSA system as a conventional discriminate that operates on a set 
of extracted data features. 



automatically designed for a wide variety of sensor types—all that is required is sample data 
for training and evaluation purposes. The ease at which DSSA classifiers can be designed 
and implemented allows a wide variety of sensors and associated data to be investigated in a 
cost efficient manner. Candidate sensors include defense related imagery and signal sensors, 
and sensors that support dual-use applications. 

GTRI investigated in 1996 the performance of DSSA for a dual use application: computer 
assisted diagnosis and compression of medical mammography image data [1]. 

GTRI investigated in 1997 the performance of DSSA for a defense application: air-to-ground 
target detection and identification using synthetic aperture radar (SAR) data. This Interim 
Technical Reports describes the results of this phase of the research grant. 

GTRI will be responsive to any directive from ONR as to which data sets should be tested and 
evaluated in this research project in 1998 (to the extent that funding levels and data avail- 
ability permit). Possible data sets for 1998's effort include electro-optical (EO) data, infrared 
(IR) data and multispectral (MS) data. Classification tasks associated with EO/IR/MS im- 
ages include target detection and land-use classification. GTRI is also willing to extend this 
year's SAR investigation to address the detection and identification of subtarget features for 
targets partially obscured in revetments or foliage. 

1.5    Experiment Overview 

The performance of the DSSA classifier was evaluated on SAR imagery containing targets 
and clutter at three resolution levels: 4x4 foot resolution cells (herein referred to as "low" 
resolution data), 2x2 foot resolution cells (herein referred to as "medium" resolution data), 
and lxl foot resolution cells (herein referred to as "high" resolution data). The SAR data 
set contains data measured from three targets—a tank, an infantry fighting vehicle, and an 
armored personnel carrier. DSSA-based detection and classification were performed on the 
SAR data in a three stage approach where each stage used data at a different resolution 
level. DSSA-detection processing was first performed on the low resolution data. DSSA- 
classification processing was then performed on all detected objects at the medium resolution 
data. The regions-of-interests (ROIs) at the medium level that were not classified with 
sufficient confidence were processed again with a DSSA-classifier at the high resolution level 
to reach a final classification decision. All experiments were conducted using essentially 
raw SAR pixel data as feature data (simple smoothing was performed on the data before 
detection and classification). 

Although this progressive execution of DSSA-detection followed by DSSA-classification may 
make it appear as though the two algorithms are different—they are not. DSSA-detection 
seeks to discriminate between clutter and a general class of targets, i.e., detect targets. DSSA- 
classification seeks to discriminate between separate target classes, i.e., classify targets. The 
algorithm used in either case is the same—only the end objective differs. 



Resolution 
Level 

Probability of 
Detection 

Probability of 
Classification 

False Alarms 
per Image 

Low 
Medium 
High 

99.70% 
Not Applicable 
Not Applicable 

69.30% 
92.74% 
98.75% 

5.07 / Image 
0.16 / Image 
0.00 / Image 

Table 1.1: Summary of detection, classification, and false alarm rates. 

1.6    Performance Summary 

Table 1.1 presents a summary of the detection, classification,, and false alarm results for the 
three target-class problem. A total of 1365 targets were contained in the test set, 1361 were 
detected at the low SAR resolution level (99.70%), and of these 1361, a total of 1344 were 
correctly classified at the medium and/or high SAR resolution levels (98.75%). One hundred 
SAR images containing rural and suburban clutter scenes were also tested to estimate the 
false alarm rate. Each image covered about one-tenth of a square kilometer. An average of 
five false alarms per image occurred at the low resolution level, an average of one false alarm 
in six images occurred at the medium resolution, and no false alarms were detected in the 
100 test images at the highest resolution level. 

1.7    Conclusion Highlights 

These experimental results gave nearly perfect detection and classification results. However, 
these results should be viewed as overly optimistic for the following reasons. First, a test 
case with only three target classes was conducted with no "confuser" classes included in the 
experiment. Confusers are target-like vehicles that are in fact not military targets. The DoD 
has restricted data for a total of 20 targets and 5 confusers, GTRI is trying to acquire copies 
of this larger test set for future work. Second, a suite of simple constant false alarm rate 
(CFAR) algorithms were used to minimize the false alarm rate. The parameters used in the 
CFAR algorithms were optimized for the test target data, but no test clutter data were used 
in selecting the CFAR parameters. Nevertheless, these experimental results demonstrate 
that DSSA detection and classification of SAR data is promising and deserves additional 
investigation. 

This report establishes that it possible to detect and classify SAR data with the use of SAR 
pixel data as features. Thus, training-on-the-fly and new-target-extension of DSSA based 
algorithms would be easy processes not requiring extensive non-recurring engineering cost for 
new target feature definition and extraction. This report further demonstrates that DSSA 
may hold computational advantages for the following reasons. 1) High resolution SAR image 
formation is not required for all measured SAR phase history data. Only the detected ROIs 
are processed with advanced SAR image formation algorithms to achieve higher resolution. 
2) DSSA enables the formation of a combined target detection and classification algorithm 



architecture that is homogeneous; the DSSA-classification algorithm is basically the same 
as the DSSA-detection algorithm. 3) DSSA is easily parallelized and pipelined for efficient 
real-time implementations. 



Chapter 2 

Introduction 

This introductory chapter provides background information and gives an overview of the 
approach used by GTRI to construct algorithms based on DSSA for detecting and classifying 
target signatures in SAR images. 

2.1    Automatic Target Recognition 

This section provides an overview of the military objectives, tactical strategy, and technical 
approaches and goals set forth by the U.S. Department of Defense (DoD) for the purpose of 
developing effective automatic target recognition. 

2.1.1    Military Objectives 

The Department of Defense is investing automatic (or assisted) target recognition (ATR) 
systems to support the future military requirements of the joint war fighter's operational 
needs. The war fighter is seeking to obtain dominant battlefield awareness with real-time 
identification of targets. Combat identification beyond visual range aids survivability, effec- 
tive weapon employment, and reduced fracticide. The detection and identification of time 
critical targets such as ground based missile launchers is vital in the theater front and in 
the littoral fighting environment of the U.S. Navy. In urban terrains, the detection and 
recognition of high valued targets in high clutter backgrounds is needed to support precision 
guided weapons to reduce collateral damage. A complete battlefield awareness and data 
dissemination system combines information from signal intelligence, terrain maps, national 
intelligence assets, national information repositories, global weather information, EO/IR/MS 
sensors, and radar (moving target indication (MTI) and SAR) positioned tactical reconnais- 
sance aircraft and UAVs and numerous other sources. 



•■■  ■.'.-•'-   ■<L> .■■.■J.,;iZuJ.t.--a:-.-':< ;<;..'-'..,. ,:•; .«/.-,»■., ~,-..V ;;..;.£■/ •••  :" 

i          -     i,    ,,,   • -    ;,, •       , 

..'7.'"'*' Ti?„..^2b...X:I;l.s\, 
-   f lmiy * v     a    ! , 

i 

Figure 2.1: Predator UAV. 

2.1.2    Battlefield Awareness 

With the advent of the information age and the development of high resolution sensors, the 
military has placed much attention and resources in the area of comprehensive and timely 
battlefield awareness. The goal is to detect, identify, and track all vehicles in order to 
define the ground order of battle and missile order of battle targets. The sensors used to 
extract available information include electro-optical sensors, infrared sensors, and synthetic 
aperture radars. The sensor assets are positioned on surveillance aircraft such as the U-2 
or on emerging platforms such as high-altitude endurance unmanned aerial vehicles (HAE 
UAVs) (e.g., current UAVs include Predator (Figure 2.1) and Hunter (managed by the Navy's 
Program Executive Officer for Cruise Missiles and Joint Unmanned Aerial Vehicles). Future 
UAVs include Global Hawk, Dark Star, and Outrider. The UAVs are used to reduce the risk 
to the war fighter and to increase the time over which data can be gathered. An example of 
the tactical UAV environment is illustrated in Figure 2.2. 

At the conference on 21st Century Investment Strategy for Airborne Reconnaissance Sensors, 
headed by General Kenneth Israel, the war fighter requirement for imagery data was stated 
to be on the order of 40,000 square nautical miles / day at a one foot resolution. This is 
a monumental task which is likely to require detection processing at lower resolutions with 
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Figure 2.2: UAV deployment in littoral environment. 

classification processing at higher resolutions images or subregions of interest. 

2.1.3    Surveillance Goals 

Modern surveillance systems are required to monitor large volumes of space while detect- 
ing, identifying, and tracking all militarily significant targets. In order to achieve these 
requirements, the first stage in any imagery dominated ATR algorithm focuses on identify- 
ing regions-of-interest using either low resolution imagery to reduce the computational load, 
or algorithms designed to efficiently partition the imagery into clutter regions (e.g., trees, 
grass, roads, water, etc.) and potential target regions. The probability of detection must 
be high at this stage, however, the false alarm rate may also be high at this stage since 
false alarms can be eliminated in latter stages through subsequent processing. The second 
stage then focuses on identifying targets within the regions-of-interest. High resolution data 
is applied at this stage to reduce the false alarm rate and to maximize the probability of 
identification. The identification stage of the ATR algorithm compares the measured data to 
either templates derived from measured data or synthetic data derived from target models, 
or extracts features from the measured data that are then compared with features associated 
with measured or synthetic template data. Both approaches require time to train the ATR 



algorithms. The DoD has specified performance level goals for modern ATR systems: a 
probability of detection goal of 0.90 and probability of identification goal of 0.7 (specified in 
the DARPA funded MSTAR program). The false alarm goal is one per 1000 km2. 

2.2    GTRI's Technical Approach 

GTRI's technical approach is the use of a novel nearest neighbor classifier with templates 
constructed with a new type of basis functions called direct sum successive approximation 
(DSSA) functions. This section provides an overview of the history and approach used by 
GTRI to develop novel DSSA classification systems. Chapter 3 describes the algorithm in 
detail and compares its structure with that of neural net classifiers. 

2.2.1    Development History of DSSA Classifiers 

The unoptimized structural architecture of DSSA originated in the technical area of data 
compression of images, and was initially called multiple stage vector quantization (MSVQ) 
[2]. This architecture was later optimized in two independent PhD thesis works [3, 4]. The 
optimized version of MSVQ, when applied to image data compression, is sometimes called 
residual vector quantization (RVQ) [5, 6, 7, 8]. 

The process developed by one of the investigators for optimizing the DSSA structure was 
awarded a patent in 1993 and assigned to Brigham Young University (BYU) [9] (this patent 
was filed 14 August 1989), other related intellectual property is held by the Georgia Institute 
of Technology (GIT). 

The technical areas of vector quantization (VQ) data compression and nearest neighbor (NN) 
data classification are closely related. Indeed, the encoder of a vector quantizer is identical 
to the conventional fc-means NN classifier [10, 11, 12, 13]. The &-means clustering algorithm 
[14] used for generating exemplars for NN classifiers is also identical to the generalized Lloyd 
algorithm (GLA) [15, 16], also called the Linde, Buzo, Gray (LBG) algorithm [17], used for 
generating the codevectors of VQ codebooks [18]. Many researchers are currently exploiting 
the synergism between developments in VQ compression and NN classification (for examples, 
see [19, 20, 21]). 

Researchers at GTRI have explored the application of RVQ to the nearest neighbor classi- 
fication problem since 1989. The underlying theoretical concept of RVQ, whether applied 
to data compression or classification is the direct sum successive approximation basis func- 
tion (DBF). This function is a multivariate function that can be used to represent samples 
of either one-dimensional time series (e.g., acoustic) data, or two-dimensional spatial (e.g., 
image) data. 

GTRI investigated the feasibility of using DSSA to classify mines in sonar images under a 
previous ONR program (N61331-93-K-0035), performed between July 1993 and November 



1994 [22], and investigated DSSA classification performance on acoustic backscatter for long- 
range mine detection (N61331-96-C-027) [23]. GTRI has also contracted with a major defense 
organization to continue investigations of DSSA applied to both side looking sonar (SLS) 
imagery, and forward looking sonar (FLS) data. 

2.2.2    Novel Aspects of DSSA Classifiers 

The most novel aspect of DSSA classifiers is their computation and memory simplicity rel- 
ative to the number of exemplars searched for nearest neighbor classification. This relative 
simplicity permits nearest neighbor classification of feature vectors with many embedded 
features or "dimensions". For example, a classifier that is designed to classify only on the 
basis of a target's width and height, would likely have its performance improved if additional 
features such as texture, brightness, shadow size, etc., are added to the classification process. 
But most classification architectures become impractical when the feature vectors become 
large. In addition, two persistent problems have plagued most classifiers when high dimen- 
sional feature vectors are used. Collectively, these problems are referred to as the "curse of 
dimensionality": 

Design Phase Problem: The problem of generating a large numbers of high dimensional 
exemplars with limited training data during the design phase of the classifier. 

Run Phase Problem: The problem of classifier robustness when data not well represented 
by training data is encountered during the run mode of the classifier. 

The Curse of Dimensionality in the Design Phase 

The first problem is directly related to the number of parameters, or "degrees-of-freedom" 
(DoF) that must be specified when building a classifier. Typically, the number of degrees- 
of-freedom expands exponentially as the dimensionality of the classifier increases. Nearly all 
parametric classifiers have been so structured to combat the curse of dimensionality by re- 
stricting the number of dimensions and by imposing structural constraints on the boundaries 
between decision regions. Examples include linear discriminates, quadratic discriminates, 
and neural nets (NNets), which generally manipulate parametric hyperplane, quadratic, or 
ellipsoidal decision boundaries. The problem with constraining the form of decision bound- 
aries in high dimensional spaces is that the number of "facets" associated with decision 
regions often increases exponentially as dimensionality is increased. 

Unconstrained nearest neighbor classifiers also suffer from the design phase problem when 
the number of exemplars that must be generated becomes large. A large number of exemplars 
requires a large training set, and since, as a rule-of-thumb, the number of required exemplars 
increases with increasing feature vector dimensionality, practical nearest neighbor classifiers 
have restricted dimensionality. 

10 



DSSA classifiers are not subject to the design phase part of the curse of dimensionality. 
Unlike parametric classifiers, DSSA classifiers seek not to directly constrain the dimension- 
ality nor decision region boundaries to avoid the curse of dimensionality, but structurally 
constrain the content of the exemplars by limiting the fidelity of the digital representations of 
the feature amplitude values. The exemplar amplitude values are restricted to be only those 
that can be constructed by a sequence of DSSA basis functions. The number of permitted 
DSSA basis functions available at each stage of the exemplar synthesis process can be as 
small as two, and is often no larger than twenty. The use of multiple stages of templates 
with small numbers of templates at each stage has a tremendous impact on reducing the 
amount of training data that is required to generate templates for high dimensional feature 
vectors. The DSSA design process requires that only one stage of the DSSA basis functions 
be generated (or improved) at a time—thus, the entire training set need only be partitioned 
between the small number of DSSA basis functions that exist at a single stage. The DSSA 
design process is practically never starved for training data at the stage level. 

Although the number of DSSA basis functions that exist at each stage is usually quite 
small, the number of direct sum exemplars that can be formed by the DSSA basis functions 
increases exponentially with increasing number of DSSA stages. For example, if the number 
of DSSA basis functions at each stage is N, then the number of direct sum exemplars M 
available to the nearest neighbor classifier is J\f = Np for a P-stage system. The key to 
the DSSA approach is that only a small subset of these possible direct sum exemplars are 
constructed during the search process for each input vector, and this construction takes place 
in real-time as dictated by the contents of each input feature vector. Thus, an exhaustive 
search over an enormous, static, prestored database is not required. 

The Curse of Dimensionality in the Run Phase 

Of course, there are limits to how much information can be gleaned for a classification 
process from limited training data. If training data is severely limited, not all of the direct 
sum exemplars will be effective in the classification process if large numbers of DSSA stages 
are generated. Two questions remain: (1) how many DSSA stages should be designed for 
a given training set size, and (2) at what minimum training set size for a given feature 
dimensionality is DSSA performance acceptable? The answer to the first question is known 
and is explained in Section 3, the general answer to the second question is currently unknown 
and must be addressed empirically in each specific case. 

Is the Curse of Dimensionality Omnipresent? 

Traditionally, in more conventional nearest neighbor classification systems, rather demanding 
rules-of-thumbs have required minimum training set sizes on the order of 10-100 training 
vectors for every template [24, 25, 26]. However, recent research by others has started to 
question the transcendent nature of the "curse of dimensionality", and some experimental 
results are appearing in the literature that suggest that high dimensional nearest neighbor 
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classifiers can still be designed in certain cases with limited training data and yet obtain good 
performance [27, 28]. The results of this research also suggest this is possible (see Chapters 
4 and 5). 

The Use of Raw Features 

A primary focus of this research is the use of raw SAR pixel data in a target classifier— 
higher order feature definition and extraction is a secondary issue. The feature set used in 
this research is SAR image pixel data that has only been slightly preprocessed to reduce 
the level of speckle. The feature vectors are large—they are formed from the pixels of two- 
dimensional "snippets" extracted from the SAR imagery. The snippets used in this research 
are as large as 41 x 65 pixels and contain as many as 2,665 pixels. These large-but-simple 
feature vectors essentially contain the entire SAR radar signature of each target. 

The Use of Limited Training Data 

The use of raw SAR data has one important advantage: DSSA systems can be easily extended 
and updated to accommodate new threats. The feature definition, extraction, and classifier 
design process can be entirely automated, and extension of the classifier to a new target 
class does not require human intervention. Thus, training-on-the-fly and rapid updating and 
insertion of new targets into a DSSA classifier is a straight forward process. 

Of course, the more training data that is available—the better. A DSSA system that is 
trained-on-the-fly with limited training data will not perform with the same level of confi- 
dence as a system with exhaustive amounts of training. However, DSSA classifiers provide, 
in essence, an exhaustive search of all available training data during the on-line classification 
process. Thus, a DSSA system with limited a priori target signature exposure will pro- 
vide classification results consistent with all available data. Moreover, DSSA classification 
decision are not necessarily binary—DSSA conveys confidence about its decisions. Thus, 
in assisted target recognition applications where training-on-the-fly is most appropriate to 
counter new threats that are not understood very well, the level of confidence (or lack of) of 
the DSSA detections/classifications is also conveyed to the human operator. 

The results of this research and other similar work done by GTRI show that effective DSSA 
classifiers can be designed with limited training data, and that DSSA is able to deal with 
large feature vectors and large intraclass signature variability. Thus, the DSSA approach 
permits the development of a SAR target detection and classification system that is flexible 
(can be updated to accommodate new threats), is robust (works with limited training data), 
and provides good performance. 
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2.3    Related Classification and Compression Literature 

A VQ data compression system partitions a data space and assigns each cell to a codevector. 
A classifier with nearest neighbor templates partitions a decision space and assigns the 
region about each exemplar to a class. A difference between the two problems is related 
to the design procedures; a VQ is most often designed to minimize compression distortion, 
while a classifier is designed to minimize classification error. 

A literature search was conducted to determine what approaches have been used by other 
researchers to design such compression-classifiers. Four related research areas were found in 
the literature. One is the use of vector quantization for pattern recognition [29, 30, 31, 32, 
33, 34, 35, 36, 37, 38, 36, 39, 40, 41]. The second is compression of data that are subsequently 
processed for target detection [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. The third is 
sequential detection theory [54, 55, 56], and the fourth is encoding of multiple correlated 
observations for joint detection processing [57, 58, 59]. 

2.4    Report Organization 

This scientific and technical report is organized as follows. 

Chapter 1 (Executive Summary) explains the problem addressed by this research project 
and provides a summary of the research objectives, technical approach, and experi- 
mental results. Concise summaries of GTRI's conclusions and recommendations are 
also given. 

Chapter 2 (this introductory chapter) contains an introduction that explains the target 
detection problem associated with SAR target detection and classification, provides 
background material on GTRI's technical approach. 

Chapter 3 gives a detailed description of the DSSA classifier. Related material on neural 
nets is included. 

Chapter 4 describes the SAR database, the data preprocessing steps, the classification 
goals, and experimental results. This chapter also describes the computational and 
memory costs required to implement the DSSA classifier. 

Chapter 5 gives GTRI's conclusions and recommendations related to DSSA classifier per- 
formance and implementation, and also contains a set of suggested topics for further 
research and development. 
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Chapter 3 

Automatic Target Recognition 

GTRI has examined and compared the structures of DSSA and various types of neural 
networks and has found similarities between DSSA classifiers and the structure of radial basis 
function (RBF) neural networks. Although DSSA originated in the design and application of 
vector quantization data compression, this report describes DSSA in terms of the structural 
components of neural networks to make this work more easily accessible to a wider audience 
than just the data compression community. A previous description of DSSA in terms of 
vector quantization is in [22]. It is important to point out that the design of DSSA classifiers 
was not motivated in any way by the development of neural networks, but will be simply 
described in this report in terms also used to describe the architecture of neural networks. 

3.1    RBF Neural Network Classifier 

A radial basis function neural network consists of a set of sensory units or source nodes 
that form the input layer, a hidden layer of computational nodes, and an output layer of 
computational nodes. An architectural diagram of a RBF network is shown in Figure 3.1. 
The adjacent layers are exhaustively interconnected and the input signal propagates through 
the network in a forward direction. The network has k nodes in the input layer, one for each 
of the elements of the input feature vector, N nodes in the hidden layer, and M nodes in the 
output layer, one for each of the possible classification decisions. The first-layer connections 
are not weighted, thus each hidden layer node receives an unaltered copy of the input feature 
vector. 

Associated with each node of the hidden layer is an exemplar yh that is a centroid of some 
portion of the neural net training data. The hidden nodes collectively represent all of the 
training data with centroid-based approximations which are called radial basis functions, or 
RBF-centroids. Each hidden node takes the input feature vector and computes the distance 
from its RBF-centroid and applies a nonmonotonic transfer function to produce a continuous, 
positive output activation level. The second layer's connections are weighted and summed 
in the output nodes. The activity levels of the nodes in the output layer are interpreted as 
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Figure 3.1: A class-independent, RBF-centroid neural network architecture. 

the unnormalized likelihoods of the corresponding classes, and the class of the output node 
with the highest activation level is taken as the classification decision. 

The transfer function of the N hidden nodes is similar to the Gaussian density function given 
by 

an = exp[-\\x-yh\\i/o*\ (3.1) 

where an is the activation of the nth RBF in the hidden layer given the input feature vector 
x. The distance scaling parameter a determines over what distance in the feature space a 
RBF-centroid will have significant influence. The output nodes of the neural net compute 
the mth class activation level by 

H 

zm = ^2 wmhah + 9m (3.2) 
71=1 

where 9m is a class bias constant, and the wmh are the weights applied to the outputs of the 
hidden layer. 

The training elements that comprise the training data for a RBF neural net consists of 
associated pairs {(xi,ci); I = 1,2,... ,L of feature vectors xi and associated class label 
vectors Q, that are length M vectors with a value of 1 in the position corresponding to 
the correct classification of xi and zeros elsewhere. The network is trained by adapting the 
weights to minimize 

L 

E{Vh><r>wmh)=Yl\\zi-ci\\2 (3-3) 
J=I 

the sum-squared-errors between the network outputs zi and the target values c/ over the set 
of training examples x\. 
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3.1.1    RBF Neural Net Design Method 

Hidden Nodes 

Input Nodes Output Nodes 

Classs 1 

Classs M 

Figure 3.2: A class-dependent, RBF-centroid neural network architecture. 

Various methods have been proposed for training neural network classifiers. Burton and Lai 
[60] trained their neural network using four steps: 

1. A fixed number N of RBF-centroids was selected for the hidden layer. 

2. The centroids yh were determined by the same design technique used for constructing 
codevectors/exemplars used by learning vector quantizers (LVQ) [19, 21]. 

3. The scaling parameter a was determined by a nearest neighbor heuristic. 

4. The weights of the second layer of connections were determined by minimizing the 
mean-squared-error between the computed and desired output of each output node. 

In actuality, Burton and Lai used a separate scaling parameter ak for each element of the 
feature vectors. Thus, the radial basis functions became ellipsoidal basis functions (EBF) 
in their implementation. Furthermore, they made the EBFs class-dependent, that is, each 
EBF centroid was formed by using training data from only a single class. They note that 
this simplifies the network, provides for easier training, and allows for easier addition of new 
classes without affecting existing class basis functions. The structure of the class-dependent 
EBF network is shown in Figure 3.2. 
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3.1.2    LVQ in RBF Neural Net Classifiers 

Kohonen [19, 61, 20] proposed a likelihood or learning vector quantizer (LVQ) to perform 
classification using a VQ encoder and codebook, where the encoder operates as an ordinary 
minimum mean squared error selection of a representative from the codebook, but the code- 
book is designed in a manner that attempts to reduce classification error implicitly rather 
than reducing mean squared error. Kohonen's algorithm is similar to Stone's [62], who con- 
structed a general formulation of nearest neighbor methods for parametric regression, in 
which a general weighting dependent on class membership of several nearest neighbors were 
applied to the classifier. 

Kohonen used a heuristics to argue that moving centroids according to nearby class member- 
ship should asymptotically have the effect of approximating a Bayes risk. His general goal 
was to imitate a Bayes classifier with less complexity than other approaches such as neural 
networks. Kohonen argued that for the case of Gaussian data, the partition induced by a 
VQ can approximate that required for a Bayes estimator—but this is a heuristic algorithm 
based on intuition [33]. 

Kohonen's approach has been widely used for classification of such disparate applications 
as the classification of speech sounds [35], of objects in clutter in synthetic aperture radar 
[38, 63], of proteins [36], of bird songs [39], of oceanic signals [37], and other applications 
[64, 32, 35]. 

3.2    DSSA Classifier 

A structural diagram of a DSSA classifier is shown in Figure 3.3. There are four major 
points of difference between the RBF neural net and the DSSA classifier: 

1. The RBF are not precomputed and stored, but are dynamically created on-the-fly as 
direct sum exemplars with the use of a prestored set of DSSA basis functions (DBFs). 

2. The number of basis functions used for each input vector is not predetermined, but 
is data-dependent and varies between classes, and can even vary within a class for 
different feature vectors. 

3. RVQ design methods are used to generate the DBF instead of the LVQ design methods 
used to generate the RBFs. 

4. Output weights are computed differently and heuristic logic is (currently) used in the 
output layer. 

The most obvious difference in comparing the architectures of Figures 3.2 and 3.3 is in the 
internal mesh of stages that comprise the hidden layer of the DSSA neural net. The hidden 
layer is a feed forward, fully connected mesh of DSSA basis function. 
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Figure 3.3: A class-dependent, DBF-centroid neural network architecture. 

The DBF stages form a linear set of basis functions that construct direct sum exemplars. 
The early DBF stages in the sum represent the large amplitude, coarse features of the input 
vectors, while the later DBFs contain increasingly finer amplitude detail. The direct sum 
exemplars are formed and examined in a progressive manner until a direct sum exemplar is 
discovered that matches the input data with a predetermined fidelity threshold. 

This matching process is performed within each of the class-dependent hidden layer systems. 
The system that provides the best match is declared as the classification decision. 

The input vectors are not forced to propagate from the first DBF stage to the last, but 
may exit the system when confident classification decisions are made. By allowing a variable 
number of stages in the recognition process, the system can devote fewer computational re- 
sources to the "easy" problems, and more to the "hard" problems. For instance, this system 
first attempts to classify data represented by a coarse approximation. If the classification 
does not succeed with a high level of confidence, additional details are then added to the 
data representation such that a more accurate representation is obtained. Then the decision 
system tries once again to reach a classification decision with an acceptable level of confi- 
dence. This process is repeated until either it is determined that the DBFs do not span 
the space of the current input data (i.e., do not belong to the DBF class) or the data are 
"confidently" classified. This approach permits the matches to be less than stellar when the 
training data is limited, and thus helps the system to be robust. The matches may not be 
perfect, but from the given alternatives generated by the other classes, the correct class is 
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often the best match. 

3.2.1    RVQ in DBF Neural Net Classifiers 

Each DSSA-mesh interconnect path has dimensionality equal to the feature dimension. The 
weights of these paths are given by 

Xp X-EVPM*P)) (3-4) 
p=0 

where yp(£(xp)) is the EBF result of a local nearest neighbor search operator £(•) for xp 

over the pih stage DBF set {yp(j); j = 1,2,... , Np}. That is, each stage is searched in turn 
to find the most similar DBF to the pth stage input vector xp. The measure of similarity, 
or distance, used is the sum-of-squared-differences between the feature vector (for the first 
stage), or the causal residual vector (for all other stages) and the DBFs. 

At the output of the first stage, the difference between the feature vector and the nearest 
DBF-centroid is formed to generate the first stage residual vector. This residual vector is then 
input into the second stage and then second stage nearest neighbor searches are conducted to 
find the best second stage DBF. This process is repeated for an arbitrary number of stages. 
If the resulting distance is large, the pattern match is poor, and if the distance is small, 
the pattern match is good. (It may be more appropriate to call this measure a dissimilarity 
measure.) 

An approach similar to that given in [65] is used to determine early in the search process if 
the input data does not belong to the DBF class. 

A RVQ design process is used to generate the DSSA stages. These DSSA stages usually only 
have a few, possibly just two, DBFs; this approach greatly expands the number of available 
direct sum exemplars that can be efficient searched. The number of possible direct sum 
exemplars that can be constructed from DBFs is 

Af = N1xN2x---xNP (3.5) 

where P is the number of stages, and Np is the number of DBFs at the pth stage. 

A normalized signal-to-noise fidelity criterion is specified before the RVQ design process 
begins, and this process generates the required number of DSSA stages necessary to meet 
specified fidelity criterion. The SNR fidelity used in the design process is defined as 

w2 

\xp\ 
w   =   101og10^L_ (3.6) 

=   10 log 10 
l*o||2 

\xo-zUyP(£(xp))W2 

where x0 is the original feature vector input into the first stage. 
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3.2.2    DBF Neural Net Design Method 

The training of the DSSA classifier consists of two parts. First the training data is processed 
by extracting feature vectors containing example SAR data from each target class. The RVQ 
training algorithm generates a set of DBFs at each stage of the DBF neural net that is able 
to progressively approximate the input feature vectors generated by a target class. If all 
these training vectors are sufficiently distinct, each one will produce a unique path through 
the DBF stages. These paths form a decision tree. For example, with 16 DBFs per stage, 
and 16 stages, 1616 distinct patterns could be generated, each with an unique path through 
the decision tree. However, to the extent that training data can be clustered, the number 
of distinct paths generated in the RVQ design process will be reduced. These paths are 
recorded in the form of a linked list of decision thresholds. 

The thresholds associated with each direct sum exemplar are used to label decision regions 
within the decision space, these labels designate whether a given region of the decision space 
was explored during the training phase. 

Full path thresholds provide the best performance and were tested in this report, but in some 
cases, these may have high implementation costs; partial path thresholds provide a tradeoff 
between performance and the memory required to store the decision tree. The threshold 
selected in this report is the maximum-in-class distance encountered during the training 
phase for each direct sum exemplar. This distance threshold determines the most dissimilar 
training target data that is used to construct the associated DBF. This threshold can be 
used to label decision regions within the decision space "target-like" or "unknown". 

If the DBF classifier is tested on the training data, the threshold-based DSSA classifier will 
always provide perfect performance (100% PdPc - 0% FA) on all training data if the SNR 
fidelity level is selected to be sufficiently high. 
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Chapter 4 

Experimental Results 

This chapter provides a description of the SAR data set used by GTRI in the DSSA clas- 
sification experiments, and the preprocessing applied to the data set before training and 
testing the DSSA-based ATR algorithm. Experiments that test DSSA detector/classifier 
performance for automatic target recognition in SAR imagery are described in detail. The 
implementation cost of DSSA and SAR image formation cost savings are also presented. 

4.1    SAR Image Database 

The Defense Advanced Research Project Agency (DARPA), in conjunction with Wright Labs, 
has developed the Moving and Stationary Target Acquisition and Recognition (MSTAR) 
program for the development of an ATR system capable of detecting and identifying time 
critical targets from two-dimensional SAR imagery. The program has directed the collection 
of SAR imagery on both US and foreign vehicles under a variety of conditions (e.g, varied 
configurations, articulations, obscurations, camouflage, and revetments). The program has 
to date collected SAR images on twenty targets and 700 clutter scenes consisting of rural 
and urban clutter. In an effort to maximize the research effort in this area, the MSTAR's 
program has released to the public a CD containing images from three foreign targets and 100 
clutter scenes (both rural and urban). The target images were partitioned by Wright Labs 
into training and testing data sets for algorithm development and performance evaluation. 
The analysis in this report is based on applying the DSSA-based ATR algorithm to this set 
of data. The following sections will describe the data set in more detail. 

4.1.1    MSTAR Target Images 

The MSTAR public data set contains three targets: a T72 tank, a BMP2 infantry fighting 
vehicle, and a BTR70 armored personnel carrier. Three different T72 and BMP2 target 
configurations were provided in the data sets.  The different configurations allow an ATR 
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Figure 4.1: BTR70 armored personnel carrier in a C71 configuration. 
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Figure 4.2: BMP2 infantry fighting vehicle in a C71 configuration. 

algorithm's performance to be evaluated when the target data is subjected to significant 
intraclass SAR signature variability. Photographic images of one configuration of each of 
the three target vehicles are shown in Figures 4.1-4.3. The other configurations are shown 
in Appendix A. 

The publicly released data was collected in September 1995 using an X-band radar operating 
at 9.6 GHz. The public release data was collected at two depression angles: 15° and 17° 
with a one foot resolution in both the range and cross range dimensions. The target data 
was collected with the radar in a spotlight mode, and the clutter data was collected with the 
radar in a strip map mode. A 35 dB Taylor weighting was applied in both the range and 
cross-range processing to reduce sidelobe levels. The target data was delivered in a "chip" 
format consisting of 128 x 128 pixels covering an area of approximately 26 x 26 meters. Each 
chip contained one target signature at one aspect angle. Figure 4.4 is an example of a T72 
target chip at a zero degree aspect angle. The ground range represented by each pixel is 
0.202 meters in range and 0.203 meters in cross range. Note the target and target induced 
shadow regions contained in this SAR image chip. SAR target images were collected over the 
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Figure 4.4: Example T72 tank SAR image a zero degree azimuth angle. 
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full target aspect range of 360° at approximately 1° increments for each target configuration. 

4.1.2    MSTAR Clutter Images 

The MSTAR clutter images consist of 1784 x 1472 pixels covering approximately 360 meters 
x297 meters. The ground range represented by each clutter pixel is also 0.202 meters in 
range and 0.203 meters in cross range. Appendix B shows example MSTAR clutter images. 

4.2    DSSA Experiments 

A three tiered approach is used in the DSSA detection/classification algorithm to reduce 
the number of computations. The approach consists of implementing a DSSA detector stage 
that operates on a low resolution version of the SAR data. The use of low resolution SAR 
data reduces the complexity of the DSSA detector and also reduces the complexity of the 
SAR image formation process. Although the use of low resolution data reduces complexity, 
it may also result in increased false alarms and less classification capability at the first 
stage. But the increased number of false alarms and the decreased classification capability 
at the first low resolution stage can be resolved in the two latter stages. The second DSSA 
classification stage operates on medium resolution SAR data. If the DSSA classifier is not 
able to render confident classification decisions using medium resolution SAR data, then a 
final DSSA classification stage operates on high resolution SAR data to reach final target 
recognition decisions. 

The multiple tiered approach requires the use of progressive SAR image formation algo- 
rithms. Once SAR image regions of interest have been detected at the first stage, these 
regions are then processed with a progressive SAR image formation algorithm to obtain 
localized, higher resolution SAR images. This approach has the benefit that complex SAR 
image formation algorithms can be simplified by selective application to smaller subregions 
of the SAR phase history data. 

4.2.1    Computing Environment 

The experiments were performed on a UNIX Sun workstation and on a Windows NT personal 
computer. The Sun was a SPARCcenter 1000 with two 85-MHz SuperSPARC II processors 
and 192 megabytes of RAM memory. The personal computer has an Intel 166-MHz Pentium 
processor with 128 megabytes of RAM. Custom C-language programs, C-Shell scripts and 
MatLab scripts were written to perform the experiments. 
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Figure 4.5: SAR resolution reduction algorithm. 

4.2.2    Data Preprocessing 

The DSSA experiments require SAR images at low, medium and high resolution levels. 
However, all MSTAR data is provided only at a high resolution level of 1 foot. Thus, it 
was necessary for GTRI to generate lower resolution versions of the MSTAR data sets. 
GTRI degraded original 1 foot resolution SAR data to 2 foot and 4 foot resolutions levels. 
Furthermore, the MSTAR data occasionally has data fall-out regions that are likely due to 
quantization errors in the radar's analog-to-digital converter. These fall-out regions can be 
recognized as exceptionally dark pixels in the SAR images. The MSTAR data was smoothed 
to reduce the impact of the fall-out regions. Smoothing also helps to reduce the speckle of 
the SAR imagery. The rest of this section describes the algorithm used by GTRI to generate 
low resolution versions of the MSTAR data, and the smoothing algorithm used to reduce 
the effects of fall-out and speckle. 

SAR Resolution Reduction Processing 

The process shown in Figure 4.5 was used to generate 2 and 4 foot resolution data from 
the high resolution 1 foot SAR data for both the target and clutter images. The SAR pixel 
data was first converted into phase history data. First, an inverse DFT and an inverse 35 
dB Taylor weighting function is applied to the original SAR pixel data along the cross range 
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Target 
Class 

Number of 
Training Chips 

Number of 
Testing Chips 

T72 
BTR70 
BMP2 

691 
233 
698 

682 
196 
587 

Table 4.1: Numbers of target images used for training and testing. 

dimension, and then this is repeated in the range dimension to form SAR phase history data. 
Then, two data sets are formed from the resulting phase history. In one set the phase history 
is truncated by discarding half of the phase history samples in both dimensions. The second 
data set is obtained by discarding 3/4 of the phase history samples. This truncation of the 
phase history data results in a degradation of the resolution in both dimensions by a factor 
of 2 and 4, respectively. At this point, forward SAR signal processing is performed on these 
subapertures to form the lower resolution SAR images. A 35 dB Taylor weighting and DFT 
is applied to the truncated phase histories in the range dimension and cross range dimension 
to form the degraded resolution SAR images. A log function (base 10) was then applied to 
the SAR image data to compress the range of pixel values. 

The high resolution SAR clutter images contain 1472 x 1784 pixels, the medium resolution 
SAR clutter images contain 736 x 892 pixels, and the low resolution SAR clutter images 
contain 368 x 446 pixels. Examples of the clutter images at different resolutions are given 
in Figures 4.6—4.8. 

Smoothing 

A sliding window average is applied to the SAR images to reduce the effects of fall-out and 
the speckle associated with the SAR images. The sliding window is sized to contain a pixel 
and its eight nearest neighbors as shown in Figure 4.9. An average of the nine pixel values is 
then used to replace the value associated with the center pixel. Image edge boundaries are 
accounted for by reducing the size of the window. The resolution reduction described in the 
previous section and this smoothing process were performed on all of the target and clutter 
images. 

4.2.3    DSSA Detector/Classifier Training 

DSSA Training Sets 

The target data collected at a 17° depression angle was used for training the DSSA algo- 
rithms, and the clutter images and target images collected at a 15° depression angle were 
used for testing. The numbers of target chips used for training and testing are given in Table 
4.1 for each composite (all configurations) target class. The number of chips is a factor of 
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Figure 4.6: Example SAR clutter scene at low resolution. 
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Figure 4.7: Example SAR clutter scene at medium resolution. 
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Figure 4.8: Example SAR clutter scene at high resolution. 
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Figure 4.9: Sliding window used for SAR image smoothing. 

Resolution Level Snippet Size Number of Pixels 
Low 
Medium 
High 

11x17 
21 x33 
41 x65 

187 
693 

2665 

Table 4.2: Snippet sizes extracted from target chips. 

three larger for the T72 and BMP2 target classes due to the three baseline configurations 
included for these targets. The data from the different configurations were mixed together 
to form training and testing data for each target. 

DSSA Feature Vectors Definition 

Each target chip consists of 128 x 128 pixels at the one foot resolution and 64 x 64 and 32 x 32 
pixels at the two and four foot resolutions, respectively. However, the 26 x 26 meter target 
chips contain large regions void of target returns or target shadow. Therefore, in defining a 
DSSA "snippet" size to use for extracting pixels for insertion into the DSSA feature vectors, 
subregions of the target chips were selected to isolated the target signatures. These snippets 
contain mostly target returns and target shadows. The sizes of these subregions for each 
resolution level are given in Table 4.2. Sample snippets extracted for one of the T72 target 
chip series are shown in Figure 4.10 for the different resolutions (note the fall-out region in 
the high-resolution snippet). 

DSSA Template Generation 

DSSA templates sets where generated for each target training set. The number of DSSA 
stages varied from 8 to 16 stages, depending upon the particular target class and resolution 
level. Each DSSA stage contained 32 templates for the tank and fighting vehicle classes, 
and each DSSA stage contained 16 templates for the transport vehicle target class. These 
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Figure 4.10: Example target snippets used to form DSSA feature vectors. 
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different numbers of templates is a result of different configuration data being used to form 
different amounts of training data. 

4.2.4    DSSA Detector/Classifier Testing 

The DSSA detector/classifier processes the SAR imagery in a progressive manner from low 
resolution to high resolution SAR. Only those low resolution regions-of-interest that pass 
the DSSA detector are subsequently processed to form (localized) medium resolution SAR 
imagery. These medium resolution subimages are then processed by the DSSA classifier. If a 
confident classification decision is reached with the medium resolution DSSA classifier, then 
the process terminates, otherwise, additional SAR image formation processing is performed 
to form high resolution versions of each suspect region of interest. The final DSSA classifier 
then uses the high resolution SAR data to make a final decision. However, remember that 
there is no architectural or basic operational differences between the DSSA detector and 
DSSA classifier; only the size of the feature vectors and required (SNR™™) confidence levels 
differ. 

Here, "confidence" is simply quantified as the level of mean-squared-error (MSE) between 
the DSSA input data and the DSSA templates. If the MSE is low, confidence is high. 
Thresholds are associated with each DSSA template in a decision tree to judge the quality 
of its associated MSE for a given input feature vector. 

A sliding window is used to extract a snippet from each pixel location in the low resolution 
SAR image to form DSSA feature vectors. Thus, the DSSA detector/classifier returns a MSE 
value for each pixel location in the processed image. This MSE-based template dissimilarity 
map is then subsequently processed to reduce the rate of false alarms with simple constant 
false alarm rate (CFAR) algorithms described in the next section. 

CFAR Postprocessing 

Post-processing software was developed that converts the MSE distance measures acquired 
from each target-specific DSSA detector/classifier into into a signal-to-mismatch noise ratio 
(SNRmm). The variance of the snippet contained in the original SAR data at each pixel 
location (signal energy) is normalized by the measured MSE value (template mismatch noise). 
This signal-to-noise ratio provides a similarity surface that is subsequently processed with a 
set of simple CFAR algorithms. 

The simple CFAR algorithms threshold the peaks of the (SNRmm) surface, and count the 
number of pixels within each peak at the given (possibly multiple) threshold levels. If the 
pixel counts are within acceptable ranges, a target detection is declared. In this research, 
these pixel count ranges were optimized to give the best possible performance for the MSTAR 
target test images. The MSTAR clutter images were not used in choosing these CFAR 
parameters. 
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High Resolution SAR 
True DSSA Decisions False Alarms/Image 

BTR-70 T72 BMP-2 
BTR-70 
T72 
BMP-2 

188 
0 
0 

4 
582 
12 

1 
0 

574 

0.00 
0.00 
0.00 

Medium Resolution SAR 
True DSSA Decisions False Alarms/Image 

BTR-70 T72 BMP-2 
BTR-70 
T72 
BMP-2 

172 
0 
1 

10 
572 
63 

11 
10 

522 

0.00 
0.07 
0.09 

Low Resolution SAR 
True DSSA Decisions False Alarms/Image 

BTR-70 T72 BMP-2 
BTR-70 
T72 
BMP-2 

121 
19 
58 

37 
488 
191 

35 
75 
33 

1.50 
1.24 
2.33 

Table 4.3: Classification confusion matrices. 

DSSA Classification Decisions 

The DSSA classification rule is to simply pick the class of the DSSA classifier that provides 
the best DSSA template match. 

4.2.5    DSSA Detection/Classification Results 

A total of 1365 targets were contained in the test set. The first stage DSSA detector found 
1361 of these in the low resolution SAR images, giving a detection rate of 99.70%. An 
average of five false alarms per image occurred at the low resolution level. Of the 1361 
targets detected at the low resolution, the DSSA classifiers correctly classified 1361 at the 
medium and/or high resolution levels, giving a correct classification rate of 98.75%. An 
average of one false alarm in six images occurred at the medium resolution, and no false 
alarms were detected in the 100 test images at the highest resolution level. 

Confusion matrices for the low, medium and high resolution levels are given in Table 4.3. 
Each row shows the number of correct and incorrect DSSA decisions for a single target class. 
Most errors at the high resolution level involved misclassifying the fighting vehicle, with its 
mounted machine gun, as a tank. One hundred SAR images containing rural and suburban 
clutter scenes were also tested at the low resolution level to estimate the false alarm rate. 
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Each image covered about one-tenth of a square kilometer. 

Figure 4.14 and its transparency overlays show an example DSSA detection/classification 
result for a low resolution clutter image that also contains snippets of each of the three 
target classes. These test targets were inserted by hand by GTRI (since no clutter images 
with targets were provided by DARPA) to illustrate DSSA detector/classifier operation. The 
three overlays show the DSSA detection results generated by the DSSA template sets for 
each of the target classes. The first overlay is from the T72 templates, the second from the 
BTR70 templates, and the third from the BMP2 templates. Note the three false alarms 
collectively produced by the DSSA detectors. Also note that the overly color code indicates 
confidence by showing SNRmm values. Note that even the DSSA-detector has some ability 
to discriminate between the target classes even with low resolution imagery. 

Figure 4.19, with its transparency overlays, shows an example DSSA detection/classification 
result for the same image, but at a medium resolution level. Only those regions that were 
detected at the low resolution level are processed at this level (for the T72 example, see Figure 
4.15). Note that there are no false alarms. Also note that the color-coded SNRmm values 
show that the T72 has been classified at this medium resolution level with high confidence, 
but that there is still some uncertainty for the other two targets. 

Figure 4.24 and its transparency overlays show an example DSSA detection/classification 
result for the same image, but at a high resolution level. Only those regions that were 
still active at the medium resolution level are processed at this level (for the T72 example, 
see Figure 4.20). The color-coded SNR™™ values show that all targets are classified with 
significant confidence. 

4.3    DSSA Implementation Costs 

Although full implementation complexity and cost are difficult to quantify, the following 
sections provide memory cell and computational operation count analysis and measurements 
for the DSSA classifier and progressive SAR signal processing. 

4.3.1    Memory Complexity 

DSSA Basis Function Memory Requirements 

The memory required for DSSA template storage is: 

4k x N x P bytes (4.1) 

where the DSSA basis functions are stored in single precision floating-point format (4 bytes 
per element), k is the dimension of the feature space, N is the number of DSSA basis 
functions per stage, and P is the number of stages. 

34 



Figure 4.11: T72 detections for low resolution image. 
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Figure 4.12: BTR70 detections for low resolution image. 
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Figure 4.13: BMP2 detections for low resolution image. 
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Figure 4.14: Example low resolution SAR test image. 
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Figure 4.15: Identified regions-of-interest in medium resolution image. 
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Figure 4.16: T72 detections for medium resolution image. 
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Figure 4.17: BTR70 detections for medium resolution image. 
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Figure 4.18: BMP2 detections for medium resolution image. 
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Figure 4.19: Example medium resolution SAR test image. 
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Figure 4.20: Identified regions-of-interest in high resolution image. 
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Figure 4.21: T72 detections for high resolution image. 
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Figure 4.22: BTR70 detections for high resolution image. 
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Figure 4.23: BMP2 detections for high resolution image. 
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Figure 4.24: Example high resolution SAR test image. 
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Feature Vector Size Number of Stages Number of Templates Required Memory 

11 x 17 
21 x33 
41x65 

15 
12 
9 

32 
32 
32 

359,040 bytes 
1,064,448 bytes 
3,070,080 bytes 

Table 4.4: DSSA basis function memory requirements. 

Table 4.4 gives the DSSA basis function memory requirement for each target class. Thus, 
the total memory for a single class is about 4.5 megabytes. For all three classes, the template 
memory storage is about 15 megabytes. 

DSSA Thresholds Memory Requirements 

The DSSA classifier also requires memory for a threshold that is used in the decision making 
process. The DSSA structure is capable of representing many more patterns than are actually 
used in training. For example, with N - 16 and P = 15, the total number of distinct 
patterns that could be represented is Np « 1.018. Clearly, only a much smaller subset of 
this possibility is used. 

During the training of the DSSA classifier, 200 or 600 examples of SAR target signatures 
were used for each target. If all these training examples were sufficiently distinct, each one 
would produce a path through a DSSA classifier "decision tree". The number of unique 
paths through the tree would then equal the number of training vectors, where each path 
would have a "node" at each stage of the classifier. Since, typically, the average number of 
stages per path in these experiments is usually (as determined by experiment) about one half 
the maximum number of stages, the number of nodes in the tree should be upper bounded 
by: 

(average number of nodes)   =   (number of paths) (average path length)        (4.2) 

=   (600)(15/2) (4.3) 

=   4,500 nodes (4.4) 

These nodes are stored in computer memory using linked lists. The link lists have "children" 
which point to descendents in the linked list. Let V be the average number of stages per 
path, c be the average number of children per node too estimate the number of children per 
node. The number of paths represented is 

J> 4,500 (4.5) 

It is clear that c is the "Pth root of 4,500.  For an average V = 8, the average number of 
children per node is c = 2.86 

This allows an estimate the memory required for the storage of the decision tree. Conser- 
vatively estimating an average of 3 x 2.86 « 9 links per node, the node memory is given 
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Feature Vector Size Number of Stages Number of Templates Required Operations 
11 x 17 
21x33 
41x65 

15 
12 
9 

32 
32 
32 

269,280 operations 
798,336 operations 

2,302,560 operations 

Table 4.5: DSSA basis function computation requirements. 

by 

memory per node   =   4 bytes for one threshold value + (4.6) 

36 bytes for links to 9 children + (4.7) 

4 bytes overhead (4.8) 

=   44 bytes per node (4.9) 

Thus, the total number of bytes used for the storage of the decision tree is 

(number of nodes in tree) x (memory per node)   =   (4,500) (44) (4-10) 

=   198,000 bytes. (4.11) 

4.3.2    Computation Requirements 

The DSSA classifier must be implementable with a reasonable computational load to be 
practical. The number of operations required to calculate the mean squared error between an 
input feature and one DSSA templates is 3A; multiplies and adds. The number of operations 
needed to find the most suitable DSSA basis vector at a given stage with A^ basis functions 
is 3k x N multiplies and adds. Thus, if P stages (on average) of the DSSA classifier are used 
for each DSSA input, then the required number of operations is 3kNP multiplies and adds 
per DSSA decision. 

One feature vector is formed for each extracted SAR snippet. Table 4.5 shows the number of 
operations per test snippet, as determined by the formula 3kNP. Most snippets at the low 
resolution level do not result in detections, hence if overhead increases the count by about 
1/2 to 400,000 operations, then "NO"-detection results cost about 0.4 million floating point 
operations (MFLOPS). The total, including overhead, for a snippet that is processed at all 
three resolution levels is about 5 MFLOPS per "YES" -detection/classification decision for 
each target class. 

4.4    Reduced SAR Computation Requirements 

The processing requirements of DSSA are a function of both the size of the training subre- 
gions and the number of pixels in the SAR image to be processed. The intent here is not 
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Figure 4.25: Progressive FFT-based SAR image formation. 

to add to the computational requirements for forming the SAR image even though SAR im- 
ages are formed at three different resolutions. The reduction in computational requirements 
is achieved by compressing in the cross range dimension only those with ranges associated 
with a potential target identified at the previous resolution. To illustrate the computational 
savings in this approach, assume that a DFT is used to compress the phase history data in 
both the range and cross range dimensions. In this example, assume a training chip size of 
64 x 64. Assume for the moment that the phase history data consists of K range samples 
and K pulses (or cross range samples). The computational requirements to compute the 
DFT on a set of I&Q values is 5K\og2{K) when a radix 2 FFT is used. Now to form the 
lowest resolution SAR image which has been degraded by a factor of four would require a 
DFT of size K/A to be implemented K/A times in range dimension and K/A times in the 
cross range dimension resulting, in K/2(bK/A\og2(K/A) computations. After processing the 
SAR images at the lowest resolution, regions will be identified which contain possible targets 
(see Figure 4.25). These regions will be tagged and the associated range and cross range 
coordinates recorded. At the next level of processing, only those ranges associated with 
a tagged region will be compressed in cross range at the next resolution. The number of 
computations at the next level is 

K/2(5K/2 \og2(K/2) + S2L(5K/2 \og2(K/2) 

where L is number of target regions identified at the lowest resolution level and 32 is the 
size of the training snippet at the highest resolution. The computational cost at the highest 
resolution is defined by 

K/2(5K/2log2(K/2) + 6AJ(5K/2log2(K/2) 

where J is number of target regions identified at the medium resolution level and 64 is the 
size of the training snippet at the second resolution level. In this analysis it was found that 
L and J are on the order of 5 and 1 respectively. 
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Figure 4.26: Computation savings using simple FFT-based SAR focusing. 
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Figure 4.26 is a plot of the computational savings in a DFT based compression approach. 
Thus, the SAR processing savings is about 1/3 for simple FFT image formation (the "rect- 
angular" SAR image formation algorithm). A similar analysis of more sophisticated SAR 
formation algorithms such as polar formating or range-migration (omega-k) algorithms is 
likely to show a much more significant computational savings. 
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Chapter 5 

Conclusions and Recommendations 

This chapter presents GTRFs conclusions and observations. Topics for future research are 
also suggested. 

5.1    Conclusions 

The experimental results of this research establish that good target detection/classification 
can be obtained in SAR imagery with the use of direct sum exemplars formed with DSSA 
basis functions in a nearest neighbor classifier. 

Little work was expended in this phase of the research effort to assess the compression 
performance of the DSSA system in the SAR application. This is scheduled as future work. 

GTRI would like to emphasize that nearly all (if not indeed all) data representations used 
by other researchers for automatic target recognition can be viewed as feature extraction 
operations that aim to preserve the essential information about the signal while reducing 
the dimensionality of the data [66]. The DSSA approach presented in this report does not 
conform to this paradigm—DSSA preserves the essential information about the signal in a 
compute and memory efficient manner while maintaining the full dimensionality of the data. 
This research establishes the feasibility of this approach with SAR data for target detection 
and classification, and thus opens the door for future research that exploits the generality 
and flexibility of DSSA. 

5.2    Observations 

GTRI believes that one reason for a high level of correct classification, even with the use of 
limited training data in a high dimensional decision space, is the progressive "bootstrapping" 
performed by the direct sum exemplars as additional DSSA basis functions are added in the 
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search process. Bootstrapping is the process of expanding a limited training set by locally 
combining the original training samples, where various numbers of near-neighbors are used 
[67]. Bootstrapping acts as a smoother of the empirical distribution, and softens the negative 
effects of outliers. Each path through the DSSA basis functions specifies a different local 
collection of training samples, and the basis functions are a causal-anti-causal centroid of this 
local collection [3]. Hence, the process of forming direct sum exemplars, in effect, bootstraps 
the training set. 

5.3    Suggested Future Research and Development 

The following topics are suggested for additional research and development. 

Testing of the DSSA-Detector/Classifier on EO/IR Data 

GTRI would like to extend this work to testing for targets in EO/IR data. However, GTRI 
currently doesn't have access to data to support this work. 

Extension of the Database-Classifier Paradigm 

The DSSA classifier is in essence a database classifier [66]. The direct sum exemplars provide 
a rapid-search interface to determine a similar entry in the of training data to a given classifier 
input. Since the nearest direct sum exemplar can be directly associated with a training set 
entry in a practical manner (a relational query), if appurtenant data exists, such as aspect 
angle, grazing angle, clutter type, propagation conditions, etc., this database classifier can 
provide this archived data for comparison to the current data, which also provide an estimate 
of the state of the object represented by the classifier input data. This classification system 
should be extended to provide this capability. 

Use of Improved Features 

Tests to date have used blocks of SAR pixels as input. This approach does not rely on the 
manual definition of a more complex feature set, and it captures all available information in 
the data space. However, the DSSA architecture also permits the use of many other kind 
of features. The DSSA algorithm is not restricted to raw sample inputs. Tests should be 
performed to determine whether a hybrid approach can be used that includes both raw data 
input as well as other features that are known by MSTAR to be helpful in discriminating 
targets from clutter. 
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Multiple Nearest Neighbors for DSSA Classification 

In the literature that deals with nearest neighbor classifiers, generalizations of single nearest 
neighbor classifiers to multiple nearest neighbor classifiers are common. A multiple nearest 
neighbor classifier uses, in a sense, local class-conditional template density as a basis for 
discrimination. A multiple nearest neighbor generalization of the DSSA classifier can be 
easily accomplished with the use of multiple path searching of the sequence of DSSA basis 
functions. GTRI has conducted extensive prior research into multiple path search techniques 
in the area of data compression [68, 69], this research is yet to be extended into the data 
classification area. 
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Appendix A 

Various SAR Target Configurations 

Photographic images of the some of the configuration of target vehicles are shown in Figures 
A.2-A.3. 
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Figure A.l: T72 tank in S7 configuration. 

Figure A.2: T72 tank in 132 configuration. 
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Figure A.3: BMP2 infantry fighting vehicle in 9566 configuration. 
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Figure A.4: BMP2 infantry fighting vehicle in 9563 configuration. 
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Appendix B 

Example SAR Clutter Images 

Example SAR images of clutter scenes are shown Figures B.1-B.4. 
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Figure B.l: Example high resolution SAR clutter image. 
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Figure B.2: Example high resolution SAR clutter image. 
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Figure B.3: Example high resolution SAR clutter image. 
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Figure B.4: Example high resolution SAR clutter image. 
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Appendix C 

List of Abbreviations 

This list provides expansions for abbreviations and acronyms used in this report. 
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Abbreviation/Acronym   Explanation 

ATR Automatic Target Recognition 
DARPA Defense Advanced Research Project Agency 
DBF DSSA Basis Function 
DoF Degrees of Freedom 
DSSA Direct Sum Successive Approximation 
DoD Department of Defense 
EO Electro-Optical 
FLS Forward Looking Sonar 
GTRI Georgia Tech Research Institute 
HAE High Altitude Endurance 
IR Infrared 
MS Multispectral 
MSVQ Multiple Stage Vector Quantization 
MSTARS Moving and Stationary Target Acquisition 
MTI Moving Target Indication 
NN Nearest Neighbor 
NNet Neural Net 
NN-RVQ Nearest Neighbor Residual Vector Quantization 
ONR Office of Naval Research 
RBF Radial Basis Function 
ROI Region-of-Interest 
SAR Synthetic Aperture Radar 
SIGINT Signal Intelligence 
SLS Side Looking Sonar 
RVQ Residual Vector Quantization 
UAV Unmanned Aerial Vehicles 
VQ Vector Quantization 
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