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ABSTRACT 

This thesis is part of the helicopter research program established at The Naval 

Postgraduate School (NPS). NPS currently has two OH-6A light observation 

helicopters which were obtained from the U. S. Army. One of these is dedicated to 

ground vibration testing and dynamics research. 

Previous research on the OH-6A at NPS established baseline vibration test data. 

The data includes natural frequencies, principal mode shapes and damping 

characteristics. This thesis continues previous research of the OH-6A and develops 

a detailed finite element model to be used in future helicopter dynamics research at 

NPS. 

The model is based on an MSC/NASTRAN finite element model of a similar 

aircraft obtained from the McDonnell Douglas Helicopter Company. Both the nose 

and empennage were modified to represent the structural characteristics of the test 

article. Due to lack of structural design data, model mass updating was performed 

using previously obtained test data and a design sensitivity approach. The updated 

model natural frequencies agree well with the test data. 
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I. INTRODUCTION 

Vibration reduction has long been a primary concern of helicopter design 

engineers. The inherently vibratory nature of the complex rotating machinery associated 

with helicopters has made this task particularly difficult. Additionally, ever increasing cost 

and lower vibration tolerance of complex helicopter avionics systems puts even greater 

emphasis on vibration level reduction. An accurate finite element model (FEM) is 

invaluable in developing modern aircraft which minimize vibrations while achieving higher 

performance. 

With the revolution in computing capability over the last several years, the FEM 

has become an integral part of structural dynamics research. This is especially true in the 

study of helicopter vibrations. Prior to the development of robust finite element computer 

models, dynamics analysis was completed using iterative tests on full scale models. The 

costs associated with developing a full scale model of a modern helicopter make this 

approach impractical. The FEM provides a means to conduct preliminary dynamic 

analysis relatively inexpensively prior to conducting a full scale test. This approach greatly 

reduces development costs. The FEM is also used to test and develop new aircraft 

components and airframe modifications and to investigate vibration problems which are 

discovered after production. This not only reduces the cost of development but also the 

time associated with analyzing dynamic response. 

The purpose of this thesis was to develop a finite element model of the OH-6A 

helicopter. The Naval Postgraduate School (NPS) recently acquired two of the 

McDonnell Douglas aircraft. One aircraft is dedicated to helicopter dynamics research. A 



full scale vibration test of this helicopter established the primary natural frequencies and 

mode shapes between zero and 45 Hz. and compared them to data provided by 

McDonnell Douglas Helicopter Company (MDHC). The FEM developed in this thesis 

was created to closely match the results of this test in order to allow further research on a 

validated model. 

Prior to the development of a finite element model, the nature of the vibratory 

forces acting on the structure must be understood. Chapter m of this thesis discusses 

harmonically forced vibrations in general and the unique characteristics of helicopter 

vibrations specifically. There is also a discussion of the mathematical techniques used to 

solve the vibration problem in multi-DOF systems. 

In Chapter IV, the method of finite element modeling is discussed. The 

development of the simplest of the finite elements, the rod, is used to introduce the 

concept of discretization and interpolation. The errors associated with the use of finite 

elements are also discussed. 

The remainder of the thesis discusses the OH-6A FEM. MDHC was able to 

provide a model which they had developed for a similar aircraft. This model was then 

modified to match the test platform at NPS. The result is a 1774 element finite element 

model. It is written using the NASTRAN finite element code which is developed and 

supported by the MacNeal-Schwendler Corporation. 

The FEM was modified in three separate steps. First, the structural model was 

created. The modifications were complicated by the absence of accurate structural design 

data for the test platform. The FEM was completed using physical measurements of the 



helicopter at NPS. In addition, the physical properties of the internal structural 

components were assumed based on the model provided by MDHC. 

Once the structural model was completed, the mass model was then developed. 

As with the structural model, the creation of the mass model was complicated by the 

absence of mass data for the newly created empennage structure. For this reason, the 

mass distribution on the tail was determined using a sensitivity analysis approach in 

conjunction with measured frequencies. This was simplified by using a single point mass 

with rotational components. It was strategically placed near the CG. of the empennage 

section which was determined by visual inspection. The result was a set of frequencies 

which closely match test data. Chapter V outlines the procedures taken in the 

development of both the structural and mass components of the FEM. It also includes a 

discussion of the design sensitivity approach. 

The final step in the development of an accurate model is mode shape correlation. 

The analytical mode shapes were compared to the test data using the Modal Assurance 

Criterion (MAC). Prior to comparing the mode shapes, however, the analytical model 

was reduced to the same size as the test model. This was accomplished using NASTRAN 

and the built-in static reduction method. The results of the correlation are given in 

Chapter VI. This is preceded by a discussion of the MAC and the theory of static matrix 

reduction. 

The FEM developed matched the test frequencies quite well. There were some 

discrepancies in the mode shapes. This can be attributed to the small number of data 

points taken on the test platform and the large static reduction required in the analytical 



model to match it. There was also a noticeable coupling of the landing skids in several 

modes of the analytical model. This was not noted in a previous test conducted by 

MDHC [Ref. 2] or the test at NPS. It also could have had an effect on the calculated 

frequencies. Overall, the updated model provides an accurate tool for calculating dynamic 

response for the OH-6A helicopter. 



H. THE MCDONNELL DOUGLAS OH-6A 

A.       CHARACTERISTICS OF THE OH-6A 

The OH-6A is a single engine, four bladed duel piloted helicopter. The aircraft is 

manufactured by McDonnell Douglas Helicopter Company for the U. S. Army. Its 

primary function is as an observation platform. It is equipped with a two bladed tail rotor 

and oleo-damped skid-type landing gear. The empennage is an asymmetrical V-tail [Ref. 

!]• 

The main rotor rotates at 483 RPM. The tail rotor RPM is 3029. The 1/rev (IP) 

frequency is, therefore, approximately 8 Hz. with the 4P frequency at close to 32 Hz. 

High frequency excitation from the tail rotor occurs at approximately 50 Hz. 

The airframe is of semi-monocoque construction consisting of frames, bulkheads 

and stringers covered with stressed skin [Ref. 2:p. 10]. The primary structural 

components are the fuselage, tailboom and empennage which include a primary and 

secondary structure consisting of all metal, metal and fiberglass, and transparent plastic 

components [Ref. 3:p. 17]. The principal structural component of the fuselage is the 

reinforced floor center section. Both the fuselage and tailboom are metal, riveted 

structures incorporating aluminum alloy frames, stainless steel and titanum bulkheads, 

canted frames, channel members, beams, structure rings, ribs, stiffeners, doublers, 

longerons and stingers [Ref. 1]. 



B.        THE OH-6A AT NPS 

1. Acquisition 

In October, 1995 The Naval Postgraduate School obtained two OH-6A helicopters 

from the U. S. Army. The acquisition of the helicopters was a first step in launching a 

rotor craft dynamics program at the school. One of the helicopters is designated as a 

dynamics laboratory test platform. The other is designated to remain operational. It is 

part of a proposed flight test center being organized by CAPT Tom Hoivik, USN (Ret.) of 

the Operations Research department at NPS [Ref. 3:p. 17]. 

2. Overview of Previous Testing 

Initial research on the OH-6A involved performing a full-scale vibration test of the 

laboratory test platform. This test was performed by LT John Harris at NPS in the spring 

of 1996 [Ref 3]. His research involved determining the natural frequencies, mode shapes 

and damping characteristics of the helicopter at frequencies between zero and 45 Hz. 

Once principal modes were identified, they were then compared to data obtained from 

MDHC. 

The six natural frequencies which were detected in the designated frequency range 

are shown in Table 2.1. These correlated well with the data obtained from McDonnell 

Douglas. Mode shapes were developed for four of these frequencies. They are 

reproduced in Appendix A of this thesis. 



Table 2.1. Experimental Natural Frequencies. After Ref. [3]. 

Mode Frequency (Hz.) 

1st Lateral 9.32 

1st Vertical 9.97 

1st Torsional 15.01 

Aft Vertical 15.61 

2nd Vertical 21.83 

2nd Lateral 27.48 

Unnamed 44.84 

C.       MOTIVATION FOR MODELING THE OH-6A 

The OH-6A is a relatively simple aircraft in comparison with modern military 

helicopters. It has been operational for 30+ years and there is significant data available 

concerning its dynamic response. This makes it an ideal aircraft to study. The completion 

of the full-scale vibration test was a first step in understanding the vibratory response of 

the helicopter. Development of the FEM further enhances corporate knowledge of the 

response of the OH-6A and of helicopter dynamics in general. 

The completed finite element model is an excellent teaching tool. Once the 

process required to build a simple FEM is understood, complex FEM can then be 

developed. Students conducting research into more complex aircraft structures can use 

this model as an introduction into helicopter dynamics. A thorough understanding of this 



validated model will provide the basic knowledge required to develop a FEM of a 

prototype or concept aircraft. 

The acquisition of a helicopter dedicated to vibrational testing coupled with a 

validated in-house FEM ofthat helicopter greatly enhances the prestige of the school as a 

helicopter dynamics research facility. Completion of the full-scale vibration test of the 

OH-6A was a first step toward establishing a helicopter dynamics program at NPS. 

Developing a FEM for the helicopter increases the viability of the program. 



HL VIBRATION THEORY 

A.       HELICOPTER VIBRATIONS 

Vibration reduction in helicopters is necessary in order to both reduce fatigue on 

sensitive avionics and airframe components and to enhance crew and passenger comfort. 

In order to achieve a reduction in vibration levels, the source of vibrations must be known. 

With this information, the aircraft is then designed with the principal structural frequencies 

offset from the driving frequencies. Additionally, damping techniques can be implemented 

to reduce the amplitude of the airframe response. These can be either traditional passive 

techniques, using isolation mounts and vibration absorbers, or more advanced active 

damping techniques, using inputs to the main rotor blades. 

Helicopters experience vibrations from a few primary sources. Most vibrations 

transmitted to the airframe are associated with the main and tail rotors [Ref. 3:p. 10]. 

These frequencies are normally multiples of the rotor speed. Other sources of vibration 

are associated with internal machinery such as engines and transmission components. 

These are normally higher frequency. There are also vibrations associated with random 

aerodynamic excitations due to wind gusts and changes in flight profile as well as self- 

induced vibrations. 



1.        Main Rotor Vibrations 

Blade forces and moments are transmitted to the airframe at the rotor hub. 

Typically, the hub is designed so that lead-lag and flapping bending moments at the blade 

root are negligible. The result of this is that only the N x rpm, or NP, (N = number of 

blades) harmonics are transmitted to the airframe from the rotor [Ref. 4:p. 2]. Studies 

have shown that the NP and IP frequencies dominate the excitation. All of the other 

frequencies are filtered out by the rotor system. This assumes that all of the blades are 

balanced, the helicopter is in steady state flight, and each blade has the same time history 

as its neighboring blades. 

The frequency of greatest concern transmitted from the rotor hub is typically the 

NP frequency. This is called the blade passage frequency [Ref. 4:p. 19]. The dependance 

of cockpit vibration levels on airspeed is shown in Figure 3.1. The NP vibrations are a 

major source of these levels. They are the result of higher harmonic loading on the blades 

[Ref. 4:p. 2]. These loads are induced by a variety of conditions including: impingement 

from the rotor wake, blade vortex intrusion, and retreating blade stall and advancing blade 

compressibility phenomena. 

Rotor wake impingement on the blade disk is observed at low airspeeds. At low 

speeds, the rotor wake remains close to the helicopter. The resulting interference on the 

rotor causes the higher harmonic loads. The loads fall off as the helicopter increases 

airspeed and the rotor wash is swept behind the aircraft. This is observed in the 70 - 90 

knot region in Figure 3.1. 
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AIRSPEED-KNOTS 

Figure 3.1. Helicopter Vibration vs. Airspeed. FromRef.[4]. 

Blade vortex interaction refers to the interference caused by the blades passing 

through the vortices induced by the preceding blade. These effects are normally felt 

during deceleration and descent maneuvers. The loads created by this effect also manifest 

themselves as 4P vibrations on the airframe. 

The other major cause of 4P vibration occurs at higher airspeeds. As the aircraft 

increases airspeed above about 80 knots, retreating blade stall and advancing blade 

compressibility effects begin to appear. The higher harmonic loads induced result in 

increased 4P vibrations with increase in forward airspeed. 

Some blade loading conditions will excite the airframe at a frequency other than 

4P. For instance, a IP vibration indicates a blade track and balance problem. It is 

normally corrected by adjusting the blade track using either weights on the rotor hub, 

changes to the pitch control rod length or a combination of both. Also, a 2P vibration is 

possible. This is felt as a lateral excitation of the airframe and is associated with a blade 

damper malfunction. The IP and 2P frequencies can be corrected by maintenance, so they 

are not design critical as is the 4P vibration. 

11 



2. Random Aerodynamic Excitations 

Random aerodynamic excitation is the result of the airflow across the airframe. 

Airflow induced by the main rotor is broadband in nature. It can excite a any given 

number of natural frequencies of the airframe at certain airspeeds. In order to avoid this 

possibility, the airflow can be redirected using fairings. [Ref. 4:p. 3]. Wind gusts and 

airflow conditions induced during abrupt aircraft maneuvers can also cause excitation of 

the airframe. These conditions are transient in nature and are, therefore, not as critical as 

the rotor wash condition. 

3. Self-Excited Vibrations 

Self-excited vibrations result from aerodynamic or mechanical instability. In this 

situation, the vibratory motion grows exponentially without bound over time. The 

damping force in this case is negative. Consider the following example [Ref. 5: p. 52]. 

The equation of motion of a system is modeled as: 

mx + cx+kx = yx. (3.1) 

In this case, the driving force is a function of velocity. The equation can now be rewritten 

as: 

mx + (c-y)x+kx = 0. (3.2) 

12 



The system is stable if the damping term ( c - y) is positive. If that term becomes negative 

C ~~ Y 
then C =  < 0 and the solution is of the form: 

2m<a 

x(t) =Ae-^tsm(udt + $). (33) 

The exponential term grows over time, and the displacement is unbounded. The best 

known occurrence of this situation in helicopters is the ground resonance condition, a 

mechanical instability. 

B.        SINGLE DEGREE OF FREEDOM (SDOF) SYSTEMS 

Most structures must be modeled using many - sometimes thousands of - degrees 

of freedom (DOF). In order to understand how these multiple DOF systems are excited, 

the SDOF model must first be studied. The solutions obtained from the simple model are 

then applied to larger models using a systematic modal analysis approach. 

1.        Free Response 

The response of a structure to an initial disturbance without any external forcing 

function is the free response. As discussed in the previous section, the helicopter is 

subject to various harmonic loads. Understanding the free response of the structure 

however, is critical to the understanding of the response when a forcing function is applied 

(forced response). As will be seen, the solution to the forced response problem is a linear 

combination of the free response and a particular solution determined by the fractional 

form of the forcing function. 
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Consider the undamped SDOF system with mass (m) and spring constant (k). The 

equation of motion of the system is: 

mx+kx = 0. (3.4) 

If the response of the system is considered to be harmonic, the solution is well 

documented and is given as [Ref. 5: p. 11]: 

x = ae±WJt. (3.5) 

The amplitude of the response (a) is determined by the initial conditions imposed on the 

system. Assuming that x(0) = xo, x(0) = xo and introducing the Euler's trigonometric 

identities [Ref. 6:p. 57], the solution becomes: 

x 
x = XOCOS(G)0 + — sin(o)/). (3.6) 

2.        Forced Response 

The response of a structure subject to an external excitation is the forced response. 

The external driving forces of particular interest in the study of helicopter vibrations are 

harmonic and have the form: 

F(t) = F0cos(Qt\ (3.7) 

14 



where Q is the driving frequency. The equation of motion for the forced system is then 

written: 

mx+kx = F(t). (3.8) 

The solution to Equation 3.8 is a linear combination of both the homogeneous 

(free response) solution (Equation 3.6) and the particular solution. The particular solution 

is found by assuming a form which is identical to the forcing function: 

xp = Aocos(Qt). (3 9) 

The response is then found by taking derivatives of Equation 3.9 and substituting into 

Equation 3.8. This equation can be solved for A^,. Combining the particular and 

homogeneous solution gives the total response of the harmonically forced structure: 

F 
A1cos(ut)+A2sin(ut) + °- cos(Q*). (3 io) 

7W((02-Q2) 

The solution is normally written in terms of the frequency ratio r = - and a normalized 

amplitude U0 = —. Equation 3.10 then becomes: 

x = ^1cos(«0+^2sin(<o0 + —^-cos(Q0. (3 \\\ 
\-r2 

15 



As the driving frequency approaches the natural frequency of the system, the 

frequency ratio approaches unity. The assumed particular solution in this case is no longer 

valid. A different solution of the form x   = Aotsin(Qt) is assumed. This leads to the 

new solution: 

1 *o - —U0(x>tsin(Qt) +xocos((*tf) + — sin(Gtf)- 
(O 

(3.12) 

As in the free response case, x(0) = xo, x(0) = xo. 

This solution is plotted in Figure 3.2. The amplitude of the response in this case 

continues to increase over time. This is the resonant condition. It exists when the driving 

frequency is equal to the natural frequency of the structure. It is the goal in vibration 

Figure 3.2. Forced Response of SDOF Undamped System 
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design to avoid resonance during steady state operation. From Equation 3.11, it is seen 

that when r * 1, the response amplitude is bounded. Therefore, if the structure is 

designed with natural frequencies which are offset from the driving frequency, the 

amplitude of the response will be finite. By understanding the possible forcing 

frequencies, it then becomes a matter of designing a structure with the normal modes 

offset. 

It is important to note that this discussion does not include any mention of 

damping force. It is common in vibrational studies to ignore the damping force inherent 

in the structure. This is a conservative approach. For the case of the under damped 

structure, the damping force will act to reduce the amplitude of the response during 

resonant conditions. The damped structure will experience a transient excitation which 

decays exponentially followed by a steady state response frequency equal to the forcing 

frequency. A complete discussion on damped response can be found in most engineering 

vibration texts (e.g., Ref. [5], Chapter One). 

C.        MODAL ANALYSIS 

Basic principles are easily demonstrated using the SDOF system previously 

discussed. Complex structures, however, are modeled with many - sometimes thousands 

of- DOF. In order to solve the associated equations, they must first be decoupled in a 

systematic fashion, then recombined to produce the response. 

17 



The modal analysis procedure is used to solve multiple DOF (MDOF) systems. 

Consider a MDOF system which can be modeled using an NxN matrix equation: 

[M}{x}+[K]{x\ = {F(t)}. (3.13) 

The solution to this equation is found by first solving the homogeneous eigenvalue 

problem. The response is assumed to be of the form {x} = {^>}CeJ(Jt. This is substituted 

into Equation 3.13, which is rearranged to give: 

[[MnK]-tf[l}]{4>} = {0}. (3.14) 

This is the eigenvalue problem. Observe that if the inverse of matrix [[M]"^] - Ci>2j7]J 

existed, Equation 3.14 could be pre-multiplied by that inverse matrix. This would give a 

trivial solution for {(f>}. Therefore, the inverse of the matrix must not exist if {<(>} is non- 

zero. For this to be true, the determinant must be equal to zero. Solving for this 

condition gives a polynomial in w2 of order N. These are the natural frequencies of the 

system. 

The mode shapes, {<{>}, are found by substituting the natural frequencies back into 

Equation3.14. Each value of to will give a unique Nxl mode shape vector. Themode 

shapes are then combined to give: 

[*] = [MM---M! (3.i5) 

18 



This is the modal matrix. It can be shown that the modal matrix is orthogonal to both the 

mass and stiffness matrix such that [Ref. 7]: 

WM®} = [M\,   M[K}[*] - [it], (3.16) 

where [M\ and [K] are both diagonal matrices. 

The original matrix equation can be transformed into a decoupled matrix equation. 

This is accomplished by assuming a new variable {x} = [®]{q} and pre-multiplying by 

[0]T to give : 

MtehMM = {F}. (3.17) 

In this new equation, the force vector {P} = [®}T{F}. The matrices [M] and [K] are 

now uncoupled (diagonal). The differential equation can therefore be written for each 

mode: 

Mn4i+Ki,1i = °- (3.18) 

The solution to the modal equation is then easily solved using the techniques 

applied to SDOF systems. The solution for each of the uncoupled equations is: 

q, =^;cos(w;)+Jg;sin(o;)+^>(0. (3.19) 
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In this case, q^ (t) is the particular equation. It depends on the form of the forcing 

function. For a harmonically excited system such as a helicopter subject to NP loading, q^ 

is of the form given in Equation 3.9. 

Once the modal equations are solved, the physical response is easily obtained. It is 

given above by {x} = [®]{q}. It should be noted that in order to solve for the amplitude 

of the response, initial conditions must be applied. For systems which operate under a 

variety of conditions, this is not always a desirable approach. For such systems it is 

common to normalize the amplitudes in some deliberate manner in order to compare the 

response under various loading parameters. 

D.        RIGID BODY MODES 

Unconstrained systems can have up to six modes in which none of the elastic 

elements deform. These are called rigid body modes. The rigid body modes occur when a 

structure is displaced without any deformation of its structural elements. An aircraft in 

flight is the commonly used example of such a structure. 

In MDOF systems the stiffness matrix is related to the strain energy of each of the 

elements using Lagrange's equations. This is demonstrated in Chapter IV of this thesis. 

In most cases the strain energy is positive definite. This means that for any arbitrary 

displacement from the undisturbed condition a positive strain energy will result. If a 

system has one or more rigid body modes, no strain energy is produced with those 
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particular modes. In this case, the matrix [K] becomes semi-positive definite and its 

determinate is zero [Ref. 6:p. 246]. 

From the eigenvalue problem in Equation 3.14 it is seen that if the determinant of 

[K] is zero, there must be at least one solution where the natural frequency (co) is zero as 

well. The mode shapes for the rigid body modes are found in the usual way of substituting 

the frequency back into the equation. When this is done, it is found that {(j^M} * {1}. 

The number of rigid body modes will be equal to the degeneracies of [K]. For 

example, if there are six unrestrained DOF, then there will be six modes for which no 

strain energy will be generated when the structure is deflected. This leads to six rigid 

body modes. 
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IV. FINITE ELEMENT MODELING 

A.        THE SIMPLE ROD ELEMENT 

The finite element method is used to model complicated structures. The structure 

is divided up into many small discrete elements. The response of the structure is then 

approximated by the motion of the element boundary points (nodes). Due to the 

systematic nature of the resulting mathematical equations, they are easily implemented on 

a modern microprocessor. 

1.        Discretization 

In order to illustrate how a finite element model is constructed, consider a simple 

one dimensional (axial displacement only) rod element shown in Figure 4.1. The rod is 

length (1) with nodes (1,2) located at either 

1 1   2 

^                                                                                         w 
L 

W                 IT ^      X 

end. The local co 

node 2. 

Figure 4.1.    The Simple Rod Element 

ordinate system on the rod is chosen with x=0 at node 
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In order to determine the equations of motion for the rod, the time-independent 

(static) solution must first be obtained. Consider a small differential element shown in 

Figure 4.2. The force on the rod is given by F = oA, where the unit stress (a) is given by 

a = Ee. The unit strain (e) is given by: 

du, 
€   = W 

dx 
(4.1) 

where u(x) is the time-independent displacement of the bar. Substitution then gives: 

du,, 
F = EA—Q. 

dx 
(4.2) 

The time-independent displacement must satisfy this condition. 

F ^ w F 
^K ^ 

X X   + dx 

Figure 4.2.    Differential Element of Rod 

Next, consider that the cross-sectional area of the rod is uniform. Now, taking the 

derivative of both sides with respect to x gives. 
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dF                 d2u., 
— - 0 - EA      w 

dx                   dx2 (4.3) 

Next, integrate to obtain: 

u(x) = clX+c2. (4.4) 

The time-dependant variables c \ and c2 are constants with respect to x. 

The position of the rod at any given time (t) will be given by the displacement 

variable u(M). The position of the two nodes can then be expressed as: 

u\     M(o,0 " u\ (0 
U2  = U(L,t)  = U2 (ty 

(4.5) 

Substituting into Equation 4.4 j gives: 

wi = ^i(0)+c2 = c2 (4.6) 

and 

u2 = CjL+c2. (4.7) 

Solving the simultaneous equations: 
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U2~U\ 
Cl   =   —J—> C2   =  Ul (4.8) 

and 

fcO 1-- 
V     L, 

u1+\ 
L 

un (4.9) 

The coefficients of Ui and u2 are called the shape functions because they determine the 

spacial distribution, or shape, of the solution [Ref. 5:p. 140]. This leads to: 

U(x,t)   =   ai(*)Wl+a2W
W2 (4.10) 

where the shape functions are: 

o. = 1 - —;   a, = —. 1 L      2      L 
(4.11) 

The shape functions of any finite element are low order polynomials. 

2.        Determine Mass and Stiffness Matrices 

Lagrange's method is used to obtain the element mass and stiffness matrices. In 

order to apply the Lagrangian equation, the internal kinetic energy and potential energy of 
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the rod must first be found. The internal strain (potential) energy (U) of a rod is found 

using [Ref. 8:p. 210 ]: 

U = IrU*-     U° = ^> (4.12) 

where U0 is the strain energy density. Substitution yields: 

U 
■/ 

E( du) 
2 I dx 

\       AEri(du) dv /in, r /   ou 

2 h { dxt 
dx. (4.13) 

The kinetic energy (T) is given by [Ref. 5:p. 404]: 

T - I/o V» 
' du^2 

dt, 
dx. (4.14) 

Now, if both the density and area are constant over the entire length: 

T = If'fiü) 
2 Jo I a« 

(4.15) 

where the linear mass density (y) is given by y = Ap. Substituting in Equation 4.10 and 

taking derivatives yields: 

T = -I- f fa]ü1 +a2u2Jdx (4.16) 

and 
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TT       AE rlj   I /     \2 

Lagrange's equation is defined as [Ref. 5:p. 206]: 

(4.17) 

d_ 

dt 
' ML] dL_ 

i = 1,2,3, (4.18) 

The Lagrangian operator (L) is defined as L = T- V for continuous systems. The 

coordinates used are generalized coordinates. For this example qx = ux and q2 - u2. 

Substituting Equations 4.16 and 4.17 into Lagrange's equation yields. 

Y f (CCJMJ + a^^ajdx -AE f (ulul + a2u2)axdx - 0 
Jo Jo 

y f (alül + a2ü2)a2dx-AE f (alux+a2u2)a2dx = 0. 
Jo Jo 

(4.19) 

These can be written as a system of equations: 

Y f o.]dx Y f «.cuir 
Jo Jo 

Y [ a.a2dx    y f a2dx 
Jo Jo 

w, 

w„ 

? f {ax)
2dx AE f cCjO^ 

Jo Jo 

AE 
lrJ\2 f axa2dx AE f (a2) 

Jo Jo 
dx 

(4.20) 

For a system with constant Y, A and E, the mass elements are: 

M. v/>y cc.ßfo (4.21) 

and the stiffness elements are: 
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K,, = AEf a.tadx. 
Jo      J ij (4.22) 

Solving for the rod gives: 

6 

2   1 

1   2 I 

1    -1 

-1    1 
(4.23) 

The matrices described by Equation 4.23 Are the elemental mass and stiffness matrices 

associated with a finite element of the bar described by Figure 4.1. 

3.        Modeling Multi-Element Structures 

Finite element models are generally made up of many elements connected together. 

It is impractical, and unnecessary, to solve Lagrange's equations for these multi-element 

structures. Instead, the simple elements are used and superimposed upon each other to 

obtain the mass and stiffness matrices for the entire structure. Boundary conditions are 

then accounted for in order to obtain the final modal equation. 

As an example, consider the cantilever rod shown in Figure 4.3. The rod is 

modeled using three finite elements with four nodes. Each element is of length -, so the 

mass and stiffness matrices become: 

18 

2   1 

1   2 
K = 3AE 1    -1 

-1    1 
(4.24) 
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Figure 4.3.    Cantilever Bar 

Each of the three elements on the beam displaces two local coordinates. Using 

these coordinates, the equation of motion for the entire bar is written as a system of 

equations: 

Y/ 
18 

2 1 0 0 

1 2+2 1 0 

0 1 2+2 1 

0     0        12 

«, 

w., 

ut 

>+■ 
3AE 

1-10 0 

-1 1+1 -1 0 

0 -1 1+1 -1 

0      0-11 

k fo] 
U2 0 

< r =   l > 
u3 0 

k 0 

(4.25) 

The mass and stifihess matrices in Equation 4.25 are called the global mass and stiffness 

matrices. They are easily obtained by summing forces. Observe that the adjacent 

components of each elemental matrix are overlapped to form a diagonally banded global 

matrix. 

The final procedure in creating a FEM is to account for any boundary conditions. 

This is done by eliminating the row and column in each matrix which is associated with the 
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restrained nodes. In Figure 4.3 the rod is clamped at node one. Therefore, row one and 

column one must be eliminated. The final global matrices become: 

4   1   0 

M = 
18 

1   4   1 

0   1   2 

K = 3AE 
2 -1 0 

-1 2 -1 

0 -1 1 

(4.26) 

This procedure is used to combine many different elements together. The goal is 

to form a model which will accurately represent the motion of the actual system being 

considered. Specifically, for the vibration problem, the global matrices are used to solve 

the eigenvalue problem discussed in chapter three. 

B.       ASSOCIATED ERRORS 

The process of modeling a continuous structure as a system of finite elements 

introduces errors when solving the vibration eigenvalue problem. There are several types 

of errors introduced. They arise during both the discretization of the structure and the 

interpolation of the element shape. There are also errors in the model stiffness associated 

with joints.   Errors are also introduced when the modal solutions are truncated. While 

these are not associated with the finite element model itself, they inevitably appear when 

FEM solutions are truncated to match test data. This is done in order to allow the user to 

concentrate on those modes which are of primary importance. 

During the discretization of the structure, the system is modeled as a collection, or 

mesh, of many finite elements. The elements are only an approximation of the true shape 
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of the structure. For instance, curved surfaces are modeled with straight elements. This is 

necessary in order to keep the equations of motion of the individual elements very simple. 

The response of the structure is then approximated by modeling the response at each of 

the nodes. The errors associated with these approximations can be minimized by 

increasing the number of elements. 

Another level of approximation is introduced when estimating the response of the 

individual elements. The response of a finite element is determined by it's associated 

shape function. For instance, the shape functions of a rod are shown in Figure 4.4. The 

shape functions are low order polynomials which are used to approximate the true shape. 

They satisfy the boundary conditions of the element, and they are integrable up to order of 

the strain energy [Ref. 6:p.252]. 

Figure 4.4.    Shape Functions of a Simple Rod 

In order to model the response of an element exactly under any load, a complex 

function is required. For instance, the exact analytic solution for the mode shape of the 

bar is given by [Ref. 5:p. 322]: 
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u = cos-^H; n = 1,2,3,... (4.27) 

As can be seen from Equation 4.27, the lowest mode (n=l) is closely 

approximated by the polynomial solution shown in Figure 4.4. In order to solve for any 

higher modes, however, several elements would have to be used. Each element would 

show a linear response, but by connecting them together, the actual response would be 

approximated. From this analogy, it is seen that the more complicated responses (i.e., 

higher modes) have to be approximated with more elements. Said another way, given the 

same number of elements, the higher modes show a greater error. 

Joints between structural elements are normally modeled with a node. There is not 

a stiffness associated with the joint. However, in the actual structure, the stiffness at a 

joint is different then that within the continuous member. The type of joint (e.g., welded, 

bolted, riveted) determines how the stiffness is affected. Normally, this does have a large 

impact on the overall response of a large structure. However, for those areas of the model 

which are considered critical, a point, or lumped, stiffness matrix can be added. 

As previously mentioned, truncation errors are not associated with the mass and 

stiffness matrices obtained from the finite element method. They arise in when the large 

modal solutions of complicated structures are reduced in order to concentrate on the most 

important frequencies and mode shapes. 
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Consider a finite element structure subject to a forcing function, 

[M]{q}+[K}{q} = [F] (4.28) 

The mass and stiffness matrices are each [NxN]. There are, therefore, a maximum of N 

modes which can be determined. If only those modes under a certain frequency are to be 

considered, the model can be reduced to P modes. Not all of these modal frequencies are 

accurate, however. In order to determine the accuracy of a particular modal frequency 

(w), the steady state solution to Equation 4.28 is evaluated. 

If the structure is forced at frequency (Q), the steady state modal solution becomes 

[Ref 9]: 

qt = -Ii-cos(Qt). (4.29) 

Transferring back to physical coordinates: 

From Equation 4.30 it is seen that as more terms are included (P-N), the solution 

becomes more accurate. 

In order to determine how many terms are required, the contribution from the 

higher order terms to the total sum must be evaluated. The answer comes from analyzing 
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Q*2 

Equation 4.29. Of particular importance is the   —   term. If the forcing frequency 

approaches a particular modal frequency, then that term becomes important. Therefore, in 

order to obtain an accurate solution, modes up to the value of the forcing frequency must 

be considered. The normal practice is to include modes up to twice the forcing frequency. 
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V. THE OH-6A FINITE ELEMENT MODEL 

At the outset of this project, it was desired to obtain an older NASTRAN finite 

element model of the OH-6A which had been produced by The McDonnell Douglas 

Helicopter Company for NASA [Ref. 2]. This model would have then been modified to 

match the test platform. After consultation with Dr. Mostafa Toossi at MDHC, it was 

determined that the OH-6A FEM was not available. However, MDHC was able to 

provide a somewhat more sophisticated model of a similar aircraft. This baseline model 

required some extensive modifications to both the nose and empennage in order to match 

the test platform. 

A finite element model consists of both a stiffness model and a mass model. 

Together, these create the total dynamic model which can then be used to predict the 

actual response of the system. Typically, the FEM is developed using blueprints and other 

design information. However, the data was not available for this project. The absence of 

accurate structural design and weight distribution data for the OH-6A created some 

unique challenges in developing the FEM. 

A.        STRUCTURAL MODEL 

In order to gain familiarity with the baseline model, initial research was completed 

at the MDHC facilities in Mesa, AZ over a two day period. With the help of John Fong, 

an intern Master's degree student from The California Polytechnic State University at San 
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Louis Obispo, the nose section was modified to closely match the test platform. In 

addition, preliminary research was done in order to help determine the internal structural 

components of the empennage. This work was extremely helpful in developing the OH- 

6A FEM seen in Figure 5.1. 

Figure 5.1. OH-6A Finite Element Model 
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1. Nose Section 

The nose section of the baseline model was somewhat more elongated than that of 

the OH-6A. In order to reshape the nose, aircraft geometry had to be determined. The 

absence of accurate structural data made this exercise somewhat challenging. 

The stations along the fuselage were determined using data contained in the OH- 

6A maintenance manual [Ref. 1] shown in Figure 5.2. Estimates of the shape were then 

MAST 
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56.» 
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STA     STA     STA 
m |iK.s|m.tt 

STA       STA STA     STA     STA     STA STA 
»50     443« St»  ««  HUM IN.«       1JT.S1 

5TA 
IM.0D 

Figure 5.2. Location of OH-6A Stations. From Ref. [1]. 

made based on the length and visual inspection of the nose. Since the fuselage of the 

baseline model was similar to the OH-6A, its structure was not modified. In the nose area, 

grid points 3504 and 3510 were removed along with several elements which are shown in 

Table 5.1. Additionally, grid points 3506 and 3508 were moved aft to station 28.0. This 

give the model a rounder nose typical of the OH-6A. 
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Element Type 

CBAR 

CQUAD4 

CTRIA3 

Elements Removed 

20507-20510 

4060444107, 4060544107, 4060644107, 

4060744107, 4060844107, 4060944107, 

3017644107, 3017844107, 3018044107, 

3018244107 

Table 5.1. Removed FEM Nose Elements 

2.        Empennage Section 

Tail modifications were much more extensive than the other sections of the 

aircraft. In order to accurately model the test platform, the entire empennage had to be 

replaced. In order to perform the necessary revisions without structural data the external 

geometry and the internal structural components had to be determined. 

The empennage is shown in Figure 5.3. The first step in developing the model was 

to accurately determine external geometry. The OH-6A empennage consists of three 

airfoils connected to the end of the tailboom. Two of these, the vertical stabilizers, are 

vertically mounted to the top and bottom of the tailboom respectfully. The horizontal 

stabilizer is mounted on the starboard side of the tailboom at an angle of approximately 40 

degrees off vertical. 
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Figure 5.3. OH-6 A Empennage 

Measurements were taken of the test platform at NPS. The vertical and horizontal 

stabilizers were measured with reference to the tailboom. Cross-sectional depth was 

measured at the endpoints and determined by inspection to be uniform along the length of 

each of the stabilizers. The horizontal stabilizer was determined to be of constant cross- 

sectional area., while the vertical stabilizers are tapered toward the tips. 

The FEM was modified using obtained measurements. All of the previous 

empennage elements were removed. These are given in Table 5.2 along with the modified 

element identification numbers. The corrected grid points and structural elements are 

given in Appendix E as NASTRAN formatted text. A new coordinate system was defined 
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as well. It is oriented orthogonally on grid point 27300 which is in the center of the 

tailboom directly below the connection point of the upper vertical stabilizer. 

Upper Vertical Stab. Horizontal Stab. 

Old Grid Points 31002-31088 32002 - 32108 

New Grid Points 31018-31088 32002 - 32048 

Table 5.2. Modified FEM Element Identification Numbers 

Connection points for each of the stabilizers are modeled as rigid elements. Two 

elements are used at the base of each airfoil. The airfoil connection grid points and the 

corresponding connection points on the tailboom are given in Table 5.3 along with the 

rigid element identification numbers. Note that rigid elements 50003 to 50010 in the 

original model were deleted. 

x Upper Vertical Stab Lower Vertical Stab Horizontal Stab 

Empennage G.P. 31008 31025 31073 31066 32002 32005 

Tailboom G.P 27302 28002 28010 27310 27306 28006 

Rigid Element ID. 50003 50004 50005 50006 50007 50008 

Table 5.3. Empennage Connection Points 

A first attempt was made to connect the lower vertical stabilizer at a single point 

on the tailboom. This approach matches the physical configuration. After calculating the 

normal modes of this model, however, it was determined that the first lateral, vertical and 
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torsional frequencies were incorrect. Also, there were two additional rigid body modes. 

Inspection of the mode shapes revealed that the lower stabilizer was vibrating 

independently of the rest of the empennage. This is not typical of the actual aircraft. The 

addition of another rigid element connection brought the frequencies and mode shapes 

closer to the test results. 

Determination of the internal geometry was accomplished by measuring the 

location of rivet lines. Using this data, the location of the internal structural components 

was determined. Each of the airfoils is comprised of spars with spar caps running 

longitudinally with respect to the base. They are intersected by ribs which are oriented 

parallel to the base. Each end is comprised of a sheet metal cap reinforced with a rib. The 

top vertical and horizontal stabilizer are connected externally with a hollow sheet metal 

bar. The element identification numbers which were deleted from the original model as 

well as the new element numbers are given in Table 5.4. 

Element Original ID New ID 

CROD 10403 - 10407 10403 - 10450 

CSHEAR 40483 - 40597 40483 - 40546 

CBAR 20403 - 20478 20403 - 20469 

CTRIA3 30124-30159 30124-30152 

CQUAD4 40557 None 

Table 5.4. FEM Element Identification Numbers 
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3.        Structural Elements 

While developing the FEM, assumptions had to be made concerning the types of 

internal elements to be used. Upon receiving the baseline model, the first operation 

performed was to calculate the natural frequencies and mode shapes. The frequencies 

from this model were close to that of the test platform. It was determined from this data 

and consultation with MDHC engineers that the material properties of the NPS test 

vehicle could be closely approximated using the material properties in the baseline model. 

There were four different types of finite elements used in the construction of the 

tail model. These are summarized in Table 5.5. The spars were modeled using rod 

elements. Two sets of two longitudinal spars run the length of each airfoil. Each set has 

elements running along the top and bottom of the stabilizer. Between them is a flange or 

Table 5.5. OH-6A Structural Components. After Ref. [2]. 

Component Element 

Spar Rod Element 

Skin Shear Panel Element 

Spar Cap Shear Panel Element 

Sheet Metal Rib Bar Element 

Connection Rigid Element 

spar cap. This is represented with a shear panel. The ribs are modeled using bar elements. 

Each end cap is modeled using shear panels to represent sheet metal. They are reinforced 
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with bar elements. Aircraft skin is modeled with shear elements covering the entire 

structure. As mentioned previously, the connections to the tailboom are represented with 

rigid elements. 

All of the elements were modeled using the MAT1 card number one in the 

NASTRAN model. This corresponds to aluminum with a modules of elasticity of 10.6 x 

106 psi., Poisson's ratio of 0.33 and unit weight of 0.120 lb/in3. The elements were given 

various dimensions which were based on data obtained from the original FEM. These 

element properties as well as the corresponding property identification numbers are given 

in Table 5.6. 

a.        Rod Element 

The simplest element to define is the rod element. It is shown if Figure 5.4. 

Rod elements carry axial loads only. The rod is assumed to be cylindrical in shape for 

mathematical calculations. However, the actual elements modeled do not necessarily have 

to be cylindrical. Rods are connected at the two end points only. They may be used to 

model an element of variable cross section. To do that, however, several rods must be 

used, each with a different area. Since the rod elements do not carry any bending loads, 

they are used in conjunction with shear panels in the tail section. Shear panels placed 

between two rods accurately model the flanged spars in each airfoil. 
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Table 5.6. FEM Material Properties 

b.        Bar Element 

A bar element defines a simple beam. These elements carry bending as well 

as axial loads. The cross section of the bar is square with uniform area as seen in Figure 

5.5. As with the rod, the material properties of each element are invariant throughout the 
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Figure 5.4. Rod Element. From Ref. [10]. 

entire length. In order to model a variable cross-section area, several bars connected 

together must be used. An alternate approach is to use a more sophisticated beam 

element; however, they are not used in this model. Bar elements are oriented using an 

orientation vector as shown in Figure 5.5. The vector is defined from node GA to grid 

point GO. The bar elements in this model are used to represent sheet metal ribs internal to 

each airfoil. 
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c        Shear Panel Element 

Shear panel elements define a thin shell. The shell is a two dimensional 

solid with small thickness as compared to the length and width [Ref. 10: p. 175]. The 

shape of the shear panel is defined by the location of its four grid points as shown in 

Figure 5.6. It is noted that interior angles must be less than 180 degrees. Also, element 

thickness is defined as constant throughout the entire element. 

*eiem 

Endb 

End a 

Plane 2 

y GA 

Figure 5.5. Bar Element. From Ref. [10]. 

48 



Shear panels carry both shear and axial loads. They are used to model the aircraft 

skin which is a uniform thickness over the entire airfoil. As mentioned previously, they are 

also used in conjunction with rod elements to model spar caps. 

d.        Rigid Elements 

A rigid element defines a rigid beam with six degrees of freedom at each 

end. The beam is massless with infinite stiffness. The degrees of freedom are defined as 

being either dependant or independent at each node. The rigid bar does not deform. It 

transfers the loads applied at the independent node to the dependant node in each DOF. 

Rigid elements are used at the base of each of the stabilizers. All six of the independent 

DOF are connected to the tailboom for each of the elements. The dependant DOF are at 

the nodes connected to the stabilizers. 
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Figure 5.6. Shear Panel Element. From Ref. [10]. 

B.        MASS MODEL 

In addition to the structural model, the typical FEM includes a mass model as well. 

The mass model of the OH-6A includes non-structural mass and structural mass. The 

non-structural mass includes the fuel crew and cargo weights. In this model, these were 

set to match the test configuration [Ref. 3]. This is shown in Table 5.7. 
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Table 5.7.   0H-6A NPS Vibration Test Configuration. After Ref. [3]. 

Item Weight (lbs.) Fuselage Station 

Ship as Weighed 1299 105.1 

Crew 0 

Fuel 12 102.23 

Additional Ballast 80 105.1 

Total/C.G Station 1391 105.1 

Structural masses are classified into two categories. Primary structural masses are 

determined from the mass densities of each of the elements of the model. Secondary 

structural masses are items such as equipment and useful load items [Ref. 2:p. 36]. These 

items are things such as rotor blades, engines, transmission components, etc. They are 

normally determined using blueprints and the associated weight report. The masses can be 

placed on the structure manually or by using an automated mass distribution program. 

Without detailed structural data it was not possible to determine the secondary 

masses and their location on the empennage. In order to complete the dynamic model, a 

design sensitivity approach was taken. Using this method, the response of the structure to 

small changes in mass is calculated. Using the obtained sensitivity information, the change 

in mass required to produce the desired response is then determined. 

In order to use the design sensitivity approach, the response of the system without 

mass must first be determined. This was done for the OH-6A model after the completion 
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of the structural model. The frequencies for each of the modes of interest is noted in 

Table 5.8. 

The standard approach using design sensitivities is to place lumped masses at 

several points on the structure in order to obtain the total response. For this model, 

however, it was not necessary. As seen in Table 5.8, the model is very accurate even 

prior to the addition of any mass. With this information, it was determined that a single 

mass located near the center of mass of the empennage section would be sufficient. The 

mass was given both translational and rotational components. This corrected for the 

spacial distribution of the actual mass of the system. 

Design sensitivities are determined from placing small masses at selected points of 

the structure and measuring the response. Consider the small component of mass, ÖM,, 

placed at the selected point. The natural frequencies of the structure with this mass 

applied are given by {w}6. If the natural frequencies of the model prior to the addition of 

the small mass are given by {w}a, then the sensitivity matrix is defined by: 

'iJ ÖM 

,2 

Su = 1J^±- (5-1) 

This gives the sensitivity of the frequency components to a change in mass. 
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Table 5.8. Natural Frequencies Prior to Mass Model 

Mode Test Frequency (Hz) Base Anal. Freq. (Hz) 

1st Lateral 9.32 9.01 

1st Vertical 9.97 9.01 

1st Torsional 15.01 15.42 

Aft Vertical 15.61 15.84 

2nd Vertical 21.83 19.86 

2nd Lateral 27.48 26.80 

The natural frequencies of the test platform are then compared to the base analysis 

frequencies: 

A».2 - K- (<* (5.2) 

where (co^j are the test frequencies of interest. In order to solve for the mass, the 

sensitivity matrix is then applied to the frequencies. This is given as: 

{Aco2} = [S]{AM}. (5.3) 

This equation can be solved to determine the change in mass, {AM}, required to produce 

the desired change in frequency. It should be noted that the above calculations were 
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completed using units offeree not mass. The force components are entered into 

NASTRAN which then converts them to mass. 

After application of the sensitivity matrix, the determined mass was applied to the 

empennage. The mass matrix is shown in Table 5.9. Table 5.10 gives the model mass 

summary. 

Table 5.9. Tail Force Components 

Force Component Magnitude 

M, 38.0 lb. 

My 38.0 lb. 

M, 38.0 lb. 

■*xx 100.0 in.-lb. 

\y 524.0 in.-lb. 

ZZ. 600.0 in.-lb. 

Table 5.10. OH-6A FEM Mass Summary 

Component Weight (lbs.) Fuselage Station 

Structural Weight 1375.55 114.83 

Fuel 12 102.23 

Crew 0 

Total Weight/C.G Location 1387.55 114.83 

The first calculation using this method did not produce favorable results. A 

determination was made that the original point of application was not satisfactory, and a 
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new location was chosen. This position proved to be ideal. It is located on the bottom of 

the horizontal stabilizer just outboard of the tailboom at grid point 32022. It can be seen 

as a triangular mark in Figure 5.3. The NASTRAN force components used in the FEM 

are included at the end of Appendix E. 
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VL COMPARISON OF RESULTS 

Verification of a finite element model requires comparison of the analytical natural 

frequencies and mode shapes with an experimental vibration test. This finite model, 

however, was created using the previously generated test frequencies. By definition, 

therefore, they are closely correlated after completion of the completion of the mass 

modeling as shown in Table 6.1. The only exercise which remains is to compare the mode 

Table 6.1. Natural Frequencies of Dynamic OH-6A FEM. 

Mode Test Frequency (Hz) Analysis Freq. (Hz) % Error 

1st Lateral 9.32 9.32 0.0% 

1st Vertical 9.97 9.99 0.2% 

1st Torsional 15.01 15.40 2.6% 

Aft Vertical 15.61 15.82 1.3% 

2nd Vertical 21.83 19.84 9.1% 

2nd Lateral 27.48 26.79 2.5% 

shapes. This will determine if the modes are matched. 

A.       MODAL ASSURANCE CRITERION 

There are several methods which can be used to compare experimental and 

analytical mode shapes. These include both graphical as well as mathematical techniques. 
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For this thesis, a mathematical approach called Modal Assurance Criterion (MAC) was 

used. This and other mathematical modal parameters are based on graphical techniques. 

Therefore, before discussing the mathematical approach, some insight into the graphical 

method is necessary. 

Graphical comparison of mode shapes is relatively straight forward. The simplest 

procedure is to place one mode shape on top of the other and visually compare deviation. 

Although this method is uncomplicated to perform, it has the disadvantage that the 

deviations are somewhat difficult to interpret [Ref. 1 l:p. 222 ]. A more sophisticated 

approach is to make a plot of the experimental modal deviation vs. the analytical 

deviation. This plot is shown in Figure 6.1. 

Figure 6.1. Mode Shape Comparison. From Ref. [11]. 
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The predicted response is plotted along the abscissa with the experimental 

response on the ordinate. The resulting points should be disbursed about a 45 degree line 

as shown. It should be noted at this point that two assumptions are made when plotting 

these points: 

1. Mode shapes must be identically normalized 

2. Mode shapes must be plotted at identical points on the structure. 

Deviations from the straight line can then be interpreted. For instance, a 

systematic deviation which produces a straight line offset from the origin may indicate a 

problem with the material properties of the model. A deviation which produces a straight 

line other than 45 degrees through the origin may indicate a problem with the experimental 

observations, perhaps an incorrect scaling of the FRF plots [Ref. 11 :p. 223]. 

Mathematical calculations generally produce statistical properties of the deviation 

of the graphical solution from an ideal 45 degrees. The benefit of the MAC parameter is 

that it produces a least squares deviation from a straight line correlation. This allows the 

user to determine the quality of the fit of the analytical mode shape. This is not available 

with other approaches [Ref 1 l:p.225]. 

In this thesis there are two mode shape matrices that are to be compared, the 

experimentally derived mode shape [<1>X] and the analytically produced mode shape, [<&a]. 

The MAC matrix is defined as: 
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MAC 
(M 

$* 

V 
(6.1) 

The MAC matrix is square with the rows representing the experimental modes and the 

columns representing the analytical modes. If any two modes correlate exactly, the MAC 

will be unity for that position in the matrix. If there is no correlation, the MAC will be 

zero. For example, two perfectly correlated [3x3] mode shapes will give: 

MAC = 

1 0 0 

0 1 0 

0 0 1 

(6.2) 

Also, if the two modes differ only by a scalar, the scalars will divide out in Equation 6.1, 

and the MAC will be the same. Therefore, the MAC is independent of the normalizing 

constant of each particular mode shape. 

In practice, the correlation won't be exactly unity or zero. It is generally accepted 

that a MAC greater than 0.9 indicates a correlated mode. A MAC less than 0.05 indicates 

uncorrelated data [Ref. ll:p. 226]. 

B. MATRIX REDUCTION 

As indicated in the previous section, in order to perform mode shape comparison, 

the two mode shapes must be determined from identical points on the structure. In most 
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cases, however, the experimental data is determined from fewer points than the analytical 

data. In this thesis the test set consisted of between 17 and 20 points, depending on the 

mode. The analysis set, however, contained over 3000 nodes. In order to compare the 

two shapes, the analysis set must be reduced. 

The reduction of the analysis response matrix is accomplished using a 

transformation matrix [T]. This is applied to the full element model, resulting in a test 

analysis model (TAM). The TAM matches the nodes in the experimental set [Ref. 12:p. 

270]. It can then be solved for the modes of interest and compared to the experimental 

data set using the techniques described in the previous section. 

The simplest reduction is a static reduction of the model. This is accomplished by 

first determining which DOF are to be kept in the TAM. Assuming an omitted set (o) and 

a retained set (a), the full model can be partitioned as: 

aa        ao M Kaa   Kao Xa 
S    \+ <       > 

oa        oo w Koa   Koo X°. 

o| 
o! 

(6.3) 

If an [N x a] transformation matrix is assumed, then: 

= mw (6.4) 

Equation 6.4, 6.12 may then be substituted into Equation 6.3. It is then pre-multiplied by 

[T]T to give: 
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Equation 6.4 may then be substituted into Equation 6.3. It is then pre-multiplied by [T]T 

to give: 

[M]{xay[K]{xa} = 0, (6.5) 

with [M\ = = [TY[M][T] and [K\ = [^^^[T7]. The associated eigenvalue problem may 

then be solved to produce the TAM frequencies and mode shapes 

[K]W = <J[M\W. (6.6) 

This produces the [a x a] matrix of mode shapes [W\ which correlates to the reduced set 

of natural frequencies. 

In order to determine the transformation matrix [T], the full partitioned model is 

again considered. If a harmonic solution to Equation 6.3 is considered, the equation of 

motion at a particular frequency (Q) may be written as: 

aa      ao 

Ka    Ko 
-Q2 

aa        ao 

oa        oo 

} = o. (6.7) 

The static transformation matrix is found assuming zero frequency. The omitted set can 

then be written as: 

W - [tlMH (6.8) 

Substituting Equation 6.8 into Equation 6.4 gives: 
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HU'M W - W (6.9) 

It follows, then, from Equation 6.9 that the static transformation matrix is: 

[T} = (6.10) 

Static reduction is the simplest method of reducing the analysis model to obtain a 

TAM of equivalent size to the experimental model. There are other methods. Gordis 

gives a discussion on the Improved Reduction System TAM which provides increased 

accuracy over the static TAM by including inertia forces [Ref. 12]. The reduced model 

for this thesis was generated by NASTRAN using the SET command. NASTRAN 

automatically calculates the TAM using the static reduction method. 

C.       COMPARISON PROCEDURES 

In order to use data sets in NASTRAN, the experimental data points must be 

mapped to specific grid points on the model. In his shake test of the OH-6A, Harris 

positioned the accelerometers on known aircraft stations [Ref 3:p.34]. Plots of the 

resulting mode shapes are reproduced in Appendix A. It must be noted, however, that 

separate measurement points were used for the vertical, lateral and torsional mode shape 
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measurements. Therefore, three separate grid point data sets were determined from the 

model for calculations in NASTRAN. 

The mode shape output from NASTRAN can be sent to a text file called Output 

Four (.op4). It was desired for this project to use MATLAB to manipulate the mode 

shapes. In order to accomplish this, a short MATLAB function called shapes.m was 

created which reads the contents of the NASTRAN generated file and puts it in MATLAB 

format. This code is contained in Appendix B. 

Once the mode shape matrix is obtained, the desired mode shape vectors must be 

extracted. The output from the MATLAB shapes function is in the form: 

* = [{*iH*2}{4>3}-]- (6-11) 

Each mode shape vector in N DOF, where N = (6)(#grid points). Each grid point has six 

DOF listed in order from the top of the vector as x, y, z, 0l5 63, 03. In order to obtain only 

the desired mode shape, first the entire mode shape vector must be extracted from the <& 

matrix. Then, all the rows not desired must be removed. For example, for the lateral 

mode shapes only rows 2, 8,14,... are kept. The mode shapes extracted for each of the 

modes is given in MATLAB format in Appendix C. 

A second MATLAB program was used to MAC the mode shapes together. This 

code was provided by Professor Josh Gordis and is given in Appendix D. The results of 

the MAC are shown in Table 6.2. 
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Table 6.2. MAC Parameters 

Mode MAC 

1st Lateral 0.704 

1st Vertical 0.921 

1st Torsional 0.633 

Aft Vertical N/A 

2nd Vertical 0.903 

2nd Lateral 0.544 

D. MODE SHAPES 

1. Lateral Modes 

Correlations for the lateral modes were not as accurate as for the vertical modes. 

The first lateral mode is somewhat correlated. The mode shape is shown in Figure 6.2. It 

demonstrates a somewhat steeper curvature in the tailboom than the experimental mode 

shape. Harris found the nodes at stations 80 and 214. In the FEM, the nodes appear at 

approximately stations 100 and 225. The mode shape is very similar to a cantilever beam 

first bending mode. This is expected due to the relative flexibility of the tailboom relative 

to the fuselage. 

The second lateral mode shape is seen in Figure 6.3. There appears to be 

significant error associated with this mode. The general shape of the modes are similar, 

but the analytical mode is shifted forward relative to the experimental mode shape. Also, 

the relative deflection appears to be smaller. The mode shape also shows some degree of 
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coupling with the landing skids. Additionally, there are several points on the fuselage 

which appear to be excited at this frequency. It is possible that these components in the 

model are causing errors in the mode shape as well as the frequency solution. 

2.        Vertical Modes 

The vertical mode shapes correlate very well with the experimental data. It is 

interesting to note that there is a degree of correlation between the first lateral and vertical 

mode shapes. The first vertical mode shape is seen in Figure 6.4. It appears to bend in 

much the same way as the lateral mode. This is typical of a cantilever beam. The bending 

mode shapes of a symmetrical beam (e.g., a circular tailboom) are ideally identical in both 

planes. 

It is somewhat unexpected that the mode shapes of the second vertical modes 

correlate so well. The natural frequencies of the second vertical modes have the greatest 

discrepancy of all the modes. This mode shape, however, is simpler than the lateral mode 

as seen in Figure 6.5. It has more of a first mode shape with only two nodes. The less 

complicated shape makes it easier to model using a small number of points. 

The aft vertical mode is shown in Figure 6.6. There was no data available for the 

experimental counterpart to this mode shape. Therefore, it does not have a MAC. The 

MDHC report on the OH-6A shake test [Ref. 2:p. 66] classifies this as an aft fuselage 

bending mode. The model mode shape generated for this report appears to display aft 

fuselage bending, but it is also coupled with a landing skid flapping mode. 
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3.        Torsional Mode 

The torsional mode shapes did not correlate well. Harris provided data for this 

mode, but there is no mode shape plot available from the experimental data. However, a 

visual inspection of Figure 6.7 shows similar deformation to the mode shape calculated by 

MDHC [Ref. 2:p. 61]. There were significant sources of error in correlating these plots. 

Only eight data points were used to correlate data. There were a total of 12 points in the 

test, but only eight were used because the others were not represented as grid points on 

the model. Also, only vertical deflections were measured. To get a more accurate 

measure of torsion, the lateral displacement of each point should also be measured. 

Lastly, there appears to be a significant amount of coupling with the landing skids in the 

model. Interference with a mode of the skids could change the torsional mode shape. 
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VH. CONCLUSIONS AND RECOMMENDATIONS 

A.       CONCLUDING REMARKS 

The development of a finite element model is essential in the study of vibration 

response of complex structures such as modern military helicopters. Reduction of the 

vibration levels of helicopters is of significant concern as aircraft become more complex 

and vibration sensitive high-tech avionics become more critical to completion of the 

aircraft's primary mission. 

The relative simplicity of the OH-6A airframe coupled with well documented 

response characteristics make this an ideal aircraft to study. A full-scale vibration test of 

the helicopter at NPS established the natural frequencies and mode shapes between 0 and 

45 Hz. This thesis continues with that research and develops a FEM which is closely 

correlated to the experimental data. The increased understanding of OH-6A dynamic 

characteristics which this research creates further increases the capabilities of the school to 

conduct helicopter dynamics research. Furthermore, it enhances the prestige of NPS as a 

rotorcraft research facility. 

Helicopters experience vibrations from a few primary sources. Vibrations 

transmitted through the main and tail rotors are the largest source. They occur primarily 

at IP and NP frequencies. Higher frequency vibrations are a concern as well. They are 

associated with internal machinery such as engines and transmission components. 
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Additionally, random aerodynamic excitations from wind and rotor wash impingement on 

the fuselage can also have an effect. 

When developing a FEM, it is necessary to realize that a finite element model is 

not an exact representation of the actual structure. There are errors associated with the 

discretization and interpolation of the structure. This error can be minimized by including 

a large number of very small elements in the FEM. The errors for the higher frequency 

modes will always be greater than the lower modes due to their complex mode shapes. It 

is, therefore, the goal of the engineer to develop a model which is accurate below a certain 

frequency level of interest. 

A typical FEM consists of both a stiffness model and a mass model. The 

development of both of these components for this project was complicated by the lack of 

accurate structural design data for the helicopter. The structural components were created 

using external measurements of the test platform at NPS. The nose and empennage 

section were created using this method. The remainder of the aircraft is based on a FEM 

of a similar aircraft which was provided by McDonnell Douglas. The mass model was 

created using a point mass with rotational components placed near the CG. of the . 

empennage. The mass components were calculated using a design sensitivity approach. 

Model frequencies correlated very closely to the test frequencies, especially in the 

lower frequency modes. The mode shapes did not correlate as well. Mode shapes were 

compared using the modal assurance criterion. Prior to performing the MAC, analytical 

mode shapes were reduced to the same size as the test modes using the NASTRAN built- 
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in static reduction method. The drastic reduction in the number of DOF introduced a 

great deal of error in the resulting test analysis model. It was more pronounced in the 

lateral modes than in the vertical. The torsional mode shape was the least correlated of 

them all. However, the general shape of all modes was similar by visual inspection. This 

leads to the conclusion that greater detail in the experimental mode shapes may give better 

correlation results. 

B.   RECOMMENDATIONS FOR FURTHER STUDY 

The finite element model created for this project correlates well with the 

experimental data. It is a useful tool for further research in helicopter dynamics. It can be 

used to provide a basic knowledge of the process required to develop complex finite 

element models. There are, however, still some improvements which can be made which 

will increase its accuracy. 

1.        Improvements in the Experimental Data 

Experimental mode shapes were developed using between 17 and 19 data points. 

The analytical model contains 4398 DOF. The static reduction creates some rather large 

errors when reducing by such a significant amount. Taking measurements at additional 

data points would give more reliable experimental mode shapes. Additionally, torsional 

data was determined using only vertical displacement. Putting additional accelerometers 

on the tail to obtain lateral-vertical coupling by simultaneously measuring vertical-lateral 

movement would greatly enhance the accuracy of the test. 
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2.        Improvements in the FEM 

One area of potential error which was not addressed in this thesis is the landing 

skids. Landing skids on helicopters with more than two blades have pre-loaded springs 

and oleo dampers in order to eliminate ground resonance. The skids appear to play a 

significant role in the vibration response of several modes in this model. It is possible that 

the skids in the FEM do not accurately represent the OH-6A skids. It may be useful to 

model the skids with more accuracy. This could reduce the error in both the torsional 

mode and the second lateral mode. 

There is also some discrepancy in the mass and CG. of the model. This could 

have contributed to the errors in some of the mode shapes. Without accurate weight data 

it is an extremely difficult task to track down the discrepancies between the test platform 

and the model. If more accurate weight data is required, a sensitivity analysis could be 

performed on the entire airframe using the built-in capabilities of NASTRAN. 
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APPENDIX A. EXPERIMENTAL MODE SHAPE PLOTS 
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UNCONVENTIONAL VERTICAL MODE: 21.83 Hz. 
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APPENDIX B. MODE SHAPE EXTRACTION PROGRAM 

% shapes.m reads the mode shapes from an op4 file for computation in MATLAB. 
% Written by Lt. Mike Pampalone, Naval Postgraduate School 

clear 

% Get filename and open file 
filename=input('Enter the name of the NASTRAN op4 file» 7s1); 
[fid,message]=fopen(filename,,rt'); 
ifmessage~=" 

dispC Problem opening file. Check path/directory.') 
else 

dispC File opened successfully. Reading Data...') 

% See end of file for closing "end' statement 
exit=l; 
cnt_lines=0; 
n=l; 
last_line=0; 

% Two while loops. This allows program to break from the inner loop while 
% continuing to loop through lines of the op2 file. The file breaks from 
% the outer loop when end of file is detected. 

while exit 

while 1 
next_line=fgetl(fid); 
cnt_lines=cnt_lines+1; 

% Look for end of file 
if ~isstr(next_line) 

exit=0; 
break 

end 

% Read first line of file 
if(cnt_lines=l) 
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modes=eval([,[',next_line(l:8),T]); 
DOF=eval([T,next_line(9:16),']']); 
mode=0; 
break 

end 

% Find the new mode number. The previous mode shape is evaluated to determine 
% if the correct number of lines have been read. If not, it is padded 
% with zeros. Next, the new mode shape is evaluated to determine if there are 
% leading zeros. If so, it is padded. The index and mode number are then 
% reset. 

ifCevalCrCnextJineCLSX'J^^mode+l)); 
if(last_line~=n-l) 

mode_shape(n: last_line,mode)=zeros( 1: last_line+1 -n, 1); 
end 
mode=mode+l; 
n=l; 
firstJine=eval([T,next_line(9:16),']']); 
if(first_line~=l) 

mode_shape( 1:3* first_line-3 ,mode)=zeros( 1:3 *first_line-3,1); 
n=3*first_line-2; 

end 
last_line=eval([,[,,next_line(17:24);]*]); 
break 

end 

% If none of the above conditions are met, the line is written to the 
% mode shape matrix in a column. Each column represents a different 
% mode. 

mode_shape(n,mode)=eval([,[,,next_line(l:21),,],]); 
mode_shape(n+l,mode)=eval([,[,,next_line(22:42),,]']); 
mode_shape(n+2,mode)=eval(['[',next_line(43:63),']']); 
n=n+3; 

end 
end 
fclose(fid); 
disp(*End of file detected. File closed.') 

end 
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APPENDIX C. REDUCED MODE SHAPE DATA 

% Reduced Analytical First Vertical Mode Shape 

Vertl=[0.3803,0.2230;0.0673;-0.0201;-0.1525;-0.3473;-0.2892;-0.2985;... 
-0.2973;-0.2959;-0.2881;-0.2548;-0.1520;-0.0374;0.3518;0.9097;1.2407]; 

% Reduced Analytical Second Vertical Mode Shape 

Vert2=[-0.1014;-0.0453;0.0043;0.0349;0.0855;0.1326;0.1751;0.1972;... 
0.2173;0.2370;0.2611;0.2774;0.2727;0.2592;0.1840;0.0483;-0.0335]; 

% Reduced Analytical Aft Vertical Mode Shape 

VertA=[-0.0570;-0.0647;-0.0822;-0.0912;-0.1063;-0.1344;-0.1381;-0.1471;... 
-0.1552;-0.1632;-0.1726;-0.1764;-0.1653;-0.1491 ;-0.0848 ;0.0169;0.0742] 

% Reduced Analytical First Lateral Mode Shape 

Latl=[0.1795;0.1030;0.0252;-0.0183;-0.0828;-0.1454;-0.1320;-0.1426;... 
-0.1513;-0.1528;-0.1454;-0.1298;-0.0979;-0.0615;0.0490;0.2003;0.2778]; 

% Reduced Analytical Second Lateral Mode Shape 

Lat2=[0.0876;0.0333;-0.0453;-0.0804;-0.1275;-0.0657;0.2325;0.2717;0.3088;. 
0.3376;0.3688;0.3822;0.3800;0.3616;0.2540;0.0550;-0.0336]; 

Reduced Analytical First Torsional Mode Shape (Vertical Deflection Only) 

Torl=[0.0902;0.0787;0.0689;0.0626;0.0498;0.0936;0.2806;0.6220]; 

% Experimental First Vertical Mode Shape 

EVertl=[7.2153;3.8583;.232e-3;-1.0109;-3.3242;-7.0845;... 
-7.6948;-5.1967;-5.0398;-3.874;-3.3242;-1.2556;1.82016;... 
4.69972;13.2098;26.2452;32.9155]; 

% Experimental Second Vertical Mode Shape 

EVert2=[2.9556;1.9342;.832;.490;-.347;-1.4015;-1.9482;-2.268;-2.6158;... 
-2.9733,-3.2916;-3.455;-3.4877;-2.3296;-1.9118;-.110;769]; 
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% Experimental First Lateral Mode Shape 

ELatl=[-20.839;-9.8965;2.0534;11.1376;23.564;24.2915;25.7875;27.7057;... 
28.4033;27.6185;22.117;12.69;5.1226;-5.58;-51.8801;-82.343;-140.19]; 

% Experimental Second Lateral Mode Shape 

ELat2=[-.616;-.343;3.42016;5.8998;1.28174;-.217;-1.4801;-5.891;-9.0354;... 
-13.411;-18.55;-23.913;-29.82;-35.586;-44.425;-35.444;-23.956]; 

% Experimental First Torsional Mode Shape (Vertical Deflection only) 

% Horizontal Stab 
% 13.079;-33.243;-91.553;-168.94;-235.75; 
% Stations along horizontal stab 
% 7.25 22.75 38 50.75 65.75 

% Vertical Stabs 
% 103.379;80.544;60.2861;37.886;12.0763;-24.937;-75.204;-151.72]; 
% Stations along vertical stab 
% -28.5 -20.5 -12.5 -4.5 7.5 20.5 33.5 51.5 

% Data points truncated and ordered to match analytical set 

ETor=[-151.7200;-75.2040;12.0763;37.886;103.3790;13.0790;-91.5530;-235.7500]; 

phi_exp=[ELatl,EVertl,EVert2,ELat2]; 
phi_anal=[Lat 1, Vert 1, Vert2,Lat2]; 

MAC1 = 
0.7038 0.9476 0.0529 0.0164 
0.6227 0.9209 0.0100 0.0000 
0.5533 0.2067 0.9026 0.7022 
0.0003 0.1106 0.5029 0.5440 

phi_tor_exp=ETor; 
phi_tor_anal=Tor 1; 
MAC2 = 

0.6331 
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APPENDIX D. MAC CALCULATION PROGRAM 

% fmac.m 
% This function calculates the MAC matrix for a matrix onto itself 
%        [mac(a,a)]  use mac = fmac(a) 
% or between two matrices. 
%        [mac(a,b)] use mac = fmac(a,b) 
% Written by Professor Josh Gordis, Naval Postgraduate School 

function [mac]=fmac(a,b); 
asize=size(a); 
nacols=asize(l,2); 
ifnargin= 1; 

b = a; 
nbcols = nacols; 

else 
bsize=size(b); 
nbcols=bsize(l,2); 

end; 
for i=l : nacols; 

for j= 1 : nbcols; 
top  =(a(:,iy*b(:j)r2; 
bottom = (a(:,i)' * a(:,i)) * (b(: j)' *b(: j)); 
mac(i j) = top / bottom; 

end 
end 
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APPENDIX E. NASTRAN FORMATTED EMPENNAGE DATA 

$ 0H-6A NASTRAN FEM modified empennage data. This was modified by Lt. Michael 
$ Pampalone, USN, Naval Postgraduate School, 12 August 1996. 
$ 
$ 

$ 
$ BEGE 
$ 
$      1 

^^^'f**t>)|C)|C3f!?f!9|(}iCSjC!}C!fC!t!S{(!)C9JC!f! MODIFIED TAIL    *********************** 

N VERTICAL STABILIZER 

...2 3 4  5  6 
CORD2R      301 273.90 0.0 54.358 273.90     0.0    55.O+CD301 
+CD301 
$ 
$VERT] 

274.5 0.0 54.358 

[CAL STABILIZER - TOP 
GRID 31018 301 0. 0. 3.383 
GRID 31020 301 2.127 1. 3.280 
GRID 31022 301 2.127 -1. 3.280 
GRID 31024 301 6.55 1. 3.067 
GRID 31025 301 6.55 0. 3.067 
GRID 31026 301 6.55 -1. 3.067 
GRID 31028 301 14.98 0. 2.66 
GRID 31030 301 1.47 0. 6.32 
GRID 31032 301 3.60 1. 6.21 
GRID 31034 301 3.60 -1. 6.21 
GRID 31036 301 7.756 1. 6.01 
GRID 31038 301 7.756 -1. 6.01 
GRID 31040 301 15.99 0. 5.615 
GRID 31042 301 15.64 0. 31.54 
GRID 31044 301 16.38 1. 31.51 
GRID 31046 301 16.38 -1. 31.51 
GRID 31048 301 18.17 1. 31.42 
GRID 31050 301 18.17 -1. 31.42 
GRID 31052 301 24.66 0. 31.11 
GRID 31054 301 22.75 0. 48.47 
GRID 31056 301 24.89 1. 48.37 
GRID 31058 301 24.89 -1. 48.37 
GRID 31060 301 25.12 1. 48.35 
GRID 31062 301 25.12 -1. 48.35 
GRID 
$ 

31064 301 30.46 0. 48.10 
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$ VERTICAL STABILIZER - BOTTOM 
GRID 31066 301 0.      0. -3.383 
GRID 31068 301 2.13 1. -3.339 
GRID 31070 301 2.13 -1. -3.339 
GRID 31072 301 6.55 1. -3.247 
GRID 31073 301 6.55 0. -3.247 
GRID 31074 301 6.55 -1. -3.247 
GRID 31076 301 12.0 0. -3.134 
GRID 31078 301 12.21 0. -26.76 
GRID 31080 301 13.36 1. -26.72 
GRID 31082 301 13.36 -1. -26.72 
GRID 31084 301 15.12 1. -26.70 
GRID 31086 301 15.12 -1. -26.70 
GRID 31088 301 17.68 0. -26.65 

$ FWD SPAR - VERT. STAB. 
CROD 10403 1103C )   31056 31044 
CROD 10404 11036   31044 31032 
CROD 10405 11042 \   31032 31020 
CROD 10406 11030   31058 31046 

CSHEAR 40483 14040   31056   31058 31046 31044 
CSHEAR 40484 14048   31044   31046 31034 31032 
CSHEAR 40485 14055   31032   31034 31022 31020 
CSHEAR 40486 14040   31068   31070 31082 31080 

$ AFT SPAR - VERT. STAB. 
CROD 10411 11030   31060   31048 
CROD 10412 11044   31048   31036 
CROD 10413 11057   31036   31024 
CROD 10414 11030   31062   31050 
CROD 10415 11044   31050   31038 
CROD 10416 11057   31038   31026 
CROD 10417 11030   31072   31084 
CROD 10418 11030   31074   31086 
CSHEAR 40487 14040   31060   31062 31050 31048 
CSHEAR 40488 14058   31048   31050 31038 31036 
CTRIA3 30124 13071   31036   31038 31025 
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CTRIA3 30125 13071 31024 31025 31036 
CTRIA3 30126 13071 31026 31025 31038 
CTRIA3 30127 13071 31084 31086 31073 
CTRIA3 30128 13071 31072 31073 31084 
CTRIA3 

$ 
STOP VI 

30129 13071 31074 31073 31086 

IRT. STAB. LOWER END CAP 
CBAR 20403 12014 31018 31020 31028 
CBAR 20404 12014 31018 31022 31028 
CROD 10419 11298 31020 31022 
CBAR 20405 12298 31020 31024 31028 
CBAR 20406 12298 31022 31026 31028 
CBAR 20407 12298 31024 31025 31036 
CBAR 20408 12298 31026 31025 31038 
CBAR 20409 12014 31024 31028 31018 
CBAR 20410 12014 31026 31028 31018 
CTRIA3 30130 13025 31018 31020 31022 
CSHEAR 40489 14250 31020 31022 31026 31024 
CTRIA3 
$ 
STOP VI 

30131 13025 31024 31026 31028 

iRT. STAB. LOWER RIB 
CBAR 20411 12014 31030 31032 31040 
CBAR 20412 12014 31030 31034 31040 
CROD 10420 11298 31032 31034 
CBAR 20413 12014 31032 31036 31040 
CBAR 20414 12014 31034 31038 31040 
CROD 10421 11298 31036 31038 
CBAR 20415 12014 31036 31040 31030 
CBAR 
$ 
STOP VI 

20416 12014 31036 31040 31030 

iRT. STAB. INTERMEDIATE RIB 
CBAR 20417 12014 31042 31044 31052 
CBAR 20418 12014 31042 31046 31052 
CROD 10422 11298 31044 31046 
CBAR 20419 12014 31044 31048 31052 
CBAR 20420 12014 31046 31050 31052 
CROD 10423 11298 31048 31050 
CBAR 20421 12014 31048 31052 31042 
CBAR 
$ 
STOPVE 

20422 12014 31050 31052 31042 

:RT. STAB. UPPER END CAP 
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CBAR 20423 12014 31054 31056 31064 
CBAR 20424 12014 31054 31058 31064 
CROD 10424 11298 31056 31058 
CBAR 20425 12298 31056 31060 31064 
CBAR 20426 12298 31058 31062 31064 
CROD 10425 11298 31060 31062 
CBAR 20427 12014 31060 31064 31054 
CBAR 20428 12014 31062 31064 31054 
CTRIA3 30132 13025 31054 31056 31058 
CSHEAR 40490 14250 31056 31058 31062 31060 
CTRIA3 
$ 

30133 13025 31060 31062 31064 

$ BOTTOM VERT. STAB. LOWER END CAP 
CBAR      20429   12017   31078   31080   31088 
CBAR      20430   12017   31078   31082   31088 
CROD       10426   11120   31080   31082 
CBAR       20431   12120   31080   31084   31088 
CBAR      20432   12120   31082   31086   31088 
CROD       10427   11120   31084   31086 
CBAR       20433   12017   31084   31088   31078 
CBAR      20434   12017   31086   31088   31078 
CTRIA3     30134   13025   31078   31080   31082 
CSHEAR    40491   14250   31080   31082   31086   31084 
CTRIA3     30135   13025   31084   31086   31088 
$ 

$ BOTTOM VERT. STAB. UPPER END CAP 
CBAR  20435 12017 31066 31068 31076 

20436 12017 31066 31070 31076 
10428 11120 31068 31070 
20437 12298 31068 31072 31076 
20438 12298 31070 31074 31076 
20439 12298 31072 31073 31084 
20440 12298 31074 31073 31086 
20441 12017 31072 31076 31066 
20442 12017 31074 31076 31066 
30136 13025 31066 31068 31070 
40492 14250 31068 31070 31074 31072 
30137 13025 31072 31074 31076 

CBAR 
CROD 
CBAR 
CBAR 
CBAR 
CBAR 
CBAR 
CBAR 
CTRIA3 
CSHEAR 
CTRIA3 
$ 
$SKIN 
CSHEAR 40493   14032   31056   31044   31048   31060 
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CSHEAR 40494 14032 31058 31046 31050 31062 
CSHEAR 40495 14032 31044 31032 31036 31048 
CSHEAR 40496 14032 31046 31034 31038 31050 
CSHEAR 40497 14032 31032 31020 31024 31036 
CSHEAR 
$ 
CSHEAR 

40498 14032 31034 31022 31026 31038 

40499 14032 31068 31080 31084 31072 
CSHEAR 
$ 
CSHEAR 

40500 14032 31070 31082 31086 31074 

40501 14020 31066 31068 31080 31078 
CSHEAR 
$ 
CSHEAR 

40502 14020 31066 31070 31082 31078 

40503 14020 31076 31072 31084 31088 
CSHEAR 
$ 
CSHEAR 

40504 14020 31076 31074 31086 31088 

40505 14020 31054 31042 31044 31056 
CSHEAR 40506 14020 31054 31042 31046 31058 
CSHEAR 40507 14020 31042 31030 31032 31044 
CSHEAR 40508 14020 31042 31030 31034 31046 
CSHEAR 40509 14020 31030 31018 31020 31032 
CSHEAR 
$ 
CSHEAR 

40510 14020 31030 31018 31022 31034 

40511 14020 31064 31060 31048 31052 
CSHEAR 40512 14020 31064 31062 31050 31052 
CSHEAR 40513 14020 31052 31048 31036 31040 
CSHEAR 40514 14020 31052 31050 31038 31040 
CSHEAR 40515 14020 31040 31036 31024 31028 
CSHEAR 
$ 
$ HORIZ( 

$ 
GRID 

40516 14020 31040 31038 31020 31028 

3NTAL STABILIZER 

32002 301  0.0 3.383  0.0 
GRID 32004 301 6.55 2.60 0.74 
GRID 32005 301 6.55 3.157 -0.09 
GRID 32006 301 6.56 3.72 -0.92 
GRID 32008 301 11.16 2.44 0.68 
GRID 32010 301 11.19 3.56 -0.98 
GRID 32012 301 17.74 2.77 -0.24 
GRID 32014 301 0.13 6.28 1.95 
GRID 32016 301 6.67 5.49 2.69 
GRID 32018 301 6.69 6.61 1.03 
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GRID      32020 
GRID      32022 
GRID      32024 
GRID      32026 
GRID       32028 
GRID      32030 
GRID      32032 
GRID      32034 
GRID      32036 
GRID       32038 
GRID      32040 
GRID      32042 
GRID      32044 
GRID      32046 
GRID      32048 
$ 
$ FWD SPAR 
CROD       10430 
CROD       10431 
CROD       10432 
$ 
CROD       10433 
CROD       10434 
CROD       10435 
$ 
CSHEAR    40520 
CSHEAR    40521 
CSHEAR    40522 
$ 
$ AFT SPAR 
CROD       10436 
CROD       10437 
CROD       10438 
$ 
CROD       10439 
CROD       10440 
CROD       10441 
$ 
CSHEAR    40523 
CSHEAR    40524 
CSHEAR    40525 

301 
301 

301 
301 
301 
301 
301 
301 
301 
301 

301 

301 

301 

301 

301 

11.30 
11.32 
17.86 
1.23 
7.78 

7.79 
12.41 
12.42 
18.97 
2.29 
8.84 

8.86 

13.47 

13.49 

20.03 

5.33 
6.45 
5.67 

31.60 
30.82 
31.94 
30.65 
31.78 
30.99 
55.89 
55.11 

56.23 

54.95 

56.07 

55.28 

2.63 
0.97 

1.71 
18.91 
19.65 
17.99 
19.58 
17.92 
18.66 
35.19 
35.93 

34.27 

35.86 

34.20 

34.94 

11030 32004 32016 
11030 32016 32028 
11030 32028 32040 

11030 32006 32018 
11030 32018 32030 
11030 32030 32042 

14040 32004 32006 32018 32016 
14040 32016 32018 32030 32028 
14040 32028 32030 32042 32040 

11030 32008 32020 
11030 32020 32032 
11030 32032 32044 

11030 32010 32022 
11030 32022 32034 
11030 32034 32046 

14040 32008 32010 32022 32020 
14040 32020 32022 32034 32032 
14040 32032 32034 32046 32044 
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$ INBOARD END CAP 
CBAR 20445 12067 32002 32004 32006 
CBAR 20446 12177 32004 32008 32006 
CBAR 20447 12067 32008 32012 32006 
CBAR 20448 12067 32012 32010 32004 
CBAR 20449 12177 32010 32006 32004 
CBAR 20450 12067 32006 32002 32004 
CROD 10442 11020 32004 32005 
CROD 10443 11020 32005 32006 
CROD 10444 11020 32008 32010 
CTRIA3 30140 15032 32004 32005 32002 
CTRIA3 30142 15032 32005 32006 32002 
CTRIA3 30143 15032 32004 32005 32008 
CTRIA3 30144 15032 32005 32006 32010 
CTRIA3 30145 15032 32008 32010 32006 
CTRIA3 30146 15032 32008 32010 32012 

$ INBOARD RIB 
CBAR 20451 12014 32014 32016 32024 
CBAR 20452 12014 32016 32020 32024 
CBAR 20453 12014 32020 32024 32014 
CBAR 20454 12014 32024 32022 32014 
CBAR 20455 12014 32022 32018 32024 
CBAR 20456 12014 32018 32014 32024 
CROD 10445 11018 32016 32018 
CSHEAR 40526 > 1402f > 32016 3202C ) 32022 32018 
CTRIA3 30147 13025 32014 32016 32018 
CTRIA3 
$ 
$ INTER 

30148 13025 32020 32022 32024 

MEDIATE RIB 
CBAR 20457 12014 32026 32028 32036 
CBAR 20458 12014 32028 32032 32036 
CBAR 20459 12014 32032 32036 32026 
CBAR 20460 12014 32036 32034 32026 
CBAR 20461 12014 32034 32030 32036 
CBAR 20462 12014 32030 32026 32036 
CROD 10446 11018 32028 32030 
CSHEAR 40527 14025 » 32028 ! 32032 . 32034 32030 
CTRIA3 30149 13025 32026 32028 32030 
CTRIA3 30150 13025 32032 32034 32036 
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$ 
$ OUTBOARD END CAP 
CBAR      20463   12022   32038 32040 

20464 12022 32040 32044 
20465 12022 32044 32048 
20466 12022 32048 32046 
20467 12022 32046 32042 
20468 12022 32042 32038 
10447 11018 32040 32042 

40528 14040 32040 32044 
30151 15040   32040 32042 
30152 15040   32044 32046 

CBAR 
CBAR 
CBAR 
CBAR 
CBAR 
CROD 
CSHEAR 
CTRIA3 
CTRIA3 
$ 
$ SKIN 
CROD 
CROD 
CROD 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
$ 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
$ 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 
CSHEAR 

32048 
32048 
32042 
32038 
32048 
32048 

32046   32042 
32038 
32048 

10448 11016   32012   32024 
10449 11016   32024   32036 
10450 11016   32036   32048 
40529 14020 32002 32004 
40530 14020 32004 32008 
40531 14020 32008 32012 
40532 14020 32002 32006 
40533 14020 32006 32010 
40534 14020 32010 32012 

40535 14020 32014 32016 
40536 14020 32016 32020 
40537 14020 32020 32024 
40538 14020 32014 32018 
40539 14020 32018 32022 
40540 14020 32022 32024 

40541 14020 32026 32028 
40542 14020 32028 32032 
40543 14020 32032 32036 
40544 14020 32026 32030 
40545 14020 32030 32034 
40546 14020 32034 32036 

32016 32014 
32020 32016 
32024 32020 
32018 32014 
32022 32018 
32024 32022 

32028 32026 
32032 32028 
32036 32032 
32030 32026 
32034 32030 
32036 32034 

32040 32038 
32044 32040 
32048 32044 
32042 32038 
32046 32042 
32048 32046 

$ 

$ CONNECTION BETWEEN VERTICAL 
$ 
RBAR  50003 27302 31018 123456 

STAB. AND TAILBOOM 

123456 
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RBAR  50004 28002 31025 123456       123456 
RBAR  50005 28010 31073 123456       123456 
RBAR  50006 27310 31066 123456       123456 
$ 

$ CONNECTION BETWEEN HORIZONTAL STAB. AND TATLBOOM 
$ 

RBAR  50007 27306 32002 123456       123456 
RBAR  50008 28006 32005 123456       123456 
$ 

$ CONNECTING STRUT BETWEEN VERTICAL AND HORIZONTAL STABS 
CBAR      20469   12022   32028   31048   31050 
$ 

$ ******** MODIFIED TAIL SECTION MASS ******** 
CMASS1   63202216320221   32022       1 
CMASS1   6320222 6320221   32022       2 
CMASS1   6320223 6320221   32022       3 
CMASS1   6320224 6320224   32022       4 
CMASS1   6320225 6320225   32022       5 
CMASS1   6320226 6320226   32022       6 
PMASS    6320221    38.0 
PMASS    6320224   100.0 
PMASS    6320225   524.0 
PMASS    6320226   600.0 
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