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THE VARIATIONAL METHOD FOR AERODYNAMIC OPTIMIZATION 

USING THE NAVIER-STOKES EQUATIONS* 

BAMBANG I. SOEMARWOTOt 

Abstract. This report describes the formulation of an aerodynamic shape design methodology using a 

compressible viscous flow model based on the Reynolds-Averaged Navier-Stokes equations. The aerodynamic 

shape is described by a set of geometrical design variables. The design problem is formulated as an optimiza- 

tion problem stated in terms of an aerodynamic objective functional which has to be minimized. The design 

scheme employs a gradient-based optimization algorithm in order to obtain the optimum values of the design 

variables. The gradient of the aerodynamic functional with respect to the design variables is computed by 

means of the variational method, which requires the solution of an adjoint problem. The formulation of the 

adjoint problem is described which leads to a set of adjoint equations and boundary conditions. Using the 

flow variables and the adjoint variables, an expression for the gradient has been constructed. Computational 

results are presented for an inverse problem of an airfoil. It will be shown that, starting from an initial 

geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best-fit of the RAE 

2822 airfoil in a transonic flow condition has been reconstructed successfully. 

Key words, aerodynamic optimization, airfoil design, variational method, optimal control, inverse 

design, Navier-Stokes equations 
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1. Introduction. Methodologies for solving aerodynamic shape design problems can be distinguished 

into two classes: (i) inverse methodology and (ii) optimization methodology. The distinction is based on 

how the design problem is formulated. 
In the inverse methodology, the design problem is posed in terms of a prescribed target pressure distri- 

bution which has to be realized on the surface of the shape. The designer is assumed to be able to prescribe 

the target pressure distribution in such a way that it reflects required aerodynamic characteristics like lift, 

drag, pitching moment, and boundary layer properties which determine the aerodynamic performance. In- 

verse methods assist the designer by constructing an aerodynamic shape which generates the target pressure 

distribution (Refs. [22], [11], [10], [5]). 
In the optimization methodology, the design problem is posed as a minimization problem of an aerody- 

namic objective functional subject to constraints on the geometric and aerodynamic properties. Optimization 

methods assist the designer in locating the minimum of the objective while satisfying the constraints. Prom 

the practical point of view, aerodynamic optimization methods, pioneered by Hicks et al. [14], are more 

attractive since these methods can handle a large class of design problems, including those classified as in- 

verse problems. This report describes a contribution to the development in the aerodynamic optimization 

methodology. 

Aerodynamic optimization methods can be distinguished into two categories: (i) global methods and (ii) 

local methods. Global methods, such as those based on the genetic algorithm [9], are aimed at obtaining the 
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global optimum. These methods are most useful for cases in which multiple minima are present in the design 

space. It is widely known, however, that global methods incur large computational effort, where hundreds 

or even thousands of flow analyses may be needed before the global optimum can be found. 

Local methods use the information on the gradient of the objective for locating the optimum. Therefore, 

for cases with multiple minima, local methods are limited to produce only one of the minima (i.e., the local 

optimum), the actual value of which depends on the starting point of the optimization process. Because 

of the modest computational requirement, and since any local optimum represents an improvement over an 

existing design, local methods are very useful design tools. The method described in this report belongs to 

this category. 
Recent developments in the gradient-based aerodynamic optimization methodology suggest that two 

main streams may be distinguished: (i) the method of sensitivity analysis and (ii) the variational method. 

This distinction is based on how the gradient is computed. 
The formulation of the gradient using the sensitivity analysis method (Refs. [27], [24], [15]), is done on 

a discrete level, which means that one must deal with the discrete form of the flow equations. This method 

has the advantage that the sensitivities of the flow properties on the grid points can be determined. Once 

these become available, the gradient of an aerodynamic functional can be computed easily using the chain 

rule. However, the computational effort strongly depends on the number of design variables. For each design 

variable, a sensitivity equation in the form of a (large) linear system of equations must be solved. The 

computational requirement can therefore be prohibitive if a large design space is to be covered. 

The formulation of the gradient using the variational method can be done either on a discrete level 

(Refs. [2], [23], [6], [21]) or a continous level (Refs. [25], [18], [20], [19], [26], [1], [17], [16], [28]). This method 

needs the values of the so-called adjoint variables as the solution of a set of adjoint equations. The numerical 

solution procedure for solving the flow equations can be adopted for solving the adjoint equations. The 

gradient is expressed in terms of the flow variables and the adjoint variables. The computational effort for 

obtaining the gradient is not determined by the number of design variables. Instead, it is determined by the 

number of adjoint equations that must be solved, which is equal to the number of aerodynamic functionals of 

the aerodynamic objective and constraints. Anticipating that the number of design variables is significantly 

larger than the number of aerodynamic functionals, which is true in many practical cases, the variational 

method has a significant advantage over the method of sensitivity analysis. 

This report describes the design approach utilizing the variational method for airfoil design using the 

compressible Reynolds-Averaged Navier-Stokes (RANS) equations. Recently, the author [28] has demon- 

strated the feasibility of the approach in dealing with inverse problems and constrained drag-reduction 

problems, where the compressible viscous flow model based on the RANS equations was used for the flow 

calculations. An analytical expression of the adjoint equations was formulated based on the continous form 

of the aerodynamic functional and the RANS equations. In the previous work, however, considerations from 

the physics of the boundary layer must still be taken for obtaining an approximation of the gradient, despite 

the success in obtaining true viscous adjoint solutions. Although the approximation can lead to useful results, 

as shown in Ref. [28], it is desirable to have a gradient expression which is derived consistently using the 

RANS equations. The objective of the present study is therefore to obtain the true RANS-based gradient 

expression. 

2. Statement of the Design Problem. The design problem being addressed is formulated as a 

minimization problem of an aerodynamic functional T: 

(2.1) Minimize T{Q, 6) 



where Q is the vector of flow variables, and 0 is a vector representing the geometric parameters that define 

the aerodynamic shape. The vector 6 is treated as the design variables, the optimal value of which is to be 

determined. There is an implicit dependency of Q upon 0 through the RANS equations for a given onset 

flow condition. 
Problem (2.1) is to be solved by means of an iterative gradient-based optimization algorithm. This 

requires information on the gradient of T with respect to 6 for each iterate. An efficient way of treating 

the implicit dependency of Q upon 9 in evaluating the gradient is through the variational method. In the 

variational method, an adjoint problem must be formulated in which a set of adjoint equations are to be 

solved subject to proper adjoint boundary conditions. The gradient is expressed in terms of the flow variables 

(i.e., the solution of the flow problem) and the adjoint variables (i.e., the solution of the adjoint problem). 

3. The Reynolds-Averaged Navier-Stokes Equations. Assuming adiabatic flow and no external 

forces, the time-dependent RANS equations in the conservative form are written as 

(3-1) ^ + V ■ F = 0 in n, 
at 

where 0 is the flow domain, and Q is the vector of conservative time-averaged flow variables, 

(3.2) Q = 
pu 

pv 

\pE) 

which are non-dimensionalized with respect to the free stream. At the steady-state, equation (3.1) becomes 

(3.3) . V-F = 0. 

The flux F consists of the convective, Fc, and viscous, Fv, flux vectors, 

(3.4) F = FC-F„. 

The convective flux vector is defined as 

(3.5) Fc: 
fc 

9c 

where fc and gc are the Cartesian components given by 

/       pu      \ 

puu + p 
(3.6) 9c = 

(       pv       \ 

puv 

pvv+p 

\{PE+p)vJ 
puv 

\(pE+p)uJ 

where p, u, v, p and E are the air density, x- and y-velocity components, pressure, and total energy, 

respectively. The viscous flux vector is defined as 

(3.7) F„ = , 
\9V 

where /„ and gv are the Cartesian components given by 

I ° ^ 
(3.8) /„ = XX , 9v = 

TXy 

\TXXU + TxyV - qx ) 

ixy 

'VV 

\TxyU+TyyV-qyJ 



Assuming that air behaves like a Newtonian fluid, the elements TXX, rxy, and rw of the viscous stress tensor 

are expressed as 

-*   -* du 
(3.9) TXX = 1(V-V) + 2^ , 

,,,=•   ,-t.     „   dv 
(3.10) 'w = KV-V) + 2Ai^> 

(3-11) rxy = M f - + - j , 

where / is given by the Stokes hypothesis, 

,        2 
I = -3/*. 

The viscosity /x consists of the dynamic viscosity /j,d and the eddy viscosity /it, 

M = Pd + IH, 

where /z<j is given in terms of the onset flow condition by the Sutherland's law, 

ßd _ ( T V/2 TQQ+ 110 

Moo      \TooJ       T+110' 

with T the absolute temperature, while /xt is defined by a turbulence model which, in the present study, is 

based on the Baldwin and Lomax model. 

The Cartesian components of the heat flux vector q are defined by 

dT 
(3.12) qx = -K-j^, 

dT 
(3.13) qv = -K-^J, 

where the thermal conductivity coefficient K consists of the laminar part, nd, and turbulent part, nt. These 

are related with the viscosities through the Prandtl numbers, 

Frd = Cp—, 
Kd 

Prt = Cp—, 
Kt 

with Cp the specific heat at constant pressure and h the mass specific enthalpy. The Prandtl numbers are 

assumed to have constant values throughout the flow, Prd = 0.72 and Prt = 0.9, respectively. The total 

energy E per unit mass is defined as 

E = e+-{u2 + v2), 

where e is the internal energy per unit mass. The RANS equations are closed by the equation of state of a 

calorically perfect gas, given as 

(3.14) P=(7-l)(^-^(«2 + «2))» 

(3.15) T=UE-1(U
2
 + V

2
)), 



where 7 = Cp/cv, with &» the specific heat at constant volume. The heat fluxes can be written in terms of 

the internal energy as 

(3.16) 

(3.17) 

where 

_       n de 
qx = _7Pr"öP 

_       ß de 

7Pr     7 \Vxd     Prt 

On the airfoil surface, Sa, the no-slip and adiabatic boundary conditions are applied. The no-slip boundary 

condition can be expressed as 

(3.18) 

(3.19) 9-3=0, 

where V denotes the velocity vector, while n and s are the unit normal and tangential vectors, respectively. 

The adiabatic wall boundary condition reads 

(3.20) VT • n = 0. 

This is formulated in terms of the internal energy as 

(3.21) Ve-n = 0. 

The boundary conditions are collected into a vector B as follows, 

/f-n\       /(A 
(3.22) B V-s     =    0 

\Ve-nJ      \0j 

4. Formulation of the Adjoint and Gradient Equations. It is assumed that the aerodynamic 

functional T takes the form of a surface integral over the airfoil surface Sa: 

(4.1) T= f ip(p,TW:0)dS, 
Jsa 

where ip is an exphcit function of the pressure p, the wall shear stress TW and the design variables 0, with 

d{V-s) 
Tw = //- 

dn 

The functional (4.1) represents a large class of design problems, including those expressed in terms of lift, 

drag, and pitching moment. 
As Q is obtained from the steady-state RANS equations with the boundary conditions (3.22), the 

functional T is independent of the transient state. Therefore, it is sufficient to consider the steady-state 

RANS equations (3.3) and the boundary conditions (3.22) in the definition of a Lagrangian C as follows, 

(4.2) C = f ip dS + [ A • (V • F) dti + f T-BdS, 
JSa JCl JSa 



where A and T are the vectors of Lagrange multipliers. The Lagrange multipliers A, also referred to as the 
adjoint variables, are defined in 0 and consists of four components. The Lagrange multipliers T is a vector 

with three components defined on Sa- 
in order to derive the adjoint and gradient equations, one must evaluate the variation of £, denoted as 

SC, implied by the independent variations of A, X, Q, and 6, 

5C = 6CX + SCr + SCQ + 5Ce. 

The notation SCX refers to the variation of SC due to the variation of A while the other variables are kept 
fixed, and similarly for SCr, etc. The variations SCX, SCr, and SCQ are evaluated with 9 kept fixed. Keeping 
6 fixed implies a fixed domain Q. For the variation of A, T, and Q with a fixed domain a prime notation is 

introduced as A', T', and Q', respectively. 

4.1. The Adjoint Equation. The variation A' contributes to SC with 

(4.3) SCX= /A'-(V-F)^, 
Jn 

which is cancelled by the RANS equations (3.3). The variation Y' contributes with 

(4.4) S£r= f r'-BdS, 
Jsa 

which vanishes because of the boundary conditions (3.22). 
As the RANS equations (3.3) and the boundary conditions (3.22) are satisfied, giving 6£\ = 0 and 

SCr = 0, the variation of C becomes 

The adjoint equations and boundary conditions follow from the condition that the contribution from the 

variation Q' vanishes, i.e. 

(4.5) SCQ = 0. 

The domain integral in equation (4.2) can be integrated by parts to give 

(4.6) C= f i/>dS- f  \-{F-n)dS- f   \-{F-n)dS 
JSa J Sa JSx 

- [ F • VA dQ + [  r-BdS. 
Jo. Jsa 

The variation SCQ can be expressed as 

SCQ= [  IZt.Q'dS- [  \.(F'.n)dS- f   \-(F'.n)dS 
JSa   dl4 JS« JSoo 

- f F' ■ VA du + [  r-B'dS, 

where the notations F' and B' refer to the variations due to Q'. The flux vector F' can be split into the 

inviscid and the viscous part: 

: P'   _ F' 



It is convenient to introduce the inviscid and viscous variations, 81 and 8J, implied by F'c and F'v, respec- 

tively, and the variation 8K implied by B', such that 

(4.7) 8CQ = 8TQ + 81 - 8J + SIC. 

The variation 5CQ will be obtained with the assumption that 

• The variation of the viscosity, fjf, can be neglected. 

• The variation of the viscous terms F'v on the far-field boundary Soo can be dropped. 

The aerodynamic functional contributes with 

(4.8) 

where 

8FQ=( 
dip v ,   ö^   / _r(7_1)W + _^ 

'w       r 

dS, 

dn 

The inviscid term 61 can be obtained as 

(4.9) 61 = - f (A • n)(7 - \){pE)' dS - I   (xr + -3^4) p{V' ■ n) dS 

- f   (CTA) • Q' dS - f {AJ ■ VA) • Q' dQ, 

where Ä is the Jacobian of the flux vector Fc with respect to Q, 

A~ 9Q' 

C is the Jacobian of the normal flux denned on the boundaries 

d(Fc • n) 
C = 

dQ 
= A-n, 

A is an adjoint velocity vector with the Cartesian components A2 and A3: 

'A2- 
A = 

A3 

The procedure for obtaining 6J is described in the appendix, with the result given as equation (A.30). The 

variation 6K can be obtained as 

(4.10) SIC 
JSa 

ri(V .n)+T2(V -s)+n- ^-^ dS. 

where a is the speed of sound, 

a = ,  j- 



Substituting equation (4.8), (4.9), (4.10) and (A.30) into (4.7) leads to 

(4.11)    8£Q = J   [^(7-l)(^)' + ^-(A-n)(7-l)(^)'-(Ai + ^A4)/3(y'.n) 

+(A-n)< + (A-s>4 

_   Mö(Aj2_(A.n)^(^-n)-    l^- + (A • ^H) (V' • s) 
ds ds 

+XATW{V ■ s) + X4a
2j^ 
2 fj,     V(pE)' ■ n      Vp'-n 

(7 -l)p 

. <(v.x,+2^y.*>-, ^«yL-rt-vy* 
f(pB)' 

-*&&<■*> vi--w-i» 

+T1(V'-n) + r2{V'-^ + Y3 — 
a2    V{PE)' • n      V//-n 

dS 
V (7-1)/^ 

-/   {CTX)-Q'dS- [{ir ■■V\ + YTK)-Q'dn, 

where Y and K are given by equations (A.28) and (A.29), respectively, H is the surface curvature, and 

< = (l + 2/i) 
d(V' • n) 

9n 

Setting the domain integral in equation (4.11) to zero leads to the adjoint equations: 

(4.12) lT-VA + yTK = 0   in ft. 

The surface integral over Soo is eliminated in the same way as that described in Ref. [28], which leads to a 

set of far-field characteristic-based boundary conditions for the adjoint equations. 

The surface integral over Sa has to be eliminated too. The contributions from (V' ■ n) and (V ■ s) are 

cancelled by the conditions 

(4.13) 

(4.14) 

^ = \^ + ^riM)p+^  ds 
d(X-s) 

- (A • n)lH + Z(V • A) + 2/x 
d(X ■ n) 

dn    ' 

„      MX-n)     ,r  -   ,,    , d{X-s)     d{X-n) - 
T2 = l   \    ' +{X-s)p,H-XATw + n      \__     +    \„     -H{X-s) 

ds      ' v'  """'     '"*"" dn      '      ds / 

The terms with (V(pE)' ■ n) and (V// • n) are eliminated by the relation 

(4.15) T3 = -A4 (7£) • 

The contributions from {pE)', r'w and p' are set equal to zero by satisfying the conditions 

(4.16) 

(4.17) 

(4.18) 

A-s or,,,' 

VA4 • n = 0. 



These may be considered as corresponding to the no-slip and adiabatic wall boundary conditions (3.22). The 

term with T'n can be eliminated by the condition 

(4.19) A-n = 0. 

This, however, conflicts with equation (4.16). This problem is circumvented by introducing a term with T„, 

.d{V-n) 
Tn=(l + 2(J,)- 

dn 

into ip of equation (4.1), i.e. 

lf) = tp{p,TW!Tn,0), 

dS. 

so that equation (4.8) is modified to 

(4.20, ^/j!(7_1)(,£y+jt,„+!^; 

The associated terms in equation (4.11) are replaced by the above expression appropriately, and equa- 

tion (4.19) is replaced by 

? -       W (4.21) \-n=-—. 
u in 

This can be made compatible with equation (4.16) by imposing the condition 

dib dip 

<4-22) d^ = -Tp- 
This means that for a well-posed adjoint problem, there is a restriction for the aerodynamic functional T. 

The definition of T must include a term with rn which satisfies equation (4.22). Restriction of the same 

nature was recognized in Ref. [3]. In the present study, however, equation (4.22) is proposed as a general 

approach to ensure the well-posedness of the adjoint problem. One should also be aware that the combination 

of the continuity equation and the no-slip boundary conditions dictates 

dn 

implying T„ = 0, so that introducing a term with rn into T, as suggested above, does not modify the 

minimization problem of T. 
The adjoint problem can now be summarized as follows. Equation (4.12) in ft is to be solved subject 

to a proper far-field characteristic-based boundary condition on 5oo and the near-field boundary condi- 

tions (4.16)-(4.18) on Sa. The resulting vector of adjoint variables A is used for obtaining T\, T2, and T3 

from equations (4.13)-(4.15). 

4.2. The Gradient Equation. After solving the flow and adjoint equations, providing the values of 

Q, A and T, the variation of C becomes 

(4.23) SC = 5Ce 

Since 9 is a parameter that describes the shape of Sa, which is part of the flow domain boundary, the 

variation 60 implies also a variation of the flow domain ft. As a result of this, and recognizing that 

Q = Q(x), x e ft, 

A = A(x), xeft, 

T = T(x),    x € Sa, 



the variation of fi also implies a variation of Q, A, and T in the form of, respectively, 

(4.24) «to =**(<*.**),    x€fi, 

(4.25) **o = £ f ST *') •    xen' 9x \de 

(4.26) «°-£(£■*»)•    "*' 
This leads to the introduction of the notion of the deformation velocity ü (Refs. [8], [13], [28]): 

(4.27) <3(x) = X-S9, 

where 

x   [Xx     Xy)      yde      dej 

The Cartesian components of Q are defined as 

Ux = Xx ■ S9, 

Wl> = Xy ■ 69. 

The normal and tangential components of Q are written as 

W» = Xn ■ 69, 

vs = Xs- 69, 

where 

VXS/      \«w     -«x / \X». 

Expressions (4.24)-(4.26) can now be written in the form 

£(£•»)=*>•* «»■ 

s (»•*)-**■* x€S!- 
ax /öx    \    /ar\ _ c 

These represent the so-called convective variations of Q, A and T, respectively. The convective variation 

refers to the interpretation that, the domain moves in space with the speed u> which gives rise to the 

deformation of the domain boundaries. 
As a complement to the convective variation, the notion local variation can be introduced for the vari- 

ations Q', A', and T'. The local and convective variations constitute the total variation represented by a 

material derivative: 

Q = Q' + VQ • w, 

A = A' + VA • a, 

10 



where the first and second terms in the right-hand sides are the local and convective variations, respectively. 

The concept of material derivative can also be applied to the variation of geometric properties, the 

formulae of which are given in Ref. [28] as 

• The material derivative of a unit normal vector n: 

(4.28) n=-(^- + Hwsy. 

where H is the surface curvature. 
• The material derivative of a unit tangential vector s: 

(4.29) k=(j£ + Hu>a^fL. 

• The material derivative of a surface element ds: 

(4.30) dS = (j± + Hw^j dS. 

• The material derivative of a volume element du: 

(4.31) dtl = (V • uj)dfl. 

For functionals of the form 

*i = / fdSl, 
Jn 

use can be made of the material derivative formula: 

(4.32) *i = f fdü - f K dS, 
Ja Js 

whereas for functionals of the form 

$2= [ fdS, 
Js 

the material derivative can be written as 

(4.33) 4>2=[\f + $f-ü + f(jg- + Hut?)    dS. 

These material derivative formulae are applied for obtaining the variation of SC. Equations (4.33) and (4.32) 
are applied for each surface and domain integral, respectively, which appears in the expression of C. It is 
noted that the terms with /' in formulae (4.33) and (4.32) must be disregarded, because these refer to the 
local variations which have been eliminated by the solutions of the flow and adjoint problems. 

The far-field boundary Soo and the trailing edge can be assumed fixed with w = 0, and the corresponding 
terms can be dropped. For the sake of brevity, a tilde notation is introduced for the convective variations. 
The variation of C due to the variation of 6 can be derived from equation (4.6).   With the no-slip and 

11 



adiabatic wall boundary conditions (3.22) taken into account, this leads to 

(4,4) ^J^.^gz.+^ffl.» 
+ (V - (A ■ n)p + (A • s)rw) (j£ + Hu>n) 

+(A • n)Tn - (A • n)(7 - l)pE - (A • n + A • n)p 

+(A ■ S)TW + (A ■ s + A • 'S)TW - ( Ai + ~3Y^4 J p(V ■ ft) 

ds 'Y •Ö(A^-(A.n)ZFW.n)-    l^- + (A • s)»H) $ ■ s) 
ds 

+XATW(V ■ s) + A47^L(Ve • n + Ve • k) + (F • VA)w„ 

+Ti(t? • n) + r2{V ■ s) + T3(Ve • n + Ve • n) dS. 

where ^ and s are given by equation (4.28) and (4.29), respectively, while 

'pE = V{pE) • w, 

e = Ve • w, 

A = 
VA2 • üj 

^ VA3 • 31 

TW = (W • n) • s + (W -ti)-s+ (W -n)-'s, 

rn = (W -n)-n+ (W -n)-n + (W -n)-fi. 

Substituting the expressions for 7i, T2, and T3 given by equations (4.13)-(4.15), into equation (4.34) yields 

dtp „       9V ~      /" ^V1 N 

de 
SO 

+ (y>-(A-n)p+(A-sK) (-^ + iTw" 

+(A • n)Tn - (A • n)(7 - l)/9£ - (A • n + A • n)p 

+(A • s)f„ + (A • s + A • 'S)TW + (F • VA)wn 

+   Z(V.A) + 2,^V^--) + M   ^-H^-^.^^-S)' 9n dn ds 
dS. 

The adjoint boundary conditions (4.16)-(4.18) and the condition (4.22) cancels the contributions from pE, 

12 



TW, and Tn, so that the above equation reduces to 

6C 

-(A • n + A • H)p + (A • s + A • 'S)TW + (F • VA)wn 

-   - 9(A-n)\1/T^   _N 9(A-s)  , 9(A-n) 
+   l(V • A) + 2\x  \^  ' ){V-ri) + ii      \       + 

dn dn ds 
ff(A.S)W.S) dS. 

Expanding A, V and F • VA gives 

i£=l[(*)-ä(,+(*-(Xn>+(X's>-)(^+ff"") 
-((VA2-w)nx + (VA3-w)nv - ( ^ + ffws ) (A • 5) )p 

+ f (VA2 • w) n„ - (VA3 ■u)nx + (-^- + ffws ) (A • n) ) TU 

9A2 
9a; 

9A3     9A2 

9a;       dy - I TaxTe + Txy [ ~^Z + ~ ) + TW"Ö^" ~ ^' VA4 1 Wfl 
9A3 0 

+   Z(V.A) + 2/Ä^J ((Vu-üJJn* + (Vw-<3)nw) 

+M   ^^ + ^^-H(X.sA((Vu.üJ)ny-(Vv.cü)nx) dS. 

The gradient of the aerodynamic functional T with respect to the design variables 9 can be obtained from 

dT__ SC 
d0 -,&*«' 

which can be elaborated by using the definition of x, equation (4.27), and equations (A.11)-(A.13) to give 

(VA2 • x)nx + (VA3 • x) ny - ( ^ + HXs ) (A • s)) p 

+ ((VA2 • x) nv - (VA3 • x) nx + (^ + HXs^ (A • n)) r«, 

-(<?■ VA4)*n +   J(V • A) + 2M^|^ ) ((Vix • x) nx + -tfv • *K ) 

+M    djyi + ^-H(X.^((Wu.x)ny-(Wv.x)nx) dS. 
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5. Numerical Procedure and Computational Results. The RANS equations (3.3) are solved by 

means of HI-TASK [12], [7] with the Baldwin-Lomax turbulence model [4] implemented. The numerical 

procedure in HI-TASK deals with the time-dependent RANS equations which are integrated explicitly using 

a five-stage Runge-Kutta scheme towards the steady-state. The spatial discretization employs a cell-vertex 

finite-volume scheme. Jameson's type of artificial dissipation is introduced consisting of 2-nd order and 4-th 

order terms. The convergence towards the steady-state is accelerated by means of a multigrid procedure. 

Characteristic-based boundary conditions are applied on 5oo- 

The adjoint solver employs a similar numerical scheme as that used in the flow solver. The procedure 

deals with the time-dependent form of the adjoint equations which are integrated explicitly towards the 

steady-state using the same five-stage Runge-Kutta scheme. Artificial dissipation is introduced for the 

adjoint equations in the same way as that for the flow equations. The convergence towards the steady-state 

is accelerated by the same multigrid procedure. Characteristic-based boundary conditions are also applied 

on Soo (Ref. [28]). 
The optimization routine FSQP [29] and the flow solver HI-TASK are integrated with the adjoint solver 

and the gradient evaluator, which forms the design code. A design test case is defined representing a 

reconstruction-type inverse problem. The target pressure coefficient Cp is obtained from a flow analysis of a 

best-fit of the RAE 2822 airfoil with the flow condition: 

M = 0.73,    a = 2°,    Re = 6.5xl06, 

where M, a and Re are the Mach number, angle of attack, and Reynolds number, respectively. The target 

Cp distribution is defined on the airfoil chord with proper distinction between the lower and upper surface 

of the airfoil. The NACA 0012 airfoil is used as the starting airfoil geometry. 

The objective functional to be minimized has the form 

T = \[(Cp- Cptfi dx+\l &P ~ Cp,t)l dx 

where x is coincident with the airfoil chord, and Cp,t is the target value. The subscripts I and u refer to the 

lower and upper surface, respectively. T can also be expressed in the form 

\\ (CP-Cp,t)
2\nv\dS. 

The function ip in this case is defined as 

^=2 

It is noted that 

i>=\{CP-Cp,tf\nv\. 

Cp = 2(p-p(X>), 

with p,Poo non-dimensionalized by pooV^. For this case, 

^ = 2(CP-Cp,t)\nv\ 

Equation (4.22) requires that T must be modified to 

T = \ [ {Cp - Cp,t)
2\nv\ dS-2 f (Cp- Cj,,t)K|rn dS. 

2 Jsa Jsa 
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The adjoint equation (4.12) is solved subject to the adjoint boundary conditions (4.16)-(4.18), which in this 

case are 

X-n — 2(CP - Cp,t)\ny\, 

\-s = 0, 

VA4 • n = 0. 

In the present study, the deformation velocity has been formulated as follows, 

(5.1) C3x = 0on Sa, 

while ojy is defined by the curvature-continous shape parameterization scheme described in Ref. [28]. This 

parameterization scheme has proved to be effective in covering a large variation of airfoil shape and, after a 

proper scaling, has shown to imply an efficient optimization process. 

One purpose of selecting this test case is to investigate the accuracy level of the computed gradient, 

because the optimal solution (i.e., the target airfoil) is known beforehand. The computed gradient is con- 

sidered to be of sufficient accuracy if the optimal solution can be obtained. The optimal solution is assumed 

to be obtained if T < 10~4. This means that the difference between the actual and target Cp distributions 

is roughly within 0.01 (engineering accuracy). 

Figure 5.1 shows the design iteration history. The engineering accuracy has been achieved with 16 flow 

analyses. The optimization was stopped after the maximum allowable number of flow analyses (25 analyses) 

was exceeded. The Cp distributions and airfoils are shown in Figure 5.2. The dashed line (the optimization 

result) and the solid line (the target) are almost coincident, which demonstrates that the best-fit of the RAE 

2822 has been closely reconstructed. 

6. Conclusion. The objective of the present study is to construct an aerodynamic design methodol- 

ogy using the variational method in two-dimensional compressible viscous flow governed by the Reynolds- 

Averaged Navier-Stokes equations. The focus of the study is to obtain a correct gradient expression. 

The present method has been successfully applied for solving a reconstruction-type inverse problem in 

a transonic flow condition. This means that the correct adjoint formulation and gradient expression have 

been obtained. 
The numerical result presented also strongly indicates that the present method is capable of dealing with 

other types of design problems, as long as the adjoint problem can be formulated properly as described in 

the preceding sections. It is therefore suggested that the present method is applied to more practical design 

cases, such as those involving the criteria on lift, drag, and pitching moment. 
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Appendix A. The variations considered here are the variations of the viscous terms due only to the variation 

Q' with the assumption that 

• The variation of \i with respect to the variation of Q is neglected. 

• The viscous terms on the far-field boundary are dropped. 

The viscous term is defined as 

j= f X ■ (V • Fv) dfl. 
Jo. 

The variation of J due to Q' can be expressed as 

6J= f A • (V • F'v) du. 
Jn 

Integration by parts yields 

(A.l) SJ=- f  X-(F!„-n)dS- ftu-VXdÜ. 
JSa JCI 
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It is noted that the unit normal vector points toward the flow domain. Recalling equation (3.8) and intro- 

ducing SJ1} 6J2, SJ3, and 8JA as follows, 

(A.2) 

(A.3) 

SJi= A2(nx T'XX + riy T'xy) + X3(nx r'xy + nv ry 

ÖJ2 =       A4 \nx [r'xxu + r'xyv + TXXU' + rxyv' - q'x) 

dS, 

+ nv {T'U + Tyyv + Txyv! + ryyv' - qy) dS, 

(A.4) 

(A.5) 

~ in [      dx      xy dy       xy dx      vv dy 
dn, 

8JA LV" U + TXXU' + TxyV + TxyV' - <ix)-Q^ 

+ {r'xyU + Txyu' + TyyV + TyyV' -1y)-g^ dn. 

equation (A.l) can be written as 

(A.6) SJ =-5Jx- 6J2 - SJ3 -5JA. 

The variation <5Ji will be dealt with first. Introducing a local coordinate system (n,s), where n and s are 

coincident with the local normal and tangential direction on the surface, respectively, the component of the 

viscous stress tensor can be written as 

(A.7) rxx = l   ^^ + ^^-H(V.n)]+2l,nyH(ny(V-n)-nx(V.^) 

d(V -s)     8(V- n) 

9^ + n*-V"J+2/^n* -frT+^r +2,    rtW-V^-'WJ). 

(A.8) Tm = l   ^Z^ + ^^-H(V-n))+2l,nxH(nx(V-fi)+ny(V.s)) 'vv dn ds 

2d{V-n)        2d(V-n)\     0 d(V-s)  , d(V-n) 

(A.9) Txy = 2/i nx ny 

d{V-n)     d{V-s) 
dn 

.   2        2,    d(V-s)     d(V-n) + 
ds 

-2fjb nx ny H{V ■ n) - JJL{ n\ - n\ )H(V ■ s). 

where H is the surface curvature. The variation 6J1 can be worked out by using the expression for TXX, TVV, 

and Txy given above. After some algebraic manipulation, one obtains 

SJi 
Js„ 

(X.*> (i+2M)2&i2+I^i)U(X.S> 8{V'-s)     d{V'-n) 
dn 

■ + ds 

+(A • n)lH(V' ■ n) - (A • s)^H{V' ■ s) dS, 
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where A is an adjoint velocity vector with A2 and A3 being the Cartesian components. The terms with the 

tangential derivative can be worked out with integration by parts to yield 

SJX = (A • n)l{V' ■ s) U + (A • s)v{V' ■ n) 

+ L (A • nK + (A • S)T>W -   f^^ß- - (A • n)lH) (V' • n) 
ds 

I^I + ^.^HUV'-S) dS, 

where 

d{V ■ s) 
,w     r     dn 

< = (I + 2/i) 
d{V ■ n) 

dn 

while u and I refers to the upper and lower trailing edge, respectively. If the surface Sa is assumed smooth 

(i.e., a sharp trailing edge is assumed to have a large, but finite, curvature), and A as well as V are continous 

accross the trailing edge, the first two terms on the right-hand-side vanish, such that 

(A.10) SJi 
Jsa 

(A • n)r'n + (A • s)r'w -    /x^^ - (A • rS)lH\ (V' ■ n) 
ds 

l2^ + (A.!)^W.3) dS. 

To obtain the expression for 5J2, use is made of the no-slip boundary conditions (3.18)-(3.19) which imply 

9(y.n)=0; 

= 0, 

a.    =0- 
It is noted that the first equation above is identical with the continuity equation taken on the airfoil surface 

with u, v = 0. Equations (A.7)-(A.9) can now be written as 

dn 

d{V-s) 
ds 

d{V ■ n) 

(A.11) 

(A.12) 

(A.13) 

Tu — Z Tlx  Tly Tqj]) 

'VV ~Z Tlx    ny    tW) 

Txy — [ny — nx )TW. 

Substituting these and equations (3.12)-(3.13) into (A.3) gives 

SJ2 = /  A4 (TW(V' ■ I) + 7#Ve' • n) dS. 
J Sa 

Noting that 

(A. 14) 7e' 
7-1 \p 

p>     p' 
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or in terms of the total energy, 

(A.15) 

the variation 6J2 can be written as 

(A.16) SJ2 = f A4 

-ye = a 
\ v      (7-1W 

rw(V^ + aVi p        -(7_1} 
dS. 

Next, the variation of 6J3 is obtained as follows. Equations (3.9)-(3.10) are substituted into equation (A.4) 

which yields 

'd\2  , d\3" 
6J3 = / Ja a,+W"(v-y,) 

'du'd\2   dv'dXA      /%,%W^/,^ 
+2M

 
l flfc dx + dy dy ) +M V dy + dx ) [dx + dy 

dn. 

Rearranging the coefficients of JJ, gives 

fdX2dvf_     dMdvT\        (dX3dv'     dX3dv'\ 
+/X \dx 8x+ 8y dy)+(X\ dx dx + dy dy ) 

fdMdv!_     dX3_dvf\,     fdX2dv'     dX3 dv' 
+M l dx dx + dx dy ) +M V dx dx + dy dy 

du. 

This can be written in a compact form as 

SJ3= f 
Ja 

(V • A)Z(V • V') + \i   VA2 • V«' + VA3 • Vv' + |^ • V«' + g- ■ Vv' du. 

Using the following vector identities, 

(V • A)J(V • V') = V • (Z(V • X)V') - V(Z(V • A)) • V', 

/xVA2 • Vu' = V • fiu'VX2 - u'{V • /xVA2), 

MVA3 • W = V • /w'VA3 - v'(V • /xVA3), 

9A   ^ ,     -       ,SA       ,    -     dX\ 

'dx dx "dx 

one obtains 

(A. 17)        6J3 = f 
Ja 

dX   - ,    ^      ,ÖA      ,    -     9A\ 

V • (l(V • A)V') + V • /xu'VA2 + V • JW/VAJ, + V • fiu'— + V • p.v'— du 

■I Ja 
^ + v.^ + v.„g, 

d(lV-X)     -      - -     <9A\   , dn. 
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The terms having the divergence form, which are collected under the first integral, are worked out using the 

Gauss theorem (with the integral over 5oo neglected): 

/ V • (J(V • X)V') dü = - [ Z(V • X){V' ■ n) dS, 
in Jsa 

/ V • /m'VA2 du = - /   im'V~\2 ■ n dS, 
JQ JSa 

[ V • /zi/VA3 dü = - I /zu'VAs • n dS, 

f -       ,<9A Jn f      ,dX   ^ ._ 
/ V- uu'-^dü = - /    uu'—-ndS, 

Ja dx JSa      dx 

/ V • uv'-— dQ, = - /   fj,v'-z- -ndS. 
Jn 9y JSa      dy 

Now, the following notations are introduced 

(A.18) 

(A.19) 

(A.20) 

-   -        <9A2 rxx = ZV • A + 2^-gp 

/ÖA3     ÖA2\ 

which may be considered as the elements of an adjoint stress tensor because of the close resemblance with 
Txx, Txy, and Tyy. After some manipulations, equation (A. 17) can be written as 

(A.21) 6J3 
JSa 

jtf.A) + 2Ä$W-*) 

+ß 

dn 

d(X • s)     9(A • n) 
dn + ^±-H(\.s)\(V>.s)) 

ds 
dS 

dTXX dTXy\   u, +    fdYxy   +   dTyy    ^   ^ du. 
Jn [ V dx    '    dy J "  '  V dx    '    öj/ 

The variation ÖJ4 (A.5) is worked out using equations (3.9)-(3.17). This gives 

„   /  du'dM       Ov'dXA        fdv' ,  du'\ ( dX4  ,    dXA 

ÖA4 d\4\   ,     (     dX4 dX 
-dx-+T**^y-)U  ' 

l^fde^dXi     de'dX4\ 

+   (   TXX--^  + TXy^-J   U    +    {TXy-^  + Tyy-^ '4 \     1 1 V 

+7Pr \dx dx + dy dy J 
du. 
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After some manipulations, one obtains 

5JA 
Ja 

(V • VA4)Z(V • V') 

fdv/^dM     dvf_dXA fdv'8X4     dv'dX4 
U [itelte + ö^"ö^J + l*V\dx dx + dy dy 

dX4 ( dv!       dv'\       dX4 ( dv'       dv' 

(     dX4 dX4\   ,     /     ÖA4  ,       d\4\   , 

+ VT«-dx~ + Txy-dy-) U + {^-dx- + T™ WJ V 

j^ fde!_d\i     de' dX4 

Pr I dx dx      dy dy 
du. 

A compact form can be written as follows, 

5J4 =  f \(V • VA4)/(V ■ V') 

+^VA4 • W' + /x«VA4 • Vi/ + i^V ■ V«' + fi^V • Vi/ 
d\4~ 
dx 

d\4 

+     Txx 

V* 

8X4 

dx 
d\4\   .     (     ÖA4  ,       d\4\   , 

+7^(Ve'-VA4 dn. 

The following vector identities are considered, 

(V ■ VA4)Z(V • V') = V • {l(V • VX^V') - V' ■ viiy ■ VA4), 

/zuVA4 • Vu' = V • /zuu'VA4 - u'(V • /zwVA4), 

/ir;VA4 • Vi/ = V • p«'VA4 - i/(V • /^VA4), 

<9A4 -rt   ■n  I      ^7      ^4   ,f>        , (^      dX4 J 

dx 

^v • W = V • M^VV - v ( V • ^^ 
dy ^ dy \ dy 

dX4  ,T-r      , (~,     dX4r-r 

M 7 /^ 7^(Ve' • VA4) = ^(V • Me'VA4 - e'(V • ^VA4)), 
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for obtaining 

SJA = f [v • (1(9 ■ V\4)9') + V • /WVA4 + V • /WVA4 

+V • ^u'9 + V • ^v'9 + ^V • Me'VA4 ^ dx dy Pr 
<ffi 

+ rj-^ - £:(l9 ■ VA4) - V ■ /.«VA4 - V • ^v\ v! 
dy      dx L l \Txx dx 

--HV-/zVA4)e' 
rr 

du. 

Applying the Gauss theorem and the no-slip boundary condition for the first integral, and introducing ^xx, 

*xt/, and %y as 

(A.22) 

(A.23) 

(A.24) 

gives 

(A.25) 

„ N   9A4     , 9A4 *xx = (l + 2n)u— + lv — , 

„    ~ N   dX4     ,   <9A4 %y = (l + 2fi)v—+lu-^, 

^fxy = n   u-^— + v 

dy 

öA4       9A4\ 
 \- it  
dy dx ) 

6J4 = - [ 7^(VA4-n)e'(2S 
Jsa   ^

r 

+/ 
Ja 

d\i dM     d$fxx _ dVxy ,   , 
Txx~dx~ + Txv dy        dx dy    )U 

d\A d\4 _ d^y _ d%y ,   , 
+ {Txy~dx~+Tvv dy        dx dy    ' 

-^(V-MVA4)e' dn. 

Substituting equation (A.15) into e' in the surface integral and equation (A.14) into e' in the domain integral 

results in 

(A.26) 
■(pE)' 6j*=-LH^{-P (7-i), dS 

+ /„[( 
ÖA4 8X4     d^xx _ d^xy «   , 

Txx dx +Txy dy       dx dy   )U 

ÖA4 9A4     d$xy _ d%y y , 
+ [Txv dx"vv dy        dx dy 

a2(V-/A7A4)\ fp'     p' 
(7-l)Pr    I \p      p 

du. 
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Substitution of equations (A. 10), (A.16), (A.21), and (A.26) into (A.6) yields 

(A.27) 6J = - f    (A • sK + (A ■ n)< 
Js„  . 

M^!_Ü _ (A . n)lH j (V> ■ n) -   l^^ + (A • s)»H I (V' • I) /W- 
,      ,rrl   -     ^    2 A*     V{pE)'-n      Vp'-n 

,V.A) + 2^)(^,)-,   ^ + ^)-,(A.,)(^, 

2^-)(^-(^ 

+ 
Jo. L V 

0
2£(VA4-n) 

ÖI xx    ,   OL Xy 

dx        dy 

dS 

d\i ÖA4        9*xx   ,   <9*xy \     , 
- T™, — 1 - 1 — I u + ~^~Txx dx      'xy dy   '    dx    '    dy 

fdVxv     dYm ÖA4 dX4     d*xy     d%v ,   , 
+ {~^ + ^^~Txy~dx~~Tyy dy +   0a:   +   0y 

+ 

ore        9y 

g2(V-MVA4)\, fP'     p' 
dQ. 

(7-l)Pr   J \p      p 

The domain integral can be expressed in terms of the conservative flow variables by using the transformation 

U' = FQ', 

where Y is the Jacobian of the primitive flow variables, U = (p   u   v   p)T, with respect to Q, 

(A.28) 

)6 

0 
1 

P 
0 

0 0 

0 0 

1 u 
p 

(7-l)(u2 + v2) 
-(7 — l)v,   —(7 — l)v   7 — 1 

The coefficients of U' in equation (A.27) can be collected into a vector K defined as 

/     a2(V-/zVA4)l \ 

ÖA 
'■da 

d\4 
(A.29) K = 

(7-l)Pr    p 

ÖA4   ,   0*xx   ,   ö*x dTxx        dlXy UA4 u/\4        <s* xx    .    v * xy 

~dx~+"~dy~~Txx~dx~~Txv~dJ+   dx   +   dy 

dTXy      ,      dTyy d\4 ÖA4      ,      d^xy d%y 

~dx~ + ~W~Txy dx     Tyydy+   dx   +   dy 

a2(V • /xVA4) 1 
\     (7-l)Pr   p J 
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Finally, equation (A.27) is written as 

(A-n)< + (A.sK (A.30) 8J=- f 
JSa 

^%A _ (A • n)lH) (V> ■ n) -   l9-^ + (A • s)„H) (V> • I) 
ds ds 

+MTW{V ■ s) + Ma —  

Z(V • A) + 2yu 

Pr 

9(A ■ n) 
dn 

9(A • s)     d(A • n) 
(y'-n)-^ 

9n 
+ ös 

■H(\.s))(V>-s) 

*&<?*■*>{   P        (7-l), 
^(VA--^ 

+ / FTK • Q' dCl 

dS 
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number of aerodynamic analyses 

FIG. 5.1. Optimization history. M = 0.73, a = 2°, Re = 6.5 x 106. 
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FIG. 5.2. Cp distribution and airfoil geometry. M = 0.73, a = 2°, Re = 6.5 x 106. 
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