
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A CODED ORTHOGONAL FREQUENCY DIVISION MULTD7LEXING
SIMULATION OF A HIGH DATA RATE, LINE-OF-SIGHT, DIGITAL

RADIO FOR MOBILE MARITIME COMMUNICATIONS

by

David V. Roderick

June 1997

Thesis Advisor Paul H. Moose

Approved for public release; distribution is unlimited.

19980102 045
iMäii'4 mmmimü 4

REPORT DOCUMENTATION PAGE
Form Approved OMB No. 0704-

0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202^1302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 1997

REPORT TYPE AND DATES COVERED
Engineer Degree

TITLE AND SUBTITLE TITLE OF THESIS A CODED ORTHOGONAL FREQUENCY
DIVISION MULTIPLEXING SIMULATION OF A HIGH DATA RATE, LINE-OF-SIGHT,
DIGITAL RADIO FOR MOBILE MARITIME COMMUNICATIONS

6. AUTHOR(S) David V. Roderick

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES),
Naval Command, Control and Ocean Surveillance Center, San Diego, CA 92152-5001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

12a. DISTPJBUnON/AVAJLABILITY STATEMENT Approved for public release; distribution
unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words) The Naval Command, Control and Ocean Surveillance Center (NCCOSC), Research Development
Test and Evaluation (RDT&E) Division's (NRaD) Communications Department is conducting applied research toward the development
of a high-data-rate (HDR), line-of-sight (LOS), digital modem for ship-to-ship, ship-to-shore, and ship-to-relay communications.
Development of bandwidth efficient HDR communications in a maritime radio environment is a challenging research problem due to
the time-varying propagation effects within the marine layer. Marine layer propagation typically causes fading of the signal spectrum
due to RF interference effects, and intersymbol interference because of multipath induced time spreading. The use of adaptive
equalization to overcome distortions is difficult in this environment because of the dynamic nature of the signal propagation caused by
transmitter and/or receiver motion and the maritime layer atmospheric effects. An alternative to channel equalization is the application
of Coded Orthogonal Frequency Division Multiplexing (COFDM) which overcomes distortion effects without equalization through its
orthogonality properties. This thesis explores the application of COFDM toward a HDR LOS maritime communications modem. The
modem model is emulated in MATLAB and simulations are performed. Analysis of the simulations are conducted and evaluated as to
the feasibility of a COFDM implementation in the presence of known noise and signal fading conditions.

14. SUBJECT TERMS. High-data-rate (HDR), Line-of-sight (LOS), Digital, Modem, Communications, Coded
Orthogonal Frequency Division Multiplexing (COFDM), Frequency Division Multiplexing (FDM),
MATLAB, Reed-Solomon Code, Differential Encoding, Interleaver, Multipath, Additive White Gaussian
Noise (AWGN), Fast Fourier Transform (FFT), M-ary Phase Shift Keyed (M-PSK)

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES

340

16. PRICE CODE

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18 298-102

Approved for public release; distribution is unlimited.

A CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
SIMULATION OF A HIGH DATA RATE, LINE-OF-SIGHT, DIGITAL RADIO

FOR MOBILE MARITIME COMMUNICATIONS

David V. Roderick

B.S.E.E., University of New Haven, West Haven CT, 1987
M.S.E.E., University of Maryland, College Park MD, 1992

Submitted in partial fulfillment of the
requirements for the degree of

ELECTRICAL ENGINEER

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
June 1997

~p«d)/r^Lk

Paul H. Moose, Thesis Advisor

Herschel H. Loomis, Jr., Chairman
Department of Electrical and Computer Engineering

in

IV

ABSTRACT

The Naval Command, Control and Ocean Surveillance Center (NCCOSC),

Research Development Test and Evaluation (RDT&E) Division's (NRaD)

Communications Department is conducting applied research toward the development of a

high-data-rate (HDR), line-of-sight (LOS), digital modem for ship-to-ship, ship-to-shore,

and ship-to-relay communications. Development of bandwidth efficient HDR

communications in a maritime radio environment is a challenging research problem due to

the time-varying propagation effects within the marine layer. Marine layer propagation

typically causes fading of the signal spectrum due to RF interference effects and

intersymbol interference because of multipath induced time spreading. The use of adaptive

equalization to overcome distortions is difficult in this environment because of the

dynamic nature of the signal propagation caused by transmitter and/or receiver motion and

the maritime layer atmospheric effects. An alternative to channel equalization is the

application of coded orthogonal frequency-division multiplexing (COFDM) which

overcomes distortion effects without equalization through its orthogonality properties.

This thesis explores the application of COFDM toward a HDR LOS maritime

communications modem. The modem model is emulated in MATLAB and simulations are

performed. Analysis of the simulations are conducted and evaluated as to the feasibility of

a COFDM implementation in the presence of known noise and signal fading conditions.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BROAD AGENCY ANOUNCEMENT FOR A WIRELESS MODEM 1
B. PROPOSED COFDM TECHNIQUE IN RESPONSE TO BAA 5
C. THESIS OBJECTIVES AND ORGANIZATION 6

II. NOISE AND THE MARITIME CHANNEL 9
A MULTIPATH CHANNEL DESCRIPTION AND MODEL 9
B. ADDITIVE WHITE GAUSSIAN NOISE DESCRIPTION AND MODEL 11
C. MARITIME ENVIRONMENTAL IMPACT ON LOS COMMUNICATION 14

III. CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING
CONCEPTS 19

A. SERIAL AND PARALLEL COMMUNICATION SYSTEMS 19
B. OFDM THEORY 22
C. SYMBOL GUARD INTERVAL INSERTION 26
D. FORWARD ERROR CORRECTION COMBINED WITH OFDM 29
E. SYMBOL INTERLEAVING 30

1. Block Interleaver 31
2. Interleaving and R-S Error Correction 35
3. Cyclical Shifting Block Interleaver 36

IV. MATLAB COFDM SYSTEM MODEL 41
A. COFDM TRANSMITTER 41
B. COFDMRECEIVER 49
C. CHANNEL MODELS 52
D.SYSTEM DESIGN METHODOLOGY 53

V MATLAB PROGRAMMING AND MACRO DEVELOPMENT 59
A. GENERAL MATLAB FUNCTION FORMAT 59
B. OFDM SYSTEM MODEL CONSTRUCTION OF FUNCTIONAL BLOCKS 60

1. COFDM Model 0 System 61
a. COFDM Transmitter 62
b. Channel 0 Model 77
c. COFDM Receiver 78

2. COFDM Model 1 System 83
a. Channel 1 Model 84

3. COFDM Model 2 System 85
a. Channel 2 Model 86

4. COFDM Model 3 System 87
a. Channel 3 Model 88

C. MATLAB VERIFICATION PROGRAM DEVELOPMENT 88
1. Source And Sink Message Comparer 89
2. Differential Encoder/ Decoder and Frequency Array Checker 93
3. CDL Interleaver Verification 94

Vll

4. Syrern Model 0 Checker 96
D. MATL £ SIMULATION BATCH M-FILES 97

1. Seed Evaluation Batch File 99
2. COFDM System Simulation Batch File 101
3. Interleaver Case Optimization Batch File 106

VI. SYSTEM SIMULATION METHODOLOGY AND TEST RESULTS 109
A. GENERAL TEST PLAN 109
B.TEST PHASE 1-SYSTEM MODEL 0 SIMULATIONS Ill
C.TEST PHASE 2-SYSTEM MODEL 1 SIMULATIONS 114
D. TEST PHASE 3 - IDENTIFY ERROR PRODUCING CHANNEL 2 SEEDS 122
E.TEST PHASE 4-SYSTEM MODEL 2 SIMULATIONS 141
F. TEST PHASE 5 - IDENTIFYING OPTIMAL INTERLEAVER CASES 154
G. TEST PHASE 6-FINAL SYSTEM MODEL 3 SIMULATIONS 164

VII. CONCLUSIONS 181
A. DISCUSSION OF SIMULATION RESULTS 181

1. Test Phase 1 and Test Phase 2 Discussions 181
2. Test Phase 3 Discussions 182
3. Test Phase 4 Discussions 185
4. Test Phase 5 Discussions 186
5. Test Phase 6 Discussions 188
6. General COFDM Emulation Discussions 199

B. RESEARCH AND EMULATION CHALLEGES 199
C. FUTURE WORK 201

APPENDIX A. COFDM SYSTEM MODEL MATLAB MACRO CODE 205
APPENDIX B. VARIUOS SYSTEM SIMULATION PERFORMANCE RESULTS.. 303
LIST OF REFERENCES 315
BIBLIOGRAPHY 317
INITIAL DISTRIBUTION LIST 319

vm

LIST OF FIGURES

Fig. 1: Maritime Wireless Network 3
Fig. 2: Time Varying Multipath Channel Model Using Tapped Delay Line 11
Fig. 3: AWGN Baseband Model 12
Fig. 4: Multipath in the Maritime Environment 15
Fig. 5: Ideal Frequency-Division Multiplexing Spectrum 20
Fig. 6: Additional Guard Bands In Frequency Spectrum 21
Fig. 7: General OFDM Communications Model 24
Fig. 8: SpectrumFor Single Symbol With Length Ts 25
Fig. 9: Complete OFDM Spectrum For Five Symbols Showing Overlap 26
Fig. 10: Creation of the Guard Interval 27
Fig. 11: Guard Interval Insertion Into Symbol Stream 28
Fig. 12: Conventional Block Interleaver Example 34
Fig. 13: Block Interleaver With R-S Decoding 35
Fig. 14: Cyclical Shifting Block Interleaver Example 37
Fig. 15: Cyclical Shifting Block Interleaver With R-S Decoding 38
Fig. 16: COFDM Transmitter Functional Block Diagram 41
Fig. 17: Correct Fourier Transform Frequency Spectrum 47
Fig. 18: Shifted Frequency Spectrum Resulting From MATLAB FFT 48
Fig. 19: Complete Spectrum Recovery Using Bandpass Filter 48
Fig. 20: COFDM Receiver Functional Block Diagram 50
Fig. 21: Three Channel Models 53
Fig. 22: Emulation Partial OFDM Spectrum 56
Fig. 23: Single Symbol Interval with Precursor 56
Fig. 24: Complete OFDM System Model 57
Fig. 25: A MATLAB Functional Block 59
Fig. 26: System Model 0 block Diagram 60
Fig. 27: M-file Cdrcdlft.m Functional Sub-Blocks 61
Fig. 28: M-file Hierarchy for Cdrcdlft.m 62
Fig. 29: M-file Decdrcdl.m Functional Sub-Blocks 79
Fig. 30: M-file Hierarchy for Decdrcdl.m 79
Fig. 31: System Model 1 block Diagram 84
Fig. 32: System Model 2 block Diagram 85
Fig. 33: M-file Hierarchy for Chuhf.m 86
Fig. 34: System Model 3 block Diagram 88
Fig. 35: M-file Heirarchy for ChnOcdl.m 96
Fig. 36: Complete OFDM Model with Corresponding M-files 98
Fig. 37: M-file Heirarchy for Uhfseeds.m 101
Fig. 38: M-file Heirarchy for Cofdmsim.m 103
Fig. 39: Simulation Test Plan Heirarchy 110
Fig. 40: Theoretical Performance Graph Showing SER Verse Es/N0 115

XX

Fig. 41: System Model 1 Simulation Performance Graph Showing SER vs. Es/N0

(Frequency Differential Encoding and 240 Tones) 118
Fig. 42: System Model 1 Simulation Performance Graph Showing SER vs. Es/N0

Using OFDM Symbol Size Equal to PSK Symbol Size (4-bits) (240 Tones).... 120
Fig. 43: System Model 1 Simulation Performance Graph Showing SER vs. Es/N0

(Time Differential Encoding and 240 Tones) 121
Fig. 44: Link 3 Seed Error Report (240 Tones, Time Differential Encoding) 127
Fig. 45: Ordered Distribution of Error Totals Verse Seed Values, 240 Tones 127
Fig. 46: Error Histogram for 240 Tones and Time Differential Encoding 128
Fig. 47: Link 3 Seed Error Report (240 Tones, Frequency Differential Encoding) 129
Fig. 48: Ordered Distribution of Error Totals Verse Seed Values, 240 Tones 129
Fig. 49: Error Histogram for 240 Tones and Frequency Differential Encoding 130
Fig. 50: Average Error Totals Vs. Number of OFDM Tones for Frequency and Time

Differential Encoding 131
Fig. 51: Link 3 Seed Error Report (60 Tones, Time Differential Encoding) 132
Fig. 52: Link 3 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones 133
Fig. 53: Link 3 Error Histogram for 60 Tones Using Time Differential Encoding 134
Fig. 54: Link 1 Seed Error Report (60 Tones, Time Differential Encoding 135
Fig. 55: Link 1 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones 135
Fig. 56: Link 1 Error Histogram for 60 Tones Using Time Differential Encoding 136
Fig. 57: Link 2 Seed Error Report (60 Tones, Time Differential Encoding) 136
Fig. 58: Link 2 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones 137
Fig. 59: Link 2 Error Histogram for 60 Tones and Time Differential Encoding 137
Fig. 60: Link 1 Seed Error Report (240 Tones, Frequency Differential Encoding) 138
Fig. 61: Link 1 Ordered Distribution of Error Totals Verse Seed Values, 240 Tones.... 138
Fig. 62: Link 1 Error Histogram for 240 Tones and Frequency Differential Encoding... 139
Fig. 63: Link 2 Seed Error Report (240 Tones, Frequency Differential Encoding) 139
Fig. 64: Link 2 Ordered Distribution of Error Totals Verse Seed Values, 240 Tones.... 140
Fig. 65: Link 2 Error Histogram for 240 Tones and Frequency Differential Encoding... 140
Fig. 66: Ideal Signal Constellation Plot of Transmitted 16-PSK Signal 143
Fig. 67: Constant Unity Magnitude Plot of Transmitted Signal 144
Fig. 68: Constellation Plot of Received Signal Showing Multipath Distortion 145
Fig. 69: Constellation Plot of Received Signal After Time Differential Decoding 146
Fig. 70: Magnitude Plot of Received Signal Demonstrating Power Fading 147
Fig. 71: Corresponding Error Matrix Identifying Symbol Error Locations 148
Fig. 72: Link 3 Error Matrix For 60 OFDM Tones Using 10,020 Symbols 149
Fig. 73: Link 1 Error Matrix For 60 OFDM Tones Using 10,020 Symbols 150
Fig. 74: Link 2 Error Matrix For 60 OFDM Tones Using 10,020 Symbols 151
Fig. 75: Link 3 Error Matrix For 240 OFDM Tones Using 10,080 Symbols 152
Fig. 76: Link 2 Error Matrix For 240 OFDM Tones Using 10,080 Symbols 153
Fig. 77: Link 1 Error Matrix For 240 OFDM Tones Using 10,080 Symbols 153
Fig. 78: Link 3 Interleaved Error Matrix (Case 2) For 60 OFDM Tones 155
Fig. 79: Link 3 Row Error Totals Verse Interleaver Case, 60 OFDM Tones 157

X

Fig. 80: Link 3 Total Message Errors Verse Interleaver Case, 60 OFDM Tones 158
Fig. 81: Link 3 Row Error Totals Verse Interleaver Case, 240 OFDM Tones 160
Fig. 82: Total Errors Verse Interleaver Case Number, 240 OFDM Tones, Link 3 160
Fig. 83: AWGN: Row Error Totals Verse Interleaver Case, 60 OFDM Tones 161
Fig. 84: Link 1 Row Error Totals Verse Interleaver Case, 60 OFDM Tones 162
Fig. 85: Link 2 Row Error Totals Verse Interleaver Case, 60 OFDM Tones 163
Fig. 86: Link 1 Row Error Totals Verse Interleaver Case, 240 OFDM Tones 163
Fig. 87: Link 2 Row Error Totals Verse Interleaver Case, 240 OFDM Tones 164
Fig. 88: Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.9 Code Rate.... 167
Fig. 89: Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Rate 169
Fig. 90: Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.83 Code Rate ..170
Fig. 91: System Model 3 Simulation Using 60 OFDM Tones, Extra R-S Coding 171
Fig. 92: Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.75 Code Rate 172
Fig. 93: Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.5 Code Rate ..173
Fig. 94: Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.5 Code Rate.... 174
Fig. 95: Link 1 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Ratel75
Fig. 96: Link 2 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Ratel76
Fig. 97: Link 3 System Model 3 Simulation Using 240 OFDM Tones, Average Seed... 177
Fig. 98: Link 2 System Model 3 Simulation Using 240 OFDM Tones, Average Seed... 178
Fig. 99: Link 1 System Model 3 Simulation Using 240 OFDM Tones, Average Seed... 179
Fig. 100: Link 1 Simulation Using 240 OFDM Tones and Best Seed 189
Fig. 101 Link 3 Simulation Using 240 OFDM Tones and QPSK, No R-S Coding 191
Fig. 102 Link 3 Simulation Using 240 OFDM Tones and QPSK, 0.917 Code Rate 192
Fig. 103: Custom Simulation Using 240 OFDM Tones, Fd = 35 Hz 193
Fig. 104 Custom Simulation Using 240 OFDM Tones, Ti.p= [0,6,12] 194
Fig. 105 Custom Simulation Using 240 OFDM Tones, Ti.p= [0,7,14] 195
Fig. 106: Custom Simulation Using 240 OFDM Tones, Ti.P= [0,8,16] 196
Fig. 107 Link 3 Simulation Using 240 OFDM Tones, 4-bit OFDM Symbols 197
Fig. 108 Custom Simulation Using 240 OFDM Tones, 4-bit OFDM Symbols 198

XI

Xll

LIST OF TABLES

Table 1: Marymsg.m Sample Outputs 63
Table 2: Msg.m Sample Outputs 64
Table 3: Various Bm.m Sample Outputs 65
Table 4: Cdlilv.m Interleaving Examples 69
Table 5: M-ary to N-ary Symbol Conversion Example 71
Table 6: Complex Modulation Value Example 73
Table 7: Frequency Array Example 75
Table 8: Time Domain Siganl Example 77
Table 9: Received Frequency Array Example of Complex Modulation Values 78
Table 10: Unarranged Frequency Array Example 80
Table 11: Demodulated Received Signal Example 81
Table 12: CDL Deinterleaver Example 83
Table 13: Check.mExample 92
Table 14: Cmvdifchk.m Example 94
Table 15: CDL Interleaver Checker Example 95
Table 16: Batch M-file Uhfseeds.m Example 100
Table 17: Batch M-file Cofdmsim.m Example 103
Table 18: M-file Intlvprs.m Example 105
Table 19: M-file Chancase.m Example 107
Table 20: System Model 0 Verification Example 113
Table 21: System Model 1 Simulation Example Using Cofdmsim.m 116
Table 22: System Model 2 Simulation With 60 OFDM Tones 142
Table 23: Configuring Batch M-file Chancase.m For Optimal Interleaver Cases 157
Table 24: System Model 3 Simulation Using Batch M-file Cofdmsim.m, 60 Tones 166
Table 25: System Model 3 Simulation Using Batch M-file Cofdmsim.m, 240 Tones 169

Xlll

XXV

LIST OF ACRONYMS

ADC Analog-to-Digital Conversion

A/D Analog-to-Digital

AM Amplitude Modulation

ARG Amphibious Readiness Group

AWGN Additive White Guassian Noise

BAA Broad Agency Announcement

BER Bit Error Rate

BG Battle Group

CDL Common Data Link

COFDM Coded Orthogonal Frequency-Division Multiplexing

COTS Commercial Off-the-Shelf

CW Continuous Wave

DAC Digital-to-Analog Conversion

dB Decibel

DFT Discrete Fourier Transform

FDM Frequency Division Multiplexing

FEC Forward Error Correction

FFT Fast Fourier Transform

FM Frequency Modulation

HDR High-Data-Rate

HDTV High Definition Television

IC Integrated Circuit

ICI Intercarrier Interference

IFFT Inverse Fast Fourier Transform

ISI Intersymbol Interference

Kbps Kilobits per second

XV

kHz kilohertz

Km Kilometer

LOS Line-of-Site

M-DPSK M-ary Differential Phase Shift Keyed

Mbytes Megabytes

MHz megahertz

modem Modulator/Demodulator

NCCOSC Naval Command Control and Ocean Surveillance Center

OFDM Orthogonal Frequency Division Multiplexing

PC Personal Computer

PSK Phase Shift Keyed

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keyed

RAM Random Access Memory

RDT&E Research Development Test and Evaluation

RF Radio Frequency

R-S Reed-Solomon

RSL Received Signal Level

SIacR Signal-to-adjacent interference channel ratio

SOI Signal of Interest

(isec Microseconds

UHF Ultra High Frequency

Var Variance

XVI

ACKNOWLEDGEMENTS

This work is supported by the Naval Command, Control and Ocean Surveillance Center

(NCCOSC) RDT&E division's (NRaD) Communications Department. I thank Dr. Paul

H. Moose, my thesis advisor, for his professional, theoretical and technical guidance. His

communications experience and insight was highly motivating, and encouraged me to

complete this research. I also thank Dr. Clark Robertson, my second reader, who offered

assistance at various times along this journey. Lastly, I am grateful to the Naval

Postgraduate School for establishing an exceptional educational program allowing

students to enhance their technical expertise and promote educational career growth all

within the spirit of the Navy military atmosphere.

xvii

I. INTRODUCTION

A. BROAD AGENCY ANNOUNCEMENT FOR A WIRELESS MODEM

The Naval Command, Control and Ocean Surveillance Center (NCCOSC),

Research Development Test and Evaluation (RDT&E) Division's Communications

Department is conducting applied research towards the development of a HDR, LOS,

digital communications system for ship-to-ship (link 1), ship-to-shore (link 2), and ship-to-

relay (link 3) type connectivity. The goal of the applied research is to develop a wireless

communications network within a Battle Group (BG) or Amphibious Readiness Group

(ARG) allowing high capacity voice, video and data transmissions among the platforms as

well as the ability to link together the assets of each of the platforms. The added

robustness of the asset connecting infra-structure will allow separate platforms without

HDR capabilities to gain connectivity to a platform that does have HDR capability. (Fig.

1)

The primary objective of NRaD's Broad Agency Announcement (BAA) [1] is to

develop a radio frequency (RF) modulator/demodulator (modem) with the capability of

transmitting full-duplex 1536 kilo-bits-per-second (kbps) in the Naval maritime

environment using a 600 kHz frequency channelization [1]. This requires that the 3dB

bandwidth of the transmitted signal be less than 480 kHz. It is essential that the modem

demonstrate reliable communication at useful ranges between mobile platforms such as

Navy ships, helicopters, and sub-sonic fixed wing aircraft as well as various shore sites.

Presently the modem is planned to transmit and receive HDR signals within the 225-400

MHz band, with the possibility of using the higher Ultra-High Frequency (UHF) spectrum

1350-1850 MHz band. It is also desirable to have an open non-proprietary system

allowing for inter-operability with other existing Navy, Army and Air Force radio systems.

In order to allow reconfiguration of the HDR LOS modem for different

applications and platforms, the corresponding RF system performance objectives for

reliable communication are indicated as follows:

1. Continuous transmit/receive of a full-duplex n x 64 kbps link using two (one transmit,

one receive) blocks of n x 25 kHz-wide contiguous frequency channels where the

values of n are (at least) n = 1,2,4,8,9,12,16,24,32. This will require the 3 dB

bandwidth of the transmitted signal to be BW3dB < n x 20 kHz or a 3 dB bandwidth

efficiency of better than 3.2 bps/Hz.

2. 99% reliable, 1536 kbps data under each of the following three typical channels:

a. Link 1: Ship-to-ship (Propagation Loss=130 dB, Cable/Misc. Loss = 5 dB)

Path#l: Ricean, Fd=l Hz

Path #2: Rayleigh, Tx.2 = 0.01 usec, Fd = 10 Hz, L« = -6 dB

b. Link 2: Ship-to-shore (Propagation Loss=130 dB, Cable/Misc. Loss = 5 dB)

Path #1: Ricean, Fd = 10 Hz

Path #2: Rayleigh, T« = 0.07 usec, Fd = 10 Hz, U.2 = -5 dB

Path #3: Rayleigh, Tw = 0.80 usec, Fd = 10 Hz, Lw = -15 dB

c. Link 3: Ship-to-relay (Propagation Loss=130 dB, Cable/Misc. Loss = 5 dB)

Path #1: Ricean, Fd = 25 Hz

Path #2: Rayleigh, Ti.2 = 0.9 usec, Fd = 25 Hz, Li-2 = -3 dB

Path #3: Rayleigh, Ti-3 = 5.1 usec, Fd = 25 Hz, Lw = -9 dB

3. Bit Error Rate (BER) of the signal of interest (SOI) should be less than 10"6 when the

signal-to-adjacent interference channel ratio (SIacR) = -15 dB for carrier-to-carrier

spacing of DfC = n x 25 kHz (adjacent channel), SIacR = -40 dB for DfC = 2n x 25 kHz

(one channel between carriers), SIacR = -65 dB for Dfc = 3n x 25 kHz (two channel

between carriers), and SIacR = -90 dB for D& = 4n x 25 kHz (three channel between

carriers).

4. Accommodate a minimum transmit-receive carrier frequency separation of |fc.Tx - fc.Rx|

= 5n x 25 kHz on any platform without any significant degradation in system BER

performance.

5. BER of SOI should be less than 10"6 with one in-band narrowband interferer (CW, FM

voice, or AM voice) with SIR = -10 dB or with two in-band narrowband interferers

each with SIR = -5 dB when tested in each of the channels described above for n > 8.

Reduced performance is expected for FM and AM voice for n < 8; however, CW

interference rejection should not degrade for n < 8.

Ship-to-ship link,,::
::

HDRLOS

Fig. 1. Maritime Wireless Network

Some of the factors that will impact the performance parameters previously

mentioned include the dynamics of the mobile communications channel, adjacent channel

interference, co-channel interference, in-band narrowband interference, and the

characteristics of the RF equipment. Within the maritime environment the LOS

communication channel among mobile platforms in the UHF band is characterized by

multiple propagation paths each with time-varying statistics. There is a wide variation of

a few nanoseconds (nsec) up to a few microseconds (usec) of the delay spread between

propagation paths. This spread is based on the range between platforms and whether the

connection is ship-to-ship, ship-to-shore, or a ship-to-air relay link. With the existence of

multiple propagation paths within the maritime environment arriving at the receiver with

varying time delays, referring to BAA notation, TI-P is the time delay in microseconds

between the first and Pth path with respect to the particular communication link.

Typically, the short-term statistics of the received signal level (RSL) are

characterized by a Rayleigh or Ricean distribution with possible fade rates ranging from 0-

75 Hz, fade depths ranging from 0-40 dB, and maximum delay spreads of 0 to 15

microseconds. With regard to the multiple transmission paths and associated RSL power

fading, LI-P is the difference in the mean signal level between the first and the Pth path.

Furthermore, Ricean fading is defined by a non-fading LOS component, Doppler shifted

by 0.7 Fd, with equal signal power to a Rayleigh fading signal with fade rate Fd, where Fd is

the associated Doppler frequency. A Rayleigh fading signal is defined as in EIA/TIAIS-

55. As carrier frequency increases, fade rates tend to increase and are also dependent on

the absolute and relative velocities of the two communicating platforms and surrounding

environmental conditions. It also has been demonstrated experimentally that fade rates are

dependent on the range between platforms and become more severe with increased range.

For purposes of thesis research, the RSL statistics specified in the BAA [1] including

Doppler frequency shifting, Fd, multipath power fading, Li.P, and multipath time delays,

Ti.p, will represent the COFDM emulation model baseline with respect to the transmission

links of interest (links 1 though 3) and their corresponding multipath parameters.

B. PROPOSED COFDM TECHNIQUE IN RESPONSE TO BAA

The design of a reliable HDR LOS modem in the maritime environment is

challenging largely due to time-varying multipath propagation effects. As previously

indicated, frequency dependent fading of the signal spectrum is a constant problem,

adversely affecting reliable communications. In single carrier systems, multipath induced

time spreading can cause intersymbol interference among data symbols and generate

symbol errors during the message decoding process. Furthermore, random dynamic

motions of the transmitter and/or receiver (moving communicating platforms) and/or

atmospheric effects within the maritime layer make adaptive equalization of the channel

difficult to accomplish.

In response and support of the BAA issued by NRaD and as an alternative to

traditional single carrier compensation techniques such as adaptive equalization, a

proposed solution is the design of a signaling scheme that does not require equalization for

transmission in a spread channel. One such modulation technique is COFDM. COFDM is

considered a practical effective method to meet requirements, and has already been

implemented for digital broadcasting in Europe with further consideration for inclusion in

terrestrial digital television and HDTV broadcasting [2]. In contrast to traditional

frequency-division multiplexing (FDM), which occupies separate non-overlapping sub-

bands of the overall spectrum bandwidth, COFDM utilizes orthogonal multiple carriers

(typically in the order of hundreds) with mutually overlapping spectrums, thus providing

for greater spectral efficiency. Interleaving the information symbols in time combined with

forward error correction (FEC) permits recovery of corrupted symbols in the receiver

after transmission through a Rayleigh fading channel. In this way COFDM represents a

technique for bandwidth efficient, high data rate transmissions through a frequency

selective fading channel with additive white Gaussian noise (AWGN).

C. THESIS OBJECTIVES AND ORGANIZATION

The objective and motivation for conducting this research is to document and

evaluate computer simulation results of a software emulated communication system

utilizing COFDM techniques designed to operate in a maritime environment. The

compiled results will be used by NRaD to evaluate hardware design proposals responding

to the BAA in addition to judging the overall feasibility of a COFDM based system.

NRaD has provided the maritime channel model specifications indicative of actual

environmental conditions that the physical hardware (transmitters and receivers) will be

subjected to and operated within [1]. These specifications are incorporated into the

simulated channel models. Emulation and simulation of the communication system model

is performed at the Naval Postgraduate School using MATLAB® on a personal computer

(PC) platform (Pentium® 200 MHz PC) with 64 megabytes (Mbytes) of RAM and using

the Windows 95® operating system.

MATLAB is a mathematical software package developed by the Math Works,

Inc. of Natick, MA which enables numerical analysis, matrix computation and signal

processing through a graphical interface. As part of the basic software package,

MATLAB includes elementary signal processing functions in a tool box kit in addition to

basic mathematical commands. Using these rudimentary functions and commands, one can

create higher level modules to form subroutine "m-files". The hierarchy of m-files are

combined in such a way as to represent the functional blocks of the system and emulate

the overall communication model through which baseband signal level simulations are

performed. Simulation results are typically presented in graphical form displaying error

distributions and symbol error rates (SER) for different channel configurations and with

different system input parameters and constraints. Comparisons of simulation results to

known theoretical and previously modeled system performance standards enable the

formation of a software model baseline standard. From the baseline, conclusions can be

drawn concerning implementation feasibility and, consequently, comparisons made of

future physical modem hardware to the emulated model simulation results.

This thesis is organized as follows: Chapter II discusses the maritime channel

model background and theory in terms of AWGN and multipath; Chapter III reviews

conventional FDM concepts and introduces COFDM theory and related topics; Chapter

IV presents the COFDM system level block diagram used in the emulation model and

discusses the operation of each functional block; Chapter V presents the MATLAB coded

block descriptions that form the software model as well as higher level simulation

diagnostic and batch programs; Chapter VI discusses the simulation test plan methodology

and reports simulation trial results; Chapter VII concludes with an evaluation of the

simulation results, discusses overall feasibility and presents possible future related work;

Appendix A. lists the complete MATLAB code used including system macros, diagnostic

verification programs and batch m-files; Appendix B. presents a compilation of

performance results for various system configurations.

H. NOISE AND THE MARITIME CHANNEL

A. MULTIPATH CHANNEL DESCRIPTION AND MODEL

Maritime environmental factors can have an adverse impact on reliable HDR LOS

communications between ship-to-ship, ship-to-shore and ship-to-air platforms. The most

prominent type of error producing phenomenon present is multipath fading which is

frequency dependent. Multipath fading exists when there is more than one transmission

path between transmitter and receiver and is characterized by variations of the receive

signal level (RSL) from the free-space calculated level for a particular far end transmitter

output. The propagation mechanisms that affect fading are atmospheric refraction,

reflections from objects, scattering of radio energy, focusing attenuation, and other

various meteorological and geographical factors. The received signal may consist of

several discrete paths, each with a different attenuation and time delay, or a continuum of

paths all of which either constructively and/or destructively combine at the receiver. At

times the multiple delayed signals add destructively to reduce the power level of the

received signal, while at other times they add constructively and augment the signal. In

extreme situations multipath induced deep fading, known as power fading, can result in

complete loss of the signal. Another manifestation of multipath in a digital carrier receiver

is a form of signal interference referred to as intersymbol interference (ISI), causing

detection errors [3].

Power fading is characterized as dramatic decreases from the free-space signal

level for extended periods of time. It is possible for multipath power fading to exhibit

fades greater than 30 dB for periods of seconds or minutes. This type of fading occurs

during quiet, windless and foggy nights, when temperature inversion near the surface

occurs and not enough wind turbulence is present to mix the air. The result is the

formation of elevated or surface based stratified layers. The maritime environment is

particularly conducive to multipath due largely to the high number of unobstructed ocean

reflections. In contrast to land, the open ocean typically does not contain protruding

vegetation or other projecting obstructions that tend to break up the reflection

components as is often the case with terrestrial based radio link paths. [4]

Multipath propagation also manifests itself as time dispersion resulting from

differences in transmitter and receiver transit times among multiple propagation paths with

different lengths. Time dispersion is characterized by a delay power spectrum and is

measured as multipath delay spread in microseconds. Time dispersion is particularly

harmful to digital communications since excessive signal delay spread causes ISI and

prevents correct bit detection in the receiver, degrading overall bit error rate (BER)

performance. One possible way to overcome the effects of delay time and resulting signal

spread is to decrease the bit rate.

The effects of multipath spread causes variations in amplitudes and phases of the

signal frequency spectrum due to the continuous interference from multipath wave

components. When the fluctuations are correlated within the signal bandwidth so that all

the spectral components behave in a similar fashion, one has what is referred to as

frequency non-selective, or flat fading. If the fluctuations have little correlation across the

band, then the result is frequency-selective fading.

Another type of dispersion is frequency dispersion or Doppler spreading which

usually is present along with time dispersion. Doppler frequency spread can be due to

atmospheric conditions as well as relative continuous motions between transmitters and

receivers and is measured in Hertz. If the rate at which the received signal is slowly

changing with time, then the Doppler frequency spread is relatively small; conversely, if

there is rapid time change then the Doppler frequency spread is large.

One frequently used model to represent a time-variant multipath channel is

depicted in Fig. 2 [5]. This model is composed of a delay line with multiple taps. Tap

coefficients are typically modeled as complex-valued, Gaussian random processes that are

10

mutually uncorrelated. The delay line length, Tm, corresponds to the amount of time

dispersion in the multipath channel, also known as the multipath spread, and is given by,

j-i

Tm = ^
1=1

(1)

Input
Signal

c,(t) ►

Output
Signal

Fig. 2. Time Varying Multipath Channel Model Using Tapped Delay Line

B. ADDITIVE WHITE GAUSSIAN NOISE DESCRIPTION AND MODEL

Along with the distortions caused by a multipath channel exhibiting memory, the

maritime environment also includes the effects of thermal noise normally modeled as

additive white Gaussian noise (AWGN). AWGN can be described as a zero mean

Gaussian process, n(t), with a uniform power spectral density given as

11

No
S„(f) = — watts/Hz (2)

The Var(n(t)) is defined as the variance of the Gaussian noise process, n(t). The noise is

described as "additive" because it is simply added to the signal transmitted through the

channel [6]. Fig. 3 demonstrates the baseband model used for AWGN where s(t) is the

transmitted signal through the channel, n(t) is the added noise process and r(t) is the

received signal.

r(t)

Fig. 3. AWGN Baseband Model

It can also be shown that s(t) and n(t) may be represented on a symbol interval

[0,TS] in terms of a suitable orthonormal basis set {^(0/ • For a bandpass signal

representation such as MPSK, one such basis set is y¥} (/),*Fe(* j, where,

^(0 = [/4J cos(2<f) (3)

and

x2 (0 = ~(/4j 2sin(2^). (4)

12

Thus, bandpass noise that interferes with the signal can be represented in terms of the

signal space basis functions as

n(t) = ni%(t) + nQVe(t) (5)

with n(t) being the projection of the noise n(t) onto the signal space

/I, =\n(t)x¥I(t)dt
0

(6)

and

nQ=\n{t)VQ(t)dt.
0

(7)

For AWGN it can be shown that Irij ,nQ \ are uncorrelated, zero mean Gaussian random

variables with variances, o]Q, equal to No/2 [6]. Thus,

N0 = o] + a\. (8)

The noise vector, after sampling at a rate of fs samples per second for a period of time Ts,

contains discrete complex values and is of length N = fsTs. Each comp] ex valued element

is an independent and identically distributed (iid) Gaussian random variable with real and

imaginary parts that are also iid. The means are zero and the variances are all a^ = No/2

= <jj_ß. With the signal symbol energy Es denned in terms of s(t) as

Es= js2(t)dt= s] +s2
Q

0

(9)

the ratio of symbol energy to noise power is defined as

13

Es

*■ x

\s\t)dt

/NO=^-^ 0°)
2<7W

where it is also assumed that all symbols have the same average energy.

C. MARITIME ENVIRONMENTAL IMPACT ON LOS COMMUNICATION

The three LOS communication links of interest, ship-to-ship, ship-to-shore and

ship-to-relay (high elevation), have been studied by NRaD personnel in San Diego,

California. Data has been gathered on environmental conditions affecting reliable

communications through a modem test model experiment. The reliability of the LOS

digital radio is a function of the magnitude and variations of the received signal level

(RSL). Reliability is defined as:

% reliability = 100% - % outage, (11)

where outage is defined as either a CCITT G.821 Severely Errored Second or as a second

during which synchronization of the information is lost [7]. Alternatively, outage may also

be described as the percentage of a second in which the bit error rate (BER) is worse than

10"6. For purposes of this research while conducting simulations, outage will be measured

in terms of observed symbol error rates (SER) and total symbol interval lengths in

seconds. Furthermore as part of the BAA objective, a 99% reliable link is defined as

having 1% of outage time over 1 hour of operation (i.e., 36 seconds total accumulated

outage time over 3600 seconds of test time).

The median RSL is determined by the total transmit power, free-space propagation

loss, diffraction due to the earth radius, cable losses, antenna heights, losses and/or gains;

however, over air the RSL randomly fluctuates about the median value. Empirical data

gathered from the NRaD experiment indicate that the primary atmospheric conditions that

affect the RSL are:

14

• Variations caused by the formation of an evaporation duct near the surface of

the water acting as a transmission waveguide and whether or not the antenna is

located within this duct.

• Refraction of the signal influenced by the troposphere causes flat, fast fading.

This multipath interference tends to become more severe as the path length is

increased.

• Multipath interference is also due to water surface reflections of the

transmitted signal. These reflections tend to induce frequency-selective, slow

fading which can also be a function of the sea state and the ocean reflection

coefficient.

• Diffraction caused by the earth's radius tends to generate a shadowing effect as

the signals bend away from the earth.

Based on data gathered and observations made in the oceanic vicinity of San Diego, it is

inferred that the most prevalent influence on the RSL is due to reflective multipath with a

strong likelihood of refractive multipath and vapor ducting occurring during the winter

months. Fig. 4 depicts the atmospheric and maritime conditions that affect the RSL as

described above.

Refracted Path

ShipMjvement

Diffraction Due to Earth Radius

Fig. 4. Multipath in the Maritime Environment

15

Reflective multipath can be modeled as a two-path channel model consisting of a

primary direct path and a secondary indirect surface reflected path. In reality, the location

of the surface reflection area of the indirect path as well as the differential path length is a

function of the earth's curvature. However, for calculation purposes, a flat earth

approximation is assumed to determine the differential path length, dr°ßected, (meters) and

channel delay spread, rA, (seconds) as follows:

drrud = dreflected - ddirea=yj(h]+h2y+d> - ^-h2)
2+d>, (i2)

for d» hx,h2,

^reflected ~ 2 ' 2 (13)

and

*A =

d.
reflected

(14)

where hi and h2 are the two antenna heights, d is the horizontal range between antennas,

and c is the speed of light (« 3x108 meters per second). Observations further indicate that

reflected multipath delay spread decreases with increasing path distance. Reflections off

smooth surfaces such as the ocean tend to cause small scattering which results in

frequency-selective fading of the channel frequency response. For this type of fading, the

null separation is given by

null separation = — (Hz) (15)

and the spectral peak-to-null difference is given by

peak-to-null = 201og10 y^py (dB) (16)

16

where |r| is the magnitude of the reflection coefficient. Previous measurements have

indicated that for calm sea the reflection coefficient can be as high as 0.98 resulting in a

maximum spectral peak-to-null difference of 40 dB. For this experiment using

transmission links 1 and 2, it was verified that the transmission spectrum is much less than

the null separation given by equation (12), thus the channel is characterized primarily as a

flat fading channel with as much as 40 dB of RSL variations depending on the sea state.

To a lesser degree, atmospheric refractive multipath also has a detrimental impact.

The largest possible refraction angle is measured to be about three degrees. The

differential path length between the maximum refraction angle, 6refracted, and the direct ray

is given by:

r \
mjracte _ rf — dj , < d

A refracted direct -1
\C0S(^fracted) J

(17)

with increasing delay spread occurring with increasing distance.

Finally, ship and antenna movements also affect the RSL causing significant fade

rates. On land, a common fade rate condition occurs when a vehicle is traveling at a

hypothetical speed of 27 knots (50 km/hr) and transmitting to a fixed receiver at a carrier

frequency of 300 MHz, resulting in a predicted fade rate of about 13 Hz. The

determination of exact frequency fade rates for moving maritime vessels transmitting at

specific carrier frequencies are apparently unknown at this time. Thus, for purposes of

this study and thesis research, fade rates associated with maritime vehicle speeds are

assumed to be comparable to land vehicle rates operating at similar carrier frequencies.

At higher operating frequency ranges, the fade rates tend to increase. For this study a

UHF transmission bandwidth of 225-400 MHz, is assumed.

17

18

m. CODED ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING

CONCEPTS

A. SERIAL AND PARALLEL COMMUNICATION SYSTEMS

In a traditional serial data digital communication system, data is sent as a serial

pulse train of information symbols. During the sequential transmission of each symbol

through the channel, the symbol frequency spectrum is allowed to occupy the entire

available bandwidth. However, in a multipath environment such as the maritime one,

scattered reflections due to the ocean surface, platform structures, nearby obstacles and

atmospheric factors, in addition to Doppler shifts caused by transmitter/receiver relative

motions, make the signal envelope fluctuate. The time dispersion nature of the multipath

channel also causes adjacent symbols of the serial stream to interfere when the symbols are

short compared to the time spread. [2]

A parallel communication system differs from the serial counterpart by allowing

the simultaneous transmission of several sequential data streams using much longer

symbols. At any instance in time, there are many data elements (symbols) being

transmitted through the channel. With this type of system, the individual spectrums of

each data symbol occupy only a small portion of the overall available bandwidth. This

approach is advantageous in spreading out the frequency-selective fade over many

different symbols. Thus, instead of there being a high concentration of errors with several

adjacent symbols being completely destroyed by the fade, the errors are spread out over

many symbols and appear less bursty. In this situation, precise reconstruction of a

majority of the symbols is possible even without the addition of error correcting codes.

Additionally, in a parallel system, by partitioning the entire bandwidth into multiple non-

overlapping frequency sub-bands (sub-channels), equalization of each sub-channel is much

easier than the serial system because the symbols are now much longer than the time

dispersion of the channel, which greatly reduces the effects of ISI.

19

Magnitude

A

I Symbol I

fcl

Symbol
Bandwidth

ws h—
Symbol 2 j Symbol 3;

^2 xc3

- Overall Bandwidth
W = NxWt

ioN

frequency
Axis

Fig. 5. Ideal Frequency-Division Multiplexing Spectrum

The approach to implementing a parallel communication system is done in different

ways. In a classical parallel data system using conventional FDM technology (Fig. 5), the

total signal frequency bandwidth is partitioned into N non-overlapping sub-channels. Each

subchannel is modulated by a separate data symbol, and then each of the N sub-channels

are frequency-division multiplexed for transmission. At the receiving end, separation of

the sub-bands traditionally is accomplished by a bank of bandpass filters. However, due to

the roll-off effect of physically realizable filters, the actual bandwidth of each sub-channel

must be further widened. Sufficient guard bands must be inserted in the frequency

spectrum between adjacent sub-channels to permit effective filtering without in-band

signal attenuation and adjacent band signal interference. This method, with the addition of

guard bands, does not offer the best possible spectrum efficiency (Fig. 6) since now the

overall bandwidth is lengthened by multiple guard bands that do not carry any useful

information. [3]

An alternative to traditional FDM is to implement a system utilizing staggered

quadrature amplitude modulation (QAM) to increase efficiency of band usage [2].

Staggered QAM mimics the traditional FDM concept by using N sub-channels of

modulated carriers with an additional excess sub-channel bandwidth of a. However, each

adjacent subchannel overlaps their neighbors at the -3 dB frequency point allowing for a

20

vidgiiiiuuc

A ^~ -^^ ^ ./

^/ SymW t j> / hHi V Symbol 3
%• • •

I i
fc2

i
fc3

^

flatter, slightly more compact composite spectrum. Additionally, the filter design

requirements for staggered QAM is less critical than FDM.

Bandpass Filter Characteristic Curve

Frequency
Axis

Guard Band

Fig. 6. Additional Guard Bands In Frequency Spectrum

Both these methods require individual sinusoidal generators to represent each of N

sub-channels in the transmitter (carrier tones) and corresponding demodulators at the

receiver. For a large number of sub-channels (N very large), the arrays of sinusoidal

generators and coherent demodulators becomes unreasonably expensive, complex and

space consuming, hence, not very practical. Thus, the principal objections to the use of

parallel systems are the complexity and cost of the equipment required to implement the

system. [8]

An alternative approach to conventional FDM and staggered QAM is a system that

uses the discrete Fourier transform (DFT) to modulate and demodulate parallel data.

Using the DFT in the transmitter, the individual sub-channel spectra can be represented

with sine functions which are not band-limited. Multiplexing of the sub-channels is

accomplished by base-band processing instead of bandpass filtering.

One such technique which uses the DFT for implementation is orthogonal

frequency-division multiplexing (OFDM), which is defined as a form of multi-carrier

modulation where the carrier spacing is carefully selected so that each sub-carrier (tone) is

21

orthogonal to the other sub-carriers. In order for a signal set to be orthogonal, any pair of

sub-carriers must have a frequency separation of a multiple of 1/TS [3]. OFDM differs

from traditional FDM by allowing the OFDM spectrum of individual orthogonal

subcarriers to mutually overlap; thus, a more optimum spectrum efficiency is gained over

FDM. With the inclusion of coherent detection at the receiver and the use of orthogonal

subcarrier tones separated by the reciprocal of the signaling element duration, independent

separation of the multiplexed tones is possible, specifically by using the DFT.

B. OFDM THEORY

Consider a data sequence (D0, Di, D2, ... DN-i), where each Dn is a complex

number of the form Dn = An + jBn. If a DFT is performed on the sequence, the result is a

vector d = (do, di, d2, ... dn-i) of N complex numbers with

n=0 n=0

dm = X D" exp(-j(27mm IN)) = £ Dn exp(-y(2^m)), m = 0, 1, 2, ... N-1, (18)

f"ä NAt'

tmAmAt,

where /»A*. (19)

(20)

(21)

and Ts is an arbitrary chosen symbol duration of the serial data sequence Dn [2],[8].

Taking the real part only of the d vector, we get the following components:

iV-l N-\

ym = 2 A"cos(27mfntm) + YJ
B

"sm(27mfntm) m = 0, 1, 2, ... N-1. (22)
n=0 n=0

22

/, 1

now obtain the frequency division multiplexed signal

Applying these components to an ideal low-pass filter with cutoff frequency +± = — , we
2 2At

N-\ N-\

y(t) =YJ
A

" cos(27mfnt) + £ Ä, sm(2mfnt) 0<t<Ts. (23)
«=0 n=0

As an illustration of a general OFDM based communication system using the

orthogonality principle, Fig. 7 represents a block diagram of major system components

with substitutions of more efficient fast Fourier transform (FFT) and inverse fast Fourier

transform (IFFT) algorithms to reduce the number of operations from N2 in the DFT

N
down to approximately — log2 N for the radix two FFT [9]. Initially, the incoming serial

data bit stream is grouped to form symbols, q bits long, in preparation for a M-ary digital

modulation scheme, where M = 2q. Each symbol passes through a signal constellation

mapper, such as 16-phase shift keyed (16-PSK) for example (for this case, q = log2M =

log2l6 = 4), to generate a complex modulation value, {DN}, corresponding to a particular

4-bit symbol. The sequence of complex modulation values are converted from serial to

parallel format by a multiplexer to form a block size of N symbols, where each member of

N corresponds to a subcarrier frequency tone. The N complex modulation values are then

modulated in baseband fashion by the IFFT performing the mapping into the time domain.

Finally a multiplexer converts from parallel format to a serial data stream suitable for

upconversion and RF transmission. Before the upconversion process can be

accomplished, an analog-to-digital (A/D) converter is used to convert the discrete values

to the analog equivalent and perform low-pass filtering. After transmission through the

channel, the OFDM receiver portion of the system performs the inverse process of the

transmitter. Specifically, downconversion and low-pass filtering is initially performed to

recreate the baseband transmitted signal. The baseband serial data stream is converted to

parallel forming N paths, which are fed to an FFT block. The N-point FFT operation

recovers the complex modulation values, allowing the inverse signal mapper to generate

23

the corresponding symbol bit pattern. The q-bit length symbols are multiplexed into a

serial data stream to complete the process and recover the original information.

q-bits rP l d° ^

q-bits

Serial

to

Parallel

Converter

 ►

D1
—*

Inverse

Fast

Fourier

Transform

— *

Mux Input Symbol

Generator

bigna

constella

l
Ö2 . rf »

•
•
•

lion
•
t
•

•
•
•

Sei
Mapper

ialData

D* -l dN-l

LPF&

Analog

to

Digital

Converter

Down

Convertei
4

Up

Convertei

Digital

to

Analog

Convertei

&LPF

4 Channel 4

r1° ■pvo q-bits

 ►

Serial

to

Parallel

Converter

d1
—►

Fast

Fourier

Transform

—^ ►

Signal

constellation

Mapper

 ►

Parallel

to

Serial

Converter

d2
& > Output

•
•
•

—►

•
•
•
 ►

t
•
•
 ►

Serial Data

dN l & j-i

Fig. 7. General OFDM Communications Model

During the signal constellation mapping stage, each data symbol is encoded as a

truncated sinusoid within the interval (0,TS). Signal truncation causes the frequency

response of y(t) to be a sine function. As seen in Fig. 8, the spectral shape of an OFDM

subchannel contains zero crossings at multiples of 1/TS. The other sub-carriers are

24

generated by the IDFT in such a way that their spacing generates a nearly flat overall

spectrum with no interference among individual spectra. For example, an OFDM

spectrum would be similar to the one depicted in Fig. 9. In this figure the orthogonality of

the subcarriers is demonstrated by the overlapping of individual subcarrier spectra at their

respective zero crossings; thus, the spectra of the individual subchannels are zero at the

other subcarrier frequencies.

y(t)

0

Symbol interval

T, = 0.2
t (sec)

f(Hz)

Fig. 8. Spectrum For Single Symbol With Length Ts

25

f(Hz)

Fig. 9. Complete OFDM Spectrum For Five Symbols Showing Overlap

As previously mentioned, generation of this orthogonal structure is accomplished

by using the IFFT, and assuming a distortionless channel, orthogonality is maintained after

transmission with each individual subchannel completely separable by the FFT process in

the receiver. Unfortunately, in practice, ideal distortionless channel conditions cannot be

guaranteed and are typically nonexistent in actual RF transmission environments. Also,

since each OFDM symbol spectrum is not band limited, channel distortions such as

multipath cause each subchannel to spread energy into the adjacent subchannels causing

intercarrier interference (ICI).

C. SYMBOL GUARD INTERVAL INSERTION

One method to overcome ISI and ICI for linear time-invariant channels is to

append a guard interval precursor to the symbol interval itself between consecutive

symbols prior to transmission [2]. This guard space is a periodic extension of the signal

and contains no useful information. The total symbol duration then becomes Ttotai = Tg +

26

Ts, where Tg is the guard interval length and Ts is the useful information bearing symbol

duration (Fig. 10). The addition of the guard interval is considered overhead and reduces

the overall data throughput, therefore Tg is kept as short as possible to preserve high

transmission rates, but long enough to be an effective channel compensator. The guard

interval length is dependent upon the channel impulse response and the multipath delay

spread. It compensates for the channel's memory [10; p. 42].

: Interval

Periodic Extension of Symbol

Message Syrab<
WM

■;' '"""""■ ■ ■■■■■■;■■■ ■■■■

"». M essage Symbol

total

Fig. 10. Creation of the Guard Interval

During the guard interval duration, as the symbol is initially being transmitted,

there occurs a "buildup" period within the channel as the impulse response reaches steady-

state after the symbol's initial transmission excitation. Following time Tg, and during the

Ts period, the channel is in "steady-state". Following the Ttotai period, there is a residual

"decay" of the channel response after transmission of the information symbol. The

"decay" period of the current transmitted symbol coincides with the "buildup" period of

the next transmitted symbol; thus, an overlap occurs between the decaying impulse

response of the previously transmitted symbol and the rise time of the next transmitted

27

symbol during time, Tg. This overlap allows minimization of guard interval times as

depicted in Fig. 11. The preconditioning of the channel by the inclusion of periodically

extended guard intervals allows for the channel to adequately prepare for each transmitted

symbol's characteristic waveform without causing ISI or ICI.

Symbol n channel "decay"

Symbol n+1 channel "buildup"

Symbol n Symbol n+1 Symbol n+2

Guard Intervals

Fig. 11. Guard Interval Insertion Into Symbol Stream

The total information symbol duration, Ts, determines the subcarrier spacing, fs

1/TS. However, the symbol rate is

rs = T — J S ' (24)
Total

While keeping a fixed signal constellation and maintaining the data throughput, a longer

useful symbol duration increases the number of OFDM subcarriers and the number of

points in the FFT operation. However, carrier offset and phase stability may affect how

close two subcarriers can be placed. In addition, in the case of mobile reception where

transmitter and/or receiver are in motion, subcarrier spacing must be large enough to

account for Doppler frequency shifts. Since the number of OFDM subcarriers correspond

to the number of complex points being processed during the FFT operation, consideration

must also be given to processing time delays incurred during FFT calculations. [2]

28

D. FORWARD ERROR CORRECTION COMBINED WITH OFDM

OFDM represents an efficient method to transmit information in parallel in a

frequency-selective channel. However, parallel transmission does not suppress the fading

directly, since individual subcarriers (OFDM tones) within the channel can be affected by

fading depending on their frequency. Instead, frequency diversity coupled with channel

coding combine to protect transmitted data. With the addition of overhead non-

information bearing bit redundancy to the data (parity bits), COFDM symbols are created

for transmission, permitting possible error detection and correction in the receiver. [2]

Various familiar coding techniques provide practical means of error correction.

One subclass of nonbinary BCH block codes known as Reed-Solomon (R-S) codes are

considered in this thesis. In particular, R-S codes are effective in burst-error

environments. For a specified block size with n code symbols being sent for each k

information symbols, the R-S code is capable of correcting t arbitrary symbol errors with

t=^-. (25)

Thus, no more than 2t parity check symbols are required as error correction overhead

[11]. The appended parity symbols offer redundancy that do not carry any useful

information, hence, the number of parity symbols increases the overhead and affects the

system transmission information rate for a given fixed bandwidth. Consequently, there is a

practical limit to the number of additional parity symbols that can be added to the message

word k.

The ratio of information symbols to code symbols is called the code rate, R, and

can be interpreted as the fraction of the code word that actually carries information [12;

pp. 4-5], [4; pp. 416-421]:

29

k
R = - (26)

n

Thus, there is a trade-off between error performance and bandwidth, or information rate,

in terms of higher vice lower code rates. The performance improvement gained by adding

coding is often measured in terms of coding gain. Coding gain in terms of symbols is

defined as the reduction of required S
/N0 in dB to achieve a specified error performance

of an FEC system as compared to an uncoded system with an identical modulation

scheme.

The combination of R-S coding with the frequency diversity property of OFDM to

obtain COFDM represents a suitable method for providing effective data transmission

over a frequency selective channel. However, additional compensation techniques must be

employed to further augment reliable communication and combat the presence of symbol

errors caused by multipath channel impulsive burst noise and flat fading.

E. SYMBOL INTERLEAVING

One technique using time diversity is symbol interleaving. In a multipath

environment the channel is characterized as having memory; thus, errors cannot be

considered as randomly distributed error events whose occurrences are independent from

symbol to symbol. Consequently, the error events among adjacent symbols as a result of

random signal fluctuations or pulsed noise are highly correlated and tend to occur in

concentrated bursts. Interleaving the coded message before transmission and

deinterleaving after reception allows error bursts to be spread out in time over the entire

message block, effectively decorrelating short error bursts. In this way the error events

appear more randomly distributed upon reception at the decoder which allows for

maximum error correcting performance [13; pp. 357-362].

30

In most practical situations, the channel memory decreases with increased time

separation. With the interleaving method, the code word symbols are separated in time,

with intervening times filled with symbols of other codewords. Thus, by separating the

symbols in time, a channel exhibiting memory can effectively be changed to a memoryless

one, allowing for random-error-correcting-codes to be more effective in correcting the

errors. The interleaving process shuffles coded symbols over a span of many symbol

lengths known as the interleaver block length; consequently, longer block lengths promote

more effective interleaving. The actual interleaving block length required depends on the

stochastic burst duration characteristic of the particular channel. However, regardless of

block size requirements, complete knowledge of the interleaving pattern algorithm

performed inside the transmitter must also be known by the receiver so that proper

reordering of the symbols and correct message reconstruction can be accomplished.

1. Block Interleaver

Different interleaving methods exist, the most basic being the conventional block

interleaver. [13; pp. 357-364] A block interleaver requires temporary formation of an

intermediate rectangular array whose product of matrix dimensions (matrix row number

times the matrix column number) equals the product of the initial source message matrix

dimensions. The intermediate matrix is completely filled by the symbols taken from the

message matrix, which are read in by rows. Afterwards the symbols are read out of the

intermediate matrix by columns, producing the interleaving effect. It is intuitively

apparent and will be later demonstrated by example that the degree of symbol interleaving

and spacing depends on intermediate matrix dimensions. However, there is a practical

limit to the intermediate matrix dimensions.

Aside from added system complexity, including the block interleaving operation

introduces transmission and decoding latencies. The dimensions of the intermediate

matrix determine the total symbol count in the message block; thus, larger arrays contain

more symbols. Considering that the block interleaver and deinterleaver cannot begin their

31

respective interleaving processes until all symbols are available, there is a transmission

delay period or latency as the intermediate matrix is filled. If more symbols are required to

fill larger intermediate matrices, longer delays occur. Excessive latency is undesirable for

a full duplex communication system such as the proposed modem since prolonged

transmission delays can adversely affect communications at the application level.

Obviously a compromise must be reached, allowing for the benefit of interleaving and

burst error decorrelation at the minimized expense of slightly increased latency and

negligible application performance impact.

Fig. 12 presents a block interleaver example demonstrating the effects of

interleaving a message prone to burst errors prior to transmission through the channel. In

this example, the symbol coded source message block is structured as a M by N matrix, S,

with M = 4 rows and N = 6 columns and the dimension product of S equal to M x N = 24.

As part of the interleaving algorithm an intermediate matrix must be temporarily

constructed using the symbols taken from S. Therefore, the dimension product of the

intermediate matrix, L, (# of columns times # of rows) also equals M x N. Given the

value of S for this example, all possible row and column intermediate matrix dimension

pairs are: (1,24), (2,12), (3,8), (4,6), (6,4), (8,3), (12,2), and (24,1). During the formation

and subsequent filling of the intermediate arrays having each of these dimensions, the

symbols provided by matrix S are read out row by row and into L row by row until S is

empty. After matrix L becomes full, the individual symbols within are read out column by

column, representing the transmission sequence. From this discussion, it is evident that

effective decorrelation of adjacent errored symbols within the transmitted message

sequence depends on selective formation of intermediate matrices using appropriate array

dimensions. Varied matrix dimensions tends to space the errors differently throughout the

message block after deinterleaving is performed.

Fig. 12 supports this example pictorially. It is instructive to note that formation of

intermediate arrays with dimensions (1,24) (row vector) and (24,1) (column vector) are

32

not generally implemented since no effective interleaving occurs. For instructional

purposes, this example uses intermediate matrix interleaver dimension pairs: (2,12), (3,8)

and (4,6) only. From Fig. 12, the dimensions of intermediate matrix A are (12,2), having

12 rows and 2 columns. After being filled completely with the symbols taken from the

source message block read in row by row, the transmitted sequence, TA, is read out of

matrix A column by column. During transmission through the channel, hypothetical burst

noise occurs corrupting a group of three adjacent symbols in the sequence. Upon

reception, the receiver deinterleaves the sequence to reconstruct the original source

message. It is apparent from the figure that the burst errors become decorrelated from the

group after deinterleaving, becoming isolated non-adjacent symbol errors spaced every

other symbol apart.

M = 4

Source Message Block
N = 6

M = 4

Intermediate Matrix A.

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

N. = 2

MA = 12

M x N = 24

Output sequence read out by rows:

... 10,9, 8,7,6,5,4,3,2, 1

Source Message Block
■KT = &

1 2
3 4
5 6
7 8
9 10 Transmitted sequence TA read out by
11 12 columns:
13 14
15 16 ... 19, 17, 15, 13, 11,9,7, 5,3, 1
17 18
19 20
21 22
23 24

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

Intermediate Matrix B.

M x N = 24 '"*

Output sequence read out by rows:

10,9, 8,7,6,5,4,3,2, 1

NB = 3

1
4
7
10

2
5
8
11

3
6
9
12
15
18

19 20 21
22 23 24

13 14
16 17

Transmitted sequence TB read out by
columns:

5,2,22, 19, 16, 13, 10,7,4, 1

33

Source Message Block
N = 6

M = 4

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

Intermediate Matrix C.
Nc = 4

M xN = 24

Output sequence read out by rows:

Mc=6

10,9,8,7,6,5,4,3,2,1

12 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24

Transmitted sequence Tc

read out by columns:

14,10,6,2,21, 17, 13,9,5,1

Transmitted Interleaved sequence TA:

... 19, 17,15, 13,11,9,7 5,3, 1

Transmitted Interleaved sequence TB:

Noisy Channel
Received Deinterleaved sequence RA:

... 1O,9,8,06,[H4,[3]2, 1
... 19, 17, 15, 13, Il,9,l7j5j3:

Error Bursts """"

Errors

... 5,2,22,19,16,13, 10,7,4,1

Transmitted Interleaved sequence Tc:

Noisy Channel
Received Deinterleaved sequence RB:

5,2,22, 19,16, 13,|l0,|7,|4jl

Error Bursts *—'

..[IÖ]9,8,[l]6,5,[433,2, 1

Errors

... 14,10,6,2,21,17,13,9,5,1
Noisy Channel

Received Deinterleaved sequence Rc:,

... 14,10,6,2,21, 17,
Error Bursts •*~~*""^

13 9 5,

.. 10,[9]8,7,6,[5]4,3,2,1

Errors

Fig. 12. Conventional Block Interleaver Example

In a similar example, using intermediate matrix B with 8 rows and 3 columns, the

identical channel burst error event once again affects a group of three symbols in the

transmitted sequence, TB. Following deinterleaving in the receiver, the group of

contiguous errors become decorrelated forming isolated symbol errors in the received

sequence, RB, spaced every two symbols apart. Similarly, for the last intermediate matrix

C example, following transmission of the interleaved sequence, Tc, through the channel

and deinterleaving in the receiver, the group of errored symbols afflicted by burst noise in

the channel, become singly occurring error events spread out in the received message

sequence, Rc, and are spaced every third symbol apart. If this example continued for

every possible interleaver intermediate matrix dimension, it becomes apparent that the

34

spacing of isolated errors appearing in deinterleaved message sequences are directly

related to the intermediate matrix dimensions.

Received Deinterleaved sequence, RA
-►

R-S Decoder
t = 2

Block size = 10

Decoded sequence:

... 10,9, 8J36J34,02,1 ... 10, 9, 8j7] 6Ü]4Ü]2, 1

Errors

Decoded sequence:

Errors

Received Deinterleaved sequence, RB: R-S Decoder
t = 2

Block size = 10

w

... Qfi] 9, 8J3 6, 5j4] 3, 2, 1 ...[TO] 9, 8,0 6, 5,0 3, 2,1

Errors

Decoded sequence:

Errors

deceived Deinterleaved sequence, Rc: R-S Decoder
t = 2

Block size = 10

 ^-

... 10,[9]8,7,6,[5]4,3,2, 1
—►

... 10,9, 8,7,6, 5,4, 3,2, 1
Errors corrected

Errors

Fig. 13. Block Interleaver With R-S Decoding

2. Interleaving And R-S Error Correction

The spacing and locations of received symbol errors are important considerations

during implementation of efficient block error correction codes such as R-S coding. As

previously mentioned, the R-S code is effective in correcting t errors within a message

block. Therefore, the ability of the R-S code to all correct errors depends on the error

concentration within the block and the strength of the code. Referring to Fig. 13 as a

continuation of the example presented in Fig. 12, the R-S code is not effective in

correcting errors in received sequences RA and RB since the code is limited to correcting

only two errors in a message block size of ten symbols. Since both the RA and RB

sequences contain three errors within a ten symbol block, the symbol error count exceeds

the error correction ability of the R-S code. Thus, no correction is possible for these

sequences and the errors remain, corrupting those portions of the message. However, the

configuration and interleaving/deinterleaving processes performed on the received

message sequence Rc, successfully redistributes the individual errors across the entire

transmitted block permitting only two errors to exist in a coding block length of ten

35

symbols. Consequently, the R-S code is effective in correcting these two errors and

recover all the lost information within this ten symbol block. Thus, the guarantee of

reliable symbol transmission not only depends on the R-S coding strength and block

length, but also on the selection of suitable interleaving configuration parameters for a

given noisy channel. During the simulation research conducted for this thesis, the R-S

coding and interleaving parameters are frequently adjusted and corresponding results

recorded to identify optimal combinations for communication with minimal symbol error

rates and maximized performance.

3. Cyclical Shifting Block Interleaver

In addition to the ordinary block interleaver, a cyclical shifting block interleaver

disperses burst errors by redistributing symbols within an intermediate matrix according to

a predefined shifting algorithm prior to transmission. One such type of interleaver

previously incorporated in the Common Data Link (CDL) Simulation is referred to as the

CDL interleaver and is based upon a Unisys Corporation proprietary design [6], [14]. The

CDL interleaver also relies on the formation of an arbitrary sized intermediate matrix

similar to the block interleaver. However, as an additional operation within the

intermediate matrix, symbols along rows and/or columns are shifted cyclically according to

the formula:

m = W(II + 1), (27)

where n is the corresponding matrix row or column number and m is the number of

positions the symbols are shifted, either row and/or column positive and/or negative. It is

also possible to define other shifting algorithms besides the one defined in (27), perhaps

offering better statistical channel performance under certain recognizable error pattern

behavior. Regardless of the type of algorithm implemented, apriori knowledge of the

36

algorithm implemented must also be known to the receiver so that proper reordering of

symbols can be accomplished by the decoder.

M = 4

Source Message Block
N = 6

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24

Intermediate Matrix

M=6

MxN = 24

Output sequence read in by rows:

...10,9,8,7,6,5,4,3,2,1

N = 4

0 1 2 3 - Column numl

0 1 2 3 4
1 5 6 7 8
2 9 10 11 12

13 14 15 16 3

4 17 18 19 20
5 21 22 23 24
1

Row
number

Shifting Algorithm
(row & column negative - case 5)

Cyclically Shifted
Intermediate Matrix

m
n{n +1)

m

N = 4
0 1 2 3 - Column number

0
1
3
6
10
15,

M=6 1 7 13 4
6 9 17 5
12 16

20
22
3

11
14 lb

19 21 8 18
24 2 10 23

Transmitted sequence, T
read out by columns:

...9,7,24,19,15,12,6,1

Row
number

Fig. 14. Cyclical Shifting Block Interleaver Example

As an example of a cyclical shifting interleaver, Fig. 14 duplicates the familiar

source message matrix and intermediate matrix, C, previously presented in the Fig. 12

examples. In this example, cyclical symbol shifting is performed as an additional operation

acting on the symbols within the intermediate matrix according to (27). For this particular

interleaving case (case 5), shifting is first performed on row symbols followed by column

symbols in the negative directions (to the left for rows, toward the top for columns).

Other interleaving cases are also permitted (total of eight cases) allowing for multiple

37

combinations of row and column shifting directions and are defined in Chapter V.

Following cyclical shifting, the symbols are once again read out of the intermediate matrix

by columns forming transmitted sequence.

Transmitted Interleaved sequence T;:

9,7,24,19,15,12,6,1
Noisy Channel

Received Deinterleaved sequence R;:

9,7,24,19,

Error Bursts

15, 12 6,

10,9,8,7]6j5,4,3,2, 1

/
Error

Received Deinterleaved sequence, RJ:

10, 9,8,1^5, 4, 3, 2,1

/

R-S Decoder
t=l

Block size = 10

Error

Decoded sequence:

10, 9, 8,7,6, 5, 4, 3, 2, 1

No Errors

Fig. 15. Cyclical Shifting Block Interleaver With R-S Decoding

The output sequence is transmitted through the multipath channel and encounters

burst noise, corrupting portions of the signal. The received signal plus noise is decoded

and the corresponding symbols are recreated, one of which is erroneous. The symbol

sequence next enters the R-S decoder, attempting to correct single symbol errors within a

code block length of 10 symbols. From Fig. 15, it is apparent that the error present in the

deinterleaved sequence code block is successfully corrected by the R-S decoder. Hence in

this particular example, the cyclical shifting block interleaver sufficiently redistributed

errored symbols for effective R-S error correction while using a reduced code strength.

In the previous block interleaver example involving intermediate matrix C, a

stronger R-S code capable of correcting two symbol errors is required to generate an error

free sink message sequence. However, in contrast to the cyclical shifting interleaver

example also using intermediate matrix C, a reduced strength R-S code capable of

correcting a single error is all that is necessary to ensure a message sequence devoid of

38

errors. In comparison of the two examples, the cyclical shifting interleaver is as effective

as the block interleaver in producing an error free message with a reduced code strength,

hence, less code overhead is required and a greater information rate is possible.

Not all cyclical shifting interleaving cases are as effective, as there is dependence

upon channel characteristics as well as intermediate matrix dimensions for optimal

performance. During this research, multiple simulations are performed using various

interleaving configurations in an attempt to determine the most effective cases.

39

40

IV. MATLAB COFDM SYSTEM MODEL

The next step in the research was the development of an COFDM computer

system model upon which simulations are based. For purposes of this thesis, all signal

processing and channel transmissions through the simulated links are performed at

baseband. In consideration of this thesis representing a computer system emulation and

simulation not requiring physical implementation, the functions normally associated with

RF up-conversion and down-conversion are not necessary to generate meaningful tradeoff

results. Thus, filtering, digital-to-analog conversion (DAC), up/down frequency

translation and analog-to-digital conversion (ADC) functional sub-blocks necessary for

actual implementation are not included in the computer model.

A. COFDM TRANSMITTER

The COFDM transmitter functional block diagram is illustrated in Fig. 16 with

each of the sub-blocks subsequently described.

Message Source

Symbol
Formater

-W R~S r
! Encoder*

CDL
Interieaver

q-bit top-bit
Syrnbd

Reformata

Differential
PSK

Channel
Encoder

Guard
Interval
Insertion

<
Frequency

Array
Arranger

■<

Transmitted
Baseband ^

Signal

iFFr
Processing

<

Fig. 16. COFDM Transmitter Functional Block Diagram

41

Random Bit Generator: This functional block originates a random message bit

pattern representing the information source. The bit sequence length is variable as defined

by the user. The random property of each binary element is determined by a seed

parameter setting the internal computer's random number generator seed. If multiple

simulations are performed using the same seed values, identical results occur. This

property is useful when comparing and contrasting simulation outputs with different

system configurations. By fixing seed values, optimal system configurations can be

ascertained based upon superior SER performance while using consistent channel

characteristics and source message symbol patterns. It is also possible to set the seed

randomly by the internal PC processor.

Symbol Formatter: The random binary message stream enters the symbol

formatter where bits are collected and grouped together to form q-bit long words and are

referred to as OFDM symbols. For most of the simulations conducted, an initial message

symbol word length of eight bits is used. In consideration of eventual COFDM system

implementation, selecting eight bit symbol words allows compatibility with existing

commercial off-the-shelf (COTS) R-S error correction hardware which is typically

physically designed to operate on 8-bit words. Furthermore, using 8-bit symbols instead

of 4-bit symbols for example, permit longer R-S code word formations and greater

number of possible symbol corrections within a code word. Thus, this step is included in

the signal path solely with future implementation and R-S coding in mind. At a later stage

in the transmitter after R-S encoding, the symbols are resized using shorter length words

to accommodate the preferred constellation mapping scheme and are referred to as PSK

symbols.

The formatted symbol sequence is reshaped into a matrix forming the source

message block. The number of matrix columns corresponds to the desired number of

COFDM subcarriers generated for transmission and must be even. The number of matrix

rows is entirely arbitrary depending on the specified message block length. The total

42

number of symbols randomly generated for simulations equals the source message block

column number times the row number.

Error Correction Encoder; Symbol error correction is incorporated into the

COFDM system model using a Reed-Solomon (R-S) correction method, allowing for t or

fewer errors to be corrected as governed by (25). The information word size, n, the code

word size, k, and the code block length are user defined to select the coding strength and

coding gain as required, with consideration given to overall code rates. While provisions

for the error detection and correction functionality is included in the COFDM system

model, symbol encoding and parity bit generation is not actually performed in the

transmitter and exists virtually; hence, the dashed outline representing the R-S encoder

block in Fig. 16. Instead, the error detection and correction functionality is emulated in

the receiver without the additional step of individual R-S symbol decoding.

Absence of the R-S encoder is justified under the assumption that effective R-S

encoders have previously been demonstrated and verified. Therefore, it is not necessary to

emulate the actual encoding process since R-S encoding verification is not the focus of

this research, and this additional operation slows down simulation run times. For COFDM

simulation purposes, it is only necessary to emulate an error correction mechanism to

correct received symbol errors at some stage in the communication link. Consequently,

the R-S error correction functionality is actually emulated in the receiver and is based

upon comparisons of the source message to the received message. Further discussion

regarding this will be included in the R-S decoding section of the OFDM receiver.

CDL Interleaving: As a time diversity mechanism, a symbol interleaver is

included and operates on the source message symbol array to redistribute the symbol

locations. As mentioned in the previous Chapter this process aids in randomizing burst

errors in a multipath channel. The extent of symbol interleaving is primarily determined by

the user specified dimensions of the intermediate matrix as given by the row number and

43

column number. However, all interleaver row and column parameters must correspond to

the original message array dimensions as previously discussed.

In addition to conventional block interleaving, more sophisticated cyclical shift

interleaving is also included to redistribute symbols according to a predefined shifting

algorithm. The shifting algorithm is a function of the intermediate matrix row number

and/or column number and is based upon a Unisys Corporation proprietary design [14]. A

total of eight separate configurations (interleaving cases) are incorporated to cyclically

shift symbols in a selective pattern within the two dimensional intermediate matrix.

Symbol Reformatter: In preparation for the appropriate N-ary modulation

scheme, N-PSK, the incoming q-bit OFDM symbols are resized into p-bit PSK symbols,

where N = 2P (Note: the N used for N-ary signaling is not the same N used for N-point

FFT calculations). Since 16-PSK and 4-PSK (QPSK) are predominately used during

simulation runs, accordingly symbol lengths are resized as either 4-bit (p = 4) or 2-bit (p =

2) length words. If necessary, zero bit padding may be required during the reformatting

process to account for incomplete word formations.

As a result of symbol reformatting, the dimensions of the original source message

array may change to compensate for the addition or deletion of redefined symbols.

Regardless of the number of new PSK symbols formed, the number of matrix columns

corresponding to OFDM subcarriers remain fixed. Hence, any necessary message symbol

quantity adjustment is accommodated by increasing or decreasing the number of matrix

symbol rows instead. For example, if during the symbol reformatting process the OFDM

symbols are changed from 8-bits to 4-bits, then the total number of message symbols

double from their original amount. Consequently after reformatting, the number of

message matrix rows double while the number of message matrix columns remain

constant.

44

Channel Encoding: PSK is the preferred modulation technique for channel

encoding in multipath channels. Prior to signal constellation mapping, differential

encoding is performed on the symbols within the message matrix. Two types of

differential encoding are included. Considering differential encoding along the time

dimension (symbol rows), a cumulative summation down each column of the message

symbol array is calculated. For differential encoding along the frequency dimension

(OFDM frequencies), a cumulative summation across each row of the message symbol

array is calculated. Recall that construction of the message block matrix is designed so

that columns represent OFDM frequencies (frequency dimension), while rows represent

symbols generated in time (time dimension). During subsequent simulation trials, either

frequency and/or time differential encoding may be selected to evaluate system

performance.

The differential encoding/decoding technique introduces memory into the system

and allows for decoding of the current received symbol with respect to the previously

decoded symbol. Consequently, detection decisions are based upon relative differences

between consecutively received symbols. This technique may be advantageous in a slowly

fading multipath channel where the variations among successive received symbols is

negligible. A cumulative summation can be best illustrated through an example.

Given: V= [1 2 3 4 5 6 7 8 9]' (28)

then, OumVie - [1 3 6 10 15 5 12 4 13]'. (29)

V is a column vector whose elements represent message symbols taken from the set of N

integers, where N = 2P. CsumV is formed by consecutively adding in modulo-N fashion

successive elements in V beginning with one to the current running total in CsumV

beginning with zero. For this example N = 16; thus, 0 + 1 = 1, 1 + 2 (the next element in

V) = 3, 3 + 3 = 6, 6 + 4 = 10, 10 + 5 = 15, 15 + 6 = 21 = 5 (modulo-16) and so on. In

45

this way, all the elements in CsumV are calculated with respect to the first element in V.

A more concise expression is:

CsumVk = Vk 0 CsumVk-i, (30)

where {Vk} is a modulo-N message sequence into the differential encoder, {CsumVk} is

the encoder output sequence, and © denotes modulo-N addition [13; pp. 108-109].

Following differential encoding, each symbol in the differentially encoded message

array is channel encoded as a complex modulation value with unit magnitude and one of N

possible phases (N-PSK modulation); that is,

CsumVx

Dx=e2*~~*~. (31)

In continuation of the previous example ending with (29), the corresponding vector of 16-

ary complex modulation value phase angles are,

Ang[D] = [22.5° 67.5° 135° 225° 337.5° 112.5° 270° 90° 292.5 °]' (32)

A row of ones representing zero phase complex modulation values is appended to

the top of the message array during time differential encoding, representing a decoding

reference for the receiver. For frequency differential encoding, a pair of columns

containing ones elements is appended to the extreme left side of the message array as a

similar decoding reference. Two ones columns are included instead of a single column to

maintain an even number of OFDM frequencies (even number of columns).

Frequency Array Arranger: This sub-block conditions the previously generated

array of complex modulation values for eventual EFFT processing. Due to the manner in

46

which the N-point FFT algorithm is performed by MATLAB, the resulting signal spectrum

is graphically displayed symmetrical about the point N/2 instead of the origin, with

frequency indexing from 0 to N-l instead of the usual baseband range of-N/2 to N/2-1, as

depicted in Fig. 18. Since MATLAB does not allowing negative indexing, the left half

negative portion of a correct spectrum shown in Fig. 17 is shifted positive N positions as a

result of a FFT. To account for the swapping of the left and right half portions of the

spectrum, an index correction shift must subsequently be performed to relocated the upper

half samples above N/2 back to their normal positions, left of the origin at the receiver.

Recall that the IFFT/FFT are periodic functions with period 2n; thus, the spectrum

infinitely repeats itself as shown in Fig. 19. Consequently, after bandpass filtering the

spectrum with cutoffs N/2 and 3N/2, a complete symmetrical spectrum can be obtained

that matches a baseband one suitable for transmission.

OFDM Subchannel Spectrum

1

0.8

0.6

0.4

0.2

0

-0.2

/~N A r r\ /"X
\„/ \J \y \~s

-30 -20 -10 0 10
Subcarrier Frequency (Hz)

20 30

Fig. 17. Correct Fourier Transform Frequency Spectrum

47

Shifted OFDM Subchannel Spectrum

1,

0.8

0.6

0.4

0.2

0

-0.2

\ f\ , r\ , /^ /

\y \y N^/

10 20 30 40 50
Subcarrier Frequency (Hz)

60

Fig. 18. Shifted Frequency Spectrum Resulting From MATLAB FFT

Shifted OFDM Subchannel Spectrum (Periodic Repetition) Band-pass Filter
/

1, /
i \ X, f

i x \ '
i \

0.8 i \
/

/
\

/
\

Ü.6 / \
i \

i \
0.4 t \

i
/ \

\
i \

i \
0.2 .

i \
s\ i z\ \
f\ ' /"\ l \ /~\ N

0

-0.2

^ ' \ . f\ I - /- > f \ v

V Ky Ks \j

0 10 20 N/2 = 30 40 50 N = 60 70 80 3N/2 = 90

Subcarrier Frequency (Hz)

Fig. 19. Complete Spectrum Recovery Using Bandpass Filter

48

With this in mind, the frequency array arranger block accepts the input vector

containing K elements of complex modulation values and pre-shifts the first half to the

right and takes the second half and shifts them to the left. To account for filter roll-off

slopes, a padding of P zeros are inserted between the upper and lower halves. Thus, the

total sample length becomes N, where N = K + P.

IFFT Processine: To convert the frequency array to time domain representation, an N-

point IFFT is performed producing a corresponding output sequence of time domain

samples. The input array of complex modulation values have the left and right half

swapped by the previous frequency arranger block to account for the automatic frequency

index shift that results from the IFFT.

Guard Interval Insertion: A guard interval composed of a periodic extension of the

symbol is inserted at the beginning of each symbol for channel impulse response

compensation purposes. The length of the guard interval is variable to account for

multipath delays and may be lengthened or shortened as required. The guard interval is

represented by additional time domain samples added to the resulting sequence derived

from IFFT processing.

B. COFDM RECEIVER

The receiver functional block diagram is illustrated in Fig. 20. The blocks in the

receiver perform the reciprocal functions of the transmitter and are described below.

49

Differential
Decoder&

Symbol
Mapper

Frequency
Array

Rearranger

p-bittoq-bit
Symbol

Reformater

CDL
Deintierleaver

Received
Baseband

Signal

Fig. 20. COFDM Receiver Functional Block Diagram

Guard Interval Removal: The guard interval precursor appended to each symbol

in the transmitter is initially removed, leaving behind the remaining information portion of

the symbol for further processing. The information symbol consists of a sequence of N

time domain samples.

FFT Processing: The sequence of time domain samples are transformed into the

frequency domain using an N-point FFT to recover the OFDM frequency tone

information. In a linear time-invariant channel, the orthogonality of carriers is preserved;

however, in a multipath environment with frequency Doppler shifting, this is not always

the case. The output is an array of complex modulation values with the left half portion

shifted to the right N positions as a result of the FFT operation (Fig. 18).

Frequency Array Rearranger: To reconstruct the array of complex modulation

values properly after FFT processing and maintain correct spectral ordering, the frequency

rearranger block swaps the upper half portion of the complex values to the lower half

50

indexed positions and the lower half values get shifted to the upper indexed positions. In

effect, the two halves exchange their positions.

Channel Decoding: Differential decoding in first performed either in the

frequency dimension (matrix columns) or time dimension (matrix rows), maintaining

compatibility with the transmitter differential encoding method. In addition, the previously

appended reference ones elements are removed. Afterwards, channel decoding is

accomplished, inverse mapping each received complex modulation value with magnitude

and phase into a corresponding N-ary symbol representation composed of p bits.

Considering 16-PSK, 4 bit long symbols are reconstructed.

Symbol Reformatter: The signal inverse mapper recreates p-bit long symbol

words represented in decimal notation. To prepare each symbol for eventual R-S

decoding, each p-bit symbol is first converted to it's binary equivalent, then reformatted as

eight bit symbols. Once again the message matrix dimensions may change according to

the symbol reformatting scheme in an inverse manner from the way discussed in the

transmitter. The final output sink message matrix has the same dimensions as the source

message matrix in the transmitter.

CDL Deinterleaving: The message array of eight bit symbols is next

deinterleaved to reconstruct proper ordering of the information symbol stream according

to the particular interleaving case configured in the transmitter. After deinterleaving, any

corrupted symbol errors caused by burst noise in the channel should be sufficiently

redistributed within the message array, creating a more random, uncorrelated error

distribution.

R-S Decoder: The Reed-Solomon decoder detects and corrects t symbol errors

where t is given by (25). As the number of parity check symbols in the code word of n

symbols increases within a practical limit, more errors are corrected and the coding gain is

51

improved. The R-S decoder performs error detection and correction functionality without

actual decoding since no parity symbol encoding is performed in the transmitter for

reasons previously discussed. The symbol detection and correction scheme looks for

errored symbols within a code block by comparing source and sink messages. Any symbol

miscompares appearing within a code block indicate errors, and an attempt at correcting

the errors is performed depending upon the configured coding strength and code block

length. Error quantities within a code block exceeding the correction ability of the code

are left unaltered and result in message corruption.

Received Message: The output of the receiver represents the received sink

message block. After transmission through the system channel model and prone to noise

and multipath distortions, symbol errors may exist. The distribution of error events within

a message array is recorded and the symbol error rates calculated to generate

corresponding performance curves. The resulting simulation data is compared to the

theoretical performance criteria for evaluation.

C. CHANNEL MODELS

Noisy Channel: Three channel models are emulated as part of the overall

communication system model and used during simulations (a noise free channel 0 model is

also included for system functional verification) (Fig. 21). One emulated channel type is

the AWGN model and represents additive noise only. The second is the multipath channel

model and is characterized by power fading (loss) in dB, Doppler frequency shifting in Hz

and multipath time delays in microseconds which vary for each transmission link according

to the specified multipaths. For example, the ship-to-ship link has two multipaths, one

Ricean distributed and one Rayleigh distributed. The ship-to-shore link has three

multipaths, one Ricean distributed and two Rayleigh distributed, and finally the ship-to-

relay (air) link also has three multipaths, one Ricean distributed and two Rayleigh

distributed. The composite channel 3 model is a combination of the first two models;

52

thus, the AWGN model is added to the multipath model representing the actual maritime

communication environment.

Transmitted
Signal —

Model 1: Noise

i
AWGN Channel Model

Received
"*" Signal

Transmitted_
Signal

Model 2: Fading Doppler Delay

Y Y Y

Multipath Channel Model Received
Signal

Transmitted
Signal ►

Fading Doppler Delay

Y Y Y

Multipath Channel Model

Model 3:
Noise

AWGN Channel Model
Received

-&- Signal

Fig. 21. Three Channel Models

D. SYSTEM DESIGN METHODOLOGY

Initial design of the overall system originates from an understanding of the

COFDM concept as well as from an attempt to meet the specified system objectives for bit

rate and performance. According to the BAA requirements, the desired modem

operational bit rate is 1.536 Mbps. Additionally, the usable 3-dB bandwidth of operation is

480 KHz, with primary consideration for operation in the 225-400 MHz UHF band. From

this information, the calculated bits per Hz is found to be

53

1536kbps hit/ btts/
K~ 4S0kHz ~32 /Hz-4 /Hz- (33)

Rounding bHz up to the next whole number, 4 bits per Hz results; hence, 16-ary signaling

is used, since M = 2q = 24= 16. In consideration of relatively fast fading rates in addition

to minimal bandwidth usage, PSK is selected as the baseline modulation technique for this

emulation; thus, 16-PSK is included. It is instructive to note that by using 16-PSK the

calculated bit rate is 1.92 Mbps, a rate in excess of the specified bit rate. However, it will

become apparent later that this added throughput diminishes once FEC is included and

guard intervals are appended to individual symbols as required non-information bearing

overhead. Thus, the useful information bit rate is reduced.

Consideration is next given to the required symbol interval length. It is undesirable

to use excessively long symbol interval lengths in a multipath channel so as to avoid power

fading within the symbol. Similarly, it is not advantageous to minimize the symbol interval

length too much since a guard interval precursor must later be appended to the

information symbol for channel compensation purposes. For optimal efficiency, guard

interval overhead should be minimized as much as possible while also maintaining

effectiveness in negating multipath distortions. In consideration of the BAA's specified

worst case multipath time delay of 5.1 usec (link 3, ship-to-relay link), a guard interval of

10 usec is considered sufficient compensation. As a general rule of thumb to minimize

overhead, the guard interval occupies no more than two percent of the information bearing

symbol length. Consequently, the calculated symbol length, Ts, becomes 500 (isec (Ts =

Tg/2% = 10 (j.sec/.02 = 500 (isec), while the total symbol length, Ttotai, is 510 u,sec.

Using the calculated symbol length, Ts, and keeping in mind that the spacing of

OFDM sub-carriers is the reciprocal of the symbol interval, one may obtain the OFDM

tone spacing as follows:

54

fs=V = 7^ = 2000#z. (34) 7^ 5 00 ju sec

From fs, the maximum number of OFDM frequency tones allowed within the available 3

dB, 480kHz bandwidth, BWsdB, is

BW3dB 4S0kHz
^™=^r=Ää=24°- (35)

Consequently, as shown in Fig. 22, the complete overlapping spectrum of OFDM symbols

are mapped to 240 corresponding OFDM sub-carrier tones occupying a 480 kHz

bandwidth. In the time domain, the symbol interval appears similar to Fig. 23 with

information interval, Ts, occupying 98% of the entire symbol length, Ttotai, equaling 510

usec. Accounting for 2% guard interval overhead, the adjusted bit rate without R-S

coding is 1.8816 Mbps. If R-S FEC is included with a 0.85 code rate, then the overall bit

rate further reduces to 1.5936 Mbps, still above the specified objective. It will be

demonstrated later during simulation discussions for certain links and system

configurations that the actual bit rate decreases further as additional FEC strength is

required to accommodate channel induced noise and perform acceptably.

55

2 3 ... 238 239 240

OFDM Tone Number

f(Hz)

Fig. 22. Emulation Partial OFDM Spectrum

Entire Transmitted Symbol

Guard
Interval Message Symbol

< -y H<-
g

X.

X total

T = 10/^ sec

T = 500 Msec

Ttotal=510/ZSeC

Fig. 23. Single Symbol Interval with Precursor

56

Nonetheless, having preliminarily determined the modulation scheme, the guard

interval length, the proposed number of OFDM frequency tones and the OFDM frequency

spacing while considering the bit rate objective and bandwidth constraints, construction of

the software COFDM system emulation model can begin. A block diagram of the

complete system model which is emulated in MATLAB and simulations performed is

presented in Fig. 24.

Noisy Channel

Differential
Decoder &

Inverse Symbol
Mapper

Frequency
Array

Rearranger

FFT
Processing

Guard
Interval
Removal

p-bittoq-bit
Symbol

Reformater

CDL
Deinterleaver

OFDM RECEIVER

Fig. 24. Complete OFDM System Model

57

58

V. MATLAB PROGRAMMING AND MACRO DEVELOPMENT

A. GENERAL MATLAB FUNCTION FORMAT

The MATLAB language provides various standard built-in functions and

commands as well as additional higher level tool box functions. It is possible to define

custom macro functions with multiple input and output arguments. The user can define

and program macros by using a standard ASCII text editor such as Notepad or MS Word.

The programmed files are created and named with a .m suffix appended to each macro

name; appropriately functions are referred to as "m-files". To invoke a macro within the

MATLAB command window, a user types the function name and includes the input

argument variables in parentheses, and sets the function equal to the output variables in

brackets. The variables may be real or complex, scalars, vectors, or matrices. For

example, the function function.m is an ASCII file in a directory in the MATLAB path and

has the form:

[outl,out2,out3] = function(inl,in2,in3), (36)

where outl, out2 and out3 are output variables and inl, in2 and in3, are input arguments.

Macro functions may also be equivalently represented as a functional module or block as

shown in Fig. 25.

(inl,in2,in3) *"K^#f^ *~ [outLout2.out3]

Fig. 25. A MATLAB Functional Block

59

B. OFDM SYSTEM MODEL CONSTRUCTION OF FUNCTIONAL BLOCKS

With an understanding of the basic structure for creating macros, emulation of the

COFDM communication system depicted in Fig. 24 is done by initially partitioning the

overall system according to functionality and forming functional interconnecting sub-

blocks. The COFDM system model consists of three rudimentary components: a COFDM

transmitter, the channel and a COFDM receiver. Within the transmitter are two separate

functional blocks, a source encoder block and an IFFT processing block. The channel

consists of four separate models: the channel 0 model, the channel 1 model, the channel 2

model and the channel 3 model. Each channel model corresponds to a different type of

noise (except for channel 0 model which is noise free). The receiver block consists of two

blocks: the FFT processing block and the message decoding block. Recall that all

simulations are performed at baseband; therefore, no additional blocks associated with RF

bandpass transmissions are required nor included in the model.

Input
Parameters

OFDM Transmitter

Source
Encoding

IFFT
Processing

AWGN = 0
Doppler = 0 Hz
Delay = 0 sec
Loss = 0dB

Noise Free
Channel

Baseband Signal

FFT
Processing

Message
Decoding

OFDM Receiver

Received
Message

Fig. 26. Model 0 Block Diagram

60

1. COFDM Model 0 System

The model 0 block diagram is shown in Fig. 26 and represents a noise free perfect

channel, i.e., the absence of AWGN and any multipath influences within the channel.

Transmitter source encoding is performed within the m-file macro, cdrcdlft.m. The

functional sub-blocks associated with cdrcdlft.m are depicted in Fig. 27. The IFFT

processing block responsible for generating OFDM frequency tones and appending guard

intervals is represented by the m-file macro, tda.m Correspondingly in the receiver, the

inverse functions of the transmitter are performed, namely FFT processing and guard

interval removal is accomplished by the itda.m m-file, while signal decoding is

accomplished by macro decdrcdl.m.

Input —
Parameters

cdrcdlft.m

- m^m^ m

Random Message CDL Interleaver
Generator

M-ary to N-ary
Converter

-^l<ÜfcÄm * »- a wife r* |

Xfrfs,sf*ss*.yjymsjvss.:4

Complex Value Frequency Array
Modulation and Arranger

Differential Encoder

Frequency
Domain
Message
Signal

Fig. 27. M-fde Cdrcdlft.m Functional Sub-blocks

61

a, COFDM Transmitter

The hierarchical arrangement of m-files within cdrcdlftm, including

subroutine macros, are presented in Fig. 28 and are subsequently described in detail.

cdrcdlftm

marymsg.m cdlilv.m

msg.m

bm.m

bm.m cmv2fa.m

mb.m difcdrft.m

rotm.m

Fig. 28. M-file Hierarchy for Cdrcdlft.m

The source message is randomly generated by the m-file marymsg.m. The general

form of the function is depicted by the functional block shown below. As Table 1

(q,s,n,m) vmary

demonstrates, this function generates an array of randomly generated q-bit long symbols

displayed in decimal notation which represent the random message source, vmary. The

input arguments, n and m, determine the overall output message matrix dimensions, where

n is the number of rows and m is the number of columns. The value selected for m also

represents the number of OFDM frequency tones and must be an even positive integer so

as to completely fill the available transmission bandwidth without spectral cutoff of the

endpoint symbols. The value selected for n is any arbitrary positive integer and represents

62

rows of symbols generated in time. The input argument, s, is the seed parameter used for

setting the seed of the internal MATLAB random number generator function. The

remaining input argument, q, represents the number of bits contained in each of the symbol

words. Considering M-ary signaling , M = 2q. The function marymsg.m requires two

other subroutine m-files, msg.m and bm.m.

» msgl = marymsg(3,10,6,6) % Random 6 row by 6 column message source using 8-ary

symbols and a seed of 10.

msgl =

6 16 6 4 0

6 6 10 16

0 0 14 2 6

12 0 6 6 0

0 2 10 2 6

10 4 2 6 3

» msg2 = marymsg(4,20,3,8) % Random 3 row by 8 column message source using 16-ary

symbols and a seed of 20.

msg2 =

8 9695 10 97

2 12 92 8789

5 13 7 12 3 1 0 9

» msg3 = marymsg(8,30,5,4) % Random 5 row by 4 column message source using 256-ary

symbols and a seed of 30.

msg3 =

14 228 148 105

109 152 123 4

34 221 32 68

177 101 84 152

93 215 184 171

Table 1. Marymsg.m Sample Outputs

63

(s,k) [u]

(q,v)

The function msg.m randomly generates a ^-length binary output sequence, w,

with the random number generator seed set by parameter, s. The function bm.m,

representing a binary to M-ary converter, transforms a variable length binary input

sequence, v, into an equivalent M-ary output sequence, m, depending on the value selected

for q, the word bit length. By accepting as an input the random binary output generated

by m-file msg.m, bm.m groups bits together #-bits at a time to form words representing

M-ary symbols whose output is a vector of equivalent decimal numbers. Padding with

zeros may be necessary to ensure a complete q-bxt word formation. Table 2 and Table 3

illustrate the function operations through examples.

» binl = msg(10,20) % Random binary sequence of length 20 with seed of 10.

binl = 0 1110001101100100001

» bin2 = msg(ll,13) % Random binary sequence of length 13 with seed of 11.

bin2=l 010110100001

Table 2. Msg.m Sample Outputs

» maryl = bm(3,binl)) % 3-ary equivalent of binary test pattern, binl.

maryl =6166402

64

» maiy2 = bm(4,binl)) % 4-ary equivalent of binary test pattern, binl.

mary2 = 14 8 13 4 8

» mary3 = bm(3,bin2)) % 3-ary equivalent of binary test pattern, bin2.

mary3 = 5 6 2 0 1

» mary4 = bm(4,bin2)) % 4-ary equivalent of binary test pattern, bin2.

mary4 = 5 11 0 1

Table 3. Various Bm.m Sample Outputs

(l,k,case,s,SYNC) ^k«iiüvfli *- si

After the randomly generated source message of M-ary symbols displayed in

decimal notation is formed, the array is next interleaved by the m-file function cdlilv.m.

This m-file has a five argument input and a single output. Parameters, / and k, determine

the dimensions of the interleaver intermediate matrix where / is the number of rows and k

is the number of columns. The parameter, case, is an input that selects which desired

interleaving method should be included. There are nine different interleaving cases. Case

0 represents a conventional block interleaver where the message symbol array is read into

the intermediate matrix by rows, then immediately read out of the same matrix by columns

as demonstrated in Fig. 12. Cases 1 through 8 represent cyclically shifted interleaver cases

of the type previously incorporated in the Common Data Link (CDL) simulation (Fig. 14).

After the message block is read into the intermediate matrix by rows, the symbols are then

65

cyclically shifted by rows and/or columns within the intermediate matrix as a function of

the case number. The rows may be shifted to the left (row negative) or to the right (row

positive). Similarly, the columns may be shifted upward (column negative) or downward

(column positive). The algorithm that determines the amount of row and/or column shift

is given by (27), and is a proprietary Unisys Corporation design previously included in the

CDL simulation model [6], [14]. The eight cases indicating shift direction are summarized

as follows:

Case 1 - Column negative,

Case 2 - Column positive,

Case 3 - Row negative,

Case 4 - Row positive,

Case 5 - Row negative/column negative,

Case 6 - Row negative/column positive,

Case 7 - Row positive/column negative,

Case 8 - Row positive/column positive.

After appropriate cyclical shifting is performed inside the intermediate matrix as

determined by the case number, the interleaved symbols are read out of the intermediate

matrix by columns and represent the output interleaved sequence, si. The remaining input

parameter, SYNC, is a left over from the CDL simulation model and represents the

interleaver synchronization code word which overwrites the last sixteen bits of the

interleaved output. For purposes of this COFDM model, SYNC is not necessary and

therefore is not used by setting it equal to an empty vector in this simulation.

It is also possible to bypass the interleaving operation entirely by appropriately

selecting the number of rows, /, or the number of columns, k, of the intermediate matrix

dimensions to be one. In this way, the construction of intermediate matrix actually takes

the form of either a row or column vector. Column or row vectors cannot be effectively

66

interleaved using this method; thus, the output sequence of cdlilv.m is identical to the

input sequence with no effective interleaving accomplished. Table 4 demonstrates CDL

interleaving by example.

» msg2 % Original source message array with 3 rows and 8 columns (16-ary symbols).

msg2 =

89 69 5 10 97

2 12 92 8789

5 13 7 12 3 10 9

» msg2t = msg2' % Transpose msg2 array into msg2t with 8 rows and 3 columns.

msg2t =

8 2 5

9 12 13

6 9 7

9 2 12

5 8 3

10 7 1

9 8 0

7 9 9

» msg2vect = msg2t(:)' % Msg2 reformatted as a row vector with 1 row and 24 columns.

msg2vect =

Columns 1 through 12

89695 10 972 12 92

Columns 13 through 24

87895 13 7 12 3109

» si = cdlilv(6,4,0,msg2vect,[]) % Perform block interleaving (case 0) on msg2 using a (6,4)

intermediate matrix.

Intermediate mx =

67

8 9 6 9

5 10 9 7

2 12 9 2

8 7 8 9

5 13 7 12

3 1 0 9

si =

Columns 1 through 12

8 5 2 8 5 3 9

Columns 13 through 24

6 9 9 8 7 0 9

10 12 7 13 1

2 9 12 9

» msg2intlv = reshape(si,8,3)' % Reshape the interleaved message output sequence with the

original msg2 array dimensions, 3 rows by 8 columns.

msg2intlv =

8 5 2 8 5 3 9 10

12 7 13 1 6 9 9 8

7 0 9 7 2 9 12 9

si = cdlilv(6,4,5,msg2vect,[]) % Perform cyclical shift interleaving (case 5) on msg2 using a

(6,4) intermediate matrix.

era aedia te_mx =

8 9 6 9

5 10 9 7

2 12 9 2

8 7 8 9

5 13 7 12

3 1 0 9

Sl =

Columns 1 through 12

8 10 2879929 12

68

Columns 13 through 24

85167 12 9597 13 0

» msg2intlv = reshape(si,8,3)' % Reshape the interleaved message output sequence with the

original msg2 array dimensions, 3 rows by 8 columns.

msg2intlv =

8 10 28799 2

9 12 3 9 8 5 1 6

7 12 9 5 9 7 13 0

Table 4. Cdlilv.m Interleaving Examples

(v,m) .^MMti.m i ► [vp,vn]

Cdlilv.m makes use of the subroutine m-file, rotm.m. The m-file, rotm.m,

accepts two input arguments, variable v, being the input vector to be rotated, and variable

m, the number of positions the columns and/or rows are to be shifted. The outputs, vp

and vn, are vectors which represent either positive shifts, vp, or negative shifts, vn acting

on the input vector symbols.

After the interleaving operation, the interleaved message array is converted from

an M-ary format to a N-ary format suitable for N-PSK modulation. The symbol format

conversion process is accomplished by two separate m-file routines, mb.m and bm.m.

The function mb.m accepts two input variables and represents a M-ary to binary

converter. The input q is the number of bits defining the M-ary symbols where M = 2q.

The remaining input, m, represents the incoming M-ary message array. The single output

from this block, b, is a binary data sequence whose information content is equivalent to

the coded M-ary symbols.

69

(q,m)

The binary output sequence generated by mb.m is next fed as an input to bm.m.

Recall that the function bm.m converts a variable length binary input sequence, v, into an

equivalent N-ary output symbol sequence, m, where N = 2q. In this way, the combination

of m-files mb.m and bm.m functions effectively convert the interleaved message

information block from an array containing M-ary symbols to one consisting of N-ary

symbols.

With the desired bit values determining M and N chosen by the user, the size of the

N-ary message array may change since additional symbols may be formed, or likewise

there may be a reduction in the number of symbols. However, the number of columns in

the final symbol message matrix consistently remains unaltered as they represent the

number of OFDM sub-carrier tones and remain fixed for each simulation. If the message

block size must increase or decrease as a result of M-ary to N-ary symbol format

conversion, the adjustment is accomplished by increasing or decreasing the number of

rows in the message block only, never the number of columns. For example, given any

arbitrary message array to be converted form M-ary symbol format to equivalent N-ary

symbol format, if M is chosen to be 256 and N is 16, then the number of equivalent N-ary

symbols representing the input message array will increase two-fold from the original

total. Consequently, the number of rows forming the output matrix doubles, while the

column number remains the same. As a function of the desired M-ary and N-ary

configuration, a pad of zero symbols may be automatically inserted to ensure a full array.

In the receiver, the zero pad is removed, leaving behind the randomly generated message

source. Table 5 depicts a M-ary to N-ary conversion example.

70

mary_msg = maiymsg(8,20,3,8) % Random 3 row by 8 column message source using 256-ary

(M-ary) symbols and a seed of 20.

maryjnsg =

152 150 165 121 194 41 120 152

213 199 19 144 231 33 224 229

1 73 171 142 214 51 102 81

» nary_msg = reshape(bm(4,mb(8,mary_msg)),8,6)' % Reformat the message source symbols

as a 6 row by 8 column array using equivalent 8-ary (N-ary) symbols.

nary_msg =

8 9 6 9 5 10 9 7

2 12 9 2 8 7 8 9

5 13 7 12 3 1 0 9

7 14 1 2 0 14 5 14

1 0 9 4 11 10 14 8

6 13 3 3 6 6 1 5

Table 5. M-ary to N-ary Symbol Conversion Example

After the interleaving and M-ary to N-ary conversion operations are accomplished,

the message array containing information symbols represented in decimal notation, is

differentially encoded then channel encoded as an array of complex modulation values

suitable for N-PSK modulation. The symbol-to-complex-modulation-value mapping

process is accomplished using the m-file, difcdrft.m. This function has a three argument

input and a single output consisting of differentially encoded complex modulation values,

MD, in array format.

71

The input, fort, determines if the array, m, of decimal numbers is to be

differentially encoded in time or in frequency by performing a cumulative summation of

array elements. If fort is zero, time differential encoding is performed on the message

array, m, by executing a cumulative summation down each column. If fort is one,

frequency differential encoding is performed by similarly performing a cumulative

summation across each row in the message array, m. Recall that array columns

correspond to OFDM frequencies, while array rows represent information symbols

generated in time.

Cumulative summations of the input array are accomplished by adding in modulo-

N fashion the first element of the appropriate column or row vector to the next adjacent

element, replacing the second element by the current summation, then adding this current

sum to the third element and replacing that element with the current sum. This process is

repeated until all elements in the row (frequency differential encoding) or column (time

differential encoding) are exhausted. The cumulative summation process then repeats

beginning with the first element of the next row or column respectively.

After differential encoding with modulo-N cumulative summations, the array, m, is

next channel encoded as N-ary complex modulation values. The input, p, indicates the

number of unit circle phase partitions formed based upon the N-PSK modulation scheme

where N = 2P. The mapping process begins by accepting the input symbol message array,

m, and generating corresponding complex modulation values, MD, with unit magnitude

and one of N possible phases. Recall that complex modulation numbers are described by

magnitude, A, and phase, , of the form AeJ . For example, if N= 16, then p = log216

= 4. Thus, each input symbol is a decimal number with a range of values from zero to

fifteen. After modulation, each symbol becomes a complex modulation value with a

magnitude of one (A = 1) and possible phase values selected from the set, {± 22.5, ± 45, ±

67.5, ± 90, ± 112.5, ± 135, ± 157.5, 0, 180} degrees.

72

As a final step, a reference row of ones (zero phase angles) are appended to the

message array, m, at the top to provide a reference starting point for the differential

decoding performed in the COFDM receiver. Similarly, for frequency differential

encoding, a reference column pair of ones (zero phase angles) are appended to the

message array, m, at the left. Two reference ones columns are appended to maintain an

even number of OFDM frequencies. Consequently, output MD includes the additional

reference ones within the complex modulation array. In the receiver, these reference

values are stripped off during differential decoding. Table 6 provides an example.

» nary_msg = marymsg(4,30,3,4) % Random 3 row by 4 column message source using 16-aiy

symbols and a seed of 30.

narymsg =

14 0 4 14

4 9 9 6

13 6 8 9

» complex_mod_vals = difcdrft(4,naiy_msg,0) % Corresponding complex modulation values for

16-ary symbols and time differential encoding.

complexmodvals =

1.0000 1.0000 1.0000 1.0000

0.7071 - 0.7071i 1.0000 0.0000 + l.OOOOi 0.7071 - 0.707Ü

0.7071 + 0.7071i -0.9239 - 0.3827i 0.3827 - 0.9239i 0.0000 + l.OOOOi

0.9239 - 0.3827i 0.9239 - 0.3827i -0.3827 + 0.9239i 0.3827-0.9239i

» complex_mod_vals = difcdrft(4,nary_msg,l) % Corresponding complex modulation values for

16-ary symbols and frequency differential encoding.

complexmodvals =

1.0000 1.0000 0.7071-0.707Ü 0.7071 - 0.707Ü 0.7071 + 0.707Ü 1.0000 - 0.0000i

1.0000 1.0000 0.0000 + l.OOOOi 0.3827 - 0.9239i -0.7071 + 0.707li 0.0000 - l.OOOOi

1.0000 1.0000 0.3827 - 0.9239i 0.3827 + 0.9239i -0.3827 - 0.9239i 0.0000 + l.OOOOi

Table 6. Complex Modulation Value Example

73

(N,M) *wft*?*$'-- *■ x

As a final step in the source encoding block, and in preparation of OFDM

frequency generation through the IFFT, the input array of complex modulation values, M,

are rearranged into a special frequency array by the m-file cmv2fa.m. The second input

variable, N, is the number of FFT points used which must be larger than the number of

columns of complex modulation values in the array (number of OFDM frequencies). This

function also swaps the positions of the modulation values by grouping the left half

portion of the matrix elements and shifting them to the rightmost positions, and likewise

grouping the right half portion of the matrix elements and shifting them to the leftmost

positions. Swapping is performed in anticipation of the frequency spectrum shifting that

automatically results from FFT processing. When the MATLAB FFT command is

invoked, the negative spectral frequencies to be shifted to the rightmost positive locations

by N positions. Thus, the spectrum is no longer symmetrical about the origin; but, instead

becomes symmetrical about the frequency point N/2. If the frequency halves are swapped

before IFFT processing, then the frequencies can be later recovered in their correct

orientation by filtering.

The shifted frequency array output is represented by X. A pad of zeros is included

in the middle of the array whose amount is the difference between the number of FFT

points, N, and the number of modulation values. The zero pad is included as a guard band

to account for filter slopes during subsequent bandpass filtering after up-conversion and

RF transmission. This filtering is not actually performed for the thesis simulations;

however, the guard band is included for actual implementation purposes. Table 7 gives an

example.

74

0 0

0 0

0 0

0 0

» freq_array = cmv2fa(8,complex_mod_yals) % Frequency array formation using 8 point FFT

and time differential encoding.

freq_array =

Columns 1 through 4

1.0000 1.0000

0.0000 + l.OOOOi 0.7071 - 0.707Ü

0.3827 - 0.9239i 0.0000 + l.OOOOi

-0.3827 + 0.9239i 0.3827 -0.9239i

Columns 5 through 8

0 0 1.0000 1.0000

0 0 0.7071-0.707Ü 1.0000

0 0 0.7071 + 0.7071i -0.9239 - 0.3827i

0 0 0.9239 - 0.3827i 0.9239-0.38271

freq_array = cmv2fa(8,complex_mod_vals) % Frequency array formation using 8 point FFT

and frequency differential encoding.

freq_array =

Columns 1 through 4

0.7071 - 0.707Ü 0.7071 + 0.707Ü 1.0000 - 0.0000i 0

0.3827-0.9239i -0.7071+0.707H 0.0000 - l.OOOOi 0

0.3827 + 0.9239i -0.3827 - 0.9239i 0.0000 + l.OOOOi 0

Columns 5 through 8

0 1.0000 1.0000 0.7071-0.707Ü

0 1.0000 1.0000 0.0000+l.OOOOi

0 1.0000 1.0000 0.3827-0.92391

Table 7. Frequency Array Example

After source encoding, the complex modulation frequency array, X, is IFFT

processed within the m-file, tda.m, generating the OFDM frequencies. The tda.m

function also prepares the transmitted symbols for channel compensation by first

appending the periodic guard interval whose length is indicated by the input, Ng. Ng

represents the number of additional time domain waveform samples to add to the

75

beginning of the information symbol interval. The output, x , is the time domain samples

suitable for transmission and consisting of an array of complex samples. This functional

block is the final block the message signal enters before transmission through the channel.

Again, for purposes of this thesis, DAC and up-conversion of the signal is not included,

permitting all simulations to be performed at baseband. See Table 8 for an example.

(Ng,X)

» Time_domain_sig = tda(5,freq_array) % Generate time domain OFDM signal using IFFT and

add 5 sample point precursor.

Time_domain_sig =

Columns 1 through 4

-0.0518 + 0.1250i 0 -0.0518-0.1250i 0

0.0000 + 0.2500i -0.1250 + 0.1250i -0.3018 + 0.1250i -0.1768+ 0.2500i

-0.0811+ O.OOOOi 0.2517-0.1043i 0.3401-0.340H 0.1323 -0.3194i

-0.0676 + 0.2986i -0.0957+ 0.23 lOi -0.2590+ 0.1633i -0.2310+ 0.23 lOi

Columns 5 through 8

0.3018+ 0.1250i 0.5000 0.3018-0.1250i 0

0.1768 + 0.1768i 0.3018-0.0518i 0.1250 -0.05181 0.0000 + 0.1768i

0.0000 - 0.0542i 0.0207 + 0.050Ü -0.0676 - 0.0676i -0.2134-0.0884i

0.0676+ 0.1633i 0.2310-0.0957i 0.0676-0.1633i -0.0957 + 0.0957i

Columns 9 through 13

-0.0518 + 0.1250i 0 -0.0518-0.1250i 0 0.3018+ 0.1250i

0.0000 + 0.2500i -0.1250+ 0.1250i -0.3018+ 0.1250i -0.1768 + 0.25001 0.1768+ 0.1768i

-0.0811+O.OOOOi 0.2517-0.1043i 0.3401-0.340Ü 0.1323-0.31941 0.0000 - 0.0542i

76

-0.0676 + 0.2986i -0.0957+ 0.23 lOi -0.2590 + 0.1633i -0.2310 + 0.23101 0.0676+ 0.1633i

» Time_domain_sig = tda(2,freq_array) % Generate a time domain OFDM signal using EFFT

and add 2 sample point precursor.

Timedomainsig =

Columns 1 through 5

0 0.3018 + 0.12501 0.5000 0.3018-0.12501 0

-0.1768 + 0.2500i 0.1768+ 0.1768i 0.3018-0.0518i 0.1250-0.05181 0.0000+ 0.1768i

0.1323- 0.3194i 0.0000 - 0.0542i 0.0207 + 0.0501i -0.0676 - 0.06761 -0.2134-0.0884i

-0.2310 +0.23 lOi 0.0676+ 0.1633i 0.2310-0.0957i 0.0676-0.16331 -0.0957 + 0.0957i

Columns 6 through 10

-0.0518+ 0.1250i 0 -0.0518-0.12501 0 0.3018 + 0.1250i

0.0000 + 0.2500i -0.1250+ 0.1250i -0.3018 + 0.12501 -0.1768 + 0.2500i 0.1768+ 0.1768i

-0.0811 +0.0000i 0.2517 -0.1043i 0.3401-0.34011 0.1323-0.3194i 0.0000 - 0.0542i

-0.0676 + 0.2986i -0.0957 + 0.23 lOi -0.2590 + 0.16331 -0.2310+ 0.23 lOi 0.0676+ 0.1633i

Table 8. Time Domain Signal Example

b. Channel 0 Model

As previously mentioned, the model 0 channel is noise free. The overall

model 0 system can be viewed as the OFDM transmitter directly connected to the OFDM

receiver by a direct link since there is no intervening stimulus affecting the signal. Thus,

the channel 0 functional block can be pictorially represented simply as a wire connecting

the transmitter to the receiver without a separate additional MATLAB functional block.

(Ng,y)

77

c. COFDM Receiver

The receiver portion of the model 0 system depicted in Fig. 24 contains

two primary functional blocks, itda.m and decdrcdl.m. The m-file itda.m transforms the

time domain received complex signal, y, into an equivalent frequency domain

representation by performing the FFT. The FFT allows recovery of the OFDM

frequencies generated in the transmitter block. Prior to FFT processing, the Ng point

precursor guard interval is removed from each of the symbols. The format of the output,

Y, is a frequency array of complex modulation values with the left and right half portions

of the array interchanged in frequency index positions as exemplified in Table 9.

» Recvd_CMV_array = itda(5,Time_domain_sig) % Remove 5 sample precursor and perform FFT to

transform received time domain samples into corresponding orthogonal complex modulation values with

left and right halves swapped.

RecvdCMVarray =

Columns 1 through 4

1.0000 1.0000-O.OOOOi 0 +O.OOOOi 0.0000 + 0.0000i

0.0000 +1.0000i 0.7071-0.707Ü 0.0000 + O.OOOOi 0.0000 + O.OOOOi

0.3827 - 0.9239i 0.0000 + l.OOOOi 0.0000 + O.OOOOi 0.0000 + O.OOOOi

-0.3827+ 0.9239i 0.3827 - 0.9239i 0.0000 + O.OOOOi 0.0000 - O.OOOOi

Columns 5 through 8

0 0.0000 + O.OOOOi 1.0000-O.OOOOi 1.0000-O.OOOOi

0.0000 0.0000 - O.OOOOi 0.7071 - 0.707Ü 1.0000 - O.OOOOi

0.0000 + O.OOOOi 0.0000 - O.OOOOi 0.7071 + 0.7071i -0.9239 - 0.3827i

0 0.0000 + O.OOOOi 0.9239 - 0.3827i 0 .9239-0.3827i

Table 9. Received Frequency Array Example of Complex Modulation Values

The remaining receiver decoding functions are performed within the decdrcdLm

block by multiple sub-blocks which are presented in Fig. 29. The hierarchical arrangement

of m-files within decdrcdl.m are presented in Fig. 30.

78

Decdrcdl.m

Received
Message - KlMilll IdUto&fltn!

Frequency Array
Unarranger

Differential Decoder
and Complex Value

Demodulation

>^Ä ml vm ->- Output
Message

N-ary to M-ary
Converter

CDL Deinterleaver

Fig. 29. M-file DecdrcdLm Functional Sub-blocks

decdrcdl.m

fa2ma.m mb.m cdldlv.m

dfdcdrft.m bm.m

rotm.m

Fig. 30. M-file Hierarchy for Decdrcdl.m

The frequency array is restructured back into the proper complex modulation array

format by the fa2cma.m m-file within decdrcdl.m. The function fa2cma.m accepts the

input K indicating half the number of OFDM frequency tones (corresponds to frequencies

occupying one-half of the frequency array). The remaining input, X, are the complex

79

frequency array values to be rearranged. The output, Mn, is the equivalent complex

modulation array representation with the correct ordering of frequencies seen in Table 10.

(K,X) *~ Mn

» Freq_unarranger = fa2cma(2,Recvd_CMV_array) % Unarrange the left and right halves of the

frequency array to the correct orientations.

Freq_unarranger =

1.0000 -O.OOOOi 1.0000 - 0.0000i 1.0000 1.0000 - 0.0000i

0.7071 - 0.707H 1.0000 - O.OOOOi 0.0000 + l.OOOOi 0.7071 - 0.707H

0.7071+ 0.707H -0.9239-0.3827i 0.3827 - 0.9239i 0.0000 + l.OOOOi

0.9239 - 0.3827i 0.9239 - 0.3827i -0.3827 + 0.9239i 0.3827 - 0.9239i

Table 10. Unarranged Frequency Array Example

(qp5q,MD,fort) [s,M]

After the fa2cma.m block, the complex modulation values are differentially

decoded either in time or in frequency, then hard decoded into corresponding N-ary

symbols. This functionality is accomplished by the m-file dfdcdrft.m. The complex

modulation values, MD, from fa2cma.m are accepted as an input, and inverse mapping of

the complex numbers to N-ary symbols is performed based upon the value of q, where N =

2q. Iffort is equal to one, frequency differential decoding is performed. Iffort is equal to

zero then time differential decoding is performed. Differential decoding is the inverse

operation performed in the transmitter; however, regardless of the type of differential

decoding, all reference ones values are removed after decoding allowing the received

message matrix to remain. The input, qp, is used for soft decoding and allows for extra

80

functionality not included in this system model; hence, it is not used. The output, s,

indicates phase sector numbers corresponding to N-ary demodulation also representing

corresponding inverse mapped symbols in decimal notation. The remaining output, M, is

the differentially decoded modulation array. Table 11 presents an example.

» [symbols DifEDecd_values] = dfdcdrft(4,4,Freq_unarranger,0) % Differentially decode in time and

demodulate the complex modulation values into corresponding 16-ary symbols.

symbols =

14 0 4 14

4 9 9 6

13 6 8 9

DiffDecd_values =

0.7071-0.707li 1.0000 - O.OOOOi 0.0000 + l.OOOOi 0.7071-0.707Ü

0.0000 + l.OOOOi -0.9239 - 0.3827i -0.9239 - 0.3827i -0.7071 + 0.7071i

0.3827 - 0.9239i -0.7071 + 0.7071i -1.0000 + O.OOOOi -0.9239 - 0.3827i

Table 11. Demodulated Received Signal Example

With the reception of the message in N-ary format consisting of PSK symbols, a

reformatting of symbols to M-ary is next performed to form OFDM symbols. Once again

the functions mb.m and bm.m perform the reformatting procedure as previously

described in the transmitter section.

(l,k,case,si,SYNC) "sdidJvm . ► s
,CT>S*H'HWW"**"O™P™™

As a final operation in the receiver, the message symbol array is deinterleaved by

the function cdldlv.m which performs the inverse operation of cdlilv.m. The input, si, is

81

the received interleaved message, while case determines which deinterleaving case to

follow (refer to the discussion on cdlilv.m for case descriptions) . It is important that the

case number for the deinterleaver match that of the interleaver or numerous errors will

occur as a result of unmatched deinterleaving. Inputs / and k indicate the intermediate

matrix dimensions and must be identical to the intermediate dimensions used for the

interleaver in the transmitter. The input vector, si, is read into the (l,k) matrix by columns,

while the columns and/or rows are rotated in reverse direction and reverse order then they

were rotated in cdlilv.m for the same case number. The output, s, provides the final

message array read out of the intermediate matrix by rows. Cdldlv.m calls the subroutine

m-file, rotm.m which performs the array rotations as previously described in cdlilv.m.

The example shown in Table 12 demonstrates operation of the CDL deinterleaver

corresponding to case 5.

» Intrlvd_symbols = % Decoded M-ary symbol array.

14 0 4 14

4 9 9 6

13 6 8 9

»Intrlvd_symbolst = Intrlvd_symbols' % Transposed symbol array.

Intrlvdsymbolst =

14 4 13

0 9 6

4 9 8

14 6 9

»Intrlvd_symbol_vect = Intrlvd_symbolst(:)' % Equivalent symbol vector.

Intrlvd_symbol_vect =

82

14 04 14 4996 13 689

» Deintrlvd_sym_vect = cdldlv(2,6,5,Intrlvd_symbols_vec,[]) % Deinterleave the input symbol vector

using a 2 row by 6 column intermediate matrix and case 5 type deinterleaving (note: SYNC is an empty

vector).

Deintrlvd_sym_vect =

14 14 99 13 9804466

» Deintlvd_symbols = reshape(Deintrlvd_sym_vect,3,4)' % Reshape the resulting deinterleaved vector

into an array of message symbols corresponding to 4 OFDM tones. This output array represents the sink

message.

Deintlvd_symbols =

14 14 9

9 13 9

8 0 4

4 6 6

Table 12. CDL Deinterleaver Example

2. COFDM Model 1 System

The previously presented m-file functional blocks represent the model 0 system.

However, the same transmitter and receiver blocks are also common to the model 1,

model 2 and model 3 systems. The only differences are in the channel models. The model

1 block diagram is shown in Fig. 31 and represents channel 1 model consisting of the

AWGN channel, which is implemented using the m-file awgn.m.

83

Input
Parameters

OFDM Transmitter

Source
Encoding

cdrcdlft.mi

IFFT
Processing

AWGN
Channel

tdam awgn m

Baseband Signal + Noise

iida m m

FFT
Processing

Message
Decoding

OFDM Receiver

Received
Message

Fig. 31. System Model 1 Block Diagram

(X,s,N,sigma) *-Y

a. Channel 1 Model

Awgn.m adds complex white Gaussian noise to the input signal, X,

consisting of time domain samples with real and imaginary parts. The seed parameter, s,

sets the seed with the random phase and amplitude parameters being independently

generated. The input variable, sigma (), determines the noise power spectral density, N„,

according to the formula

N0= 2 (37)

84

and is multiplied by the random noise vector to weight its strength before finally being

added to the input signal. The input N represents the number of time domain samples of

the inputs and is also equal to the number of FFT points used for OFDM generation. The

output Y consists of the original signal plus AWGN noise represented as complex real and

imaginary number pairs. Recall that the complex signal amplitudes are fixed at unity and,

therefore, so are the symbol energies; consequently, any power adjustments for bit error

rate (BER) performance curve calculations is accounted for by varying sigma.

3. COFDM Model 2 System

The COFDM model 2 system is presented in Fig. 32 and is has identical transmitter

and receiver components as the model 1 system, differing only in the channel model. The

channel 2 model consists of the multipath channel exclusively which is implemented using

the chuhf.m m-file. No other types of noise such as AWGN is added to this model; thus,

the multipath effects on the transmitted signal can be individually analyzed.

OFDM Transmitter

Source IFFT
Encoding Processing

Multipath
Channel

Tnput cdrcdift.m ■ tdam chuhfm
Parameters

Baseband Signal +Multipath

itda.ni decd.rcdl;,m ■ r-w ^

FFT
Processing

OFD MR«

Message
Decoding

xeiver

Received
Message

Fig. 32. System Model 2 Block Diagram

85

a. Channel 2 Model

M-file chuhf.m represents the channel 2 multipath model. The hierarchy

for chuhf.m is shown in Fig. 33.

(s,x,loss,dly,dop,N,freqspace)

This m-file accepts as inputs the RSL power loss, loss (dB), time delays, dly

(msec.), and Doppler frequency shifting, dop (Hz), characteristic of the maritime multipath

channel. The transmitted signal, x, represents the time domain output of the COFDM

transmitter consisting of complex numbers and is the input signal parameter to the channel

model. Initially, the m-file dline.m is called

chuhf.m

dline.m

cvdd.m

ray_dop .m

ofst.m

Fig. 33. M-file Hierarchy for Chuhf.m

to set-up the multiple delayed paths. Since the input, dly, can be a vector of delays, the

number of delay lines corresponds to the number of elements in the vector. Dline.m in

turn calls the subroutine m-file cvdd.m which implements a "continuously variable digital

86

delay element" [15]. This m-file filters the x input using an eight-tap Finite Impulse

Response (FIR) filter whose tap coefficients are a function of the desired delay.

Later, the m-file ray_dop.m, calculates the maximum Doppler shift frequency as a

fraction of OFDM tone spacing as provided by the input, freqspace. This m-file generates

a random sequence of length L*N independent points (L bauds of N samples per baud) of

complex numbers with zero mean, and 0.5 variance real and imaginary parts. The envelope

is Rayleigh with a mean square value of one. N is the number of FFT points. The amount

of Doppler shifting is randomly calculated up to the maximum allowed using the seed

parameter, s, to set the seed of the random number generator. The real and imaginary

parts are independently generated, and it is acceptable to enter a vector of Doppler shift

values equal to the number of delay paths. Additionally, the direct path is offset by 0.7 of

the maximum input Doppler shift which is calculated by m-file ofstm. As a final step in

chuhf.m, the power losses for the individual multipaths are accounted for by multiplying

each loss amount times the respective delay line output vectors. The output, y, is a time

domain representation of the transmitted signal plus multipath effects, presented as an

array of complex received time domain samples.

4. COFDM Model 3 System

The COFDM model 3 system is depicted in Fig. 34. In agreement with COFDM

system models 1 and 2, the OFDM transmitter and OFDM receiver are identical to the

functional sub-blocks presented in the COFDM model 0 system discussion. The only

differences are in the channel model 3.

87

Input
Parameters

OFDM Transmitter

Source
Encoding

IFFT
Processing

litnü

Multipath
Channel

Baseband Signal+Mtjltipath

Baseband Signal+Multipath+Noise

AWGN
Qiannel

EFT
Processing

Message
Decoding

OFDM Receiver

Received
Message

Fig. 34. System Model 3 Block Diagram

a. Channel 3 Model

The channel 3 model consists of the channel 1 model (AWGN) combined

with the channel 2 model (multipath) to form an overall complete channel model

representing the actual maritime environment described in the BAA specification and

further described in reference [1]. Both the channel 1 model and channel 2 model have

been previously described in detail, being implemented by m-files awgn.m and chuhf.m,

respectively. The channel 3 model is used extensively in system performance analysis

presented in the next chapter.

C. MATLAB VERIFICATION PROGRAM DEVELOPMENT

Upon completion of the system model construction using custom m-file functional

blocks, additional diagnostic m-files were created aiding in debug and system functional

88

verification. Most of the diagnostic m-files are not part of the COFDM model

development with the exception of checkm which not only compares the source message

to the decoded sink message and ascertains discrepancies but also includes the receiver R-

S error correcting functionality to correct symbol errors depending on the configured R-S

code strength.

1. Source And Sink Message Comparer

To compare the randomly generated source message with the decoded received

message the m-file check.ni is used. This diagnostic m-file also includes the R-S error

correcting code functionality. Recall that R-S FEC is a necessary part of the OFDM

system model; however, the encoding portion of R-S coding is notably absent from the

OFDM transmitter for all the system models. As previously mentioned, the omission of R-

S symbol parity encoding in the transmitter using textbook coding algorithms was chosen

to reduce computation and simulation run times. Since R-S encoding using well known

algorithms has been previously demonstrated and implemented numerous times in

communication systems, for purposes of this thesis it is not necessary to include the

encoding operation in the model to prove functionality. Instead, R-S decoding is required

in the receiver as a necessary functional block to enable symbol error correction capability

as determined by the user.

Check.m is a six variable input, four variable output function. The input, pic, is

a loop indicator variable useful in setting the figure numbers for plot displays during

iterative simulation cycles to ensure that previously generated figures are not overwritten

by subsequent plots. The inputs, x, and, y, are the two symbol message arrays of identical

dimensions to be compared, x being the original source message array and v being the

received message array often corrupted by channel induced noise errors. The remaining

inputs n, k, and blklgth are used for symbol error correction operating on the received

message array, v.

89

The pair (n,k) determine the error correcting strength, with n being the information

word size and k the code word size. The maximum number of symbols errors, t, that can

be corrected within a code block length, blklgth, is given by (25). The code block length

is formed using symbols taken from message array columns starting with the first symbol

(top left of the array). Hence, the error correction is accomplished across OFDM

frequencies row by row as opposed to down symbol rows. For code block lengths that

exceed the number of OFDM frequencies (number of message array columns), additional

symbols are taken from the next lower adjacent row until the block is completely filled

with symbols. The FEC parameters can be completely defined by the user including no

FEC. If the number of symbol error occurrences within a code block length exceed the

number of symbols that can possibly be corrected, t, then the entire block remains

unchanged, including the symbol error locations, and the next code block is processed.

If the number of symbol error occurrences is less than or equal to the number of

errors that can possibly be corrected, t, then all errored symbols are fixed to their correct

value, resulting in an error-free block. Intuitively, it is apparent that the code block length

in addition to the coding strength is an important parameter in ensuring effective symbol

error correction. However, it is also important to be mindful of the code rate factor, since

increasing code strength for a given block size causes a reduction of the information rate

and, hence, reduced transmission efficiency. Table 13 presents examples.

(pic,x,y,n,k,blklgth) ^^ *"" [error_no,freqerrs,errmx,rowerrs]

» msgl

msgl =

9 4 13

90

9 4 10

1 2 7 15

» msg2

msg2 =

9 4 13 5

9 3 10

2 2 7 5

» [err_no freqerr errmx rowerr] = check(0,msgl,msg2,4,4,4)

WARNING! Errors were detected!

WARNING!: Since n = k, there is no R-S error correcting possible.

For the given input parameters: n = 4 and k = 4, the Reed-Solomon code is capable

of correcting 0 errors.

OOOPS!: The Reed-Solomon code did not correct any errors.

Perhaps a more powerful R-S code is required.

The total number of error occurrences is: 4

The error number distribution per block number is:

1 2 3

1 1 2

err_no = 4

freqerr =1 10 2

errmx =

0 0 0 1

0 10 0

10 0 1

91

rowerr =1 1 2

» [err_no.freqerr errmx rowerr] = check(0,msgl,msg2,4,2,4)

WARNING! Errors were detected!

For the given input parameters: n = 4 and k = 2, the Reed-Solomon code is capable

of correcting 1 errors.

OOOPS: The Reed-Solomon code corrected some detected errors, but not all.

Originally the error total was: 4

After R-S decoding, the error number was reduced to: 2

The total number of correct symbols are: 10

The error number distribution per block number is:

1 2 3

0 0 2

err_no = 2

freqerr =10 0 1

errmx =

0 0 0 0

0 0 0 0

10 0 1

rowerr = 0 0 2

Table 13. Check.m Example

92

2. Differential Encoder/Decoder and Frequency Array Checker

To verify proper operation of the differential encoder and decoder along with the

frequency array arranger and unarranger, the m-file cmvdifck.m is used. This file

generates a random M-ary message test pattern using marymsg.m, performs differential

encoding and forms the frequency array. The inverse operations are later performed,

namely frequency array unarranger and differential decoding. A comparison of the source

message and the decoded sink message is performed by check.m to determine any

discrepancies. As the following MATLAB example demonstrates (Table 14), both the

differential encoder/decoder and frequency array arranger/unarranger function correctly

for both time and frequency differential encoding cases.

» cmvdifck(10,5,10,16,4,4)

This m-file checks the correctness of the differential encoder/decoder & the

frequency arrangers.

To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the

time version: 1

Sourcemsg =

14 8 13 4 8 13 1 4 12 0

4 8 2 7 4 0 11 1 0 5

0 2 7 0 4 9 7 2 2 10

4 9 3 13 4 15 9 3 11 10

5 11 15 9 1 4 5 0 12 14

Sink_Msg

14 8 13 4 8 13 1 4 12 0

4 8 2 7 4 0 11 1 0 5

0 2 7 0 4 9 7 2 2 10

4 9 3 13 4 15 9 3 11 10

5 11 15 9 1 4 5 0 12 14

GREAT!!! there are no errors.

93

TEST PASSED!!!

Table 14. Cmvdifchk.m Example

3. CDL Interleaver Verification

To confirm correct functional operation of the interleaver and deinterleaver, m-file

intlvchk.m is used. Again a random source message array is formed using marymsg.m.

The message block is then interleaved according to the desired case using the CDL

interleaver, Cdlilv.m. Also included is m-file Cdldlv.m to deinterleave the symbol array

using consistent case parameters. Finally check.m is used to verify correctness. This

diagnostic m-file was run multiple times for all cases and confirmed proper functionality.

The following Table 15 sample run depicts some interleaving examples.

»intlvchk(10,5,8,4,10,4,0)

Random_msg =

14 8 13 4 8 13 1 4

12 04 82740

11 1 0 5 0 2 7 0

4 97 22 10 4 9

3 13 4 15 9 3 11 10

Interleaved_array =

14 40488 29

13 2 7 3 4 7 0 13

8 4 4 4 13 0 9 15

1 11 7 9 4 1 2 3

12 0 2 11 0 5 10 10

Deinterleaved_array =

14 8 13 4 8 13 14

94

12 04 8274 0

11 1 0 5 0 2 7 0

4 97 22 10 4 9

3 13 4 15 9 3 11 10

GREAT!!! there are no errors.

»intlvchk(10,5,8,4,10,4,5)

Random_msg =

14 8 13 4 8 13 14

12 04 827 40

11 1 0 5 0 2 7 0

4 97 22 10 49

3 13 4 15 9 3 11 10

Interleaved_array =

14 8 0924 38

11 13 7 9 7 10 4 4

2 4 8 0 9 13 11 2

I 10 3 14 0 0 13

12 5 2 4 4 7 15 0

Deinterleavedarray =

14 8 13 4 8 13 14

12 04 827 40

II 1 0 5 0 2 7 0

49 7 22 10 49

3 13 4 15 9 3 11 10

GREAT!!! there are no errors.

Table 15. CDL Interleaver Checker Example

95

4. System Model 0 Checker

As previously indicated, the model 0 system consists of the OFDM transmitter and

receiver interfaced to a perfect noise free channel. Functional verification of the sub-

blocks contained in the transmitter and receiver and common to system models 1, 2 and 3

is accomplished by m-file chnOcdl.m This function contains all OFDM fundamental

system components contained in the system models with the exclusion of a channel.

Basically this m-file can be thought of as the OFDM transmitter connected directly to the

OFDM receiver. The purpose of building and using this m-file is to confirm proper

operation and interaction of all of the sub-blocks connected together. This is

accomplished by verification of source and sink messages using the check.m program.

The m-file subroutine hierarchy for chnOcdl.m is shown in Fig. 35.

chnOcdl.m

tda.m dcdrcdlf.m

cdrcdlft.m itda.m check.m

Fig. 35. M-file Hierarchy for ChnOcdl.m

Upon presentation of the model 3 system functional block diagram along with the

MATLAB m-file programs emulating the system model, Fig. 36 once again displays the

complete system model together with the corresponding m-files representing the emulated

functional sub-blocks within. Appendix A. provides complete documentation of all m-file

programs emulating system sub-blocks as well as system diagnostic programs and batch

m-files. The next section discusses batch m-file creation used to perform system

simulations.

96

D. MATLAB SIMULATION BATCH M-FILES

Simulation trials are accomplished using batch m-files which include some or all of

the COFDM system model functional blocks. These m-files also include input requests

displayed in the MATLAB command window for system configuration, as well as to query

the user the option of generating figures, enabling data plots at various stages of

processing, as well as printing hard-copies. Some batch programs permit multiple input

argument variables (vector inputs) for certain configuration parameters, allowing multiple

batch simulation repetitions using a different variable element for each loop. A reason for

allowing vector inputs, for example, is to generate simulation data corresponding to

different seed values while also choosing multiple interleaver cases. Batch files requesting

input data are included to promote a more user-friendly simulation interface allowing for

easier reconfigurations.

97

.r-
Message Source

marymsg.m

Guard
Interval
Insertion

EFFT
Processing

(dam

<*±-J-

CDL
Interleaver
cdlilv.m

Frequency
Array

Arranger
cmv2fa.m

cdtcdtfrm

q-bit to p-bit
Symbol

Reformater

mb.m / bm.m

Differential
PSK

Channel
Encoder

difcdrft.m

OrnMTransminci

Transmitted
Baseband

Signal
Noisy Multipath Channel

chuhf.m / awgn.m Received
Baseband

Signal

Differential
Decoder &

Symbol
Mapper

dfdcdrft.m

p-bit to q-bit
Symbol

Reformater
mb.m / bm.m

Frequency
Array

Rearranger

fa2ma.m

CDL
Deinterleaver

cdldlv.m

decdrcdLm

FFT
Processing

Guard
Interval

Removal

jtda.ro

R-S
Decoder
checkm

iSink;:;;:
üHt;:: ^Message::

Block

OFDM Reuen er

Fig. 36. Complete OFDM System Model With Corresponding M-files

98

1. Seed Evaluation Batch File

The batch m-file uhfseeds.m performs numerous COFDM system simulations

using the channel 2 model (chuhf.m) with different seed configurations. The goal of this

function is to test the multipath channel and identify the worst case channel conditions as

determined by the seed parameter. Recall that the seed parameter is used by m-file

chuhf.m to randomly generate multipath perturbations in the channel; thus, certain seed

values generate a more severe burst noise environment than others do. Consequently,

specific seeds tend to create a poor multipath channel and generate more errors during

simulations. Error prone seeds are identified and used during subsequent model 3 system

simulations to promote performance results reflecting worst case multipath channel

behaviors. This helps to ensure that model 3 simulation data will represent worst case

scenarios with respect to the channel conditions in the maritime environment. To isolate

the channel 2 model, no interleaving or error correction is performed during uhfseeds.m

trials as these techniques compensate for the multipath and affect the results. Different

pre-defined transmission links (links 1 through 3) may be configured, as well as a custom

user defined link. Table 16 gives an example of simulation initialization.

The output is a compilation of integer seed values beginning with one and

increasing to a user defined maximum value, with corresponding error totals displayed in

graphical form and based on simulations using either time or frequency differential

encoding/decoding. Additionally, an error distribution plot is compiled and graphically

displayed showing best case seeds growing toward worst case seeds as well as an error

histogram.

This method of testing the channel to identify "bad" seeds is not extended to the

channel 1 AWGN model. Typically, AWGN is uniformly distributed throughout message

blocks and does not exhibit burst error behavior. Therefore, regardless of the chosen seed

input to awgn.m used during model 1 simulations, on average the AWGN channel

generates consistent performance results.

99

» uhfseeds % Run this batch file to simulate channel 2, link 3, with 240 OFDM tones using 500

seeds.

To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time

version: 1

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Do you want print outs? (1 = yes, 0 = no): 0

Enter the minimum number of symbols to test: 10000

Enter the number of OFDM frequencies (NOTE: Must be even): 240

Enter the number of FFT points (NOTE: Must be larger than # of OFDM frequencies): 256

All tested seeds begin with one and end with a max number. Enter Smax (Integer #): 500

Tested seed range is 1 - 500 ...

Table 16. Batch M-file Uhfseeds.m Example

The m-file hierarchy of uhfseeds.m is depicted Fig. 37. This m-file introduces the

uhfift.m function used to emulate a version of system model 2 minus the interleaver in the

transmitter and deinterleaver in the receiver. Interleaving/deinterleaving operations are

omitted since, as previously mentioned, these blocks are designed to compensate for burst

errors and improve overall model 2 performance; thus, including

interleaving/deinterleaving defeats the purpose of this test. Consequently, the uhfift.m

system structure is identical to the model 2 system without the interleaving/deinterleaving

functionality. The remaining subroutine m-files comprising uhfift.m are consistent with

the functional blocks previously described for the model 2 system.

100

uhfseeds.m

uhfiftm

tda.m decdriftm

coderift.m chuhf.m itda.m

marymsg.m bm.m cmv2fa.m

check, m

dfdcdrft.m
bm im

mb.m difcdrftm fa2ma.m
mb.m

msg.m

bm.m

Fig. 37. M-file Hierarchy for Uhfseeds.m

2. COFDM System Simulation Batch File

To simulate the overall COFDM system model including all four channels, batch

file cofdmsim.m is invoked. This m-file is created to test complete system models 0

through 3, comprehensively, and generate BER performance curves for various S
/N0

values with respect to channels 1 and 3. The simulation performance results are compared

to the theoretical curves and judgments made as to the accuracy of the model as well as

the overall feasibility of various system configurations based upon performance merits.

Table 17 provides a further example.

101

» cofdmsim

This batch m-file runs OFDM simulations using different channel models.

To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or to run both enter 2

(two): 0

Enter the # of OFDM frequencies (Note: Must be even): 60

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter 0,1,2

or 3): 3

Channel model 3 simulation performed.

Enter the sigma noise parameter range or single value. (Ex. linspace(0,0.02,20) or .003):

linspace(0,0.01,10)

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 4

Custom link simulation...

Enter the link loss in dB (Ex. [0 4 7]): [0 2 4]

Enter the doppler frequency in Hertz (Ex. [30 20 15]): [10 20 30]

Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]): [0 1.5 7.9]

Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no): 0

Enter specific case numbers from (0 to 8) (Ex. [0 4 5 8]): [0 4 5 8]

Do you want to find optimal interleaver case(s)? (1 = yes, 0 = no): 0

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10020

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

= no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10020], or [10020 1], offers no

interleaving functionality): [60 167]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 2

Enter the guard interval length (Number of sample points): 6

Do you want to include error correction coding? (1 = yes, 0 = no): 1

Enter n,k and error correction block length (Ex. [240 200 240]): [200 180 200]

Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): [184 268 109]

Do you want signal plots? (1 = yes, 0 = no): 1

How many seconds of delay between pictures? 5

102

Do you want print outs? (1 = yes, 0 = no): 0

Table 17. Batch M-file Cofdmsim.m Example

cofdmsim.m

intlvprs.m

tda.m

chancdl.m

awgn.m

cdrcdlft.m chuhf.m

decdrcdl.m

itda.m check, m

Fig. 38. M-file Hierarchy for Cofdmsim.m

This batch m-file includes two additional sub-routines not previously introduced,

specifically intlvprs.m and chancdl.m. The m-file chancdl.m is identical to chnOcdl.m

with respect to the transmitter and receiver segments; however, chancdl.m includes all

four channel models (channel 0 through channel 3) with the option of selective

configuration by the user. Thus, the m-files chuhf.m and awgn.m are included with the

function. The hierarchy of m-files composing cofdmsim.m are shown in Fig. 38.

(n,m) -►[ml vprsa* - pairs

103

The m-file intlvprs.m, determines all suitable intermediate matrix interleaver

dimension pairs as a function of the inputs n and m, where n is the number of rows and m

is the number of columns representing source message matrix dimensions. Initially, all

positive whole number multiples of the product formed by multiplying n by m are

calculated. Recall that the product of the intermediate matrix dimensions must equal the

product of the source message matrix dimensions. This m-file is useful for the CDL block

interleaving function in order to identify acceptable intermediate matrix dimensions. The

output, pairs, is an array indicating all possible intermediate matrix dimension pair choices

for the given inputs based upon the whole number multiples. The dimension pairs are

duplicated by the function in inverse order since intermediate matrix row number and

column number dimensions are interchangeable. The following example (Table 18)

demonstrates further.

» Multiples! = intlvprs(5,10)

Multiples 1 =

1 50

2 25

5 10

10 5

25 2

50 1

» Multiples2 = intlvprs(4,8)

Multiples2 =

1 32

2 16

4 8

8 4

16 2

104

32 1

» Multiples3 = = intlvprs(10,80)

Multiples3 =

1 800

2 400

4 200

5 160

8 100

10 80

16 50

20 40

25 32

32 25

40 20

50 16

80 10

100 8

160 5

200 4

400 2

800 1

Table 18. M-file Intlvprs.m Example

3. Interleaver Case Optimization Batch File

As a means of identifying which interleaver cases promote reduced error

concentrations under different system simulation configurations, m-file chancascm is

used. This function may be configured to individually simulate channel models 0 through

3 and provide an output plot summarizing the total error distributions per message block

row (note that running model 0 is for diagnostic purposes only). Knowledge of maximum

105

error totals within any single row is necessary to determine the minimum required R-S

code strength needed to correct all errors. Recall that the R-S error correction function

operates on row symbols; thus, a preference for lower overall row error totals is desirable

to maximize code rates and minimize coding overhead. Furthermore, multiple simulations

of chancase.m are repeated with identical system configurations but with different

interleaver cases to identify which cases tend to disperse errors more effectively and

minimize the total number of errors appearing in any one row of the message block. This

batch program uses the chancdl.m subroutine m-file. An example of program

initialization is provided in Table 19.

» chancase % Simulate channel 2, link 3 for optimal interleaver cases using 240 OFDM tones.

To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time version: 1

Enter the # of OFDM frequencies (Note: Must be even): 240

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 256

Enter specific integer seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 279

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter 0,1,2

or 3): 2

Channel model 2 simulation performed.

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10080

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

= no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10080], or [10080 1], offers no

interleaving functionality): [240 42]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Test all interleaver cases(yes) or specific ones(no)? (1 = yes, 0 = no): 1

All cases, 0 through 8, will be tested.

Enter the guard interval length (Number of sample points): 6

106

Do you want pictures? (1 = yes, 0 = no): 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 19. M-file Chancase.m Example

107

108

VL SYSTEM SIMULATION METHODOLOGY AND TEST RESULTS

A. GENERAL TEST PLAN

After construction of the various system models and functional verification of the

partially integrated sub-blocks is accomplished, the research progresses to the simulation

test phase where complete integrated system simulation trials are performed using

different channel models and corresponding performance curves generated. The general

system simulation test plan is presented in Fig. 39 along with the associated m-files

governing each respective test phase.

As indicated in the figure, there are six independent test phases, advancing in the

level of channel difficulty starting from the easiest, channel model 0, to the most

challenging and complex, channel model 3. Through the collection and evaluation of

simulation data, the hierarchical test approach from simple to complex aids in isolating

poor system performance during initial simulation stages and also allows for careful study

and evaluation of each channel model output individually. Consequently, early evidence of

inadequate performance due to missing or poorly functioning sub-blocks can help the

designer deduce the necessary corrective measures needed in the form of system redesign

and/or reconfiguration to finalize an optimal system. By conducting multiple system

simulations and evaluating output data, it is possible to perform iterative configuration

adjustments on the model to strengthen and improve the system for added robustness and

optimal system model 3 performance. The eventual goal is to optimize the system and

generate performance results using the final channel 3 model that demonstrate a

satisfactorily working COFDM based communication system compatible with BAA

specified performance and throughput objectives.

For most simulation trials, a total quantity of 10,000 + 1% symbols representing

the source message are simulated through the various channel models, with the exact

quantity depending on the configured number of OFDM frequency tones as well as

109

interleaver intermediate matrix dimensions. The 10,000 symbols, typically 8-bits long,

represent OFDM symbols and are configurable to any bit length. However, the number of

transmitted symbols, referred to as PSK symbols, may increase or decrease as a result of

symbol reformatting and the conversion from M-ary symbols to N-ary symbols. Since

most simulations involve 16-PSK type modulation, the N-ary symbol word size typically

reduces to 4-bits from a M-ary symbol word size of 8-bits. As a result of M-ary to N-ary

conversion from 8-bits to 4-bits, the transmitted source message array doubles in the

number of PSK symbols to 20,000 + 1%. Thus, roughly 20,000 PSK 4-bit symbols are

simulated through the various channels.

Simulate System Model 3

Test Phase 6 cofdmsim.m I

Test Phase 5
Identify
Optimal \ S?^-

' Interleaver Case

chancase.m

I
Test Phase 4 / Simulate

System Model 2

Test Phase 2

I

cofdmsim
~jf

B

T
Simulate System Model 1

Test Phase 3 / Identify Error \ [«hfteed«.m'
Producing Channel 2 Seeds

cofdmsim.m

Test Phase 1

I
Simulate System Model 0

chnOcdl.m

Fig. 39. Simulation Test Plan Hierarchy

110

The OFDM symbol quantity comprising the source message array is selected for

practical software simulation considerations as well as for minimizing interleaving latency

delays within the system. For example, if a configuration of 10,080 OFDM symbols are

simulated through the model using 240 OFDM frequency tones with a symbol interval

length of 500usec, then the total symbol message block interleaving processing latency is

21msec as calculated below:

IQfiSOsymbols

240
Tutency = 500//secx 0/<n = 21>wsec. (38)

Delays beyond this are considered unacceptable for full duplex system communications;

hence, the arrival at a 10,000 +1% OFDM symbol limit per interleaver block.

Furthermore, there is a practical limit as to how many symbols can be efficiently

processed by the PC microprocessor during simulations. Even though the chosen PC

platform for system emulation and simulation is presently state of the art, multiple

simulations using source message block sizes much in excess of 10,000 OFDM symbols

tend to noticeably slow processing times and promote hard drive thrashing. Hard drive

thrashing occurs during processor calculations as data values are continuously swapped

out of main memory to secondary storage and vice versa. Coincidentally, the selection of

a maximum of 10,000 +1% OFDM symbols in consideration of minimal system

transmission latency also works well with the PC hardware configuration for simulation

purposes.

B. TEST PHASE 1 - SYSTEM MODEL 0 SIMULATIONS

With reference to the test plan hierarchy, initially system model 0 simulations are

performed to verify proper integration of all system sub-blocks and to ensure a correctly

working overall model. Recall that the COFDM model 0 system incorporates the channel

0 model, representing a perfect noise free channel without AWGN and multipath

111

distortions (Fig. 21). Hence, this model can be viewed simply as the OFDM transmitter

output connected directly to the OFDM receiver input with no intervening channel block.

With the prior assumption that the transmitter and receiver are functioning correctly

according to design, then the source and sink message blocks should have identical

content without symbol errors since there can not be any channel noise influences

corrupting the signal. Consequently, any symbol error occurrences in the sink message

must be the result of an incorrectly implemented m-file program model. For instance, if

the deinterleaving sub-block did not perform functionally correct in the receiver, and

numerous symbol errors resulted as detected by m-file checkm verification, then system

debug would follow and corrective measures taken to provide necessary functional sub-

block repairs before proceeding to the next test phase.

With this in mind, numerous system model 0 simulations were repeatedly

conducted using m-file chnOcdLm with various input configurations, and the resulting

data collected and evaluated (it is also possible to perform the identical system verification

test using batch m-file cofdmsim.m configured for a model 0 simulation). After initial

simulation failures and subsequent system corrective debug, final test results indicated that

the transmitter and receiver functional blocks were indeed constructed properly and

functioning accurately since no resulting symbol errors were identified in the receiver after

repeated runs. A table of sample results reflecting model 0 system simulations with

various input configurations is presented in Table 20.

» chn0cdl(0,0,0,l, 1,4,4,6,8,4,4,8,8,8,6,0); % Run a model 0 functional check with 4 OFDM

frequencies and 6 rows. The number of FFT points is 8, while the M-ary number is 16. No FEC

is used; however, time differential encoding is included with a 6 sample guard interval.

Random_Source_Msg =

12 0 6

14 0 2 5

6 13 9 7

112

10 5 6 4

1 1 15 4

15 10 4 2

Sinkmsg =

1 2 0 6

14 0 2 5

6 13 9 7

10 5 6 4

1 1 15 4

15 10 4 2

GREAT!!! there are no errors

Test Passed!!!

» chn0cdl(0,0,0,1,1,10,8,5,16,4,4,8,8,8,8,1); % Run a model 0 functional check with 10 OFDM

frequencies and 4 rows. The # of FFT points is 16, while the M-ary number is 16. No FEC is

used; however, frequency differential encoding is included with a 8 sample guard interval.

Random_Source_Msg =

1 2 06 14 02 56 13

9 7 10 5 6 4 1 1 15 4

15 10 4 2 4 13 2 5 8 11

4 10 4 14 14 6 3 4 9 2

Sink_msg =

1 2 06 14 0 256 13

9 7 10 5 6 4 1 1 15 4

15 10 4 2 4 13 2 5 8 11

4 10 4 14 14 6 3 4 9 2

GREAT!!! there are no errors.

Test Passed!!!

Table 20. System Model 0 Verification Example

113

With the conclusion of transmitter and receiver functional verification, the

remaining system test simulations include channel noise and multipath and are oriented

around the channel 1, channel 2 and channel 3 models. Recall from Fig. 21 that the

channel 1 model represents AWGN only, while the channel 2 model includes multipath

exclusively, and the channel 3, includes both the multipath channel 2 model and the

AWGN channel 1 model. The channel 3 model is the most difficult error producing

channel model since it adds AWGN to the signal distortions induced by the multipath

channel. However, channel 3 emulates actual maritime transmission environmental

phenomenon; hence, the channel model 3 is most indicative of the types of channel

influences that will affect real-time RF communication during transmissions by the

proposed COFDM modem.

C TEST PHASE 2 - SYSTEM MODEL 1 SIMULATIONS

Test phase 2 performs channel 1 model simulations exclusively (AWGN channel)

and compares the trial results to theoretical performance values. Recall that AWGN is

emulated in MATLAB using m-file awgn.m and is part of the COFDM model 1 system.

Fig. 31 depicts the complete model 1 system consisting of the OFDM transmitter and

OFDM receiver interfaced to the AWGN channel 1 block. During this test phase, batch

m-file cofdmsim.m is configured for system model 1 simulations and used to generate

numerous trial data. The data results are presented graphically in the form of performance

curves representing symbol error rates (SER) versus the ratio of symbol energy to noise

power (S
/NO)- Simulation data are compared to theoretical AWGN performance curves

with similar system configurations. Evaluations of the results are conducted to measure

the integrity of the system in the presence of AWGN.

The theoretical performance plots for differentially encoded coherent M-PSK are

depicted in Fig. 40 and are based on

114

PE(M) = 2Q \2Es n
sin

4lM)
(39)

where PE(M) is the SER and M = 2q. In Fig. 40, curves are generated for M = 4 (q = 2,

QPSK), M - 8 (q = 3) and M = 16 (q = 4) [13; p. 177]. These curves represent the

performance approximation reference baseline to which all subsequent system simulation

trial data will be compared.

DC

1
g

LU

10'

10

10

10

10

10

Symbol Error Rate vs. Es/No For Differentially Encoded Coherent MPSK (Theoretical)

--
~.

---v ~~^. ^s.*.

\ V \
-1 x= X. \

=^Vl =H ^ L *
\ \ \
\ \ \

-2 K
-A

\
\

\
\

\ \
S

\ \ \
q= 2\ 3\ 4 \

-3 M =

^=

8 \
\ 16 \
 V h^ i—

\ \ \
\ \ i

-4 \
\ f

\ >

\ \
i

>

i •(
. *

-5
i

\
Li

i
i
i

1—%
\

10 15 20 25
Es/No(dB)(Note:N = 256)

30

Es,
Fig. 40. Theoretical Performance Graph Showing SER Verse /N0

115

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or to run both enter 2

(two): 1

Enter the # of OFDM frequencies (Note: Must be even): 240

Enter the number of tfl points (Note: This number must be larger than # of OFDM frequencies): 256

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter 0,1,2

or 3): 1

Channel model 1 simulation performed.

Enter the sigma noise parameter range or single value. (Ex. linspace(0,0.02,20) or .003):

[linspace(0,0.018,20), linspace(0.018,0.02,20)]

Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no): 0

Enter specific case numbers from (0 to 8) (Ex. [0 4 5 8]): 0

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10080

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

= no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10080], or [10080 1], offers no

interleaving functionality): [240 42]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Enter the guard interval length (Number of sample points): 6

Do you want to include error correction coding? (1 = yes, 0 = no): 0

Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 0

Do you want signal plots? (1 = yes, 0 = no): 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 21. System Model 1 Simulation Example Using Cofdmsim.m

As previously mentioned, the magnitudes of each randomly generated message

symbol and corresponding complex modulation value are fixed at unity and represent the

116

signal energies. However, the noise power, N0, is variable and configurable by the user.

Consequently, during simulation configurations, judicious selection of noise powers by

setting suitable noise variance ranges (sigma parameter) promotes the generation of

meaningful performance plots and allows for comparisons among various trial

configurations. Table 21 presents a portion of a cofdmsim.m simulation configured for

system model 1 (AWGN channel) using 240 OFDM frequency tones and frequency

differential encoding, while Fig. 41 depicts the corresponding performance plot associated

with the configured inputs. A total of 10,080 8-bit OFDM symbols are randomly

generated and represent the source message block during these simulations using 240

OFDM tones. Since 16-PSK is the configured modulation scheme for this trial, a total of

20,160 4-bit PSK symbols are transmitted through the channel (double the OFDM symbol

message block size).

Comparison of the simulated SER performance graph in Fig. 41 to the

corresponding 16-PSK theoretical graph shown in Fig. 40 indicates a system performance

result approximately 1 dB worse than theoretical AWGN. For example, from Fig. 41

using 16-PSK, a simulated SER of 10"3 occurs when the E7No is approximately 25.25 dB.

Comparing this to Fig. 40, a theoretical SER of 10'3 corresponds to an 7No of roughly

24.5 dB. The dissimilarity of the simulated system model 1 result and estimated

theoretical performance is approximately 0.75 dB, or approximately 3.1% error from

theoretical. Although the difference between the simulated performance curve and

theoretical is within 1 dB, it is desirable to investigate why there is a loss of precision.

In recognition of (39) being an approximation and after careful review of system

construction, it is apparent that the 0.75 dB discrepancy is largely a result of the R-S FEC

sub-block location in the receiver signal path and the manner in which R-S FEC

functionality is performed. Recall that source message is composed of 10,080 OFDM

symbols configured as eight bits words. Before transmission, the symbols are converted

117

into 4-bit PSK symbol words. This format conversion causes the message block symbol

number to double to 20,160. Upon reception of the transmitted message, the symbols are

reformatted from 4-bit PSK symbols back into 8-bit OFDM symbols. R-S FEC operates

on the 8-bit OFDM symbols when the source and sink messages miscompare.

T3
CD
0)

CO

cT
00
o
o

o
I!

CO
I

CM
o

CD
o>
c
CB

DC
CO

E

CO

System Model 1 Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.
0

10

^ 10

o
ja
E >.

CO

10

10

5> 10

""""" '^ ^—I

-~s

"^
\

^ >
\

\
\
\
\ \
\—

s
\
\

\
A \

\

\

5 10 15 20 25 30

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Es /
Fig. 41. System Model 1 Simulation Performance Graph Showing SER vs. /N0

(Frequency Differential Encoding and 240 Tones)

Since channel noise can affect 4-bit PSK symbols, it is possible for two PSK

symbols, one of which is in error and one which is correct to be mapped into a single 8-bit

OFDM symbol, appearing to the R-S decoder as a single 8-bit symbol error. From this

discussion it is apparent that the mapping of symbols during N-ary to M-ary format

118

conversion may extend the symbol error length across a single PSK symbol boundary into

an adjacent correct PSK symbol. The consequence is OFDM symbol performance

calculations that appear slightly worse than expected.

At first a possible solution could be to perform the R-S FEC operation earlier in

the receiver signal processing sequence such as before the symbol reformatter. However,

the system design requires that the interleaving function be performed using 8-bit symbols

before R-S FEC can be accomplished. The alternative is to perform 4-bit PSK symbol

interleaving and deinterleaving, then perform 4-bit R-S symbol error correction

afterwards. This approach was initially considered but deemed undesirable as it requires

additional interleaver matrix manipulations using larger matrix dimensions causing

increased latency and added complexity. Additionally, performing R-S FEC using 4-bit

symbols instead of 8-bit symbols reduces maximum possible code block lengths from 255

symbols down to 15 symbols [12; p. 171]. This is undesirable for an effective COFDM

design since code block lengths consisting of 15 symbols would no longer include all

OFDM sub-carriers along one row of message symbols and would not take full advantage

of the frequency diversity property and combined FEC offered by 240 OFDM tones.

Thus, a system design using 8-bit OFDM symbol interleaving and deinterleaving is the

preferred choice.

In terms of channel induced error pattern scenarios, the best case condition exists

when PSK symbol errors are adjacent to each other and paired together. A worst case

condition exists when PSK symbol errors are paired with correct symbols and mapped into

OFDM symbols. The lower bound on this symbol mapping error phenomenon is zero,

when no channel errors are generated and are absent from the sink message. The upper

bound is two, when every other 4-bit PSK symbol is in error, half of the entire sink

message, causing all 8-bit OFDM symbols or the entire message block to appear in error.

Thus, the corresponding performance curve would indicate double the actual number of

PSK symbols to be in error.

119

00
CM

II
T3
CD
CD

CO

S~
CO
O
O

Ö

£
CO

o~
II

CO
I

a:

CM o
Ö

CD
D)
C
CO
cr
co
E
D5

CO

System Model 1 Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.)

10°

10

10

10_<

10

10"'

_
—-~

r~i ^~*-~*. ■-.

\
K
 ^

V
V
\

\

-A—
\
\
\
\

■*. —^
\
\
\ \

\

6 8 11 0 12 14 16 18 20 22 24 26

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 , 42) (M-ary = 16, N-ary = 16)

Es, Fig. 42. System Model 1 Simulation Performance Graph Showing SER vs. /N0

Using OFDM Symbol Size Equal to PSK Symbol Size (4-bits) (240 Tones)

To verify this hypothesis accounting for the simulation performance curve

discrepancy from theoretical, a simulation trial using a 4-bit OFDM symbol format and 4-

bit PSK symbol format is included with observation of the output SER and comparison to

theoretical. From Fig. 42, the simulation output curve using 240 tones and frequency

differential encoding/decoding is nearly identical to the theoretical performance curves of

Fig. 40 for 16-PSK. This result supports the aforementioned discrepancy hypothesis, as

there is negligible difference between the approximated theoretical AWGN and simulated

curves. Hence, a correctly functioning system model in the presence of AWGN is

120

confirmed. Through this experiment, it is also recognized that the curves depicted in Fig.

40 are based upon the approximation given by (39) and, hence, are not exact.

The implementation errors induced by the system design and appearing in the

performance curves permeate all subsequent simulation trials including system models 1

through 3. While no exact error offset compensation applied to simulation outputs to

counteract the implementation error is possible, it is helpful to be aware of the error

bounds inherent in the simulation performance curves to help gauge the merit of the

results.

System Model 1 Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.)
a>
<M 10

T3
CD
CD

CO

O*
00
O

Ö

CO

CO

CM
O

U> c
CO

0C
co
E

10

10

10'

& 10
CO

•—'"—-
—=:

~~*~-.^
~~*-^,

V
V

Ps

^^ '%
V
\
\

A
—^ \

\
\

A-
—v~i

18 20 22 24 26 6 8 10 12 14 16

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Es/ Fig. 43. System Model 1 Simulation Performance Graph Showing SER vs. /No

(Time Differential Encoding and 240 Tones)

121

Numerous simulations configured with 240 OFDM frequency tones, 8-bit OFDM

symbols and different nc e parameters were conducted, each demonstrating similar

acceptable performance results as indicated earlier. For example, Fig. 43 displays

performance results for the same system model 1 simulation with identical Fig. 41

configurations; however, time differential encoding is included instead of frequency

differential encoding. The performance results between Fig. 43 and Fig. 41 at a SER of

10"2 are similar, within 0.5 dB, and correspond to the theoretical curve in Fig. 40 within

0.5 dB. Multiple system model 1 simulations consistently verified performance results

similar to the estimated theoretical within the 1 dB error tolerance. Consequently, phase

one testing of the AWGN channel one model concluded successfully.

As an added caveat, it is apparent at least from phase 1 test results that system

model 1 simulations using 4-bit OFDM and 4-bit PSK symbols yield results close to

theoretical AWGN. Consequently, in the conclusions, discussion and complete system

model 3 simulations oriented around 4-bit OFDM symbols and 4-bit PSK symbols are

included for comparison purposes to the system baseline.

D. TEST PHASE 3 - IDENTIFY ERROR PRODUCING CHANNEL 2 SEEDS

With the successful completion of system model 1 simulations and verification of

system performance within an acceptable range of theoretical AWGN, the test plan

progresses to phase three. During phase three testing, channel 2 simulations are

performed without interleaving, and a statistical record of resulting error totals are

compiled using various system seed configurations. This test phase makes use of batch m-

file uhfseeds.m to perform numerous COFDM system simulations using the channel 2

model (chuhf.m) with various input seed configurations. This test step is performed to

excite the channel and record the total errors appearing in the sink message as caused by

multipath burst noise distorting the transmitted signal. Since the multipath channel

randomly distorts the transmitted signal, the simulations behave differently with different

seed configurations. Thus, certain seeds affect transmitted symbols differently by

122

generating more message errors than other seeds. Consequently, by identifying the worst

case channel conditions as a function of the seed parameter, these "bad" seeds can be

included during subsequent system model 3 testing, ensuring that a worst case channel

model is created during the complete system model simulation. The performance results

derived from system model 3 simulations using "bad" seeds will represent a COFDM

system operating in a worst case multipath channel environment under extreme conditions.

The range of seed values available for simulations are elements of the positive

integer set; hence, there are an infinite number of possible seeds. Obviously it is

impossible to simulate all conceivable seeds during test phase 3. However, a suitable

subset of all possible seeds with behavioral characteristics indicative of the infinite set are

adequate to convey general statistical error distribution information. It is desirable to

select 500 different integer seeds for test using system model 2 and be confident within an

acceptable percentage that the tested seed set represents 99% or more of all possible seeds

generating z or fewer errors. With this goal in mind, application of the law of large

numbers and the Chebychev inequality to ascertain a confidence parameter are included in

the estimation. [16; pp. 107-108] The following events and probabilities are defined next.

Event Az: Equals the event that z symbol errors occur in N symbols, where Pr(Az) = PAZ-

Event B: Equals the event that z, or z+1, or z+2 or ... N symbol errors occur in N

symbols, or in other words, there are z or more errors in N symbols. Hence,

B = Az\jA2+l\jA2+2\J...[JAN;and, (40)

PB =Pr(£) = Pz + Pz+1+Pz+2+...+P„ =2> . (41)
i~z

A

Furthermore, let the estimate of the relative frequency of event B, PB, be a lattice random

variable and equal to

123

p = _, z+i w_ = _yk where 0 < p < ! and (42)

kz + kz+l +.. .+kN is the summation of the number of times z, or z+1, or z+2 or ... N errors

A

occur in n trials. Now let kz + k2+l +.. .+kN = an which implies that PB = a, or in other

words, let the estimate of the relative frequency of z or more error events occurring in N

symbols be a.

Event C: Equals the event that there are 0, 1,2, ... , z-1 errors in N symbols; or in other

words, there are fewer than z errors in N symbols. Thus, C = Bc, or

Pc = Pr(C) = P0 + P, + P2 +.. .+PZ_1. (43)

A

Let the estimate of the relative frequency of event C, Pc, be a lattice random variable

equal to,

kn+k,+...+k, , n-(k,+k,^+...+kN)
p _2 ! ^L = LJ £tä ^, where 0<Pr<l. (44) c n n

Consequently, Pc = 1-PB = 1 - a, or in other words, the relative frequency estimate of

fewer than z error events occurring in N symbols.

Now let z be equal to the largest error total corresponding to the worst case seed
A

out of the 500 simulated seeds. Then Pc is the relative frequency estimate after n trials

that the channel will generate z-1 or fewer errors. Making use of the Chebyshev inequality

and the law of large numbers [16], then

124

Pr(Pc-Pc > s)<
Pc{\-Pc)

ns
(45)

which is an upper bound on the chance that Pc and Pc differ by more than s after n

trials. Obviously Pc is an unknown quantity since it represents the actual occurrence of

fewer than z errors for all possible seeds existing in the universe. However, the estimate
A

Pc can be determined as a function of the total number of tested seed trials whose error

totals are less than z errors.

For this experiment, only the worst case seed out of 500 is considered and

represents the greatest error total, z; therefore 499 out of 500 tested seeds produce error

totals less than z. Consequently from (44),

499
^= — = 0.998. (46)

By letting s = 0.008, we can use (45) to compute the probability that Pc is between 0.99

and 1.00. That is,

Pr(Pc-Pc
(0.002Y0.998)

> 0.008) < -^ T
1
 = 6.23%.

' 500(0.008)2 (47)

125

where we have used Pc on the right side of (45) since Pc is unknown. This result

indicates a 93.76% confidence that the worst case seed in 500 seeds is in a subset of 1%

of all seeds that generate z or more errors.

In continuation of the original system configuration of 240 OFDM tones and 16-

PSK used during test phase 2, uhfseeds.m simulation trials are performed using 10,080

OFDM symbols with both time and frequency differential encoding/decoding. The

selected integer seed range used for system configuration and evaluation are from 1 to

500. Also, link 3 is initially included during trials as it represents the most challenging

multipath channel with relatively severe power fading, path delays and Doppler shifting

typical of maritime ship-to-relay link communications.

An initial simulation using time differential encoding is performed with the

corresponding seed error report presented in Fig. 44, and the corresponding error

distribution displayed in Fig. 45. The seed error report provides simulation information

regarding the total number of message error occurrences as a function of a specific seed

value. The error distribution plot orders the seeds from least to greatest with respect to

the number of errors generated in each corresponding message block. Included in the

margin within the error distribution figures are the top 5 error producing seeds (Top 1%

of entire tested seed set). Fig. 46 displays the error histogram for 240 tones using ten

error bins and reveals that the average number of errors per seed for this configuration is

405. From this result it is apparent that out of 10080 OFDM message symbols

transmitted, 405 on average would be in error at the receiver, approximately a 4% average

symbol error rate.

126

Link3: Error Totals vs. Seed Values (Time Dilf. Enc.)(l_oss = 0,3,9) (Dop = 25,25,25) (Delay = 0,0.9,5.1)

2 1200

<9 1000

£ 800

600

5
Q

O 400

200

50 100 150 200

UHFSEEDS: Seed Va

300 350 400 450 500
Symbols Tested= 10080)

Fig. 44. Link 3 Seed Error Report (240 Tones, Time Differential Encoding)
Link3: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

SO 100

UHFSEEDS: Seed Value (out of order)

Fig. 45. Ordered Distribution of Error Totals Verse Seed Values, 240 Tones

127

180

Link 3 Error Histogram (Average # of Errors Per Beed = 405)

160

111111

140

120

100

80

60

fllll
111111

40 %#%%%%%

¥i<ii<%4<.4<$

■:\\. I-1

20 11111' n, „'

111111 0 'v$%.
II WzM: :;:>::.

200 400 600 800 1000
Error Bins (240 OFDM Tones)

1200 1400

Fig. 46. Error Histogram for 240 Tones and Time Differential Encoding

A second uhfseeds.m simulation trial is repeated using 240 OFDM frequencies,

16-PSK and a 10,080 OFDM symbol message test pattern. However, in this case

frequency differential encoding/decoding is included instead of time differential encoding.

The resulting error report is presented in Fig. 47, and the corresponding error distribution

displayed in Fig. 48. From the error histogram shown in Fig. 49, the average number of

errors per seed is 35, or approximately a 0.34% average symbol error rate. In contrast to

Fig. 46, there is a dramatic reduction of average errors when using time differential

encoding over frequency differential encoding. In addition, the worst seed, value 279,

generates a total of only 404 errors as opposed to the previous simulation's worst seed,

15, which produces 1341 total errors. Apparently frequency differential encoding

combined with a 240 OFDM tone configuration and 16-PSK results in better overall

system performance with a minimum average error total. Consequently, this optimal

configuration will be utilized for remaining system test phases using 240 OFDM tones.

128

Link3: Error Totals vs. Seed Values (Freq. Diff. Enc.)(Loss = 0,3,9) (Dop = 25,25,25) (Delay = 0,0.9,5.1)

400

350

>. 300

250

o- 200

2
D
li- 150

100

50

50 100 150 200 250 300 350 400
UHFSEEDS: Seed Values (# of Symbols Tested= 10080)

450 500

Fig. 47. Link 3 Seed Error Report (240 Tones, Frequency Differential Encoding)
Link3: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

400

300

250

200

100

50 100 150 200 250 300 350 400 450
UHFSEEDS: Seed Index (Values out of order) (240 OFDM Tones)

Fig. 48. Ordered Distribution of Error Totals Verse Seed Values, 240 Tones

129

Link 3: Error Histogram (Average # of Errors Per Seed = 85)

300

250 .1

200

150

100

50

■;■"¥»■'}.

WH

■i: ■■]■&■:.

Wm.

Ä *&i

W% Urn.

Hüll

w§mm

Ills mm.
iÄ|| WM

wm ■'■■ <m
mSm

mm
100 150 200 250

Error Bins (240 OFDM Tones)

300
I mmmm wzmtm

350 400

Fig. 49. Error Histogram for 240 Tones and Frequency Differential Encoding

The results of these initial phase 3 test trials indicate large variations in average

error totals among system configurations using time verse frequency differential

encoding/decoding. From these observations, it is deemed worthwhile to modify the initial

system configuration from 240 OFDM tones to a system using other tone quantities and

investigate the corresponding performance results produced by batch m-file uhfseeds.m

using the two differential encoding methods. Phase 3 simulations are repeated with the

original system configuration extended to include 30, 60 120 and 480 OFDM frequency

tones using both time and frequency differential encoding/decoding. After simulation data

is collected and evaluation of resulting error totals are performed, a determination is made

as to which OFDM tone number combined with the corresponding system configuration is

optimal in terms of producing minimal average errors per seed.

130

Link3: Average Number of Errors From m-file uhfseeds.m Vs. OFDM Frequency #

1500

03

o 1000

500

s
s

3£
t
I
1
I
1
1 \

1 \
\
I

I
t

•

s /

>*
s /

s

■ - 1

1

■••"""

^'

.®

s

-——-
 — —--

^r-*- SW

50 100 150

OFDM Frequency Number (i

200 250 300

" = Time Differential Encoding,,

350 400 450 500

: Freq. Differential Encoding)

Fig. 50. Average Error Totals Vs. Number of OFDM Tones for Frequency and Time

Differential Encoding

Numerous simulations were performed generating error reports, error distribution

plots and histograms with similar formats as previously presented for 240 tones above.

Fig. 50 displays a comprehensive plot of the average error totals for the OFDM tones of

interest. It is readily apparent from the figure that in general time differential

encoding/decoding performs better with the system configured for fewer OFDM

frequency tones; conversely, a configuration using more OFDM frequency tones typically

performs better using frequency differential encoding/decoding. However, in observation

of the optimal tone quantities and their corresponding differential encoding/decoding

methods, both curves tend to exhibit upswings near the endpoints. Apparently, 60 OFDM

tones and time differential encoding/decoding performs slightly better than 30 OFDM

tones with the same encoding/decoding method. Similarly, 240 OFDM tones and

131

frequency differential encoding performs slightly better than 480 OFDM tones. Also, 120

OFDM tones performs nearly identical for both time and frequency differential

encoding/decoding and only slightly better than 240 OFDM tones using frequency

differential encoding, suggesting a "cross-over" point.

Evaluation of Fig. 50 concludes that 60 OFDM tones generates a minimum

average error total using time differential encoding and, therefore, will also be included in

subsequent system simulations. Based upon these simulation results, the COFDM system

design initially configured for 240 tones using frequency differential encoding/decoding is

expanded to also include 60 OFDM tones using time differential encoding/decoding and

test phase 3 seed error reports are repeated.

Link3: Error Totals vs. Seed Values (Time Diff. Enc.)(Loss = 0,3,9) (Dop = 25,25,25) (Delay = 0,0.9,5.1)

300

X 250

ii

Q

O

200

150

100

50

50 100 150 200 250 300 350 400 450 500

UHFSEEDS: Seed Value (Symbol #= 10020)

Fig. 51. Link 3 Seed Error Report (60 Tones, Time Differential Encoding)

132

Using 60 OFDM tones in the system, the sub-carrier (tone) spacing within the 480

kHz channel bandwidth calculates to be 8 kHz (480KHz/60 = 8KHz). Correspondingly

the information symbol length is found to be 125usec (1/8 kHz = 125usec). Using a 2%

guard interval, the complete symbol length, Ttotai, becomes 127.5usec. Thus, the system

configured with 60 OFDM tones uses shorter total symbol lengths than for 240 OFDM

tones; however, sub-carrier spacing with 60 tones is 4 times larger than with 240 tones.

Link3: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

300

250

200

E 150

100

50

184
268

109
148
138

■^m^m^&s&sgg&J^&^Sftgg
50 100 150 200

UHFSEEDS: Seed Value (out of order)

Fig. 52. Link 3 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones

With the system reconfigured to accommodate 60 OFDM tones and time

differential encoding/decoding, test phase 3 is repeated and corresponding link 3 seed

error reports generated. The results of uhfseeds.m simulations using 60 tones, 16-PSK

and a message block size of 10,020 symbols are presented in Fig. 51, the seed error

report, and Fig. 52, the seed error distribution plot identifying 184 as the worst case seed

generating 323 total errors. Fig. 53 depicts the corresponding error histogram indicating

133

the average total errors per seed is 57, an average lower than the 85 errors per seed for

240 OFDM tones using frequency differential encoding/decoding. From these multiple

simulations it is apparent that 60 and 240 OFDM tones are near optimal in terms of

generating minimal errors per seed and, therefore, will be the focus of subsequent

simulation trials during test phases 4, 5 and 6.

Link3: Error Histogram (Average # of Errors Per Seed = 57)

300

250

200

150

100

50

|:|:|:j:[:|:j:j:-:|:|:;:;:;

50 100 150 200 250 300 350

Error Bins (60 OFDM Tones)

Fig. 53. Link 3 Error Histogram for 60 Tones Using Time Differential Encoding

From this point on, simulations oriented around 60 OFDM tones use time

differential encoding/decoding, while simulations oriented around 240 OFDM tones use

frequency differential encoding/decoding. The corresponding link 1 and link 2 seed error

reports, error distributions and error histograms for 60 and 240 OFDM tones and their

respective differential encoding/decoding methods are presented in Fig. 54 through Fig.

65. A record of the worst case seed for each configured link is reserved for later system

model 2 and model 3 simulations.

134

Linkl: Error Totals vs. Seed Values (Time Diff. Enc.)(Loss = 0,6) (Dop = 1,10) (Delay = 0,0.01)

z 140

» 120

a 60
U_

O

o 40

100 150 200 250 300 350

UHFSEEDS: Seed Value (Symbol # = 10020)

400 450 500

Fig. 54. Link 1 Seed Error Report (60 Tones, Time Differential Encoding)
Linkl: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

160

140

120

40

272

450

27

38
189

50 100 150 200 250 300 350 400 450

UHFSEEDS: Seed Index (Values out of order) (60 OFDM Tones)

500

Fig. 55. Link 1 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones

135

Link 1: Error Histogram (Average # of Errors Per Seed = 1)

500

450

400

350

300

-o 250

200

150

100

50 .;

20 40 60 80 100 120 140 160 180 200

Error Bins (60 OFDM Tones)

_ Fig. 56. Link 1 Error Histogram for 60 Tones Using Time Differential Encoding
to

7 Link2: Error Dist. vs. Seed Values (Time D iff. Enc.) (Loss - 0,5,15) (Dop = 10,10,10) (Delay > 0.0.07,0.8)

to 140

UJ 40

50 100 150 200 250 300 350 400 450

UHFSEEDS:Seed Value (Symbol* = 10020)

Fig. 57. Link 2 Seed Error Report (60 Tones, Time Differential Encoding)

136

Link2: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

180

160

120

100

80

60

20

387

50 100 150 200 250 300 350 400 450
UHFSEEDS: Seed Index (Values out of order) (60 OFDM Tones)

Fig. 58. Link 2 Ordered Distribution of Error Totals Verse Seed Values, 60 Tones

Link2: Error Histogram (Average # of Errors Per Seed = 7)

300

100 .;

50 100 150
Error Bins (60 OFDM Tones)

200 250

Fig. 59. Link 2 Error Histogram for 60 Tones and Time Differential Encoding

137

Linkl: Error Totals vs. Seed Values (Freq. Diff. Enc.)(l_oss = 0,6) (! *-> — 1,10) (Delay = 0,0.01)

350

300

i, 250

o
■-*

cy

I!

% 200
&
£

LL

1 150
U_
O

15
° 100

50 100 150 200 250 300 350 400 450 500

UHFSEEDS: Seed Values (# of Symbols Tested= 10080)

Fig. 60. Link 1 Seed Error Report (240 Tones, Frequency Differential Encoding)

Linkl: Ordered Distribution of Error Totals vs. Seed Values (Top 1% Worst Case Seed Values Shown on Plot)

350

250

200

150

100

50

450

272

27

38

189

100 150 200 250 300 350 400 450

UHFSEEDS: Seed Index (Values out of order) (240 OFDM Tones)

500

Fig. 61. Link 1 Ordered Distribution of Error Totals Verse Seed Values, 240 Tones

138

500

450

400

350

300

250

200

150

100

Link 1: Error Histogram (Average # of Errors Per Seed = 3)

•••:•¥■¥::■■. :.■:

H fmm

50

^

wm
■WPP

::::::::x:.::::::::::::;:

WIWMA

\mm;m

■■».'A* ■■■::■

wm,
-:•*■.-:-:-..-:• ..:■■•'

50 100 150 200 250 300 350 400

Error Bins (240 OFDM Tones)

Fig. 62. Link 1 Error Histogram for 240 Tones and Frequency Differential Encoding

£• Link2: Error Totals vs. Seed Values (Freq. Diff. Enc.) (Loss = 0,5,1 5) (Dop = 10,10,10) (Delay = 0,0.07,0.8)

300

250

150

2
o

50

ill
50 100 150 200 250 300 350 400 450 500

UHFSEEDS: Seed Values (# of Symbols Tested= 10080)

Fig. 63. Link 2 Seed Error Report (240 Tones, Frequency Differential Encoding)

139

Link2: Ordered Distribution of Error Totals vs. Seed Valuas (Top 1% Worst Case Seed Values Shown on Plot)

300

250

50

387
148
274
279
215

100 150 200 250 300 350 400

UHFSEEDS: Seed Index (Values out of order) (240 OFDM Tones)

Fig. 64. Link 2 Ordered Distribution of Error Totals Verse Seed Values, 240 Tones
Link 2: Error Histogram (Average # of Errors Per Seed = 10)

500

450

400

iii:

250

150

50

':'%■■:%■■■-

:/W;;;

150 200 250

Error Bins (240 OFDM Tones)

350

Fig. 65. Link 2 Error Histogram for 240 Tones and Frequency Differential Encoding

140

E. TEST PHASE 4 - SYSTEM MODEL 2 SIMULATIONS

With 60 and 240 OFDM tones as the preferred system configuration choice, the

simulation test plan progresses to phase 4. The objective of this test phase is to simulate

the system transmitting symbols through the multipath channel exclusively to reveal the

burst error patterns associated with worst case channel seeds. It is instructive to observe

general burst noise error patterns within the message array without interleaving to

recognize familiar fading behaviors so as to later identify during test phase 5 optimal

interleaver configurations. The link 3 simulations performed during this test phase use the

worst case seeds, 184, corresponding to 60 OFDM tones and 279, corresponding to 240

OFDM tones. Using these "bad" seeds ensures that worst case channel conditions exist

during simulations and generate the most errors. Phase 4 simulations are conducted using

batch file cofdmsim.m configured for system model 2 testing as exemplified in Table 22.

Links 1 and 2 are also simulated later during this test phase to identify their corresponding

error patterns.

» cofdmsim % Perform a system model 2 simulation with 60 OFDM tones and 300 symbols. (16-PSK)

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or to run both enter 2

(two): 0

Enter the # of OFDM frequencies (Note: Must be even): 60

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter 0,1,2

or 3): 2

Channel model 2 simulation performed.

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no): 0

Enter specific interleaver case numbers from (0 to 8) (Ex. [0 4 5 8]): 0

Enter the total minimum number of symbols to simulate (Ex. 10000): 280

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 300

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

141

= no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 300], or [300 1], offers no

interleaving functionality): [300 1]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Enter the guard interval length (Number of sample points): 6

Do you want to include error correction coding? (1 = yes, 0 = no): 0

Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 184

Do you want signal plots? (1 = yes, 0 = no): 1

How many seconds of delay between pictures? 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 22. System Model 2 Simulation With 60 OFDM Tones

While performing cofdmsim.m system model 2 simulations, various output plots

depicting various forms of the signal data at strategic stages in the signal path are possible

if desired and configured by the user. As an example of the types of plots generated

during simulations, Fig. 66 through Fig. 71 depict corresponding information generated by

batch m-file cofdmsim.m. configured as in Table 22. This example uses only 600 OFDM

symbols during system model 2 simulations to reduce the number of data points for

plotting demonstration purposes primarily. Actual meaningful system simulations oriented

around 240 and 60 OFDM tones use the full complement of approximately 10,000 OFDM

symbols for source message transmissions; however, corresponding high detail plots are

not displayed but summarized instead.

Fig. 66 depicts the constellation plot characteristic of 16-PSK type modulation.

As expected, 16 individual phase points are generated resulting from symbol mapping of

4-bit words into complex modulation values with unit magnitude and one of 16 possible

phases. The constellation points, denoted by an asterisks, are positioned symmetrically

spaced on the unit circle, partitioning the circle into 16 equally sized sector formations.

142

T
1

ransmit ted ! Signal 16-ary (Aoriste Nation Plot (16 f 3ossible Phases)

8? m

0.8
m m

0.6

0.4 3S; JS

0.2

0i

0.2

0.4 m ^

0.6

m ?K

0.8

-1
5$
 5 5 ■

-0.5 0
Magnitude = 1

0.5

Fig. 66. Ideal Signal Constellation Plot of Transmitted 16-PSK Signal

The corresponding message array of reformatted 4-bit PSK symbols with unit

magnitude are depicted in Fig. 67 and are transmitted through the channel. Notice the flat

planar magnitude representation of the symbols prior to transmission. In this example,

there are 60 OFDM tones (columns) and 10 symbol rows for a total of 600 transmitted

PSK symbols. The increase in symbol number from an initial specified 300 OFDM

symbols (Table 22) to the actual transmitted 600 PSK symbol quantity is the result of

symbol reformatting from 8-bit words to 4-bit word format. Recall that once a simulation

is configured for a specified number of OFDM frequency tones, the number of tones

remain fixed throughout the simulation duration. Consequently, additional symbols may

be generated as a result of symbol word reformatting, increasing the original message

143

array size in the time dimension (added symbol rows). For this example, the total number

of symbols doubles from 300 to 600 since the symbol word lengths halve from 8-bits to 4-

bits.

Magnitude of Transmitted Signal (Unity Magnitude)

00

■o
CD
CD

CD
■o
*—'
'c
03

Symbol Row # (Total = 10) 0 0 OFDM Freq # (Total = 60)

Fig. 67. Constant Unity Magnitude Plot of Transmitted Signal

The corresponding received signal constellation plot is shown in Fig. 68. As a

consequence of multipath distortions within the channel causing constructive and

destructive signal interference, the received constellation points are scattered from their

normal pre-transmitted positions (Fig. 66). The figure also suggests that without

additional signal conditioning, a majority of the received symbols would be decoded in

error since many points cross sector borders into adjacent phase sectors. However, with

144

the inclusion of time differential encoding as demonstrated in Fig. 69, the constellation

points realign within their respective sector spaces forming a distinct star like structure.

Received 16-ary Signal Constellation Plot, before Time Differential Decoding

Fig. 68. Constellation Plot of Received Signal Showing Multipath Distortion

Additionally, there is a resulting signal energy loss as is evident by some

constellation points converging upon the origin from their normal unit circle positions.

Hence, the benefit of multipath distortion error reduction through differential

encoding/decoding is gained at the expense of partial signal energy loss. In general, for a

fixed symbol error rate, differential encoding/decoding can require up to an additional 3

145

dB of signal energy as an identical system without differential encoding/decoding;

however, as is evident by reduced error total improvements, differential

encoding/decoding is well worth the signal energy loss expense [8; p. 147].

Received 16-ary Signal Constellation Plot, After Time Differential Decoding
1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

-*r

-fH=H-

-P

4-

4- Jt
•h

"5"',4- 4- 4 f-

~^r

4". 4-

*#- 4-

.d-

^pr

4f- 4-

-f- 4" 4"

-4-

<

4-

4r~

4-,
-sffe=

4-

j±
4-

%-

-H-
4-

4-

. 4- ifc. %-

-4- ,+• .

-* 4-

4-

■1 -0.5 0 0.5

Fig. 69. Constellation Plot of Received Signal After Time Differential Decoding

146

Magnitude Variation of Received Signal (Channel 2 Model)

1.2

■* oo 0.8
II

■D
CD
ci> 0.6
w
ci>

■a Ü.4
^—^
C

03 0.?
^i

0
15

Symbol Row # (Total = 300) 0 0
OFDM Freq # (Total = 60)

Fig. 70. Magnitude Plot of Received Signal Demonstrating Power Fading

A corresponding received signal magnitude plot is depicted in Fig. 70 with

noticeable variations in the RSL, indicative of power fading. In stark contrast to the pre-

transmitted magnitude plot (Fig. 67), the noticeable peaks and valleys in the received

magnitude plot demonstrate the consequences of multipath distortion influences on the

transmitted signal through constructive and destructive signal interference by altering the

message symbol magnitudes from their pre-transmitted unity levels. It is apparent that for

this link 3 system model 2 simulation using a worst case channel seed, frequency selective

fading occurs causing the frequency dependent peaks and valleys of the RSL.

147

Path 3: Error Distribution Without Interleaving (M-ary bits: 8,N-ary bits: 4) (case =0) (Intlvr Pair = 300,1)

00

CD
CD
CO

CO
CO

o

CD
Ü

as

ü
ü
O

LU

Symbol Row # (Total = 300)
Error Correction = 0

Freq. # (OFDM Total = 60)

Fig. 71. Corresponding Error Matrix Identifying Symbol Error Locations

While some RSL variations may cause signal reinforcement, allowing symbols to

be decoded correctly without errors, Fig. 71 demonstrates how incorrect message symbol

decoding results in the formation of an error matrix, indicating symbol error locations

within the sink message array. In this example, 33 errors exist in the decoded sink

message block out of 300 total OFDM symbols, or a 11% OFDM symbol error rate.

Without further FEC, these errors remain corrupting the message, and the 99% reliability

criteria stated in the BAA is not met once AWGN is included in the channel. As evident

from Fig. 70 and Fig. 71, indicating frequency selective fading and power loss, formations

of isolated error groups occur not only along the OFDM frequency dimension, but also

across symbol rows in the time dimension. It appears that by using effective interleaving,

these correlated error groups could be redistributed through the rest of the sink message

148

array where no errors currently exist, allowing for more effective FEC with minimal code

strength.

Throughout this test phase, multiple system model 2 simulations are performed

using 60 and 240 OFDM frequency tones with a sample message size of approximately

10,000 total OFDM symbols. While it is redundant to display all of the simulation output

plots previously presented by example in Fig. 66 through Fig. 71 using 60 OFDM tones, it

is instructive to observe the received sink message error matrix demonstrating unique link

3 symbol error distributions for the configurations of interest.

Link 3: Error Distribution With rrtlving (M-ary bits: 8,N-ary bits: 4) (case =0) (Intlvr Pair = 1,10020)

2 0
uj200

Sym. Row # (Total # = 10020) 0 0 OFDM Freq. # (Total = 60)

Fig. 72. Link 3 Error Matrix For 60 OFDM Tones Using 10,020 Symbols

149

The link 3 system model 2 error matrix corresponding to 60 OFDM tones using

time differential encoding/decoding and no effective interleaving is shown in Fig. 72.

From the figure it is again apparent that frequency selective fading occurs within the

channel as is evident by error free gaps existing between isolated symbol error groups

along the OFDM frequency dimension. Out of 10,020 simulated OFDM symbols, 323 are

in error, 3.2% of the entire message block. This simulation uses a worst case channel

seed of 184 and the most challenging link 3. Corresponding error matrices for link 1 and

link 2 are shown in Fig. 73 and Fig. 74, respectively, both using 60 OFDM tones, 16-PSK

and 10,020 symbol message block size along with their worst case seeds.

Link 1: Error Distribution With Interleaving (M-ary bits: 8,N-ary bits: 4) (case =0) (Intlvr Pair = 1,10020)

Sym. Row # (Total # = 10020) 0 0 OFDM Freq. # (Total = 60)

Fig. 73. Link 1 Error Matrix For 60 OFDM Tones Using 10,020 Symbols

150

Referring to Fig. 73, link 1 and the corresponding worst case seed, 272, we

observe that flat fading occurs within the channel affecting all OFDM tones equally as

identified by the complete row of symbol errors. In Fig. 74 while using a link 2 worst case

seed of 148, flat fading again occurs affecting roughly half of the OFDM tones for one

row, and the other half of the OFDM tones in another row. Based upon observations of

both these simulation outputs, interleaving should be helpful in breaking-up the

concentrated error bursts and re-dispersing them to other symbol rows where there are an

absence of errors.

Link 2: Error Distribution Without hterleaving (M-ary bits: 8,N-ary bits: 4)

Sym. Row # (Total # = 10020) OFDM Freq. # (Total = 60)

Fig. 74. Link 2 Error Matrix For 60 OFDM Tones Using 10,020 Symbols

151

Link 3: Error Distribution With Interleaving (M-ary bits: 8,N-ary bits: 4) (case =0) (Irrtlvr Pair = 1,10080)

Error Correction = 0

250

Sym. Flow # (Total # = 10080) 0 0 OFDM Freq. # (Total = 240)

Fig. 75. Link 3 Error Matrix For 240 OFDM Tones Using 10,080 Symbols

In Fig. 75 a resulting simulation message error matrix plot corresponding to 240

OFDM tones, frequency differential encoding/decoding and 10,080 simulated OFDM

symbols without effective interleaving is presented. From the figure it is again apparent

that flat fading occurs for a few rows of symbols while frequency selective fading occurs

during other symbol rows while using the worst case link 3 channel 2 seed of 279. Fig. 76

and Fig. 77 present similar sink message error matrices for identical configurations using

links 2 and 1 with corresponding worst case channel model 2 seeds. Fig. 76 demonstrates

link 2 flat fading for about half the frequencies along a group of rows and flat fading for

the other half of frequencies along an adjacent symbol row group. Fig. 77 once again

depicts flat fading across all frequencies affecting a few rows during a link 1 simulation.

152

Link 2: Error Distribution With Interleaving (M-ary bits: 8,N-ary bits: 4) (case =0) (Intlvr Pair= 1,10080)

Error Correction = 0

250

Sym. Row # (Total # = 10080) 0 0

100

OFDM Freq.# (Total = 240)

Fig. 76. Link 2 Error Matrix For 240 OFDM Tones Using 10,080 Symbols

Link 1: Error Distribution With Interleaving (M-ary bits: 8,N-ary bits: 4) (case =0) (Intlvr Pair = 1,10080)

Error Correction = 0 o
CO
•a-

(s
ee

d
=

CO
ct 0.8 s
CO

II

£ 0.6 -
o

S 0.4-
c
ra

3 0.2^
o
O

2 0>
£ 50

40 ^^^H
30 ^"4

20

Sym. Row # (Total # = 10080)

10

250
200

150

0 0
50

100

OFDM Freq.# (Total = 240)

Fig. 77. Link 1 Error Matrix For 240 OFDM Tones Using 10,080 Symbols

153

F. TEST PHASE 5 - IDENTIFYING OPTIMAL INTERLEAVER CASES

From the previous figures displayed as part of test phase 4, it is apparent that

multipath channel 2 burst errors occur in correlated groups along symbol rows during

transmissions using the 60 OFDM and 240 OFDM tone configurations. Consequently,

multiple errors appear across multiple OFDM frequency tones and corrupt many adjacent

symbols. Without FEC, these burst errors would remain in the final sink message array,

degrading performance and diminishing communication reliability with transmission

outages.

Obviously a suitable FEC code of sufficient strength must be included to correct

symbol errors and recover lost information. However, it is also apparent from the figures

that most other sink error matrix rows are devoid of any symbol errors. In this situation

interleaving could be effective in decorrelating the afflicted rows by redistributing errored

symbols along rows where few or no errors exist. Consequently, the error concentrations

across OFDM frequency tones (along rows) could be reduced, allowing for a weaker code

to effectively correct all errors. If a weaker code can sufficiently correct all errors as well

as a stronger code can, then the weaker code is preferable since the code rate improves

and increases the information rate. Thus, it is advantageous to determine which CDL

interleaver case is more effective in dispersing errors throughout the message array in such

a way that minimal error totals across any given row are formed. In this way, a minimal

strength code, which is designed to perform the error correction functionality across rows,

can be more effective.

Recall from Fig. 72 the fading that occurs during transmission and the

corresponding concentrated burst error events in the sink message array. To demonstrate

the affects of message symbol interleaving, Fig. 78 presents an identical configuration as in

Fig. 72, however, this time case 2 interleaving is included using a (60,167) dimension

intermediate matrix. The interleaving effects are apparent as the concentrated error

groups are sufficiently broken up and strewn throughout the message array.

154

Consequently, the scattered errors appear as randomly isolated events uncorrelated to

specific OFDM frequencies. The advantages of interleaving can only be exploited if

suitable FEC is also included, since the errors do not go away but are simply relocated

somewhere else within the sink message array. It is intuitively apparent that certain

interleaver cases will redistribute errors within identical sink message arrays differently;

but which interleaver performs optimally when combined with R-S FEC needs to be

investigated. Identification of an interleaver that minimizes total row errors proves useful

in determining the required code strength.

Link 3: Error Distribution With htMng (M-ary bits: 8,N-ary bits: 4) (case =2) (Intlvr Pair = 60,167)

Ü200

Sym. Row # (Total # = 10020) 0 0 OFDM Freq. # (Total = 60)

Fig. 78. Link 3 Interleaved Error Matrix (Case 2) For 60 OFDM Tones

155

The previous simulation demonstration depicts the interleaving operation and

suggests through example its practical benefit; however, it is desirable to determine the

most appropriate and optimal interleaver for different system configurations. This is the

motivation for adopting test phase 5, to identify optimal CDL interleaver cases using

different system simulation configurations.

As a way to identify optimal interleaver cases for arbitrary system configurations,

batch m-file chancase.m calculates row errors within the sink message array and records

the maximum total. This operation is performed on identical source message arrays for all

interleaver cases in a repetitive looping fashion, allowing chancase.m to determine which

case or cases generate minimal symbol error totals along any given row. In this way,

knowledge of the optimal interleaver case generating the corresponding maximum row

error total dictates the required R-S coding strength. Recall that R-S FEC is performed by

m-file checkm which corrects errors within a specified code block length along message

array rows. A sample chancase.m configuration using 60 OFDM tones is presented in

Table 23.

» chancase % Find all optimal interleaver cases for 60 OFDM tones using system model 2 link 3.

To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time version: 0

Enter the # of OFDM frequencies (Note: Must be even): 60

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 64

Enter specific integer seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 184

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter

0,1,2 or 3): 2

Channel model 2 simulation performed.

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10020

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

= no): 0

156

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10020], or [10020 1], offers no

interleaving functionality): [60 167]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Test all interleaver cases(yes) or specific ones(no)? (1 = yes, 0 = no): 1

All cases, 0 through 8, will be tested.

Enter the guard interval length (Number of sample points): 6

Do you want pictures? (1 = yes, 0 = no): 1

How many seconds of delay between pictures? 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 23. Configuring Batch M-file Chancase.m For Optimal Interleaver Cases

Link3: Maximum Row Error Total Vs. Interleaver Case Number (Time Diff. Enc.) (OFDM Freq. # = 60)

^ 20
00

II 18
T3

CD
CD

CO 16

llllllll

111111

5
tr 14
o

:$::SS::::§:&£ -

un
t

F
or

 A
ny

 S
ym

b

00

 O

 N
>

: :

o
0 6
o

E *

1 2
CO

0

Fig. 79

012345678
Interleaver Case Number

. Link 3 Row Error Totals Verse Interleaver Case, 60 OFDM Toi

157

les

The corresponding output plot from Table 23 system configuration is displayed in

Fig. 79. The graphical summary of error totals indicate that the optimal interleaver case

offering fewest number of errors in any given row are interleaver cases 2 and 8.

Consequently, based upon this result case 2 or case 8 are included in later system model 3

simulations during interleaving configuration. From Fig. 79, it is also apparent that cases

3 and 4 offer the worst error total results; thus, they are avoided during subsequent system

simulations.

Link3: CHANCASE: Error Totals Vs. Interleaver Case Number

325

320

CO
.4—1
o
h-
o

UJ

315

310

305

300

295 -I

2 3
Interleaver

4 5
Case Number

Fig. 80. Link 3 Total Message Errors Verse Interleaver Case, 60 OFDM Tones

Fig. 80 is interesting because it suggests that different interleaver configurations

affect the message array error totals differently while using identical source messages. It

158

might initially be hypothesized that a design error is present as error totals are expected to

be the same for all tested interleaver cases, since system configurations are identical for all

simulation loops aside from the particular interleaver case being tested. However, error

total variations are understandable and expected when considering that the ordering of the

transmitted message symbol sequence differ among the interleaver cases even though the

identical message source is used (recall from Fig. 12 that multiple unique sequences are

possible as a function of different interleaver parameters given the same source message

array). With numerous possible transmit sequences a function of the interleaver case, the

corresponding phases of the channel encoded symbols appropriately differ among symbols.

In reaction to each transmitted symbol, the channel randomly alters symbol magnitudes

and phases according to the simulated link multipath parameters; thus, certain symbols

may be more susceptible to channel influences than others and may be decoded as errors,

when previously the same symbols were located in a different part of a transmitted

sequence and may not have been affected by the channel at all. Thus, depending on their

transmit sequence location, certain symbols are more prone to multipath burst error

corruption than others and this accounts for the variation.

Based upon this understanding, it is interesting to note that certain interleaver

cases may generate more total message errors, as case 7 does in Fig. 80. However, due to

the manner in which case 7 interleaving is performed, it also offers one of the better

interleaving choices in terms of minimizing row errors (Fig. 79).

Fig. 81 demonstrates similar chancase.m link 3 simulation results configured for

240 OFDM tones, frequency differential encoding/decoding and a source message size of

10,080 total OFDM symbols, while Fig. 82 indicate message errors totals verse interleaver

cases. From Fig. 81 It is apparent that interleaver case 7 minimizes message row error

totals, with cases 1 and 8 a close second.

159

o
I-»
CM

" Link3: Maximu Row Error Total Vs. Interleaver Case Number (Freq. Diff. Enc.) (OFDM Freq. # = 240)
"D

CD
CD

CO

o
DC

Ö

E
>.

CO

>.
c
<
o

LL

C
3
o
Ü

25 -I

20 -;!

15 -Ä11I-1HII-!

10

LJJ

E

E
x
CO

2 3 4 5 6
Interleaver Case Number

8

Fig. 81. Link 3 Row Error Totals Verse Interleaver Case, 240 OFDM Tones

Link3: CHAN CASE: Error Totals Vs. Interleaver Case Number
I

425

420

415
CO

£ 410

w 405

llllll"

400

w:^:^-:-:-i^

395

390
::i:::::So:: ::::::::::::::: ftWÄö ::::::::::::::: :¥:W:*: wmwm *:***£ •<:V:-:>^ WftftS ':W#::::;

2 3 4 5 6
Interleaver Case Number

7 8

Fig. 82. Total Errors Verse Interleaver Case Number, 240 OFDM Tones, Link 3

160

AWGN: Maximum Error Total Vs. Interleaver Case Number (Time Diff. Enc.) (OFDM Freq. # = 60)

CD
CD

CO

o
cr
"5

E
>>

CO
>>
c
<

c
o
O

LU

E
3
E

2.5

2

1.5

1

_

:.;l:i.r::::::-

- 0.5

n
2 3 4 5

Interleaver Case Number

Fig. 83. AWGN: Row Error Totals Verse Interleaver Case, 60 OFDM Tones

Test phase 5 is oriented around system model 2 simulations only since interleaving

is most effective on multipath induced burst noise and not as effective with the AWGN

channel having a more random error distribution. From the example graph depicted in

Fig. 83 demonstrating a chancase.m simulation result using system model 1 only, it is

apparent that symbol interleaving using different cases has negligible benefit with AWGN

as expected since there is little variation in the row error totals. From the figure, the

difference in row error totals among the various interleaver cases is merely one error.

161

Linkl: Maximum Row Error Total Vs. Interleaver Case Number (Time Diff. Enc.) (OFDM Freq. # = 60)

9

CM

TS
CD
CD
CO

O
DC

~Ö
.Q
E
CO

<

o
LL

C

o
O

LU

3
E
x
CB

8

7

6

5

4

3

2

1

0
3 4 5

Interleaver Case Number

Fig. 84. Link 1 Row Error Totals Verse Interleaver Case, 60 OFDM Tones

With identification of optimal interleaver cases for link 3 using 60 and 240 OFDM

tones, it is desirable to perform similar chancase.m batch file simulations for links 1 and 2

while using corresponding worst case channel seeds. From Fig. 84, interleaver case 1

performs the best using link 1 and 60 OFDM tones. Likewise from Fig. 85, interleaver

case 4 performs the best for link 2 and 60 OFDM tones. Similar simulations are again

performed on links 1 and 2 using 240 OFDM tones with corresponding graphical results

presented in Fig. 86 and Fig. 87. For link 1, cases 0,1 and 2 perform equally as well. For

link 2, case 0 (conventional block interleaver) performs the best with (240,42)

intermediate matrix dimensions.

162

Link2: Maximum Row Error Total Vs. Interleaver Case Number (Time Diff. Eno.) (OFDM Freq. # = 60)

CD
0

C0

5
o
rr
"5

E
>.

CO
>s
c
<

c
o
Ü

3
E
"x
(0

10

2 3 4 5
Interleaver Case Number

Fig. 85. Link 2 Row Error Totals Verse Interleaver Case, 60 OFDM Tones

Linkl: Maximum Row Error Total Vs. Interleaver Case Number (Freq. Diff. Enc.) (OFDM Freq. # = 240)

18 o
in
-a-
ll

-o
CD
CD

w

o
rx
ö
.a
£ >.
co
>.
c
<
o

LL

C
3
O
o
o

LLI

E
3
E
'x

co

16

14

12

10

8

6

4

2

0 3 4 5

Interleaver Case Number

Fig. 86. Link 1 Row Error Totals Verse Interleaver Case, 240 OFDM Tones

163

Link2: Maximum Row Error Total Vs. Interleaver Case Number (Freq. Diff. Enc.) (OFDM Freq. # = 240)

oo
CO

CD
CD

o
rx
Ö n
E

CO
>. c
<

c
O
O

LU

CO

20

18

16

14

12

10

8

6

4

 i ^^^$S^^ i .-——.— ::;:&:$:;:;:;:£:;:;:$: ■ ™mr.'r'hww:vr-- Wl^ffi$& -

01 2345678

Interleaver Case Number

Fig. 87. Link 2 Row Error Totals Verse Interleaver Case, 240 OFDM Tones

Conclusion of test phase 5 simulations successfully revealed preferable interleaver

cases for inclusion in subsequent system trials. System testing now progresses to phase 6,

the final test step, allowing complete system model 3 simulations using optimal input

configurations. The test phases conducted up to this point are included to enhance the

overall COFDM system for best performance during system model 3 testing while using

worst case channel 2 models as determined by the seed selection.

G. TEST PHASE 6 - FINAL SYSTEM MODEL 3 SIMULATIONS

The culmination of system design and emulation, m-file macro development, batch

m-file creation and test phases 1 through 5 conclude with the final test phase 6 simulation

trials. During this comprehensive test step, complete system model 3 simulations are

164

performed using the channel 3 model (AWGN and multipath) with appropriate R-S

coding, generating corresponding system performance curves. Judicious selection of

practical R-S coding is necessary to ensure reasonable performance curves comparable to

the theoretical uncoded AWGN curves of Fig. 40.

Up to this point, the ideal system is configured for either 60 OFDM tones using

time differential encoding/decoding or 240 OFDM tones using frequency differential

encoding/decoding. Total source message OFDM symbol sizes are either 10,020 for 60

tones or 10,080 for 240 tones and are within the 10,000 +1% symbol quantity range. For

60 OFDM tones using link 3, optimal interleaver cases 2 and 8 are preferred, since they

demonstrate superior performance during the last testing phase. For 240 OFDM tones

using link 3, optimal interleaver case 7 is preferred. All system model 3 simulations use

16-PSK modulation scheme.

A sample system model 3 simulation configuration using batch m-file cofdmsim.m

is presented in Table 24 with 60 OFDM tones. For this example the most challenging link

3 is included, along with a noise sigma parameter range of from 0 to 0.02 (recall that the

sigma parameter sets the desired AWGN power, N0). The batch file outputs are

performance curves similar to the ones presented during test phase 1; however, typically

the performance is greatly degraded from AWGN theoretical curves due to the added

multipath influences. Appropriately, R-S FEC is included to improve overall performance

within acceptable code rate constraints. From the example in Table 24, the R-S code is

capable of correcting any 12 symbol errors appearing in a code block length of 240

symbols. With the n and k parameters chosen as such, the code rate is calculated to be

0.90. Furthermore, an additional overhead loss of 9.3% from the inclusion of a 6 sample

point guard interval precursor with 64 FFT points (6/64 = 0.093) reduces the effective

information rate to approximately 0.80 or 80%. Recall from earlier calculations that a

code rate of 0.80 applied to the system reduces the information bit rate from the robustly

designed 1.92 Mbps to the stated objective of 1.536 Mbps.

165

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or to run both

enter 2 (two): 0

Enter the # of OFDM frequencies (Note: Must be even): 60

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 64

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter

0,1,2 or 3): 3

Channel model 3 simulation performed.

Enter the sigma noise parameter range or single value. (Ex. linspace(0,0.02,20) or .003):

[linspace(0,0.015,20),linspace(0.015,0.02,20)]

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no): 0

Enter specific interleaver case numbers from (0 to 8) (Ex. [0 4 5 8]): 2

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10020

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 =

yes, 0 = no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10020], or [10020 1],

offers no interleaving functionality): [60 167]

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Enter the guard interval length (Number of sample points): 6

Do you want to include error correction coding? (1 = yes, 0 = no): 1

Enter n,k and error correction block length (Ex. [240 200 240]): [240 216 240]

Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 184

Do you want signal plots? (1 = yes, 0 = no): 1

How many seconds of delay between pictures? 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 24. System Model 3 Simulation Using Batch M-file Cofdmsim.m, 60 Tones

166

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors = 68216)

-sl-
CO

•D
CD
CD

CO

O
CM
O
O

O n
E

CO

n
CO

I

cr

c\T
o
d

i o.
CD
D)
C
cc
en
co
E
O)

CO

10"

10'

10"

—=v_v^

\

\
Nr
r^^ \

Loss = [0,3,9]

Delay = [0,0.9,5.1]

Doppler = [25,25,251
\
-^

«-. .—»■—■ "«=rr^^

1010 15 20 25 30 35 40 45 50 55

Es/No (dB) (# of OFDM = 60) (case =2) (Interleaver pair = 60 ,167) (M-ary = 256, N-ary = 16)

Fig. 88. Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.9 Code Rate

The corresponding performance curve of the configured simulation in Table 24 is

presented in Fig. 88. From the plot and in comparison to Fig. 40, it is apparent that using

a worst case multipath channel as part of the simulation (seed 184) causes numerous

message symbol errors greatly affecting performance. The dismal performance generated

by the configured simulation is unacceptable since multipath induced errors occur even

with zero AWGN. Since this simulation result is considered a failure, the system

configuration using 60 OFDM tones must be modified to strengthen and improve

performance.

167

A second system model 3 simulation is conducted similar to Table 24; however,

240 OFDM tones, frequency differential encoding/decoding and 10,080 OFDM symbols

are used instead. The corresponding worst case channel 2 link 3 seed is 279. The exact

simulation configuration is presented in Table 25. During this trial, case 7 interleaving is

performed since it is optimal in terms of phase 5 test results. A 6 sample point precursor

is once again used using 256 FFT points, causing an additional 2.3% of overhead (6/256 =

0.023), which is substantially less guard interval overhead than the 60 tone simulation. In

consideration of the reduced guard interval overhead, a R-S code rate of 0.825 is now

possible, allowing for an acceptable total overhead of approximately 0.20. Once again,

this 0.80 efficiency permits a 1.536 Mbps information bit rate.

» cofdmsim

This batch m-file runs COFDM simulations using different channel models.

To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or to run both enter 2

(two): 1

Enter the # of OFDM frequencies (Note: Must be even): 240

Enter the number of FFT points (Note: This number must be larger than # of OFDM frequencies): 256

Do you want to run channel model 0, channel model 1, channel model 2 or channel model 3? (Enter 0,1,2

or 3): 3

Channel model 3 simulation performed.

Enter the sigma noise parameter range or single value. (Ex. linspace(0,0.02,20) or .003): [

linspace(0,0.005,20), linspace(0.005,0.02,20)]

Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for custom): 3

Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no): 0

Enter specific interleaver case numbers from (0 to 8) (Ex. [0 4 5 8]): 7

Enter the total minimum number of symbols to simulate (Ex. 10000): 10000

Note: Based on the parameters thus far, the actual total number of symbols to be simulated will be: 10080

For the interleaver, do you want to calculate all possible intermediate matrix dimension pairs? (1 = yes, 0

= no): 0

Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering [1 10080], or [10080 1], offers no

interleaving functionality): [240 42]

168

Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8): 8

Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4): 4

Enter the guard interval length (Number of sample points): 6

Do you want to include error correction coding? (1 = yes, 0 = no): 1

Enter n,k and error correction block length (Ex. [240 200 240]): [240 198 240]

Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]): 279

Do you want signal plots? (1 = yes, 0 = no): 0

Do you want print outs? (1 = yes, 0 = no): 0

Table 25. System Model 3 Simulation Using Batch M-file Cofdmsim.m, 240 Tones

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 118158)

N-
<M

II
■o
CD
05

CO

o
00 o o

II

I
E

CO

CO
II

CO
I

cr

cvT o
o

ö
c
co
cr

D5

CO

10u

10"

10

10'

"L*~^

'"** -\

\

^
>. \

\
\

Loss = [0,3,9] \
s

Delay =

Doppler =

= [0,0.9,5.1]

= [25,25,25] \

t

\
• \

1
1

5 10 15 20 25 30 35

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 ,42) (M-ary = 256, N-ary = 16)

Fig. 89. Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Rate

169

The corresponding Table 25 simulation performance results are displayed in Fig.

89, demonstrating substantial noticeable improvement over Fig. 88 and 60 tones. As

expected, the increased R-S coding strength improves the SER greatly over the previous

simulation. Observation of the S
/N0 at a SER of 10"2 indicates a 29 dB reading. This is

approximately 5.5 dB worse than theoretical for AWGN alone (Fig. 40). It seems that

stronger R-S coding is required to improve performance further; however, since we are

now at the threshold of acceptable overhead percentages, additional R-S coding causes a

reduction of the 1.536 information bit rate objective.

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors = 67543)

,0

00

II
T5
Q)

co

o
CM o o

II
*
"5
X!
E

CO

o"
CM

II

CO
I

CM" o
o
o,
Q5
TO
C
cc
cc
co
E
O)

CO

10

10

10

s
\

\
Loss = [0,3,9K

Delay = [0,0.9,5.lK
Doppler = [25,25,25] \

V.
A
\ s,

k

^""X
\ 1

10 15 20 25 30 35 40 45 50 55

Es/No (dB) (# of OFDM = 60) (case =2) (Interleaver pair = 60 ,167) (M-ary = 256, N-ary = 16)

Fig. 90. Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.83 Code Rate

170

Another 60 OFDM tone simulation is considered; however, a reduced guard

interval of 2 sample points is included producing 3.1% guard interval overhead when using

64 FFT points (2/64 = 0.031). This modification allows inclusion of a stronger R-S code

with a 0.83 code rate, permitting 20 symbol error correction within a code block length of

240 symbols. The results of the modified simulation configuration is presented in Fig. 90.

Again the simulation result is a failure as there are numerous uncorrected symbol errors

occurring even without AWGN. This simulation, when compared to Fig. 88 demonstrates

worse performance with a shortened guard interval and stronger R-S code.

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors = 58088)

Ti-
ro

Q)
CO

CO

o
CM
O
O

II
*
Ö .a
E
>^
co,

o"
CO

II

CO
I

cr
c\T
p
ö

i o,
CO
TO
c
CO

DC
C3
E
TO

CO

10

10"

10'

10"

——_

"~--^

^
X \

<■

^
\
\
\

Loss = [0,3,9; \
^

Delay = [0,0.9,5.1]

Doppler = [25,25,251
\

\
 V-
—V

\
\

N .,

12 14 16 18 20 22 24 26 28 30

Es/No (dB) (# of OFDM = 60) (case =2) (Interleaver pair = 60 ,167) (M-ary = 256, N-ary = 16)

Fig. 91. System Model 3 Simulation Using 60 OFDM Tones, Extra R-S Coding

171

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 114900)

CM

CO
CO

CO

o~
CO
o
o

o
n
E
>.
co

o"
CO
II

CO
i

£
c\T
o
d i
o,
CD
u>
c
co

GC
CO

E
D)

CO

10

10

10'

10'

~"~x~-..*-
""■"+-»,

~*"-

^^•"^

\
 x

<>
\ \
\

Loss = [0,3,9]

Delay = [0,0.9,5.1]

DoDDler = [25.25.251

1
\

10 15 20 25 30

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 92. Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.75 Code Rate

Initial indications suggest that 240 OFDM tones perform better than 60 OFDM

tones with all other considerations equivalent and while transmitting at the 1.536 Mbps

information rate. It is instructive to learn how much added robustness must be configured

into the system to improve overall performance for both 240 and 60 tones to reach

acceptable levels close to theoretical AWGN. With this in mind, additional simulations are

conducted increasing the R-S coding until reasonable performance is attained. Fig. 91 and

Fig. 92 demonstrate the results for 60 OFDM tones and 240 OFDM tones, respectively.

Clearly, 240 OFDM tones perform better than 60 OFDM tones by more than 1 dB at a

SER of 10"2 with identical code rates of 0.75 and guard interval lengths of 6 sample points,

although both are about 3 dB worse than theoretical in AWGN even with additional FEC.

172

Computation of the effective information rates for 240 tones and 60 tones using these

code strengths results in 1.38 Mbps and 1.26 Mbps respectively. Thus, improved

performance is gained at the expense of reduced information bit rates.

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 97984)

Oi

CO

T3
CD
CD

CO

o"
00 o o

II
*
Ö

E >.
CO

o"
co

II
CO
cc

cvT
o
o
o,

CD
D)
c
co

CC
cts
E
D>

CO

10

10

10'

10"'

—„.
"***—~ -—.^

~^*~~-—~^.

X \
\
 \ , x

\
i

Loss = [0,3,9]
 . V

Delay = [0,0.9,5.1]

DoDDler = f25.25.251

\

\ 4
i

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 93. Link 3 System Model 3 Simulation Using 240 OFDM Tones, 0.5 Code Rate

Fig. 93 and Fig. 94 display the results of additional simulation trials using a 0.5

code rate, including both 240 and 60 OFDM tones. Once again 240 OFDM tones

performs better than 60 OFDM tones with remaining configured inputs identical. With the

heavy R-S coding, Fig. 93 indicates performance almost 4 dB better than theoretical

AWGN. The 60 OFDM tone performance curve also indicates improvement over

173

theoretical by about 2 dB; however, considering the additional guard interval overhead

required while using 60 tones, the 240 tone configuration is superior with respect to

performance and information bit rate.

•«3-
CO

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors = 44048)

10°

T3
CD
CD

CO

o"
CM
O
O

II
*
"5
XI
E

CO

CD
CD

II
CO
CE

<\T
o
d ■

CD
C»
C
CO

CE
CO

£
CO

10

10

10'

——
"•—>,.,

-«..^

'^

^
—V ^

X
\
\

Loss = [0,3,9] \

Delay = [0,0.9,5.1]

Doppler = [25,25,25] N ̂ \ ̂
\
\

12 14 16 18 20 22 24

Es/No (dB) (# of OFDM = 60) (case =2) (Interleaver pair = 60 , 167) (M-ary = 256, N-ary = 16)

Fig. 94. Link 3 System Model 3 Simulation Using 60 OFDM Tones, 0.5 Code Rate

Calculations of overall information bit rate for 240 tones accounting for guard

interval and coding overhead result in a 0.915 Mbps bit rate. For 60 OFDM tones the

effective information rate reduces substantially to 0.78 Mbps. While there is dramatic

improvement of performance using a code rate of 0.5, the desired information bit rate of

1.536 Mbps is no longer attainable. Furthermore, using a 0.5 code rate is similar to a

174

system configured for QPSK (4-ary) without any coding, with respect to equivalent

information bit rates.

As previously mentioned and further supported by the link 3 simulation output data,

the COFDM based communication system oriented around 240 OFDM frequency tones

offers superior performance over the alternate configuration using 60 OFDM tones. Having

isolated 240 tones as the preferred choice, link2 and linkl system model 3 simulations are

also performed each using the respective worst case channel model 2 seeds, corresponding

optimal interleaver cases derived from test phase 3 and phase 5 and preferred R-S code

rates.

Link 1: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 266500)

o
LO
t

II

CD
CD

CO

o"
00 o o

II
*
Ö

E >%
CO

CM

II
CO

I

cvT
o
ö

i o,
CD
D)
C
CD a
CO

E
CO

10"

10

10'

10'

 "- _e = 1"t^-.

\
S^_

\
\

"\

^^
v \

\
s

\
Loss = [0,6] \

\
Delay = [0,0.01]
Doppler=[1,10]

\ s
\
 i_.

^
^

5 10 15 20 25 30 35 40 45

Es/No (dB) (# of OFDM = 240) (case =1) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 95. Link 1 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Rate

175

While Fig. 95 presents a link 1 performance result using 240 tones and Fig. 96

presents a link 2 result with 240 tones, numerous other link 1 and 2 simulation trials were

performed also using 60 OFDM tones; however, as expected those performance results

were consistently worse than the equivalent 240 tone results. Consequently, only the

useful 240 tone performance curves are included in this presentation.

Link 2: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 135366)

00
CO

CD
CD

CO

o"
00 o o

II

Ö n
E >>

CO

CM

II
CO

I
QC

CM
O
d

1 o,
CD
u>
c
ca
cr
C3
E

CO

10

10

10'

10'

 -=^"
""-•v^

_
\

^.

-\—
1

\

Loss = [0,5,15]
\

1

Delay = [0,<

Doppler = [

D.07,0.8]

10,10,101

1 \
1 \ \ *— r-
 1-
 4-

l
i

l

\ \

10 15 20 25 30 35

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 ,42) (M-ary = 256, N-ary = 16)

Fig. 96. Link 2 System Model 3 Simulation Using 240 OFDM Tones, 0.825 Code Rate

From Fig. 95, link 1 performance is very poor. The S
/NO reading of 42 dB at a

SER of 10"2 is almost 20 dB worse than theoretical AWGN! (Fig. 40). This configuration

using the worst case channel model 2 link 1 seed of 450 is unsatisfactory, requiring

176

considerably extra margin. Again, an overall 0.80 transmission efficiency is incorporated

into the simulation including code rate overhead and guard interval overhead, allowing for

the 1.536 Mbps required bit rate. Clearly, stronger R-S coding is necessary to improve

performance, adversely affecting the final information bit rate. Link 2 performance

(Fig.96) demonstrates substantial improvement over link 1 (Fig 95) and comparable

performance with link 3 (Fig. 89) at a SER of 10"2 with all other relevant input

configurations equal. Apparently link 1 is the most challenging for a 240 OFDM tone

based COFDM communication system with worst case channel conditions.

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 102264)

-a
CD
CD

CO

o"
00 o o

Ö

E
CO

CM

II
CO

I

DC,

c\T
o
d ■
o,
CD
O) c
CO

CC
CO

E
<■?

CO

10"

10

10'

10'

~~~——^ 
""""■'—-x. 

^-\ 

"~"\ 
X 
 \ 

\ \ 
\ 
\ \ \ 

Loss = [0,3,9] 
\ 

Delay = [0,0.9,5.1] 

Doppler = [25,25,251 

\ 

-1  

8 10 12 14 16 18 20 22 24 26 

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16) 

Fig. 97. Link 3 System Model 3 Simulation Using 240 OFDM Tones, Average Seed 

It is important to be mindful of the fact that all test phase 6 performance 

simulations conducted up to this point include the worst case channel conditions with 

177 



respect to multipath distortions as a result of using worst case channel 2 model seeds. For 

these multiple link simulations, use of the worst seed correlates with maximum sink 

message error totals resulting from severe channel distortions occurring less than 1% of 

the time. This percentage is based upon the discussions presented during test phase 3 and 

the fact that a single "bad" seed out of a total of 500 tested seeds is included in the 

simulation. Consequently, these simulation results reflect extreme operating conditions 

and do not necessarily indicate the typical expected channel performance. Thus, additional 

system model 3 simulations are performed using links 1 through 3 with 240 OFDM tones; 

however, this time seed values corresponding to average sink message error rates for 

channel model 2 conditions are included instead of the worst channel seeds. 

Link 2: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 161628) 

CO 
CO 
CM 

T3 
CD 
CO 

CO 

O 
CO 
O 
O 

II 

Ö n 
E 
co 

c\j 
ii 

CO 

<z 

c\T 
o 
o 
o_ 
CD 
D) 
C 
co 
oc 
CO 

E 
g> 
co 

10 

10 

10 

10' 

"*'—"—».«.  
"~*~*~,. 

"""*■*•*-». ~^-^ 

^^\. "*>, ̂
N. 

N 
v 

\ \ 
\ 

Loss = [0,5,15] \ 

Delay = [0,0.07,0.8] 

DoDDler = 110.10.101 
\ 
\ 

1 

\ > 
t 

1 

• 

5 10 15 20 25 30 

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16) 

Fig. 98. Link 2 System Model 3 Simulation Using 240 OFDM Tones, Average Seed 

178 



Link 1: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 297126) 

CO 
co 

ii 
TJ 
CD 
CD 

CO 

o" 
CD 
O 
O 

II 

Ö 
.Q 
E 

CO 

CM 

II 

CO 
I 

cr 
c\T 
o 
d ■ 
o. 
CD 
D) 
C 
co 
IT 
co 
E 
o> 
cö 

10" 

10 

~-~ 

*^v 

\ 

\ \ 
\ 
\ 

\ 

\ 

\ 

\ \ 
\ 
\ 

Loss = [0,6] 

Delay = [0,0.01 ] 

Doppler = [1,10] 

i 

<< 
\ 
\ 

\ \ \ \ 
s \ 
\ 

10 15 20 25 30 35 40 

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16) 

Fig. 99. Link 1 System Model 3 Simulation Using 240 OFDM Tones, Average Seed 

Using the seed 195, which generates an average total message symbol error rate of 

85 errors we get Fig. 97 which presents the corresponding link 3 performance curve with 

remaining input configurations consistent with similar worst case seed trials. Observation 

of S
/NO at a SER of 10~2, indicates performance within 1 dB of uncoded theoretical 

AWGN. Link 2 however, displays performance at the same SER within 4 dB of 

theoretical (Fig. 98). Again link 1 demonstrates sub-standard performance being about 20 

dB worse than theoretical AWGN even though the average error seed is used (Fig. 99). 

These last performance figures represent the final simulation results of test phase 6. 

Having identified the optimal system OFDM tone number as 240, links 1 through 3 are 

179 



simulated and their corresponding SER available for comparisons to theoretical. For 

purposes of this thesis based upon the work performed and the results obtained, the stated 

objectives have been accomplished, although performance results for some configurations 

are less than hoped for. The next chapter presents closing remarks about the results 

obtained including simulation data interpretations, general research comments and 

presentation of ideas for follow-on work. 

180 



vn. CONCLUSIONS 

A.       DISCUSSION OF SIMULATION RESULTS 

The research work and results derived from this thesis are considered an overall 

success. From inception the objective has been to demonstrate a feasible COFDM modem 

system capable of maritime environment communications in the presence of known 

multipath and noise conditions. In general, these MATLAB based emulations and 

corresponding performance simulations support the COFDM concept based upon the 

results and information obtained. Further discussions relating to specific test phases are 

presented below. 

1.        Test Phase 1 and Test Phase 2 Discussions 

Demonstration of an adequately working system emulation conducive to the 

overall success of the research was conducted and substantiated during test phase 0 and 

test phase 1. Test phase 0 validated a functionally correct model, as there were an 

absence of errors in the sink message with no channel included. This indicated that at least 

functionally all system sub-blocks within the transmitter and receiver were operating 

correctly according to design, and no obvious design flaws existed due to inaccurate m-file 

construction. Test phase 1 carries the functional verification one step further by also 

including complete system model 1 simulations. Conceptually, including this test permits 

performance curve comparisons to theoretical AWGN curves for M-DPSK as given by 

(39) to further verify correct emulation. Results of multiple system simulations indicated 

an approximate 1 dB discrepancy from theoretical AWGN. The hypothesis for the 

discrepancy was the symbol reformatting from 8-bit OFDM symbols to 4-bit PSK 

symbols. After running a similar trial using 4-bit OFDM symbol words sizes and 4-bit 

PSK symbol word sizes, the results indicate a near match to the theoretical curve 

approximation for 16-PSK, substantiating the opinion that the performance curve shift is 

due to symbol word reformatting. 

181 



As previously indicated, the reformatting of 8-bit OFDM symbols to 4-bit PSK 

symbols in preparation for 16-PSK transmission followed by inverse reformatting in the 

receiver adversely affects the R-S symbol correction sub-block. The R-S FEC function is 

located at the end of the receiver signal path after the deinterleaver and operates on 8-bit 

OFDM symbols attempting to correct symbol errors. However, it is apparent that channel 

error events affect 4-bit PSK symbols. Thus, it is possible for a 4-bit symbol error to 

become mapped into an 8-bit OFDM symbol error after reformatting, effectively extending 

the length of the error. 

COFDM system design constraints require specific ordering of functional sub- 

block location within the transmitter and receiver. As a consequence, symbol error 

correction must be performed after deinterleaving; thus, 8-bits FEC is used since the 

deinterleaver operates on OFDM symbols. Interleaving and deinterleaving using 4-bit 

PSK symbols is a consideration, necessitating relocation of the interleaving/deinterleaving 

functional sub-blocks elsewhere in the signal path. However, as previously mentioned, R- 

S coding using 8-bit symbols permits a possible code block length of 255 symbols as 

compared to 4-bit symbols which would allow only 15 symbol code block lengths. Longer 

block lengths were considered more desirable, consequently for this thesis, the original 

design using 8-bit OFDM symbol interleaving prevailed. 

2.        Test Phase 3 Discussions 

After construction of the software model was completed, testing and system 

simulations immediately began. Initially arbitrary seeds were chosen at random and used 

to configure the appropriate simulation for source message array content and channel 

properties. However, after running a few system simulation trials, large variations in 

performance results were observed using different seeds with remaining system 

configurations identical. With the chosen seed values used by both channel models, it was 

perceived that the performance variations correlated to the random channels created 

during simulations. Arguably, the particular seed value should have more of an impact on 

182 



the multipath channel 2 model than the AWGN channel 1 model since AWGN generates 

random noise with iid characteristics in contrast to the multipath channel which tends to 

generate burst noise highly correlated events. Some preliminary system model 1 

simulations verified this speculation, as total message symbol errors events as a function of 

the seed indicated little variance from the error totals for AWGN alone. Consequently, it 

was decided to perform system model 2 simulations to test a range of seeds and observe 

the total number of symbol errors appearing in the sink message array. 

Within the inherent bounds of computer binary arithmetic, there are nearly an 

infinite number of conceivable integer seed values. However, it is possible to determine a 

smaller suitable finite subset as an appropriate representation of the nearly infinite set 

within a certain degree of confidence. As indicated during test phase 3, it was decided 

that a subset consisting of 500 integer seeds would be simulated through the system for 

each of the three links and corresponding sink error matrix symbol error totals recorded. 

Based upon this information, the worst case seed for each link would be included in 

configurations during subsequent system simulations to create a worst case channel 2 

model condition. In this way, the corresponding performance plots emulate worst case 

communication links with respect to multipath distortions. Using the worst case channel 2 

model seed out of a possible 500 seeds, we have 93.76% confidence that the particular 

seed is in the top 1% of worst seeds. Additionally, a record of the average number of 

symbol error events as a function of total test seeds would also be kept for later 

simulations using the average seed case. In this way, the corresponding simulation curves 

using the average error seed would reflect performance results for "average" 

communication link conditions. These simulation statistics were generated by batch m-file 

uhfseeds.m 

Test phase 3 was also useful is isolating the optimal system configuration in terms 

of the number of OFDM tones. After initially considering a COFDM system based on 

240 frequency tones, that number was reduced to also include 60 tones based upon the 

183 



seed report results derived during test phase 3. Consequently, at that stage of 

development and testing, 240 tones and 60 tones were considered as likely candidates for 

optimal system performance in the presence of multipath distortions. It was also observed 

during the same test phase that frequency differential encoding worked better with 240 

tones, and conversely time differential encoding worked better with 60 tones in terms of 

performance. Recall that differential encoding is a necessary functional component of the 

overall system, since without it the dynamics of the multipath channel distortions cause the 

received signal constellation plots to rotate their positions out of their expected sector 

spaces. It was verified through observations of received signal constellation plots that the 

constellations reoriented their positions in their proper sectors because of differential 

encoding at the expense of signal energy loss. There is a theoretical loss of 3 dB due to 

differential encoding as further evidenced by simulation received signal constellation 

output plots converging upon the origin; however, the benefit is increased error-free 

decoding of the received symbols and improved SER. 

Recall that time differential encoding associated with the 60 OFDM tone 

configuration represents a cumulative symbol summation encoding technique applied to 

symbols along source message array rows. As previously mentioned, the source message 

symbol array consists of rows of symbols representing the time dimension as well as 

symbol columns representing the frequency dimension (OFDM frequency tones). 

Frequency differential encoding performs similar cumulative summations; however, the 

technique is applied to message array symbol columns and not rows. Hence, the 

frequency differential encoding technique is applied to the frequency dimension and 

performs well with 240 OFDM tones. 

It is suggested by the data collected from the various simulations centered around 

240 OFDM tones that frequency differential encoding works well with 240 tones because 

the frequency spacing between 240 tones is less than that for 60 tones. Remember that 

the same channel bandwidth of 480 kHz is available for both tone configurations.   Since 

184 



the frequency spacing for 60 tones is larger, there is more "room" between symbol carriers 

for the channel's multipath distortions to cause interference in the frequency dimension. 

Conversely, for 240 tones the spacing is narrower between orthogonal tones; thus, there is 

less "room" for multipath distortion interference to occur between symbol sub-carriers, 

allowing frequency differential coding to work better with 240 tones. This phenomenon is 

important since differential encoding effectively transmits information in terms of the 

differences between symbol constellation points, not the points themselves. In the time 

dimension, since the symbol interval lengths are the inverse of the frequency spacing 

according to OFDM theory, then 60 tones offer shorter interval lengths than 240 tones. 

Consequently, time differential encoding accommodates 60 tones better than 240 tones. 

3. Test Phase 4 Discussions 

Identifying 60 and 240 OFDM tones as the preferred choice during test phase 3, it 

was instructive to run system model 2 simulations during test phase 4 to observe general 

burst error pattern behavior. It was speculated prior to testing that the multipath channel 

causes signal distortions conducive to incorrect symbol decoding due to the RSL power 

loss, multipath delay and Doppler shifting parameters imposed by the channel upon the 

transmitted signal. It was also expected that time varying statistical burst noise events 

would adversely affect certain groups of adjacent symbols as they were transmitted 

through the channel. It was hoped that application of the COFDM technique would be 

effective in combating frequency selective fading. Hypothetically, the frequency selective 

fades would affect certain symbols within select portions of the overall channel spectral 

bandwidth, leaving other symbols corresponding to specific OFDM sub-carriers 

insufficiently affected and decoded correctly. Later interleaving combined with R-S FEC 

could correct the errored symbols. Test phase 4 simulations using the channel 2 model 

(multipath channel) exclusively demonstrated the effects of multipath on the received 

signal and the corresponding sink message array error event manifestations. 

185 



As expected for link 3, frequency selective fading occurred as well as partial flat 

fading. Links 1 and 2 indicated primarily flat fading. This test phase was also useful in 

depicting the behaviors of the received signal magnitudes and phases as seen by the 

constellation and magnitude plots. As anticipated, these plots demonstrated constructive 

and destructive interference due to channel multipath distortions, as evident by the 

distinguishing peaks and valleys apparent in the received signal magnitude plots. The 

received constellation plots demonstrated the manner in which individual symbol signal 

points were shifted in phase from their characteristic pre-transmitted positions. Also 

evident was the powerful effects of differential encoding/decoding on the received signal 

as many constellation points became realigned into their proper sector spaces, avoiding 

possible erroneous decoding but at the expense of signal energy. The observation of 

channel 2 model burst error patterns for specific link examples using 60 and 240 OFDM 

tones provided general knowledge of the expected error patterns for later system model 3 

simulations and suggested that certain interleaver cases could be more effective in 

redistributing and decorrelating the symbol error groups. 

4. Test Phase 5 Discussions 

In addition to determining the preferable number of OFDM tones conducive to an 

optimal system, investigation and identification of optimal interleaver cases is also useful 

for optimizing system performance. Recall that interleaving can be effective in 

redistributing concentrated symbol error bursts to other locations within the message 

array. Under the assumption that the message array is of sufficient size so that multipath 

induced error bursts do not overwhelm the entire message block, then conceptually there 

should be enough error-free vacancy locations where errored symbols can be mapped to. 

Of course effective interleaving is primarily a function of the intermediate matrix 

dimensions. Larger matrices applied to the same multipath channel usually work better; 

however, large matrices increase latencies since all message symbols must be present in 

the intermediate matrix before CDL interleaving can be performed. Message array sizes of 

186 



10,000 OFDM symbols for simulations offer an acceptable 21 msec system latency as 

calculated by (38). 

While the configured number of OFDM symbols and OFDM tones constrain the 

overall size of the message array and, hence, the size of the interleaver intermediate 

matrix, multiple intermediate matrix dimensions are still possible. This variability 

combined with nine different permitted CDL interleaver cases offer multiple conceivable 

different interleaving configurations. The purpose of test phase 5 was to perform repeated 

system model 2 simulations using all possible interleaver cases to identify the optimal ones 

for a particular link using corresponding worst case seeds. An optimal interleaver is 

defined as one that redistributes symbols errors in such a way as to cause the summation 

of errors across any single message array row to be minimized with respect to other 

interleaver cases operating on the identical source message array. Row error totals which 

are minimized promote the inclusion of reduced strength R-S FEC operating on symbols 

along message array rows and, hence, allows higher code rates. Higher but equally 

effective code rates are desirable in reducing overhead and increasing transmission 

efficiency since some non-information bearing symbols represent parity check symbols 

reducing the effective transmission information rate. 

Test phase 5 was successful in identifying which interleaver cases demonstrated 

minimal row error totals corresponding to particular system configuration. It was also 

observed from multiple phase 5 simulation results that there was a variation in the number 

of total message errors as a function of the interleaver case tested. This phenomenon is 

unavoidable and is related to the specific transmission symbol sequence generated by the 

particular interleaver case. Certain symbols within a transmission sequence are 

individually affected differently by the channel depending on their location in the sequence, 

thus, a particular symbol may be decoded correctly for one interleaver case transmission 

sequence but also more prone to erroneous decoding for another interleaver case 

transmission sequence.    The susceptibility of erroneous symbol decoding is attributed to 

187 



correlations between the symbol's resulting channel encoded magnitude and phase values 

and the channel's statistical burst noise behavior acting on the transmitted complex 

modulation values. It is also apparent during test phase 5 that certain interleaver cases 

cause a preponderance of total message errors as compared to the other cases; however, 

in terms of message array row error totals the same interleaver case may minimize the 

error quantities. This is demonstrated for some of the links using 60 and 240 OFDM 

tones. 

5.        Test Phase 6 Discussions 

As expected, test phase 6 presents the most important simulation data in terms of 

overall system performance results. This test phase initiated with 240 OFDM and 60 

OFDM tones as leading configuration contenders. However, it consistently became 

evident after numerous trials using all three links that 60 OFDM tones is inferior to 240 

tones in terms of performance. Consequently, after a few initial simulations the 60 OFDM 

tone case was no longer included in subsequent trials, while 240 OFDM tones, being the 

superior performer, continued to be used in later more refined simulation configurations. 

Contrary to the results obtained during test phase 3 suggesting the possibility that 60 

OFDM tones should perform overall as well as or perhaps better than 240 tones, test 

phase 6 system model 3 simulation results suggested otherwise. Furthermore, when using 

seeds that generate average error totals, 240 OFDM tones consistently performed better 

for all the simulated links. It is not entirely understood why this is so, except that the 

simulation results demonstrated the facts. 

With 60 OFDM tones no longer a system configuration candidate, simulations 

continued oriented around links 1 and 2 using the preferred 240 OFDM tones. Also, 

additional simulations using seed values generating average error totals were included. 

Link 2 performed the best when using R-S coding capable of correcting 21 errors, 

indicating performance better than theoretical. A better than theoretical uncoded AWGN 

performance is expected when applying R-S FEC using a 0.825 code rate.   Link 3 also 

188 



performed reasonably well being only slightly worse than theoretical AWGN performance 

while using an average error seed but not as well when using a worst case seed. 

Considering that link 3 is the most challenging communication link in terms of power loss, 

time delays and Doppler shifting with link 2 the next most challenging, the performance 

results of these two links using average error seeds is highly encouraging. 

Link 1: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 38039) 

o 
a> *z 

II 
T3 
0) 
0) 

CO 

o 
00 o o 

II 
* 

B 
E 
co 

CM 
ii 

CO 
DC 

CM 
O 
Ö 

I o_ 
CD 
O) c 
CC 

CC 
CO 

CO 

10" 

10 

10" 

10' 

■-——_ 

~~~--—. 

"""""--- -^
\

■«.

■^ X,
\
\
\

Loss = [0,6] \
1
1

Delay = [0,0.01]
Doppler = [1,10]

t
t \ \ \
 V- \-

l \

i \
\ \

10 11 12 13 14

Es/No (dB) (# of OFDM = 240) (case =0) (Interleaver pair = 240 ,42) (M-ary = 256, N-ary = 16)

Fig. 100. Link 1 Simulation Using 240 OFDM Tones and Best Seed

Link 1, the supposed easiest link generates the poorest performance when a worst

case or average seed is used. In fact, based upon the complete suite of link 1 simulation

results thus far, the link would have to cut the effective information bit rate in half in order

189

to allow any possibility of reliable communications. Consistently, link 1 performed

inadequately apparently due to slow fading occurring within the channel when using the

worst case and average seeds. However, according to test phase 3 results, link 1 only has

9 seeds out of 500 that generate any channel model 2 errors, 491 seeds generate zero

errors; consequently, 98.2% of the time no multipath induced errors occur in the sink

message. With this in mind, a link 1 simulation is presented in Fig. 100 using one of the

best seeds, 490, that generates no channel model 2 symbol errors. After simulation of

10080 OFDM symbols with 240 tones and a 0.825 code rate, the results show dramatic

performance improvement by better than 11 dB over theoretical uncoded AWGN

performance due to the R-S FEC. Thus, while link 1 performance suffers most when

worst case or average seeds are used, representing severe multipath distortion conditions

characterized by slow fading, for 98% of the time reliable link 1 communications is

possible with substantially improved performance when R-S coding is included. Perhaps

possible methods to overcome the 2% unreliable condition are to dramatically decrease

the information bit rate during periods of extreme link 1 multipath conditions or to include

an alternate communication method such as a design using spatial diversity for

transmission redundancy.

Link 2 performance demonstrates more reasonable performance than link 1 while

using the worst case seed, although worse than 5 dB with respect to theoretical uncoded

AWGN (Fig. 40). Link 3, comparable to link 2 performance, faired not as well as

expected while using the worst case seed, and requires a 5.5 dB margin. With a 0.5 R-S

code rate (Fig. 93), the performance improves considerably, better than uncoded

theoretical AWGN, yet the effective information bit rate reduces by more than half when

guard interval overhead is also taken into account.

It is informative to investigate the consequence of using QPSK with 240 tones and

link 3 instead of 16-PSK and a 0.5 code rate, which offers a similar information rate.

Configuring another simulation for evaluation purposes, we use 8-bit OFDM and 2-bit

190

PSK symbol lengths. A source message size of 5040 OFDM symbols are configured to

generate a total of 20,160 QPSK symbols for channel transmissions, allowing

compatibility with prior simulations. Initially, no R-S coding is included; and as evident

from the simulation result shown in Fig. 101, the simulation fails beginning with a SER of

8x10"2 since the curve asymptotically approaches horizontal at that point. In Fig. 102, a

similar simulation is configured with R-S FEC included using a 0.917 code rate capable of

correcting 10 symbol errors in a code block length of 240 symbols. The simulation result

indicates worse performance than theoretical uncoded AWGN, which is 13 dB at a SER

of 10 "3 and 11 dB at a SER of 10"2. However, as expected, performance is better using

QPSK than using 16-PSK at the substantially reduced information bit rate. In comparing

QPSK and 16-PSK link 3 results, 16-PSK is preferable since a higher bit rate can be

maintained

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 19429)

■D
CD
CD

CO

O

o
in

*
"5 .o
E >.

CO

o
II

CO I
a:

Ol
o

CD
D)
C
CO

a:
Co
E
S>

CO

10"

IQ"1

10-

\

■N, -. ̂
V
\
\
\

Loss = [0,3,9]
\

Delay = [0,0.9,5.1]

DoDDler = f25.25.251

\

^_ ~"*-^».
""—~—- „

10"-
5 10 15 20 25 30 35 40 45

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 21) (M-ary = 256, N-ary = 4)

191

Fig. 101. Link 3 Simulation Using 240 OFDM Tones and QPSK, No R-S Coding

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 18046)

10°

CM
II

T3
CD
CD
co

6s

o
in

n

ö n
E >>

CO

ii
CO

I

er

s
o
o,
CD
O) c
CÖ
er
co
E

co

10

10

~^-^

\
-^

^■■v v-.
^.

^N.

V
vx

Loss = [0,3,9] \
Delav

Dopp

= [0,0.9,5.1]

er =[25.25.251 "-■—

^—

\
K

\

10l

6 8 10 12 14 16 18 20 22 24

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 ,21) (M-ary = 256, N-ary = 4)

Fig. 102. Link 3 Simulation Using 240 OFDM Tones and QPSK, 0.917 Code Rate

The COFDM baseline design and corresponding simulation trials conducted

throughout this thesis use the link specifications introduced in the BAA and are based

upon the experimental multipath parameters measured and described in reference [7]. The

Doppler frequency shifting, multipath time delays and received signal power loss

parameters represent typical maritime link conditions as determined by prior controlled

communication experiments; however, it is informative to alter the magnitudes of these

parameters beyond the typical values to reflect a more harsh communication maritime

environment with more severe multipath conditions. The purpose of this trial is to stress

192

the system and determine how much added design tolerance is incorporated into the

current COFDM baseline model. The simulation result presented in Fig. 103 reflects a

link 3 custom simulation configuration with added Doppler shift of 10 Hz, while Fig. 104

demonstrates the effects of increased multipath time delays applied to link 3.

Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 92136)

-v0 CO
N-
CM
II

X>
<D
<D

00 o
o

E
to

10"

CN
O
o
o_
dj
CD
C TO
Ql
(Ü

E
D)

CO

10"

S. 10"'

10"

•*-^.
„

~^
*^J
\
"\

 "V "
^

"•J
\
\
\

Loss = [0,3,9]
\

Delay = [0,0.9,5.1]

Doppler = [35.35.351
\
\

V

^— \
^
\
\
\

> >
20 25 30 35 40 45 10 15

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 103. Custom Simulation Using 240 OFDM Tones, Fd = 35 Hz

From Fig. 103 it is evident that the increase of Doppler shift to 35 Hz while

maintaining the usual 0.825 code rate causes a breakdown of the formerly reliable system

as errors appear in sink message arrays even without AWGN initially included. Evidently,

there is little tolerance and immunity to added Doppler shift for a 240 OFDM tone based

system. Of course, once again the worst case link 3 channel model 2 seed is used. The

degraded system performance relative to increased Doppler is somewhat expected for a

193

system using a large number of OFDM tones as there is less frequency spacing between

tones. Consequently, additional Doppler shifting causes symbol spectra and their

respective sub-carriers to shift their frequency location into adjacent symbol areas causing

spectral overlap in addition to sub-carrier orthogonality loss. A system using less OFDM

tones such as 60 tones offers better Doppler immunity since the frequency spacing is

larger; however, as previously determined 60 tones generally does not perform as well as

240 tones and is not used. Correspondingly, in the time domain, added multipath delays

should have a lesser affect with 240 OFDM tones as the symbol intervals and

corresponding guard intervals are longer than 60 tones for example and should offer

improved multipath delay immunity. Recall that the symbol intervals are the reciprocal of

the tone spacing for OFDM; thus, a configuration with a tone spacing offering superior

Doppler immunity would not necessarily offer equally good multipath delay immunity and

vice versa.

194

Link-3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 126726)

CN 10°
II

m
0)

CO

o
oo
o
o

* 10"'
o

CO

csi
n

CO
t

^ -2
X 10
CM
O

Ö
i o

hi
CO c
(D
(Z

TO
CO

10"

Loss = [0,3,9]

Delay = [0,6,12]

Doppler = [25,25,25]

"*\

X

10 15 20 25 30

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 104. Custom Simulation Using 240 OFDM Tones, TVP= [0,6,12]

Performing another system model 3 custom simulation using increased multipath

delays for the three separate transmission paths, we get the result depicted by the Fig. 104

corresponding performance curve. Ironically, the performance improves from the

standard link 3 curve depicted in Fig. 92 by about 2.5 dB at a SER of 10"2. However,

after adding even more multipath delay, the performance gradually degrades as seen in

Fig. 105 until complete system breakdown occurs during the simulation results seen in Fig.

106 suggesting unreliable communication.

195

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 139365)

£ 10
CM
ii

T3
CD
CD

CO

o
oo
o
o

" 10"1

E
CO

CM
II

CO

± 10"'
CN
O
O
o
hi
o> c
CO
Q;

E
D5

CO

10";

^-^^
"~~-
\

"--
\

N..

\.
N -.

V
\

S
\
\
\

Loss = [0,3,9]
\

Delay =[0,7,14]
Doppler = [25,25,25] \

x
x

V.
V.

10 15 20 25 30 35 40 45

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 105. Custom Simulation Using 240 OFDM Tones, Ti_P= [0,7,14]

196

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 142878)

II
73

CD
<U

CO

o
CO o
o

II
*
"5
.a
E

CO

CM
II

CO
I

on
CM
O

ra c

re
E
D)

CO

10u

IQ"1

10"'

"""■-
*■—„ ^
\

N.
\

\
\.

Loss = [0,3,9]
Delay = [0,8,16]

Doppler = [25,25,25]

X
X s

\
V

X
X
"^

"*•**—. *~
--—.

10 15 20 25 30 35 40 45

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 42) (M-ary = 256, N-ary = 16)

Fig. 106. Custom Simulation Using 240 OFDM Tones, TiP= [0,8,16]

As previously explained, simulations oriented around 8-bit OFDM symbol word

lengths followed by format conversion to 4-bit PSK symbols introduces additional

artificial implementation errors adversely affecting performance results. The baseline

model developed for this thesis includes the 8-bit OFDM symbol design approach to

partially accommodate commercially available R-S FEC IC hardware as well as to permit

formations of longer R-S code blocks within the message array. It is instructive to

perform additional system model 3 simulations using 4-bit OFDM and 4-bit PSK symbols

and observe the degree of expected performance improvement for sake of comparisons to

the baseline model results. Consequently, Fig. 107 through 108 depict 4-bit OFDM

message symbol simulations configured with 240 tones and a 0.825 code rate. Also, for

197

consistency reasons, a total of 20,160 4-bit C _>M symbols equivalent to the 4-bit PSK

symbols are simulated. While a 240 symbol de block length is configured for these

simulations to remain consistent with prior COFDM system model 3 performance results,

in actuality, another type of FEC code other than a R-S code would have to be

incorporated into the model since R-S FEC using 4-bit symbols is limited to a 15 symbol

code block length.

Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 168122)

10"

CM
II

T3
CD
CD

CO

S~
CD

O
CM

II
*

2
E
co

CM

II

CO
I

tr
c\T o
o

CD
a> c
CO
cr
CO

E
g>

CO

10

10"'

10'

„
—'-, .

"~~^
"^~" ~--^^

 \ \
\

Loss = [0,3,9] \
Delay = [0,0.9

Doppler = [25

,5.1]

,25,251
\

\ \
\

\

5 10 15 20 25 30

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 , 84) (M-ary = 16, N-ary = 16)

Fig. 107. Link 3 Simulation Using 240 OFDM Tones, 4-bit OFDM Symbols

The corresponding simulation result is presented in Fig. 107. From the figure

there is approximately a 4 dB improvement at a SER of 10"2 in comparison to a similar

198

simulation using 8-bit OFDM symbol word lengths depicted in Fig. 89. Furthermore, this

result is within 3 dB of approximated theoretical uncoded AWGN performance (Fig. 40)

using 16-PSK signaling. Evidently, the use of 4-bit OFDM symbols instead of 8-bit

symbols suggests a preferred implementation choice if based upon performance alone,

also assuming that a suitable FEC code producing a similar 0.825 code rate is available

and applicable to the COFDM system.

Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors = 141366)

CN
II

T3

CO

8
o
CM

CO

CM
II

CO

QJ

CD

c
CO
H
co
E g)

CO

10

10'

10'

10-

---^

^\

\,
V

\
\
\ *.

v

\
Loss = [0,1,2] \
Delay = [0,6,12]

Doppler = [50,50,50]

\

\
V

V \

\

\
\

5 10 15 20 25 30

Es/No (dB) (# of OFDM = 240) (case =7) (Interleaver pair = 240 ,84) (M-ary = 16, N-ary = 16)

Fig. 108. Custom Simulation Using 240 OFDM Tones, 4-bit OFDM Symbols

Figure 108 depicts a similar simulation, however, added Doppler shifting and

increased multipath delays with reduced RSL losses are include to determine the degree of

added tolerance associated with the modified baseline model 4-bit OFDM symbol

199

configuration. From the figure it is evident that this configuration is more immune to the

added multipath distortion effects than the standard link 3 simulation using 8-bit OFDM

symbols, as performance curve results are within 1 dB of the curves depicted in Fig. 107.

In comparison to the 8-bit OFDM symbol design, this new configuration offers more

robustness, lending further support for a possible future implementation.

6. General COFDM Emulation Discussions

With the presentation of a design variation to the thesis emulation baseline model

using 4-bit OFDM symbols and offering potentially improved performance under a specific

design constraint (suitable FEC applied), the research work and simulations conclude at

this point demonstrating reasonable success overall in meeting the objectives. Specifically,

using the baseline system design, link 2 offers overall performance results conducive to a

practical implementation using the 1.536 Mbps bit rate specification for all types of

channel conditions (seed values); however, link 1 demonstrates performance requiring

much additional margin for about 2% of the time when the channel exhibits slow fading

(worst case and average seeds) unless the information bit rate is dramatically reduced

below the minimum stated BAA objective. For the other 98% of the time, no multipath

errors occur and link 1 performs satisfactorily. Link 3 also suggests a feasible OFDM

based system, but a lower information bit rate or higher margin is required when worst

case channel conditions exist. On average, however, link 3 performs adequately when the

average error channel seed is used. Additional simulation performance results for various

link configurations including custom links are provided in Appendix B for further

informative analysis by the reader. Next, comments are included relating to the research

system model design and emulation challenges encountered along the way as well as

suggestions for possible related future work.

B. RESEARCH AND EMULATION CHALLENGES

This thesis research oriented around a COFDM based communication system

emulating a full-duplex modem was well worth the effort since in general the simulation

200

results are successful in their intent to support the feasibility of a future COFDM

implementation meeting BAA specifications and to provide reliable communications in the

maritime environment. However, success of this research was not without the endurance

and conquering of multiple challenges encountered along the way during system functional

sub-block development, integration and system simulations.

Most notable were the difficulties involved with the construction and operational

understanding of the interleaver and deinterleaver. Initially there were numerous batch m-

file verification simulation failures as symbols within the message array were reordered

incorrectly. However, after persistent debug and numerical paper calculations using

arbitrary arrays and intermediate matrices, a correct interleaver and deinterleaver sub-

block were eventually integrated into the system and functionally verified.

Other challenges were oriented around system simulations. Initially random

simulations were configured using arbitrary seed values. With this approach, large

variations in performance results were evident. At first a configured link 3 simulation

would perform extremely well immediately indicating a successfully designed system

model; later another simulation using a different seed generated much poorer results,

suggesting an inadequately working model. Ultimately it was discovered that these

performance variations were closely related to seed selection. This realization prompted

the seed evaluation trials conducted during test phase 3 using batch m-file uhfseeds.m and

the compilation of the subsequent seed error report data. As expected and previously

discussed, different seeds caused the channel 2 model to behave differently with some

seeds promoting far worse performance than others. Identifying the worst seed in terms

of the number of message symbol errors produced during a simulation ensured that worst

case channel conditions existed during later simulations. In that way various

configurations could be included in multiple simulations by changing other pertinent

parameters while still using a worst case channel 2 model. The channel 1 model in general

does not have a worst case seed since AWGN ordinarily generates random error

201

distributions and not the type of burst errors patterns typically associated with channel 2

multipath distortions.

Another simulation challenge occurred during test phase 5 with the identification

of optimal interleaver cases. When using identical source message arrays for multiple

independent simulations but including different interleaver cases, dissimilar transmission

symbol sequences were produced. However, it was observed that the total message errors

corresponding to the different cases varied. At first this was considered not possible since

the identical channel 2 model was used for each trial as set by seed selection. This

phenomenon seemed to suggest a software design implementation flaw. After much

scrutiny it was determined that this effect was expected and was explained by the

interleaving process combined with the channel model 2 stochastic distortion effects.

Some difficulties were also encountered with the PC platform used for the

emulation and simulations. Initially a Pentium based 133 MHz PC with 32 Mbytes of

RAM was used for simulation trials using 10,000 OFDM symbols. It quickly became

apparent that a more powerful machine would be required as PC hardware limitations

constantly thrashed the hard drive and drastically slowed simulation times. A requisition

was eventually made to purchase a more powerful PC machine consisting of a Pentium

based processor operating at 200 MHz with 64 Mbytes of RAM. This platform solved the

simulation thrashing problems and considerably reduced simulation time by about one

third.

C. FUTURE WORK

The research presented in this thesis represents a fundamental software baseline

model successfully demonstrating operation of a COFDM based communications modem

operating at baseband frequencies in the presence of known noise and signal fading

conditions. The rudimentary but necessary sub-block components comprising the model

such as symbol interleaving and R-S FEC are adequate in generating meaningful

202

Simulation data and are included in the emulation to maximize the COFDM technique

conducive toward optimal performance. However, extension of this basic model to

include, for example, up/down conversion and DAC/ADC is also possible. Associated

with these functions would be filtering and perhaps additional time domain processing in

the form of windowing such as Hamming or Harming. Through these modifications,

communication link simulations would be possible, more closely emulating physical

hardware implementations. It may also be possible to improve the performance of the

system with these changes.

Additionally, application of a more suitable FEC code could promote the removal

of the symbol format conversion sub-blocks from the model so that 4-bit OFDM symbols

could be maintained throughout the simulations for the entire signal path. As seen from

the latest simulation performance graphs using 4-bit symbols, the resulting superior

performance warrants investigation. Possible FEC methods include concatenated coding

using convolutional codes and/or turbo codes. Also, incorporating FEC parity symbol

encoding in the transmitter along with decoding in the receiver would augment emulation

authenticity with respect to hardware implementation by adding the complexity and

latency normally associated with the FEC operation.

It was observed during phase 6 testing that link 1 occasionally generated

substandard performance requiring extra margin. Despite and overabundance of FEC, the

link consistently performed poorly when worst case channel 2 conditions existed unless

the information bit rate was reduced substantially. One possible solution to the link 1

problem is to modify the current system model to included spatial diversity. In this way

redundant transmission links would be available promoting more reliable communication.

The assumption is that the multipath fading channel and distortions generating signal

interference may possibly catastrophically affect one transmission link but also may be less

correlated with the redundant link inhibiting communications to a lesser degree or not at

all.

203

Finally, it is hinted at during system test phase 5 that there may exist an optimal

interleaver superior to the current CDL interleaver incorporated into the design It is

possible that this unknown interleaver could effectively redistribute errored symbols in the

best possible way for all known multipath channel conditions within certain constraints.

This in combination with the most effective FEC algorithm could allow the COFDM

system to perform the best for all predicted communication environments with respect to

the multipath channel. At present the author in not aware of any such optimal interleaving

method. Consequently, the thesis research ends here, and future modifications and

improvements are left for another day, perhaps for a Ph.D. dissertation.

204

205

APPENDIX A. COFDM SYSTEM MODEL MATLAB MACRO CODE

1. Function: awgn.m

% function [Y] = awgn(X,s,N,sigma)
%
%
% Title: ADDITIVE WHITE GAUSSIAN NOISE (CHANNEL MODEL 1)
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
%
%
%
%

Naval Postgraduate School

Last revision: 2/7/97

0/ /o INPUTS:
% X - Input array of time domain complex modulation values
% s - Seed parameter for random number generator
% N - Number of OFDM frequencies (FFT size), includes zero pad
% sigma - Noise parameter for calculating Eb/No (function of the noise variance)
%
% OUTPUTS:
% Y Output signal plus noise, array of time domain complex numbers
%
% AWGN: Awgn is an m-file that adds AWGN noise to the matrix X, consisting of time
% domain complex numbers. If X has complex elements with magnitude one and constant
% phase, then Ec/No = l/(2*sigmaA2) is the carrier energy to noise power spectral density ratio
% of y(n) = Re(Yexp(j*2*pi*k*n/N)).
%
% USAGE: function [Y] = awgn(X,s,N,sigma)
%
function Y = awgn(X,s,N,sigma)
%
% Find the dimensions of the input array.
%
[rr,cc]=size(X);
%
% Various seed configurations to set the random # generator seed.
%
%randn('seed',sum(100*clock))
%randn('seed',0)
randn('seed',s+30);
%
% Generate a random real part.
%
wreal = randn(rr,cc);

206

%randn('seed',sum(100*clock))
%randn('seed',0)
%
% Generate a random imaginary part.
%
randn('seed',s+40);
wimg = i*randn(rr,cc);
%
% An array of random complex entries chosen from a normal distribution with mean 0.0
% and variance 1.0. Array dimensions is the same as X.
%
W = wreal + wimg;
%
% Random noise multiplied by the sigma factor and added to the signal.
%
Y = X + (sigma .* W);
%

207

Function: bm.m

% function [m] = bm(q,v)
0/ /o

%
% Title: BINARY TO M-ARY CONVERTER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 12/4/96
%
% INPUTS:
% q - Base two exponent for M-ary symbol generation
% v - Binary data vector
%
% OUTPUTS:
% m - M-ary output vector in decimal notation
%
% NOTE: This m-file performs the inverse function of m-file mb.m
%
% BM: This m-file implements a binary to M-ary converter by accepting two input
% arguments, q and v, and returning the output, m. The input argument, v, is a
% vector of binary bits of any length. The input argument, q, represents
% the base two exponent for the M-ary conversion. Zeros are added to the
% end of v if necessary to ensure an even multiple of q with no remainder (even
% modulo q) during the generation of the final M-ary symbol. The bits, v, are stripped
% q at a time and are mapped to a symbol vector m with integer values 0 to 2Aq-l.
% The least significant bit is taken to be on the left for each q bit symbol.
%
% USAGE: function [m] = bm(q,v)
%
function m = bm(q,v)
%
% Find the length of input vector, v, and determine if there is a remainder after
% dividing by q.
%
n = length(v);
r = rem(n,q);
%
% If there is no remainder, don't pad v input vector. Otherwise add the appropriate
% number of zeros to generate a code word with an exact multiple of q bits.
%
ifr = 0
v = v;

208

else
v= [vzeros(l,q-r)];
end
/o

% Place least significant bit of the symbol on the left end.
%
map = 1;
forj=l:q-l
map =[map 2Aj];
end
%
% Remove q bits at a time from v to generate m-ary symbol values.
/o

n = length(v);
p = round(n/q);
A = zeros(q,p);
A(:) = v;
m = map*A;
m_ary_msg = m;
%

209

3. Function: cdldlv.m

% function s - cdldlv(l,k,case,si,SYNC)
%
%
% Title: CDL BLOCK DEINTERLEAVER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by Dave Roderick
% Naval Postgraduate School
%
% Last revision: 3/24/97
%
% INPUTS:
% 1 - Number of rows in intermediate matrix
% k -Number of columns in intermediate matrix
% case - Variable indicating the deinterleaving method to be used (9 different

cases)
% si - Input message string to be deinterleaved
% sine - Frame syncronization bits. (Not required for COFDM simulations)
%
% OUTPUTS:
% s - Interleaved output string
%
% SUBROUTINES USED:
% rotm.m
%
% NOTE: This m-file performs the inverse function of m-file cdlilv.m
%
% CDLDLV: This m-file is a block deinterleaver of the type used in CDL.
% It is used to de-interleave a vector si, that has been interleaved using
% cdlilv.m, into the vector s. (See cdlilv.m for definitions of l,k and case.)
%
% USAGE: function s = cdldlv(l,k,case,si,SYNC)
%
function s = cdldlv(l,k,case,si,SYNC)
si(length(si)+l-length(SYNC):length(si))=zeros(l,length(SYNC));
N=length(si);
ifl*k=N
x=zeros(l,k);
x(:)=si;
K=(l:k)-1;
CR=K.*(K+l)/2;
%CR=rem(CR,l);
L=(l:l)-1;
RR=L.*(L+l)/2;

210

%RR=rem(RR,k);
%
% Case types (Uses m-file rotm.m)
%
if case= 1 % Column negative
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif case=2 %Column positive
forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif case=3 %Row negative
forkk=l:l
x(kk,:)=rotm(x(kk,:),RR(kk));
end
elseif case==4 %Row positive
forkk=l:l
[z,x(kk, :)]=rotm(x(kk, :),RR(kk));
end
elseif case=5 %Row negative, column negative
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
for 11=1:1
x(ll,:)=rotm(x(ll,:),RR(ll));
end
elseif case==6 %Row negative, column positive
forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for 11=1:1
x(ll,:)=rotm(x(ll,:),RR(ll));
end
elseif case=7 %Row positive, column negative
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
for 11=1:1
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
elseif case=8 %Row positive, column positive
forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
for 11=1:1

211

[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
end
x=x';
s=x(:);
s=s';
end
%

212

4. Function: cdlilv.m

% function si = cdlilv(l,k,case,s,SYNC)
%
%
% Title: CDL BLOCK INTERLEAVER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by Dave Roderick
% Naval Postgraduate School
%
% Last revision: 3/24/97
%
% INPUTS:
% 1 - Number of rows in intermediate matrix
% k - Number of columns in intermediate matrix
% case - Variable indicating the deinterleaving method to be used (9 different

cases)
% s Input message string to be deinterleaved
% SYNC - Frame syncronization bits. (Not required for COFDM simulations)
%
% OUTPUTS:
% si - Interleaved output string
%
% SUBROUTINES USED:
% rotm.m
%
% NOTE: This m-file performs the inverse function of rn-file cdldlv.m
%
% CDLILV: This m-file is a block interleaver of the type used in CDL.
% The vector s is read into an (l,k) matrix by rows. The rows and columns
% are rotated (cyclically shifted) positively or negatively using the algorthim
% given in the Ref Unisys Doc. Spec 7690698. The variable "case" is set to
% the appropriate case number (1-8) for the eight combinations of row and
% columns interleaving given in the Spec.
% After the row and columns interleaving, the matrix is read
% out by columns into the vector si. If "case" is set to 0, no rotations are
% used, the vector s is simply read into the matrix by rows and read out by
% columns as in an ordinary block interleaver. The bit sequence specified by
% SYNC overwrites the last bits of si. For CDL this is a 16 bit sequence.
0/ /o

% USAGE: function si = cdlilv(l,k,case,s,SYNC)
%
function si = cdlilv(l,k,case,s,SYNC)
N=length(s);
ifl*k=N

213

x=zeros(l,k);
x=x';
x(:)=s;
x=x';
Intermediate_mx = x;
K=(l:k)-1;
CR=K.*(K+l)/2;
%CR=rem(CRl);
L=(l:l)-1;
RR=L.*(L+l)/2;
%RR=rem(RR,k);
%
% Case types (Uses m-file rotm.m)
%
ifcase=l %Column negative
forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif case=2 %Column positive
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif case=3 %Row negative
forkk=l:l
[z,x(kk,:)]=rotm(x(kk,:),RR(kk));
end
elseif case==4 %Row positive
forkk=l:l
x(kk5 :)=rotm(x(kk, :),RR(kk));
end
elseif case=5 %Row negative, column negative
for 11=1:1
[Z,x(lL:)]=rotm(x(ll,:),RR(ll));
end
forkk=l:k
[z,x(:;kk)]=rotm(x(:,kk),CR(kk));
end
elseif case=6 %Row negative, column positive
for 11=1:1
[z,x(ll,:)]=rotm(x(ll,:),RR(ll));
end
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
elseif case=7 %Row positive, column negative
for 11=1:1

214

x(ll,:)=rotm(x(ll,:),RR(ll));
end
forkk=l:k
[z,x(:,kk)]=rotm(x(:,kk),CR(kk));
end
elseif case=8 %Row positive, column positive
for 11=1:1
x(ll,:)=rotm(x(ll,:),RR(ll));
end
forkk=l:k
x(:,kk)=rotm(x(:,kk),CR(kk));
end
end
si=x(:);
si=si';
end
si(length(si)-length(SYNC)+l:length(si))=SYNC;
%

215

Function: cdrcdlft.m

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

function [Fa,MD,B,nsymno] = cdrcdlft(picy_n3pic,s,freqno,rintlv;cintlv,N,mary,nary,fort)

Title: COFDM ENCODER WITH CDL INTERLEAVING
Author: Dave Roderick

Naval Postgraduate School
Revised by: Dave Roderick

Naval Postgraduate School

Last revision: 4/10/97

INPUTS:
picy_n - Switch variable to allow or disallow the generation of figures
pic - Argument passed by another calling m-file to indicate the loop number
s - Seed parameter for random number generator
freqno - Number of OFDM frequencies (sub-carriers) used in each message array
rintlv - Interleaver parameter for intermediate matrix row #
cintlv - Interleaver parameter for intermediate matrix column #
N - Number of FFT frequency sample points, must be larger than freqno
mary - Initial M-ary symbol format (OFDM symbol bit length)
nary - Final N-ary symbol format (PSK symbol bit length)
fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding

OUTPUTS:
Fa
MD

B

- Frequency array of prearranged modulation values
- Matrix of differentially encoded complex values (unit magnitude)

and one of N-ary possible phases (N-PSK)
- Matrix of 8-ary symbols

nsymno - Number of N-ary generated symbols

SUBROUTINES USED:
marymsg.m, cdlilv.m, mb.m, bm.m, difcdrft.m, cmv2fa.m

NOTE: This m-file performs the inverse function of m-file decdrcdl.m

CDRCDLFT: This m-file represents the COFDM transmitter symbol and channel encoder.
This m-file generates a random array of M-ary message symbols as a function
of the inputs rintlv and freqno, and returns a matrix of equivalent differentially
encoded complex numbers, MD, with unit magnitude and one of N possible phases (N-PSK).
The message vector is initially formatted as M-ary symbols and reshaped into a
matrix with values between 0 and (2AM-1). The matrix is CDL interleaved, reformatted as
N-ary symbols with values between 0 and (2AN-1) and is frequency or time differentially
encoded before finally being converted to complex values. The matrix of M-ary symbols
is also returned as output matrix, B.

216

%
% USAGE: function [Fa,MD,B,nsymno] =
cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort);
%
function [Fa,MD,B,nsymno] = cdrcdlft(picy_n,pic,case,s3freqno,rintlv,cintlv,N,mary;nary,fort);
%
% Determine if the number of OFDM frequencies are even (# of matrix columns), indicated
% by the "freqno" parameter. If odd go to error message. Odd frequencies are not
% allowed since the formation of the frequency array is symmetrical and even.
%

if rem(freqno,2) ~= 0
disp('ERROR: The number of matrix columns, freqno, representing OFDM frequencies

must be an even number!')
elseif rem(freqno,2) — 0

%
% Determne if the row and column interleave parameters are greater than freqno when
% multiplied together. If not, then display error message and stop.
%

if (rintlv*cintlv) < (freqno)
disp(")
disp('ERROR: The row and column interleave parameters are not compatible with # of

OFDM frequencies!')
dispC')

else
%
% Calculate the row symbol number.
%
symno = rintlv*cintlv/freqno;
%
% Display error message if symno and freqno not compatible with rintlv and cintlv and
% stop. If not compatible, the interleaver function does not work correctly.
%

if rem(symno,l) ~= 0
dispC ')
disp('ERROR: The row and column interleave parameters are not compatible with # of

OFDM frequencies!')
dispC For the entered rintlv, cintlv, and freqno parameters, the calculated symno is:')
disp(symno)
multiesall = mltpl(rintlv,cintlv);
multies = multiesall(l,(2:length(multiesall)-l));
dispC Possible choices for freqno based upon rintlv and cintlv are:')
dispO
disp(multies)
elseif rem(symno,l) == 0

if freqno >=N;
disp(")

217

disp('ERROR: The number of frequency points, N, needs to be increased!')
dispCN must be larger than:')
dispO
disp(freqno)
disp(")

elseif freqno<N;

Nmbr_of_symbols = symno * freqno;
%
% Generate a random message matrix of m-ary symbols, based upon parameter, mary.
% (Uses macro: marymsg.m).
%
B=marymsg(mary, s,symno,freqno);
Rndm_m_ary_msg=B;
%
% Perform a CDL block interleaving function on the matrix, B, with rintlv rows
% and cintlv columns. (Uses macro cdlilv.m).
%
SYNC = [];
[Br Be] = size(B);
Bt=B';
Bvect = Bt(:)';
si = cdlilv(rintlv,cintlv,case,Bvect,SYNC);
Bi = reshape(si,Bc,Br)';
Intrlvd_array = Bi;
%
% Reconstruct the matrix block of m-ary symbols into an equivalent
% information block using n-ary symbols. For the case when m=256 (256-ary) and n=16 (16-ary)
% the reshaped matrix will be twice the size of the initial matrix. Padding of zeros
% may be necessary for certain m-ary and n-ary combinations. The expansion of the
% original m-ary message block is along the row dimension after conversion to n-ary
% symbols and for the case when (m>n). (Uses macros: mb.m and bm.m).
%
m 1 =bm(nary,mb(mary,Bi));
lengthml = length(ml);
nsymno = lengthml;
remml = rem(lengthml,freqno);

if remml = 0;
ml =ml;
else
zero = zeros(freqno - remml);
ml =[ml zero(l,:)];

end
length2ml = length(ml);
m = (reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;

218

0/ /o

% Generate a differentially encoded matrix of complex values with unit magnitude and
% one of (2An) equal phases. (Uses macro: difcdrft.m).
%
MDD = difcdrft(nary,m,fort);
[MDm MDn] = size(MDD);
MD = MDD;
Cmplx_mod_array = MDD;
%
% Form the frequency array of modulation values that include guard interval.
% (Uses macro: cmv2fa.m)
%
Fa = cmv2fa(N,MD);
Freq_array = Fa;
end
end
end
end
0/ /o

219

6. Function: chancase.m

%
%
% Title: OPTIMAL INTERLEAVER CASES
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/17/97
%
% INPUTS:
% None
%
% OUTPUTS:
% None
%
% SUBROUTINES USED:
% chancdl.m
%
% CHANCASE: This batch m-file performs numerous OFDM simulations using a channel three
% model (awgn.m plus chuhf.m) with various CDL interleaver cases. This program helps to
% isolate which case offers the best reduction of row errror occurrences (optimal inteleaver case).
%
disp('_ .');
fort = input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time
version: ');
freqno = input('Enter the # of OFDM frequencies (Note: Must be even):');
N = input('Enter the number of FFT points (Note: This number must be larger than # of OFDM
frequencies):');
svals = input('Enter specific integer seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]):

');
svals = round(svals);
chnmdl = input('Do you want to run channel model 0, channel model 1, channel model 2 or channel
model 3? (Enter 0,1,2 or 3):');

if chnmdl = 0
dispfChannel model 0 simulation performed.');
sigs = 0;
loss = 0;
dop = 0;
dly = 0;

elseif chnmdl = 1
dispCChannel model 1 simulation performed.');
sigs = input('Enter the sigma noise parameter range or single value. (Ex. Iinspace(0,0.02,20) or
.003): ');

220

loss = 0;
dop = 0;
dly = 0;

elseif chnmdl = 2
disp('Channel model 2 simulation performed.');
sigs = 0;
pthno = input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for
custom):');
%
% Link parameters
%

if pthno = 3
% Link 3
loss = [0,3,9];
dop = [25,25,25];
dly=[0,.9,5.1];

elseif pthno = 2
% Link 2
loss = [0,5,15];
dop = [10,10,10];
dly=[0,.07,.8];

elseif pthno = 1
% Link 1
loss = [0,6];
dop = [1,10 0];
dly = [0,.01];

elseif pthno ==4
disp('Custom link simulation...')
loss = input('Enter the path loss in dB (Ex. [0 4 7]):');
dop = input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):');
dly = input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
elseif chnmdl = 3

disp('Channel model 3 simulation performed.');
sigs = input('Enter the sigma noise parameter range or single value. (Ex. Iinspace(0,0.02,20) or
.003): ');
pthno = input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for
custom):');
%
% Link parameters
%

if pthno == 3
% Link 3
loss = [0,3,9];
dop = [25,25,25];
dly = [0,.9,5.1];

221

elseif pthno = 2
% Link 2
loss = [0,5,15];
dop = [10,10,10];
dly=[0,.07,.8];

elseif pthno = 1
% Link 1
loss = [0,6];
dop = [1,10 0];
dly=[0,.01];

elseif pthno = 4
dispOCustom link simulation...')
loss = input('Enter the path loss in dB (Ex. [0 4 7]):');
dop = input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):');
dly = input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
end
totsym = input('Enter the total minimum number of symbols to simulate (Ex. 10000):');
rowno = ceil(totsym/freqno);

if totsym ~= (rowno*freqno)
disp([rNote: Based on the parameters thus far, the actual total number of symbols to be simulated
will be: ',int2str(rowno*freqno)]);

end
pry_n = input('For the interleaver, do you want to calculate all possible intermediate matrix
dimension pairs? (1 = yes, 0 = no):');
pairl = 1;
pair2 = rowno*freqno;

if pry_n= 1
%
% Find all multiples of the data matrix based upon the number of rows (symbol #) and
% the number of columns (OFDM frequency number). From the calculated list of multiples
% calculate all acceptable interleaver pairs (Uses macro: intlvprs.m)

Intrlvr_pairs = intlvprs(rowno,freqno);
intlvrprs = Intrlvr_pairs;
dispO
disp('For these input parameters, all possible acceptable interleaver dimension pairs are:')
disp(Intrlvr_pairs)
end

pairs = input(['Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering
[',int2str(pairl),' ',int2str(pair2),'], or [',int2str(pair2),' ',int2str(pairl),'], offers no interleaving
functionality):']);
rintlv = pairs(l);
cintlv = pairs(2);
mary = input('Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8):');
nary = input('Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4):');
allcase = input('Test all interleaver cases(yes) or specific ones(no)? (1 = yes, 0 = no):');

222

if allcase= 1
disp('All cases, 0 through 8, will be tested.');
case =[0:8];
elseif allcase = 0
case = input('Enter specific case numbers from (0 to 8) (Ex. [0 4 5 8]): ');
end

freqspace = round(480000/freqno);
Ng = input('Enter the guard interval length (Number of sample points):');
picy_n = input('Do you want pictures? (1 = yes, 0 = no):');

if picy_n== 1
wait = input('How many seconds of delay between pictures? ');
wait = round(wait);

elseif picyn = 0
wait = 0;

end
prntyjn = input('Do you want print outs? (1 = yes, 0 = no):');
n = freqno;
k= freqno;
blklgth = freqno;
pic = 0;

for sip = l:length(svals);
disp('_ ___^^_

Trial_nmbr = sip
s = svals(slp)
errcase = [];
errtot= [];

for lp = 1 :length(case);
%
% If fort equals one, run the frequency simulation version; if fort equals zero, run
% the time version; else if fort equals two, run both versions.
%
% function [errmax,errors,freqerrs]
chancdl(chnmcU,wait,pmt,picy_n5pic,case,s,freqno,mtlv,cintlv,N,mary,nary,n,k,bMgth,Ng,sigs,los
s,dly,dop,freqspace,fort);
[errmax,errors,freqerrs] =
chancdl(chnmdl,wait,pm1y_n,picy_n,pic,case(lp),s,freqno,rintlv,cmtlv,N,mary,nary,n,k,bMgth,Ng,
sigs,loss,dly,dop,freqspace,fort);

errtot = [errtot sum(errors)];
errvect = [errvect,errtot];
errcase = [errcase sum(errmax)];
end

pic = pic+l;
end

casearry = [case;errcase]
%

223

% * Plots *

%
figure(pic+13)
bar(case,errcase)
grid
orient tall

if fort =1
title([int2str(pic),': Maximum Error Total Vs. Interleaver Case Number (Freq. Diff. Enc.) (OFDM
Freq. # = ',int2str(freqno),')'])

elseif fort — 0
title([int2str(pic),': Maximum Error Total Vs. Interleaver Case Number (Time Diff. Enc.) (OFDM
Freq. # = ',int2str(freqno),')'])

end
xlabel(['CDL Interleaver Case Number'])
ylabel(['Maximum Error Count For Any Symbol Row (Seed = ',int2str(s),')'])
axis([-.5 8.5 0 (max(errcase)+l)])

if prnty_n= 1;
print
pause(lO)
end

pause(wait);
%
figure(pic+14)
bar(case,errtot)
grid
orient tall
title([int2str(pic),': CHN3CASE: Error Totals Vs. Interleaver Case Number'])
xlabel(['CDL Interleaver Case Number'])
ylabel(['Sigma: (',num2str(min(sigs)),'-',num2str(max(sigs)),') Error Total'])
axis([-.5 8.5 (min(errtot)-l) (max(errtot)+l)])

if prnty_n= 1;
print
pause(lO)
end

pause(wait);
end

disp('')
disp('Case batch run is finished!')
%

224

7. Function: chancdl.m

% function [errmax,errors,freqerrs] =
chanccUCchnmdljWaitjpmtjpicy^piCjCase^^eqno^tlVjCintlv^^aryjnary^^^MgthjN
g,sigs,loss,dly,dop,freqspace,fort)
%
%
% Title: SYSTEM MODELO - 3 SIMULATION (AWGN & MULTIPATH

FADING CHANNEL)
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/29/97
%
% INPUTS:
% chnmdl - Selects the desired channel model (model 0-3)
% wait - Delay in seconds to pause after displaying a plot
% prnt -Allows print outs of plots if true
% picy_n - Switch variable to allow or disallow the generation of figures
% pic - Argument passed by a calling m-file to indicate the loop number
% case - Variable indicating the deinterleaving method to be used (9 different

cases)
% s - Seed parameter for random number generator
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% rintlv - Interleaver parameter for intermediate matrix row #
% cintlv - Interleaver parameter for intermediate matrix column #
% N - Number of FFT frequency sample points, must be larger than freqno
% mary - Initial M-ary symbol format (M = 2Aq)
% nary - Final N-ary symbol format (N = 2Ap)
% n - Integer number representing code word symbol length
% k - Integer number representing information word symbol length
% (Typically: n>k)
% blklgth - Block number indicating number of symbols over which the
% Reed-Soloman code can perform error detection and correction
% Ng -Number of time domain samples for the addition of guard interval
% sigs - Noise parameter for calculating Eb/No (square root of noise variance)
% loss - Multipath free space loss in dB (vectors accepted)
% dry - Multipath delay in microseconds (vectors accepted)
% dop - Doppler frequency in Hertz (vectors accepted)
% freqspace - Frequency spacing between individual OFDM carriers in Hz
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding
%
% OUTPUTS:
% errmax - Maximum total error count in any given sink message symbol row

225

% errors - Number of sink message symbol errors, if any
% freqerrs - Number of sink message symbol errors vs. OFDM frequency number
%
% SUBROUTINES USED:
% cdrcdlft.m, tda.m, awgn.m, chuhf.m, itda.m, decdrcdl.m, check.m
%
% CHANCDL: This m-file performs an OFDM simulation using multiple channel models (0-3)
% (awgn.m & chuhf.m). A check is performed comparing the source message with the
% sink message to determine if any symbol errors occurred as a result of channel noise
% corruption. R-S symbol error correction is possible. The m-file initiates by querying the user
% for input configurations.
%
% USAGE: function [errmax,errors,freqerrs] =
chancdl(chnmdl,wait,pmt,picy_n,pic,case,s,freqno,rmtlv,cmtlv,N,mary,nary,n;k,bMgth,Ng,sigs5l
oss,dly,dop,freqspace,fort)
%
function [errmax,errors,freqerrs] =
chancdU^linmdljWai^pmtjpicy^^iCjCase^^eqno^tlVjCmtlv^N^ary^ary^^kjbMgth^g^sigs,!
oss,dly,dop,freqspace,fort)
sigvect = sigs;
klgth = length(k);
chklp = 1;
errvect = [];
freqerrmx = [];
errsperpr = [];
Es_No = [];
sermx = [];
rowerrmx = [];
symno = rintlv*cintlv/freqno;
for lp = l:length(sigvect);
%
% Randomly generate a source message, encode as an OFDM frequency array. Perform CDL
% inteleaving to overcome channel induced noise errors. (Uses macro: cdrcdlft.m)
0/ /o

[xmt,modvals,B,nsymno] = cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort);
%
% Transform into the time domain by performing the IFFT and add guard interval.
% Generates the OFDM sub-carriers. (Uses macro: tda.m)
%
xmtifft = tda(Ng,xmt);
xmtpts = l:length(xmtifft);

if chnmdl = 0
%
% Transmit the encoded message signal through the perfect, noise-free channel.
% Channel model 0.
%

226

sandn = xmtifft;
elseif chnmdl== 1

%
% Transmit the encoded message signal through AWGN channel only.
% Channel model 1. (Uses macro: awgn.m)
%
disp(['Sigma = ',num2str(sigvect(lp))]);
sandn = awgn(xmtifft,s,N,sigvect(lp));

elseif chnmdl = 2
%
% Transmit the encoded message signal through multipath channel only.
% Channel model 2. (Uses macro: chuhf.m)
%
sandn = chulrf(s+l,:™tifft,loss,dly,dop,N,freqspace);

elseif chnmdl = 3
%
% Transmit the encoded message signal through multipath channel and AWGN channel.
% Channel model 3. (Uses macros: chuhf.m and awgn.m)
%
sandmltpth = chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace);
disp(['Sigma = ',num2str(sigvect(lp))]);
sandn = awgn(sandmltpth,s,N,sigvect(lp));

end
%
% Remove guard interval and perform FFT to put back into frequency domain.
% (Uses macro: itda.m)
/o

sandnfft = itda(Ng,sandn);
%
% Decode the received message signal, deinterleave and recover the sink message.
% (Uses macro: decdrcdl.m)
%
K = (length(modvals(l,:)))/2;
[rcvd,M,MM] = decdrcdl(picy_n,pic,case,K,sandn
Transmittedmsg = B;
Received_msg = rcvd;
/o

% Compare the source message against the sink message and check for errors.
% Returns error report. (Uses macro: check.m)
%
[errors,freqerrs,errmx,rowerrs] = check(pic,B,rcvd,nJk(chklp),blklgth);
errvect = [errvect,errors];
freqerrmx = [freqerrmx;freqerrs];
rowerrmx = [rowerrmx;rowerrs];
crntEs_No = 1/(2 * N * (sigvect(lp)A2));
Es_No = [Es_No,crntEs_No];

227

Es_Nodb = 10*loglO(Es_No);
end
ser = errvect/(symno*freqno);
sermx = [sermx;ser];
errsum = sum(errvect);
errsperpr = [errsperpr, errsum];
errmax = max(rowerrmx');
%

% * Plots *

%
%
% Generate a constellation plot of complex modulation values (Ideal, pre-transmitted),
% only if picy_n is true.
%
if picyn = 1
figure(pic+l)
plot(modvals,'*')
hold on;
pioKOA'+o
hold off;
title(['Transmitted Signal ',int2str(2Anary),'-ary Constellation Plot'])
xlabel(['Magnitude = 1'])
axisCsquare');
orient tall
grid
if prat = 1;
print
pause(lO);
end
pause(wait);
end
%
% Plot the transmitter frequency array.
0/ /o

if picy_n== 1
figure(pic+2)
plot([0:N-l],abs(xmt),'*,)
title(['Frequency Array Plot (number of FFT frequency points are ',int2str(N),')'])
xlabel(['Guard interval length is ',int2str(N-freqno)])
axis('square');
orient tall
grid
if prnt== 1;
print

228

pause(lO)
end
pause(wait);
end
%
% Plot the Magnitudes of the Transmitted Message Array (unit Magnitude),
% only if picy_n is true.
%
if picy_n = 1
figure(pic+3)
surf(abs(modvals));
shading interp
grid
orient tall
title(['Magnitude of Transmitted Signal (Unity Magnitude)'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel(['Magnitude (seed = ',int2str(s),')'])
ifprnt= 1;
print
pause(lO)
end
pause(wait);
end
%
% Plot the received signal constellation plot before differential decoding,
% only if picy_n is true.
%
if picy_n = 1
figure(pic+6)
plot(M,'*')
hold on;
plot(0,0,'+')
hold off;
title(['Received ',int2str(2Anary),'-ary Signal Constellation Plot, before Differential Decoding'])
orient tall
axis('square');
grid
if pmt= 1;
print
pause(lO)
end
pause(wait);
end
%
% Generate a constellation plot of received signal complex modulation values after

229

% differential decoding, only if picyjn is true.
%
if picyjn = 1
figure(pic+7)
plot(MM,'+')
hold on;
plot(0,0,'+')
hold off;
title(['Received ',int2str(2Anary),'-ary Signal Constellation Plot, After Differential Decoding'])
orient tall
axis('square');
grid
if prnt = 1;
print
pause(lO)
end
pause(wait);
end
%
% Plot Magnitudes of Received Message Array, if picy_n is true.
%
if picy_n = 1
roty_n = input('Do you want to rotate 3-D plot? (yes = 1, no = 0):');
figure(pic+8)
surf(abs(M));
shading interp
grid
orient tall
title(['Magnitude Variation of Received Signal (Sigma = ',num2str(sigvect(lp)),')'])
xlabel('OFDM Freq #')
ylabel('Symbol Row Number')
zlabel(['Magnitude (seed = ',int2str(s),')'])
if roty_n= 1
% Rotate the 3D plot
fork =1:5
view(-70+10*k,15+10*k)
dispC);
disp('Press "enter" to rotate plot...');
pause
end
end
if prnt = 1;
print
pause(lO)
end
pause(wait);

230

end
%
% 3-D Error Distribution Plot With Interleaving.
%
figure(pic+9)
meshz(errmx)
%shading interp

if dop == [25,25,25]
title(['Link 3: Error Distribution With Interleaving (M-ary bits: l,int2str(mary),7,'N-ary bits:
',int2str(nary)/) (case =',int2str(case),') (Intlvr Pair = ',int2str(rintlv),',',int2str(cintlv),')'])

elseifdop = [10,10,10]
title(['Link 2: Error Distribution With Interleaving (M-ary bits: ',int2str(mary),',','N-ary bits:
',int2str(nary),') (case =',int2str(case),') (Intlvr Pair = 'Jint2str(rintlv),',',int2str(cintlv),')'])

elseifdop = [1,10,0]
title(['Link 1: Error Distribution With Interleaving (M-ary bits: l,int2str(mary),',','N-ary bits:
',int2str(nary),') (case - ,int2str(case),') (Intlvr Pair = ',int2str(rintlv),V,int2str(cintlv);)'])

else
title(['Custom Link: Error Distribution With Intlving (M-ary bits: l,int2str(mary),',','N-ary bits:
',int2str(nary),') (case - ,int2str(case),') (Intlvr Pair = ',int2str(rintlv),V,int2str(cintlv),')'])

end
%axis([0 freqno 0 symno 0 max(max(errmx))+l])
xlabel(['OFDM Freq. # (Total = ',int2str(freqno),,),])
ylabel(['Sym. Row # (Total # = ',int2str(symno*rreqno),')'])
zlabel(['Error Occurance (Total = !,int2str(errsum),') (seed = ',num2str(s),')'])
text(-150,0,1.95,['Error Correction = ',int2str(floor((n-k)/2))])
grid
orient tall

if prnt= 1;
%print
%pause(10)
end

pause(wait);
if length(sigs) > 1

if picy_n= 1
%
% 3-D Error Distribution Plot Vs. Row #.
%
figure(pic+10)
surf((1 :symno),sigvect,rowerrmx)
shading interp

if dop = [1,10,0]
title(['Link 1: Error Distribution Vs. Row Number and Sigma (case =',int2str(case),') (Interleaver
Pair = ',int2str(rintlv),', ',int2str(cintlv),')']);

elseifdop = [10,10,10]
title(['Link 2: Error Distribution Vs. Row Number and Sigma (case - ,int2str(case),') (Interleaver
Pair = ',int2str(rintlv),', ',mt2str(cintlv),')']);

231

elseif dop = [25,25,25]
title(['Link 3: Error Distribution Vs. Row Number and Sigma (case -,int2str(case),') (Interleaver
Pair = ',int2str(rintlv),', ',int2str(cintlv),')']);

end
xlabel(['OFDM Row # (R-S = •^strtflooran-k)^)),')'])
ylabel(['Sigma Values (Seed = ',num2str(s),')'])
zlabel(['Error Number (Total errors = ',int2str(sum(errvect)),')'])
grid
orient tall

if prnt= 1;
print
pause(lO)
end

pause(wait);
%
% 3-D Error Distribution Plot Vs. OFDM Frequency.
%
figure(pic+ll)
surf((1 :freqno),sigvect,freqerrmx)
shading interp

if dop = [1,10,0]
title(['Link 1: Error Distribution Vs. OFDM Frequencies & Sigma (case =',int2str(case),')
(Interleaver Pair = ',int2str(rintlv),', ',int2str(cintlv),')']);

elseif dop = [10,10,10]
title(['Link 2: Error Distribution Vs. OFDM Frequencies & Sigma (case - ,int2str(case),')
(Interleaver Pair = ,,int2str(rintlv),', ',int2str(cintlv),')']);

elseif dop = [25,25,25]
title(['Link 3: Error Distribution Vs. OFDM Frequencies & Sigma (case =',int2str(case),')
(Interleaver Pair = ,,int2str(rintlv),', ',int2str(cintlv),')']);

else
title(['Custom Link: Error Distribution With Intlving (M-ary bits: ',int2str(mary),',','N-ary bits:
',int2str(nary);) (case =',int2str(case),') (Intlvr Pair = ',int2str(rintlv),',',int2str(cintlv),')'])

end
xlabel(['OFDM Freq # (R-S = ',int2str(floor((n-k)/2)),')'])
ylabel(['Sigma Values (Seed = *,num2str(s),')'])
zlabel(['Error Number (Total errors = ',int2str(errsum),')'])
grid
orient tall

if pmt= 1;
%print
%pause(10)
end

pause(wait);
end

if errsum ~= 0
%

232

% 2-D Error Performance Curve showing SER vs. Es/No.
%
figure(pic+12)
semilogy(Es_Nodb,ser)
grid
if fort = 1

if dop = [1,10,0]
title(['Link 1: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors :

',int2str(sum(errvect)),')'])
elseifdop== [10,10,10]

title(['Link 2: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors :

'3int2str(sum(errvect)),')'])
elseif dop = [25,25,25]

title(['Link 3: Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total errors :

',int2str(sum(errvect)),,),])
else

title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Freq. Diff. Enc.) (Total
errors = l,int2str(sum(errvect)),'),])

end
elseif fort = 0

if dop = [1,10,0]
title(['Link 1: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors :

'^str^un^errvect));)'])
elseif dop = [10,10,10]

title(['Link 2: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors
',int2str(surn(errvect)),')'])

elseif dop = [25,25,25]
title(['Link 3: Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total errors
',int2str(sum(errvect)),')'])

else
title(['Custom Link Performance graph: Symbol Error Rate vs. Es/No (Time Diff. Enc.) (Total
errors = ',int2str(sum(errvect)),')'])

end
end
text(min(ceil(Es_Nodb)),.18,['Loss = [^nuraZstrOoss),']']);
text(min(ceil(Es_Nodb)),.12,['Delay = [,,num2str(dly),T]);
text(min(ceil(Es_Nodb)),.08,['Doppler = [',num2str(dop),']']);
xlabel(['Es/No (dB) (# of OFDM = ',int2str(freqno),') (case =',int2str(case),') (Interleaver pair =
',int2str(rintlv),', ',int2str(cintlv),') M-ary = ',int2str(2Amary),', N-ary = ',int2str(2Anary)]);
ylabel(['Sigma Range: (,,num2str(min(sigs)),,-',num2str(max(sigs)),') (R-S = ',int2str(floor((n-
k)/2)),') (Symbol # = ,,int2str(svmno*freqno),') (Seed = ',num2str(s),')']);
orient tall
end

if prnt= 1;
print
pause(10)

233

end
pause(wait);
end
%

234

8. Function: check.m

% function [error_no,freqerrs,emnx,rowerrs] = check(pic,x,y,n,k,blklgth)
%
%
% Title: SOURCE AND SINK MESSAGE CHECKER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
%
%
%

Naval Postgraduate School

Last revision: 1/23/96
%
% INPUTS:
% pic - Argument passed by another m-file to indicate the loop number
% x - Variable sized matrix (source message array)
% y - Variable sized matrix (sink message array , same size as x)
% n - Integer number representing code word bit length
% k - Integer number representing information word bit length
% (Typically: n>k)
% blklgth - Block number indicating number of symbols over which the
% Reed-Solomon code can perform error detection and correction
%
% OUTPUTS:
% errorjno - Number of symbol errors that occur after checking
% freqerrs - Number of message array symbol errors vs. OFDM freq. #
% errmx - Matrix of message array symbol error locations (indicated by a " 1")
% rowerrs - Number of message array symbol errors vs. row #
%
% CHECK: This m-file locates the positions in input matrices x and y that do
% not agree (used for comparing source and sink message arrays).
% It generates a one in matrix, "errors" if they do not agree and a zero
% if they do agree. A calculation of the total number of existing errors along with
% the error positions in the "errors" matrix is also performed. Both input matrices
% must be the same size. A Reed-Solomon correction scheme is also emulated by allowing
% for (n-k)/2 symbols within the "errors" block, blklgth, to be corrected. For errored
% symbols numbering in excess of (n-k)/2, they remain in error and are indicated as
% such. The error corrections occur across the matrix columns (OFDM frequencies).
%
% USAGE: function [error_no,freqerrs,errmx,rowerrs] = check(pic,x,y,n,k,blklgth)
%
function [error_no,freqerrs,errmx,rowerrs] = check(pic,x,y,n,k,blklgth)

ifblklgth>n
dispC)
disp('ERROR! The block length, blklgth, must be equal or less than the code word length,

n.')

235

disp('Please enter a smaller value for blklgth, or change n.')
disp(")
elseifblklgth<=n

ifn<k
dispC')
disp('ERROR! The code word length, n, must be equal or larger than the

information length, k.')
disp('Please enter a larger value for n, or change k to a smaller number.')
dispC')
elseif n>=k

First_matrix = x;
Second_matrix = y;
[rx ex] = size(x);
%
% Compare inputs x and y and generate error matrix, "errors".
%

errors = (x~=y);
%
% Find the error distribution vs. OFDM frequencies.
%

freqerrs = sum(errors);
%
% Find the error locations in "errors" where elements in x and y differ.
0/ /o

Errorlocations = (find(errors))';
0/ /o

% Calculate the total number of errors occurring in "errors".
%

Errorjiumber = sum(sum(errors));
%
% Find how many correct symbols there are.
%

Correct_smbl_num = (size(y,l)*size(y,2)) - Error_number;
%
% Reed-Solomon 8-bit symbol correction for (n-k)/2 symbols.
%
symcorr = floor((n-k)/2);

if blklgth<= (n-k)
disp('Error!!! The block length is too short for the given n and k values.')
disp(")

elseifblklgth>(n-k)
errtrans = errors';
%
% Reshape the error matrix as a vector of errors.
%
errvect = errtrans(:)';

236

%
% Pad the error vector with zeros if not an even multiple of the
% block length.
%
blkrem = rem(length(errvect),blklgth);

if blkrem ~= 0;
zeropad = zeros(blklgth - blkrem);
errvectpad = [errvect zeropad(l,:)];
elseif blkrem = 0;
errvectpad = errvect;
end

%
% Calculated the number of blocks in the message
%
blknos = length(errvectpad)/blklgth;
0/ /o

% Initialize empty vectors.
%
errcorct = [];
errblksum = [];
%
% For each block determine the # of errors contained. If less than or
% equal to (n-k)/2 then correct. If greater, do nothing and check the
% next block. Continue this for all blocks in the message.
%

for lp= l:blknos;
errblk = errvectpad(((blklgth*(lp-l))+l):(blklgth*lp));
errblklgth = length(errblk);

if sum(errblk) <= symcorr;
noerr = zeros(errblklgth);
errblk = noerr(l,:);
elseif sum(errblk) > symcorr;
errblk = errblk;
end

errcorct = [errcorct errblk];
errblksum = [errblksum sum(errblk)];
end

0/ /o

% A new error vector is formed that contains corrected symbols and
% uncorrected (errored) symbols after R-S decoding.
%
newerrvect = errcorct(l:length(errvect));
%
% Find the total number of errors in the corrected message.
%
errtot = sum(newerrvect);

237

RSerrs = (reshape(newerrvect,size(errors,2),size(errors,l)))';
%
% Find the error distribution vs. OFDM frequencies.
%
freqerrs = sum(RSerrs);
errindex = (find(RSerrs))1;
RSerrtot = sum(errblksum);
RSerrdif = Error_number - RSerrtot;
errperblk= [(l:blknos);errblksum];
0/ /o

% Check to see if x and y are the same. If not, display error message.
%
if x = y;
dispOGREAT!!! there are no errors.')
errorjno = 0;
errmx = errors;
rowerrs = sum(errors');
else
dispCWARNING! Errors were detected!')
dispC')

ifn=k
dispCWARNING!: Since n = k, there is no R-S error correcting possible.')
dispO
end

disp(['For the given input parameters: n = ',int2str(n),' and k = ',int2str(k),', the Reed-Solomon code
is capable'])
disp(['of correcting ',int2str(symcorr),' errors.'])
dispC')
%
% RS code was able to correct all errors
%

iferrtot = 0
Pre_RS_error_matrix = errors;
disp('EXCELLENT: The Reed-Solomon code corrected all detected errors!')
disp(['Originally the error total was: ',int2str(Error_number)])
disp(")
error_no = 0;
errmx = zeros(rx,cx);
rowerrs = sum(errmx');

%
% RS code was able to correct some errors but not all of them
%

elseif errtot < Errornumber
Pre_RS_error_matrix = errors;
Post_RS_eiTor_matrx = RSerrs;
errmx = RSerrs;

238

all.')

RSerrtot)])

rowerrs = sum(errmx');
disp('OOOPS: The Reed-Solomon code corrected some detected errors, but not

disp(['Originally the error total was: ',int2str(Error_number)])
dispC)
disp(['After R-S decoding, the error number was reduced to: ',int2str(RSerrtot)])
dispC')
errorno = RSerrtot;
disp(['The total number of correct symbols are: ',int2str((size(y,l)*size(y,2)) -

disp('')
disp('The error number distribution per block number is:')
disp(errperblk)
%figure(pic+3)
%bar((l :blknos),errblksum)
%axis([0.5 (blknos+.5) 0 (max(errblksum)+l)])
%title(['Simulation # ',int2str(pic),': Error Distribution Per Message Block (Error

count = ',int2str(error_no),')'])
%xlabel(['Message Block Number (block size: ',int2str(blklgth),' symbols)'])

% RS code did not correct any errors
%

elseif errtot = Error_number
Errormatrix = errors;
errmx = errors;
rowerrs = sum(errors');
disp('OOOPS!: The Reed-Solomon code did not correct any errors.')
disp('Perhaps a more powerful R-S code is required.')
disp(")
disp(['The total number of error occurrences is: ',int2str(Error_number)])
disp(")
error_no = errtot;
disp('The error number distribution per block number is:')
disp(errperblk)
%figure(pic+4)
%bar((1 :blknos),errblksum)
%axis([0.5 (blknos+.5) 0 (max(errblksum)+l)])
%title([' Simulation # ',int2str(pic),': Error Distribution Per Message Block. (Error

count = ',int2str(error_no),')'])
%xlabel(['Message Block Number (block size: ',int2str(blklgth),' symbols)'])
end

end
end
end
end
dispC ');
%

239

9. Function: chnOcdLm

% function [errmax,errors,£reqerrs] =
chnOcdl(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,n,k,blklgth,Ng,fort);

%
%
% Title: MODEL ZERO (NOISE FREE) SIMULATION
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/22/97
% .
% INPUTS:
% picy_n - Switch variable to allow or disallow the generation of figures
% pic - Argument passed by a calling m-file to indicate the loop number
% case - Variable indicating the deinterleaving method to be used (9 different
% cases)
% s - Seed parameter for random number generator
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% rintlv - Interleaver parameter for intermediate matrix row #
% cintlv - Interleaver parameter for intermediate matrix column #
% N Number of FFT frequency sample points, must be larger than freqno
% mary - Initial M-ary symbol format (M = 2Aq)
% nary - Final N-ary symbol format (N = 2Ap)
% n - Integer number representing code word symbol length
% k - Integer number representing information word symbol length
% (Typically: n>k)
% blklgth - Block number indicating number of symbols over which the
% Reed-Soloman code can perform error detection and correction
% Ng - Number of time domain samples for the addition of guard interval
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding

%
% OUTPUTS:
% errmax - Maximum total error count in any given sink message symbol row
% errors - Number of sink message symbol errors, if any
% freqerrs - Number of sink message symbol errors vs. OFDM frequency number

%
% SUBROUTINES USED:
% cdrcdlft.m, tda.m, itda.m, dcdrcdlf.m, check.m
%
% CHNOCDL: This m-file performs an OFDM simulation using a channel zero model.
% This function verifies correct operation of the OFDM transmitter and OFDM receiver.
% A check is performed comparing the source message with the sink message to
% determine if any errors occurred.

240

%
% USAGE: function [errmax,errors,freqerrs] =
chnOcdlCpmt^icy^^ic^ase^^eqno^tlv^mtlv^^ary^ary^^^lklgth^g^ort)
%
function [emnax,errors,freqerrs] =
chnOcol(pmt,picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,n,k,bMgth,Ng,fort)
disp('');
klgth = length(k);
chklp = 1;
errvect = [];
freqerrmx=[];
errsperpr = [];
Es_No = [];
sermx = [];
rowerrmx = [];
symno = rintlv*cintlv/freqno;
%
% Randomly generate a block message and encode as a OFDM frequency array. Perform
% frequency/time differential encoding and interleaving to overcome channel induced
% noise errors. (Uses macro: cdrcdlft.m)
%
% function [Fa,MD,B,risymno] = ca^cdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort);
[xmt,modvals,B,nsymno] = cdrcdlft(picy_n,pic,case,s,freqno,rintlv,cintlv,N,mary,nary,fort);
Random_Source_Msg = B
%
% Put into the time domain by performing the IFFT and add periodic precursor.
% (Uses macro: tda.m)
%
xmtifft = tda(Ng,xmt);
xmtpts = l:length(xmtifft);

0/ /o

% Remove precursor and take FFT to put back into frequency domain.
% (Uses macro: itda.m)
%
sandnfft = itda(Ng,xmtifft);
%
% Decode the received message signal and generate the sink message.
% (Uses macro: decdrcdl.m)
%
K = (length(modvals(l,:)))/2;
[rcvd,M] = decchcdl(picy_n,pic,case,K,sandnfft,nsymno,freqno,rmtlv,cmtlv,mary,nary,fort);
Transmittedmsg = B;
Sink_msg = rcvd
%
% Check the source message against the sink message for errors. Returns error report.

241

% (Uses macro: check.m)
%
[errors,freqerrs,errmx,rowerrs] = check(pic,B,rcvd,n,k(chklp),blklgth);
errvect = [errvect,errors];
freqerrmx = [freqerrmx;freqerrs];
rowerrmx = [rowerrmx;rowerrs];
end
ser = errvect/(symno*freqno);
sermx = [sermx;ser];
errsum = sum(errvect);
errsperpr = [errsperpr, errsum];
errmax = max(rowerrmx');

if errsum = 0;
dispOTest Passed!!!')
disp('')

elseif errsum ~= 0;
dispCWARNING! Test Failed!')
dispC')

end
%

242

10. Function: chuhf.m

% function [y] = chuhf(s,x,loss,dly,dop,N,freqspace)
%
%
% Title: UHF CHANNEL MODEL (MULTIPATH CHANNEL MODEL 2)
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 3/28/97
o, %
% INPUTS:
% s - Seed parameter for random number generator
% x - input time domain matrix of samples
% loss - vector of multipath weights in dB.
% dly - vector of multipath delays (in microseconds), same length
% as c
% dop -vector of fading bandwidths (Hertz)
% N -Numberof frequncy points for FFT
% freqspace - OFDM tone spacing in Hertz
%
% OUTPUTS:
% y - output time domain matrix same size as x with multipath distortions included
%
% SUBROUTINES USED:
% dline.m, ofst.m, ray_dop.m
%
% CHUHF: This m-file is the uhf channel model characterized by multipath, power loss of
% received signal levels (RSL) and Doppler frequency shifting. The input is an array of COFDM
% transmitted time domain samples. The output is a time domain sample array with identical
% dimensions with multipath distortions included. This m-file rperesents channel model 2.
%___
% USAGE: function [y] = chuhf(s,x,loss,dly,dop,N,freqspace)
%
function y = chuhf(s,x,loss,dly,dop,N,freqspace)

c = 10 A (-loss ./ 20);
deltat = 1 / (N * freqspace);
d = (dly.* .000001) ./defeat;
e = dop ./ freqspace;
[L,Nt] = size(x);
D=length(d);

x = x.';

243

x = x(:).';
%
% D paths with delays from d. (Uses macro dline.m)
0/ /o

xd = dline(x,d);
[rr,cc] = size(xd);

x = xd(l,:);
%
% Offsets direct path by .7 of max doppler freq. (Uses macro ofst.m)
%

xo = ofst(.7*eQ),N,x);
%
% First path with no fading. (Uses macro ray_dop.m)
%

forl=l:D
a = ray_dop(s,cc,N,e(l));
xd(l,:) = a.*xd(l,:);
end

%
% Sums the fading paths
%

y = c*xd;
%
% Adds in the First path without fading for the GSM-Ricean.
%

y = y+xo;

y = y(l:L*Nt);

y = reshape(y,Nt,L).';
%

244

11. Function: cmv2fa.m

% function [X] = cmv2fa(N,M)
%
%
% Title: COMPLEX FREQUENCY ARRAY GENERATOR
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 1/7/97
%
% INPUTS:
% N - Number of FFT points.
% M - Array of complex modulation values (frequency domain).
%
% OUTPUTS:
% X - Frequency array of complex values with center zero pad.
%
% NOTE: This m-flle performs the inverse function of m-file fa2cmv.m
%
% CMV2FA: This M-file accepts complex modulation values in the array M and puts them
% into frequency array, X. Array, X, is complex of length N and includes a pad of zeros
% in the center representing the guard band.
%
% USAGE: function [X] = cmv2fa(N,M)
%
function X = cmv2fa(N,M)
[m n] =size(M);
%
% Determine if there are an even number of columns, and keep M the same if even.
%
if rem(n,2) =0;
M=M;
else
%
% If there are an odd number of columns, insert a column of zeros at the beginning.
%
M=[zeros(m,l) M];
end
[m n]=size(M);
K=round(n/2);
%
% Generate a matrix of zeros with m rows and N columns.
%

245

X=zeros(m,N);
%
% Interchange the array of complex modulation value elements to form the appropriate
% frequency array and include an interval of zeros in the middle for the guard interval
%
X(:,1:K)=M(:,K+1:2*K);
X(:,N-K+1:N)=M(:,1:K);
% .

246

12. Function: cmvdifck.m

% function cmvcüfck(s,symno,freqno,N,mary,nary)
%
%
% Title: FREQUENCY ARRAY & DIFFERENTIAL ENCODER/DECODER

VERIFIER
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School

0

%
% Last revision: 5/2/97
%
% INPUTS:
% s - Seed parameter for random number generator
% symno - Number of symbol rows in message block
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% N - Number of frequency points for frequency array generation
% mary - Initial M-ary OFDM symbol format
% nary - Final N-ary PSK symbol format
%
% OUTPUTS:
% None
%
% CMVDIFCK: This batch m-file verifys correct functionality of the differential encoder/decoder
% & the frequency array arranger/unarranger.
%
% USAGE: function cmvdifck(s,symno,freqno,N,mary,nary)
%
function cmväUfck(s,synrno,freqno,N,mary,nary)
disp(' ')
dispCThis m-file checks the correctness of the differential encoder/decoder & the frequency
arrangers.')
fort = input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time
version: ');
%
% Generate random m-ary message array.
%
B=marymsg(mary,s,symno,freqno);
Source_msg=B
[Br Be] = size(B);
Bt=B';
Bvect = Bt(:)';
si = Bvect;
Bi = reshape(si,Bc,Br)';

247

%
% Reconstruct the matrix block of m-ary symbols into an equivalent
% information block using n-ary symbols. For the case when m=256 (256-ary) and n=16 (16-ary)
% the reshaped matrix will be twice the size of the initial matrix. Padding of zeros
% may be necessary for certain m-ary and n-ary combinations. The expansion of the
% original m-ary message block is along the row dimension after conversion to n-ary
% symbols and for the case when (m>n). (Uses macros: mb.m and bm.m).
%
m 1 =bm(nary,mb(mary,Bi));
lengthml = length(ml);
nsymno = lengthml;
remml =rem(lengthml,freqno);

if remml = 0;
ml =ml;
else
zero = zeros(freqno - remml);
ml =[ml zero(l,:)];

end
length2ml = length(ml);
m = (reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;
%
% Generate a differentially encoded matrix of complex values with unit magnitude and
% one of (2An) equal phases. (Uses macro: difcdrft.m).
%
MDD = difcdrft(nary,m,fort);
[MDm MDn] = size(MDD);
MD = MDD;
Cmplxmodarray = MDD;
%
% Form the frequency array of modulation values that include guard interval.
% (Uses macro: cmv2fa.m)
%
Fa = cmv2fa(N,MD);
Freq_array = Fa;
%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Generate the corresponding complex modulation values from the received frequency
% array. (Uses macro: fa2ma.m)
%
K = (length(MD(l,:)))/2;
M =fa2cma(K,Fa);
Cmplx_mod_vals = M;
%
% Perform differential decoding. (Uses macro: dfdcdrft.m)
%

248

naryp = nary;
[s,MM] = dfdcdrft(naryp,nary,M,fort);
[L,cc] = size(s);
strans = s';
svect = strans(:)';
corrs = svect(l:nsymno);
%
% Convert from N-ary symbols to the final message format of M-ary symbols
% (Uses macros: mb.m and bm.m)
%
nsymno;
Br = bm(mary,mb(nary,corrs));
lengthBr = length(Br);
rmndr = rem(length(Br),freqno);

if rmndr = 0;
Br = Br;
elseif rmndr ~=0;
Br = Br(l:(lengthBr-rmndr));

end
rcvd = (reshape(Br,freqno,length(Br)/freqno))';
[Br Be] = size(rcvd);
SYNC = [];
sr = rcvd;
si = sr(:)';
sd = si;
outmsg = reshape(sd,Bc,Br)';
Sink_Msg = outmsg
%
%
% Check results for correctness. (Uses m-file check.m).
[error_no,freqerrs,errmx,rowerrs] = check(0,B,rcvd,freqno,freqno,freqno);

if sum(rowerrs) = 0
disp(TEST PASSED!!!');

elseif sum(rowerrs) ~= 0
disp(*OOOPS - TEST FAILED!')

end
dispC
%

249

13. Function: coderiftm

% function [Fa,MD,B,nsymno] = coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort)
%
%
% Title: COFDM ENCODER WITHOUT INTERLEAVING
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/3/97
%
% INPUTS:

- Switch variable to allow or disallow the generation of figures
- Argument passed by a calling m-flle to indicate the loop number
- Seed parameter for random number generator

- Number of OFDM frequencies (sub-carriers) used in each message array
- Interleaver parameter for intermediate matrix row #
- Interleaver parameter for intermediate matrix column #
- Number of FFT frequency sample points, must be larger than freqno
- Initial M-ary symbol format (M = 2Aq)

- Final N-ary symbol format (N = 2Ap)
- Selects either frequency (fort = 1) or time (fort = 0) differential encoding

Frequency array of arranged modulation values
- Matrix of differentially encoded complex values (unit magnitude)

% and one of N-ary possible phases (N-PSK)
% B - Message matrix of M-ary symbols
% nsymno - Number of N-ary generated symbols
%
% SUBROUTINES USED:
% marymsg.m, mb.m, bm.m, difcdrft.m, cmv2fa.m
%
% NOTE: This m-file performs the inverse function of m-file decdrift.m
%
% CODERIF: This m-file generates a random array of M-ary message symbols as a function
% of the inputs rintlv and freqno, and returns a matrix of equivalent differentially
% encoded complex numbers, MD, with unit magnitude and one of N possible phases (N-ary).
% The message vector is initially formatted as M-ary OFDM symbols and reshaped into a
% matrix with values between 0 and 2AM. The matrix is reformatted as N-ary PSK symbols
% with values between 0 and 2AN and depending on fort, is either frequency or time
% differentially encoded before finally being converted to complex values. The matrix
% of M-ary symbols is also returned as output matrix, B.
% (NOTE: No interleaving is performed)

250

% picy_n
% pic
% s
% freqno
% rintlv
% cintlv
% N
% mary
% nary
% fort
%
% OUTPUTS:
% Fa -
% MD -

%
% USAGE: function [Fa,MD,B,nsyinno] =
coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort)
%
function [Fa,MD,B,nsymno] = coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort);
%
% Determine if the number of OFDM frequencies are even (# of matrix columns), indicated
% by the "freqno" parameter. If odd go to error message. Odd frequencies are not
% allowed since the formation of the frequency array is symmetrical.
%

if rem(freqno,2) ~= 0
disp('ERROR: The number of matrix columns, freqno, representing OFDM frequencies

must be an even number!')
elseif rem(freqno,2) == 0

%
% Determne if the row and column interleave parameters are greater than freqno when
% multiplied together. If not, then display error message and stop.
0/ /o

if (rintlv*cintlv) < (freqno)
dispC ')
dispCERROR: The row and column interleave parameters are not compatible with # of

OFDM frequencies!')
dispC)

else
%
% Calculate the row symbol number.
%
symno = rintlv*cintlv/freqno;
%
% Display error message if symno and freqno not compatible with rintlv and cintlv and
% stop. If not compatible, the interleaver function does not work correctly.
%
if freqno >=N;

disp(")
disp('ERROR: The number of frequency points, N, needs to be increased!')
dispCN must be larger than:')
dispC')
disp(freqno)
dispC ')

elseif freqno <N;
Nmbr_of_symbols = symno * freqno;
%
% Generate a random message matrix of M-ary symbols, based upon parameter, mary.
% (Uses macro: marymsg.m).
%
B=marymsg(mary,s,symno,freqno);

251

Rndm_m_ary_msg=B;
%
% Reconstruct the matrix block of m-ary symbols into an equivalent information block
% using n-ary symbols. For the case when M=256 (256-ary) and N=16 (16-ary)
% the reshaped matrix will be twice the size of the initial matrix. Padding of zeros
% may be necessary for certain m-ary and n-ary combinations. The expansion of the
% original m-ary message block is along the row dimension after conversion to n-ary
% symbols and for the case when (m>n). (Uses macros: mb.m and bm.m).
%
ml=bm(nary,mb(mary,B));
lengthml = length(ml);
nsymno = lengthml;
remml = rem(lengthml,freqno);

if remml = 0;
ml =ml;
else
zero = zeros(freqno - remml);
ml =[ml zero(l,:)];

end
length2ml = length(ml);
m = (reshape(ml,freqno,length2ml/freqno))';
N_ary_msg=m;
%
% Generate a differentially encoded matrix of complex values with unit
% magnitude and one of (2An) equal phases. (Uses macro: difcdrft.m).
%
MDD = difcdrft(nary,m,fort);
[MDm MDn] = size(MDD);
MD = MDD;
Cmplx_mod_array = MDD;
%
% Form the frequency array of modulation values that include guard interval.
% (Uses macro: cmv2fa.m)
%
Fa = cmv2fa(N,MD);
Freq_array = Fa;
%
% Generate a constellation plot of complex modulation values.
%
if picy_n= 1
if pic = 1
figure(pic)
plot(MD/*')
hold on;
plot(0,0/+')
hold off;

252

title([Transmitted Signal ',int2str(nary),'-ary Constellation Plot'])
axis('square');
orient tall
grid
%
% Plot the frequency array
%
figure(pic+l)
%
% Create x-axis vector
%
xaxis = [0:N-1];
plot(xaxis,abs(Fa),'*')
title(['Frequency Array Plot (number of frequency points are ',int2str(N),')'])
xlabel(['Guard interval length is ',int2str(N-freqno)])
axis('square');
orient tall
grid
end
end
end
end
end
end
end
end
/o

253

14. Function: cofdmsim.m

%
%
%
%
%
%
%
%
%
%

Title:
Author:

Revised by:

BATCH SIMULATION OF COFDM MODEL
Dave Roderick
Naval Postgraduate School
Dave Roderick
Naval Postgraduate School

Last revision: 5/1/97

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

INPUTS:
None

OUTPUTS:
None

SUBROUTINES USED:
chancdl.m, intlvprs.m

COFDMSIM: This batch m-file emulates system models 0 through three using a channel one
model and channel two model (awgn.m + chuhf.m) with various seed input values to generate
an error report. This program performs simulations which generate performance SER curves
which may be compared to the theoretical curves. Different transmission multipaths may be
selected as well as entering the AWGN noise sigma parameter.

disp('_

.');
disp('This batch m-file runs COFDM simulations using different channel models.')
fort = input('To run the frequency version, enter 1 (one), To run the time version, enter 0 (zero), or
to run both enter 2 (two):');
freqno = input('Enter the # of OFDM frequencies (Note: Must be even):');
N = input('Enter the number of FFT points (Note: This number must be larger than # of OFDM
frequencies):');
chnmdl = input('Do you want to run channel model 0, channel model 1, channel model 2 or channel
model 3? (Enter 0,1,2 or 3):');

if chnmdl = 0
disp('Channel model 0 simulation performed.');
sigs = 0;
loss = 0;
dop = 0;
dly = 0;

elseif chnmdl = 1
disp('Channel model 1 simulation performed.');

254

sigs = input('Enter the sigma noise parameter range or single value. (Ex. Iinspace(0,0.02,20) or
.003):');
loss = 0;
dop = 0;
dly = 0;

elseif chnmdl = 2
dispCChannel model 2 simulation performed.');
sigs = 0;
pthno = input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for
custom):');
%
% Link parameters
%

if pthno = 3
% Link 3
loss = [0,3,9];
dop = [25,25,25];
dly=[0,.9,5.1];

elseif pthno = 2
% Link 2
loss = [0,5,15];
dop = [10,10,10];
dly=[0,.07,.8];

elseif pthno = 1
% Link 1
loss = [0,6];
dop = [1,10 0];
dly=[0,.01];

elseif pthno = 4
dispCCustom link simulation...')
loss = input('Enter the path loss in dB (Ex. [0 4 7]):');
dop = input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):');
dly = input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
elseif chnmdl = 3

dispCChannel model 3 simulation performed.');
sigs = input('Enter the sigma noise parameter range or single value. (Ex. Iinspace(0,0.02,20) or
.003): ');
pthno = input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for
custom):');
%
% Link parameters
%

if pthno = 3
% Link 3
loss = [0,3,9];

255

dop = [25,25,25];
dly=[0,.9,5.1];

elseif pthno = 2
% Link 2
loss = [0,5,15];
dop = [10,10,10];
dly=[0,.07,.8];

elseif pthno = 1
% Link 1
loss = [0,6];
dop = [1,10 0];
dly=[0,.01];

elseif pthno = 4
dispCCustom link simulation...')
loss = input('Enter the path loss in dB (Ex. [0 4 7]):');
dop = input('Enter the doppler frequency in Hertz (Ex. [30 20 15]):');
dly = input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
end
allcase = input('Simulate all interleaver cases (yes) or specific ones (no)? (1 = yes, 0 = no):');

if allcase= 1
disp('All cases, (0-8), will be tested.');
cases = [0:8];
elseif allcase = 0
cases = input('Enter specific case numbers from (0 to 8) (Ex. [0 4 5 8]):');
end
if fort ~= 2

if length(cases) ~= 1
casey_n = input('Do you want to find optimal interleaver case(s)? (1 = yes, 0 = no):');
end

end
totsym = input('Enter the total minimum number of symbols to simulate (Ex. 10000):');
rowno = ceil(totsym/freqno);

if totsym ~= (rowno*freqno)
disp(["Note: Based on the parameters thus far, the actual total number of symbols to be simulated
will be: ',int2str(rowno*freqno)]);

end
pry_n = input('For the interleaver, do you want to calculate all possible intermediate matrix
dimension pairs? (1 = yes, 0 = no):');
pairl = 1;
pair2 = rowno*freqno;

if pry_n= 1
%
% Find all multiples of the data matrix based upon the number of rows (symbol #) and
% the number of columns (OFDM frequency number). From the calculated list of multiples
% calculate all acceptable interleaver pairs (Uses macro: intlvprs.m)

256

Intrlvr_pairs = intlvprs(rowno,freqno);
intlvrprs = Intrlvr_pairs;
disp(")
disp('For these input parameters, all possible acceptable interleaver dimension pairs are:')
disp(Intrlvrjpairs)
end

pairs = input(['Desired interleaver pair? (Ex. [row # col #] = [20 50]) (Note: entering
[',int2str(pairl),' ',int2str(pair2),'], or [',int2str(pair2),' ',int2str(pairl),'], offers no interleaving
functionality):']);
rintlv = pairs(l);
cintlv = pairs(2);
mary = input('Enter the number of M-ary bits, q (i.e. for 256-ary, q = 8):');
nary = input('Enter the number of N-ary bits, q (i.e. for 16-ary, q = 4):');
freqspace = round(480000/freqno);
Ng = input('Enter the guard interval length (Number of sample points):');
ecc = input('Do you want to include error correction coding? (1 = yes, 0 = no):');

if ecc = 1
code = input('Enter n,k and error correction block length (Ex. [240 200 240]): ');
n = code(l);
k = code(2);
blklgth = code(3);
elseif ecc = 0
n = freqno;
k = freqno;
blklgth = freqno;
end

svals = input('Enter specific seed values, or 0 for a random seed. (Ex. [103 22, 60] or [0]):');
picyn = input('Do you want signal plots? (1 = yes, 0 = no):');

if picy_n= 1
wait = input('How many seconds of delay between pictures? ');
wait = round(wait);

elseif picyn = 0
wait = 0;

end
prnty_n = input('Do you want print outs? (1 = yes, 0 = no):');
pic = 0;
svect= [];
for run = l:length(svals);

errcase = [];
errtot = [];
if min(svals) = 0

rand('seed',sum(100*clock));
s = round(abs(rand(l)*pi*10*(pic+l)*run));

elseif min(svals) ~= 0
s = svals(run);

end

257

svect= [svect,s];
for 1 = 1 :length(cases);

dispC ')
disp(['Run #: ',int2str(run)]);
disp(['Seed = ',int2str(s)]);
disp(['Interleaver case = ',int2str(cases(l))]);
%
% If fort equals one, run the frequency simulation version; if fort equals zero, run
% the time version; else if fort equals two, run both versions. (Uses m-file: chancdl.m)
%

if fort <= 1
% function [errmax,errors,freqerrs] =
chancdl(chnmcU,wait,pmt,picyji,pic,case,s,freqn^
s,dly,dop,freqspace,fort);
[errmax,errors,freqerrs] =
chancdl(chnmd1,wait,pmty_n,picy_n,pic,cases(l),s,freqno,rmtlv,cintlv,N,mary,nary,n,k,bMgm
sigs,loss,dly,dop,freqspace,fort);

elseif fort = 2
disp(Trequency differential encoding/decoding simulation ...')
disp(' ')
[errmax,errors,freqerrs] =
chanccU(chnmdl,wait,pmty_n,picy_n,pic,case(l^
gs,loss,dly,dop,freqspace, 1);
J:. /I**I\

disp(Time differential encoding/decoding simulation ...')
dispC ')
[errmax,errors,freqerrs] =
chancdl(clmmdl,wait,pmty_n,picy_n,pic+12,case(l),s,freqno,rintlv,cintlv,N,mary,nary,n,k,blMgth,
Ng,sigs,loss,dly,dop,freqspace,0);

end
errtot = [errtot sum(errors)];
errvect = [errvect,errtot];
errcase = [errcase sum(errmax)];
end
iffort~=2

casearry = [cases;errcase];

% * Plots *
o/ **

%
if casey_n= 1

figure(pic+13)
bar(cases,errcase)
grid
orient tall

if fort = 1

258

title([int2str(pic),': Maximum Error Total Vs. Interleaver Case Number (Freq. Diff. Enc.) (OFDM
Freq. # = ',int2str(freqno),')'])

elseif fbrt = 0
title([int2str(pic),': Maximum Error Total Vs. Interleaver Case Number (Time Diff. Enc.) (OFDM
Freq. # = ',int2str(freqno),')'])

end
xlabel(['CDL Interleaver Case Number'])
ylabel(['Maximum Error Count For Any Symbol Row (Seed = ',int2str(s),')'])
axis([-.5 8.5 0 (max(errcase)+l)])

if prnty_n== 1;
print
pause(lO)
end

pause(wait);
%
figure(pic+14)
bar(cases,errtot)
grid
orient tall
title([int2str(pic),': Error Totals Vs. Interleaver Case Number'])
xlabel(['CDL Interleaver Case Number'])
ylabel(['Sigma: ('3num2str(min(sigs)),'-',num2str(max(sigs)),') Error Total'])
axis([-.5 8.5 (min(errtot)-l) (max(errtot)+l)])

ifprnty_n== 1;
print
pause(lO)
end

pause(wait);
end

pic = pic+l;
end

end

disp(")
dispCChannel model batch run is finished!')
Seed = svect
%

259

15. Function: cvdd.m

% function [y] = cvdd(x,alpha)
%== =
% CVDD: This m-file implements the "continuously variable digital delay
% element" [1]. The input signal 'x' is filtered by an 8tap FIR
% filter whose tap coefficients are a function of the desired delay,
% delay = alpha/fsample. It is implemented as four 8tap FIR filters
% with fixed coefficients whose outputs are then multipled by alpha
% (see below). The particular coefficients used in this program result
% in a LPF with a passband of 0.0-0.328 norm freq.
%
% INPUTS:
% x -Txl input data vector to be interpolated
% alpha -Txl vector of delay values normalized to sample rate (-0.5 < 0.5)
%
% OUTPUTS:
% y - Txl interpolated and filtered output data vector
%
% ALGORITHM:
% 3rd ordered polynomial Ntap FIR:
% y(n) = SUM {i=0}AN-l x(n-i)*C_i
% where: C_i = alphaA3*C_i,3 + alphaA2*C_i,2 + alpha*C_i, 1 + C_i,0
%
% is implemented as:
% y0(n) = SUM {i=0}AN-l x(n-i)*C_i,0
% yl(n) = SUM {i=0}AN-l x(n-i)*C_i,l
% y2(n) = SUM {i=0}AN-l x(n-i)*C_i,2
% y3(n) = SUM {i=0}AN-l x(n-i)*C_i,3
% y(n) = alphaA3 *y3 (n) + alphaA2*y2(n) + alpha*y 1 (n) + y0(n)
%
%NOTE:
% 1. Since linear phase 8tap filters are used, there is an inherent
% 3.5 sample group delay between the output and the input.
% (therefore y(n)=x(n-(3.5+alpha)));
% 2. mex file allows for any value of alpha, .m file requires |alpha| < -15
%
% REFERENCE:
% [1] C.W. Farrow, "A Continuously Variable Digital Delay Element",
% IEEE International Symposium on Circuits and Systems, pp. 2641-2645,
% 1988.
%
% WRITTEN: R.North/NRaD 1-24-94
% LAST UPDATE:
% USAGE: y = cvdd(x,alpha);
%= ===== = = =================

260

function [y] = cvdd(x,alpha)
if ((nargin ~= 2) | (nargout ~= 1))

error('ERROR: usage: y = y = cvdd(x,alpha);');
return;

end
if (size(x) ~= size(alpha))

error('ERROR: x and alpha must be the same size');
return;

end
if(abs(alpha)>0.5)

error('ERROR: alpha must be within -0.5 and 0.5 ');
return;

end

%-
% Initialization
%

% initialize FIR filter coefficients as in [1] (0,0.328 pass band)
CO = [-0.013824 0.054062-0.157959 0.616394 0.616394-0.157959 0.054062-0.013824];
Cl = [0.003143-0.019287 0.1008 -1.226364 1.226364-0.1008 0.019287-0.003143];
C2 = [0.055298 -0.216248 0.631836-0.465576-0.465576 0.631836-0.216248 0.055298];
C3 = [-0.012573 0.077148-0.403198 0.905457-0.905457 0.403198-0.077148 0.012573];

%
% 4 parallel FIRs and add together based on [1]
%
yO = filter(C0,[l],x);
yl=filter(Cl,[l],x);
y2 = filter(C2,[l],x);
y3 = filter(C3,[l],x);

y = alpha. *y3;
y = alpha .* (y + y2);
y = alpha .* (y + yl);
y = y + y0;
%

261

16. Function: decdrcdLm

% function [outmsg,M,MM] =
decdrcdl(picy_n,pic,K,Fa,nsynmo,freqno,rdintlv,cdintlv,mary,nary,fort)

%
%
% Title: COFDM DECODER WITH CDL DEINTERLEAVTNG
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/20/97
%
% INPUTS:
% picy_n - Switch variable to allow or disallow the generation of figures
% pic - Argument passed by a calling m-file to indicate the loop number
% K - Number of OFDM frequencies, equal to the number of columns
% in array, M
% Fa - Frequency array of complex values
% nsymno - Number of n-ary generated symbols
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% rintlv - Interleaver parameter for intermediate matrix row #
% cintlv - Interleaver parameter for intermediate matrix column #
% mary - Initial M-ary symbol format (M = 2Aq)
% nary - Final N-ary symbol format (N = 2Ap)
% Reed-Soloman code can perform error detection and correction
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding

%
% OUTPUTS:
% outmsg - Matrix of differentially encoded complex values
% (unit magnitude)
% M - Received complex modulation values
% MM - Modulation values after differential decoding
%
% SUBROUTINES USED:
% fa2ma.m, dfdcdrft.m, mb.m, bm.m, cdldlv.m
%
% NOTE: This m-file performs the inverse function of m-file cdrcdlft.m
%
% DECDRCDL: This m-file performs a decoding of the received frequency array of
% complex modulation values to extract the message information. CDL deinterleaving and
% differential decoding is performed. The sink message should be identical to the
% source message (assuming no noise corruption).
% .
% USAGE: function [outmsg,M,MM] =

262

decdrcdl(picy_n,pic,case,K,Fa,nsyiimo,freqno,rdintiv,cdintlv,mary,nary,fort)
%
function [outmsg,M,MM] =
decdrcdl(picy_n,pic,case,K,Fa5nsynmo,freqno,rdintlv,cdintlv,mary,nary,fort)
%
% Generate the corresponding complex modulation values from the received frequency
% array. (Uses macro: fa2ma.m)
%
M =fa2cma(K,Fa);
Cmplx_mod_vals = M;
%
% Perform differential decoding. (Uses macro: dfdcdrft.m)
%
naryp = nary;
[s,MM] = dfdcdrft(naryp,nary,M,fort);
[L,cc] = size(s);
strans = s';
svect = strans(:)';
corrs = svect(l:nsymno);
%
% Convert from N-ary symbols to the final message format of M-ary symbols
% (Uses macros: mb.m and bm.m)
%
nsymno;
Br = bm(mary,mb(nary,corrs));
lengthBr = length(Br);
rmndr = rem(length(Br),freqno);

if rmndr = 0;
Br = Br;
elseif rmndr ~=0;
Br = Br(l:(lengthBr-rmndr));

end
rcvd = (reshape(Br,freqno,length(Br)/freqno))';
Rcvd_Intlv_Ary = rcvd;
0/ /o

% Performs the CDL deinterleaving function with the same parameters
% used during the encoding and interleaving process. (Uses macro: cdldlv.m)
%
[Br Be] = size(rcvd);
SYNC = [];
sr = rcvd';
si = sr(:)';
sd = cdldlv(rdintlv,cdintlv,case,si,SYNC);
outmsg = reshape(sd,Bc,Br)';
SinkJVIsg = outmsg;
%

263

17. Function: decdrift.m

% function [outmsg] = decdrift(picy_n,pic,K,Fa,nsynmo,freqno,rdintlv,cdintlv5mary,nary,fort)
%
%
% Title: COFDM DECODER WITHOUT DEINTERLEAVING
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/3/97
%
% INPUTS:
% picy_n - Switch variable to allow or disallow the generation of figures
% pic - Argument passed by a calling m-flle to indicate the loop number
% K - Number of OFDM frequencies, equal to the number of columns
% in array, M
% Fa - Frequency array of complex values
% nsymno - Number of N-ary generated symbols
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% rintlv - Interleaver parameter for intermediate matrix row #
% cintlv - Interleaver parameter for intermediate matrix column #
% mary - Initial M-ary symbol format (M = 2Aq)
% nary - Final N-ary symbol format (N = 2Ap)
% Reed-Soloman code can perform error detection and correction
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding
%
% OUTPUTS:
% outmsg- Matrix of differentially encoded complex values (unit magnitude)
%
% SUBROUTINES USED:
% fa2ma.m, dfdcdrft.m, mb.m, bm.m
/o

% NOTE: This m-file performs the inverse function of m-file coderift.m
%
% DECDRIFT: This m-file performs a decoding of the received frequency array of
% complex modulation values to extract the message information. The sink message
% should be identical to the source message. Uses either frequency or time
% differential decoding depending on fort.
%
% USAGE: function [outmsg] =
decdrift(picy_n,pic,K,Fa,nsynmo,freqno,raUntlv,cdintlv,mary,nary,fort)
%
function [outmsg] = decdrift(picy_n,pic,K,Fa,nsynmo,freqno,rdmtlv,cdintlv,mary;nary,fort)
%

264

% Generate the complex modulation values from the received frequency array.
% (Uses macro: fa2ma.m)
%
M =fa2cma(K,Fa);
Cmplx_mod_vals = M;
%
% Plot received signal before differential decoding, only if picy_n is true.
%
if picy_n= 1
figure(pic+5)
plot(M/*')
hold on;
plot(0,0,'+')
hold off;
title(['Received ',int2str(nary),'-ary Signal Constellation Plot, before Differential Decoding'])
orient tall
axis('square');
grid
end
%
% Perform the time of frequency differential decoding necessary for synchronization.
% (Uses macro: dfdcdrft.m)
%
naryp = nary;
[s,MM] = dfdcdrft(naryp,nary,M,fort);
[L,cc]=size(s);
strans = s';
svect = strans(:)';
corrs = svect(l:nsymno);
0/ /o

% Generate a constellation plot of received signal complex modulation values after
% differential decoding, only if picy_n is true.
%
if picy_n= 1
figure(pic+6)
plot(MM,'+')
hold on;
plot(0,0,'+')
hold off;
title(['Received ',int2str(nary),'-ary Signal Constellation Plot, After Differential Decoding'])
orient tall
axis('square');
grid
end
0/ /o

% Convert from n-ary symbols to the final message format of m-ary symbols

265

% (Uses macros: mb.m and bm.m)
%
nsymno;
Br = bm(mary,mb(nary,corrs));
lengthBr = length(Br);
rmndr = rem(length(Br),freqno);

if rmndr = 0;
Br = Br;
elseif rmndr ~=0;
Br = Br(l:(lengthBr-rmndr));

end
rcvd = (reshape(Br,freqno4engm(Br)/freqno))';
M_ary_rcvd = rcvd;
outmsg = rcvd;
%

266

18. Function: dfdcdrft.m

% function [s,M] = dfdcdrft(qp,q,MD,fbrt)
%
%
% Title: COMPLEX NUMBER DEMODULATOR AND FREQUENCYmME

DIFFERENTIAL DECODER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/13/97
%
% INPUTS:
% qp Base two exponent to generate equal phase sectors (soft decoding)
% q - Base two exponent of constellation phase sectors (N = 2Aq)
% MD - Array of complex modulation values (frequency domain)
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding
%
% OUTPUTS:
% s - Phase sector number (equivalent decoded N-ary symbols in decimal notation)
% M - Differentially decoded in time modulation array
%
% NOTE: This m-file performs the inverse function of m-file difcdrft.m
/o

% DFDCDRFT: This m-file differentially demodulates complex modulation values in MD
% into 2Aqp equal phase sectors from constellations of 2Aq phase sectors. If fort
% equals zero, the output is [s M] where s is the phase sector number and M is the
% time differentially decoded modulation values. If fort equals one, The output
% is [s M] where s is the phase sector number and M is the frequency differentially
% decoded modulation values.
%
% USAGE: function [s,M] = dfdcdrft(qp,q,MD,fort)
%
function [s,M] = dfdcdrft(qp,q,MD,fort)

if fort = 0 % Time differential decoding
%
% Transpose the modulation array, and find the dimensions.
%
MD=MD';
[m n]=size(MD);
%
% Perform a looping routine to find the phase differences between adjacent values in
% the array, MD, and put these calculated values into array, M.
%

267

for 1=1 :m
forj=l:n-l
M(lJ)=MD(lj+l)*conj(MD(l,j));
end
end
%
% Transpose the array back to its original form.
%
M=M';
%
% Calculate the number of M-ary symbols based upon the exponent qp, then use this
% number to find the number of equally spaced phases in a unit circle.
%
N=2Aqp;
dph=2*pi/N;
%
% Divide the phase arguments of elements in M, by the equal phases generated by dph.
%
phn=angle(M) ./dph;
%
% Calculate the phase sector number by finding the remainders.
%
s=rem(round(phn)+N,N);

elseif fort = 1 % Frequency differential decoding
%
% Transpose the modulation array, and find the dimensions.
%
[m,n]=size(MD);
MD=MD(:,2:n);
[m n]=size(MD);
%
% Perform a looping routine to find the phase differences between adjacent values in
% the array, MD, and put these calculated values into array, M.
%
for 1=1 :m
forj=l:n-l
M(lJ)=MD(lj+l)*conj(MD(lj));
end
end
%
% Transpose the array back to its original form.
%
%M=M';
%
% Calculate the number of m-ary symbols based upon the exponent qp, then use this
% number to find the number of equally spaced phases in a unit circle.

268

%
N=2Aqp;
dph=2*pi/N;
%
% Divide the phase arguments of elements in M, by the equal phases generated by dph.
%
phn=angle(M) ./dph;
%
% Calculate the phase sector number by finding the remainders.
%
s=rem(round(phn)+N,N);

end
%

269

19. Function: difcdrft.m

% function [MD] = difcdrft(q,m,fort)
%
%
% Title: COMPLEX NUMBER MODULATOR AND FREQUENCY/TIME

DIFFERENTIAL ENCODER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/10/97
%
% INPUTS:
% q Base two exponent of constellation phase sectors (N = 2Aq)
% m - Matrix of M-ary symbols to be transformed to complex numbers and
% differentially encoded
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding
%
% OUTPUTS:
% MD - Matrix of differentially encoded complex values (unit magnitude)
%
% NOTE: This m-file performs the inverse function of m-file dfdcdrft.m
%
% DIFCDRFT: This m-file creates complex values MD with amplitude one and one of
% 2Aq possible equal phase values. If fort is zero, The first row is one (zero phase)
% and represents the synchronization reference. The remaining rows are time
% differentially coded in phase. If fort is one, the first two columns are ones and
% represent the synchronization reference (two reference columns are used to maintain
% an even number of total columns). The remaining columns are frequency differentially
% coded in phase. For both frequency and time cases, the differential encoding is
% executed by performing a cumulative summation either down columns or across rows.
% The input symbols are provided by the m-ary input matrix, m.
%
% USAGE: function [MD] = difcdrft(q,m,fort)
%
function MD = difcdrft(q,m,fort)

if fort = 0 %Time differential encoding
%
% M-ary alphabet size.
%
N=2Aq;
%
% Determine the number of equal phases based upon the m-ary symbol length.
%

270

dph=2*pi/N;
%
% Find the size of the input symbol matrix (# of rows and # of columns).
%
[rr n]=size(m);
%
% Perform the time differential encoding of phase values by cumulative summing matrix,
% m, down one column at a time across the entire matrix. This function generates a
% matrix.
%
fork=l:n
md=cumsum(m(: ,k));
0/ /o

% Generate the complex numbers with corresponding phase values.
%
MD(:,k) = exp(i*dph.*md);
end
%
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization.
%
MD=[ones(l,n); MD];

elseif fort == 1 %Frequency differential encoding
%
% M-ary alphabet size.
%
N=2Aq;
%
% Determine the number of equal phases based upon the m-ary symbol length.
0/ /o

dph=2*pi/N;
%
% Find the size of the input symbol matrix (# of rows and # of columns).
%
[rr n]=size(m);
%
% Perform the frequency differential encoding of phase values by cumulative summing
% matrix, m, across one row at a time down the entire matrix. This function generates
% a matrix.
%
md=cumsum(m');
md=md';
%
% Generate the complex numbers with corresponding phase values.
%
MD = exp(i*dph.*md);

271

%
% Inject the reference row of ones (zero phase) at top of output matrix for
% differential encoding synchronization.
%
MD=[ones(rr,2) MD];

end
%

272

20. Function: diffchkr.m

% function cüffchkr(s,symno,freqno,mary,nary)
%
%
% Title: DIFFERENTIAL ENCODER/DECODER CHECKER
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
%
%
%
%

Naval Postgraduate School

Last revision:

INPUTS:

5/2/97

%
% s - Seed parameter for random number generator
% symno - Number of symbol rows in message block
% fireqno - Number of OFDM frequencies (sub-carriers) used in each message array
% mary - Initial M-ary symbol format (M = 2Aq)
%
%
%

nary - Final N-ary symbol format (N = 2^)

OUTPUTS:
% None
%
% DIFFCHKR: This m-file verifys correct functionality of the differential encoder/decoder.
%
% USAGE: function diffchkr(s,symno,freqno,mary,nary)
0/ /o
function diffchkr(s,symno,freqno,mary,nary)
fort = input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time
version: ');
%
% Generate random m-ary message array.
%
B=marymsg(mary,s,symno,freqno);
Rndm_m_ary_msg = B;
%
% Reconstruct the matrix block of m-ary symbols into an equivalent
% information block using n-ary symbols. For the case when m=8 (8-ary) and n=4 (4-ary)
% the reshaped matrix will be twice the size of the initial matrix.
% (Uses macros: mb.m and bm.m).
%
ml=bm(nary,mb(mary,B));
lengthml = length(ml);
m=(reshape(ml,lengthml/symno,syrnno))';
N_ary_msg=m;
%

273

% Perform differential encoding on messsage array.
%
%
% If fort equals one, run the frequency simulation version; otherwise, run the time version.
%

if fort = 1
dispC)
disp('Frequency Differential Encode/Decode version')
%
% Freq. Diff. Enc.
%
MDD = difcdrf(mary,m);

elseiffort~= 1
dispC')
disp(Time Differential Encode/Decode version')
%
% Time. Diff. Enc.
%
MDD = difcdrt(mary,m);

end
%
% Perform differential decoding.
%
maryq = mary;

if fort =1
%
% Freq. Diff. Enc.
%
[s M] = difdcdrf(maryq,mary,MDD);

elseif fort~= 1
%
% Time. Diff. Enc.
%
[s M] = difdcdrt(maryq,mary,MDD);

end
%
% Check results for correctness. (Uses m-file check.m).
%
[error_no,freqerrs,errmx,rowerrs] = check(0,m,s,freqno,freqno,freqno);
%

274

21. Function: dline.m

% function xd=dline(x,d)
%
%
%
%
%
%
%
%
%
%

Title:
Author:

Revised by:

UHF CHANNEL DELAY LINE GENERATOR
Dr. Paul H. Moose
Naval Postgraduate School
Dave Roderick
Naval Postgraduate School

Last revision: 4/19/97

%
%
%
%
%
%
%
%
%
%
%D1
%to
%

INPUTS:
x - input time domain array representing the transmitted signal
d -is a vector of delays

OUTPUTS:
xd - output time domain signal array with delays

SUBROUTINES USED:
cvdd.m

LINE: This m-flle is used by the the uhf channel model (chuhf.m) to add the multipath delays
the direct signal.

% USAGE: function xd = dline(x,d)
%
function xd = dline(x,d)
x = x.';
dmax = max(d);
dmin = min(d);
nmin = floor(dmin);
nmax = ceil(dmax);
x = [x;zeros(nmax+3,l)];
N = length(x);
Nd = length(d);

forn=l:Nd;
di=d(n);
D=floor(di);
deld=di-D;
xd(:,n)=cvdd(x,deld-.5);
xd(:,n)=[zeros(D, l);xd(l :N-D,n)];

end
xd=xd.';

275

[rr,cc]=size(xd);
xd=xd(:,4+nmin:cc);
%

276

22. Function: fa2cma.m

% function [Mm] = fa2cma(K,X)
%
%
% Title: FREQUENCY ARRAY TO COMPLEX MODULATION ARRAY

CONVERTER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
%
%
%

Naval Postgraduate School

Last revision: 1/21/97
%
% INPUTS:
% K - Number of OFDM frequencies equal to the number of columns in array, M.
% X - Frequency array of complex values
%
% OUTPUTS:
% Mm - Complex modulation value array
%
% NOTE: This m-file performs the inverse function of m-file cmv2fa.m
%
% FA2CMA: This m-file accepts complex values in the frequency array X and places them into
% complex modulation array M. M is complex of length 2K+1.
%
% USAGE: function [Mm] = fa2cma(K,X)
%
function Mm =fa2cma(K,X)
%
% Determine the dimensions of the input matrix
%
[m n] = size(X);
0/ /o

% Flip the array values around and remove the zero pad.
%
Mm(:,l:K) = X(:,n-K+l:n);
Mm(:,K+l:2*K) = X(:,l:K);
Cmplx_mod_vals = Mm;
%

277

23. Function: intlvchk.m

% function intlvchk(s,symno,freqno,rintlv,cintlv,mary,case)
%
%
%
%
%
%
%
%
%

%_
%
%
%
%
%
%
%
%
0/ /o

%
%
%
%
%
%

Title:
Author:

Revised by:

INTERLEAVER/DEINTERLEAVER VERIFIER
Dave Roderick
Naval Postgraduate School
Dave Roderick
Naval Postgraduate School

Last revision: 5/2/97

INPUTS:
s
symno
freqno
rintlv
cintlv
mary
case

OUTPUTS:
None

- Seed parameter for random number generator
- Number of symbol rows in message block

• Number of OFDM frequencies (sub-carriers) used in each message array
- Interleaver parameter for intermediate matrix row #
- Interleaver parameter for intermediate matrix column #
- Initial M-ary symbol format (M = 2Aq)
- Variable indicating the deinterleaving method to be used (9 different

cases)

INTLVCHK: This m-file verifys correct functionality of the CDL interleaver and deinterleaver.

% USAGE: function mtivchk(s,synmo,freqno,rintlv,cintlv,mary,case)
%
function mtlvchk(s,synmo,freqno,rintlv,cintlv:,mary,case)
%
% Find all multiples of the data matrix based upon the number of rows (symbol #) and
% the number of columns. (OFDM frequency #).
% (Uses macro: mltpl.m)
%
multiples = mltpl(symno,freqno);
Intrlvr_nbr_mltpls = multiples;
%
% Display error message if symno and freqno/2 not compatible with rintlv and cintlv and stop.
% If not compatible, the interleaver function does not work correctly.
%
if (symno*freqno) ~= (rintlv*cintlv)

disp('ERROR: The interleaver parameters, rintlv and cintlv, are not compatible with the
message array size.')

disp(' The acceptable choice of possible numbers are:')

278

dispC')
disp(multiples)
dispCNote: The selected pair of numbers must be divisible by the number of rows and

columns of the input matrix multiplied together.')
dispC In this case the number of rows times the number of columns is:')
disp('')
disp(symno*freqno)

elseif (symno*freqno)/(rintlv*cintlv) = 1
%
% Generate a random message matrix of m-ary symbols. (Uses macro: marymsg.m).
%
B=marymsg(mary,s,symno,freqno);
Random_msg=B
%
% Perform a CDL block interleaving function on the matrix, B, with rintlv rows
% and cintlv columns. (Uses macro cdlilv.m).
%
SYNC = [];
[Br Be] = size(B);
Bt=B';
Bvect = Bt(:)';
si = cdlilv(rintlv,cintlv,case,Bvect,SYNC);
Bi = reshape(si,Bc,Br)';
Interleaved_array = Bi
0/ /o

% Performs the CDL deinterleaving function with the same parameters
% used during the encoding and interleaving process. (Uses macro: cdldlv.m)
%
[Br Be] = size(Bi);
SYNC = [];
sr = Bi';
si = sr(:)';
sd = cdldlv(rintlv,cintlv,case,si,SYNC);
Bd = reshape(sd,Bc,Br)';
Deinterleavedarray = Bd
%
% Check the results of the initial message matrix with the interleaved and deinterleaved one
% for errors. (Uses macro check.m).
%
% function [error_no,freqerrs,errmx,rowerrs] = check(pic,x,y,n,k,blklgth);
[error_no,freqerrs,errmx,rowerrs] = check(0,B,Bd,freqno,freqno,freqno);

end
%

279

24. Function: intlvprs.m

% function pairs = intlvprs(n,m)
0/ /o

%
% Title: INTERMEDIATE MATRIX INTERLEAVER DIMENSION PAIRS
% Author: Dave Roderick
% Naval Postgraduate School
% Editor: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/23/96
% o,

% INPUTS:
%
% n - Number of rows in input matrix
% m - Number of columns in input matrix
%
% OUTPUTS:
% pairs - Output matrix of permissable interleaver matrix dimension pairs
%
% INTLVPRS: This m-file initially finds all positive whole number multiples of a (nxm)
% matrix (ie: multiples of (n*m), # of columns times # of rows). Based upon this
% result, the formation of permissable intermediate matrix dimension pairs are
% calculated. The output is a matrix of suitable intermediate matrix dimensions
% agreeable with the original message matrix dimension.
%
% USAGE: function pairs = intlvprs(n,m)
%
function pairs = intlvprs(n,m)
%
% Find the product of the # of rows and # of columns of the input matrix
%
prod = n*m;
%
% Initialize a vector with value one, since all numbers are divisible by one
%
multvect=[l];
%
% Looping sequence to find all whole number multiples of max. If remaider is zero,
% that divisor is appended to multvect indication a legitament whole number divisor.
% If the remainder is other than zero, the index is inreased by one and multvect is
% not changed. The looping process ends at max, since that is the largest number that
% can wholly divide into itself.
%
for i = 2:prod;

280

remdr = rem(prod,i);
if remdr = 0

multvect = [multvect i];
else
multvect = multvect;

end
%
% Output matrix of pair results
%
mult = multvect;
end
lngth = length(mult);
nbr = mult(lngth);
result = [1 nbr];
for i = 2:lngth;
crntpr = [mult(i) nbr/mult(i)];
result = [result;crntpr];
end
pairs = result;
%

281

25. Function: itda.m

% function Y = itda(Ng,y)
%
%
% Title: FREQUENCY DOMAIN SAMPLES WITHOUT GUARD INTERVAL
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 1/27/97
%
% INPUTS:
% Ng - Number of samples for the periodic precursor guard interval to remove
% y -Array of received time domain values
%
% OUTPUTS:
% Y - Frequency domain array of sample values after FFT is performed
0/ /o

% NOTE: This m-file performs the inverse function of m-file tda.m
%
% ITDA: This M-file removes the Ng point precursor guard interval and takes FFT.
%
% USAGE: function [Y] = itda(Ng,y)
%
function Y = itda(Ng,y)
%
% Find the dimensions of input array, y.
%
[L Nt] = size(y);
%
% Remove the guard interval for channel compensation, Ng, precursor.
%
y = y(:,Ng+l:Nt);
%
% Take the FFT of array, y.
%
Y = fft(y.').';
%

282

26. Function: marymsg.m

% function [vmary] = marymsg(q,s,n,m)
0/ /o

%
% Title: M-ARY MESSAGE TEST PATERN GENERATOR
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 1/7/96
0/ /o

% INPUTS:
% q - Base two exponent used for M-ary conversion of binary message (M=2Aq)
% s - Seed parameter for random number generation
% n - Desired number of rows in random output message matrix
% m - Desired number of columns in random output message matrix
%
% OUTPUTS:
% vmary - M-ary message symbol array
%
% SUBROUTINES USED:
% bm.m,msg.m
0/ /o

% MARYMSG: This m-file generates a random test message matrix of M-ary symbol values.
% The number of output symbols generated for the random message is determined by n
% (rows) and m (columns). The randomness aspect is determined by s, the seed parameter.
%
% USAGE: function [vmary] = marymsg(q,s,n,m)
%
function vmary = marymsg(q,s,n,m)
%
% Calls macros msg.m to generate a random binary test pattern and bm.m to convert the
% random test pattern to M-ary symbols.
%
vmary = (reshape(bm(q,msg(s,(q*n*m))),m,n))';
Randommsg = vmary;
%

283

27. Function: mb.m

% function [b] = mb(q,m)
%
%
% Title: M-ARY TO BINARY CONVERTER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 12/18/96
%
% INPUTS:
% q - Base two exponent representing M-ary symbol
% m - M-ary data matrix or vector
%
% OUTPUTS:
% b - binary output vector (LSB for each symbol on left)
%
% NOTE: This m-file performs the inverse function of m-file bm.m
%
% MB: This m-file implements a M-ary to binary converter by accepting two input
% arguments, q and m, and returning the output, b. The input argument, m, is a
% M-ary (2Aq) matrix or vector. The input argument, q, represents
% the base two exponent representing the M-ary symbol and used during the binary
% conversion. The output b, is the binary vector mapping of the m-ary symbol.
% end of v if necessary to ensure an even multiple of q with no remainder (even
% modulo q) during the generation of the final M-ary symbol. The bits, v, are stripped
% q at a time and are mapped to a symbol vector m with integer values 0 to 2Aq-l.
% The least significant bit is taken to be on the left.
% .
% USAGE: function [b] = mb(q,m)
%
function [b] = mb(q,m)
%
% Find the number of rows and columns in input matrix, m.
%
row = size(m,l);
col = size(m,2);
%
% Reshape the transposed input M-ary matrix, m, into a vector, m.
%
m = reshape(m',l,(row*col));
%
% Calculate remainders by dividing m vector elements by 2.

284

%
bO=rem(m,2);
m=(m-b0)./2;
B=bO;
%
% Looping algorithum for finding remainders for each m element.
%
forj=l:q-l
bj= rem(m,2);
m=(m-bj)./2;
%
% Generate a column vector of remainders for each symbol with
% least significant bit in first row.
%
B=[B;bj];
end
%
% Transpose column vector with Least significant bit on the left.
%
b=B(:)';
binary=b;
%

285

28. Function: mltpl.m

% function [mult] = mltpl(n,m)
%
%
% Title: COMMON MULTIPLES
% Author: Dave Roderick
% Naval Postgraduate School
% Editor: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 1/13/96
%
% INPUTS:
% n - Number of rows in input matrix
% m - Number of columns in input matrix
%
% OUTPUTS:
% mult - Output vector of whole number multiples of product n x m
%
%
% MLTPL: This m-file finds all positive whole number multiples of a (nxm) matrix.
% (ie: multiples of (n*m), # of columns times # of rows). Useful for the interleaving
% function in order to acertain how many different row and column shifts are permitted
% and what values are allowed.
0/ /o

% USAGE: function [mult] = mltpl(n,m)
%
function [mult] = mltpl(n,m)
%
% Find the multiple of the # of rows and # of columns of the input matrix
%
max = n*m;
%
% Initialize a vector with value one, since all number are divisible by one
%
multvect=[l];
/o

% Looping sequence to find all whole number multiples of max. If remaider is zero,
% that divisor is appended to multvect indication a legitament whole number divisor.
% If the remainder is other than zero, the index is inreased by one and multvect is
% not changed. The looping process ends at max, since that is the largest number that
% can wholly divide into itself.
%
for i = 2:max;
remdr = rem(max,i);

286

if remdr = 0
multvect = [multvect i];
else
multvect = multvect;

end
%
% Output vector results
%
mult = multvect;
end
%

287

29. Function: msg.m

% function u = msg(s,k)
%
%
% Title: MESSAGE TEST PATERN GENERATOR
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
%
%
%

Naval Postgraduate School

Last revision: 12/23/96
%
% INPUTS:
% s - Used during the random number generation and represents the seed
% k - Number of bits in the formation of the output sequence
%
% OUTPUTS:
% u - Random binary message pattern
%
% MSG: This m-file generates a random test message sequence of binary bits. The
% number of output bits generated for the message as well as the randomness aspect is
% determined by, k, and, s, respectively.
%
% USAGE: function u = msg(s,k)
%
function u = msg(s,k)
%
% Set the random variable to a uniform distribution.
%
rand('uniform');
%
% Returns the current seed of the uniform generator.
0/ /o

temp = rand('seed');
%
% sets the uniform generator s to 'seed'.
%
rand('seed',s);
%
% Generate a random number vector of length, k, and round up or down to make binary.
%
u = round(rand(l,k));
%rand('seed',temp)
Binary_sequence = u;
%

288

30. Function: ofst.m

% function xo = ofst(e,N,x)
%
%
% Title: CHANNEL OFFSET
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/18/97
%
% INPUTS:
% e - Frequency offset error amount
% N -Number of FFT frequency sample points
% x - input time domain values
%
% OUTPUTS:
% xo - Direct path offset output
%
% OFST: This m-file applies a frequency offset of e to the direct path of vector x (0.7 of max
% Doppler shift). The phase is 2*pi*e/N.
%
% USAGE: function xo = ofst(e,N,x)
%
function xo = ofst(e,N,x)
[m Nt]=size(x);
xo=x.';
x=x.';
x=x(:);
x=x.';
Nt=length(x);
1=1 :Nt;
%
% Now create the offset frequency
%
ex=x.*exp(i*(2*pi/N)*e.*l);
xo(:)=x;
xo=xo.';
0/ /o

289

31. Function: raydop.m

% function c = ray_dop(s,M,N,es)
%
%
% Title: RAYLEIGH DOPPLER
% Author: Dr. Paul H. Moose
% Naval Postgraduate School, Oct 10, 1996
% Revised by: Dave Roderick
%
%
%

Naval Postgraduate School

Last revision: 2/9/97
%
% INPUTS:
% s - Seed parameter for random number generator
% M -No. of points
% N - No. of sample points per symbol
% es - maximum doppler shift frequency as a fraction of tone spacing.
%
% OUTPUTS:
% c - complex random sequence with iid guassian real and imag parts of length M
% points.
%
% RAY_DOP: This m-file generates a sequence of length L*N points
% (L bauds of N samples per baud) of complex numbers with zero
% mean, 0.5 variance real and imaginary parts. Envelope is Rayleigh,
% with mean square value of one. The power spectral density of the
% sequence is Sc(f)=l/(2*pi((es*delf)A2 - fA2)A5) for abs(f)<es*delf
% and zero elsewhere. es*delf is maximum doppler fdmax and delf is
% OFDM tone spacing [1].
%
% REFS:
% [1] Pommier and Wu; "Interleaving or spectrum spreading in
% digital radio intended for vehicles," EBU Review - Technical No.
% 217, (June 1986).
%
% USAGE: function [c] = ray_dop(s,M,N,es)
%
function c = ray_dop(s,M,N,es)
m=0:M-l;
randn('seed',s+10);
prl = randn(l,20);
randn('seed',s+20);
pirn = i*randn(l,20);
p = prl + pirn;
p=p/(40A5);

290

rand('seed',s+30);
e=rand(l,20);
e=es*cos(2*pi*(e-.5));
E=exp(i*2*pi*e'*m/N);
c=p*E;
%

291

32. Function: rotm.m

% function [vp,vn] = rotm(v,m)
0/ /o

%
% Title: ROTATE VECTOR
% Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by Dave Roderick
% Naval Postgraduate School
0/ /o

% Last revision: 3/24/97
%
% INPUTS:
% v - Input matrix to be rotated
% m - Number of positions to be shifted
%
% OUTPUTS:
% vp - Matrix with positive rotation
% vn - Matrix with negative rotation
%
% ROTM: This m-file is used to rotate (cyclically shift) a vector v by m positions.
% vp is v rotated positively (shifted to the right or down), and vn is v rotated
% negatively (shifted to the left or up).
%
% USAGE: function [vp,vn] = rotm(v,m)
%
function [vp,vn] = rotm(v,m)
L=length(v);
m=rem(m,L);
ir=(l:L)-l;
isp=rem(ii-m+L,L)+1;
isn=rem(ii+m+L,L)+1;
vp=v(isp);
vn=v(isn);
%

292

33. Function: tda.m

% function x = tda(Ng,X)
%
%
% Title: TIME DOMAIN SAMPLES WITH GUARD INTERVAL

PRECURSOR
0/ /o Author: Dr. Paul H. Moose
% Naval Postgraduate School
% Revised by: Dave Roderick
0/ /o

%
%

Naval Postgraduate School

Last revision: 1/27/97
%
% INPUTS:
% Ng - Number of samples for the addition of a periodic precursor guard interval
% X - Array of frequency values taken from the frequency array
%
% OUTPUTS:
% x - Time domain array of sample values after IFFT is performed
%
% NOTE: This m-file performs the inverse function of m-file itda.m
%
% TDA: This M-file takes the inverse fft of array X and adds a periodic precursor guard interval
% of Ng samples for channel compensation. The result is the mfm xmit signal.
%
% USAGE: function [x] = tda(Ng,X)
%
function x = tda(Ng,X)
%
% Find the dimensions of the input frequency array
[mN]=size(X);
%
% Perform inverse FFT on frequency values in array, X.
%
x =ifft(X.');
% Add precursor of Ng samples to the beginning of the time domain array for channel
% compensation.
%
x=x.';
ifNg=0
x=x;
else
x=[x(:,N-Ng+l:N)x];
end
%

293

34. Function: uhfift.m

% function [errors,freqerrs] =
uhfift(picyji,pic,s,freqno,rmtlv,cmtlv,N,mary,n^
%
%
% Title: CHANNEL TWO SIMULATION W/O INTERLEAVING
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
%
% Last revision: 4/5/97
%
% INPUTS:
% picy_n - Switch variable to allow or disallow the generation of figures
% pic - Argument passed by a calling m-file to indicate the loop number
% s Seed parameter for random number generator
% freqno - Number of OFDM frequencies (sub-carriers) used in each message array
% rintlv - Interleaver parameter for intermediate matrix row #
% cintlv - Interleaver parameter for intermediate matrix column #
% N - Number of FFT frequency sample points, must be larger than freqno
% mary - Initial M-ary symbol format (M = 2Aq)
% nary - Final N-ary symbol format (N = 2Ap)
% n - Integer number representing code word symbol length
% k - Integer number representing information word symbol length
% (Typically: n>k)
% blklgth - Block number indicating number of symbols over which the
% Reed-Soloman code can perform error detection and correction
% Ng - Number of time domain samples for the addition of guard interval
% loss - Multipath free space loss in dB (vectors accepted)
% dly - Multipath delay in microseconds (vectors accepted)
% dop - Doppler frequency in Hertz (vectors accepted)
% freqspace - Frequency spacing between individual OFDM carriers in Hz
% fort - Selects either frequency (fort = 1) or time (fort = 0) differential encoding
%
% OUTPUTS:
% errors - Number of sink message errors found if any
% freqerrs - Number of sink message errors vs. OFDM freq. #
%
% SUBROUTINES USED:
% coderift.m, tda.m, chuhf.m, itda.m, decdrift.m, check.m
%
% UHFIFT: This m-file performs an OFDM simulation using a channel two model (chuhf.m)
% to observe the multipath fading effects. No interleaving is performed; however, time
% or frequency differential encoding is included depending on fort. A check is performed

294

% comparing the source message with the sink message to determine where any errors
% occurred as a result of channel noise corruption. Error plots show the error
% locations within the message array.
/o

% USAGE: function [errors,freqerrs] =
uhfift(picy_n,pic,s,freqno,mtlv,cMlv,N,mary^
%
function [errors,freqerrs] =
uhfift(picy_n,pic,s,freqno,rmtlv,cmtlv,N,ma
%
% Randomly generate a block message and encode as a OFDM frequency array. Perform
% freq. differential encoding with no interleaving. (Uses macro: coderift.m)
%
[xmt,modvals,B,nsymno] =coderift(picy_n,pic,s,freqno,rintlv,cintlv,N,mary,nary,fort);
%
% Put into the time domain by performing the IFFT and add periodic precursor.
% (Uses macro: tda.m)
/o

xmtifft = tda(Ng,xmt);
xmtpts = l:length(xmtifft);
0/ /o

% Plot the time-domain transmitted signal if picy_n is true
0/ /o

if picy_n= 1
xmtpts = l:length(xmtifft);
figure(3)
plot(xmtpts,xmtifft)
title('Transmitted Time Domain Signal')
axis('square');
orient tall
grid
end
%
% Transmit the message signal through UHF channel (multipath maritime channel).
% The output represents signal plus noise. (Uses macro: chuhf.m)
%
sandn = chuhf(s+l,xmtifft,loss,dly,dop,N,freqspace);
%
% Plot the time-domain received signal if picy_n is true
/o

if picy_n= 1
rcvdpts = l:length(sandn);
figure(4)
plot(rcvdpts,sandn)
title('Received Time Domain Signal')
axis('square');

295

orient tall
grid
end
%
% Remove precursor and take FFT to put back into frequency domain.
% (Uses macro: itda.m)
%
sandnfft = itda(Ng,sandn);
%
% Decode the received message signal and generate the corresponding sink message.
% (Uses macro: decdrift.m)
%
K = (length(modvals(l,:)))/2;
rdintlv = rintlv;
cdintlv = cintlv;
rcvd = decdrift(picyji,pic,K,sandnfft,nsyrr^
Transmitted_msg = B;
Received_msg = rcvd;
%
% Check the source message against the sink message for errors. Returns error report.
% (Uses macro: check.m)
%

[errors,freqerrs,errmx,rowerrs] = check(pic,B,rcvd,n,k,blklgth);
errmx;
[rn cm] = size(errmx);
errsum = sum(errors);
if errsum~= 0
symno = rintlv*cintlv/freqno;
freqno;
ifpicy_n= 1

ifdop== [25,25,25]
figure(2)
mesh(errmx)
title(['Link 3: Error Distribution Without Interleaving (M-ary bits: ,,int2str(mary),V,'N-ary bits:
',int2str(nary),')'])
axis([0 freqno 0 symno 0 max(max(errmx))])
xlabel(['Freq. # (Total = ,,int2str(freqno),*)'])
ylabel(['Row # (Symbol # = ,,int2str(symno*freqno),,),])
zlabel(['Error Occurance (Total = ',int2str(errsum),') (seed = ',num2str(s),')'])
text(-150,0,1.95,['Error Correction = ',int2str(floor((n-k)/2))])
grid
orient tall
%fori=l:36
%view(i* 10,30)
%pause(l)

296

%end
%print
%pause(10)

elseifdop = [10,10,10]
figure(2)
mesh(errmx)
title(['Link 2: Error Distribution Without Interleaving (M-ary bits: l,int2str(mary),',','N-ary bits:
',int2str(nary),')'])
axis([0 fireqno 0 symno 0 max(max(errmx))])
xlabel(['Freq. # (Total = ',int2str(freqno),')'])
ylabel(['Row # (Symbol # = ',int2str(symno*freqno),')'])
zlabel(['Error Occurance (Total = ',int2str(errsum),') (seed = ',num2str(s),')'])
text(-150,0,1.95,['Error Correction = ',int2str(floor((n-k)/2))])
grid
orient tall
%fori=l:36
%view(i* 10,30)
%pause(l)
%end
%print
%pause(10)

elseifdop== [1,10,0]
figure(2)
mesh(errmx)
title(['Link 1: Error Distribution Without Interleaving (M-ary bits: ',int2str(mary),7,'N-ary bits:
',int2str(nary),')'])
axis([0 freqno 0 symno 0 max(max(errmx))])
xlabel(['Freq. # (Total = ',int2str(freqno),')'])
ylabel(['Row # (Symbol # = ',int2str(symno*freqno),')'])
zlabel(['Error Occurance (Total = ',int2str(errsum),') (seed = ',num2str(s),')'])
text(-150,0,1.95,['Error Correction = ',int2str(floor((n-k)/2))])
grid
orient tall
%fori=l:36
%view(i* 10,30)
%pause(l)
%end
%print
%pause(10)
end
end
else
disp('')
dispCGREAT!!! Test passed.')
end
if sum(rowerrs) ~= 0

297

figure(3)
cony = (max(rowerrs)+5)/60;
conx = symno/80;
errindx= l:length(rowerrs);
bar(errindx,rowerrs)
title(['Error Count Per Symbol Row (Total Errors = ',int2str(sum(rowerrs)),')'])
xlabel('Row Number')
ylabelCNumber of Errors')
axis([0.5,(symno+-5),0,(max(rowerrs)+(6*cony))])
if sum(rowerrs) ~= 0
for i = l:length(rowerrs)
text(i-(1.5*conx),rowerrs(i)+(4*cony),int2str(rowerrs(i)))
end
end
orient tall
%print
%pause(10)
end
0/ /o

298

35. Function: uhfseeds.m

%
%
% Title: SEED ERROR REPORT
% Author: Dave Roderick
% Naval Postgraduate School
% Revised by: Dave Roderick
% Naval Postgraduate School
0/ /o

% Last revision: 4/5/97
%
% INPUTS:
% None
%
% OUTPUTS:
% None
%
% SUBROUTINES USED:
% uhfift.m
%
% UHFSEEDS: This batch m-file performs numerous OFDM simulations using a channel two
% model (chuhf.m) with various seed input values to generate an error report. No interleaving
% or error correction is performed. This program helps to identify the worst seed values
% which cause the most errors within the channel. Different communication links may also be
% selected.
%
dispf ');
fort = input('To run the frequency version, enter 1 (one); otherwise, enter 0 (zero) to run the time
version: ');
pthno = input('Do you want to run linkl, link2, link3 or a custom link? (Enter 1,2, 3 or 4 for
custom): ');
%
% Link parameters
%

if pthno = 3
% Link 3
loss = [0,3,9];
dop = [25,25,25];
dly=[0,.9,5.1];

elseif pthno = 2
% Link 2
loss = [0,5,15];
dop =[10,10,10];
dly=[0,.07,.8];

elseif pthno == 1

299

% Link 1
loss = [0,6];
dop = [1,10];
dly = [0,.01];

elseif pthno = 4
dispCCustom link simulation...')
loss = input('Enter the path loss in dB (Ex. [0 4 7]):');
dop = input('Enter the doppler frequency in Hertz (Ex. [30 20 15]): ');
dly = input('Enter the time delays of the multipaths in microsecs (Ex. [0 0.6 3.9]):');

end
prnty_n = input('Do you want print outs? (1 = yes, 0 = no):');
0/ /o

% Simulation input parameters
%
symbols = input('Enter the minimum number of symbols to test:');
freqno = input('Enter the number of OFDM frequencies (NOTE: Must be even):');
N = input('Enter the number of FFT points (NOTE: Must be larger than # of OFDM frequencies):

');
smax = input('All tested seeds begin with one and end with a max number. Enter Smax (Integer #):

');
disp(['Tested seed range is 1 - ',int2str(floor(smax)),'...'])
mary = 8;
nary = 4;
symno = ceil(symbols/freqno);
freqspc = 480000/freqno;
errvect = [];
incvect = [];
topervect= [];
sindex = 1 :floor(smax);
for s = sindex;
%
% If fort equals one, run the frequency simulation version; otherwise, run the time version.
% (Uses macro: uhfift.m)
%[errors,freqerrs] =

urifift(picy_n,pic,s,freqno,rintlv,cmtlv,N^
[errors,freqerrs] =

uhfift(0,0,s,freqno,freqno,symno,N,mary,nary,0,0,freqno,6,loss,dly,dop,freqspc,fort);

errtot = sum(errors);
errvect = [errvect,errtot];
end
totalerr = sum(errvect);
avgerr = ceil(totalerr/floor(smax));
[inc I] = sort(errvect);
errmx = [I;inc]
Error_Seeds = incvect
Total Errors = totalerr

300

Avg_Errors = avgerr
save unfhist errmx
dispCAllDone!!!')
dispC)

if sum(inc) = 0
dispOGREAT!!! Simulation passed with no errors.')

elseif sum(inc) ~= 0
dispCOOOPS!!! Errors occured.')

end%

% * Plots *

%
figure(3)
bar(sindex,errvect)
grid
orient tall
xlabeltf'UHFSEEDS: Seed Value (Symbol # = '5int2str(freqno*symno),,),])
ylabel(['Error Number (OFDM Freq. # = ',int2str(freqno),') (M-ary = ',int2str(2Amary),' ,N-ary =
,,int2str(2Anary),,),;|)

if fort =1
ifpthno= 1

title(['Linkl: Error Dist. vs. Seed Values (Freq. Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
',num2str(dop)/) (Delay = >um2str(dly),')']);

elseif pthno = 2
title(['Link2: Error Dist. vs. Seed Values (Freq. Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
',num2str(dop),') (Delay = ',num2str(dly),')']);

elseif pthno = 3
title(['Link3: Error Dist. vs. Seed Values (Freq. Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
',num2str(dop),') (Delay = ',num2str(dly),')']);

elseif pthno = 4
title(['Custom Link: Error Dist. vs. Seed Values (Freq. Diff. Enc.) (Loss = ',num2str(loss),') (Dop
= ',num2str(dop),') (Delay = *,num2str(dly)/)']);

end
elseif fort ~= 1

if pthno = 1
title(['Linkl: Error Dist. vs. Seed Values (Time Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
*,num2str(dop)/) (Delay = ',num2str(dly)/)']);

elseif pthno = 2
title(['Link2: Error Dist. vs. Seed Values (Time Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
',num2str(dop),') (Delay = ^nuntfstrtdly)/)']);

elseif pthno = 3
title(['Link3: Error Dist. vs. Seed Values (Time Diff. Enc.) (Loss = ',num2str(loss),') (Dop =
',num2str(dopV) (Delay = ',num2str(dly)/)']);

elseif pthno = 4
title(['Custom Link: Error Dist. vs. Seed Values (Time Diff. Enc.) (Loss = ',num2str(loss),') (Dop

301

= ',num2str(dop),') (Delay = ',num2str(dly),')']);
end

end
axis([.5 (max(s)+.5) 0 (max(errvect)+l)])
if prnty_n= 1
print
pause(lO)
end
figure(4)
bar(inc)
grid
orient tall
xlabel('UHFSEEDS: Seed Value (out of order)')
ylabel('Error Number')
title('Ordered Error Dist. vs. Seed Values (Corresponding Seed Shown on Plot)')
axis([.5 (max(s)+.5) 0 (max(errvect)+l)])
for i = l:length(errvect)
if inc(i) > (max(inc))*.8
incvect = [incvect,I(i)];
topervect = [topervect,inc(i)];
errlth = length(topervect);
yinc = (max(inc(i))-min(inc(i)))/2;
text(5,(inc(i)+l),int2str(I(i)))
end
end
if prnty_n= 1
print
pause(lO)
end
figure(5)
hist(errvect)
title(['Error Histogram (Average # of Errors Per Seed = ',int2str(avgerr),')'])
xlabel('Error Bins')
ylabelCNumber of Seeds')
grid
orient tall
if prnty_n = 1
print
end
0/ /o

302

303

APPENDIX B. VARIOUS SYSTEM SIMULATION PERFORMANCE RESULTS

Link 3: Rsrförmance graph: Symbol Error Rate vs. Es/No (Freq. Dff. Enc) (Total errors = 149250)

10°

IQ"1

ii

±
8

icr
(73

"*~~-^.

""-\

\

\
"-■

N ̂ \ \
l

\

Loss = [0,3,9]

Delay = [0

Doppier=

0.9,5.1]

p5,25,25l
\

\ \

0 i 5 1 0 1 5 2 0 2 5 3 0

ES/ND (dB) (# of CFDM=240) (case =7) (Interleaver pair=240,42) (M-ary=256, r^ary = 16) (N = 512)

Link 3 System Model 3 Simulation (240 Tones, 512 FFT Points, 1.2% Guard, 8-Bit

OFDM Symbols)

304

Link 3: Rafcnra-ioegcph: S^ntd BrcrRatevs, Es/Nb(Freq. Dff. &c) (Jdtä enus=143449)

10°

ii

II

§*

(7)

10

1(T

10"

•*-*^.
""•~-

"**
■*-..

"S.^

\ v

^ s
\

%
i

\

\

Lo6S=[0,3,9]
\

.

Del£y=[0,0.9,5.1]

Order=r2525.25l

\
\
\
\

m. ■• i)
\

X

\

i

0 5 1 0 1 5 20 25 30

ESWD(CB) (#cf CFCM=240) (case=7) (Irter1eaa-par=240,42) (May=256tNay=16)(N=512)

Link 3 System Model 3 Simulation (240 Tones, 512 FFT Points, 4.9% Guard, 8-Bit

OFDM Symbols)

305

Link 3: FferformanoegaFh: %ntd BrorRstevs. Esfl\b(Freq. Off. &c) (Total errofs=147877)

10°

ii

CM
II

8

£73

1(J1

10"

10-

-^—* *~
"^—^

^^"Vfc

\.

\ k
V \
\

i

s
\ \

\
t

Loss=[0,3,91 \
\

Delay=[0,0.9,5.1]
Doppler=[25,25,25]

\
\
\
t
\
\
\
\
\
i
i
i

0 5 1 0 1 5 20 25 30

Es/N3(dE& (#ofCFDM=240) (case=7) flrterteMr pair=240,42) (May=256, Nay=16) (N=512)

Link 3 System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 8-Bit

OFDM Symbols)

306

ünk3 Fterforra-pe graph S^rbd BrcrFfete^. Esrtsb(Freq. Off. Ere.) (Total arcrs=119911)

10°

ii

CN

&

m

101

10'

N.
X

\
\

\
\

Loss
Delay

[fcpp

=[0,39]
=[0,0.9,51]

er=[25,25,25]

\
\
\
\ \

\
X
\ \|

V
\~^

■^^.^

—-_

5 1 0 1 5 20 25 30 35 40 45

B/ND(cB)(#cfOFa\/I=240)(case=0)(lrtef1ea«rpar=1,10080) (Mary=253, Nary=16) (N=256)

Link 3 System Model 3 Simulation (240 Tones, 256 FFT Points, 2.3% Guard, 8-Bit

OFDM Symbols, No Interleaving)

307

Linka FferfoTTHToegrqph: ^ntd Brer Ffetevs. B/ND(Freq. Dff. Em) (Tctä errors=213515)

10°,

@

ii

Si
II

£73

10"

10"'

1(T

Lo6S=[0,3,9]

Dela/=[0,0.9,5.1]

Dppter=[25,25,25J

0 10

\

\
V

-V

15 20 25

ESMD (<£) (#cf CFDM=240) (case =7) Qrferieao- par=240, 84) (May=16iNay=16)(N=512)

Link 3 System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 4-Bit

OFDM Symbols)

308

CLBtomünkFferlbrmarae graph: J^ntd Error Rsteva E^r\b(Freq Off. Bra) (Total errors=189103)

10°

10"

8
R
ii

CVJ
II

10"'

ö

10"1

m

Loss=[0,1,i;

Däa/=[0,4®

Dappler=r40,40,40]

0

■^r

0

X

20 25

Esf\b(cB) (#of CFDM=240) (case=7) flrteriea/erpeir=240, 84) (IVkjry=16,r\kiy=16)(N=512)

Custom System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 4-Bit

OFDM Symbols)

309

(DjstcmünkFferfcriTHTCBg^h: $nfed BrcrFäevs. EsN3(Req. Dff. Bxx) (Total enas=W324)

10°

ii

ff
II

&

m

1Ö1

10'

""•-
\
\

\

\
■\

\

May=[0,5,10]
Dtppier=[40,40I4q

\

\
\
^\ ^--,

——■—
—

0 J 5 10 15 23 25 30 35 40 45

E^ND(C^ (#cf CFDM=240) (csse=7) (Irter1ea«rpar=240,42) (l\4ay=255,Nay=1Q(N=512)

Custom System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 8-Bit

OFDM Symbols)

310

Link 3: RsribTTHToegnEph: %rrbd BrcrR3te\& Es^b(Freq. Dff.BTa)(Totäerrcrs=112^2)

Kf

ii

?5
II

&

CD

" 1Ö1

10"'

Loss=[0,3$

raa/=[QQ9,5.1]

Peppier=[25.252^

1Ö;

0

^
\
\ ^

V
\

\
"V

\

\

2D 25 30 35

B/ND(C^ (#cf CFCM=120) (ca9e=0) (lrterieaa-par=120,84) (M£iy=256,Nay=16)(N=253)

Link 3 System Model 3 Simulation (120 Tones, 256 FFT Points, 2.3% Guard, 8-Bit

OFDM Symbols)

311

Lin %ftxnHTCEgaprT%rr1xl&TCT

10°,

1Ö1

n

ii

s

& 1Ö3

?73 0

~^r

Loss=[03Sg

Delay=[00.95.1]

Dopder=12525251

\

0

\

X
\ s

20 25

EsflSb (dE& (ß of CFDM=240) (case =7) (Interleave- pair=240,28) (Mary=256, Nary=8) (N=256)

Link 3 System Model 3 Simulation (240 Tones, 256 FFT Points, 2.3% Guard, 8-Bit

OFDM Symbols, 3-Bit PSK Symbols)

312

Link2 Performance gcph Symbol Brcr Rate vs. Es/Nb(Req Off. Bn) (Tctal errcrs=257635)

10°

8

ii

J5
II

°?

C75

1Ö1

icr

103

"^~
">--^_
\
\

X.
\

N
V

V \
\ \

s

\
■

Lass=[0,5,15] \
\

D=lsy=[0,QÖ7,0.8|

Dxder=riQ1Q10l \ \

0 i 5 10 15 20 25 30

B^(cE|)(#tf(Ha\/l=2^(case^

Link 2 System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 4-Bit

OFDM Symbols)

313

ünk1: PerfoiTTHiaegaph: S/rfcd BrorRatevs. EsN>(Freq. Off. BTL) (Total enas=492575)

10°

1Ö1

@

n

ii

8

10*

Itf
«73

—— -■~~^

*~>._
"^NJ

\
\

\ \

\
t

—\
i 1

X

üoss= m t \
\ \

Delsy=[0,0.01]

Doppier=[1,1CJ

1
1
1
\ !
 * . V

\
l

0 5 1 0 1 5 20 25 30 35 40

Es/Nb(dE& (#of CFDM=240) (case=0) (Irterleae-pair=240,84) (May=16,N-ary=16)(N=512)

Link 1 System Model 3 Simulation (240 Tones, 512 FFT Points, 2% Guard, 4-Bit

OFDM Symbols)

314

Link a Ferrcrrrenoe graph: Symbol Brer Rate vs. B/No(Freq. Off. Bic) (Tata errors=218309)

IS
CM

8
S
ii

C\l
II

c?

„^

^^"~~-.

\
\,.
\

10"1 X ̂ \
—T; —<

\

\
\

Loss=[0,3,9]

io-2

Delay=[0,0.9,5.1]

Doppler=[25,25,25]

\
1
1 \

t
1 \

1

\
I

10-3

3 5 1 0 1 5 20 25 30 475

Es/No (cB) (# of OFDM=240) (case =0) (Interleave pair=840,24) (IVkary = 16, Nk-ry = 16) (N=512)

Link 3 System Model 3 Simulation (240 Tones, 512 Fft Points, 2% Guard, 4-Bit

Ofdm Symbols, Interleaver (840,24))

315

LIST OF REFERENCES

[I] Broad Agency Announcement, "High-Data-Rate, Line-of-Sight Digital Radio for
Mobile Maritime Communications", N66001-96-X-6911, Naval Command,
Control and Ocean Surveillance Center RDT&E Division, August 1996.

[2] William Y. Zou and Yiyan Wu, "COFDM An Overview", IEEE Transactions on
Broadcasting, Vol. 41, No. 1, pp. 1-8, March 1995.

[3] Leonard J. Cimini, "Analysis and Simulation of a Digital Mobile Channel Using
Orthogonal Frequency Division Multiplexing", IEEE Transactions on
Broadcasting, Vol. Com-33, No. 7, pp. 665-675, July 1985.

[4] Roger L. Freeman, Telecommunication Transmission Handbook, John Wiley and
Sons, Inc., 1991.

[5] John G. Proakis and Masoud Salehi, Communication Systems Engineering,
Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[6] Paul H. Moose, "Simulation of the Common Data Link Using MATLAB", NPS-
EC-95-010PR, Naval Postgraduate School, Monterey, CA July 1995.

[7] R. C. North, W. D. Bryan, R. A. Axford, Jr., K. C. Owens, D. R. Butts, B.
Watkins, P. D. Donich, "Use of the AN/WSC-3 External Modem Interface for
High-Data-Rate UHF Digital Communication", Technical Report 1701, Naval
Command, Control and Ocean Surveillance Center RDT&E Division, San Diego,
CA May 1995.

[8] S. B. Weinstein and Paul M. Ebert, "Data Transmission by Frequency-Division
Multiplexing Using the Discrete Fourier Transform", IEEE Transactions on
Communication Technology, Vol. Com-19, No. 5, pp. 628-634, October 1971.

[9] E. Oran Brigham, The Fast Fourier Transform, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1974.

[10] Jens Engle, "Digital Data Detection and Synchronization in the Spectral Domain
Using FFT", Master's Thesis, Rose-Hulman Institute of Technology, May 1991.

[II] Richard E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley
Publishing Co., Inc., 1983.

316

[12] Shu Lin and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Prentice Hall, Englewood Cliffs, New Jersey, 1983.

[13] Bernard Sklar, Digital Communications Fundamentals and Applications, PTR
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[14] Unisys specification no. 7690698, pp. 24-25, Unisys proprietary.

[15] C.W. Farrow, "A Continuously Variable Digital Delay Element", JEEE
International Symposium on Circuits and Systems, pp. 2641-2645, 1988.

[16] Carl W. Helstrom, Probability and Stochastic Processes for Engineers, Macmillan
Publishing Company, New York, 1984.

317

BIBLIOGRAPHY

[1] Leon W. Couch II, Digital and Analog Communication Systems, Macmillan
Publishing Company, New York, 1990.

[2] Gianfranco Cariolaro, "Introduction to Multicarrier Modulation Systems",
Seminars on OFDM Systems, Italtel BUTR, L'Aquila, May 1994.

[3] MATLAB® High-Performance Numeric Computation and Visualization Software,
Reference Guide, The Math Works Inc., 1992.

[4] Bernard Le Floch, Michel Alard, and Claude Berrou, "Coded Orthogonal
Frequency Division Multiplex", Proceedings of the IEEE, Vol. 83, No. 6, pp. 982-
996, June 1995.

[5] Pommier and Wu, "Interleaving or spectrum spreading in digital radio intended for
vehicles," EBU Review - Technical No. 217, June 1986.

[6] John G. Proakis, Digital Communications, 2nd Edition, McGraw-Hill Book
Company, 1989.

318

319

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Prof. Paul H. Moose, Code EC/Me
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Prof. R. C. Robertson, Code EC/Re
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Prof. Jovan Lebaric, Code EC/Lb
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Dr. Richard C. North, Code 855
NCCSOC RDT&E DIV (NRaD)
53560 Hull St.
San Diego, CA 92152-5001

Mr. Mike Geile
Nova Engineering
5 Circle Freeway Drive
Cincinnati, OH 45246-1201

320

Mr. David V. Roderick
PO Box 5891
Monterey, California 93944-0891

321

