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Abstract 

This paper introduces lattice based language models, a new language model- 
ing paradigm. These models construct multi-dimensional hierarchies of par- 
titions and select the most promising partitions to generate the estimated 
distributions. We discussed a specific two dimensional lattice and propose 
two primary features to measure the usefulness of each node: the training-set 
history count and the smoothed entropy of its prediction. Smoothing tech- 
niques are reviewed and a generalization of the conventional backoff strategy 
to multiple dimensions is proposed. Preliminary experimental results are 
obtained on the SWITCHBOARD corpus which lead to a 6.5 % perplexity 
reduction over a word trigram model. 
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1    Introduction 

Statistical language modeling is concerned with estimating the probability 
of various linguistic events, using large samples of language data. As used in 
automatic speech recognition, statistical language models typically estimate 
Pr{w\h) - the conditional distribution of the identity of the next word in a 
sentence or document, given the current history (namely the identity of the 
words that occurred up to this point). 

The most common statistical language model is the N-gram, which makes 
the simplifying assumption: 

Yv(w\h) = Pv(wi\w1,w2,...,w^1) ?a Pi(wi\wi-N+1,... ,w,-_i) 

N-gram models have dominated statistical language modeling ever since 
their introduction in the 1970's [1]. In spite of their apparent limitations, 
N-gram models proved simple, robust, and surprisingly hard to improve on 

([2])- 
Within the N-gram paradigm, much work was done on smoothing, word 

clustering and adaptation. In smoothing, the dominant ideas are those of 
discouting ([3, 4]), and backing off to ([5]), or linear interpolation with ([1]), 
lower order models. In clustering words, most algorithms use iterative meth- 
ods that greedily attempt to minimize local information theoretic measures 
([6, 7]). N-gram based adaptation work consists primarily of variations on 
interpolating the static model with small N-grams built from more pertinent 
data (or from the document's history, i.e. a cache) ([8, 9, 10, 11]). 

During the last decade, several attempts were made to break away from 
the N-gram paradigm. These include decision trees and maximum entropy 
models. 

Decision tree language models ([12]) are the ultimate in partition based 
modeling, because they can implement arbitrary partitions. But this rich- 
ness is also the source of their main weakness, which is the computational 
intractability of finding the optimal tree. This leads to greedy searches and 
other algorithmic and modeling compromises, which affect the quality of the 
resulting model. As a consequence, decision trees have not yet succeeded in 
significantly improving on the baseline N-gram model. 

Another problem with decision trees is data fragmentation. Once a tree 
has been constructed, each history fits into exactly one leaf, and the resulting 
estimation is based only on the training data that belong on the path from 
the root to that leaf. No use is made of training data which may be intimately 



related to the current situation but which happens to diverge early on into 
other paths due to orthogonal questions higher up in the tree. 

The ability to combine evidence based on diverse and partially overlap- 
ping features was the main motivation behind the introduction of the maxi- 
mum entropy paradigm to language modeling ([13, 14, 15, 16, 17]). As was 
demonstrated in ([15]), maximum entropy models can successfully integrate 
diverse knowledge sources in a unified and consistent statistical framework, 
and can result in significant improvement over the existing state-of-the-art 
N-gram based techniques. However, as was also discussed in ([15]), training 
maximum entropy models is computationally very demanding, which renders 
them of little use when large amounts of data (e.g. a hundred millions words) 
are available. 

This report discusses lattice based language models — an alternative 
language modeling paradigm which we have just started exploring. Like a 
decision tree, a lattice is based on a set of partitions of the history, and like an 
N-gram, the set of partitions is strongly constrained by word order and word 
ordinal position. But unlike a decision tree, estimates are constructed using 
multiple partitions which may or may not be refinements of each other. This 
allows multiple, partially overlapping knowledge sources to be incorporated, 
as in a maximum entropy model. But unlike the latter, training a lattice 
based model is not computationally demanding. 

2    Outline 

Classical N-gram models define a particular partitioning of the history space. 

For example a 3-gram model is defined as P(wi\h) = P(wi\wi^2Wi_l) where 
all histories h sharing the same last two words are considered to be equiv- 
alent. Another way of partitioning the history space relies on word classes. 
For example a class 3-gram model1, can be defined as P{wi\gi_2gi_1) where 
the history is seen as a sequence of classes (gi-2gi-i). Similarly this class 
history can be made more coarse by clustering the original classes into su- 
perclasses. Thus, in addition to the model order, the definition of a hierarchy 
of classes allows for a natural extension to N-gram models in which the space 
of histories can be partitioned. This idea is described in section 3 where lat- 
tices of N-gram models are introduced. Analysis of this approach as used 
on the Switchboard data is given in section 4.   The definition of lattices of 

Classes are introduced here only for denning various partitions of the history space. 
The resulting model, i.e. p{wi\gi_2gi_1), contrasts with a more traditional class 3-gram 
where the prediction is made in two steps: p{wi\gi)p(gi\gi_2gi_l). 



N-gram models also suggests an extension to the backoff smoothing, called 
two-dimensional backoff which is detailed in section 5. 

Linear combination of predictors is static in the sense that the interpola- 
tion weights remain fixed after their estimation. A backoff model can also be 
considered static since the most specific predictor is always used when avail- 
able2. Here we investigate language models that dynamically choose among 
a laijjf set of predictors. In other words the combination of various predic- 
tors depends on their estimated quality in a given context. These ideas are 
developed in section 6. 

3    Lattice of N-gram models 

3.1    Model definition 

A lattice of N-gram models is shown in figure 1. In this particular example, 
17 predictors are considered. They correspond to five model orders (from 
5-gram on the left to unigrain on the right) and a hierarchy of four class 
levels (the word level at the bottom and the coarsest class level at the top). 
The different class levels collapse to one predictor in the unigram case, in 
which all histories are mapped to one equivalence class. 

The lattice structure represents a set of inclusion relations. In particu- 
lar, the hierarchy of classes delines the following inclusions in the space of 
histories: 

{""■-I } Z //--i ^ Gi-i C •■• 

or similarly 

{(wi-2Wi-i)} ~ {l.'/.-j.'/.-i)} ^ {{Gi-2Gi-i)} C ... 

The order of the model also defines the following inclusions in the space 
of histories 

{(Wi-4Wi-3Wi-2lt',-l •}   L   {(<r,-3«.\-2^;-l)} C  ... C  {Wi-x} 

or similarly 

{(gi-49i-39i-2g,-i)} Q {{(ji-39i-2gi-i)} c ... c {$r,-_i} 

2Even backoff models with cutoff's [18] are static as long as the cutoff values are fixed 
for all histories. 
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Figure 1: Lattice of language models 

Each node of the lattice represents a particular predictor which, for 
a given history h and a given predicted word w, is associated with two 
counts C(h,w) and C{h). A maximum likelihood estimate3 of the proba- 
bility P(w\h) is given by the ratio of these counts: p(w\h) = ^?- Thus 
apart from the important issue of smoothing the probability estimate is com- 
pletely defined with two counts. 

The lattice structure reflects the partial ordering between predictors to- 
gether with the specificity of each. In our example, the 5-gram at the word 
level is the most specific predictor while the unigram is the least specific 
one. In other words, the lattice can also be seen as a DAG in which any 
path goes from a more specific to a less specific predictor. The traditional 
backoff model becomes a particular case in which the lattice is reduced to 
one dimension (associated with the model order) and backing off consists of 
moving towards a less specific predictor. 

While the unigram is the least specific model, it is also the most reliable, 
as it is estimated with the largest amount of data. Our ultimate goal is 
to find the best combination of predictors that trades specificity off against 
reliability. More qualitative measures related to theses questions are defined 
in section 3.3. 

Possible extensions to this model include more flexible (and numerous) 
history partitions, i.e.   where every position in the history can come from 

In this paper an uppercase P denotes a true probability and a lowercase p denotes a 
probability estimate. 



a different class level.   Other dimensions can also be considered since each 
predictor can be estimated on a hierarchy of corpora or on a topic tree. 

3.2    Independent predictors 

C<S^M» 

Figure 2: Lattice of history counts 

The estimates represented in the lattice nodes as described so far are depen- 
dent predictors. For instance, the set of 3-gram histories represented in the 
lattice are a subset of the 2-gram histories. Under some circumstances, it is 
conceivable that we would want to make statistical measures on lattice nodes 
as if they were not dependent on each other. For instance, testing the hy- 
pothesis that adjacent nodes' distributions are identical would demand that 
comparison data would be drawn from independent distributions. For this 
reason we developed the following method for construction of independent es- 
timators from the dependent estimators. While this construction is not used 
in any of the following experiments, we have included its derivation here for 
the sake of completeness. 

Each predictor in the lattice is characterized, for a given history h and a 
given predicted word w, by two counts C(h, w) and C(h). Let us first consider 
the history counts at each node as represented in figure 2. N denotes the 
training set size, i.e. the unigram "history" count, and C(tUj_2iüj-_i) denotes 
the history count for a particular word 3-gram. For simplicity, we assume 
here that the word trigram is the most specific predictor4. 

Along the horizontal dimension we can build independent predictors in 
the following way. The word bigram clearly depends on the word trigram 
since {(to8-_2iOj_i)} C {wi-i} but one can compute an independent "bigram" 
by a difference of two sets. A corrected count C(wi-i) is obtained by subtract- 
ing the count C(wi-2Wi-i) from the original bigram history count C(to,-_i): 

*The proposed calculation can be extended trivially to lattices of any order. 



C(wi-i) = C(wi^) - C(iü,-_2tü,-_1) (l) 

The corrected count can be written more accurately as C(w^wi-1) where 
ii',-2 denotes any word except u;;_2. 

This subtraction operation can be applied to other counts in the same 
way. For instance, the corrected unigram count becomes N: 

X   = N - C(«;,-_2«;,-_1) - Ciwi-i) + C{(«;,-_2u;I-_1) n •>,•_!)} 
= N- C(wi^) W 

In both cases, counts of independent events can be obtained by subtract- 
ing adjacent counts in the lattice. The same result applies to the vertical 
dimension since 

C{gl_29i-i) = C(gl_2gl-i) - C(tu,-_2U7t-_i) (3) 

and 

C(G{-2Gi-i) =   C(Gi-2Gi-i) — C(wi-2Wi-i) 
-C{gi-29i-\) + C{(tü,-_2u;,-_1) n (5r.-_25r.-_!)} (4) 

=   C(Gi-2Gi-i) - C(5i_25i_1) 

A similar computation can be performed for predictors which have more 
than one predecessor in the lattice. Following the same reasoning as before, 
a corrected count C{gi^l) can be obtained from the original bigram history 
_»,-_! by subtracting the two adjacent counts, C(wi_l) and C(gi-29i-i), and 
by adding the count of their intersection C{{wi-{) n (g^gi-i)}: 

C^-i) =   C%_i) - CK_0 - C(5i_25i_i) 
+C{(w1_1)n(g^2gt_1)} 

+C(gi-2Wi-i) 

Here an additional count, i.e.  C{gi_2wi_l), must be collected for each esti- 
mate5 

Final]}/, the same reasoning may be followed to produce corrected joint 
counts C(h,w) where the subtraction operations are parallel to the ones 
described above. The partitioning of the history space corresponds now to 
mutually exclusive instead of inclusive sets. 

5The unigram predictor has also more than one predecessor in the lattice, but in this 
case the final corrected count is given by TV = C(G,-_i). 

6 



3.3    Entropy of smoothed distribution 

As mentioned in section 3, we are interested in measuring both the reliability 
and specificity of each of the predictors in the lattice. We can assume that 
high count histories will be reliably estimated. Consequently we will use the 
history count C(h) itself as our reliability measure. To capture the notion of 
specificity we would have to consider the distance between the distribution 
associated with a predictor and the true, but unknown, distribution P(w\h). 
A related notion is the usefulness of the prediction which can be measured 
as the entropy of the history H{h), that is the entropy of the estimated 
distribution p(w\h) to predict any word w from a fixed history h: 

ff(A) = -£p(H'OiogpH'0 (6) 
w 

In general, the estimate p(w\h) must be smoothed since for many pre- 
dictors there is so little data that the entropy estimate is highly unreliable. 
However, smoothing is usually performed by combining several predictors. 
In the proposed framework this would correspond to considering the same 
sequence of tokens as members of different history partition classes. Such 
a smoothing mechanism would no longer allow for measuring the entropy 
of a particular history, but rather of combined histories. A solution to this 
problem consists in smoothing by absolute discounting and backing off to the 
unigram distribution p(w) as described in equation 7. 

fw\h\ _ / C(hc(h)d     ifC(h,w)>0 ,y. 
\ a[h)p(w)   otherwise 

where d denotes the discounting value (typically 0.5) and a(h) is a normal- 
izing factor. 

This simple smoothing technique combines only the original predictor 
with the unigram in such way that comparison with other predictors is mean- 
ingful. A high entropy value indicates a flat distribution for this particular 
history while a low entropy indicates a sharp distribution. 

Another advantage of the proposed smoothing is the low cost of the en- 
tropy calculation6. Let Hi denote the entropy of the unigram distribution, 
i.e. Hi = —J2wP(w)^°&P(w)i which needs to be computed only once. The 
entropy calculation can then be rewritten as in equation 8, in which all sum- 

6The entropy calculation for the independent estimators described in section 3.2 would 
be much more costly than that described here. This is the main reason that the indepen- 
dent estimator formulation was not used in the experiments described in this paper. 



mations are over the set of words w such that C(h, w) > 0. This set of words 
generally represents a very small fraction of the vocabulary. 

H(h)    = -       £       p(w\h) log p(w\h) 
w.C(h,w)>0 

-       £       a(h)p(w)log(a(h)p(w)) 
w:C(h,w)=0 

E      p(w\h) log p(w\h) (R] 
w.C(h,w)>0 \°) 

+a(h)[   Hx +       £       p(w)logp(w) 
w.C(h,w)>0 

loga(h)((      E       P(w))-l)] 
w.C(h,-w)>0 

where 

E 
n, w:C{h,w)>0C^ 

a[h) — 
1 -     E     p(w) 

w:C(h,w)>0 

3.4    Hierarchical clustering 

The definition of a lattice of N-gram models relies on the development of 
word classes which deterministically map a word to to a class g(w). This 
mapping can be automatically constructed by a clustering algorithm such as 
the one proposed by Kneser and Ney [19]. Its objective is to find a mapping 
such that an associated class-bigram model7 has a locally minimal perplexity 
on the training data. This criterion can be shown to be equivalent to the 
local minimization of the loss of mutual information between words. 

Ney's algorithm does not construct a hierarchical clustering since the 
number of classes is fixed a priori8. However, a hierarchy of classes can be 
obtained by relabeling the training data according to the estimated word- 
to-class mapping and by iterating the clustering with a smaller number of 
classes. Figure 3 shows a typical example of hierarchical clusters constructed 
from the Switchboard data, where the number of classes used was 1600, 300 
and 50, respectively. 

7For a class bigram model the probability of the next word is given by 
P{wi\g{wi))p{g(wi)\g(wi_l)) 

8Notice that the optimal number of classes for a single class bigram model can be 
estimated on a held-out set or by leaving-one-out. 



when     whenever 
wherever 
shall 
afterward 

maybe    consequently   perhaps      unless  whether   If    what how where why 
hopefully desperately 
therefore demanding 

patrol 
thus 
decreasing 

bounce 
meets 

Figure 3: Hierarchical clustering example 

4    Data Analysis 

4.1     Switchboard data 

The Switchboard data used in the present work consists of about 2.5 million 
words of transcribed conversational speech [20]. We chose a vocabulary of 
9802 words corresponding to a coverage of 98.5 %. This vocabulary is closed 
as it contains the special token INK to which any out of vocabulary word is 
mapped. 

For the current experiment», the data were randomly split into 3 sets. 
The first set forms the traininu data from which the counts are computed. 
The second set is a held-ont -rt used for analysis and additional parameter 
estimation. Finally the test set is used for evaluating the perplexity of the 
proposed models. Table 1 summarizes the number of sentences and word to- 
kens in these data sets. A hierarchy of classes was also built from the training 
data with respectively 160(1. 30(t and 50 classes as described in section 3.4. 

Datasct # sentences # words 
Traininu 110.807 2,365,741 
Held-out 9.000 151,346 

Test 2,568 39,956 

Tal Switchboard data 

4.2    History and prediction hit ratios 

For each lattice node and for each word to be predicted in the held-out set, 
the two counts C(h) and C(h. «') can be computed on the training data. The 

9 
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Figure 4: History and prediction hit ratios 

history hit ratio is the fraction of the time a particular history, observed in 
the held-out set, was already seen in the training set (i.e. C(h) > 0). The 
prediction hit ratio is the fraction of the time the next word was already seen 
after that particular history in the training set (i.e. C(h,w) > 0). 

Figure 4 gives the history and prediction hit ratios on the held-out set. 
For example, at the 1,600 class level (C1600) the 4-gram histories h were 
already observed 66 % of the time while the joint events (h, w) were already 
observed 30 % of the time9. 

In a typical backoff model a prediction miss occurs when a backoff to a 
lower order is required. Given that our reference model is a word 3-gram, 
it is interesting to see which of the other predictors might be used instead. 
Figure 5 gives the prediction hit ratios of all predictors when the word 3- 
gram model would back off to lower order predictors. On this data set, the 
word 2-grams could be used in 77 % of these cases and a 4-gram model with 
50 classes could also be used 43 % of the time. This indicates that other 
predictors in the lattice could overcome a prediction miss of the reference 
model. 

9Notice that the 4-gram history hit ratio is not necessarily equal to the 3-gram predic- 
tion hit ratio. This is due to sentence boundary effects. 

10 
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Figure 5: Prediction Hit Ratio when word trigram backs off 

The analysis of the prediction hit ratio for each predictor is of little use 
in practice as the next word must be known in advance in order to determine 
whether a particular predictor would hit or miss it. However the count of the 
history is known before the prediction occurs. Figure 6 presents the relation 
between the count of the history C(h) of any of the 16 predictors10 in the 
lattice and the prediction hit. The data was gathered by pooling together 
datapoints from all 16 predictors applied to the same count. As it may 
be expected the prediction hit increases rapidly as the count of the history 
increases li 

10The unigram model, absent from figure 6, has a 100 % prediction hit ratio since the 
vocabulary is closed. 

11Notice the logarithmic scale along the horizontal axis of figure 6. 

11 



Prediction Hit Ratio 
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Figure 6: Prediction hit ratio as a function of history count 

The previous analysis can be refined as follows. In figure 7, the prediction 
hit ratio is plotted as a function of the history count C{h) and the entropy 
H(h). In particular, over all predictors such that C(h) falls between 100 and 
10,000 the prediction hit will be relatively higher if the entropy is smaller. 
In other words, among all predictors falling in this count interval, one should 
prefer the most specific ones - the ones with the lowest entropy. It is inter- 
esting to note that 90% of the counts actually fall in this interval as can be 
concluded from the histogram of counts presented in figure 8. 

12 
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Figure 7: Prediction hit ratio as a function of history count and entropy 

5    Smoothing techniques 

Traditional backoff models combine several predictors to overcome the ever 
present data sparseness problem. We review in section 5.1 the details of back- 
off models and we show in section 5.2 how these techniques can be extended 
to lattices of N-gram models. 

5.1    Backoff scheme 

Equation 9 describes a particular backoff scheme where dc denotes the dis- 
counted value subtracted from the counts of seen events. This discounted 
value may depend on the count C(h,w) as in Turing-Good discounting [21] 
or may be constant as in the case of absolute discounting [22]. The nor- 
malized discounted probability mass is distributed to unseen events in pro- 
portion to their backoff estimates (/Wfc(H^))- Here the backoff distribution 
Pback{w\h) is only used if the higher order estimate cannot be used, that is 
when C(h,w) = 0. We will refer to this particular backoff scheme as shad- 
owing since the higher order estimate shadows the backoff distribution. 

p(w\h] 
C(h,' 

C(h) 

a(h)pback(w\h) 

ifC{h,w) >0 

otherwise 
(9) 

Equation 10 describes a different backoff scheme in which the backoff 
distribution is used in all cases and the normalization factor, here ^(h), is 

13 
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Figure 8: Histogram of history counts 

defined accordingly. We will refer to this particular backoff scheme as non- 
shadowing12. 

p(w\h) c(h)      + l(h)pback(w\h)   ifC(h,w)>0 
(10) 

'   C(h,w)-dc 

C{h) 

. l(h)pback(w\h) otherwise 

In both of these schemes the backoff distribution is given by the lower 
order estimate, such as a 2-gram serving as backoff for a 3-gram. Kneser and 
Ney proposed an alternative backoff distribution which performs better [23]: 

Uck(w\h) 

where 

C(.,h,w) 
(11) 

C(.,h,w)=      £      l 
g:g=h,C(g,u>)>0 

Here h denotes a coarser history that is typically a 2-gram history if h 
denotes a 3-gram history. C(.,h,w) corresponds to the number of different 
coarser histories h where the word w has been observed ignoring the frequency 
of these events. 

In summary there are at least four possible methods of smoothing avail- 
able. We can decide whether or not shadowing is used and whether or not 

12 Ney et al. uses the term non linear interpolation [22]. 
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Baseline 
+KN backoff 
distributions 

+non-shadowing 
+both 

C50 2g 
3g 

126 125 127 123 
110 109 117 104 

C300 2g 
3g 

102 100 102 99 
89 87 91 82 

C1600 2g 
3g 

98 96 98 94 
85 84 85 78 

Word 2g 
3g 

97 95 97 94 
84 83 84 77 

Table 2: Comparison of held-out perplexities for various backoff schemes 

the Kneser-Ney (KN) backoff distributions are used. Table 2 summarizes 
the results obtained on the Switchboard data with various model orders and 
different class models. The baseline corresponds to the use of shadowing 
together with the use of lower order estimates as backoff distributions. 

5.2    Two-dimensional backoff 

The lattice structure (see figure 1) suggests an extension to the original back- 
off idea. If for example we consider a 3-gram predictor at the word level, 
there are two adjacent predictors which can be used as backoff distributions, 
namely a 2-gram at the word level and another 3-gram at the next class level. 

Considering two backoff distributions was already proposed in a differ- 
ent context [24] where a speaker specific language model was combined with 
a non-specific language model. In that case however a hierarchy between 
the backoff distributions was defined a priori. To the contrary in the model 
proposed here both backoff distributions are combined by linear interpola- 
tion. Equations 12 and 13 formalize this idea in the case of shadowing and 
non-shadowing respectively. 

{ o(/i,A)[Aip(,ocfcl(tü|/i) + ^2Pback2(w\h)]   otherwise 
(12) 

15 



p(iv\h)  =  I   C{hC&) dC  + liWlPbock! (W\k) + \2Pback2 (w\h)]     if C(k, W)>0 

I l{h){\iPbackAw\h) + ^2Pback2(w\h)} otherwise 
(13) 

5.3    EM estimation of the backoff weights 

We show how to estimate the interpolation weights A; in the case of shadowing 
from some representative set of new data. 

Let A denotes the pair (Al5 A2) with the constraint £,- A; = 1. Notice that 
A appears in the normalization factor a(h, A) of equation   12. We can write 

*M> = A,S,(M + iUW 
(M) 

where 

K(h) =      £ 
w:C(h,w)>0 

dc 
C(h) 

Sl(h)= Y, PbackMh)  = 1  - J2 PbackAW\h), 
w.C(h,w)=0 w:C(h,w)>0 

82(h) = £ Pback2{w\h) = I - Yl Pback2(w\h). 
w.C(h,w)=0 w:C(h,w)>0 

Let px(w\h) denote the interpolated backoff distribution 

P\(w\h) = XlPbackAW\h) + X2Pback2{w\h) 

The re-estimation formula can be derived from an auxiliary function Q 
representing the difference in the conditional expectation of the complete 
data log-likelihoods given the observed data. The hidden data is the actual 
sequence of backoff distributions used while predicting the new data. The 
function Q is defined as follows: 

0(A1A) = X>HA)log2§§^ (15) 
B a(X,h)px{w\h) v    ' 

16 



where B denotes the set of backoff events on the new data and p(h,w) de- 
notes the relative frequency of the event (h,w) on this set. We can rewrite 
equation 15 as follows 

E 

2gV\w\n)VO% X1S1(h)+X2S2(h) 

rr>(w\h)los^Sl{h)+X?S2{h) 
LP{w\n)iog XlSl{h)+x2s2(h) 
B 

E 
B 

B 

A3, 

> XpMht1PZ$$h) log A; + ^aif) log A- + c] + 
1       ^HwlftJA1S1(/i)+A252(/l) 

where the first inequality is an application of Jensen's inequality   , C does not 
depend on A' and the second inequality results from the fact that — log x > 

1 - x. 
( omputing the partial derivative of Q with respect to \[ 

i B Px(w\h)      K 

^P(W\h)xlSl{h)U2S: 
(16) 

B 
(h) 

and setting Jp- = 0, we get the re-estimation formula. ax1 

A; =  * t; (") 

The numerator on the right hand side of equation 17 is analogous to 
that found in the classical re-estimation formula to compute interpolation 
weights between various language models. The difference here is that the 
sum is over the set B, which is the set of events in which a backoff occurred 
while predicting the new data. The main difference in this model lies in the 
denominator, as the normalization factor a(A, h) is a function of A. 

In the case of non-shadowing the derivation is somewhat simpler and the 
re-estimation formula is given by equation 18 

13If / is a convex function and X a random variable, then f[E(X)] < E[f(X)]. 
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Model PP 
Word 3g 84 
Lattice 82 
Lattice+linear interpolation 79 
Linear interpolation 79 

Table 3: Test set perplexity with shadowing 
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(18) 

where C is a normalization constant that satisfies the constraint J2i^i = 1, 
B is the set ofevents (h,w) on the new data such that C(h,w) = 0 on the 

training data, B is the complement of B, and p0(w\h) = C{,h^dc ■ 
Generalization of the proposed approach to more than two backoff distri- 

butions is trivial and will not be detailed here. Moreover this model is not 
restricted to lattices of N-grams but can be applied to other cases where sev- 
eral backoff distributions are relevant. Finally, one should stress that backoff 
models are usually applied recursively to several predictors . The proposed 
re-estimation should then be applied first with less specific predictors and 
then iterated with more specific ones. There is no guarantee however that 
such an iterated re-estimation will globally maximize the likelihood of the 
most specific model. 

5.4    Preliminary results 

We describe in this section some preliminary results obtained on the Switch- 
board data with lattices of N-gram models smoothed with two-dimensional 
backoff. In these experiments we restricted the lattices to 3-gram models 
with 4 class levels. Figure 9 shows the interpolation weights (plain arrows) 
estimated on held-out data. For example, from a 3-gram at the word level 
the backoff weight of the word 2-gram is 0.58 while it would be 1.0 in a 
traditional one-dimensional backoff scheme. A conventional interpolation of 
the 4 higher order predictors can be performed on top of the two-dimensional 
backoff. The so-called global interpolation weights are represented by dashed 
arrows in figure 9. 

Table 3 presents the test set perplexity obtained with these models in the 
case of shadowing. The first line corresponds to the reference model, that is 
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Figure 9: 2-D backoff interpolation weights (shadowing) 

Model PP 
Word 3g 77 
Lattice 77 
Lattice+linear interpolation 74 

Linear interpolation 74 

Table 4: Test set perplexity with non-shadowing and KN distributions 

a word 3-gram model. The second line gives the test set perplexity of the 
model obtained after estimation of the backoff weights on held-out data. The 
third line shows the additional improvement which can be obtained with the 
global weights. This last result represents a 6 % perplexity reduction over the 
reference model. However, the same reduced perplexity can be obtained with 
global interpolation only14. A similar conclusion can be drawn from table 4, 
in which non-shadowing is used and the bigram predictors are replaced by 
their corresponding KN distributions. As pointed out in section 5.3 there is 
no guarantee that the iterated reestimation globally maximizes the likelihood 
of the most specific model. We observe here a practical case where lattice 
based language models do not outperform linearly interpolated models. 

This result is somewhat surprising, as the two-dimensional backoff model 
contains more free parameters. Additional experiments should be performed 
to confirm the source of this result. In particular, larger lattices could be 
used and two-dimensional backoff could be generalized to more than two 
predictors. Another interesting extension would rely on the definition of 
backoff weights depending on the history h. In such a case, the weights could 

14In this case the backoff weights are fixed to 0.0 in the vertical direction, and 1.0 
otherwise. 
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be optimized for each history instead of globally with only a few additional 
free parameters (6 in the previous example). 

6    Dynamic combination of predictors 

6.1    Predictor combination 

Another way of looking at the lattice presented in figure 1 is to consider 
each node as the starting point for a recursive backoff scheme that is limited 
to progressing in one-dimension - the horizontal one. Figure 10 presents 
the perplexity obtained using this scheme on the held-out set from each lat- 
tice node. In this case, KN distributions are used as backoff distributions 
combined with non-shadowing. The reference word 3-gram model has a per- 
plexity of 77 which is only slightly outperformed by the word 4-gram and 
5-gram models. The dynamic combination of predictors can then be per- 
ceived as a way to combine these 17 predictors in order to improve over the 
reference model. 

110 
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62 82 I 99 
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|       ) , 

77 »I 94 

, . , t 
76 77 u    I 

C300 

C1600 
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5-gram 4-gram 3-gram 2-gram 1-gram 

Figure 10: Held-out perplexity with KN distributions. Each node represents 
a predictor which starts at that node and backs off horizontally. 
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6.2    Predicting the Oracle decisions 

P^-lh) 

S7(Jh) 

Combine P(wlh) 

TTTT 
H(h)  C(h) Class Order 

Figure 11: Use of predictor variables to choose the optimal combination 

Suppose we had an oracle that knew which of the 17 predictors should be 
used in any given context to predict the next word. A very well informed 
oracle could look at the word to be predicted and pick the best predictor 
accordingly. The perplexity on the held-out set would then drop to 38. 

A more realistic framework i» to combine the predictors linearly but to 
adapt dynamically the interpolation weights between the predictors. To do 
this, we can rely on four predictor variables: the entropy H(h), the count 
C(h), the number of classes and the model order (see figure 11). 

Using these predictor variable», a decision tree can be built from the held- 
out set to predict the probability that any predictor would outperform the 
reference model by some factor (typically set to 1.5). Such a decision tree 
is presented in figure 12 where left branches correspond to "yes" answers. 
For example the probability that any randomly selected predictor (except 
the word 3-gram itself) would s'mnilicantly outperform the reference model 
is 0.18 in general. This probability drops to 0.01 when the number of classes 
is below7 950 and the count of the history is above 126,204. 

The relative weight of any predictor can be made proportional to the 
probability attached to the leaf into which it falls. Notice that even though 
the decision tree is fixed, the weight applied to a predictor changes dynami- 
cally, as H(h) and C(h) depend on the observed history. 

Table 5 presents test set perplexities that result from experiments based 
on this approach15. The perplexity of the best reference model (word 3gram 
with non-shadowing and K.\ distributions) is 77. A static interpolation with 

15 The decision tree used in practice was more detailed than the one shown in figure 12. 
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Prob = 0.01 
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Prob = 0.18 Prob = 0.21  Prob = 0.03 

Prob = 0.22 Prob = 0.11 Prob = 0.16 

Figure 12: Decision tree 

Model PP 
Word 3g 77 
Lattice + Interpolation 74 
Lattice + Decision Trees 72 

Table 5: Test set perplexities 

globally optimized but fixed weights yields a perplexity of 74. The dynamic 
combination of the lattice predictors gives a perplexity of 72. 
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7    Summary and Conclusions 

In this report we introduced lattice based language models — an alternative 
language modeling paradigm which we have just started exploring. Lattice 
based models construct multi-dimensional hierarchies of partitions and then 
select the most promising partitions (nodes) to generate the estimated dis- 

tributions. 
We discussed a specific two dimensional lattice, where the first dimension 

is the length of the history equivalence class, and the second dimension is the 
position in a word class hierarchy. As originally defined such a lattice is in 
fact a DAG, since subsumption relations exist among neighboring vertices. 
Simple set subtraction operations can remove these data dependencies. 

Next, we considered which features of the lattice nodes are indicative of 
their usefulness, and proposed the use of two primary ones: the training- 
set history count of the node, and the (smoothed) entropy of its prediction. 
Using the SWITCHBOARD corpus, we constructed a two dimensional, 17 
node lattice, and calculated history and prediction hit ratios for all its nodes 
using held out data. We then demonstrated how the prediction hit ratio 
depends strongly on both the count of the history and its entropy, thus 
justifying our original choice. - 

After discussing various smoothing techniques, we proposed a straight- 
forward generalization of the conventional backoff strategy to multiple di- 
mensions, and derived the formula for calculating the optimal interpolation 
weights, using the Estimation-Maximization (EM) algorithm. This simple 
model provided a modest improvement over the baseline trigram. Another 
interpolation scheme, using the same predictor set, achieved the same per- 
formance. 

The true strength of lattice models, we believe, lies in dynamic selection 
of a small subset of predictor nodes. How to select such a set is an open and 
interesting research problem, which we have just begun to look at. Oracle 
experiments suggest that significant improvements are possible if we choose 
the predictor set correctly. And indeed, an initial attempt at using a decision 
tree to make that selection yielded some improvement. We believe much more 
improvement is possible, and are hoping to explore this problem in greater 
detail in the future. 
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