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1    Introduction 

1.1 Subject 

This report constitute the final report for the project "Emerging Diseases as Complex Adaptive 
Systems", sponsored by the Walter Reed Army Institute of Research (WRAIR) and performed 
by the Navy Center for Applied Research in Artificial Intelligence (NCARAI) at the Naval 
Research Laboratory (NRL). This project addresses the issue of emerging virus epidemics by 
focusing on methods of viral evolution. This report describes the computational model that 
has been developed and presents pilot computational studies on a series of questions related 
to the evolvability of viruses. 

1.2 Purpose 

The objectives of this project were to: 

• Understand emerging virus epidemics by focusing on methods of viral evolution, and 

• Develop and evaluate novel evolutionary modeling approaches. 

The approach taken was to develop computational models of virus evolution that may 
provide a means to answer fundamental questions concerning the evolved structure of the 
viral genotypes, the dynamics of cross-species infection, and the role of alternative recombi- 
nation strategies exhibited by viruses. This pilot study applies the methods of evolutionary 
algorithms to the problem of modeling biological systems, extending the optimization-based 
genetic algorithm in the direction of a more plausible model of biological evolution. 

1.3 Scope of Research 

In this pilot study, evolutionary models of computation were extended to the domain of viral 
evolution. Previous work on evolutionary computation models, including techniques such as 
genetic algorithms, evolution strategies, and evolutionary programming, has generally focused 
on optimization and learning methods in engineering and science applications. There have 
been few applications of these methods to the problem of modeling biological systems. This 
project thus provides a partial bridge between the two fields, extending the optimization-based 
genetic algorithm in the direction of a more plausible model of biological evolution. 

The scope of the research during the period of 15 May 1996 to 30 September 1997 was to: 

1. Design and implement an evolutionary computation model of viral infection. 

2. Perform pilot computational studies with the model to investigate questions of interest 
in the evolution of emerging infections. 



These objectives have been accomplished. The pilot computational simulation, described 
below, illustrate the kind of investigations that the computer model enables. While a complete 
investigation of the model is beyond the scope of this effort, Section 4 contains our recommen- 
dations for further investigation using the model that are expected to provide important new 
insights into the evolution of emerging diseases. 

1.4    Background 

1.4.1    Viral Evolution 

RNA viruses are - by several orders of magnitude - the most genetically labile "life forms" [22, 
32]. Mutation rates for RNA viruses are typically on the order of one error per 10,000 nu- 
cleotides replicated, compared to one per ten million nucleotides for larger DNA-based life 
forms like vertebrates [11]. Since the average genome length of RNA viruses is only 10,000 
nucleotides, and all are shorter than 40,000 nucleotides, almost all new viral RNA strands 
differ from their parent strand by one or more nucleotides. 

The nucleotide sequence a viral genome be thought of as an information string of 10,000 
bits with four alternative states (A,C,G, U or T) per bit. The total evolutionary potential for 
such a system is the universe of all possible 10,000-bit strings. These can be hypothetically 
arranged in a "sequence space" so that each string is adjacent to its 30,000 one-step nearest 
neighbors. The total dimensions of this space is 4 to the 10,000th power, a number that 
is greater than all atoms in the universe. Obviously, most regions in this hypothetical RNA 
sequence space does not support viral RNA replication, but many regions do permit replication, 
and within these there are local optima. These optima can be conceptualized as peaks on a 
fitness landscape in nucleotide sequence space [36, 43], as illustrated in Figure 1. 

Similarly, evolution can be thought of as the process whereby sequence space is explored, 
with successful variants colonizing the fitness peaks. Because the mutation rate of RNA repli- 
cation is so high, evolutionary time for exploration of sequence space for RNA based life can 
be measured in weeks and years, compared to the millennia required for DNA based life. 
Rephrased, evolution of RNA life occurs on a scale that can be comprehended - and studied - 
within human dimensions. The disparity between rates of RNA and DNA evolution - the dif- 
ference in RNA and DNA "evolvability" - probably accounts for the fact that most of the new 
emerging diseases are RNA viruses. RNA based genomes have sufficient plasticity to permit 
rapid host switching. See Table 1. 

This high evolvability of RNA may also account for the fact that almost all known 
arthropod-borne viruses - viruses that alternately replicate within vertebrate and arthropod 
cells - have RNA genomes. Although there are numerous DNA viruses of vertebrates and 
numerous DNA viruses of arthropods, remarkably there is only a single known DNA arbovirus 
(African Swine Fever Virus) [33]. It is likely that for most arthropod-borne viruses the se- 
quence space fitness peak for growth in arthropod cells is close to, but not perfectly congruent 
with, that for growth in vertebrate cells, and mutation is required to trampoline back and 
forth through sequence space between the two host-specific optima. 



Figure 1: Representation of evolving bit strings in sequence space. Here the sequence space is 
shown only in two dimensions, the x and y axes. For a string of length L, the strings would 
evolve through an L-dimensional sequence space, but this is impossible to draw on a two- 
dimensional paper surface. Fitness is represented as the height on the z axis. In this example 
populations of strings are colonizing several local fitness optima. 

Mutation alone may be insufficient to permit movement through some regions of sequence 
space [12, 13, 27]. By definition, even single step mutations from a local fitness optimum are less 
fit than their parents. Particularly in rugged fitness landscapes, genomes only slightly removed 
from the local optimum may be totally unfit, so that exploration of the surrounding space 
becomes impossible. Recombination between genomes on separated fitness optima permits 
such an "evolutionary broad jumping" type of sequence space exploration; recombinant progeny 
may fall on previously totally unexplored fitness peaks [26]. Naturally occurring recombination 
(or reassortment) has been closely studied in RNA viruses with segmented genomes such 
as influenza. Recombination has also recently been shown to occur commonly among HIV 
strains [4, 5]. The role of recombination in nature is less well studied for other RNA viruses, 
but convincing examples can been found wherever they have been sought [1, 6]. 

The biological consequences of such recombination, whether by reassortment of segmented 
genomes or true recombination through crossing over, may be the generation of novel variants 
with new epidemiological properties. For influenza, change by mutation, widely known as 
"drift," is of minor epidemiological significance, while change by recombination often results 
in a "shift" with an epidemiological impact felt on a global scale [28]. It is now clear that 
"shifts" in influenza come about through recombination (reassortment) of RNA sequences from 
bird and pig influenza viruses with sequences from human viruses. The same model may be 



Virus                                                  Genome Size: v    Error Rate: (1 - q) Error Rate: v{\ - q) 
(number of (per replication (per replication 
nt or bp) per nt) per genome) 

RNA 
Bacteriophage Qß                                    4200 3xl0-4 1.3 
Polio-1 virus                                                7400 3xl0~4 0.2 
Vesicular stomatitis virus                          11000 lxlO-4 1.1 
Influenza-A virus                                       14000 6xl0-5 0.8 
Sendai virus                                             15000 3xl0~5 0.5 
HIV-1 (AIDS virus)                                 10000 lxlO-4 1.0 
Avian myeloblastosis virus                        7000 5xl0-5 0.4 

DNA 
Bacteriophage M13 6400 7xl0-7 4.6xl0-3 

Bacteriophage 7 48500 8xl0-8 3.8xl0-3 

Bacteriophage T4 166000 2xl0-8 3.3xl0-3 

E. coli 4.7 mill 7xl0-10 3.3xl0-3 

Yeast (Saccharomyces cerevisine) 13.8 mill 3xl0-10 3.8x10" 3 

Neurospora crassa 41.9 mill lxlO-10 4.2xl0~3 

Human 3 billion aj 10~12 « 3xl0~3 

Table 1: Error Rates and Genome Sizes of RNA Viruses as Compared to DNA-based Life 
Forms (modified from Eigen [11]) 

applicable to many other RNA viruses. All RNA viruses apparently can and do recombine, but 
the epidemiological significance of recombination is less clear. Recent studies of the nucleotide 
sequences of HIV strains from around the world have shown that recombination may be just as 
dominant an evolutionary force for this virus as it is for influenza [37, 38]. Non-human primate 
lentiviruses may contribute to the human HIV gene pool [25]. 

Existing RNA viruses only occupy a tiny fraction of the available RNA sequence space. 
Clearly a dominant constraint is the ability of the proteins encoded by the viral RNA to 
functionally interact with host cell constituents. However, there are probably several other 
structural (protein/protein, protein/RNA, etc) constraints on sequence space exploration. 

One possible constraint is that certain genome organizations may be necessary to support 
evolvability through recombination or reassortment. Figure 2 shows several different genomic 
organization structures of different RNA virus families [4]. There are at least six major types of 
genomic organizations: diploid, non-segmented, pseudo-segmented, modular segmented, fully 
segmented, and partite. The evolutionary pathways that have given rise to these various 
genomic structures are not known. Equally important, it is unknown if these genomic organi- 
zations reflect particular "evolvability" adaptations by viruses to specific ecological niches. 

Sequencing of viral genomes is now technically routine and viral nucleotide sequence data 
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Figure 2: Viral Representationm Strategies 

is accumulating at an exponential pace. We anticipate that it will be possible to use viral 
genomic sequence data to guide the construction of computational models of virus evolution 
that have predictive potential. 

1.4.2    Genetic Algorithms 

Genetic algorithms (GAs) are heuristic learning models based on principles drawn from natural 
evolution and selective breeding. Some features that distinguish genetic algorithms from other 
optimization methods are: 

• A population of structures that can be interpreted as candidate solutions to the given 
problem; 

• The competitive selection of structures for reproduction, based on each structure's fitness 
as a solution to the given problem; 

• Idealized genetic operators that alter the selected structures in order to create new struc- 
tures for further testing. 

In many applications in optimization and search, these features enable the genetic algorithm 
to rapidly improve the average fitness of the population and to quickly identify the high perfor- 
mance regions of very complex search spaces. In practice, genetic algorithms may be combined 
with local search techniques to create a high-performance hybrid search algorithm. 



procedure GA 
begin 

initialize population; 
while termination condition not satisfied do 
begin 

select parents from population; 
create copies of selected parents; 
apply genetic operators to offspring; 
perform evaluations of offspring; 
insert oflspring into population; 

end 
end. 

Figure 3: A Genetic Algorithm 

A genetic algorithm simulates the dynamics of population genetics by maintaining a pop- 
ulation of structures that evolves over time in response to the observed performance of its 
structures in their operational environment. A specific interpretation of each structure (e.g. 
as a collection of parameter settings, a condition/action rule, etc.) yields a point in the space 
of alternative solutions to the problem at hand, which can then be subjected to an evaluation 
process and assigned a measure called its fitness, reflecting its potential worth as a solution. 
The search proceeds by repeatedly selecting structures from the current knowledge base on the 
basis of fitness and applying idealized genetic search operators to these structures to produce 
new structures {offspring) for evaluation. The basic paradigm is shown in Figure 3. For more 
detailed discussions, see [14, 23]. 

Population P(0) may be initialized using whatever knowledge is available about possible 
solutions. In the absence of such knowledge, the initial population should represent a random 
sample of the search space. When each structure in the population has been evaluated, a new 
population of structures is formed in two steps. First, structures in the current population are 
selected to be reproduced on the basis of their relative fitness. That is, highly fit structures 
may be replicated several times and poorly performing structures may not be replicated at all. 
In the absence of any other mechanisms, the resulting selective pressure would cause the best 
performing structures in the initial knowledge base to occupy a larger and larger proportion 
of the knowledge base over time. 

Next the selected structures are altered using idealized genetic operators to form a new set 
of structures for evaluation. The primary genetic search operator is the crossover operator, 
which combines the features of two parent structures to form two similar offspring. There are 
many possible forms of crossover. The simplest version operates by swapping corresponding 
segments of a string or list representation of the parents. For example, if the parents are 
represented by the lists: 

(01020304^5) 

and 
(6162636465) 

10 



then crossover might produce the offspring 

(aia2&3&4&5) 

and 
(6162030405)- 

Other forms of crossover operators have been defined for other representations [18]. Specific 
decisions as to whether both resulting structures are to be entered into the knowledge base, 
whether the precursors are to be retained, and which other structures, if any, are to be purged 
define a range of alternative implementations. 

A mutation operator, which alters one or more components of a selected structure, provides 
the means for introducing new information into the knowledge base. Again, a wide range 
of mutation operators have been implemented, ranging from completely random alterations 
to more heuristically motivated local search operators. In most cases, mutation serves as a 
secondary search operator that ensures the reachability of all points in the search space. 

The search power of the genetic algorithm derives from the efficient exploitation of the 
wealth of information that the testing of structures provides with regards to the interactions 
among the components comprising these structures. Specific configurations of component 
values observed to contribute to good performance (e.g. a specific pair of parameter settings, a 
specific group of rule conditions, etc.) are preserved and propagated through the structures in 
the knowledge base in a highly parallel fashion. This, in turn, forms the basis for subsequent 
exploitation of larger and larger such configurations. Intuitively, we can view these structural 
configurations as the regularities in the space that emerge as individual structures are generated 
and tested. Once encountered, they serve as building blocks in the generation of new structures. 
That is, GAs actually search the space of all feature combinations, quickly identifying and 
exploiting combinations that are associated with high performance. The ability to perform 
such a search on the basis of the evaluation of completely specified candidate solutions is 
called the implicit parallelism of GAs. This leads to a focused exploration of the search space 
wherein attention is concentrated in regions that contain structures of above average utility. 
The knowledge base, nonetheless, is widely distributed over the space, insulating the search 
from susceptibility to stagnation at a local optima. 

Although many genetic algorithm applications have been in the areas of function optimiza- 
tion, parameter tuning, scheduling and other combinatorial problems [8], genetic algorithms 
have also been applied to many traditional machine learning problems, including concept learn- 
ing from examples, learning weights for neural nets, and learning rules for sequential decision 
problems. At NRL, we have investigated many aspects of genetic algorithms, ranging from 
the study of alternative selection policies [17] and crossover operators [10, 41], to performance 
studies of genetic algorithms for optimization in non-stationary environments [19]. Much of 
our effort has been devoted to the development of practical learning systems that use genetic 
algorithms to learn strategies for sequential decision problems [9, 16]. In our SAMUEL sys- 
tem [18], the "chromosome" of the genetic algorithm represents a set of condition-action rules 
for controlling an autonomous vehicle or a robot. The fitness of a rule set is measured by 
evaluating the performance of the resulting control strategy on a simulator. This system has 
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successfully learned highly effective strategies for several tasks, including evading a predator, 
tracking a prey, seeking a goal while avoiding obstacles, and defending a goal from threatening 
agents. Experiments have shown that genetic algorithms provide an efficient way to learn 
strategies that take advantage of subtle regularities in the behavior of opposing agents. We 
are now beginning to investigate the more general case in which the behavior of the external 
agents changes over time. In particular, we are interested in learning competitive strategies 
against an opponent that is itself a learning agent. This is, of course, the usual situation in 
natural environments in which multiple species compete for survival. Our initial studies lead 
us to expect that genetic learning systems can successfully adapt to changing environmental 
conditions. 

While the range of applications of genetic algorithms continues to grow more rapidly 
each year, the study of the theoretical foundations is still in an early stage. Holland's early 
work [23] showed that a simple form of genetic algorithm implicitly estimates the utility of a 
vast number of distinct subspaces, and allocates future trials accordingly. Specifically, let H 
be a hyperplane in the representation space. For example, if the structures are represented by 
six binary features, then the hyperplane denoted by H =0#1### consists of all structures 
in which the first feature is absent and the third feature is present. Holland showed that the 
expected number of samples (offspring) allocated to a hyperplane H at time t + 1 is given by: 

M(H, t + 1) > M(H, t) * ^M * (i _ pd(H)) 

In this expression, M(H, t) is the expected proportion of the population in hyperplane H 
at time t, f(H, t) is the average fitness of the current samples allocated to H, / is the average 
fitness of the current population, and Pd{H) is the probability that the genetic operators will 
be "disruptive" in the sense that the children produced will not be members of the same 
subspace as their parents.1 The usual interpretation of this result is that subspaces with 
consistently higher than average payoffs will be allocated exponentially more trials over time, 
while those subspaces with below average payoffs will be allocated exponentially fewer trials. 
This implicit parallelism can be shown to arise in any genetic algorithm that satisfies certain 
minimal conditions [17]. In addition, Ros [39] presents an initial PAC analysis of a class of 
genetic concept learners. There are many remaining opportunities for formal analysis of genetic 
algorithms. Some crucial open questions include: 

• How quickly do genetic algorithms converge to an approximately optimal solution for 
various classes of problems? Behavior in the limit is known, but concrete convergence 
results are known only for trivial classes of problems and for the simplest forms of genetic 
algorithms. 

• For which classes of problems does recombination (e.g., crossover) provide a measurable 
advantage over mutation alone? 

lrThe effects of mutation are generally neglected in a first-order analysis.  Considerable attention has been 
given to estimating the probability that a particular application of crossover will be disruptive [10]. 

12 



• Given a fixed amount of computational resources, what are the optimal trade-offs among 
population size, number of generations, and (for probabilistic problems) evaluation ac- 
curacy? 

• How much noise in the fitness functions can genetic algorithms tolerate? 

• How well do genetic algorithms track non-stationary environments? 

• What is the role of mating restrictions, e.g., mating with similar structures or among a 
spatially segregated sub-population, in promoting robust search and learning? 

This report describes some pilot computational studies that shed light on these general 
issues for a genetic algorithm that has been modified to model the dynamic of viral infections. 

1.4.3    Related Work 

The evolutionary computation model described here includes a unique combination of several 
novel features: 

• Variable length genomes 

• Non-coding regions 

• Ability to encode evolvability parameters such as mutation rate and crossover rate. 

Some previous work in evolutionary computation has considered these features in isolation. 
For example, some recent work addresses the generalization to variable length structures, 
including [14, 18, 20, 24, 34, 47]. The role of non-coding genetic material has been addressed 
in [2, 21, 29, 31, 35, 42, 44, 45, 46]. Preliminary studies of the adaptation of genetic operators 
include [7, 30, 40]. 

The remainder of this report is organized as follows: Section 2 describes the materials 
and methods used in the project. This includes and description of the VIV virus modeling 
software and the VIS visualization tool. Section 3 presents a series of pilot computational 
studies that address the objectives listed above. Section 4 discusses the progress to date and 
outlines areas for future research. The Appendices provide more detailed descriptions of the 
software developed under this project. 

13 



2    Materials and Methods 

2.1 Project Resources 

This project was performed at the Navy Center for Applied Research in Artificial Intelligence, 
located at the Naval Research Laboratory in Washington, DC. NRL equipment used during the 
course of this project included five Sun Workstations running SunOS 4.2.1 and Solaris 2.4.1, 
both being versions of the Unix operating system. The VIV software system developed under 
this project was written in C and compiled using gcc (version 2.7.1). The VIV visualization 
tool was written in Java, using Java Developer's Kit (JDK) 1.0.2. 

2.2 VIV: A Computational Model of Virus Evolution 

This section gives a brief overview of the Virtual Virus (VIV), a model of virus evolution. This 
model has been developed to provide a computational framework for exploring fundamental 
questions concerning the evolved structure of the viral genotypes, the dynamics of cross-species 
infection, and the role of alternative recombination strategies exhibited by viruses. 

VTV models one or more co-evolving populations of viruses. It is assumed that each 
population consists of N individual viral genomes. The population evolves over time by means 
of a genetic algorithm, shown in Figure 3. Each genome is evaluated by computing its fitness on 
a given fitness landscape representing a host species for the virus. Viruses reproduce based on 
their fitness, with the expected number of offspring based on the virus's fitness relative to the 
population mean fitness. Offspring undergo mutations, including point mutations, insertions 
and deletions, as well as recombination with other members of the virus population. 

Rather than focusing on a particular virus-host model, VIV represents an abstract model 
of a class of viral fitness landscapes. We believe that an abstract approach is the best route 
to obtaining general results applicable to large classes of evolutionary systems. At the same 
time, the VIV model has been designed to reflect the most relevant information-processing 
relationships in the evolving system. 

Any application of a genetic algorithm requires a specification of (at least) the following 
elements: 

• the representation of genetic information, 

• the definition of the fitness function, 

• the algorithm for selecting parents for reproduction, 

• the mutation operators, and 

• the recombination operators. 

14 



In all of these elements, we have attempted to include the most relevent features of the biolog- 
ical system to the VTV simulation. As a result, we have extended the usual genetic algorithms 
in several novel directions. The differences between VIV and the standard genetic algorithm 
are described in the remainder of this section. The final subsection briefly describes the visu- 
alization tool for the VIV model (described in more detail in Appendix B). 

2.2.1    Representation of Genetic Information 

Because the VIV model is intended to explore issues concerning both the genomic sequence 
and the secondary structure of viruses, the model features a genotype-to-phenotype mapping 
that captures several important features occurring in biological systems: 

• In nature, the phenotype is determined by the sequence of amino acids produced as a 
result of the transcription and translation of the genetic sequence. In the VIV model, we 
define the phenotype in terms of an analogous translation process. 

• A four-letter genomic alphabet. While studies of genetic algorithms usually assume a 
binary alphabet, VIV adopts the standard four letter alphabet, 

G  =  {A,T,C,G}. 

That is, a genome in VTV consists of a sequence: 

AACGTTATA...CGCACTG 

While the binary alphabet is sufficient to encode any problem, the use of a four letter 
alphabet provides roughly the same degree of redundancy that occurs in nature in the 
mapping between the primary genetic sequence and the resulting phenotype. 

• The natural genetic code is degenerate, meaning there may be more than genetic sequence 
that codes for the same amino acid. In VIV, the mapping from genotype to phenotype 
is also many-to-one. In particular, we adopt a mapping T from triplets over the genetic 
alphabet (i.e., codons) to a phenotypic alphabet A: 

T:GxGxG—>A 

• In nature, the phenotypic alphabet is defined over the 20 amino acids occuring in proteins, 
plus START and STOP codes. For the purpose of our abstract model, we adopt an 
analogous alphabet: 

A =  {A, B,C,...,X,Y,Z, _,.,+}. 

consisting of the 26 letters of the Roman alphabet along with the three punctuation 
marks underscore (_), period (.) and plus (+). The underscore represents the START 
codon and the period represents the STOP code. While this represents a slight increase 
in the size of the target alphabet A from 22 to 29, it still supports all of the above 
mentioned features of the natural genetic code. 
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codon        output codon        output codon        output codon        output 
TTT A CTT I ATT q GTT Y 
TTC A CTC I ATC Q GTC Y 
TTA B CTA J ATA R GTA Z 
TTG B CTG J ATG R GTG Z 
TCT C CCT K ACT S GCT A 
TCC C CCC K ACC S GCC E 
TCA D CCA L ACA T GCA I 
TCG D CCG L ACG T GCG 0 
TAT E CAT M AAT U GAT U 
TAC E CAC M AAC U GAC Y 
TAA F CAA N AAA V GAA + 
TAG F CAG N AAG V GAG + 
TGT G CGT 0 AGT w GGT 
TGC G CGC 0 AGC w GGC 
TGA H CGA P AGA X GGA . 
TGG H CGG P AGG X GGG , 

Figure 4: The VIV Artificial Genetic Code 

As indicated above, the VIV model assumes an artificial genetic code. The motivation for 
this departure from biology is that the current state of knowledge does not permit an accurate 
model of the function of arbitrary proteins on the basis of their amino acid sequence. Therefore, 
it was necessary to make a set of simplifying assumptions that would permit the definition of 
a fitness landscape for our evolutionary model. Our approach has been to adopt an artificial 
genetic code that maps the genome to an output alphabet (in this case, the English alphabet), 
and to define a fitness landscape based on the resulting output strings. The particular artificial 
genetic code in VIV is shown in Figure 4. 

As in the natural genetic code, this artificial code has the property that there is more 
information in the first two positions of each codon than in the third position. The codons for 
each consonant differ only in the third position. Two of the three codons for the other symbols 
also have the first two positions in common. This is meant to reflect the similar pattern of 
information content in the genetic code, where the third position of a codon contains less 
information than the first two positions. In addition, not all output symbols have the same 
number of codons. Each consonant has two codons, each vowel (A, E, I, 0, U and Y) has 
three codons, and the punctuation marks each have two codons, giving a total of 64 codons. 

The mapping T can be applied to a genetic sequence to obtain a string over the alphabet 
A. In VIV, as in nature, three output strings over A can be derived from a given genome 
sequence by starting in any of the first three initial positions. That is, VIV models the three 
reading frames occuring in natural genomes. 
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2.2.2    The Fitness Function 

In nature, the environmental fitness landscape for a virus is defined by the set of environmental 
conditions in the host species to which the virus must adapt in order to reproduce. As in the 
modeling of protein function, the current state of knowledge does not permit an accurate 
model of the environment in which viruses operate. Therefore, it is necessary to make a set 
of simplifying assumptions that would permit the definition of a fitness landscape for our 
evolutionary model. 

The fitness landscape in VIV is defined by a set of target phenotypes, or words over the 
output alphabet A. That is, the target phenotype specifies a phenotype that is highly fit in 
terms of its ability to infect a given host species. The fitness of a given virus is determined by 
a compatibility index that measures the similarity between the viral phenotype and the target 
phenotype. Alternative fitness landscapes associated with different species can be specified by 
alternative target phenotypes. For example, the target phenotype for a given viral environment 
might be specified as the set: 

{COREPROTEIN + ABC, POLYMERASE + ABC, ENVELOPE + ABC} 

where the phenotype COREPROTEIN+ABC represents the ability of the expressed gene to yield 
the core protein for the virus in the environment of the ABC species. 

The compatibility index (or it raw fitness) computation is as follows: 

1. All coding regions in the viral genome are identified, and all product strings are computed 
(i.e., transcribed). 

2. For each coding region, compute the compatibility score with respect to each given target 
term by comparing the spelling of the product string with the spelling of the target term. 

3. For each target term, the compatibility score of the target term is the highest compati- 
bility score of any coding region with respect to this term. 

4. The compatibility index of the genome is then a weighted average of the compatibility 
scores of all the terms in the target phenotype. 

2.2.3    Selection 

Selection is the process of choosing individuals for reproduction in an evolutionary algorithm. 
One popular form of selection is called proportional selection, which involves creating a num- 
ber of offspring in proportion to an individual's fitness. This approach was proposed and 
analyzed by Holland [23], and has been used widely in many implementations of evolution- 
ary algorithms. Proportional selection provides a natural counterpart to the usual practice in 
population genetics of defining an individual's fitness in terms of its number of offspring. 

The selection process is implemented in three distinct steps, namely, 
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1. Map the objective function to fitness. 

2. Create a probability distribution proportional to fitness. 

3. Draw samples from this distribution. 

The evaluation process of individuals in an evolutionary algorithm begins with the user-defined 
objective function, 

f:Ax^M 

which typically measures some cost to be minimized or some reward to be maximized. The def- 
inition of the objective function is, of course, application dependent. In general, the objective 
function should provide enough information to drive the selective pressure of the evolutionary 
algorithm. For example, "needle-in-a-haystack" functions, i.e., functions that assign nearly 
equal value to every candidate solution except the optimum, should be avoided. The objective 
function in VIV is the compatibility score, described above. 

The fitness function 

maps the raw scores of the objective function to a non-negative interval. The fitness function 
is often a composition of the objective function and a scaling function g: 

*(x)=g(f(x)) 

As an evolutionary algorithm progresses, the population often becomes dominated by high- 
performance individuals with a narrow range of objective values. In this case, the fitness 
functions described above tend to assign similar fitness values to all members of the population, 
leading to a loss in the selective pressure toward the better individuals. To address this problem, 
fitness scaling methods that accentuate small differences in objective values are often used in 
order to maintain a productive level of selective pressure. VIV uses Sigma scaling [14]), defined 
as follows: 

$(a(t)) = l /(*(*)) "(7(<)-c* */(*))    iff(ai(t))>(f(t)-c*o-f(t)) 
| 0 otherwise 

where f(t) is the mean objective value of the current population, oy (£) is the (sample) standard 
deviation of the objective values in the current population, and c is a constant, say c = 2. The 
idea is that f(t) — c* er/(i) represents the least acceptable objective value for any reproducing 
individual. As the population improves, this statistic tracks the improvement, yielding a level 
of selective pressure that is sensitive to the spread of performance values in the population. 

Once the fitness values are assigned, the next step in proportional selection is to create a 
probability distribution such that the probability of selecting a given individual for reproduc- 
tion is proportional to the individual's fitness. That is, 

E£=i *(«')' 
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VIV employs a so-called generational GA, in which the entire population is replaced during 
each generation, so the above probability distribution is sampled \i times. Baker [3] developed 
an algorithm called stochastic universal sampling (SUS) that exhibits less variance than re- 
peated calls to the roulette-wheel algorithm [14]. 

2.2.4 Mutation Operators 

In the traditional genetic algorithm, mutation is usually implemented as a probabilistic opera- 
tor that randomly alters individual bits within a binary genome. Length altering mutations are 
usually not considered, although there are exceptions [18]. In contrast, VIV contains several 
biologically motivated forms of mutation, including: 

• Random substitutions for individual bases, 

• Deletions, 

• Repetitions, 

• Inversions. 

Currently, preliminary forms of these operators are included in the model. For the purpose of 
the pilot studies below, only point mutations (random substitutions on individual bases) have 
been included in studies to date. 

2.2.5 Recombination 

In traditional genetic algorithms, the members of the population have a fixed length, and 
recombination in a GA works as follows: 

• Given two individuals of the population, pick a point (or multiple points) randomly. 

• Line up the individuals and perform the crossover(s) at these points. 

For example, given parents AATTGCACGGG and TCGCCCGCTAA and a crossover point of 5, 

AATTGCACGGG 

TCGCCCGCTAA 

the offspring produced would be: 

AATTCCGCTAA and TCGCGCACGGG. 
 +++++++ ++++  
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(- indicates base element from parent 1 and + indicates base element from parent 2). 

So-called two-point crossover is similar in that two individuals of the same length would 
be lined up but two points would be chosen as crossover points. The parents AATTGCACGGG 
and TCGCCCGCTAA, when crossed at positions 5 and 8 (chosen randomly), 

AATTGCACGGG 

TCGCCCGCTAA 

would produce the offspring 

AATTCCGCGGG and TCGCGCACTAA. 
 +++  ++++ ++++ 

In VIV, a new crossover operator called homologous 1-point crossover has been designed 
which crosses two variable length parents in regions of similarity. This type of crossover was 
inspired by biological mechanisms. The homology matching algorithm works as follows: 

1. Given two individuals, called parentl and parent2, pick a point at random on parentl. 

2. Use window of bases around the selected point on parentl to match up against the same 
size window on parent2, running through each possible starting positions for the window 
on parent2. 

3. Records the window on parent2 giving the best match against parentl. 

4. Based on the best match score, decide whether to perform crossover between the parents. 

If the match score is less than 50%, the parents are not recombined. Otherwise, the probability 
of crossover increases from 0 (for a match score of 50%) to 1 (for a complete match). If crossover 
occurs, a point is picked randomly within the aligned window of the parents, dividing each 
parent into two segments. One offspring comprises thejirst segment of parentl and the second 
segment of parent2, and the second offspring comprises the first segment of parent2 and the 
second segment of parentl. Finally, if either offspring violates the maximum-length constraint, 
then the crossover is aborted. 

For example, given the following individuals: 

Parentl:  ATTTCGCTCAGGTAAATGCGCG 

Parent2:  GGGTTTCGATTTCATGGTAGCAAAAATTAG 

Suppose we center a window of size 6 at position 4: 
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Parent2:  GGGTTTCGATTTCATGGTAGCAAAAATTAG 
* 

Looking for the best match on parentl, we find that the window beginning with the second 
base element matches best. We line up the parents according to the match. 

Parentl:       ATTTCGCTCAGGTAAATGCGCG 

Parent2:  GGGTTTCGATTTCATGGTAGCAAAAATTAG 
*        * 

Now randomly pick a crossover point within this window, say 2. 

Parentl:       ATTTCGCTCAGGTAAATGCGCG 
**      * 

Parent2:  GGGTTTCGATTTCATGGTAGCAAAAATTAG 

and perform the crossover: 

Offspringl:  ATTTCGATTTCATGGTAGCAAAAATTAG 
—++++++++++++++++++++++++++ 

Offspring2:  GGGTTTCGCTCAGGTAAATGCGCG 
++++  

(- indicates base element from parent 1 and + indicates base element from parent 2). 

2.2.6    Multiple-Population Infection 

The VTV fitness model supports the investigation of cross-species infection. As shown in 
Figure 5, any number of interacting populations may be defined. Each population represents 
the virus population infecting a specific species. Each species can have a distinct fitness 
landscape, specified by the target phenotypes for that species. The model permits interactions 
among the multiple evolving populations through a virus transfer mechanism. Briefly, at 
periodic intervals, individual viruses may be transferred between the evolving populations. 
This permits the study of the effects of viral recombination in a multiple species system. 

2.2.7    VIV Visualization Tool 

To facilitate the analysis of data produced by the computer simulations, we have developed a 
visualization tool, called VIS. The two main objectives of the visualization are: 
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Figure 5: A Multi-population Model 

• Easy access to desired information and easy transitions between related pieces of infor- 
mation. 

• The development of novel and alternative methods for displaying multi-dimensional data 
in a coherent and informative manner. 

In particular, VIS assists the user in: 

• Observing the effects of individual genetic operators. 

• Monitoring the average or best performance (fitness of the members of the population) 
throughout a run. 

• Tracking the discovery, growth and sharing of partial solutions. 

• Comparing selection pressure, operator effectiveness, and other characteristics at various 
time during a GA run. 

• Tracing the ancestry or progeny of an individual. 

The VIS program allows the user to "navigate" through a VTV run (both forwards and 
backwards), focus on "snapshots" of any instant of a run, and observe individual events from 
the run. These capabilities are expected to allow the user to examine the causes and effects of 
individual events and to follow specific trails of information exchange in a particular evolution, 
ultimately leading to a better understanding of the process of viral evolution. 

The VIS program is written in the Java programming language and is available as either 
an applet or an application. When executed as an applet, VIS is only able to access input 
files from the NRL server. When executed as an application, VIS should be able to read any 
correctly formatted input files. A detailed user's guide is provided in the Appendix. 
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3    Pilot Computational Studies 

This section describes some of the pilot computational studies performed with VIV. The first 
three subsections below describe an initial set of studies that test the internal consistency of 
the model and to compare it with previous evolutionary computation models. In these initial 
studies, a single control parameter, e.g., mutation rate, crossover rate, or length bias, was 
systematically altered over a pre-defined set of values. There was a single population of viruses 
evolving in a fixed environment. Besides indicating the effect of these parameters on the model, 
these studies also provide a baseline against which to compare later studies, which will concern 
multi-population infections. An example of a multi-population study is included as the final 
section below. 

Unless otherwise noted, all the studies below used the following set of model parameters 
(explained in Appendix A): 

• Population size = 500 

• Generations = 2000 

• Mutation rate = 0.003 

• Crossover rate = 1.0 

• Initial genome lengths = [100, 500] 

• Maximum genome length = 7500 

• Crossover operator = 1 point homologous crossover 

• Mutation operator = random base substitution 

• Number of evolving populations = 1 

3.1    Effects of Mutation Rate in a Single Population 

The goal of this study is to investigate the effect of different fixed mutation rates in a fixed, 
single-species environment. The target phenotype was {C0REPR0TEIN, PDLYMERASE,  ENVELOPE}. 
Some interesting questions to address are: 

1. Are higher or lower mutation rates more useful in a single population for this domain? 

2. Are mutation rates correlated with length of the individuals? 

3. Is crossover necessary to produce better results for all mutation rates tested? 
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Figure 6: Effects of Mutation Rates (with Crossover enabled) 

3.1.1 Experimental Design 

Mutation rates for all individuals were fixed over the entire run at one of the following values: 

{0.0,0.0001,0.0003,0.001,0.003,0.01,0.03,0.1}. 

The mutation rate gives the probability that a random substitution mutation will occur at each 
base element of the individual. For each mutation rate, 10 independent runs were performed 
using different seeds for the random number generators. Two sets of experiments were run 
using these mutation rates, one with a crossover rate of 1.0 and one with a crossover rate of 
0.0 (no crossover). 

3.1.2 Computational Results 

The best plateau fitness refers to the fitness of the best individual in the final population, and 
the average plateau fitness refers to the average fitness in the final population. Both measures 
were averaged over 10 independent runs of the program. Figure 6 shows the best and average 
plateau fitness obtained with each mutation rate with a crossover rate of 1.0. (Error bars 
indicate one standard deviation over the 10 runs.) Figures 7 shows the best and average 
plateau fitness obtained with each mutation rate with a crossover rate of 0.0. 

Regarding the best individuals of each run, the best results were obtained using a mutation 
rate of 0.003. Generally, the average length of the individuals in the final population was about 
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Figure 7: Effects of Mutation Rates (with Crossover disabled) 

500 nucleotides. Thus the mutation rate of 0.003 yields on average about 1.3 mutations per 
individual during each generation. This is fairly consistent with biological observations of one 
mutation per generation per individual. 

The best-individual performance increases consistently as the mutation rate increases from 
0.0 to 0.003. Higher mutation rates yield steadily worsening performance. Removing crossover 
leads to decreased fitness with all rates of mutation tested. 

Figure 8 shows the effects of the mutation rate on genome length. It is interesting that 
as the mutation rate increases beyond 0.001, the plateau genome length also increases. An 
explanation for this phenomenon is not obvious. Assuming that the coding regions are roughly 
the same size, there would not seem to be any clear evolutionary advantage in longer genomes, 
since the extra mutations are mainly occurring in non-coding regions. This data suggests that 
the plateau genome length evolves in response to the base mutation rate. Further investigations 
are required to identify the source of the selective pressure toward longer genomes. One 
conjecture is that the non-coding regions may be used to some advantage as redundant coding 
regions. 

3.2    Effects of Recombination in a Single Population 

The goal of this study is to investigate the effect of different fixed recombination rates in a 
fixed, single-species environment. 
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Figure 8: Effects of Mutation Rates on Genome Length 

3.2.1    Experimental Design 

Experiments were conducted to determine the best overall crossover rate for this problem 
domain. The type of crossover performed was 1-point homologous crossover. Crossover rates 
of 0.0, 0.1, 0.3, 0.6 and 1.0 were used. A rate of 1.0 means that 100% of the population will 
have the potential to be crossed each generation, depending on how well the crossover regions 
match each other. Other parameters were set to default values as described above. For each 
crossover rate, 10 runs were performed. 

3.2.2    Computational Results 

Figure 9 shows the best and average plateau fitness obtained with each crossover rate. All of 
the results are averaged over 10 runs. 

With respect to the best individual, the crossover rate of 1.0 gave the best performance, 
and further, each performance curve indicated better results as the crossover rate increased 
from 0.0 to 1.0. 

With respect to the average fitness of individuals, the crossover rate of 0.6 and 0.3 produced 
slightly better results than a crossover rate of 1.0. There appears to be no significant difference 
resulting from crossover rates of 0.3, 0.6 or 1.0, but having at least some crossover appears to 
be necessary to produce the best results. 

It should be noted that the nominal crossover rate, shown here, differs from the effective 
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Figure 9: Effects of Recombination Rates 

crossover rate. The nominal crossover rate determines the probability that crossover is at- 
tempted between two parents. When there is insufficient similarity between the two parents, 
no crossover occurs. Thus the effective crossover rate may be less than the nominal rate. 

3.3    Effects of Length Bias in a Single Population 

This study investigates the effect of different fixed length biases in a fixed, single-species envi- 
ronment. 

3.3.1    Experimental Design 

The maximum genome length determines the attenuation of the fitness. The fitness declines 
linearly based on length until it reaches 0 at the maximum genome length. Experiments were 
conducted to determine the effect of changing the maximum genome length for this problem 
domain. The maximum genome lengths were fixed over the entire run at one of the following 
values: 

{1000,2500,5000,7500,22500,25000}. 

For each value for the maximum genome length, 10 runs were performed. All other parameters 
were set to default values as described above. 
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Figure 10: Effects of Length Bias 

3.3.2    Computational Results 

Figure 10 shows the best and average plateau fitness obtained with each value for the maximum 
genome length. All of the results are averaged over 10 runs. 

A maximum genome length of 2500 to 5000 appears to give the best results. Performance 
declined both for values lower than 2500 and greater than 5000. A maximum length of 1000 
is too probably severe, leading to premature convergence of the population to sub-optimal 
solutions. Maximum lengths of 7500 and higher are not restrictive enough, and performance 
begins to degrade there as well. 

3.4    A Study of Mutation Rates in Multi-population Infections 

This study was aimed at understanding the evolution of evolvability, i.e., the ability of viruses to 
rapidly adapt to new environments. In this study, three populations of viruses co-evolved. The 
fitness of individuals with each population was measured against a specific target phenotype. 
The target phenotypes were as follows: 

{C0REPR0TEIN + HUMAN, POLYMERASE + HUMAN, ENVELOPE + HUMAN} 

{C0REPR0TEIN + CHIMP, POLYMERASE + CHIMP, ENVELOPE + CHIMP} 

{C0REPR0TEIN + MONKEY, POLYMERASE + MONKEY, ENVELOPE + MONKEY} 

Note that the target phenotypes have strong similarities, as well as significant differences. As 
a result, a virus that has evolved in any one of these environment will be relatively highly fit 
in any other (compared to random genomes). 

28 



During the evolutionary runs, viruses transferred among the evolving populations as fol- 
lows: 

1. At intervals of 10 generations, 20 viruses were selected at random from each population. 
Ten of the selected viruses were transferred to each of the other two populations, replacing 
randomly selected viruses from the destination population. 

2. The transferred viruses were evaluated for fitness within the receiving population. 

3. Finally, the transferred viruses were selected for reproduction based on their fitness, and 
recombined with native viruses. 

This procedure allowed cross-fertilization between the evolving population. 

Two questions of immediate interest are: 

1. Are higher mutation rates more useful in the multi-population scenario than in the single- 
population scenario? 

2. Given the opportunity, will higher mutation rates evolve in multi-population scenarios? 

A series of experiments were run in which the mutation rate was systematically varied 
over a range of values, in order to identify the most favorable value for the multi-population 
scenario. 

3.4.1 Experimental Design 

VIV was run in multi-population mode, with three populations. The interpopulation transfer 
rate was 10 individuals transferred to each of the other two populations every 10 generations. 
The population size was 500 individuals per population. Each run comprised 2000 generations. 
Mutation rates were: 

{0.0,0.0001,0.0003,0.001,0.003,0.01,0.03,0.1} 

For each mutation rate, 5 runs were performed. 

3.4.2 Computational Results 

The results are shown in Figure 11. All of the results are averaged over 5 runs. According 
to this pilot study the mutation rate that provides the best multi-population infection does 
not significantly differ from the best mutation rate for the single-population case. Further 
study is required in order to identify factors that may influence the overall mutation rate in 
multi-population scenarios. 
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Figure 11: Effects of Mutation Rate in Multi-host Environment 

4    Conclusions 

The objectives of this project were to understand emerging virus epidemics by focusing on 
methods of viral evolution, and to develop and evaluate novel evolutionary modeling ap- 
proaches. A computational model of virus evolution has been developed that enables the 
study of fundamental questions concerning the evolved structure of the viral genotypes, the 
dynamics of cross-species infection, and the role of alternative recombination strategies exhib- 
ited by viruses. The VIV software system applies the methods of evolutionary algorithms to the 
problem of modeling biological systems, extending the optimization-based genetic algorithm in 
the direction of a more plausible model of biological evolution. Pilot computational studies on 
a series of questions related to the evolvability of viruses have been performed. Further effort 
with the model is now required in order to address specific hypotheses about the evolution of 
emerging disease. 

4.1    Recommendations 

During this pilot project, we have developed valuable computational tools for the study of 
viral evolution and emerging infections. However, extensive computational experiments with 
the model were beyond the scope of this project. Many promising directions for further research 
suggest themselves, including: 

• Evolvability selected as an adaptation to differing fitness landscapes, including: 

— Single peak vs. multi-peak landscapes, 

- Smooth vs. rugged landscapes, and 

30 



• 

- Fixed vs. changing landscapes. 

The results would provide insights into the effects of different mutation rates, for example, 
on viruses whose host population was itself shifting or evolving in response to the virus. 
All of these classes of landscapes can be investigated by varying the target phenotypes 
during the run. 

Effects of secondary structure in fitness, mutation and recombination. Genome secondary 
structure, e.g., the presence of stems and loops, plays a role in both mutation and recom- 
bination in nature. Modeling the mutation and recombination operations that depend on 
secondary structure may lead to further understanding of the role of non-coding regions 
as regulatory mechanisms in viral evolution. An initial implementation of secondary 
structure was implemented as part of this project, but much remains to be done. 

• Effects of mating restrictions and speciation. Our initial model includes no mating restric- 
tions within each viral population. It would be reasonable to model mating restrictions 
based on sequence similarity or secondary structure. Mating restrictions are likely to 
play a key role in the development of separate genome organization, such as shown in 
Figure 2. 

• Evolvability of mutation rate, processivity and segmentation. Only preliminary computer 
studies of the evolvability of mutation rates were possible within this pilot studies. 

This project has achieved its goal of developing a novel evolutionary modeling approach to 
the study of emerging infections. A computational model of virus evolution has been developed 
that enables the study of fundamental questions concerning the evolved structure of the viral 
genotypes, the dynamics of cross-species infection, and the role of alternative recombination 
strategies exhibited by viruses. The pilot computational studies illustrate just a few of the 
possible ways to use the model to investigate issues related to the evolution of viruses. For 
example, the results shown in Figure 8 suggest that the genome length may evolve in response to 
the base mutation rate. The VTV computational model will enable the study of such questions 
in a highly observable simulation environment. As the model is refined, such studies can be 
expected to provide additional insight into issues concerning viral evolution. 

The VIV model provides the computational infrastructure for an extended examination of 
these issues and their relationship to the evolution of emerging disease. We look forward to 
pursuing these issues in future projects. 
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A    The VIV Software System 

A.l    Running VIV 

VIV is executed via a UNIX command line as follows: 

7. viv & 

All output is directed to various output files, described below. After completion of the program, 
the VTS visualization tool can be used to navigate through the data produced during the run. 
The remainder of this Appendix describes the input and output files for the VIV program. 

A.2    Input Files 

Several runtime parameters allow the user to control how experiments are done, how data is 
saved and display, and how various components operate. Runtime parameters are specified in 
two files: params.def and params. At startup, the program first reads the params.def file, 
setting the runtime variables according to the default values in that file. Then it reads the 
params files, overwriting any values specified. Each line in the parameter files has the form: 

parameter = value 

Lines that begin with a pound-sign (#) are comments and are ignored. 

The following paragraphs define each parameter, giving its range of values and its default 
values. For each parameter, the default value is shown as the (first) value after the equal sign. 
For parameters with string values shown below, only one of the listed strings will be accepted 
(except for filename parameters). Generally, there is little or no error checking on numeric 
parameters. 

popsize = 500 
Number of genomes per population. Program variable: Popsize. 

gens = 2000 
Max number of generations performed. Program variable: Maxgens. 

best-interval =10 
Generations between printing out the best genome. Program variable: Best-interval. 

max_length = 7500 
Maximum length of a genome. Program variable: Length. 

transfer_npops = 1 
Number of population undergoing evolution. Program variable: Transfer_npops. 
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min_init-length =100 
Minimum length for randomly generated genomes in the initial population Program 
variable: Min_init_length. 

max_init-length = 500 
Maximum length for randomly generated genomes in the initial population Program 
variable: Min_init_length. 

nurate = 0.003 
The probability that a base undergoes a random substitution during each reproductive 
event. Program variable: Mu_rate. 

c_rate = 1.0 
The probability that a individual participates in crossover during each reproductive event. 
Program variable: Crate. 

cross_type = hom_lpt 
Crossover operator.    Default is one-point homologous crossover.    Program variable: 
Cross_type. 

seed = 1 
Random number seed. Program variable: Seed. 

vis = 1 
If set, produce output required by the VIS visualization tool. (See Appendix B). Program 
variable: Vis. 

A.3    Output Files 

VIV normally creates several output files, described in the following subsections. The following 
descriptions follow the default behavior of VIV. However, the names of these files and the 
frequency of updating them can also be controlled by runtime parameters. 

A.3.1    LOG File 

The log file records the start and finishes time for each run of VIV, for example: 

VIV started on sunl9.aic.nrl.navy.mil 
Thu Jun 26 09:41:30 1997 
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VIV finished 
Thu Jun 26 11:42:46 1997 

A.3.2    OUT File 

The out file normally contains one line of statistics per generation. A partial out file is shown 
below: 

Gen Trials Best Online Offline Ave Std Base Ext HaxL HinL AveL StdL AveH 
0 600 0.1304 0.0468 0.1224 0.0468 0.0257 0.0000 0 499 100 307 113 0.003 

10 5500 0.2057 0.0877 0.1712 0.1197 0.0312 0.0269 1 647 94 403 96 0.003 
20 10500 0.2944 0.1221 0.2192 0.2005 0.0448 0.0643 3 746 183 452 98 0.003 
30 15500 0.3329 0.1563 0.2531 0.2424 0.0392 0.1228 2 753 228 439 105 0.003 
40 20500 0.3564 0.1834 0.2782 0.2835 0.0372 0.1693 7 748 224 437 98 0.003 
50 25500 0.4117 0.2068 0.3004 0.3195 0.0396 0.2094 8 861 253 490 111 0.003 

The fields in the out file are: 

Gen 
Generation counter. 

Trials 
Trial counter (number of evaluations performed). 

Best 
The best value of any genome in the current population. 

Qnline 
Online performance. This is the running average of the best-so-far values. 

Offline 
Offline performance. This is the average value of all genomes. 

Ave 
The mean value in the current population. 

Std 
The standard deviation of values in the current population. 
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Base 
The baseline value used to measure fitness. The fitness of a genome is its raw value minus 
the baseline. 

Ext 
The number of exterminated genomes (in the previous generation). A genome is exter- 
minated if its value is below the baseline value. Exterminated genomes have no offspring. 

MaxL, MinL,  AveL,  StdL 

Maximum, minimum, mean and standard deviations of the lengths for genomes in current 
population. 

AveM 

The average mutation rate (per base) in current population. 

A.3.3    RAW File 

The raw file normally contains one line per generation, showing the best, average and standard 
deviation of the raw fitness scores in the current population. A partial raw file is shown below: 

Gen Trials        Best      Ave      Std 
0 500 0.1366 0.0490 0.0272 

10 5500 0.2212 0.1266 0.0332 
20 10500 0.3130 0.2134 0.0475 
30 15500 0.3525 0.2576 0.0416 
40 20500 0.3823 0.3011 0.0399 
50 25500 0.4486 0.3420 0.0440 

The first field is the generation counter. The second field is the trial counter for the current 
generation. 
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A.3.4    BEST File 

VTV normally produces one best file containing the best genome in each generation. A partial 
best file is shown below: 

Generation 1990 Trial 995150 Raw Fitness 1.000 Fitness 0.985 Length 109 M.rate 0.0030 

genotype: AAGGCTCTCGTATAGCCCGGATAGCGACGTATGCACAGGGGTCGGCGTCCAGTCCACGCCATGGCTACCGCCGGGCGGGC 
GCCCAAAAATATCCGCGTCGATATGGGCT 

frame 0: VAIZFK.FP0RMX_P0LYMERASE.P0KVUQ.0YUR. 

frame 1: XIDEWLUWYZGT.Y_YNCTLHJLL_.0LVRC0DRHA 

frame 2: _C0REPR0TEIN.D0CWL0H_E0P0_ENVEL0PE. 

GAG in frame 2 

POL in frame 0 

ENV in frame 2 

.C0REPR0TEIN.docwlom.eopo.envelope. 

vaizfk.fpormx.POLYMERASE.pokvuqoyur. 

.coreprotein.docwlom.eopo.ENVELOPE. 

Generation 2000 Trial 1000292 Raw Fitness 1.000 Fitness 0.985 Length 110 M.rate 0.0030 

genotype: AAGGTTaCGCATAGCCCGAATAGCGACGTATGCACAGGGGTCGACGCCCAGTTCACGCCATAGCTACCGCCGGAGGCGGT 
GCCCAGAAGTATCCGCGTCGATATGGGCT 

frame 0: VYIIFK+FP0RMX_P0LYMERASE.„ENVELOPE. 

frame 1: XADMWLUWYZGT.YYENATLFJLL+OZKXWQOYUR. 
frame 2: .C0REPR0TEIN.DTKWD0MWE0PXPGL+ZC0DRHA 

GAG in frame 2: .COREPROTEIN.dtkwdomweopxpgl+zcodrha 

POL in frame 0: vyiifk+fpormx.POLYMERASE. envelope. 

ENV in frame 0: vyiifk+fpormx.polymerase. ENVELOPE. 

39 



B    The VIS Visualization Tool 

B.l    Introduction 

To fully understand the implications of the VIV model, it is necessary to examine the individual 
events and interactions that occur during a VIV run as well as evaluate the outcome of a run. 
We are developing a visualization tool (VIS) in conjunction with the VIV model to facilitate 
the analysis of GA data. The two main goals of the VIS project are: 

• 

• 

The design of tool capabilities that allow easy access to desired information and easy 
transitions between related pieces of information. 

The development of novel and alternative methods for displaying multi-dimensional data 
in a coherent and informative manner. 

The VIS program is meant to be a tool with which one can easily "navigate" through a 
GA run (both forwards and backwards), focus on "snapshots" of any instant of a run, and 
observe individual events from the run. These capabilities are expected to allow the user to 
examine the causes and effects of individual events and to follow specific trails of information 
exchange in a VIV run, ultimately leading to a better understanding of the simulated virus 
evolution. 

The VIS program is written in the Java programming language and is available as either 
an applet or an application. When executed as an applet, VIS is only able to access input files 
provided on the NRL server. When executed as an application, VIS should be able to read 
any correctly formatted input files. 

To use VIS to examine a VIV run, turn on the vis flag in the VIV parameters. This action 
causes VIV to print all run data to a set of files, placed in a single directory. This directory is 
specified as the input directory when starting a VTS session. VTS is then able to access data 
as necessary based on user interactions and requests. 

Though the VIS program capabilities and displays are currently focused on the VTV 
project, much of the functionality is easily generalizable to be useful for general GA data. 

B.2    Getting Started 

B.2.1    Starting the applet 

To start the VIS applet, go to http: //www.aic .nrl .navy .mil/ aswu/vis/vistool2/vis2.html. 
Enter the name of the directory containing the data files from the desired run and click on the 
"Enter" button. 
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B.2.2    Starting the application 

To start the VIS application, enter the following command: Java Vis2 &. When the Vis2 
window appears, enter the name of the directory containing the data files from the desired run 
and click on the "Enter input directory" button. 

B.2.3    Opening a display window 

Each time an input directory is entered, VIS will display a selection window. The selection 
window prompts the user to open one or more display windows. The three types of display 
windows available: Run, Population, and Individual; they are described in section B.5. 

To open a Run window, the user must select the information to be displayed for each 
generation of the run. Current choices are the best individual and the median individual. 

Se/ection window] 'da 
Select view: Display for each generation: 

^Run vHBest fitness 

■^Population v-Median fitness 

■»/■Individual 

Cancel | 
-—-—^ ■—.»WTO«« 

To open a Population window, the user must specify the generation to be displayed. 
!tf^TOJ ^V^WBIWerWVenvaSZE^!!^^ 

Select view: 

rRun Display a single population: 

-♦Population 

vln dividual 

Cancel | 

Generation to display:    JQ 

OKI 

■ •     '•- 

To open an Individual window, the user must specify the generation and index of the 
individual to be displayed. 
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Sefecfionwindow J 
Select view: 

v'Run 

v-Population 

(-♦'Individual 

Cancel 
■ ■•       — 

Display a single individual: 

Generation number: >]o 

Index of individual: I]Q 

All display windows opened from a particular selection window (or its progeny display 
windows) will display data from the same input directory. The user may open multiple selection 
windows to display data from more than one input directory. 

B.3    Terminating a session 

To terminate the VIS application, simply select the Quit button from the Vis2 window. VIS 
will close all display windows and terminate the program. 

To close a specific display window, select the Close option from the Window menu. This 
action closes the specified window, but does not affect any other windows. 

B.4    Input files 

VIS expects multiple data files for each GA run. All files should be placed in a single directory. 
This directory is the input directory that is specified when starting the program. 

Each run has a file called vis_params. This file stores the number of generations in the 
run, the size of the population, and the genotype format. The VIS program currently supports 
two genotype formats. Binary format individuals have genotypes consisting of only two bases, 
represented by zero and one. ACGT format individuals have genotypes consisting of four bases, 
represented by the bits ranging from zero to three. 

For each generation of the run, four additional files are expected: vis_generation.n, 
vis_best.n, vis-median.n, and vis.cross.n, where n is the generation number. The file 
vis_generation.n stores all of the data from generation n. This data includes general statis- 
tics from that generation as well as complete information about each individual in the gen- 
eration. The file vis_best.n stores the information about the individual with the highest 
fitness in generation n. The file vis_median.n stores the information about the individual 
with the median fitness of generation n. The file vis_cross.n stores the crossover points of 
all individuals in which crossover occurred. Generation 0 indicates the initial population. 
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B.5    Display windows 

VIS displays data in one of three types of windows: Run, Population, or Individual. These 
windows may be opened from the selection box that appears after in input directory is entered, 
or they may be opened by clicking on select display items in the display windows themselves. 

B.5.1    Window organization 

Display windows are laid out in three sections: south bar, center panel, and north bar. 

;;, ; ^Displaywindow &.=•»"#! •^•;psr"l in 
Window 

North bar 

Center panel 

South bar 

South bar 

The south bar contains a description of what the window is currently displaying. For 
example, an Individual window displaying the fifth individual from the fourth generation 
would display "Generation 4, Individual 5" in the south bar. 

Center panel 

The center panel displays the primary data of the window. The contents of the center 
panel for each type of window will be described in the sections below on the specific types of 
display windows. 

North bar 

The north bar contains buttons for navigating among the individuals of a generation or 
among the generations of a run. Users may use these buttons to change the individual or 
generation that is displayed in the window. Out-of-range index values are ignored. The north 
bar currently does not appear in Run windows. 

Down|    Up|    Previous 1    Reload!     Go to population at generation:   I 

• The Down button causes the window to display the individual/generation with the next 
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lowest index from the current individual/generation. 

• The Up button causes the window to display the individual/generation with the next 
highest index from the current individual/generation. 

• The Previous button causes the window to display the individual that was displayed 
previous to the currently displayed individual. 

• The Reload button re-loads and re-displays the current generation. 

• The Go to field allows the user to select any individual/generation (within range) to be 
displayed. 

B.6    Individual window 

The Individual window displays the data for a single individual. The Display menu (sec- 
tion B.9.2) allows the user to select one of two center panel displays. 

B.6.1    Data 

Displays general data for an individual. 

iril Mrillllliil ffilfil m 
Mindov    Display    View    Fornat 

DownJ   Up |   Previous!    Go to Individual at index: ;I 

individual: 7 

Gonoratioiai 1 

Fitlwsj: 0.058346 

L*XL£th in bits: G44 

°<"">t»" ■«■IIIIIIIIIIIIIIIIMillllllMIIIIIIIIIIIHIIIIIIWIIIWIIIIMimHiMIIIMIIIIIMIWHUM III llllllll milllllllllll■ 

te«nt2  (1,255)1        ■ lllllllllll IIMMI «Hill III llllllll ■lllll lllllllll ■ 

1 ftut*tjUm(s) *t:      62 

laaiBBtiii^BiiiiiiiiiiaaaiiaaiiiiHiiiiiiiiiiiiiiiiiiiBBiiiiHiiiiJiBiaHiaaaHBjjiifHHiiiiiiHHiuiiiiiiiiiiiiiiaiHiiiiiiiiiiiiiBiai 
1 c£ossov*r(s) At:   448 

■nimnrn 
3 avncs! 

0«M 0;    Fran« 2 
sits S3 to 74 

Gnu 1:    Fruu 2 
Sits 182 to 198 

G«w  2)     FRU   2 
Bits 53 to  74 

stwiiOTWoewi, 

_GHSLHÜ.CUKrmiV. 

SDVIAVIYVGCCTI. 

Generation 1, Individual 7 

• The index of the individual. Each individual is arbitrarily assigned an index number to 
distinguish it from other individuals. 

• The generation to which the individual belongs. 

• The fitness of the individual. 
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• The length of the individual in bits. 

• The genotype of the individual. Genotype formats are described in section B.9.3. The 
Color coded format is shown above. 

• The genotype, index, and length of the individual's parents. Users may click on a parent 
genotype to open a new Individual window for that parent. 

• The mutations, if any, involved in creating this individual. Mutation locations listed and 
are marked in color. 

• The crossover points, if any, involved in creating this individual. If crossover occurred, the 
portion that each parent contributed to the individual is indicated in color. If crossover 
did not occur, the individual was cloned from Parent 1. 

• The genes and their locations and reading frames on this individual. Users may select to 
display only the genes or the genes in relation to the rest of their reading frame. 

B.6.2    Family 

Displays the current individual, its parents, and its offspring in Gene location format. Users 
may select parents or offspring to open a new Individual window displaying the Family of 
the selected individual. 

i --■ \                                   ftxtivkfuaf view 

| Window    Display 

1  Down|   Up|   Previousl    Go to individual at index:   \ 

Parents              Individual                Offspring 

(Gen 0)                 (Gen 1)                    (Gen 2) 

6    ■■HH1                               BB^^IS 
wm—mm i 

HI 

(Generation 1, Individual 7 

B.7    Population window 

The Population window displays data about a single population. The Display menu (sec- 
tion B.9.2) allows the user to select one of three center panel displays. 
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B.7.1    Individuals 

Displays each individual of the population along with its fitness and index. The default format 
by which individuals are displayed is by bit value; the examples below show the Color coded 
format. The format may be changed with the View menu (section B.9.3). Users may click on 
an individual to bring up an Individual window for the selected individual. 

__^ 
 • •   ■•■! 

\\>-:^~i' Potxj&üri view  iflBafl JJ 
Window    Display    View 

Go to population at generation: 

illinium i ■Minium 
Index Fitness Genotype 

0 0.043671 IIIIIHIIIIIIIIIIBIIIIIimiMHIl 
1 0.042363 ■■«■«■■Hill 
2 0.013821 111 llllllllimillllllll lllllll IRMIIIH Will 
3 0.083388 llllllllllaillllMllllliaillllIIIIHIIIIIHIIIIIIHIIIHIIII1IIIIIIIIIIIIHIllllllll 
4 0.057512 ■IIIIIIIIIIIIIIIIIIII^IIHIIIMIIIIIIIIIIIIIIIHIIIIHIIIIIIHIMIIHIIIIIHI 
5 0.022463 ■IIIIIIHIIIIIIIHIIIIIIIIIII II 111 IIIIIIIIIIIIIIBIIIIIHIIIIIIIHIIUIIIIIIIIII« 
6 o HIIIIIIIIIH 
7 0.05834E HillIIIIIIIIIIIIIIIIIHillllllimillllllllllllllllHIIII■IIIIIIHI^IIIHiilllHIl 
8 0.042363 ■IWIHIIH Hill III 
s o.083388 IIIIIIIIIIBIIIIinilllllMIIIIIIIHIIIIIHIIIIimilHIIIIIIIIIIIIIIIIIHIIIIIIIIIII 

IHIIIIilllllillll 

Generation 1 

B.7.2    Statistics 

Displays the statistics for each individual of the population. Users may click on the index value 
an individual to bring up an Individual window for the selected individual. 

\ -i mi SÄisatsBiiiiiBiB^MP: fbpabikm new ii l-M 
Window    Display 1 

Previous |   Reload Go to pop ulation at generation:   I |Down|   Up| 

Individual Fitness    Raw Fitness Genome Length Parent 1    Parent2    Number Mutations Number Crossovers 
0 0.043671     0.045822 352 4 4                                   1 0 
l 0.042363     0.043751 135 2 2                              0 0 
2 0.013821     0.014344 273 7 7                                   2 0 
3 0.083388      0.088723 451 8 8                                   0 0 
4 0.057512      0.061413 477 6 6                                   0 0 
5 0.022463     0.023755 406 3 3                                   1 0 
6 0                    0 88 1 6                                0 1 
7 0,058346      0.063826 644 6 1                                1 1 
8 0.042363     0.043751 135 2 2                                0 0 
3 0.083388     0.088723 451 8 8                                0 0 

; 

Cl i2 
Generation 1 

*„-„„_.„-..- ,. ■      — -V-.       -  .^.,-.-         ... 
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B.7.3    Histogram 

Displays a histogram of the fitnesses of the individuals in the population. 

lüj 
Uindow    Display 

Generation 1 

[Down!   Up|   Previous I   Reload I    Go to population at generation: 

Bin     Range    Count 

10 

[0            <0.05                   6            - 
1 [0.05,0.1)              4 
2 [0.1,0.15)              0 
3 [0.15,0.2)              0 
4 [0.2,0.25)              0 
5 [0,25,0.3)              0 
6 [0.3,0.35)              0 
7 [0.35, 0.4)               0 
8 [0.4,0.45)              0 
9 [0.45, 0.5)               0 
10 [0.5,0.55)               0 
11 [0.55,0.6)              0 
12 [0.6,0.65)               0 
13 [0.65,0.7)               0 
14 [0,7,0.75)              0 
15 [0.75, 0.8)               0 
16 [0.8,0.85)              0 
17 [0.85,0.9)              0 
18 [0.9,0.95)              0 
19 [0.95,1)                 0 
20 >=1                         1 

t 

Histogram of fitness values 

0. 

1 

1 
  

Fitness range: [0,11 Population size: 10 

a                         a 

B.8    Run window 

The Run window displays data over the entire run. Current capabilities include displaying the 
best and median individuals for each generation of the run. Users may click on an individual 
to open an Individual window for that individual or click on a generation number to open a 
Population window for that generation. 

wmmamssSBWKm ; ntMl MftMF : I1H—g 111 
Window    Vieu    Which 

□: 

IIIIIIIIIIIIIIIMIIIIIIIIIIIIIHMII 
Generation   Index   Fitness Genotype 

0. 028144 Mil I III lllllllll« III III 
0,0423» ■»■■IHIIBPIMl 
0.057512 aillllllllllllllllllHillllllinillllllllllllllllllHIIIMIIIHIHIIHilllHHH 
0.05*346 ■llllllllllllllllllHlllllllinillllllllPIIIIIIIHIIIMIIIIIHIUIIHIIIIIHllllllllllllllllllllll 
0.083388 IIIIIIIIWIIIIIMIIIIIMIIIIIIIIIHIIIIiaillimillWIIIIIIIIIHIIIIIIHII 
0.08M88 llllllllimilimilllMIIIIIIIIIHIilllBIIIIIMIIIHIIIlllllllllllllHll 
0.083388 iiiiiiiiiimiiiiHiiiiimiiiiiaiHiiiiiaiiiimiiiHiiiiiiiiiiiniiiiHiii 
o. 083388 llllllll I MnilllHIIIIIWIIIIIIIMIIIIIHIIIinillHIIIIIII IIIIIIIIIIBI11 
0.083388 llllllllIIIWIIIIIBIIIIIIBIIIIIIIIIBIIIIiailllHIIIWIIIIIIIIIIIIIIIIIBilI 
0.083388 IIIIIIIIIIHIIIIHillllimilllllllBIIIIIHIIIIIMIIIHIIIlllllllllllllHIII 

llllllll 
llllllll 

IIII III 
IIII III 
IIII III 

Median individual 
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B.9    Menu options 

B.9.1    Window 

The Window menu provides general window management commands.   Currently the only 
option available here is Close which closes the window. 

B.9.2    Display 

The Display menu allows the user to select what is displayed in a window. The options of 
this menu differ for the different windows. 

Individual window (See section B.6 for further detail.) 

• The Data option displays general data for the individual. 

• The Eamily option displays the current individual, its parents, and its offspring in 
Gene location format. 

Population window (See section B.7 for further detail.) 

• The Individuals option displays the individuals of the population. 

• The Statistics option displays the statistics for the individuals of the population. 

• The Histogram option displays a histogram of the fitnesses of the individuals of 
the population. 

B.9.3    View 

The View menu allows the user to select the format with which to display the genotypes of 
individuals. 

Genotype 
3230303011302220221100123312301001122302330230321303023000120130300300231300000300122230 

Displays each individual as a string of bit values. For binary runs, the bit values will be 
either zero or one. For ACGT runs, the bit values will range from zero to three. 

Zebra (Binary only) 
Minimum um in iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiii i iiiiiiiii inn min niiiiiiiiiiiiiiiiiiniii iiiiiiiiiiiiiiniii i urn n 
Displays each individual as a series of black and white stripes. A black stripe indicates 
a zero bit; a white stripe indicates a one bit. 

Neopolitan (Binary only) 
in mi  mi nimmii ii inn i i in n mi IIIMIIIII IIIII IIIII II II I HI I 
Displays each individual as a series of four different colored stripes. Each stripe rep- 
resents two bits. The following color coding scheme is used: 00 = black, 11 = white, 
01 = magenta, 10 = orange. 
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Color coded (ACGT only) 
i ii in ii ■■■ inn iiiHiiiiiiimi ii ii in in ii mi minium IIIIIIIIIJIIIIIIIIII IIIBIIII 

Displays each individual as a series of four different colored stripes. Each stripe represents 
the value of a single bit. The following color coding scheme is used: 0 = blue, 1 = red, 
2 = yellow, 3 = green. 

Gene locations 

Displays each individual with the locations of the genes indicated in color. The following 
color coding scheme is used: red = core protein, yellow = polymerase, blue = envelope. 
Overlapping genes are indicated with overlapping colors, i.e. red + blue = purple. 

B.9.4    Format 

The Format menu only appears with the Individual window. It allows the user to select how 
the gene information is displayed in the window. With the "long view", the entire reading from 
of each gene is displayed. Gene amino acids are displayed in upper case; all other amino acids 
are displayed in lower case. With the "short view", only the gene amino acids are displayed. 

B.9.5    Which 

The Which menu only appears with the Run window. It allows the user to select what to 
display for each generation. Current choices are either the best or median individual of the 
generation. 
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