
AD

MIPR 96MM6722

TITLE: Emerging Diseases as Complex Adaptive Systems/Pilot

PRINCIPAL INVESTIGATOR: John J. Grefenstette, Ph.D.

CONTRACTING ORGANIZATION: Naval Research Laboratory
Washington, DC 20375-5337

REPORT DATE: October 1997

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release;
distribution unlimited

The views, opinions and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy or decision unless so
designated by other documentation.

m\w w

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
(lathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor Information Operations and Reports, 12T5 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
October 1997

3. REPORT TYPE AND DATES COVERED
Final (15 May 96 - 30 Sep 97)

4. TITLE AND SUBTITLE

Emerging Diseases as Complex Adaptive Systems/Pilot

6. AUTHOR(S)

John J. Grefenstette , Ph.D.

5. FUNDING NUMBERS
96MM6722

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Research Center
Washington, DC 20375-5337

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200

We designed and tested a computational model of emerging viruses that simulates the evolution of real biological viruses.
Knowledge of viral molecular replication mechanisms was used to instruct the development of this genetic algorithm-based C
language "Virtual Virus" (VIV). The model consists of populations of hundreds to thousands of variable length virtual virus
genomes that replicate, mutate, recombine, and evolve. Each virus genome is composed of an artificial polynucleotide string
in which arbitrary "nucleotide" triplets encode English letters rather than amino acids, and in which sequences are translated
into words or phrases, rather than into polypeptides or proteins. The three word/phrases "COREPROTEIN," "POLY-
MERASE," and "ENVELOPE," which can be present in any order on the string, together comprise the selected phenotype.
Run-on and overlapping reading frames are permitted. Fitness is assigned to each string according to the encoded spelling
score. Probability of replication at each generation is directly related to string fitness. VIV populations seeded with random
strings regularly evolve terse, high spelling score genomes within a few hundred to a thousand generations. By systemati-
cally varying evolutionary operators in the VIV model we observed several reproducible features relevant to the evolution and
emergence of biological viruses: (1) adaptation (fitness slope) proceeds most rapidly at mutation rates close to one per
genome, and falls off rapidly at rates either higher or lower than unity (2) when added to mutation, recombination in any form
speeds adaptation, and (3) homologous recombination is superior to random cross-over recombination. The VIV model is
designed so that it can be conveniently modified to incorporate a variety of additional evolutionary operators, such as genome
segmentation, genomic secondary structures, insertions and deletions, and feed-back loops and hypercycles. Sub-population
phylogenies and individual ancestries can be recalled, displayed, and analyzed with a JAVA-based visualization tool.

14. SUBJECT TERMS

Emerging diseases, viral evolution, computational model, evolutionary computation.

15. NUMBER OF PAGES

53
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

FOREWORD

Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the U.S.
Army.

Where copyrighted material is quoted, permission has been
obtained to use such material.

Where material from documents designated for limited
distribution is quoted, permission has been obtained to use the
material.

Citations of commercial organizations and trade names in
this report do not constitute an official Department of Army
endorsement or approval of the products or services of these
organizations.

In conducting research using animals, the investigator(s)
idhired to the "Guide for the Care and Use of laboratory
Animals," prepared by the Committee on Care and Use of Laboratory
Animals of the Institute of Laboratory Resources, National
Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s)
idhired to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology,
thi~investigator(s) adhered.to current guidelines promulgated by
the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the
IHvistigator(s) adhered to the NIH Guidelines for Research
Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, _
the~investigator(s) adhered to the CDC-NIH Guide for Biosafety in
Microbiological and Biomedical Laboratories.

PI - Signature Date

Contents

1 Introduction 5

1.1 Subject 5

1.2 Purpose 5

1.3 Scope of Research 5

1.4 Background 6

1.4.1 Viral Evolution 6

1.4.2 Genetic Algorithms 9

1.4.3 Related Work 13

2 Materials and Methods 14

2.1 Project Resources 14

2.2 VIV: A Computational Model of Virus Evolution 14

2.2.1 Representation of Genetic Information 15

2.2.2 The Fitness Function 17

2.2.3 Selection 17

2.2.4 Mutation Operators 19

2.2.5 Recombination 19

2.2.6 Multiple-Population Infection 21

2.2.7 VIV Visualization Tool 21

3 Pilot Computational Studies 23

3.1 Effects of Mutation Rate in a Single Population 23

3.1.1 Experimental Design 24

3.1.2 Computational Results 24

3.2 Effects of Recombination in a Single Population 25

3.2.1 Experimental Design 26

3.2.2 Computational Results 26

3.3 Effects of Length Bias in a Single Population 27

3.3.1 Experimental Design 27

3.3.2 Computational Results 28

3.4 A Study of Mutation Rates in Multi-population Infections 28

3.4.1 Experimental Design 29

3.4.2 Computational Results 29

4 Conclusions 30

4.1 Recommendations 30

A The VIV Software System 35

A.l Running VIV 35

A.2 Input Files 35

A.3 Output Files 36

A.3.1 LOG File 36

A.3.2 OUT File 37

A.3.3 RAW File 38

A.3.4 BEST File 39

B The VIS Visualization Tool 40

B.l Introduction 40

B.2 Getting Started 40

B.2.1 Starting the applet 40

B.2.2 Starting the application 41

B.2.3 Opening a display window 41

B.3 Terminating a session 42

B.4 Input files 42

B.5 Display windows 43

B.5.1 Window organization 43

B.6 Individual window 44

B.6.1 Data 44

B.6.2 Family 45

B.7 Population window 45

B.7.1 Individuals 46

B.7.2 Statistics 46

B.7.3 Histogram 47

B.8 Run window 47

B.9 Menu options 48

B.9.1 Window 48

B.9.2 Display 48

B.9.3 View 48

B.9.4 Format 49

B.9.5 Which 49

C Project Support 50

C.l Acknowledgements 50

C.2 Project Personnel 50

D Project Presentations 51

1 Introduction

1.1 Subject

This report constitute the final report for the project "Emerging Diseases as Complex Adaptive
Systems", sponsored by the Walter Reed Army Institute of Research (WRAIR) and performed
by the Navy Center for Applied Research in Artificial Intelligence (NCARAI) at the Naval
Research Laboratory (NRL). This project addresses the issue of emerging virus epidemics by
focusing on methods of viral evolution. This report describes the computational model that
has been developed and presents pilot computational studies on a series of questions related
to the evolvability of viruses.

1.2 Purpose

The objectives of this project were to:

• Understand emerging virus epidemics by focusing on methods of viral evolution, and

• Develop and evaluate novel evolutionary modeling approaches.

The approach taken was to develop computational models of virus evolution that may
provide a means to answer fundamental questions concerning the evolved structure of the
viral genotypes, the dynamics of cross-species infection, and the role of alternative recombi-
nation strategies exhibited by viruses. This pilot study applies the methods of evolutionary
algorithms to the problem of modeling biological systems, extending the optimization-based
genetic algorithm in the direction of a more plausible model of biological evolution.

1.3 Scope of Research

In this pilot study, evolutionary models of computation were extended to the domain of viral
evolution. Previous work on evolutionary computation models, including techniques such as
genetic algorithms, evolution strategies, and evolutionary programming, has generally focused
on optimization and learning methods in engineering and science applications. There have
been few applications of these methods to the problem of modeling biological systems. This
project thus provides a partial bridge between the two fields, extending the optimization-based
genetic algorithm in the direction of a more plausible model of biological evolution.

The scope of the research during the period of 15 May 1996 to 30 September 1997 was to:

1. Design and implement an evolutionary computation model of viral infection.

2. Perform pilot computational studies with the model to investigate questions of interest
in the evolution of emerging infections.

These objectives have been accomplished. The pilot computational simulation, described
below, illustrate the kind of investigations that the computer model enables. While a complete
investigation of the model is beyond the scope of this effort, Section 4 contains our recommen-
dations for further investigation using the model that are expected to provide important new
insights into the evolution of emerging diseases.

1.4 Background

1.4.1 Viral Evolution

RNA viruses are - by several orders of magnitude - the most genetically labile "life forms" [22,
32]. Mutation rates for RNA viruses are typically on the order of one error per 10,000 nu-
cleotides replicated, compared to one per ten million nucleotides for larger DNA-based life
forms like vertebrates [11]. Since the average genome length of RNA viruses is only 10,000
nucleotides, and all are shorter than 40,000 nucleotides, almost all new viral RNA strands
differ from their parent strand by one or more nucleotides.

The nucleotide sequence a viral genome be thought of as an information string of 10,000
bits with four alternative states (A,C,G, U or T) per bit. The total evolutionary potential for
such a system is the universe of all possible 10,000-bit strings. These can be hypothetically
arranged in a "sequence space" so that each string is adjacent to its 30,000 one-step nearest
neighbors. The total dimensions of this space is 4 to the 10,000th power, a number that
is greater than all atoms in the universe. Obviously, most regions in this hypothetical RNA
sequence space does not support viral RNA replication, but many regions do permit replication,
and within these there are local optima. These optima can be conceptualized as peaks on a
fitness landscape in nucleotide sequence space [36, 43], as illustrated in Figure 1.

Similarly, evolution can be thought of as the process whereby sequence space is explored,
with successful variants colonizing the fitness peaks. Because the mutation rate of RNA repli-
cation is so high, evolutionary time for exploration of sequence space for RNA based life can
be measured in weeks and years, compared to the millennia required for DNA based life.
Rephrased, evolution of RNA life occurs on a scale that can be comprehended - and studied -
within human dimensions. The disparity between rates of RNA and DNA evolution - the dif-
ference in RNA and DNA "evolvability" - probably accounts for the fact that most of the new
emerging diseases are RNA viruses. RNA based genomes have sufficient plasticity to permit
rapid host switching. See Table 1.

This high evolvability of RNA may also account for the fact that almost all known
arthropod-borne viruses - viruses that alternately replicate within vertebrate and arthropod
cells - have RNA genomes. Although there are numerous DNA viruses of vertebrates and
numerous DNA viruses of arthropods, remarkably there is only a single known DNA arbovirus
(African Swine Fever Virus) [33]. It is likely that for most arthropod-borne viruses the se-
quence space fitness peak for growth in arthropod cells is close to, but not perfectly congruent
with, that for growth in vertebrate cells, and mutation is required to trampoline back and
forth through sequence space between the two host-specific optima.

Figure 1: Representation of evolving bit strings in sequence space. Here the sequence space is
shown only in two dimensions, the x and y axes. For a string of length L, the strings would
evolve through an L-dimensional sequence space, but this is impossible to draw on a two-
dimensional paper surface. Fitness is represented as the height on the z axis. In this example
populations of strings are colonizing several local fitness optima.

Mutation alone may be insufficient to permit movement through some regions of sequence
space [12, 13, 27]. By definition, even single step mutations from a local fitness optimum are less
fit than their parents. Particularly in rugged fitness landscapes, genomes only slightly removed
from the local optimum may be totally unfit, so that exploration of the surrounding space
becomes impossible. Recombination between genomes on separated fitness optima permits
such an "evolutionary broad jumping" type of sequence space exploration; recombinant progeny
may fall on previously totally unexplored fitness peaks [26]. Naturally occurring recombination
(or reassortment) has been closely studied in RNA viruses with segmented genomes such
as influenza. Recombination has also recently been shown to occur commonly among HIV
strains [4, 5]. The role of recombination in nature is less well studied for other RNA viruses,
but convincing examples can been found wherever they have been sought [1, 6].

The biological consequences of such recombination, whether by reassortment of segmented
genomes or true recombination through crossing over, may be the generation of novel variants
with new epidemiological properties. For influenza, change by mutation, widely known as
"drift," is of minor epidemiological significance, while change by recombination often results
in a "shift" with an epidemiological impact felt on a global scale [28]. It is now clear that
"shifts" in influenza come about through recombination (reassortment) of RNA sequences from
bird and pig influenza viruses with sequences from human viruses. The same model may be

Virus Genome Size: v Error Rate: (1 - q) Error Rate: v{\ - q)
(number of (per replication (per replication
nt or bp) per nt) per genome)

RNA
Bacteriophage Qß 4200 3xl0-4 1.3
Polio-1 virus 7400 3xl0~4 0.2
Vesicular stomatitis virus 11000 lxlO-4 1.1
Influenza-A virus 14000 6xl0-5 0.8
Sendai virus 15000 3xl0~5 0.5
HIV-1 (AIDS virus) 10000 lxlO-4 1.0
Avian myeloblastosis virus 7000 5xl0-5 0.4

DNA
Bacteriophage M13 6400 7xl0-7 4.6xl0-3

Bacteriophage 7 48500 8xl0-8 3.8xl0-3

Bacteriophage T4 166000 2xl0-8 3.3xl0-3

E. coli 4.7 mill 7xl0-10 3.3xl0-3

Yeast (Saccharomyces cerevisine) 13.8 mill 3xl0-10 3.8x10" 3

Neurospora crassa 41.9 mill lxlO-10 4.2xl0~3

Human 3 billion aj 10~12 « 3xl0~3

Table 1: Error Rates and Genome Sizes of RNA Viruses as Compared to DNA-based Life
Forms (modified from Eigen [11])

applicable to many other RNA viruses. All RNA viruses apparently can and do recombine, but
the epidemiological significance of recombination is less clear. Recent studies of the nucleotide
sequences of HIV strains from around the world have shown that recombination may be just as
dominant an evolutionary force for this virus as it is for influenza [37, 38]. Non-human primate
lentiviruses may contribute to the human HIV gene pool [25].

Existing RNA viruses only occupy a tiny fraction of the available RNA sequence space.
Clearly a dominant constraint is the ability of the proteins encoded by the viral RNA to
functionally interact with host cell constituents. However, there are probably several other
structural (protein/protein, protein/RNA, etc) constraints on sequence space exploration.

One possible constraint is that certain genome organizations may be necessary to support
evolvability through recombination or reassortment. Figure 2 shows several different genomic
organization structures of different RNA virus families [4]. There are at least six major types of
genomic organizations: diploid, non-segmented, pseudo-segmented, modular segmented, fully
segmented, and partite. The evolutionary pathways that have given rise to these various
genomic structures are not known. Equally important, it is unknown if these genomic organi-
zations reflect particular "evolvability" adaptations by viruses to specific ecological niches.

Sequencing of viral genomes is now technically routine and viral nucleotide sequence data

Diploid (Retro)

Non-segmented
(Picorna)

II I Pseudu-segmented
(Corona)

Modular Segmented
(Bunya)

Fully Segmented
(Orthomyxo)

■ ^^M ^^^ Partite
^^H ^^H (Como) [Plants]

Figure 2: Viral Representationm Strategies

is accumulating at an exponential pace. We anticipate that it will be possible to use viral
genomic sequence data to guide the construction of computational models of virus evolution
that have predictive potential.

1.4.2 Genetic Algorithms

Genetic algorithms (GAs) are heuristic learning models based on principles drawn from natural
evolution and selective breeding. Some features that distinguish genetic algorithms from other
optimization methods are:

• A population of structures that can be interpreted as candidate solutions to the given
problem;

• The competitive selection of structures for reproduction, based on each structure's fitness
as a solution to the given problem;

• Idealized genetic operators that alter the selected structures in order to create new struc-
tures for further testing.

In many applications in optimization and search, these features enable the genetic algorithm
to rapidly improve the average fitness of the population and to quickly identify the high perfor-
mance regions of very complex search spaces. In practice, genetic algorithms may be combined
with local search techniques to create a high-performance hybrid search algorithm.

procedure GA
begin

initialize population;
while termination condition not satisfied do
begin

select parents from population;
create copies of selected parents;
apply genetic operators to offspring;
perform evaluations of offspring;
insert oflspring into population;

end
end.

Figure 3: A Genetic Algorithm

A genetic algorithm simulates the dynamics of population genetics by maintaining a pop-
ulation of structures that evolves over time in response to the observed performance of its
structures in their operational environment. A specific interpretation of each structure (e.g.
as a collection of parameter settings, a condition/action rule, etc.) yields a point in the space
of alternative solutions to the problem at hand, which can then be subjected to an evaluation
process and assigned a measure called its fitness, reflecting its potential worth as a solution.
The search proceeds by repeatedly selecting structures from the current knowledge base on the
basis of fitness and applying idealized genetic search operators to these structures to produce
new structures {offspring) for evaluation. The basic paradigm is shown in Figure 3. For more
detailed discussions, see [14, 23].

Population P(0) may be initialized using whatever knowledge is available about possible
solutions. In the absence of such knowledge, the initial population should represent a random
sample of the search space. When each structure in the population has been evaluated, a new
population of structures is formed in two steps. First, structures in the current population are
selected to be reproduced on the basis of their relative fitness. That is, highly fit structures
may be replicated several times and poorly performing structures may not be replicated at all.
In the absence of any other mechanisms, the resulting selective pressure would cause the best
performing structures in the initial knowledge base to occupy a larger and larger proportion
of the knowledge base over time.

Next the selected structures are altered using idealized genetic operators to form a new set
of structures for evaluation. The primary genetic search operator is the crossover operator,
which combines the features of two parent structures to form two similar offspring. There are
many possible forms of crossover. The simplest version operates by swapping corresponding
segments of a string or list representation of the parents. For example, if the parents are
represented by the lists:

(01020304^5)

and
(6162636465)

10

then crossover might produce the offspring

(aia2&3&4&5)

and
(6162030405)-

Other forms of crossover operators have been defined for other representations [18]. Specific
decisions as to whether both resulting structures are to be entered into the knowledge base,
whether the precursors are to be retained, and which other structures, if any, are to be purged
define a range of alternative implementations.

A mutation operator, which alters one or more components of a selected structure, provides
the means for introducing new information into the knowledge base. Again, a wide range
of mutation operators have been implemented, ranging from completely random alterations
to more heuristically motivated local search operators. In most cases, mutation serves as a
secondary search operator that ensures the reachability of all points in the search space.

The search power of the genetic algorithm derives from the efficient exploitation of the
wealth of information that the testing of structures provides with regards to the interactions
among the components comprising these structures. Specific configurations of component
values observed to contribute to good performance (e.g. a specific pair of parameter settings, a
specific group of rule conditions, etc.) are preserved and propagated through the structures in
the knowledge base in a highly parallel fashion. This, in turn, forms the basis for subsequent
exploitation of larger and larger such configurations. Intuitively, we can view these structural
configurations as the regularities in the space that emerge as individual structures are generated
and tested. Once encountered, they serve as building blocks in the generation of new structures.
That is, GAs actually search the space of all feature combinations, quickly identifying and
exploiting combinations that are associated with high performance. The ability to perform
such a search on the basis of the evaluation of completely specified candidate solutions is
called the implicit parallelism of GAs. This leads to a focused exploration of the search space
wherein attention is concentrated in regions that contain structures of above average utility.
The knowledge base, nonetheless, is widely distributed over the space, insulating the search
from susceptibility to stagnation at a local optima.

Although many genetic algorithm applications have been in the areas of function optimiza-
tion, parameter tuning, scheduling and other combinatorial problems [8], genetic algorithms
have also been applied to many traditional machine learning problems, including concept learn-
ing from examples, learning weights for neural nets, and learning rules for sequential decision
problems. At NRL, we have investigated many aspects of genetic algorithms, ranging from
the study of alternative selection policies [17] and crossover operators [10, 41], to performance
studies of genetic algorithms for optimization in non-stationary environments [19]. Much of
our effort has been devoted to the development of practical learning systems that use genetic
algorithms to learn strategies for sequential decision problems [9, 16]. In our SAMUEL sys-
tem [18], the "chromosome" of the genetic algorithm represents a set of condition-action rules
for controlling an autonomous vehicle or a robot. The fitness of a rule set is measured by
evaluating the performance of the resulting control strategy on a simulator. This system has

11

successfully learned highly effective strategies for several tasks, including evading a predator,
tracking a prey, seeking a goal while avoiding obstacles, and defending a goal from threatening
agents. Experiments have shown that genetic algorithms provide an efficient way to learn
strategies that take advantage of subtle regularities in the behavior of opposing agents. We
are now beginning to investigate the more general case in which the behavior of the external
agents changes over time. In particular, we are interested in learning competitive strategies
against an opponent that is itself a learning agent. This is, of course, the usual situation in
natural environments in which multiple species compete for survival. Our initial studies lead
us to expect that genetic learning systems can successfully adapt to changing environmental
conditions.

While the range of applications of genetic algorithms continues to grow more rapidly
each year, the study of the theoretical foundations is still in an early stage. Holland's early
work [23] showed that a simple form of genetic algorithm implicitly estimates the utility of a
vast number of distinct subspaces, and allocates future trials accordingly. Specifically, let H
be a hyperplane in the representation space. For example, if the structures are represented by
six binary features, then the hyperplane denoted by H =0#1### consists of all structures
in which the first feature is absent and the third feature is present. Holland showed that the
expected number of samples (offspring) allocated to a hyperplane H at time t + 1 is given by:

M(H, t + 1) > M(H, t) * ^M * (i _ pd(H))

In this expression, M(H, t) is the expected proportion of the population in hyperplane H
at time t, f(H, t) is the average fitness of the current samples allocated to H, / is the average
fitness of the current population, and Pd{H) is the probability that the genetic operators will
be "disruptive" in the sense that the children produced will not be members of the same
subspace as their parents.1 The usual interpretation of this result is that subspaces with
consistently higher than average payoffs will be allocated exponentially more trials over time,
while those subspaces with below average payoffs will be allocated exponentially fewer trials.
This implicit parallelism can be shown to arise in any genetic algorithm that satisfies certain
minimal conditions [17]. In addition, Ros [39] presents an initial PAC analysis of a class of
genetic concept learners. There are many remaining opportunities for formal analysis of genetic
algorithms. Some crucial open questions include:

• How quickly do genetic algorithms converge to an approximately optimal solution for
various classes of problems? Behavior in the limit is known, but concrete convergence
results are known only for trivial classes of problems and for the simplest forms of genetic
algorithms.

• For which classes of problems does recombination (e.g., crossover) provide a measurable
advantage over mutation alone?

lrThe effects of mutation are generally neglected in a first-order analysis. Considerable attention has been
given to estimating the probability that a particular application of crossover will be disruptive [10].

12

• Given a fixed amount of computational resources, what are the optimal trade-offs among
population size, number of generations, and (for probabilistic problems) evaluation ac-
curacy?

• How much noise in the fitness functions can genetic algorithms tolerate?

• How well do genetic algorithms track non-stationary environments?

• What is the role of mating restrictions, e.g., mating with similar structures or among a
spatially segregated sub-population, in promoting robust search and learning?

This report describes some pilot computational studies that shed light on these general
issues for a genetic algorithm that has been modified to model the dynamic of viral infections.

1.4.3 Related Work

The evolutionary computation model described here includes a unique combination of several
novel features:

• Variable length genomes

• Non-coding regions

• Ability to encode evolvability parameters such as mutation rate and crossover rate.

Some previous work in evolutionary computation has considered these features in isolation.
For example, some recent work addresses the generalization to variable length structures,
including [14, 18, 20, 24, 34, 47]. The role of non-coding genetic material has been addressed
in [2, 21, 29, 31, 35, 42, 44, 45, 46]. Preliminary studies of the adaptation of genetic operators
include [7, 30, 40].

The remainder of this report is organized as follows: Section 2 describes the materials
and methods used in the project. This includes and description of the VIV virus modeling
software and the VIS visualization tool. Section 3 presents a series of pilot computational
studies that address the objectives listed above. Section 4 discusses the progress to date and
outlines areas for future research. The Appendices provide more detailed descriptions of the
software developed under this project.

13

2 Materials and Methods

2.1 Project Resources

This project was performed at the Navy Center for Applied Research in Artificial Intelligence,
located at the Naval Research Laboratory in Washington, DC. NRL equipment used during the
course of this project included five Sun Workstations running SunOS 4.2.1 and Solaris 2.4.1,
both being versions of the Unix operating system. The VIV software system developed under
this project was written in C and compiled using gcc (version 2.7.1). The VIV visualization
tool was written in Java, using Java Developer's Kit (JDK) 1.0.2.

2.2 VIV: A Computational Model of Virus Evolution

This section gives a brief overview of the Virtual Virus (VIV), a model of virus evolution. This
model has been developed to provide a computational framework for exploring fundamental
questions concerning the evolved structure of the viral genotypes, the dynamics of cross-species
infection, and the role of alternative recombination strategies exhibited by viruses.

VTV models one or more co-evolving populations of viruses. It is assumed that each
population consists of N individual viral genomes. The population evolves over time by means
of a genetic algorithm, shown in Figure 3. Each genome is evaluated by computing its fitness on
a given fitness landscape representing a host species for the virus. Viruses reproduce based on
their fitness, with the expected number of offspring based on the virus's fitness relative to the
population mean fitness. Offspring undergo mutations, including point mutations, insertions
and deletions, as well as recombination with other members of the virus population.

Rather than focusing on a particular virus-host model, VIV represents an abstract model
of a class of viral fitness landscapes. We believe that an abstract approach is the best route
to obtaining general results applicable to large classes of evolutionary systems. At the same
time, the VIV model has been designed to reflect the most relevant information-processing
relationships in the evolving system.

Any application of a genetic algorithm requires a specification of (at least) the following
elements:

• the representation of genetic information,

• the definition of the fitness function,

• the algorithm for selecting parents for reproduction,

• the mutation operators, and

• the recombination operators.

14

In all of these elements, we have attempted to include the most relevent features of the biolog-
ical system to the VTV simulation. As a result, we have extended the usual genetic algorithms
in several novel directions. The differences between VIV and the standard genetic algorithm
are described in the remainder of this section. The final subsection briefly describes the visu-
alization tool for the VIV model (described in more detail in Appendix B).

2.2.1 Representation of Genetic Information

Because the VIV model is intended to explore issues concerning both the genomic sequence
and the secondary structure of viruses, the model features a genotype-to-phenotype mapping
that captures several important features occurring in biological systems:

• In nature, the phenotype is determined by the sequence of amino acids produced as a
result of the transcription and translation of the genetic sequence. In the VIV model, we
define the phenotype in terms of an analogous translation process.

• A four-letter genomic alphabet. While studies of genetic algorithms usually assume a
binary alphabet, VIV adopts the standard four letter alphabet,

G = {A,T,C,G}.

That is, a genome in VTV consists of a sequence:

AACGTTATA...CGCACTG

While the binary alphabet is sufficient to encode any problem, the use of a four letter
alphabet provides roughly the same degree of redundancy that occurs in nature in the
mapping between the primary genetic sequence and the resulting phenotype.

• The natural genetic code is degenerate, meaning there may be more than genetic sequence
that codes for the same amino acid. In VIV, the mapping from genotype to phenotype
is also many-to-one. In particular, we adopt a mapping T from triplets over the genetic
alphabet (i.e., codons) to a phenotypic alphabet A:

T:GxGxG—>A

• In nature, the phenotypic alphabet is defined over the 20 amino acids occuring in proteins,
plus START and STOP codes. For the purpose of our abstract model, we adopt an
analogous alphabet:

A = {A, B,C,...,X,Y,Z, _,.,+}.

consisting of the 26 letters of the Roman alphabet along with the three punctuation
marks underscore (_), period (.) and plus (+). The underscore represents the START
codon and the period represents the STOP code. While this represents a slight increase
in the size of the target alphabet A from 22 to 29, it still supports all of the above
mentioned features of the natural genetic code.

15

codon output codon output codon output codon output
TTT A CTT I ATT q GTT Y
TTC A CTC I ATC Q GTC Y
TTA B CTA J ATA R GTA Z
TTG B CTG J ATG R GTG Z
TCT C CCT K ACT S GCT A
TCC C CCC K ACC S GCC E
TCA D CCA L ACA T GCA I
TCG D CCG L ACG T GCG 0
TAT E CAT M AAT U GAT U
TAC E CAC M AAC U GAC Y
TAA F CAA N AAA V GAA +
TAG F CAG N AAG V GAG +
TGT G CGT 0 AGT w GGT
TGC G CGC 0 AGC w GGC
TGA H CGA P AGA X GGA .
TGG H CGG P AGG X GGG ,

Figure 4: The VIV Artificial Genetic Code

As indicated above, the VIV model assumes an artificial genetic code. The motivation for
this departure from biology is that the current state of knowledge does not permit an accurate
model of the function of arbitrary proteins on the basis of their amino acid sequence. Therefore,
it was necessary to make a set of simplifying assumptions that would permit the definition of
a fitness landscape for our evolutionary model. Our approach has been to adopt an artificial
genetic code that maps the genome to an output alphabet (in this case, the English alphabet),
and to define a fitness landscape based on the resulting output strings. The particular artificial
genetic code in VIV is shown in Figure 4.

As in the natural genetic code, this artificial code has the property that there is more
information in the first two positions of each codon than in the third position. The codons for
each consonant differ only in the third position. Two of the three codons for the other symbols
also have the first two positions in common. This is meant to reflect the similar pattern of
information content in the genetic code, where the third position of a codon contains less
information than the first two positions. In addition, not all output symbols have the same
number of codons. Each consonant has two codons, each vowel (A, E, I, 0, U and Y) has
three codons, and the punctuation marks each have two codons, giving a total of 64 codons.

The mapping T can be applied to a genetic sequence to obtain a string over the alphabet
A. In VIV, as in nature, three output strings over A can be derived from a given genome
sequence by starting in any of the first three initial positions. That is, VIV models the three
reading frames occuring in natural genomes.

16

2.2.2 The Fitness Function

In nature, the environmental fitness landscape for a virus is defined by the set of environmental
conditions in the host species to which the virus must adapt in order to reproduce. As in the
modeling of protein function, the current state of knowledge does not permit an accurate
model of the environment in which viruses operate. Therefore, it is necessary to make a set
of simplifying assumptions that would permit the definition of a fitness landscape for our
evolutionary model.

The fitness landscape in VIV is defined by a set of target phenotypes, or words over the
output alphabet A. That is, the target phenotype specifies a phenotype that is highly fit in
terms of its ability to infect a given host species. The fitness of a given virus is determined by
a compatibility index that measures the similarity between the viral phenotype and the target
phenotype. Alternative fitness landscapes associated with different species can be specified by
alternative target phenotypes. For example, the target phenotype for a given viral environment
might be specified as the set:

{COREPROTEIN + ABC, POLYMERASE + ABC, ENVELOPE + ABC}

where the phenotype COREPROTEIN+ABC represents the ability of the expressed gene to yield
the core protein for the virus in the environment of the ABC species.

The compatibility index (or it raw fitness) computation is as follows:

1. All coding regions in the viral genome are identified, and all product strings are computed
(i.e., transcribed).

2. For each coding region, compute the compatibility score with respect to each given target
term by comparing the spelling of the product string with the spelling of the target term.

3. For each target term, the compatibility score of the target term is the highest compati-
bility score of any coding region with respect to this term.

4. The compatibility index of the genome is then a weighted average of the compatibility
scores of all the terms in the target phenotype.

2.2.3 Selection

Selection is the process of choosing individuals for reproduction in an evolutionary algorithm.
One popular form of selection is called proportional selection, which involves creating a num-
ber of offspring in proportion to an individual's fitness. This approach was proposed and
analyzed by Holland [23], and has been used widely in many implementations of evolution-
ary algorithms. Proportional selection provides a natural counterpart to the usual practice in
population genetics of defining an individual's fitness in terms of its number of offspring.

The selection process is implemented in three distinct steps, namely,

17

1. Map the objective function to fitness.

2. Create a probability distribution proportional to fitness.

3. Draw samples from this distribution.

The evaluation process of individuals in an evolutionary algorithm begins with the user-defined
objective function,

f:Ax^M

which typically measures some cost to be minimized or some reward to be maximized. The def-
inition of the objective function is, of course, application dependent. In general, the objective
function should provide enough information to drive the selective pressure of the evolutionary
algorithm. For example, "needle-in-a-haystack" functions, i.e., functions that assign nearly
equal value to every candidate solution except the optimum, should be avoided. The objective
function in VIV is the compatibility score, described above.

The fitness function

maps the raw scores of the objective function to a non-negative interval. The fitness function
is often a composition of the objective function and a scaling function g:

*(x)=g(f(x))

As an evolutionary algorithm progresses, the population often becomes dominated by high-
performance individuals with a narrow range of objective values. In this case, the fitness
functions described above tend to assign similar fitness values to all members of the population,
leading to a loss in the selective pressure toward the better individuals. To address this problem,
fitness scaling methods that accentuate small differences in objective values are often used in
order to maintain a productive level of selective pressure. VIV uses Sigma scaling [14]), defined
as follows:

$(a(t)) = l /(*(*)) "(7(<)-c* */(*)) iff(ai(t))>(f(t)-c*o-f(t))
| 0 otherwise

where f(t) is the mean objective value of the current population, oy (£) is the (sample) standard
deviation of the objective values in the current population, and c is a constant, say c = 2. The
idea is that f(t) — c* er/(i) represents the least acceptable objective value for any reproducing
individual. As the population improves, this statistic tracks the improvement, yielding a level
of selective pressure that is sensitive to the spread of performance values in the population.

Once the fitness values are assigned, the next step in proportional selection is to create a
probability distribution such that the probability of selecting a given individual for reproduc-
tion is proportional to the individual's fitness. That is,

E£=i *(«')'

18

VIV employs a so-called generational GA, in which the entire population is replaced during
each generation, so the above probability distribution is sampled \i times. Baker [3] developed
an algorithm called stochastic universal sampling (SUS) that exhibits less variance than re-
peated calls to the roulette-wheel algorithm [14].

2.2.4 Mutation Operators

In the traditional genetic algorithm, mutation is usually implemented as a probabilistic opera-
tor that randomly alters individual bits within a binary genome. Length altering mutations are
usually not considered, although there are exceptions [18]. In contrast, VIV contains several
biologically motivated forms of mutation, including:

• Random substitutions for individual bases,

• Deletions,

• Repetitions,

• Inversions.

Currently, preliminary forms of these operators are included in the model. For the purpose of
the pilot studies below, only point mutations (random substitutions on individual bases) have
been included in studies to date.

2.2.5 Recombination

In traditional genetic algorithms, the members of the population have a fixed length, and
recombination in a GA works as follows:

• Given two individuals of the population, pick a point (or multiple points) randomly.

• Line up the individuals and perform the crossover(s) at these points.

For example, given parents AATTGCACGGG and TCGCCCGCTAA and a crossover point of 5,

AATTGCACGGG

TCGCCCGCTAA

the offspring produced would be:

AATTCCGCTAA and TCGCGCACGGG.
 +++++++ ++++

19

(- indicates base element from parent 1 and + indicates base element from parent 2).

So-called two-point crossover is similar in that two individuals of the same length would
be lined up but two points would be chosen as crossover points. The parents AATTGCACGGG
and TCGCCCGCTAA, when crossed at positions 5 and 8 (chosen randomly),

AATTGCACGGG

TCGCCCGCTAA

would produce the offspring

AATTCCGCGGG and TCGCGCACTAA.
 +++ ++++ ++++

In VIV, a new crossover operator called homologous 1-point crossover has been designed
which crosses two variable length parents in regions of similarity. This type of crossover was
inspired by biological mechanisms. The homology matching algorithm works as follows:

1. Given two individuals, called parentl and parent2, pick a point at random on parentl.

2. Use window of bases around the selected point on parentl to match up against the same
size window on parent2, running through each possible starting positions for the window
on parent2.

3. Records the window on parent2 giving the best match against parentl.

4. Based on the best match score, decide whether to perform crossover between the parents.

If the match score is less than 50%, the parents are not recombined. Otherwise, the probability
of crossover increases from 0 (for a match score of 50%) to 1 (for a complete match). If crossover
occurs, a point is picked randomly within the aligned window of the parents, dividing each
parent into two segments. One offspring comprises thejirst segment of parentl and the second
segment of parent2, and the second offspring comprises the first segment of parent2 and the
second segment of parentl. Finally, if either offspring violates the maximum-length constraint,
then the crossover is aborted.

For example, given the following individuals:

Parentl: ATTTCGCTCAGGTAAATGCGCG

Parent2: GGGTTTCGATTTCATGGTAGCAAAAATTAG

Suppose we center a window of size 6 at position 4:

20

Parent2: GGGTTTCGATTTCATGGTAGCAAAAATTAG
*

Looking for the best match on parentl, we find that the window beginning with the second
base element matches best. We line up the parents according to the match.

Parentl: ATTTCGCTCAGGTAAATGCGCG

Parent2: GGGTTTCGATTTCATGGTAGCAAAAATTAG
* *

Now randomly pick a crossover point within this window, say 2.

Parentl: ATTTCGCTCAGGTAAATGCGCG
** *

Parent2: GGGTTTCGATTTCATGGTAGCAAAAATTAG

and perform the crossover:

Offspringl: ATTTCGATTTCATGGTAGCAAAAATTAG
—++++++++++++++++++++++++++

Offspring2: GGGTTTCGCTCAGGTAAATGCGCG
++++

(- indicates base element from parent 1 and + indicates base element from parent 2).

2.2.6 Multiple-Population Infection

The VTV fitness model supports the investigation of cross-species infection. As shown in
Figure 5, any number of interacting populations may be defined. Each population represents
the virus population infecting a specific species. Each species can have a distinct fitness
landscape, specified by the target phenotypes for that species. The model permits interactions
among the multiple evolving populations through a virus transfer mechanism. Briefly, at
periodic intervals, individual viruses may be transferred between the evolving populations.
This permits the study of the effects of viral recombination in a multiple species system.

2.2.7 VIV Visualization Tool

To facilitate the analysis of data produced by the computer simulations, we have developed a
visualization tool, called VIS. The two main objectives of the visualization are:

21

Figure 5: A Multi-population Model

• Easy access to desired information and easy transitions between related pieces of infor-
mation.

• The development of novel and alternative methods for displaying multi-dimensional data
in a coherent and informative manner.

In particular, VIS assists the user in:

• Observing the effects of individual genetic operators.

• Monitoring the average or best performance (fitness of the members of the population)
throughout a run.

• Tracking the discovery, growth and sharing of partial solutions.

• Comparing selection pressure, operator effectiveness, and other characteristics at various
time during a GA run.

• Tracing the ancestry or progeny of an individual.

The VIS program allows the user to "navigate" through a VTV run (both forwards and
backwards), focus on "snapshots" of any instant of a run, and observe individual events from
the run. These capabilities are expected to allow the user to examine the causes and effects of
individual events and to follow specific trails of information exchange in a particular evolution,
ultimately leading to a better understanding of the process of viral evolution.

The VIS program is written in the Java programming language and is available as either
an applet or an application. When executed as an applet, VIS is only able to access input
files from the NRL server. When executed as an application, VIS should be able to read any
correctly formatted input files. A detailed user's guide is provided in the Appendix.

22

3 Pilot Computational Studies

This section describes some of the pilot computational studies performed with VIV. The first
three subsections below describe an initial set of studies that test the internal consistency of
the model and to compare it with previous evolutionary computation models. In these initial
studies, a single control parameter, e.g., mutation rate, crossover rate, or length bias, was
systematically altered over a pre-defined set of values. There was a single population of viruses
evolving in a fixed environment. Besides indicating the effect of these parameters on the model,
these studies also provide a baseline against which to compare later studies, which will concern
multi-population infections. An example of a multi-population study is included as the final
section below.

Unless otherwise noted, all the studies below used the following set of model parameters
(explained in Appendix A):

• Population size = 500

• Generations = 2000

• Mutation rate = 0.003

• Crossover rate = 1.0

• Initial genome lengths = [100, 500]

• Maximum genome length = 7500

• Crossover operator = 1 point homologous crossover

• Mutation operator = random base substitution

• Number of evolving populations = 1

3.1 Effects of Mutation Rate in a Single Population

The goal of this study is to investigate the effect of different fixed mutation rates in a fixed,
single-species environment. The target phenotype was {C0REPR0TEIN, PDLYMERASE, ENVELOPE}.
Some interesting questions to address are:

1. Are higher or lower mutation rates more useful in a single population for this domain?

2. Are mutation rates correlated with length of the individuals?

3. Is crossover necessary to produce better results for all mutation rates tested?

23

1.0
Fitness vs Mutation Rate (with Crossover)

yy.
1 ^\

Population Best -«—
Population Ave -B—

0.8
yr

\ \ -

s 0.6
*%

© c \
u.
a
<D \ \
0. 0.4 (

\ ^v

\ \

0.2

 i ...J ...
0.0 0.0001 0.001

Mutation Rate
0.01 0.1

Figure 6: Effects of Mutation Rates (with Crossover enabled)

3.1.1 Experimental Design

Mutation rates for all individuals were fixed over the entire run at one of the following values:

{0.0,0.0001,0.0003,0.001,0.003,0.01,0.03,0.1}.

The mutation rate gives the probability that a random substitution mutation will occur at each
base element of the individual. For each mutation rate, 10 independent runs were performed
using different seeds for the random number generators. Two sets of experiments were run
using these mutation rates, one with a crossover rate of 1.0 and one with a crossover rate of
0.0 (no crossover).

3.1.2 Computational Results

The best plateau fitness refers to the fitness of the best individual in the final population, and
the average plateau fitness refers to the average fitness in the final population. Both measures
were averaged over 10 independent runs of the program. Figure 6 shows the best and average
plateau fitness obtained with each mutation rate with a crossover rate of 1.0. (Error bars
indicate one standard deviation over the 10 runs.) Figures 7 shows the best and average
plateau fitness obtained with each mutation rate with a crossover rate of 0.0.

Regarding the best individuals of each run, the best results were obtained using a mutation
rate of 0.003. Generally, the average length of the individuals in the final population was about

24

1.0

0.8

Fitness vs Mutation Rate (No Crossover)

8 0.6

3
0- 0.4

1

Population Best -♦—
Population Ave -B™

"

y'y

\ \
- \

\ \

\\

\ \
/ K

• . - J

*-i

0.001
Mutation Rate

Figure 7: Effects of Mutation Rates (with Crossover disabled)

500 nucleotides. Thus the mutation rate of 0.003 yields on average about 1.3 mutations per
individual during each generation. This is fairly consistent with biological observations of one
mutation per generation per individual.

The best-individual performance increases consistently as the mutation rate increases from
0.0 to 0.003. Higher mutation rates yield steadily worsening performance. Removing crossover
leads to decreased fitness with all rates of mutation tested.

Figure 8 shows the effects of the mutation rate on genome length. It is interesting that
as the mutation rate increases beyond 0.001, the plateau genome length also increases. An
explanation for this phenomenon is not obvious. Assuming that the coding regions are roughly
the same size, there would not seem to be any clear evolutionary advantage in longer genomes,
since the extra mutations are mainly occurring in non-coding regions. This data suggests that
the plateau genome length evolves in response to the base mutation rate. Further investigations
are required to identify the source of the selective pressure toward longer genomes. One
conjecture is that the non-coding regions may be used to some advantage as redundant coding
regions.

3.2 Effects of Recombination in a Single Population

The goal of this study is to investigate the effect of different fixed recombination rates in a
fixed, single-species environment.

25

Length vs Mutation Rate

With Crossover
No Crossover

1500

1000

500

0.001
Mutation Rate

0.01 0.1

Figure 8: Effects of Mutation Rates on Genome Length

3.2.1 Experimental Design

Experiments were conducted to determine the best overall crossover rate for this problem
domain. The type of crossover performed was 1-point homologous crossover. Crossover rates
of 0.0, 0.1, 0.3, 0.6 and 1.0 were used. A rate of 1.0 means that 100% of the population will
have the potential to be crossed each generation, depending on how well the crossover regions
match each other. Other parameters were set to default values as described above. For each
crossover rate, 10 runs were performed.

3.2.2 Computational Results

Figure 9 shows the best and average plateau fitness obtained with each crossover rate. All of
the results are averaged over 10 runs.

With respect to the best individual, the crossover rate of 1.0 gave the best performance,
and further, each performance curve indicated better results as the crossover rate increased
from 0.0 to 1.0.

With respect to the average fitness of individuals, the crossover rate of 0.6 and 0.3 produced
slightly better results than a crossover rate of 1.0. There appears to be no significant difference
resulting from crossover rates of 0.3, 0.6 or 1.0, but having at least some crossover appears to
be necessary to produce the best results.

It should be noted that the nominal crossover rate, shown here, differs from the effective

26

Fitness vs Crossover Rate
i 1'" '

■

,

/ ^

{ f'''
■

/
./' J _
('

Population Best -«— -
Population Ave -B—

I I I I

0.2 0.4 0.6
Crossover Rate

Figure 9: Effects of Recombination Rates

crossover rate. The nominal crossover rate determines the probability that crossover is at-
tempted between two parents. When there is insufficient similarity between the two parents,
no crossover occurs. Thus the effective crossover rate may be less than the nominal rate.

3.3 Effects of Length Bias in a Single Population

This study investigates the effect of different fixed length biases in a fixed, single-species envi-
ronment.

3.3.1 Experimental Design

The maximum genome length determines the attenuation of the fitness. The fitness declines
linearly based on length until it reaches 0 at the maximum genome length. Experiments were
conducted to determine the effect of changing the maximum genome length for this problem
domain. The maximum genome lengths were fixed over the entire run at one of the following
values:

{1000,2500,5000,7500,22500,25000}.

For each value for the maximum genome length, 10 runs were performed. All other parameters
were set to default values as described above.

27

a.

1
Fitness vs Maximum Length

1 i

t 1 ~- ■

0.95 / -

0.9

r
0.85

/ ■

0.8, / -

0.75

■

Best Fitness -«—
Ave Fitness -a—

<
2500 5000

Maximum Length

Figure 10: Effects of Length Bias

3.3.2 Computational Results

Figure 10 shows the best and average plateau fitness obtained with each value for the maximum
genome length. All of the results are averaged over 10 runs.

A maximum genome length of 2500 to 5000 appears to give the best results. Performance
declined both for values lower than 2500 and greater than 5000. A maximum length of 1000
is too probably severe, leading to premature convergence of the population to sub-optimal
solutions. Maximum lengths of 7500 and higher are not restrictive enough, and performance
begins to degrade there as well.

3.4 A Study of Mutation Rates in Multi-population Infections

This study was aimed at understanding the evolution of evolvability, i.e., the ability of viruses to
rapidly adapt to new environments. In this study, three populations of viruses co-evolved. The
fitness of individuals with each population was measured against a specific target phenotype.
The target phenotypes were as follows:

{C0REPR0TEIN + HUMAN, POLYMERASE + HUMAN, ENVELOPE + HUMAN}

{C0REPR0TEIN + CHIMP, POLYMERASE + CHIMP, ENVELOPE + CHIMP}

{C0REPR0TEIN + MONKEY, POLYMERASE + MONKEY, ENVELOPE + MONKEY}

Note that the target phenotypes have strong similarities, as well as significant differences. As
a result, a virus that has evolved in any one of these environment will be relatively highly fit
in any other (compared to random genomes).

28

During the evolutionary runs, viruses transferred among the evolving populations as fol-
lows:

1. At intervals of 10 generations, 20 viruses were selected at random from each population.
Ten of the selected viruses were transferred to each of the other two populations, replacing
randomly selected viruses from the destination population.

2. The transferred viruses were evaluated for fitness within the receiving population.

3. Finally, the transferred viruses were selected for reproduction based on their fitness, and
recombined with native viruses.

This procedure allowed cross-fertilization between the evolving population.

Two questions of immediate interest are:

1. Are higher mutation rates more useful in the multi-population scenario than in the single-
population scenario?

2. Given the opportunity, will higher mutation rates evolve in multi-population scenarios?

A series of experiments were run in which the mutation rate was systematically varied
over a range of values, in order to identify the most favorable value for the multi-population
scenario.

3.4.1 Experimental Design

VIV was run in multi-population mode, with three populations. The interpopulation transfer
rate was 10 individuals transferred to each of the other two populations every 10 generations.
The population size was 500 individuals per population. Each run comprised 2000 generations.
Mutation rates were:

{0.0,0.0001,0.0003,0.001,0.003,0.01,0.03,0.1}

For each mutation rate, 5 runs were performed.

3.4.2 Computational Results

The results are shown in Figure 11. All of the results are averaged over 5 runs. According
to this pilot study the mutation rate that provides the best multi-population infection does
not significantly differ from the best mutation rate for the single-population case. Further
study is required in order to identify factors that may influence the overall mutation rate in
multi-population scenarios.

29

Multi-population Fitness vs Mutation Rate

0.001
Mutation Rate

Figure 11: Effects of Mutation Rate in Multi-host Environment

4 Conclusions

The objectives of this project were to understand emerging virus epidemics by focusing on
methods of viral evolution, and to develop and evaluate novel evolutionary modeling ap-
proaches. A computational model of virus evolution has been developed that enables the
study of fundamental questions concerning the evolved structure of the viral genotypes, the
dynamics of cross-species infection, and the role of alternative recombination strategies exhib-
ited by viruses. The VIV software system applies the methods of evolutionary algorithms to the
problem of modeling biological systems, extending the optimization-based genetic algorithm in
the direction of a more plausible model of biological evolution. Pilot computational studies on
a series of questions related to the evolvability of viruses have been performed. Further effort
with the model is now required in order to address specific hypotheses about the evolution of
emerging disease.

4.1 Recommendations

During this pilot project, we have developed valuable computational tools for the study of
viral evolution and emerging infections. However, extensive computational experiments with
the model were beyond the scope of this project. Many promising directions for further research
suggest themselves, including:

• Evolvability selected as an adaptation to differing fitness landscapes, including:

— Single peak vs. multi-peak landscapes,

- Smooth vs. rugged landscapes, and

30

•

- Fixed vs. changing landscapes.

The results would provide insights into the effects of different mutation rates, for example,
on viruses whose host population was itself shifting or evolving in response to the virus.
All of these classes of landscapes can be investigated by varying the target phenotypes
during the run.

Effects of secondary structure in fitness, mutation and recombination. Genome secondary
structure, e.g., the presence of stems and loops, plays a role in both mutation and recom-
bination in nature. Modeling the mutation and recombination operations that depend on
secondary structure may lead to further understanding of the role of non-coding regions
as regulatory mechanisms in viral evolution. An initial implementation of secondary
structure was implemented as part of this project, but much remains to be done.

• Effects of mating restrictions and speciation. Our initial model includes no mating restric-
tions within each viral population. It would be reasonable to model mating restrictions
based on sequence similarity or secondary structure. Mating restrictions are likely to
play a key role in the development of separate genome organization, such as shown in
Figure 2.

• Evolvability of mutation rate, processivity and segmentation. Only preliminary computer
studies of the evolvability of mutation rates were possible within this pilot studies.

This project has achieved its goal of developing a novel evolutionary modeling approach to
the study of emerging infections. A computational model of virus evolution has been developed
that enables the study of fundamental questions concerning the evolved structure of the viral
genotypes, the dynamics of cross-species infection, and the role of alternative recombination
strategies exhibited by viruses. The pilot computational studies illustrate just a few of the
possible ways to use the model to investigate issues related to the evolution of viruses. For
example, the results shown in Figure 8 suggest that the genome length may evolve in response to
the base mutation rate. The VTV computational model will enable the study of such questions
in a highly observable simulation environment. As the model is refined, such studies can be
expected to provide additional insight into issues concerning viral evolution.

The VIV model provides the computational infrastructure for an extended examination of
these issues and their relationship to the evolution of emerging disease. We look forward to
pursuing these issues in future projects.

31

References

[I] R. Ahmen, C.S. Hahn, T. Somasundarem, L. Villarete, M. Matloubian, and J. H. Strauss, 1991.
Molecular basis of organ-specific selection of viral variants using chronic infection. J. of Virology
65:4242-4247.

[2] D. Andre and A. Teller, 1996. A study in program response and the negative effects of introns in
genetic programming. Proc. of the 1st Annual Conference on Genetic Programming, 12-20.

[3] J. E. Baker, 1987. Reducing bias and inefficiency in the selection algorithm. Proceedings of the
Second International Conference on Genetic Algorithms, ed. J Grefenstette, 14-21. Hillsdale, NJ:
Lawrence Erlbaum Associates.

[4] D. S. Burke, 1997. Recombination in HIV: An important viral evolution strategy. Emerging
Infectious Diseases 3:253-259.

[4] D. S. Burke, 1997. Personal communication.

[5] D. S. Burke and F. E. McCutchan, 1996. Global distribution of human immunodeficiency virus-1
clades. In (Devita, V.T., Jr, S. Hellman, S. A. Rosenberg, editors) AIDS: Bilogy, Diagnosis,
Treatment and Prevention, Fourth Edition. Lippincott-Raven Publishers.

[6] D. D. Clarke, E. A. Duarte, A. Moya, S. F. Elene, E. Domingo and J. Holland, 1993. Bottlenecks
and population passages cause profound fitness differences in RNA viruses. J. Virology 67:222-
228.

[7] L. D. Davis, 1989. Adapting operator probabilities in genetic algorithms. Proceeding of the Third
International Conference on Genetic Algorithms.

[8] L. Davis (Ed.), 1991. Handbook of Genetic Algorithms, Van Nostrand Reinhold.

[9] K. A. De Jong, 1990. Genetic-algorithm-based learning. In Machine Learning: An artificial in-
telligence approach, Vol. 3, Y. Kodratoff and R. Michalski (Eds.), Morgan Kaufmann.

[10] K. A. De Jong and W. M. Spears, 1992. A formal analysis of the role of multi-point crossover in
genetic algorithms. Annals of Mathematics and Artificial Intelligence 5(1), 1-26.

[II] M. Eigen, 1993. The origin of genetic information: Viruses as models, Gene 135:37-47.

[12] J. Felsenstein, 1974. The evolutionary advantage of recombination. Genetics 78:737-56.

[13] J. Felsenstein, 1976. The evolutionary advantage of recombination, II: Individual selection for
recombination. Genetics 83:845-59.

[14] D. E. Goldberg, 1989. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley.

[15] D. Goldberg, K. Deb and B. Korb, 1989. Messy genetic algorithms: motivation, analysis, and
first results, Complex Systems, 3, 493-530.

[16] J. J. Grefenstette, 1988. Credit assignment in rule discovery systems based on genetic algorithms.
Machine Learning 3(2/3), 225-245.

[17] J. J. Grefenstette, 1991. Conditions for implicit parallelism. In Foundations of Genetic Algo-
rithms, G. Rawlins (Ed.), Morgan Kaufmann.

32

[18] J. J. Grefenstette, C. L. Ramsey and A. C. Schultz, 1990. Learning sequential decision rules using
simulation models and competition. Machine Learning 5(4), 355-381.

[19] J. J. Grefenstette, 1992. Genetic algorithms for changing environments. Proceedings of Parallel
Problem Solving from Nature-2, R. Maenner and B. Manderick (Eds.), North-Holland, 137-144.

[20] I. Harvey, 1992. The SAGA cross: the mechanics of crossover for variable-length genetic algo-
rithms, in Parallel Problem Solving from Nature, 2, 269-278.

[21] T. Haynes, 1996. Duplication of coding segments in genetic programming. Proc. of the 13th
National Conference on Artificial Intelligence, 344-349.

[22] J. Holland, K. Spindler, F. Horodyski, E. Grabau, S. Nichol and S. VandePol, 1982. Rapid
evolution of RNA genomes. Science 215:1577-85.

[23] J. H. Holland, 1975. Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

[24] H. Iba, H. deGaris, and T. Sato, 1994. Genetic programming using a minimum description length
principle, in Advances in Genetic Programming, 265-284.

[25] M. J. Jin, H. Hui, D. L. Robertson, 1994. Mosaic genome structure of simian immunodeficiency
virus from west African green monkeys. EMBOJ 13:2935-47.

[26] S. A. KaufTman, 1993. The Origins of Order. New York: Oxford University Press. 114-17.

[27] A. S. Kondrashov, 1984. Deleterious mutations as an evolutionary factor. I. The advantage of
recombination. Genet Res (Camb) 44:199-217.

[28] F. M. LaForce, K. L. Nichol, N. J. Cox, 1994. Influenza: Virology, epidemiology, disease and
prevention. Am J Prev med 10:31-44.A

[29] James R. Levenick, 1991. Inserting introns improves genetic algorithm success rate: Taking a
clue from biology, Proc. of the 4th International Conference on Genetic Algorithms, 123-127.

[30] J. R. Levenick, 1995. Metabits: generic endogenous crossover control. Sixth International Con-
ference on Genetic Algorithms, 88-95.

[31] R. K. Lindsay and A. S. Wu, 1996. Testing the robustness of the genetic algorithm on the floating
building block representation, Proc. of the 13th National Conference on Artificial Intelligence.

[32] S. Morse and A. Schluederberg, 1990. Emerging viruses: The evolution of viruses and viral
diseases. JID 162:1-7.

[33] F. A. Murphy, C. M. Fauquet, D.H. L. Bishop, S. A. Ghabrial, A. W. Jarvis, G. P. Martelli, M.
A. Mayo and M. D. Summers (eds.), 1995. Virus Taxonomy: Classification and Nomenclature of
Viruses: Sixth Report of the International Committee on Taxonomy of Viruses. Springer-Verlag,
New York, 586 pp.

[34] P. Nordin and W. Banzhaf, 1995. Complexity compression and evolution, Proc. of the 6th Inter-
national Conference on Genetic Algorithms, 310-317.

[35] P. Nordin, F. Francone, and W. Banzhaf, 1996. Explicitly defined introns and destructive
crossover in genetic programming, in Advances in Genetic Programming 2, Chpt. 6, 111-134.

33

[36] W. B. Provine, 1986. Sewall Wright and Evolutionary Biology. Univ of Chicago Press, Chicago,
pp. 307-317.

[37] D. L. Robertson, B. H. Hahn, P. M. Sharp, 1995. Recombination in AIDS viruses. J. Mol Evol
40:249-59.

[38] D. L. Robertson, P. M. Sharp, F. E. McCutchan, B. H. Hahn, 1995. Recombination in HIV-1
(letter). Nature 374:124-26.

[39] J. Ros, 1993. Learning Boolean functions with genetic algorithms: A PAC analysis. In Founda-
tions of Genetic Algorithms-2, D. Whitley (Ed.), Morgan Kaufmann.

[40] J. D. Schaffer and A. Morishima, 1987. An adaptive crossover distribution mechanism for genetic
algorithms. Proceeding of the Second International Conference on Genetic Algorithms, 36-40.

[41] W. M. Spears and K. A. De Jong, 1991. An analysis of multi-point crossover. In Foundations of
Genetic Algorithms, G. Rawlins (Ed.), Morgan Kaufmann.

[42] M. Wineberg and F. Oppacher, 1996. The benefits of computing with introns, Proc. of the 1st
Annual Conference on Genetic Programming, 410-415.

[43] S. Wright, 1932. The roles of mutation, inbreeding, crossbreeding, and selection evolution. Pro-
ceedings of the Sixth International Congress on Genetics 1:356-66.

[44] A. S. Wu, 1995. Non-coding segments and floating building blocks for the genetic algorithm. Dis-
sertation, University of Michigan.

[45] A. S. Wu and R. K. Lindsay, 1995. Empirical studies of the genetic algorithm with non-coding
segments, Evolutionary Computation, 3:2.

[46] A. S. Wu and R. K. Lindsay, 1996. A comparison of the fixed and floating building block repre-
sentation in the genetic algorithm. Evolutionary Computation 4:2.

[47] B. T. Zhang and H. Muhlenbein, 1995. Balancing accuracy and parsimony in genetic program-
ming. Evolutionary Computation, 3:1, 17-35.

34

A The VIV Software System

A.l Running VIV

VIV is executed via a UNIX command line as follows:

7. viv &

All output is directed to various output files, described below. After completion of the program,
the VTS visualization tool can be used to navigate through the data produced during the run.
The remainder of this Appendix describes the input and output files for the VIV program.

A.2 Input Files

Several runtime parameters allow the user to control how experiments are done, how data is
saved and display, and how various components operate. Runtime parameters are specified in
two files: params.def and params. At startup, the program first reads the params.def file,
setting the runtime variables according to the default values in that file. Then it reads the
params files, overwriting any values specified. Each line in the parameter files has the form:

parameter = value

Lines that begin with a pound-sign (#) are comments and are ignored.

The following paragraphs define each parameter, giving its range of values and its default
values. For each parameter, the default value is shown as the (first) value after the equal sign.
For parameters with string values shown below, only one of the listed strings will be accepted
(except for filename parameters). Generally, there is little or no error checking on numeric
parameters.

popsize = 500
Number of genomes per population. Program variable: Popsize.

gens = 2000
Max number of generations performed. Program variable: Maxgens.

best-interval =10
Generations between printing out the best genome. Program variable: Best-interval.

max_length = 7500
Maximum length of a genome. Program variable: Length.

transfer_npops = 1
Number of population undergoing evolution. Program variable: Transfer_npops.

35

min_init-length =100
Minimum length for randomly generated genomes in the initial population Program
variable: Min_init_length.

max_init-length = 500
Maximum length for randomly generated genomes in the initial population Program
variable: Min_init_length.

nurate = 0.003
The probability that a base undergoes a random substitution during each reproductive
event. Program variable: Mu_rate.

c_rate = 1.0
The probability that a individual participates in crossover during each reproductive event.
Program variable: Crate.

cross_type = hom_lpt
Crossover operator. Default is one-point homologous crossover. Program variable:
Cross_type.

seed = 1
Random number seed. Program variable: Seed.

vis = 1
If set, produce output required by the VIS visualization tool. (See Appendix B). Program
variable: Vis.

A.3 Output Files

VIV normally creates several output files, described in the following subsections. The following
descriptions follow the default behavior of VIV. However, the names of these files and the
frequency of updating them can also be controlled by runtime parameters.

A.3.1 LOG File

The log file records the start and finishes time for each run of VIV, for example:

VIV started on sunl9.aic.nrl.navy.mil
Thu Jun 26 09:41:30 1997

36

VIV finished
Thu Jun 26 11:42:46 1997

A.3.2 OUT File

The out file normally contains one line of statistics per generation. A partial out file is shown
below:

Gen Trials Best Online Offline Ave Std Base Ext HaxL HinL AveL StdL AveH
0 600 0.1304 0.0468 0.1224 0.0468 0.0257 0.0000 0 499 100 307 113 0.003

10 5500 0.2057 0.0877 0.1712 0.1197 0.0312 0.0269 1 647 94 403 96 0.003
20 10500 0.2944 0.1221 0.2192 0.2005 0.0448 0.0643 3 746 183 452 98 0.003
30 15500 0.3329 0.1563 0.2531 0.2424 0.0392 0.1228 2 753 228 439 105 0.003
40 20500 0.3564 0.1834 0.2782 0.2835 0.0372 0.1693 7 748 224 437 98 0.003
50 25500 0.4117 0.2068 0.3004 0.3195 0.0396 0.2094 8 861 253 490 111 0.003

The fields in the out file are:

Gen
Generation counter.

Trials
Trial counter (number of evaluations performed).

Best
The best value of any genome in the current population.

Qnline
Online performance. This is the running average of the best-so-far values.

Offline
Offline performance. This is the average value of all genomes.

Ave
The mean value in the current population.

Std
The standard deviation of values in the current population.

37

Base
The baseline value used to measure fitness. The fitness of a genome is its raw value minus
the baseline.

Ext
The number of exterminated genomes (in the previous generation). A genome is exter-
minated if its value is below the baseline value. Exterminated genomes have no offspring.

MaxL, MinL, AveL, StdL

Maximum, minimum, mean and standard deviations of the lengths for genomes in current
population.

AveM

The average mutation rate (per base) in current population.

A.3.3 RAW File

The raw file normally contains one line per generation, showing the best, average and standard
deviation of the raw fitness scores in the current population. A partial raw file is shown below:

Gen Trials Best Ave Std
0 500 0.1366 0.0490 0.0272

10 5500 0.2212 0.1266 0.0332
20 10500 0.3130 0.2134 0.0475
30 15500 0.3525 0.2576 0.0416
40 20500 0.3823 0.3011 0.0399
50 25500 0.4486 0.3420 0.0440

The first field is the generation counter. The second field is the trial counter for the current
generation.

38

A.3.4 BEST File

VTV normally produces one best file containing the best genome in each generation. A partial
best file is shown below:

Generation 1990 Trial 995150 Raw Fitness 1.000 Fitness 0.985 Length 109 M.rate 0.0030

genotype: AAGGCTCTCGTATAGCCCGGATAGCGACGTATGCACAGGGGTCGGCGTCCAGTCCACGCCATGGCTACCGCCGGGCGGGC
GCCCAAAAATATCCGCGTCGATATGGGCT

frame 0: VAIZFK.FP0RMX_P0LYMERASE.P0KVUQ.0YUR.

frame 1: XIDEWLUWYZGT.Y_YNCTLHJLL_.0LVRC0DRHA

frame 2: _C0REPR0TEIN.D0CWL0H_E0P0_ENVEL0PE.

GAG in frame 2

POL in frame 0

ENV in frame 2

.C0REPR0TEIN.docwlom.eopo.envelope.

vaizfk.fpormx.POLYMERASE.pokvuqoyur.

.coreprotein.docwlom.eopo.ENVELOPE.

Generation 2000 Trial 1000292 Raw Fitness 1.000 Fitness 0.985 Length 110 M.rate 0.0030

genotype: AAGGTTaCGCATAGCCCGAATAGCGACGTATGCACAGGGGTCGACGCCCAGTTCACGCCATAGCTACCGCCGGAGGCGGT
GCCCAGAAGTATCCGCGTCGATATGGGCT

frame 0: VYIIFK+FP0RMX_P0LYMERASE.„ENVELOPE.

frame 1: XADMWLUWYZGT.YYENATLFJLL+OZKXWQOYUR.
frame 2: .C0REPR0TEIN.DTKWD0MWE0PXPGL+ZC0DRHA

GAG in frame 2: .COREPROTEIN.dtkwdomweopxpgl+zcodrha

POL in frame 0: vyiifk+fpormx.POLYMERASE. envelope.

ENV in frame 0: vyiifk+fpormx.polymerase. ENVELOPE.

39

B The VIS Visualization Tool

B.l Introduction

To fully understand the implications of the VIV model, it is necessary to examine the individual
events and interactions that occur during a VIV run as well as evaluate the outcome of a run.
We are developing a visualization tool (VIS) in conjunction with the VIV model to facilitate
the analysis of GA data. The two main goals of the VIS project are:

•

•

The design of tool capabilities that allow easy access to desired information and easy
transitions between related pieces of information.

The development of novel and alternative methods for displaying multi-dimensional data
in a coherent and informative manner.

The VIS program is meant to be a tool with which one can easily "navigate" through a
GA run (both forwards and backwards), focus on "snapshots" of any instant of a run, and
observe individual events from the run. These capabilities are expected to allow the user to
examine the causes and effects of individual events and to follow specific trails of information
exchange in a VIV run, ultimately leading to a better understanding of the simulated virus
evolution.

The VIS program is written in the Java programming language and is available as either
an applet or an application. When executed as an applet, VIS is only able to access input files
provided on the NRL server. When executed as an application, VIS should be able to read
any correctly formatted input files.

To use VIS to examine a VIV run, turn on the vis flag in the VIV parameters. This action
causes VIV to print all run data to a set of files, placed in a single directory. This directory is
specified as the input directory when starting a VTS session. VTS is then able to access data
as necessary based on user interactions and requests.

Though the VIS program capabilities and displays are currently focused on the VTV
project, much of the functionality is easily generalizable to be useful for general GA data.

B.2 Getting Started

B.2.1 Starting the applet

To start the VIS applet, go to http: //www.aic .nrl .navy .mil/ aswu/vis/vistool2/vis2.html.
Enter the name of the directory containing the data files from the desired run and click on the
"Enter" button.

40

B.2.2 Starting the application

To start the VIS application, enter the following command: Java Vis2 &. When the Vis2
window appears, enter the name of the directory containing the data files from the desired run
and click on the "Enter input directory" button.

B.2.3 Opening a display window

Each time an input directory is entered, VIS will display a selection window. The selection
window prompts the user to open one or more display windows. The three types of display
windows available: Run, Population, and Individual; they are described in section B.5.

To open a Run window, the user must select the information to be displayed for each
generation of the run. Current choices are the best individual and the median individual.

Se/ection window] 'da
Select view: Display for each generation:

^Run vHBest fitness

■^Population v-Median fitness

■»/■Individual

Cancel |
-—-—^ ■—.»WTO««

To open a Population window, the user must specify the generation to be displayed.
!tf^TOJ ^V^WBIWerWVenvaSZE^!!^^

Select view:

rRun Display a single population:

-♦Population

vln dividual

Cancel |

Generation to display: JQ

OKI

■ • '•-

To open an Individual window, the user must specify the generation and index of the
individual to be displayed.

41

Sefecfionwindow J
Select view:

v'Run

v-Population

(-♦'Individual

Cancel
■ ■• —

Display a single individual:

Generation number: >]o

Index of individual: I]Q

All display windows opened from a particular selection window (or its progeny display
windows) will display data from the same input directory. The user may open multiple selection
windows to display data from more than one input directory.

B.3 Terminating a session

To terminate the VIS application, simply select the Quit button from the Vis2 window. VIS
will close all display windows and terminate the program.

To close a specific display window, select the Close option from the Window menu. This
action closes the specified window, but does not affect any other windows.

B.4 Input files

VIS expects multiple data files for each GA run. All files should be placed in a single directory.
This directory is the input directory that is specified when starting the program.

Each run has a file called vis_params. This file stores the number of generations in the
run, the size of the population, and the genotype format. The VIS program currently supports
two genotype formats. Binary format individuals have genotypes consisting of only two bases,
represented by zero and one. ACGT format individuals have genotypes consisting of four bases,
represented by the bits ranging from zero to three.

For each generation of the run, four additional files are expected: vis_generation.n,
vis_best.n, vis-median.n, and vis.cross.n, where n is the generation number. The file
vis_generation.n stores all of the data from generation n. This data includes general statis-
tics from that generation as well as complete information about each individual in the gen-
eration. The file vis_best.n stores the information about the individual with the highest
fitness in generation n. The file vis_median.n stores the information about the individual
with the median fitness of generation n. The file vis_cross.n stores the crossover points of
all individuals in which crossover occurred. Generation 0 indicates the initial population.

42

B.5 Display windows

VIS displays data in one of three types of windows: Run, Population, or Individual. These
windows may be opened from the selection box that appears after in input directory is entered,
or they may be opened by clicking on select display items in the display windows themselves.

B.5.1 Window organization

Display windows are laid out in three sections: south bar, center panel, and north bar.

;;, ; ^Displaywindow &.=•»"#! •^•;psr"l in
Window

North bar

Center panel

South bar

South bar

The south bar contains a description of what the window is currently displaying. For
example, an Individual window displaying the fifth individual from the fourth generation
would display "Generation 4, Individual 5" in the south bar.

Center panel

The center panel displays the primary data of the window. The contents of the center
panel for each type of window will be described in the sections below on the specific types of
display windows.

North bar

The north bar contains buttons for navigating among the individuals of a generation or
among the generations of a run. Users may use these buttons to change the individual or
generation that is displayed in the window. Out-of-range index values are ignored. The north
bar currently does not appear in Run windows.

Down| Up| Previous 1 Reload! Go to population at generation: I

• The Down button causes the window to display the individual/generation with the next

43

lowest index from the current individual/generation.

• The Up button causes the window to display the individual/generation with the next
highest index from the current individual/generation.

• The Previous button causes the window to display the individual that was displayed
previous to the currently displayed individual.

• The Reload button re-loads and re-displays the current generation.

• The Go to field allows the user to select any individual/generation (within range) to be
displayed.

B.6 Individual window

The Individual window displays the data for a single individual. The Display menu (sec-
tion B.9.2) allows the user to select one of two center panel displays.

B.6.1 Data

Displays general data for an individual.

iril Mrillllliil ffilfil m
Mindov Display View Fornat

DownJ Up | Previous! Go to Individual at index: ;I

individual: 7

Gonoratioiai 1

Fitlwsj: 0.058346

L*XL£th in bits: G44

°<"">t»" ■«■IIIIIIIIIIIIIIIIMillllllMIIIIIIIIIIIHIIIIIIWIIIWIIIIMimHiMIIIMIIIIIMIWHUM III llllllll milllllllllll■

te«nt2 (1,255)1 ■ lllllllllll IIMMI «Hill III llllllll ■lllll lllllllll ■

1 ftut*tjUm(s) *t: 62

laaiBBtiii^BiiiiiiiiiiaaaiiaaiiiiHiiiiiiiiiiiiiiiiiiiBBiiiiHiiiiJiBiaHiaaaHBjjiifHHiiiiiiHHiuiiiiiiiiiiiiiiaiHiiiiiiiiiiiiiBiai
1 c£ossov*r(s) At: 448

■nimnrn
3 avncs!

0«M 0; Fran« 2
sits S3 to 74

Gnu 1: Fruu 2
Sits 182 to 198

G«w 2) FRU 2
Bits 53 to 74

stwiiOTWoewi,

_GHSLHÜ.CUKrmiV.

SDVIAVIYVGCCTI.

Generation 1, Individual 7

• The index of the individual. Each individual is arbitrarily assigned an index number to
distinguish it from other individuals.

• The generation to which the individual belongs.

• The fitness of the individual.

44

• The length of the individual in bits.

• The genotype of the individual. Genotype formats are described in section B.9.3. The
Color coded format is shown above.

• The genotype, index, and length of the individual's parents. Users may click on a parent
genotype to open a new Individual window for that parent.

• The mutations, if any, involved in creating this individual. Mutation locations listed and
are marked in color.

• The crossover points, if any, involved in creating this individual. If crossover occurred, the
portion that each parent contributed to the individual is indicated in color. If crossover
did not occur, the individual was cloned from Parent 1.

• The genes and their locations and reading frames on this individual. Users may select to
display only the genes or the genes in relation to the rest of their reading frame.

B.6.2 Family

Displays the current individual, its parents, and its offspring in Gene location format. Users
may select parents or offspring to open a new Individual window displaying the Family of
the selected individual.

i --■ \ ftxtivkfuaf view

| Window Display

1 Down| Up| Previousl Go to individual at index: \

Parents Individual Offspring

(Gen 0) (Gen 1) (Gen 2)

6 ■■HH1 BB^^IS
wm—mm i

HI

(Generation 1, Individual 7

B.7 Population window

The Population window displays data about a single population. The Display menu (sec-
tion B.9.2) allows the user to select one of three center panel displays.

45

B.7.1 Individuals

Displays each individual of the population along with its fitness and index. The default format
by which individuals are displayed is by bit value; the examples below show the Color coded
format. The format may be changed with the View menu (section B.9.3). Users may click on
an individual to bring up an Individual window for the selected individual.

__^
 • • ■•■!

\\>-:^~i' Potxj&üri view iflBafl JJ
Window Display View

Go to population at generation:

illinium i ■Minium
Index Fitness Genotype

0 0.043671 IIIIIHIIIIIIIIIIBIIIIIimiMHIl
1 0.042363 ■■«■«■■Hill
2 0.013821 111 llllllllimillllllll lllllll IRMIIIH Will
3 0.083388 llllllllllaillllMllllliaillllIIIIHIIIIIHIIIIIIHIIIHIIII1IIIIIIIIIIIIHIllllllll
4 0.057512 ■IIIIIIIIIIIIIIIIIIII^IIHIIIMIIIIIIIIIIIIIIIHIIIIHIIIIIIHIMIIHIIIIIHI
5 0.022463 ■IIIIIIHIIIIIIIHIIIIIIIIIII II 111 IIIIIIIIIIIIIIBIIIIIHIIIIIIIHIIUIIIIIIIIII«
6 o HIIIIIIIIIH
7 0.05834E HillIIIIIIIIIIIIIIIIIHillllllimillllllllllllllllHIIII■IIIIIIHI^IIIHiilllHIl
8 0.042363 ■IWIHIIH Hill III
s o.083388 IIIIIIIIIIBIIIIinilllllMIIIIIIIHIIIIIHIIIIimilHIIIIIIIIIIIIIIIIIHIIIIIIIIIII

IHIIIIilllllillll

Generation 1

B.7.2 Statistics

Displays the statistics for each individual of the population. Users may click on the index value
an individual to bring up an Individual window for the selected individual.

\ -i mi SÄisatsBiiiiiBiB^MP: fbpabikm new ii l-M
Window Display 1

Previous | Reload Go to pop ulation at generation: I |Down| Up|

Individual Fitness Raw Fitness Genome Length Parent 1 Parent2 Number Mutations Number Crossovers
0 0.043671 0.045822 352 4 4 1 0
l 0.042363 0.043751 135 2 2 0 0
2 0.013821 0.014344 273 7 7 2 0
3 0.083388 0.088723 451 8 8 0 0
4 0.057512 0.061413 477 6 6 0 0
5 0.022463 0.023755 406 3 3 1 0
6 0 0 88 1 6 0 1
7 0,058346 0.063826 644 6 1 1 1
8 0.042363 0.043751 135 2 2 0 0
3 0.083388 0.088723 451 8 8 0 0

;

Cl i2
Generation 1

*„-„„_.„-..- ,. ■ — -V-. - .^.,-.- ...

46

B.7.3 Histogram

Displays a histogram of the fitnesses of the individuals in the population.

lüj
Uindow Display

Generation 1

[Down! Up| Previous I Reload I Go to population at generation:

Bin Range Count

10

[0 <0.05 6 -
1 [0.05,0.1) 4
2 [0.1,0.15) 0
3 [0.15,0.2) 0
4 [0.2,0.25) 0
5 [0,25,0.3) 0
6 [0.3,0.35) 0
7 [0.35, 0.4) 0
8 [0.4,0.45) 0
9 [0.45, 0.5) 0
10 [0.5,0.55) 0
11 [0.55,0.6) 0
12 [0.6,0.65) 0
13 [0.65,0.7) 0
14 [0,7,0.75) 0
15 [0.75, 0.8) 0
16 [0.8,0.85) 0
17 [0.85,0.9) 0
18 [0.9,0.95) 0
19 [0.95,1) 0
20 >=1 1

t

Histogram of fitness values

0.

1

1

Fitness range: [0,11 Population size: 10

a a

B.8 Run window

The Run window displays data over the entire run. Current capabilities include displaying the
best and median individuals for each generation of the run. Users may click on an individual
to open an Individual window for that individual or click on a generation number to open a
Population window for that generation.

wmmamssSBWKm ; ntMl MftMF : I1H—g 111
Window Vieu Which

□:

IIIIIIIIIIIIIIIMIIIIIIIIIIIIIHMII
Generation Index Fitness Genotype

0. 028144 Mil I III lllllllll« III III
0,0423» ■»■■IHIIBPIMl
0.057512 aillllllllllllllllllHillllllinillllllllllllllllllHIIIMIIIHIHIIHilllHHH
0.05*346 ■llllllllllllllllllHlllllllinillllllllPIIIIIIIHIIIMIIIIIHIUIIHIIIIIHllllllllllllllllllllll
0.083388 IIIIIIIIWIIIIIMIIIIIMIIIIIIIIIHIIIIiaillimillWIIIIIIIIIHIIIIIIHII
0.08M88 llllllllimilimilllMIIIIIIIIIHIilllBIIIIIMIIIHIIIlllllllllllllHll
0.083388 iiiiiiiiiimiiiiHiiiiimiiiiiaiHiiiiiaiiiimiiiHiiiiiiiiiiiniiiiHiii
o. 083388 llllllll I MnilllHIIIIIWIIIIIIIMIIIIIHIIIinillHIIIIIII IIIIIIIIIIBI11
0.083388 llllllllIIIWIIIIIBIIIIIIBIIIIIIIIIBIIIIiailllHIIIWIIIIIIIIIIIIIIIIIBilI
0.083388 IIIIIIIIIIHIIIIHillllimilllllllBIIIIIHIIIIIMIIIHIIIlllllllllllllHIII

llllllll
llllllll

IIII III
IIII III
IIII III

Median individual

47

B.9 Menu options

B.9.1 Window

The Window menu provides general window management commands. Currently the only
option available here is Close which closes the window.

B.9.2 Display

The Display menu allows the user to select what is displayed in a window. The options of
this menu differ for the different windows.

Individual window (See section B.6 for further detail.)

• The Data option displays general data for the individual.

• The Eamily option displays the current individual, its parents, and its offspring in
Gene location format.

Population window (See section B.7 for further detail.)

• The Individuals option displays the individuals of the population.

• The Statistics option displays the statistics for the individuals of the population.

• The Histogram option displays a histogram of the fitnesses of the individuals of
the population.

B.9.3 View

The View menu allows the user to select the format with which to display the genotypes of
individuals.

Genotype
3230303011302220221100123312301001122302330230321303023000120130300300231300000300122230

Displays each individual as a string of bit values. For binary runs, the bit values will be
either zero or one. For ACGT runs, the bit values will range from zero to three.

Zebra (Binary only)
Minimum um in iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiiii i iiiiiiiii inn min niiiiiiiiiiiiiiiiiiniii iiiiiiiiiiiiiiniii i urn n
Displays each individual as a series of black and white stripes. A black stripe indicates
a zero bit; a white stripe indicates a one bit.

Neopolitan (Binary only)
in mi mi nimmii ii inn i i in n mi IIIMIIIII IIIII IIIII II II I HI I
Displays each individual as a series of four different colored stripes. Each stripe rep-
resents two bits. The following color coding scheme is used: 00 = black, 11 = white,
01 = magenta, 10 = orange.

48

Color coded (ACGT only)
i ii in ii ■■■ inn iiiHiiiiiiimi ii ii in in ii mi minium IIIIIIIIIJIIIIIIIIII IIIBIIII

Displays each individual as a series of four different colored stripes. Each stripe represents
the value of a single bit. The following color coding scheme is used: 0 = blue, 1 = red,
2 = yellow, 3 = green.

Gene locations

Displays each individual with the locations of the genes indicated in color. The following
color coding scheme is used: red = core protein, yellow = polymerase, blue = envelope.
Overlapping genes are indicated with overlapping colors, i.e. red + blue = purple.

B.9.4 Format

The Format menu only appears with the Individual window. It allows the user to select how
the gene information is displayed in the window. With the "long view", the entire reading from
of each gene is displayed. Gene amino acids are displayed in upper case; all other amino acids
are displayed in lower case. With the "short view", only the gene amino acids are displayed.

B.9.5 Which

The Which menu only appears with the Run window. It allows the user to select what to
display for each generation. Current choices are either the best or median individual of the
generation.

49

4 .

C Project Support

C.l Acknowledgements

This project was supported by the Walter Reed Army Institute of Research (WRAIR) and by
the Office of Naval Research.

C.2 Project Personnel

In addition to the PI, Dr. John Grefenstette, other NRL personnel supported in part by this
project included:

• Kenneth De Jong, Ph.D.

• Connie Loggia Ramsey, M.S.

• William Spears, M.S.

Other NRL research personnel contributed to this project through participation in tech-
nical discussions at NRL, including Dr. Robert Daley, Dr. Ralph Hartley and especially Dr.
Annie Wu, who was responsible for the VIS visualization tool. Dr. Wu was supported by a
Post Doctoral Fellowship from the National Research Council.

The project team gratefully acknowledges the many stimulating discussions with Dr. Don-
ald S. Burke of WRAIR.

50

* <

D Project Presentations

D. S. Burke, "An Evolutionary Biology Approach to Emerging Diseases", Conference on Re-
search Requirements in the Operations of DNA Technology in Infectious Diseases, Uniformed
Services University of the Health Sciences, Bethesda, Maryland, 17 January 1997.

D. S. Burke, J. Grefenstette, A. Wu, C. Ramsey, and K. De Jong. "VIV: A Virtual Virus that
is an Evolutionary Computation Model of Biological Viruses", Plenary Lecture, International
Workshop on Molecular Epidemiology and Evolutionary Genetics of Pathogenic Microorgan-
isms, Montpellier, Prance, 26 May 1997.

D. S. Burke. "Evolution of Viruses and Emerging Infectious Diseases", American Red Cross
Seminar Series, Holland Laboratory, Rockville, Maryland, 25 June 1997.

J. Grefenstette. "VIV: A Virtual Virus Model", Colloquium at the Institute for Computational
Sciences and Informatics, George Mason University, June 1997.

A. Wu. "VTV: The Virtual Virus Project", Workshop on Evolutionary Computation with
Variable Size Representation, at the 7th International Conference on Genetic Algorithms,
July, 1997.

A. Wu. "Non-coding DNA in biological systems", Workshop on Exploring Non-coding Seg-
ments and Genetics-based Encodings, at the 7th International Conference on Genetic Algo-
rithms, July, 1997.

51

