
Protocols for Asymmetric Communication Channels

Micah Adler* Bruce M. Maggs

December 1997
CMU-CS-97-191

19971230 126
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

»TIC QUALITY INSPECTED 2
Department of Computer Science

University of Toronto
10 King's College Road
Toronto ON, M5S3G4

Canada

Micah Adler is supported by an operating grant from the Natural Sciences and
Engineering Research Council of Canada, and by ITRC, an Ontario Centre of Excel-
lence. This research was conducted in part while he was at the Heinz Nixdorf Institute
Graduate College, Paderborn, Germany. Bruce Maggs is supported in part by the Air
Force Materiel Command (AFMC) and ARPA under Contract F196828-93-C-0193,
by ARPA Contracts F33615-93-1-1330 and N00014-95-1-1246, and by an NSF Na-
tional Young Investigator Award, No. CCR-94-57766, with matching funds provided
by NEC Research Institute and Sun Microsystems. This research was conducted in
part while he was visiting the Heinz Nixdorf Institute, with support provided by DFG-
Sonderforschungsbereich 376 "Massive Parallelität: Algorithmen, Entwurfsmethoden,
Anwendungen".

The views and conclusions contained here are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
express or implied, of AFMC, ARPA, CMU, or the U.S. Government.

poved tea jgubüs teleasfij

Keywords: asymmetric communication, communication protocol

Abstract

This paper examines the problem of communicating an n-bit data item from a
client to a server, where the data is drawn from a distribution D that is known
to the server but not to the client. Since this question is motivated by asym-
metric communication channels, our primary goal is to limit the number of bits
transmitted by the client. We present several protocols in which the expected
number of bits transmitted by the server and client are 0(n) and 0(H(D)),
respectively, where H(D) is the entropy of D, and can thus be significantly
smaller than n. Shannon's Theorem implies that these protocols are optimal in
terms of the number of bits sent by the client. The expected number of rounds
of communication between the server and client in the simplest of our protocols
is 0{H(D)). We also give a protocol for which the expected number of rounds
is only O(l), but which requires more computational effort on the part of the
server. A third protocol provides a tradeoff between the computational effort
and the number of rounds. These protocols are complemented by several lower
bounds and impossibility results. We show that all of our protocols are existen-
tially optimal in terms of the number of bits sent by the server, i.e., there are
distributions for which the total number of bits exchanged has to be at least
n — 1. In addition, we show that there is no protocol that is optimal for every
distribution (as opposed to just existentially optimal) in terms of bits sent by
the server. We demonstrate this by proving that it is undecidable to compute,
for an arbitrary distribution D, the minimum expected total number of bits
sent by the server and client. Furthermore, the problem remains undecidable
even if only an approximate solution is required, for any reasonable degree of
approximation.

1 Introduction
In the summer of 1995, the second author set out to establish a high-speed wire-
less internet connection between the Carnegie Mellon campus and his home ap-
proximately one mile away. A directional antenna was mounted above the tallest
tower on campus, and a matching antenna was installed at home. The anten-
nas were driven by WaveLAN transceivers, which implement 2 megabit/second
wireless ethernet. The installation was successful, but within a few months the
performance of the wireless connection deteriorated to the point that it was no
longer usable. This problem coincided with the deployment of a campus-wide
wireless network intended to provide laptop users with uninterrupted access as
they roamed the campus [6]. Unfortunately, this network used the same Wave-
LAN technology and carrier frequency, and as a result, packets traveling from
home to campus were often lost in transit.

Ultimately, the goal of establishing a high-speed bidirectional wireless con-
nection was abandoned, and packets were instead routed from home to campus
across an ordinary telephone line using a 28.8 kilobit/sec modem at each end.
The resulting connection was highly asymmetric, with download speed exceeding
upload speed by a factor of 69-to-l. The connection proved adequate, however,
to support an X-terminal and web browser at home, and has been in daily use
for several years. Some tasks, however, are limited by the slow upload speed.

In the past two years a number of commercial asymmetric networking tech-
nologies have also been introduced. For example, using ordinary telephone lines,
56k modems can download at up to 56kbs, but can upload data at a maximum
rate of 33.6kbs. In some cities, telephone companies are now offering much
more asymmetric network connections. For example, in Pittsburgh trials of
asymmetric digital subscriber loops (ADSL) have begun. These ADSLs provide
a download speed of 1.5mbs, and an upload speed of 64kbs. As another ex-
ample, The DirecPC network connection offered by Hughes beams data down
from a satellite to the user's home at 400kbs, and the user sends data back
using an ordinary phone line (at 33.6kbs). Internet access provided through
cable-television networks is also typically asymmetric. In the Boston area, for
example, MediaOne is offering service with a download rate of 1.5mbs and an
upload rate of 300kbs. Independent of whether the underlying medium is asym-
metric, it has been observed that home users typically download much more
data than they upload.

This paper aims to address the limitations of asymmetric network connec-
tions by examining the following question. Is it possible to use a high-speed
downlink to improve the performance of a low-speed uplink? Perhaps surpris-
ingly, in several natural situations the answer is yes. To be more precise, suppose
that a client at the end of the downlink has an n-bit data item to send to a
server at the end of the uplink. We show that in certain circumstances, the
server can use the high-speed downlink to reduce the expected number of bits
sent by the client across the low-speed uplink to significantly less than n.

1.1 Reducing the number of bits sent by the client

We study an asynchronous model based on Yao's two-party communication
complexity model [14]. In order for the client to transmit its n-bit data item to
the server, the client and the server communicate bits to each other, as specified
by some fixed protocol V. At each step of the protocol, V specifies whether the
client or the server sends the next bit, as well as the value of that bit. A bit
sent by the client can only depend on the bits sent thus far by the server and
the information known to the client at the start of the protocol. The analogous
requirement holds for the server. When the protocol terminates, the server must
have enough information to determine with certainty the n-bit data item.

It is already well known, and not difficult to prove, that if the server has
no information about the n-bit data item held by the client, then in the worst
case the number of bits sent by the client must be at least n. This information-
theoretic lower bound would seem to imply that there is no way to exploit
the high-speed downlink. There are many circumstances, however, in which
the server has some information about the data item held by the client. For
example, if the client is sending a sequence, of keystrokes to the server, the
server may know the frequency with which the client presses any particular key.
Throughout this paper we assume that the n-bit data item held by the client has
been drawn randomly from a probability distribution, and that this distribution
is known to the server.

In the keystrokes example, it is reasonable to assume that both the client and
the server know the distribution, since both have seen a history of keystrokes
made by the client. In this case, the client and the server can agree on a data
compression protocol for the client to use in encoding its data. For example,
suppose that the client uses a static Huffman-coding scheme [7]. Then the data
can be transferred in one round with no bits sent by the server and with at
most H{D) + 1 expected bits sent by the client, where H(D) is the entropy of
the distribution D, a quantity that varies between 0 and n, and is given by the
equation

z.e{o,i}" Pz

where xt is an n-bit string and p, is the probability of xt. Notice that because
both the client and the server know the distribution, the high-speed downlink-
is not utilized in this example.

But what if only the server knows the distribution? Throughout this pa-
per, we assume that the client does not know the distribution. Although this
seems counterintuitive at first, there are natural situations consistent with this
assumption. As an example, suppose that the client has filled out a form on an
internet web page, and is to send its response to a server. The server, which has
seen many replies, may know the distribution, but the client is unlikely to. As
another example, suppose that each client is a probe that is designed to take an

experimental sample and report it back to the server. The probe will not have
access to the samples taken by other probes, and may not be able to make a

long transmission back to the server.

1.2 Our results

In general, we characterize a protocol in terms of four parameters, (<r, <f>,\,p),
where a is the expected number of bits sent by the server, <j> is the expected
number of bits sent by the client, p is the expected number of rounds (defined
below), and A is the expected computational effort expended by the server (also
defined below). These parameters are functions of n, the number of bits in the
data item, and H(D), the entropy of the distribution D.

A round of the protocol is defined to be a maximal set of consecutive bits
sent by the server (without any bits sent in between by the client), followed by a
maximal set of consecutive bits sent by the client. All the bits sent by the server
(or client) in a round can be transmitted without waiting for a response from
the client (or server, respectively), and thus minimizing the number of rounds
required by a protocol is an important consideration in many scenarios. For
example, this is the case when the time required for a round-trip communication
is large and does not depend on the number of bits communicated.

The computational effort A expended by the server is quantified as follows.
We assume that the server has access to the distribution on the string held
by the client via a black box that answers queries of the form "What is the
cumulative probability of 4-bit data items matching the pattern 0*11?" In this
example n is 4, and the server is asking for the sum of the probabilities of the
strings 0011 and Olli. The parameter A is simply the number of such queries
made by the server. In all of our protocols, the additional computation time
required of the server in the random-access machine (RAM) model [1] is at most
O(AlogA). The computation time required by the client is at most O(n).

We require that upon the termination of a protocol, the server knows the
rc-bit data item held by the client with certainty, i.e., there is no probability that
the server incorrectly identifies the data item. The number of bits transmitted
by both parties, the number of rounds, and the computational effort expended
by the server, however, may all be random variables taken over the distribution
of data items and over random choices made by the algorithms underlying the
protocols.

We begin by describing a (3n, 1.71H(D) + 1, 3n, 1.7Lff (£>) + 1) protocol. We
call this protocol Computationally-efficient because the expected number of
black-box queries performed by the server is asymptotically optimal.

Next, we present an {0(n),0(H(D) + l),2n,0(l)) protocol. This protocol
is called Round-efficient, because the expected number of rounds required is
only a constant, which is optimal.

Our third protocol, Computation-Rounds-Tradeoff(c), allows us to achieve
a tradeoff between the expected number of black box queries and the expected

number of rounds required. For any positive integer c between 1 and n, Computation-
Rounds-Tradeoff(c) is an (0{n),0(H(D) + l),0(*f), 0(f)) protocol.

It is worth noting that the actual speeds of the downlink and uplink do
not appear in our analyses of these protocols. Although these protocols were
motivated by networks with asymmetric transfer speeds, in fact they can be
applied in any situation in which it is desirable to reduce the number of bits
transmitted by the client, provided that the server knows the distribution, but
the client does not.

We complement these upper bounds by proving a number of impossibility
results and lower bounds.

We begin by observing that all three of our protocols are asymptotically
optimal in the number of bits sent by the client, 0{H(D)). Next, we show that
they are also all existentially asymptotically optimal in the number of bits sent
by the client and the server together, 0(n). By existentially, we mean that for
any h, there are distributions with entropy H(D) = h for which the expected
total number of bits sent by both parties must be fi(rz).

We also show that there is no protocol that is optimal for every distribution,
as opposed to just existentially optimal, in terms of bits sent by the server.
This follows from a proof that it is undecidable to compute, for an arbitrary
distribution D, the value OPT(D), the minimum expected total number of
bits that the server and client must exchange in order to solve the problem.
Furthermore, the problem remains undecidable even if only an approximate
solution is required. For example, computing a value that is guaranteed to be
between the inverse of Ackerman's function applied to OPT(D) and Ackerman's
function applied to OPT(D) is undecidable.

We conclude by showing that the number of black-box queries performed
by the server in protocol Computation-efficient is asymptotically optimal.
In particular, we show that for any entropy h, there is a distribution D with
entropy H(D) = h for which the sum of the number of bits sent by the client plus
the number of black-box queries is at least n. We also show that for any single-
round protocol in which the client sends 0(H(D)) bits, there are distributions
for which the server must send an exponential number of bits, Q.(n2H^).

1.3 Previous work and related work

There is a wealth of literature on two-party communication complexity. Most of
this work, however, examines symmetric communication channels, and analyzes
the total number of bits transmitted by the two parties, and sometimes the
number of rounds. A good reference is the recent book by Kushilevitz and
Nisan [8].

There is relatively little work on asymmetric communication complexity.
One notable exception is a body of work connecting asymmetric communication
complexity to lower bounds on the time to perform operations on various data
structures [11, 12]. The last paper is most closely related to this one. It presents

a number of general techniques for proving tradeoffs between the number of bits
sent by the server and the number of bits sent by the client. It then applies
these techniques to a several fundamental problems. As an example, one of the
problems it considers is the membership problem. In this problem the server
holds a set S of strings, and the client holds a single string x. The goal of both
parties is to determine if a; belongs to S. The paper also examines generalizations
of the membership problem such as the disjointness problem. In this problem
the server and client hold sets S and C, and the goal is to determine if the
sets are disjoint. Other problems include the span problem, in which the server
holds the basis of a vector space, the client holds a vector, and the goal is to
determine of the client's vector lies in the server's space, and the greater than
problem, in which the server and client each hold an integer, and the goal is to
determine which integer is larger.

A recent study has shown that in practice, even if the flow of data is entirely
downstream, the overall rate at which data can be transferred in asymmetric
networks may be limited by the upload speed [2]. The explanation for this is
that in the TCP protocol, acknowledgments must be sent upstream for all data
that travels downstream, and the flow of data will stall if the acknowledgments
cannot keep up.

2 Upper Bounds

In this section we provide three protocols. All three are within a constant
fraction of optimal in terms of the number of bits sent by the client. They
are also all existentially optimal in the number of bits sent by the server. The
first is asymptotically optimal in terms of the number of black box queries
required, the second is asymptotically optimal in terms of the expected number
of rounds required, and the third allows us to achieve a tradeoff between black
box queries and the number of rounds required. In the following, let D represent
the distribution known to the server, and let D(x) be the probability assigned
to the string x by the distribution D.

Protocol Computation-efficient
In this protocol, the server sends the client queries consisting of candidate

prefixes for the client's string, and the client responds positively or negatively
to these queries. The server keeps track of the responses, and this information
allows the server to remove strings from consideration. Future queries to the
client depend on the client's previous responses. In order to do this efficiently,
the results of black box queries are adjusted from the a priori probability of
a string occurring, to reflect the information learned from the client thus far.
Given a set of excluded strings X, and PQ, the result of a black box query Q,
PQ can be adjusted to reflect that the actual string cannot be in the set X by
first subtracting the weight of all strings in X that are consistent with Q, and
then dividing the result by the weight of all the strings not in X. We call the

resulting value the exclusion adjusted probability.
The protocol is defined as follows:
Repeat the following until the entire string is known:

• Conditioning on all information learned from the client thus far, the server
finds a prefix of the unknown bits as follows:

- Let s be the empty string.

- The server repeats the following until it has a prefix that occurs with
probability between ± and §, or that extends to the end of the string.

* Query the black box for sO occurring starting in the first unknown
bit position.

* If the exclusion adjusted probability of the value returned by the
black box is > |, then a 0 is appended to s.

* If the exclusion adjusted probability of the value returned by the
black box is < |, then a 1 is appended to s.

The server sends this prefix to the client.

If the prefix matches the client's string exactly, the client responds with a
"y"! otherwise the client responds with an "n".

Note that the prefix sent always either extends to the end of the string, or
occurs with probability between | and §, since when a prefix that occurs with
probability p > § is extended by one bit, the prefix with the more likely of the
two settings for that bit occurs with probability at least |.

Theorem 1 For any distribution D, protocol Computation-efficient is a
(3n, 1.71H{D) +l,3n,
1.71#(D)+ 1) protocol.

Proof: We first show that the expected number of bits sent by the client
is 0(H(D) + 1) bits. For any input distribution D, we model the bits sent by
the client as a tree, where each leaf of the tree represents a string held by the
client. Each left branch of the tree represents a "y" response by the client and
each right branch of the tree represents a response of "n". In this tree, the
probability of the protocol reaching any leaf a;,- is exactly D(xi).

The choice of prefix that the server sends to the client gives us the following
important fact. At every internal node of the tree, the right branch occurs
with probability < §, and the left branch either occurs with probability < § or
represents an affirmative answer to a prefix that extends to the end of the string
(which is a leaf of the tree). Thus, along any path from the root to a leaf, there
is at most one branch that occurs with probability > §. Therefore, the depth of
leaf a;,- is at most l+log2/3 D(xi). This implies that the expected number of bits

sent by the client is at most ^ D{xi){l+\og2/3D(xi)) = 1 + #(£>)/log(§) «
1+1.7177(0).

The bound on the expected number of rounds follows from the fact that the
client sends one bit in each round. To see that the expected number of bits sent
by the server is at most 3n, let E, be the a priori expected number of possible
matches sent by the server for the ith bit of the string held by the client. For
ever}' prefix sent by the server, the probability of a successful match is at least
I. Therefore, E, < 3, and the result follows from the linearity of expectation.
The bound on the number of black box queries follows from the fact that each
bit sent by the server corresponds to a single black box query. ■

The next protocol uses only a constant expected number of rounds, but at
the cost of a larger number of black box queries.

Protocol Round-efficient
For any distribution D, let T(D) represent the strings in sorted order from

most likely to occur to least likely to occur. Let T(D) represent a partition of
the strings into sets X,. Set X\ contains the first h\ strings oiT(D), where hi is
chosen so that hi > 0 and \(J2x ex D(xi)) —1| is minimized. In other words, set
A'i contains as close to half the probability weight as possible. Set X2 contains
the next h2 strings, where h2 is chosen so that X2 contains as close to half the
remaining probability weight as possible, and similarly with the remainder of
the sets in the partition. Note that the last set in the partition (denoted Xr)
contains exactly 1 string. Also note that each set Xj either contains only one
string, or contains between | and | of the remaining probability weight.

We can compare the partition of the strings into the sets X% with the con-
struction of a Fano code [5] (see also [4]). To construct a Fano code, the strings
are likewise sorted in order of probability, and then divided into as close to two
equally probable sets as possible. The first bit of the codeword is assigned to
a 1 if the string lies in the first set, and a 0 if the string lies in the second
set. However, for a Fano code, this same process is repeated on both sets as
many times as is possible. In our construction, we only subdivide the set which
contains the less likely strings. Instead of subdividing the other set, we reduce
the number of rounds required by using hashing to differentiate between strings
in that set. The difficult portion of this technique is to demonstrate that the
client can use hashing in a manner that does not increase the number of bits
sent by more than a constant factor.

We here use Tn, the family of pairwise independent hash functions where
for each F £ f„, we have F(x) = ax + b, where arithmetic is with respect
to the finite field GF[2n] [3]. Here, a and b are integers chosen uniformly
and independently at random from the range [0... 2" — 1], and thus the total
number of bits required to describe any F £ Tn is In. Also, note that with
this construction, for any k < n, the first k bits of F(x) also forms a pairwise
independent hash function (see for example [10]).

• The server queries the black box to find D(xi) for all possible strings X{,

and uses this information to determine the partition r(D). To do this, the
server sorts the strings based on D(xi).

• The server sends to the client a randomly chosen hash function F G Tn.

• Let i = \ and let h = 0.

• Repeat the following until x, the client's string, is known by the server.

- The server sends to the client the binary representation of h' —
[log A*].

- If h' > h, the client sends to the server bits h+1 through h! of F(x).
Note that this is sufficient for the server to know the first h! bits of
F(x).

- h = max(h,h').

- The server finds all strings x' G Xt such that the first h bits of F(x')
are the same as the first h bits of F(x), and sends the strings to the
client.

- If the client sees its string in the list sent by the server, the client
sends a "y", followed by the index of its string within the list, and
the protocol terminates.

* Otherwise, the client sends the server an "n".

- If i = r - 1, then there is only one possible string remaining, and the
protocol terminates.

* Otherwise i = i + 1.

Theorem 2 Protocol Round-efficient is an (0{n),0(H(D) + l),2n,0(l))
protocol.

Proof: We first bound the expected number of bits sent by the client. We
do this as follows: we introduce a code f, called the comparison code for the
distribution D, and show that the expected codeword length using f is 0(1 +
H(D)). We then show that the expected number of bits sent by the client is at
most a constant factor more than the expected codeword length of f.

We describe the code f as a tree. In this tree, every left branch represents the
transmission of a "y", every right branch represents the transmission of an "n",
and every leaf represents a string. The subtree found by starting at the root,
taking 0 < k < r - 2 right branches, followed by a single left branch, contains
exactly the strings in Xk+\. This portion of the code f is identical to the bits
sent by the client. Within each subtree, we use any code with the following
property: at any internal node of the tree, either the probability of taking the
left branch is between ~ and | (we call such a node a balanced node), or the
branch with higher probability is a leaf of the tree. Examples of such codes are

those defined by the bits sent by the client in protocol Computation-efficient,

and Fano codes [5].
Let E(f) be the expected codeword length using the code f on a string

Xj drawn from the distribution D. Using an argument similar to the proof of
Theorem 1, we show that E(f) = 0(1 +H(D)). As before, along any path from
the root to a leaf, there is at most one node that is not balanced. Therefore,
the deptli of leaf xt is at most 1 + log2/3 D(xi). This implies that E(f) is at

most £.r. D(Xi)(l + log2/3D(xi)) = 1 + #(!>)/log(§) « 1 + 1.71H(D).
We next show that E(A), the expected number of bits sent by the client on

the distribution D, is 0(E(f)). We first derive a lower bound for E{f). We
assume that there is more than 1 string Xj such that D(XJ) > 0, since when this
is not the case, the number of bits sent by the client can easily be seen to be
O(l). We derive an expression for the minimum depth of any string in A) in f.
The depth of the string in Xj is at least 1; this suffices for the case where hj = 1.
When /i; > 1, let xm be a minimum-depth leaf in Xj such that if x'm, the other
child of the parent of xm, is also a leaf, then D(xm) > D(x'm). Let Tj be the
root of the subtree defined by Xj. Since there are no leaves at a smaller depth
than .?,„, all the nodes on the path from rj to xm, with the possible exception
of the last, node, are balanced. Either the last node is balanced, or the branch
taken from that node to reach xm occurs with probability > §. Thus, every
branch on the path from rj to xm occurs with probability > |.

Let qj =]Tr v. D{XJ), the probability of reaching ?•/. The length of the

path from rj to xm is at least log3 D^my Let m_,- = max^g.Vj D(XJ) be the

maximum probability of any string that appears in Xj. Since IVJ > D(xm), we

see that
r

We next bound the expected number of bits sent by the client. The client
sends three kinds of bits: bits that represent the image of a hash function,
bits that represent a "y" or "n" answer to a list of strings sent by the server,
and, after a "y" answer, bits that represent the index of the correct string within
that list. The index is only sent once, and, since we have a pairwise independent
hash function, the expected number of strings in the list is < 2. Thus, the total
expected number of index bits is 1. When the client finds out that the string it
holds is not in any of the first j - 1 sets A'i ... A'j_i, it may need to transmit
some additional bits of the hash function image, but never more than [log/*,]

additional bits. This occurs with probability s,- = 1 - J2)=\ 1:h where we define
si = 1. Thus, the expected number of bits sent by the client is at most

r-l

E(A) = ^st(loghi + 0(l)).
«=i

Here, the 0(1) term accounts for the index bits, the '"y" or "n" bits, as well

E(f) > ^g,max(l,log3-

as the rounding of log h{. In order to compare this expression with that derived
for E(f), we use the following facts:

1- f

2. When ht > 1, qi+1 > f.

3. When ht>l, hi < &i±i — m •+1

Fact 1 follows directly from the fact that in constructing the set Xj, we used
as close to half the remaining probability weight as possible. When A,- > 1,
we see that since the strings are partitioned in order from most weight to least
weight, q{ < §s,-. Thus, si+1 > f, which combined with Fact 1, gives us Fact 2.
To prove Fact 3, note that since every string in the set X, occurs with greater
probability than any string in the set Xi+1, we have mi+1 < |s Since qt < §s2-
combined with Fact 2 imply that qt < 6qi+1, Fact 3 follows.

To apply these facts to E(A), there are two cases for each term of the sum-
mation. When hi = 1, then Fact 1 implies that s8(logA; + 0(1)) = 0(gf).
In the case that h{ > 1, Facts 2 and 3 give us that s;(logA, + 0(1)) <
9qi+1 (log ^2iii + 0(1)). Combining both cases, we see that

«,-(log hi + O(l)) < 9?,-+i(log ^i±i + O(l)) + 0{qi).

This implies that

E(A) = J20(qi(log£- + l)).

This implies that £"(,4) = 0(E{r)), which in turn implies that E(A) = 0{H(D)+

The expected number of rounds required by this protocol is 6, which follows
from the fact that to process each set Xit only 2 rounds are required. Condi-
tioned on the fact that no previous set has contained the string held by the
client, each set contains this string with probability at least ±, and thus the
expected number of sets X{ that need to be processed is 3.

The server sends three kinds of bits to the client: bits that represent the
number [logA,-], bits that describe the hash function to be used, and bits that
represent strings that map to the same image of the hash function as x, the
string held by the client. For any set Uh the number of bits needed to represent
[log/ij] is log log Aj + o(logAj-) < logn + o(logra). The number of bits needed
to describe the hash function is In. Since we have a pairwise independent hash
function, for each set Xt that is examined the expected number of strings that
map to the same image as x,, not counting a;,- itself, is < 1. The expected
number of sets Xt examined is 3, and thus the expected total number of bits
representing strings other than the string x is in. In addition, the string x is

10

sent when processing the last set. Thus, the total expected number of bits sent

by the server is 6n + o(n). ■
We also point out that although the constants provided by this proof are

larger than the constants we provide for protocol Computation-efficient, in
the case that for all x,-, D(x{) is an inverse power of 2, protocol Round-efficient
can be made into a (|n, 2H(D) + 0(l), 2n, 3) protocol. Furthermore, if a shared
source of randomness is allowed (i.e., if the hash function is chosen beforehand),
then this can be further improved to a (§ra, 2H(D) + 0(1), 2", 3) protocol.

Neither of the previous protocols is optimal in terms of both computation
and the number of rounds required. We next show that we can smoothly trade
off between the number of black box queries required and the number of rounds
required.

Protocol Computation-Rounds-TradeofF(c)
For c a positive integer between 1 and n, repeat the following until the entire

string is known:

• Conditioning on all information known thus far, the server finds a prefix
of the unknown bits that either occurs with probability between | and §,
or, if that is not possible, extends to the end of the string.

• If the length of this prefix is < c and the prefix does not extend to the
end of the string, then protocol Round-efficient is used to determine the
next c unknown bits, where probabilities are conditioned on the value of
the bits determined so far.

• Otherwise, the server sends the prefix to the client.

- If the prefix matches the client's string exactly, the client responds
with a "y"; otherwise the client responds with an "n".

Theorem 3 Protocol Computation-Rounds-Tradeoff(c) is a {0(n), 0(H(D)+

l),0(ef),0(7)) Protocol.

Proof: We first show that the expected number of bits sent by the client is
0{H(D) + 1). The possible "y" and "n" bits sent by the client define a tree
v, as before. We compare the expected codeword length of v to the expected
codeword length of a related code i> for the distribution D. In order to define v,
we first need to define some notation. For a given distribution D, let k\,.. .kz

be some canonical ordering of all possible calls to Round-efficient that can be
made over all possible strings held by the client. In hi, there is some distribution
Dj on the c bits to be determined, where D{ depends on D, and on what
information about the string held by the client has been determined by the
server prior to the call k,. Let r,- be the subset of the nodes of v that can be
reached during call k, on some string held by the client.

Let f, be the comparison code (as defined in the proof of Theorem 2) for
the distribution D,. The code v is produced by starting with the code v, and

11

replacing each set of nodes r,- with the comparison code fy. The nodes of v
that are descendents of the leaf of r,- representing the c bit string Xj become
descendents of the leaf in f; that also represents Xj. We saw in the proof of
Theorem 2 that the expected height of any tree r, is at most a constant factor
larger than that of the corresponding tree fj, and thus the expected codeword
length of the code v is at most a constant factor larger than the expected
codeword length of v.

We next show that the expected number of bits used in the code v is
0(H(D) + 1). In the proof of Theorem 1. we saw that if there was at most
one unbalanced node in the path from the root to any leaf in the tree represent-
ing a code, then the expected codeword length of that code is 0{H(D) + 1).
The proof here is complicated by the fact that a path may pass through one
unbalanced node for each set of nodes fj that it passes through.

However, we only make a call to Round-efficient if we have found a prefix
of the c bits in question that occurs with probability at most §. This implies that
given that we enter f,, the maximum likelihood leaf of fy occurs with probability
< |. This means that for all i, the root node of fj is balanced. This in turn
implies that on any path of length / from the root of v to a leaf of v, there can
never be two consecutive unbalanced nodes, with the possible exception of the
last two nodes. Thus, for a path of length /, the number of unbalanced nodes
is at most [■£] + 1. The number of balanced nodes on any path from the root
to a leaf x{ is at most log2/3 £>(#,■), and thus the length of the path to x{ is

Q(l°g fl(fi) + 1). It follows that the expected number of bits used in the code
v is 0{H{D) + 1).

To see that the expected number of bits sent by the server is O(n), it is easy
to bound the expected number of bits sent by calls to Round-efficient, and
by the remainder of the protocol separately, using the techniques developed in
the proofs of Theorems 2 and 1 respectively. Specifically, the expected number
of bits transmitted by the server when using Computation-efficient is 0(1)
for each bit of the string held by the client, for a total of O(n). Also, for each
use of Round-efficient, the expected number of bits sent by the server is 0(c),
and there can be at most ^ uses of this protocol.

The bound on the number of black box queries follows from the fact that the
expected number of black box queries used to determine prefixes of the string-
is at most 0(n), and the expected number of black box queries used for each of
at most ^ calls to Round-efficient is at most 2C. Since ~ > n, the number
of black box queries is 0(1J-^).

The bound on the number of rounds required follows from the fact that the
total expected number of rounds required for all calls to Round-efficient is at
most 0(n/c). Since each of the prefixes either has length at least c or extends to
the end of the string, and each one is a success with probability at least h. the
expected number of prefixes sent is also at most 0(n/c). Note that the number
of prefixes extending to the end of the string is O(l), since each one is a success

12

with probability > |. ■

3 Lower Bounds on Bits Sent by The Client
and The Server

Theorem 4, below, implies that our protocols, for all of which the expected
number of bits sent by the client is 0(H(D)), are optimal in terms of this

measure.

Theorem 4 (Shannon [13]) For any distribution D, the expected number of
bits sent by the client is at least H(D), where H(D) is Shannon's entropy of the

distribution D.

Shannon's lower bound holds even if both the client and the server know
the distribution. In our scenario, only the server knows the distribution, and
this can only increase the number of bits required. In the lower bounds proved
from this point forward, it will be crucial that the client does not know the

distribution.
We next prove a lower bound on the number of bits that need to be sent by

the server. To do this, we show that when the distribution is chosen from a broad
class of distributions, then the expected total number of bits that need to be
sent is at least n. This demonstrates that all of our algorithms are existentially
optimal, in terms of the number of bits sent by the server, for any protocol
where the client sends 0(H(D)) bits. We demonstrate in Section 3.1 that there
are distributions where the total number of bits sent can actually be much less
than n. However, we also demonstrate that designing a protocol that uses close
to the minimum total number of bits for all distributions is not possible.

Definition 1 A distribution D over strings {0,1}" is onto, if for any string

Xi€{0,l}n, D{xt)>0.

Definition 2 A multi-set of distributions is symmetric if the distributions in
the set can be partitioned into subsets such that within each subset, (1) each
distribution appears only once, and (2) for any distribution D\ in the subset
and for any permutation TT of the 2n strings xi} there is a distribution £>2 in the
same subset, such that for all xit Di(xt) = D2(7r(a;,)). We call this partition
the balancing partition.

Intuitively, a multi-set of distributions is symmetric if no preference is given

to any specific string.

Theorem 5 For any protocol and for any distribution chosen uniformly at ran-
dom from any set of onto distributions that is symmetric, the expected total
number of bits sent by the client and the server is at least n — 1.

13

Proof: We prove the Theorem for the case where the balancing partition
consists of a single subset. When the balancing partition consists of many
subsets, choosing a distribution is equivalent to first choosing a subset in the
balancing partition, and then choosing a distribution from within that subset.
Thus, the result for a set with only a single subset in the balancing partition
implies the more general result stated in the Theorem.

Any set with only a single subset in the balancing partition can be described
by a sequence of pairs PN = (p1,N1),(p2,N2),..., (pk,Nk), where Pi > Pj for
i < j and where for each distribution in the set, there are exactly Nt strings that
occur with probability Pi. Let xt be the string given initially to the client, and let
Dm be the distribution given initially to the server. Here, / represents the index
of the string held by the client, and m represents the index of the distribution
held by the server. Let / be the unique value such that Pl = Dm(xt). We here
prove a lower bound for the problem where both the client and the server know
the sequence PN at the start of the protocol, and the server must determine
not only the string xu but also the value /. Since this problem requires no more
communication than the original problem, a lower bound for this problem also
applies to the original problem.

Let Ei be the expected total number of bits sent by the client and the server,
conditioning on / = i, where this expectation is taken over both the random
choice of Dm and the choice of xt using the chosen distribution Dm. We prove
that for any fixed i, 1 < i < k, Ei>n-1. Since the actual value of I computed
by the server is a distribution over 1 < i < k, this suffices to prove the Theorem.
Note that for every Dm, the client must send a different set of bits to the server
for every string xt. Also, all of the N{ strings where / = i occur with equal
probability, and thus when JV, > ^, Ei > n - 1.

To show that E, > n - 1 when Nt < y we view the communication task
of the server determining J as a communication matrix, where the rows of the
matrix represent the input given to the client (i.e., there are 2n rows), and the
columns represent the distribution given to the server (i.e., there are (N .N 2" N)
columns). The entry of the matrix in row / and column m contains the value of
/ when the server starts with distribution Dm and the client starts with string
xi. We say that an input to such a problem is the pair (/, m).

We use a technique based on the idea of monochromatic rectangles, a com-
mon technique in communication complexity developed in [14]. This technique
uses the fact that any communication protocol partitions the communication
matrix into rectangles, each consisting of the matrix entries in the intersection
of a specific subset of the rows of the communication matrix with a specific sub-
set of the columns of the matrix. The transcript of bits communicated by the
client and the server is the same for any two inputs that represent two matrix
entries within the same rectangle, and different for any two inputs that repre-
sent matrix entries in different rectangles. For a proof of this, see for example
[8].

14

Several classical results in communication complexity show that there must
be a large number of rectangles by showing that each rectangle must be monochro-
matic: all entries in the rectangle must contain the same value. This is required
since typically both the client and the server are required to know the result at
the end of the protocol. However, in the problem we consider, the color of a
matrix entry is the / value in that entry, and only the server is required to know
I at the end of the protocol. Thus, for the problem discussed here, within each
rectangle, every column must be monochromatic. We call such a rectangle
column monochromatic. Note that only rectangles associated with distributions
that are onto are required to be column monochromatic. If there were an input
pair that, is guaranteed to not occur, the server is not required to differentiate
this input from one that does occur, and thus the input that does not occur
could be in the same column of the same rectangle as an input that does occur.

We provide an upper bound on the number of times the value i can appear
in a single rectangle. Consider any rectangle that consists of r rows. Let C,
be the set of columns of that rectangle that contain the value i, and let the r
rows be denoted by R. For this rectangle to be column monochromatic, for each
string xi that appears in R, and for each Dm 6 Ci, Dm(xi) = Pi- This means
that r < TV,-. By counting the number of ways that the probability of the strings

X[not in R can be set, this also implies that |C,| < [N1;...Ni-r;...Nk) • Thus, the
maximum number of times that i can appear in a single rectangle is

2n - r
,N1;...Ni-r;...Nk/

When Ni < \, this is maximized when r = 1. This implies that the

number of i's in a single rectangle is at most \Nli...N,-i;...Nk) • For z a rectangle
containing the value i, let qz be the probability that the input pair (xi,Dm) is
in rectangle z, conditioned on / = i. Since every input pair that results in I = i
occurs with the same probability, when N, < 4j-, qz < ■£?, Vz. The value ^ is
obtained by dividing the maximum number of times that i can appear in any
one rectangle of the communication matrix by the total number of times that
it appears.

Let Si be the entropy of the transcript of bits sent by the client and the
server. The fact that the transcript of bits sent by the client and the server is
different for every rectangle together with the upper bound on qz imply that for
any i such that N, < ^, £, > n. This in turn implies that E, > n. For any i
such that Nj > "Y, Ei > n — 1, and thus the a priori expected number of bits
communicated is at least n — 1. ■

3.1 Minimizing the Number of Bits Sent

Theorem 5 shows that the protocols we have presented are existentially optimal.
That is, for many natural sets of distributions given to the server, the protocols

15

max
r<Nt

are in fact optimal. The whole picture, on the other hand, is more involved.
Consider for example the following distribution, Ds, described by giving a tech-
nique of choosing strings from the distribution. The last log n bits of the n bit
string xt are chosen by independent flips of a fair coin. Let t be the value of the
binary number represented by these bits. When t < n - logn, the remainder of
the bits in the string are set to 0, except the tth bit, which is set to 1. When
t > n — logn all the remaining bits are set to 0.

For the distribution Ds, the entire string is determined by the last log n bits.
However, protocol Computation-efficient sends possible matches for prefixes
of the string, and in order to find a prefix that occurs with probability between
\ and §, the server has to send a prefix to the client that has length [|]. For
distribution Ds, we would be much better off with a protocol that specifies an
order on the bits that the server is trying to match. This could be done for
Ds by having the server send log2 n bits indicating which log n bit positions to
consider first.

Unfortunately, it is not sufficient for the server to simply specify the order in
which the bits should be examined. Consider for example the distribution Ds-,
where the string consists of n - 1 0s and a single 1, placed uniformly at random.
Here, regardless of what order the server attempts to match bits held by the
client, the number of bits that must be matched in order to find a successful
match with probability between | and g, is §. However, this distribution has a
very short description (O(logn) bits) that could be sent to the client. Once the
client knows what the distribution is, it can simply send the server logn bits
describing where the 1 is in her string.

Let OPT(D) represent the minimum expected total number of bits sent when
the client has a sample drawn from the distribution D, which is known only to
the server. The distributions D$ and Ds> serve to demonstrate that distributions
do exist where none of the protocols we have presented are guaranteed to use
the optimal total number of bits, or even within a constant factor of the optimal
number of bits. However, we next show that it is not possible for any protocol to
use OPT(D) bits for every distribution D. In fact, we show that any function
that provides a non-trivial approximation to OPT(D) for every distribution
D is not even recursive! Thus, although our protocols are guaranteed to be
optimal only for broad classes of distributions and not for all distributions, no
other protocol could guarantee to be optimal for all distributions.

The proof of the following Theorem uses Kolmogorov complexity, and is in
fact motivated by Kolmogorov's proof (see for example [9]) that the Kolmogorov
complexity of a string is not a recursive function. Recall that the Kolmogorov
complexity of a string x, which we here denote K{x), is the minimum description
length of the string x. We here use the definition that K.{x) is the size of the
smallest description of a Turing machine with a work tape but no input tape
that can produce the string x on an output tape.

Theorem 6 Let /(£>) be any function from distributions D to 3? such that

16

f(D) < OPT(D) and as OPT(D) -> oo, it is also the case that f(D) ->• oo.
Such a function f(D) is not recursive.

Proof: Let /(D) be any such function. We assume that /(A) is recursive
and reach a contradiction. We assign a distribution A for each natural number
i, where A is the distribution over n = [log i [-bit strings where the string cor-
responding to the binary representation of j = i — 2Llos *J occurs with probability
1 — 2~2Llog!J, and all other strings occur with equal probability.

Using these distributions A, and the function /, we define a new function,
F(m), defined for any natural number m. F{m) is the smallest i such that
/(A) > rn. Let Bn be the set of all 2n distributions A over n-bit strings.
The set B„ is symmetric, and each distribution A is onto, and thus Theorem
5 implies that some distribution A £ Bn is such that OPT(Di) > ra — 1. This
means that the value ofOPT(Di) takes on arbitrarily large values as i increases.
Since /(A) increases without bound as OPT(A) increases, we see that F(m)
is well denned for each natural number m.

Claim 1 tC(F(m)) > m — c, for some constant c.

Proof (of Claim): By our construction, OPT(DF(mj) > m, so it suffices to
show that for all i, K{i) > O-PT(A) — c for some constant c. This follows
from the fact that OPT(A) can be at most an additive constant larger than
the expected number of bits used in the following protocol: if the distribution
received by the server is one of the A, the server sends the client a 1 followed by
the description of the string i of length K{i). The client responds to the server
with a 1 if it indeed has the string j = i-2 Llog 'J and a 0 followed by the actual
value of the string otherwise. When the distribution received by the server is
not one of the A, the server sends the client a 0, and this is followed by any
other protocol. Note that in such a protocol, when the server has a distribution
A, the expected total number of bits used is at most fC(i) + 3. ■

However, by the assumption that /(A) is recursive, we can describe the
string F(m) simply by the value m. This is sufficient to determine F(m), since
we can compute for each i, in increasing order, /(A) until we find the first i
such that /(A) > m. Thus, K,(F(m)) < logm+ c', for some constant c'. Since
F(m) is defined for all natural numbers m, we have reached a contradiction. ■

Consider for example any approximation function for OPT(D) that is guar-
anteed to return a value g{D) such that a-

l(OPT{D)) < g{D) < a{OPT{D)),
where a and a-1 are Ackerman's function and its inverse, respectively. The
function f(D) = a~1(g(D)) < OPT(D), and /(£>) grows without bound as
OPT(D) grows, albeit very slowly. Thus, /(A) is not recursive, which in turn
implies that g(D) is also not recursive.

17

4 Lower Bounds on Computation and Rounds

We show that protocol Computation-efficient is existentially within a con-
stant factor of the best possible in terms of the number of black box queries
required, for any protocol that does not require a large number of bits to be
sent by client.

Theorem 7 For any entropy H, there is a set of distributions BH, all with
entropy H, such that for any protocol P, when D is chosen uniformly at random
from. BH, the number of bits sent by the client plus the number of black box
queries performed by the server is at least n.

Proof: The set BH consists of 2" distributions: one for each n bit string xt.
In the ith distribution Dit string xt occurs with probability p, and all remaining
strings occur with probability j^, where p is chosen so that the resulting
entropy of Dt is exactly H. For this set of distributions, for any black box
query, the response is always one of two results, both of which are known by
the server a priori, provided that the server knows the set of distributions being
used. Specifically, if the query specifies any k bits (leaving n - k bits as wild
cards), then the two possible answers are 2n~k ■ ^F^-, (in the case where the

single likely string does not match the query), and (T~k - 1) • j^ + p, (in the
case where the single likely string does match the query).

The actions of the server can be viewed as a decision tree, where each node of
the tree represents either a bit received from the client or a black box query, and
each leaf represents an output produced by the server. Each of the 2" possible
strings held by the client must result in reaching a different leaf, and thus the
average height of the leaves must be at least n. m

Protocol Round-efficient is trivially within a constant factor of the best
possible in terms of the expected number of rounds required. We show here
that a protocol that always completes in a single round would require either
the number of bits sent by the client to be much larger than the minimum, or
the number of bits sent by the server to be much larger than the minimum.
A single-round protocol is defined as a protocol where the server sends some
number of bits to the client, and the client responds with some number of bits
back to the server, at which time the server knows the string held by the client.

Theorem 8 Let H be any entropy and let P be any single-round protocol where
the expected number of bits sent by the client is at most c ■ H, where c-H < f^.
There is a set of distributions B'H, all with entropy H, such that when D is
chosen uniformly at random from B'H, the expected number of bits sent by the

server using P is at least ^4—.

Proof: By Theorem 4, we can assume that c > 1. We show that the Theorem
is true for the following set of distributions B'H. There are (^) distributions,

18

one for each subset of 2H of the 2" strings. Call such a subset a likely subset. For
each distribution, the chosen string is one of the strings in the likely subset with
probability 1 — 2~", and one of the other strings with the remaining probability.
The strings in the likely subset each occur with equal probability, as do the
strings not in the likely subset.

We show that any single-round protocol P for this set of distributions, where
the server sends a small number of bits, would imply a protocol for the following
problem that violates an easy lower bound for that problem.

Definition 3 The subset identification problem: the server has an M-bit binary
string I, containing exactly m 1 's, where M and m are known in advance by
both the server and the client. The server is allowed to send bits to the client,
but no bits pass in the other direction. The task is to inform the client of the
string I.

Note that since there are (£f) possible inputs to the problem, on average the

server must send log (£f) bits to the client. Thus, the following lemma directly
implies the Theorem.

Lemma 1 Any single-round protocol A for the set of distributions B'H, where
the expected number of bits the server sends to the client is at most x, and the
expected number of bits the client sends to the server is at most cH, implies
a protocol B for the subset identification problem with M = 2n and m = 2 ,
where, on average, the server sends x + | log (£f) bits to the client.

Proof (of Lemma): The protocol B proceeds as follows. The server examines
the M — 2n-bit input string / and determines the m = 2H bits that are set to
1. The server then sends the bits to the client that would be sent to the client
during protocol A with the distribution that has the likely subset containing
the strings corresponding to the location of the l's in /.

The client and the server then separately determine the same 2n-bit string
/', that is an approximation to the string /. I' is determined as follows: for
each of the 2™ n-bit strings ar,-, if in protocol A, the client responds with at most
AcH bits, then the ith bit in I' is set to a 1, and otherwise it is set to a 0. The
server then sends the client enough information to correct I' to /, which can be
done efficiently because of the following:

Claim 2 The number of l's in I' is at most 2AcH. Furthermore, the number of

bits that are l's in I that are not 1 s in I is at most —.

Proof (of Claim): Since the server always knows what string the client has
at the end of protocol A, and it is possible for the client to have every string, the
client must send a different set of bits on each string. Thus, the number of strings
where the client sends at most AcH bits is at most 24cH. Since the expected
number of bits that the client sends is at most cH, the expected number of bits

19

sent by the client, given that the string is a likely string, is at most 1__ncH.
Thus, by Markov's inequality, the fraction of likely strings where the client sends
more than AcH bits is < |. ■

The server only needs to send the client the location of the l's in J that are
O's in /', and the location of the l's in / within the l's in /'. The former requires

at most ^-log2n bits, and the latter requires at most 2fflog24cff bits. Using
the fact that AcH < \, this is < § log (£f) bits, and the lemma follows. ■ ■

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysts of Computer
Algorithms. Addison-Wesley, Reading, Massachusetts, 1974.

[2] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz. The effects of
asymmetry on TCP performance. In Proceedings of the 3rd ACM/IEEE
International Conference on Mobile Computing and Networking, September
1997. To appear.

[3] J.L. Carter and M.N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18:143-154, 1979.

[4] T. Cover and J. Thomas. Elements of Information Theory. Wiley and
Sons, New York, 1991.

[5] R.M. Fano. Transmission of Information. MIT Press, Cambridge, Mass.,
1961.

[6] A. Hills and D. B. Johnson. A wireless data network infrastructure at
carnegie mellon university. IEEE Personal Communications, 3(l):56-63,
February 1996.

[7] D.A. Huffman. A method for the construction of minimum redundancy
codes. In Proc. IRE, volume 40:10, pages 1099-1101, 1952.

[8] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[9] M. Li and P.M.B. Vitanyi. Kolmogorov complexity and its applications. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
A. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[10] M. Luby and A. Wigderson. Pairwise independence and derandomization.
Technical Report ICSI TR-95-035, Internation Computer Science Institute,
Berkeley, CA, 1995.

20

[11] P. B. Miltersen. Lower bounds for union-split-find related problems on ran-
dom access machnies. In 26th ACM Symposium on Theory of Computing,
pages 625-634, 1994.

[12] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures
and asymmetric communication complexity. In 27*ft A CM Symposium on
Theory of Computing, pages 103-111, 1995.

[13] C.E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379-423 and 623-656, 1948.

[14] A.C. Yao. Some complexity questions related to distributive computing.
In IIth ACM Symposium on Theory of Computing, pages 209-213, 1979.

21

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

