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4     Introduction 

This predoctoral fellowship research project is concerned with the problem of dynamic 

magnetic resonance imaging (MRI). The potential application of dynamic MRI to breast 

cancer is to repeatedly image the breast following injection of a contrast agent. The 

interest in this lies in the possibility that breast tumors could be characterized nonin- 

vasively using both the temporal enhancement curve in the lesion as well as the spatial 

pattern of enhancement in the lesion [1-9]. This application would require high tem- 

poral resolution in the sequence of images, since the period of greatest differentiation 

between malignant and benign tumors is the first one or two minutes following injec- 

tion of the contrast agent [10,11]. In addition, high spatial resolution is imperative so 

that small tumors will not be missed. The ability to acquire rapid, high-quality images 

would also have application in monitoring the effects of treatment [12] and watching 

for recurrence   [13]. 

However, with the conventional MRI technique, the requirements for obtaining high 

spatial and temporal resolutions are conflicting. For example, if the Fourier reconstruc- 

tion method is used, the spatial resolution will be l/(MAk) where M is the number of 

encodings acquired and Ak is the step between data points in the spatial frequency space 

(commonly called A;-space [14]). In this case, the temporal resolution will be limited 

to MTR where TR is the time to collect one encoding, which may not be sufficient if a 

large M is used to obtain high spatial resolution. Clearly, the temporal resolution can 

be improved by either reducing TR or reducing M. The first strategy leads to fast-scan 

techniques, which try to acquire a full data set in a time that is short compared to the 

dynamic process. However, these techniques may require specialized hardware and have 

a reduced signal-to-noise (SNR) ratio. In addition, there may be power deposition prob- 

lems in dynamic imaging due to the sequence of images that are acquired. The second 

strategy leads to reduced-scan techniques. The data acquisition strategy of many of 

these techniques is illustrated in Fig. 1. A high-resolution reference data set is acquired, 

usually with standard phase encoding, followed by a sequence of reduced dynamic data 

sets during the dynamic imaging period. To avoid the loss of spatial resolution that 

can occur with the reduced number of encodings, many of these techniques use a priori 

information in the data acquisition or image reconstruction steps. This research project 



involves a systematic evaluation of the advantages and limitations of these reduced-scan 

methods, as well as the development of several techniques to improve the Reduced- 

encoding Imaging by Generalized-series Reconstruction (RIGR) method   [15,16]. 

5     Completed Research 

5.1    Reduced-Encoding Data Acquisition 

With the tremendous flexibility of MRI, it is natural to wonder if there is a better 

way to collect the information than by using the infinite complex exponential basis 

functions of the standard Fourier or phase encoding method. This is the motivation 

behind the wavelet [17-41] and singular value decomposition (SVD) [42-54] methods, 

which use a wavelet decomposition or the SVD of a reference image to determine the 

reduced encoding vector set. The former method is of interest due to the localized 

nature of wavelet basis functions, and the latter is of interest due to the fact that the 

truncated SVD is the optimal truncated representation of a matrix (in the least squares 

error sense) [55]. The hope is that, by using these basis sets, the image can be well- 

represented with fewer encoding vectors than is possible with Fourier encoding. For 

this reason, the wavelet and SVD encoding methods were investigated in comparison to 

phase encoding for dynamic imaging applications. 

The wavelet and SVD encoding methods use the following steps to try to exploit the 

desirable truncation properties of the encoding vector sets: 

1. Acquire a high-resolution reference data set using phase encoding and reconstruct 

using the Fourier reconstruction method. 

2. Decompose the reference image using the appropriate basis set (either the chosen 

wavelet basis set or the SVD). 

3. Select the "most significant" encoding vectors from the decomposition of step 2. 

For the wavelet encoding method, the truncated set is chosen based on the largest 

reference wavelet coefficients. For the SVD encoding method, the truncated set is 

chosen based on the largest reference singular values. 



4. Use the selected set of encoding vectors from step 3 to acquire the reduced-encoding 

dynamic data set using spatially selective RF excitation pulses. 

5. Reconstruct the dynamic image using the appropriate synthesis procedure (the 

inverse wavelet transform or SVD synthesis). 

Note that with the wavelet encoding method, the choice of wavelet basis set will 

affect the results due to implementation issues, as well as the ability to represent the 

dynamic image with a truncated basis set. In selecting a particular wavelet basis set 

for experimental MR encoding, a smoother wavelet is preferred, because it requires a 

shorter RF pulse [24] and reduces the bandwidth requirement of the RF pulse [36]. 

In addition, a more accurate wavelet-shaped profile can be excited, which will result in 

better images [24]. However, there is a trade-off between the length of the required 

RF pulse and the spatial support of the wavelet. This research utilized the orthogonal1 

Daubechies D18 wavelet basis set [56] and the biorthogonal Cohen 7/9 wavelet basis 

set [57], which are considered by many to be among the best for image compression [58]. 

This research focused on the theoretical power of the basis set for encoding dynamic 

images and chose to ignore the long RF pulse that would be required to excite the 

profiles associated with these wavelets. 

It is important to note that the simulations in this study did not take into account 

several factors that would degrade the performance of the non-Fourier encoding meth- 

ods. First, it was assumed that the spatially selective RF encodings could be exactly 

excited. This is difficult in practice, and imperfect excitation will degrade the resulting 

image [24,51]. In addition, 7\ variations across the image will further distort the en- 

coded profile when a short TR is used, which is especially a problem when a 1\ contrast 

agent is injected. The use of RF encoding with the non-Fourier methods also limits the 

application to single slice or 3D spin echo imaging, and it is not easy to implement 2D 

or thin slab 3D gradient echo sequences [45]. Another point is the signal-to-noise ratio 

(SNR) loss due to the use of spatially selective excitation for the non-Fourier encoding 

methods [24,31]. These problems do not arise with Fourier encoding, which uses linear 

gradients to encode the image information rather than spatially selective excitation. 

In addition, the non-Fourier encoding methods described here use the reference data 

orthogonal and biorthogonal wavelets are the two main classes of traditional wavelets. 



set to choose the encoding vectors for the entire dynamic imaging period. A modification 

of this technique is to use a reconstructed dynamic image to select the encodings for the 

subsequent dynamic image. Although this should help to increase the similarity between 

the image used to truncate the encoding vector set and the image acquired with the 

selected dynamic encodings, it would reduce the achievable temporal resolution due to 

the computation and magnet setup required between successive dynamic data sets. 

As discussed earlier, the truncated wavelet and SVD representations have the desir- 

able property of representing an image well with fewer encodings than are necessary with 

the Fourier representation. To exploit these desirable properties for reduced-encoding 

dynamic imaging, the current methods use a reference image to guide the truncation of 

the set of encoding vectors. The danger in doing that is that the selected encodings may 

not be optimal for the representation of the dynamic image and, at times, the reference- 

based truncation can introduce dangerous artifacts. To illustrate this, simulations of two 

important dynamic breast imaging applications, a contrast-enhanced dynamic study and 

an interventional MRI needle biopsy procedure, are shown below. 

Figure 2 shows the different reduced-encoding methods applied to the breast sim- 

ulation developed for this project. The dynamic changes between the reference and 

dynamic images include a variable rate of enhancement in each of the "lesions" as well 

as a slow overall increase in the background "tissue". Figures 2(a)-(b) are the reference 

and dynamic images, respectively, reconstructed using 128 phase encodings. Figure 2(c) 

shows the dynamic image reconstructed using the 16 phase encodings from the center of 

ft-space. Figures 2(d)-(e) show the dynamic image reconstructed using 16 orthogonal and 

biorthogonal, respectively, wavelet encoding vectors. Figure 2(f) shows the dynamic im- 

age reconstructed using 16 SVD encoding vectors. The average signal magnitude in the 

four lesions for each of the methods is quantified in Fig. 3. Note that the SVD method 

assigns nearly the same signal magnitude to all four lesions in the dynamic image, as is 

the case in the reference image. This is obviously undesirable for this application since 

the goal is to accurately track the spatial and temporal variation of the signal magnitude 

in the lesions. 

An interventional MRI needle biopsy procedure is illustrated in Fig. 4. Figures 4(a)- 

(b) are the reference and dynamic images, respectively, reconstructed using 256 phase 



encodings. Note the additional dark line feature in the dynamic image, supposedly 

created by the insertion of a biopsy needle. The arrow indicates the center of the nee- 

dle track. Figures 4(c)-(f) were reconstructed using 32 encodings with phase encoding, 

orthogonal wavelet encoding, biorthogonal wavelet encoding, and SVD encoding, respec- 

tively. In the phase encoded image, Gibbs ringing results from the sharp needle feature 

as would be predicted by Fourier theory. The wavelet encoding method results in a 

blurred needle reconstruction. In the SVD image, note the apparent displacement of the 

reconstructed needle from the proper position. This is a dangerous artifact since, for 

this application, the purpose of MRI is to ensure that the lesion is biopsied, as opposed 

to the surrounding normal breast tissue. 

The artifacts seen with the wavelet and SVD encoding methods are not due to 

the truncation of the basis sets, but are due to the particular encoding vectors that are 

selected based on the reference image. This is illustrated in Figs. 5(a)-(c) which show the 

dynamic image reconstructed using the optimal orthogonal wavelet, biorthogonal wavelet 

and SVD encoding vectors, i.e., the encoding vectors selected based on the dynamic 

image itself, as opposed to the reference image. The greatly improved reconstruction of 

the needle over that seen in Figs. 4(d)-(f), respectively, attests the non-optimality of the 

reference-based truncation. 

Based on this work, we have shown that, if the a priori information that is available 

is a reference image, the current wavelet and SVD encoding methods do not achieve the 

desired result of exploiting the desirable truncation properties of these basis sets, and, 

at times, can result in undesirable artifacts. For this reason, we continue to use phase 

encoding to collect the reduced encoding dynamic data sets. 

5.2    Reduced-Encoding Image Reconstruction 

Given that the available reduced encoding dynamic data sets are Fourier encoded data, 

several available image reconstruction techniques were investigated, including zero-padded 

Fourier series, the Fourier-keyhole method2  [59,60], and the Reduced-encoding Imaging 

by Generalized-Series Reconstruction (RIGR) method  [15,16]. 

2The keyhole method can also be used with the wavelet and SVD   [51] encoding methods, although 
that will not be discussed here since we are only considering phase encoding at this point. 



The zero-padded Fourier series simply replaces the unmeasured dynamic data with 

zeros, whereas the Fourier-keyhole method directly replaces the unmeasured dynamic 

data with the corresponding reference data. The data sets thus created are input to the 

inverse Fourier transform for reconstruction. Note that, although the resulting images 

may look quite different, the zero-padded Fourier series and Fourier-keyhole methods 

follow the dynamic changes at the same low resolution. On the other hand, the RIGR 

method uses a generalized-series (GS) model to reconstruct the dynamic changes at a 

higher resolution than is possible with the zero-padded Fourier series or Fourier-keyhole 

techniques. The generalized-series model can be expressed as  [15] 

JV/2-1 

hyn{x) = IK{(X)     Y,     Cnei2™Akx (1) 
n=-N/2 

where Iref(x) is the reference image and N is the number of dynamic encodings. The 

coefficients cn are obtained by fitting the dynamic data to the following equation to 

maintain data consistency   [15] 

N/2-1 

ddyn(m) =    ^2   cndTei(m-n) (2) 
n=-N/2 

where dTei(m-n) is the reference data. Plugging these coefficients into Eq. (1) will yield 

the desired dynamic image. 

Typically, imaging methods are compared using a point spread function (PSF) anal- 

ysis, which gives a measure of the attainable spatial resolution of a method. However, 

with constrained reconstruction methods such as RIGR, the PSF will depend not only 

on the number of dynamic encodings available, but also on the reference image that is 

used. Therefore, the methods were compared using a generalized point spread function 

analysis which investigated the reconstruction of a point change using a boxcar reference 

image. The width of the boxcar, the location of the point change and the number of 

dynamic encodings were varied to determine the affect of these factors on the general- 

ized PSF width. An example of the results are shown in Fig. 6 rows 1-3 for a centered 

point change, a point change shifted one-fourth the width of the boxcar from the center, 

and a point change shifted just under one-half (0.49) the width of the reference boxcar 

from the center, respectively. In the case shown, the width of the reference boxcar was 

10 



0.03125 (FOV=l), but only the center fourth of the plot is shown for better visualiza- 

tion. Also note that (a)-(c) are on a different scale than (d)-(e). In all rows, (a)-(c) are 

the reference function, the dynamic image, and the point change, respectively, recon- 

structed using 512 phase encodings. Plots (d)-(e) show the point change reconstructed 

using Fourier-keyhole (or, equivalently, zero-padded Fourier series) and RIGR, respec- 

tively, using eight dynamic encodings. Although the reference boxcar contains no edge 

information about the point change, nearby edges help constrain the reconstruction of 

the point change in the RIGR technique. 

The relationship between the number of dynamic encodings and the width of the 

generalized PSF for the centered point change case is shown in Fig. 7 for Fourier-keyhole 

and for RIGR with a reference boxcar of various widths. The GS approach used in 

RIGR results in a narrower generalized PSF for all reference boxcar widths and for all 

numbers of dynamic encodings. As the width of the reference boxcar approaches the 

FOV, the generalized PSF width of the RIGR method approaches that of the zero- 

padded Fourier series reconstruction. This is expected since, in this case of no effective 

a priori information, the GS reduces to the Fourier series. 

Figure 8 shows the relationship between the width of the generalized PSF and the 

width of the reference boxcar for Fourier-keyhole (or zero-padded Fourier series) and for 

the RIGR method with various locations of the point change. Note that the width of the 

generalized PSF decreases with the width of the reference boxcar and also with greater 

proximity of the point change to a boxcar edge regardless of the width of the reference 

boxcar for the RIGR method. This is another illustration of how nearby edges in the 

reference image help constrain the reconstruction of the point change with the RIGR 

method. 

If the reference boxcar does contain edge information for the point change, the gen- 

eralized PSF obtained with RIGR can be further improved. This is illustrated in Fig. 9 

in which rows 1-3 show the case of a point change that is centered, shifted by one-fourth 

the reference boxcar width from the center, or shifted by just under one-half (0.49) the 

reference boxcar width from the center, respectively. Plots (a)-(d) show the baseline 

reference, active reference, dynamic image, and point change (the change between the 

baseline reference and the dynamic image), respectively, reconstructed with 512 phase 

11 



encodings. Plot (e) shows the point change reconstructed using RIGR with the active 

reference image and eight dynamic encodings. The edge information for the point change 

in the active reference image helps to further reduce the width of the generalized PSF. 

The effects of the narrower PSF obtained with the RIGR method can be seen in the 

reconstruction of dynamic changes in MRI images. This is illustrated in Fig. 10 in which 

(a)-(c) are the reference image, the dynamic image, and the difference between the two 

images, respectively, reconstructed using 256 phase encodings. Figure 10(d)-(e) show the 

difference image reconstructed using Fourier-keyhole (or the zero-padded Fourier series) 

and RIGR, respectively, using 32 dynamic encodings. Note the improved reconstruction 

of the dynamic changes with RIGR. 

In addition, image artifacts can arise from the use of Fourier-keyhole due to in- 

consistency between the reference and dynamic data sets. With RIGR, the GS model 

guarantees a (N - l)th order continuity between the measured and extrapolated data if 

N dynamic encodings are used [16]. On the other hand, with Fourier-keyhole in which 

the reference data is simply pasted onto the dynamic data, there is no guarantee of data 

consistency. This is especially a problem in contrast-enhanced dynamic imaging in which 

the contrast agent can cause an overall background signal increase as well as localized 

increases in the tumor regions. The nature of the artifacts will depend on whether the 

reference image is more or less enhanced than the dynamic image. The latter case is 

shown in Fig. 11 in which (a)-(b) are the reference and dynamic images, respectively, 

reconstructed using 256 phase encodings. Figures ll(c)-(d) show the dynamic image re- 

constructed using 16 dynamic encodings using Fourier-keyhole and RIGR, respectively. 

Note the edge-type artifacts in the Fourier-keyhole image which are not visible in the 

RIGR image. 

This work has shown that, for image reconstruction with Fourier encoding, the RIGR 

method is the best way to extrapolate the unmeasured data using the a priori constraints 

due to the higher resolution tracking of the dynamic changes and the reduced data 

inconsistency artifacts. The remainder of the project focused on further improvements 

to the RIGR technique. 

12 



5.3    Two Reference RIGR (TRIGR) 

The two reference RIGR (TRIGR) method was developed as an offshoot from the original 

research proposal. The TRIGR method results in improved dynamic images over the 

original RIGR method due to suppression of the background information through the 

use of a second high-resolution reference image. As a result, the GS basis functions need 

only represent the areas of change and not the static parts of the image. Consequently, 

the method directly reconstructs an image of the dynamic changes. If the dynamic image 

itself is desired, it can simply be obtained by adding the dynamic change image to the 

baseline reference image. 

Specifically, the data acquisition procedure for the TRIGR method involves the fol- 

lowing steps which are illustrated pictorially in Fig. 12: 

1. Acquire a high-resolution baseline reference data set in which the number of en- 

codings is determined by the desired spatial resolution. 

2. Acquire a sequence of low-resolution dynamic data sets in which the number of 

encodings is chosen with respect to the desired temporal resolution. 

3. Acquire a high-resolution active reference data set. 

Note that the active reference data set need not be acquired at the end of the dy- 

namic imaging period, but can be obtained at any appropriate point in the experimental 

procedure. For some applications, it may be desirable to acquire reference data sets at 

various points during the experimental protocol, and then use the appropriate two refer- 

ence data sets to reconstruct a given dynamic image. This is especially attractive since 

the reconstructed dynamic image improves as the active reference image becomes more 

similar to the dynamic image. 

Reconstruction of the dynamic images is accomplished using the generalized series 

model with a reference image in which the background has been suppressed. Specifically, 

the reconstruction steps are: 

1. Construct the difference reference image by subtracting the full baseline and active 

reference data sets and reconstructing using the traditional Fourier method. 

13 



2. Create the dynamic difference data by subtracting from the dynamic data the 

corresponding encodings of the baseline reference image, namely 

dd\s(x) = ddyn(k) - 4aseline(fc) (3) 

where ddyn(k) is the dynamic data and dba,se\ine(k) represents the corresponding 

baseline reference encodings. 

3. The GS model then becomes 

N/2-1 

«z) = Ivef(x)   J2   cnei2™Akx (4) 
n=-N/2 

where ITef(x) is the difference reference image of step 1 and N is the number of 

dynamic encodings. The coefficients cn are obtained by fitting the difference data 

of Eq. (3) to the following equation to maintain data consistency 

N/2-1 

ddifi(m) =    ^2   cndrei(m - n) (5) 

n=-N/2 

where dTef(m — n) is the difference data created by subtracting the baseline and 

active reference data sets. Plugging these coefficients into Eq. (4) will yield the 

reconstructed dynamic difference image. 

4. If the dynamic image itself is desired, it can be generated by adding the complex 

dynamic difference image of step 3 to the baseline reference image, i.e., 

JdynOc) = ^baseline {x)     +     I<ue(x) (6) 

where /baseline {x) is reconstructed using the standard Fourier technique with the 

full set of baseline reference encodings. 

The effect of the background suppression provided by the TRIGR method can be seen 

in the generalized PSF. Figures 13(a)-(c) are the baseline reference, active reference and 

dynamic images, respectively, reconstructed using 512 phase encodings. Figures 13(d)- 

(e) show the ideal point change reconstructed with 512 phase encodings and the point 

change reconstructed using TRIGR with 8 dynamic encodings, respectively. The im- 

provement due to the background suppression can be seen by comparing Fig. 13(e) to 

14 



Fig. 9(e). Although the reference image in the TRIGR technique contains no additional 

information about the point change than the active reference image used with the RIGR 

method in Fig. 9, the background suppression improves the reconstructed generalized 

PSF. 

Of course, this is the ideal case of complete background suppression. As the back- 

ground information is less effectively suppressed, the improvement obtained through 

using TRIGR will not be as great. This is illustrated in Figs. 14 and 15 which show 

cases of complete and incomplete background suppression, respectively, in the breast 

simulation developed for this project. In both figures, (a)-(c) are the precontrast refer- 

ence, postcontrast reference and dynamic images, respectively, reconstructed using 128 

phase encodings. Images (d)-(e) are the dynamic image reconstructed using the original 

RIGR method with the precontrast and postcontrast reference images, respectively, and 

16 dynamic encodings. Image (f) is the dynamic image reconstructed using the TRIGR 

method with 16 dynamic encodings. As can be seen through comparison of Figs. 14(d)- 

(f) and Figs. 15(d)-(f), the improvement obtained through the use of the TRIGR method 

is greater as the background information is more completely suppressed. 

The effect of this improved PSF can be seen in dynamic MR images. Figure 16 shows 

images obtained from a dynamic contrast-enhanced data set of a rat with a large breast 

tumor (data provided by Dr. Erik Wiener of Dr. Paul Lauterbur's group). A spin echo 

sequence (TR300/TE20) was used to collect a high-resolution baseline reference data 

set. The contrast agent was then injected and a sequence of dynamic data sets was col- 

lected as the contrast agent washed into the tumor. A second reference data set was then 

collected while the contrast agent was still strongly visible in the slice. Figures 16(a)-(b) 

show the baseline and active reference images, respectively, and (c) shows the difference 

between the dynamic image (not shown) and the baseline reference image. These three 

images were reconstructed using 256 phase encodings. Figures 16(d)-(f) show the differ- 

ence image reconstructed with 8 dynamic encodings using Fourier-keyhole, the original 

RIGR method, and the TRIGR method, respectively. In the TRIGR image, note the 

improved delineation of the internal details of the tumor, such as those indicated by the 

arrows. In this case, the temporal resolution could be improved 32-fold (256/8) while 

maintaining high quality in the dynamic image through the use of the TRIGR method. 

15 



5.4    RIGR/TRIGR with Explicit Edge Constraints 

Since the GS model has a limited number of terms (see Eq. 1), the dynamic change that 

is "registered" on the reference image may not be high-resolution. Therefore, in order 

to improve the reconstruction of the dynamic image, it is desirable to inject dynamic 

information into the GS basis functions, as opposed to deriving them solely from the 

reference information. If the contrast behavior of the reference image is the same as that 

of the dynamic image, it is useful to use this information in the GS basis functions. On 

the other hand, if the contrast behaviors are different, it would be better to use only 

the edge information from the reference image and to derive the contrast information 

from the dynamic data. In order to do this, two steps are required: the determination 

of the boundary locations and the incorporation of this information into the GS basis 

functions. 

To determine the location of the edges, it is desirable to use a multiscale approach 

since the edges in an MRI image are expected to occur at different scales. Two available 

methods of doing that are wavelet edge detection [61-63] and the multiresolution edge 

detection approach [64,65]. The concepts of scale in the two methods are slightly dif- 

ferent. In the wavelet edge detection methods, the idea of scale relates to the size of the 

edge itself, whereas in the multiresolution approach, scale relates to both physical prox- 

imity and greyscale "closeness". Another difference is that the multiresolution approach 

does not involve an a priori model of the edge, which is beneficial since the shape of the 

edges in MR images are not known a priori. For this application, the multiresolution 

approach was selected because it resulted in more continuous edges and detected edges 

which were missed by the wavelet edge detection approach. 

Various methods were investigated for incorporating the edge information from the 

reference image and the contrast information from the dynamic data into the GS basis 

functions. These included fitting various basis function sets to the regions defined by the 

edges, including the Haar and Daubechies D20 wavelets and the localized polynomial 

approximation (LPA) [66]. The results of these fitting steps were used either as the new 

reference image or used to scale the reference image. However, even the most promising 

of these techniques, the LPA approach, resulted in a smoothing effect, because the 

number of regions had to be limited to obtain reliable fitting with the small amount of 
dynamic data available, 
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To alleviate this problem, the proposed method calculates the average signal differ- 

ence in each region detected in the reference image using the dynamic data and the 

corresponding encodings of the reference data. Therefore, since no fitting step is re- 

quired, all of the regions can be used which reduces the blurring effect. In addition, 

since the method is used to calculate the difference image as opposed to directly calcu- 

lating the new reference image, the effect of edges that are missed or slightly off will be 

reduced. 

Specifically, the steps for applying this method during the reconstruction of the 

dynamic image are: 

1. Reconstruct the high-resolution reference image and extract the regions using the 

multiresolution edge detection approach. 

2. Reconstruct a zero-padded difference image from the low-resolution dynamic data 

and the corresponding encodings of the reference data using the Fourier recon- 

struction technique. 

3. Impose the region structure from step 1 on the image of step 2 to determine the 

average signal magnitude difference in each of the regions. 

4. The new reference image is then created as, for a baseline reference image, 

4f = iref + -WveeiZ/diff (7) 

or, for an active reference image, 

4f = Iref - /diff,aveeiZ/diff (8) 

where idiff.ave is the result of step 3 and Z/diff is the phase of the zero-padded 

difference image of step 2. 

The method can easily be incorporated into the TRIGR method by modifying the post- 

contrast reference image as described above. 

The effects of applying this method to the contrast-enhanced dynamic imaging ex- 

periment conducted by Dr. Erik Wiener is shown in Fig. 17. Figures 17(a)-(b) are the 
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precontrast reference and dynamic images, respectively, reconstructed with 256 phase 

encodings. Figures 17(c)-(d) show the dynamic image reconstructed using eight dynamic 

encodings with the original RIGR method and the RIGR method with explicit edge in- 

formation, respectively. Image (d) has a more accurate reproduction of the contrast 

behavior in the dynamic image than (c). However, some blurring can still be seen due 

to edges that are not detected in the precontrast reference image. This suggests that a 

postcontrast reference image should be used for the edge extraction step when possible 

because it may contain additional edges introduced by the dynamic changes. This is 

illustrated in Fig. 18 in which (a)-(b) are the postcontrast reference and dynamic im- 

ages, respectively, reconstructed using 256 phase encodings. Figures 18(c)-(d) show the 

dynamic image reconstructed using the original RIGR method and the RIGR method 

with explicit edge information, respectively, with eight dynamic encodings. As expected, 

the postcontrast reference provides additional edges which reduces the blurring, as can 

be seen by comparing Fig. 17(d) and Fig. 18(d). However, in this case, the improvement 

in using explicit edge information is not as great as in the precontrast reference case, 

since the contrast behavior in the dynamic image is closer to that of the postcontrast 

reference image than that of the precontrast reference image. In any case, these ex- 

amples illustrate that the use of this technique can improve the dynamic image quality 

while maintaining the improved temporal resolution available from the RIGR or TRIGR 

methods. 

5.5    Motion Compensated Dynamic Imaging 

Motion has long been a problem for MRI, because it destroys the encoding relation- 

ship between the signal and the location of the spins. With constrained reconstruction 

methods such as RIGR, additional artifacts can be created by motion which occurs 

between the acquisition of the reference and dynamic data sets, because the reference 

image may no longer be a valid constraint for the image reconstruction step. An ap- 

proach to overcome this problem is to detect and correct the object motion before the 

constrained reconstruction step is performed. However, detection of object motion in 

reduced-encoding dynamic imaging is nontrivial due to several factors. First, dynamic 

image contrast changes and object motion are mixed together. This is especially a 

problem in contrast-enhanced dynamic imaging of the breast due to the large, rapid 
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contrast changes that can occur in the tumor regions. Second, the dynamic data sets 

are low-resolution, and it is usually necessary to detect motion to a higher accuracy 

than that dictated by the low-resolution Fourier pixel size. To overcome these problems, 

we propose to use a similarity norm which can accurately detect the motion in spite of 

the contrast changes and the low-resolution nature of the dynamic data. The similarity 

norm tries to remove the effects of the contrast change by using only the edges from the 

high-resolution reference image for the motion estimation. 

The approach we propose assumes relative rigid-body motion which occurs between 

the acquisition of the reference and dynamic data sets. Possible methods of addressing 

the problem if these assumptions do not hold will be discussed at the end of this section. 

The proposed method is applied to a sequence of dynamic images in turn, so that 

the dynamic data set is compared to a high-resolution image that should have a more 

similar edge structure than the original reference image. First, the motion between 

the high-resolution reference image and the first dynamic data set is measured. These 

measurements are used to correct and reconstruct the first GS dynamic image. This 

high-resolution GS image is then used with the second dynamic data set to determine 

the motion that occurred between these two acquisition times. The cumulative motion 

measurements are used with the reference image to reconstruct the second GS dynamic 

image. This procedure is repeated for the entire image sequence. Note that the dynamic 

image is reconstructed using the original high-resolution reference image to reduce errors 

that could arise due to the accumulated motion correction. 

As mentioned before, we assume that there is relative rigid-body motion between the 

low-resolution image J2 and the high-resolution image h. In other words, the relationship 

between the images can be written as 

h(x,y) ~ Ii(xcos60 - ysm80 + x0,xsm60 + ycos90 + y0) (9) 

where the relative rigid-body rotation and translation are specified by x0, yo, and 90 and 

the tilde signifies that I\ and I2 can have different contrast behavior. Therefore, the 

goal of the motion-estimation step is to find xQ, yo-, and 60. Specifically, the following 

steps are used: 

1. Reconstruct the high-resolution image Ii using the Fourier reconstruction tech- 

nique and segment it into a number of "homogeneous" regions. The strategy here 
is  to  use  these  region  boundaries  as   landmark  features. 
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2. Reconstruct the low-resolution image I2 using the zero-padded Fourier reconstruc- 

tion method. 

3. Superimpose the region structure of step 1 onto the image of step 2 and calcu- 

late the regional intensity inhomogeneity af, which is used as an indicator of the 

misalignment between the two images. 

4. The misalignment error Ea is calculated as 

En = 
iVreg 

E?«?. do) N 

where TVreg is the number of regions, m/ is the number of pixels in each region and 

TV is the total number of pixels. Clearly, the value of Ea is a function of the motion 

parameters. Ea is minimized to find the values of x0, yo, and $0. 

5. The estimated-motion parameters from step 4 are then used in the GS model as 

/dyn(r)= Tertiär)     £    C^2™^, (11) 
neA/"dyn 

where Test is the transformation that corresponds to the estimated-motion param- 

eters. 

The results of applying the proposed method to the contrast-enhanced dynamic study 

of a rat with breast cancer are shown in Fig. 19 in which (a) is the reference image that 

was reconstructed using 256 phase encodings. Images (b)-(d) were reconstructed using 

RIGR with 32 dynamic encodings. In image (b), there was no motion between the 

reference and dynamic data sets, and therefore, it represents the ideal RIGR reconstruc- 

tion. The remaining images represent a case in which the position of the object during 

the dynamic data acquisition has changed from the reference position by a rotation of 

3 degrees and shifts of 5 and -3 pixels in the phase encoding and frequency encoding 

directions, respectively. Figures 19(c)-(d) were reconstructed with no motion correction 

and with the proposed method, respectively. Note the reduced motion artifacts in the 

corrected image (d). 
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If it cannot be assumed that no appreciable motion occurs during the collection of a 

particular reduced-encoding dynamic data set, other methods will have to be employed 

to measure this intraset motion. One possible way to do that is by using navigator 

techniques [67] that acquire a "navigator echo" during each view in addition to the image 

information. Each navigator echo is then compared to an initial reference navigator echo 

using correlation [67] or a least squares technique [68-70] to determine the motion along 

the navigator direction. Additional navigator echoes can be used to measure motion 

in the other directions, or orbital navigator echoes [69] can be used to simultaneously 

measure the two directions of translation and rotation in a plane. Although the navigator 

techniques are being used in many applications, the methods cannot be directly applied 

to dynamic imaging, because the basic assumption of the navigator echo method will be 

violated; namely, that all of the changes in the navigator data are due to motion of the 

object. This causes a problem in contrast-enhanced dynamic imaging of the breast, as 

well as other dynamic imaging applications, in which the navigator data from each view 

can look very different even without motion, leading to incorrect motion estimates. 

We considered trying to get around this by comparing a navigator to the immediately 

preceeding navigator to determine the motion parameters, as opposed to an initial refer- 

ence navigator. However, although this should reduce the effect of the dynamic changes 

on the navigator data, the incremental motion may be too small to be detected with 

this method. Then, because the motion at a point in time would be the accumulation 

of the measured incremental motions up to that time, the error in the motion estimate 

may become quite large. 

Perhaps a better way to use the navigator method with dynamic imaging applications 

is to design the pulse sequence such that the navigator signal is not sensitive to the 

contrast changes. For example, consider a contrast-enhanced dynamic study using a 

T2 contrast agent. The T2 contrast agent modifies the appearance of the tissues which 

take it up by changing the T2 relaxation constant. Therefore, the image data should 

be sensitive to the change in T2, but the effect of T2 on the navigator data should be 

minimal. A possible way to accomplish this is to acquire the FID signal following the 

RF excitation pulse as the navigator data and use the echo signal as the image data. 

In this way, the image can be T2 weighted, but the navigator signal will be proton 

density weighted. This method would require careful design of the pulse sequence with 
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the given application in mind. The optimal solution for dynamic imaging may be a 

combination that utilizes the strengths of both the navigator method and the similarity 

norm technique. 

In many cases, the motion may occur in three dimensions, as opposed to the planar 

motion discussed here. In this case, the solution will depend upon whether the imaging 

sequence is acquiring 2D slices or a 3D volume. In the case of 2D slices, the excitation and 

signal reception locations will need to be dynamically adapted based on the detected 

motion perpendicular to the imaging plane [71]. The in-plane motion can then be 

addressed, as discussed previously. For 3D imaging, the motion detection scheme would 

have to be expanded to detect all six degrees of motion (three translations and three 

rotations). 

6     Conclusions 

The goal of this predoctoral fellowship research project is to obtain simultaneously high 

temporal and spatial resolutions in reduced-encoding contrast-enhanced dynamic imag- 

ing of the breast. As can be noted, the project expanded from the original proposal as 

I progressed through my graduate studies. The contributions of this work include: 

1. The issues involved in reduced-encoding data acquisition were analyzed with the 

conclusion that the use of a reference image as the a priori information to guide the 

reduced-encoding data acquisition process does not achieve the goal of exploiting 

the desirable truncation properties of the non-Fourier basis sets and, at times, can 

create dangerous artifacts. 

2. The RIGR method was shown to result in higher resolution tracking of the dy- 

namic changes and reduced data inconsistency artifacts when compared to the 

zero-padded Fourier series or Fourier-keyhole methods. 

3. The TRIGR method was developed which uses the additional information available 

from a second high-resolution reference image to suppress the background informa- 

tion in the GS basis functions, resulting in improved dynamic images with minimal 

increase in imaging time.  Dr.  Noam Alperin and Dr.  Michelle Vaughan at the 
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University of Illinois at Chicago have begun an investigation into the application 

of the TRIGR technique to human contrast-enhanced dynamic breast imaging, 

in collaboration with Dr. Paul Lauterbur's group at the University of Illinois at 

Urbana-Champaign. However, as of the date of this report, no data involving 

contrast-enhanced dynamic imaging of human breast cancer was yet available for 

my use. 

4. A technique was developed to inject dynamic information into the GS basis func- 

tions, as opposed to deriving them solely from the reference image, through the 

use of explicit edge information. The method can help improve the reproduction 

of the contrast behavior in the dynamic images. 

5. A method was proposed for accurately detecting the motion between the reference 

and dynamic data sets in spite of the contrast changes and the low-resolution 

nature of the dynamic data. 

And last, but not least, I successfully completed the requirements for my Ph.D. in 

electrical engineering while working on this predoctoral fellowship research project. I 

am very grateful for the opportunity that was afforded me by the Army Breast Cancer 

Research Program. The financial support, as well as the opportunity to work on such 

an exciting project these last three years, are deeply appreciated. 
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Figure 1: Data Acquisition Strategy for Reduced-encoding Techniques 
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Figure 2: Non-Fourier Encoding Applied to Contrast-Enhanced Imaging: (a)-(b) The 
reference and dynamic images, respectively, reconstructed using 128 phase encodings. 
The remaining images were reconstructed with 16 dynamic encodings using different 
encoding methods: (c) phase (Fourier), (d) orthogonal wavelet, (e) biorthogonal wavelet 
and (f) SVD. The phase, wavelet and SVD encoding directions are vertical. Note that 
the SVD method assigns nearly the same signal magnitude to all four lesions. 
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Figure 3: Average Signal Magnitude of the Lesions of Fig. 2(b-f). Regions 1-4 correspond 
to the upper left, upper right, lower left and lower right lesions, respectively, in Fig. 2. 
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Figure 4: Non-Fourier Encoding Applied to Interventional MRI: (a)-(b) The reference 
and dynamic images, respectively, reconstructed using 256 phase encodings. The re- 
maining images were reconstructed using 32 dynamic encodings with different encoding 
techniques: (c) phase, (d) orthogonal wavelet, (e) biorthogonal wavelet and (f) SVD. 
The phase, wavelet and SVD encoding directions are horizontal. The arrow indicates 
the center of the needle track. Note the apparent displacement of the needle center in 
the SVD reconstruction. 
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Figure 5: Optimal Non-Fourier Encoding: Dynamic image reconstructed with 32 opti- 
mal encodings as derived from the dynamic image itself using (a) orthogonal wavelet, 
(b) biorthogonal wavelet and (c) SVD. The wavelet and SVD encoding directions are 
horizontal, and the arrow indicates the center of the needle track. Note the improve- 
ment over the images in Figs. 4(d)-(f),respectively, which were reconstructed using the 
32 sub-optimal encodings as determined from the reference image in Fig. 4(a). 
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Figure 6: PSF Profiles with Baseline Reference: Rows 1-3 show the PSF results for 
a delta function change that is centered in the reference boxcar, shifted by one-fourth 
the width of the reference boxcar from the center, and shifted by just under one-half 
(0.49) the width of the reference boxcar from the center, respectively. The width of the 
reference boxcar was 0.03125 (FOV=l), but only the center fourth of the plot is shown 
for better visualization, (a)-(c) The baseline reference image, the dynamic image, and 
the point change reconstructed using 512 phase encodings, (d)-(e) The point change 
reconstructed using Fourier-keyhole (or, equivalently, zero-padded Fourier series) and 
RIGR with 8 dynamic encodings. Note that (a)-(c) are on a different scale than (d)-(e). 

28 



^ 

0.20 

PSF vs. Number of Dynamic Encodings 
Centered Point Change 

0.15 

-Ö 

o 
D) 
C 
CO 

•4-* o 
CD 
cc 
c 
CO 
> 

'zs 
cx 

LU 

0.10 

0.05 

0.00 

— Fourier Series 
— Gen. Series (0.5) 
- - Gen. Series (0.25) 
-- Gen. Series (0.125) 

Gen. Series (0.0625) 
--- Gen. Series (0.03125) 
— Gen. Series (0.015625) 
■-- Gen. Series (0.0078125) 
— Gen. Series (0.00390625) 

0.0 16.0 32.0 48.0 64.0 
Number of Dynamic Encodings 

80.0 

Figure 7: PSF vs Number of Dynamic Encodings: This plot shows the relationship 
between the width of the PSF and the number of dynamic encodings used for Fourier- 
keyhole (or, equivalents, the zero-padded Fourier series) and RIGR. In the simulations 
used to generate this plot, the point change was centered in the reference boxcar. Note 
the reduced PSF width of RIGR as compared to Fourier-keyhole for all reference boxcar 
widths and all numbers of dynamic encodings. 
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Figure 8: PSF vs Width of Reference Boxcar: This plot shows the relationship between 
the width of the PSF and the width of the reference boxcar for Fourier-keyhole (or, 
equivalently, the zero-padded Fourier series) and RIGR for three locations of the point 
change. The simulations to generate this plot used 64 dynamic encodings. 
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Figure 9: PSF Profiles with Active Reference: Rows 1-3 show the PSF results for a 
delta function change that is centered in the reference boxcar, shifted by one-fourth 
the width of the reference boxcar from the center, and shifted by just under one-half 
(0.49) the width of the reference boxcar from the center, respectively. The width of the 
reference boxcar was 0.03125 (FOV=l), but only the center fourth of the plot is shown 
for better visualization, (a)-(d) The baseline reference image, the active reference image, 
the dynamic image, and the point change reconstructed using 512 phase encodings, (e) 
The point change reconstructed using RIGR with the active reference image and 8 
dynamic encodings. Note that (a)-(c) are on a different scale than (d)-(e). 
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Figure 10: Dynamic Change Images: (a)-(c) The reference and dynamic images and 
the difference between the two, respectively, reconstructed using 256 phase encodings. 
(d)-(e) The difference image reconstructed using 32 dynamic encodings with Fourier- 
keyhole (or, equivalently, zero-padded Fourier series) and RIGR, respectively. Note the 
improved reconstruction of the dynamic changes with the RIGR method. 

Figure 11: Keyhole Data Inconsistency Artifact: (a)-(b) The reference and dynamic im- 
ages, respectively, reconstructed using 128 phase encodings, (c)-(d) The dynamic image 
reconstructed with 16 dynamic encodings using Fourier-keyhole and RIGR, respectively. 
The phase encoding direction is horizontal. Note the edge artifacts that appear in the 
Fourier-keyhole image. 
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Figure 12: Data Acquisition Strategy for TRIGR 
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Figure 13: PSF Profiles For TRIGR: Rows 1-3 show the PSF results for a delta function 
change that is centered in the reference boxcar, shifted by one-fourth the width of 
the reference boxcar from the center, and shifted by just under one-half (0.49) the 
width of the reference boxcar from the center, respectively. The width of the reference 
boxcar was 0.03125 (FOV=l), but only the center fourth of the plot is shown for better 
visualization, (a)-(d) The baseline reference, active reference, dynamic image, and the 
point change image, respectively, reconstructed using 512 phase encodings, (e) The 
point change reconstructed using TRIGR and 8 dynamic encodings. Note that (a)-(c) 
are on a different scale than (d)-(e). 
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Figure 14: TRIGR with Complete Background Suppression: Images (row 1) and profiles 
through the upper and lower set of lesions (rows 2-3, respectively), (a)-(c) The baseline 
reference, active reference and dynamic images, respectively, reconstructed using 128 
phase encodings, (d)-(e) The dynamic image reconstructed using 16 dynamic encodings 
with RIGR using the baseline and active reference images, respectively, (f) The dynamic 
image reconstructed using 16 dynamic encodings with TRIGR. 

Figure 15: TRIGR with Incomplete Background Suppression: Images (row 1) and pro- 
files through the upper and lower set of lesions (rows 2-3, respectively), (a)-(c) The 
baseline reference, active reference and dynamic images, respectively, reconstructed us- 
ing 128 phase encodings, (d)-(e) The dynamic image reconstructed using 16 dynamic 
encodings with RIGR using the baseline and active reference images, respectively, (f) 
The dynamic image reconstructed using 16 dynamic encodings with TRIGR. 
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Figure 16: TRIGR Applied to Contrast-Enhanced Dynamic Imaging Experiment on Rat: 
(a)-(b) The precontrast and postcontrast reference images, respectively, reconstructed 
using 256 phase encodings, (c) The difference image between the dynamic image (not 
shown) and the precontrast reference image, reconstructed using 256 phase encodings. 
(d)-(f) The difference image reconstructed using 8 dynamic encodings with Fourier- 
keyhole, the original RIGR method and the TRIGR method, respectively. In the TRIGR 
image, note the improved delineation of the internal details of the tumor, such as those 
indicated by the arrows. 
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Figure 17: Explicit Edge Information with Precontrast Reference Image: (a)-(b) The 
original precontrast reference and dynamic images, respectively, reconstructed using 256 
phase encodings, (c)-(d) The dynamic image reconstructed using 32 dynamic encodings 
with the original RIGR method and the RIGR method with explicit edge information, 
respectively. 
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Figure 18: Explicit Edge Information with Postcontrast Reference Image: (a)-(b) The 
original postcontrast reference and dynamic images, respectively, reconstructed using 256 
phase encodings, (c)-(d) The dynamic image reconstructed using 32 dynamic encodings 
with the original RIGR method and the RIGR method with explicit edge information, 
respectively. 
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Figure 19: Motion Corrected Dynamic Images: (b)-(d) were reconstructed using the GS 
model with (a) as the reference image and 32 dynamic encodings, (b) The dynamic 
image that results with no motion between the reference and dynamic data sets. The 
remaining images show the dynamic image reconstructed with a 5 pixel shift in the 
phase-encoding direction (vertical), a -3 pixel shift in the frequency-encoding direction 
(horizontal) and a 3 degree clockwise rotation between the reference and dynamic data 
sets, (c)-(d) The dynamic images that result with no motion correction and with the 
proposed method, respectively. Note the reduced motion artifacts in (d) as compared 
to (c). 

38 



References 

[1] S. H. Heywang, A. Wolf, E. Pruss, T. Hilbertz, W. Eiermann, and W. Permanet- 

ter, "MR imaging of the breast with Gd-DTPA: Use and limitations," Radiology, 

vol. 171, pp. 95-103, 1989. 

[2] W. A. Kaiser, "MR imaging examination of both breasts within 6 minutes: Tech- 

nique and first results," in Proc. RSNA 75th Ann. Meeting, (Chicago, IL), p. 164, 

November/December 1989. 

[3] W. A. Kaiser, "MR imaging of the breast: Optimal imaging technique, results, 

limitations and histopathologic correlation," in Proc. RSNA 75th Ann. Meeting, 

(Chicago, IL), p. 230, November/December 1989. 

[4] W. A. Kaiser and 0. Mittelmeier, "Breast-tissue differentiation by MRI: Results 

of 361 examinations in 5 years," in Tissue Characterization in MR Imaging (H. P. 

Higer and G. Bielke, eds.), pp. 254-257, Springer-Verlag, 1990. 

[5] W. A. Kaiser, "MRM promises earlier breast cancer diagnosis," Diagnostic Imaging, 

pp. 88-93, Sept. 1992. 

[6] S. E. Harms, D. P. Flamig, K. L. Hesley, and W. P. Evans, "Magnetic resonance 

imaging of the breast," Magn. Reson. Q., vol. 8, no. 3, pp. 139-155, 1992. 

[7] S. E. Harms and D. P. Flamig, "Breast: Visualizing Ca not seen by radiography," 

Body MRI, pp. 20-24, June 1993. 

[8] S. E. Harms and D. P. Flamig, "MR imaging of the breast," J. Magn. Reson. Imag., 

vol. 3, pp. 277-283, January/February 1993. 

[9] J. P. Stack, O. M. Redmond, M. B. Codd, P. A. Dervan, and J. T. Ennis, "Breast 

disease: Tissue characterization with Gd-DTPA enhancement profiles," Radiology, 

vol. 174, pp. 491-494, 1990. 

[10] W. A. Kaiser and E. Zeitler, "MR imaging of the breast: Fast imaging sequences 

with and without Gd-DTPA, preliminary observations," Radiology, vol. 170, 

pp. 681-686, 1989. 

39 



[11] B. A. Porter and J. P. Smith, "MRI enhances breast cancer detection and staging," 

MR, pp. 18-26,35, September/October 1993. 

[12] E. Furman-Haran, R. Margalit, A. F. Maretzek, and H. Degani, "Angiogenic re- 

sponse of MCF7 human breast cancer to hormonal treatment: Assessment by dy- 

namic GdDTPA-enhanced MRI at high spatial resolution," J. Magn. Reson. Imag., 

vol. 6, pp. 195-202, January/February 1996. 

[13] Y. Yamashita, M. Harada, M. Torashima, M. Takahashi, K. Miyazaki, N. Tanaka, 

and H. Okamura, "Dynamic MR imaging of recurrent postoperative cervical can- 

cer," J. Magn. Reson. Imag., vol. 6, pp. 167-171, January/February 1996. 

[14] D. B. Twieg, "The ^-trajectory formulation of the NMR imaging process with appli- 

cations in analysis and synthesis of imaging methods," Med. Phys., vol. 10, pp. 610- 

621, 1983. 

[15] Z.-P. Liang and P. C. Lauterbur, "Improved temporal/spatial resolution in func- 

tional imaging through generalized series reconstruction," in Works-in-Progress 

Proc. Soc. Magn. Reson. Imag. 10th Ann. Meeting, (New York, NY), p. S15, Aug. 

1992. 

[16] Z.-P. Liang and P. C. Lauterbur, "An efficient method for dynamic magnetic reso- 

nance imaging," IEEE Trans. Med. Imaging, vol. 13, pp. 677-686, Dec. 1994. 

[17] J. B. Weaver and D. M. Healy, Jr., "New MRI acquisition techniques using the 

window Fourier transforms and the wavelet transforms," in Proc. Soc. Magn. Reson. 

Med. 9th Ann. Meeting, (New York, NY), p. 414, Aug. 1990. 

[18] J. B. Weaver, Y. Xu, D. Crean, and D. M. Healy, "Wavelet encoding in MR imag- 

ing," in Proc. Soc. Magn. Reson. Med. 10th Ann. Meeting, (San Francisco, CA), 

p. 182, Aug. 1991. 

[19] J. B. Weaver, Y. Xu, D. Crean, and D. M. Healy, "Imaging times in window Fourier 

transform imaging," in Proc. Soc. Magn. Reson. Med. 10th Ann. Meeting, (San 

Francisco, CA), p. 857, Aug. 1991. 

[20] D. M. Healy and J. B. Weaver, "Two applications of wavelet transforms in magnetic 

resonance imaging," IEEE Trans. Inf. Theory, vol. 38, pp. 840-860, 1992. 

40 



[21] X. Hu, A. H. Tewfik, and H. Garnaoui, "A new wavelet based MR imaging tech- 

nique," in Proc. Soc. Magn. Reson. Med. 11th Ann. Meeting, (Berlin, Germany), 

p. 432, Aug. 1992. 

[22] L. P. Panych, P. D. Jakab, and F. A. Jolesz, "Progress towards real-time adaptive 

imaging using wavelet transform encoding," in Proc. Soc. Magn. Reson. Med. 11th 

Ann. Meeting, (Berlin, Germany), p. 4513, Aug. 1992. 

[23] L. P. Panych and P. D. Jakab, "Wavelet encoding in the section-select dimension," 

in Proc. Soc. Magn. Reson. Imag. 10th Ann. Meeting, (New York, NY), p. 90, Apr. 

1992. 

[24] J. B. Weaver, Y. Xu, D. M. Healy, and J. R. Driscoll, "Wavelet-encoded MR imag- 

ing," Magn. Reson. Med., vol. 24, pp. 275-287, 1992. 

[25] J. B. Weaver, D. M. Healy, Jr., D. Crean, and Y. Xu, "Wavelet encoding with 

smooth wavelets: Short RF pulses," in Proc. Soc. Magn. Reson. Med. 11th Ann. 

Meeting, (Berlin, Germany), p. 4264, Aug. 1992. 

[26] J. B. Weaver, D. M. Healy, Jr., and Y. Xu, "SNR for wavelet encoded MR," in Proc. 

Soc. Magn. Reson. Med. 11th Ann. Meeting, (Berlin, Germany), p. 3822, Aug. 1992. 

[27] J. B. Weaver and D. M. Healy, Jr., "Adaptive wavelet encoding in cardiac imaging," 

in Proc. Soc. Magn. Reson. Med. 11th Ann. Meeting, (Berlin, Germany), p. 3906, 

Aug. 1992. 

[28] J. M. Hanson, Z.-P. Liang, and P. C. Lauterbur, "A new method for fast dynamic 

imaging using wavelet transforms," in Proc. Soc. Magn. Reson. Med. 12th Ann. 

Meeting, (New York, NY), p. 712, Aug. 1993. 

[29] K. Oshio, L. P. Panych, and F. A. Jolesz, "Wavelet encoded MR imaging (imple- 

mentation)," in Proc. Soc. Magn. Reson. Med. 12th Ann. Meeting, (New York, NY), 

p. 1213, Aug. 1993. 

[30] L. P. Panych, P. D. Jakab, and F. A. Jolesz, "An implementation of wavelet-encoded 

MR imaging," in Proc. Soc. Magn. Reson. Imag. 10th Ann. Meeting, (New York, 

NY), p. 26, Apr. 1993. 

41 



[31] L. P. Panych, P. D. Jakab, and F. A. Jolesz, "Implementation of wavelet-encoded 

MR imaging," J. Magn. Reson. Imag., vol. 3, pp. 649-655, 1993. 

[32] R. D. Peters and M. L. Wood, "Practical considerations for the implementation of 

wavelet encoding in MRI," in Proc. Soc. Magn. Reson. Med. 12th Ann. Meeting, 

(New York, NY), p. 1212, Aug. 1993. 

[33] L. P. Panych and F. A. Jolesz, "A dynamically adaptive imaging algorithm for 

wavelet-encoded MRI," Magn. Reson. Med., vol. 32, pp. 738-748, 1994. 

[34] L. P. Panych and F. A. Jolesz, "Theoretical comparison of resolution in wavelet and 

Fourier encoded MR images," in Proc. Soc. Magn. Reson. 2nd Ann. Meeting, (San 

Francisco, CA), p. 776, Aug. 1994. 

[35] L. P. Panych and F. A. Jolesz, "Design of optimal wavelet bases for wavelet encoded 

MRI," in Proc. Soc. Magn. Reson. 2nd Ann. Meeting, (San Francisco, CA), p. 777, 

Aug. 1994. 

[36] N. Gelman, M. L. Wood, and R. D. Peters, "Three dimensional gradient echo 

imaging using wavelet encoding," in Proc. Soc. Magn. Reson. 3rd Ann. Meeting, 

(Nice, France), p. 662, Aug. 1995. 

[37] R. D. Peters and M. L. Wood, "Multilevel wavelet-encoded MR imaging," in Proc. 

Soc. Magn. Reson. 3rd Ann. Meeting, (Nice, France), p. 194, Aug. 1995. 

[38] N. Gelman and M. L. Wood, "Wavelet encoding for improved SNR and retrospective 

slice thickness adjustment," in Proc. Int. Soc. Magn. Reson. Med. 4th Ann. Meeting, 

(New York, NY), p. 1535, April/May 1996. 

[39] W.-L. Hwang, N.-K. Chen, C. Chen, and H. N. Yeung, "Application of wavelet 

decomposition in dynamic MRI," in Proc. Int. Soc. Magn. Reson. Med. J^th Ann. 

Meeting, (New York, NY), p. 1650, April/May 1996. 

[40] L. P. Panych, "Theoretical comparison of Fourier and wavelet encoding in magnetic 

resonance imaging," IEEE Trans. Med. Imaging, vol. 15, pp. 141-153, Apr. 1996. 

[41] R. D. Peters and M. L. Wood, "Multilevel wavelet-transform encoding in MRI," J. 

Magn. Reson. Imag., vol. 6, pp. 529-540, 1996. 

42 



[42] Y. Cao and D. N. Levin, "On the relationship between feature-recognizing MRI 

and MRI encoded by singular value decomposition," Magn. Reson. Med., vol. 33, 

pp. 140-142, Jan. 1995. 

[43] Y. Cao, D. N. Levin, and L. Yao, "Locally focused MRI," Magn. Reson. Med., 

vol. 34, pp. 858-867, Dec. 1995. 

[44] L. P. Panych, C. Oesterle, G. P. Zientara, and J. Hennig, "Implementation of a fast 

gradient-echo SVD encoding technique for dynamic imaging," in Proc. Soc. Magn. 

Reson. 3rd Ann. Meeting, (Nice, France), p. 663, Aug. 1995. 

[45] L. P. Panych, C. Oesterle, G. P. Zientara, and J. Hennig, "Implementation of a fast 

gradient-echo SVD encoding technique for dynamic imaging," Magn. Reson. Med., 

vol. 35, pp. 554-562, 1995. 

[46] L. P. Panych, W. E. Kyriakos, G. P. Zientara, and F. A. Jolesz, "Dynamically 

adaptive MRI methods for following change occuring within a reduced field-of- 

view," in Proc. Soc. Magn. Reson. 3rd Ann. Meeting, (Nice, France), p. 193, Aug. 

1995. 

[47] L. P. Panych, P. Saiviroonporn, R. V. Mulkern, G. P. Zientara, and F. A. Jolesz, 

"Non-Fourier encoding with multiple spin echoes," in Proc. Int. Soc. Magn. Reson. 

Med. 4th Ann. Meeting, (New York, NY), p. 115, April/May 1996. 

[48] L. P. Panych, P. Saiviroonporn, G. P. Zientara, and F. A. Jolesz, "Implementation 

of a 3D interleaved echo-planar method for SVD encoded MRI," in Proc. Int. Soc. 

Magn. Reson. Med. 4th Ann. Meeting, (New York, NY), p. 387, April/May 1996. 

[49] P. Saiviroonporn, G. P. Zientara, L. P. Panych, and F. A. Jolesz, "Real-time compu- 

tations for dynamically adaptive SVD encoded MRI," in Proc. Soc. Magn. Reson. 

3rd Ann. Meeting, (Nice, France), p. 665, Aug. 1995. 

[50] G. P. Zientara, L. P. Panych, and F. A. Jolesz, "Dynamically adaptive MRI with 

encoding by singular value decomposition," Magn. Reson. Med., vol. 32, pp. 268- 

274, 1994. 

[51] G. P. Zientara, L. P. Panych, and F. A. Jolesz, "Keyhole SVD encoded MRI," in 

Proc. Soc. Magn. Reson. 2nd Ann. Meeting, (San Francisco, CA), p. 778, Aug. 1994. 

43 



[52] G. P. Zientara, L. P. Panych, and F. A. Jolesz, "Multi-resolution SVD encoding for 

dynamically adaptive MRI," in Proc. Soc. Magn. Reson. 2nd Ann. Meeting, (San 

Francisco, CA), p. 800, Aug. 1994. 

[53] G. P. Zientara, L. P. Panych, and F. A. Jolesz, "Lanczos spatial encodings for 

dynamically adaptive MRI," in Proc. Soc. Magn. Reson. 3rd Ann. Meeting, (Nice, 

France), p. 664, Aug. 1995. 

[54] G. P. Zientara, L. P. Panych, P. Saiviroonporn, and F. A. Jolesz, "MR fluoroscopy 

using near-optimal adaptive spatial encoding," in Proc. Int. Soc. Magn. Reson. 

Med. 4th Ann. Meeting, (New York, NY), p. 1495, April/May 1996. 

[55] K. S. Arun, "Fundamentals of digital signal and spectral analysis." ECE 413 Class 

Book, Dept. of Electrical and Computer Engineering, Univ. of Illinois at Urbana- 

Champaign, Urbana, IL, Spring 1992. 

[56] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Comm. Pure 

Appl. Math., vol. XLI, pp. 909-996, 1988. 

[57] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, "Image coding using 

wavelet transform," IEEE Trans. Image Proc, vol. 1, pp. 205-220, Apr. 1992. 

[58] J. D. Villasenor, B. Beizer, and J. Liao, "Wavelet filter evaluation for image com- 

pression," IEEE Trans. Image Proc, vol. 2, pp. 1053-1060, Aug. 1995. 

[59] J. J. van Vaals, H. H. Tuithof, and W. T. Dixon, "Increased time resolution in 

dynamic imaging," in Proc. Soc Magn. Reson. Imag. 10th Ann. Meeting, (New 

York, NY), p. 44, Aug. 1992. 

[60] J. E. Bishop, I. Soutar, W. Kucharczyk, and D. B. Plewes, "Rapid sequential imag- 

ing with shared-echo fast spin-echo MR imaging," in Works-in-Progress Proc. Soc 

Magn. Reson. Imag. 10th Ann. Meeting, (New York, NY), p. S22, Aug. 1992. 

[61] S. Mallat and S. Zhong, "Compact image coding from edges with wavelets," in 

Proc, Int. Conf. Acoust. Speech Sig. Proc, (Toronto), pp. 2745-2748, 1991. 

[62] S. Mallat and S. Zhong, "Characterization of signals from multiscale edges," IEEE 

Trans. Patt. Anal. Mach. Intell, vol. 14, pp. 710-732, July 1992. 

44 



[63] L. Du, J. Lee, K. Hoppel, and S. A. Mango, "Segmentation of SAR images using 

the wavelet transform," Int. J. Imag. Sys. and Tech., vol. 4, pp. 319-326, 1992. 

[64] N. Ahuja, "A transform for detection of multiscale image structure," in Proc. 

DARPA Image Understanding Workshop, (Washington, DC), pp. 893-902, Apr. 

1993. 

[65] N. Ahuja, "A transform for detection of multiscale image structure," in Proc. Comp. 

Vision Patt. Recog., (New York, NY), pp. 780-781, June 1993. 

[66] Z.-P. Liang, Constrained Reconstruction from Incomplete and Noisy Data: A New 

Parametric Approach. PhD thesis, Case Western Reserve University, Cleveland, 

May 1989. Department of Biomedical Engineering. 

[67] R. L. Ehman and J. P. Felmlee, "Adaptive technique for high-definition MR imaging 

of moving structures," Radiology, vol. 173, no. 1, pp. 258-263, 1989. 

[68] Y. Wang, R. C. Grimm, S. J. Riederer, and R. L. Ehman, "Algorithms to extract 

motion information from navigator echoes," in Proc. Soc. Magn. Reson. 3rd Ann. 

Meeting, (Nice, France), p. 751, Aug. 1995. 

[69] Z. W. Fu, Y. Wang, R. C. Grimm, P. J. Rossman, J. P. Felmlee, S. J. Riederer, 

and R. L. Ehman, "Orbital navigator echoes for motion measurements in magnetic 

resonance imaging," Magn. Reson. Med., vol. 34, pp. 746-753, 1995. 

[70] Y. Wang, R. C. Grimm, J. P. Felmlee, S. J. Riederer, and R. L. Ehman, "Algo- 

rithms for extracting motion information from navigator echoes," Magn. Reson. 

Med., vol. 36, pp. 117-123, 1996. 

[71] C. C. Lee, C. R. Jack, Jr., R. C. Grimm, P. J. Rossman, J. P. Felmlee, R. L. 

Ehman, and S. J. Riederer, "Real-time adaptive motion correction in functional 

MRI," Magn. Reson. Med., vol. 36, pp. 436-444, 1996. 

45 



7     Appendix A - Acronyms 

BMRL - Biomedical Magnetic Resonance Laboratory 

FOV - Field of View 

ISMRM - International Society for Magnetic Resonance in Medicine 

LPA - Localized Polynomial Approximation 

MR - Magnetic Resonance 

MRI - Magnetic Resonance Imaging 

PSF - Point Spread Function 

RIGR - Reduced-encoding Imaging by Generalized-series Reconstruction 

RSNA - Radiological Society of North America 

SMR - Society of Magnetic Resonance 

SMRI - Society of Magnetic Resonance Imaging 

SMRM - Society of Magnetic Resonance in Medicine 

SNR - Signal to Noise Ratio 

SVD - Singular Value Decomposition 

TRIGR - Two reference Reduced-encoding Imaging by Generalized-series Reconstruction 

46 



8     Appendix B - List of Personnel 

1. Jill Marie Hanson 

47 



9     Appendix C - Bibliography of Publications 

[1] J. M. Hanson, Z.-P. Liang, and P. C. Lauterbur, "Improved RIGR dynamic imaging 

using explicit boundary constraints with application to breast imaging," in Proc. 

Soc. Magn. Resort. 3rd Ann. Meeting, (Nice, France), p. 1596, Aug. 1995. 

[2] J. M. Hanson, Z.-P. Liang, E. Wiener, and P. C. Lauterbur, "Fast dynamic imaging 

using two reference images," in Proc. Soc. Magn. Reson. 3rd Ann. Meeting, (Nice, 

France), p. 97, Aug. 1995. 

[3] J. M. Hanson, Z.-P. Liang, R. L. Magin, J. L. Duerk, and P. C. Lauterbur, "A 

comparison of RIGR and SVD dynamic MRI methods," in Proc. Int. Soc. Magn. 

Reson. Med. 4th Ann. Meeting, (New York, NY), p. 118, April/May 1996. 

[4] J. M. Hanson, Z.-P. Liang, E. Wiener, and P. C. Lauterbur, "Fast dynamic imaging 

using two reference images," Magn. Reson. Med., vol. 36, pp. 172-175, July 1996. 

[5] J. M. Hanson, Z.-P. Liang, R. L. Magin, J. L. Duerk, and P. C. Lauterbur, "A 

comparison of RIGR and SVD dynamic MRI methods," Magn. Reson. Med., vol. 38, 

pp. 161-167, 1997. 

[6] J. M. Hanson, Reduced-encoding dynamic imaging. PhD thesis, University of Illinois 

at Urbana-Champaign, Urbana-Champaign, Illinois, 1997. Department of Electrical 

and Computer Engineering. 

48 


