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Abstract 

Distributed Artificial Intelligence (DAI) has existed as a subfield of At for less than two decades. DAI is 
concerned with systems that consist of multiple independent entities that interact in a domain. Traditionally, 
DAI has been divided into two sub-disciplines: Distributed Problem Solving (DPS) focusses on the infor- 
mation management aspects of systems with several branches working together towards a common goal; 
Multiagent Systems (MAS) deals with behavior management in collections of several independent entities, 
or agents. This survey of MAS is intended to serve as an introduction to the field and as an organizational 
framework. A series of increasingly complex general multiagent scenarios are presented. For each scenario, 
the issues that arise are described along with a sampling of the techniques that exist to deal with them. The 
presented techniques are not exhaustive, but they highlight how multiagent systems can be and have been 
used to build complex systems. When options exist, the techniques presented are biased towards machine 
learning approaches. Additional opportunities for applying machine learning to MAS are highlighted and 
robotic soccer is presented as an appropriate testbed for MAS. 

This research is sponsored in part by the DARPA/RL Knowledge Based Planning and Scheduling Initiative under grant number 
F30602-95-1-0018. The views and conclusions contained in this document are those of the authors and should not be interpreted 
as representing the official policies or endorsements, either expressed or implied, of the U. S. Government. 
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1    Introduction 

Extending the realm of the social world to include autonomous computer systems has always been an 
awesome, if not frightening, prospect. However it is now becoming both possible and necessary through 
advances in the field of Artificial Intelligence (AI). In the past several years, AI techniques have become 
more and more robust and complex. To mention just one of the many exciting successes, a car recently 
steered itself more than 95% of the way across the United States using the ALVINN system [60]. By 
meeting this and other such daunting challenges, AI researchers have earned the right to start examining the 
implications of multiple autonomous "agents" interacting in the real world. In fact, they have rendered this 
examination indispensable. If there is one self-steering car, there will surely be more. And although each 
may be able to drive individually, if several autonomous vehicles meet on the highway, we must know how 
their behaviors interact. 

Multiagent Systems (MAS) is the emerging subfield of AI that aims to provide both principles for 
construction of complex systems involving multiple agents and mechanisms for coordination of independent 
agents' behaviors. While there is no generally accepted definition of "agent" in AI [68], for the purposes of 
this article, we consider an agent to be an entity with goals, actions, and domain knowledge, situated in an 
environment. The way it acts is called its "behavior." (This is not intended as a general theory of agency.) 
Although the ability to consider coordinating behaviors of autonomous agents is a new one, the field is 
advancing quickly by building upon pre-existing work in the field of Distributed Artificial Intelligence 
(DAI). 

DAI has existed as a subfield of AI for less than two decades. Traditionally, DAI is broken into two 
sub-disciplines: Distributed Problem Solving (DPS) and MAS [10]. The main topics considered in DPS 
are information management issues such as task decomposition and solution synthesis. For example, a 
constraint satisfaction problem can often be decomposed into several not entirely independent subproblems 
that can be solved on different processors. Then these solutions can be synthesized into a solution of the 
original problem. 

MAS allows the subproblems of a constraint satisfaction problem to be subcontracted to different 
problem solving agents with their own interests and goals. Furthermore, domains with multiple agents of 
any type, including autonomous vehicles and even some human agents, are beginning to be studied. 

This survey of MAS is intended as an introduction to the field. The reader should come away with an 
appreciation for the types of systems that are possible to build using MAS as well as a conceptual framework 
with which to organize the different types of possible systems. 

The article is organized as a series of increasingly complex general multiagent scenarios. For each 
scenario, the issues that arise are described along with a sampling of the techniques that exist to deal with 
them. The techniques presented are not exhaustive, but they highlight how multiagent systems can be and 
have been used to build complex systems. 

Because of the inherent complexity of MAS, there is much interest in using machine learning techniques 
to help deal with this complexity [95, 2]. When several different systems exist that could illustrate the same 
or similar MAS techniques, the systems presented here are biased towards those that use machine learning 
(ML) approaches. Furthermore, every effort is made to highlight additional opportunities for applying ML 
to MAS. 

Although there are many possible ways to divide MAS, the survey is organized along two main 
dimensions: agent heterogeneity and amount of communication among agents. Beginning with the simplest 
multiagent scenario, homogeneous non-communicating agents, the full range of possible multiagent systems, 
through highly heterogeneous communicating agents, is considered. Centralized, single-agent systems are 
shown to belong at the complex end of this spectrum. As illustrated in Figure 1, the heterogeneity 
dimension is varied first, followed by the communication dimension. The result is a steady increase 
in system complexity. When appropriate, systems with low agent heterogeneity and high inter-agent 
communication are also mentioned. However by first increasing heterogeneity and then communication, all 
of the important issues and techniques in MAS are encountered. 

For each multiagent scenario presented, a single example domain is presented in an appropriate instan- 
tiation for the purpose of illustration. In this extensively-studied domain, the Predator/Prey or "Pursuit" 
domain [9], many MAS issues arise. Nevertheless, it is a "toy" domain. At the end of the article, a much 
more complex domain—robotic soccer—is presented in order to illustrate the full power of MAS. 



The article is organized as follows. Section 2 introduces the field of MAS, listing several of its strong 
points and presenting a taxonomy. The body of the article, Sections 3-6, presents the various multiagent 
scenarios, illustrates them using the pursuit domain, and describes existing work in the field. A domain that 
facilitates the study of most multiagent issues is advocated as a testbed in Section 7. Section 8 concludes. 

2   Multiagent Systems 

Two obvious questions about any type of technology are: 

• What advantages does it offer over the alternatives? 
• In what circumstances is it useful? 

It would be foolish to claim that MAS should be used when designing all complex systems. Like any useful 
approach, there are some situations for which it is particularly appropriate, and others for which it is not. 
The goal of this section is to underscore the need for and usefulness of MAS while giving characteristics of 
typical domains that can benefit from it. For a more extensive discussion, see [10]. 

The most important reason to use MAS when designing a system is that some domains require it. 
In particular, if there are different people or organizations with different (possibly conflicting) goals and 
proprietary information, then a multiagent system is needed to handle their interactions. Even if each 
organization wants to model its internal affairs with a single system, the organizations will not give authority 
to any single person to build a system that represents them all: the different organizations will need their 
own systems that reflect their capabilities and priorities. 

For example, consider a manufacturing scenario in which company X produces tires, but subcontracts 
the production of lug-nuts to company Y. In order to build a single system to automate (certain aspects 
of) the production process, the internals of both companies X and Y must be modeled. However, neither 
company is likely to want to relinquish information and/or control to a system designer representing the 
other company. Perhaps with just two companies involved, an agreement could be reached, but with several 
companies involved, MAS is necessary. The only feasible solution is to allow the various companies to 
create their own agents that accurately represent their goals and interests. They must then be combined into 
a multiagent system with the aid of some of the techniques described in this article. 

Another example of a domain that requires MAS is hospital scheduling as presented in [20]. This domain 
from an actual case study requires different agents to represent the interests of different people within the 
hospital. Hospital employees have different interests, from nurses who want to minimize the patient's time 
in the hospital, to x-ray operators who want to maximize the throughput on their machines. Since different 
people evaluate candidate schedules with different criteria, they must be represented by separate agents if 
their interests are to be justly considered. 

Even in domains that could conceivably use systems that are not distributed, there are several possible 
reasons to use MAS. Having multiple agents could speed up a system's operation by providing a method for 
parallel computation. For instance, a domain that is easily broken into components—several independent 
tasks that can be handled by separate agents—could benefit from MAS. Furthermore, the parallelism of 
MAS can help deal with limitations imposed by time-bounded reasoning requirements. 

While parallelism is achieved by assigning different tasks or abilities to different agents, robustness is 
a benefit of multiagent systems that have redundant agents. If control and responsibilities are sufficiently 
shared among different agents, the system can tolerate failures by one or more of the agents. Domains 
that must degrade gracefully are in particular need of this feature of MAS: if a single entity—processor 
or agent—controls everything, then the entire system could crash if there is a single failure. Although 
a multiagent system need not be implemented on multiple processors, to provide full robustness against 
failure, its agents should be distributed across several machines. 

Another benefit of multiagent systems is their scalability. Since they are inherently modular, it should 
be easier to add new agents to a multiagent system than it is to add new capabilities to a monolithic system. 
Systems whose capabilities and parameters are likely to need to change over time or across agents can also 
benefit from this advantage of MAS. 

From a programmer's perspective the modularity of multiagent systems can lead to simpler program- 
ming. Rather than tackling the whole task with a centralized agent, programmers can identify subtasks and 



assign control ofthose subtasks to different agents. The difficult problem of splitting a single agent's time 
among different parts of a task solves itself. Thus, when the choice is between using a multiagent system 
or a single-agent system, MAS is often the simpler option. Of course there are some domains that are more 
naturally approached from an omniscient perspective—because a global view is given—or with centralized 
control—because no parallel actions are possible and there is no action uncertainty [19]. Single-agent 
systems should be used in such cases. 

Finally, multiagent systems can be useful for their illucidation of intelligence [16]. As Gerhard Weiß 
put it: "Intelligence is deeply and inevitably coupled with interaction" [94]. In fact, it has been proposed 
that the best way to develop intelligent machines at all might be to start by creating "social" machines [15]. 
This theory is based on the socio-biological theory that primate intelligence first evolved because of the 
need to deal with social interactions. Reasons presented above to use MAS are summarized in Table 1. 

Table 1: Reasons to use Multiagent Systems 

• Some domains require it • Scalability 
• Parallelism • Simpler programming 
• Robustness • To study intelligence 

2.1    Taxonomy 

Several taxonomies have been presented previously for the related field of Distributed Artificial Intelligence 
(DAI). For example, Decker presents four dimensions of DAI [16]: 

1. Agent granularity (coarse vs. fine); 
2. Heterogeneity of agent knowledge (redundant vs. specialized); 
3. Methods of distributing control (benevolent vs. competitive, team vs. hierarchical, static vs. shifting 
roles); 
4. and Communication possibilities (blackboard vs. messages, low-level vs. high-level, content). 

Along dimensions 1 and 4, multiagent systems have coarse agent granularity and high-level communication. 
Along the other dimensions, they can vary across the whole ranges. In fact, the remaining dimensions are 
very prominent in this article: degree of heterogeneity is a major MAS dimension and all the methods of 
distributing control appear here as major issues. 

More recently, Parunak has presented a taxonomy of MAS from an application perspective [58]. From 
this perspective, the important characteristics of MAS are: 

• System function; 
• Agent architecture (degree of heterogeneity, reactive vs. deliberative); 
• System architecture (communication, protocols, human involvement). 

A useful contribution is that the dimensions are divided into agent and system characteristics. Other 
overviews of DAI and/or MAS include [47, 23, 25, 10]. This article contributes a taxonomy specifically 
focussed on MAS along with a detailed chronicle of existing systems as they fit in to this taxonomy. 

The taxonomy presented in this article is organized along the most important aspects of agents (as 
opposed to domains): degree of heterogeneity and degree of communication. Communication is presented 
as an agent aspect because it is the degree to which the agents communicate (or whether they communicate), 
not the communication protocols that are available to them, that is considered. All the other aspects of 
agents in MAS are touched upon within the heterogeneity/communication framework. For example, the 
degree to which different agents play different roles is certainly an important MAS issue, but here it is 
framed within the scenario of heterogeneous non-communicating agents (it arises in the other two scenarios 
as well). Domain issues are discussed separately in Section 3.2. 

The three combinations of heterogeneity and communication considered in this article (homogeneous 
non-communicating agents; heterogeneous non-communicating agents; and heterogeneous communicating 
agents) are presented in order of increasing complexity and power (see Figure 1). Many of the issues that 
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Figure 1: The major categories of the intrafield taxonomy and how they relate to the major dimensions. 
With full communication of internal state, a centralized system involving a single complex agent may result. 
Even though there are still multiple entities, they send their sensory perceptions and receive their actions 
from a central location: a single agent controls them all. 

arise in the earlier scenarios also apply in the later scenarios. Nevertheless, they are only mentioned again in 
the later scenarios to the degree that they differ or become more complex. Notice that single-agent systems 
are presented as being more complex than multiagent systems. The intuition behind this presentation will 
become clear in Section 2.2. 

The multiagent scenarios along with the issues that arise therein are summarized in Table 2.   The 
techniques that currently exist to address these issues are described in detail in Sections 4-6. 

Homogeneous Non-communicating Agents        Heterogeneous Non-communicating Agents 

Reactive vs. deliberative agents 
Local or global perspective 
Modeling of other agents' states 
How to affect others 

Benevolence vs. competitiveness 
Evolving agents (arms race, credit/blame) 
Modeling of others' goals, actions, and knowledge 
Resource management (interdependent actions) 
Social conventions 
Roles 

Heterogeneous Communicating Agents 

• Understanding each other 
• Planning communicative acts 
• Benevolence vs. competitiveness 
• Resource management (schedule coordination) 
• Commitment/decommitment 
• Truth in communication 

Table 2: Issues arising in the various scenarios as reflected in the literature. 



2.2   Single-Agent vs. Multiagent Systems 

Before studying and categorizing MAS, we must first consider their most obvious alternative: centralized, 
single-agent systems. Centralized systems have a single agent which makes all the decisions, while the 
others act as remote slaves. For the purposes of this survey, a "single-agent system" should be thought of 
as a complex, centralized system in a domain which also allows for a multiagent approach. 

A single-agent system might still have multiple entities — several actuators, or even several robots. 
However, if each entity sends its perceptions to and receives its actions from a single central process, then 
there is only a single agent: the central process. The central agent models all of the entities as a single 
"self." This section compares the single-agent and multiagent approaches. 

2.2.1    Single-Agent Systems 

Although it might seem that single-agent systems should be simpler than multiagent systems, when dealing 
with a fixed, complex task, the opposite is often the case (see Figure 1). Distributing control among multiple 
agents allows each agent to be simpler. No one agent has to be able to complete a given task on its own. Thus 
centralized, single-agent systems belong at the end of the progression from simple to complex multiagent 
systems in Sections 4-6. They are described here first because to many people single-agent (centralized) 
approaches are more intuitive than multiagent (distributed) ones. 

In general, the agent in a single-agent system models itself, the environment, and their interactions. Of 
course the agent is itself part of the environment, but for the purposes of this article, agents are considered to 
have extra-environmental components as well. They are independent entities with their own goals, actions, 
and knowledge. In a single-agent system, no other such entities are recognized by the agent. Thus, even 
if there are indeed other agents in the world, they are not modeled as having goals, etc.: they are just 
considered part of the environment. The point being emphasized is that although agents are also a part of 
the environment, they are explicitly modeled as having their own goals, actions, and domain knowledge 
(see Figure 2). 

Environment 

Goals 
• Actions 
• Domain 

knowledge 

Figure 2: A general single-agent framework. The agent models itself, the environment, and their interactions. 
If other agents exist, they are considered part of the environment. 

22.2   Multiagent Systems 

Multiagent systems differ from single-agent systems in that several agents exist which model each other's 
goals and actions. In the fully general multiagent scenario, there may be direct interaction among agents 
(communication). Although this interaction could be viewed as environmental stimuli, we present inter- 
agent communication as being separate from the environment. 

From an individual agent's perspective, multiagent systems differ from single-agent systems most signif- 
icantly in that the environment's dynamics can be determined by other agents. In addition to the uncertainty 



that may be inherent in the domain, other agents intentionally affect the environment in unpredictable ways. 
Thus, all multiagent systems can be viewed as having dynamic environments. 

Figure 3 illustrates the view that each agent is both part of the environment and modeled as a separate 
entity. There may be any number of agents, with different degrees of heterogeneity and with or without the 
ability to communicate directly. From the fully general case depicted here, we begin by eliminating both 
the communication and the heterogeneity to present homogeneous non-communicating MAS (Section 4). 
Then, in Section 5 the possibility of agent heterogeneity is added back in. Finally, in Section 6, we arrive 
back at the fully general case by considering agents that can interact directly. 
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Figure 3: The fully general multiagent scenario. Agents model each other's goals and actions; they may 
also interact directly (communicate). 

3    Organization of Existing Work 

The following sections present many different MAS techniques that have been previously published. They 
present an extensive, but not exhaustive, list of work in the field. Despite the youth of the field, space does 
not permit exhaustive coverage. Instead, the work mentioned is intended to illustrate the techniques that 
exist to deal with the issues that arise in the various multiagent scenarios. When possible, ML approaches 
are emphasized. 

In increasing order of complexity, the three multiagent scenarios considered are: homogeneous non- 
communicating agents, heterogeneous non-communicating agents, and heterogeneous communicating 
agents. For each of these scenarios, the research issues that arise, the techniques that deal with them, 
and additional ML opportunities are presented. The issues may appear across scenarios, but they are 
presented and discussed in the least complex scenario to which they apply. 

In addition to the existing learning approaches described in the sections entitled "Issues and Techniques", 
there are several previously unexplored learning opportunities that apply in each of the multiagent scenarios. 
For each scenario, a few promising opportunities for ML researchers are presented. 

Many existing ML techniques can be directly applied in multiagent scenarios by delimiting a part of the 
domain that only involves a single agent. However multiagent learning is more concerned with learning 
issues that arise because of the multiagent aspect of a given domain. As described by Weiß, multiagent 
learning is "learning that is done by several agents and that becomes possible only because several agents are 
present" [93]. This type of learning is emphasized in the sections entitled "Further Learning Opportunities." 

For the purpose of illustration, each scenario is accompanied by a suitable instantiation of the Preda- 
tor/Prey or "Pursuit" domain. 



3.1   The Predator/Prey ("Pursuit") Domain 

The Predator/Prey, or "Pursuit" domain (hereafter referred to as the "pursuit domain"), is an appropriate 
one for illustration of MAS because it has been studied using a wide variety of approaches and because 
it has many different instantiations that can be used to illustrate different multiagent scenarios. It is not 
presented as a complex real-world domain, but rather as a toy domain that helps concretize many concepts. 
For discussion of a domain that has the full range of complexities characteristic of more real-world domains, 
see Section 7. 

The pursuit domain was introduced by Benda et al. [9]. Over the years, researchers have studied several 
variations of its original formulation. In this section, a single instantiation of the domain is presented. 
However, care is taken to point out the parameters that can be varied. 

The pursuit domain is usually studied with four predators and one prey. Traditionally, the predators 
are blue and the prey is red (black and grey respectively in Figure 4). The domain can be varied by using 
different numbers of predators and prey. 
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Figure 4: A particular instantiation of the pursuit domain. Predators are black and the prey is grey. The 
arrows on top of two of the predators indicate possible moves. 

The goal of the predators is to "capture" the prey, or surround it so that it cannot move to an unoccupied 
position. A capture position is shown in Figure 4. If the world has edges, fewer than four predators can 
capture the prey by trapping it against an edge or in a corner. Another possible criterion for capture is that a 
predator occupies the same position as the prey. Typically, however, no two players are allowed to occupy 
the same position. 

As depicted in Figure 4, the predators and prey move around in a discrete, grid-like world with square 
spaces. They can move to any adjacent square on a given turn. Possible variations include grids with other 
shapes as spaces (for instance hexagons) or continuous worlds. Within the square game, players may be 
allowed to move diagonally instead of just horizontally. The size of the world may also vary from an infinite 
plane to a small, finite board with edges. The world pictured in Figure 4 is a toroidal world: the predators 
and prey can move off one end of the board and come back on the other end. Other parameters of the game 
that must be specified are whether the players move simultaneously or in turns; how much of the world the 
predators can see; and whether and how the predators can communicate. 

Finally, in the original formulation of the domain, and in most subsequent studies, the prey moves 
randomly: on each turn it moves in a random direction, staying still with a certain probability in order to 
simulate being slower than the predators. However, it is also possible to allow the prey to actively try to 
escape capture. As is discussed in Section 5, there has been some research done to this effect, but there is 
still much room for improvement. The parameters that can be varied in the pursuit domain are summarized 
in Table 3. 



Table 3: Variable parameters in the pursuit domain 

Definition of capture 
Size and shape of the world 
Legal moves 
Simultaneous or sequential movement 

Visible objects and range 
Predator communication 
Prey movement 

The pursuit domain is a good one for the purposes of illustration because it is simple to understand and 
because it is flexible enough to illustrate a variety of scenarios. The possible actions of the predators and 
prey are limited and the goal is well-defined. In terms of the reasons to use MAS as presented in Table 1, 
the pursuit domain does not necessarily require MAS. But in certain instantiations it can make use of the 
parallelism, robustness, and simpler programming offered by MAS. 

In the pursuit domain, a single-agent approach is possible: the agent can observe the positions of all 
four predators and decide how each of them should move. Since the prey moves randomly rather than 
intentionally, it is not associated with any agent. Instead it is considered part of the environment as shown 
in Figure 5. It is also possible to consider DPS approaches to the pursuit domain by breaking the task into 
subproblems to be solved by each predator. However, most of the approaches described here model the 
predators as independent agents with a common goal. Thus, they comprise a multiagent system. 

Agent 

Environment 

o t 

Figure 5: The pursuit domain with just a single agent. One agent controls all predators and the prey is 
considered part of the environment. 

For each of the multiagent scenarios presented below, a new instantiation of the pursuit domain is 
defined. Their purpose is to illustrate the different scenarios within a concrete framework. 

3.2   Domain Issues 

Throughout this survey, the focus is upon agent capabilities. However, from the point of view of the system 
designer, the characteristics of the domain are at least as important. Before moving on to the agent-based 
categorization of the field, a range of domain characteristics is considered. 

Relevant domain characteristics include: the number of agents; the amount of time pressure (is it a 
real-time domain?); whether or not new goals arrive dynamically; the cost of communication; the cost 
of failure; user involvement; and environmental uncertainty. The first several of these characteristics are 
self-explanatory and do not need further mention. 

With respect to cost of failure, an example of a domain with high cost of failure is air-traffic control [63]. 
On the other hand, the directed improvisation domain considered by Hayes-Roth et al. has a very low cost 
of failure [35]. In this domain, entertainment agents accept all improvisation suggestions from each other. 
The idea is that the agents should not be afraid to make mistakes, but rather should "just let the words 
flow" [35]. 

Several multiagent systems include humans as one or more of the agents. In this case, the designer must 
consider the issue of communication between the human and computer agents [71]. Another example of 
user involvement is user feedback in an information filtering domain [27]. 



Decker distinguishes three different sources of uncertainty in a domain [17]. The transitions in the 
domain itself might be non-deterministic; agents might not know the actions of other agents; and agents 
might not know the outcomes of their own actions. This and the other domain characteristics are summarized 
in Table 4. 

Table 4: Domain characteristics that are important when designing MAS 

Number of agents 
Amount of time pressure (real time?) 
Dynamically arriving goals? 
Cost of communication 
Cost of failure 

User involvement 
Environmental uncertainty: Decker [17] 

— a priori in the domain 
— in the actions of other agents 
— in outcomes of an agent's own actions 

4   Homogeneous Non-Communicating Multiagent Systems 

The simplest multiagent scenario involves homogeneous non-communicating agents. In this scenario, all of 
the agents have the same internal structure including goals, domain knowledge, and possible actions. They 
also have the same procedure for selecting among their actions. The only differences among agents are 
their sensory inputs and the actual actions they take: they are situated differently in the world. 

4.1    Homogeneous Non-Communicating Multiagent Pursuit 

In the homogeneous non-communicating version of the pursuit domain, rather than having one agent 
controlling all four predators, there is one identical agent per predator. Although the agents have identical 
capabilities and decision procedures, they may have limited information about each other's internal state 
and sensory inputs. Thus they may not be able to predict each other's actions. The pursuit domain with 
homogeneous agents is illustrated in Figure 6. 

Agent 

Figure 6: The pursuit domain with homogeneous agents. There is one identical agent per predator. Agents 
may have (the same amount of) limited information about other agents' internal states. 

Within this framework, Stephens and Merx propose a simple heuristic behavior for each agent that is 
based on local information [81]. They define capture positions as the four positions adjacent to the prey. 
They then propose a "local" strategy whereby each predator agent determines the capture position to which 
it is closest and moves towards that position. The predators cannot see each other, so they cannot aim 
at different capture positions. Of course a problem with this heuristic is that two or more predators may 
move towards the same capture position, blocking each other as they approach. This strategy is not very 



successful, but it serves as a basis for comparison with two other control strategies—"distributed" and 
"central"—that are discussed in Section 6. 

Since the predators are identical, they can easily predict each other's actions given knowledge of each 
other's sensory input. Such prediction can be useful when the agents move simultaneously and would like to 
base their actions on where the other predators will be at the next time step. Vidal and Durfee analyze such 
a situation using the Recursive Modeling Method (RMM) [90]. RMM is discussed in more detail below, 
but the basic idea is that predator A bases its move on the predicted move of predator B and vice versa. 
Since the resulting reasoning can recurse indefinitely, it is important for the agents to bound the amount of 
reasoning they use either in terms of time or in terms of levels of recursion. Vidal and Durfee's Limited 
Rationality RMM algorithm is designed to take such considerations into account [90]. 

Levy and Rosenschein use a game theoretical approach to the pursuit domain [48]. They use a payoff 
function that allows selfish agents to cooperate. A requirement for their model is that each predator has full 
information about the location of other predators. Their game model mixes game-theoretical cooperative 
and non-cooperative games. 

Korf also takes the approach that each agent should try to greedily maximize its own local utility [46]. 
He introduces a policy for each predator based on an attractive force to the prey and a repulsive force from 
the other predators. Thus the predators tend to approach the prey from different sides. This policy is very 
successful, especially in the diagonal (agents can move diagonally as well as orthogonally) and hexagonal 
(hexagonal grid) games. Korf draws the conclusion that explicit cooperation is rarely necessary or useful, 
at least in the pursuit domain and perhaps more broadly: 

We view this work as additional support for the theory that much coordination and cooperation 
in both natural and man-made systems can be viewed as an emergent property of the interaction 
of greedy agents maximizing their particular utility functions in the presence of environmental 
constraints. 
Richard Korf [46] 

However, whether or not altruism occurs in nature, there is certainly some use for benevolent agents in 
MAS, as shown below. More pressingly, if Korf's claim that the pursuit domain is easily solved with local 
greedy heuristics were true, there would be no point in studying the pursuit domain any further. Fortunately, 
Haynes and Sen show that Korf's heuristics do not work for certain instantiations of the domain [36] (see 
Section 5). 

4.2 General Homogeneous MAS 

The general multiagent scenario with homogeneous agents is illustrated in Figure 7. There are several 
different agents with identical structure (sensors, effectors, domain knowledge, and decision functions), 
but they have different sensor input and effector output. That is to say, they are situated differently in the 
environment and they make their own decisions regarding which actions to take. Having different effector 
output is a necessary condition for MAS: if the agents all act as a unit, then they are essentially a single 
agent. In order to realize this difference in output, homogeneous agents must have different sensor input 
as well. Otherwise they will act identically. For this scenario, in which we consider non-communicating 
agents, assume that the agents cannot communicate directly. 

4.3 Issues and Techniques 

Even in this simplest of multiagent scenarios, there are several issues with which to deal. The techniques 
provided here are representative examples of ways to deal with the presented issues. The issues and 
techniques, as well as the learning opportunities discussed later, are summarized in Table 5. 

4.3.1    Reactive vs. Deliberative agents 

When designing any agent-based system, it is important to determine how sophisticated the agents' reasoning 
will be. Reactive agents simply retrieve pre-set behaviors similar to reflexes without maintaining any internal 
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Figure 7: MAS with homogeneous agents. Only the sensor input and effector output of agents differ, as 
represented by the different arrow styles. The agents' goals, actions, and/or domain knowledge are all 
identical as indicated by the identical fonts. 

Issues 
Homogeneous Non- Communicating 

• Reactive vs. deliberative agents 
• Local or global perspective 
• Modeling of other agents' states 
• How to affect others 

Learning opportunities 

• Enable others' actions 
• Sensor data —> Other agent's sensor data 

Techniques 

Reactive Behaviors for Formation maintenance. Balch [7] 
Local knowledge sometimes better. Roychowdhury [67] 
(limited) Recursive Modeling Method (RMM). Durfee [24] 
Don't model others-just pay attention to reward. Schmidhuber [77] 
Stigmergy. Holland/Goldman and Rosenschein [39, 31] 
Q-learning for behaviors like foraging, homing, etc. Mataric [52] 

Table 5: The issues, techniques, and learning opportunities for homogeneous MAS as reflected in the 
literature. 

state. On the other hand, deliberative agents behave more like they are thinking, by searching through a 
space of behaviors, maintaining internal state, and predicting the effects of actions. Although the line 
between reactive and deliberative agents can be somewhat blurry, an agent with no internal state is certainly 
reactive, and one which bases its actions on the predicted actions of other agents is deliberative. Here we 
describe one system at each extreme as well as two others that mix reactive and deliberative reasoning. 

Balch and Arkin use homogeneous, reactive, non-communicating agents to study formation maintenance 
in autonomous robots [7]. The robots' goal is to move together in a military formation such as a diamond, 
column, or wedge. They periodically come across obstacles which prevent one or more of the robots from 
moving in a straight line. After passing the obstacle, all robots must adjust in order to regain their formation. 
The agents reactively convert their sensory data (which includes the positions of the other robots) to motion 
vectors for avoiding obstacles, avoiding robots, moving to a goal location, and formation maintenance. The 
actual robot motion is a simple weighted sum of these vectors. 

At the other extreme is the pursuit domain work by Levy and Rosenschein that is mentioned above [48]. 
Their agents assume that each will act in service of its own goals. They use game theoretic techniques to 
find equilibrium points and thus to decide how to act [48]. These agents are clearly deliberative, as they 
search for actions rather than simply retrieving them. 

There are also several existing systems and techniques that mix reactive and deliberative behaviors. One 
example is Rao and Georgeff's OASIS system (see Section 6) which reasons about when to be reactive and 
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when to follow goal-directed plans [63]. Another example is Sahota's reactive deliberation technique [69]. 
As the name implies it mixes reactive and deliberative behavior: an agent reasons about which reactive 
behavior to follow under the constraint that it must choose actions at a rate of 60 Hz. Reactive deliberation was 
not explicitly designed for MAS, but because it was designed for real-time control in dynamic environments, 
it is likely to be extendible to multiagent scenarios. 

43.2    Local or global perspective 

Another issue to consider when building a multiagent system is how much sensor information should be 
available to the agents. Even if it is feasible within the domain to give the agents a global perspectives of 
the world, it may be more effective to limit them to local views. 

Roychowdhury et al. consider a case of multiple agents sharing a set of identical resources in which 
they have to learn (adapt) their resource usage policies [67]. Since the agents are identical and do not 
communicate, if they all have a global view of the current resource usage, they will all move simultaneously 
to the most under-used resource. However, if they each see a partial picture of the world, then different 
agents gravitate towards different resources: a preferable effect. Better performance by agents with less 
knowledge is occasionally summarized by the cliche "Ignorance is Bliss." 

433   Modeling of other agents' states 

Durfee gives another example of "Blissful Ignorance," mentioning it explicitly in the title of his paper: 
"Blissful Ignorance: Knowing Just Enough to Coordinate Well" [24]. Now rather than referring to resource 
usage, the saying applies to the limited Recursive Modeling Method (RMM). As mentioned above in the 
context of the pursuit domain, RMM could recurse indefinitely. Even if further information can be obtained 
by reasoning about what agent A thinks agent B thinks agent A thinks ..., endless reasoning can lead to 
inaction. Durfee contends that for coordination to be possible, some potential knowledge must be ignored. 
As well as illustrating this concept in the pursuit domain [90], Durfee goes into more detail and offers more 
generally applicable methodology in [24]. 

The point of the RMM is to model the internal state of another agent in order to predict its actions. Even 
though the agents know each other's goals and structure (they are homogeneous), they may not know each 
other's future actions. The missing pieces of information are the internal states (for deliberative agents) and 
sensory inputs of the other agents. How and whether to model other agents is a ubiquitous issue in MAS. In 
the more complex multiagent scenarios presented in the next sections, agents may have to model not only 
the internal states of other agents, but also their goals, actions, and abilities. 

Although it may be useful to build models of other agents in the environment, agent modeling is not 
done universally. Schmidhuber advocates a form of multiagent reinforcement learning (RL) with which 
agents do not model each other as agents [77]. Instead they consider each other as parts of the environment 
and affect each other's policies only as sensed objects. The agents pay attention to the reward they receive 
using a given policy and checkpoint their policies so they can return to successful ones. Schmidhuber shows 
that the agents can learn to cooperate without modeling each other. 

43.4   How to affect others 

When no communication is possible, system designers must decide how the agents will affect one another. 
Since they exist in the same environment, the agents can affect each other in several ways. Actively, they 
can be sensed by other agents, or they may be able to change the state of another agent by, for example, 
pushing it. More indirectly, agents can affect other agents by one of two types of stigmergy [39]. First! 
active stigmergy occurs when an agent alters the environment so as to affect the sensory input of another 
agent. For example, a robotic agent might leave a marker behind it for other agents to observe. Goldman 
and Rosenschein demonstrate an effective form of active stigmergy in which agents heuristically alter the 
environment in order to facilitate future unknown plans of other agents [31]. Second, passive stigmergy 
involves altering the environment so that the effects of another agent's actions change. For example, if one 
agent turns off the main water valve to a building, the effect of another agent turning on the kitchen faucet 
is altered. 
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Holland illustrates the concept of passive stigmergy with a robotic system designed to model the behavior 
of an ant colony confronted with many dead ants around its nest [39]. An ant from such a colony tends 
to periodically pick up a dead ant, carry it for a short distance, and then drop it. Although the behavior 
appears to be random, after several hours, the dead ants are clustered in a small number of heaps. Over time, 
there are fewer and fewer large piles until all the dead ants end up in one pile. Although the ants behave 
homogeneously and, at least in this case, we have no evidence that they communicate explicitly, the ants 
manage to cooperate in achieving a task. 

Holland models this situation with a number of identical robots in a small area scattered with pucks [39]. 
The robots are programmed reactively to move straight (turning at walls) until they are pushing three or 
more pucks. At that point, the robots back up and turn away, leaving the three pucks in a cluster. Although 
the robots do not communicate at all, they are able to collect the pucks into a single pile over time. This 
effect occurs because when a robot approaches an existing pile directly, it adds the pucks it was already 
carrying to the pile and turns away. Of course a robot approaching an existing pile obliquely might take 
a puck away from the pile, but over time the desired result is accomplished. Like the ants, the robots use 
passive stigmergy to affect each other's behavior. 

A similar scenario with more deliberative robots is explored by Mataric. In this case, the robots use 
Q-learning to learn behaviors including foraging for pucks as well as homing and following [52]. The 
robots learn independent policies, dealing with the high-dimensional state space with the aid of progress 
estimators that give intermediate rewards, and with the aid of boolean value predicates that condense many 
states into one. Mataric's robots actively affect each other through observation: a robot learning to follow 
another robot can base its action on the relative location of the other robot. 

4.4   Further Learning Opportunities 

In addition to the existing learning approaches described above, there are several previously unexplored 
learning opportunities that apply to homogeneous non-communicating systems (see Table 5). 

One unexplored learning opportunity that could apply in domains with homogeneous non-communicating 
agents is learning to enable others' actions. Inspired by the concept of stigmergy, an agent may try to learn 
to take actions that will not directly help it in its current situation, but that may allow other similar agents 
to be more effective in the future. Typical RL situations with delayed reward encourage agents to learn to 
achieve their goals directly by propagating local reinforcement back to past states and actions [42]. However 
if an action leads to a reward by another agent, the acting agent may have no way of reinforcing that action. 
Techniques to deal with such a problem would be useful for building multiagent systems. 

In terms of modeling other agents, there is much room for improvement in the situation that a given agent 
does not know the internal state or sensory inputs of another agent. When such information is known, RMM 
can be used to determine future actions of agents. However, if the information is not directly available, it 
would be useful for an agent to learn it. The function from agent X's sensor data (which might include a 
restricted view of agent Y) to agent Y's sensor data is a useful function to learn. If effectively learned, agent 
X can then use (limited) RMM to predict agent Y's future actions. 

5   Heterogeneous Non-Communicating Multiagent Systems 

To this point, we have only considered agents that are homogeneous. Adding the possibility of heterogeneous 
agents in a multiagent domain adds a great deal of potential power at the price of added complexity. Agents 
might be heterogeneous in any of a number of ways, from having different goals to having different domain 
models and actions. An important subdimension of heterogeneous agent systems is whether agents are 
benevolent or competitive. Even if they have different goals, they may be friendly to each other's goals or 
they may actively try to inhibit each other. This aspect of heterogeneous systems, along with several others, 
is described below. 
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5.1   Heterogeneous Non-Communicating Multiagent Pursuit 

Before exploring the general multiagent scenario involving heterogeneous non-communicating agents, 
consider how this scenario can be instantiated in the pursuit domain. As in the previous scenario, the 
predators are controlled by separate agents. But they are no longer necessarily identical agents: their goals, 
actions and domain knowledge may differ. In addition, the prey, which inherently has goals different from 
those of the predators, can now be modeled as an agent. The pursuit domain with heterogeneous agents is 
shown in Figure 8. 

Agent Agent 

Figure 8: The pursuit domain with heterogeneous agents. Goals and actions may differ among agents. Now 
the prey may also be modeled as an agent. 

Haynes and colleagues have done various studies with heterogeneous agents in the pursuit domain. 
They have evolved teams of predators, equipped predators with case bases, and competitively evolved the 
predators and the prey. 

First, Haynes et al. use genetic programming (GP) to evolve teams of four predators [38]. Rather 
than evolving predator agents in a single evolutionary pool and then combining them into teams to test 
performance, each individual in the population is actually a team of four agents already specifically assigned 
to different predators. Thus the predators can evolve to cooperate. This co-evolution of teammates is one 
possible way around the absence of communication in a domain. In place of communicating planned actions 
to each other, the predators can evolve to know, or at least act as if knowing, each other's future actions. 

In a separate study, Haynes et al. use case-based reasoning to allow predators to learn to cooperate [36]. 
They begin with identical agents controlling each of the predators. The predators move simultaneously 
to their closest capture positions. But because predators that try to occupy the same position all remain 
stationary, cases of deadlock arise. When deadlock occurs, the agents store the negative case so as to avoid 
it in the future, and they try different actions. Keeping track of which agents act in which way for given 
deadlock situations, the predators build up different case bases and thus become heterogeneous agents. Over 
time, the predators learn to stay out of each other's way while approaching the prey. 

Finally, Haynes and Sen explore the possibility of evolving both the predators and the prey so that they 
all try to improve their behaviors [37]. Working in a toroidal world and starting with predator behaviors 
such as Korf's greedy heuristic and their own evolved GP predators, they then evolve the prey to behave 
more effectively than randomly. Although one might think that continuing this process would lead to 
repeated improvement of the predator and prey behaviors with no convergence, a prey behavior emerges 
that always succeeds: the prey simply moves in a constant straight line. Even when allowed to re-adjust to 
the "linear" prey behavior, the predators are unable to reliably capture the prey. Haynes and Sen conclude 
that Korf's greedy solution to the pursuit domain relies on random prey movement which guarantees locality 
of movement. Although there may yet be greedy solutions that can deal with different types of prey behavior, 
they have not yet been discovered. Thus the predator domain retains value for researchers in MAS. 

Although Haynes and Sen convince the reader that the pursuit domain is still worth studying [37], 
the co-evolutionary results are less than satisfying. As mentioned above, one would intuitively expect the 
predators to be able to adapt to the linearly moving prey. For example, since they operate in a toroidal world, 
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a single predator could place itself in the prey's line of movement and remain still. Then the remaining 
predators could surround the prey at their leisure. The fact that the predators are unable to re-evolve to 
find such a solution suggests that either the predator evolution is not performed optimally, or slightly more 
"capable" agents (i.e. agents able to reason more about past world states) would lead to a more interesting 
study. Nevertheless, the study of competitive co-evolution in the pursuit domain started by Haynes and Sen 
is an intriguing open issue. 

5.2   General Heterogeneous MAS 

The general multiagent scenario with heterogeneous non-communicating agents is depicted in Figure 9. 
As in the homogeneous case (see Figure 7), the agents are situated differently in the environment which 
causes them to have different sensory inputs and necessitates their taking different actions. However in 
this scenario, the agents have much more significant differences. They may have different goals, actions, 
and/or domain knowledge. This condition of heterogeneity among agents adds a great deal of power for the 
system designer. In order to focus on the benefits (and complexity) of heterogeneity, the assumption of no 
communication is retained for this section. 

a Goals 

• Actions 
° Domain 

knowledge 

• Goals 
e Actions 

o Domain 
knowledge 

• Goals 
• Actions 
• Domain 

knowledge 

Figure 9: The general heterogeneous MAS scenario. Now agents' goals, actions, and/or domain knowledge 
may differ as indicated by the different fonts. The assumption of no direct interaction remains. 

5.3    Issues and Techniques 

Even without communication, numerous issues that were not present in the homogeneous agent scenario 
(Section 4) arise in this scenario. Some have already been touched upon above in the context of the pursuit 
domain. These issues and existing techniques to deal with them, along with further learning opportunities, 
are described below and summarized in Table 6. 

53.1   Benevolence vs. competitiveness 

One of the most important issues to consider when designing a multiagent system is whether the different 
agents will be benevolent or competitive. Even if they have different goals, the agents can be benevolent if 
they are willing to help each other achieve their respective goals [31]. On the other hand, the agents may 
be selfish and only consider their own goals when acting. In the extreme, the agents may be involved in a 
zero-sum situation so that they must actively oppose other agents' goals in order to achieve their own. 

Some people only consider using selfish agents, claiming that they are both more effective when building 
real systems and more biologically plausible. Of course if agents have the same goals, they will help each 
other, but people rarely consider agents that help each other achieve different goals for no apparent reason: 
when agents cooperate, they usually do so because it is in their own best interest. As we have already 
seen in the pursuit domain, Korf advocates using greedy agents that minimize their own distance to the 
prey [46], and similarly, Levy and Rosenschein use Game Theory to study how the predators can cooperate 
despite maximizing their own utilities [48]. Some advocates of selfish agents point to nature for their 
justification, claiming that animals are not altruistic, but rather act always in their own self-interest [46]. On 
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Issues 
Heterogeneous Non-Communicating 

Benevolence vs. competitiveness Learning opportunities 
Stable vs. evolving agents (arms race, credit/blame) 
Modeling of others' goals, actions, and knowledge • Credit/blame in competitive scenarios 
Resource management (interdependent actions) • Behaviors that blend well with team 
Social conventions • Prediction of others' actions 
Roles • Dynamic role assumption 

Techniques 

Game theory, iterative play. Mor and Rosenschein/Sandholm and Crites [55, 75] 
Minimax-Q. Liftman [49] 
Competitive co-evolution. Haynes and Sen/Grefenstette and Daley/Rosin and Belew [37,32, 66] 
Deduce intentions through observation. Huber and Durfee [40] 
Autoepistemic reasoning (ignorance). Permpoontanalarp [59] 
Model as a team (individual ->■ role). Tambe [85, 86] 
Social reasoning: depend on others for goal (^ game theory). Sichman andDemazeau [79] 
GAs to deal with Braes' paradox (more resource -> worse). Arora and Sen [4] 
Multiagent RL for adaptive Load Balancing. Schaerf, Shoham, and Tennenholtz [76] 
Focal points/Emergent conventions. Fenster et al/Walker and Woolridge [26, 91] 
Design agents play different roles. Prasad et al. [62] 

Table 6: The issues, techniques, and learning opportunities for heterogeneous MAS as reflected in the 
literature. 

the other hand, Ridley provides a detailed chronicle and explanation of apparent altruism in nature (usually 
explainable as kin selection) and cooperation in human societies [64]. 

Whether or not altruism exists, in some situations it may be in an animal's (or agent's) interest to 
cooperate with other agents. Mor and Rosenschein illustrate this possibility in the context of the prisoner's 
dilemma [55]. In the prisoner's dilemma, two agents try to act so as to maximize their own individual 
rewards. They are not actively out to thwart each other since it is not a zero-sum game, yet they place 
no inherent value on the other receiving reward. The prisoner's dilemma is constructed so that each agent 
is given two choices: defect or cooperate. No matter what the other agent does, a given agent receives a 
higher reward if it defects. Yet if both agents cooperate, they are better off than if they both defect. In any 
given play, an agent is better off defecting. Nevertheless, Mor and Rosenschein show that if the same agents 
come up against each other repeatedly (iterated prisoner's dilemma), cooperative behavior can emerge. In 
effect, an agent can serve its own self-interest by establishing a reputation for being cooperative. Then 
when coming up against another cooperative agent, the two can benefit from a sense of trust for each other: 
they both cooperate rather than both defecting. Only with repeated play can cooperation emerge among the 
selfish agents in the prisoner's dilemma. 

In the prisoner's dilemma, the agents are selfish but not inherently competitive: in specific circumstances, 
they are willing to act benevolently. However, when the agents are actually competitive (such as in zero-sum 
games), cooperation is no longer sensible. For instance, Littman considers a zero-sum game in which two 
players try to reach opposite ends of a small discrete world. The players can block each other by trying to 
move to the same space. Littman introduces a variant of Q-learning called Minimax-Q which is designed 
to work on Markov games as opposed to Markov Decision Processes [49]. The competitive agents learn 
probabilistic policies since any deterministic policy can be completely counteracted by the opponent. 

The issue of benevolence (willingness to cooperate) vs. competitiveness comes up repeatedly in the 
systems described below. Were a third dimension to be added to the categorization of MAS (in addition to 
degrees of heterogeneity and communication), this issue would be it. 
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5.3.2    Stable vs. evolving agents 

Another important characteristic to consider when designing multiagent systems is whether the agents are 
stable or evolving. Of course evolving agents can be useful in dynamic environments. But particularly 
when using competitive agents, allowing them to evolve can lead to complications. Such systems that use 
competitive evolving agents are said to use a technique called competitive co-evolution. Systems that evolve 
benevolent agents are said to use cooperative co-evolution. The evolution of both predator and prey agents 
by Haynes and Sen [37] qualifies as competitive co-evolution. 

Grefenstette and Daley conduct a preliminary study of competitive and cooperative co-evolution in 
a domain that is loosely related to the pursuit domain [32]. Their domain has two robots that can move 
continuously and one morsel of (stationary) food that appears randomly in the world. In the cooperative task, 
both robots must be at the food in order to "capture" it. Since the robots can ran out of energy if they move 
too much, they learn to move towards food only when both of them are near enough to reach it. Evolving 
populations of decision rules using Genetic Algorithms (GAs), Grefenstette and Daley consider different 
methods of fitness evaluation. Fitness evaluation—the evaluation of relative "fitness" of individuals in a 
population so that the most fit can be retained and recombined—is an important component of evolutionary 
learning techniques. Grefenstette and Daley find that an effective method for cooperative co-evolution in 
their domain is to use separate GAs to evolve rules for the two agents, evaluating individuals against a 
"champion" (individual with highest fitness) from a random generation of the other GA. 

In a competitive task in the same domain, agents try to be the first to reach the food [32]. Again, different 
GA evaluation methods are considered for use in evolving rule sets to control the agents. 

One problem to contend with in competitive rather than cooperative co-evolution is the possibility of an 
escalating "arms race" with no end. Competing agents might continually adapt to each other in more and 
more specialized ways, never stabilizing at a good behavior. Of course in a dynamic environment, it may not 
be feasible or even desirable to evolve a stable behavior. Applying RL to the iterated prisoner's dilemma, 
Sandholm and Crites find that a learning agent is able to perform optimally against a fixed opponent [75]. 
But when both agents are learning, there is no stable solution. 

Another issue in competitive co-evolution is the credit/blame assignment problem. When performance 
of an agent improves, it is not necessarily clear whether the improvement is due to an improvement in that 
agent's behavior or a negative change in the opponent's behavior. Similarly, if an agent's performance gets 
worse, the blame or credit could belong to that agent or to the opponent. 

One way to deal with the credit/blame problem is to fix one agent while evolving the other and then 
switch. Of course this method encourages the arms race more than ever. Nevertheless, Rosin and Belew use 
this technique, along with an interesting method for maintaining diversity in genetic populations, to evolve 
agents that can play TicTacToe, Nim, and a simple version of Go [66]. When it is a given agent's turn to 
evolve, it executes a standard GA generation. Individuals are tested against individuals from the competing 
population, but a technique called "competitive fitness sharing" is used to maintain diversity. When 
using this technique, individuals from agent X's population are given more credit for beating opponents 
(individuals from agent Y's population) that are not beaten by other individuals from agent X's population. 
More specifically, the reward to an individual for beating individual y is divided by the number of other 
individuals in agent X's population that also beat individual y. Competitive fitness sharing shows much 
promise for people building systems that use competitive co-evolution. 

533   Modeling of others' goals, actions, and knowledge 

In the case of homogeneous agents, it was useful for agents to model the internal states of other agents in 
order to predict their actions. With heterogeneous agents, the problem of modeling others is much more 
complex. Now the goals, actions, and domain knowledge of the other agents may also be unknown and thus 
need modeling. 

Without communication, agents are forced to model each other strictly through observation. Huber and 
Durfee consider a case of coordinated motion control among multiple mobile robots under the assumption 
that communication is prohibitively expensive [40]. Thus the agents try to deduce each other's plans by 
observing their actions. In particular, each robot (simulated or real) tries to figure out the destinations of 
the other robots by watching how they move. Plan recognition of this type is also useful in competitive 
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domains, since knowing an opponent's goals or intentions can make it significantly easier to defeat. 
In addition to modeling agents' goals through observation, it is also possible to learn their actions. Wang's 

OBSERVER system allows an agent to incrementally learn the preconditions and effects of planning actions 
by observing domain experts [92]. After observing for a time, the agent can then experimentally refine its 
model by practicing the actions itself. 

When modeling other agents, it may be useful to reason not only about what is true and what is false, 
but also about what is not known. Such reasoning about ignorances is called autoepistemic reasoning. For 
a theoretical presentation of an autoepistemic reasoning method in MAS, see [59]. 

Just as RMM is useful for modeling the states of homogeneous agents, it can be used in the heterogeneous 
scenario as well. Tambe takes it one step further, studying how agents can learn models of teams of agents. 
In an air combat domain, agents can use RMM to try to deduce an opponents' plan based on its observable 
actions [85]. For example, a fired missile may not be visible, but the observation of a preparatory maneuver 
commonly used before firing could indicate that a missile has been launched. 

When teams of agents are involved, the situation becomes more complicated. In this case, an opponent's 
actions may not make sense except in the context of a team maneuver. Then the agent's role within the team 
must be modeled. Tambe discusses the advantages of team modeling [86]. 

One reason that modeling other agents might be useful is that agents sometimes depend on each other 
for achieving their goals. Unlike in game theory where agents can cooperate or not depending on their 
utility estimation, there may be actions that require cooperation for successful execution. For example, 
two robots may be needed to successfully push a box, or, as in the pursuit domain, several agents may be 
needed to capture an opponent. Sichman and Demazeau analyze how the case of conflicting mutual models 
of different co-dependent agents can arise and be dealt with [79]. 

5.3.4 Resource management 

Heterogeneous agents may have interdependent actions due to limited resources needed by several of the 
agents. Example domains include network traffic problems in which several different agents must send 
information through the same network; and load balancing in which several computer processes or users 
have a limited amount of computing power to share among them. Designers of multiagent systems with 
limited resources must decide how the agents will share the resources. 

One interesting network traffic problem called Braess' paradox has been studied from a multiagent 
perspective using GAs [30]. Braess' paradox is the phenomenon of adding more resources to a network 
but getting worse performance. Glance and Hogg claim that under certain conditions, including usage- 
dependent resource costs, agents that are sharing the network and reasoning separately about which path of 
the network to use cannot achieve global optimal performance [30]. Glance and Hogg use GAs to represent 
different parts of a contrived sample network. Arora and Sen then improve the GA representation slightly 
and show that with the new representation, the system is actually able to find the globally optimal traffic 
flow [4]. 

Adaptive load balancing has been studied as a multiagent problem by allowing different agents to decide 
which processor to use at a given time. Using RL, Schaerf et al. show that the heterogeneous agents can 
achieve reasonable load balance without any central control and without communication among agents [76]. 
The agents keep track of how long a job takes when it is scheduled on a given resource, and they are given 
some incentive to explore untried processors or processors that did poorly in the past. 

5.3.5 Social conventions 

Although the current multiagent scenario does not allow for communication, there has been some very 
interesting work done on how heterogeneous agents can nonetheless reach "agreements," or make coinciding 
choices, if necessary. Humans are able to reach tacit agreements as illustrated by the following scenario: 

Imagine that you and a friend need to meet today. You both arrived in Paris yesterday, but you 
were unable to get in touch to set a time and place. Nevertheless, it is essential that you meet 
today. Where will you go, and when? 
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Rick Vohra posed this question to an audience of roughly 40 people at the AAAI-95 Fall Symposium on 
Active Learning: roughly 75% of the people wrote down (with no prior communication) that they would 
go to the Eifel tower at noon. Thus even without communicating, people are sometimes able to coordinate 
actions. Apparently features that have been seen or used often present themselves as obvious choices. 

In the context of MAS, Fenster et al. define the Focal Point method [26]. They discuss the phenomenon 
of cultural (or programmed) preferences allowing agents to "meet" without communicating. They propose 
that, all else being equal, agents who need to meet should choose rare or extreme options. 

On a similar note, conventions might emerge over time. Walker and Woolridge propose biasing agents 
towards options that have been chosen, for example, most recently or most frequently in the past [91]. 
Rather than coming from pre-analysis of the options as in the Focal Point method, conventions emerge over 
time. 

53.6   Roles 

When agents have similar goals, they can be organized into a team. Each agent then plays a separate role 
within the team. With such a benevolent team of agents, one must provide some method for assigning 
different agents to different roles. This assignment might be obvious if the agents are very specific and can 
each only do one thing. However in some domains, the agents are flexible enough to interchange roles. 

The multiagent design of a steam pump is one such domain. Prasad et al. study design agents that can 
either initiate a design or extend a design [62]. In different situations, different agents are more effective 
at initiation and at extension. Thus a supervised learning technique is used to help agents learn what roles 
they should fill in different situations. 

Although already mentioned above in the context of modeling other agents, Tambe's work deserves 
mention in this context as well. When an agent is faced with an opposing team of agents, it may be useful 
to model individual agents as filling roles within a team action rather than as acting independently [86]. 

5.4   Further Learning Opportunities 

Throughout the above investigation of issues and techniques in the heterogeneous non-communicating 
multiagent scenario, many learning approaches are described. A few of the other most obvious future ML 
applications to this scenario are described here and summarized in Table 6. 

One challenge for system builders who use evolving agents is dealing with the credit/blame problem. 
When several different agents are evolving at the same time, changes in an agent's fitness could be due to 
its own behavior or due to the behavior of others. Yet if agents are to evolve effectively, they must have a 
reasonable idea of whether a given change in behavior is beneficial or detrimental. Methods of objective 
fitness measurement are also needed for testing various evolution techniques. In competitive (especially 
zero-sum) situations, it is difficult to provide adequate performance measurements over time. Even if all 
agents improve drastically, if they all improve the same amount, the actual results could remain the same. 
One possible way around this problem is to test agents against past agents in order to measure improvement. 
However this solution is not ideal: the current agent may have adapted to the current opponent rather than 
past opponents. A reliable measurement method would be a valuable contribution to ML in MAS. 

In cooperative situations, agents ideally learn to behave in such a way that they can help each other. 
Unfortunately, most existing ML techniques focus on exploring behaviors that are likely to help an agent 
with its own "personal" deficiencies. An interesting contribution would be a method for introducing into 
the learning space a bias towards behaviors that are likely to blend well with the behaviors of other agents. 

Many of the techniques described in this section pertained to modeling other agents in the heterogeneous 
non-communicating scenario. However the true end is not just knowledge of another agent's current 
situation, but rather the ability to predict its future actions. For example, the reason it is useful to deduce 
another mobile robot's goal location is that its path to the goal may then be predicted and collision avoided. 
There is still much room for improvement of existing techniques and for new techniques that allow agents 
to predict each other's future actions. 

In the context of teams of agents, it has been mentioned that agents might be suited to different roles in 
different situations. In a dynamic environment, these flexible agents are more effective if they can switch 
roles dynamically. For example, if an agent finds itself in a position to easily perform a useful action that 
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is not usually considered a part of its current role, it may switch roles and leave its old role available for 
another agent. A challenging possible approach to this problem is to enable the agents to learn which roles 
they should assume in what situations. Dynamic role assumption is a particularly good opportunity for ML 
researchers in MAS. 

6   Heterogeneous Communicating Multiagent Systems 

The scenarios examined thus far have included agents that differ in any number of ways, including their 
sensory data, their goals, their actions, and their domain knowledge. Such heterogeneous multiagent systems 
can be very complex and powerful. However the full power of MAS can be realized when adding the ability 
for agents to communicate with one another. In fact, adding communication introduces the possibility 
of having a multiagent system turn into a system that is essentially equivalent to a single-agent system. 
By sending their sensor inputs to and receiving their commands from one agent, all the other agents can 
surrender control to that single agent. In this case, control is no longer distributed. Thus communicating 
heterogeneous agents can span the full range of complexity in agent systems. 

Admittedly, communication could be viewed as simply part of an agent's interaction with the environ- 
ment. However just as agents are considered special parts of the environment for the purposes of this survey, 
so is communication among agents considered extra-environmental. With the aid of communication, agents 
can coordinate much more effectively than they have been able to up to this point. In this scenario we 
include homogeneous as well as heterogeneous communicating agents. 

6.1    Heterogeneous Communicating Multiagent Pursuit 

In the pursuit domain, communication creates new possibilities for predator behavior. Here, agents can still 
be fully heterogeneous. But now cooperating agents can also communicate with one another. Since the 
prey acts on its own in the pursuit domain, it has no other agents with which to communicate. However 
the predators can freely exchange information in order to help them capture the prey more effectively. The 
current situation is illustrated in Figure 10. 

Agent 

Figure 10: The pursuit domain with communicating agents. Agents can still be fully heterogeneous but 
now the predators can communicate with one another. 

Tan uses communicating agents in the pursuit domain to conduct some interesting multiagent Q-learning 
experiments [87]. In his instantiation of the domain, there are several prey agents and the predators have 
limited vision so that they may not always know where the prey are. Thus the predators can help each 
other by informing each other of their sensory input. Tan shows that they might also help each other by 
exchanging reinforcement episodes and/or control policies. 

Recall the "local" strategy defined by Stephens and Merx in which each predator simply moved to its 
closest "capture position." In their instantiation of the domain, the predators can see the prey, but not each 
other. With communication possible, they define two more possible strategies for the predators [81]. When 
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using a "distributed" strategy, the agents are still homogeneous, but they communicate to insure that each 
moves toward a different capture position. In particular, the predator farthest from the prey chooses the 
capture position closest to it, and announces that it will approach that position. Then the next farthest 
predator chooses the closest capture position from the remaining three, and so on. This simple protocol 
encourages the predators to close in on the prey from different sides. A distributed strategy, it is much more 
effective than the local policy and does not require very much communication. However there are situations 
in which it does not succeed. 

Stephens and Merx then present one more strategy that always succeeds but requires much more 
communication: the "central" strategy [81]. The central strategy is effectively a single agent system. Three 
predators transmit all of their sensory inputs to one central agent which then decides where all the predators 
should move and transmits its decision back to them. In this case, there is really only one intelligent 
controlling agent and three puppets. Observe that by taking MAS to the extreme of full communication, we 
may arrive at a single-agent system. 

Benda et al., in the original presentation of the pursuit domain, also consider the full range of commu- 
nication possibilities, all the way up to the central strategy [9]. They consider the possible organizations of 
the four predators when any pair can either exchange data, exchange data and goals, or have one control the 
other. The tradeoff between lower communication costs and better decisions is described. Communication 
costs might come in the form of limited bandwidth or consumption of reasoning time. 

Another way to frame this tradeoff is as one between cost and freedom: as communication cost 
(time) increases, freedom decreases. Osawa suggests that the predators should move through four phases. 
In increasing order of cost (decreasing freedom), they are: autonomy, communication, negotiation, and 
control [57]. When the predators stop making sufficient progress toward the prey using one strategy, 
they should move to the next most expensive strategy. Thus they can close in on the prey efficiently and 
effectively. 

We identify an important lesson to learn from the above examples: 

In terms of increasing complexity, the extreme 
multiagent scenario is a complex single-agent 
scenario. 

6.2 General Communicating MAS 

Indeed, this continuum of complexity leading into the extreme single agent case applies for MAS in general 
(see Figure 1). With communicating agents, systems can get arbitrarily complex and arbitrarily centralized 
until a single agent has all the control. Of course communication bandwidth may be prohibitively low to 
reach the extreme in a given domain. 

The fully general multiagent scenario appears in Figure 11. In this scenario, we allow the agents to be 
heterogeneous to any degree from homogeneity to full heterogeneity. The key addition is the ability for 
agents to transmit information directly to each other. From a practical point of view, the communication 
might be broadcast or posted on a "blackboard" for all to interpret, or it might be targeted point-to-point 
from an agent to another specific agent. 

6.3 Issues and Techniques 

Since heterogeneous communicating agents can choose not to communicate, and in some cases can also 
choose to be homogeneous or at least to minimize their heterogeneity, most of the issues discussed in the 
previous two scenarios apply in this one as well. But the ability to communicate raises another whole set of 
issues for which techniques exist. Two of the most studied issues are communication protocols and theories 
of commitment. The issue of benevolence vs. competitiveness, already discussed in the previous MAS 
scenario, becomes more complicated in this context. These issues and others along with some of the existing 
techniques to deal with them and further learning opportunities are described below and summarized in 
Table 7. 
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Figure 11: The general communicating MAS scenario. Agents can be heterogeneous to any degree. Infor- 
mation can be transmitted directly among agents as indicated by the arrows between agents. Communication 
can either be broadcast or transmitted point-to-point. 

Issues 
Heterogeneous Communicating 

Understanding each other 
Planning communicative acts 
Benevolence vs. competitiveness 
Resource management (schedule coordination) 
Commitment/decommitment 
Truth in communication 

Learning opportunities 

Evolving language 
Effects of speech acts on global dynamics 
Communication utility and truthfulness 
Commitment utility 

Techniques 

Language protocols: KIF for content (Genesreth andFikes [29]), 
KQML for message format (Finin et al. [28]). 

Speech acts. Cohen and Levesque/Lux and Steiner [14, 51] 
Learning social behaviors. Mataric [53] 
Bayesian learning in negotiation: model others. Zeng andSycara [96] 
Multiagent Q-learning. Weiss [93] 
Training other agents' Q-functions (track driving). Clouse [13] 
Minimize the need for training. Potter and Grefenstette [61] 
Cooperative co-evolution. Bulletal. [11] 
Contract nets for electronic commerce. Sandholm and Lesser [73] 
Market-based systems. Huberman and Clearwater [41] 
Generalized Partial Global Planning (GPGP). Decker [21] 
Internal, Social, and Collective (role) commitments. Castelfranchi [12] 
Commitment states (potential, pre, and actual) as planning states. Haddadi [34] 
Belief/Desire/Intention (BDI) model: OASIS. Rao and Georgeff [63] 
BDI commitments only over intentions. Rao and Georgeff [63] 
Coalitions. Zlotkin and Rosenschein/Shehory and Kraus/Sandholm and Lesser [97, 78, 72] 
Reasoning about truthfulness. Sandholm and Lesser/ Rosenschein [74, 65] 

Table 7:   The issues, techniques, and learning opportunities for communicating multiagent systems as 
reflected in the literature. 

6.3.1   Understanding each other 

In all communicating multiagent systems, and particularly in domains that include agents built by different 
designers, there must be some set language and protocol for the agents to use when interacting. Independent 
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aspects of protocols are information content, message format, and coordination conventions. Among many 
others, existing language protocols for these three levels are: KEF for content [29], KQML for message 
format [28], and, more recently, COOL for coordination [8]. There has been a lot of research done on 
refining these and other communication protocols. MAS designers must carefully consider what features in 
a communication protocol are needed in a given domain. 

6.3.2   Planning communicative acts 

With the addition of communication as a capability available to agents, it is possible to consider this 
capability as an "action" no different from any other. When an agent transmits information to another agent, 
it has an effect just like any other action would have. Thus within a planning framework, one can define 
preconditions and effects for communicative acts. When combined with a model of other agents, the effect 
of a communication act might be to alter an agent's belief about the state of another agent or agents. The 
theory of communication as action is called speech acts [14, 51]. 

Mataric adds a learning dimension to the idea of speech acts. Starting with the foraging behavior 
mentioned above [52], the agents can then learn to choose among a set of social behaviors that include 
broadcasting and listening [53]. Q-learning is extended so that reinforcement can be received for direct 
rewards or for rewards to other agents. 

When using communication as a planning action, the possibility arises of communicating misinformation 
in order to satisfy a particular goal. For instance, an agent may want another agent to believe that something 
is true. Rather than actually making it true, the agent might just say that it is true. For example, Sandholm 
and Lesser analyze a framework in which agents are allowed to "decommit" from agreements with other 
agents by paying a penalty to these other agents [74]. They consider the case in which an agent might not 
be truthful in its decommitment, hoping that the other agent will decommit first. In such situations, agents 
must also consider what communications to believe /citeRosenschein94:Rules. 

633   Benevolence vs. competitiveness 

Several studies involving competitive agents were described in the heterogeneous non-communicating 
scenario (see Section 5). In the current scenario, there are many more examples of competitive agents. 

Zeng and Sycara study a competitive negotiation scenario in which agents use Bayesian Learning 
techniques to update models of each other based on bids and counter bids in a negotiation process [96]. 

Similar to Tan's work on multiagent RL in the pursuit domain [87] is Weiß's work with competing 
Q-learners. The agents compete with each other to earn the right to control a single system [93]. The 
highest bidder pays a certain amount to be allowed to act, then receives any reward that results from the 
action. 

Another Q-learning approach, this time with benevolent agents, has been to explore the interesting idea 
of having one agent teach another agent through communication. Starting with a trainer that has moderate 
expertise in a task, a learner can be rewarded for mimicking the trainer. Furthermore, the trainer can 
recommend to the learner what action to take in a given situation so as to direct the learner toward a reward 
state. Eventually, the learner is able to perform the task without any guidance. Clouse studies the effect 
of different levels of advice in a road-following domain [13]. He concludes that moderate advice improves 
performance and speeds up learning, while too much advice leads to worse performance because the learner 
does not experience enough negative examples while training. 

While training is a useful concept, some research is driven by the goal of reducing the role of the human 
trainer. As opposed to the process of shaping, in which the system designer develops simple behaviors and 
slowly builds them into more complex ones, populations appropriately seeded for competitive co-evolution 
can reduce the amount of designer effort. Potter and Grefenstette illustrate this effect in the domain described 
above in which two robots compete for a stationary pellet of food [61]. Subpopulations of rules are seeded to 
be more effective in different situations. Thus specialized subpopulations of rules corresponding to shaped 
behaviors tend to emerge. 

Rather than competitive co-evolution Bull et al. build a system system which uses cooperative co- 
evolution [11]. They use GAs to evolve separate communicating agents to control different legs of a 
quadrapedal robot. 
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Drawing inspiration from competition in human societies, several researchers have designed systems 
based on the law of supply and demand. In the contract nets framework, agents all have their own goals, 
are self-interested, and have limited reasoning resources [80]. They bid to accept tasks from other agents 
and then can either perform the tasks (if they have the proper resources) or subcontract them to still other 
agents. Agents must pay to contract their tasks out and thus shop around for the lowest bidder. Sandholm 
and Lesser discuss some of the issues that arise in contract nets [73]. 

In a similar spirit is an implemented multiagent system that controls air temperature in different rooms 
of a building [41]. A person can set one's thermostat to any temperature. Then depending on the actual 
air temperature, the agent for that room tries to "buy" either hot or cold air from another room that has 
an excess. At the same time, the agent can sell the excess air at the current temperature to other rooms. 
Modeling the loss of heat in the transfer from one room to another, the agents try to buy and sell at the best 
possible prices. The market regulates itself to provide equitable usage of a shared resource. 

63.4   Resource management 

In the previous scenario, resource management came up as a problem involving interdependent actions. In 
the current scenario, agents can also coordinate schedules. Decker's Generalized Partial Global Planning 
(GPGP) allows several heterogeneous agents to post constraints, or commitments to do a task by some time, 
to each other's local schedulers and thus coordinate without the aid of any centralized agent [21]. 

6.3.5   Commitment/decommitment 

When agents communicate, they may decide to cooperate on a given task or for a given amount of time. In 
so doing, they make commitments to each other. Committing to another agent involves agreeing to pursue a 
given goal, possibly in a given manner, regardless of how much it serves one's own interests. Commitments 
can make systems run much more smoothly by providing a way for agents to "trust" each other, yet it 
is not obvious how to get self-interested agents to commit to others in a reasonable way. The theory of 
commitment and decommitment (when the commitment terminates) has consequently drawn considerable 
attention. 

For example, Castelfranchi defines three types of commitment: internal commitment—an agent binds it- 
self to do something, social commitment—an agent commits to another agent, and collective commitment— 
an agent agrees to fill a certain role [12]. Setting an alarm clock is an example of internal commitment to 
wake up at a certain time. 

Haddadi discusses commitment states as planning states: potential cooperation, pre-commitment, and 
commitment [34]. Agents can then use means-ends analysis to plan for goals in terms of commitment 
opportunities. This work is conducted within a model called Belief/Desire/Intention, or BDI. 

BDI is a popular technique for modeling other agents. Other agents' domain knowledge (beliefs) and 
goals (desires) are modeled as well as their "intentions," or goals they are currently trying to achieve and the 
methods by which they are trying to achieve them. Rao and Georgeff use the BDI model to build a system 
for air-traffic control, OASIS, which has been implemented for testing (in parallel with human operators 
who retain full control) at the airport in Sydney, Australia [63]. Each aircraft is represented by a controlling 
agent which deals with a global sequencing agent. OASIS mixes reactive and deliberative actions in the 
agents: they can break out of planned sequences when coming across situations that demand immediate 
reaction. Since agents cannot control their beliefs or desires, they can only make commitments to each 
other regarding their intentions. 

Finally, groups of agents may decide to commit to each other. Rather than the more usual two-agent 
or all-agent commitment scenarios, Zlotkin and Rosenschein study situations in which agents may want to 
form coalitions [97]. Since this work is conducted in a game theory framework, agents consider the utility 
of joining a coalition in which they are bound to try to advance the utility of other members in exchange 
for reciprocal consideration. Shehory and Kraus present a a distributed algorithm for task allocation when 
coalitions are either needed to perform tasks or more efficient that single agents [78]. Sandholm and Lesser 
use a vehicle routing domain to illustrate a method by which agents can form valuable coalitions when it is 
intractable to discover the optimal coalitions [72]. 
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6.4   Further Learning Opportunities 

Once again, there are many possible ways in the current scenario to enhance MAS with ML techniques. 
Within this heterogeneous communicating multiagent scenario there is a clear need to pre-define a language 
and communication protocol for use by the agents. However, an interesting alternative would be to allow 
the agents to learn for themselves what to communicate and how to interpret it. For example, an agent 
might be given a small language of utterances and a small set of meanings, but no mapping between the 
two. Agents would then have to learn both what to say and how to interpret what they hear. A possible 
result would be more efficient communications: they would need to be understandable only by the agents 
rather than by both agents and humans. 

When considering communications as speech acts, agents could be allowed to learn the effects of speech 
on the global dynamics of the system. In domains with low bandwidth or large time delays associated 
with communication, the utility of communicating at a given moment might be learned. In addition, if 
allowed to learn to communicate, agents are more likely to avoid being reliably conned by untruthfulness 
in communication: when another agent says something that turns out not to be true, it will not be believed 
so readily in the future. 

Finally, commitment—the act of taking on another agent's goals—has both benefits and disadvantages. 
System builders may want to allow their agents to learn when to commit to others. The learning opportunities 
in this scenario are summarized in Table 7. 

7   Robotic Soccer 

Several multiagent domains have been mentioned throughout the course of this survey, including design, 
planning, entertainment, games, air-traffic control, air combat, personal assistants, load-balancing, and 
robotic leg control. In this section a single domain which embodies most multiagent issues is presented. 

Robotic soccer is a particularly good domain for studying MAS. Originated by Alan Mackworth [70], it 
has been gaining popularity in recent years, with several international competitions taking place [43,44,33]. 
It is also the subject of an official ÜCAI-97 Challenge [45]. It can be used to evaluate different MAS 
techniques in a direct manner: teams implemented with different techniques can play against each other. 

Although the pursuit domain serves us well for purposes of illustration, robotic soccer is much more 
complex and interesting as a general testbed for MAS. Even with many predators and several prey, the 
pursuit domain is not complex enough to simulate the real world. Although robotic soccer is a game, most 
real-world complexities are retained. A key aspect of soccer's complexity is the need for agents not only to 
control themselves, but also to control the ball which is a passive part of the environment. 

7.1    Overview 

Robotic soccer can be played either with real robots or in a simulator. Although more costly and time 
consuming to develop, a number of groups have developed real robotic systems. The first robotic soccer 
system was the Dynamo system [70]. Sahota et al. built a 1 vs. 1 version of the game. Asada et al. have 
used vision-based RL with their soccer playing robots [5]. Veloso et al. discuss some of the robotic issues 
involved in building robotic soccer players [3, 89]. 

Some robotic issues can only be studied in the real-world instantiation, but there are also many issues 
that can be studied in simulation. A particularly good simulator for this purpose is the "soccerserver" 
developed by Noda [56] and pictured in Figure 12. This simulator is realistic in many ways: the players' 
vision is limited; the players can communicate by posting to a blackboard that is visible to all players; all 
players are controlled by separate processes; each player has 10 teammates and 11 opponents; each player 
has limited stamina; actions and sensors are noisy; and play occurs in real time. The simulator provides 
a domain and supports users who wish to build their own agents. Furthermore, teams of agents can be 
evaluated by playing against each other, or perhaps against standard teams. The simulator was successfully 
used for a competition among twenty-nine teams from around the world in 1997 [44]. Thus robotic soccer 
satisfies Decker's criteria for DAI testbeds [18]. 
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Figure 12: The soccerserver system 

7.2   MAS in Robotic Soccer 

The main goal of any testbed is to facilitate the trial and evaluation of ideas that have promise in the real 
world. A wide variety of MAS issues can be studied in simulated robotic soccer. In fact, all of the seventeen 
MAS issues listed in Table 2 can be feasibly studied in the soccer simulator. The advantages of robotic 
soccer as a testbed for MAS are summarized in Table 8. 

Table 8: Advantages of (simulated) robotic soccer as a MAS testbed 

• Complex enough to be realistic • Direct comparisons possible 
• Easily accessible • Good multiagent ML opportunities 
• Embodies most MAS issues 

Homogeneous non-communicating MAS can be studied in robotic soccer by fixing the behavior of the 
opposing team and populating the team being studied with identical, mute players. To keep within the 
homogeneous agent scenario, the opponents must not be modeled as agents. In this context, the players 
can be reactive or deliberative to any degree. The extremely reactive agent might simply look for the ball 
and move straight at it, shooting whenever possible. At this extreme, the players may or may not have any 
knowledge that they are part of a team. On the other hand, players might model each other, thus enabling 
deliberative reasoning about whether to approach the ball or whether to move to a different part of the field 
in order to defend or to receive a pass. With players modeling each other, they may also reason about how 
to affect each other's behaviors in this inherently dynamic environment. Finally it is possible to study the 
relative merits of local and global perspectives on the world. Robots can be given global views with the 
help of an overhead camera, and the soccerserver comes equipped with a coach mode that permits global 
views. However, robotic soccer is usually approached as a problem requiring local sensing. 

Robotic soccer is also useful for studying the issues associated with heterogeneous non-communicating 
agents. Since each player has several teammates with the same global goal and several opponents with 
the diametrically opposed goal, each player is both benevolent and competitive at the same time. This 
possibility for combination of collaborative and adversarial reasoning is a major feature of the domain. 
When trying to collaborate, players' actions are usually interdependent: to execute a successful pass, both 
the passer and the receiver must execute the appropriate actions. Thus modeling each other for the purpose 
of coordination is helpful. Social conventions, such as programmed notions of when a given agent will pass 
or which agents should play defense, can also help coordination. Since communication is still not allowed, 
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the players must have a reliable method for filling the different team roles needed on a soccer team (defense, 
offense, goalie). Ideally, the players are able to switch roles during the course of a game when appropriate. 
Finally, if the teams are learning during the course of a single game or over several games, all the issues of 
evolving agents, including the "arms race" possibility and the credit/blame problem, arise. 

Robotic soccer is perhaps best suited for the study of the most complex multiagent scenario: heteroge- 
neous communicating agents. Since the agents can indeed communicate, the full potential of the domain 
is realized in this scenario. With players posting messages to the blackboard, they must have a language 
in order to understand each other. Protocols are also needed for commitment to team plays: the passer and 
receiver in a pass play must both agree to execute the pass. For more complex team plays, several players 
may need to commit to participate. But then the issue arises of how single-mindedly they must adhere to 
the committed play: when may they react to more pressing situations and ignore the commitment? For any 
team play, including a simple pass, timing is very important in such a real-time scenario. Thus, players must 
coordinate their actions very carefully. Finally, speech acts are particularly interesting in the environment 
that is both collaborative and adversarial. If the opponents can understand the same language, a planned 
utterance can affect the knowledge of both teammates and opponents. The utility of communication must 
be carefully considered and the possibility of lying in order to fool the opponent arises. Therefore, planned 
communicative acts, along with most of the other issues from Table 2, turn up in robotic soccer. 

In terms of the reasons to use MAS presented in Table 1, robotic soccer systems usually require separate 
agents for controlling the separate players, and they can benefit from the parallelism, robustness, and simpler 
programming of MAS. Systems whose players have onboard sensors are necessarily multiagent, since no 
single agent has access to all of the players' sensory inputs. Some competitions also stipulate in their rules 
that the robots must be controlled by separate agents. At the very least, the two teams must be controlled by 
separate agents. Even teams that could theoretically be controlled by a single agent stand to gain by using 
MAS. By processing the sensory inputs of the different players separately, multiple agents can control their 
players in parallel, perhaps contending with different tasks on the field. One player might be in position 
to defend its goal, while another is preparing an offensive attack. These players need not be controlled by 
the same agent: they can go about their tasks in parallel. Furthermore, if any of the agents fails for some 
reason (as often happens in real robotic systems), the other agents can attempt to compensate and continue 
playing. Finally, it is empirically easier to program a single agent per player than it is to control an entire 
team centrally. 

7.3    Machine Learning in Robotic Soccer 

As well as addressing most of the issues inherent in MAS, robotic soccer is a great domain for multiagent 
Machine Learning. In another soccer simulator, Stone and Veloso use Memory-based Learning to allow a 
player to learn when to shoot and when to pass the ball [82]. They then use Neural Networks to teach a player 
to shoot a moving ball into the goal [83]. They use similar techniques in the soccerserver system as well, 
extending the learned behavior as a part of a hierarchical learning system [84]. Matsubara et al. also use a 
Neural Network to allow a player to learn when to shoot and when to pass in the soccerserver system [54]. 
Uchibe et al. have successfully combined RL modules for shooting and for avoiding opponents using real 
robots [88]. 

Once low-level behaviors have been developed, the opportunity to use ML techniques at the strategy 
level is particularly exciting. For example, Balch uses a behavioral diversity measure to encourage role 
learning in a RL framework, finding that providing a uniform reinforcement to the entire team is more 
effective than providing local reinforcements to individual players [6]. Luke et al. use genetic programming 
to evolve cooperative behaviors within a team of players [50]. 

8    Conclusion 

This survey is presented as a description of the field of MAS. It is designed to serve both as an introduction for 
people unfamiliar with the field and as an organizational framework for system designers. This framework 
is presented as a series of three increasingly complex and powerful scenarios. The simplest systems are 
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those with homogeneous non-communicating agents. The second scenario involves heterogeneous non- 
communicating agents. Finally, the general MAS scenario involves communicating agents with any degree 
of heterogeneity. Single-agent systems are presented as the most extreme version of this final, most complex 
scenario, where control is centralized in one agent and the others act as remote slaves. 

Each multiagent scenario introduces new issues and complications. Although MAS is a new field, 
several techniques and systems already address these issues. After summarizing a wide range of such 
existing work, useful future directions are presented. Throughout the survey, Machine Learning approaches 
are emphasized. 

Although each domain requires a different approach, from a research perspective the ideal domain 
embodies as many issues as possible. Robotic soccer is presented here as a useful domain for the study 
of MAS. Systems with a wide variety of agent heterogeneity and communication abilities can be studied. 
In addition, collaborative and adversarial issues can be combined in a real-time situation. With the aid of 
research in such complex domains, the field of MAS should continue to advance and to spread in popularity 
among designers of real systems. 

MAS is an active field with many open issues. Continuing research is presented at dedicated conferences 
and workshops such as the International Conference on Multi-Agent Systems [95, 2, 1]. MAS work also 
appears in many of the DAI conferences and workshops [22, 94]. This survey provides a framework within 
which the reader can situate both existing and future work. 
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