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Abstract 

YEOMANS, KEVIN DEAN. Initialization Issues in General Differential Algebraic 

Equation Integrators. (Under the direction of Dr. Stephen L. Campbell.) 

The past several years have yielded much research into the development of general 

numerical integrators for nonlinear unstructured higher index differential algebraic 

equations (DAEs) of the form F(y\ y,t) = 0 where Fy> is identically singular. These 

methods are based on integrating an implicitly defined ODE produced by forming 

the derivative array equations G(y', w,y,t) = 0. This larger nonlinear system may 

have components that are not uniquely determined. Prior work has examined the 

theoretical aspects of these methods. There has also been considerable work done on 

the efficient implementation of these integrators. 

This thesis will examine two initialization problems that arise when numerically 

solving DAEs. One problem is the computation of the consistent initial conditions 

required to begin the integration of DAEs. Various line search strategies will be 

compared and examples provided showing where these strategies are needed. 

The second problem is the initialization of the iterative solvers used during the 

integration of a DAE. Integration of the implicitly defined ODE depends on solving 

the nonlinear system G = 0 at each time step. For fully implicit nonlinear systems 

the possible effects of polynomial prediction on the nonunique components will be 

examined. A complete analysis is given in the case of higher index linear time varying 

DAEs. It is shown that the standard ODE theory does not hold and a different 

prediction strategy must be used. 

19971230 096 
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Chapter 1 

Differential Algebraic Equations 

Recently much research has been done in developing general numerical methods for 

solving differential algebraic equations (DAEs) 

W,y,*) = 0 (1.1) 

where Fy> is identically singular. These systems of differential and algebraic equations 

arise in a variety of applications which includes constrained variational problems, 

prescribed path control problems, network modelling problems, model reduction for 

problems with small parameters, and discretization of partial differential equations by 

the method of lines or the method of moving grids. A detailed survey of applications 

and examples can be found in [13, 25, 50]. 

These general methods discussed in Section 1.2 integrate an implicitly defined 

ordinary differential equation (ODE) and have the advantage that (1.1) does not 

require any special structure. Additionally these methods have been demonstrated 

to work on higher index DAEs. Briefly the index is a measure of how singular a DAE 

is and will be defined shortly. An ordinary differential equation (ODE) is index zero. 

The higher the index the more complex behavior of the DAE. Most of the literature 

on numerical methods for DAEs is confined to systems whose index is three or less. 

These general approaches [22, 24, 35] require the solution of an enlarged system 
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of nonlinear equations. The iterative solution of these equations can have several 

consequences. First is the need for sufficiently accurate initial values. This can 

force the integrator to either use higher order methods or take smaller steps than 

the solution of the DAE would appear to need. In this thesis we investigate ways 

to globalize the iterative solver. This has important consequences for the consistent 

initialization of higher index DAEs. Additionally more robust step size strategies are 

possible. We also investigate the use of polynomial interpolation to provide more 

accurate prediction as an aid in solving these systems. The goal of these efforts is to 

aid in the development of these more general DAE solvers. 

1.1    Introductory Survey 

We begin by surveying the current knowledge about the theory and numerical solution 

of DAEs. 

1.1.1    Basic Theory 

To understand and illustrate some properties of DAEs, we begin with the following 

simple example 

zz' + y   =   f(t) (1.2a) 

z   =   g(t). (1.2b) 

Equation (1.2) consists of a differential equation (1.2a) and an algebraic equation 

(1.2b), which can be thought of as an algebraic constraint.   The Jacobian of (1.2) 

with respect to y', z' is 

"" 0   z 

0   0 
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which is identically singular for all t. By differentiating (1.2a) once and (1.2b) twice 

to obtain the enlarged nonlinear system 

zz' + y = f(t) (1.3a) 

zz" + (z')2 + y' = f'(t) (1.3b) 

z = g(t) (1.3c) 

z' = g\t) (1.3d) 

z"   =   g"(t) (1.3e) 

we can solve for y' and z' to obtain the ODE 

V'   =   f'-99"-(9')2 (l-4a) 

z'   =   g'. (1.4b) 

The solution to (1.2) is 

y = f-gg' (!-5a) 

z   =   g. (1.5b) 

It is interesting to note that if g is not continuously differentiable, then the solution 

component y may in fact be discontinuous. From this simple example we can observe 

a few properties of DAEs: 

(1) solutions to DAEs reside on and form manifolds; 

(2) solutions depend on derivatives; 

(3) not all initial conditions of the DAE (1.2) admit a smooth solution, those initial 

values which do are referred to as consistent initial conditions; 

(4) there are hidden constraints. 
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Properties (1) and (2) are illustrated by the solution (1.5). In fact, the solution to 

a DAE may depend on derivatives of the coefficients of the state variables. However, 

that is not illustrated by this example. It is well known that solutions to DAEs 

form submanifolds of the state space [77]. The theory for initial value problems 

applied to ODEs says that any initial condition for which the right hand side of (1.4) 

is Lipschitz continuous will have a unique solution [61]. However, not every initial 

condition to (1.4) will admit a solution to the DAE (1.2). By property (3) it is meant 

that initial conditions must satisfy both the ODE (1.4) and the algebraic constraints 

(1.5) defined by the DAE. Since solutions reside in and form manifolds, only points 

on these surfaces can reside on solution curves. Such points are called consistent. If 

we multiply (1.3d) by z and subtract this result from (1.3a) we get (1.5a) which is a 

constraint along with (1.5b) that explicitly defines the solution manifold to the DAE, 

illustrating property (4). Later, the index of a DAE will be defined. It is known that 

higher index DAEs will always include hidden constraints. These properties illustrate 

some of the important differences between solving ODEs and DAEs. 

Next, we define what we mean for a DAE to be solvable. Basically y(t) is a solution 

of (1.1) on an interval / if it is continuously differentiable and satisfies (1.1) for all 

i£ /. The following definition is found in [13, 27]. 

Definition 1.1.1 Let I be an open subinterval of H, Q, a connected open subset of 

lR2s+1, and F a differentiable function from Q to Rs. Then the DAE (1.1) is solvable 

on I inCl if there is an r-dimensional family of solutions <f)(t, c) defined on a connected 

open set I X fi, ti C Rr, such that: 

1. (j)(t, c) is defined on all of I for each c € 0; 

2. (<f)'(t, c), <£(*, c), t) e Ü for {t, c) G / x ß; 

3. If ip(t) is any other solution with (ip'(t),ij)(t),t) G 0, then iß(t) = <f>(t,c) for 
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some c € f2; 

4-  The graph of <f> as a function of (t,c) is an r + 1-dimensional manifold. 

Intuitively the DAE (1.1) is solvable in an open set 0 C R2s+1 if the graphs (y',y,t) 

of the solutions form a smooth manifold 0 called the solution manifold and solutions 

are uniquely determined by their value y0 at any t0 such that (y'0, yo,t0) € fi [27]. It 

is possible that r = 0 in which case the DAE has exactly one solution as in (1.2). 

We have already observed that the solution to DAEs depends on differentiation. 

The next key definition is that of the uniform differentiation index [13, 26]. 

Definition 1.1.2 The minimum number of times that all or part of (1.1) must be 

differentiated with respect to t in order to determine y' as a continuous function of 

y,t is the index, v, of the DAE (1.1). 

Example (1.2) is an index two DAE. Higher index problems are traditionally more 

difficult to solve numerically. There are many equivalent definitions for the index 

of a linear time invariant DAE. For nonlinear DAEs there are several definitions of 

index that are not equivalent [26]. The uniform differentiation index is a computable 

quantity for moderately sized problems and is closely related to establishing solvability 

[27]. 

The following special structural forms for DAEs are frequently cited in the liter- 

ature 

• Fully Implicit DAE 

F(y',y,t) = 0 (1.6) 

• Semi-Explicit DAE 

y'   =   f{x,y,t) (1.7a) 

0   =   g(x,y,t) (1.7b) 
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• Linear Time Invariant DAE 

Ey' + Fy = f(t) (1.8) 

• Linear Time Varying DAE 

E(t)y' + F(t)y = f(t) (1.9) 

• Hessenberg Index r DAE 

y[  =  fi{yi,y2,---,yr,t) (l.lOa) 

y'2  =  Hyi,y2,---,yr-i,t) (l.iob) 

y'i = fi(yi-i,yi,---,yr-i,t) (l.iOc) 

y'r-x  =  fr-i(yr-2,yr-i,t) (l.iod) 

0  =  fr(yr-i,t) (l.lOe) 

where y,- € Rn;, for i = 1,..., r and 

dyr-x dyr-2      dy\ dyr 

is nonsingular. 

The theory for (1.8) is well established. In [13] necessary and sufficient conditions 

for (1.8) to be solvable are expressed in terms of a matrix pencil. Given matrices 

E, F and A 6 €, then \E + F is called a matrix pencil \E-\-F\s said to be a regular 

pencil if the determinant is not identically zero as a function of A.  (1.8) is solvable 
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if and only if XE + F is a regular pencil [13].   If (1-8) is solvable then there exists 

nonsingular matrix P, Q so that we can rewrite 

Ey' + Fy = f(t) 

as 

PEQx'+PFQx = Pf{t)=g(t) (1.11) 

where 

PEQ 
I    0 

0   N 
PFQ = 

C   0 

0    / 

N is a nilpotent matrix whose index is the same as the uniform differentiation index 

defined earlier. The decoupled system (1.11) 

x[+Cx1    =   gi(t) 

Nx'2 + x2   =   g2(t) 

(1.12a) 

(1.12b) 

can then be easily solved. Equation (1.12a) is an explicit ODE that has a unique 

solution for any initial value of X\ and differentiate forcing function g\{i). The 

unique solution to (1.12b) is 

fc-i 

x2 = (ND + I)-1 g2(t) = £(-!)'" W(0 
»=o 

where k is the index, or degree of nilpotency, of JV, and D is the differentiation 

operator. Again, we see that initial values for x2 are completely determined. 

For (1.9), we have that if E(t), F(t) are real analytic, then (1.9) is solvable if and 

only if we can rewrite the system using linear time varying coordinate changes as 

x[ + C{t)x2 

N(t)x'2 + x2 

9i(t) 

92(t). 

(1.13a) 

(1.13b) 
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The unique analytic solution to (1.13b) is 

j=0 

The difficulty is computing the time varying coordinate transformations that will 

transform (1.9) into the equivalent system (1.13). In [8, 21, 75], more results are 

given which establish the existence and uniqueness of solutions to (1.9). In Section 

1.2 we give assumptions (Al)-(A4) that are computationally verifiable and equivalent 

to solvability for every sufficiently smooth function f(t). 

Additional existence and uniqueness results for solutions to (1.6) and other struc- 

tural forms are given in [72, 73, 76, 77]. Most of these results are established from 

a differential-geometric approach. This approach is based on the observation that 

DAEs are locally equivalent to ODEs defined on a constraint manifold. 

1.1.2    Numerical Methods 

Most of the numerical literature to date discusses numerical methods for DAEs whose 

index is less than three or DAEs with special structure such as Hessenberg. Some 

of the earliest numerical methods for DAEs were backward differentiation formulas 

(BDF) applied to semi-explicit index one systems [45]. Later BDF methods were 

extended to fully implicit index one systems 

F(y',y,t) = Q. (1.15) 

The &-step constant step size BDF replaces y' by a polynomial which interpolates 

the computed solution at tn, i„_i,..., tn-k to yield 

F [r^2aiyn-i,yn,tnJ =0. (1.16) 

Equation (1.16) is then solved by Newton's, or other iterative methods, for yn. Theory 

for the convergence of the A;-step (k < 7) constant step size BDF methods has been 
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proven in the case of linear constant coefficient, fully implicit index one, semi-explicit 

index two and Hessenberg index two and three systems [13]. The results are also 

true for variable step BDF methods except in the Hessenberg index three case. The 

BDF code DASSL [13, 71] is one of the most widely recognized DAE production 

codes for solving index one systems. Several variants of DASSL have recently been 

developed. These extensions include DASPK [16] for solving large-scale DAE systems 

and DASSLSO [66] for sensitivity analysis of DAE systems. The linear system at each 

step of the integration is solved by the use of a preconditioned GMRES [55] iterative 

solver in the PK variants. Another well known BDF code for index one DAEs is 

LSODI [53]. 

Implicit Runge-Kutta (IRK) methods have been studied extensively in the case 

of Hessenberg index one, two and three systems [50]. An M-stage method applied to 

(1.15) is given by 

FlF/,yn_1 + /i£a^',in_1 + ci/iJ =0,     i=l,2,---,M 

M 

i-\ 

where h = tn — tn-\,Y{ are estimates for y'\tn-\ + Cih) and are called state derivatives, 

and <iij,Ci,bi are the coefficients for the method [13]. Theory for the fully implicit 

index one, semi-explicit index one and two cases can be found in [13, 50]. RADAU5 

is an implicit Runge-Kutta code that will solve Hessenberg systems of index one to 

three [50]. 

Linear multistep, one-leg and implicit Runge-Kutta methods are extensively ex- 

amined and analysed in [49, 67]. However, it is assumed the nullspace of Fy> in (1.1) 

depends only on t or is constant. 

Extrapolation methods have also been applied to the solution of index one DAEs. 

LIMEX [42] is one example of a code that has been developed using extrapolation. 
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MEXX [64] is another extrapolation method based on half-explicit Euler or half- 

explicit midpoint formulas for solving the equations of motion of constrained multi- 

body systems. More discussion can be found in [13]. 

The numerical solution of algebraically explicit DAEs is examined in [78, 79]. It 

is assumed that all the algebraic constraints or the algebraic variables are explicitly 

defined. Existence proofs for several types of DAEs of index one to three are given. 

A specialized algorithm for the numerical solution of the Euler-Lagrange equations 

is given in [74]. The problem is reduced to a second order ODE on the constraint 

manifold. 

Finally, we mention a code that has recently been released for solving higher 

index linear time varying DAEs. GELD A [60] is based on the index one integration 

method described in Section 1.2.3. It can deal with systems that do not have unique 

solutions or inconsistencies in the initial values. A nonlinear version of this approach 

is currently being developed. 

1.1.3    Applications 

In this section we briefly outline some applications where DAEs occur. In control 

theory applications, it is frequently the case that we have a differential equation of the 

form F(y', y, t, u) = 0 where u represents a set of controls. The controls are applied so 

that the solution satisfies some constraints g(y, u) = 0. Such problems naturally give 

rise to DAEs even if the differential equation is explicit, F(y',y,t,u) = y' — f(y,u). 

DAEs whose index is between four and seven frequently arise in control and mechanics 

applications [25]. 

Our first example models the planar motion of a ship loading crane as shown 

in Figure 1.1. A discussion of this model is found in [25, 44] and is a classical 

object of study. The model can be derived by applying Newton's law to obtain the 
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c O !\0 . X 

d!   A   ! 
\ s \ g 
\-~ e    \ 

\      i            T 

7. Oi(t).Ä 

^                                            M2 

Z' r 

Figure 1.1: Two Dimensional Crane. 

differential equations and the geometric constraints of the system give rise to the 

algebraic equations. The crane consists of a trolley of mass M\ that moves along a 

linear horizontal track. A cable of length r, and tension r, connects a winch on the 

trolley to a mass M2. The controls consist of an external force u\ which moves the 

trolley and a torque u2 that is applied to the winch. The trolley location is d while 

the load location is (x,z). The angle of the cable with the vertical is 9 and J is the 

moment of inertia of the winch. The load is required to follow a prescribed path 

(pi(t), P2(t))- The resulting index five DAE in {ui,u2,x,z,r,6,x',z',r,d,r',d'} is 

Mo x"   =    -r sin 0 

M2z" -T cos 9 + mg 

Mxd"   =   -C1d' + u1+Tsm9 

(1.17a) 

(1.17b) 

(1.17c) 
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Jr"   =   -C2r'-Czu2 + Clr 

0   =   r s'm6 + d — x 

0 r cos 6-z 

0   =   x-Pl(t) 

0   =   z-p2(t). 

(1.17d) 

(1.17e) 

(1.17f) 

(1.17g) 

(1.17h) 

System (1.17) will be an index six DAE if actuator dynamics are included. Note that 

this DAE system is not in Hessenberg form since the variable 9 in the constraints does 

not appear in differentiated form. 

The next example is a slight simplification of the equations for the prescribed path 

control of a two-link, flexible joint, planar robotic arm as depicted in Figure 1.2. 

Oi(t),Mt)) 

Figure 1.2: Two-Link, Flexible Joint, Planar Robotic Arm. 

x-. 

<Jbr\ — 

»i/o —— 

XA     — 

x4 (1.18a) 

(1.18b) 

(1.18c) 

2c(a;3)(o;4 + x6)
2 + d(x3)x

2
4 + (2x3 - x2){a(x3) + 26(x3)) + a(x3)ui 
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-a(x3)u2 (1.18d) 

x'5   =   -2c(x3)(x4 + x6)2 - d(x3)x\ + (2x3 - x2)(l - 3a{x3) - 2b(x3)) 

-o(x3)ui + (o(x3) + 1)«2 (1.18e) 

x'6   =   -2c(x3)(x4 + x6)2 - d(x3)x\ + (2x3 - x2)(a(x3) - %(x3)) - 2c{x3)x\ 

-(x4 + x6fd(x3) - (a(x3) + 6(x3))wi + (a(x3) + b(x3))u2 (1.18f) 

0   =   cos xi + cos(xi + x3) - pi(t) (1.18g) 

0   =   sinxi +sin(xi + x3) — p2(t) (1.18h) 

where 

Pl(t)   =   cos(e* - 1) + cos(^ - 1) (1.19a) 

p2(t)   =   sin(l - e*) + sin(l - t) (1.19b) 

«*)   -   5—^-5-.     6W = Ti2!V (L19c) 2 — cos2 5 2 — cos'' s 

sins . .      cos5sins , . 
c(s)   =    Ö i-'    d 5   = Ö i~- (1.19d) 2 — cos2 5 2 — cos2 s 

System (1.18,1.19) is also an index five DAE in {xi,... ,x6,ui,u2} that is not in 

Hessenberg form. Equations (1.18a)-(1.18f) model the dynamics of the robot arm 

while equations (1.18g)-(1.18h) specify the moving end of the robot arm to be on 

the prescribed path (pi(i),p2(0) [22> 25]- T^e angle °f the first link with respect to 

the x axis is x\, the angle of the second link to the first is x3, and x2 is the rotor 

angle with respect to the second link which is present because of the flexible joint 

[22]. The torques applied to the first and second joints are the control variables ui, u2 

respectively. 

In Chapter 2, there are a few more examples of index three DAEs that arise 

in applications and will be discussed there.  These are a chemical reactor problem, 
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a trajectory prescribed path control problem (TPPC), and the torus problem [68]. 

However, we wanted to illustrate here that models of unstructured higher index DAEs 

do arise in applications. Methods for directly solving these systems is an area of active 

research. 

1.2    General DAE Integrators 

The general DAE integrators described in this thesis are based on integrating an im- 

plicit ODE defined by the derivative array equations [24]. Suppose the DAE (1.1) is 

a system of s equations in the (2s + l)-dimensional variable (y1, y, t). We assume that 

F is sufficiently differentiable in the variables (y', y, t) so that all necessary differen- 

tiations can be carried out. In general, the solution y(t) of (1.1) is known to depend 

on derivatives of F. If (1.1) is differentiated k times with respect to t, we get 

F(y',y,t)   =   0 (1.20a) 

Fyl(y
,,y,t)y" + Fy(y',y,t)y' + Ft(y',y,t)   =   0 (1.20b) 

^F{y',y,t)   =   0. (1.20c) 

These s(k + 1) equations are called the derivative array equations and denoted by 

G(y>,y,t) = 0 (1-21) 

where 

w=(yW,...,y^). 

We have 

G : 0 C Es(fc+2)+1 -► Rs(fe+1) (1.22) 
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where it is assumed that 0 is open. Often in practice all of the equations are not 

differentiated v times. If k is the maximum number of times that any one equation 

is differentiated, then 

G:0cr->Rra (1.23) 

where n = s(k + 2) + 1 and m < s(k + 1). The derivative array equations provide 

information about the solvability of the DAE (1.1), the index, and the dimension of 

the solution manifold [27]. In Definition 1.1.2 we defined the index v of the DAE 

(1.1) to be the least integer k for which (1.21) uniquely determines y' for consistent 

(y,t). If such a k exists, then y' is just a function of (y,t) so that 

y' = f(y,t). (i-24) 

In this thesis we assume that the DAE (1.1) is solvable in a moderate number 

of variables and that formulas are explicitly given for the equations making up the 

DAE. 

Before proceeding, we need one final definition. 

Definition 1.2.1 The matrix A in the linear system Ax = b is said to be 1-full with 

respect to Xi if there is a nonsingular matrix B such that 

BA 
I    0 

,    x = 
X\ 

0  c X2 

The following proposition is proven in [68]. 

Proposition 1.2.1  The following are equivalent: 

(i) A is one full with respect to x\; 

(ii) there is a nonsingular matrix B such that 

BA = 
I   0 

0  c 
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where I is an identity matrix having the same size as x\; and 

(iü) if 
Xi 

X2 

eAf(A) 

then X\ = 0. 

Finally, we assume throughout this thesis that an integer v in (1.20) exists so that 

the following assumptions hold. 

(Al) Sufficient smoothness of G. 

(A2) Consistency of G = 0 as an algebraic equation. 

(A3) J = [Gyi Gw] is 1-full with respect to y' and has constant rank independent of 

(y',w,y,t) 

(A4) Ji = [Gyi Gw Gy] has full row rank independent of (y1, w, y, t) 

Conditions (A1)-(A4) frequently hold in practice and are verifiable using a combina- 

tion of symbolic and numeric software [27, 30]. Additionally, (A1)-(A4) are directly 

in terms of the original equations and their derivatives and do not require any sort of 

coordinate changes. (Al) can often be shown to hold on an open set by examining 

the functions which define the DAE. (A4) can be verified using standard numerical 

linear algebra routines. If (A4) holds at a point, then it will hold in a neighborhood 

of that point by continuity [30]. Assumption (A2) is easily checked by evaluating G. 

Assumption (A4) is the most difficult to verify requiring both numerical and symbolic 

computations. More discussion can be found in [30]. These assumptions are almost 

equivalent to a type of uniform solvability as discussed in [26]. 

Currently three different general integrators are being developed.  All are based 

on the derivative array equations but differ substantially in their approach. 
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1.2.1    Explicit Integration Method 

The first general DAE method we examine is discussed in [22]. The explicit integration 

method (El) approach consists of integrating (1.24) by an ODE integration method. 

In order to do this one needs to be able to evaluate /(y„,£n) for a given yn,tn- This 

is done by solving 

G{zn,yn:tn) = 0 (1.25) 

for zn where z = (y',w). Currently we solve G(z,y,t) = 0 via a damped Gauss- 

Newton iteration 

Z[m+X] = z[m] _ pm Gt(Ä[m]) y> t) ^[H   ^ f) (L26) 

where A^b is the minimum norm least squares solution of Ax = b. Under assumptions 

(A1)-(A4), it has been shown [23] that the iteration (1.26) converges to a limit z*. 

This limit satisfies the least squares equation (1.27) 

Gt,(z,y,t)G{z,y,t) = 0. (1.27) 

Note that (1.27) is not equivalent to G = 0 but has additional solutions since Gz is not 

full row rank. However, y' is uniquely determined due to the 1-fullness assumption 

(A3). Also y' depends only on (y,t). Thus y' defines a smooth and unique completion 

This vector field (1.28) will be called a least squares completion.   However in the 

remainder of this thesis we will just refer to (1.28) as a completion. 

The next theorem is proven in [23]. Define 

G(z,y,t) = GT
z(z,y,t)G(z,y,t). 

Theorem 1.2.1 Let 

G(zo,yo,to) = 0, (1.29) 

and let the following conditions be satisfied on an open neighborhood of (z0, yo,to): 



Chapter 1.   Differential Algebraic Equations 18 

(i) Gz has constant rank K; 

(ii) Gz is 1-full with respect to y'; and 

(iii) [Gz | Gy] has full row rank. 

Define \x = rank[Gz \ Gy] — K.  Then the following conditions are satisfied: 

(a) Gz is 1-full with respect to y' for solutions of G = 0; 

(&) G = 0 determines locally a unique f such that y' — f(y, t) and (y'0, yo, t0) lies on 

the graph of f; 

(c) there exists $ : jRs+1 —>• Rß such that solutions of G = 0 satisfy $(y,t) = 0 and 

$y(yoito) has rank JJL; and 

(d) both f and $ are no more than one order of smoothness less in (y,t) than G is 

in (z,y,t). 

Theorem 1.2.1 states, for a fixed t, {y £ W : $(y,t) = 0} is a manifold of dimension 

s — (J, and $_1 ({0}) is a manifold of dimension s — \i + 1, which is the solution 

manifold. $ is theoretically determined by the least squares completion and a subset 

of the derivative array equations. 

Prior research efforts [86] examined the use of a different inverse other than G\ in 

(1.26). In order to speed up the method the reuse of Jacobians was also investigated. 

It is shown in [38] that Jacobian reuse results in discontinuous completions. However, 

if the Gauss-Newton iteration is solved with sufficient accuracy the integration can 

proceed and leads to good numerical approximations to the solution of the DAE. A 

comparison of the El method with RADAU5 is done in [54]. Unlike implicit Runge- 

Kutta methods there is no loss of order in the higher index variables with the El 

method. The use of automatic differentiation to form G and Gz at each time step has 



Chapter 1.   Differential Algebraic Equations 19 

also been investigated. Substantial savings in evaluation time and memory require- 

ments are reported in [28, 36] for moderately sized DAEs. Automatic differentiation 

will likely provide a means to solve higher dimensional problems. 

One of the problems with the El method is the tendency to drift off the solution 

manifold since constraints are not all preserved. This led to the development of the 

next general method for unstructured higher index DAEs. 

1.2.2    Implicit Coordinate Partitioning Method 

The implicit coordinate partitioning method (ICP) was developed in order to pre- 

serve both explicit and implicit constraints that occur in higher index DAEs [35, 68]. 

A subset of the state variables y are used to set up a local set of coordinates for 

the solution manifold. Within this local set of coordinates, an explicit integration 

approach is used. 

We take a partition of the state variables 

so that 

J = [Gz Gyi ] 

has full row rank. The variables y2 are used to parameterize the solution manifold 

locally. 

Define the variable z by 

z = {z,y\). 

Thus z is everything but y2 and z is everything but y. Then G~ is not only 1-full 

with respect to y' but it is also full row rank by the choice of y\. Thus 

GZ(z,y2,t)G(z,y2,t) = 0 
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is equivalent to G(z,y2,t) = 0.  Unlike with the explicit approach, we may now use 

any method of finding z given (y2,t) which minimizes 

C(z) = ^GT(z,y2,t)G(z,y2,t). 

Again we use a damped Gauss-Newton iteration, 

2?[m+i] = ?H _ PmGt(^m\y2,t)G(z^\y2,t) = 0. 

Suppose then that we have a point (z0,y20,to) where G(z0,y20,t0) = 0 and 

our assumptions (Al)-(A4) hold. Then there is a partitioning such that z = 

(y1, [£, r/], [2/1,1/2]) and open neighborhoods N and N such that within these neigh- 

borhoods we get that the limit (y'i,y2*,w*,yi) satisfies the fundamental equations 

V?   =   /i(y2,<) (1.30a) 

y2    =   /a(ya,0 (1.30b) 

y\  =  flf(y3,0 (i.30c) 

where /1, /2, /i are defined by the limit of the integration [35]. 

One step of the integration of the DAE is as follows. Given y„_i = (yi,n-i, J/2,n-i) 

we apply an ODE integrator to (1.30a)-(1.30b) to get yn = (y1<n, y2,n). A final function 

evaluation gives y'n = (yjin, j/^.n) and Fi.n = 9{h^tn)- Then the value for yn is taken 

to be (y"in,y2,n). Thus yn lies on the solution manifold and satisfies all constraints. 

The implementation of the ICP method is discussed in detail in [68]. 

Specific computational issues such as Jacobian reuse and partitioning strategies 

are further addressed in [86]. The issue of when to terminate the Gauss-Newton 

iteration is also examined in [86]. If using a kth order integrator on the completion, 

then the iteration should be terminated at 0(hk) or 0(hk+1) accuracy when applying 

the El and ICP methods respectively in order to obtain kth order accurate numerical 

solutions. 
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Figure 1.3 summarizes the steps necessary to solve a given DAE by the El or ICP 

methods. 

F(y\y,t) = 0 

I 

G{y>,w,y,t) = 0 

Jl 

Consistent Initial Conditions 
Given t0, find yOJw0,yo 

Verify (A1)-(A4) 

Jl 

z[m+i] = z[m] _ pmß(zlm\y,t)G{zlm\y,t) 

$ 

At tn, compute tn+i,yn+i 
Solve for zn+i 

Initialize Gauss-Newton z. [o] 
n+l 

Figure 1.3: Summary of General DAE Integrators 
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1.2.3    Index One Integration 

The final method that is related to the El and ICP methods is being developed by 

Kunkel and Mehrmann [58, 60]. However, it is a computationally different approach. 

To understand their approach, suppose that we have a DAE F(y', y, t) = 0 and the 

system of equations 

g(y,t) = 0 (1.31) 

describes the constraint manifold of F(yf, y, t) = 0 and gy has full row rank. Then 

locally there is a partition of y = (2/1,2/2) and a subset 

F(y',y,t) = 0 (1-32) 

of the equations F(y', y, t) = 0 such that gV2 and Fyi are nonsingular. Then the DAE 

composed of (1.31) and (1.32) is index one and has the same solutions as F(y',y,t) = 

0. 

The method proceeds as follows. Let Dh be the fc-step BDF operator and suppose 

t is the current time. A matrix Z is computed from the Jacobian of G. Then the 

solution y of 

ZF(Dhy,y,t + h)   =   0 (1.33a) 

G{z,y,t + h)   =   0 (1.33b) 

is taken as the estimate for y(t + h).   Note that the equations (1.33b) implicitly 

determine a relationship (1.31). Z is such that 

ZF(y',y,t)   =   0 (1.34a) 

g(y,t)    =   0 (1.34b) 

is index one. Here (1.34a) is the same as (1.32). Therefore solving (1.33) is equivalent 

to solving (1.34) by the BDF method. This method does not require constant rank 
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of the Jacobian of G in a neighborhood of a solution to the DAE but only on a 

submanifold [58]. 

1.2.4    Constrained Least Squares 

There is another numerical approach based on the derivative array. However, it is 

not a general method since it requires some numerical structure to the DAE. 

The Constrained Least Squares (CLS) method by Barrlund [5, 6] applies BDF 

to the derivatives appearing in the derivative array equations and minimizes this 

discretization subject to a subset of the derivative array equations. At each step 

of the integration the DAE and some of its derivatives are used as constraints to a 

least squares problem that corresponds to a multistep, multiderivative formula for 

the solution. It is required that the user be able to identity all necessary constraints. 

An analysis of the stability properties of the CLS method for linear DAEs is given in 

[7]- 

1.3    Outline of Thesis 

The purpose of this thesis to examine two initialization problems that arise when nu- 

merically solving DAEs by general methods. Resolution of these problems is needed 

before production quality codes can be developed. The first problem is the computa- 

tion of the consistent initial conditions required to begin the integration of DAEs. In 

Chapter 2, various line search strategies are examined and compared for solving the 

nonlinear system G(y', w, y, t) = 0. A good initialization strategy might also prove 

beneficial in our integrators if step size is being limited by the iteration needing good 

starting values. This could permit us to take larger time steps or to use lower order 

integrators on higher index DAEs. Results of this effort have been published in [31]. 
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The second problem that is examined is the initialization of the iterative solvers 

used during the integration of a DAE. In Chapter 3, we discuss how linear multistep 

methods that are used in the integration of the completion are implemented to provide 

initial iterates used in the Gauss-Newton iteration. 

We examine the case where previous converged values of z are used to fit a polyno- 

mial that is used for prediction in the Gauss-Newton solve. It is shown in the linear 

time varying case that the z components are actually approximating the solution to 

another DAE which we label the auxiliary DAE or ADAE. The results of our analysis 

indicate that constant and linear prediction appear feasible to implement. 

Chapter 4 summarizes the main conclusions of this research effort. 

Chapter 5 discusses areas of future investigation. 

1.4    Contributions of Thesis 

The research in this thesis has appeared in the following publications. 

• S. L. CAMPBELL, C. T. KELLEY AND K. D. YEOMANS, Consistent 

Initial Conditions for Unstructured Higher Index DAEs: A Computational 

Study, in Proc. Computational Engineering in Systems Applications, Lille, 

France, 1996, pp. 416-421. 

• S. L. CAMPBELL, R. HOLLENBECK, K. YEOMANS AND Y. ZHONG, 

Mixed Symbolic-Numerical Computations with General DAEs I: System 

Properties. Preprint, 1997. 

• S. L. CAMPBELL AND K. D. YEOMANS, Behavior of the Nonunique 

Terms in General DAE Integrators. To appear in Applied Numerical 

Mathematics, 1997. 



Chapter 2 

Consistent Initialization of General DAE 

Integrators 

Obtaining a consistent set of initial conditions is perhaps the most difficult part in 

determining a numerical solution of a DAE by the general DAE methods described 

in Chapter 1. Initialization is also important in dealing with discontinuities of the 

solution that frequently occur in applications [65]. There has been work on the 

initialization of special classes of DAEs [17, 20, 57, 63, 69]. However in this chapter 

we examine the problem of computing consistent initial conditions for the derivative 

array based general integrators (El and ICP methods). 

In initialization we will not have good predictors for the starting values particularly 

for the higher derivative variables w. Therefore we will need to consider more global 

iterative schemes. The globalization of iterative schemes has been extensively studied 

and several approaches considered [39, 55]. In this chapter we examine various line 

search algorithms that are applied in the context of our general DAE integrators. 

Unlike Chapter 3 which includes theoretical results, this chapter consists primarily of 

computational studies. 

25 
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2.1    Algorithmic Issues 

The initialization of higher index DAEs has several features that need to be kept in 

mind in the developing of numerical methods. 

One option of many ODE and DAE integrators is for the user to specify an absolute 

error tolerance that the solution is to meet. In order to meet this error tolerance it 

is essential that the initial conditions be found to a given tolerance. This means that 

the stopping criteria must both guarantee that we are near a suitable initial condition 

and that the approximation is within a prescribed error tolerance. In particular, our 

stopping criteria must insure both small residual and small steps. 

With initialization we expect to have very poor initial estimates of many of the 

initial values. Thus we need a robust global algorithm. We assume we are dealing 

with equations which are known explicitly. By using automatic differentiation codes 

if necessary we can assume that exact Jacobians, up to round off error, are available 

at substantially less computational cost than that of one matrix factorization [29, 36]. 

It is fairly rare in our experience to just want an initial condition. Usually there is 

a subset of the variables which are known, or for which we have good estimates. The 

number of these variables could be the same, less than, or greater than the actual 

degrees of freedom in the solution. If these quantities are allowed to vary during 

the iteration, then the final initial condition many have greatly changed in these 

components. Thus we want to allow for the user to specify a subset of the variables 

which are considered known. We would like to get a single method that works for 

any reasonable specification by the user. 

With any DAE integrator one usually needs not only initial values of y but also 

y'. However with either the El approach or the ICP approach we have to initialize 

the entire w vector for the nonlinear equation solver. For a general unstructured 

problem, parts of the w vector will be arbitrary. We shall consider three scenarios. 
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The assumptions given on the Jacobians are based on the theoretical results used in 

developing the general integrators [27]. Let z = (y', w, y), to simplify our notation we 

let u denote whichever variables in z are allowed to vary and we write the derivative 

array as G(u). The limit of the iteration will be denoted by u* and J(u) = Gu(u). 

Scenario 1 (SI): We merely seek a solution of the derivative array equations. No 

components of z are assumed known. The Jacobian is full row rank in a neighborhood 

of u*. 

Scenario 2 (S2): A subset z2 of z is specified. We assume that the dim(z2) is 

less than the dimension of the solution manifold of the DAE and that the z2 variables 

are a subset of local coordinates for the solutions of G(u) = 0. The Jacobian is full 

row rank in a neighborhood of u*. 

Scenario 3 (S3): A subset z2 of z is specified. We assume that the dim(z2) 

is greater than the dimension of the solution manifold of the DAE. The Jacobian is 

assumed to have constant rank in a neighborhood of the limit point u*. However, 

the Jacobian is neither full row nor full column rank. This scenario is also important 

during the integration of a DAE by the El approach. We expect the nonlinear residual 

||(7(M*)|| will be small but possibly nonzero. 

There is a hybrid scenario where first a portion z\ of the variables are kept constant 

and the remaining variables determined by an iteration. Then all of the variables are 

allowed to vary. This could be modified in the final stage so that some of the z\ 

components remain fixed. The idea is to first reduce the error in the less well known 

variables so that their "error" is the same as the error of the better known variables. 

Prior experience has suggested that this is sometimes advantageous [33]. 

We assume that the Jacobian has constant rank in a neighborhood of u*. There 

is no reason to assume that J has constant rank during the iteration. The typical 

situation that we consider is that the Jacobian is constant rank throughout its domain 

except on certain lower dimensional manifolds. During the iteration we may pass near, 
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or land on, these manifolds. 

2.2    Line Search Algorithms 

There are three things to be decided for an iteration; what direction to move, Aun, 

how far to move in that direction, and how to terminate the iteration. Our iterations 

will take the form 

«n+l = «n + Pn Au„ (2.1) 

where 0 < pn < 1. We will terminate the iteration if Au and the residual ||G(u)|| are 

less than tolerances Ex and ER respectively. Ex is to insure sufficient accuracy in 

the solution. ER is to prevent prematurely stopping the iteration. 

Gauss-Newton: The plain Gauss-Newton iteration uses Aun = —j\un)G{un) 

and pn = 1: 

un+1 = un- j\un)G(un). (2.2) 

The theory for Gauss-Newton (like ordinary Newton's method) requires the starting 

value to be near the solution [9, 10, 52]. The plain Gauss-Newton has performed 

reasonably well in our prior experiments with integrators. However, as to be expected, 

it performed very poorly during our initialization tests with even moderately poor 

initial guesses. 

There are a variety of (minimization) algorithms and some are being examined 

for use with DAEs. For example, sequential linear programming methods (SLP) are 

currently being examined for chemical engineering problems [48]. However, there are 

several reasons for wanting to utilize a method based on a variant of the Gauss- 

Newton method. One of the most important for us is that such a method is based 

on information of the type that we are using in the DAE integrator. Also, in the 

numerical integrator it would be advantageous to have a more robust iteration.  A 
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good initialization strategy might also prove beneficial in our integrators if step size 

is being limited by the iteration needing good starting values. This could permit us 

to take larger time steps or to use lower order integrators on higher index DAEs. 

Damped Gauss-Newton:   There are many ways to pick pn in the damped 

Gauss-Newton: 

un+i = un- pnJ
j(un)G(un). (2.3) 

We want the method to revert to plain Gauss-Newton near u*. We choose pn so that 

the value of a scalar test function Tn(u) decreases on the nth iteration. There are a 

variety of line search methods. One is to initially take pn = 1 and then halve pn until 

Tn(un+l)<(l-apn)Tn(un) (2.4) 

for a fixed a = lO"4 [39,55,56]. 

The norm squared of the residual is one natural choice of Tn 

TBW(u) = C?(u)G{u) = \\G(u)\\\       (Tl) (2.5) 

There are several reasons to expect that a different test function might be better. 

First, because of the absolute error tolerances on u* we do not want to terminate the 

iteration just on small residuals G(un). Also, we expect the derivative array equations 

will sometimes have nontrivial condition numbers and there may be ill conditioning 

encountered during the iteration. Condition numbers of 104 or higher can be routinely 

expected. The limit of the Gauss-Newton iteration satisfies ß(u*)G(u*) = 0. For ill 

conditioned problems the test function 

T%\u) = || J\un)G{u)\\\       (T2) (2.6) 

has been suggested [40, 41]. The gradient of T^\u) is 

VT[2\u) = 2GT{u){j\un))Tj\un)J{u). (2.7) 
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At the current point un we have that VTTJ$(un) is the Gauss-Newton direction. 

Thus there is always a p < 1 which will cause Tjfi to decrease. 

Truncated Gauss-Newton: If J = UI,VT is the singular value decomposition 

(SVD) of J, then define Sj to be £ with all singular values below 5 set to zero. Dehne 

Js — UY,sVT and j\ = (</$)*. This leads to the iteration 

un+1 =un- pnjl{un)G{un). (2.8) 

In all our calculations involving singular values the small singular values are set to 

zero so we are always using a Js instead of J. However, our value of 8 is small so that 

only singular values which are theoretically zero but numerically nonzero are ignored. 

One could also use larger values of S as a way to try and counteract ill conditioning 

of J. 

Steepest Descent Residual Minimization: One could try to minimize the 

residual ||(7(u)||2 in the direction of its gradient: 

un+i =un- pnJ
T(un)G(un). (2.9) 

Levenberg—Marquardt: During the iteration one can encounter or pass close 

to singularities in the rank of J. A classical way to handle singularities during an 

iteration is the Levenberg-Marquardt iteration [39, 51] 

Un+l  = «n - pn(JT(Un)J(un) + el)'1 J7\un)G{un) (2.10) 

with £ —Y 0 as un —> u*. If J(u*) has full row rank, then this method acts like 

Gauss-Newton near u*. Away from u* it acts likes ß(un)G(un) in the direction of 

large singular values of J and like ^ JT in the direction of small singular values of J. 

Because we have the full row rank assumption in scenarios SI and S2, the variant 

Un+i =Un- pnJ
T{Un)(J{Un)JT(un) + eI)~lG(un) (2.11) 
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is more appropriate for our intended application. In the direction of large singular 

values of J, (2.10) acts like (2.9). 

Proposition 2.2.1  Given the preceding definitions and assumptions: 

(a) ß(un)G(un) ^ 0 if and only if JT(un)G(un) ^ 0. 

(b) ßs(un)G(un) ^ 0 implies that ß(un)G{un) ^ 0. 

(c) If any of —ßG, —JT(JJT + eI)~1G and -JTG are nonzero at a point un, then 

they all are descent directions for (Tl) and (T2). 

(d) If —JJG is nonzero at a point un, it is a descent direction for (Tl) and (T2). 

Proof: Part (a) follows from the fact that Af(ß(un)) = Af(JT(un)) where J\f repre- 

sents the null space of a matrix. 

Part (b) is obvious since if G(un) £ N{ß5(un)), then it is immediate that G(un) £ 

Af{ß(un)) since Af(j}(un)) C M(ß{un)). 

To demonstrate (c), we need to show that the inner product of the gradient of 

either (Tl) or (T2) with any of the given steps is negative. We note that 

VTTWK)   =   2JT(un)G(un) (2.12) 

VTT%\un)   =   2JT{un){j\un))Tj\un)G{un). (2.13) 

In order to simplify the notation, it will be understood that the function G and its 

Jacobian J are evaluated at the point un. 

Assume that — ßG is nonzero, then using properties of ß [32] we have 

(yTW)(-ßG)   = -2GTjßG 

= -2G^(JßJ)ßG 

= -2Gfr(jß)T(Jß)G 

= ^2||JJtG||2 < 0. 
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Also we have 

(V7f) (-ßG) = -IGFj^jiJJ^G = -2G^ßTßG = -2||J^Gf < 0. 

Therefore —ßG is a descent direction using either (Tl) or (T2). 

Assume that —JT(JJT + eI)~lG is nonzero, then for (Tl) 

(yTM)(-JT{JJT + eI)-lG)   =   -1G?JJT{JJT + siyxG 

=   -2GTUtUTGT 

where S is a diagonal matrix whose elements are given by 

2 

—TT1— if <J{ T^ 0, and 0 otherwise, 

and <j{ are the singular values of J computed from its SVD, J = U"EVT. Therefore 

(VT^){-JT(JJT + eI)-1G)   =   -2||f/SC/TC||2 < 0 

where U'EUT is the positive semi-definite square root of JJT(JJT + el)-1 [62]. 

For the test function (T2) we have 

(yTW)(-JT(JJT + eI)-lG)   =   -<X?J^JUJ
T
(JJ

T
 + EI)-

X
G 

=   -2(fjj\jJT + sI)-lG 

=   -2||£/SC/TG||2 < 0 

where E is a diagonal matrix with diagonal entries 

—x if (Ti ^ 0, and 0 otherwise, 
af + e 

and UY,UT is the positive semi-definite square root of JJ\JJT + el)'1.  Therefore 

—JT(JJT + eI)~lG is a descent direction using either (Tl) or (T2). 
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If - JTG ^ 0 we have 

(VTW) (-JT
G) = -2(?JJTG = -2||JTG\\2 < 0 

and 

(Vlf) (-JTG)   = -2CTJtTJtJJTC 

= -2GTJtT(JtJ)TJTG 

= -2GfrßTJTßTJTG 

= -2GT(JJt)T(JJt)TC 

= -2GT(Jji)TjßG 

= -2\\jßG\\2<0. 

Again we conclude that —JTG is a descent direction using either (Tl) or (T2). 

For part (d) assume —JgG ^ 0, then 

(vrW)(-jJC?)   = -2GTJJ\G 

= -2GTJ{JJJJ})G 

= -2GT{JJI)TJJ\G 

= -2\\Jj\Gf < 0. 

A similar computation as in part (c) for the LM step —JT(JJT + eI)~lG holds for 

the test function T®. □ 

2.3    Numerical Examples 

In the examples that follow, the Jacobians were computed analytically in MAPLE. 

The Moore-Penrose inverse was computed by an SVD of J.   Additionally we set 
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a — 10~4 and 8 = 10-8 unless noted otherwise. 8 is designed to ignore numerically 

zero singular values rather than to regularize an iteration with small, but nonzero, 

singular values. Also, Ex = ER = 10~10. The tolerances were set so that we could 

examine the long run behavior of the iteration. For initialization one might well want 

different Ex and ER values. 

We first started our initialization tests by perturbing a known solution u(t0). We 

generated several random directions w scaled in a similar manner to u(t0) by 

{w)i = (-iyiri(u{t0))i 

where p; = 1,2 and .5 < r,- < 1. We then took starting values at different distances 

in those directions. The initial point was u0 = u(t0) + lO7-1^, 7 = 0,1,... ,4. Our 

intention is to examine the behavior of the iteration and the effect of increasingly poor 

initial guesses. We experimented with several variants of the Levenberg-Marquardt 

method. Setting e = 0 when the residual \\G\\ became sufficiently small appeared 

to be the best strategy. In what follows we made the simple choice of e = 10-4 

if \\G\\ > 10-4, otherwise e = 0. We also considered the test function Tn(u) = 

|| JT(u)(J(u)JT(u) + eI)-1JT(u)G{u)\\ as well as (T2). The test functions performed 

the same. 

We did a large number of experimental runs with Scenario 1 (SI). Plain Gauss- 

Newton performed very poorly when we had poor initial guesses. It is clearly not 

practical for initialization. Not truncating small singular values when computing flG 

led to convergence problems. On the other hand an aggressive truncation strategy 

designed to perform regularization near singularities was also less reliable. A small 

but numerically nonzero value worked best. 

We found that implementing Levenberg-Marquardt by forming (JJT+eI), solving 

(JJT + el)y = G, and then letting Au = -JTy frequently converged much more 

slowly (or not at all), then computing an SVD of J = UY,VT and setting Au = 
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—VnT(££T+£/)-1[/TG. One explanation is that there is too much loss of accuracy in 

the "normal equations" version of Levenberg-Marquardt for the problems considered 

here. 

When the iterations converged, the residual usually met its stopping criteria a few 

iterations before Au did. On the other hand, with particularly poor initial guesses, 

there were examples where Au met the required stopping criteria, but we did not 

have small residuals. A combined stopping criteria appears to be required. 

In the remaining discussion we will adopt the following notation when discussing 

various methods and damping strategies: 

PGN - Plain Gauss-Newton 

DGNR - Damped Gauss-Newton, test function (Tl) 

DGNB - Damped Gauss-Newton, test function (T2) 

PLM - Plain Levenberg-Marquardt 

DLMR - Damped Levenberg-Marquardt, test function (Tl) 

DLMB - Damped Levenberg-Marquardt, test function (T2). 

GN is any of the tested Gauss-Newton methods, and LM is any of the Levenberg- 

Marquardt methods. 

2.3.1    Chemical Reactor Problem 

The first example is taken from [33] and is an index three DAE in the four variables 

C, fi, T and Tc 

C' + C + R   =   4 + t + t3 (2.14a) 

T' + 2T + R + TC   =   1 + e-* (2.14b) 

T-i + lniR/C)   =   0 (2.14c) 
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C   =   cosh(i-l). (2.14d) 

System (2.14) models the situation where C is a specified product concentration and 

we want to determine the temperature Tc (open loop control) that will produce this 

C. Each of the equations in (2.14) is differentiated three times so that G consists 

of 16 equations. Many of the equations are linear in the unknown variables. The 

solution to (2.14) is given by 

C = cosh(i-l) (2.15a) 

R = 4 + t + t3-C-C' (2.15b) 

T = -l/ln(Ä/C) (2.15c) 

Tc = i + e(-*)_r'-2r-ß. (2.15d) 

MAPLE was used to differentiate the solution and evaluate all the equations at time 

t = 0 to obtain u(0). For 7 = 0,1,2 the GN methods converged typically in 3, 

4 and 5 iterations. The LM methods also converged but in 2 to 3 times as many 

iterations. However for 7 = 3, PGN usually failed. DGNR and DGNB converged more 

often. There did not appear to be any difference with the choice of test function in 

determining the damping parameter. The same results occurred for the LM methods. 

However the damped LM methods required substantially more iterations when far 

from a solution. Figure 2.1 is a plot of the iteration histories for the damped GN and 

LM methods for an initial condition where 7 = 3. The undamped GN methods did 

not converge in this test. 
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15 20 25 
Number ollleralions 

35 40 

Figure 2.1: Comparison of Damping Strategies for Chemical Problem 

Table 2.1 shows the results of a test which converged after 86 iterations for DLMB. 

The GN methods did not converge. We observe that the converged values of some 

of the higher order derivatives are not close to the initial values which is expected 

since these components are not uniquely determined. The first column is the initial 

iterate u0 given when 7 = 3. The second column is the limit of the iteration u*. The 

third column is the unperturbed solution u(0). The fourth column is the absolute 

error componentwise between u* and u(0). The nonlinear residual was ||(?(u*)|| = 

.151518Z) - 14. 

2.3.2    Shuttle Trajectory Problem 

The next example is the shuttle trajectory (TPPC) problem described in [13]. This 

is also an index three DAE in seven variables. Additionally, it is a Hessenberg sys- 

tem which allows us to reduce the number of differentiations to some of the equa- 

tions. The equations are highly nonlinear. We exploit the Hessenberg structure and 

differentiate equations (2.16a)-(2.16d) twice, equations (2.16e)-(2.16f) once and the 
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MO u* u(0) | Error 
c 
R' 
V 
ml 
1C 

-.211161D+01 
.952947D+00 
.458495D+00 
-.118081D+00 

-.117520D+01 
.632121D+00 
.127679D+01 
-.642026D+00 

-.117520D+01 
.632121D+00 
.127679D+01 
-.642026D+00 

.444089D-15 

.111022D-15 

.444089D-15 

.352052D-12 
(7(2) 
RW 
T(2) 

T(2) 

.307968D+01 
-.734643D+00 
-.614925D+01 
-.136720D+02 

.154308D+01 
-.367879D+00 
-.354368D+01 
.458258D+01 

.154308D+01 
-.367879D+00 
-.354368D+01 
-.696186D+01 

.222045D-15 

.555112D-16 

.133227D-14 
.115444D+02 

C(3) 

RW 
T(3) 

T(3) 

-.300881D+00 
.123989D+01 
.290901D+01 
.374820D+01 

-.117520D+01 
-.250947D+02 
.387265D+01 
.147837D+02 

-.117520D+01 
.563212D+01 
.154171D+02 
.520078D+02 

.444089D-15 
.307268D+02 
.115444D+02 
.372241D+02 

C(4) 
RM 

T(4) 
1C 

.436052D+00 
-.567714D+00 
-.946989D+01 
-.873182D+03 

.322699D+02 
-.567714D+00 
.156564D+01 
-.873182D+03 

.154308D+01 
-.367879D+00 
-.894741D+02 
-.466743D+03 

.307268D+02 

.199834D+00 

.910398D+02 

.406439D+03 
C 
R 
T 
Tc 

.263811D+01 

.192360D+00 
-.188381D+01 
-.947791D+00 

.154308D+01 

.363212D+01 
-.116818D+01 
-.572563D+00 

.154308D+01 

.363212D+01 
-.116818D+01 
-.572563D+00 

.222045D-15 

.444089D-15 

.222045D-15 

.111022D-15 

Table 2.1: Results of Initialization of Chemical Problem using DLMB Method 

constraint (2.16g) three times. The initial conditions are taken from [12, 34] where 

t0 = 332.867734542. G has 20 equations in 35 unknowns. It is known that there are 

two values of the control variable (bank angle ß) that are close to each other. Only 

ß > 0 is physically correct. 

H' 

e 

X 

VR sin(7) 

VR cos(7) sm(A) 

rcos(A) 

— cos(7) cos(A) 
r 

(2.16a) 

(2.16b) 

(2.16c) 
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VR   =   —-flfsin(7)- 
(ft 

tiEr cos(A)(sin(A) cos(A) cos(7) - cos(A) sin(7)) (2.16d) 

. Lcos(ß)        C0S(7)   /VR \        nn ,is    .    / i\ ,   =    ^1 + _ALL l^-9   + 2^ cos A sin (A) 
mVR VR    \ r        J 

QErcos(\) 

VR 

(sin(A) cos(A) cos(7) + cos(A) sin^)) (2.16e) 

.. Lsin(ß)        VR      ,S-,AS..    /\N 
A'   =   —-—K-^— + — cos(7) sm(A) tan(A) 

mVR cos(7)       r 

—2ClE (COS(A) cos(A)tan(7) — sin(A)) 

QEr cos(A) sin(A) sin(A) 

VRCOS(7) 

along with a path constraint 

D 

m 

(2.16f) 

Co + Ci(VR - K.) + C2{VR - Vo)2 + C3(VR - V0f\ = 0. (2.16g) 

Some of the variables are given in terms of the state variables [33] as: 

p(H)   =   .002378 exp(-#/23800) 

CL(oc)   =   .84 - .48(38 - aCrd)/26 

D   =   .hPCDSVl 

CD(a)   =   .78-.58(38-aCrd)/26 

r   =   H + ae 

g   =   p/r2 

L   =   .5pCLSVl 

The following parameters and constants are also given: 

fi   =   0.1407653916 x 1017 ft3/s2 
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ilE = .72921159 x 1(T4 rads/sec 

Co = D(to)/m = 3.974960446019 

d = -0.01448947694635 

C2 = -0.2156171551995 x 10~4 

C3 = -0.1089609507291 x 10~7 

ae = 20902900ft 

m = 5964.4965 slugs 

S = 2690 ft2 

Crd = 360/27T 

a = 40°. 

The shuttle problem is not well conditioned with singular values ranging from 

approximately 10~4 to 104. LM often did not converge even for 7 = 0 or 1. When 

convergence occurred, it usually required 150-300 iterations. On the other hand GN 

took 5-7 iterations for 7 = 0 and 15-35 iterations for 7 = 1. At 7 = 2, PGN usually 

failed while DGN* worked some times. However, the limit u* frequently had the 

component ß < 0. 

To illustrate S2 we fixed ß, ß' and VR in this example. However, the Jacobian now 

has fewer columns. While the Jacobian may still be full row rank it may be less well 

conditioned. An examination of the singular values of J show that this in fact occurs 

during the iteration with singular values ranging from 10-9 to 105. Table 2.2 shows 

the result of a test where the DGNB worked requiring 27 iterations. Note that the 

components ß,ß' and VR did not move from their initial values. For this example and 

initial iterate, the DGNR did not converge and flagged that the Jacobian experienced 
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a rank drop. The LM methods all stagnated at a local minimum. Again, the DGNB 

method as discussed in [40] appeared the most attractive in this scenario. 

«0 u* u(t0) | Error| 

H' -.292419D+03 -.318278D+03 -.318295D+03 .169781D-01 

e .129469D-02 .121420D-02 .120518D-02 .902030D-05 
A' .496299D-03 -.517715D-03 .525288D-03 .104300D-02 

^R -.337139D+01 -.358773D+01 -.358792D+01 .191383D-03 

i .945038D-04 .101053D-03 .101068D-03 .151924D-07 
A' .908818D-03 .845165D-03 .833641D-03 .115243D-04 

ß' -.881555D-02 -.881555D-02 -.881555D-02 .000000D+00 
H .243808D+06 .264039D+06 .264039D+06 .349246D-09 

t .287535D+01 .287535D+01 .310177D+01 .226412D+00 
A .517299D+00 -.370668D+01 .559232D+00 .426591D+01 

VR .243171D+05 .243171D+05 .243171D+05 .000000D+00 

7 -.120586D-01 -.130890D-01 -.130897D-01 .698258D-06 
A .119394D+01 -.203833D+01 .109586D+01 .313419D+01 

ß .717332D+00 .717332D+00 .717332D+00 .000000D+00 

Table 2.2: Results of Initialization of Shuttle Problem using DGNB Method 

2.3.3    Torus Problem 

The  following  is   an   index  three  DAE  from   [35]   in  the  seven  state  variables 

{xi,x2,x3,ui,u2,u3,\} 

Jbn 

U\ 

U2 

£o    =    u3 

U,     = 

Uo 

u3 cos(t) - x3 sin(t) - u2 + 2:zi [l - r{x\ + x\)  1/2 

u3 sin(<) + x3 cos(i) + ux + 2a;2 [l - r{x\ + x2
2)~

112 

(2.17a) 

(2.17b) 

(2.17c) 

(2.17d) 

(2.17e) 
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u'3   =   -x3 + 2x3\ (2.17f) 

0   =   xl + xl + xl-2r(x2
1+xl)1?2 + r2-p2. (2.17g) 

The solution is given by 

x\   =   [pcos(27T — t) + r] cost (2.18a) 

x2   =   \pcoa(2ir-t) + r]smt (2.18b) 

x3   =   psm(2ir-t) (2.18c) 

which lies on a torus. The solution manifold is four dimensional. In the tests we set 

^ = 55 r = 10. All equations are differentiated three times so that G has 28 equations. 

Additionally a nonlinear transformation is applied to the problem so that it is fully 

implicit [35, 68]. Initial conditions were taken from [68]. 

For this example, all the methods were essentially the same for 7 = 0,1,2 taking 

4, 4-5, and 6-9 iterations respectively. PGN failed at 7 = 3,4. DGNR usually failed 

at 7 = 4 while DGNB converged more frequently for this value of 7. The damped 

LM methods often converged when all the GN methods failed. Figure 2.2 displays 

the results for convergence of the LM methods when 7 = 4. However none of the 

GN methods converged. The conditioning of the problem was extremely poor as the 

singular values ranged from 10-5 to 109 during the iteration. 

2.4    Continuous Gauss-Newton Analogues 

In has been noted [11, 43, 70] that solving the square nonlinear system G(u) = 0 by 

Newton's method is equivalent to integrating 

v!   =   -J-\u)G{u) (2.19) 

u{t0)   =   u0 (2.20) 
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30 40 
Number of Iterations 

Figure 2.2: Iteration History of LM Methods for Torus Problem 

with Euler's method and a suitable choice of stepsize. Tanabe [84] proved that in the 

underdetermined case, trajectories to the differential equation 

«'   =   -j\u)G{u) 

u(t0) u0, 

(2.21) 

(2.22) 

where J(u0) is full row rank, will either approach a stationary point, diverge, or 

stagnate at a point where a drop in the rank of J occurs. A stationary point u* will 

be a solution to G{u) = 0 that we seek. In [85], Tanabe extended his analysis to a 

continuous analogue of the Levenberg-Marquardt method 

u'   =   -JT(u)(j(u)JT(u) + el)G(u). (2.23) 

It is noted that the Levenberg-Marquardt method (2.23) seems to have a better 

chance to converge to a solution u* because it is able to resolve rank drops that might 

occur. 
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We can also pose the problem in terms of unconstrained optimization by minimiz- 

ing the function 

/(«) = l-GT{u)G{u). (2.24) 

Convergence results for ODE methods applied to (2.24) can be found in [1, 2, 3, 80, 

81, 82]. Additionally some numerical tests comparing ODE methods with sequential 

quadratic programming algorithms (SQP) is done in [14, 15]. 

We have not implemented integration methods to control the damping parame- 

ter. However, results cited in these articles indicate that further study of continuous 

methods for initialization of our general DAE integrators might have merit. 

We will use this relationship between the Gauss-Newton and continuous Gauss- 

Newton methods in Section 3.4 of Chapter 3. 

2.5    Conclusions 

Initialization by solving the derivative array equations appears to be a practical ap- 

proach for moderately sized problems. As expected, some damping strategy is needed. 

The damped Gauss-Newton appears most attractive. However the fixing of certain 

known values, while advantageous, can have the affect of increasing the condition 

number of the Jacobians and increasing the likelihood of passing near singularities. 

The Levenberg-Marquardt appears to handle near singularities better but requires 

considerably more iterations. The stopping criteria must enforce both small steps 

and small residuals. 

The issue of scaling of the Jacobians has not been examined and remains a topic of 

further research. Considerable more testing is needed with more examples, especially 

larger dimensional ones, and at additional u* values. 



Chapter 3 

Prediction Strategies in General DAE 

Integrators 

The general DAE integrators (El, ICP and 101 methods) require the solution of the 

nonlinear system of equations 

G(y>,y,t) = 0 (3.1) 

at each time step. For fully implicit problems this enlarged nonlinear system will 

have components that are not uniquely determined. This poses questions about the 

effects of predictors and a possible instability in the growth of these terms during a 

numerical integration. In this chapter it is shown that the nonunique components 

are actually the numerical solution of an auxiliary DAE which depends not only on 

the original DAE but also the predictor being used in the Gauss-Newton iteration. 

The behavior of these nonunique components could interfere with the convergence 

of the nonlinear equation solver. This is radically different from the case for ODEs 

and DAEs with special structure where the predictor used for iterative solvers does 

not directly affect the limit of the iteration. Finally, the "true solution" that is being 

sought at each time step is a vector of Taylor coefficients, except that only some of 

them are found correctly.   In [23, 35, 36, 37] in order to guarantee at least a first 

45 
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order prediction to start the Newton iteration it was necessary to assume that the 

integrator being used had order higher than the index of the DAE. For index one 

or two systems this is not a difficulty However, this requirement becomes a severe 

restriction when considering DAEs whose index is greater than three. The results 

on predictors will be applied to the question of developing low order integrators for 

higher index DAEs. 

We begin this chapter by reviewing linear multistep methods. For the El and ICP 

methods, linear multistep methods have been applied to the ODE which is implicitly 

defined by the derivative array equations. The justification for these methods is 

based on their capability of achieving reasonable accuracy using very few function 

evaluations per forward step. The function evaluations are obtained by solving the 

derivative array equations. 

Next we illustrate how an Adams-Bashforth-Moulton (ABM) method (predictor- 

corrector pair) is implemented as a one step method via the Nordsieck transforma- 

tion. This implementation is used to provide an approximation to the higher order 

derivatives at each step of the integration. ABM methods are used in the current 

versions of the El and ICP methods under development. 

We briefly review polynomial interpolation and its role in providing predictors for 

the nonunique components in the system G = 0. The linear time varying case is 

analyzed in detail with examples given to illustrate the results derived. We briefly 

discuss the nonlinear case and the reuse of Jacobians. Finally we both establish a basis 

for the design of low order integrators for high index DAEs and develop guidelines 

for the use of predictors in integrating general high index DAEs. 
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3.1    Linear Multistep Methods 

47 

We begin our studies with a fc-step method applied to the scalar ODE 

</ = /(</,*)• (3.2) 

We assume that the step size h is fixed. Let yn_; and hy^ denote the numerical 

approximations for y(tn-i) and hy'(tn-i) respectively, for i = 0,..., k — 1. Arrange 

these values in the vector 

Yn Vn  Vn-i    •■■   Vn-k+i   hy'n   hy'n_x hy'n-k+i] (3.3) 

Multistep methods find a numerical approximation for Yn+1 from Yn. The components 

of Yn are typically generated by a Runge-Kutta method in order to begin the iteration. 

For notational convenience, we assume that the index of a vector or a matrix starts 

from 0. Define the matrix B by 

B = 

Oil      &2 •••    Oik ßl     ß2 ••• ßk 

1 

1 

7i    72 •••   7fc Si   s2 

1 

• • •   4 

1 
2fcx2fc 

where the omitted entries are zeros. Let 

(3.4) 

Yn,(o)   —   B Yn-\ (3.5) 
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J/n,(0) 

J/n-1 

Vn-k+1 

hy'n,(o) 

hy'n-i 

hy'n-k+1 

so that the parameters a;,/?;, 7;,$; are constants such that 

k 

yn,(o) = J2(a* ft»-* + hß* y'n-i) 
i=\ 

is an approximation to y{tn), and 

hy'n,(o) = J2(v y*-i + h5i y'n-i) 
1=1 

(3.6) 

(3.7) 

(3.8) 

is an approximation to hy'(tn).  The equation (3.7) represents an explicit multistep 

method that will be referred to as the predictor (P). 

Let (Yn)i denote the ith component of Yn. Define 

G(Yn,{0),tn)   =   -{Ynt{0))k + hf{{Ynt{0))o,tn) 

=     -hy'n,{0) + hf{yn,(0),tn)- 

(3.9) 

(3.10) 

Recall that y'n denotes the numerical approximation to y'(tn). We see immediately 

that (3.9) will be identically zero if the computed value of y and / at the current 

mesh point satisfies the differential equation (3.2). The computation of f(yn,tn) is 

the evaluation (E) step. 
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Subsequent iterations are given by 

yn,(m+l) - Yn,(m) + C G(Yn^m), tn) (3.11) 

for m = 0,1,..., where 

*n,(m) yn,(m)  Vn-i    ■••   Vn-k+i   hy'n{m)   hy'n_x    •••   hy'n_k+1]   . (3.12) 

and c is a 2/s-dimensional vector defined as 

c = [/?* 0 • • • 0 10 • • • 0]T (3.13) 

and 1 is the kth component of c. Equation (3.11) will be referred to as the functional 

iteration and will involve an evaluation (E) of /. This iteration may be repeated for 

a fixed number of steps or until \G\ « 1. It will be helpful to note that after the 

first iteration, we have 

hy'n,(l)     =     hy'n,(0) + (-hy'n,(0) + hf{yn,{Q),tn)) 

=   hf(ynt(0),tn) (3.14) 

and 
k k 

&».(!)     =     £("«' - #) 7t)j/n-t + h YXßi ~ ßo Wn-i 
i=l i=l 

+ hß*f(yn,(o),tn). (3.15) 

After m iterations, we obtain 

hy'n,(m)     =     hy'n,(m-l) + ("^(m-l) + ^/ClMm-l), *»)) 

=     Ä/(yn,(m-l),*n) (3-16) 

and 
k k 

yn,(m)     =     J2(ai ~ ßo 1i)yn-i + h ^(ßi ~ ßo £)j/n-t 
j=l i=l 

+ hß*0f(yn,{m-lhtn). (3.17) 
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If h is chosen sufficiently small so that \hßl{df/dy)\ < 1, then (3.17) converges. 

Also if y„,(m) -¥ y„, then (3.16) implies that y'n{m) -»• y^ where yn,y'n satisfy 

l£ = /(y»,U (3-18) 

Thus we have 

yn     =     t,a*yn-i + hT,y'n-i+   hß*of(yn,tn) (3.19) 
j=l »=1 

where a? = a; - #£7; and # = #• - /?o <£,- for i = 1,..., fc. Equation (3.19) rep- 

resents an implicit multistep method that will be referred to as the corrector (C). 

The implementations that have been incorporated into the general DAE integrators 

being developed at North Carolina State University use a kth order Adams-Bashforth 

predictor and a kth order Adams-Moulton corrector which will be referred to as an 

ABM kth order pair. In practice only a fixed number of functional iterations are 

implemented and are summarized by the notation P(EC)ME. The final function 

evaluation is 

Yn,(M+l)     =    Yn,(M)+ekG{Ynt(M),tn) (3.20) 

where e^ is a 2fc-dimensional vector defined as 

ek = [0 0 • • • 0 10 • • • 0]T 
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and 1 is the kth component. If 

then 

and 

Y n,(M) 

Y 

Vn,(M) 

Vn-1 

Vn-k+1 

hyn,(M) 

Vn-1 

hy'n. ■k+1 

n,(M+l) 

Vn,(M) 

Vn-1 

Vn-k+1 

hyn,(M+l) 

hy'n-, 

hy'n- ■k+1 

hVn,(M+i)   =   hy'nAM) + {-hy'nt{M) + hf(ynt(M),tn)) 

=     hf(yn,(M),tn)- 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The first component yn,(M) is unchanged.   Linear multistep methods are frequently 



Chapter 3.   Prediction Strategies in General DAE Integrators 52 

derived from Taylor expansions or interpolation formulas. The elements of B and c 

for various ABM methods can be found in [61]. 

3.1.1    Nordsieck Implementation 

The idea behind the Nordsieck implementation is to be able to convert a linear multi- 

step step into a one-step method. This transformation makes it easier to change the 

step size. An example of the Nordsieck vector for a kth order ABM pair is given by 

Vn 

hy'n 

Z„.  — 2! yn 

fc! Un 

(3.25) 

The kth order ABM method upon which our implementation is based can be formu- 

lated using the vector 

Vn 

Yn = 

hy'n 

Vn-1 (3.26) 

hy'n-k+i J 

which is a special case of (3.3). It turns out that (3.25) and (3.26) are related by a 

nonsingular linear transformation 

Zn = QYn (3.27) 

where Q is chosen so that 

Z(tn) = QY(tn) + 0(hk+1). (3.28) 
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Q turns out to be independent of h [61]. Z(tn) and Y(tn) represent the exact values 

of Zn, Yn respectively. Using the formula 

hy\tn - jh) = jx-jy-1 i (^r^) + °(^+1) (3-29) 

we get the expression 

Q-1 

1 

1 

1 -1-2   (-l)2-3   • •   {-l)k-l-k 

1 -2-2    (-2)2-3   • ■    {-2)k~l-k 

1 -Jfe-2   (-fc)2-3   • ■   {-k)k~l-k 

(3.30) 

k+lxk+l 

where the omitted entries are zeros. Using the transformation (3.27) we have 

Zn,(0)     =     Q Yn,(0) 

=   QBYn-\ 

=   QBQ   Zn-\, 

and 

Zn,(m+1)     = Q Yn,(m+l) 

= QYn,{m) + QcG(Yn^m),tn) 

= QYn,(m) + QcG(Q~  Zn,(m),tn) 

= Zn,(m) + dG(Q~   Zni(m),tn) 

where d = Qc. The final function evaluation is given by 

Zn,(M+l)     =     Q Ynt(M+l) 
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=     QYn,(M) + QeiG(Yn,(M),tn) 

-   QYnt(M) + QeiG(Q~ Zn,(M),tn) 

=     Z>n,(M) + GlG(Q~  Zn>(M),tn)- 

The matrix QBQ'1 turns out to be the Pascal triangle matrix given by 

(0- (8) 
QBQ'1 = 

(J) 
The implementation of these methods for a system of ODEs will have 

Zn,(0) = (QBQ'1 <g> I)Zn-! 

as the prediction step, 

(3.31) 

Zn,(m+1) = Znj(m+i) + (d ® I)G(Q      2„,(m),<n) 

for the correction steps, and 

Zn,(M+l) = Zn,(M) + (el ® I)G(Q~  Zn}(M),tn) 

as the final function evaluation. / is an identity matrix whose dimension is the same 

as y, and <g) denotes the Kronecker product. If A € Rmx/ and B G RnXfc, then the 

(right) Kronecker product [62] A ® B is defined to be the partitioned matrix 

A®B = 

anB    ai2B 

a2\B    a22B 

auB 

a2\B 

am\B   am2B   •••   am\B 

GR mnxlk (3.32) 
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3.1.2    Prediction using Nordsieck Vector 

The goal of the general DAE methods is to integrate the implicitly defined ODE given 

by the derivative array equations 

G(y>,y,t) = 0 

where w = [y",..., y^+1^] and v is the index of the DAE. For convenience, this section 

will assume that we are using the El method for obtaining a solution to the original 

DAE F(y', y, t) = 0. Let z = [y1, w] so that we are considering the nonlinear system 

G(z,y,t) = 0 (3.33) 

and J = Gz. 

Integrating the implicitly defined ODE 

y' = f(y,t) (3.34) 

requires that we be able to solve for y'n+1 given yn+i,tn+i-  This is done by solving 

(3.33) via a damped Gauss-Newton algorithm 

*K1] = 4Si - J\&yn+u Wi)G(4+]i,yn+1,*n+i) (3.35) 

as described in [22, 23]. 

Prior work [68, 86] assumed the the order of the integrator k was such that k > 

v + 1. By using the Nordsieck transformation described in the previous section to 

integrate the completion, we have after each step the vector 

Vn 

hy'n 

b„. 

(3.36) 
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where 

On = 

and 

K = 

2! y™ 

_^±l_ „(H-l) 

J£tl „(M-2) 
(v+2)\ yn 

fc! Un 

(3.37) 

(3.38) 

Define 

T(h) 

2LT 
h? 1 

31/ 

(H-p! r 

(3.39) 

We can obtain the approximations of the first u+1 derivatives of the solution by 

premultiplying (3.36) by a matrix as shown in (3.40) 

(3.40) 

Vn /    0       0      0 Vn 

hy'n 
= 0^/00 

hy'n 

Wn 0     0    T(h)   0 K 

The initial iterate in (3.35) is then given by 

1 ~J 

J°] 
Vn+1 Vn 

zn+l —   
Wn+l _ T{h)an _ 

(3.41) 

The benefits of this approach are that we have at least O(h) approximations to 

the "true" derivatives of the solution prior to beginning the Gauss-Newton solve. It 

is hoped that this will allow the numerical solution to remain within the region of 
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attraction of the solution manifold to the DAE. However for high index problems 

(u > 3), this approach will require using high order ABM methods. It is well known 

that the stability regions for ABM methods shrink as the order increases [61]. The use 

of high order methods for high index problems may force the integrator to take small 

steps which may not be appropriate for the problem. We would like the capability of 

using low order integrators on higher index problems when it appears feasible. 

3.2     Polynomial Interpolation 

One traditional way to improve the iterative solvers is through the use of better 

predictors. We begin this section by examining the use of polynomial interpolation in 

initializing the iteration (3.35). Given values zn-i, ...,zn at times £„_,-,..., tn, define 

MO = n /".V\' (3-42) 

then the Lagrange form of the interpolating polynomial is given by 

Pi(t) = J2hk(t>n-k. (3.43) 

The starting value of our iteration at time tn+i is given by p(tn+i). For the cases 

1 = 0,1,2 we have from (3.43) 

Po(t)   =   zn 

pi(t)     =     Li)0(t)2n + Ll,l(*)2n-1 

(*-t»-l) ,        (*-*n)     r 

\tn       «n—X) y'n—l       ''nj 

p2{t)   =   L2j0(t)zn + L2li{t)zn-i + L2i2{t)zn-2 

(i-*„-l)(*-<n-2) (* - *«)(* - tn-2) 
~Zn   i    i, .   \/, ,        \Zn—1 

(tn — tn-x){tn — tn-2) \tn-X ~ tn)\tn-X ~ tn-2) 

(t-tn){t-tn_x) 

{tn-2 — tn)\tn-2 ~ tn-l) 
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For a fixed step size h, these equations reduce to 

Zn+l     =    Po(tn+l) = Zn 

zn+l      =     Pl(tn+l) = %zn ~ zn-l 

Zn+1    =    p2(tn+i) = Szn - 3zn-! + Zn-2- 

If z(t) is sufficiently differentiable, then it is easy to show that for small enough h 

that ||z(in+i) — p,(in+1)|| = 0(hq) where q is the minimum of i + 1 and the error in 

the already computed values of zm. 

Before proceeding further, we will define a couple of operators that will prove 

useful. Let {(zn,tn) \ zn € Rs, n = 0,1,2,... and tn £ R} be a set of equally spaced 

data points in Rs+1 (tn = t0 + nh). Then the forward shift operator E is defined by 

Ezn = zn+1,   E
2zn = E(Ezn) = zn+2,   etc. 

We similarly define E for negative exponents, e.g.   E~3zn = zn-3.   The backward 

difference operator V is defined by V = 1 — E~l. This leads to 

V Zn     =     Zn       Zn—\ 

V2zn    =    V(zn - Zn-x) = zn - 2zn_! + Zn-2- 

or, in general, 

Wkzn   =   {l-E~l)kzn 

= B-I)* (?) ^ 

= D-i)'(?) *-••• (3-44) 
i=0 

If z(t) € Ck+1, we have the following result from [61] 

Vkz(tn)   =   hkz^{tn) + 0(hk+1). (3.45) 
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Let pm(t) be the predictive polynomial of degree m. We will also assume that the 

step size h is fixed so that the predictor is given by 

m 

pm(Wi) = B-i)t"(fSi1)*»-<- 
t'=0 

Lemma 3.2.1 Assume z is sufficiently smooth.   Then (zn+i — pm(tn+i)) /hm+1 will 

,        (m+l) 
converge to z^+1 '. 

Proof: This result follows almost immediately from (3.44) and (3.45). 

m 

Zn+1 — Pm(tn+l)     =     Zn+1 ~ Z_^\~^-)    \i+\) Z^-i 
i=0 

m+l 

= £(-iy(mrK+1-; 
i=0 

fl.. 
n+1 =   Vm+1z 

hm+lz(^f) + 0(hm+2). 

D 

3.3    Analysis of Linear Time Varying Case 

Given the linear time varying (LTV) DAE 

E(t)y' + F(t)y = /(*) (3.46) 

where E(t) is identically singular for all t € [to,tj], we wish to approximate the 

solution y(t) to (3.46) on / = [to,*/]- It is known [21] that conditions (A1)-(A4) are 

equivalent to (3.46) being solvable for every sufficiently smooth f(t). The theory for 

numerically solving (3.46) by either the El or ICP methods is reasonably complete 

[19, 21]. Note that prediction is not actually needed because the equations are linear. 
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However, our goal in carefully examining the effect of prediction on (3.46) is to develop 

insight on what can be expected for general nonlinear problems. As we shall see the 

analysis of (3.46) sheds considerable light on the more general case. 

The derivative array equations for (3.46) are 

Ey' + Fy = f 

(E' + F)y' + Ey" + F'y = f 

(E" + 2F')yl + (2Ef + F)y" + Ey'" + F"y = f" 

(E'" + 3F")y' + {W + 3F")y" + {3E' + F)y'" + Ey& + F'"y = /'" 

^(Ey' + Fy)   =   /M 

which produces the singular system 

A [i] +By = g (3.47) 

where 

(A)ij   =    6l1
1)Ä

(t'-i)+(71)F^'-1), j<i,                    (3.48a) 

(A)ij   =   0,   j>i, (3.48b) 

(w)i   =   y«+1\   1 = 1,...,»/, (3.48c) 

(B)i   =   F^"1),   i = l,...,i/ + l, (3.48d) 

(g)i   =   f{i~l\   i = l,...,u + l (3.48e) 

and (™) = 0 if n > m. 

The derivative array equations in the time varying case then take the form 

Cz = Vu + g (3.49) 
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where z is y', w and maybe some part of y and u are any fixed state variables. In 

the El method, u = y, C = A, and V = -B, while for the ICP method u = y2. 

Let the time values for the integrator be tn and the computed values of z,u,g,C,T> 

at tn be denoted by use of the subscript n. Thus the equation to be solved by the 

Gauss-Newton method is 

Cn+izn+i = Vn+iun+i + gn+i- (3.50) 

But the un are a subset of the state values of the integrator. Thus we know that 

un = an + 0(hk+1) (3.51) 

where a(t) is a smooth function. Therefore we can rewrite (3.50) as 

Cn+1zn+l = bn+1 + 0(hk+l). (3.52) 

where b(t) = D(t)a{t) + g(t) is also smooth. 

Given a prediction £n+i, the Gauss-Newton applied to (3.52) converges in one 

step to 

zn+1 = (I-Pn+i)zn+1+Ci+1bn+1+Ct+10(hk+1) (3.53) 

where P = C^C so that I - P is an orthogonal projector onto N(C) = T^C*)1, where 

N and TZ represent the null space and range space of a matrix. From (3.53), we 

can see that the component of z that lies in K(CT) is uniquely determined and the 

prediction z is projected onto M{C). It is instructive to note that 

/      0 

0   D(t) 

due to the 1-fullness of C and the size of / is at least equal to the dimension of y. 

Therefore from (3.53) we have 

0 0 

0   I-Dn+i 

Un+l 

Wn+1 

+ Cl+1bn+1+0(hk+1) 
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if we are using the El method. The point is that y' is not affected by prediction, but 

the w components are affected by prediction and C'b. 

Proposition 3.3.1 Suppose that the Gauss-Newton iteration is applied to (3.52) and 

the underlying numerical integrator of the completion is of order K > 1, the inter- 

polation polynomial is pm, and the sequence zn converges as h —> 0+ for fixed tn to 

an ra+ 1 times differentiable function z(t). Then z{t) is the solution of the auxiliary 

differential algebraic equation (ADAE) 

(I-P)z{m+1)   =   0 (3.54a) 

Pz   =   tfb (3.54b) 

where b depends on derivatives of f and the solution y of the LTV DAE (3.46). 

Proof: If we multiply (3.53) by / - Pn+1 and Pn+1 we get the following pair of 

equations 

(/-Pn+1K+1     =     (I-Pn+l)Zn+l (3.55) 

Pn+1zn+1    =   Cl+1bn+1+Ct+10(hK)- (3-56) 

Equation (3.54b) follows immediately from (3.56). From (3.55) we have 

(/ - Pn+i)(zn+1 - zn+1) = 0 

so that 

(/ - Pn+i)(zn+1 -pm(tn+i)) = 0. 

Dividing by /i~(m+1) results in 

( r        D        A ^n+X —Pm{tn+l)   _ n 
(7 - ^»+U J^Ti  - U- 

Holding tn fixed and taking the limit as h ->• 0+ gives (3.54a) by Lemma 3.2.1.       □ 
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Proposition 3.3.1 tells us that if the Gauss-Newton iterates are converging, then 

the limit must be the ADAE (3.54). This DAE has no recognizable structure such as 

semi-explicit or Hessenberg. 

Proposition 3.3.2 System (3.54) is an index m + 1 solvable DAE. Its solutions 

satisfy the auxiliary ODE (AODE) 

z(m+i) = (ct6) (m+1) _ J2 (mf) P^-rizd). (3.57) 
i=o 

Proof: This follows by differentiating (3.54b) m + 1 times to get 

P*(m+1) = (tfby      ' - £ (m+1) P(m+1-^(3). (3.58) 
j=o 

Adding (3.54a) and (3.58) gives (3.57). □ 

In the rest of this chapter, we focus only on the cases where m = 0,1 or 2. For 

later reference we will be referring to the following ODEs (3.57) given by Proposition 

3.3.2 

z' 

z" 

z'" 

=   (tfb)'-P'z (3.59) 

=    (tfb)" - 2P'z' - P"z (3.60) 

=    (tfb)'" - ZP'z" - W'z' - P'"z. (3.61) 

3.3.1    Growth of (I - P)z 

Recall that in the general DAE integrators the Pz component of z is uniquely deter- 

mined by the derivative array equations. The (/ — P)z component is arbitrary. The 

actual performance of general DAE integrators will be affected by how (I — P)z varies 

since the size of this component impacts convergence of the Gauss-Newton iteration 

and scaling of variables if they become too large. Therefore it is of considerable 

interest to know how (/ — P)z evolves during the integration. 
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Proposition 3.3.3 Let z be the solution of the ADAE (3.54).   Then 9 = (I - P)z 

satisfies the differential equation 

0(m+i) = _ j2 ("H"1) pfr+i-J) (e + C+6)0). (3.62) 

Proof: From (3.54b) we have z = 9 + C%. Substituting for z in (3.57) gives 

m / .v 

0(m+l) + (Ctfc)(m+1) = (Ctfe)(m+1) _ ^ {^f) p(m+1~^ (ö + Cf&) (3.63) 

which gives (3.62). Q 

Equation (3.62) is a linear differential equation. The forced response due to & b 

arises from the solution y and the forcing function / of (3.46), or equivalently, the 

u,g in (3.49). The solution of the associated homogeneous equation then reflects how 

9 changes in response to the varying of P and the choice of predictor z. 

Consider the homogeneous DAE 

(/-P)^m+1^    =   0 (3.64a) 

Pz   =   0. (3.64b) 

Proposition 3.3.4 Let 0 be a matrix solution of (3.64) of maximum rank. Let \\ ■ || 

be the Frobenius matrix norm, \\Q\\2 = tvace(QTQ). Then 

jt\\e\\   = 0    form = 0                                                         (3.65) 

-^||0||2   = 2||e'||2    form = l                                                (3.66) 

d2 

—1|0||2   = 3||0'||2 + c   form = 2,   c constant.                   (3.67) 
(Jib 
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Proof: Equations (3.64a,3.64b) imply that 0' G Af(I-P) and 6 G N(P). Therefore 

the columns of 0' are orthogonal to the columns of 0 or 

Q'TQ = QTQ, = Q 

Therefore 

(||0||2)' = trace(0T0' + (0')T0) = 0 

which proves (3.65). 

For m = 1, (3.64) implies that the columns of 0" and 0 are mutually orthogonal. 

Hence 

(0T0)" = (0")T0 + 2(0')T0' + ©T0" = 2(0')T0'. 

Taking the trace gives the result (3.66). 

For m = 2, we have 

(0T0)'" = (0"')T0 + 3(0")T0" + 3(0')T0" + 0T0'". 

Since the columns of 0'" and 0 are orthogonal we have 

d3 (||0||2)    =   3(trace((0")T0' + (0')T0") 
dt3 

=   3j{trace((Q')TQ'). 

Integration gives the result (3.67) with c = -2trace(0(to)T ©"(to)) + ll©'^)!!2-     ° 

Similar equations for higher m can be derived but become more complicated and 

are not as easy to interpret. 

We have demonstrated that if the sequence zn converges as h —y 0+, to a smooth 

limit, then the limit satisfies the ADAE (3.54). We now show that the limiting 

behavior takes place. To address this issue, note that if we have an ith order DAE 

with no lower order derivative terms 

F{x®,x,t) = 0 (3.68) 
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and rewrite it as a first order DAE 

F(v'i,x,t)   =   0 (3.69a) 

v'i_x-Vi   =   0 (3.69b) 

v'2-v3   =   0 (3.69c) 

v[-v2   =   0. (3.69d) 

where v\ = x, then we get the following result. 

Lemma 3.3.1 Applying a backward Euler (BDF-1) approximation to the first order 

DAE (3.69) is the same, for n>m, as using the approximation 

F(h~\xn+l -pi_i(tn+i)),a;„+i,in+i) = 0 (3.70) 

ontheith order DAE (3.68). 

Proof: We begin by applying backward Euler's to (3.69) 

F(Vi'n+1~Vi'n,xn+1,tn+1^    =   0 (3.71a) 

t>i-1|W+1-i;.--i,B =   0 (371b) 

h 

^2,n+l — u2,n n /o T1   \ 
V3,n+1     =     0 (3.71c) 

t>2,»+l     =     0. (3.71d) 

h 
Vl,n+1 ~ Ul,n 

h 

We begin with (3.71d) which we rewrite as 

V2,n+1     =    0 (3.72) 
•En+1       En 
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or 

h 

Thus (3.71c) is equivalent to 

V2x n+l 

h2 

Continuing in this manner we get for (3.71b) 

v2jn+1   =   0. (3.73) 

v3,n+x   =   0. (3.74) 

and (3.71a) 

—fe-_"+1 - Vi,n+i   =   0 (3.75) 

^ I ^ ,Zn+l,*n+l  )      =     0. 

From Lemma 3.2.1 we have 

Vlx„+i = xn+1 -pi_i(in+i) 

which gives the result. □ 

Therefore, the sequence zn is a numerical approximation to the solution of the 

solvable DAE (3.69). The m = 0 case gives us an index one DAE. It is known that 

index one solvable DAEs can be integrated with BDF-1 [13]. 

3.3.2    Convergence to the ADAE for m = 1,2 

We will now prove that BDF-1 on (3.54) converges for the cases m = 1,2. Our interest 

is in the long term dynamic behavior of Zk so that we will not be concerned with the 

first few values. 

We have observed in computational tests that if the DAE is solvable on a compact 

interval, and z0 is fixed, then the Zk sequence stays bounded independent of h for h 

small. This suggests the boundedness assumption on yn in Lemma 3.3.3 is reasonable. 

We will use the following result from [86] in the proof of Lemma 3.3.3. 
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Lemma 3.3.2 // ||en+1|| < (1 + hL)\\en\\ + D, and 0<nh<b, then 

(l+hL)n-l 
Ml   <   (l + hL)n\\e0\\ + D- 

hL 

<   e"lb|| + ^(e"-l). (3.76) 

Lemma 3.3.3 Suppose that we have a linear time varying ODE, x' = A(t)x + f(t) 

where A, f are continuously differentiable on I = [a, b], and consider two different 

schemes 
xn+i - xn _ 

h 

which is forward Euler's and 

Vn+1~yn = (An + hC(tn, h)) yn + fn + 0(h) 

where C is smooth in t, h.  Suppose that for a fixed y0, there is a constant h0 such 

that yn is bounded for 0 < nh < b and 0 < h < h0. Let en = yn — xn.  Then 

en = O(\\e0\\) + O(h). 

A similar result holds for backward Euler. 

Proof: The difference of the two schemes gives 

h 
= An en + h C(tn, h)yn + 0(h) = Anen + 0(h), 

or 

en+i=(I + hAn)en + hO(h). (3.77) 

Since A(t) is continuous on /, we have ||A(i)|| < L. By taking norms of both sides of 

(3.77) we have 

\\en+i\\<(I + hL)\\en\\ + Kh2 
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where K is a constant given by the 0-term. From Lemma (3.3.2) we have 

INI < e
L6IMI + ^Vb-i) 

=   e"||eo|| + ^(e"-l)Ä. 
Li 

D 

We are now ready to prove the following. 

Theorem 3.3.1 Let m = 1,2. Suppose that (3.46) is a uniformly solvable DAE on 

the interval I of length L. Assume that the Gauss-Newton iteration is being used with 

a K order integrator and fixed step h. Suppose that for ZQ in a neighborhood of a fixed 

ZQ, there is a constant ho such that zn is bounded for \nh\ < L. Then the sequence zn 

is an 0(h) approximation to a solution of the ADAE. 

Proof: From the proof of Proposition 3.3.1 and Lemma 3.3.1, we note that the zn are 

the same as a backward Euler applied to the ADAE. We now show that the backward 

Euler on the ADAE can be viewed as a forward Euler on a perturbation of an ODE. 

Lemma 3.3.3 then gives the needed result. We show in detail the result for m = 1. 

The case for m = 2 is outlined. 

Since P is a self-adjoint projection we can write it as 

P = VTV 

where V is a full row rank matrix with orthonormal columns. Similarly 

I-P = UTU 

where the rows of U are orthonormal and also orthogonal to the rows of V. We may 

assume that U,V are smooth [18, 59]. The following relationships are immediate 

UUT   =   I 
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vv1 

uv1 

-1 

u 
V 

UT VT]. 

For convenience let g = V C^b so that the (3.54) can be written, after a permutation 

of the equations, as 

z'-y   =   0 (3.78a) 

Uy'   =   0 (3.78b) 

Vz   =   g. (3.78c) 

Let 

z = VTr + UTs = q + p (3.79) 

so that r,s are independent variables. Equation (3.78c) gives r = Vz = g which is 

solved uniquely at each time step. The key is what happens to the other component 

8 of z. Note that (3.78b) is 

U((UTs)" + q")=Q 

or 

s" + 2 U (U')T s' + U (U")T s + Uq" = 0. 

Applying BDF-1 to (3.78) we have 

•2-n+l        %n 

h -Vn+1 

u, y-n+1 - Vn 
n+1 h 

0. 

(3.80) 

(3.81) 

(3.82) 

Using (3.81) for yn+i in (3.82) gives 

Un+l 

n+l —Zn      Zn    zn—1 \ 

—■* ^—    =0. 
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If we substitute (3.79) for z and use the fact that q = VTg = VTr is known, then we 

have 
(Pn+l-Pn   _  Pn-Pn-1 \ 

—h—-h—
h— + C-i + °(h)j = o 

or equivalently 

Un+l (uZ+lsn+l - Wr
nsn + C/n

T_i^n-i) = -h2Un+1 C+1 + 0(h3). (3.83) 

Working with the left side of (3.83) 

■Sn+l — 2 Un+iUn Sn + Un+iUn_1Sn-i 

= sn+1 -2sn + 5n_! + 2£/„+i(£/J+1 - U%)sn + Un+1(-U^+1 + [/J_x)5n_i 

= Sn+1 - 2sn + Sn-l +2Un+1(U%+l - U%)(sn - 5n_i)  + 

^n+l(f/J+1-2£/J + t/J_1K_1. 

Dividing by h2 we get 

Sn+1 ~ 2s
h;
+8n~1 + 2 c/n+1 ((c/j+1 y+o(h))Sn Y""1 + 

ün+1  ((^+l)T + 0(M) '»-1  = -CWl Cl + 0W 

or 

"^n+1       ^^n T 5n_i (ITTT    \l       /~\li \\  ^n       ^n—1 ^2 +2^ ((Ü2L, y +0(A)) ^_J=i + 

tfn_! ((^,)T + 0(A)) ,„_! = -C/n_! Cl + 0(A) 

which is an 0(h) perturbation of a forward Euler's applied to (3.80). Thus if our 

original iterative sequence is bounded independent of h, then the sn sequence is 

bounded independent of h. By Lemma 3.3.3 this sequence must approximate the 

numerical solution of (3.80). 
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For m = 2, a similar analysis leads to 

z'-w   =   0 (3.84a) 

w'-y   =   0 (3.84b) 

Uy'   =   0 (3.84c) 

Vz   =   g. (3.84d) 

and the ODE 

a'" + ZU (U'fs" + 3 U {U")Ts' + U{U'")Ts + Uq"' = 0. (3.85) 

Applying BDF-1 to (3.84) gives 

Un+l(UZ+l - Wlsn + 3C/n
T_l5n_! - t/J_2s„-2) = -h3Un+1qZ+1 + 0(h4).      (3.86) 

Again, we first work only with the left side of (3.86) 

sn+1 -3Un+1U^sn + 3C/n+iC/J_1sn_i - Un+1U^_2sn-2 

= sn+i - 3 sn + 3 5„_! - sn_2 + 3 Un+i (f/J+1 - lf£)sn + 

3t/n+1(-t/J+1 + Ü^K-i + C/n+i(^n
T
+1 - ü2LaK-2 

= sn+1 - 35„ + 3s„_i - sn_2 + 3Un+1 \UZ+l - f/JJ (sn - 2Sn_i + Sn_2) + 

3 C/n+1 (C/J+1 - 2 C/J + t^) *«_! + Un+l (-2 C/J+1 + 3 C/J - f/J_2) *n_a 

= 5n+i - 3 5„ + 3 Sn_j  - 5„_2 + 3 /7n+i  (Un+1 ~ ^n) (Sn ~ 2 Sn-1 + 5n_2)   + 

3 Un+1 (t/J+1 -2C/J + C/J_i) (*„_i - *„-a) + 

^«+1 (t/J+1 - 3 C/J + 3 t/J_! - t/J_2) *B_a. 

Dividing by /i3 we get 

5n+l  —' 3-Sn + 3s„_i  — Sn_2         _ rr          ///vT     \/   ,   /VA\\  Sn ~ ^•
STO

~
1
 ~*~ ^"-2     .  — h 6Un+1 [{Un+1)   + U{tl)J  — h 
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3Un+1((U':+1)
T + 0(h)) Sn-1 ~~ Sn-2 + Un+1 (W+1)

T + 0(h)) sn_2 

= -un+1 Ci + o(h) 

or 

■Sn+l  — oSn + OSn-i — 5n_2 
h3 + 3 un-2 ((ui_2y+o(h))Sn - 2*y+Sn-2 + 

3 l/n-2 {{U'Uf + 0(h)) Sn~l - Sn~2 + C/n_2 ((U:_2)
T + 0(h)) sn_2 

= -Un-2q':_2 + 0(h) 

and the result follows as with the m = 1 case. Q 

3.3.3    Index 2 Example 

In order to illustrate the previous analysis we consider the following index two LTV 

system [46] 

0    0 ' y[~ + 
1   rjt UJ 

1      nt 

0     1 + 7? V2 

fit) 
0 

with solution 

Vi (t)   =   f(t) + Vtf'(t) 

ifc(t)   =   -fit)- 

BDF-1 applied to (3.87) results in 

yi,n + Vtny2,n     =     fn 

y\,n — yi,n-l    .        ,     V2,n ~ 2/2,n-l    .    /•,    .      \ n — ■£->  + Vtn— J^  + (l+»7)y2)n     =     0. 

After solving (3.90) for yi}Tl and substituting this expression into (3.91) for j/iin and 

2/i,n-i, then solving for y2<n we have 

yi,n     =     fn-Tjtn J/2,n (3-92) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

(3.91) 
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y2,n 
1+V 

Assume / = 0 in (3.87), then we have 

3/1 ,n    = 

!/2,n     = 

V  _ fn — fn-1 
m'n~1      h(l + rj) 

(3.93) 

-r}tny2,r, 

V 

1 + V 
J/2,n-l- 

(3.94) 

(3.95) 

As noted in [46] it is required that |j^| < 1 in order for y2,n to be stable (i.e. 

— 1/2 < rj), otherwise t/2,n will oscillate and become unbounded as n —¥ oo. This 

example illustrates where BDF methods applied to an index two linear time varying 

DAE can fail. However, the general DAE methods (El or ICP) can integrate (3.87) 

without difficulty. 

The derivative array equations for (3.87) are 

0 0        0        0 0    0    1      77t 

1 rft       0        0 OOOI + 77 

1/7*0        0 OOO77 

0   1 + 2?/   1       rjt 0    0    0       0 

0       2r/       1       rjt 0    0    0       0 

0        0        0 1 + 37/ 1   rjt   0       0 

' y[ ' 
/ 0 

V2 

y'l 
0 0 

y'l /' 0 

y'l' 0 0 

y'2" f" 0 
2/1 

0 0 
2/2 L             J 
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We will use the El method in this example. The system that we will solve is 

0 0 0 0 0 0 

1 rjt 0 0 0 0 

1 Tft 0 0 0 0 

0 1 + 277 1 nt 0 0 

0 2r, 1 Vt 0 0 

0 0 0 1 + 3?? 1 nt 

y[ 

y'i 

y'i 

y'i 

Vi 

v? 

f - xi - r)tx2 

-{l + rj)x2 

/' - ^2 

0 

/" 

0 

(3.96) 

C z 9 

We can find a completion to the least squares' equations by premultiplying the equa- 

tion Cz = g (3.96) by Cf to obtain 

CfC   =   Ch 

y 

w 
C*g. 

(3.97) 

(3.98) 
/     0 

0   D{t) 

When numerically solving (3.96) the computation of & can easily be obtained 

by either an SVD or QR. In order to examine the solutions given by the El method 

we will compute an analytic generalized inverse of C. Let C = BC be a full rank 

factorization of C. Then it is well known [47] that the Moore-Penrose inverse of C is 

given by 

Cf = CT{CCT)-\BTB)-lBT. (3.99) 
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MAPLE was used to compute 

C = 

B 

The orthogonal projector P = C^C is given by 

0 0 

1          T]t 

1 rjt 

0   1 + 2/7 

0      2rj 

0        0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

rjt 

rjt 

1 + 377 

10   0   0 

0   10   0 

0   0   10 

0   0   0   1 

0 

0 

rjt 

1 + 377 

1 

0 

0 

TjH2 

1 + 377 

rjt 

1 + 377   J 1 + 377 

c 

cT(ccTy -lc 
1   0 0 0 0 0 

0   1 0 0 0 0 

Q     Q      2+6r)+97}2+v2t2 T]t(l+7)2t2) 

D 
-r,t(l+3v) 

D 
-r;2t2(l+3r,) 

D 

0   0 Tjt(l+7J2*2) 
D 

l+6V+9r1
2+v2t2+riiti 

D 
l+3r7 

D 
Vt(l+3V) 

D 

0   0 -Tji(l+37j) 
D 

1+37/ 
D 

iWt2 

D 
vt(i+v2t2) 

D 

0   0 
-r,*t2(l+3v) 

D 
ijt(l+3rj) 

D 
vHiwt2) 

D 
■n2t2(i+v

2t2) 
D 

(3.100) 

where D = rj4t4 + 9?72 + 2?72*2 + 6?? + 2. Notice that P ->■ P* as t -> oo where P* is 

the diagonal matrix whose elements are {1,1,0,1,0,1}. 
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#9 

We also have 

-f-m + Y + vtf" 

-f" 
(l+2r))(2+6r,+9ri2+T)2t2)f" 

n4ti+9ri2+2v2T2+6ri+2 

r,t(l+2n)(lWt2)f" 
r;4<4+97)2+2?)2<2+67)+2 

-r,t(l+3v)(l+2y)f" 
T)4t4+9?)2+27)2<2+67)+2 

-v
2t2(l+3r,)(l+2r,)f" 

»)4<4+9?)2+2772i2+67)+2 

The numerical results that follow integrate (3.87) on [0,20], rj 

cos(t). 

The zn are given by the Gauss-Newton iteration 

(3.101) 

-3/4 and f(t) = 

zn — 
Vn 

Wr, 

{I-P)zn+Clgn. (3.102) 

The y' components are uniquely determined (3.101) 

2/2      sin(i)     3 
V\    = 2     + -tzos(t) 

y'2   =   cos(<). 

The other components of z are given by 

9*2(16 + 9*2){Di + 12t(16 + 9t2)w2 + 2A0tw3 - I80t2w4 + 8cos(<)(41 + 9t2) 
656 + 288i2 + 81t4 

12t(16 + 9t2)wl + 16(16 + 9t2)w2 + 320^3 - 240tw4 - 6tcos(t)(16 + 9t2) 
656 + 288t2 + 81i4 

240<t5i + 320w2 + (400 + 144t2 + 81t4)w3 + 12t(16 + 9t2)w4 - 120* cosjt) 
656 + 288i2 + 81i4 

-180*
2
IüI - 24(Mti)2 + 12<(16 + 9t2)w3 + 16(41 + 9t2)w4 + 90*2 cosjt) 

656 + 288i2 + 81t4 

Wi 

w2 

w3 

w4    = 
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All computations were done on a CTX PC with an Intel Pentium 120 MHz pro- 

cessor. The El code was written in FORTRAN 77 and LAPACK [4] was used to 

performed numerical computations of C*. 

Figure 3.1 shows the result of using polynomial interpolation for the cases m = 

0,1,2. A second order ABM method with fixed step size h = .05 is used in integrating 

the completion. The top two plots are the graphs of y[ and y'2 which are unaffected 

by prediction. The next four plots of w\,... , u>4 demonstrates essentially bounded 

behavior for m = 0, slow linear growth for m = 1 and much stronger growth in some 

of these components for m = 2. We observe this in Figure 3.1 for m = 0,1,2. 

Convergence of BDF-1 for the index one case (m = 0) is clearly seen in Figure 

3.2. The y' components of the z vector are omitted since they are not affected by 

prediction (assumption (A3)); only the w components are displayed since these values 

change depending on different prediction strategies. The AODE (3.59) is solved using 

the numerical code ODE.F written by Shampine [83] (obtained via NETLIB). The 

absolute and relative error tolerances were set to 10-6 in ODE and the step size was 

fixed at h = .05. Figure 3.2 shows that the z components given by integrating the 

AODE 

z< = (tfg)' - P'z 

and the z components given by the Gauss-Newton iteration 

z = (I-P)z + C*g 

are approximating the same differential equation. 

For the higher order predictors, m = 1,2, we initialized the AODEs (3.60,3.61) 

at t = 5h using the values of z given by the Gauss-Newton iteration at that time. 

Figures 3.3 and 3.4 show the values of w components given by integrating (3.60) and 

the Gauss-Newton method respectively. Again we observe that the AODE is correctly 

capturing the behavior of the z sequence.  These figures also illustrate convergence 
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as h —> 0+ of z to the AODE solution. Figures 3.5 and 3.6 demonstrate the same 

conclusion for the m = 2 case. 

The previous graphs dealt with the solutions themselves. The theory developed 

earlier states that it is the (/ — P)z term whose growth depends on the choice of the 

predictor. For time invariant DAEs the governing differential equation is 0(m+1) = 0 

and polynomial growth results. However, the example considered here is not constant 

coefficient. An examination of the derivative array shows that the coefficients of the 

the solutions of the derivative array equations are asymptotically constant. 

Figures 3.7-3.9 show the graphs of ||(/ — P)z\\ for various step sizes and m = 0,1,2. 

Several points are worth noting. First, asymptotically the graph looks constant, lin- 

ear, and quadratic for m — 0,1,2 respectively, as expected. Note the initial oscilla- 

tion. While Proposition 3.3.4 asserts that ||0|| is constant, ||(7- P)z\\ is not initially 

constant. However we observed earlier that last four components of the vector C*g 

(3.101) will decay to zero as t increases. Additionally the matrix P will converge to 

a constant matrix. 

Finally, we compare the global error in each component of the solution at time tn 

by computing 

max \ejtn\ = max \yjiTl - yj(tn)\. (3.103) 

Table 3.1 shows that the prediction strategy did not affect the global error. The 

numerical solution had the same accuracy regardless of the prediction strategy for 

this example. 

h = .\ h = M h = .025 h = .0125 

maxn |ei,n| 
maxn |e2,n| 

5.5669D-02 
4.4144D-03 

1.4329D-02 
1.0732D-03 

3.6292D-03 
2.6479D-04 

9.1918D-04 
6.6067D-05 

Table 3.1: Global Errors for Index 2 LTV, m = 0,1,2. 
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10 15 20 

1 
■ 

• — m=0 

--   m-1 
— m*2 

/ 

10 15 20 

10 15 20 

Figure 3.1: z from Gauss-Newton given by m = 0,1,2 prediction. 

Figure 3.2: z' = {C^b)' - P'z and w from Gauss-Newton, m = 0. 
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••••   h».1 

- -   h=.05 

- h..025 

    h>.0125 

0 5 10 15 20 

10 15 20 

Figure 3.3: z" = (tfb)" - 2P'z' - P"z. 

10 15 20 10 15 20 

10 15 20 

Figure 3.4: w from Gauss-Newton, m = 1. 
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140- 

120 

100 

SO 

60 

40 

20' 

' 
/i 

••••  h..1 // 
- - h..06 /'   ' 
■-■   h=.025 

    h«.0125 
/' ' 

& ' 

10 15 20 

10 15 20 

Figure 3.5: z'" = (C+fe)'" - SP'z" - 3P"z' - P"'z. 

140 • 

120' 

100 

SO 

60 

40 

20 

■ // 
---•  h-.1 /'/ 
--   h-.05 fi/ 

■-•   h=025 

    h-.0125 

10 15 20 

10 15 20 

Figure 3.6: w from Gauss-Newton, m = 2. 
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0 2 4 6 8 10 12 14 16 18 20 

Figure 3.7: ||(/ - P)z\\ for Index 2 LTV, TO = 0. 

0 2 4 6 8 10 12 14 16 18 20 

Figure 3.8: ||(7 - P)z\\ for Index 2 LTV, TO = 1. 
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1  1 1 i r 1 1 1  i             i 

h=0.1 

_   h=0.05 //   7   haO.025 //   / 
h=.0125 

- 
/■'' /'   / //    ' 

/' ' 
// / 

// / // / 

/?'', 

i                i                i                i                i                i 1  
8 10 12 14 16 18 20 

Figure 3.9: ||(7 - P)z\\ for Index 2 LTV, m = 2. 

3.3.4    Index 4 Example 

Earlier we discussed that prediction could affect the convergence of the Gauss-Newton 

iteration. This next example illustrates integrating an ill-conditioned problem and 

the effects of prediction. We also examine the use of a low order integrator on a 

higher index DAE. We begin by considering the linear time invariant DAE 

Nx' - x = f(t) (3.104) 

where (a, ß ^ 0) 

N 

a 

ß 
0   1 

0   1 

0   1 

0 

/(*) = 

sin(t) 

e"* 

t2 

te-t 

cos(t) 
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The block diagonal structure of N consists of a nilpotent matrix whose index is four 

[32] so that (3.104) is an index four DAE. A solution is given by 

(3.105a) 

cos(i) (3.105b) 

(3.105c) 

(3.105d) 

(3.105e) 

(3.105f) 

By applying an orthogonal time-varying change of coordinates x = U(t)y where 

Xi = et/a -t-a 

X2 = ■"'-i+V-M-i^ 
X3 = - sin(<) - te-f + e~x - 2b 

Xi = cos(t) - e~l + te~l - t2 

x5 = sin(t) — te~l 

xe ^ — cos(t). 

U(t) 

sin2(ort) L cos2(ut) 

L -sin2 (tot) 0 

0 0 sin2 (art) 

cos »(art) 

-LOO 

0 L cos2(LOt) 

L cos2](ut) —L 

0 

cos '■(ut) 

-L       sin2(art) 0 

0 0 -sin2(art)        -L 

0 0 L        cos2(ut) -L sin2(art) 

and L = sin(ort) cos(art), we construct the index four linear time varying DAE 

whose solution is 

NU(t)y' + (NU'(t)-U(t))y   =   f. 

y = UT(t)x 

(3.106) 

(3.107) 

and is displayed in Figure 3.10. 
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We differentiated each equation in (3.106) four times so that the derivative array 

equations consisted of 30 equations in {y',y", J/'",y(4), 2/(5),y}- The parameters a,ß 

and uj can be altered to change the conditioning of the problem. The numerical results 

that follow are for the case where a = ß = -1 and w = 2. For these values of a,ß 

and u, the singular values of C varied from 10"4 to 103 at each step of the integration. 

Second and third order ABM methods, denoted by ABM2 and ABM3 respectively, 

were used to integrate the completion. Figure 3.11 show the growth of the nonunique 

components \\(I - P)z\\ for various step sizes and ABM2. The graphs for ABM3 were 

similar. Linear interpolation (m = 0) was used in predicting all values of z at the next 

time step. We conclude that the El method correctly computed a numerical solution 

to the index four DAE (3.106) using a lower order integrator on the completion and 

the prediction strategy m = 0. Tables 3.2-3.3 are the global errors using ABM2 and 

ABM3. The numerical solution is displayed in Figure 3.12. 

However, the result was much different for the m = 1 case. Figure 3.13 shows 

that ||(7 — P)z\\ blows up around t = 3. As h decreased we observe that the Gauss- 

Newton failed to converge earlier in the integration. We also attempted to use higher 

order integrators, Figure 3.14. Convergence still did not occur when applying m = 1 

prediction to all of the z components. 

In order to examine the use of the Nordsieck vector to initialize the z components, 

we integrated the completion with different ABM schemes. We initialized as many 

components of z as possible given by the integrator. Remaining components were 

initialized using prediction. For example, if we used the integrator ABM3, then 

we would initialize the z components corresponding to {y1, y", y'"} using the values 

contained in the Nordsieck vector. We fixed the step size at h = .025. Figure 

3.15 shows again that the m = 0 case could be successfully applied to components 

for which the Nordsieck vector did not provide enough information to initialize the 

entire z vector. It is important to note that the numerical solution is not effected by 
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prediction. Whether we initialized all the z components by prediction or part using 

the Nordsieck vector, the numerical solution returned the same global errors. 

However, we still had failure in the m = 1 case when we used the lower order 

integrator ABM2. Figure 3.16 shows that m = 1 did work for ABM3, ABM4 and 

ABM5. Again, it should be emphasized that a fourth order ABM method using a 

Nordsieck implementation provides approximations to derivatives of the true solution 

up to the fourth order. In this case the only components in the z vector that are 

initialized by polynomial prediction are those corresponding to y^\ ABM5 provided 

approximations to all the derivatives appearing in the derivative array equations. 

ABM5 also controlled the growth of ||(7 — P)z\\ better than any of the other meth- 

ods. Our conjecture that using the Nordsieck vector for initialization helps the initial 

iterate for the Gauss-Newton solve to remain close to the solution manifold of the 

DAE appears valid in this example. Prediction did not affect the numerical solution 

where convergence occured. However, higher order prediction caused failure. Us- 

ing the Nordsieck vector for initialization provides a safeguard for convergence in ill 

conditioned problems. 



Chapter 3.   Prediction Strategies in General DAE Integrators 88 

0 2 4 0 2 4 6 8 10 

Figure 3.10: True Solution to Index 4 LTV (3.106). 
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Figure 3.11: ||(/ - P)z\\ for Index 4 LTV, m = 0, ABM2. 
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0 2 4 6 8 10 024 

Figure 3.12: Numerical Solution to Index 4 LTV (3.106), m = 0, ABM2. 
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Figure 3.13: ||(7 - P)z\\ for Index 4 LTV, m = 1, ABM2. 
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Figure 3.14: ||(/ - P)z\\ for Index 4 LTV, m = 1. 

Figure 3.15: ||(/ - P)z\\ for Index 4 LTV, m = 0 and Nordsieck. 
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Figure 3.16: ||(/ - P)z\\ for Index 4 LTV, m = 1 and Nordsieck. 

h = .l h = .05 h = .025 h = .0125 
max„ |eiiTl| 2.3302D+01 6.3993D+00 1.4535D+00 3.3323D-01 
max„ |e2,n| 1.6569D+01 4.5085D+00 1.0223D+00 2.3430D-01 
maxn |e3)„| 3.4310D+00 1.7658D+00 4.9174D-01 1.2429D-01 
max„ |e4)n| 1.7861D+01 5.6336D+00 1.3829D+00 3.3104D-01 
maxn |C5,n| 2.7166D+01 8.0756D+00 1.9080D+00 4.4649D-01 
maxn |e6,n| 1.6160D+01 5.0587D+00 1.2323D+00 2.9364D-01 

Table 3.2: Global Errors for Index 4 LTV, m = 0, ABM2. 
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h = A h = .05 h = .025 h = .0125 

maxn \ehn\ 5.5484D+00 1.5554D-01 1.8873D-02 4.3434D-03 

maxn |e2,n| 3.9334D+00 1.1373D-01 1.3470D-02 3.0437D-03 

max„ |e3,n| 2.3633D+00 1.7231D-01 1.0350D-02 8.1917D-04 

maxn |e4)„| 5.7546D+00 2.8564D-01 1.1906D-02 2.7959D-03 

maxn |es,n| 7.4058D+00 2.6152D-01 1.3183D-02 4.4531D-03 

maxn |e6,n| 4.8886D+00 2.2686D-01 6.9777D-03 2.1837D-03 

Table 3.3: Global Errors for Index 4 LTV, m = 0, ABM3. 

h = .l h = .05 h = .025 h = .0125 

max„ |ei;„| 5.9281D-01 8.4212D-02 5.3819D-03 3.1340D-04 

maxn |e2,n| 4.4651D-01 5.9521D-02 3.7725D-03 2.2247D-04 

maxn |e3in| 3.6539D-01 1.2031D-02 1.4115D-03 1.0623D-04 

max„ |e4,n| 3.5716D-01 6.3850D-02 4.6371D-03 2.9836D-04 

maxn |e5,„| 3.5284D-01 9.8719D-02 6.8081D-03 4.1312D-04 

maxn |e6,n| 2.8794D-01 5.6071D-02 4.2017D-03 2.6566D-04 

Table 3.4: Global Errors for Index 4 LTV, m = 1 and Nordsieck, ABM4. 

h = .l h = .05 h = .025 h = .0125 

maxn \elt7l\ 7.5466D-01 1.2311D-02 1.2340D-04 6.1310e-006 

max„ |e2)„| 5.3438D-01 8.5953D-03 8.9314D-05 5.7579e-006 
max„ |e3in| 1.9715D-01 5.8098D-03 1.2323D-04 6.9728e-006 

maXn |64)W| 6.4097D-01 1.3592D-02 2.1520D-04 7.1199e-006 

maXjj |65,n| 9.3373D-01 1.7077D-02 2.0312D-04 6.7074e-006 

max„ |e6,n| 5.5461D-01 1.1753D-02 1.7759D-04 3.9276e-006 

Table 3.5: Global Errors for Index 4 LTV, m = 1 and Nordsieck, ABM5. 
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3.4    Nonlinear Case 

In the nonlinear case we have the derivative array equations given by the nonlinear 

system 

G(z,t) = 0 (3.108) 

where J = Gz is assumed to have constant rank. In Section 2.4 it was demonstrated 

that the Gauss-Newton method applied to (3.108) can be viewed as the integration 

of an ODE with a suitable step size.   Given a fixed i, solving (3.108) for z would 

involve integrating 
ft? 
^- = -Gi(z(T,t),t)G(z(r,t),t). (3.109) 

We shall view the generation of the zn+i iterates as a two step process. First, we 

predict zn+i by polynomial interpolation. Second, we follow the Gauss-Newton flow 

to steady state zn+\. Then in a neighborhood of the solution of the DAE there exists a 

function $(z,t) which is the limiting value of the continuous Gauss-Newton starting 

at z and time t. By definition $($(£, t),t) = $(£, t). Differentiating with respect to 

z we note that <&z is a projection. In the linear case we had $(£, t) — (I — P)z + C^b 

where P = C^C and §z = I — P. Another property of $ by definition is 

ß($(z,t),t)G($(z,t),t) = 0. (3.110) 

In the linear time varying case this is precisely equation (3.54b). 

One step of predict and iterate then becomes 

Zn+i = $(pm{tn+l),tn+l)- 

Thus 

0     =     Zn+i - $(pm(tn+l),tn+l) 

=     *(3n+l,*n+l)-*(Pm('n+l)>*n+l) 

=     <M*n+l,*n+l)(3n+l ~Pm(*n+l)) + OOK+l ~ Pm(*n+l)l|2)- 
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Assuming the limit exists, we divide by hm+1 and get that the limit as h —)■ 0+ must 

then satisfy 

<f>z(z,t)z(m+1\t) = 0 

which is (3.54a). We also have that zn+\ is the limit of the Gauss-Newton iteration 

so that 

J (Zn+l,tn+l)G(zn+i,tn+i) = 0 

which is the nonlinear analogue of (3.54b). Thus we have the following 

Proposition 3.4.1 Suppose that the continuous Gauss-Newton iteration is being 

used, the underlying numerical integrator of the completion is of order K > 1, the 

interpolation polynomial is pm, and the sequence zn converges as h —»■ 0+ for fixed tn 

to an m + 1 times differentiable function z{t). Then z(t) is the solution of the index 

m + 1 auxiliary differential algebraic equation (ADAE) 

<j>z(z{t),t)z(m+1\t)   =   0 (3.111a) 

ß(z(t),t)G{z(t),t)   =   0. (3.111b) 

Proof: It only remains to show that (3.111) is index m + 1. Equation (3.111b) says 

that z(t) is a fixed point of the Gauss-Newton iteration and thus z(t) = $(z(t),t). 

Differentiating with respect to t we get z' = $zz' + $< so that 

(/ - $ay = -$t. 

Differentiating this equation m times with respect to t yields 

(/ - $^m+1> = r(t, *,..., *(ro)). (3.112) 

Adding (3.112) and (3.111a) gives ^ro+1) = T(t, z,..., z^) and (3.111) is index m+1. 

D 
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Proposition 3.4.1 concludes that if the continuous Gauss-Newton converges, then 

the limit will again satisfy an auxiliary DAE. However, (3.111) is nonlinear and com- 

puting an explicit AODE that solutions to this DAE will also satisfy cannot be done 

here. We saw in the linear time varying case that the nonunique components (I — P)z 

satisfied a linear ODE (3.62) whose dynamics varied with the prediction strategy. We 

should also expect that the nonunique components will change based on the choice 

of predictor z in the nonlinear case. 

3.5    Implications 

So far in this chapter we have carefully examined what happens for continuous up- 

dating of the the Jacobians. In practice, numerical integrators try to reuse Jacobians 

as much as possible. This can sometimes introduce difficulties with DAEs that do 

not occur with ODE integrators [38]. This section will briefly discuss this problem 

along with the implications of the preceding analysis. 

An important special case is when the range of P is constant. In this case, the 0 

equation becomes 0(m+1) = 0 so that 0 is an mth degree polynomial. Predictors given 

by m = 0,1 are safe to use in this instance. The initial conditions for the z equation 

can be made smaller by solving the Gauss-Newton iteration to higher accuracy. For 

moderate length time intervals and well conditioned problems m = 2 could possibly 

be used. 

In actual implementations of a general integrator one wants to reuse Jacobians 

as much as possible [37, 38]. A slight modification of the preceding analysis can 

be applied during the time that the Jacobian is constant to again get 0(m+1) = 0. 

However the size of the initial values of 0 are based not only on the iteration but 

also the updating [38] so that these values cannot be assumed to be very small. 

Accordingly m = 0,1 are better choices. 
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The analysis in this chapter has another important consequence. In previous 

discussions of general DAE integrators it was assumed that the order of the integrator 

was greater than the index. This was done so that the Nordsieck vector could be 

used for a predictor in the Gauss-Newton iteration. This allows for the integration 

of many important DAEs but has the disadvantage that it requires the use of high 

order integrators for moderately indexed DAEs and rules out the integration of DAEs 

of indices much above four. 

The fact that the arbitrary terms terms also satisfy a differential equation means 

that one can relax this assumption. This is important. One can use low order 

integrators on higher index DAEs provided that polynomial prediction is used for the 

w terms. 

We have shown that the growth of the nonunique terms in the the Gauss-Newton 

solver as part of a general DAE integrator satisfies an auxiliary DAE which depends 

on the predictor. The choice m = 1 appears safest, but m — 0 may have to be used 

on hard problems. The choice m = 1 will speed up the Newton iteration somewhat 

and avoids too rapid a growth of the 0 terms as described for the first time in this 

chapter. The use of integrators of order less than the index has been justified provided 

they are combined with predictors in the El and ICP methods. These conclusions are 

also expected to hold for 101 based integrators. 



Chapter 4 

Conclusion 

Current methods available in codes for the numerical integration of DAEs are limited 

to systems of low index [y < 1) or systems having a special structural form such as 

being Hessenberg. These methods are also known to suffer from a loss of accuracy 

in the higher index variables. Methods discussed in this thesis are being developed 

to integrate fully implicit, higher index, unstructured nonlinear DAEs. While these 

general DAE integration methods will not likely replace existing codes for index one 

problems, they can be applied to problems where existing methods are known to fail. 

The goals of this thesis were to examine ways to make these general methods 

more numerically robust. One area of investigation was obtaining consistent ini- 

tial conditions for the derivative array equations. We cannot expect to have good 

approximations to the higher order derivatives at the beginning of the integration. 

We investigated line search algorithms as a means to globalize the nonlinear equation 

solvers. We conducted computational studies which conclude that damping strategies 

are appropriate in determining consistent initial conditions. 

A second area of investigation was the initialization of the Gauss-Newton method 

by polynomial interpolation at each step in the integration of the completion. Using 

a fixed step size, we have proven that the undetermined components in the derivative 
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array equations will satisfy an auxiliary DAE that depends on the predictor. Addi- 

tionally we examined the growth of these nonunique components in the linear time 

varying case. We have demonstrated the use of low order integrators when combined 

with polynomial prediction in the integration of higher index DAEs. The develop- 

ment of both the El and ICP methods will incorporate the reuse of Jacobians due to 

computational cost and efficiency. In this case, prediction can be safely applied. 

In summary, we have examined various globalization strategies for computing con- 

sistent initial conditions. It is anticipated that these strategies can also be applied 

during the integration of the DAE in order to provide a more robust code by allowing 

larger step sizes when appropriate. However this issue is still to be examined. Ad- 

ditionally we have examined polynomial interpolation applied to the initialization of 

the Gauss-Newton iteration during the integration of the completion. 

A detailed list of the contributions of this research effort are 

• investigated various line search strategies to globalize iterative solver for 

computing consistent initial conditions (Chapter 2); 

• implemented these methods in FORTRAN and conducted numerical tests 

to verify utility of various strategies; 

• implemented polynomial interpolation to provide different predictors for 

iterative solver (Section 3.2); 

• for a fixed step size and using Lagrange polynomials, proved that limit 

of the Gauss-Newton solve satisfied an auxiliary DAE (Sections 3.3 and 

3.4); 

• proved solutions to ADAE satisfied a linear auxiliary ODE in the linear 

time varying case (Proposition 3.3.2); 

• proved nonunique components from Gauss-Newton satisfied differential 

equation whose behavior is affected by predictor used (Propositions 3.3.3 

and 3.3.4); 
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• proved convergence of BDF-1 applied to the auxiliary DAE in the m = 1,2 

cases (Theorem 3.3.1); 

• conducted numerical tests to verify analysis of predictors applied to linear 

time varying DAEs (Sections 3.3.3 and 3.3.4); 

• examined a mixed strategy using Nordsieck vector and prediction (Section 

3.3.4). 



Chapter 5 

Future Research 

While much progress has been made towards the development of general numerical 

methods for the integration of fully implicit higher index DAEs, there remains several 

areas of investigation. This section will briefly describe some of these important 

research issues. 

It is anticipated that the final versions of the El and ICP codes will be variable 

step, variable order versions. Work has been done on a variable step version of the El 

code. It has been observed elsewhere that the local truncation error of this method 

is not identical to that of the numerical integration scheme on which it is based. 

Additional research is required to estimate the local truncation error. Strategies 

for determining when to change step size and order to preserve the stability of the 

method need to be developed. Incorporating the globalization strategies that we used 

in computing consistent initial conditions also needs to be investigated. 

The El and ICP methods currently employ linear multistep methods for integrat- 

ing the completion. These methods are known to have bounded regions of absolute 

stability and are generally unsuitable for solving stiff ODEs. There needs to be a 

mechanism for determining when the completion is stiff. If stiff methods are em- 

ployed in the integration of the completion, then the Jacobian or an approximation 
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of the right hand side of the differential equation implicitly defined by the derivative 

array equations is required. To date, no other methods for integrating the completion 

have been implemented. 

The linear algebra required to solve the least squares problem in the Gauss- 

Newton iteration is a major computational cost in these methods. The Jacobian of 

the derivatives array equations have a block triangular structure that can be exploited 

by faster least squares solvers. The theoretical work that would need to be completed 

would include showing that the solver works, the Gauss-Newton iteration converges, 

and meaningful completions can be obtained. 

The cost of constructing the derivative array equations with computer algebra 

packages is high and limited to systems of moderate dimension. Although automatic 

differentiation has been studied for evaluating the derivative array equations and its 

Jacobian, this technology has not been implemented into any of the general methods 

for integrating DAEs. This might just involve rewriting the codes in C and incor- 

porating ADOL-C for obtaining the derivative array equations and the associated 

Jacobian. Parallel implementation of these methods for large problems may also be 

required and needs to be investigated. 

Several other possibilities can be examined which might give estimates on the 

higher derivatives contained in the derivative array equations. One is to fit a polyno- 

mial to converged values of the state variables. By differentiating this interpolatory 

polynomial we can obtain approximations to the derivatives of the solution. Another 

possibility is to use differencing to obtain such approximations. Additional differen- 

tiations of the original DAE so that it is one full with respect to some of the higher 

order derivatives might also be beneficial in this area. Again, further research is 

needed in this area. 
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