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Abstract 

The problem of determining feature correspondences 
across multiple views is considered. The term "true 
multi-image" matching is introduced to describe 
techniques that make full and efficient use of the 
geometric relationships between multiple images and 
the scene. A true multi-image technique must gen- 
eralize to any number of images, be of linear algo- 
rithmic complexity in the number of images, and 
use all the images in an equal manner. A new 
space-sweep approach to true multi-image matching 
is presented that simultaneously determines 2D fea- 
ture correspondences and the 3D positions of feature 
points in the scene. The method is illustrated on a 
seven-image matching example from the aerial im- 
age domain. 

1     Introduction 

This paper considers the problem of multi-image 
stereo reconstruction, namely the recovery of 
static 3D scene structure from multiple, overlap- 
ping images taken by perspective cameras with 
known extrinsic (pose) and intrinsic (lens) parame- 
ters. The dominant paradigm is to first determine 
corresponding 2D image features across the views, 
followed by triangulation to obtain a precise esti- 
mate of 3D feature location and shape. The first 
step, solving for matching features across multiple 
views, is by far the most difficult. Unlike motion 
sequences, which exhibit a rich set of constraints 
that lead to efficient matching techniques based on 
tracking, determining feature correspondences from 
a set of widely-spaced views is a challenging prob- 
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lem. However, even disparate views contain under- 
lying geometric relationships that constrain which 
2D image features might be the projections of the 
same 3D feature in the world. The purpose of this 
paper is to explore what it means to make full and 
efficient use of the geometric relationships between 
multiple images and the scene. 

In Section 2, a set of conditions is presented that 
must hold for a matching algorithm to be called a 
"true multi-image" method. Briefly, we claim that 
a true multi-image matching technique should be 
applicable to any number of images n > 2, that 
the algorithmic complexity should be 0(n) in the 
number of images, and that the images should all 
be treated in an equal manner. Examples from the 
literature are presented to illustrate the meaning 
and motivation for each condition. 

Section 3 presents a new approach to true multi- 
image matching that simultaneously determines 2D 
image feature correspondences together with the 
positions of observed 3D features in the scene. 
The method can be visualized as sweeping a plane 
through space, while noting positions on it where 
many backprojected feature rays intersect. Care- 
ful examination of the projective relationships be- 
tween the images and the plane in space, and be- 
tween different positions of the sweeping plane, 
shows that the feature mappings involved can be 
performed very efficiently. A statistical model is 
developed to help decide how likely it is that the 
results of the matching procedure are correct. 

Section 4 shows an illustrative example of the space- 
sweep method applied to imagery from the RADIUS 
aerial image understanding project. The paper con- 
cludes with a brief summary and discussion of ex- 
tensions. A more detailed version of this paper can 
be found in [2]. 
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2     True Multi-Image Matching 

2.1     Definition 

This section presents, for the first time, a set of 
conditions that a stereo matching technique should 
meet to be called a "true multi-image" method. By 
this we mean that the technique truly operates in 
a multi-image manner, and is not just a repeated 
application of two- or three-camera techniques. 

Definition: A true multi-image matching technique 
satisfies the following conditions: 

1. the method generalizes to any number of im- 
ages greater than 2, 

2. the algorithmic complexity is 0(n) in the num- 
ber of images, and 

3. all images are treated equally (i.e. no image is 
given preferential treatment). 

Condition 1 is almost a tautology, stating that a 
multi-image method should work for any number of 
images, not just two or three. An algorithm for pro- 
cessing three images is not a "multi-image" method, 
but rather a trinocular one. Condition 2 speaks di- 
rectly to the issue of efficiency. To enable processing 
large numbers of images, the method used should be 
linear in the number of images. This condition pre- 
cludes approaches that process all pairs of images, 
then fuse the results. Such an approach is not a 
multi-image method, but rather a repeated appli- 
cation of a binocular technique. 

Condition 3 is the most important - it states that 
the information content from each image must be 
treated equally. Note that this is not intended 
to mean that information from all images must be 
equally weighted; some may be from better view- 
ing positions, of higher resolution, or more in focus. 
Instead, condition 3 is meant to preclude singling 
out one image, or a subset of images, to receive a 
different algorithmic treatment than all the others. 
A common example is the selection of one image 
as a "reference" image. Features in that image are 
extracted, and then the other images in the dataset 
are searched for correspondence matches, typically 
using epipolar constraints between the reference im- 
age and each other image in turn. Although a pop- 
ular approach, there is an inherent flaw in this style 
of processing - if an important feature is missing in 
the reference image due to misdetection or occlu- 
sion, it will not be present in the 3D reconstruction 
even if it has been detected in all the other views, 
because the system won't know to look for it. 

2.2    Examples 

Although the conditions presented above are well- 
motivated and reasonable, it is hard to locate stereo 
matching algorithms in the literature that meet all 
three. This section presents a range of negative and 
positive examples, and examines the latter to ex- 
tract characteristics they have in common. 

Okutomi and Kanade describe a multi-baseline 
stereo method for producing a dense depth map 
from multiple images by performing two-image 
stereo matching on all pairs of images and com- 
bining the results [10]. Although they show con- 
vincingly that integrating information from multi- 
ple images is effective in reducing matching ambi- 
guity, using all pairs of images makes this an 0(n2) 
algorithm and violates condition 2 of the true multi- 
image definition. The basic multi-baseline system 
design was later transfered to hardware, and the 
control strategy changed to combining two-image 
stereo results between a "base" view and all other 
views [8]. This yields an 0{n) method rather than 
0(n2) (and the added efficiency is no doubt impor- 
tant for making a system that runs in real-time), 
however the implementation now violates condition 
3, since one image is given special importance as a 
reference view. Any areas of the scene that are oc- 
cluded in that image can not be reconstructed using 
this method. 

Gruen and Baltsavias describe a constrained mul- 
tiphoto matching system for determining corre- 
spondences across multiple views [5]. An inten- 
sity template extracted from a reference image is 
searched for in a set of remaining views. Affine 
template warping is introduced to compensate for 
differences in camera viewing angle, and the posi- 
tion of intensity templates in each image are con- 
strained to move by fixed "step ratios" along their 
epipolar lines to guarantee that all template posi- 
tions correspond to a single point in space. Once 
again, however, condition 3 has been violated by 
choosing templates from a special reference image. 

Kumar et.al. describe a multi-image extension to 
the basic plane+parallax matching approach[9]. 
They compensate for the appearance of a known 
3D surface between a reference view and each other 
view, then search for corresponding points along 
lines of residual parallax. Yet again, a special refer- 
ence view has been chosen, and the approach is basi- 
cally that of repeatly applying a two-image method 
to pairs of images that contain the reference view. 

The reason why so many approaches attempt to 



solve the multi-image matching problem by split- 
ting the set into pairs of images that are processed 
binocularly is because matching constraints based 
on the epipolar geometry of two views are so pow- 
erful and well-known. What is needed for simul- 
taneous matching of features across multiple im- 
ages is to generalize two-image epipolar relations 
to some multilinear relation between the views. 
For example, Shashua presents a "trilinear" con- 
straint [12] where points in three images can be the 
projections of a single 3D scene point if and only 
if an algebraic function vanishes. Hartley devised 
a similar constraint for lines in three views [7]. A 
recent paper by Triggs [13] provides a framework 
in which all projective multilinear relationships can 
be enumerated: the binocular epipolar relationship, 
Shashua's trilinear relationship for points, Hartley's 
trilinear relationship for lines, and a quadrilinear re- 
lation for points in four views. The number of views 
is limited to four since the projective coordinates of 
3D space have only four components. This violates 
condition 1 of the definition of a true multi-image 
method, and calls into question whether any ap- 
proach that operates purely in image space can be 
a true multi-image method. 

In contrast to the strictly image-level approaches 
above, photogrammetric applications favor an 
object-space least-squares matching approach 
where correspondences between multiple images are 
determined by backprojecting image features onto 
some surface in the world and performing cor- 
respondence matching in object space. Helava 
presents a typical example [6], where a grid of 
ground elements or "groundels" in the scene is es- 
timated along with the precise correspondence of 
intensity patches appearing in multiple images. Al- 
though this least-squares approach potentially in- 
volves solving for a huge number of parameters 
(DTM grid sizes of 500 X 500 are not uncommon), it 
does meet all three conditions for a true multi-image 
method. It generalizes to any number of images, 
the algorithm is linear in the number of images (al- 
though the run-time will typically be dominated by 
the number of groundels that have to be estimated), 
and most importantly, information from all of the 
images is treated on an equal footing. 

Fua and Leclerc describe an approach for object- 
centered reconstruction via image energy mini- 
mization where 3D surface mesh representations 
are directly reconstructed from multiple intensity 
images [3]. Loosely speaking, triangular surface el- 
ements are adjusted so that their projected appear- 

ance in all the images is as similar as possible to the 
observed image intensities, while still maintaining a 
consistent shape in object-space. This work also fits 
the definition of a multi-image method. 

One thing that the true multi-image match- 
ing/reconstruction methods above have in common 
is the explicit reconstruction of a surface or features 
in object space, simultaneous with the determina- 
tion of image correspondences. In this way, object- 
space becomes the medium by which information 
from multiple images is combined in an even-handed 
manner. Unfortunately, the two object space ap- 
proaches mentioned here involve setting up huge 
optimization problems with a large number of pa- 
rameters, and initial estimates of scene structure are 
needed to reliably reach convergence. We present a 
much more efficient approach in the next section 
that is suitable for matching point- or edge-like fea- 
tures across multiple images. 

3    An Efficient Space-Sweep Approach 

This section presents a true multi-image match- 
ing algorithm that simultaneously determines the 
image correspondences and 3D scene locations of 
point-like features (e.g. corners, edgels) across mul- 
tiple views. The method is based on the premise 
that areas of space where several image feature 
viewing rays (nearly) intersect are likely to be the 
3D locations of observed scene features. A naive im- 
plementation of this idea would partition a volume 
of space into voxels, backproject each image point 
out as a ray through this volume, and record how 
many rays pass through each voxel. The main draw- 
back of this implementation would be its intensive 
use of storage space, particularly when partitioning 
the area of interest very finely to achieve accurate 
localization of 3D features. 

3.1    The Space-Sweep Method 

We propose to organize the computation as a space- 
sweep algorithm. A single plane partitioned into 
cells is swept through the volume of space along a 
line perpendicular to the plane. Without loss of 
generality, assume the plane is swept along the Z- 
axis of the scene, so that the plane equation at any 
particular point along the sweep has the form Z = 
Zj (see Figure 1). At each position of the plane 
along the sweeping path, the number of viewing rays 
that intersect each cell are tallied. This is done 
by backprojecting point features from each image 
onto the sweeping plane (in a manner described in 
Section 3.2), and incrementing cells whose centers 



fall within some radius of the backprojected point 
position (as described in Section 3.3). 
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Figure 1: Illustration of the space-sweep method. Fea- 
tures from each image are backprojected onto successive 
positions Z = z,- of a plane sweeping through space. 

After accumulating counts from feature points in all 
of the images, cells containing counts that are "large 
enough" (Section 3.3) are hypothesized as the loca- 
tions of 3D scene features. The plane then continues 
its sweep to the next Z location, all cell counts are 
reset to zero, and the procedure repeats. For any 
feature location (x,y,Zi) output by this procedure, 
the set of corresponding 2D point features across 
multiple images is trivially determined as consist- 
ing of those features that backproject to cell (x,y) 
within the plane Z = Zj. 

Two implementation issues are addressed in the 
remainder of this section. Section 3.2 presents a 
fast method for determining where viewing rays 
intersect the sweeping plane, which is crucial to 
the efficiency of the proposed algorithm. In Sec- 
tion 3.3 a statistical model is developed to help de- 
cide whether a given number of ray intersections is 
statistically meaningful, or could instead have oc- 
curred by chance. 

We note in passing a method developed by Seitz and 
Dyer that, while substantially different from the ap- 
proach here, is based on the same basic premise of 
determining positions in space where several view- 
ing rays intersect [11]. However, because feature 
evidence is combined by geometric intersection of 
rays, only the correspondences and 3D structure of 
features detected in EVERY image are found - a 
severe limitation. 

3.2    Efficient Backprojection 

Recall that features in each image are backprojected 
onto each position Z = Zi of the sweeping plane. 
For a perspective camera model, the transforma- 

tion that backprojects features from an image onto 
the plane Z = z, is a nonlinear planar homography 
represented by the 3x3 matrix: 

Hi   =   A [ri  r2 ZiTs+t], 

where A is the 3x3 matrix describing the camera 
lens parameters, and the camera pose is composed 
of a translation vector t and an orthonormal rota- 
tion matrix with column vectors T»J. This section 
shows that it is more efficient to compute feature 
locations in the plane Z = Z{ by modifying their 
locations in some other plane Z = z0 to take into 
account a change in Z value, than it is to apply 
the homography Hi to the original image plane fea- 
tures. 

Let matrix H0 be the homography that maps image 
points onto the sweeping plane at some canonical 
position Z = z0. Since homographies are invertible 
and closed under composition, it follows that the 
homography that maps features between the plane 
Z = z0 and Z = z* directly, by first (forward) pro- 
jecting them from the z0-plane onto the image, then 
backprojecting them to the Zj-plane, can be written 
as HiH^1 (refer to Figure 1). 

It can be shown that the homography JETj-H""1 has 
a very simple structure [2]. In fact, if (x0,y0) and 
(xi, yi) are corresponding backprojected locations of 
a feature point onto the two positions of the sweep- 
ing plane, then 

Xi = Sx0 + (1-S)CX 

Vi = Sy0 + (1-S)CV 
(1) 

where 8 = (z{ - C2)/(z0 - Cz) and (Cx,Cy,Cz) = 
(—Pi • t, —1*2 • *! —i's ' t) is the location of the cam- 
era focal point in 3D scene coordinates. A trans- 
formation of this form is known as a dilation.1 The 
trajectories of all points are straight lines passing 
through the fixed point (Cx,Cy), which is the per- 
pendicular projection of the camera focal point onto 
the sweeping plane (see Figure 2). The effect of the 
dilation is an isotropic scaling about point (Cx, Cy). 
All orientations and angles are preserved. 

Our strategy for efficient feature mapping onto dif- 
ferent positions of the sweeping plane is to first per- 
form a single projective transformation of feature 
points from each image Ij,j = l,...,n onto some 
canonical plane Z = z0. These backprojected point 
positions are not discretized into cells, but instead 

'This is unrelated to the morphological dilation operator. 
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Figure 2: Transformation HiH^1 is a dilation that maps 
points along trajectories denned by straight lines passing 
through the fixed point (Cx,Cy). 

are represented as full precision (X,Y) point loca- 
tions. For any sweeping plane position Z = zit each 
of these (X,Y) locations is mapped into the array 
of cells within that plane using formula (1), taking 
care to use the correct camera center (Cx,Cy,Cz)j 
for the features from image Ij. 

3.3    A Statistical Model of Clutter 

This section sketches an approximate statistical 
model of clutter that tells how likely it is for a set 
of viewing rays to coincide by chance (more details 
are given in [2]). The model will be used to choose 
a threshold on the number of votes (viewing rays) 
needed before an accumulator cell will be consid- 
ered to reliably contain a 3D scene feature. The 
term "clutter" as used here refers not only to spu- 
rious features among the images, but also to sets 
of correctly extracted features that just don't cor- 
respond to each other. 

Determining the expected number of votes each cell 
in the sweeping plane receives is simplified consider- 
ably by assuming that extracted point features are 
roughly uniformly distributed in each image. This 
is manifestly untrue, of course, since image features 
exhibit a regularity that arises from the underlying 
scene structure. Nonetheless, they will be uniform 
enough for the purpose of this discussion as long 
as a k X k block of pixels in the image contains 
roughly the same number of features as any other 
k X k block. Under this assumption, let the density 
of point features in image i be Et < < 1 (computed 
empirically). The expected number of features that 
image i projects into the sweeping plane is then this 
expected number of features per pixel Ü7» times the 
number of pixels Oj that have viewing rays passing 
through some cell in the sweeping plane. 

Recall that each point feature in image i is allowed 
to vote for a set of cells surrounding the intersection 
of its viewing ray with the sweeping plane. Votes 
are given to the set of cells roughly contained in the 

region subtended by a pixel-shaped cone of viewing 
rays emanating from the point feature in image i. 
Pixels from images farther away from the sweeping 
plane thus contribute votes to more cells than pix- 
els from images that are closer. This mechanism 
automatically accounts for the fact that scene fea- 
ture locations are localized more finely by close-up 
images than by images taken from far away. 

The number of cells in the sweeping plane that a 
pixel in image i votes for is specified by the Jaco- 
bian Jt of the projective transformation from im- 
age i onto the sweeping plane. We make a sec- 
ond simplifying assumption that this Jacobian is 
roughly constant, which is equivalent to assuming 
that the camera projection equations are approx- 
imately affine over the volume of interest in the 
scene. The total expected number of votes that 
image i contributes to the sweeping plane is thus 
estimated as the number of features mapped to the 
plane, times the number of cells that each feature 
votes for, that is Et*Oi*Ji. Dividing this quantity 
by the number of accumulator cells in the sweeping 
plane yields the probability 6{ that any cell in the 
sweeping plane will get a vote from image i. 

For each accumulator cell, the process of receiving 
a vote from image i is modeled as a Bernoulli ran- 
dom variable with probability of success (receiving 
a vote) equal to di. The total number of votes V 
in any sweeping plane cell is simply the sum of the 
votes it receives from all n images. Thus V is a sum 
of n Bernoulli random variables with probabilities of 
success 6i,...,9n. Its probability distribution func- 
tion D[V] tells, for any possible number of votes 
V = 0,1,..., n, what the probability is that V votes 
could have arisen by chance. In other words, D[V] 
specifies how likely is it that V backprojected fea- 
ture rays could have passed through that cell due 
purely to clutter or accidental alignments. 

Once the clutter distribution function D[V] is 
known, a solid foundation exists for evaluating de- 
cision rules that determine which sweeping plane 
cells are likely to contain scene features based on 
the evidence provided by backprojected image fea- 
ture rays. A simple decision rule compares the num- 
ber of votes V in each cell against a global thresh- 
old T, and declares that cell location to contain a 
feature when V > T. For each potential threshold 
T £ {1,..., n}, the false positive rate F[T] of this de- 
cision rule is easily computed as F[T] = YA=J -^M- 
A threshold T can then be chosen based on how 
certain one wants the matching results to be. 



4    Experimental Example 

This section presents an in-depth example of the 
space-sweep algorithm for multi-image matching us- 
ing aerial imagery from the RADIUS project [4]. 
Seven images of Fort Hood, Texas were cropped to 
enclose two buildings and the terrain immediately 
surrounding them. The images exhibit a range of 
views and resolutions (see Figure 3). The point fea- 
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Figure 3: Seven aerial subimages of two buildings. 

tures used are edgels detected by the Canny edge 
operator [1]. Figure 4 shows a binary edge image ex- 
tracted from one of the views. Structural features of 
particular interest are the building rooftops and the 
network of walkways between the buildings. Note 
the significant amount of clutter due to trees in the 
scene, and a row of parked cars at the bottom. 

Reconstruction was carried out in a volume of space 
with dimensions 136 X 130 X 30 meters. A hori- 
zontal sweeping plane was swept through this vol- 
ume along the Z-axis. Each accumulator cell on 
the plane was 1/3 meter square, a size chosen to 
roughly match the resolution of the highest resolu- 
tion image. Viewing ray intersections were sampled 
at 100 equally-spaced locations along the sweeping 
path, yielding approximately a 1/3-meter resolution 
in the vertical direction as well. Figure 5 shows 
three sample plane locations along the sweeping 
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Figure 4: Canny edges extracted from one image. 

path, chosen to illustrate the state of the sweep- 
ing plane when it is coincident with ground-level 
features (a), roof-level features (c) and when there 
is no significant scene structure (b). Also shown 
are the results of thresholding the sweeping plane 
at these levels, displaying only those cells with five 
or more viewing rays passing through them. 

The approximate statistical model of clutter pre- 
sented in Section 3.3 needs to be validated with 
respect to the data, since it is based on two simpli- 
fying assumptions, namely that edgels in the each 
image are distributed uniformly, and that the Ja- 
cobian of the protective transformation from each 
image to the sweeping plane is roughly constant. 
This was done by comparing the theoretical clutter 
probability distribution D[V], V = 0,1,..., 7 against 
the empirical distributions of feature votes collected 
in each of the 100 sweeping plane positions. Re- 
call that the clutter distribution D[V] tells how 
many ray intersections are likely to pass through 
each accumulator cell purely by chance. This theo- 
retical distribution should match the empirical dis- 
tribution well for sweeping plane positions where 
there is no significant 3D scene structure. The 
chi-square statistic was used to measure how simi- 
lar these two discrete distributions are for each im- 
position of the sweeping plane; the results are plot- 
ted in Figure 6. Lower values mean good agreement 
between the two distributions, higher values mean 
they are not very similar. Two prominant, sharp 
peaks can be seen, implying that the dominant 3D 
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Figure 5: Three sample ^-positions of the sweeping plane co- 
inciding with (top) ground-level features, (middle) no struc- 
ture, and (bottom) roof features. Left shows votes in the 
sweeping plane, encoded by 0 = pure white and 7 = pure 
black. Right is the results of feature classification using a 
threshold value of 5. 

structure of this scene lies in two well-defined hor- 
izontal planes, in this case ground-level features 
and building rooftops. More importantly, the plot 
is very flat for Z-levels that contain no significant 
scene structure, showing that the theoretical clutter 
model is actually a very good approximation to the 
actual clutter distribution. The ground-level peak 
in the plot is a bit more spread out than the peak 
for roof-level features, because the ground actually 
slopes gently in the scene. 

Recall that once the clutter distribution D[V] is 
computed for any Z-position of the sweeping plane, 
a vote threshold T = 1, ...,n for classifying which 
cells contain 3D scene features can be chosen tak- 
ing into account the expected false positive rate 
F[T]. The false positive rates computed for this 
dataset are very consistent across all Z positions of 
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Figure 6: Validation of the statistical clutter model by 
plotting chi-square test values comparing theoretical and 
empirical clutter distributions at each sweeping plane 
position (see text). 

the sweeping plane. A representative sampl g is: 

T 1 2 3 4 5 6 7 
100 F[T] 88.4 59.0 27.3 8.3 1.6 0.17 0.01 

This table displays for any given choice of threshold 
T, what the percentage of false positives would be 
if cells with votes of T or higher are classified as the 
locations of 3D scene features. 

A desired confidence level of 99% was chosen for 
recovered 3D scene features, implying that we are 
willing to tolerate only 1% false positives due to 
clutter. Based on this choice and the above ta- 
ble, the optimal threshold should be between 5 and 
6, but closer to the former. Figure 7 graphically 
compares extracted 3D ground features and roof 
features using these two different threshold values. 
Each image displays the (x,y) locations of cells that 
are classified as scene features within a range of Z lo- 
cations determined by the two peaks in Figure 6. It 
can be seen that feature locations extracted using a 
threshold of 5 trace out the major rooftop and walk- 
way boundaries quite well, but there are a noticable 
number of false positives scattered around the im- 
age. A threshold of 6 shows significantly less clutter, 
but far fewer structural features as well. Choosing 
an optimal threshold is a balancing act; ultimately, 
the proper tradeoff between structure and clutter 
needs to determined by the application. 

5     Summary and Extensions 

This paper defines the term "true multi-image" 
matching to formalize what it means to make full 
and efficient use of the geometric relationships be- 
tween multiple images and the scene. Three condi- 
tions are placed on a true multi-image method: it 
should generalize to any number of images, the al- 
gorithmic complexity should be linear in the num- 



Figure 7: XY locations of detected scene features for a 
range of Z-values containing ground features (left) and 
roof features (right). Results from two different thresh- 
old values of 5 (top) and 6 (bottom) are compared. 

ber of images, and every image should be treated 
on an equal footing, with no one image singled out 
for special treatment as a reference view. Several 
multi-image matching techniques that only operate 
in image-space were found not to pass this set of 
conditions. Two techniques that can be considered 
to be true multi-image methods reconstruct scene 
structure in object space while determining corre- 
spondences in image space. Object space seems 
to be the conduit through which successful multi- 
image methods combine information, 

A new space-sweep approach to true multi-image 
matching is presented that simultaneously deter- 
mines 2D feature correspondences between multi- 
ple images together with the 3D positions of feature 
points in the scene. It was shown that the intersec- 
tions of viewing rays with a plane sweeping through 
space could be determined very efficiently. A sta- 
tistical model of feature clutter was developed to 
tell how likely it is that a given number of viewing 
rays would pass through some area of the sweeping 
plane by chance, thus enabling a principled choice 
of threshold to be chosen for determining whether 
or not a 3D feature is present. This approach was 
illustrated using a seven-image matching example 
from the aerial image domain. 

Several extensions to this basic approach are be- 
ing considered. One is the development of a more 
sophisticated model of clutter that adapts to the 
spatial distribution of feature points in each image. 
The second extension is to consider the gradient 

orientations of potentially corresponding edgel fea- 
tures; when accumulating feature votes in a sweep- 
ing plane cell, only edgels with compatible orienta- 
tions should be added together. With the introduc- 
tion of orientation information, detected 3D edgels 
could begin to be linked together in the scene to 
form 3D chains, leading to the detection and fitting 
of symbolic 3D curves. 
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