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1. Introduction. How should one hedge an option when there is time variability about 

the parameters governing the process? Apart from the possibility of substantial jumps in prices, 

this is perhaps the most major conceptual issue facing institutions that sell and hedge options. 

To focus the mind, one can consider an instrument governed by 

dSt  =  rStdt + aStdWt (1.1) 

under the risk neutral distribution (Harrison and Kreps (1979), Harrison and Pliskä (1981)). Typ- 

ically, the magnitude of the risk free interest rate r and the volatility a vary with time, and 

successfully delta hedging an option (for a basic description of delta hedging, see, for example, 

Hull (1996), Chapter 14.5, p. 312-321) involves the distribution of future values of these two 

quantities. What values or distributions should one use? 

In many circumstances, the answer is that the uncertainty in future values of r and a can also 

be hedged away. If there are already market traded options on St, one can deal with the volatility 

this way. For example, in a stochastic volatility model (see, e.g. Ball and Roma (1994), Hoffman, 

Platen and Schweizer (1992), Hull and White (1987), Pham and Touzi (1996), and Renault and 

Touzi (1996); see also Duffie (1996). Chapter 8.H), 

dat = v{at)dt + ~f(at)dBt, (1.2) 

one needs only one derivative instrument to hedge future variability in er. Similarly, r can be 

hedged in bonds, Eurodollar futures, or similar instruments. 

This approach, however, is not always available. Market traded derivatives may not exist. 

A common instance of this, is intermarket correlations: the options may exist in each market, 

so you can take care of the volatility, but the dependence may not be hedgeable. Even where 

market traded derivatives do exist, supply and demand typically do not balance, so somebody has 

an interest in hedging options without in turn hedging away risk due to time variability. Finally, 

even when such hedging is available, there can be substantial uncertainty about what model to 

use, and a number of financial institutions are putting a substantial amount of research effort into 

this matter (particularly on the fixed income side). 



This is where it becomes natural to specify prediction regions for the parameters. This can 

be done with statistical methods, by using implied quantities, or by intelligent guesswork. As far as 

statistics is concerned, there is a substantial literature on estimating parameters in models for time 

varying interest rates and volatilities. Important references include Ait-Sahalia (1996), Bibby and 

S0rensen (1994, 1995), Bollerslev, Chou and Kroner (1992), Dachuna-Castelle and Florens-Zmirou 

(1986), Danielsson (1994), Duan (1995), Gallant (1996), Hansen and Scheinkman (1995), Jacquier, 

Poison and Rossi (1994), Kessler and S0rensen (1995), Liptser and Shiryayev (1978), and Renault 

(1995). 

There is a missing link, however, between prediction regions and derivatives pricing. The 

former give rise to a family of probability distributions. Derivatives pricing relies, however, mainly 

on the construction of replicating strategies in the presence of a specific probability. It is not, except 

in special cases (Avellaneda, Levy and Paras (1995), cf. Example 3 in Section 3 of this paper), 

known how to convert families of probabilities into replicating strategies. And so, prediction regions 

can only be used in an ad hoc fashion. The value-at-risk literature is an example of this (see Duffle 

and Pan (1997) for a review). 

There are two important consequences of this: 

(1) There is uncertainty in the hedging operation itself - what "deltas" should one use; how 

should one deal with the incompleteness. 

(2) There is difficulty in putting a value on an institution's portfolio. In some ways, this is a 

more serious problem. It prevents management oversight, and is undoubtedly a factor behind recent 

"scandals" involving derivative securities. Headline-grabbing cases include those of Orange County, 

the Bank of Tokyo-Mitsubishi (see McGee (1997), for example), and the National Westminster 

Bank (Finch (1997)). The financial operations of the Government of Belgium constitutes a less 

high profile, but equally (if not more) astonishing case (see King (1997)). On top of that, there is 

the room which the lack of oversight gives to straightforward fraud, as in the Barings case, or that 

of the three billion dollar copper scheme. 

An aspect of this problem is that accounting rules tend to try to mark the portfolio to market 

as much as possible.   For illiquid instruments, this sometimes involves using prices arising from 



reported transactions where the price is quite wrong. Somebody had a bad day. Nonetheless, such 

a price is forced on others for accounting purposes. 

The question of book value also comes up in settings other than derivative financial securities. 

As demonstrated by recent work reported, e.g., in Dixit and Pindyck (1993), option theory can 

be helpful in valuing anything from a firm's expansion possibilities to a government's contracts 

and obligations. In this only partly financial setting, the current approach should be particularly 

valuable. 

The intent of this article is to provide an approach to this problem. We shall supply a 

device for valuing and hedging which permits an exact quantification of the impact on prices of 

uncertainty about the future when this uncertainty is expressed via intervals or other regions for 

parameters. The main qualification is that we remain in the standard setup where securities prices 

are continuous. 

The main antecedent in the literature for the current article is the work of the 'Columbia 

group' (in particular, Cvitanic and Karatzas (1992, 1993), Karatzas (1996), and Karatzas and 

Kou (1996)) on constrained delta hedging, which has been an inspiration to the author. Unlike the 

setting of the Columbia group, we consider incompleteness through uncertainty about probabilities, 

and not only through non-hedgeability in certain securities. Nontheless, there are substantial 

similarities in approach and techniques. 

The basic idea in the paper is spelled out in section 2, a general framework is developed in 

section 3, and in section 4 we discuss European options. Section 5 defines self-financing strategies 

in this context. Section 6 and the Appendix contain relevant proofs. 

2. Conservative delta hedging. The problem of accurately determining process pa- 

rameters such as r and a is really twofold: (1) prediction (what is going to be the value of these 

parameters in the future?) and (2) interpolation (what is the current value of these parameters?). 

The difference between the two is that the latter, though intricate, is quite well posed. The former 

is not. 



For interpolation there is a substantial number of sources of information - implied (Beckers 

(1981), Bick and Reisman (1993)) and observed volatility; different strike prices for the former, 

different schemes for the latter (see, for example, Chesney, Elliot, Madan and Yang (1993), Florens- 

Zmirou (1993), Foster and Nelson (1996) and Pastorello (1996)), and a slew of possible interest rates 

and measures of yield. The problem of analyzing such data is fairly robust to model assumptions; in 

particular, observed volatility is mostly a nonparametric problem (just use some smoothed version 

of the quadratic variation). There are a number of conceptual problems that have an impact on 

the analysis (see, e.g.. Mykland (1997) for an attempt to think about these problems), but the 

difficulties are nonetheless mainly ones of fine tuning. 

Prediction, on the other hand, is a nightmare. It depends critically on what model is used 

for the evolution of process parameters. One is caught is a trade-off where models tend to either be 

too simple to be adequate descriptions of reality, or too complex for the amount of data available. 

This is most clearly visible in the case of interest rates. The typical parametric one factor models 

(see Duffie (1996) and Hull (1996) for an overview) belong to the first category; nonparametric 

models (see Ait-Sahalia (1996) and Heath, Jarrow and Morton (1992) for very different instances of 

what that might mean) tend to be in the second one. Striking a balance (multi-factor parametric 

models?) is a delicate issue. Also, obviously, the past may not be a good predictor of the future. 

The approach we argue in this paper is the following: take a conservative stab at predicting 

the cumulative volatility, and then hedge according to the (approximate) actual volatility. This 

uses sharply the well posed component of the model, but guards against excessive reliance on the 

ill posed ones. 

The basic idea - and the fact that it works - can be illustrated in the context of European 

call options. 

EXAMPLE 1.    Consider a European call with strike price K that pays off at time T. Let 

C(S,R,=)  =   5<D(rfi)-Xexp(-Ä)0(d2), (2.1) 

where 

di   =  (\og(S/K) + R + E/2)/VE (2.2) 



and c?2 = di — >/=.. In other words, this is the Black-Scholes-Merton (Black and Scholes (1973), 

Merton (1973)) price of the option at time t and stock price S if the ru and cru processes are 

nonrandom, and if if the cumulative interest rate from t to T is R, and the cumulative volatility 

in the same period is E. 

Consider the instrument whose value at time t is 

Vt = C(St,Rt,-=t), (2.3) 

where 

Rt = R - /   rudu and Et = E - /   a\du. (2-4) 

In equation (2.4), rt and at are the actual observed quantities. Now suppose that 

Ro >  /    rudu and -o >        <T
U
(^U- (2-5) 

Jo Jo 

Then an easy calculation will show that no matter how rt and at actually otherwise behave (and 

whether they are random or nonrandom), there is a self financing strategy for Vt, hedging in the 

security St and money market bond 

ßt = exp ( /   rudu) . (2.6) 

Furthermore, 

VT > (ST - K)+ (2.7) 

almost surely. In other words, one can both synthetically create the security Vt, and one can use 

this security to cover one's obligations. ■ 

The above is sufficiently innocent looking that is should be emphasized that it is not trivial. 

Keep in mind that it is true for all probability distributions under which (2.5) is satisfied with 

probability 1. 

Unless the cumulative interest is actually known beforehand, however, the scheme given 

above is not quite right. This is in the sense that a lower price can usually be found as the starting 

point for a self financing strategy satisfying (2.7). As follows. 



EXAMPLE 2.    What the procedure in Example 1 overlooks, is that the price Ao of the zero 

coupon bond maturing at T is actually known (at least in most markets). This bond satisfies 

At  =  E* exp ( - /    rudu j | Tt (2.8) 

where P* is the risk neutral distribution, and the procedure we have given ignores that. A con- 

sequence, for example, is that if one prices a forward contract the same way, one gets the price 

wrong. 

It will sometimes be the case that the existence of security Af will also make lower bounds 

for r and a active, and one can consider replacing (2.5) by 

R+>        rudu > R- and E+ >  /    a^du > E~. 
Jo Jo 

(2.9) 

We shall see in Section 4 how to compute the value of the call option in this case. We show that 

if ro solves 

where <J> is the cumulative normal distribution and in the same notation as in (2.1)-(2.2), then one 

can start a super-replicating strategy with the price at time zero given in the following: 

r0>Ä+:C(S0,£
+,E+) 

R+ > r0 > R- : C(S0,r0,Z
+) + K (exp(-r0) - exp(-£+)) <t> (d2(S0,r0,E+)) (2.11) 

r0 < R- : C(S0, £~,Z+) + K (exp(-iT) - A0) 

An illustration of the improvement over Example 1 is given in figure 1. 

[figure 1 here] 
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FlG. 1. Option price as Ao «dries. Three ways of pricing European call options in the presence of restrictions 
(2.9). The A-quoiient is the number in (2.10). The plug-in price is C(S0, - logAo, H+). Parameter values 
are E+ = 0.04, R~ = 0.04, and R+ = 0.07.  The option is at the money (K - So). 



In fact, in the presence of market traded derivatives, there are additional restrictions that 

one can consider; we comment on such possibilities in Section 7. 

3. General Theory. 

DEFINITION . Af is a cr-ideal in a filtered space (ft, T, Tf) provided Af is a subset of T that 

is closed under countable union, and that satisfies that any T measurable subset of a set in Af is 

also in Af. 

A property holds ,V - a.s. if it fails only for a set A in Af. If Sf\...,S^ are adapted 

continuous processes (representing traded securities paying no dividends), and if 77 is a payoff to 

be made at a (non random or stopping) time T, Vu,t < u < r is said to be a super-replication of 

this payoff (from t to r) if 

(i) one can cover one's obligations: 

VT   >   V (3.1) 

Af — a.s.; and 

(ii) there are processes H and D, defined Af - a.s., so that 

Vu  =  Hu + Du,    t<u<r, (3.2) 

Af - a.s., where Dt is a nonincreasing adapted cädläg process (except for a set in Af), and 

where Ht is self financing Af - a.s. (in a sense to be defined below) in the traded securities 

c(l)        C(P) 

There is some variation in how to technically define "self financing" (see, e.g., Duffle (1996), Chapter 

6.C (p. 103-105)), and the issues get somewhat compounded in the case of cr-ideals representing 

several possible probabilities. For this reason, the definition is deferred until after the main theorem 

and some examples (see Section 5). , 

A common way of defining a a-ideal would be to start with a set V of probability measures 

on {Sl,T,Tt), and then set 

Af =  {AeT :  P(A) = 0 for aU PeV}. (3.3) 



This is often conceptually easier than to state the (7-ideal directly. 

Consider some instances of this: 

EXAMPLE 1.    (European call; hedging in the stock only). In this case, p = 1, and V is the 

set of all probability distributions so that 50 = ^o (the actual value), 

dSt = ntStdt + atStdWt, (3.4) 

and so that (2.5) holds. We also assume that 

exp <  /   XudWu - - j   Xldu I is a P-martingale, (3.5) 

where Xu = (fiu - ru)/au. The strategy given is clearly a super-replication of a European call. The 

condition (3.5) is what one needs for Girsanov's Theorem (see, for example, Karatzas and Shreve 

(1991), Theorem 3.5.1) to hold. Without this theorem, there would be no equivalent martingale 

measure, and we would get in trouble further down the line. See Remark 3.1. ■ 

EXAMPLE 2.    (European call; hedging in the stock and a zero coupon bond). Here, p = 2, 

St     = St, S{     — A4. Further details are explored in Section 4. ■ 

EXAMPLE 3.     (Avellaneda. Levy, and Paras (1995)).   Here p = 1 and the interest rate is 

fixed. V is the set of probabilities for which S0 = s0, and for which (3.4)-(3.5) and 

ate[a~, a+] for all ie[0, T] (3.6) 

hold. With this assumption, a super-replicating strategy is constructed for European options based 

on the "Black-Scholes-Barenblatt" equation (cf. Barenblatt (1978)). ■ 

What should the price be in general? The natural hedging based approach is as follows, cf. 

Cvitanic and Karatzas (1992): 

DEFINITION.    The conservative ask price (or offer price) at (a nonrandom or stopping) time 

t for a payoff TJ to be made at a time r > / (relative to securities S^\..., S^ and the er-ideal M) 



IS 

At  — essinf{Vi:  (Vu)t<u<T is a super-replication of the payoff }, (3-7) 

which we shall take to mean that (i) At < Vt, Af - a.s. for any Vt in the set on the right hand side 

of (3.7), and (ii) that any other random variable At satisfying the same criterion must be equal to 

At, Af - a.s. This is in analogy to the definition in Proposition VI-1-1 (p. 121) of Neveu (1975), 

but because of the apparent absence of a dominating measure, the properties stated in that result 

may not apply. At need not exist, but is clearly unique (Af - a.s.) if it does. 

Similarly, the conservative bid price can be defined as the supremum over all sub-replications 

of the payoff, in the obvious sense. , 

The conservative bid price Bt equals 

Bt(n) =  -At(-n), (3.8) 

in obvious notation, and subject to mild regularity conditions. For this reason, it is enough to 

study ask prices. Note that put-call parity (see Hull (1996), Chapter 7.6, p. 167-170) holds for 

European options, 

At((K - ST)+) + St = At((ST-K)+) + /\tK, (3.9) 

and similarly for bid prices. This, obviously, is provided one assumes the existence of a risk free 

zero coupon bond At maturing at T. 

We shall see that in the case under study, At is, in fact, a super-replication of the payoff. 

EXAMPLE 1. The solution to this problem represents the price under one of the probability 

distributions PeV. Hence, if one goes below that price, there would be no way of covering the final 

payoff if this distribution occurred. In other words, the quoted price is the conservative ask price. 

■ 

EXAMPLE 3. For the same reasons as in Example 1, the price given by Avellaneda, Levy and 

Paras (1995) is the conservative ask price. Note, however, that the hedging strategy presented by 

that paper is not the one used here. Instead of basing themselves on the actually accrued volatility 
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(as in (2.4)), they hedge based on a worst case non-observed volatility. The reason why they can 

get away with this is that the method of specifying conservativeness is particularly conservative; 

if one supposes a volatility model like (1.2), for example, a 95 % (say) bound of the type (3.6) 

yields a much higher price than one of the type (2.5), since the latter involves the average of a} 

while the former depends on the maximum and the minimum of this process. The high prices that 

are inherent in the Avellaneda, Levy and Paras (1995) approach has been commented on by Ahn, 

Muni and Swindle (1996a, b), who suggest ways of alleviating the effect. ■ 

EXAMPLE 4. (American and Bermudan options, r and a fixed). The price of a payoff 

I(ST,T) at a time r to be determined by the owner of the option (between 0 and T) is given by 

(see, e.g., Myneni (1992), or Duffie (1996), Chapter 8.E) 

suPE*exp{-(T-t)r}f(ST,T), (3.10) 
r 

where the supremum is over all stopping times r between t and T. P is fixed. The justification 

is exactly that a super replication can be constructed with starting value (3.10), and also that the 

supremum represents the price under one of the possible choices for r. In our terminology, set 

Pext ~ (law of T given the Srprocess) ® P. V is the collection of such Pexts for which r is a 

stopping time between 0 and T. , 

To give the general form of At, we consider an appropriate set V* of "risk neutral" probability 

distributions P*. 

DEFINITION. If St is a process, 5; = ß^St, and vice versa. Recall that ßt is the money 

market account process from (2.6). V* is now defined as the set of probability measures P* on T 

whose null sets include those in Af, and for which S^\..., sfp)* are martingales. In analogy with 

(3.3), we also set 

N*   =   {AtT:   P*(A) = 0 for aU P*eV*} (3.11) 

and 

Afe   =   {AeF :  Pe{A) = 0 for all Pe extremal in V'} (3.12) 
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Extremal here refers to the usual meaning of the word: Pe is extremal in V* if Pe £ V* and 

if, whenever Pe = c^Pf + a2P{ for al5 a2 > 0 and Pf, P$ £ V*, it must be the case that 

Pe = Pf = pe. , 

Clearly, Af C Af' CAfe. We shall require that Af = Afe. The reason for Af = Af* is given 

by Remark 3.1. Conditions for Af* = Afe are discussed after Theorem 3.2. As we shall see, the 

condition Af = Me is satisfied in Examples 1, 3 and 4. In Section 4, we also impose conditions to 

make this be the case in Example 2. 

REMARK 3.1. Suppose Af is formed as in (3.3), and that every PeP has an equivalent 

martingale measure, that is to say, a measure P*eV* that is mutually absolutely continuous with 

P. Then AT = Af*. 

The above is trivial, of course, but we state it formally to emphasize the implications of 

requiring equivalent martingale measures. 

Our basic result is that, subject to regularity conditions, at nonrandom times t, 

A; = Z;+=   iim  z;, (3.13) 
rit, 7-eQ 

where 

Z;   =  ess sup{£*(7,* I Tt) : P*eV*}, (3.14) 

and where 

77* = exp{-  /    rudu}r). (3.15) 
JO 

In other words, this is s minimax type solution.  The results obtained by Cvitanic and Karatzas 

(1992, 1993) for their problem (constrained hedging) are also of this form. 

Formula (3.13) may at first glance appear somewhat disturbing, as it involves the supremum 

over uncountably many random variables. One runs into the same problem as that mentioned in 

connection with the definition (3.7). We show in the Appendix, however, that (3.13) can be given a 

definition with reasonable properties. This can be done for a broad class of models, namely filtered 

measurable spaces where all the Tts are countably generated. 
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This is a weak requirement, since spaces of finite or countable dimensional cädläg processes 

on [0,T] satisfy this condition (see, e.g., Jacod and Shiryaev (1987), Theorem VI.1.14). In other 

words, the present theory applies so long as the derivative security depends only on finitely many 

cädläg underlying securities. The traded ones also need to be continuous; the non traded ones need 

not be. 

For the formal result, we need the following norm: 

\\X\\  = sup{E*\X\:P*eV*}. (3.16) 

THEOREM 3.2. Assume that (Ft) is right continuous, and that each Tt is countably gener- 

ated. Suppose that Af = Afe. Also suppose that the 5^ are Af - a.s. continuous and adapted, 

and that the short rate process rt is nonnegative and adapted. Also assume that 0 < r < T, where 

T is nonrandom and finite, and let n be ^-measurable. Finally suppose that \\r)*\\ is finite. Then 

the process A* is defined by (3.13) up to indistinguishability Af-a.s. Assume that this process is 

locally bounded. Then At is a super-replication ofr), and it is also the conservative ask price (3.7) 

for all (non random or stopping) time t, 0 < t < r. 

The assumption Af* = Afe is satisfied if V* is the convex hull of its extreme points. Sufficient 

conditions for a requirement of this type are given in Theorems 15.2, 15.3 and 15.12 (p. 496-498) 

in Jacod (1979). For example, the first of these results gives the following as a special case (see 

Section 6). This covers our examples. 

PROPOSITION 3.3. Assume the conditions of Theorem 3.2, except replace Af = Afe by Af = 

Af*. Suppose that (Ft) is the filtration generated by (S^\ ..., S$p\ rt). Also suppose that Af* = Af*, 

where Af is countably generated. Then Af = Afe. 

EXAMPLES 1, 3 AND 4. The restrictions imposed can clearly be expressed in the form of 

a countably generated cr-ideal. Hence, the above solutions coincide with those given by Theorem 

3.2. 

Finally note that what price one should use to value a security will depend on the purpose 

of the valuation. The basic operating principles are as follows: 
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(i) Use statistical or other techniques to find a prediction region for the relevant quantities. 

(ii) If you are selling a security, use the conservative ask price (plus a fee, probably).   If you 

already have a portfolio, you may wish to charge 

^(portfolio + 77) - A(portfolio) (3.17) 

for the security with payoff 77. In other words, if 77 counterbalances some unhedgeable risk 

in your portfolio, you may wish to sell it fairly cheaply. Incidentally, the theory developed 

in here is for payoffs at one single time r, but this can obviously be expanded to payoffs at 

several different times. 

(iii) If you are buying a security 77, this is just like selling -77. 

(iv) For book value purposes, one may wish to state both the ask and bid prices of the whole 

portfolio, but with particular emphasis on the bid value. 

4. A case study: Convex European options hedged in a stock and a zero coupon 

bond. As in Example 2, p = 2, Sf' = St, Sf' = ht. V is assumed to be the set of probability 

measures where 

• St and Aj are continuous and adapted semi-martingales, with S0 = sQ and A0 = A0 (the 

actual values); 

• [log S, log S] t is absolutely continuous (w.r.t. Lebesgue measure), with derivative of; 

• (2.9) holds; and 

• every P e V has an equivalent martingale measure P*, i.e., P* ~ P, so that S* and A* are 

P*-martingales. 

In view of Girsanov's Theorem, the last condition is tantamount to imposing conditions along the 

lines of Example 1. By Remark 3.1, j\r = A/"* is satisfied, and hence so is Af = J\fe. 

We consider ask prices of options with payoff 77 = f(Sr) at (nonrandom) time T, where / is 

convex. This includes calls and puts. 
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First of all, as far as (2.9) is concerned, -+ is attained. This is because, if not, one can 

rescale time rt = rt^_^, St = St^_^ for 0 < t < T, with r\ = 0 for (1 - e)T < t < T and let 

St run up the full unused volatility on the same interval. Since S* is a martingale, it follows that 

exp(- J0 rudu)f(St) is a submartingale from (1 - e)T to T. 

It follows that the conservative ask price at time 0 is in this case 

A0 = sup E*Xf(S}/X), (4.1) 

where logSf - logSJ is normal iV(-|E+,E+), and the supremum is over all random variables X 

for which 

exp(-Ä+) < X < exp(-JT) (4.2) 

and satisfying 

E'X = A0. (4.3) 

This is provided we can show that ßj = X"1 gives a ßt and a At with the desired properties. 

Since x -> xf(s/x) is convex (for x, s > 0), the functional X —► E*Xf(S^/X) is also convex, 

and so the supremum in (4.1) is attained for an X which only takes the values exp(-J?_) and 

exp(-Ä+). 

Let B± = {UJ : X(Lü) = exp(-Ä±)} for ± = + or -. It follows from the above that we wish 

to maximize 

E*exp(-R+)f(exp(R+)S$)IB+ + E* exp(-R-)f(exp(R-)S*T)IB- (4.4) 

subject to 

Now let 

exp(-R+)P(B+) + exp{-R-)P(B-) = A0. (4.5) 

B+ = {to : 5f > K}, (4.6) 
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where K is determined by (4.5), and let B^ be any other pair of sets satisfying (4.5). Since / is 

convex, s —> exp(—R~)f(exp(R~)s) — exp(—R+)f(exp(R+)s) is a nondecreasing function. Hence, 

exp(-R+)f(exp(R+)ST)(IB+ - Ig+) + exp(-R-)f(exp(R~)ST)(IB- - I~_) 

> (exp(-Ä-)/(exp(Ä-)^) - exp(-£+)/(exp(E+)JO)(/B+ - /~+), 

and so the choice (4.6) maximizes (4.4) subject to (4.5). In the notation (2.1)-(2.2), K is found 

from (4.5) by 

^^^■^+»%Xp(-^:i;(-V)- («) 
Note that this equation always has a (unique) solution because exp(—R~) > AQ > exp(-Ä+). 

To see that the maximum is indeed the ask price, we now construct a P* 6 V* as follows. Fix 

t0 so that 0 < *0 < T. On [0,t0), we let dS? = aSfdWt, with a2 = E+/Z0, and we set rt = R~/t0. 

From t0 to T, 5f* is constant (= S* ). If 5*Q € B~, then rt = 0, otherwise rt = (R+-R-)/(T-tQ). 

This gives us an allowable ßt, and A* is obviously 

A; = exp(-R+)P(B+ | St) + exp(-R-)P(B- \ St). (4.8) 

We have thus proved the following 

PROPOSITION 4.1. Subject to the assumptions at the beginning of Section 4, the conservative 

ask price at time zero for payoff f'(ST) at time T is 

A0   =   E*exp(-R+)f(exp(R+)S)I{s>~} + E*exp(-R-)f(exp(R-)S)I{s<~y (4.9) 

where K is given by (4.7), and where log S is normal N(\ogSo - j=.+ ,=.+). 

Alternatively, one can obviously write 

A0  =  C(S0,R
+,E+J(S)I(s>Kexp(R+)) + C(So,R-,=+J(s)I(s<Kexp(R+)),      (4.10) 

where C(S0,R,=.,h(s)) is the Black-Scholes-Merton price for payoff/i(Sr) at time T. 
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Note that if one wishes to disregard the bond At (as in Example 1), one just maximizes (4.4) 

without (4.5). 

And now for the European call. 

EXAMPLE 2 (continued). If K is the strike price, f(s) = (s - K)+. The solution given in 

(2.10)-(2.11) follows directly by setting r0 = \og(K/K). ■ 

5. Defining self-financing strategies. 

In essence, Ht being self-financing means that we can represent H* by 

P     w 
#; = #* + V /   &dS®'. (5.1) 

This is in view of numeraire invariance (see, e.g., Section 6.B of Duffle (1996)). 

There are two problems associated with making this definition operational. 

The first issue is what exactly we mean by the stochastic integral. This object is usually 

only defined with reference to a probability distribution, and here we have several, none of which 

dominates (in the sense of absolute continuity) all the other ones (except in special cases). For this 

reason, we shall briefly define the integral in our situation. 

DEFINITION. I>fQC(V*) is the set of p-dimensional predictable processes 6f\ ..., d\p\ so that 

Jo &u d(S(ty,S^')u is locally integrable vV*-a.s. The stochastic integral (5.1) is then defined by 

the process in Theorems 1.4.31 and 1.4.40 (p. 46-48) in Jacod and Shiryaev (1987). The integral 

can be taken to be independent of P* £ V* because, in Jacod and Shiryaev's notation, if one lets 

B be the set of u for which every sequence has a subsequence for which Hn ■ Xt(oj) has a limit (in 

the supremum norm), then the conclusions in 1.4.31 (iii) and 1.4.40 (iir) are that P*(BC) = 0 for 

aU P* £ V*, and so Bc £Af*. a 

In other words, we replace convergence in probability with a convergence one could denote 

by —> to distinguish it from convergence .A/"*—a.s. 
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The other issue concerning (5.1) is that one must be able to rule out doubling strategies. 

The two most popular ways of doing that are to insist either that H* be in an Z2-space, or that 

it is bounded below (Duffle (1996), Section 6.C; see also Harrison and Kreps (1979), Dybvig and 

Huang (1988), and Karatzas (1996)). We shall here go with a criterion that encompasses both. 

DEFINITION. Suppose Af* = A/". A process Ht, 0 < t < T, is self-financing with respect to 

S'\ ,..., 5t if the process is uniquely defined up to a set in Af, if H* satisfies (5.1) Af-a.s., and 

if {Hx~, 0 < A < T, A stopping time} is uniformly integrable under all P* € V*. 7i is the set of 

such (Ht)s; Ti* is the set of corresponding (H*)s. ■ 

We need Af* = Af since we have involved V* and since we want the hedge to work Af—a.s. 

There is no particular loss in this, however, since Theorem 3.2 depends on Af* = Af anyway. 

The reason for seeking to avoid the requirement that H* be bounded below is that, to the 

extent possible, the same theory should apply equally to bid and ask prices. Since the bid price is 

normally given by (3.8), securities that are unbounded below will be a common phenomenon. For 

example, B((S - K)+) = -A(-(S - A')+), and -(S - K)+ is unbounded below. 

It should be emphasized that our definition does, indeed, preclude doubling type strategies: 

PROPOSITION 5.1. Let Af = A^*. Suppose that H* is self financing in the sense given above. 

Then, if there are stopping times A and fi, 0 < A < /J. < T, so that H* > H\, Af*-a.s., then 

H; = H*x,jV*-a.s. 

Proof of Proposition 5.1. II* is continuous by (5.1), and is therefore a locally bounded 

martingale. Let An | A in such a way that each H*AX is a martingale. Now fix P* 6 V*. By 

optional stopping, E*(HXn \ Ty) = H*AXn- By continuity, the r.h.s. goes to H*. By Fatou's 

Lemma and the uniform integrability condition, H* is a supermartingale for all P* e V*. This 

takes care of the left hand side. The result follows. ■ 

Suppose that V* is a cädläg process which is a semimartingale under all P*eV*. We now 

show how to determine hedge ratios for V*. 
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Set 

Ct = £[s<0*,j(0-]t. (5.2) 
t'=l 

We use the "naive" definition of quadratic variation and covariation, limits of sums of squared 

differences, because this does not refer to probabilities.    Theorem 1.4.47 (p. 52) in Jacod and 

Shiryaev (1987) assures that this limit exists jV"-a.s. 

We similarly define Q^ to be the matrix with elements d[S^*, S^*]t/dCt, and / the vector 

with elements d[V*,S^*]t/dCt. Clearly, [^ = QJ^ has at least one predictable solution. Note 

that this is done for every w except on a set N € Af*: the set where the above quantities are not 

defined have P*-probability 0 for all P* eV*, hence N eAf*. Here is the crux of the argument in 

the paper: 

PROPOSITION 5.2. Let (fi,.F,.Ft) be a filtered measurable space with (Tt) right continuous. 

Let Af be a o-ideal in T, let V* Af*, and Afe be defined as in Section 3. Suppose that N* — Afe. 

(0* Let St    , i = 1,... ,p be continuous martingales for all P* € V*. Suppose V* is a locally bounded 

cädläg process (Af*-a.s.)   which is a super-martingale for all P* £ V*.   Let ff^ be constructed 

as above.   Then (6\%\..., fff') is in Lf0C(P*).   Furthermore, let (H*) be given by (5.1), and set 

D* = V* ~ H* ~ ^o*- Then, (D*) is a nonincreasing process, Af'-a.s. 

The proof is given in the next section. 

6. Proofs for Sections 3 and 5. 

Since Proposition 5.2 logically preceeds Theorem 3.2, we take its proof before that of the 

theorem 

Proof of Proposition 5.2. Define 6\' as indicated. To see that 0eZ? (V*), fix P*eV*, 

and do a Doob-Meyer decomposition of V* under P* (valid by Theorem 8.22 (p. 83) in Elliot 

(1982)). Call the resulting local martingale part M*, and note that 0 would be the same if 

defined with M* rather than V*. Since the S\1' are continuous, it follows from Theorem III.4.11 

(p. 169) in Jacod and Shiryaev that 9 = (9^\ . ..,9^) e Lf0C(P*). Since P* was arbitrary in V*, 

fi€£?oc(p-)= n LUn- 
p*ev 
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By the same result, for each i, 

[D*,S^*]t = 0   for all t, AT - a.s. (6.1) 

Suppose that PE is an extremal element of V*. By Proposition 11.14 (p. 345) in Jacod 

(1979), Pe is also extremal in the set M({SW*,..., S(p)*}) (in Jacod's notation). Since H* is a 

locally bounded martingale under Pe, one can let D* = M* + R* be a Doob-Meyer decomposition 

of D\ under Pe (valid for the same reason as that of V* under P*), where R* is a predictable 

nonincreasing process, and M* is locally a bounded martingale. (6.1) now implies that [M*,S^l'"]t 

is zero for all t and i, jV*-a.s. This, along with the extremality of Pe in M({S^*,...,S^*}), 

however, implies that M* must be constant under Pe. (Refer to Jacod (1979), Theorem 11.2 (p. 

338) and the remarks following Definition 4.1 (p. 113); alternatively, see Chapter V.4 of Revuz 

and Yor (1994)). 

In other words, D* must be a nonincreasing process under Pe. Since this is true, however, 

for all extremal elements Pe of V*, the assumption Af* = Afe implies that this property must be 

true Af*-dL.s. ■ 

Proof of Theorem 3.2. Define Z; and A*t for nonrandom f, 0 < * < T, by (3.13)-(3.14). Z; 

exists by Proposition A.l, and is a supermartingale (for all P* £ V*) by Corollary A.2, both in the 

Appendix. The proof of Proposition 1.3.14 (p. 16) of Karatzas and Shreve (1991) shows that A~ 

is well defined and cädläg (A/"-a.s.), and that this process is also a supermartingale for all P* £ V. 

By the assumptions of Theorem 3.2, A* satisfies the assumptions of Proposition 5.2. A*t~ is 

also uniformly integrable for all P* e V*", and hence so is H*~ (since (Dt) is nonincreasing). It 

follows that {At) is a super-replication of 77. 

On the other hand, if (Vt) is a super-replication of 77, then, for a given stopping time t, 

0 < t < T, 

Vt* > E*{r,* I Tt) 

for aU P*eV*. Hence, V* > Z*t Ar-a.s. Since (V*) is cädläg, Vt* > A*, A^-a.s. ■ 
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Proof of Proposition 3.3. Redefine Tt as the smallest «r-field containing M and the original 

Tt- This does not change the problem. Set Q — o-(Af). 

We use Theorem 15.2c (p. 496) in Jacod (1979), with (in Jacod's notation) S = f]XtX Ss1(X), 

where X consists of our processes S\ ' ,...,S{ ,S\ ',...,-S\r',/?t
-1. It then follows that, if Mg 

and j\fg are found by (3.11)-(3.12) for (Jacod's) S, then these two <r-ideals are equal. However, 

S = M({5' ',..., 5'p'}) (again in Jacod's notation, see p. 345 of that work). This is because r 

cannot be negative. The result follows. ■ 

7. Further questions. The above has provided a general methodology for converting 

prediction regions into prices and hedging strategies. Many questions of implementation remain, 

however, in the realm of future research. 

An important issue is what form one should choose for the prediction region, and what in- 

struments to hedge in. Some possibilities have been provided by the examples, but the imagination 

is really the limit here. One can include market traded options and other derivatives among the 

St considered. One can bound (traded or untraded) securities themselves, or one can consider 

quadratic covariations between the various instruments (including the short rate). Example 2 is 

an instance of mixing those two approaches. 

Computation of the ask and bid prices and of the hedge ratios are also going to be a major 

issue. The more exotic the derivative, and the more varied the traded securities one wishes to 

hedge in, the more likely it is that numerical techniques will be required. Examples 1 and 2 show 

that there are cases where analytic solutions exist, but this will probably be a minority of cases. 

On the more statistical front, it is also worth pursuing a stronger result than our Theorem 

3.2, as follows. If one has a prediction interval of the form (2.5), and one uses conservative delta 

hedging as described, the probability of failure is the same as the probability of the prediction 

interval not covering the realized values. Is remains unsolved whether this is the case in the genral 

setting of Theorem 3.2. 

Dynamically adjusted contingency reserves is worth further investigation. If one has a bound 

of type (2.5) or (2.9), but then it turns out half way that only a fraction of the provided for 
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volatility has been used, one may wish to harvest some profit right away. Similarly, if it looks like 

one is going to exceed the budgeted volatility, one may wish to take a loss immediately so as to 

increase the bound. It is pretty straightforward to extend the theory in this paper to let V be time 

varying; the main question is how to formulate good strategies for the harvesting. 

Finally, there are all the issues arising from non-statistical incompleteness. If the prices 

of underlying securities can jump, is there still some way to use this procedure without getting 

impossibly big bid-ask spreads? Also, if one lives with the fiction of continuous prices, there is still 

the question of interpolating to assess the accrued volatility (or other quadratic variations). Some 

references are given at the beginning of Section 2, but there would seem to be a need for further 

exploration. 

A more subtle form of incompleteness arises if one lets the underlying securities prices be 

continuous, but one has a non-continuous model for the volatility (an a-stable process, say) or some 

other untraded security. One can use the results in this paper if one finds a prediction interval 

on the basis of the model. A tantalizing question, however, is whether one can hedge (in market 

traded derivatives) the continuous part and use intervals for for the discontinuous part. One can 

envisage a number of scenarios where some sort of partial hedging and partial interval use would 

lower bid-ask spreads without reducing the safety margin. 

There is a lot of unanswered questions. 



APPENDIX 

We here deal with the measure theoretic details having to do with the essential supremum 

of conditional expectations, in the (apparent) absence of a dominating probability distribution. If 

such a distribution were to exist, one could, for example, use the result in Proposition VI-1-1 (p. 

121) of Xeveu (1975). In our case, we shall define the relevant objects in analogy to Neveu, but 

we need new proofs motivating the definitions. 

DEFINITION.    Suppose that Q is a collection of probability distributions on F, and let Q be 

a sub-CT-field of T. Let X be a random variable satisfying 

sup E\X\  <  oo. M i) 
PzQ K    '   ' 

Then ess sup£(X | Q) is the random variable Z for which 
PiQ 

(i) Z is (/-measurable; 

(ii) Z > E(X | Q), P-a.s., for aU PeQ; and 

(iii) if Z also satisfies (i) and (ii), then Z > Z. P-a.s., for all PeQ. , 

Provided this quantity exists, it is, obviously, unique up to joint null sets of Q. For existence 

and meaningfulness, we assume in the foUowing that Q is countably generated. There is, therefore, 

a nested sequence of finite er-fields £„ so that 

oo 

G   =    \l    Gn- (A2) 
n=l 

PROPOSITION A.l. Let X satisfy (A.l) and suppose that Q is a countably generated a-Md. 

Let gn he unite nested a-fields satisfying (A.2). Suppose that Q is closed in the total variation 

distance. Set 

Zn(u)  =   sup E(X | gn){u). (A3) 

In other words, because of the closedness of Q, ifCn,k are tie atoms ofgn, then 

Zn(u) = Entk(X |  Cntk) for Lo e Cn,k (AA) 
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where Pn^k is an element of Q which maximizes the right hand side of (A.4). Then, 

lim sup Zn = ess sup E{X \ Q)    P- a.s., for all PeQ. (A 5) 
n-t-oo                       pcQ 

v         I 

Furthermore, there is at least one increasing sequence Qn so that, as n -* oo, 

Zn -»• ess sup E(X | 0)    P - o.a., for aii PeQ. (A 6) 
PeQ K    '   ' 

Proof of Proposition A.l.    Let Z* and Z* be, respectively, the limits superior and inferior of 

the sequence Zn. Also, let Z be the essential supremum itself. 

First of all, by the Martingale Convergence Theorem (see, e.g., Billingsley (1995)), Z* satisfies 

criteria (i) and (ii) in the definition above, whence Z» > Z, P-a.s., for all PeQ. 

To get the opposite inequality, let PeQ. Let Qn be generated by the Qn in (A.2) along with 

the sets {a[n> < Z < a^}, where the set aM = {a[n\a[n\...} are finite and nested, starting 

with {-oo,oo}, and becoming dense uniformly on any compact in R as n -> oo. Let ueZ~x{K). 

where K is compact, and let En be the set CHik where a; is a member. 

By definition of Z. Z > Entk(X | Q) on Cn,k, Pn,k-a..s. Hence, for some sequence in 

Zn(u) <  sup  Z{u>') 
u'tEn 

<z(u)+4%-4? 
—> Z(to)     as ra — oo. (^4.7) 

It follows that Z* < Z on Z-^üT), and hence P-a.s. The result follows. , 

It is easy to see that (A.6) is not satisfied with an arbitrary sequence Qn. 

To get at the supermartingale property needed in the proof of Theorem 3.2, we can further 

characterize esssupPeS E{X \ Q) as follows. Keep in mind that if QUQ2,... is a countable set of 

probabilities, there is a probability Q dominating (in the sense of absolute continuity) all the Qts. 
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For example, take 
oo       1 

m=l 

COROLLARY A.2. Assume the conditions of Proposition A.l. For all PeQ, there is a count- 

able collection V of elements in Q, with PeD, so that the following is satisfied. Let Q dominate 

V. For all ReV, define ER(X \ Q) Q-a.s. by setting it to —oo on the set Q — CR and to ER(X \ Q) 

Q-a.s. on CR, where Q « R on CR and R(D. - CR) = 0. Then 

esssupER(X\g)  =  sup ER{X\Q)    Q-a.s. (A.9) 
RtQ ReV 

Note that the right hand side of (A.9) is measurable since V is countable. 

Proof of Corollary A.2. Set V = {P} \J{Pn,k, all n, k}, where the Pn^ are the ones occur- 

ring in the second part of the proof of Proposition A.l. Define Y to be the right hand side of (A.9). 

The result then follows by the same argument as in the proof of Proposition A.l. ■ 
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