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Abstract 

An analysis and assessment of three mechanisms describing plasma/shock wave 

interaction processes was conducted under conditions typically encountered in a 

weakly ionized glow discharge. The mechanisms of ion-acoustic wave clamping, 

post-shock energy addition and thermal inhomogeneities are examined by numer- 

ically solving the Euler equations with appropriate source terms adapted for each 

mechanism. Ion-acoustic wave damping is examined by modelling the partially ion- 

ized plasma as two fluids in one spatial dimension using the Riemann problem as a 

basis. Post-shock energy addition in the form of nonequilibrium vibrational energy 

relaxation is also examined in one spatial dimension using the Riemann problem as a 

basis. The influence of thermal inhomogeneities on shock wave propagation is exam- 

ined in two spatial dimensions for both a Riemann shock and a shock generated by a 

spark discharge. The use of realistic thermal profiles allowed the comparison of mea- 

sured and numerically predicted shock parameters. Results from time-dependent 

calculations of the two-fluid plasma under typical weakly ionized conditions, al- 

though similar to steady-state results previously reported in the literature, indicate 

that ion-acoustic wave clamping has an insignificant effect on shock propagation. 

Under strongly ionized conditions, however, ion-acoustic wave damping can increase 

shock speed and shock front width and reduce the shock strength, each of which is 

consistent with experimental observation. Results from the analysis of post-shock 

vibrational relaxation indicate that although this process can lead to increases in the 

shock speed, the final magnitude of the increase is too small and the time scale for 

the increase is too large to explain the experimental observations. An analysis of the 

effects of thermal inhomogeneities reveals that many of the observed plasma/shock 

anomalies can be explained based solely on this mechanism. 

xvi 



Shock Waves in Nonequilibrium Gases and Plasmas 

/.   Introduction 

1.1    Motivation 

Since World War II, the U.S. military has had a keen interest in supersonic and 

hypersonic aerodynamics. It was in this period that the first discoveries were made 

regarding the build up of shock waves along the leading edges of wings and control 

surfaces of aircraft. As fighter aircraft reached their terminal velocities in steep dives 

at high altitudes, pilots experienced control freezeup, leading to stability problems. 

It was later recognized that this phenomena was related to shock waves [119:93]. In 

the late 1940s Chuck Yeager became the first person to fly faster than the speed of 

sound, a feat many thought impossible, due to the build up of shock waves in front 

of the aircraft. Interestingly, the design of his aircraft, the Bell X-l, was based on 

the .50 caliber bullet, a projectile that was known to be stable in supersonic flight 

[119]. Just two years after the sound barrier was broken for the first time, the first 

man-made object to reach hypersonic velocities was launched from the New Mexico 

desert, as a V-2/WAC rocket reached speeds of more than 5000 mph [5:2]. In the 

1950s and 1960s the Air Force's interest in shock waves progressed from intellectual 

curiosity to serious weapon design. The problems of atmospheric re-entry, including 

the high heat loading on nuclear-tipped re-entry vehicles, the planned X-20 Dynasoar 

and the manned space flight programs of Mercury, Gemini and Apollo spawned high 

levels of shock wave research [5:4-8]. 

This research continued into the 1970s and 1980s with the design and construc- 

tion of the Space Shuttle and the preliminary design of the National Aerospace Plane 

(NASP). Through these and many other developments, man's knowledge of high- 

speed aerodynamics increased dramatically.   Throughout this history, shock wave 



research has been primarily limited to shock propagation through media initially in 

a state of thermodynamic equilibrium. However, propagation through media initially 

in a state of thermodynamic nonequilibrium raises new possibilities and highlights 

interesting effects not encountered in the equilibrium case. A.I. Osipov and A.V. 

Uvarov. well-known Russian researchers in the field of molecular vibrational physics, 

have stated that "'The study of the laws of propagation of shock waves and other hy- 

drodynamic perturbations in nonequilibrium gases essentially constitute a new field 

in hydrodynamics'1 [93]. 

The field of plasma-aerodynamics offers new research opportunities for a num- 

ber of reasons. First, it is apparent that this area represents an intersection of two 

academic disciplines: aeronautical engineering and plasma physics. The efforts of 

aeronautics has largely been concentrated in the area of neutral gases, that is. gases 

with no ionization present. Although some aeronautical researchers have treated 

weakly ionized flows, they have done so principally from an energy balance point of 

view, neglecting the collective plasma behavior that would be present in such flows. 

On the other hand, while plasma physicists have studied wave and shock behavior 

in ionized gases, such studies were primarily limited to highly ionized states, where 

the role of neutrals was insignificant. Secondly, the study of shocks in aeronautics 

has been primarily limited to flows in gas initially in an equilibrium state. With this 

view, any ionization in the shock front region must arise through kinetic reactions 

driven by the temperature increase across the shock layer. Ionization is then confined 

to the relaxation layer downstream of the shock. The study of aerodynamic shocks 

in gas initially in a state of nonequilibrium has largely been neglected. In nonequi- 

librium flows it is possible for ionization to be present in the upstream region even 

before the gas passes through the shock layer. This nonequilibrium state within the 

plasma may be characterized by an electron temperature that is much higher than 

the gas temperature. Such a situation can arise in a plasma generated by an electric 

discharge, for example, or perhaps by creating a plasma zone in front of an aircraft 



by a laser or microwave device, as suggested by Myrabo [71]. For these reasons, the 

study of waves and shocks in weakly ionized gas flows characteristic of possible flight 

conditions provides a fruitful area of research. 

1.2    Shocks in a Neutral Gas 

Shocks are regions of gas flow where very large gradients in density, pressure, 

temperature and velocity exist. They are formed under certain conditions as a result 

of nature satisfying the equations of continuity of mass, momentum and energy. In 

a neutral gas, a shock can be divided into four regions, as depicted in Figure 1. 

Region 1 represents the undisturbed gas in front of the shock and is in complete 

thermodynamic equilibrium. Region 2 represents the shock front, in which there are 

rapid changes in the temperature, density, pressure and velocity of the flow. This 

part of the shock is also called the viscous shock, clue to the dissipative process 

of viscosity which is present in this region.   Region 3 represents that part of the 

Q. 
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Figure 1. Typical variation in gas temperature with distance in a shock. 

shock in which equilibration of the various internal degrees of freedom takes place. 

In region 4 complete thermodynamic equilibrium is re-established. In an idealized 

shock, the shock front region is infinitely thin. However, in reality the viscous shock 

is usually a few mean free paths thick, which under typical flight conditions (60.000 

3 



feet, standard atmosphere [4] may be of the order of 10~4 cm. If the temperature 

rise across region 2 is high enough, thermal energy can be coupled into the internal 

degrees of freedom, resulting in various relaxation processes occurring in region 3. 

Vibrational and electronic states may be excited, dissociation and ionization may 

proceed, and many chemical reactions are possible. These relaxation mechanisms 

increase the thickness of region 3. and can cause structure to appear in the flow 

variables. As used here, the total shock thickness is defined as the region extending 

from the point of rapid rise in flow parameters (at the shock front) to the point at 

which equilibrium is re-established (in the downstream region). 

Figure 2.    Temporal evolution of the pressure in a large amplitude wave leading to 
the formation of a shock. 

1.2.1 How Do Shocks Develop? Shock formation can be understood by 

considering the nonlinear terms in the fluid equations. These nonlinear terms cause 

portions of the wave with a larger amplitude to travel at a higher velocity than 

portions of the wave with a smaller amplitude. Thus the wave front steepens until it 

becomes multi-valued and "breaks", as shown figuratively in Figure 2. In reality, this 



steepening process continues only until it is balanced by dissipative mechanisms, such 

as viscosity and thermal conductivity. Since the characteristic distance associated 

with these processes is a mean free path [123:83], the shock front thickness is of the 

order of a few mean free paths. 

1.2.2 Typical Scale Lengths. - As mentioned previously, region 3 of Figure 1 

represents that part of the shock in which various relaxation processes occur. Figure 

3 explicitly shows some of these processes for a real gas. Here, the gas temperature 

rises sharply at the shock front then decreases gradually in the post-shock region as 

the various thermal relaxation processes occur. 

a 
E 
.0 

Dissociation and 
Electronic 
Equilibrium Vibrational 

Equilibrium 
lonization 

Translational and 
Rotational Equilibrium 

Figure 3. Typical temperature relaxation processes in a shock. 

If the gas particles are molecules, then rotational relaxation will play a role in 

establishing equilibrium in the downstream region. That is, in order to reach equi- 

librium, the rotational temperature must become equal to the translational temper- 

ature, which requires collisions. If the translational temperature in the post-shock 

region is high enough, then vibrational modes can become excited. For air, this point 

is reached at a temperature of approximately 800 A" [5:19]. Thus in order to reach a 

final state of equilibrium the translational, rotational and vibrational temperatures 

must all be the same, which may require on the order of 20,000 collisions.   If the 



temperature is higher still, say about 2000-4000A" for air, dissociation of molecules 

is possible, taking as many as 200.000 collisions to equilibrate [5:483]. Electronic 

degrees of freedom are excited next and at a temperature of about 9000 A' ionization 

begins to occur in air, with this process typically requiring more collisions than any 

other. 

1.3    Shocks in a Weakly Ionized Nonequilibrhim Plasma 

1.3.1 What \s New? In a weakly ionized gas, charged particles exist in addi- 

tion to the neutral particles present in an unionized gas. These charged particles can 

introduce modes of wave propagation nonexistent in neutral shocks [36]. In addition, 

in a nonequilibrhim weakly ionized gas the electron temperature may be fifty times 

(or more) higher than the heavy particle temperature. This nonequilibrhim can lead 

to energy transfer from electrons to the ions and neutrals, as well as dissociation 

and ionization as a result of electron impact collisions. The presence of the high 

temperature electrons may excite the vibrational modes of molecules, leading to a 

vibrational temperature much higher than the gas temperature. In some cases this 

vibrational temperature (whose definition here is based on the relative populations 

of the ground state and first excited state) may be ten times the gas temperature. 

These nonequilibrhim conditions can exist in the upstream ambient gas even without 

a shock present (e.g., in a gas discharge). This is in sharp contrast to the ambient 

equilibrium conditions normally encountered in aerodynamics. 

When a shock is present in an ionized gas, large density gradients arise in all 

plasma constituents (electrons, ions and neutrals) at the shock front. As a result 

of these gradients, there is a diffusion of particles in the upstream direction. Since 

the mobility of the electrons is much higher than that of either the ions or neutral 

particles, they will diffuse faster. The resulting charge separation gives rise to an 

electrical double layer (as shown in Figure 4), which ultimately equilibrates the fluxes 

of ions and electrons.  The difference in the charged particle densities leads to an 
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Figure 4.    Electric double layer resulting from diffusion of electrons and ions at the 
shock front. 

electric field and potential variation at the shock front, both of which are absent 

from a shock in a neutral gas. 

1.3.2 Typical Scale Lengths. As in neutral gases, shocks in weakly ionized 

gases have a neutral shock front width which is typically a few neutral-neutral mean 

free paths thick. However, the shock front width associated with the ions and elec- 

trons may be many times this distance. In fact, it will be shown later that under 

nonequilibrium conditions, the charged particle shock front thickness is greater than 

the ion-neutral mean free path by a factor of approximately Te/Tn, which may be as 

high as 80 or more under typical glow discharge conditions. This charged particle 

precursor may be able to interact with the neutral flow in front of the shock and 

significantly affect flow parameters before crossing the neutral shock itself. 

The Debye length is an important parameter in a plasma. It is a general 

characteristic of a plasma that quasi-neutrality is maintained; that is, the plasma, 

reacts in such a way that nearly equal electron and ion number densities are always 

maintained. A weakly ionized plasma is a quasi-neutral assembly of charged and 

neutral particles, exhibiting a collective behavior clue to the Coulomb interaction. 

In a collisionless plasma, each charged particle moves according to the local value of 



the electric field and, in turn, the electric field is determined by the entire plasma. 

The Debye length is simply a measure of the spatial extent of charge separation in 

a quiescent plasma. When the ratio of the Debye length to the mean free path of a 

charged particle is small, then the particle spends most of its time in a region without 

a macroscopic electric field. In such a case it would be expected that charged particle 

effects would be very small in comparison to neutral interactions. Conversely, if the 

ratio is large, then the charged particle spends most of its time in a region in which 

there is an electric field. In this case it would be expected that the motion of the 

charged particle would be greatly determined by the collective behavior of the plasma 

as a whole. 

l.-l    Experimental Anomalies of Shocks in Weakly Ionized Plasma 

Since the early 1950s, numerous experiments (conducted mostly by Russian 

researchers) have been carried out in the field of shock propagation in nonequilib- 

rium plasmas. In these experiments, a number of interesting phenomena have been 

observed involving plasma/shock interactions. These can be summarized by noting 

that a shock in a plasma is different from a shock in a neutral gas. In a plasma: 

• the shock velocity increases [74], [12]. [So]. [11]. [27], [77], [34], [33] 

• the shock front spreads and disperses [75]. [51]. [89], [14] 

• a shock precursor may appear [13]. [27]. [7(>]. [14] 

• the shock strength is reduced or even (apparently) eliminated in some cases 

[10], [87], [85], [51], [88] 

• the aerodynamic drag is modified [10]. [88]. [48]. [86] 

• the heat flux to the aerodynamic surface is reduced [105] 

• the shock standoff distance increases [90], [57], [8^>] 

As a shock propagates, it is seen to accelerate as it enters a region containing 

a nonequilibrium plasma.   This acceleration has been observed in both molecular 
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Figure 5.    Shock velocity measured in Ar
2 in the absence of a plasma and in a weakly 

ionized plasma. [Ref: [34]]. 

and rare gases. An example of this acceleration is shown in Figure 5, taken from 

[34]. Here, the measured shock speed in N2 in the absence of a plasma and in a 

weakly ionized plasma are shown. The origin is with respect to the beginning of the 

plasma region, with the plasma located in the region x > 0. In each case, the shock 

was generated by a spark discharge. In the absence of a plasma, the shock speed 

decreases monotonically as the shock propagates away from the spark source. As 

the shock enters a plasma region, the shock speed is observed to first increase, then 

decrease as it propagates further clown the shock tube. 

When a shock enters a plasma, the shock front region appears to disperse, 

resulting in significant shock front broadening and attenuation. The dispersion can 

be quite severe and can result in the nonmonotonic behavior of some of the flow 

parameters (density and pressure) in the shock front region [89]. Figure 6 (taken 

from [75]) shows an experimentally measured pressure profile obtained in air and in 

a weakly ionized plasma in air. The signal arrives earlier in the plasma, reflecting 

a higher shock velocity in this medium. Furthermore, the shock front width in 

unionized air is much narrower than the shock front width in weakly ionized air. 
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Figure 6. Variation in pressure (arbitrary units) with time for a shock in air and 
in a weakly ionized plasma in air measured at a fixed point in the flow. 
The nominal shock velocity is 740 m/sec through air at a pressure of 30 
torr. The time shift between the signals is r [Ref: [75]]. 

A region of elevated density and temperature, called a precursor, can exist in 

front of the shock wave. Sometimes this precursor is observed to break apart from 

the main shock and propagate with a steady waveform. Spreading of the shock front, 

along with the apparent appearance of a precursor is shown in Figure 7, taken from 

[77]. The structure of the shock in the presence of a plasma is given as curve 1, while 

the shock structure in the absence of a plasma is given as curve 2. In this example, 

the nominal shock travels through air at a pressure of 2 torr with a velocity of 1250 

m/sec. 

Another anomaly of shocks in a plasma is the reduction of the pressure jump 

at the shock front when compared to shocks in a neutral gas. That is, the ratio of the 

pressure just behind the shock front (P2) to the pressure just in front of the shock 

(Pi) is lower in plasma than in air for a shock propagating at the same velocity [87], 

as shown in Figure 8. 
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Figure 7. Variation of the density in a shock wave in air in the presence of a plasma 
(curve 1) and in the absence of a plasma (curve 2). The unperturbed 
shock wave is traveling at a velocity of 1250 m/sec in air at a pressure of 
2 torr [Ref: [77]]. 

Perhaps the most intriguing phenomena involves the influence of a plasma on 

the flow of air around an aerodynamic structure. In a recent experiment conducted 

at the A.F. Ioffe Physicotechnical Institute, located in St. Petersburg, Russia, small 

spheres were shot clown a ballistic range through both air and weakly ionized plasma 

in air [16]. The spheres, constructed of polyethylene, were 15 mm in diameter and 

traveled through air at a pressure of 15 torr. The experimentally determined coeffi- 

cient of drag in the presence of a plasma is significantly altered from that in air, as 

shown in Figure 9. 

In another experiment conducted at the same facility, but by different re- 

searchers, a spherical Duralumin model was launched from a ballistic cannon at a 

velocity of 2.5 km/sec through air at a pressure of 40 torr [105]. The projectile was 

shot through both unionized air and a uniform glow discharge in air. The projectile 

had an ablation coating of NaCl, which was used to determine the heat flux to the 
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Figure S.    Variation of the pressure jump at the shock front in air and in a weakly 
ionized plasma in air [Ref: [87]]. 

model's surface. The experimentally determined heat flux to the model's surface was 

found to be a factor of 4 lower in the plasma than in unionized air. 

Finally, the standoff distance of the shock from a projectile has been reported 

to be anomalously large as the projectile passes through a plasma, This increase in 

shock standoff distance has been postulated to be the cause of the reduction in the 

heat flux mentioned previously [105]. Recent experiments conducted in a ballistic 

range at the Arnold Engineering and Development Center (AEDC), Arnold AFS, 

TN [117], appear to confirm the anomaly in the shock standoff distance reported in 

the Russian literature (Figure 10). Here, the shock boundary measured in unionized 

gas (diamonds) agrees well with a steady-state fluid calculation for gas at 300A 

(light solid curve). However, the measured shock boundary in a plasma, with a 

temperature of 1200A', (triangles and boxes) is much different than the steady-state 

calculation for gas at 1200A'. This indicates that the plasma effects may be over and 

above the thermal effects arising due to the presence of the hot gas in the plasma 

region. 
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Figure 9. Experimentally determined variation in the aerodynamic drag coefficient 
(CD) with velocity for a sphere in unionized air and in weakly ionized air 

[Ref: [16]]. 
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Figure 10. Shock standoff distance measured in weakly ionized plasma (triangles, 
boxes) and in unionized gas (diamonds). The shock standoff from 
steady-state fluid calculations (solid curves) are also shown. [Ref: [117]] 
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1.5    Possible Applications of Plasma-Aerodynamics 

In the previous paragraphs, some examples of the plasma/shock phenomenol- 

ogy observed in recent years has been given. If the experimental measurements are 

accurate, then the implications for the future of aerodynamics are enormous. While 

the plasma effects have been confined to the laboratory at present, the real pay-off 

for plasma aerodynamics lies with the flight vehicles of the future. 

A number of possible applications using nonequilibrium plasma flows have 

been offered. These include reducing aircraft radar cross-section, maintaining RF 

communication with spacecraft during re-entry (when RF blackout is typically ex- 

perienced) ([29], [92]) and boundary layer control ([29], [25], [94]). Other proposed 

applications include a control surface-less aircraft, which creates control moments 

by using magnetic fields to exert forces on the fluid [81]. 

In this last category are envisioned such ideas as prolonging laminar flow and 

delaying fluid separation thus allowing flight into very high angle-of-attack regimes. 

To test these possibilities. North American/Boeing has proposed modifying an ex- 

isting F-15 fighter aircraft to include a plasma generator in the nose section [58], as 

shown in Figure 11. 

Perhaps even more futuristic is a Russian concept for a revolutionary hyper- 

sonic vehicle, designated AJAX, which recently appeared in an American Institute of 

Aeronautics and Astronautics paper [57]. In this design (Figure 12) plasma aerody- 

namic effects are reportedly used to create "a nonequilibrium cold plasma adjacent 

to the vehicle, to reduce shock strength, drag and heat transfer" [57:1]. 
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Figure 11. Proposed modification to an existing F-15 aircraft to flight-test plasma- 
aerodynamic effects. The plasma generating device is shown in the nose 
section, (photo courtesy of North American/Boeing) 
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Figure 12. AJAX hypersonic vehicle concept [Ref: [57]]. 
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1.6    Research Objectives 

In this chapter, the concept of gasdynamic shocks has been introduced, along 

with some of the basic differences between shocks in a neutral gas and shocks in a 

weakly ionized plasma. Experimental anomalies observed in plasma/shock exper- 

iments have also been introduced, along with some possible aerodynamic applica- 

tions which attempt to exploit these anomalies. Obviously, an understanding of 

the physical processes at work in plasma/shock interactions is critical in exploiting 

the effects to advantage in an aerodynamic vehicle. While many experiments have 

been performed on the propagation of shock waves through nonequilibrium plasmas, 

the theoretical analysis which has been brought to bear on understanding the phe- 

nomenology appears to be rather limited. Although a variety of mechanisms have 

been offered as possible explanations of the observed anomalies, a complete analysis 

of any such mechanism appears to be lacking. The present research explores three 

of the most prominent of the proposed plasma/shock mechanisms: 

• charged particle/neutral particle interactions 

• post-shock energy addition 

• thermal inhomogeneities in the flow 

Charged particle/neutral particle interactions arise due to the presence of 

charged particles in the predominantly neutral gas flow, where fractional ionizations 

as low as 10~6 are considered typical. Some have proposed that it is the presence 

of these interactions in a weakly ionized nonequilibrium plasma (specifically, ion- 

acoustic wave damping) which lead to the observed structures and anomalies ([11], 

[12], [13], [51], [75], [85]). In the exploration of this mechanism, parameters typical 

of weakly ionized plasmas will be used in a fluid analysis to determine the resulting 

shock structure. 

Post-shock energy release involves the addition of energy into the translational 

degrees of freedom behind the shock front. The energy release is largely confined to 
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the region behind the shock front due to the higher temperature and density there, 

both of which tend to increase the relevant collisional rates. The actual method of 

this energy addition may occur in a number of ways. The de-activation of internal 

energy stored in both excited electronic states [121] and excited vibrational states [9] 

has been suggested, as well as the dissociative recombination [121] of electrons and 

ions. In this study, vibrational relaxation will be adopted as the model describing the 

addition of energy to the flow in the post-shock region, although the other processes 

should yield similar qualitative results under the proper conditions. 

Finally, the presence of thermal inhomogeneities in the weakly ionized plasma 

region has been suggested as the cause of the observed plasma/shock anomalies ([41], 

[115], [2]). In this mechanism, the shock flows into a region of gas which has been 

previously heated by the plasma. The resulting shock structure is proposed to be a 

result of neutral particle interactions only, with no need for charged particle/neutral 

particle interactions or excited state de-activations. Although it is the presence of 

the charged particles, along with any internal energy release, which heat the gas, the 

important distinction here is that this heating was accomplished before the shock 

entered the plasma, not as the shock propagates through the plasma, as is the case 

in the other two mechanisms. 

1.7    Previous Work 

In this section, a brief summary of previous work in the area of plasma/shock 

interactions will be given. Since the literature is full of various descriptions, aspects 

and proposed mechanisms of this problem, the focus of the current section will be 

limited to the three mechanisms given previously. 

1.7.1    Charge Particle/Neutral Particle Interactions.      Interactions between 

charged and neutral particles encompasses the field of partially ionized plasma physics. 

Since this field is far too broad a subject for the present undertaking, with the many 
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wave modes possible in both magnetized and unmagnetized plasmas, the focus must 

be further limited. To that end, the work of Sessler [106] will be used to identify the 

plasma wave modes which are believed to be important in the present investigation. 

The contributions of other researchers to the field will then be briefly mentioned. 

According to Sessler, there are three modes of wave propagation in a weakly 

ionized, unmagnetized plasma. Only one of these wave modes, however, can prop- 

agate. This mode is the acoustic mode, so named due to its close relationship to a 

sound wave propagating in a neutral gas. It is characterized by a propagation speed 

very nearly equal to the neutral sound speed. This mode also describes wave action 

in which the electrons, ions and neutral particles move with very nearly the same 

phase and amplitude. As such, only weak attenuation would be expected with this 

mode, which Sessler determined was primarily clue to neutral particle viscosity ef- 

fects. Linearizing the fluid equations, which is applicable for small amplitude waves. 

Sessler obtained a dispersion relation describing this mode of propagation. 

Another important mode of wave propagation in a plasma is the ion-acoustic 

wave. In this mode, ions and electrons move in phase with each other and with 

almost the same amplitude, while the neutrals can be considered to be at rest [63]. 

Although the ion-acoustic mode in a plasma travels faster than an acoustic wave 

in a neutral gas, the ion-acoustic waves are strongly damped for u> < vm, where to 

is the wave frequency and vin in the ion-neutral collision frequency. Although this 

strong damping effectively prevents this mode from propagating long distances, the 

ion-acoustic mode may nevertheless be an important process in the neutral shock 

front region and has been frequently mentioned in the literature as such. 

Ingard and Schulz [64] improved Sessler's representation of the dispersion rela- 

tion for the acoustic mode by including an energy equation that treated thermal con- 

duction as well as energy coupling between the different components of the plasma. 

The viscosity effect of the interaction of the plasma wave with the walls of the shock 

tube was also treated, in addition to the bulk viscosity of each component.   They 
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found that under conditions representative of a glow discharge, a small-amplitude 

wave may either be attenuated or amplified. The attenuation is primarily due to 

viscous and thermal conduction effects, while any growth is clue to energy transfer 

to the neutrals from the electrons. 

Hasegawa [60] derived similar results, although he treated only the neutrals 

in the plasma. He also pointed out that the energy transfer from the electrons to 

the neutrals affects the wave in two ways. First, the energy is transferred selectively 

at the compression stage of the wave, and secondly, the velocity of the wave should 

increase as a result of the heating of the neutrals. 

Ingard and Schulz applied their acoustic mode dispersion relation, obtained as- 

suming small amplitude waves, to the problem of a shock in a weakly ionized plasma 

[65]. Although the application of a dispersion relation (derived from linearized fluid 

equations) to a shock wave (which requires nonlinear terms for its development) is 

generally improper, the shocks considered by Ingard and Schulz were weak, with 

density jumps at the shock front corresponding to shock speeds of approximately 

Mach 1.06. In this case, the dispersion relation may still be able to accurately de- 

scribe the motion of the plasma components. Ingard assumed the neutral density, 

Nn(xJ), of an ideal shock traveling at a velocity of c could be represented by a step 

function: 

Nn(*,t)   = 
1 t>XlC (1) 

A»° \ Nm/Nn0   t < x/c 

where Nn0 is the ambient density in front of the shock (t < x/c) and Nni is the 

density behind the shock front (t > x/c). Combining the acoustic mode dispersion 

relation with Equation 1 resulted in an ion density profile given by 

Nj(xJ) = 

Nio 

1 + (AW;Vno - 1) exp [-w* (x/c -t)]   t< x/c 

Nnl/Nn0 t > x/c 
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where iY;0 is the ambient ion number density far upstream of the shock and ui* is a 

characteristic frequency defined as 

T 
* _        n (■?\ 

J- e 

From Equation 2, it is apparent that an ion precursor is present in the region in front 

of the neutral shock. In a reference frame attached to the neutral shock front, this 

precursor has a characteristic length of c/u>*, which can be shown to be approximately 

equal to Te/Tn Atn, where Xin is the mean free path of an ion in the neutral gas. 

In addition to the perturbation in the ion number density, the dispersion rela- 

tion can be used to determine the resulting perturbation in the electric field. Ingard's 

result for the electric field (given in SI units) is 

E(x,t) 
In Pn (Tijq [Kl/Nn0 - 1) exp [-U* {x/c-t)]     t < x/c 

I4) 
0 t > x/c 

where q is the elementary unit of charge and Pn is the ambient pressure in the 

unperturbed neutral gas. Thus, an electric field is present in the ion precursor 

region, which points in the direction of shock propagation. 

Using a different approach, Avramenko. et al. [6] obtained results nearly iden- 

tical with those of Ingard. Instead of linearizing the fluid equations to obtain a dis- 

persion relation, which was then applied to the plasma shock problem, Avramenko 

solved a simplified set of fluid equations directly. Whereas Ingard and Schulz's devel- 

opment started with a three fluid plasma (ions, electrons and neutrals), Avramenko 

assumed the plasma could be adequately described using a two fluid approximation, 

in which the charged particles were lumped together and treated as a single fluid. 

with the neutrals comprising the second fluid. The appearance of a charged compo- 

nent precursor leading the neutral shock was again found. Further details regarding 

Avramenko's development of a set of fluid equations using the two fluid approxima- 
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tion will be presented in Chapter II. This development will be extended to include 

the neutral and ion energy equations in Chapter III. 

Although both Ingard and Avramenko found a charged component precursor 

leading the neutral shock wave, the precursor was not able to influence the neutral 

shock due to the nature of both derivations (in each case, the neutral density was 

assumed to follow a given function, rather than being determined as part of the solu- 

tion to the problem). However, the plasma-based mechanism commonly proposed to 

explain plasma/shock interactions (ion-acoustic wave damping) requires the energy 

and momentum contained in the precursor to be transferred to the neutral flow. This 

is not possible in the analyses of Ingard and Avramenko. Therefore, an approach 

different from Ingard and Avramenko must be used, in which the neutral flow is not 

specified but is determined self-consistently. 

1.7.2 Vibrational Energy Relaxation. The relaxation of vibrational energy 

behind the shock front was proposed by Baksht, et al. [9] as a means of explaining 

observed shock behavior in a weakly ionized plasma. In there theoretical analysis, 

Baksht. et al. showed that shock wave acceleration as well as the variations in density, 

pressure and temperature could be attributable to this mechanism. However, it is 

unclear by what method Baksht determined the characteristic time over which these 

variations in the flow parameters occurred. 

The propagation of a weak shock wave into a region of vibrationally excited 

Ar
2, with the subsequent relaxation of vibrational energy behind the shock front, was 

examined by Rukhadze, et al. [101]. They found that the characteristic vibrational 

relaxation times determined under nonequilibrium conditions can be many orders 

of magnitude shorter than the relaxation times under equilibrium conditions (this 

will be addressed in Chapter II). Using these nonequilibrium relaxation times in a 

fluid calculation, Rukhadze reported that, in certain cases, very rapid changes in 

shock velocity and flow parameters could occur.   The time scale of these changes 
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(w 20 /(sec) is of the same order as that observed in experiments. However, the 

exact manner in which the relaxation time was determined and incorporated into 

the numerical solution is unclear from the published work. 

A similar study was performed by Vstovskii, et al. [116]. However, in this 

analysis, the shortened relaxation time was obtained by consideration of an impurity 

(water vapor) in the A^ gas, rather than vibrational relaxation under nonequilibrium 

conditions. This impurity served to shorten the vibrational relaxation time in com- 

parison to the relaxation time of pure N2 under equilibrium conditions. Again, shock 

wave acceleration and variations in the flow parameters were found. 

A study of vibrational relaxation in a shock wave of constant velocity was 

reported by Evtyukhin, et al. [42]. Here, the flow parameters behind the shock front 

were determined based on relaxation times determined under equilibrium conditions. 

Since a constant shock velocity was assumed, Evtyukhin could not examine the 

velocity increase resulting from vibrational relaxation. 

Finally, an examination of the relaxation of vibrational energy in the post- 

shock region based on a kinetic description of the vibrational levels was made by 

Gureev. et al. [56]. In this study, the master equations describing the time evolution 

of the vibrational kinetics were coupled to the steady-state fluid equations. The 

solution of this coupled set of equations resulted in the determination of how the vi- 

brational distribution function varied with distance throughout the shock. Although 

his approach is unique and interesting, (iureov could not determine the effect that 

vibrational relaxation had on the shock velocity, since steady-state fluid equations 

were used. 

Although the literature discussing vibrational relaxation behind a shock front is 

plentiful, with varying degrees of complexity, several basic questions seem to remain 

unanswered. These are: 1) what is the final shock velocity in the nonequilibrium 

region and how does it depend on the initial shock velocity?; 2) how much vibrational 

energy can be delivered to the gas flow in the post-shock region under realistic 
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conditions?, and 3) how fast can the store of excess nonequilibrium vibrational energy 

be delivered to the flow under realistic conditions? 

Although the purpose of this section was to review previous work on the 

plasma/shock interaction mechanism of post-shock energy addition in the form of 

nonequilibrium vibrational relaxation, one cannot ignore the fact that the shock phe- 

nomena which have been observed in molecular gases have been observed in atomic 

gases as well ([33], [12] and [41], for example). Since such gases obviously lack vibra- 

tional degrees of freedom, some other mechanism must be at work in them. Never- 

theless, nonequilibrium vibrational relaxation has been a mechanism often proposed 

in the literature and will be addressed in the present research. 

1.7.3 Thermal Inhom.ogeneities. In examining shock wave interaction with 

a decaying laser plasma,. Aleksandrov, et al. [2] was one of the first to suggest 

that the observed variations in shock parameters in a plasma might be clue to the 

presence of thermal inhomogeneities. In their experiment, a shock interacted with a 

hot plasma produced by a laser pulse. By comparing the shock velocity in the plasma 

region to the shock velocity just outside the plasma, they were able to estimate the 

gas temperature within the plasma. These estimates correlated well with plasma 

temperatures measured independently from the shock motion, indicating the higher 

gas temperature in the plasma was responsible for the higher shock velocity in this 

same region. 

Shock velocities were also measured by Evtyukhin, et al. [41], both inside and 

outside a plasma region. By estimating the gas temperature in the plasma under 

known discharge conditions, they were able to predict the velocity increase as the 

shock propagated from the neutral gas into a plasma region. Their predictions also 

correlated well with measurements. 

A more detailed analysis by Voinovich. et al. [115] reached the same conclusion. 

In their experiments, the measured temperature in the glow discharge was used in a 
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two-dimensional fluid calculation to predict the change in the shock velocity as the 

shock propagated from the neutral gas into a plasma region. The measured velocity 

increase was within the predicted range of values based on the uncertainties in the 

experimental measurements. 

Taken together, these results offered convincing evidence that thermal effects 

play a dominant role in plasma/shock interactions. However, a series of other pa- 

pers offers conflicting evidence with regard to the role of thermal inhomogeneities. 

Barkhuclarov, et al. [10] simulated the temperature within a plasma by use of special 

equipment, which he claimed closely replicated the temperature. Results obtained by 

passing a shock through the heated region compared to results obtained by passing 

the shock through a plasma region led them to conclude that the observed dissipa- 

tion of the shock front is not due to thermal effects. Basargin, et al. ([12], [13]) 

also reported no correlation between the gas temperature and the measured shock 

velocity as a shock propagates through a plasma region. Many other experimenters 

reach the same conclusion regarding the inability of thermal effects to fully explain 

the measured data ([27], [77], [75], [55], [52], [53], [46], [85]). 

In light of such disagreement among the various researchers with regard to the 

role of thermal effects in plasma/shock interactions, an independent study of thermal 

inhomogeneities is warranted. 

1.8    Research Approach 

The approach to the present problem will be to address each of the proposed 

plasma/shock mechanisms independently, as shown in Figure 13. That is, although 

an actual laboratory plasma may have charged particle/neutral particle interactions, 

vibrational energy relaxation and thermal inhomogeneities present and at work si- 

multaneously, this research will examine the effect of each independent from the 

other. In each case, the gas modeling the plasma will be treated as an inviscid 

fluid, which neglects the processes of viscosity and thermal conductivity. Neglecting 
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Figure 13. Research Approach. 

these physical processes allows the Euler equations to be used, which are simpler 

to solve than the full Navier-Stokes description of a viscous, thermally conducting 

fluid. Therefore, the present research will focus on the numerical solution of the Eu- 

ler equations for each of the cases shown in Figure 13. The basic numerical algorithm 

to be used in this research is an explicit MacCormack scheme [82]. Flux corrected 

transport [23] will be used as a means of controlling any numerical oscillations which 

might arise in regions of the domain where sharp gradients in the flow parameters are 

present. In order to examine each of these cases, three separate computational codes 

will be developed. Although each of these will use the MacCormack/FCT algorithm 

as a foundation, the exact algorithm implemented will be selected and modified as 
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required based on the the individual aspects of the physical processes present in each 

case. Specific details regarding each code can be found in the chapter corresponding 

to the appropriate case or in the appendices. 

Two methods of shock generation have been used in the plasma/shock inter- 

action experiments reported in the literature. These are the Riemann shock tube 

and the spark discharge. In the absence of a plasma, the former produces a shock of 

constant velocity with flow parameters which are uniform for some distance behind 

the shock front. The latter produces a shock of varying velocity with nonuniform 

flow parameters behind the shock front. Since each produces a shock waveform that 

is distinct from the other and since the experimental observations depend, to some 

extent, on the type of shock, both types of shocks will be examined in this research. 

The influence of charged particles on neutral shock propagation will be exam- 

ined within the framework of a two-component fluid approximation, in which the 

plasma (composed of ions, electrons and neutral particles) will be represented as two 

interacting fluids: neutrals and a charged component. In this approximation, the 

electrons and ions are assumed to move together as a single fluid, essentially strongly 

linked to each other by the electrodynamic force. Momentum and energy coupling 

between the neutral component and charged component will allow the two species 

to interact. Conditions in the plasma will be typical of those normally encountered 

in weakly ionized glow discharges. The gas pressure will be 30 torr, with a gas tem- 

perature of 300A' and an electron temperature of 2 eV. A fractional ionization of 

10~6 will be considered nominal, although higher fractional ionizations will also be 

examined. In this study, the degree of ionization will remain fixed; i.e., there are no 

production or loss terms in the conservation of mass equations for either the neutral 

or charged particles. 

The influence of vibrational energy relaxation on shock propagation will be 

examined with the aid of the Euler equations, augmented by a conservation of vibra- 

tional energy equation. The transfer of energy from the vibrational manifold to the 



translational and rotational modes will be described by a standard Landau-Teller 

coupling term [78]. The plasma will be represented by a region of gas containing a 

nonequilibrium store of vibrational energy. As the shock enters this nonequilibrium 

region, the vibrational energy contained in the gas will be allowed to relax behind the 

shock front to equilibrium levels, with the resulting flow parameters'examined. This 

fluid treatment approach to vibrational relaxation will be supplemented with a ki- 

netic treatment of energy relaxation. Here, the temporal evolution of the populations 

of the various vibrational states of N2 will be examined under nonequilibrium con- 

ditions simulating the density and temperature behind a shock front. The purpose 

of this study is to determine how much energy can be extracted from the nonequi- 

librium vibrational manifold and added to the gaseous flow in a given time under 

realistic conditions. 

The influence of thermal inhomogeneities on shock propagation will be exam- 

ined with the aid of a two-dimensional fluid dynamics code. In this study, the gas 

in front of the shock will be heated to temperatures representative of those found 

in weakly ionized gas discharges. The pressure in this heated region will remain 

constant, which is typical of steady-state gas discharges. A shock will be propagated 

into the heated region and the resulting flow para meters examined. 

The remaining chapters in this report expand on the concepts introduced here. 

Chapter II reviews pertinent background material that will lay the foundation for 

the research. This section discusses the basic t lioory of shocks as it relates to each of 

the three mechanisms mentioned previously. Kach of these areas will be examined 

in detail in Chapters III through V. In each of these chapters, the model equations 

describing each proposed physical process will be given, validations of the relevant 

computer codes will be offered and the plasma/shock interactions from the numer- 

ical simulations will be presented and discussed. Overall conclusions of the present 

research and recommendations for future efforts are contained in Chapter VI. 
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In addition to the chapters mentioned previously, a number of appendices are 

offered that treat the specifics of the present research in further detail, beginning with 

a List of Symbols, which comprises Appendix A. The two-dimensional computational 

fluid code used to examine thermal inhomogeneities is detailed in Appendix B. The 

two-fluid plasma code used to examine ion-acoustic wave damping is discussed in 

Appendix C. The examination of the effects of thermal inhomogeneities required the 

development of a self-consistent solution of the heat conduction problem as it applies 

to the weakly-ionized plasmas typical of a glow discharge. The details of the method 

used to achieve this solution are found in Appendix D. The thermal profiles obtained 

were then used in the two-dimensional fluid code in order to simulate previously 

reported experiments. Finally, a short tutorial of optical shock tube diagnostics 

is offered in Appendix E. These diagnostic methods were also used in the two- 

dimensional simulations. 
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II.   Background Theory 

2.1 Introduction 

The current research is focussed on three mechanisms that have been proposed 

in the literature as being responsible for the observed plasma/shock anomalies. In 

this chapter, the basic theory of each mechanism will be addressed in sufficient detail 

to permit an understanding of the discussions contained in the later chapters, where 

each mechanism is addressed individually in greater detail. First, however, it is 

necessary to explain the underlying framework upon which this investigation will 

rest. 

2.2 Shock Analysis Approaches 

Collisionless 
Boltzmann 
equation 

Continuum 
model 

Euler 
equa- 
tions 

'///////////MS/// 
^Navier-Stokes^ 
^equations%$^ 

Conservation equations 
do not form a 
closed set 

_L 
 * 0 
Inviscid 
limit 

0.01       0.1 10      too  * 30 

Free-molecule 
limit 

Knudsen number 

Figure 14. Regimes of applicability for the kinetic and fluid equations. [Ref: [5]] 

There are two general approaches that can be used in the study of gasdynamic 

flows:  kinetic based and fluid based.   The kinetic approach is based on a discrete 
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particle model of the flow in which the Boltzmann equation is solved for the particle 

distribution function. The fluid approach is based on a continuum model for the flow 

in which either the Euler equations (for inviscid flow) or the Navier-Stokes equations 

(where viscosity and thermal conductivity are treated) are solved. These equations 

simply describe the principles of conservation of mass, momentum and energy for 

the fluid. The selection of the proper approach can be guided by the value of the 

Knudsen number, as shown in Figure 14. If the Knudsen number (the ratio of 

the mean free path of a particle divided by the characteristic distance over which 

the macroscopic variables change appreciably) is much less than one, then the fluid 

approach is appropriate. If the Knudsen number is of the order of one or greater, 

the kinetic approach is appropriate. 

2.2.1 Kinetic Approach. The kinetic approach is based directly on the 

Boltzmann equation and treats the flow of gases as distributions of particles. This 

method yields the particle distribution function as the solution to the Boltzmann 

equation, from which all the macroscopic variables (density, temperature, velocity, 

pressure), can be determined. A number of researchers have used the kinetic ap- 

proach in the study of both unionized [91] and ionized ([111], [1], [80], [113]) gas 

flows. It should be pointed out that the ionized studies referenced here assumed the 

plasma in front of the shock to be in an equilibrium state. That is, the electrons, 

ions and neutrals in front of the shock all had the same temperature. This is in 

contrast to the conditions relevant to the current research, in which the gas in front 

of the shock is assumed to be in a nonequilibrium state. 

2.2.2 Fluid Approach. The fluid equations can be derived from the more 

complete Boltzmann equation by taking different moments of the latter. The first 

moment yields the continuity of mass equation, the second moment yields the conti- 

nuity of momentum equation and the third moment yields the continuity of energy 

equation. It should be noted that each moment introduces another unknown, thus 
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there will always be one more unknown than the number of equations. For exam- 

ple, the continuity of mass equation introduces the mean velocity. The continuity 

of momentum equation includes this velocity, but also introduces the pressure ten- 

sor, which includes the scalar pressure as well as viscosity components. The energy 

equation contains the pressure tensor, but also introduces the heat flux vector, etc. 

Such an equation set is impossible to solve exactly. However, in practice the set of 

equations is usually terminated at some level and an additional constraint imposed. 

A common practice is to terminate the equation set at the energy equation and close 

the set with an assumed equation of state. 

The fluid or continuum approach is based on the assumption that energy dis- 

tributions of the individual species which comprise the flow always maintain forms 

of local thermodynamic equilibrium. That is, the energy distribution of each species 

is assumed to be a drifting Maxwellian (in the case of the Euler equations) or a 

slightly perturbed drifting Maxwellian (in the case of the Navier-Stokes equations). 

However, differences in temperature between species are allowable in this approach, 

permitting nonequilibrium conditions to be considered. 

The fluid equations can be divided into two basic versions. The Euler equa- 

tions assume that the distribution of particles in velocity space is a true drifting 

Maxwellian. As such, the coefficients of viscosity and thermal conductivity, which 

can be determined based on the distribution function, are identically zero. The 

Navier-Stokes equations assume that there are enough collisions in the flow to keep 

the distribution of particles in velocity space close to a Maxwellian (and hence cle- 

scribable by a fluid approach), yet not so many collisions that the distribution is 

a pure drifting Maxwellian. In this case the coefficients of viscosity and thermal 

conductivity will not be zero. 

In the study of processes in and around shock fronts, it would appear that the 

kinetic approach is the appropriate choice, since the characteristic distance of the 

shock width is (classically) a few mean free paths, resulting in a Knudsen number 
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greater than one in this region. However, the kinetic approach is made difficult 

due to complications arising from the collision term contained within the Boltzmann 

equation. As a result, many researchers have adopted the fluid treatment as the 

method of choice. In spite of the apparent short comings this method might have 

when used to analyze shock structure, it has, in practice, enjoyed considerable suc- 

cess. Experience has shown that the fluid equations are an excellent model and give 

reasonably good estimates of the mean flow quantities [69]. 

The fluid approach was also adopted in the present research, with the assump- 

tion that the physical mechanisms to be studied are amenable to such a method. 

However, in the event some portion of these mechanisms is kinetic based, the fluid 

approach will be incapable of resolving the effect and a kinetic treatment must be 

used. In the remaining sections of this chapter, the fluid equations will be used to 

outline the basic concepts of plasma effects, vibrational energy relaxation effects and 

the effects of thermal inhomogeneities on shock propagation. 

2.3    Plasma Effects 

2.3.1 Small-Amplitude Wave Propagation in Weakly Ionized Plasma. In 

a neutral gas, all frequencies of small-amplitude waves travel at the same speed (to 

an approximation), the speed of sound. Thus a small-amplitude wave packet that 

is composed of a mixture of frequencies will travel without dispersion at the speed 

of sound. In a weakly ionized plasma, on the other hand, a number of modes are 

possible. Each of these modes has its own characteristic speed of propagation and 

dispersion properties. These modes can l>e determined by first linearizing the fluid 

equations for each species, which are the equations describing conservation of mass, 

momentum and energy, along with an appropriate equation of state. Assuming 

small-amplitude waves, the nonlinear portions of these equations, which lead to the 

development of shocks, can be neglected. Following this linearization procedure, the 

fluid equations can be represented by a system of homogeneous equations, which 
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can be written in matrix form. Setting the determinant of the coefficient matrix 

to zero results in a dispersion relation. Once the dispersion relation is known, it 

can be used to determine how a small amplitude wave will propagate, including 

the speed of the wave. According to Sessler [106], there are three modes of wave 

propagation in a weakly ionized, unmagnetized plasma. These modes describe the 

acoustic wave (neutral-particle wave), the ion-acoustic mode (the ion wave) and the 

Langmuir mode (electron wave). 

The last two of these modes do not normally propagate. In the ion-acoustic 

mode, ions and electrons move in phase with each other and with almost the same 

amplitude, while the neutrals can be considered to be at rest [63]. Although the 

ion-acoustic mode in a plasma travels faster than an acoustic wave in a neutral 

gas, the ion-acoustic waves are strongly damped for u> < i^„, where LO is the wave 

frequency and uin in the ion-neutral collision frequency. Such strong damping effec- 

tively prevents this mode from propagating. In the Langmuir wave the neutrals are 

approximately stationary and the electrons and ions move in opposite directions [63]. 

Normally, this mode does not propagate either, due to the very rapid attenuation of 

the wave with distance (on the order of a Debye length). 

A wave mode that can propagate, however, is the acoustic mode, so named 

due to its close relationship to a sound wave propagating in a neutral gas. It is 

characterized by a propagation speed very nearly equal to the neutral sound speed. 

This mode also describes wave action in which all of the components move with 

very nearly the same phase and amplitude. As such, only weak attenuation would 

be expected with this mode, which Sessler determined was primarily clue to neutral 

particle viscosity effects. 

2.3.2 Shock Propagation in Weakly Ionized Plasma. In the previous sec- 

tion, the propagation modes for small-amplitude waves in an ionized gas were dis- 

cussed.   Since the waves were of small amplitude, the nonlinear terms in the fluid 
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equations could be neglected. When the amplitude of a wave is not small these 

nonlinear terms must be retained. It is exactly the nonlinear term in the momen- 

tum equation which leads to a steepening of the wave's profile as it propagates. As 

in a neutral gas, this steepening process leads to the development of shocks in a 

partially ionized gas as well, which is the subject of the present section. Shocks in 

nonequilibrium partially ionized gases exhibit different features than shocks in neu- 

tral gases. For example, the large disparity between the electron and heavy particle 

temperature leads to the generation of ion-acoustic waves. Since these waves travel 

at the ion-acoustic sound speed (approximately seven times the neutral sound speed 

under typical glow discharge conditions), they are able to propagate out in front of 

a neutral shock (as long as the neutral shock is traveling less than the ion-acoustic 

speed). As a result, ion-acoustic waves are able to create a region in front of the 

neutral shock in which the charged particle densities and velocities are perturbed 

from their ambient values. The width of this region is large compared to the typical 

width of the neutral shock. Through ion-neutral collisions, these waves are damped, 

with their momentum and energy being transferred to the neutral gas. 

In this section, the derivation of a simplified set of equations based on the 

two fluid approximation used by Avramenko, et al. [6] will be used to provide the 

background theory regarding shocks in weakly ionized plasmas. Since a two fluid 

approximation will be used to describe the plasma in the present research, it is ad- 

vantageous to present Avramenko's development here. In this approximation, the 

electrons and ions are assumed to behave as a single component, with the mean ve- 

locity of the electrons assumed to be equal to the mean velocity of the ions. In addi- 

tion, the plasma is assumed to be quasi-neutral, wherein the ion and electron number 

densities are very nearly the same. With these assumptions, the ion mass conser- 

vation equation can be solved in lieu of the electron mass conservation equation. 

Avramenko further assumed that the electron temperature was much higher than 

the ion or neutral gas temperature, which is appropriate in the case of the weakly 
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ionized glow discharges commonly used in plasma/shock interaction experiments. 

Furthermore, energy transfer between the different components was neglected. The 

neutral particle density and velocity profiles were assumed known and modeled by 

appropriate step functions, as in Ingard's development [65]. 

Avramenko's approach begins by considering the electron and ion momentum 

equations, which can be written in one dimension as 

ß(pfVf) + ^-(pKVe
2)   =   -VPe - ^ß - Peuei(Ve - Vi) - Peisen(Ve - i;.)   (5) 

at ox Me 

^{PiVi) + |"(P^V;
2
) = -vPi + eiSE-p^Vi-w-pMnW-Vn)   (6) 

Ot Ox Mt 

where p is the mass density, V is the mean flow velocity, P is the pressure, M is the 

particle mass, E is the electric field, q is the elementary unit of charge and v is a 

collision frequency. The subscripts i, e, n denote the ions, electrons and neutral fluid, 

respectively. The electron momentum equation can first be simplified by neglecting 

the electron inertia term (first term on the left hand side of Equation 5). For cases 

in which the electron thermal speed is much greater than the electron mean flow 

velocity, the second term on the left hand side of this equation can also be neglected. 

In conditions typical of weakly ionized glow discharges, this requirement is met for 

shock Mach numbers of the order of 20 or less. The third term on the right hand 

side of both of these equations is zero, since Ve has been assumed to be equal to V';. 

The three remaining terms in Equation 5 allow the electric field to be approximated 

as 
A:ßie              Meisen ._. 

E % VpP (V,; - V„), ( < ) 
peq q 

where Te has been assumed constant. The first term on the right hand side of this 

equation represents the gradient in the electron pressure, while the second term 

represents the electron-neutral collision term. It will be shown in Chapter III that 

the contribution of the collision term to the electric field is small. For the moment, 

however, it will be retained.   Using Equation 7 to represent the electric field and 
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assuming the plasma to be quasi-neutral {ne äS /;.,), the ion momentum equation can 

be rewritten as 

at ox Mi  ox 
1  i Me Ven 

Mi Vin . 
(8) 

The first term in the brackets on the right hand side represents ion-neutral collisions 

while the second term is the electron-neutral collision term retained in the electric 

field approximation (Equation 7). It can be shown that for conditions typical of a 

weakly ionized plasma in Argon, the second of these terms is very small compared to 

one and will be neglected. Under these simplifying assumptions, the ion equations 

become 

% + f(Mi)   =   0 (9) 
Ot        OX 

The ion-neutral collision frequency, v-m, is defined as [110:88] 

TO) 

v/TT \Mi MnJ 

where ain is the ion-neutral collision cross-section. The first term on the right hand 

side of Equation 10 represents the momentum gained by the ions clue to the electric 

field (from Equation 7), while the second term represents the time rate of change 

of ion momentum clue to collisions with neutral particles. Note the lack of a term 

representing the gradient of the ion pressure on the right hand side of this equation. 

Neglecting this term is justifiable in a weakly ionized plasma, in which Te is typically 

one to two orders of magnitude greater than T,-. 

Avramenko did not use an energy equation for either the neutrals or the ions, 

assuming instead that the heavy particle temperatures were constant throughout the 

shock front region. This appears to be a serious omission, especially in light of the 
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obvious temperature rise across the shock front. However, truncating the equation 

set at the momentum equation simplifies the problem considerably, and results in a 

solution nearly identical with Ingard, who retained the energy equations for all the 

plasma components. 

The assumption of a steady-state form of the solution allows Equations 9 and 

10 to be transformed into a coordinate system attached to the shock front. This is 

accomplished by defining a new spatial coordinate, £ , defined as 

Z = x-Vshockt (12) 

where Vshock is the shock front velocity. This transformation essentially changes 

the partial differential equations into ordinary differential equations. Accordingly, 

Equations 9 and 10 are transformed into 

-V.hock^ + ^[piVi)    =    0 (13) 

d_ V2 I    V 
- v,: In 

■i \ Vshoc, 
-uin(Y)-Vn)   =   0 (14) 

where V,- and Vn are the ion and neutral flow velocities, now in the shock front frame, 

defined as 

Vi.n = r,A.„*.-i;.,,. '    (is) 

Note that the ion velocity in the transformed conservation of mass equation (Equa- 

tion 13) is defined with respect to the laboratory frame. The ion-acoustic velocity, 

Via • appearing in Equation 14 is the velocity of small disturbances in the plasma 

and is defined as 

va=^
kBT'^kBT<y de) 

where 7,; and je is the ratio of specific heats for the ions and electrons, respectively. 

With Te » Ti, which is usually the case in weakly ionized plasmas, the ion-acoustic 
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/elocity can be approximated as 

/    l   T \ ll'2 

1/.        ^*v>     ' ' 
Via  ~ M, 

In general, the neutral component would be described by equations analogous 

to Equations'9 and 10 (lacking, of course, the electric field term). However, in the 

simplified case considered by Avramenko, the density and velocity of this component 

were given by step functions: 

Vn(0   =   V'nl//(-0 (IS) 

Pn(0     =     Pn0 + (Pnl-Pn0)H(-Z) (19) 

where £ is greater than zero in front of the neutral shock front and less than zero 

behind the neutral shock front.  The subscripts 0 and 1 denote regions in front of 

and behind the shock front, respectively.  Thus, pn0 and pnl are the neutral mass 

densities in the ambient and perturbed regions of the flow, respectively, and V'„i is 

the neutral velocity behind the shock front.   H(£) is the Heaviside step function, 

defined as 

'  1,    f > 0 
H(S) = (20) 

0,   f <0 

Solving Equation 13 analytically yields an equation relating the ion mass den- 

sity, pi, to the ion velocity in the laboratory frame, \']: 

Pio ( 1 - TT1- 
V ''shock 

Vi    v '211 

Assuming the ion-acoustic velocity to be much greater than the neutral shock velocity 

{Via » Vshock) allows the first term in the brackets of Equation 14 to be neglected 

in comparison to the second term. This is equivalent to neglecting the nonlinear 

term in the ion momentum equation, which in effect limits any resulting solution to 
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small amplitudes. However, neglecting this nonlinear term allows Equation 14 to be 

integrated analytically, resulting in 

m) = 
£>o 

L + ^Pl^fe-1)"1 (22) 

[ vnl = vshock (i- **)  e<o 

where the ion velocity has been transformed back into the laboratory frame of ref- 

erence. In this equation, £o is a characteristic length defined as 

V'2 

f  =  *2  (23) 
V        >> >' shock is in 

where u^ is the ion-neutral collision frequency in the unperturbed (upstream) region 

of the flow. It can be shown that this expression for the characteristic length can be 

approximated (to within a constant of the order of unity) as 

$> = £A£> (24) 

where A\°J is the ion-neutral mean free path in the upstream flow. This characteristic 

length is nearly identical to Ingard's result. 

Using the ion velocity profile of Equation 22 in Equation 21 yields the ion 

density profile. 

(l + (££-l)exp(-£)    £>0 

PiO 
(25) 

PnO ^ 

which is nearly identical to Ingard's result (Equation 2). 

The chief results of Avramenko's derivation are Equations 22 and 25. These 

approximate analytic expressions describe the motion of the charged particles as a 

shock propagates through a weakly ionized plasma. As an example of the structures 

predicted using these results, the case of a Mach 2 shock in weakly ionized Argon is 

considered. Here, plasma parameters typical of a weakly ionized glow discharge will 
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be used: 

Te = 2 eV     P„ = 30 torr      a 

Tn = 400A'   <Tin = 10-19m2 

where a is the fractional ionization, defined as 

= io-6 

(26) 

rii 
a = 

n i + nn 

Under these conditions, the characteristic length £0 evaluates to approximately 0.23 

mm. 
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Figure 15. Velocity profiles of the ions (solid) and neutrals (dashed) in the labora- 
tory frame of reference, according to Avramenko's approximate analytic 
solution (Equation 22). The distance has been normalized by £0. 

Avramenko's approximate analytic solution for the ion velocity is shown in 

Figure 15. The neutral velocity profile is given by the dashed line. The ionic precur- 

sor extends out to approximately 5£0 (or 80 ion-neutral mean free paths) which is 

just over 1 mm under the present conditions. If the neutral-neutral mean free path 

and the ion-neutral mean free path are of the same order of magnitude, then the 

precursor shock front width is approximately 20 times the neutral shock front width. 

The velocity in the downstream region is consistent with the Rankine-Hugoniot re- 
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lations for a Mach 2 shock in Argon. The approximate solution is valid for the case 

in which VirJVshock » 1- In this calculation, this ratio was slightly less than four. 

The spatial axis has been normalized according to the characteristic length £„. 

13 

o 
G 

C 

-2-1012345 
£, (normalized distance) 

Figure 16. Density profiles of the ions (solid) and neutrals (dashed), according to 
Avramenko's approximate analytic solution (Equation 25). The dis- 
tance has been normalized by £0. 

The ion (solid) and neutral (clashed) density profiles are shown in Figure 16. 

The post-shock value of each is consistent with a Mach 2 shock in Argon. Again, an 

ionic precursor is present, extending approximately 5£0 in front of the neutral shock. 

In this figure, the densities have been normalized to their respective upstream values. 

Thus, although the precursor appears dramatically here, it must be remembered that 

the ions constitute only a very small fraction of the total mass of the gas at any point 

in the flow. 

Up to the present, no discussion has been given regarding the electron density 

profile. In the two fluid plasma approximation, the electron and ion motion was 

assumed to be closely linked to each other, allowing the solution of the ionic equa- 

tions (density, velocity) to be the approximate solution for the electrons. However, 

small deviations from charge neutrality will exist in the plasma in certain regions, 
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Figure 17. Approximate electrical field calculated by a linearized dispersion relation 
(Equation 4) (solid) and by balancing the electric force with the electron 
pressure gradient (Equation 7) (dashed). 

resulting in an electric field. This electric field can be calculated in at least two 

ways. First, there is Ingard and Schulz's approximate analytic solution based on 

the acoustic mode dispersion relation applied to a neutral shock in weakly ionized 

plasma (Equation 4). Second, there is Equation 7. which was used in Avramenko's 

derivation of the ion momentum equation in the two fluid plasma approximation. 

Here, the electric field was determined by essentially requiring the electric force to be 

balanced by the electron pressure gradient (the electron-neutral collision term was 

shown to be small). Ingard's estimate is shown in Figure 17 as the solid curve, while 

the result of applying Equation 7 to the ion density profile in Figure 16 is shown as 

the dashed line. Although there are noticeable differences between the curves, the 

peak values and the spatial extent in front of the neutral shock are very similar. 

In this section, the influence of charged particles on the shock profile has been 

examined using approximate solutions to the fluid equations. A precursor (comprised 

of charged particles) has been shown to exist upstream of the neutral shock with a 

width of approximately Te/Ti times the ion-neutral mean free path. This precursor 
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arises due to the generation and subsequent dampening of ion-acoustic waves in the 

shock front region. Alternatively, one can view the precursor as arising from diffusion 

of charged particles from behind the shock front due to the high electron mobility 

and the plasma's inherit property to maintain charge neutrality. An electric field 

has also been shown to be generated in the region of the precursor. 

In both Ingard's [65] and Avramenko's [6] development of the ion precursor, 

the influence of the charged particles on the neutral gas was not examined. By 

using an assumed form for the neutral density and velocity profile, the neutrals were 

allowed to influence the charged particles, but the reverse process was prevented. 

However, it is exactly the reverse process which has been suggested in the literature 

as a major contributor to the observed experimental anomalies, under the auspices 

of ion-acoustic dampening ([11], [12], [13], [51], [75], [85]). That is. as the ion- 

acoustic wave is damped, its momentum and energy are transferred to the neutral 

gas, heating the neutral fluid in the process. To examine this process, an analysis 

must be adopted in which no assumptions are made with respect to the form of the 

neutral component. This analysis will be undertaken in Chapter III. 
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24 Post-Shock Energy Addition: Vibrational Relaxation 

The addition of energy into the flow behind the shock front has been proposed 

as a process responsible (at least in part) for the observed shock phenomena in 

plasma, particularly the anomalously high shock speed. Physical mechanisms that 

could lead to post-shock energy addition include electron-ion recombination [75]. 

de-excitation of electronic states [54]. atomic association [75] and vibrational energy 

relaxation [74]. The present section will address the last of these processes, focusing 

on the relaxation of vibrational energy under nonequilibrium conditions. 

A brief introduction to Hugoniot shock adiabatics, used to both understand vi- 

brational relaxation effects and provide analytic calibration points for computational 

models, will be presented first. This introduction will be followed by the application 

of shock adiabatics to the cases of both equilibrium and nonequilibrium vibrational 

energy relaxation, highlighting the essential differences present in the nonequilib- 

rium case. Finally, a discussion of the nonequilibrium vibrational relaxation time 

will be given. Here, it will be shown that the characteristic time for nonequilibrium 

vibrational relaxation can be many orders of magnitude faster than that encountered 

under equilibrium conditions, providing the opportunity for vibrational relaxation 

to play a relevant role in plasma/shock interactions. 

2.4-1 Shocks and Hugoniot Shock Adiabatics. Since both Landau [79:319] 

and Zel'Dovich [123:5] extensively discuss shock adiabatics, they will not be derived 

here. Briefly, however, the equations that express the continuity of mass, momentum 

and energy in a reference frame attached to the shock front can be combined to give 

a relation between the density and pressure just behind the shock to the density and 

pressure in front of the shock. This relation is given by Landau [79:320] as 

e1-e + P1V1-PV+^(Vl + V)(P-P1) = 0 (28) 
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where P is the pressure, V" is the specific volume (1/p) and the subscript 1 denotes 

the upstream ambient values. The specific internal energy (thermal, rotational, 

vibrational. chemical, etc.) is represented by e and is defined as 

7-1   M       . [     ' 

where 7 is the-ratio of the specific heats {Cp/Cv). Landau calls Equation 28 the 

'shock acliabatic' or the 'Hugoniot adiabatic'. It will be the principal analytical tool 

used in predicting the values of 1) the jumps in the flow parameters across the viscous 

shock 2) the equilibrium values of the flow parameters in the downstream region and 

3) the shock front velocity in a nonequilibrium gas. 

As an example of a shock adiabatic, consider a calorically perfect gas with 7 = 

7/5. Such a gas would be representative of a nitrogen molecule with 3 translational 

degrees of freedom and 2 rotational degrees of freedom (for the moment, vibrational 

degrees of freedom will be neglected). The shock adiabatic for this gas can be drawn 

in the P-V (pressure, specific volume) plane by finding the solution to Equation 28 

W] th e = f 4j. Assuming a perfect gas. Equation 28 can be written as 

LPlVl _ Lpv + i(Vi + V)(P - Pi) = 0 (30) 

The solution to Equation 30 is shown in Figure 18. where the pressure and specific 

volume have been normalized by their initial values. Thus, a fluid element in the 

ambient gas is represented by the point (1.1). 

A shock can be defined in the P-V plane by a line drawn from the initial point. 

with the slope specifying the shock speed. This line represents the conservation of 

mass flux, j, which is defined as 

j=pv, (31) 
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Figure 18. Shock adiabatic for a gas with 7=7/5. 

where p is the density and v is the flow velocity in the shock front frame. According 

to Landau [79:320], the square of the mass flux defines the slope of a line drawn from 

the initial point (Pi,Vi), which intersects the shock adiabatic at some other point 

(P,V): 
P~Pi [32) 
Vi - V 

Thus, the shock speed and the slope of the constant mass flux line are related by 

Pi Vshock 
P-Pi 
Vi- V" 

(33) 

In Figure 19, the same 7 = 7/5 shock adiabatic as in Figure 18 is shown, together 

with a mass flux line corresponding to a shock traveling at a speed of 706 m/sec 

(Mach 2). The coordinates of the intersection of these two curves (point 'A') yields 

the jump values in pressure and density across the shock front. These are the same 

values that would have been obtained using the standard Rankine-Hugoniot shock 

relations [5:33-35] under identical conditions. 
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Figure 19.    Shock acliabatic for a gas with 7=7/5 and a mass flux line for a shock 
propagating with a velocity of 706 m/sec. 

2.4.I.I Equilibrium Vibrational Relaxation. Now consider a gas with 

vibrational degrees of freedom. For simplicity, the specific vibrational energy will be 

modeled as 

tvib{Tvib) — (34) 

It is noted that this representation of the specific vibrational energy is different 

than the usual expression for the average specific vibrational energy of a Maxwell- 

Boltzmann distribution of harmonic oscillators, given by 

€vib[-L vib I 
W"> 

M    ,VjT,.,h_y (35) 

where T°6 is the characteristic vibrational temperature for the particular molecule 

[T°ib « 3395Ä' for N2). It is instructive to compare the vibrational temperature 

obtained by use of Equation 34 with the vibrational temperature as it appears in 

Equation 35. If Tvih in Equations 34 and 35 is labelled Tvibi and Tvib2, respectively, 

then by conservation of energy the two vibrational temperatures can be related, 

as shown in Figure 20.   It is observed that the vibrational temperatures used in 
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Figure 20.    Comparison of Tvlb given by Equation 34 (Tvibl) with Tvib given by Equa- 

tion 35   {Tyite)- 

the simplified expression for the specific vibrational energy are much less than the 

vibrational temperatures used in the usual definition of the same. For example, a 

vibrational temperature typically encountered in a glow discharge in JV2 is 2000A. 

which is approximately equivalent to 800A' in this simplified analysis. The use of 

Equation 34 allows the ratio of specific heats (7) to be represented conveniently as 

9/7. This essentially gives two full degrees of freedom to the vibrational mode, with 

each receiving 1/2 kBT of thermal energy, consistent with classical thermodynamics. 

In this case, the shock adiabatic (Equation 28) can be written as 

\PiW + evlb(Tvthl) - \PV - evih{^-) + \(\\ + V)(P - A) = 0       (36) 

where Tvlbl denotes the ambient vibrational temperature in front of the shock and 

^-p^ represents the equilibrium temperature behind the shock, which is a function 

of pressure and specific volume. If the vibrational temperature in front of the shock 
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is in equilibrium with the gas temperature in front of the shock, then 

1 vibi J- gasi 

and Equation 36 can be rewritten as 

|p1Vi-|pv + |(Vi + V')(P-P1) = 0 38) 
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Figure 21.    Shock adiabatics for gases with 7=7/5 (dashed) and 7=9/7 (solid) and 
a mass flux line for a shock propagating with a velocity of 706 m/sec. 

The solution to Equation 38 is shown in Figure 21 (solid), along with the pre- 

vious solution to Equation 30 (dotted). A shock with a propagation speed of 706 

m/sec is also shown. The time scale for the fluid to cross the shock front is much 

smaller than the time scale for vibrational energy relaxation, thus the vibrational 

energy can be considered to be 'frozen' on this time scale, with the gas having a 7 of 

7/5. As a result, immediately after crossing the shock front, the flow parameters are 

those given by point 'A'. The initial jump to 'A' can be considered instantaneous, 

although in reality it takes a few (4-5) collisions before the conditions at \V are 
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realized. As equilibrium (point 'B') is approached, energy is transferred from the 

translational and rotational modes into the vibrational modes. Note that as equilib- 

rium is approached, both the pressure and density of the fluid element increase. The 

conditions at B' are the same as those determined from a more complex algorithm 

which takes into account the transfer of energy into the vibrational manifold (see, 

for example, [5:508]). 

Figure 22. Temperature distribution in a shock propagating through an equilibrium 
gas. Point 'A' is just behind the shock front, while point 'B' is in the 
equilibrium region. 

An alternate view of the equilibrium process is depicted in Figure 22. As a fluid 

element crosses the shock, the gas temperature rises sharply, while the vibrational 

temperature remains fixed at the upstream value. As the fluid element progresses 

further downstream, energy from the translational and rotational modes is gradually 

transferred to the vibrational mode, with the fluid reaching equilibrium at point lB\ 

2.4.I.2    Nonequilibrium  Vibrational Relaxation. Suppose now that 

the shock is propagating into a region of gas in which the vibrational temperature is 

not the same as the gas temperature. This region is in a nonequilibrium state. It is 

natural to ask how this region could arise. One answer lies in examining the effects of 

a glow discharge plasma on the vibrational energy of the neutral gas. The electrons in 
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the plasma collisionally excite the vibrational states of the molecules in the discharge. 

Through anharmonic pumping effects, the temperature which is characteristic of the 

vibrational energy can be many times greater than the gas temperature [49:147]. In 

this case, Tvn}l does not equal the local gas temperature, but can be many times 

greater than it. Assuming full equilibrium is eventually achieved in the downstream 

region, Equation 36 still remains valid and the adiabatic can be drawn for any initial 

vibrational temperature Tvn,l. 

N 

«3 
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Figure 23. Shock adiabatics for a gas with 7=7/5 (dashed) and for a nonequilibrium 
gas with 7 = 9/7 (solid). The ambient translational and vibrational 
temperatures are 300A" and 800A', respectively. The mass flux line 
corresponds to a shock propagating with a velocity of 706 m/sec. 

As an example, consider the case in which TvuH — 800A', and Tgasi = 300A'. as 

in Figure 23. A shock propagating at a velocity of 706 m/sec is also shown. Point 

'A' is the intersection of the 7 = 7/5 adiabatic (clashed) with the constant mass flux 

line, which reflects equilibration of the translational and rotational modes just behind 

the shock front, with the vibrational modes frozen. Point 'B' is the intersection of 

the equilibrium adiabatic (solid) with the constant mass flux line. Note that in 

this nonequilibrium case, the equilibrium adiabatic does not pass through the initial 
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point (1,1). A fluid element in front of the shock travels toward the shock at 706 

m/sec (in the shock front frame). Point "A" is reached instantaneously after crossing 

the shock front. Now, instead of the vibrational mode being a sink for translational 

and rotational energy, it becomes a source. That is, as equilibrium is approached 

(point 'B'), the energy present in the vibrational mode is transferred to the other 

modes until the vibrational temperature equals the gas temperature. Note in this 

case both the pressure and density decrease as equilibrium is approached. 

Figure 24. Temperature distribution in a shock propagating through an equilibrium 
gas. Point 'A' is just behind the shock front, while point lB' is in the 
equilibrium region. 

A complementary view of the equilibration for the nonequilibrium state is 

shown in Figure 24. Here, a shock propagates into a gas which is initially in a 

nonequilibrium state. As a fluid element crosses the shock, the gas temperature 

rises sharply, while the vibrational temperature remains constant. As the fluid ele- 

ment flows into the downstream region, energy from the vibrational mode is grad- 

ually transferred to the translational and rotational modes, with the fluid reaching 

equilibrium at point 'B'. 

In the case of nonequilibrium energy relaxation, there is a minimum value for 

the slope of a line drawn from the initial point that can intersect the equilibrium 

adiabatic. This limiting line is tangent to the equilibrium adiabatic, with the point 
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of tangency called the Chapman-Jouguet point. Since the slope of a constant mass 

flux line is related to the shock velocity, the presence of a minimum mass flux results 

in a minimum shock velocity. According to the theory outlined by Osipov, et al. [93], 

which is based on the work of Zel'Dovich [123] and Landau [79], a shock wave which 

enters a nonequilibrium region at a velocity less than the minimum shock velocity 

the will accelerate until the minimum velocity is achieved. As an example, consider 

0.3 ~ÖÄ        0.5        0.6        0.7       0.8 0.9 
Specific Volume (Normalized) 

Figure 25. Shock adiabatic for a gas with 7=7/5 (clashed) and for a nonequilibrium 
gas with 7 = 9/7 (solid) where TgaSl = 300A' and Tvibl = 800A". Point 
'CJ' is the Chapman-Jouguet point. The mass flux lines correspond to 
shock velocities of 585 m/sec (curve 1), 624 m/sec (curve 2) and 706 
m/sec (curve 3). 

the nonequilibrium case in which the values of the vibrational and translational tem- 

peratures are 800Ä" and 300A', respectively. The corresponding adiabatics, shown in 

Figure 25, are identical to those discussed in Figure 23. A minimum constant mass 

flux line (curve 2) is tangent to the equilibrium adiabatic at the Chapman-Jouguet 

point ('CJ') and corresponds to a shock velocity of 624 m/sec. According to theory, 

this is the minimum allowable steady-state velocity in the nonequilibrium region. 

According to an interpretation of this theory by Bystrov, et al. [27], no acceleration 

(or deceleration) is expected for a shock which enters the equilibrium region at a 
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speed which is greater than the minimum shock speed. For example, Figure 25 also 

shows a shock with a velocity of 706 m/sec (curve 3). Since this shock enters the 

nonequilibrium region at a velocity greater than the minimum shock velocity, no 

change in the shock speed is expected according to Bystrov. However, consider the 

shock which propagates into the nonequilibrium region with an initial velocity of 

585 m/sec (curve 1). Since the initial shock speed is less than the minimum shock 

speed, the shock is expected to accelerate to the new minimum velocity (624 m/sec). 

When the steady-state has been reached (that is, when the shock has reached the 

new minimum shock velocity) a fluid element crossing the shock will instantaneously 

move from the initial point to the point 'A', then relax down the constant mass flux 

line to the Chapman- Jouguet point ('CT) at some finite rate, which depends on the 

nonequilibrium vibrational relaxation kinetics. 

24.2 Nonequilibrium Vibrational Relaxation Time. In the previous section, 

it was shown that variations in the flow parameters will occur as a fluid element 

passes from the shock front region (point \V) towards the equilibrium region (point 

'B'). For a gas initially in equilibrium, the characteristic time associated with these 

variations is usually long compared with the time it takes a fluid element to cross 

the shock layer. In this case, the energy transfer does not effect the parameters 

in the shock front region. However, for a gas initially in a nonequilibrium state, 

the characteristic time associated with these variations may be several orders of 

magnitude shorter than that achieved under equilibrium conditions. In this case, 

the energy transfer may be sufficiently rapid to cause significant variations in the 

flow parameters near the shock front, as well as cause significant changes in the 

shock propagation velocity on short time scales. The calculation of the vibrational 

relaxation time under nonequilibrium conditions is the focus of this section. 

A discussion of nonequilibrium vibrational relaxation times must begin with 

an introduction to the vibrational distribution function (VDF). The VDF defines 

the number density of molecules in each possible vibrational state in a unit volume 
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of gas. The calculation of the VDF is important for two reasons. First, the VDF 

determines the amount of energy contained within the vibrational manifold, and 

thus partly determines how much energy can be released into the post-shock region 

of the flow. Secondly, the VDF determines the effective vibrational energy relaxation 

time, reff. Both of these will be addressed in greater detail shortly. The VDF can be 

determined by solving a set of master equations which describe the relevant kinetic 

vibrational processes. The master equation can be written as [49:142] 

dNv 

~df =      Pv-l.v^v-\^tot + Pv+l.v^v+l^tot 

— Pv.v+l^v^tot ~~ Pv.u-l^v^tot 

m 

Vi',i'+1    iVt'iVm        ViMi-1    ->yvmj 

-RNOS^ + RNQS^. (39) 

where only single quantum transitions have been considered. In this equation, Nv is 

the number density of molecules in vibrational state y, while the terms on the right 

hand side describe the time rate of change of Nv due to various kinetic processes. 

The vibration-translation (VT) collision process, denoted Pv.m, is the rate at which a 

molecule in the vibrational state v will transition to the state m in a binary collision 

with another molecule. The vibration-vibration (VV) collision process, represented 

by Q^ylt1- is ^e rate at which a molecule in vibrational state v will transition to the 

state v — 1 in a binary collision, with the collision partner simultaneously promoted 

from the state m to m + 1. A pump (R), restricted to excitation of molecules from 

the ground state (v = 0) to the first excited state (v = 1) by the Kronecker delta 

function (5), is also modeled in Equation 39. This pump is representative of the 

electron impact excitation process present in a weakly ionized molecular plasma. 

The VT transition rates, P (having units of cm3/sec as written in Equation 39), 

can be calculated for an anharmonic oscillator based on Keck and Carrier's semi- 
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empirical modification [72] to the Schwartz-Slawsky-Herzfeld (SSH) theory [103]. 

The VV transition rates. Q (also having units of cm3/sec as written in Equation 39) 

can be calculated based on the formalism of Bray [24]. These rates are functions of 

both the vibrational quantum number(s) and the gas temperature, but are indepen- 

dent of the density.  The transition rates are shown in Figure 26 for Pv,v-i (solid) 

20 40 
Vibrational Quantum Number 

Figure 26.    Dependence of the rates Pv,v-X (solid) and Q^v_x (dashed) (in units of 
cm3/sec) on the vibrational quantum number for N2. 

and Q°:J,_! (dashed) in N2 at two different gas temperatures. The VV process domi- 

nates at low quantum numbers, while the VT process dominates at higher quantum 

numbers. Both VV and VT rates increase with gas temperature. 

Once the transition rates are known. Equation 39 can be applied to each v 

level and the resulting system of coupled equations solved numerically. Calculated 

steady-state vibrational distribution functions for an anharmonic oscillator (N2) un- 

der typical nonequilibrium conditions are shown in Figure 27 for three gas tempera- 

tures. These calculations were performed using a vibrational kinetics code obtained 

from Wright Laboratory, Wright-Patterson AFB, OH [35], which was modified and 

validated for the present research. In Figure 27, each of the distributions has the 

same characteristic vibrational temperature, Tj°6, of 1700K, which is defined based 
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Figure 27.    Distribution of N2 molecules in vibrational states under typical nonequi- 
librium conditions. The energy axis has been normalized by Ew. 

on the relative populations of the ground and first excited state: 

T10 
E 10 

kBlniNo/NrY 
(40) 

where £"io is the energy difference of the first excited state and the ground state. An 

equilibrium (Maxwell-Boltzmann) distribution is represented by a straight line on 

this semi-log plot, as shown by the VDF for the case in which Tgas = 1700A'. The 

more a VDF departs from this equilibrium distribution, the greater the nonequi- 

librium between the vibrational mode and the translational/rotational modes. The 

general shape of the distribution functions can be explained on the basis of the 

properties of an anharmonic oscillator. In such a molecule, the preferential upward 

pumping of vibrational quanta through vibration-vibration (VV) collisions competes 

with the deactivation of vibrational states by vibration-translation (VT) collisions. 

The relative magnitudes of these two effects are different in different parts of the 
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distribution, resulting in significant departure of the VDF from the equilibrium form 

under some circumstances [49:147]. l 

In order to heat the gas quickly, the vibrational energy relaxation time must 

be short. A simple relationship between vibrational energy relaxation times and 

VT probabilities has been determined for the case of a harmonic oscillator described 

by a Boltzmann VDF [49:83]. Unfortunately, neither of these assumptions is valid 

for the case in which a shock propagates through a gas of anharmonic oscillators 

described by a nonequilibrium VDF. However, an effective relaxation time, reg\ can 

be calculated from the approximate relation [49:56] 

(*>£avQ ^a avg ^avg 

dt reff 

where eavg is the average energy, calculated from the expression 

Vmax 

E  AU 
y=0 

(4i; 

^avg  —     Vmax 

E  Nv 
v=0 

(42) 

where Nv is the VDF which gives the number density of molecules in vibrational 

state v and ev is the energy of the uth level. The left hand side of Equation 41 can 

be written as 

ff Nv Ntot [(e„+i - ev)Pv,v+i ~ (^ - e«-i)^,v-i] 
 , (43) ('■(-avg v=0   

dt "^ E  Nv 
v=0 

where both Pv,v+i for v = vmax and Pv,t-i for v = 0 are zero.  Since both eavg and 

deavg/dt are determined by the VDF, reg- can be calculated once the VDF is known. 

xThe ripples in the numerical VDFs are due to the graphic conversion utility program used and 
were not present in the raw numerical data. 
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Figure 28. Effective relaxation times in iV2 in nonequilibrium conditions at vari- 
ous vibrational temperatures (calculated at a pressure of 1 atm). The 
standard Millikan/White relaxation times are also shown {rMw)- 

Representing the vibrational distribution function in an approximate analytic 

form, re^ has been computed over a range of vibrational and gas kinetic temper- 

atures for jV2 at a pressure of 1 atmosphere. The results are shown in Figure 28. 

Measured equilibrium vibrational relaxation times given by Millikan and White [84], 

at a pressure of 1 atmosphere, are shown in this figure as well. It is observed that 

under highly nonequilibrium conditions, the effective relaxation times are very short, 

being on the order of 102 - 103/.<sec. The nonequilibrium relaxation times can be 

many orders of magnitude shorter than the equilibrium relaxation times. However, 

the difference is especially noticeable at temperatures less than the temperature at 

which r ff peaks. The nonequilibrium times converge to the Millikan-White values 

at the higher gas temperatures, once the peak in reff has been reached. 

It is important to recognize that the relaxation times shown in Figure 28 will 

scale inversely with both gas density and VT rates (Equation 43). Thus a relaxation 

time of 102/.(sec (0.1 msec) at a pressure of 760 torr (1 atm) will increase to approx- 

imately 2.5 msec at 30 torr, a typical pressure at which weakly ionized plasmas are 
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generated in the laboratory. Any impurity in the N2 gas will decrease the effective 

relaxation time, since the VT rates of the associated impurities are usually much 

greater than those of N? — iV2. 

Two assumptions were made in order to approximate the nonequilibrium VDF 

used in the previous calculation of refj. First, the VDF is assumed to follow the form 

given by Bailey [8],.in which the approximate steady-state nonequilibrium VDF for 

a particular gas is determined by the vibrational and gas temperatures. Secondly, as 

these temperatures evolve in time, the VDF is assumed to evolve through a series of 

steady-state distributions. Thus, at any moment in time the VDF is represented by a 

pseudo-steady-state form. This essentially assumes that the time constant associated 

with VV collisions is much smaller than the characteristic time of any other process 

in the system. 

As an example of the influence of vibrational relaxation under nonequilibrium 

conditions, consider the work of Rukhadze, et-al. [101] who examined the effect of 

the shortened relaxation times on shock dynamics.   In his example, illustrated in 

20 

15 - 

03 
i_ 

co io 
co 
0) 

II <.           I               I               I 
\ -                    Tvib = 3000 K 

- 
^                  Tgas = 300 K 

\            P = 1 atm 
V 

- V- 
\  ■- 

- 
Mach = 

l 

•1.1 

^ \  
I               I            ._! b  

5 - 

0.2 0.4 0.6 0.8 1 1.2 

Specific Volume 

Figure 29. Shock adiabatics corresponding to Rukhadze's nonequilibrium example 
in Ar

2 [Ref: [101]]. The shock accelerates from Mach 1.1 to Mach 4.7 in 
approximately 45 msec. 
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Figure 29 with the use of shock adiabatics. Rukhadze used N2 at a gas temperature 

of 300A" and a vibrational temperature of 3000A" to provide a nonequilibrium region 

into which a shock propagated. The initial shock velocity was Mach 1.1 (relative 

to the speed of sound at 300A" with 7 = 7/5). Under these conditions, the shock 

is propagating well below the Chapman-Jouguet minimum, where the steady-state 

propagation velocity is Mach 4.7. As the vibrational energy behind the shock front 

relaxes, energy is transferred from the internal mode to the translational and rota- 

tional modes. During this energy transfer, the flow parameters behind the shock are 

altered, resulting in a pressure increase as the shock accelerates in order to reach 

a steady-state at the Chapman-Jouguet operating point. The energy transfer is 

rapid at first, on the order of msec under the given initial conditions (Figure 28). 

However, as the gas temperature rises, reff increases, resulting in a slower energy 

transfer time. This behavior continues until the gas temperature reaches approxi- 

mately 700A', corresponding to the peak in the re^ curve. Once this peak is reached, 

any further increase in gas temperature results in a decrease in the relaxation time. 

According to the numerical calculation of Rukhadze, the accelerated relaxation of 

the vibrational energy in this temperature regime results in the shock speed quickly 

increasing to the Chapman-Jouguet velocity. 

In the case just discussed, the time required to reach equilibrium in the post- 

shock region was approximately 45 msec, which is of the order of the peak refr for 

a characteristic vibrational temperature of 3000 A. Rukhadze reports that with the 

vibrational temperature increased to 4000 A and all other parameters held constant, 

the calculated equilibration time is reduced to 20 //sec. This time is quite short and 

is comparable to time scales on which variations in the density and pressure at the 

shock front have been observed ([75] and [89]. for example). If the energy relaxation 

time is short enough and sufficient energy can be coupled into the gas flow, interesting 

aerodynamic effects can result. For example, consider an aerodynamic vehicle with 

a detached shock formed on the leading edge. If a sufficient amount of energy can be 
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coupled into the translational mode in the region between the shock front and the 

vehicle surface, it is possible to increase the shock standoff distance. This increase 

in shock standoff as thermal energy is added to the flow is not normally encountered 

in aerodynamic situations, where the shock standoff decreases as thermal energy is 

transferred from the flow to other degrees of freedom [5:515]. The increase in shock 

standoff distance under nonequilibrium conditions may also lead to a reduction in 

the heat flux to the vehicle's surface, as Serov, et al. [105] observed for objects 

passing through a plasma region in ballistic experiments. 

In this section is has been shown that nonequilibrium VDFs can lead to effective 

vibrational relaxation times which can be many orders of magnitude shorter than the 

relaxation times encountered under equilibrium conditions. These relaxation times 

scale inversely with both gas density and vibration-translation (VT) rates. Since 

the gas density and temperature behind a shock are greater than the density and 

temperature in front of the shock, the vibrational relaxation times behind a shock 

are less than the relaxation times in front of the shock. When the release is rapid 

and the energy added substantial, nonequilibrium relaxation can lead to interesting 

and surprising results. The investigation of these gas dynamic effects is the focus of 

Chapter IV. 
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2.5    Thermal Inhomogeneities 

Thermal inhomogeneities can lead to variations in the flow parameters and 

shock speed. These inhomogeneities may originate from plasma generation, mainte- 

nance or decay. It is only by understanding those effects which can be attributable 

to thermal inhomogeneities that progress can be made in understanding those effects 

which cannot. The purpose of the present section is to lay the theoretical framework 

for consideration of thermal effects. 

A sharp interface in a gas at two temperatures offers the simplest example of the 

effects of a thermal inhomogeneity on shock characteristics. The interface separates 

gas 1 at a temperature 7\ from gas 2 at a temperature T2, with the pressure across 

the interface assumed to be a constant. The ratio of the heat capacity at constant 

pressure {Cp) to the heat capacity at constant volume (Cv) (also known as the 

adiabatic exponent) will be denoted as 71 for gas 1 and j2 for gas 2. A shock will 

be propagated through this thermal interface and the resulting modifications to the 

shock characteristics will be examined. 

An analytic solution to the problem just posed has been claimed by a number of 

researchers ([2], [41], [115], [118]), although the solutions of [41] and [115] appear to 

be in error, sometimes resulting in imaginary values for the shock velocity. A correct 

solution describing the influence of a thermal discontinuity on the shock wave Mach 

number [2] is 

71 + 1 
A/i   1 Ml + 2 

7i - 1 

[27iA/x
2 - (71-l)][(7i-1)^ + 2] -11/2 

x 72 + 1        * 
72-1   ^ 
72 + 1 

71-1 
271 

27 
71+1 

1    S./2 71-1   [ 

(71 + 1)2A/? 

2    In 
' 72 + 1 V Ti 

M>   1- Ml 
(44) 

Once the Mach number of the shock in the heated region is known, the density 

and pressure jumps at the shock front are determined by application of the Rankine- 

Hugoniot relations. Therefore, given the gases (71, 72), temperatures (Ti, T2) and the 
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initial shock wave velocity (Mi), Equation 44 predicts the new shock wave velocity 

in the heated region (region 2), from which the other shock characteristics can be 

determined. 

Wright [118] presents two different forms of Equation 44, one of which is ap- 

plicable for the case in which T2 > 7\ and the other for the case in which T2 < TV 

[As an aside, it appears that Wright was interested in the effect of an interface that 

separated two different gases, rather than an interface that separated the same gas 

at two different temperatures. However, the analysis is the same in either case.] The 

former case leads to the formation of a reflected rarefaction wave, while the latter 

case leads to the formation of a reflected shock [118:78]. Equation 44 is general in 

that gas 1 and gas 2 may be different, however assuming the two gases to be the 

same makes the analysis consistent with the experimental conditions, where only one 

gas type is used. 
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Figure 30.    Variation in shock velocity ratio (left) and Mach number ratio (right) 
with T2/Ti for a shock incident on an infinite planar thermal interface. 

Treating the temperature ratio at the interface as the independent variable, 

solutions to Equation 44 (specialized for Argon) at three different initial Mach num- 

bers are shown in Figure 30. On the right is plotted the ratio of the Mach number in 
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the heated region (A/2) to the initial Mach number ('Mi) while on the left is plotted 

the ratio of the velocity in the heated region (V2) to the initial velocity (VI). For 

the limiting case in which T2 = 7\, the interface is obviously fictitious and both the 

Mach number and velocity of the shock remain unchanged, as required. For the case 

in which T2 > 7\, the new Mach number will always be less than the initial Mach 

number, although the new velocity will always be greater than the initial velocity. 

The magnitude of these differences are greater for both higher initial shock velocities 

and Mach numbers. 

Figure 31.    Variation in pressure ratio at the shock front (P2/Pi) with T2/Ti for a 
shock incident on an infinite planar thermal interface. 

The corresponding pressure ratio at the shock front is shown in Figure 31. P2 

is the pressure just behind the shock front while Pi is the ambient pressure in front 

of the shock. As the shock enters a heated region, the velocity increases while the 

Mach number of the shock decreases leading to a decrease in the pressure ratio at 

the shock front, in accordance with the Rankine-Hugoniot relations. Although not 

shown, a decrease in the Mach number also leads to a decrease in the density jump 

at the shock front, also in agreement with the Rankine-Hugoniot relations. 

In this section, the influence of a simple thermal inhomogeneity on shock pa- 

rameters has been examined. The shock velocity increases as the shock propagates 
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into a gas at a higher temperature, although the Mach number of the shock decreases. 

The decrease in the shock Mach number leads to decreases in both the pressure and 

density jump at the shock front as well. Experimentally, researchers are divided as 

to whether thermal effects play a role in the observed plasma/shock anomalies. It 

is difficult to determine which of the cited papers are accurate in their assessment 

of thermal effects, due to the lack of both experimental and computational details 

in the vast majority of cases. It seems clear that an examination and assessment of 

the role of thermal inhomogeneities on shock propagation is required. Such will be 

the focus of Chapter V. 



//I.   Plasma Effects 

3.1    Introduction 

It has been suggested by some researchers that the phenomena which have 

been observed in plasma/shock interaction experiments are linked to the presence 

of charged particles in the flow ([11], [12], [13], [51], [75], [85], for example). These 

phenomena have been observed in weakly ionized plasma, with fractional ionizations, 

defined as ??;/(/?„+ «i) (with n; being the electron number density and nn the neutral 

number density), as low as 10-6. As well as being weakly ionized, the plasma is 

typically in a nonequilibrium state. That is, the electron temperature is of the order 

of a few electron volts (with 1 eV=11604 K) while the heavy particle temperature is 

typically a few hundred K. Such a nonequilibrium state can give rise to new shock 

structures in the flow ([6], [65], [85]) and is the reported cause of at least some of the 

experimental anomalies. The influence of a weakly ionized nonequilibrium plasma 

on the shock structure and characteristics will be examined in this section. 

The effect of a plasma on the shock structure will be examined using a two fluid 

plasma approximation, in which the charged particles (electrons and ions) are com- 

bined as one component and the neutrals as the other. The use of a two component 

system to describe the plasma is based on the premise that the ions and electrons 

are closely linked to each other. This is reasonable since the electrons' light mass 

allows them to react very quickly to changes in the electric field caused by changes 

in the ion density and velocity. 

Plasma/shock interactions will be examined using two methods. The steady- 

state approach used by Avramenko, et al. [6] will be used first, followed by an 

unsteady approach. The assumption of a steady-state allows the fluid equations to 

be transformed from partial differential equations to ordinary differential equations. 

The density and velocity distribution of the neutral component will be specified, 

while the density and velocity of the charged component will be determined by the 
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solution of the conservation of mass and momentum equations. In this simplified 

analysis, no conservation of energy equation will be used, either for the neutrals 

or the charged component. This implies that the temperature of each component 

remains constant. It will be further assumed that the neutrals and ions are in 

equilibrium with each other, thus the heavy particle temperature will be treated 

as a parameter. The electron temperature will also be assumed constant, although 

this temperature can be different from the heavy particle temperature in order to 

allow a state of nonequilibrium to exist in the plasma. Allowing the electrons and 

ions to have different temperatures does not conflict with treating them as a single 

component fluid. That is, the electrons and ions are assumed to have the same mean 

flow velocity, but are allowed to have different random thermal velocities. Whereas 

the previous treatments of the ion momentum equation, by both Ingard [64] and 

Avramenko [6], neglected the nonlinear term, the present analysis will retain it. 

This will allow the consideration of stronger shocks than that previously examined, 

without being limited to small amplitude waves. 

Following the steady-state analysis, a time-dependent analysis will be used to 

examine plasma effects on the shock structure. Unlike the previous approach, in 

which the neutral component motion was prescribed, no assumptions will be made 

with regard to the structure of the neutral component. Rather, the density, velocity 

and temperature of both the neutral and charged component will be determined by 

solution of the Euler equations for a two fluid plasma. 

3.2    Steady-State Analysis 

3.2.1    Model Equations. The model equations for a two-fluid plasma in 

the steady-state approximation have been derived previously (Chapter II), with the 

result (repeated here) given as 

-KHOCM + ±{PiVi)   =   0 (45) 
of       af 
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^\^--v^(Tr-)]-^(Vi-Vn)  =  0 (46) 
«£ [ 2 \VshockJ. 

where V, and Vn are the ion and neutral flow velocities in the shock front frame and 

vm is the ion-neutral momentum transfer collision cross section, defined in Equation 

11. An analytical integration of Equation 45 yields Equation 21, which is repeated 

here: 

Pi(Z)=PiO U-77  ' (4') 
V y shock/ 

where pm is the ion mass density far upstream of the shock front. Previously, the 

nonlinear term in Equation 46 (first term in the brackets on the left hand side) was 

neglected ([6], [64]). In the present analysis it will be retained. 

In general, the neutral component would be described by equations analogous 

to Equations 45 and 46 (lacking, of course, the electric field term). However, in the 

simplified case considered here, the motion of this component will be assumed to 

follow a known functional form. The neutral velocity and density profiles will be 

given as 

K(0   =   Vshock - (Vshock - Vi)          ~ (48) 
\exp(f/f) + 1/ 

PniO      =.     {Pnl-Pn0)[          - )   + PnO (49) 

where the velocity has been defined in the shock front frame. The characteristic 

distance ( is used to control the width of the neutral shock. The subscripts 0 and 

1 denote regions in front of and behind the shock front, respectively. Thus, pn0 and 

pnX are the neutral mass densities in the ambient and perturbed regions of the flow, 

respectively. The use of Fermi-type functions, instead of the Heaviside step functions 

used by Avramenko, et al. [6], are advantageous computationally, in that the velocity 

and density profiles vary smoothly rather than discontinuously. In addition, the use 

of a continuous function of the Fermi-type permits an assessment of global charge 
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conservation, which was not made with the discontinuous Heaviside functions. This 

point will be addressed in greater detail shortly. 

Equation 46 can be solved numerically for the ion flow velocity in the shock 

front frame, the solution transformed into the laboratory frame by use of Equation 

15, and the result then used in Equation 47 to determine the ion mass density. A 

fourth order Runga-Kutta integrator was used in the numerical calculations. 
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Figure 32. Velocity of the charged component precursor from numerical solution to 
equation 14 (solid) in front of a neutral shock (dotted). The calculation 
was performed for a Mach 2 shock in Argon. The distance has been 
normalized by Avramenko's estimate of the precursor length, £0, which 
evaluates to 0.23 mm under the present conditions. Avramenko's an- 
alytic solution for the charged component precursor (dashed) is shown 

for comparison. 

3.2.2 Steady-State Results. The calculated velocity profile of the charged 

component (solid) and of the neutral shock (dotted) are shown in Figure 32 in the 

laboratory frame for the case of a Mach 2 shock propagating through an Argon 

discharge. In this calculation, the electron temperature was taken to be 2 eV, the 

neutral gas temperature was 300A', the pressure was 30 torr, the ion-neutral momen- 

tum transfer cross-section was 1 x 10~19 m2 and the fractional ionization was 10~6, 



which are values typical of a glow discharge in Argon. The spatial distances have 

been normalized by Avramenko's analytic estimate of the precursor width, £0< which 

is (to within a constant of the order of unity) equal to Te/Tn\tn, where A,n is the ion- 

neutral mean free path. Under the given conditions, £0 evaluates to approximately 

0.23 mm. The velocity in front of the neutral shock is zero until near the shock 

front, then increases rapidly to a value of 363 m/sec, consistent with the Rankine- 

Hugoniot relation for a Mach 2 shock in Argon. The characteristic distance of the 

neutral shock used in these calculations (£) was 0.05, resulting in a neutral shock 

width of approximately 14 neutral-neutral mean free paths, which is of the order of 

previous estimates for the neutral shock width [114:421]. Ahead of the neutral shock 

there is a broad region in which the ions are perturbed from their ambient value. 

Avramenko calls this the ion-acoustic shock wave, since the structure is similar to 

a diffuse shock front [6:463]. The ion-acoustic shock calculated from a numerical 

solution to equation 46 is shown as a solid line, while Avramenko's analytic estimate 

(Equation 25) is shown as the dashed line. The ion-acoustic shock (or charged com- 

ponent precursor) extends in front of the neutral shock a distance of approximately 

4£o, or nearly 1 mm, which is approximately 100 neutral-neutral mean free paths. 

The density profiles of the neutral shock and of the precursor are shown in 

Figure 33. The distance has been normalized by £0- while the densities have been 

normalized by the respective upstream ambient values. The density of the precursor 

determined from the numerical solution of Kquation 46, with use of Equation 47, 

is shown as the solid line. The analytic estimate is shown as'the dashed line. The 

agreement is quite good. Downstream of the shock front, the normalized density of 

both the neutrals and the charged component is 2.286, which is consistent with the 

Rankine-Hugoniot relation for a Mach 2 shock in Argon. 

Although the charged component precursor appears quite dramatically in Fig- 

ure 33, it is important to realize that it has been normalized by the upstream ambient 

ion number density. Since the fractional ionization in the plasma considered here is 
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Figure 33. Density of the charged component precursor determined numerically 
(solid) in front of a neutral shock (dotted). The calculation was per- 
formed for a Mach 2 shock in Argon. The distance has been normalized 
by £o, while the densities have been normalized by the respective am- 
bient values. Avramenko's analytic solution for the charged component 
precursor (dashed) is shown for comparison. 

very small (10-6), the relative contribution of the precursor to the total mass density 

is small. Thus the total mass density (sum of the neutral and charged component 

profiles) is essentially given by the neutral profile of Figure 33. 

The electric field in the shock front region can be determined by use of the 

electron momentum equation. Neglecting the electron inertia terms and requiring a 

balance between the terms representing the electron pressure gradient, electric field 

and electron-neutral collisions, the electric field can be approximately determined. 

Performing the given operations, the electric field can be written as 

Ex(x) 
8   s-fMekgTA., f. Vi(x) 
TV 2        vshock nn0 cren   1 - , 
3 l 7T / I Vn{x, 

Vi(x)kBTt 

IT 

d    I      1 
[V/m] 50) 



where nn0 is the upstream ambient neutral number density and q is the elementary 

unit of charge. In deriving Equation 50, use has been made of the quasi-neutrality 

property of the plasma. The first term on the right hand side of this equation 

represents the contribution of the electron-neutral collisions to the electric field, 

while the second term represents the contribution of the electron pressure gradient 

to the electric field. It will be shown that the first term is minor in comparison to 

the second. 
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Figure 34. Electric field in the shock front region determined numerically (solid) 
and analytically (clashed) (from [65]) for a Mach 2 shock in Argon. The 
distance has been normalized by £o- 

Applying Equation 50 to the present case of a Mach 2 shock in Argon results 

in the electric field shown in Figure 34 (solid). Ingard and Schulz's [65] analytic 

estimate (Equation 4) for the same conditions (dashed) is shown for comparison. 

Although the analytic estimate was derived assuming small-amplitude waves, the 

agreement with the numerical result is, perhaps, better than expected under these 

shock (large-amplitude waves) conditions. 

It was mentioned previously that the total electric field is comprised of two 

parts: a collision term and a pressure gradient term. The contribution of the former 
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Figure 35. Contributions of the collision (clotted) and pressure gradient (dashed) 
term to the total electric field (solid) in the shock front region for a 
Mach 2 shock in Argon. The distance has been normalized by £0- 

is much smaller than the contribution of the latter, as shown in Figure 35. Here, the 

contribution from the collision term is shown as the dotted line, while the contribu- 

tion from the pressure gradient term is shown as the dashed line. The total electric 

field is shown as the solid line. 

The peak electric field (« 50 V/cm) is of the same order of magnitude as the 

axial electric field typically found in a glow discharge in Argon at 30 torr (see Figure 

104 in Appendix D). However, the field in the present case is localized to only a 

small region around the shock front, thus the potential voltage drop experienced 

by an electron is small, being approximately 1.7 Volts in the present case. By 

comparison, the electron thermal energy is 2.0 eV. The potential increase is small 

compared to the ionization energy of Argon (15.68 eV) and is unable to significantly 

increase ionization at the shock front. 

• Although both the electric fields rise sharply near £=0, the numerically deter- 

mined field has a finite positive slope in this region, while the analytically determined 

field rises infinitely fast. The presence of a region in which the spatial derivative of 



the electric field is positive is necessary to ensure global charge conservation. In or- 

der to see this more clearly, consider Gauss's law describing the relationship between 

charge density and electric field: 

V-E 
eo 

ne (5i: 

If the ions outnumber the electrons, then the spatial derivative of the electric field will 

be positive, while if the electrons outnumber the ions the reverse will be true. Thus, 

if some region exists in which the electron number density is greater than the ion 

number density, there must also be a region in which the ion number density is greater 

than the electron number density in order to ensure global charge conservation. 

0.006 1                     1                     1 

0.004 - 

-o 
0) 
N 

s 0.002 - — 
o c 

< 

0 1 
1                     1                     1         _   ■ 

-202468 

't, (normalized distance) 

Figure 36. Net charge density in the shock front region for a Mach 2 shock in Argon. 
The distance has been normalized by £0, while An has been normalized 
by the upstream ambient electron number density. 

The difference in the ion and electron number densities, An (defined as An = 

rii — ne), can be determined through the use of Equation 51 once the electric field 

is known. This difference is shown in Figure 36 for a Mach 2 shock in Argon. The 

distance has been normalized by £0, while the number density has been normalized 



by neo- the electron number density in the upstream ambient gas. The large spike 

near £=0 indicates an abundance of ions near the neutral shock front, while an 

abundance of electrons is present throughout the precursor region in front of the 

neutral shock. The integrated areas of each region are approximately equal, with 

a relative difference of less than 0.06%, resulting in global charge conservation as 

required. 
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Figure 37. Numerically determined (boxes) peak electric field (Epeak), potential 
drop ($) and shock precursor width (Ax) compared with analytic esti- 
mates at the same conditions (solid curves). 

A comparison of the numerically determined values (boxes) of the peak electric 

field (EPeak), potential drop ($) and width of the precursor region (Ax) with analytic 

t ( 



estimates (solid curves) of the same parameters are shown in Figure 37 for a range 

of Mach numbers. To generate these curves, a shock (of varying speed) was assumed 

to travel through a plasma characterized by parameters typical of a glow discharge 

in Argon (P=30 torr, Te=2 eV, T„=300K, a = lO"6). The analytic estimates for 

the peak electric field and potential are based on Ingard's result (Equation 4). while 

the estimate for the precursor width is based on Avramenko's work [6]. The width 

of the precursor is defined as the distance in front of the neutral shock at which 

the ion density reaches a value equal to 1/10 of the total rise above the ambient 

density. The numerically determined precursor width agrees well with the analytic 

estimates throughout the Mach number range considered (1.06 < M < 4). The 

peak electric field from the calculation agrees well with the analytic estimate up to 

Mach 2.5, while the calculated potential agrees with the analytic estimate only up to 

approximately Mach 1.5. The disagreement in the electric field and potential is not 

surprising, since the analytic estimate is based on linearized fluid equations, which 

assume small amplitude waves. As the Mach number increases, the amplitude of the 

shock becomes increasing larger, leading to greater differences between the numeric 

and analytic values. The analytic estimate for the precursor width does not appear 

to suffer from this affliction, in spite of having been derived in a linearized analysis. 
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3.3    Time-Dependent Analysis 

In the steady-state analysis, the equations describing the conservation of mass 

and momentum were transformed into the shock front frame and subsequently solved. 

A precursor of charged particles was found to be present in front of the neutral 

shock, in which the electron and ion number densities were nearly equal. The small 

difference in charge density produced an electric field, which resulted in a potential 

drop of a few volts under conditions typical of a glow discharge in an Argon plasma. 

In this analysis, several assumptions were made which, while simplifying the problem, 

removed some of the relevant physical processes from the system. These assumptions 

included treating the shock velocity and heavy particle temperature as constants, as 

well as assuming the density and velocity profiles of the neutral component to be 

of a specified form. These assumptions effectively prevent the charged particles 

from influencing the flow of the neutral component. In this section, the simplifying 

assumptions mentioned previously will be removed and the resulting shock structure 

of both the neutral and charged component will be examined and compared to 

previous results. The electron temperature will, however, still be assumed to be 

a constant. Furthermore, no ionization sources or losses will be treated (i.e., no 

additional ionization and no recombination, attachment, etc.). 

3.3.1 Model Equations. In one spatial dimension, the conservation equa- 

tions for the two component plasma written in the Toth formalism [112] become 

dÜ     dE      =.       -       - 
— + — = *! + _s'2 + 53, (52) 
at      ox 

where the right hand side is comprised of sources from the Euler equation (5'i), from 

coupling between the separate species (,$2) and from the self-induced electric field 
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5.3). The vector of conserved variables [U) is defined as 

U = 

Pn 

PnYn 
F)Tn 
M 0   (IV'2 + -L->^ Pn \2X n   T 7_l     / 

Pi 

PiVi 

.    P' I 2 li    ^ -7-1    M 

[53) 

while the flux vector (E) is defined as 

E 
fcßTW 

A/ 

PnVn 

0 v (Hr2 + -k- Pn* n y2    n    '    7-l 

PiVi y2vt -r 7_! M j  _ 

;54) 

The sources from the Euler equations (Si) can be written as 

Si = 

0 

Pn 

d P V 1 n ' n 

dx 0 

Pi 

. p>v> . 

;30 
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with Pn and Pt being the neutral and ion pressure, respectively.   The sources de- 

scribing momentum and energy coupling between species can be written as 

S2 = 56) 

0 

i in T -Ten 

*C in T Ven 

0 

_p. 1 in 

Vin        tyie 

where Pin and Pen is the momentum gained by the neutrals through collisions with 

ions and electrons, respectively, while the energy gained by the neutrals through 

collisions with ions and electrons is denoted by Qin and Qen. The energy lost by the 

ions in collisions with electrons is denoted as Qie. According to Jaffrin [68], these 

terms are defined as 

p. 1 in 

Pen      = 

^%in 

4>/2   Pn    Pi 

3   Mn Mi L IT 

Mi 
kB(Tn + Ti\ 

1/2 

Cm(Vi — \'n. 

'SN/2   pn Pn    Pi 
3   MnMt 

MekBTe 
ni/2 

TV 
Cen(V; — Vn) 

MnMi 

kBJTn + T, 

A/.-7T 

1/2 

X fcB(Ti-Tn) + -M,-(K--K)(v; + v;: 

Qen     =     Sv^ 
Pn    Pi   @en 

MnMi Mi 

MekBTe 
1/2 

kB(Te - T„) + -(V; - Vn)(MnVn + MeVi) 

(5/ 

58 

(59) 

(60) 
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Qi ^MJ   A* 
MekBTe 

IT 

1/2 

1 
kB(Te -Ti) + -(I] - \n)(Mt\

r; + A/eV; (6i: 

where the cross-sections of the various processes are denoted by a. In these expres- 

sions, the plasma has been assumed to be quasi-neutral (ne « ??.;) and the electron 

and ion velocities have been assumed to be equal, consistent with the two fluid 

plasma approximation. In all the time-dependent calculations performed, electron- 

ion and electron-neutral collisions were neglected (the ati and aen cross-sections were 

set to zero). 

The source vector due to the electric field is defined as 

S3 
kBTe dp, 

' AL   d.v 

0 

0 

0 

0 
(62) 

where the electric field has been approximated as (see Equation 7 

E = 
kHT. 

/'■'I 

V,,,. (63) 

This equation, derived from the electron momentum equation, neglects the electron- 

neutral collision term, which has already been shown to be small (see Figure 35). 

The system of coupled partial differential equations represented by Equation 

52 were solved in finite difference form using a second-order accurate MacCormack 
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algorithm2 with the flux corrected transport (FCT) scheme reported by Toth, et al. 

[112]. The FCT method was used to rid the solution of the numerical oscillations that 

would otherwise occur in second-order accurate algorithms, especially near shocks. 

The MacCormack/FCT method offers stability and sharp resolution for a relatively 

small effort in coding [112]. Further details regarding the computational scheme can 

be found in Appendix C. 

3.3.2 Code Validation. The Riemann problem provides a standard test for 

a practical computational fluid dynamics code. Consider a tube with an impenetrable 

diaphragm at some longitudinal station, as shown in Figure 38. The diaphragm 

separates the left and right sides of the tube. The left side of the tube is filled with 

a gas at some pressure (P4) and temperature (T4) and the right side of the tube 

contains gas at another pressure {Pi) and temperature (7\). If the diaphragm were 

to be ruptured, the gas would flow from the high pressure side to the low pressure 

side. The Riemann problem consists of finding the velocity, pressure, density and 

temperature of the gas at any position (,r) down the length of the tube for any time 

{t). Assuming the flow to be one-dimensional and neglecting thermal conductivity 

and viscosity, the problem has an analytical solution, making it ideal for testing a 

fluid dynamics code in an environment in which shocks are present. The development 

of the analytic solution is covered quite well in a number of sources ([40], [61], [18], 

[79] for example) and will not be repeated here. 

The Riemann problem was solved numerically for a shock tube with a length of 

100 cm. The diaphragm was located at 40 cm with respect to the high pressure end 

of the tube. The working gas was Argon with an initial pressure ratio (P4/Pi) and 

temperature ratio (T4/Ti) of 10.0 and 1.25, respectively. These values of temperature 

and pressure ratios were chosen to allow comparison of the numerical solution using 

2 Although the algorithm is reported to be second-order accurate, this accuracy was only achieved 
in the present research in the solution of linear problems. For nonlinear problems, the formal 
accuracy was of first order. Even so, however, the algorithm provided results well within the error 
bounds of experimental measurements. 
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Figure 38. Initial conditions in a typical shock tube. 

the MacCormack/FCT scheme to numerical solutions from other algorithms (see 

[61], for example). The fractional ionization. a, was 10-6. In this validation test. Te 

and (Tin were set to zero, essentially turning off both the electric field and ion-neutral 

collisions. As a result, the numerical solution for both the neutrals and ions, which 

should be the same, could be compared to the exact solution. The one-dimensional 

calculation was performed on a grid with 401 nodes in the x direction. A comparison 

between the analytic solution to the Riemann problem (symbols) and the numerical 

solutions to the Euler equations (solid curve) along the shock tube centerline is shown 

in Figure 39. In this figure, the ion solution (solid) is shown overlapping the neutral 

solution (dotted) at each location, as expected under the given conditions. The 

values of pressure, temperature and density have been normalized to the respective 

upstream ambient value. 

The primary features of a Riemann solution are also shown in this figure. The 

shock front is a localized region with very large gradients in all of the flow param- 

eters. The contact surface is also a localized region with a large density gradient, 

across which, however, the pressure and velocity are continuous. The contact surface 

separates gas that was initially on the left side of the diaphragm from gas that was 

initially on the right side of the diaphragm. The contact surface acts as a piston, 

pushing the gas in front of it to the right. The expansion fan represents the propaga- 

tion of signals into the high pressure side of the shock tube. The agreement between 

the calculated solution and the exact solution is good, with relative errors in the 
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Figure 39. Analytic ( + ) and numeric solutions to the Riemann problem in Argon 
with neutral-charged particle coupling turned off and Te — OK. The ion 
solution (solid) is shown overlapping the neutral solution (dotted). 

pressure of less than 1% throughout the domain except at the leading and trailing 

edges of the expansion fan, near the contact surface and near the shock front. The 

relative errors in these regions are typically less than 5%, with the relative error at 

one or two nodes very near the shock front being much higher (« 50%). However, 

the higher relative errors at this latter location can be attributed to the MacCor- 

mack/FCT method, which typically captures the shock front in 3 computational 

nodes, essentially smearing the front, whereas the exact solution is discontinuous 

at this point. In general, the relative error throughout the physical domain can be 

reduced by increasing the number of grid nodes in the computational domain, ac- 

companied (of course) by an increase in the computational requirements (memory, 

CPU time). Increasing the number of nodes does not prevent the MacCormack/FCT 
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method from smearing the shock front region, however, thus the high relative error 

in one or two bins near the shock front will remain high. 3 

40 50 60 70 
Distance (cm) 

Figure 40. Analytic (dashed) and numerically determined neutral (clotted) and ion 
(solid) shock speed (Argon with P4/Pt = 10.0, TA/TX = 1.25). In this 
validation, neutral-charged particle coupling was turned off and Te = 0A" 

The numerically determined shock velocity can also be compared to the an- 

alytic value. This is useful because unlike flow velocity, density, temperature or 

pressure, the numerical value of the shock velocity is not a direct output of the solu- 

tion to the fluid equations. Rather, it is determined by observation of the temporal 

evolution of the shock front position. The general procedure is to track the spatial 

position of the shock front (xsh0ck) in time (t), then determine the shock speed from 

Vshock = dxshock jdt. Further details regarding the numerical determination of the 

shock speed are given in Appendix B. Figure 40 shows the analytically determined 

shock speed (dashed line) compared to both the numerically determined neutral 

(dotted) and ion (solid) shock speed. The neutral and ion shock speeds are the same 

under the given conditions.   The diaphragm is located at 40 cm, so that at time 

3The barely discernable ripples in the numerical solution in the expansion fan are due to the 
graphic conversion utility program used and were not present in the raw numerical data. 
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t = 0, the shock speed is zero there. The analytic shock speed (under the present 

conditions) is Mach 1.597, which is approximately equivalent to 515 m/sec when the 

ambient gas temperature is 300Ä'. The small oscillations in the shock speed have 

an amplitude of less than 1 m/sec and are caused (primarily) by the uncertainty 

with which the position of the shock front is known at any instant in time. That is, 

the shock front position at any time is known numerically only to within the spatial 

resolution of the solution, which is the interval between adjacent nodes. 

Another test of the two-component plasma code is to check its ability to pro- 

duce an ion-acoustic wave which travels at the ion-acoustic velocity. As stated previ- 

ously, an ion-acoustic wave is a small-amplitude propagation in which the electrons 

and ions are in phase with each other and move at the same flow velocity, while 

the neutrals move separately. According to Jones, et al. [70:78], the ion-acoustic 

wave in a plasma is "analogous to the ordinary sound wave in air. The ions of the 

plasma provide most of the inertia of the wave, while the electrons provide most of 

the thermal pressure to drive the wave." If ion-neutral collisions are neglected, a 

small-amplitude ion-acoustic wave propagates at the ion-acoustic velocity, just as a 

small-amplitude sound wave in air propagates at the acoustic velocity (the speed of 

sound). In a plasma, the ion-acoustic speed is given by Equation 16. Note that if the 

electron temperature were zero, then the ion-acoustic velocity would be equivalent to 

the neutral gas speed of sound. For non-zero electron temperatures, the ion-acoustic 

velocity is always greater than the neutral sound speed. In one-dimension, je is equal 

to unity [70:78]. 

In order to computationally generate an ion-acoustic wave, a Riemann problem 

was used in which the initial conditions were such that a small amplitude wave was 

produced in Argon. In this case, the temperatures on each side of the diaphragm 

were equal, while the initial pressure ratio was 1.001. The ion-neutral collision 

terms in Equation 52 were turned off, allowing the ions to flow independent of the 

neutrals. Analytically, these conditions produce a neutral wave with a Mach number 
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Figure 41. Variation of the ion-acoustic velocity with electron temperature deter- 
mined numerically (boxes) and analytically (solid curve) for a small- 
amplitude wave in Argon at 300A'. The wave was generated within a 
shock tube with a pressure ratio (P4/P1) of 1.001 and a temperature 
ratio (T4/Ti) of 1.000. 

of 1.0002, which is very nearly the speed of sound and which travels at this speed 

independent of Te. Thus two waves modes are present in the simulation: an acoustic 

mode (neutrals) and an ion-acoustic mode (ions). The electron temperature was 

varied from 0A' to 23,000A (2 eV), which encompasses the range of Te observed in a 

typical glow discharge in Argon. The variation of the ion-acoustic wave velocity with 

Te is shown in Figure 41 as determined numerically (boxes) and analytically (solid 

curve). The agreement is seen to be quite good over the entire Te range considered, 

with relative errors between the two of the order of 0.2% or less. 

The present two-component plasma code has been shown to both solve the 

Riemann shock problem correctly and to produce an ion-acoustic wave of the proper 

velocity over a wide range of electron temperatures. With confidence in the code 

established, it will be used to examine neutral shock/plasma interactions within the 

two-fluid plasma approximation. 
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3.3.3 Time-Dependent Results. The numerical code was exercised under 

conditions representative of both weakly ionized and strongly ionized plasmas. Re- 

sults from the former case, in which the fractional ionization (o) is of the order of 

10-6. will be discussed first. Results from the latter case, in which the fractional 

ionization was allowed to be as high as 10_1, will then be presented. 

3.3.3.1 Weakly Ionized Plasma. A simulation of a Riemann prob- 

lem for weakly ionized (a - 10"6) Argon at 30 ton* was used to generate a shock. 

The initial pressure and temperature ratios within the shock tube were 22.2 and 

2.0. respectively. These parameters result in a shock front velocity equivalent to 

Mach 2.001, similar to the shock used in the steady-state analysis. The electron 

temperature in the simulation was 2 eV, while the ion-neutral momentum transfer 

cross-section, ain, was 4 x 10~21 m2, resulting in the value of f0 (the characteristic 

distance for ion-acoustic wave damping) evaluating to 5.75 mm. The value of a-m 

used in this simulation is 25 times smaller than the value used in the steady-state 

analysis. Higher values of ain resulted in numerical oscillations in the solution due to 

small differences between V- and Vn and T; and Tn. Since the solution will be plotted 

along the nondimensional coordinate £, obtained by normalizing x by £0 (which is 

inversely proportional to cr!n), the difference in the cross-sections is believed to be 

minor. This assessment is based on comparison of the numerical solution from nu- 

merous calculations with the approximate analytic solution of Avramenko (discussed 

previously) for crin values equal to a fraction of the limiting value. 

The velocity of the neutral (dotted) and charged component (solid) from the 

time-dependent simulation are shown in Figure 42. Avramenko's analytic solu- 

tion calculated under the same conditions (Equation 22) is shown for comparison 

(dashed). The agreement is fairly good. In front of the precursor, the velocity of 

both components is zero, while downstream of the shock front the velocity is ap- 

proximately equal to the value predicted from the Rankine-Hugoniot relation for a 

Mach 2 shock in Argon (363 m/sec). The width of the neutral shock is larger in this 
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Figure 42. Velocity of the charged component precursor (solid) and neutral com- 
ponent (dotted) from numerical solution of equation 52. The analytic 
solution (dashed) given by [6] is shown for comparison. The calcula- 
tion was performed for a Mach 2 shock in Argon. The distance has 
been normalized by £o, which evaluates to 5.75 mm under the present 
conditions. 

simulation than in the steady-state analysis, being approximately 7.5 mm in width. 

This translates, however, into capturing the shock front in approximately 3 bins in 

the present computational grid, which is quite good for a numerical simulation. Re- 

ducing the spatial width of each cell should decrease the neutral shock width as well, 

although doing so would obviously increase the computational cost of the simulation. 

The normalized densities of the neutral component (dotted) and of the charged 

component (solid) are shown in Figure 43. The normalized density corresponding to 

Avramenko's analytic solution (Equation 25) is also shown (dashed). The agreement 

between the solutions is quite good. In this figure, the densities of the neutral 

and charged component have been normalized by their respective upstream ambient 

values. Thus, far upstream of the shock front the value of each is unity, while 

downstream of the shock front the value is consistent with the Rankine-Hugoniot 

prediction for a Mach 2 shock in Argon (p1//o0=2.286). 
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Figure 43. Density of the charged component precursor (solid) and neutral com- 
ponent (dotted) from numerical solution of equation 52. The calcula- 
tion was performed for a Mach 2 shock in Argon. The analytic solu- 
tion (clashed) given by [6] is shown for comparison. The distance has 
been normalized by £o, which evaluates to 5.75 mm under the present 
conditions. 

Once the charged component density has been determined, the electric field at 

each spatial location can be calculated by use of Equation 63. The result is shown 

in Figure 44 for the present simulation (solid) as well as for the analytic solution of 

Ingard (clashed) (Equation 4) under the same conditions. The agreement is generally 

quite good, except near the peak and along the neutral shock front region. Some 

of these differences are likely clue to the central difference form used to represent 

the gradient in Equation 63, which would tend to smooth out sharp features in the 

ion density, as well as due to the finite grid size in the computational simulation. 

With that said, the presence of a region in which the spatial gradient of the electric 

field is positive is essential in order to globally conserve charge, as has been shown 

previously. The present numerical solution has such a region, while the analytic 

solution does not. 
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Figure 44. Electric field in the shock front region determined numerically (solid) 
and analytically (dashed) (from [65]) for a Mach 2 shock in Argon. The 
distance has been normalized by E,o- 

3.3.3.2    Strongly Ionized Plasma. Although the plasma present in 

the plasma/shock experiments conducted in glow discharges can be characterized as 

weakly ionized (o « 10-6), it is interesting to examine the effect of higher degrees 

of fractional ionization on shock propagation. To that end, the fractional ionization 

was varied from 10~6 to 10_1, with the latter limit corresponding to a highly ionized 

plasma. In all cases, the other parameters defining t he plasma Riemann problem were 

fixed: the initial pressure and temperature ratio were 10.0 and 1.25, respectively, the 

initial gas and electron temperature were 300/\' and 2 eV, respectively, and the ion- 

neutral momentum transfer cross-section was I x 10~21 m2. These parameters define 

a shock velocity of 515 m/sec (Mach 1.55)7 at 300 A') in weakly ionized Argon. As 

the degree of fractional ionization is increased, three interesting effects are evident: 

1) the shock front region appears to diffuse, or spread out 2) the density jump across 

the shock front decreases and 3) the shock front velocity increases. All of these 

effects have been reported in the literature, although the ambient plasma in these 

cases is weakly ionized. 
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The variation in the total density with distance near the shock front region is 

shown in Figure 45 for various degrees of fractional ionization. The total density has 

been normalized by the total upstream ambient density, which is the same regardless 

of the degree of fractional ionization.   For the case of very weak ionization (10" 1-6N 
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Figure 45. Variation in the total density with distance in the shock front region 
for various degrees of fractional ionization (a). The density has been 
normalized to the upstream ambient total density. The calculations are 
for Argon at 30 torr with Tgas = 300Zi and Te = 2 eV. 

the density jump at the shock front corresponds to that expected by application of 

the Rankine-Hugoniot relations to a Mach 1.597 shock in Argon (1.84). The width 

of the shock front in this case is 3 spatial bins along the numerical grid, which corre- 

sponds to approximately 0.75 cm in the present case. Since capturing the shock front 

region in approximately 3 spatial bins appears to be typical of the present numerical 

integration algorithm (even for a completely neutral gas), this width (0.75 cm) is 

considered a nominal shock front width. As the fractional ionization is increased, the 

density behind the shock front decreases and the width of the shock increases. At the 

highest fractional ionization considered (10_1), the density jump at the shock front 

is approximately 1/2 of the nominal value while the total width of the shock front 
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is approximately 5 cm (20 spatial bins), which is more than 4 cm greater than the 

nominal shock front width. A fractional ionization threshold, acrit, of approximately 

10_3 is apparent in Figure 45. Shocks propagating through plasma with a < Qcrit 

are essentially unaltered from shocks propagating through a neutral gas, as far as 

the neutral component is concerned. 

> 
u 
£ 
C/J 

Figure 46. Variation in the neutral shock velocity with fractional ionization (a). 
The calculations are for Argon at 30 torr with Tgas = 300A' and Te = 2 

eV. 

The variation of the velocity of the neutral shock front with fractional ioniza- 

tion is shown in Figure 46. For weak ionization (a < acrit) the shock front velocity 

is unaltered from the nominal shock velocity in the present case (515 m/sec). How- 

ever, for fractional ionizations greater than acr;f, the neutral shock velocity rapidly 

increases. At the highest a considered (10_1), the shock velocity is nearly twice the 

nominal value. 

Each of the previous effects can be understood by examining the coupling 

terms between the neutral and charged components in the momentum and energy 

equations. These terms (Pm, defined by Equation 57 and Qin, defined by Equation 

59) can be shown to be proportional to the fractional ionization, a.  Previously, it 
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was shown that V; is greater than Vn in the shock front region under nonequilibrium 

conditions (Te > Tn), due to the presence of the ion-acoustic waves. This is true even 

for low fractional ionizations. Likewise, T{ is greater than Tn. for sufficiently high Te, 

throughout the shock front region due to the presence of the electric field (which is 

proportional to Te). Therefore. P,:„ and Qjn act as source terms for the neutral fluid, 

which transfer momentum and energy, respectively, from the ion-acoustic wave to the 

neutral shock. When the fractional ionization is sufficiently high, these source terms 

in the neutral equations are comparable to the source terms arising from Euler's 

equations (5i, given by equation 55), resulting in the charged component altering 

the neutral shock from its nominal values. As energy is added to the neutral gas 

in the shock front region, the shock essentially flows into a heated region, resulting 

in a shock velocity increase, as shown in Figure 30 in Chapter II. Note from this 

same figure, however, that although the shock velocity increases as it enters a heated 

region, the shock Mach number decreases, resulting in a lower density jump at the 

shock front, in accordance with the Rankine-Hugoniot relations. 

3-4     Conclusion 

A steady-state analysis of the fluid equations for a two fluid plasma has been 

performed. This analysis essentially confirms the analytic solutions obtained previ- 

ously by Avramenko, et al. [6], in which a precursor of charged particles is predicted 

in front of the neutral shock front. This precursor has a width of the order of 

Te/Tn Xin, which means that a state of nonequilibrium must exist for the precursor 

to be present. Slight deviations from charge neutrality exist in this region, in which 

the ions slightly outnumber the electrons near the neutral shock front and in which 

the electrons slightly outnumber the ions in front of the neutral shock. The small 

deviations from charge neutrality create a space charge associated with an electric 

potential. This potential, of the order of the electron temperature, is small relative 

to the ionization potential of the Argon gas. 
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The time-dependent analysis has removed many of the simplifying assumptions 

present in the steady-state analysis. These assumptions include treating the heavy 

particle temperature as a constant throughout the shock region, as well as treating 

the shock velocity as a constant. In addition, the steady-state analysis assumed a 

fixed form for the neutral velocity and density profiles, effectively preventing the 

charged component from influencing the neutral flow. In the time-dependent analy- 

sis, these assumptions have been removed, with the solution of the Euler equations 

describing a two component plasma determining the densities, velocities and tem- 

peratures of each component, as well as the shock front velocity. A precursor of 

charged particles was again found leading the neutral shock. The numerically deter- 

mined precursor was found to be in close agreement with previous analytic results for 

the density and velocity profiles. An electric field was again found in the precursor 

region, with the values of this field also in close agreement with previous analytic 

results. The resulting potential drop from the field remains minor compared with 

the ionization energy of Argon. Under plasma conditions typically encountered in 

glow discharges, the charged particles are observed to have practically no influence 

on the density, velocity and temperature of the neutral component in the parame- 

ter space investigated. The neutral shock velocity also remained unaffected by the 

plasma component under these conditions. 

In order for ion-acoustic wave damping to effect the neutral flow, two require- 

ments must be met: 1) the energy density in the ion-acoustic wave must amount to 

an appreciable fraction of the energy density in the ambient neutral gas and 2) the 

time scale on which energy is transferred from the ion-acoustic wave to the neutral 

gas must be less than the transit time associated with a neutral particle crossing 

the charged particle precursor in front of the neutral shock. Analytic estimates of 

both of these requirements can be made. An estimate of the minimum value of 

fractional ionization required to achieve the energy density requirement will first 
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be derived, followed by a comparison of the ion-neutral energy transfer time to the 

neutral particle transit time under typical glow discharge conditions. 

The energy density of the ions and neutrals can be defined as 

Ei,n=(^!^1 + bin)pi.n. (64) 
\7 - 1    Mi,n 2 J 

Requiring the ion energy density to be one-tenth of the neutral energy density in 

front of the neutral shock, and assuming that the ion flow velocity is of the same order 

as the ion thermal velocity in this same region, leads to the following relationship: 

F-        T- 
— = 2 —cv, (60) 
En Tn 

where a is the fractional ionization. The upper limit of the ratio Ti/Tn can be 

bounded by the ratio of the temperatures on either side of the shock front (as given 

by the Rankine-Hugoniot relations), but is of the order of or less than 10 for Mach 

numbers less than 6 (with 7 = 5/3). Assuming the ratio is 10 (which leads to the 

lowest estimate for a), the following requirement for o is established: 

a > 5 x 10-''. (66) 

Under conditions typically encountered in a glow discharge, the fractional ionization 

is approximately three orders of magnitude less t han t his minimum required amount. 

An estimate for the ratio of the ion-neut ral energy transfer time to the neutral 

particle precursor transit time can be made by first estimating the width of the 

precursor (A) to be approximately equal to 2 Tf/Ti\in (see Figures 42 and 43). A 

neutral particle will cross this distance at a speed approximately equal to the shock 

speed, resulting in a precursor transit time (r,,.ans,,) equal to A/Vshock- Given that the 

mean time between ion-neutral collisions (r,-n) is equal to \INnainVreu the following 



ratio can be derived: 
Tin ,f sfVtTn ,-„■ 
  = M shock     o     TjT- 1°'. 
'transit °       -* e 

Under conditions typically encountered in plasma/shock experiments conducted in 

a glow discharge {Mshock < 6. Tn « 400A', Te « 12.000A). this ratio is much less 

than one, indicating that the ions can efficiently transfer their energy to the neutral 

flow in the required time. Thus, under these conditions, if the fractional ionization is 

sufficiently high (a > 5 x 10-3), ion-acoustic wave clamping can be expected to alter 

the neutral flow. If the fractional ionization is below the threshold amount, then 

ion-acoustic wave damping is expected to have an insignificant effect on the neutral 

flow, consistent with the numerical results obtained for a weakly ionized plasma. 

Interestingly, variations in the flow parameters of the neutral component were 

observed numerically for fractional ionizations greater than approximately 10-3. In 

these cases, both the neutral shock velocity and neutral shock width were greater 

than in the low fractional ionization cases. Additionally, the density behind the shock 

wave front was reduced from the nominal values. Each of these effects is consistent 

with experimental observations of plasma/shock interactions, although the plasma 

in these cases is generally weakly ionized. It must be emphasized, therefore, that the 

degree of ionization required to achieve these results is three orders of magnitude (or 

more) greater than that normally encountered in a glow discharge plasma. 

There has been, however, some experimental evidence that additional ioniza- 

tion is present in the shock front region ([50], [32], [33]). If these measurements 

are accurate, then it may be possible for the fractional ionization in the shock front 

region to be significantly greater than that normally present in the quiescent plasma 

in front of the shock. In such a case, energy transfer from the ion-acoustic wave 

to the neutral shock may become a relevant process, resulting in a perturbation of 

the neutral flow. In addition, if some kinetic based plasma process is at work in 

the shock front region, it is possible for the fractional ionization in this region to be 

altered. A kinetic based effect may not be predicted by a solution method which uses 
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the fluid equations as a basis. Such is the case, for example, in the phenomena of 

Landau waves in plasma physics, which describes the collisionless clamping of waves 

[36:51]. This process, in which energy is transferred between the particles and the 

wave, is a kinetic based effect and is not predicted when the plasma is modeled by 

fluid equations. However, a similar process has yet to be proposed in the study of 

plasma/shock interactions in weakly ionized gas. 
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IV.    Vibrational Energy Relaxation Effects 

4-1    Introduction 

Post-shock energy addition has been proposed as a likely candidate to explain 

the increase in shock velocity that has been observed in plasma/shock interaction 

experiments ([9], [42], [26], [116], [75], [74], [27], [89], [33], [105], for example). The 

proposed energy addition processes have included electron-ion recombination, atomic 

association, electronic de-excitation and vibrational relaxation. The present chapter 

is focussed on the study of post-shock energy addition in the form of nonequilibrium 

vibrational energy relaxation. In the experiments involving molecular gases, the 

nonequilibrium store of vibrational energy is created by the plasma, through electron 

impact excitation of vibrational states. It has been shown previously (Chapter II) 

that the release of this energy occurs preferentially in the post-shock region, where 

the effective relaxation times are lower clue to the higher vibrational-translation (VT) 

rates and gas density in this region. 

In order for vibrational energy relaxation to significantly affect the shock pa- 

rameters, two requirements must be met: 1) the amount of energy added to the flow 

must be significant (compared to the thermal energy already present in the flow) 

and 2) this energy must be added quickly (on the time scale of the transit time 

for the shock to propagate some characteristic length). In this chapter, two aspects 

of nonequilibrium vibrational energy relaxation will be addressed. In the first, the 

influence of the release of vibrational energy into the post-shock flow on shock speed 

will be considered for a design gas which meets both of the criteria given above. In 

the second, an actual gas will be used to determine, under realistic conditions, how 

much energy can be stored in the vibrational manifold in nonequilibrium, how much 

of this energy can be released into the flow and how fast this release of energy can oc- 

cur. Finally, some assessments will be made regarding vibrational energy relaxation 

as a viable mechanism in explaining experimental observations. 
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4.2    Influence of Energy Addition on Shock Speed 

Shock wave 

Electrode 

Neutral gas ) 
( vibrationally-excited ( 
/ by the plasma / 

Figure 47.    General experimental arrangement in which a shock interacts with a gas 
which has been vibrationally excited by the plasma. 

The general experimental arrangement, as reported in the literature, is shown 

in Figure 47. A steady-state glow discharge of limited spatial extent vibrationally 

excites the gas, resulting in a nonequilibrium state in which the vibrational temper- 

ature [Tvlb) is greater than the gas temperature {Tgas). The low fractional ionization 

of these plasmas means that the gas is composed almost entirely of neutral molecules. 

A shock propagates into the vibrationally excited gas, which results in the (reported) 

release of the vibrational energy into the region behind the shock front. 

4.2.1 Model Equations. The equations used to describe the motion of the 

gas are the Euler equations, which are 

■     d d .    . 

Ftp+dl-{pv) 

at ox 

Ö , ^ d  , 
at ox 

=   0 

P{ tvib ~mb> 

P{£vi -vib) 

(68) 

(69) 

(70) 

(71) 

where p is the mass density, v is the flow velocity, P is the gas pressure and r is 

the characteristic time over which the vibrational energy changes. These equations 
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describe the conservation of mass (Equation 68), momentum (Equation 69) and 

energy (Equations 70 and 71) for an inviscid fluid. The conservation of energy is 

represented by two equations, with Equation 70 describing the conservation of energy 

in the forms of kinetic flow, thermal translation and thermal rotation and Equation 

71 describing the conservation of vibrational energy. In Equation 70, e describes the 

specific energy in the translational, rotational and directed flow modes and is defined 

as 

t=^+°- (72) 
2M       2 

Note that the translational and rotational thermal modes have been combined, which 

assumes that these two modes always .remain in equilibrium with each other. The 

specific vibrational energy (e^) is modeled as 

tvib =     M    ■ ('3) 

consistent with the definition of the specific vibrational energy introduced previously 

in Chapter II. The equilibrium specific vibrational energy (e^t) is defined by the 

use of Equation 73 with Tvib = Tgas. Although the vibrational energy defined in 

this manner is different from the definition commonly used ([5:488], for example), 

the intent of the present section is to use these equations to examine the effects of 

nonequilibrium vibrational relaxation on shock propagation, without being limited 

by the capabilities or limitations of a physical gas. To that end, both the amount 

of energy stored in the vibrational manifold ('/',,/,) and the time constant associated 

with the release of this energy (r) were chosen to cause an appreciable effect in the 

shock flow. 

Equations 68 through 71 are four equations with five unknowns. An equa- 

tion of state (P = pkBT/M) is used to close the set, with the remaining primitive 

variables being the gas temperature (T), flow velocity (i>), density {p) and specific 

vibrational energy {evib). These equations were solved numerically using a MacCor- 
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mack predictor-corrector scheme with explicit time integration. 'A flux corrected 

transport (FCT) scheme was used in order to prevent oscillations in regions of large 

gradients. The actual MacCormack/FCT method used was that given by Fletcher 

[44:151-166]. Further details regarding this algorithm are given in Appendix B (see 

the discussion of the x sweep operator). 

4-2.2 Code Validation. The code was validated by comparing the numer- 

ical and analytical solutions to the Riemann (shock tube) problem for a gas with 

the same molecular weight as iV2. The pressure and temperature ratios defining 

the Riemann problem were 10.0 and 1.25, respectively, resulting in a shock with a 

nominal propagation speed of 571 m/sec. The gas on both sides of the diaphragm 

was initially in an equilibrium state, with the temperature on the low pressure side 

equal to 300A". The shock tube was 200 cm long with the diaphragm located at 80 

cm from the high pressure end of the tube. The vibrational relaxation time constant 

(r) used in this validation was very short, being equal to 20 times the At used in 

the integration. This value of r was large enough to allow the temporal and spatial 

resolution of the relaxation process, while at the same time being small enough to 

allow a comparison to the exact solution with 7 = 9/7, which assumes instantaneous 

vibrational relaxation. A comparison of the numerical solution (solid) to the exact 

solution (dotted) is shown in Figure 48. The density, temperature and pressure have 

been normalized by their respective upstream ambient values. The agreement be- 

tween the solutions is quite good. The small spike in the gas temperature at the 

shock front is physical and is discussed below. 
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Figure 48. Exact solution with 7 = 9/7 (+'s) and numerical solution (solid) of 
Euler's equations for a gas with a finite vibrational relaxation time. 
The shock propagates through gas which is initially .in an equilibrium 
state (Tgas = Tvj^). The spike in the temperature at the shock front is 
physical. 
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A close-up of the vibrational and gas temperature profiles in the shock front 

region is shown in Figure 49.  The gas temperature (solid) initially rises rapidly at 
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Figure 49. Gas temperature (solid) and vibrational temperature (dashed) in the 
shock front region for a shock propagating through gas in an equilibrium 
state. 

the shock front to a value of 420K, then decreases gradually in the post-shock region 

to a temperature of 400A" as energy is taken from the flow and transferred into the 

vibrational modes. These post-shock temperatures are precisely those values pre- 

dicted based on the Rankine-Hugoniot relations for a gas with a 7 of 7/5 and 9/7, 

respectively, at a shock velocity of 571 m/sec. Due to the finite vibrational relax- 

ation time, the vibrational temperature (clashed) rises gradually in the post-shock 

region until the vibrational and translational/rotational modes achieve equilibrium. 

The peak in the gas temperature corresponds precisely to the analytically predicted 

temperature just behind the shock front for a gas with a 7 of 7/5 (i.e., a gas with 

no vibrational modes). The equilibrium temperature corresponds precisely to the 

analytically predicted temperature in the post-shock region for a gas with a 7 of 9/7 

(i.e., full equilibration between translation, rotation and vibration). Longer vibra- 

tional relaxation times result in a spike with a wider spatial width and vice-versa. 
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As mentioned previously, the value of the relaxation time constant .(r) used in this 

calculation was equal to 20 times the value of the time step used in the integration of 

the fluid equations {At). Therefore, the vibrational relaxation length shown in Fig- 

ure 49 is not independent of the grid resolution. However, the peak gas temperature 

and the final equilibrium temperature are independent of the grid resolution. 

100 150 
Distance (cm) 

Figure 50. Numerically (solid) and analytically (dashed) determined shock veloc- 
ity for the Riemann problem in which the shock propagates through 
gas with a finite vibrational relaxation time. The gas is initially is an 
equilibrium state. 

As previously mentioned (Chapter III), the shock speed is another indicator 

of the quality of the numerical solution, although it is not one of the variables di- 

rectly obtained in the integration of the fluid equations. The shock speed can be 

determined by tracking the spatial position of the shock front {? shock) in time {t), 

then calculating the derivative of the trajectory from Vskock = dxsh0ck/dt. Further 

details regarding the numerical determination of the shock speed are given in Ap- 

pendix B. A comparison between the shock speed determined analytically (dotted) 

and numerically (solid) is shown in Figure 50. Here, the shock speed determined 

numerically is within approximately 0.5% of the analytic value (571 m/sec).   The 
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small oscillations in the shock speed have an amplitude of less than 2 m/sec and are 

caused (primarily) by the uncertainty with which the position of the shock front is 

known at any instant in time. That is. the shock front position at any time is known 

numerically only to within the spatial resolution of the solution, which is the interval 

between adjacent nodes. 

In this validation, the shock propagated into gas that was initially in an equi- 

librium state. Both the flow parameters in the shock front region and the shock 

velocity were found to be in good agreement with analytic values. In the next sec- 

tion, a shock will be propagated into gas that is initially in a nonequilibrium state. 

This is representative of the nonequilibrium conditions that may be present in a 

neutral gas clue to the presence of a weakly ionized plasma, 

4.2.3    Numerical Results. In this section, the experimental arrangement 

depicted in Figure 47 will be modeled as shown in Figure 51. Here, a shock tube is 

used to generate a shock, which then propagates into a gas with a nonequilibrium 

store of vibrational energy. The low pressure side of the shock tube is divided into 

High Pressure (P4) 

T    =T x gas      vib 

equilibrium 
region 

Low Pressure (Px) 

T    =T 1 aas      vib 

equilibrium 
region 

T    <T u x gas      * vib 

nonequilibrium 
, region 

Figure 51. Shock tube used to model the nonequilibrium vibrational relaxation 
effects. The pressure is continuous throughout the low pressure side of 
the shock tube. 

two regions: an equilibrium region and a nonequilibrium region. The equilibrium 

region is characterized by Tvib = Tgas and represents the region through which a 

shock would propagate in the absence of a plasma, as depicted by the left half of 
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Figure 47. The nonequilibrium region is characterized by Tvlb > Tgas and represents 

the plasma region into which the nominal shock propagates, as depicted by the right 

half of Figure 47. As the shock front passes into the nonequilibrium section, the 

excess vibrational energy is released into the post-shock region. As this energy is 

transferred to the other modes, it heats the gas. It will be shown that this release 

of energy will accelerate the shock wave to a higher velocity. 

The shock tube used in this nonequilibrium example is the same as that used in 

the code validation (200 cm long with a diaphragm located at 80 cm). An equilibrium 

region (characterized by equal gas and vibrational temperatures of 300A") will extend 

20 cm to the right of the diaphragm, with an abrupt transition to a nonequilibrium 

region (characterized by a vibrational temperature of 600A' and a gas temperature of 

300A') at 100 cm. The vibrational energy corresponding to a vibrational temperature 

of 600 A, as used in Equation 73, is equivalent to the vibrational energy corresponding 

to a vibrational temperature of approximately 1700 A, as used in the usual definition 

of specific vibrational energy (Equation 35). Since a vibrational temperature of 

1700A" is considered typical of that encountered in a glow discharge in N2, the 

present use of a vibrational temperature of 600A' is understandable. When the 

diaphragm bursts, the shock forms and propagates at a velocity of 571 m/sec in 

the equilibrium gas, as in the validation case previously discussed. The minimum 

steady-state shock velocity {VCj), defined by the Chapman-Jouguet point (Chapter 

II), under these conditions is 550 m/sec. Since the shock velocity will enter the 

nonequilibrium region with a velocity greater than VCJ, no acceleration is expected 

according to the common interpretation of the theory [27]. 

The numerical solution obtained under the given nonequilibrium conditions 

is shown in Figure 52. The shock structure observed in this nonequilibrium case 

is quite different from that observed in the equilibrium case. In the equilibrium 

case, the density and pressure in a fluid element increased as the fluid element was 

transported from the point just behind the shock front to the post-shock equilibrium 
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Figure 52. Numerical solution of Euler's equations for a gas with a finite vibrational 
relaxation time. The shock propagates through gas which is initially in 
a nonequilibrium state (Tgas = 600A',Tv^ = 300A). 

region (Figure 48). In the nonequilibrium case, the density and pressure in a fluid 

element decrease as the fluid element is transported from the point just behind the 

shock front to the post-shock equilibrium region. In addition, in the equilibrium 

case the gas temperature rises sharply across the shock front, then decreases as 

equilibrium is approached. In the nonequilibrium case, the gas temperature rises 

sharply across the shock front, then continues to rise as equilibrium is approached. 

The vibrational and gas temperature profiles in the shock front region are 

shown in Figure 53. Here the gas temperature (solid) rises sharply across the shock 
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Figure 53. Gas temperature (solid) and vibrational temperature (dashed) in the 
shock front region for a shock propagating through gas in a nonequilib- 
rium state. 

front to a value of approximately 450Ä', then rises more gradually until equilibrium 

is achieved at a temperature of approximately 480Ä'. The vibrational temperature 

(clashed), on the other hand, decreases gradually until equilibrium is reached. In 

this case, energy is transferred from the vibrational modes into the translational 

and rotational thermal modes. This energy transfer heats the gas and increases 

the pressure in the equilibrium region above the equilibrium value obtained in the 

previous case. The increased pressure, in turn, causes the shock front to accelerate 

to a higher velocity. 

The variation in the numerically determined shock velocity with distance is 

shown in Figure 54 (solid). The shock accelerates rapidly upon entering the nonequi- 

librium region, even though the initial shock velocity (571 m/sec) is greater than 

VCJ-, the minimum steady-state velocity (550 m/sec). This is an apparent contradic- 

tion to the commonly reported understanding of nonequilibrium shock theory. The 

dashed line shown in Figure 54 is an analytic prediction of the new steady-state 

shock speed in the nonequilibrium region. The numerically determined shock speed 
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Figure 54. Numerically determined shock velocity (solid) for the Riemann problem 
in which the shock propagates through gas initially in both equilib- 
rium and nonequilibrium states. The shock velocities under equilibrium 
(dotted) and nonequilibrium (dashed) conditions are analytically deter- 
mined. The velocity according to the Chapman-Jouguet regime is 550 
m/sec. The nonequilibrium region starts at 100 cm. 

is observed to converge to within 0.2% of the analytic value. The derivation of the 

analytic prediction of the shock speed in the nonequilibrium region of the shock tube 

is the subject of the next section. The time (distance) required to achieve the new 

steady-state shock velocity depends on the characteristic vibrational relaxation time 

(distance). If this time is short, then the energy is transferred quickly between the 

various modes and the shock speeds up quickly. If this time is long, then the transfer 

of energy takes place slowly. Independent of relaxation time, however, the eventual 

steady-state shock speed converges to the same value. 

4.24    Analytic Determination of Shock Speed. According to the theory 

of shock propagation in nonequilibrium gases as discussed by Osipov, et al. [93], 

which is based on the work of Landau [79] and Zel'Dovich [123], a shock propagating 

into a medium at a velocity less than the minimum steady-state shock velocity, VCj 
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(defined by the Chapman-Jouguet point as discussed in Chapter II), will accelerate 

until its velocity matches the minimum velocity; i.e., the shock will accelerate until 

the downstream equilibrium flow conditions match those at the Chapman-Jouguet 

point. Osipov's theory does not predict acceleration beyond VCJ. A shock entering a 

nonequilibrium region with a velocity equal to or greater than VCj is also unacceler- 

ated according to Bystrov, et al. [27]. It was observed that the computational results 

from the present work did not support these claims in all cases. Computationally, 

shocks with initial velocities below some value, Vcrit (where Vcr!t < \CJ), accelerated 

to a steady-state velocity equal to VCj- in accordance with previous theory. How- 

ever, shocks with initial velocities greater than Vcrit were observed to accelerate to 

steady-state velocities greater than VCj, in apparent contradiction with the theory. 

In addition, shock acceleration occurred even when the initial shock velocity was 

greater than VCj, also in apparent contradiction with theory. It will be shown in 

this section that the present numerical results are correct and that the previous un- 

derstanding of the theory describing shock propagation in nonequilibrium gases has 

been either incomplete or incorrect. 

The foundation for the analytic determination of the steady-state shock ve- 

locity in the nonequilibrium region rests on Emanuers development of the solution 

to the Riemann problem [40:181-183]. Here, his notation is adopted and his devel- 

opment refined to apply to nonequilibrium conditions. Emanuers development of 

the Riemann solution is followed precisely up to lite point just beyond his equation 

(10.2), with the chief result being 

C'A 

where C is the speed of sound, U is the flow velocity in the laboratory frame and 

the subscripts 4 and 5 refer to the region of undisturbed high pressure gas and the 

region between the contact surface and expansion fan, respectively.  This equation 
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assumes that the flow between these two regions is isentropic, which is the case in 

nonequilibrium relaxation as well, since the nonequilibrium gas will always be to 

the right (upstream) of the original contact surface (Figure 51). The pressure and 

velocity are continuous across the contact surface, thus P5 = P2 and V5 = V2. Using 

this in Equation 74 and writing P2/P1 as (Pj/P^/qPi/Pi) results in 

P2 PA fl4 ~l\   U2] 
*74 

74-1 

Px ' " Pi 
1 — {    2    JcJ 

where the subscript 1 denotes the undisturbed region in front of the shock and the 

subscript 2 denotes the region between the shock front and the contact surface. 

Equation 75 is the starting point for the extension of the analytic solution to the 

nonequilibrium cases. It is important to understand that no assumptions have been 

made regarding the equilibrium (or nonequilibrium) state of the gas in deriving 

Equation 75. 

In the usual Riemann problem, the known parameters are the pressures on 

either side of the shock tube diaphragm (P4 and Pi), the speeds of sound on either 

side of the diaphragm (C'4 and C\) and the gas types on either sides of the diaphragm 

(74 and 71). Thus, the unknown variables in Equation 75 are the pressure ratio at the 

shock front (P2/Pi) and the flow velocity of the gas just behind the shock front (U2). 

The usual approach to the problem then uses the Rankine-Hugoniot relations (which 

describe the relationship between shock Mach number and either pressure, density 

or flow velocity ratios at the shock front) to write Equation 75 as a transcendental 

equation with one unknown parameter. The solution is then determined by finding 

the root to Equation 75. Once this value is known, the shock velocity, pressure 

ratio at the shock front (P2/P1) and the flow velocity behind the shock {U2) are all 

determined. In this approach to the problem, a gas in initial equilibrium has been 

assumed. Where was this assumption made? It was made implicitly in the use of 

the Rankine-Hugoniot relations, which were derived for a gas in initial equilibrium. 
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The shock adiabatics (discussed in Chapter II) could have been used (instead 

of the Rankine-Hugoniot relations) to find the root of Equation 75. In this case, the 

shock adiabatic corresponding to the final state of the gas (Equation 36) is used in 

conjunction with a line of constant mass flux, which defines a shock velocity. The 

intersection of these two curves then determines both the pressure ratio (P2/Pi) and 

the flow velocity in the equilibrium region behind the shock front (U2) (see Figure 

21). In this figure, the equilibrium region is defined as the point B. The pressure 

ratio at this point (P2/Pi) can be read directly off the curve, while the flow velocity 

at this point can be determined from the principle of conservation of mass flux (in 

the shock front frame) by 

where UB is flow velocity at the equilibrium point in the laboratory frame, V is the 

specific volume and P is the pressure. In the present notation. Equation 75 can be 

written as 
PR PA f74~l> UB] 

274 
74-1 

PI PI 
1 — 

{     2     J cü\ 
where the subscript B has replaced the subscript 2 in denoting the equilibrium region 

behind the shock front, consistent with the notation previously adopted. Thus, 

numerically, the problem becomes one of just finding a constant mass flux line with 

the correct slope (shock velocity) such that the flow parameters at point B satisfy 

Equation 77. 

The same thing can be done for the case in which the gas is initially in a 

nonequilibrium state, except that the shock adiabatic is given by Equation 36 with 

Tvibl ^ Tga.Sl ■ Equation 75 remains valid, with the unknown parameters still being 

P2/Pi and U2- Both of these unknowns can be found by finding the intersection 

(point B) of the constant mass flux line (Equation 76) with the equilibrium state 

adiabatic (Equation 36) such that the flow parameters at point B satisfy Equation 
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77.   Thus, a simultaneous solution of three equations is required.   This is exactly 

what was done in the equilibrium case, with Tvibl = TgaSl in Equation 36. 
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Figure 55. Variation of the steady-state shock velocity {Vss) in the nonequilibrium 
region with the entrance shock velocity {Vin). The conditions in the 
nonequilibrium region remain fixed (T^ = 600A", Tgas = 300A', P = 
760 torr). Shown are the shock velocity determined by the fluid code 
(boxes), by the nonequilibrium extension to the Landau/Zel'Dovich the- 
ory (solid) and by the old theory (clashed). The shock velocity corre- 
sponding to the Chapman-Jouguet condition is 550 m/sec. 

Comparisons of the shock speeds determined by the different methods are 

shown in Figure 55. The numerically determined steady-state shock speed in the 

nonequilibrium region (boxes) agrees very well with the results from the present an- 

alytical method (solid curve), with relative errors between the two less than 0.2% 

under the present conditions. The commonly understood application of the clas- 

sical theory is also shown (dashed). The shock velocity as the shock enters the 

nonequilibrium region (Vin) is plotted along the ordinate, while the steady-state 

shock velocity in the nonequilibrium region (Vss) is plotted along the abscissa. In 

all cases, the nonequilibrium region was characterized by a vibrational temperature 

of 600A, a gas temperature of 300A' and a pressure of 760 torr.   This defined a 
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minimum steady-state velocity {VCJ) of 550 m/sec. corresponding to the Chapman- 

Jouguet point. The classical theory predicts that for cases in which \]n < VCJ, the 

steady-state velocity should be equal to VCJ. For cases in which Vin > VCJ, the 

steady-state velocity should equal Vtn. The present theory predicts a steady-state 

shock velocity equal to X'CJ only for shocks entering the nonequilibrium region with 

a velocity less than a certain critical shock velocity, Vcrit, where Vcrit < VCJ- 

The value of Vcrtt can be determined by using Equations 76 and 77. The mini- 

mum steady-state shock velocity that allows a fluid element to reach the equilibrium 

region is given by \'cj. Taking the point B to be equal to the point CJ (see Figure 

25), these equations become 

where UCJ is flow velocity at the Chapman-Jouguet point in the laboratory frame, 

V is the specific volume and P is the pressure and 

PA      PC •J 

Pi        Pi 

74 - 1\ UCJ 

CA\ 

114 
■-,4-1 

where the last equation has been rewritten by solving for PA/PI- Since the known 

nonequilibrium initial conditions (Vu Pi,Tvibl) define the Chapman-Jouguet point 

{PCJ^VCJ), the initial pressure ratio {PA/Pi) is determined. The shock velocity cor- 

responding to this pressure ratio defines Vb, which is an entrance velocity threshold. 

A shock entering the nonequilibrium region below this threshold will accelerate un- 

til the steady-state velocity is equal to the Chapman-Jouguet velocity (VCJ). A 

shock entering the nonequilibrium region with a velocity in excess of Vcrit will have a 

steady-state velocity greater than VCj. For the parameters corresponding to Figure 

55, Vera, (determined by Equations 78 and 79) corresponds to 445 m/sec, which is in 

excellent agreement with the numerical results shown in this figure. 
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It has been reported by Bystrov, et al. [27] that the velocity of a shock in a 

plasma depends on the velocity of the shock as it enters the plasma, the properties 

of the plasma ahead of the shock front and the processes which occur behind the 

shock front. Bystrov suggests that the post-shock release of nonequilibrium vibra- 

tional energy cannot explain the observed shock variations in his experiment, based 

on his belief that the steady-state shock velocity in such cases is determined by the 

Chapman-Jouguet velocity. The results obtained in the present investigation sug- 

gest that this belief is incorrect. As Figure 55 clearly shows, the final steady-state 

shock velocity depends on the velocity of the shock as it enters the nonequilibrium 

region. In addition, this velocity depends on Tvtbl, which varies with differing plasma 

conditions in front of the shock. Finally, although full vibrational/translational equi- 

libration was assumed in the present calculations, such need not be the case. For 

cases in which only part of the nonequilibrium vibrational energy is released, the 

shock velocity in the nonequilibrium (plasma) region will be less than that obtained 

assuming full equilibration (i.e., the shock velocity depends on the processes which 

occur behind the shock front). Therefore, the shock velocity behavior resulting from 

nonequilibrium vibrational relaxation is consistent with all of the qualitative obser- 

vations reported by Bystrov. 
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4.3    Analysis of Vibrational Kinetics 

In the previous section it was shown that it is possible, in principle, for nonequi- 

librium vibrational energy relaxation to increase the shock speed. In practice, how- 

ever, two conditions must be satisfied in order for this to occur. First, an appreciable 

amount of energy must be extracted from the vibrational mode in the post-shock 

region. Second, this energy must be extracted quickly. In the calculations of the 

previous section, both of these requirements were met. However, both the amount 

of vibrational energy available for extraction and the time constant (r) at which this 

energy was released were chosen without regard as to the physical properties (or lim- 

itations) of an actual molecular gas. Rather, the intent of the previous calculations 

was to examine the influence of vibrational energy relaxation given a gas which met 

both requirements. In the present section, the ability of an actual gas to met the 

stated conditions will be examined. 

Pure molecular nitrogen will be used as the test gas in this analysis of the 

vibrational kinetics. This choice was made based on the availability of experimental 

data taken in pure N2 gas. In addition, since N2 comprises nearly 80% of air, the 

substance through which all aerodynamic vehicles must fly, it seems reasonable to 

use this gas as a starting point. In reality, of course, air is not made of pure molecular 

nitrogen, but has many other constituents which can change the kinetic rates upon 

which the present study is based. However, it will be assumed that air can be 

simulated by pure molecular nitrogen well enough to permit order of magnitude 

calculations of the relevant parameters. 

4.3.1    How Much Energy Can Be Released? The maximum amount of 

nonequilibrium vibrational energy which can be added to the flow in the post-shock 

region depends on two things. These are the amount of energy initially contained in 

the vibrational manifold for the gas in front of the shock and the amount of energy 

contained in the vibrational manifold for the gas at equilibrium in the post-shock 
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region. The difference between these two is the energy added to the flow. In order 

for vibrational energy relaxation to lead to significant variations in the flow field, 

the amount of energy added to the flow behind the shock front must comprise an 

appreciable fraction of the thermal energy already present in the flow in the post- 

shock region (estimated to be approximately 10% or more). 

o Tvib=Tgas=804K 

Tgas=300K   x 

30 45 
V level 

60 

Figure 56. Nonequilibrium (dashed) and equilibrium (solid) vibrational distribu- 
tion functions in N2. The nonequilibrium distribution is representative 
of that obtained in a glow discharge plasma, while the equilibrium dis- 
tribution is representative of that obtained in the equilibrium region 
downstream of a Mach 3 shock. The amount of energy added to the 
flow per molecule is approximately equal to the difference between the 
average energies of these two distributions. 

As an example, consider the two vibrational distribution functions (VDFs) 

shown in Figure 56. Here, a nonequilibrium VDF (clashed), representative of condi- 

tions within a weakly ionized yV2 plasma region, can be compared to an equilibrium 

VDF (solid), representative of conditions in the equilibrium region behind a shock 

front. The average specific vibration energy corresponding to the nonequilibrium 

VDF is approximately equivalent to the specific vibrational energy given by the 

Equation 73 with a vibrational temperature of 600A'.   The nonequilibrium VDF 
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shown here was calculated by solving the coupled set of rate equations for each vi- 

brational level of Ar
2 until a steady-state solution was obtained. The calculations 

were performed using the same vibrational kinetics code discussed in Chapter II 

[35]. The electron impact excitation of ground state molecules normally present in 

a weakly ionized plasma was simulated in the rate equations by an excitation rate, 

R N0 (Equation 39), which serves as a pump. This pump promoted ground vibra- 

tional state molecules (i'=0) to the first excited state (i>=l) at a constant frequency 

(v is the vibrational quantum number). The nonequilibrium VDF in Figure 56 is 

characterized by a vibrational temperature, T™b, of 1900A, where T™ is based on 

the relative populations of the v=0 and v=l state. The calculation assumed gas at a 

pressure of 760 torr (1 atm) and a gas temperature of 300A". The equilibrium VDF is 

a Maxwell-Boltzmann distribution with a characteristic temperature of 804A", which, 

by the Rankine-Hugoniot relations, is the gas temperature just behind the shock for 

a Mach 3 shock in N2. The maximum amount of energy per molecule which can 

be extracted from the nonequilibrium VDF and added to the flow is the difference 

between the average energies of these two distributions. Shocks with higher (lower) 

Mach numbers will produce higher (lower) post-shock gas temperatures, resulting in 

equilibrium distributions with a higher (lower) average energy than the one shown in 

Figure 56. This leads to less (more) vibrational energy added to the flow for a given 

nonequilibrium VDF. Likewise, higher (lower) pumping rates lead to nonequilibrium 

VDFs with higher (lower) average energies, which allow more (less) energy to be 

added to the flow for a given shock velocity. 

The maximum amount of energy available for extraction per molecule can be 

estimated by subtracting the average vibrational energy at equilibrium (approximat- 

ing the equilibrium gas temperature in the post-shock region as the gas temperature 

just behind the shock front) from the average steady-state nonequilibrium vibrational 

energy: 
Anoneq eq /Qf\\ e = e1     

H — e2 , (oO) 
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where tnoneq is the average energy of the steady-state nonequilibrium vibrational 

distribution and eeq is the average energy of the equilibrium vibrational distribution. 

The subscripts 1 and 2 refer to the regions in front of and behind the shock front, 

respectively. The energy difference calculated from Equation 80 can be normalized 

by the specific energy initially present in the translational and rotational modes at 

the post-shock gas temperature {T2): 

thermal 1    kB T< 

7-1   M 
(si: 

As stated previously, significant alterations to the flow field are estimated to occur 

when the amount of energy added to the flow is approximately 10% (or more) of the 

thermal energy already present in the flow. 
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Figure 57. Maximum amount of vibrational energy (estimated) available for release 
into the post-shock region at four Mach numbers (shown as a % of the 
thermal energy initially present in the post-shock region). Energy flows 
from the vibrational modes to translation/rotation for positive values, 
and from translation/rotation to vibration for negative values. 

An estimate of the maximum amount of nonequilibrium vibrational energy 

available for release into the flow behind a shock has been determined over a range 
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of conditions which are realistically achievable in a glow discharge plasma (Figure 

57). Here, steady-state nonequilibrium VDFs characterized by vibrational tempera- 

tures (Tj°6) from 300A' to 2000A' were calculated in ;V2 at a pressure of 1 atm and 

a gas temperature of 300A'. Positive values indicate that in order to reach equilib- 

rium behind the shock front, energy will flow from the vibrational modes into the 

translation/rotation modes. Negative values indicate that the reverse is true. As the 

shock Mach number rises, so does the post-shock equilibrium gas temperature. Thus, 

what was a vibrational energy source at one Mach number can become a vibrational 

energy sink at a higher Mach number, all else being equal. 

The vibrational energy represented in Figure 57 is the maximum amount of 

energy available for release at a given T™b and shock speed. How much of this energy 

is released depends on the time scale of interest. If the time scale of interest is very 

long, nearly all of the energy can be released, while if the time scale is short, very 

little may be released. How much vibrational energy can be released on a given time 

scale is the subject of the next section. 

4.3.2 How Fast Can the Energy Be Rekastdi In shock/plasma experiments 

conducted to date with molecular gases, the experimental shock tubes are of the or- 

der of 1 meter in length. Therefore, for the present analysis, the time scale of interest 

will be the time it takes a shock of a given velocity to travel a length of 1 meter. 

How much vibrational energy can be released into the flow during this time depends 

on the kinetic rates of the vibration-vibration (XX) and vibration-translation (VT) 

energy exchange processes. The temporal release of nonequilibrium vibrational en- 

ergy, properly accounting for the VV and \'T energy exchange mechanisms, was 

investigated with the use of the same vibrational kinetics code used previously to 

calculate the steady-state nonequilibrium YDFs. 

A steady-state nonequilibrium vibrational distribution function with realistic 

parameters was used to represent the vibrational state of the gas in front of the shock 
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(T^b = 1900A'. Tga, = 300A", pressure = 1 atm). The passage of the fluid element 

across the shock front was simulated by the increase in density and gas temperature 

consistent with the Mach number of the shock. The increase in density and gas 

temperature behind the shock lead to an increase in the VT rates, which results in 

the release of vibrational energy into the flow. The amount of this energy release was 

tracked throughout the time-dependent calculation, with the result shown in Figure 

58 for a Mach 4 shock in N2-   In this case, the maximum amount of vibrational 

time (msec) 

Figure 58. Amount of vibrational energy added to the flow (shown as a % of the 
thermal energy initially present in the post-shock region) for a Mach 4 
shock in iYr

2. The initial nonequilibrium vibrational distribution (T™b = 
1900A') was calculated for a gas at a temperature of 300A' and a pressure 
of 1 atm. 

energy which can be released into the flow is approximately 18% of the thermal 

energy initially present in the post-shock region (see Figure 57). A Mach 4 shock 

(traveling in 300A' gas) can travel 1 meter in a time of 0.71 msec. In this time, 

an amount of vibrational energy equal to approximately 10% of the thermal energy 

initially present in the post-shock region can be released. This is the amount of 

energy estimated to begin to cause interesting effects in the flow.   It is seen from 
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Figure 58 that, under the present conditions, the maximum amount of energy will 

be released into the flow in approximately 4 msec. 

For a given nonequilibrium vibrational distribution, there appears to be an 

optimum shock speed which defines the conditions under which the most vibrational 

energy can be extracted and released into the flow behind a shock. A shock with a 

low Mach number will take the longest time to traverse a given distance, therefore 

providing more time during which energy will be extracted from the vibrational 

manifold. However, the low Mach number also produces low gas temperature and 

density jumps across the shock front, resulting in a long vibrational relaxation time 

constant (re£r), since refj is inversely proportional to both density and VT rates (VT 

rates increase with increasing gas temperature, as shown in Figure 26). Therefore, 

although more time is available during which energy release can occur, the amount 

of energy released on the time scale of interest is small. On the other hand, shocks 

with high Mach numbers will have high density and temperature jumps, resulting in 

shorter reffs and a quicker energy release. However, the higher shock speed means 

that there will be less time during which the vibrational energy can be extracted. In 

addition, the higher post-shock temperatures from the fast shocks result in higher 

initial post-shock thermal energies. Thus, although the vibrational energy can be 

extracted quickly, its relative contribution to the total thermal energy in the flow 

may be minor. 

4-4    Conclusion 

The release of excess vibrational energy in the post-shock region results in 

increases in the shock speed. Assuming that full equilibration among the various 

thermal modes (translation, rotation, vibration) is achieved in the post-shock re- 

gion, an analytic expression has been derived, from which the shock speed in the 

nonequilibrium region can be determined for a Riemann shock problem. This ana- 

lytic solution agrees well with results from a numerical solution to Eulers equations, 
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many of the plasma/shock experiments reported in the literature were conducted in 

air, this may have been the case. However, while the increased VT rates would reduce 

the vibrational energy transfer time, they would also reduce the amount of energy 

contained within the vibrational manifold. So although the vibrational energy could 

be transferred quicker, there would be less energy to transfer. 

To further study the quantitative effects of nonequilibrium vibrational energy 

transfer, a more detailed fluid approach would be required. In this refined study, each 

vibrational level should be treated as a separate gas. Taking into account the VV 

and VT energy exchange processes in this manner would eliminate the need for an 

effective relaxation time constant (r), as used in the present analysis. Thus, the vari- 

ations in flow parameters and shock speed could be more accurately tracked, leading 

to a more refined assessment of the role of nonequilibrium vibrational relaxation. 

Although the focus of this chapter was on post-shock energy addition in the 

form of nonequilibrium vibrational relaxation, one cannot ignore the fact that the 

shock phenomena which have been observed in molecular gases have been observed in 

atomic gases as well ([33], [12] and [41], for example). Since such gases obviously lack 

vibrational degrees of freedom, some other mechanism must be at work. Although 

it is true that a weakly ionized plasma in an atomic gas may have processes such as 

de-excitation of electronic states and recombination ongoing, the low number density 

of the relevant species argues against these mechanisms being sufficiently strong to 

account for the observed variations in shock velocity and shock structure. 
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V.   Thermal Effects 

5.1    Introduction 

Anomalous behavior has been observed as a shock propagates through a plasma, 

This behavior has not been observed when the shock propagates through a homo- 

geneous neutral gas at a fixed temperature. In the shock experiments conducted 

in a plasma, it is difficult to completely avoid heating of the neutral gas. That is. 

experimentally it is difficult to create a plasma that does not heat the neutral gas. 

Alternatively, one could try to heat the gas without creating a plasma (by the use 

of a hot Ni-Cr wire placed down the tube centerline, for example). However, such 

attempts may have difficulty in obtaining the same peak temperatures and/or a sim- 

ilar radial temperature profile as observed when the heating is due to the plasma. 

Another complication possibly introduced by this method is the presence of the as- 

sociated heating apparatus in the shock tube, which may affect the gas flow and 

complicate measurements of density, pressure, etc. In an attempt to isolate plasma 

effects from thermal heating effects, pulsed discharges have been used. These devices 

produce a plasma over a short temporal duration, with the premise being that the 

neutral gas temperature doesn't change much during this time. However, difficulties 

arise in the analysis of such pulsed devices due to the transient nature of the plasma. 

A steady-state glow discharge is a much simpler system to analyze due to the absence 

of significant variations in the plasma parameters. 

Shock characterization and modification are conveniently classified according 

to the method of initiating the shock. There are two common methods used to 

generate a shock. The first uses a classical shock tube arrangement in which a 

breakable diaphragm separates high and low pressure gas. When the diaphragm is 

ruptured, the gas flows from high to low pressure, producing a shock in the process. 

The experimental apparatus which produces a shock in this manner is commonly 

called a shock tube, while the theoretical analysis of this problem is commonly 
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called the Riemann (or shock tube) problem [61]. The second method uses a burst 

of energy to locally heat the gas in a small region of a tube. This heating leads to a 

local increase in the pressure, which causes the gas to flow to regions of lower pressure. 

The burst of energy is typically due to the discharge of an electrical capacitor. This 

method of impulsively generating a shock is called a spark-initiated shock. A typical 

Electrode 

Shook wave / 
7 

Plasma-heated 
(     neutral gas j 

Figure 59.    Typical experimental arrangement in which a shock propagates into a 
plasma-heated gas. 

experimental arrangement is shown in Figure 59. in which a shock (produced by a 

spark discharge, as shown in this example) propagates into a plasma. A steady- 

state glow discharge of limited spatial extent heats the neutral gas. In general, 

the temperature of the gas throughout the heated region (and in the absence of a 

shock) will be a function of position and time (i.e.. T = T{r,9,z,t), in cylindrical 

coordinates). In the present analysis, symmetry in the 9 direction and steady-state 

conditions will be assumed, thus T = T(r.: I. A shock is produced and propagates for 

some distance in ambient gas before it enters the region containing the hot gas. Any 

modifications to the shock due to the presence of t hermal inhomogeneities are termed 

thermal effects. Although the plasma is comprised of ions, electrons and neutral 

gas particles, the relative fraction of the charged specie are very small. Typical 

ionization fractions in a glow discharge plasma are in the range 10-6 - 10-8 [98:3] 

(i.e., approximately one electron/ion pair for every ten million neutral gas particles). 
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The minority of electrons and ions in the flow was the basis for the conclusion in 

Chapter III that charged particles have an insignificant effect on the shock. 

In this chapter shock modification due to thermal inhomogeneities will be ex- 

amined using a two-dimensional computational fluid dynamics code written for this 

purpose. This code simulates both the Riemann problem and the spark-initiated 

shock problem, each of which has been used in shock propagation experiments in- 

volving a plasma. Code details are given in the next section and in Appendix B. 

Results will be presented which validate this code for both types of problems. The 

code will then be used to study thermal effects on shock propagation, beginning 

with a simple thermal discontinuity. A more general class of two-dimensional ther- 

mal inhomogeneities is then treated and related to glow discharge conditions. The 

assessment of thermal effects concludes with simulations of and comparisons to ex- 

periments conducted by both Western [46] and Russian ([115], [52]) researchers. 

5.2    Model Equations 

The model equations used in this analysis are the two-dimensional Euler equa- 

tions. These four equations (conservation of mass, conservation of x momentum, 

conservation of y momentum and conservation of energy) are augmented by a fifth 

equation in the case of a spark-initiated shock. This last equation is used to describe 

the physical process of energy from the spark discharge coupling into the neutral 

gas. This equation governs the temporal and spatial release of energy into the flow, 

thereby producing a shock wave similar to that produced by a spark source. The 

form of this equation is very similar to that used to describe either the release of 

vibrational energy or the detonation of chemical energy in the flow. The latter anal- 

ogy is adopted as the model describing the generation of a spark-initiated shock. 

Accordingly, the fifth equation expresses the principal of conservation of chemical 

energy. In the case of a Riemann (or shock tube) problem the use of a conservation 

of chemical energy equation is not required. 
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The equations used to model the flow can be written as [62:69] 

dU    ÖE    OF -. ,    - 

at      ox      oy 
(82) 

where U is the vector of conserved quantities, E and F are flux vectors, H is a vector 

of sources due to axisymmetric geometry and Q is a vector of sources describing 

energy addition to the flow for a spark-initiated shock. Each of these vectors are 

defined below. The coefficient a is 1 for two-dimensional axisymmetric geometry 

and 0 for two-dimensional planar geometry, while the coefficient ß is 1 for a spark- 

initiated shock problem and 0 for a Riemann problem. The vector of conserved 

variables [U) is defined as 

P 

pVr 

U= pVy (S3) 

P{H
V

?+ *?) + *¥} 
P^chem 

where p is the mass density of the gas, Vx is the flow velocity in the x direction, 

Vy is the flow velocity in the y direction, 7 is the usual ratio of specific heats, kß is 

Boltzmann's constant, T is the gas temperature, M is the mass of the gas particle 

considered, and tchem is the specific chemical energy to be used in generating a shock 

in the spark-discharge case. Each of the variables in U is a function of x, y and t; 

i.e., p = p{x,y,t), Vx = Vx(x,y,t), etc. The flux vectors E and F are defined as 

pVx 

p(K2 + ¥) 
E = pVxVy (84) 

ptchem ^x 
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and 

F = 

PVy 

pYxVy 

p (v? + ¥) 

PCchem^y 

(So) 

the axisymmetric source vector // is defined as 

pVXVy 

H pVf 

Ptchem y'y 

hile the vector of sources used for the spark-initiated shock problem is defined as 

(86) 

Q = 

o 

0 

Pf-cher. 

Plche 

1ST' 

where r governs the temporal release of the chemical energy. The first equation in 

82 expresses conservation of mass, the second and third equations describe the con- 

servation of momentum in the x and ij directions, respectively. The fourth equation 

expresses the conservation of directed kinetic energy and thermal energy, where the 

former depends on the mass flow velocity and the latter depends on the number of 

degrees of freedom possessed by the gas particle under consideration and the gas 

temperature. As an example of the latter, consider an Argon atom (7 = 5/3) which 

possesses three degrees of freedom. With \kßT of energy per degree of freedom its 
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specific thermal energy is |^, which is equivalent to zpt^ff- The fifth equation 

in 82 describes the conservation of chemical energy. 

These equations were solved using an explicit MacCormack method [82] com- 

bined with a flux corrected transport [23] algorithm. Strang-type splitting [109] 

was used in order to extend the one-dimensional MacCormack algorithm to two- 

dimensions. The source terms represented by the right hand side of Equation 82 

were handled by an implicit method suggested by Yee [120:36]. Further details re- 

garding the numerical solution of Equation 82 are given in Appendix B. 

The MacCormack scheme (with second-order accuracy) was chosen clue to both 

its suitability for solving nonlinear Equations [62:192] and its relative programming 

ease. However, the use of a second-order accurate method by itself would lead to 

oscillations in the solution near shocks. The FCT method was adopted as a way to 

get rid of these numerical oscillations by preventing them before they are allowed 

to grow [61:127]. Of course, other methods could be used to accomplish the same 

goal (Godunov method, artificial viscosity, etc.), however the MacCormack/FCT 

method offers stability and sharp resolution for a relatively small effort in coding 

[112]. Higher-order Godunov schemes like the Roe method produce more accurate 

solutions than the MacCormack/FCT scheme, however they are more complicated 

to code and more expensive to run [44:173]. Additionally, the FCT method is more 

accurate than using artificial viscosity to clamp out the oscillations [44:173]. 

5.3    Code Validation 

5.3.1 Riemann Problem. The Riemann problem was solved numerically 

in two-dimensional planar geometry for a shock tube with a length of 50 cm and 

a half-width of 2.5 cm. The diaphragm was located at 20 cm with respect to the 

high pressure end of the tube. The working gas was Argon with an initial pressure 

ratio (P4/Pi) and temperature ratio (TA/Ti) of 10.0 and 1.25, respectively. The two- 

dimensional calculation was performed on a grid with 401 nodes in the x direction 
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Figure 60.    Analytic ( + ) and numerical (solid curve) solution to the Riemann prob- 
lem (Argon with P4/Pi = 10.0, T4/7\ = 1.25). 

(along the tube axis) and 23 nodes in the y direction (across the tube). A comparison 

between the analytic solution to the Riemann problem (symbols) and the numerical 

solution to the Euler equations (solid curve) along the shock tube centerline is shown 

in Figure 60. In this figure, the values of pressure, temperature and density have 

been normalized to the respective upstream ambient value. The agreement is quite 

good, with relative errors in the pressure being less than 1% throughout the flow field 

except at the leading and trailing edges of the expansion fan, near the contact surface 

and near the shock front. The relative errors in these regions are typically less than 

5%, with the relative error at one or two nodes very near the shock front being much 

higher (« 50%). As discussed previously in Chapters III and IV, the higher relative 

errors near the shock front can be attributed to the MacCormack/FCT method, 

which smears this region over approximately 3 spatial nodes. In general, the relative 
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error throughout the physical domain can be reduced by increasing the number of 

grid nodes in the computational domain, accompanied (of course) by an increase 

in the computational requirements (memory, CPU time). Increasing the number 

of nodes does not prevent the MacCormack/FCT method from smearing the shock 

front region, however, thus the high relative error in one or two bins near the shock 

front will remain high. 4 

The transverse symmetry of the solution is illustrated in Figure 61, where 

the full two-dimensional density (top) and pressure (bottom) solutions are shown. 

The primary features of a Riemann solution are also shown in this figure. In this 

figure, the tube centerline is along y - 0, while the tube wall is along the maximum 

y coordinate in the domain. The solution is observed to be independent of the 

transverse position, as it should be in this validation problem. The density and 

pressure in these plots have been normalized by their respective upstream values. 

4 Again, the barely discernable ripples in the numerical solution in the regions of the expansion 
fan and contact surface are due to the graphic conversion utility program used and were not present 
in the raw numerical data. 
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Figure 61. Density (top) and pressure (bottom) from the two-dimensional nu- 
merical solution to the Riemann problem (Argon with P4/P1 = 10.0, 
T4/T1 = 1.25). The density and pressure have been normalized to their 
respective ambient values. 
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Figure 62.    Analytic (dashed) and numerically determined (solid) shock speed alon^ 
the centerline (Argon with P4/P1 = 10.0, TAjTx = 1.25). 

The numerically determined shock velocity can also be compared to the an- 

alytic value. This is useful because unlike flow velocity, density, temperature or 

pressure, the numerical value of the shock velocity is not a direct output of the so- 

lution to the fluid equations, as mentioned previously in Chapters III and IV. The 

shock speed can be determined by the temporal evolution of the shock front po- 

sition, as described in Appendix B. Figure 62 shows the analytically determined 

shock speed (straight line) compared to the numerically determined shock speed. 

The diaphragm is located at 20 cm, so that at time t=0, the shock speed is zero. It 

is observed that the numerical shock velocity undergoes a transition period (lasting 

about 200 jusec under the present conditions) during which it speeds up. overshoots, 

undershoots, then converges to the proper analytic value. The analytic shock speed 

(under the present conditions) is Mach 1.597, which is approximately equivalent to 

515 m/sec when the ambient gas temperature is 300 K. The small oscillations in the 

shock speed have an amplitude of less than 1 m/sec and are caused (primarily) by 

the uncertainty with which the position of the shock front is known at any instant 

in time. That is, the shock front position at any time is known numerically only to 

136 



within the spatial resolution of the solution, which is the interval between adjacent 

nodes. 

5.3.2 Spark-Initiated Shock. In the Riemann problem, the existence of an 

analytic solution provides a useful tool to assess the quality of the numerical solution. 

In contrast, no analytic solution is known to exist in the case of a spark-initiated 

shock wave. However, since such initiation techniques have been widely used in the 

study of shock propagation in plasma, it is necessary to be able to suitably simulate 

the generation and propagation of a shock wave under such conditions. In this case, 

the lack of an analytic solution forces a comparison of the numerical solution to 

experimental observations in order to validate the code. Fortunately, observations of 

sufficient detail have been made [37] that allow a comparison to take place, at least 

qualitatively. Although the cited reference lacks many of the specifics necessary 

for a full quantitative comparison, the general nature and behavior of the reported 

observations are extremely valuable. 

The spark-initiated shock is produced by discharging electrical energy across 

a spark gap. This energy deposition begins when a sufficiently high voltage breaks 

down the gas. The resulting plasma completes the electrical circuit and a current 

flows through the gas (plasma) across the spark gap, heating the gas in the process. 

As an example, consider an infinitesimal volume of gas. If a current flows through 

this test volume then the gas is heated, while the number density in the test volume 

initially remains constant. This results in a rise in the gas pressure within the test 

volume. Consider another test volume of gas through which no current flows and 

consequently does not get heated. Between the two test volumes a pressure gradient 

is created which makes the fluid flow in the direction of lower pressure. If the heating 

occurs quickly enough, then a pressure gradient is created with sufficient strength to 

generate a shock wave. 
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The experimentally measured density distributions of a shock pulse generated 

by a spark discharge at five instants in time (1.0, 1.7, 2.9, 5.6 and 9.8 /usec cor- 

responding to curves 1, 2, 3, 4 and 5, respectively) are shown in Figure 63 (left), 

taken from [37]. Notable features of the pulse are the spreading of the shock en- 

velope and the accompanying decrease in amplitude as time increases. The shock 

velocity is reported to be approximately 2000 m/sec at 'early times' (no specific 

time is mentioned), with the corresponding temperature in the central region to be 

approximately 40,000 K. In the experimental device of [37] a capacitor is used to 

store the electrical energy prior to its release. This capacitor (0.25 /.if) is charged to 

a voltage of 10 KV, resulting in an energy release of 12.5 Joules.   The results of a 

experiment simulation 

Figure 63.    Spark-initiated shock density profile:  experiment (left, from [37]) and 
simulation (right) 

numerical calculation simulating a spark-initiated shock pulse are shown in Figure 

63 (right). The calculation times for the simulation correspond to the times in the 

experiment. Although the numerical simulation does not reproduce the experimen- 

tal density measurements exactly, the general behavior of the shock pulse is in fair 

agreement with measurements.   The numerical simulation generates a shock pulse 
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whose amplitude decreases, and whose pulse width increases with time, consistent 

with experimental observations. 
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Figure 64. Variation of shock front position with time (left) from experiment 
(boxes) and from simulation (solid). Shock front speed (right) from 
simulation. 

The position of the shock front as a function of time also closely replicates the 

observed data (Figure 64 (left)). The slope of this curve at any point in space (time) 

is the velocity of the shock at that same point in space (time). The simulated shock 

velocity is shown in Figure 64 (right) as a function of position. At a time of 0.15 

//sec, the simulation predicts a shock velocity of 1700 m/sec and a temperature at 

the origin of 40,460 K, both in good agreement with reported values. The numerical 

simulation used an energy release of 3.92 Joules (assuming a tube radius of 10 cm), 

which is nearly a factor of three less than the energy released in the experiment. 

However, this difference might be explained by the difference in pressures between 

the simulation and experiment (30 torr in the simulation compared to an unknown 

pressure in the experiment) or by a different shock tube radius (which was not 

reported). Furthermore, some of the 12.5 Joules released in the experiment is lost 

clue to radiation and does not heat the gas. Nevertheless, the favorable comparison 
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between the simulation and the experiment lead to the conclusion that the present 

numerical method used to generate and propagate a shock pulse is representative of 

spark-initiated shocks reported in the literature. 

In addition to the validation tests discussed previously, in which the gas flow 

was primarily along the computational grid lines (both Riemann and spark-initiated 

spark problems), the code's ability to handle flows in general directions was tested. 

In these tests, a square computational grid comprised of 151 nodes in each direction 

(x,y) was used to simulate a physical domain of 10 cm by 10 cm. Both small- 

amplitude and large-amplitude pressure disturbances were generated at the center 

of the domain, simulating point explosions of various strengths. In the former case, 

acoustic disturbances were observed to propagate radially outward from the center in 

all directions at nearly equal velocities (within 3% of the acoustic velocity). Pressure 

contours for this simulation are shown in Figure 65. Here, the small-amplitude wave 

has propagated for a time of 1.188-4 sec in Argon at an ambient temperature of 

300A'. Although the physical domain was represented on a Cartesian grid, the 

resulting pressure contours are nearly circular, indicating the pressure disturbances 

propagate at nearly equal velocities in all directions. If the pressure disturbance 

originating at the origin is large, shock waves will form. For this case, shock waves 

were also observed to propagate radially outward from the center in all directions, at 

(again) nearly equal velocities (a 3% spread in shock velocities was noted). In both 

cases, the slowest signal propagation speed occurred in angular directions that were 

at 45 degrees relative to the computational grid lines. 
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Figure 65. Pressure contours resulting from the propagation of a small-amplitude 
wave originating from the center of the domain (x = 0.05, y = 0.05). 
The velocity of the leading edge of the pressure disturbance in any di- 
rection is within 3% of the speed of sound. 
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5.-1    Step Temperature Rise 

A sharp discontinuity in the temperature offers the simplest example of the 

effects of a thermal inhomogeneity on shock characteristics. In this section, an infinite 

planar interface will be considered which separates gas 1 at a temperature 7\ from 

gas 2 at a temperature T2. The ratio of the heat capacity at constant pressure (Cp) 

to the heat capacity at constant volume (Cv) (also known as the adiabatic exponent) 

will be denoted as 71 for gas 1 and y2 for gas 2. A shock will be propagated from gas 

1 through the thermal discontinuity into gas 2, with the resulting modifications to 

the shock characteristics to be examined. Two cases will be considered. The first is 

for the case in which T2 > Tu while the second is for the case in which the inequality 

is reversed. The former case leads to transmitted shock and a reflected rarefaction 

wave, while the latter case leads to both a transmitted and reflected shock [118:78]. 

5.4-1    Riemann Problem. 

54.I.I Reflected Rarefaction Wave. A comparison of the calculated 

pressure and density profiles obtained for the case in which T\ = 300A' and T2 = 

600A" (solid) and the exact Riemann solution in which Ti = T2 = 300Ä' (clashed) 

at the same instant in time is shown in Figures 66 and 67. The interface between 

T2 and 7\ was initially located at x=35 cm. Although a heated region exists on 

the low pressure side of the shock tube, the pressure remains constant in this region 

(upstream of the shock front). This is representative of the steady-state condition in 

a glow discharge in which the pressure is maintained constant throughout the tube, 

although the heated gas in the plasma region may occupy only a small part of the 

tube. The relative positions of the two shock fronts indicate that the shock velocity 

in the heated case is higher than the nominal shock velocity. 
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Figure 66. Pressure distribution for a Riemann shock propagating into gas with 
a step rise in temperature (solid) and exact solution for gas at room 
temperature (clashed). The heated region starts at x = 35 cm. 
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Figure 67. Density distribution for a Riemann shock propagating into gas with 
a step rise in temperature (solid) and exact solution for gas at room 
temperature (dashed). The heated region starts at x = 35 cm. 
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A comparison between the nominal Riemann solution and the solution in the 

present case reveals additional structure in the pressure and density profiles as the 

shock propagates into the heated gas. These structures are the reflected rarefaction 

wave and the thermal contact surface. The rarefaction wave has reflected off the 

thermal interface and is traveling to the left. The thermal contact surface separates 

gas that was initially on the left side of the thermal interface from the gas that was 

initially on the right side of the thermal interface, and travels to the right. This is 

analogous to the contact surface that forms in a Riemann shock, which separates 

gas initially on the left side of the diaphragm from the gas initially on the right 

side of the diaphragm. The thermal contact is not observed in the pressure plot, 

just as the contact surface is not present in the pressure plot. The thermal contact 

surface travels to the right, although at a lower velocity than the shock front velocity. 

Note that both the pressure and density jump at the shock front (P2/P1 and p2/pi, 

respectively) are lower in the heated gas than in the nominal case. This is clue to 

the lower Mach number of the shock in the heated gas. The gas between the left end 

of the shock tube and the rarefaction wave hasn't felt the influence of the thermal 

discontinuity, so the numerical solution in this region agrees with the analytical 

solution (with a slight deviation near the location of the diaphragm, x=0.2). 

The increase in the shock front velocity as the shock propagates into the heated 

region is shown in Figure 68. This figure also shows the analytic values of the shock 

velocity for both the nominal (clotted) and heated gas (dashed) case. The Mach 

number in the nominal case is 1.597 (515 m/sec), while in the heated case (solution 

to equation 44) the Mach number is 1.492 (675 m/sec). The numerically determined 

shock speed closely follows the analytical predictions. 

The pressure ratio at the shock front (P2/Pi), as determined by the code, is 

shown in Figure 69. The analytic values of the pressure ratio for both the nomi- 

nal (2.94) and heated gas case (2.49) are also shown.   The agreement between the 
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Figure 68. Variation in the shock velocity as a Riemann shock propagates through 
gas with a step rise in temperature (solid). The analytic shock velocities 
calculated for gas at 300A" (dotted) and for a thermal jump to 600A" 
(clashed) are also shown. The heated region begins at x = 35 cm. 

numerical solution and the analytic predictions serve as another indication that the 

code is performing satisfactorily. 
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Figure 69. Variation in pressure ratio at the shock front {P2/P1) as a Riemann 
shock propagates through gas with a step rise in temperature (solid). 
The analytic P2/Pi ratios for gas at 300Ä' (clotted) and for a thermal 
jump to 600Ä' (dashed) are also shown. The heated region begins at 

x — 35 cm. 
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5.4-1-3 Reflected Shock Wave. A comparison between the solution 

obtained for the case in which Tx = 600 A' and T2 = 300A' and the nominal Riemann 

solution at the same instant in time is shown in Figures 70 and 71. The thermal 

interface is located at x = 35 cm, as in the reflected rarefaction case. The relative 

positions of the shock fronts in the two cases indicate that the shock velocity in 

the cooled region is lower than the nominal shock velocity. This is shown explicitly 

in Figure 72. The analytic values of the shock velocity for both the nominal (515 

m/sec) and cooled gas case (392 m/sec) are also shown. In contrast to the case in 

which T2 > Ti (leading to a reflected rarefaction), the case in which T2 < T\ leads 

to a reflected shock. This reflected shock travels to the left, while the original shock 

is transmitted through the thermal interface and travels to the right. The gas to the 

left of the reflected shock has not yet been influenced by the presence of the thermal 

interface, thus the numerical solution agrees with the analytic Riemann solution in 

this region. Note that the pressure and density jumps at the shock front are greater 

in the cool gas than in the nominal case. This is a direct result of the higher Mach 

number of the shock in the cool gas, even though the shock front velocity is lower 

in the cool gas as compared to the constant temperature case. The Mach number 

of the shock in the nominal case is 1.597, while in the cool gas the Mach number 

is 1.721 (solution to equation 1). The pressure ratio at the shock front (P2/Pi), as 

determined by the code, is shown in Figure 73. This pressure ratio increases as soon 

as the shock front enters the cool gas region, clue to the higher Mach number of the 

shock in this same region. The analytic values of the pressure ratio for both the 

nominal (2.94) and cooled gas case (3.45) are also shown in this figure. 
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Figure 70. Pressure distribution for a Riemann shock propagating into gas with a 
step decrease in temperature (solid) and exact solution for gas at 600A' 
(dashed). The cooled region starts at x = 35 cm. 
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Figure 71. Density distribution for a Riemann shock propagating into gas with a 
step decrease in temperature (solid) and exact solution for gas at 600A" 
(dashed). The cooled region starts at x = 35 cm. 
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Figure 72. Variation in the shock velocity as a Riemann shock propagates through 
gas with a step decrease in temperature (solid). The analytic shock 
velocities calculated for gas at 600A' (dotted) and for a thermal jump 
to 300A' (clashed) are also shown. The heated region begins at x = 35 
cm 
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Figure 73. Variation in pressure ratio at the shock front {P2/Pi) as a Riemann 
shock propagates through gas with a step decrease in temperature 
(solid). The analytic P2/Pi ratios for gas at 600A' (dotted) and for 
a thermal jump to 300A' (dashed) are also shown. The heated region 
begins at x = 35 cm. 
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5.4-2 Spark-Initiated Shock. In the previous section, the effect of a simple 

planar thermal interface on a Riemann shock wave was evaluated for two cases: 

T2 > T\ and T2 < 7\. The former case led to an increase in the shock speed and 

the formation of a reflected rarefaction wave, while the latter case led to a decrease 

in the shock speed and the formation of a reflected shock wave. Here, attention is 

focused on a spark-initiated shock for the case in which T2 > Ti. thus an increase in 

shock velocity and the formation of a reflected rarefaction wave are anticipated. 

The structure resulting from a spark-initiated shock propagating into a heated 

region is shown in Figures 74 and 75. The shock was generated by simulation of a 

release of energy from a spark source located at the origin. The thermal interface 

was initially located at x = 20 cm with the temperature in the heated region (T2) 

being 600 A" and the temperature in the ambient region (7\) being 300A". The shock 

pressure and density profiles obtained as the shock propagates through gas at a 

uniform temperature of 300A', calculated for the same time, are also shown (clashed). 

The additional structure in the pressure and density profiles are analogous to that 

previously discussed in the Riemann example. The reflected rarefaction wave is 

clearly discernible, as is the thermal contact surface and transmitted shock front. 

The reflected rarefaction wave travels to the left, while the thermal contact surface 

and shock front travel to the right. 

The computed variation of the shock front velocity with distance corresponding 

to the nominal and heated gas cases is depicted in Figure 76. Prior to the shock 

entering the heated region the computed shock velocities are identical. As the shock 

enters the heated region it accelerates to a new velocity. This new velocity is a 

solution to Equation 44, where the relevant entrance velocity (Mi) is the velocity 

of the shock just as it enters the heated region (approximately 520 m/sec in this 

example). This is an important distinction between the Riemann shock (which 

maintains a constant velocity in the absence of a thermal interface) and the spark- 

initiated shock (which continues to slow clown as it propagates). Thus the velocity 
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of the spark-initiated shock initially decreases as it propagates away from the origin, 

speeds up as it enters the heated region, then continues to slow down as it propagates 

further down the tube. 
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Figure 74. Pressure distribution for a spark-initiated shock propagating into gas 
with a step rise in temperature (solid) and into gas at room temperature 
(dashed). The heated region starts at x = 20 cm. 
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Figure 75. Density distribution for a spark-shock propagating into gas with a step 
rise in temperature (solid) and into gas at room temperature (clashed). 
The heated region starts at x = 20 cm. 
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Figure 76. Variation in shock speed as a spark-initiated shock propagates through 
gas at 300A' (dotted) and through a gas with a step increase in temper- 
ature (solid). The velocity of the shock as it enters the heated region 
(dot-dash) and the resulting solution of equation 44 (with T2 = 600A") 
(dash) are also shown. The heated region begins at x = 20 cm 
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5.5    Radial Temperature Profile 

In the previous section a step increase (or decrease) in temperature was consid- 

ered in which the change occurred at the same longitudinal coordinate in the shock 

tube for every transverse location. In this section a transverse thermal profile will 

be introduced in which the gas temperature maximum will be along the centerline 

and decrease monotonically to the wall temperature. The temperature profile will 

be discontinuous in the direction parallel to the shock tube axis at the point x0, as 

in the previous examples. A prototypical temperature profile will be used, in which 

T{x,y) 
To, if x < x0 

(88) 
^ To + 7i Cos (f §) ,   ifx>x0 

where x is the axial coordinate, y is the transverse coordinate (in either axisymmetric 

or planar geometry), Y is either the shock tube radius (in axisymmetric geometry) 

or the half-width (planar geometry) and T0 is the ambient temperature. Since the 

temperature in the heated region will always be greater than or equal to the ambient 

temperature, reflected rarefaction waves will form, as opposed to the formation of 

reflected shocks when the inequality is reversed. Propagation characteristics and 

shock structure for both Riemann and spark-initiated shocks will be addressed. 

5.5.1 Riemann Problem. In this section, the assumed temperature profile 

as given by Equation 88 (with T0 = 300A', Ti = 300A' and x0 = 35 cm) will be ap- 

plied to a Riemann problem in planar geometry, and the resulting shock structure in 

the heated region will be examined. The imaginary diaphragm within the shock tube 

was located at x = 20 cm, with the tube having a length of 50 cm and a half-width 

of 2.5 cm. The initial pressure (P4/Pi) and temperature (T4/Ti) ratios were 10.0 

and 1.25, respectively. Until the moment the shock front enters the heated region, 

the shock characteristics are given by the standard Riemann solution. Beyond this 

point, modifications to the shock structure become quickly evident.  The variation 
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Figure 77. Variation in the centerline shock velocity as a Riemann shock propagates 
through a region with a radial thermal inhomogeneity (Equation 88) 
(solid). The analytic shock velocities calculated for gas at 300A' (clotted) 
and a thermal jump to 600A (dashed) are also shown. The heated region 

begins at x — 35 cm. 

in the shock front velocity along the centerline is shown in Figure 77 (curve 1). The 

analytic shock velocity obtained for the Riemann problem in the absence of a heated 

region, 515 m/sec (curve 2), and the solution to Equation 44 (with 7\ = 300A. 

T2 = 600A\ and Mx = 1.597), 675 m/sec (curve 3). are also shown. After an ini- 

tial transient, the shock velocity converges to the analytic value in the region where 

the gas temperature is 300A', then rises steeply at the onset of the heated region, 

attaining the velocity corresponding to the peak temperature jump. The center- 

line shock velocity then slows down, during which time the shock velocity near the 

wall increases. The apparent ringing (or oscillation) in the shock velocity damps 

out at longer propagation distances, as the figure shows (note: the shock tube was 

lengthened to 70 cm for this calculation in order to allow the shock velocity reach a 

quasi-steady value). 

The initially planar shock front begins to distort the moment the shock hits 

the heated region. The portion of the shock near the centerline of the tube travels 
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through gas with a higher temperature than the portion of the shock near the tube 

walls. As a result, the shock velocity near the centerline is initially higher than the 

shock velocity near the wall. The corresponding Mach number of the shock near the 

centerline is lower than the Mach number of the shock near the wall. As soon as the 

shock front is distorted, a pressure gradient in the transverse direction arises which 

attempts to lessen this distortion. This leads to a slowing down of the shock front 

along the centerline and a speeding up of the shock front along the wall. 
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Figure 78. Density profiles near the shock front for a Riemann shock propagating 
into a region with a radial thermal inhomogeneity (equation 88) along 
the centerline (1), 3/4 of the distance to the wall (2) and along the wall 
(3). The analytic solution for gas at a uniform temperature of 300A' at 
the same instant in time (4) is also shown (Argon with P4/P1 = 10.0, 
TJT, = 1.25). 

Density profiles in the shock front region are shown in Figure 78 for three 

cuts down the shock tube: along the centerline (curve 1), 3/4 of the way to the wall 

(curve 2) and along the tube wall (curve 3). The analytic Riemann solution (curve 4) 

calculated for the same time as the other three curves (366 ^usec), but in the absence 

of a heated region is also shown. A rarefaction wave can be seen at approximately 

x = 34 cm.   This rarefaction wave has reflected off the thermal interface and is 
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traveling to the left. The shock fronts of each of the three curves are located ahead 

of the analytic solution, indicating that the shock velocity at each of these points is 

greater than the nominal shock velocity. Note that the shock fronts in the heated 

region (curves 1, 2 and 3) are not aligned with each other, indicating the shock front 

is no longer planar, but curved. The sudden rise in the calculated density profiles 

near x = 30 cm is clue to the arrival of the contact surface, which is a characteristic 

feature of the Riemann solution. 

The full two-dimensional planar solution for both density (top) and pressure 

(bottom) are shown in Figure 79 at a time of 420 ^sec. In this figure, the centerline of 

the tube is to the left with the wall to the right. Both the density and pressure have 

been normalized to their respective ambient (unheated) values on the low pressure 

side of the diaphragm. Some features of the present solution are similar to the 

standard Riemann solution obtained previously (Figure 61), in which a heated region 

was not present. In addition, the present solution has similarities to the solution 

obtained when a step increase in temperature was present (Figures 66 and 67). At 

the shock front both the density and pressure jumps are lower on the centerline as 

compared to portions of the shock front closer to the wall. Both the normal contact 

surface and the thermal contact surface are clearly seen in the density field. The 

pressure is relatively constant in this region, except for the rarefaction wave which 

is clearly discernible. These observations are consistent with the one-dimensional 

results obtained previously. In front of the shock the pressure is constant, while the 

density varies transversely in an inverse cosine fashion, with the minimum density 

on the centerline (where the temperature is a maximum) and the maximum density 

at the wall (where the temperature is a minimum). In the shock front region, a 

local pressure maximum is observed at the wall, consistent with previous theoretical 

results of a shock propagating through a radial thermal inhomogeneity [115:473]. A 

local pressure minimum occurs near the centerline. 
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Figure 79. Density (top) and pressure (bottom) in a Riemann shock propagating 
into a region with a radial thermal inhomogeneity (equation 88). The 
expansion fan is not shown. (Argon with P4/P1 = 10.0, T4/T1 = 1.25). 
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The transverse variation of the peak pressure in the shock front region is un- 

derstandable when one considers the transverse variation in the shock Mach number 

and the Rankine-Hugoniot relation governing the pressure jump at a shock front. 

The shock velocity at every transverse position along the shock front was nearly 

constant at the time these distributions were calculated. Therefore, the Mach num- 

ber at every transverse location will be determined by the local gas temperature 

at that same point. Since the temperature along the centerline is a maximum, the 

shock Mach number along the centerline is a minimum. Conversely, the shock Mach 

number along the wall is a maximum since the temperature along the wall is a mini- 

mum. The Rankine-Hugoniot pressure relation then predicts that the pressure jump 

on the centerline must be a minimum and the pressure jump along the wall must be 

a maximum. 

It was previously mentioned that the initially planar shock front distorts as 

the shock propagates into a region of gas with a radial thermal gradient. This 

distortion (or curvature) of the shock front does not continue unabated as the shock 

propagates, but reaches a quasi-stationary state in which the curvature appears to 

be relatively constant. This is consistent with previous numerical results [115:474]. 

The curvature of the shock front is most easily seen in plots of the pressure contours, 

as shown in Figure 80, corresponding to the pressure surface plot shown in Figure 79. 

The pressure peak in the shock front region observed in the surface plot is located in 

the upper right hand corner of Figure 80, indicated by the closeness of the contour 

curves. 

Although the shock front shown in Figure 80 is clearly curved, it is less than one 

might imagine. As a comparison. Figure 81 shows pressure contours calculated un- 

der nearly identical conditions. In this figure the portion of the fluid dynamics code 

that integrates the Euler equations in the transverse direction (transverse coupling) 

was turned off. Without transverse coupling, the code is solving separate, uncoupled 

one-dimensional Riemann problems where each shock propagates into a region with 
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a temperature increase of differing magnitude (Equation 88). The amount of curva- 

ture in this case is much greater than the case in which the transverse coupling is 

allowed (the normal computational fluid dynamics mode). Additionally, the shock 

front curvature calculated with transverse coupling is relatively constant as the shock 

propagates, while the curvature calculated without transverse coupling will continue 

to increase as the shock propagates. In the normal computational mode, the trans- 

verse pressure gradient created by the shock curvature essentially acts as a source 

term in the Euler equations, seeking to equalize the pressure, density and velocity 

along the y direction in an effort to make the shock front planar. 
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Figure 80.    Pressure contours near the shock front for a Riemann shock propagating 
into a heated zone (equation $>§) with transverse coupling. 
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Figure 81.    Pressure contours near the shock front for a Riemann shock propagating 
into a heated zone (equation 88) without transverse coupling. 
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5.5.2   Spark-Initiated Shock. In this section, the assumed temperature 

profile as given by Equation 88 (with T0 = 300A', Tt - 300A' and ,r0 = 20 cm) will 

be applied to an impulsively generated shock and the resulting shock structure in 

the heated region will be examined. As in the examples considered previously, the 

shock tube used here has a length of 50 cm and a half-width of 2.5 cm. 

20 30 
x(cm) 

Figure 82. Variation in shock speed as a spark-initiated shock propagates through 
gas at room temperature (clotted) and through a region with a radial 
thermal inhomogeneity (equation 88) (solid). The velocity of the shock 
as it enters the heated region (dot-dashed) and the resulting solution of 
equation 44 (with T2 = 600A') (dashed) are also shown. 

The computed shock velocity along the tube centerline as the shock propagates 

through a gas with a radial temperature gradient (Equation 88) is shown in Figure 

82 (curve 2). The variation of the shock velocity in the absence of a heated region 

is shown for comparison (curve 1). Before entering the heated region, the two shock 

velocities are the same, with the velocity just before entering the heated region 

approximately 520 m/sec (curve 3). Upon entering the heated region, the shock front 

quickly accelerates to a new velocity, but does not exceed 680 m/sec, the maximum 

predicted velocity (curve 4). This maximum velocity was calculated based on the 

solution to equation 44 (with T2 = 600A' and Vi = 520 m/sec). Note that the shock 
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velocity does not attain a constant value, as it did in the Riemann case presented 

previously, although the oscillation exhibited in the Riemann case is still present. 

Figure 83. Density profiles as a spark-initiated shock propagates through a gas with 
a radial thermal inhomogeneity (equation 88) along the centerline (1), 
3/4 of the distance to the wall (2) and along the wall (3). The solution 
for gas at a uniform temperature of 300A" at the same instant in time 
(4) is also shown. 

The longitudinal density profile corresponding to the present case is shown in 

Figure 83 for points along the centerline (1), 3/4 of the distance to the wall (2) 

and along the wall (3). The density profile computed at the same time for the 

case in which the shock propagates through room temperature gas (4) is shown for 

comparison. The shock fronts corresponding to the heated case have propagated 

further than the shock front corresponding to the room temperature case, indicating 

the higher shock velocity when the gas is hot. The shock front along the centerline is 

slightly displaced from the other shock fronts in the heated case, indicating a slight 

curvature in the shock front region. The reflected rarefaction wave is clearly visible, 

as is also the thermal contact surface. 

The full density (top) and pressure (bottom) profiles are shown in Figure 84 for 

the case in which the gas is heated according to Equation 88. In front of the shock, the 
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pressure is constant while the density profile varies transversely in an inverse cosine- 

fashion, as in the Riemann example considered previously. The thermal contact 

surface is easily identifiable in the density plot, although it is much harder to pick 

out from the pressure plot. Since the shock was generated by a spark discharge, 

there is no contact surface as there was in the Riemann case. In the shock front 

region, the peak pressure occurs at the wall and a minimum pressure occurs on the 

centerline, consistent with the Riemann example considered previously. 

The pressure maximum and minimum stem from the observation that the 

entire shock front region propagates through the radial thermal inhomogeneity at a 

constant velocity. The Mach number of the shock, however, is not constant since the 

speed of sound is temperature dependent. Since the pressure jump at the shock front 

(given by the Rankine-Hugoniot relation) increases with the shock Mach number (not 

shock speed), the pressure jump at the wall must be greater than the pressure jump 

on the centerline. 

As a comparison to the case in which the shock propagates through gas with 

a thermal inhomogeneity, the density and pressure profiles for the case in which the 

shock travels through gas at a uniform temperature of 300K is shown in Figure 85. 

The solution in this figure was calculated for the same instant in time as the solution 

shown in Figure 84. Notice the lack of significant structure in this case, clue to the 

lack of a thermal inhomogeneity in the ambient gas. 
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Figure 84.    Density (top) and pressure (bottom) in a spark-initiated shock propa- 
gating through gas with a radial thermal inhomogeneity (equation 88). 
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Figure 85.    Density (top) and pressure (bottom) in a spark-initiated shock propa- 
gating through gas at 300A'. 

166 



5.6    Comparison to Experiment 

5.6.1 Riemann Problem.. Although there is quite a bit of literature report- 

ing the use of Riemann-type shock tubes in investigating plasma/shock interactions 

([27], [28], [41], [52], [54], [76], [77], [87], [89], [115]), there is very little literature 

providing sufficient experimental details to permit a numerical simulation and com- 

parison with experiment. The lack of details lies primarily in either the absence of 

measured thermal profiles or the absence of enough information to allow the calcu- 

lation of thermal profiles. Fortunately, both Voinovich [115] and Gridin [52] provide 

experimentally measured transverse temperature profiles. Enough details are given 

by Voinovich for a simulation and comparison of shock velocity, while Gridin [52] 

provides enough details to compare (qualitatively, at least) density profiles. 

5.6.1.1 Shock Velocity. Voinovich, et al. [115] uses a Riemann-type 

shock tube to investigate the effect of a plasma on the propagation velocity of a 

shock in air. A shock with a velocity of Mach 2.13 (approximately 752 m/sec at 

300A') was generated and propagated into a plasma formed at one end of the shock 

tube by a gas discharge (operated at a pressure of approximately 20 torr). The 

shock velocity in the plasma under these conditions was found to be approximately 

1100 m/sec (± 4%). The radial temperature profile in the plasma was measured by 

various means, as shown in Figure 86. Curves 3 and 4 were determined by optical and 

thermocouple measurements, respectively. Curves 1 and 2 correspond to Equations 

89 and 90, respectively, representing the lower and upper limits of the measurement 

error [115:472]. 

Tga,(r) = 500 + 580 Cos [— 
7rr , 

'89) 

Tgas(r) = 500 + 1136 Cos2 Q^) (90) 

A simulation of Voinovich's experiment was run using the two-dimensional fluid 

dynamics code in planar geometry on a grid with 963 nodes in the axial direction and 
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Figure 86. Radial distribution of gas temperature in a discharge in air [115]. The 
points are experimentally determined from optical measurements (3) 
and thermocouple measurements (4), while the curves correspond to 
equation 89 (1) and equation 90 (2). 

23 nodes in the transverse direction. The initial pressure (P4/P1) and temperature 

(T4/T1) ratios in the shock tube were 20.0 and 2.45, respectively. The working gas in 

the experiment (air) was represented by pure molecular nitrogen in the simulation 

(j = 7/5, molecular weight = 28). These parameters resulted in a shock velocity 

of 752 m/sec (Mach 2.13) in the ambient gas (T = 300A'). The shock tube in 

the simulation was 120 cm long with a half-width of 2.5 cm, while the imaginary 

diaphragm was located at x = 50 cm. The gas temperature on the low pressure side 

of the diaphragm was initialized to 300A', except for the region 60 cm < x < 90 cm, 

which had a radial thermal profile given by the dashed curve fit to the temperature 

measurements of Figure 86. 

The variation of shock velocity along the centerline with distance is shown 

in Figure 87 (solid). The measured shock velocity obtained under conditions cor- 

responding to the experimental thermal profile of Figure 86 (dotted) and the ana- 

lytic shock velocity obtained under ambient conditions, 752 m/sec (dashed) are also 
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Figure 87. Variation in the shock velocity as a Riemann shock propagates through 
gas with a radial thermal inhomogeneity given by the clashed curve fit 
to data of Figure 86 (solid) compared to the experimentally measured 
shock velocity under the same conditions (dotted). The analytic shock 
velocity calculated for gas at 300A' (dashed) is also shown. 

shown. The shock velocity determined from the simulation increases rapidly as the 

shock initially enters the heated region, obtains a maximum velocity of nearly 1200 

m/sec, then converges to a nearly constant velocity of 1100 m/sec, with small os- 

cillations of less than 3 m/sec around this steady value. This compares extremely 

well with the experimental shock velocity of 1100 m/sec (± 4%). As the shock 

leaves the heated region, the shock velocity rapidly decreases, reaches a minimum 

velocity of approximately 677 m/sec, then obtains a somewhat steady value of ap- 

proximately 710 m/sec, with oscillations of ± 10 m/sec around this value. The peak 

value of the numerically determined shock speed (1197 m/sec) is within 1% of the 

shock speed determined analytically (Equation 44) for a thermal jump from 300A' 

to 1250A' (1210 m/sec), where the latter temperature corresponds to the peak tem- 

perature measured experimentally (Figure 86). The presence of an overshoot in the 

shock speed as the shock enters the heated region is consistent with the numerical 

results obtained previously for a Riemann shock propagating into a radial thermal 
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inhomogeneity (Figure 77). The velocity of the shock after leaving the heated region 

(708 m/sec) is within 6% of the incident shock velocity. This is very close to the 

experimental observation that the shock velocity after leaving the discharge region 

is within 4% of the incident velocity [115:469]. 

Simulations were also run for thermal profiles corresponding to curve 1 (re- 

sulting in a shock velocity of 1084 m/sec) and curve 2 (resulting in a shock velocity 

of 1162 m/sec) of Figure 86. These results are in good agreement with computed 

values reported by Voinovich of 1045 m/sec and 1120 m/sec. respectively, which were 

calculated using a different numerical method, but under similar conditions. 
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5.6.1.2 Density Profile. Gridin, et al. [52] used a transverse pulsed 

glow discharge in air, together with a Riemann-type shock tube to investigate shock/plasma 

interactions. The discharge was pulsed in order to minimize gas heating effects. The 

experimental arrangement is shown in Figure 88. The planar shock front, with a 

velocity of 1250 m/sec, is incident onto the plasma region from the left. The plasma 

was generated with the use of segmented cathodes (shown as the dots), while the 

anode (not shown) was a solid conductor. An optical interferometer was used in 

order to determine the temporal density variations during shock passage. The shock 

tube had a cross section of 10 cm x 10 cm. 
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Figure 88. Schematic diagram of experimental setup used by Gridin [52]. LTI- 
401 is a He-Ne laser, segmented cathodes are shown as clots and optical 
mirrors and optical objectives are labeled as M and O, respectively. The 
shock wave (SW) is incident onto the plasma region with a velocity of 
1250 m/sec. 

The experimentally determined variation in the gas temperature is shown in 

Figure 89 for discharge run times of less than 1 msec. The thermal variation is with 

respect to the ambient temperature, which was taken to be 300Ä'. According to 

Gridin, the temperature varies from the ambient only near the cathode, in a localized 

region approximately 3 cm in the transverse direction.   For discharge run times 
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Figure 89. Experimentally determined temperature variation in the discharge re- 
gion in air for discharge run times of less than 1 msec [52]. The seg- 
mented cathodes are located along the bottom while the solid anode is 
located at the top. 

greater than 2 msec, the gas was rapidly heated to temperatures of approximately 

2000A' [52:455]. 

A simulation of the experiment was carried out using the two-dimensional code 

discussed previously. The simulated shock tube had a length of 240 cm and a full 

width of 10 cm. The diaphragm was located at 100 cm, with the heated region 

beginning at 120 cm and extending to the end of the shock tube. An initial pressure 

and temperature ratio {PA I Pi and T4/Ti) of 100.0 and 5.0, respectively, was used in 

the simulation, resulting in a shock velocity of 1247 m/sec through the ambient gas. 

A transverse temperature distribution approximating that shown in Figure 89 was 

used in the heated portion of the shock tube (Equation 91). The pressure throughout 

the low pressure side of the shock tube was constant, consistent with experimental 
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observation [52:4551 

T(x.y) 

300A. for   (100 cm < x < 120 cm) 

(0 cm < y < 10 cm) 

550A" - 250/v ^,   for   (120 cm < x < 240 cm) 3 cm or 

300A', 

(0 cm < y < 3 cm) 

for   (120 cm < x < 240 era) 

(3 cm < y < 10 cm) 

A simulated laser beam, with cross-sectional dimensions of 1 cm (.r) x 2 cm 

(y), was used to sample the calculated density field in a manner similar to the 

interferometer. This sampling, consisting of averaging the density over the cross- 

sectional area of the laser beam, was calculated and recorded at each time step. The 

simulated laser was located at the point x = 200 cm, y = 5 cm, corresponding to a 

point half-way across the shock tube and SO cm from the start of the heated region. 

The result of the simulation is shown in Figure 90 (left) for the case in which 

the gas is heated according to Equation 91 (solid) and for the case in which the 

gas has a uniform temperature of 300A' (dashed). Experimental results are shown 

in Figure 90 (right) for the case in which the shock propagates through a plasma 

(curve 2) and through gas at a uniform temperature (curve 1). Gridin's result from 

a two-dimensional calculation using a Total Variation Diminishing (TVD) scheme 

(curve 3) is also shown, as reported in [53]. The simulation from the present work 

is very similar to Gridin's calculated result. Both exhibit a localized density peak 

near the shock front, followed by a localized minimum, followed by a steady rise to 

the density value obtained in the absence of a either a heated region (simulation) or 

a plasma region (experiment). The results from both the present work and Gridin's 

simulation do not produce the qualitative features as measured experimentally. 
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Figure 90. Density variations in a shock wave obtained from simulation (left) for 
gas at an ambient temperature of 300Ä' (clotted) and for gas heated ac- 
cording to equation 91 (solid). Experimental density variations (right) 
were obtained for a shock in gas at a uniform temperature (1) and in 
a plasma (2) as reported by Gridin [52]. Gridin's numerical calcula- 
tion taking into account thermal inhomogeneities (3) is also shown, as 
reported in [53]. 

A typical two-dimensional density field from the simulation is shown in Figure 

91. The location of the thermal layer is clearly seen in front of the shock, confined 

to the region 0 cm < y < 3 cm. The shock front region is curved slightly, due to the 

transverse thermal inhomogeneity. Behind the shock front are regions in which the 

density varies non-monotonically, eventually rising to the level consistent with the 

contact discontinuity. 

It is interesting to compare the results from previous simulations (Figure 90 

[solid, left] and [curve 3, right]') to experimental measurements as reported by Klimov, 

et al. [77] (who was, incidentally, a co-author with Gridin on [52] and [53]) as shown 
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Figure 91.    Calculated density corresponding to a shock passing through a thermal 
layer. The thermal layer is confined to the region 0 cm < y < 3 cm. 

in Figure 92. Here, the density variation is measured as a shock propagates through a 

plasma (1) and through gas in the absence of a plasma (2). The experimental condi- 

tions corresponding to Klimov's measurements are largely the same as those reported 

by Gridin. In both cases the incident shock velocity was 1250 m/sec, the shock tubes 

had the same cross-sectional area (10 cm x 10 cm) and both used a transverse pulsed 

glow discharge in air. Additionally, both used a Michelson interferometer to measure 

the density variations. The similarity between the previous simulations (taking into 

account only thermal inhomogeneities) and l\limov*s measurement in plasma (1) is 

striking. 

It should be noted that Klimov's measurements were made in air at a pressure 

of 2 torr and a current density of 100 mA/cm2, while GridhVs measurements were 

made in air at a pressure of 12 torr and a current density of 30 mA/cm2. In addition, 
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Figure 92.    Density variation in a shock wave in air in the presence of a plasma (1) 
and in the absence of a plasma (2) (Ref: [77]). 

the placement of the laser within the shock tube used by Klimov is not reported, 

thus the density may have been measured in a different location from Gridin's mea- 

surement . 
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5.6.2 Spark-Initiated Shock. A series of experiments conducted by Gan- 

guly and Bletzinger [46] provides an opportunity to compare measurements to sim- 

ulations. In these experiments, a spark-initiated shock was propagated into a glow 

discharge plasma, Simulations of these experiments were performed using a fluid dy- 

namics code (Appendix B) with a radial temperature profile calculated using input 

parameters corresponding to the experimental conditions (Appendix D). 

5.6.2.1 Experimental Setup. The experimental setup used by Gan- 

guly and Bletzinger is shown in Figure 93 [46]. The cylindrical shock tube was 

constructed of 5 cm diameter glass. A glow discharge was ignited and sustained in 

the central portion of the tube, where the plasma is depicted as the cross-hatched 

region in the figure. The longitudinal extent of the plasma was approximately 12 cm 

while the radial extent of the luminous region of the plasma varied with discharge 

current. The electrodes were thin-walled cylinders, each two inches in length with 

a radius of 1/2 inch, with the cathode located closest to the spark gap. The shock 

was produced by an abrupt discharge of electrical energy across the spark gap. All 

distances and times were referenced to this longitudinal position and event, respec- 

tively. Two lasers beams, with their corresponding slits and detectors, were located 

along the shock tube at 30.2 and 42.2 cm. Both laser beams crossed the shock tube 

within the plasma region. Neutral gas (of the type under investigation) entered the 

shock tube through the gas inlet and was pumped out through the pump port. The 

velocity of the gas through the central portion of the shock tube was of the order of 

1 m/sec. The experimentally measured data is of two types: shock arrival time and 

density variations. The arrival time of the shock at a given longitudinal station was 

determined by the time at which a laser beam (located at a fixed position) was dis- 

turbed by the passage of the shock front. The arrival time is referenced to the time 

at which the capacitor was discharged which produced the shock. Density variations 

were determined by use of a measurement technique called photo-acoustic deflection 

spectroscopy (PADS) [46]. This technique (described in greater detail in Appendix 
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Figure 93. Spark-initiated shock experimental setup [46] 

E) senses gradients in density which leads to a deflection of a laser beam that has 

been placed in the path of the oncoming shock. Through the use of slits and detec- 

tors, and with proper alignment of the equipment, this deflection can be measured. 

Under ideal conditions, the deflection of the laser beam will be proportional to the 

density gradient (in the direction transverse to the beam) integrated over the optical 

path length of the beam. The equations describing the physics of PADS [96] were 

applied to the numerically determined density fields at the simulated location of the 

laser beams within the fluid dynamics code. Although a plasma was present in the 

actual experiment, only a thermally heated region was used to represent the plasma 

in the simulations. 

5.6.2.2 Calculated Radial Temperature Profiles. In quantifying the 

effect of a heated region on shock propagation, a temperature profile must be de- 

fined. It would be most convenient to input into the fluid dynamics code the actual 

experimentally determined temperature field. Given the absence of such data in the 

present experiment, the temperature field must be calculated using the parameters 

corresponding to the experimental conditions. This calculation was performed using 
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the method detailed in Appendix D, with input parameters provided by [46] and 

[20], corresponding to the experimental conditions. Typical results for Argon at a 

pressure of 30 torr are shown in Figure 94. with the discharge currents indicated. In 

these calculations, the wall temperature was assumed to be maintained at a value of 

300 A'.  The calculated peak and average temperatures are shown in Figure 95 as a 
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Figure 94.    Calculated T(r) profiles in Argon (30 torr) at the indicated discharge 
currents [input parameters corresponding to data [46] and [20]]. 

function of the discharge current for Argon at a pressure of 30 torr (Twaii 

The average temperature was defined as 

= 300 A" 

T     = J-avg — 

foRT(r)dr 
R 

(92) 

The use of an average temperature defined in this manner gave good results when 

one-dimensional fluid calculations where compared to the measured shock arrival 

time data. 
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Figure 95.    Calculated Tpeak and Tavg in Argon (30 torr) at the indicated discharge 
currents [input parameters corresponding to data [46] and [20]]. 

The temperature throughout the shock tube was assumed to follow the relation 

T{r,x) 
To,        if -r < z0 

Tcaic(r).   if.r>.r0 

(93) 

where T0 is the ambient temperature (assumed to be 300A') and Tcaic(r) is the radial 

temperature profile calculated according to the method discussed in Appendix D. 

Using the experimental setup (Figure 93) as a guide, the point x0 was set equal to 

27.2 cm, which corresponds to the farthest edge of the electrode closest to the spark 

gap, which was approximately where the luminous plasma region began. 

5.6.2.3 Shock Arrival Time Simulation vs Data. Before the shock 

arrival times can be determined from a numerical simulation of the experiments, the 

amount of energy to be released in the simulation of the spark discharge must be 

determined. This energy is used to create the initial pressure pulse and subsequent 

shock wave. The value of energy to be used in the simulation was determined by 

requiring the arrival time of the shock front at 42.2 cm in the simulation (where 
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the gas was at a uniform temperature of 300A" throughout the tube) to equal the 

experimentally determined arrival time of the shock front at the same location (in 

the absence of a plasma). Once this value of energy was established, it was used 

throughout all the simulations at the same pressure. Simulations at a different 

pressure require the calibration procedure to be repeated. 

750 

time (|asec) 

Figure 96. Shock arrival times at 42.2 cm in Argon at 30 torr [data (boxes) from 
[46], curves are simulations with Twau = 300A" (solid) and Twaii = 400A' 
(dotted)]. 

A comparison of the experimentally measured and numerically predicted arrival 

times of the shock front in Argon (30 torr pressure) at 42.2 cm is shown in Figure 96. 

The experimental error in the measurements is ±5^sec [20]. The boxes represent the 

data while the solid curves have been calculated under conditions corresponding to 

the experiment. All required inputs to the thermal model used to calculate Tca.ic(r) 

(used in Equation 93) were known except one: the shock tube wall temperature in 

the plasma region. In an effort to bound the theoretical prediction, this temperature 

was assumed to be in the range 300A" to 400A' and a series of calculations were 

carried out at each temperature. The curve corresponding to the longer arrival 

times (solid) was calculated assuming Twaii = 300A', while the curve corresponding 
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to the shorter arrival times (dotted) was calculated assuming Twau = 400A'. The 

general trend of the numerical calculations, based solely on the thermal effect, is in 

good agreement with the experiment results. This is particularly true for the case 

in which the assumed shock tube wall temperature is 300A". 

410       420 430 440 450        460 

time ()u,sec) 

580     600       620        640        660       680     700 

time (jusec) 

Figure 97. Shock arrival times at 30.2 cm (left) and 42.2 cm (right) in Argon at 
10 torr [data (boxes) from [20], simulations (solid curves) with Twau = 

300 A"]. 

A similar comparison is made for the shock arrival times in Argon (10 torr 

pressure) at both 30.2 and 42.2 cm (Figure 97). It is observed that the experimental 

shock arrival times are earlier (up to tens of yusec) than the arrival times determined 

from the simulation. The general trend of the calculated arrival times is in agreement 

with the data, however, in that the shock arrival times decrease with increasing 

current. This is easily explained by the steady increase in the temperature as the 

current increases,-as shown in Figure 95. 

It should be noted that there is uncertainty in the location of the start of the 

heated region within the shock tube. In the present simulations, this location was 

taken to be the edge of the cathode situated farthest away from the spark source (27.2 

cm). If the start of the heated region were to be displaced to smaller distances, the 

result would be to lower the shock arrival times in the simulation. Since the electrodes 
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are 5 cm long and made of metal (with a relatively high thermal conductivity) the 

actual location of the heated region could be displaced toward the spark end of the 

tube, possibly starting as early as 22.2 cm. In addition, the gas is flowing toward 

the spark end of the tube with a velocity of the order of 1.0 m/sec. This flow 

would tend to transport hot gas from the plasma region toward the spark end of 

the tube, further complicating the precise determination of the start of the heated 

region. None of these effects were included in the present simulations. Thus the 

temperature distribution used in the simulations (Equation 93) is an idealization. 

Experimental measurement of the actual temperature distribution (both radially 

and longitudinally) within the shock tube would greatly reduce the uncertainties in 

assessing the influence of thermal effects on shock propagation in a plasma. 

5.6.2.4 Shock Velocity. The shock front arrival times calculated pre- 

viously (shown in Figures 96 and 97) were based on the temperature profile given 

in Equation 93. Although the radial temperature profile used in this equation was 

determined in a reasonable manner, a calculation of shock front arrival times admits 

significant uncertainties associated with the temperature field. These uncertainties 

were pointed out in the last section and include the effects of a long, heated cathode 

and the convective flow of hot gas through the shock tube, both of which were not in- 

cluded in Equation 93. By calculating the average shock velocity within the positive 

column of the glow discharge (where the radial temperature profile is independent 

of the ;r coordinate) these uncertainties can be reduced or eliminated. The average 

velocity in this region can be calculated from 

vava = ^r (94> 
t-2 — n 

where tx is the time the shock front passes location Xi and t2 is the time the shock 

front passes location x2. 
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The average shock velocity in the plasma region of an Argon discharge at 

pressures of 10 and 30 torr are shown in Figure 98. The data is represented by the 

boxes while the solid curve represents the influence of the calculated thermal profile. 

The comparison between the data and the prediction is generally very good. The 

largest relative error in the thermal predictions at 30 torr (« 10%) occurs for the 

highest discharge current. The largest relative error in the thermal predictions at 10 

torr is less than 4%. 

The agreement between the data and the simulations (based solely on the 

influence of a thermally enhanced region to represent the plasma) is striking. It 

should be emphasized that in all the simulations of the Ganguly experiments, the 

values of the input parameters used in the code have been either experimentally 

determined or are reasonable estimates of the experimental conditions. However, it 

should be reiterated that experimental measurement of the radial and longitudinal 

temperature profile would greatly reduce the uncertainties inherent in the present 

thermal analysis. 
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Figure 98. Average shock velocity in an Argon plasma at 30 torr (top) and 10 torr 
(bottom) [data (boxes) from [46], results from two-dimensional calcula- 
tion (solid curve)]. 
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5.6.2.5 Photo-Acoustic Deflection Signal: Simulation vs Data. The 

photo-acoustic deflection technique senses changes in density gradients along the 

optical path of the laser, as detailed in Appendix E. This deflection signal was 

numerically synthesized using densities computed at points along the shock tube 

corresponding to the experimental measurement locations. As in the simulations 

predicting arrival times and average shock velocities, these simulations used radial 

temperature profiles which were calculated under conditions corresponding to the 

experiments. The results of applying the PADS technique to the numerically deter- 

mined density fields at a laser location of 42.2 cm in Argon at a pressure of 30 torr 

are shown in Figure 99 (left). The experimental signals as reported in [46] are shown 

in Figure 99 (right). The comparison is quite favorable. As the discharge current 

increases, both the time of arrival and the amplitude of the PADS signal decrease. 

In addition, the width of the signal increases with increasing current. A double- 

humped structure is observed in the simulation signal while two, and sometimes 

three, localized peaks are observed in the experimental signal. 

With proper alignment of the laser and associated optics, the PADS signal 

voltage will be proportional to the voltage obtained under ambient conditions. The 

detectors used in the experiment were intentionally misaligned so as to capture only 

the compression portion of the shock pulse, therefore the laser beam deflection in only 

one direction was observed [20]. Since the ambient voltage in this case would be zero, 

another proportionality constant must be used in order to calibrate the PADS signal 

from the numerical simulation. The proportionality constant used in the present 

analysis was determined by taking the ratio of the peak signal amplitudes in the 

zero current case (experiment peak signal/simulation peak signal). The numerically 

determined signals shown in Figure 99 have been multiplied by this constant ratio, 

so that the peak amplitude of the numerical signal matches the peak amplitude of 

the experimental signal in the zero current case (by design). 
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Figure 99. Photo-acoustic deflection signal at 42.2 cm in an Argon plasma at 30 
torr at the indicated discharge currents [simulation (left) and experiment 
(right)]. 

5.7    Conclusion 

A convincing argument can be made that thermal effects go a long way in 

explaining many of the observed plasma/shock phenomena. As a shock propagates 

into a heated region, the shock speed increases, the shock front appears to dis- 

perse (based on the transverse integrated nature of the both the interferometer and 

photo-acoustic deflection measurement technique) and the shock strength decreases. 

These observations are true for shocks in both molecular and rare gases, consistent 

with experimental observation.   In addition, simulations of several plasma/shock 
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experiments based solely on thermal effects have resulted in good agreement with 

experimental measurements. 

There are, however, several experimental observations that do not appear to 

be explainable based solely on thermal inhomogeneities. First, in the more recent 

experiments of Ganguly [45], it was observed that, under some conditions, the unique 

structure in the shock front region (of which the data shown in Figure 99 can be 

considered typical) was maintained for a length of approximately 12 cm beyond the 

end of the plasma region, during which time the shock essentially propagated through 

gas at room temperature. Numerical simulations of this experiment revealed that 

the predicted shock structure had essentially relaxed to its nominal state after the 

shock had traveled approximately 1 cm. In addition, in experiments conducted by 

Klimov in a pulsed discharge [77], two interesting observations are noted. First, it was 

observed that significant shock acceleration occurred on a time scale during which 

little, if any, gas heating was reportedly present. Secondly, at longer time scales. 

during which gas heating was reportedly present, no shock acceleration was observed. 

Such observations, if accurately recorded, must point to some other mechanism at 

work. 
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VI.   Conclusions/Recommendations 

The objective of the present research was to examine the influence of three 

physical processes on shock propagation. Each of these processes has been re- 

peatedly mentioned in the literature has having some role to play in the observed 

plasma/shock anomalies. These processes are, in the order in which they were ex- 

amined in this study: 

• charged particle/neutral particle interactions 

• post-shock energy release 

• thermal inhomogeneities 

6.1    Computational Codes 

A suite of computational fluid dynamic codes was developed in order to ex- 

amine each of the processes mentioned above separately. Although each of these 

codes used the basic explicit MacCormack algorithm [82], in conjunction with a 

flux corrected transport scheme [23], the particular algorithm used was selected and 

modified as required on the basis of the the individual specifics of each process. 

To examine ion-acoustic wave damping in a weakly-ionized plasma, the plasma 

was modelled as a gas comprised of two fluids. The neutrals were treated as one fluid 

and the electrons and ions were treated together as a single fluid. This treatment 

is based on the assumption that the electric force strongly links the electrons and 

ions together, resulting in the plasma remaining quasi-neutral at all points in the 

flow. Ion-neutral collisions allowed for the transfer of momentum and energy between 

the two fluids. The numerical algorithm described by Toth [112] was modified to 

handle the additional source terms arising from the two-fluid treatment of the plasma. 

Toth's algorithm was chosen for the two-fluid plasma problem due to its reported 

success in handling magnetohydrodynamic processes, as well as the way it treats the 
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source terms. The code was validated with the aid of an analytic solution of the 

Riemann problem, for the case in which the two fluids were uncoupled from each 

other. In addition, a small-amplitude ion-acoustic wave was used to validate the code 

by comparing the numerically determined wave speed with the analytic expression 

for the ion-acoustic wave speed. 

Nonequilibriumvibrational relaxation was examined with the MacCormack/FCT 

algorithm reported by Fletcher [44], which was modified to include a vibrational en- 

ergy equation, as well as source terms coupling this equation to the conservation 

of energy equation for the fluid. Fletcher's algorithm was selected for this part of 

the research due to its streamlined design, which resulted in short computational 

run times. This code was validated by comparison of the numeric solution to the 

analytic solution of the Riemann problem. In addition, the numerically determined 

post-shock equilibrium flow parameters could be compared to analytic values of the 

same. 

The effect of thermal inhomogeneities in two spatial dimensions was examined 

with a code which made use of both of the algorithms mentioned previously, as well as 

an additional algorithm used to treat source terms separately. Strang-type operators 

allowed splitting the multi-dimensional problem into consecutive applications of one- 

dimensional fluid solvers. The MacCormack/FCT algorithm of Fletcher was applied 

in the .T (longitudinal) direction and the MacCormack/FCT algorithm of Toth was 

applied in the y (transverse) direction. The greater length of the shock tube in 

the x direction necessitated a method which was very fast at handling the large 

number of nodes in this direction (i.e., Fletcher's method). However, the boundary 

conditions in the transverse direction were better handled by a method which uses 

central differences (i.e., Toth's method). An implicit method (suggested by Yee 

[120]) was used to handle the source terms related to the spark-initiated discharge 

simulations. This two-dimensional code was validated for both the Riemann problem 

(by comparison to the analytic solution) and the spark-initiated discharge problem 
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(by comparison to previously reported experiments). The code was further validated 

by testing its ability to propagate both small and large-amplitude waves at equal 

speeds in all directions (analogous to the way a stone dropped into a still body of 

water generates ripples which propagate equally in all directions). 

6.2    Charged Particle/Neutral Particle Interactions 

Charged particle/neutral particle interactions were examined in both a steady- 

state and time-dependent approach. A two fluid approximation was used in which 

the neutral gas comprised one of the fluids and the electrons and ions were treated 

as a single fluid. The electron temperature was treated as a constant and the elec- 

tric field was assumed to be proportional to the electron pressure gradient. With 

these restrictions, the results of both the steady and unsteady analyses were similar 

and essentially reconfirmed the work of Ingard [65] and Avramenko [6]. Although a 

precursor of charged particles in front of the neutral shock is predicted under con- 

ditions typically encountered in a weakly ionized plasma, both the spatial extent of 

this precursor and the particle density in it are insufficient to explain the experi- 

mental observations . The fractional ionizations in such plasmas are extremely low 

(10~6). resulting in insignificant feedback from the charged particle precursor into 

the neutral component at the neutral shock front. 

At higher fractional ionizations (10-3 - 10_1), variations in the neutral shock 

parameters were evident. In these cases, the shock velocity increased, the shock 

front dispersed and the density and pressure jumps behind the shock decreased. 

Each of these is consistent with experimental observation, although these values of 

fractional ionization are many orders of magnitude greater than that typical of the 

weakly ionized glow discharges used in experiments. There has been, however, some 

experimental evidence that additional ionization is present in the shock front region 

([50], [32], [33]). If these measurements are accurate, then it may be possible for the 

fractional ionization in the shock front region to be significantly greater than that 
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present in the quiescent plasma in front of the shock. In such a case, energy transfer 

from the ion-acoustic wave to the neutral shock may become a relevant process, 

resulting in a perturbation of the neutral flow. If some kinetic based plasma process 

is at work in the shock front region, it may be possible for the fractional ionization in 

this region to be altered. A kinetic based effect may not be predicted by a solution 

method which uses the fluid equations as a basis. .Such is the case, for example, in 

the phenomena of Landau waves in plasma physics, which describes the collisionless 

clamping of waves [36:51]. This process, in which energy is transferred between the 

particles and the wave, is a kinetic based effect and is not predicted when the plasma 

is modeled by fluid equations. However, a similar process has yet to be proposed in 

the study of plasma/shock interactions in weakly ionized gas. 

The restriction imposed by treating the electron temperature as a constant can 

be relaxed by solving the electron energy equation simultaneously with the other fluid 

equations. Caution must be exercised, however, in any attempt to use the resulting 

set of equations to simulate shock propagation into an active plasma region, clue to 

the complexities linking the external circuit to the charged particles. Unfortunately, 

most of the reported plasma/shock experiments involve propagating a shock into an 

active plasma region. 

6.3    Post-Shock Energy Release 

The release of energy in the post-shock region was examined based on the 

transfer of vibrational energy into the gas flow under nonequilibrium conditions. 

Two requirements were defined in order for this energy transfer to have significant 

influence on the shock parameters. First, the amount of energy added to the flow 

must be an appreciable fraction of the thermal energy already present in the flow. 

Second, this energy must be added to the flow on a time scale comparable to the 

characteristic time of the shock parameter variation on interest. For example, in 

order to influence the shock front region, the vibrational energy release must occur 
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on a time scale comparable to the transit time for a fluid element to cross the shock 

front (« 1 /isec). In order to influence the shock speed, the vibrational energy release 

must occur on a time scale comparable to the time required for the shock to travel 

a characteristic distance definecl by the measurement technique. Initial estimates 

(Chapter II) showed that under some nonequilibrium conditions both requirements 

may be fulfilled. A more detailed analysis of the relaxation of vibrational energy 

was undertaken in two phases. In the first phase, the influence of energy transfer on 

shock propagation was examined for a design gas that met the requirements given 

above, while in the second phase the ability of a real molecular gas (N2) to meet the 

given requirements was studied. 

Results from the first phase of study revealed that the shock speed increases 

as energy is added to the post-shock region, regardless of the initial shock velocity. 

In addition, a "■critical" shock speed {Vcrit) was found, with Vcrn always being less 

than or equal to the Chapman-Jouguet velocity [Vcj). Shocks with initial velocities 

below Vcrit accelerated in the nonequilibrium region, eventually converging to VCJ. 

Shocks with initial velocities higher than Vcrit also accelerated, with the numerically 

determined steady-state shock velocity converging to velocities greater than VCJ. 

These velocities correlated closely with analytical values determined by a nonequi- 

librium extension to the nominal analytic Riemann solution. This effect has not 

been reported previously in the literature, to the knowledge of the author. 

The second phase of the vibrational relaxation study focussed on the ability 

of a real gas (iV2) to both contain a significant amount of energy in the vibrational 

manifold and release it quickly into the post-shock region of the flow. These ar- 

eas were analyzed with the use of a vibrational kinetics code, taking into account 

vibration-vibration (VV) and vibration-translation (VT) energy exchange. The re- 

sults of this study indicate that it is possible, under some conditions, for a significant 

amount of vibrational energy to be available for release in the post-shock region. The 

actual amount of vibrational energy which can be released depends on the plasma 
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conditions in front of the shock, which define Tvih and Tgas-, and the shock speed, 

which together define the post-shock equilibrium temperature. The characteristic 

time scale of this energy release is too long to explain variations in the flow parame- 

ters near the shock front region. However, under some conditions, it was found that 

an amount of energy approximately equivalent to 10% of the post-shock thermal 

energy could be released into the flow on time scales comparable to the shock transit 

time. This amount of energy would result in the shock speeding up, although further 

calculations would be required to quantify the exact effect. 

6.4    Thermal Inhomogentities 

The effect of thermal inhomogeneities in the flow was explored by the numer- 

ical solution to Euler's equations in two dimensions. This analysis revealed many 

similarities between experimental measurements and numerical simulations of the 

experiments. Consistent with experimental observations of shocks entering a weakly 

ionized plasma, when a shock enters a heated region 

• the shock speed increases 

• nonmonotonic variations in the density appear 

• the shock front smears 

• slight curvature in the shock front appears 

• the density and pressure jumps at the shock front are reduced 

As a shock enters a heated region, it accelerates to a higher velocity. In sim- 

ulations of the experiments of Ganguly [46] and Voinovich [115], the shock velocity 

in the heated region (simulating the plasma zone) agreed well with experimental 

measurements. In addition, the numerically determined variations in the gas density 

in the shock front region were in fair agreement with density measurements based 

on the photo-acoustic deflection method [46]. In these simulations, thermal effects 

caused both a nonmonotonic structure in the predicted density variation and shock 
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front smearing, clue to slight shock front curvature in the thermal region. Slight 

curvature of the shock front has been reported in the literature [77], along with the 

claim that thermal inhomogeneities are not responsible for it. This claim appears to 

have been made based on the perception that thermal inhomogeneities lead to ex- 

cessive curvature. The present calculations indicate that this perception is incorrect, 

as calculated values of shock front curvature were similar to measured values. 

Thermal effects can also explain the observed decrease in the density and pres- 

sure jumps at the shock front as a shock propagates into a plasma region. This is due 

to the reduced Mach number in such a region. That is, although the shock velocity 

increases in the heated region, its Mach number decreases, resulting in a decrease in 

the density and pressure jumps at the shock front in such a region. For the same 

reason, thermal effects also predict an increase in the shock standoff distance as an 

object propagates into a heated region, since shock standoff distance increases with 

decreasing Mach number [5:189]. 

In spite of the many similarities between numerical simulation and experimen- 

tal observation, some measurements have been made which appear to be inexplain- 

able based solely on thermal inhomogeneities. First, in the more recent experiments 

of Ganguly [45], it was observed that, under some conditions, the unique structure 

in the shock front region (of which the data shown in Figure 99 can be considered 

typical) was maintained for a length of approximately L2 cm beyond the end of the 

plasma region, during which time the shock essentially propagated through gas at 

room temperature. Numerical simulations of this experiment revealed that the pre- 

dicted shock structure had essentially relaxed to its nominal state after the shock had 

traveled approximately 1 cm. In addition, in experiments conducted by Klimov in a 

pulsed discharge [77], two interesting observations are noted. First, it was observed 

that significant shock acceleration occurred on a time scale during which little, if 

any, gas heating was reportedly present.   Secondly, at longer time scales, during 
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which gas heating was reportedly present, no shock acceleration was observed. Such 

observations, if accurately measured, must point to some other mechanism at work. 

6.5    Recommendations 

It is recommended that any further study of shock/plasma interactions based 

on charged particle/neutral particle effects be undertaken within a kinetic framework, 

rather a fluid approach. This recommendation is based on the similarities between 

the many different studies of this effect, each of which has modeled the plasma as a 

fluid and each of which has led to the same conclusion: the low degree of fractional 

ionization present in the experiments do not allow significant coupling between the 

charged and neutral species. Therefore, if charged particle effects are important in 

shock/plasma interactions, the responsible mechanism must be tied to kinetic theory. 

Kinetically, it may be possible for a small group of hot electrons to be present in 

the flow, causing significant deviations of the distribution function from a Maxwell- 

Boltzmann form. These hot electrons, if present, may be able to cause additional 

ionization in front of the neutral shock due to their high mobility. A good starting 

point for such a study might be one based on the work of Lu and Huang [80]. Here, a 

shock in a fully ionized plasma in equilibrium was treated kinetically by solving the 

Boltzmann equations for both ions and electrons, with the use of the BGK collision 

operator [19]. An extension of their method to include neutrals in nonequilibrium 

plasma conditions seems to be a reasonable approach to the present problem. 

Post-shock energy addition in the form of vibrational energy relaxation could 

be studied further, although the results of the present research indicate that the 

contribution of this effect to the experimental observations is minor, at best. This 

conclusion is based on the long time scales of the relaxation process in comparison 

to the much shorter gas dynamic transit time. However, if this process is studied 

further, it is recommended that each vibrational level be treated as a separate fluid, 

with the vibration-vibration and vibration-translation processes coupling the conser- 

196 



vation equations together (see [56], for example). Such an approach eliminates the 

need for an effective relaxation time (r), which is difficult to accurately determine 

in nonequilibrium conditions. 

Since thermal inhomogeneities have a significant influence on most, if not all, 

of the experimentally measurable parameters, knowing the gas temperature in an 

experiment is critical to discriminating thermal effects from other effects. Ideally, 

the gas temperature field throughout the experimental apparatus should be known. 

In this manner, it should be possible to distinguish the effects of thermal inhomo- 

geneities on the shock parameters from the effects of other physical processes. 
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Appendix A.   List of Symbols 

Symbol Definition 

.4 Anti-diffusive fluxes used in flux corrected transport 

C Speed of sound 

c Shock velocity 

D Diffusive fluxes in flux corrected transport 

E Fluxes in the Euler equations; Electric field 

Ew Energy difference between the ground and first vibrational states 

F Fluxes in the Euler equations 

H Sources clue to axisymmetric geometry in the Euler equations 

H(Z) Heaviside step function 

J Current density 

Mass flux 

kß Boltzmann's constant 

Lx x sweep Strang-type operator 

Ly y sweep Strang-type operator 

Ls Source Strang-type operator 

M Mass of a particle; Mach number 

N Number density 

Nv Number density of the vth vibrational level 

n Number density 

P Pressure 

Pin Rate of transfer of momentum in ion-neutral collisions 

Pen Rate of transfer of momentum in electron-neutral collisions 

Pv.v+i Rate at which molecules are promoted in a VT collision 

Q Sources due to energy addition in the Euler equations 

J 
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Symbol Definition 

QT.'v+i1 Rate at which molecules are promoted in a VV collision 

Qin Rate of transfer of energy in ion-neutral collisions 

Qen Rate of transfer of energy in electron-neutral collisions 

Qie Rate of transfer of energy in ion-electron collisions 

q Elementary unit of charge 

R Frequency at which molecules are promoted from the vibrational ground state 

S Sources appearing in the Euler equations 

T Temperature 

T10 Characteristic vibrational temperature 

t Time 

U Conserved variables in the Euler equations 

U Flow velocity 

V Flow velocity; Specific volume 

VCj Shock Velocity corresponding to the Chapman-Jouguet regime 

Vera A critical shock velocity in a nonequilibrium vibrational gas 

Vdrift Drift velocity of electrons in a glow discharge 

Vshock Shock front velocity 

V Flow velocity in a reference frame attached to the shock front 

Via Ion-acoustic velocity 

Vth Thermal velocity 

t' Flow velocity 

,T Longitudinal spatial coordinate 

y Transverse spatial coordinate 
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Symbol    Definition 

a Fractional ionization; Axisymmetric switch in the Euler equations 

ß Source switch in the Euler equations 

7 Ratio of specific heat capacities (cp/cv) 

S Kronecker delta function 

e Specific internal energy 

evib Specific vibrational energy 

echem Specific chemical energy used to simulate a spark-initiated discharge 

ee
L
q

ih Specific vibrational energy at equilibrium 

taVg Average specific vibrational energy 

e0 Permittivity of free space 

j] Fractional power into gas heating 

K Coefficient of thermal conductivity 

\in Ion-neutral mean free path 

v collision frequency 

£ spatial coordinate in a reference frame attached to the shock front 

£0 A characteristic length in weakly ionized, nonequilibrium plasma 

p Mass density 

(Tin Ion-neutral collision cross-section 

aen Electron-neutral collision cross-section 

crei Electron-ion collision cross-section 

T Vibrational relaxation time 

reg- Effective vibrational relaxation time 

u;* A characteristic frequency in weakly ionized, nonequilibrium plasma 

ujin Ion-neutral collision frequency 
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Appendix B.   Two-Dimensional Fluid Dynamics Code Description 

B. 1    Introduction 

The influence of thermal inhomogeneities on the propagation of shocks was 

studied with the use of a computational fluid dynamics code. This code solves 

the two-dimensional Euler equations using the explicit MacCormack scheme [82]. 

A flux corrected transport (FCT) algorithm [23] is used in conjunction with the 

MacCormack scheme to reduce numerical oscillations that occur in regions of sharp 

gradients, such as around shocks. Strang-type splitting operators [109] are used in 

order to solve the differential equations in two spatial dimensions. This method is 

commonly used in order to extend a one-dimensional method to higher dimensions. 

The MacCormack scheme (with second-order accuracy) was chosen due to both 

its suitability for solving nonlinear Equations [62:192] and its relative programming 

ease. However, the use of a second-order accurate method by itself would lead to 

oscillations in the solution near shocks. The FCT method was adopted as a way 

to get rid of these numerical oscillations by preventing them before they are al- 

lowed to grow [61:127]. Of course, other methods could be used to accomplish the 

same goal (Godunov method [47], artificial viscosity, etc.), however the MacCor- 

mack/FCT method offers stability and sharp resolution for a relatively small effort 

in coding [112]. Higher-order Gondunov schemes like the Roe method [99] produce 

more accurate solutions than the MacCormack/FCT scheme, however they are more 

complicated to code and more expensive to run [44:173]. Additionally, the FCT 

method is more accurate than using artificial viscosity to clamp out the oscillations 

[44:173]. 

B.2    Nondimensionalization of Equations 

The Euler equations describe the flow of an inviscid, compressible fluid. They 

are given in a compact form in Equation 95 for two-dimensional axisymmetric (o = 1) 
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or planar (a = 0) geometries, where the vectors U,E,F,H and Q were defined in 

Chapter V by Equations 83 through 87. The vectors on the left hand side of Equation 

95 are the conserved variables (£■'") and the numerical fluxes {E and F). The vectors 

on the right hand side are sources clue to axisymmetry (H) and energy addition (Q). 

This latter source vector allows for the treatment of spark-initiated shocks (if ß = 1). 

dU     8E     OF T-t       - /nr. 

at      ox      ay 

These equations are nondimensionalized so that the values of the variables will be 

of order 1, making it convenient to analyze the results. Additionally, nondimension- 

alization reduces the possibility of either an underflow or overflow error. 

The parameters used to nondimensionalize the variables appearing in Equation 

95 are the ambient density (p0), the ambient temperature (T0), the thermal velocity 

at the ambient temperature (Vth = \TM ) and the lenStn of tne snock tube (L0). 

Using these parameters, the nondimensional variables can be defined as 

(96) 

where the nondimensional variables are denoted with a prime. 

B.3    Model Equations (nondimensional) 

Using the nondimensional variables defined in above, the dimensional Euler 

equations (Equation 95) can be transformed into a nondimensional system of equa- 

tions: 
?* + °* + aPL = _agl + ßQ (97) 
at'      ox'     ay' 

*'=£. v' = JL 
y    L0' *' = '& 

p'=^ 
rpl              T 
1    - T0' 

J               —    f-chf.m 
^chem  —     V\ 

th 

v*      vth' V = ^ 
y     Vth 
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with V defined as 

U' = 

p' 

PX 

PX 

s{i{w 
2 + v?) + ^'} 

rt'f' 

(981 

where p' is the nondimensional mass density of the gas, V^ is the nondimensional flow 

velocity in the x direction, Vy' is the nondimensional flow velocity in the y direction, 

7 is the usual ratio of specific heats, V is the nondimensional gas temperature and 

e'chem is the nondimensional specific chemical energy to be used in generating a shock 

in the spark-discharge case. Each of the variables in U' is a function of x\ y' and t'; 

i.e., p' = p'{x',y'J'), V; = V^{x',y'J'), etc. The flux vectors E' and F' are defined 

as 

PX 

P'(V? + T') 

and 

E' PXK 

n'f'        V r ^chem y x 

(99) 

F' = 

PX 

P'V^y 

P> (v- + r) 

n'f'        V 

(100) 
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the axisymmetric source vector H' is defined as 

H> = - PV 

n'e'       V I   ^chem ' y 

ior 

while the vector of sources used for the spark-initiated shock problem is defined as 

Q' = 

p'f\ 

p'f-\ y    chem 

:io2) 

where r' governs the temporal release of the chemical energy. The first equation in 

97 expresses conservation of mass, the second and third equations describe the con- 

servation of momentum in the x and y directions, respectively. The fourth equation 

expresses the conservation of directed kinetic energy and thermal energy, and the 

fifth equation expresses the conservation of chemical energy. 

Note that in the axisymmetric source vector (Equation 101) there appears to be 

the possibility of a singularity when y' is zero (along the centerline). By application 

of L'Hospital's rule to each element of the array, it can be shown that this is not the 

case. While the use of symmetry arguments requiring such terms as f^, ^f, etc. to 

be zero are necessary to accomplish this, such arguments are entirely justifiable in 

the axisymmetric geometry. 

Equation 97 can be modified to include viscosity and/or thermal conductivity 

if desired. The modifications necessary to include these processes in the present code 
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are straightforward, although the construction of the analytic Jacobian matrices used 

in the solution method can be tedious. 

B.-{    Strang-Splitting Operators 

The temporal and spatial integration of the two-dimensional Euler equations 

can be written as a series of one-dimensional operations acting on the solution 

[120:122]. The general formulation can be written as 

U'n+2 = Lf 'I2 Lf L?f Lf Lf If if7'2 U'n (103) 

where time is indexed by n. The vector of conserved variables at time tn is denoted 
-* 71 + 2 

by U'n (Equation 98). The solution two time steps later is denoted by U' . The 

operators L^' and Lf*' represent the temporal integration (over a time period of 

At') and the one-dimensional spatial integration of the homogeneous fluid equations 

containing the x' and y' derivatives, respectively. The operator Lf* represents the 

temporal integration (over a time period of At') of the fluid equations assuming 

the flow to be frozen (i.e., during this integration the fluid is not converted). The 

symmetric sequence of operations given in Equation 103 is necessary in order to 

maintain the second order accuracy contained in the individual operations themselves 

[61]. Each of the operators will be described in detail in the sections to follow. 

Yee [120:38] points out that such a method has advantages in that good algo- 

rithms already exist that can handle each part of the problem well. In other words, 

good numerical techniques already exist that integrate the homogeneous fluid equa- 

tions and other good techniques exist which can integrate the ordinary differential 

equations describing the source terms. Using an operator methodology is a quick 

and simple way to combine the two types of problems with a reasonable hope for 

success, and may even give better results than an algorithm which attempts to solve 

both types of problems at once. 
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In practice, Equation 103 was split into two series of operations, with the 

decision of which one to use determined by whether the time step n was odd or even: 

V 
n+l 

u- n+l 

Ltt>/2 Ltf L$* Lf2 U'n    for n odd 

L?'2 Lf L$' Lf'2 it"   for n even 

(104) 

(105) 

This was done in order to have access to the solution after each time step, instead 

of after every other time step. This may not be necessary, but in the original for- 

mulation of the solution method it was thought that some parameters should be 

as highly resolved in time as possible (e.g., shock position, integrated density and 

PADS signal). 

U""= Solution at time 
n+1 

Ly Sweep 

At' 
x' Figure 100.    Application of Strang-type operators showing sequential sweeps of L 

and Ly/' through the computational domain. L^f is first applied hor- 

izontally to each j line, then Lf,1' is applied vertically to each i line 

(adapted from [62:131]). 
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An illustration of the application of Strang-type operators is shown in Figure 

100. Here, Equation 105 (specialized for the case in which no sources are present) 

is applied to a known solution. The L*/' operator is applied to the known solution 

first. A sweep of L^f is made down each j line throughout the domain. Then the 

LY operator is applied to the intermediate solution, sweeping Lpf up each ■/ line 

throughout the domain. On the next time cycle, the order of the x and y sweeps 

will be interchanged. 

B.4.I    x Sweep Operator.      The L**' operator solves the equation 

f + ^ = 0 (106, 
at'      ax' 

using an algorithm given by Fletcher [44:153-173]. This algorithm combines a second- 

order accurate MacCormack scheme with a flux corrected transport scheme. In 

the notation that follows, primes will be dropped from the variables, with noncli- 

mensional quantities implicitly assumed. Cell interfaces are located at a*;+i/2.j and 

Zi-i/2.j, with a-i+i/2,j = (Xi,j +';r,-+i.j)/2. The subscript i + 1/2 refers to a quan- 

tity centered on the cell interface at £i+1/2,j. The difference of conserved variables 

in adjacent cells is given by AUi+i/2,j = Ui+\,3 - Lh,j- Both steps of the MacCor- 

mack predictor-corrector method are first accomplished before applying the FCT 

algorithm: 

% = ^- + ^)-^A--^w) (108) 

where a forward difference is used in the predictor (Equation 107) and a backward 

difference is used in the corrector (Equation 108). This is consistent with the general 

usage of the MacCormack method in which the flux E is differenced in the direction 

of shock propagation in the predictor, and in the opposite direction in the corrector; 
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i.e., in the problems investigated using this algorithm the shock always propagated 

in the positive x direction, which was the direction in which the i index increased. In 

Equations 107 and 108 the superscripts t and T refer to the time at the half step and 

full step, respectively. Note that the calculation of El requires the half-step solution 

Uf be decoded in order to determine the primitive variables, then constructed using 

Equation 99. 

The trademark of the FCT method is the use of diffusive and anti-diffusive 

fluxes. The former is used to add numerical diffusion to the solution in order to 

ensure stability and monotonicity, while the latter is used to eliminate the excessive 

numerical diffusion where possible [112:84]. Following the predictor and corrector 

steps, the FCT algorithm is applied to the solution in the following format: 

Ufj   =   Ul + DV±1/2J - Dll/2J (109) 

u-Jl = %-^lh + ^lh (no) 

where the superscript d denotes the diffused solution and D and A are the diffusive 

and corrected anti-diffusive fluxes, respectively. 

The diffusive flux is defined as 

flr+i/w = *r+i/2jAf?+1/2j- an) 

where v is defined as 

with e given by 

and AUn is given by 

1      1 
U?+l/2J = g + 3(e!-+i/2.j) 

A ,    /yn ,   yn    ' 

'l+l^ ~ Ax { 2 

'112) 

113) 

Af^i/2,^^-^- (114) 
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The value of the anti-diffusive flux is controlled by a limiter, with the intent to 

prevent the appearance of new maxima or minima in the solution [112:85]. The flux 

limiter is the key to the FCT method, as it "effectively allows the diffusion introduced 

in the predictor stage to selectively annihilate the dispersive 'ripples"' generated 

by the second-order accurate MacCormack algorithm [44:165]. The corrected (or 

limited) anti-diffusive flux is defined as 

Tn+l/2 n+1/2 n •      /u°+1'2   |      n+1/2   A ffd "+1/2    xf}d 

where AUd is given by 

The uncorrected anti-diffusive flux A is defined as 

r+/2      _  „n+1/2   Atfi Ai+1/2J ~ /-li+l/2.jlAVi+l/2, 

with // defined as 

,,n — _ _ -(tn        \ t-li+l/2,j -  g glS+l/2,ji 

115) 

Wi+i,2j = vf+1J-ü!j, die) 

sn+l/2  js clef|necl as 

*£& = ^«(4-+i/2J-). (117 

"n+/2 ?+V».AC7?\,,.. (118) 

;ii9) 

and with e given by Equation 113. The term AUT is given by 

■        ^l^ = Ulu-Ul, (120) 

The description of the L^' operator is now complete. 

B.4.2    y Sweep Operator.      The Lf*' operator solves the equation 

8Ü'     dF' 
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using a MacCormack predictor-corrector scheme in combination with a flux corrected 

transport algorithm, as reported by Toth [112]. This method is different than the 

algorithm represented by the Lf,f' operator discussed previously. It was found that 

the algorithm presented here for Lpf' gave better results along the centerline and 

wall of the shock tube than Fletcher's algorithm. Specifically, it was found that 

the value of Vy' in these locations was not zero (or very close to zero, as compared 

to values of V' in adjacent bins) when the L^' operator discussed previously was 

adapted to the y direction. With the use of the algorithm reported by Toth however, 

V' was zero (or very close to zero) for all points along the centerline and wall. More 

on this subject can be found in the section on boundary conditions, contained in this 

appendix. 

Consistent with Toth's method, the flux vector F' (Equation 100) is rearranged 

slightly, putting Equation 121 in strict conservation law form. Equation 121 is thus 

transformed into ^ t 

^ + ^L = S' (122) 
at'    dy'    ~ 

where U' remains unchanged, F[ is given by 

F{ = 

p'K 
W'„ 
P'V? 

M{k{v? + \\ri) + +TT>} 

P'<'., K 

;i23) 
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and the new source vector S' is given by 

j9_ 

dy' 

0 

0 

-p'V 

-ptT'Vl 

0 

;i24) 

In the notation that follows, primes will be dropped with nondimensional quan- 

tities implicitly assumed. Cell interfaces are located at l/ij-1/2 and t/j.j+1/2, with 

yij+1/2 - (Vi.j + J/i,j+i)/2- The subscript j + 1/2 will refer to a quantity centered on 

the cell interface at y;,;+i/2- The difference of conserved variables in adjacent cells is 

given by AUt,j+i/2 = Ihj+i - Utj. 

Toth's algorithm advances the solution from time n to time n + 1 in two steps: 

a half step and a full step: 

The half step: 

u< 1,3 

fld. 

frn+1/2 

Ui,j + A\j+l/2 - A"i-l/2 

Ui,j ~ Atj+l/2 + A,j-l/2 

;i25) 

;i26) 

:i27) 

The full step: 

U1- 

U, D 
i-3 

Unfl 

Un- 
Ai     pn+l/2 rh+l/2 ,    ,     A  , r?n+l/2 

Ui.j + 1/2 ~ JiJ-1/2) + ^"ij Ay 

Ui,3 + Ui,j+l/2 

ÜZ -A. 

D n+1/2 

hj 

fn+l/2 Tn+l/2 

ij-l/2 

1+1/2 
i.j-1/2 

128) 

129) 

130) 
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where D and .4 refer to the diffusive flux and corrected anti-diffusive flux, respec- 

tively, which are trademarks of the FCT method. The flux / used in Equations 125 

and 128 is given by 

Ji,j + l/2 - L iJ+1/2 Vj + l/2 

A+l/2 rn+l/2 
fi,j+l/2 - W,j+l/2vyt,J+1/ 

'131' 

where U?J+1/2 = (UW + Uij)/2 and VyiJ+l/2 = (Vy„J+l + VViJ)/2. Note that Un 

is used to compute the flux at time n + 1/2. The use of fluxes centered at the 

cell interfaces in Equations 125 and 128 ensures the conservation property of the 

Equations [112:84]. The source terms S appearing in Equations 125 and 128, are 

second-order finite-differenced representations of those defined in equation 124. 

The diffusive and anti-diffusive fluxes are defined in a manner analogous to 

those given for the L^f operator. The diffusive fluxes are defined as 

A"j+i/2 - ^+l/2Af/^+l /2 

ftn+1/2    _     n+1/2   xfjn :i32) 

where Un is used in computing the diffusion flux at time n + 1/2. 

The value of the anti-diffusive flux is controlled by a limiter. with the intent 

to prevent the appearance of new maxima or minima in the solution [112:85]. This 

flux, called the corrected anti-diffusive flux, is defined as 

An —  an 

^i,j+l/2 — bi,j+l/2 max 0, min{ |AiJ+1/2|, s^+1/2Acr
ij_1/2, slJ+l/2AUiJ+3/2 

^+1/2 n+l/2 
iJ+1/2' 

tn+l/2 
n        •    l\  1 I     "+1/2    \T~JD n+1/2   ,\fjD 0, min{\Ait j+1/2|, stJ+l/2AVitJ_l/2, t>iJ+1/2^ViJ+3/2 :i33) 
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where $?j+1/2 = sgn(±Ü?J+1/2) and <j"+{/2 = sgn(AlfJ+l/2).   The term iiij+/2 is 

labeled the uncorrected anti-diffusive flux and is defined as 

-*n _, 
Ai,j+/2 = ^lj + l/2^Ui.j+l/2 

The terms v and \x appearing in equations 132 and 134 are defined as 

,,n _   !    ,    !/,ra x2        ,.1+1/2    _  I    ,    If   "+1/2   y2 
^i.j+1/2 -  g  +  2lS,j+l/2i   '      Ui.j+l/2 -  6 ^ 3 ^,, + 1/2^ 

„n -1 ^^ -|2        .«+1/2    _   1  _ I|Vn+l/2   V2 (ion 
/*«,j+l/2 -  g  _  glfc

i,j + l/2i   -     /Xi.j+l/2  -  6        6^^+1/2 J l1'3'^ 

W here 
1 At. .„ „4.1 /o       At  vn        fn+1/2 - _T/n+1/2 mfn 

S,j+i/2 - 2^^+1/2<   fcij+i/2      ^lwJ+i/2' {lou> 

With these definitions the formulation of the Lp1' operator is complete. 

B.4.3    Source Operator.      The L^'l2 operator solves the equation 

dÜ' 
dv aH' + ßQ' (13/ 

using an implicit method suggested by Yee [120:38]. First, however, remember that 

Q' describes the energy density per unit time that is either lost or gained by the fluid 

during the detonation process for a spark-initiated shock. For a Riemann shock, this 

term will be zero. The axisymmetric source terms are contained in H', which will 

be nonzero only in the axisymmetric geometry. Therefore, the Lf*'/'2 operator will 

need to be used only if a spark-initiated shock problem is to be solved and/or the 

geometry is axisymmetric. To start, rewrite Equation 137 using finite-difference 

notation in which a half-time step is used on the left hand side and the right hand 
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side is represented by an average of the sources at each time: 

U'n+> - U'n = Q'(Ü>n) + Q(rn+t) + H'(U'n) + H>(ü>n+") {m) 

Af/2 9 

This can be rewritten as 

I 
-n+k 

-U' 
4 

;n+2 H'(U> ) + H'(U>   2) + Q'(U' ) + Q'(U> 
jn+i 

;i39) 

r-tn+i 
The terms H'{U'n 2) and Q'iÜ1'^2) are functions of the conserved variables at the 

1/2 time step and are thus unknown. In order to solve the equation, these terms are 

linearized, using 

H>(U'n+2 H'(U> ) + 
dW 
dÜ' 

[U^-U^ 140) 

and 

Q'(U'nH Q'(U' ) + 
-» n 
V 141' 

In these equations, the terms (j^j    and f |^J    are 5x5 Jacobian matrices, to be 

evaluated at time step n. These Jacobians are of the usual form, i.e. 

dU' 

dU[ 

dQ'2 

dU[ 

dQ's 
BU[ 

dQ'4 

dU[ 

dQ'5 

8Q\ 

dQ'2 

dV2 

dQ'z 
du'2 

dQ'4 

m 
du' 

9Q\ 

dQ'2 

din 
dQ'z 

mi 
dQ' 

aui 
dQ'2 

di''4 

dQ'A 

■dU{ 

dQ' 

£9i 

dU's 

din 

dQ'4 

dQ' 
dm    am    dui 

142) 
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Carrying out the operations required in Equation 142 results in 

and 

w here 

dcr_ 
du1 

oooo   o 

0   0   0 0     0 

0   0   0 0     0 

0   0   0 0     £ 

0. 0   0 o   -h 

dw_ i_ 

y7 

0 0 1 0 0 

-V'V 
x   y v; v; 0 0 

-V'2 

V 
0 W 0 0 

Mi -442 A43 TV; 0 

-e'u    V 0 cc7iem 0 K 

'143) 

144) 

Mi 

A42 

A43 

V' h-W? + K)-*>* 

= iet 
.7-1 

,      )W + My 
'2\ 

(145) 

(146) 

(147) 

with e't = \{V? + Vy'2) + -^zjT'. The derivations of these Jacobians are straightfor- 

ward, but can be tedious. Note, again, the apparent possibility of a singularity in 

Equation 144 along the centerline (y' = 0) in the axisvmmetric geometry. However, 

it must be remembered that the axisymmetrir sources are zero along the centerline, 

therefore the use of this Jacobian is limited to points away from the centerline. 

Combining Equations 140 and 141 with Equation 139 results in 

«•    At' 
-» \  n 

dH' 

dU' 
+ 

dÜ1 
Ab •,"+2 At'   ,~..^n 

9 
H>{Ü>n) + Q>{Ü'n))      (148) 
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w here 

Ml'n+h- = U'n+h - U'n (149) 

and J is the 5x5 identity matrix.   Equation 148 is the chief result of this section 

and is the equation to which the Lf *'/2 operator is applied. With the solution U' 

known at time step n, all terms in equation 148 are known except AW    ". putting 

this equation in the familiar form A X = B (where A and B are known). Equation 
•n+}- 

148 is solved for AU'    2 at each interior grid node at every time step, using an LU 

decomposition method with back 

be found by use of Equation 149. 

decomposition method with back substitution.  Once AU'    2 is known, U'    2 can 

B.5    Initial Conditions 

The initial conditions used in the code depend on the type of problem to be 

solved (Riemann or spark-initiated). In general, however, the initial values of the 

primitive variables (p,T,Vr,Vy,echem) are defined in two stages. The first stage de- 

fines the values of the variables for the nominal case, while the second stage modifies 

the density and temperature to account for a heated region in the flow. 

In the Riemann problem, the first stage amounts to specifying the values of the 

variables on both sides of the diaphragm. In this case, all velocities and the chemical 

energy at each grid node are specified to be zero, and the density and temperature 

on the low and higher pressure sides of the shock tube are set equal to the values 

determined from the input conditions. In the spark-initiated shock problem, the first 

stage sets the density and temperature at each grid node to their ambient values, 

and all velocities are set to zero. The chemical energy at each grid node throughout 

the domain is set to zero, except for the grid points along the left edge of the shock 

tube. These are set equal to the value determined from the input conditions. The 

chemical energy along this edge of the shock tube simulates the explosive release of 

energy from a spark discharge and leads to the development of a shock. 
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If no changes were made to these input conditions the computer would solve the 

typical Riemann problem or generate and propagate a spark-initiated shock through 

a homogeneous gas. To account for a heated region in the flow, the temperature is 

adjusted at each grid point to the desired level. Since the pressure is assumed to be 

a constant throughout the heated region, the density must also be adjusted by the 

appropriate amount at each nodal point. 

B.6    Boundary Conditions 

Application of the correct boundary conditions is an important part of the 

solution method used in the code. The boundary conditions applied to the model 

equations are 

along the wall (y = 0) and centerline (y = ywaii): 

dy u       dy dy V dy (150) 

along the left (x = xiejt) and right ends (x = xright)- 

^ = o  ^ = o   v; = o   ^ = 0      %^ = o 
dx ox x Ox ox 

where y is the transverse coordinate in the f or y direction, depending on whether 

the geometry is axisymmetric or planar, respectively. 

Since the solution to the problem is assumed to be independent of either the 0 

(in the cylindrical case) or z (in the planar case) coordinate we can take advantage 

of the symmetry and solve only half of the problem. The physical layout of the shock 

tube (shown in Figure 101) illustrates how the geometry of the problem is represented 

within the computer. The shock tube's centerline, wall and left and right ends are 

shown. The x and y coordinates are indexed by i and j, respectively. The physical 

boundaries of the shock tube within the grid are i = 2 (left edge), i = IL - 1 (right 

edge), j = 2 (centerline) and j = JL-l (wall). Notice that the physical boundaries 

of the shock tube do not lie at the edge of the computational boundaries. A row of 

'ghost' nodes lies beyond the centerline and wall of the shock tube, while a column 

217 



of 'ghost' nodes lies to the left of the left edge of the tube and to the right of the 

right edge of the tube. The use of ghost nodes at the boundaries was necessary in 

order to incorporate the reflection boundary conditions [3:284], which are used in 

the code. The flow parameters are defined at the grid nodes (indicated by the dots 

at the intersections of the i and j lines) in the finite-difference form of the governing 

equations. 

computational domain ghost nodes 

(UL) 
wall 

left end 

•   • 
,...*. 

■<►■■#■ 

rh ♦—• 

-/■ 

■#—# 

(IL.JL) 
j=JL 

• j=JL-l 

# j=JL-2 

right end 

♦ ■••♦•/• ■#•••♦ •!■#■••#■•• 

ghost nodes' 
centerline 

physical domain 

i=IL-l   i=IL 

j=3 

j=2 

=11    ^ 
(IL,1) 

Figure 101. Representation of the shock tube geometry used in the code. 

When applied to the grid shown in Figure 101, the boundary conditions spec- 

ified by Equation 150 become 
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Along tube wall: (i=2, IL-1) 

Ti.JL = Ti.jL-2     VVi JL = -Vyt JL_2 

Along tube centerline: (i=2, IL-1) 

P(,l  = Pi,3 Kru   =   r'xi.3 £chemtA   = ^chem,* 

Ti^i = Ti,3 \'ytl   — —Vyti3 

Along left end: (j = l, IL) 

PlJ = P3,j •'i'lj   = — *'^3,j ec/iemi,_,   = (-chemtj 

Tlj = r3J Vyi ^   = Vyjj 

Along right end: (j=l, IL) 

PlL,j = PlL-2,3      V'XIL.J  
= ~*XIL-2,J      

echemILtJ  — (-chemIL_2,3 

TIL,J = TIL-2,j     VyjLi> = Vy/L_2; 

These boundary conditions were applied to the solution each time a Strang- 

type operator {L^\ Zy'\ L^f'/2) was used, as well as at different points within the 

algorithm represented by each operator. 

B.7    Determination of Time Step 

In explicit integration schemes the time step is limited by the Courant-Friedrichs- 

Levy (CFL) criteria, which in one-dimensional takes the form (assuming a constant 

grid spacing of Ax): 
(CFL)Ax ,iri ' 

At < —  151 
— t\\' \ M rf \ \ I y x I    i   *~'s I max 

where CFL is a number less than unity and Cs is the sound speed. Transforming this 

equation to the nondimensional form required by the code and taking into account 

both the discrete nature of the grid and the dimensional splitting of the integration 
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results in 

,*,,, < „,,■„,, J^fl.     (Aa<m,nij(^L        (1,2) 
U V:r;,j I "+" L's,:.j ^ vl v

yi.j I 1" ^ s;,^ 

where C's = y/jT'. 

Consistent with the algorithms represented by the L^' and Lpf' operators, a 

CFL number of 0.4 was used [44:166], [112:85], resulting in a global time step At' 

determined by 

At' = 0.4 [{&t')x, (At')u]min (153) 

The time step given by Equation 153 was determined based only on the CFL 

criteria. The computation of flows in which physical processes like energy transfer 

occur may require one to take into account the time scale of the process. In the 

spark-initiated shock problem the variable r' determines the time scale associated 

with the energy release used to generate the shock. Taking into account this time 

scale, the calculation time step should be modified to be 

At'<{{At')cFLAr')\min. (154) 

In practice, r' was hardwired to be equal to 20 to 100 times the value of At\ thus 

At1 was always determined by the CFL limit. 

B.8    Code Flowchart 

A brief flowchart of the main features of the code is shown in Figure 102. 

The input file defines the problem to be solved, specifying whether the Riemann- 

type problem or the spark-initiated shock problem is to be run. It also defines the 

geometry (two-dimensional planar or axisymmetric). physical size of the shock tube 

(length and width), type of gas, as well as the ambient pressure and temperature. 

In addition, the size of the computational grid to be used is also specified. Finally, 
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Propagate Solution 
fn odd: equation (104)1 
n even: equatk>n(105)] 

Write Intermediate Data to Files 

Met Stopping Criteria? No 

Yes 

Write Out Final Solution 

| Stop | 

Figure 102. Two-dimensional fluid dynamics code flowchart. 

the input file determines whether the problem is to be run from scratch or initiated 

from a restart file. If a restart file is not used, the code generates the geometric grid 

and initializes all variables according to the input parameters. If a restart is used, 

these actions are accomplished by reading in the appropriate values from a previous 

simulation. 

After the computational time step is determined (using Equation 154), the 

solution at a known point in time is propagated according to either equation 104 or 

105, depending on whether the value of the iteration counter is odd or even. After 

each time step, some data is written to external files for post-processing and/or flow 

visualization. If the stopping criteria is not met, the code increments the iteration 
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counter and loops back to establish a new computational time step, propagates the 

solution to a new time, writes intermediate data, and then rechecks the stopping 

criteria. The stopping criteria is based on one of three different conditions and 

is determined by the input file. The code can either run for a certain number, of 

iterations, or until a certain physical time is reached, or until the shock front along 

the centerline reaches a particular location. These choices allow the user to select 

the type of stopping criteria, most useful for the particular problem at hand. In any 

case, if the stopping criteria is met the code exits the propagation loop, writes out 

the final solution and stops. 

B.9    Determination of Shock Velocity 

Although not calculated directly by the code, the determination of the shock 

velocity is such an important parameter in the analysis of shock propagation that 

a, description of its calculation is warranted. While the code determines Vr and Vy, 

these are average fluid velocities, not shock velocities. The determination of the 

shock velocity is determined by an analysis of the position of the shock front as a 

function of time. 

After each time step, the location of the shock front along the centerline of the 

shock tube is determined. This is accomplished by finding the first spatial bin in 

which the nondimensional pressure, which is always initialized to unity, has a value 

greater than 1.01. The search for this particular bin always starts from the right 

end of the shock tube and proceeds to the left, which is the direction opposite of 

the shock velocity. The value of 1.01 was found to be a good compromise between a 

lower number (which would be subject to small numerical oscillations in front of the 

shock and could place the computed shock front location slightly to the right of the 

actual shock front location) and a larger number (which would place the computed 

shock front location slightly to the left of the actual shock front location). Once 

this bin was found, the x position corresponding to it and the time corresponding to 
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the calculation were written to an external file. The process of searching for the bin 

containing the shock front was accomplished every time step. The data was written 

to the external file only if the location of the shock front changed between consecutive 

time steps. Thus, as the program runs, a temporal history is built describing the 

location of the shock front. This file is post-processed to determine the shock velocity 

by computing the slope of the position vs time curve (Vshock = j[)- 

Care must be exercised in the calculation of this slope as the effects of a fi- 

nite sized grid lead to some noise in the data. Through considerable effort a sat- 

isfactorily method was found that was quite accurate in validation tests against 

analytic (Riemann) solutions. The method consists of finding the slope of a line 

defined by a linear least squares fit to a group of data points centered around the 

time level of interest. For example, say that the shock velocity at a time level of 

n (corresponding to a physical time of tn) is to be computed. From the exter- 

nal data file, the values of the shock positions at ten data points before through 

ten data points after the interested time level are extracted. These x locations 

are labeled as xn_io, £n_9, xn-8 ...xn... .r„+8, xn+9l .r„+io, where the shock position 

at time tn is xn. The times corresponding to these shock locations are labeled as 

f n_io, f„_9, tn-s ...tn--- tn+8ltn+9, tn+l0. With these ordered pairs of data, a linear- 

least squares fitting routine is used to draw a line through these points, from which 

the slope can be determined, which defines the shock velocity at time tn. The shock 

velocities at times in+i,tn+2, etc. are determined similarly. Notice that shock veloc- 

ities cannot be determined for times that correspond to either the first or last ten 

data points within the data set. In practice, this is a small restriction and is of little 

consequence. 
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Appendix C.   Two-Fluid Plasma Code Description 

This appendix offers a short description of the plasma fluid code used in the 

time-dependent calculations of Chapter III. The code, based on the MacCormack 

method with flux corrected transport (FCT) as given by Toth, et al. [112], solves 

the one-dimensional equations for a plasma in the two fluid approximation. The 

assumptions upon which the two fluid approximation is based have already been 

given in Chapter III and will not be repeated here. 

The two fluid plasma equations (given by Equations 52 to 62) were nondimen- 

sionalized so that the value of all variables was of the order of one. The density 

and temperature of each component were nondimensionalized with. respect to the 

respective upstream ambient values. For example, the ion density was normalized 

with respect to the upstream ambient ion density, while the neutral density was 

normalized with respect to the upstream ambient neutral density. Thus, although 

the fractional ionization of the plasma may be very low (10~6, for example), the 

computed density of both fluid components will be of order one. The flow velocities 

of each component were normalized with respect to the upstream ambient thermal 

velocity. Since the ions and neutrals were assumed to be in thermal equilibrium in 

the upstream ambient conditions, the thermal velocity was the same in both cases. 

The inputs to the code are divided into computational parameters and physical 

parameters. The physical parameters are 

• To - ambient heavy particle temperature (K) 

• P0 - ambient heavy particle pressure (torr) 

• 7 - heavy particle specific heat ratio (unitless) 

• Te - electron temperature (K) 

• a - fractional ionization (unitless) 
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• ain - ion/neutral collision cross-section (m2) 

• aen - electron/neutral collision cross-section (m2) 

• aei - electron/ion collision cross-section (m2) 

• L - physical length of the shock tube (m) 

• -P4/P1 - ratio of the high pressure to the low pressure for the shock tube 

• T4/T1 - ratio of the heavy particle temperature in the high pressure side to the 

heavy particle temperature in the low pressure side 

• ;rdia " l°ca-tioii of the diaphragm (m) 

These parameters are all self-explanatory. In all the calculations performed, aen and 

aei were set to zero. Thus, only ion-neutral interactions were allowed to play a role 

in the shock dynamics. Since a Riemann problem was used to generate the shock, 

the parameters F4/P1 and T4/T1 determined the neutral shock speed for a given 7 

(in the absence of ion/neutral interactions), while the computational parameters are 

• NX - number of bins 

• stopping criteria 

• restart (Y/N) 

• computer system (PC/UNIX) 

The stopping criteria determined when the calculation would end, and could be 

defined in one of three ways. The total number of time steps for the calculation 

could be specified, or the time (in seconds) at which the calculation should end 

could be specified or the final position of the shock front could be specified. The 

restart capability allows the program to pick up the calculation at a previous point. 

Once the inputs to the code were read in. all variables were initialized and the 

code entered the main program loop. Here, the following steps were performed each 

time iteration: 
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• calculate the time step 

• calculate the source terms 

• propagate the solution one time step 

The time step was determined based on-the usual Courant-Friedrichs-Lewy 

(CFL) criteria used in explicit computational fluid dynamics codes [3:76]. For the 

neutral fluid, this amounts to 

(CFL)Az ,1rp, 
(**)n   <   ,r\    ■   y    h , (155) 

l<- n+ I Vn | jmax 

where Cn is the neutral sound speed and Vn is the neutral flow speed. The CFL num- 

ber is determined by the numerical algorithm. For the present choice of algorithms, 

Toth [112] recommends CFL < 0.5. In all calculations using the present code, CFL 

was equal to 0.4. Whereas the sound speed (Cn) was used in determining At in the 

neutral component, the ion-acoustic sound speed (Ci0) is used in determining At in 

the plasma component. Thus, the time step for the plasma component is 

(CFL)AJ ,ir_, 
(At), <       \      ;    • (156) 

[t'ia+ \ vi |)max 

When transformed to a computational grid, these become 

m„<^Jß^-,       (AOj<™J?J<fl£- (157) 

where j indexes the spatial grid. The time step for the calculation was determined 

by choosing the smallest time step meeting both criteria above. Thus, 

At = [(A*)n, (At),-]min (158) 

determines the computational time step for both components. 
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The source terms were calculated by use of Equations 55 through 62. These 

source terms are divided into three types. Some source terms are a result of the form 

of the Euler equations used in the calculation and are not connected with the plasma, 

in any way (Equation 55). Some source terms are due to the ion/neutral collisions 

(Equation 56), while others are a result of the presence of an electric field (Equation 

62). Note that the last of these source terms affects only the ion fluid, as required. 

With the time step and source terms determined, the solution is propagated 

one time step using the algorithm reported by Toth [112], and previously reported in 

Appendix B as the Lf* operator. A detailed description of this operator was given 

there and will not be repeated here. However, a brief comment on the application 

of the FCT will be made. Since there are two flow velocities in the plasma code, the 

FCT scheme must be applied to each fluid separately, based on the flow velocity of 

the appropriate component. 

In practice, extensive use of the restart capability of the code was required. 

Transients in the flow parameters near the diaphragm were observed at very early 

times. With large values of the electron temperature and ion/neutral interaction 

cross-section, these transients became very large and forced the calculation to end 

prematurely clue to numerical oscillations. Allowing the shock to form and begin to 

propagate away from the diaphragm before turning on the source terms clue to the 

ion/neutral interaction and the electric field eliminated this problem. 
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Appendix D.   Self-Consistent Model of Gas Heating in a Glow 

Discharge 

One of the difficulties in assessing the influence of thermal effects on shock 

propagation in a plasma is the determination of the gas temperature at each point 

in the shock tube. This is particularly true when experimental data, of various shock 

wave parameters (density, pressure, velocity, etc) are reported, with no accompanying 

gas temperature data. In the absence of such thermal data, the temperature profiles 

must be calculated. In the general case, the time dependent energy equation should 

be solved, which requires the simultaneous solution of a coupled set of equations 

(conservation of mass, momentum and energy) in addition to a detailed knowledge 

of the form of the heat source term. This level of detail is generally lacking in the 

case of transient gas discharges. However, in the case of steady-state gas discharges 

the problem is simplified considerably, and, generally speaking, enough experimental 

data is available for a calculation to be carried out. 

D.l    Problem Statement 

The steady-state heat conduction equation for a neutral gas heated by a gas 

discharge is 

V-(KVT) = -»7 (J-E) (159) 

where K is the thermal conductivity (and is a function of temperature), T is the 

neutral gas temperature, J is the current density and E is the electric field. The 

objective is to solve this equation for the neutral gas temperature (as a function of 

radial position) given the experimentally determined values of the electric field and 

total current in the discharge. The difficulty lies in the treatment of the source term, 

which is itself a function of the temperature. This difficulty will be addressed in the 

next section. J • E represents the total power input to the electrons from the external 

circuit. Some of this power is used to ionize the neutral gas to sustain the discharge, 
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some is used to excite bound electrons into higher energy states (thereby producing 

radiation) and some is used to heat the gas through electron-neutral. The fraction 

of the total power that goes into gas heating (?;), is a function of the EjN ratio 

(ratio of the electric field to neutral number density) in the positive column of a gas 

discharge. For rare gases, 77 can be considered to be the fraction of the power that 

goes into momentum transfer collisions [66]. For molecular gases, 17 can be estimated 

as the fraction of the total power that does not go into either ionization or electronic 

excitation. 

Anticipating the cylindrical geometry of the experimental arrangement, Equa- 

tion 159 is cast in cylindrical coordinates, resulting in 

cPT = _\_dT_ _ Qjj± _ l^ck fdT\2 (160) 

dr2 r dr K K dT \dr) 

where Q[r) = >][J ■ E\. Note that the possibility of a singularity exists in the first 

term on the right hand side. By application of L'HospitaFs rule and by assuming 

cylindrical symmetry, this term limits to -^ at small r. Therefore, two forms of 

Equation 160 result, one valid for points very near the origin and the other valid for 

points further removed from the origin: 

d2T      1 Q{r)      ld/c/tfT 
K        K dT \dr / dr2       2 

d2T ldT     Q{r)      Idn (dT' 

dr2 r dr K K dT \ dr 

for r % 0 (161] 

for r 9^0 (162) 

Computationally, Equation 161 is solved at the origin, while Equation 162 is solved at 

every other point in the r domain. A standard Runga-Kutta fourth order technique 

is used to integrate the differential equation in space. 
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D.2    Source Term 

As mentioned previously, the difficulty in solving Equation 159 lies in the source 

term. For a given temperature profile (T(r)) the source term is known, however T(r) 

is not known a priori. Therefore an iterative computational scheme is used in which 

an initial T[r) profile is assumed. Using this initial (or guess) T{r) profile to define 

the source term, Equation 160 is solved for a new T(r) profile. This new T(r) 

profile is then used to define a new source term, and the process is repeated until 

convergence is achieved. Therefore, although the final temperature profile is not 

known in the beginning, the functional form of the source term for a given T(r) is 

known, and is used to determine the steady-state solution in a self-consistent manner 

which conserves the total current in the discharge. The source term Q(r) is defined 

as 

Q(r) = ri(E/N)[J(r)-E] (163) 

where r) (the fraction of the total power that goes into gas heating) has been written 

explicitly as a function of the E/N ratio and the current density (J) is a function of 

position. 

The current density in the positive column (where the electrons are the ma- 

jority charge carrier) can be defined as 

J(r) = ne(r)qf- ^</<(^7j) (164) 

where ne is the number density of electrons. </, is t he charge on an electron and I'dri/t 

is the drift velocity of the electron in the applied E field. Vdrift is a function only of 

E/N within the positive column of the discharge for a given gas (Figure 106). E/N 

is a function of the electric field, (which is assumed to be constant over the discharge 

tube radius [83]) and the neutral number density, which is a function of pressure and 
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temperature given the equation of state P = NkBT. Thus, 

§(r) = jkBT(r) .(165) 

where P has been assumed to be constant over the discharge tube radius. In the 

shock tube experiments of [46], constant pressure was maintained in the shock tube, 

thus this assumption is justified in steady-state numerical simulations of these ex- 

periments. A zeroth order Bessel function is used as the functional form for ne(0), in 

accordance with the standard theory of diffusion-dominated discharges in cylindrical 

geometry [31]. Thus 

ne(r) = ne(0)Jo(^2A05J (166) 

where ne(0) is the on-axis electron number density and 2.405 is the first zero of J0. 

Experimentally, the discharge current is measured, not the current density. 

Therefore, the current density must be determined from the measured total current: 

1= [^ [   J{r)r drcW (167) 
Jo    Jo 

where R is the discharge tube radius and / is the total discharge current. Since the 

current density is a field quantity and the experimentally known parameter (total 

current) is an integrated quantity, the determination of J must be done carefully. 

Using Equations 164 through 166, Equation 167 can be written as 

/ = J"" jRne(0)Jo (^2.405) qjdri/t (§kBT(r^j r clrd6. (168) 

Solving this equation for ne(0) results in 

ne(0)      It IoR Jo (£2-405) qeVdrift (fkBT(r)) rdrclß' 
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For a given experimental condition (current and pressure assigned) ne(0) is a function 

only of the temperature profile T{r)< which is the object of the calculation. Thus once 

a T(r) profile is defined (either as an initial guess or as an intermediate solution in the 

iterative computational process) the on-axis electron number density is determined 

in a manner which ensures that the total current in the discharge remains a constant 

(Equation 167 being used as a constraint). This value of ne(0) is then used in the 

definition of the source term Q{r) and Equation 163 can be written as 

Q(r) = V ( jkBT(r] ne(0)Jo (^2.405) qeV (pA*T(r)) • E 

where the source is a function of only the temperature profile T(r). 

170) 

D.3    Boundary Conditions 

The boundary conditions applied to the solution of Equation 160 are 

—i-i = 0     at r = 0 
dr 

T(r) = Twall     atr = # (171) 

The first condition is due to symmetry while the second condition assumes that the 

wall temperature (Twau) is fixed. 

D.4    Solution Method 

Equation 160 is solved for the temperature T(r), together with the use of Equa- 

tion 170 describing the source term Q(r) and the boundary conditions as given by 

Equation 171. The user supplied inputs to the calculation are divided into exper- 

imentally determined parameters and computational parameters. Included in the 

former are gas type, electric field in the positive column, discharge current, wall 

temperature and tube radius, while the latter include the number of spatial bins 

used to define the radial axis and the peak temperature to be used as the initial 
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guess of T(0). Specifying the gas type defines the thermal conductivity to be used in 

the calculation, and a zeroth order Bessel function is used to define the initial guess 

profile T(r) such that 

Tguess(r) = Twa„ + [Tguess(0) - Twau] Jo (^2.40ö) (172) 

The use of J0 as an approximation to the temperature profile is consistent with 

[39] in which an analytic solution was determined for the case in which the current 

density was assumed to follow a zeroth order Bessel function dependence. Once the 

initial temperature profile is defined the source term (Equation 170) is specified at 

all r values and Equation 160 is solved as a boundary value problem using a fourth 

order Runga-Kutta scheme, with the integration proceeding from r = 0 to r = R. 

The exact value of the initial on-axis temperature T(0) which satisfies the boundary 

condition at r = R is not known a priori, therefore a shooting method is used to 

adjust T(0) until T{R) is within a small epsilon of Twau (typically 100 fiK). During 

the solution of the boundary value problem, the T{r) profile used to define the source 

term Q[r) remains unchanged. After each solution of the boundary value problem 

has been obtained, it is used in Equation 169 to determine a new value for the on-axis 

electron number density (n0) and in equation 170 to determine the subsequent source 

term. Equation 160 is re-solved with the updated source term as a boundary value 

problem, again ensuring that T(R) is within a small epsilon of Twali. This process 

is repeated until the T(r) profiles determined from consecutive iterations are very 

nearly unchanged. In the present solution method, convergence is achieved when 

T^-T^-
1
 <o.oi, (173) 

where N denotes the Nth iteration in the cycle and T^ is defined as 

R2 I" y« _rdx_ 
m ~~ ~   Jo   W[r 

i -i 

Tf = ^ ^^r (174) 
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where TN{r) is the Nth solution to the boundary value problem. Tm is a density 

weighted mean temperature, the use of which was motivated by its utility as reported 

in the Russian literature ([41], [115]). 

A summary of the solution algorithm is shown in Figure 103. In practice, 

the method typically requires between 5 and 40 iterations to converge and generally 

takes about 30 seconds to run on a 486 PC. 

Get Input I, E,Twall,P,R 

Assume T(r) Profile 
[equation 172] 

Define n„(01 and Q(r) 
[equation 169 and 1/0] 

Solve boundary value problem for T(r) by shooting method 
[equation 161,162 and 171] 

Output Final T(r) 

Figure 103. Thermal model solution algorithm 

D.5    Input Parameters 

The model used to determine the radial gas temperature profile requires a num- 

ber of input parameters.  These input parameters can be divided into two groups: 
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inputs which are an easily measurable quantity and remain fixed throughout the cal- 

culation and those which have an established functional form, but may vary through- 

out the calculation. The fixed input parameters are current (/), electric field (£), 

wall temperature [TwaU), pressure (P) and tube radius {R). The input parameters 

which are allowed to vary, but which have an established form, can be supplied to 

the program in the form of lookup tables. These inputs are the fractional power 

that goes into gas heating (77), electron drift velocity (Vdrift), and the neutral gas 

thermal conductivity (K). The first two are functions of only E/N, while the last is 

a function of only the neutral gas temperature. 

The electric field and current in the positive column of a glow discharge are 

not independent parameters, but are related through the discharge characteristic. 

The experimentally measured variation in the electric field in an Argon discharge is 

6 
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Figure 104.    Electric Field in the positive column of a DC Argon Discharge as a 
function of discharge current [Data from [46]] 

shown in Figure 104. This data was used in calculating the radial gas temperature 

profile for the shock simulations reported in Chapter 5. 
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The data that can be supplied to the model in terms of lookup tables are 

■i] (the fraction of the total power going into gas heating), Vdrift (drift velocity of 

the electrons in the positive column due to the axial electric field) and K (thermal 

conductivity of the neutral gas).      The former two are shown in Figures 105 and 

Figure 105. r\ (fractional power into gas heating) vs E/N in Argon (points were 
determined from numerical solution to Boltzmann's equation [97]; solid 
curve is a cubic spline fit to points) 

106 as functions of E/N in Argon (E/N is in units of Townsend, where 1 Td = 1.0 

xlO-17 Volt-cm2). The data points in these figures were extracted from a numerical 

solution to the Boltzmann equation, using the Bolsig code [97]. Bolsig was run for a 

broad E/N range (1-100 Td), with the resulting transport coefficients cross-checked 

using an independent Boltzmann solver [17] to ensure accuracy. The solid curves 

in these figures represent a cubic spline fit to the data points and were used in the 

thermal model. 

The thermal conductivity of Argon as a function of temperature is shown in 

Figure 107. The points in this figure were taken from tables in [5] while the solid 

curve is used in the thermal model to represent the thermal conductivity. 
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Figure 106. Vdrift (electron drift velocity) vs E/N in Argon (points were determined 
from numerical solution to Boltzmann's equation [97]; solid curve is a 
cubic spline fit to points) 
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Figure 107. Thermal Conductivity in Argon [kg m/sec3/K 
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D.6    Test Cases and Typical Results 

Results of the thermal model were compared to peak temperatures from pre- 

vious calculations as reported in the literature. These comparisons are summarized 

in Table 1. where the peak temperatures from the present model are listed in the 

last column and the peak temperatures from previous calculations are listed in the 

next to last column. The agreement between the two is quite good, with less than 

1% relative difference. The other entries in this table define the parameters of the 

calculation and are inputs into the present model (shown for clarity). 

Table 1. Test Cases: Results of thermal model in Argon 

Source I (mA) E (V/cm) R (cm) P (torr) Twall (K) r^*(K) ?S(K) 
[391 250 1.377 0.4 10 340 525 529 

[39] 250 1.50 0.4 5 344 543 547 

r (normalized) 

Figure 108. Intermediate T(r) profiles corresponding to the 1=100 mA case in [46]. 
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A typical sequence of intermediate T(r) profiles is shown in Figure 108 calcu- 

lated for the 1=100 mA case in [46] (Argon, / = 100 mA, E = 51.5 V/cm, R = 2.5 

cm. P = 30 torr). This case took 35 iterations through the algorithm to converge. 

with the numbers shown in the figure corresponding to the iteration number. The 

curve labeled 1 is the initial guess (a J0 Bessel function with a peak temperature of 

950 K). The curve labeled 35 is the final converged solution. It is apparent there 

is little deviation between the solutions of successive iterations as the converged 

solution is approached. 

W 

Figure 109.    Calculated E/N ratios along centerline (curve 1) and along the tube 
wall (curve 2) for an Argon discharge at 30 torr (input parameters from 
[46]). 

Using the electric field values determined experimentally for an Argon discharge 

at 30 torr (Figure 104) and the temperatures as determined by the thermal model, 

the E/N ratios along the centerline and tube wall can be calculated (see Equation 

165). The result is shown in Figure 109, where curve 1 represents the E/N ratio (in 
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units of Tel) along the centerline and curve 2 the same quantity along the tube wall. 

The E/N ratio is not a constant, but can vary from a maximum of approximately 

18 Td (on the centerline for a current of 60 mA) to a minimum of approximately 4 

Td (at the wall for a current of 140 mA): a factor of more than 4. Since the wall 

temperature in these calculations was assumed to be a constant (300A'). the E/N 

ratio along the wall simply reflects the discharge characteristic as given in Figure 

104. The calculation of the E/N ratio along the centerline, however, takes into 

account both the discharge characteristic and the centerline temperature, each of 

which varies with current. 

The strength of the present thermal model is that all its inputs are parameters 

which are either readily controlled or measured by the experimenter. Other thermal 

models [[39], [41]] require the user to specify parameters over which the experimenter 

has no control, such as the fraction of the total power going into gas heating (?/). 

In the present model, 77 is determined at each radial location by the local value of 

the E/N ratio, using the results from a Boltzmann equation solver in the process. 

Additionally, the source term used in the calculation (RHS of equation 159) is con- 

sistent at all times with the total discharge current. The algorithm upon which the 

present thermal code is based should be applicable in cases in which the local (or 0-D 

Boltzmann) model of the plasma holds and in which the wall temperature (-T^i) 

of the discharge tube can be specified as a constant. While rwaji may continue to 

rise over time until a true steady-state is achieved, it can be considered to be con- 

stant over the time in which a shock propagates through the discharge. Therefore, 

it should be applicable in the positive column of the discharge. Finally, the effect of 

the convective flow of gas has not been included in this gas heating model. 
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Appendix E.   Optical Diagnostics in Shock Tubes: A Short Tutorial 

Optical measurements are frequently made in shock tubes clue to their non- 

intrusive nature. That is, measurements can be made without inserting probes into 

the shock tube that would otherwise interfere with the gaseous flow. Both den- 

sity and density gradient measurement techniques have been used in investigating 

plasma/shock interactions and each relies on a different physical principle. Under- 

standing these principles is essential in order to compare the results of numerical 

simulations to the measured data. 

Although optical measurement techniques applied to shock waves are probably 

well known in certain settings, it was a new field to the author, and as such provided 

some difficulty in understanding the data reported in the literature. Accordingly, a 

good measure of time was spent in researching the various techniques in an effort 

to determine the manner in which the simulated data should be sampled in order 

to provide a meaningful comparison to experimental results. The purpose of the 

present appendix is not to replace the existing volumes of literature on the subject 

of optical shock diagnostics, rather, the intent is to provide a short tutorial of two 

optical techniques commonly employed and to provide enough references to send the 

interested reader in the proper direction to get more information. 

Although many optical methods are available for shock tube diagnostics, only 

those methods used in experiments which were numerically simulated in the present 

research will be discussed. These methods are optical interferometry and photo- 

acoustic deflection spectroscopy (PADS). Using a Riemann problem as a basis, both 

of these techniques will be addressed and a sample of the simulated data provided 

by each will be shown. 
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E.l    Optical Interferometry 
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Figure 110.    Typical Mach Zehnder interferometer used in shock tube diagnostics 

[118]. 

According to Wright [118:49], the interferometer is 'undoubtably the best 

method of obtaining quantitative information about the density profile of the flow in 

a shock tube.' A Mach Zehnder interferometer is shown in Figure 110. A monochro- 

matic light source of wavelength A is split into two legs, only one of which traverses 

the shock tube. The other leg is designed to have the same optical path as the first, 

using glass plates to compensate for the optical path difference and dispersion in- 

troduced by the shock tube windows. Any density change from ambient {Ap) in the 

shock tube portion of the path causes a change in the refractive index (An) at the 

same location. That is, since the density and refractive index are related through 

n = 1 + A/9, 1175) 
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where A' is known as the Gladstone Dale constant (see [118:41] for typical values), 

the changes are also related, in that 

An  = A'A/r». (176) 

The optical path length is increased by Y'An (where Y is the width of the shock 

tube), which can be equated to an integral number of wavelengths (iVA). Thus, the 

change in density can be determined by the number of fringes which are observed as 

the shock passes, according to 

N=J^-Ap. (177) 

In general, the density change across the shock tube can be a function of position, 

that is, A/9 = Ap(y), where y is the transverse coordinate. Such would be the case if 

a transverse thermal gradient were present, for example. In this case, the number of 

fringes observed would be determined by the integrated value of the density change 

at each transverse position, given by 

A' 
N=jJQ   Ap(y)dy. (178) 

Thus, one sees a difficulty emerging in that while the number of fringes can be 

measured, the density change inferred from this measurement is a quantity averaged 

over the width of the shock tube. Accordingly, the density that is reported in the 

literature using this technique can be described as an average density, defined as 

1    fy 

i  Jo 

where t denotes time. In the two-dimensional numerical simulations of experiments 

using the interferometry technique, Equation 179 was used to sample the computed 

density field at each time step of the calculation. 
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Figure 111. Typical simulated signal resulting from the application of the inter- 
ferometer measurement technique (equation 179) to a two-dimensional 
Riemann problem for a shock in gas at 300A'. 

Using the Riemann problem as a basis, the temporal variation of the transverse- 

averaged density (according to Equation 179) is shown in Figure 111. The shock tube 

used in this example is 100 cm long with a width of 5 cm. The diaphragm is initially 

located at 40 cm and Equation 179 was applied transversely at a longitudinal loca- 

tion of 60 cm. The initial pressure and temperature ratios in the shock tube were 

10.0 and 1.25, respectively, resulting in a Mach 1.6 shock in Argon. The tempera- 

ture on the low pressure side of the diaphragm is 300A'. The sharp initial rise in 

the curve is due to the passage of the shock wave front. The average density (nor- 

malized by the upstream ambient density) rises to a level of 1.84, consistent with 

the Rankine-Hugoniot relations under the given conditions. The density remains 

relatively constant at this level until the passage of the contact surface. Ideally, the 

rise associated with the contact surface would also be very steep, however numerical 

dissipation from the computational algorithm causes this region to be diffuse. This 

is typical of many computational algorithms in the contact surface region. 
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Figure 112. Typical simulated signal resulting from the application of the 
interferometer measurement technique (equation 179) to a two- 
dimensional Riemann problem for a shock in gas with a radial thermal 
inhomogeneity. 

As another example, the case in which a radial thermal inhomogeneity is 

present will be considered. Here, the conditions are exactly the same as in the 

previous example, except a heated region is present, starting 10 cm from the di- 

aphragm on the low pressure side. The region is heated according to Equation 88 

with To = 300A" and T\ = 200A'. The temporal variation in the average density is 

shown in Figure 112. The rise in the density at the shock front is not as sharp as in 

the previous example. This is due to the curvature of the shock front resulting from 

the transverse thermal inhomogeneity. The density reaches a localized maximum, 

then decreases until passage of the thermal contact surface (see Chapter V). Another 

steady rise in the density is associated with the passage of the contact surface. 

245 



E.2    Photo-Acoustic Deflection Spectroscopy 

The photo-acoustic deflection spectroscopy (PADS) technique also relies on the 

principle of an index of refraction change caused by the passage of a shock wave, 

but in a completely different way from the interferometer. In the PADS technique, 

laser light traverses the shock tube at normal incidence to the tube walls, as shown 

in Figure 113. A passing shock wave produces density gradients in the x direction 

resulting in gradients in the index of refraction in the x direction as well.    For 

Figure 113.    Deviation of a light beam by a refractive index gradient, as used by 
photo-acoustic deflection spectroscopy (adapted from [118]). 

example, behind the shock the density is higher than in front of the shock, thus 

the optical path length is greater in this region than in front of the shock. This 

larger path length results in the wavefront being deflected from the normal. This 

deflection is not limited to the wave front only, as the Poynting vector of the wave 

is also deflected. Thus, the laser beam is deflected from the normal. The amount by 

which the optical path length is changed can be expressed as [118:46] 

dy = Y—dx, 
dx 

(180) 
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thus small angular deflections (« dy/dx)ca,n be expressed as 

t = Y%-. (181) 
ax 

In general, the longitudinal gradient of the index of refraction can be a function 

of position, thus V±n — Vj.n(y), where the symbol J_ indicates the gradient is to 

be computed in the x direction, which is perpendicular to the initial direction of 

the laser beam.  This would happen in the case of a shock propagating through a 

transverse thermal inhomogeneity, for example.   In this case, Equation 181 would 

become 

B= /* V±n(y)dy, (182) 
Jo 

which is, to within a constant of the order of unity, equivalent to the expression given 

in [96:507].  Making use of the relationship between index of refraction and density 

(Equation 175), Equation 182 becomes 

6 = K [\±p(y)dy, (183) 
Jo 

indicating the linear relationship between angular deflection and the integrated value 

of the transverse density gradient. 

Experimentally, it is common practice to use a single detector to measure the 

laser beam deflection ([96], [46], [95], for example). This is made possible by use of 

either a knife edge (as in [96]) or a slit (as in [46] and [95]), which blocks a portion of 

the beam from the detector. According to [96], the voltage from the photodetector 

in such an arrangement will be according to 

AV = Vberf(\/20/0), (184) 

where erf is the error function, V0 is the signal from the photodetector under ambient 

conditions and <j> is the divergence angle from the laser, given as <f> = \/(nw0). 
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where w0 is the beam waist. For small deflection angles, the photodetector signal 

is proportional to the deflection angle, as given by Equation 183. Notice, however, 

that the beam deflection can be either positive or negative, according to whether 

the integrated density gradient is either positive or negative. More information on 

the photo-acoustic deflection technique can be found by in [7], [30], [67], [95], [100], 

[104], [107] and [122]. 
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Figure 114. Typical simulated signal resulting from the application of the photo- 
acoustic deflection measurement technique (equation 184) to a two- 
dimensional Riemann problem for a shock in gas at 300Ä". 

As an example of this technique, consider a Riemann problem in which the 

shock propagates into Argon at a uniform temperature of 300A". The shock tube 

configuration is the same as given previously. The temporal variation of the photo- 

acoustic signal, which has been assumed to be proportional to the laser deflection 

angle given by Equation 183, is shown in Figure 114. The sharp spike at approxi- 

mately 400 ^sec is due to passage of the shock wave front. The width of this signal 

is an indication of the width of the shock front. Behind the shock front, the density 

is relatively constant, as shown in Figure 111. The passage of the contact surface 

results in another signal, starting at approximately 800 ^sec. This signal is broader 
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in time than that associated with the shock front. This is a result of the numerical 

dissipation in the contact surface region mentioned previously in this appendix. 
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Figure 115. Typical simulated signal resulting from the application of the photo- 
acoustic deflection measurement technique (equation 184) to a two- 
dimensional Riemann problem for a shock in gas with a radial thermal 

inhomogeneity. 

As a final example, consider the case in which the shock propagates into a 

region with a transverse thermal inhomogeneity, defined exactly as before. The 

temporal variation of the photo-acoustic signal in this case is shown in Figure 115. 

Again, a sharp spike is present in the signal which is associated with passage of the 

shock front. However, the structure of this spike is different in this case, due to the 

curvature of the shock front in the presence of a thermal inhomogeneity. Broader 

signals associated with the thermal contact surface and contact surface are also 

shown. 
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