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Abstract 

This thesis addresses the question of how a highly energetic eddy field could be gen- 
erated in the interior of the ocean away from the swift boundary currents. The energy 
radiation due to the temporal growth of non-trapped (radiating) disturbances in such a 
boundary current is thought to be one of the main sources for the described variability. 
The problem of stability of an energetic current, such as the Gulf Stream, is formulated. 
The study then focuses on the ability of the current to support radiating instabilities 
capable of significant penetration into the far-field and their development with time. 

The conventional model of the Gulf Stream as a zonal current is extended to allow 
the jet axis to make an angle to a latitude circle. The linear stability of such a nonzonal 
flow, uniform in the along-jet direction on a beta-plane, is first studied. The stability 
computations are performed for piece-wise constant and continuous velocity profiles. 
New stability properties of nonzonal jets are discussed. In particular, the destabilizing 
effect of the meridional tilt of the jet axis is demonstrated. The radiating properties 
of nonzonal currents are found to be very different from those of zonal currents. In 
particular, purely zonal flows do not support radiating instabilities, whereas flows with 
a meridional component are capable of radiating long and slowly growing waves. 

The nonlinear terms are then included in the consideration and the effects of the 
nonlinear interactions on the radiating properties of the solution are studied in detail. 
For these purposes, the efficient numerical code for solving equation for the QG potential 
vorticity with open boundary conditions of Orlanski's type is constructed. The results 
show that even fast growing linear solutions, which are trapped during the linear stage of 
developement, can radiate energy in the nonlinear regime if the basic current is nonzonal. 
The radiation starts as soon as the initial fast exponential growth significantly slows. 
The initial trapping of those solutions is caused by their fast temporal growth. The new 
mechanism for radiation is related to the nonzonality of a current. 
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Chapter 1 

Introduction 

Eddy energy increases by orders of magnitude while moving from the Eastern Atlantic 

and from the equator to the North-West of the North Atlantic Gyre (Wyrtki et al. 

1976; Richardson, 1983; Wunsch, 1983), in which region the eddy field varies in relative 

intensity. The ratio between eddy energy and mean energy is between 1/2 and 1 in the 

Gulf Stream region increasing to about 20 - 40 in the central portion of the gyre (Wyrtki 

et al, 1976). This raises the question how such a highly energetic eddy field could be 

generated in the interior of the ocean away from the swift boundary currents. 

The most direct mechanism of the eddy formation might be the instability of the 

mid-ocean. Gill et al., (1974) demonstrated that the potential energy stored in the 

ocean modeled by the simple two-layer model is sufficient to produce the eddy field with 

velocities larger than the gyre values. However, whether or not this energy can be entirely 

released into the eddy motions is a more complicated question. Some numerical studies 

of the stability of a horizontally uniform baroclinic flow suggest that the eddy energy 

corresponding to the scales longer than the Rossby deformation radius can exceed the 

background energy (Larichev and Held, 1995; Held and Larichev, 1995). In contrast, 

existing theoretical evidence suggests (Pedlosky, 1975) that the mean ocean velocity is a 

bound for the eddy velocity produced by the baroclinic instability of the oceanic interior. 

One needs to examine the alternate sources of the eddy energy in the interior of the 
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ocean gyres. Very energetic currents such as the Gulf Stream in the North Atlantic are 

the most likely candidates for energy sources. Some facts support this idea. As shown 

in Halkin and Rossby (1985) and in Rossby (1987), approximately 2/3 of the kinetic 

energy in the interior is attributed to the meandering Gulf Stream, leaving the rest of 

the variance to the mesoscale eddy field. Hogg (1994) confirms that the velocity variance 

is significantly (by 1/3) reduced when the process is viewed from the reference frame 

aligned with the Stream itself. 

The above evidence leaves the Gulf Stream as the possible origin of the eddy variability 

in the north-western part of the Atlantic. Nevertheless, the mechanism of the eddy energy 

penetration into the interior of the gyre is not well understood. 

Several approaches to this problem have been tried in the past. Some studies consider 

a boundary forced problem, in which the effect of the Gulf Stream meandering is modeled 

by the time-dependent boundary. This method allows us to avoid the difficulties of 

choosing a realistic mean velocity profile and discussing the dynamics of the stream itself 

and makes all results relatively simple to analyze. 

A steady propagating northern boundary is considered by many authors starting from 

the early results by Flierl and Kamenkovich (1975) and Pedlosky (1977). The former work 

considers both moving zonal and western boundaries. In the latter work, the effect of 

the mean velocity field is also studied. 

The form of the boundary is modified by Malanotte-Rizzoli et al., (1987a) to include 

the case of a pulsating meander that allows, more readily, radiation of energy into the 

interior. On the /3-plane, without topography, radiation is found to be possible only if 

the pulsation frequency is below the critical value. Topography in the form of a simple 

parabolic relief does not change the process qualitatively. The problem is studied in the 

periodic zonal channel. 

Hogg (1988) makes a statistical extension of the transient meander model, focusing 

on the far-field response. He found that in the case of a zonal jet, meander activity 

must vary in the x-direction and have growth and decay periods.   If both ingredients 
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axe present, the energy is transferred from the forcing to the interior motions and the 

induced mean circulation in the far-field has realistic meridional distribution of eddy- 

kinetic energy. The observed Reynolds stress maps to the north from the Gulf Stream 

(Bower and Hogg, 1992) show good agreement with the results of Hogg (1988). 

The extension of the studies of the radiation by the pulsating meanders to the highly 

nonlinear regime is made by Malanotte-Rizzoli et al., (1987b). Two boundary functions 

are considered: a stationary pulsating meander and a slowly propagating meander. The 

first type of forcing can produce highly nonlinear, isolated dipoles. In the second case, the 

resonance mechanism in the presence of topography is effective in producing nonlinear 

eddies. 

As it is demonstrated in Rizzoli et al., (1995), the nonlinear interactions between the 

forced radiating wave and a free wave in the interior can produce circulation patterns that 

are consistent with observations. The strength of recirculation is realistic if a bowl-shaped 

topography is introduced. The study demonstrates the effectiveness of the energy transfer 

by radiating waves. The topography in the model allows coupling between meanders and 

topographic Rossby waves. The supporting evidence for this mechanism for radiation is 

presented in Pickart (1995) where the analysis of the 40-day topographic Rossby waves 

observed to the north from the Gulf Stream is performed. 

The above cited studies provide us with an important mechanism of energy radiation 

from energetic ocean currents. However, the imposed boundary forced problem does not 

show whether the radiation is dynamically consistent with the dynamics of the stream 

itself. In this sense, such studies do not provide a complete dynamic picture of the 

process. 

We consider here a different approach to understanding the structure and the origin of 

eddy variability and consider the unstable modes of the Gulf Stream viewed as a steady 

current. Talley (1983) followed this idea and focused her research on instabilities that 

are very weakly trapped to the current. Although, in the linear sense, these instabilities 

possess growth rates that are smaller than those of the strongly trapped modes, she pro- 
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posed that the non-trapped solutions are dominant in the far field. Unlike the previously 

cited boundary-forced studies, Talley assumed that the growth of the trapped meander- 

type disturbances does not directly cause the radiation of energy by the non-trapped 

disturbances. 

Talley (1983) found that zonal eastward parallel flows have difficulty radiating plane 

waves. Only zonal jets with some westward components (purely westward, eastward 

with westward undercurrent, or westward sidelobs) were found to be capable of radiating 

energy. The possibility of Rossby waves radiation by westward frontal jets is confirmed 

by some available observations. For example, the wave-like oscillations with north-west 

to south-east orientation found in the southeastern North Atlantic are believed to be the 

signature of radiating Rossby waves generated at the Cape Verde frontal Zone (Spall, 

1992; Spall et al, 1993). 

The nonlinear evolution of radiating waves is not considered in Talley (1983). 

1.1     Nonzonal current. 

One of the most important decisions in the model is the form of the mean current 

itself. The main task is to choose the simplest possible model and yet not lose important 

features. In many studies, steady purely zonal flows are considered which are found non- 

radiating in many studies (Pedlosky, 1977; Talley, 1983). It seems important to explore 

other possibilities in which an ocean current can radiate. In the present study we want 

to consider the effect of nonzonality of the jet on the stability and radiating properties 

in the problem. 

Some observed facts support this idea. The portion of the Gulf Stream (in Iselin's 

definition) between Cape Hatteras and the New England Seamounts is characterized by 

high values of the eddy kinetic energy (Wyrtki et al, 1976; Richardson, 1983). The axis 

of the Gulf Stream in this region makes an angle of 30 - 40 degrees with a latitude circle. 

An obvious question arises. How different is the dynamics of the zonal jet from the 
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more general case of the flow with a meridional component? The linear stability of the 

mean state in the form of the purely zonal current has been investigated in detail during 

the last decades, for example by Pedlosky (1964). However, the results are not simple for 

most mean velocity profiles, and not all properties are completely understood. Why do 

we want to make our problem even more complicated, trying to look at a more general 

orientation of the mean current? We can see two main reasons. 

First, we believe that the stability properties of the nonzonal jet are different from 

those of the purely zonal current. From the physical point of view, it is reasonable 

to expect that nonzonal currents are more unstable than zonal ones. In the baroclinic 

problem, one could refer to the fact that the direction of the maximum energy release, 

which is perpendicular to the jet axis is not parallel to the planetary vorticity gradient in 

the case of a nonzonal jet, therefore reducing the stabilizing effect of ß (Pedlosky, 1987). 

The more unstable character of the nonzonal vertically sheared flows was reported in 

previous studies (Kang et al., 1982; Lee and Niler, 1987). The horizontal tilt may excite 

new unstable modes, or destabilize stable modes (if there are any). These possibilities 

will be demonstrated in the following sections. 

Second, in our analysis, we want to focus on the solutions that can penetrate signifi- 

cantly far into the mid-ocean, in other words, radiating solutions. The ability of a zonal 

flow to support these solutions is, however, limited. The dominant disturbances in the 

Gulf Stream are eastward-propagating (Hogg, 1988). These disturbances are also favored 

by the semi-circle theorem for the zonal jets on the ß-plane derived by Pedlosky (1964). 

In contrast, in the simple barotropic model without topography, only upstream traveling 

solutions can be of radiative character (Flierl and Kamenkovich, 1975; Pedlosky, 1977; 

Talley, 1983; Malanotte-Rizzoli et a/., 1987a), which limits the radiating ability of the 

zonal jets. 

At the same time, there are reasons to expect that nonzonal jets more easily support 

radiating solutions. Downstream propagating motions are now not necessarily strongly 

trapped to the northward boundary current (Flierl and Kamenkovich, 1975; Ierly and 
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Young, 1991). The latter study is concerned with the stability of a parallel western 

boundary flow described by the Orr-Sommerfeld equation with the /3-term. The viscous 

instabilities supported by the flow can have long oscillatory tails if a basic flow is highly 

inertial. Nevertheless, these modes are classified as non-radiating because they cannot 

be coupled with free basin modes; see section 2.3 for the description of the phase speed 

condition. 

In the study by Rizzoli et al., (1995), it is demonstrated that when the topography 

makes the effective planetary vorticity gradient non-meridional and, therefore, not per- 

pendicular to the jet axis, the very energetic radiation of Rossby waves is possible. The 

change in the jet orientation relative to the mean potential vorticity gradient can lead to 

significant changes in the radiating properties. 

1.2    Overview of the thesis 

We consider the problem first in a simple linear barotropic model. The model is described 

in Chapter 2. In the chapter, we use the relative simplicity of the model to derive some 

useful analytical results. In particular, the sufficient condition for stability of a barotropic 

zonal current is re-derived for a nonzonal current to become a sufficient condition for the 

absence of a neutral mode. On a simple example, we also demonstrate the destabilizing 

role of the horizontal tilt of the jet axis with respect to the latitude circles. We then 

formulate the criteria for determining whether a linear solution is radiating. The task is 

generally not trivial, because of the fast exponential growth of the solution. 

We report the results of the barotropic problem in Chapter 3. We consider two mean 

velocity profiles: top-hat broken line profile and a continuous jet. In both the cases, we 

compare the results for the nonzonal jet with those for the purely zonal current. We report 

the qualitative change in the radiating properties related to the changed orientation of 

the currents. In particular, we find strong radiation by the waves that are long in the 

along-jet direction. The radiation is observed even if the horizontal tilt of the jet axis is 
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very small. 

The second moving layer is added to the model in Chapter 4. We focus on the effects 

of such a simplified baroclinic structure on the radiating properties. We observe the 

appearance of an additional baroclinic mode and changes in the dispersion curves. How- 

ever, the changes in the radiating properties are not significant. The radiating response 

remains basically barotropic in structure. 

The nonlinear development of the linear solutions is studied in detail in Chapter 5. 

We develop an efficient numerical method for solving the nonlinear equation for potential 

vorticity with the open boundary conditions in the cross-jet direction. The modified 

Orlanski numerical open boundary conditions are employed for this purpose. For the 

analysis of results, we decompose the streamfunction into Fourier modes, which provides 

the detailed information about the structure of the solution. The decomposition also 

simplifies the analysis of the energetics in the problem. 

We start with the analysis of the nonlinear development of a single linear mode that 

is put as an initial condition. As in the linear problem, we first consider the dynamical 

properties of the solution for a zonal current. Then we make the jet nonzonal and compare 

the results with the previous case. The main finding is that short linear waves that grow 

rapidly initially, start to radiate when their growth substantially slows. The radiation 

typically begins in the form of an x-independent component. The physical mechanism 

for that is illustrated on a simple example. We also check if the radiation is consistent 

with the criteria of the linear theory. 

An attempt to understand the effects of interactions between different waves is made 

in Chapter 6. For simplicity, we study the mutual development of a pair of linear waves. 

We consider three types of interactions that are expected in the development of a set 

of linear solutions. First is the case in which a strongly radiating wave and a weakly 

radiating wave half as long strongly influence each other. In the second case, the direct 

influence is not possible because of the relation between corresponding wavenumbers. 

Both waves are long and strongly radiating in the third case. 
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The relevance of the results to observations is discussed in Chapter 7. We compare 

results of four different numerical experiments with the observations in the Western 

North Atlantic. For the comparison, we analyze eddy kinetic energy, Reynolds stress and 

characteristic time scales. 
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Chapter 2 

Linear barotropic model 

We begin here the study of radiating properties of nonzonal ocean currents. The overall 

idea is to analyze the effect of nonzonality of a current on stability and radiating proper- 

ties. The approach taken is to simplify the analysis by considering the simplest possible 

model, but yet not to loose the main dynamical features. In particular, we want to single 

out the effects of the jet crossing the latitude circles. 

We start from formulating such a simplified model for the vertically homogeneous 

ocean in section 2.1. We take a steady nonzonal current as a basic state to which 

perturbations of small amplitudes are added. The development of these perturbations in 

time is a focus of our research. Nonlinear terms are neglected everywhere in chapters 2 

and 3. All results are expected to be valid only during the initial stage of development, 

while the magnitudes of perturbations remain small enough to make nonlinear terms 

negligible. The extension of the model to nonlinear regime is made in Chapters 5 and 6. 

In our model, we balance the nonzonal current by a vorticity source. We believe 

that the dynamical role of this source is limited to supporting the parallel nonzonal flow. 

The new radiating properties of nonzonal currents, reported in the following chapters, 

therefore, are not the direct consequence of the non-conservation of potential vorticity 

in the model. We base this claim mainly on the results of section 5.4 below, which 

demonstrate that the magnitude of forcing does not control the strength of radiation. 
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One can anticipate a more unstable nature of a nonzonal current beforehand, based 

on a physical argument valid in the baroclinic model (Pedlosky, 1987) and results from 

the previous studies; see section 1.2 for details. The simplicity of the formulated linear 

problem allows us to demonstrate the qualitatively different stability properties of a 

nonzonal current compared to a zonal flow in section 2.2. We will derive the stability 

theorem for the simple nonzonal flow considered. 

To proceed with the analysis, we need to define what we mean by a radiating mode 

in our linear problem. In section 2.3, we both reformulate some existing and derive new 

analytical criteria for an unstable mode to be of radiating character for our problem. 

Under the limitations of the linear theory, we can only try to determine if a solution 

has a radiating form during the initial stage of development while its amplitude remains 

small. However, the ideas involved in derivation of some of the criteria are useful for 

nonlinear consideration and will be additionally discussed in Chapterö. 

Section 2.4 describes the general form of the mean velocity profile used for calculations 

which is specified in the three intervals in y. We then derive the matching conditions that 

are used to connect a solution obtained in each of the intervals and to obtain a dispersion 

relation. One of the resulting conditions takes the form which is different from that in 

the problem with a zonal flow. We present a detailed derivation to ensure the clarity of 

the technique. 

2.1     Model formulation 

We assume that the motions are quasi-geostrophic, and we neglect friction and bot- 

tom topography although the effect of a constant bottom slope can be included in the 

/3-term. We make a further assumption that the along-jet spatial variation scale is much 

longer than the cross-jet spatial variation scale, so our jet is essentially uniform in the 

along-jet direction. 

Then we orient the x-axis of our coordinate frame along the jet and y-axis perpendic- 
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Figure 2.1: The barotropic model 

ular to the jet axis (see Fig.2.1). The advantage of such a rotated coordinate is a clear 

distinction between along-jet and cross-jet directions, which is convenient for our studies 

of the energy radiation away from the jet. The barotropic potential vorticity equation 

(Pedlosky, 1987) in the new coordinate frame takes the form: 

dt VV + Jty + *(y), VV + Q) = T, 

where unperturbed state is given by 

Q = ßix + ß2y - üy;    V = -[ü(y)dy, 

(2.1) 

(2.2) 

with ß2 = ßcosoc.ßx = ßsina with a being the angle between our x-axis and a latitude 

circle and ß is the planetary vorticity gradient. We assume that Eq.2.1 holds for tp = 0 

with unchanged forcing term T (Pedlosky, 1987). The potential vorticity is not conserved 

in the model. Rather, we introduce a vorticity source, which could be associated, for 

example, with the wind forcing and resulting Ekman pumping at the surface: 

F=-ßiK (2.3) 

The introduced forcing depends on the mean flow only and is different in nature from 

the viscosity that supports a western boundary layer in, for example, Ierley and Young, 

25 



(1991). The viscous term depends on the basic flow and perturbations in the latter case. 

Before we proceed any further, one property of the equation 2.1 should be mentioned. 

If the angle of the horizontal tilt of the jet axis a is changed to —a, the equation stays 

the same if y is changed to — y and ip to —ip. Therefore, the solution for a south-eastward 

flowing current can be easily gotten from the solution for a north-eastward flowing current 

by the above described transformation. 

For small perturbations, we can linearize Eq. 2.1 and rewrite it in the following form: 

(§i+ "(y) Jx") v^ + J^' ® = °- (2-4) 

This is the equation that we solve for particular choices of the mean velocity profile 

ü(y) in chapters 2 and 3. The solution of our problem can be found in the form: 

i, = <KyKfc(x-d), (2.5) 

where phase speed c is allowed to be complex (c = c,. + ic,-) and x-wavenumber Jb is real. 

The solution is, therefore, a Fourier mode in x which both oscillate in time and has an 

amplitude growing in time exponentially. (f>(y) satisfies the following ODE: 

K +  (^^ -kA<f>+ -Tjiß-Tty = 0. (2.6) 
\   u — c J k[u — c) 

The last term on the left-hand side of Eq.2.6 is related to the nonzonal orientation of 

the jet axis in our model. The term is proportional to the downstream component of the 

planetary vorticity gradient ßx and is zero for a zonal current. 

Boundary conditions in y-direction are 

<K±L) = 0, (2.7) 

where L is allowed to be infinite. We study the problem on the infinite /3-plane, but the 

results of the following section 2.2 are also valid for finite L (the problem in a channel). 
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This gives us the eigenvalue problem for c for a given value of k, resulting in the 

function c = c(k) for chosen values of ß0 and a. The function defines a dispersion curve 

for a given set of parameters. 

2.2    New stability properties 

Let us multiply (2.6) by <f>* , integrate in y over the domain and take the imaginary 

part of the result. We get (c = <v + ia): 

* L Äft - «-)*+AÄe L ft*=°-      <2-8> 
The second term on the left-hand side can be modified: 

Re f\ -p^rdy =  t Re^^Re-^— - f Im{<j>*^Im^- 
J-L {U - c) J-L (u - c)       J-L        V     YVJ        (ü - c) 

J-L 2 (u - C) J-L     \U - c\2 

2 J-L [U - Cj J-L     \U - c\2 

1        fL    \<fi\2üy [L ImU*4>y) , 
= ^Re /     ,L       \2dy - a / W \y>dy. (2.9) 

Z J-L {U — C)2 J-L     \U — c\2 K        ' 

The integration by parts on the last step involves the assumption that the solution 

vanishes at the boundaries y = ±L. On the infinite plane, that implies the decay at 

infinity. 

Finally, we get 

*£ y*> -*»>-A£30 *+1»£ ^=o. (,,) 
Now one can see that if the last term is non-zero, ka / 0. In other words, we have 

a sufficient condition for a mode being not neutral.   Note now that the existence of a 
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decaying solution means the existence of a growing one and vice versa; in other words 

there is always a growing mode as long as fcc,- / 0. To demonstrate that, we change k to 

—k in the Eq. 2.6 which changes the sign of the growth rate kc{. The solution is then 

■tp(-y) where -0 is the solution of the original problem and c is the same. 

Suppose now, that the first term in the brackets is of the same sign everywhere in the 

domain, but that üy is single-signed, and ßx ^ 0. Then if a solution exists, it is growing 

in time, despite the fact that the y-derivative of the mean vorticity field ß2 — tiyy is 

single-signed, which is the sufficient condition for stability in the case of a zonal current. 

We should keep in mind that the derived criterion cannot guarantee the existence 

of the unstable modes. We can only say that if, for example, üy is single-signed, there 

cannot be any neutral modes in the problem. The last statement is true because for 

a purely real c, (u — c)2 is always positive and the last term on the left-hand side is 

non-zero. 

Based on the above properties, one can expect to find nonzonal jets to be more 

unstable. The same form of the cross-stream velocity profile ü can correspond to a larger 

number of unstable modes in the case of the jet oriented nonzonally compared to the zonal 

orientation. In particular, one can anticipate the existence of the neutral modes of the 

zonal jet destabilized by the change in the mean flow orientation or the appearance of the 

completely new unstable solutions. We can illustrate the possibility of the destabilization 

effect by a particular example. 

Consider a neutral solution for the zonal jet. The example can be taken from Drazin 

et al., (1982) problem in a channel \y\ < 1: 

ß     ■ u = -—— siniry, 
Lit* 

Try 
<P = c05~^' 

A      > 2' 

The mean flow is chosen to satisfy the sufficient condition for stability, so (/3 — üw) 

is positive everywhere in the domain. 
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We now introduce an infinitesimal horizontal tilt of the jet (a « 1), expand phase 

speed in a power series in a and collect leading order terms. In this case, with c, = 0{ßx) 

the second term in the brackets on the left-hand side of (2.10) is negligible. Thus we 

can calculate the imaginary part of the frequency kc: 

kci — 
aß 

"~2~ 1 w 1 -1 

L \U 
\{fr ~ uyy) 

aß 
47T /. 

cosirycos2^- 

-l (1 — \sin-KyY ;
dV L cos2^-dy 

-l (1 — ^siniry) 

aß /x        cos2iry        if1 c 

-i (1 - Uimry)2 V    J-i TT^l 
dy 

**-*)>*. (2.11) (1 — ^siniry) 

The obtained growth rate is proportional to the value of the tilt angle. 

We observe how a neutral mode becomes unstable when the zonal jet becomes non- 

zonal, while the mean potential vorticity gradient remains single-signed. In other words 

the horizontal tilt plays the role of a destabilizing factor in the problem.   This simple 

example demonstrates the fundamental destabilizing character of the tilt of the basic 

current. 

We return now to the original domain and in what follows will consider the problem 

on the infinite horizontal plane. 

2.3    Radiating modes 

The concept of radiation can be easily applied to the purely neutral modes of the problem. 

If a mode has the form of a plane wave in the region with no mean flow, it is a radiating 

one. In contrast, if it decays in space away from the jet, it is trapped. But neutral modes 

are unable to extract energy from the mean flow. Hence, we have to consider unstable 

modes growing in time if we want to look at the process of the energy conversion from the 

mean current into the far-field motions.  However, the distinction between trapped and 
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radiating for the growing modes is less obvious, since the complex phase speed always 

corresponds to the complex y-wavenumber and, consequently, to the spatial decay in y. 

However, some quantitative means of determining if a solution is radiating are avail- 

able. 

In the far-field (ü = 0), the Eq. (2.6) becomes an ODE with constant coefficients, 

and our solution there reduces to a plane wave: 

ip(x,y,t) = Ae^t-iiveik(*-crt)+iiry 

One can call radiating those modes which "look" wavy in y (Talley, 1983). Thus, we 

could require that for any C{ the decay scale l//t- is longer than the oscillation scale l/lT: 

j-<l. (2.12) 

This criterion, however, is not sufficient for our purposes. Strong spatial trapping 

of a solution does not necessarily rule out the possibility of radiation. Spatial decay 

can be present, as Talley (1983) states, because it takes a finite time for the packets 

of disturbance to reach a point far from the jet while the disturbance itself is growing. 

From the kinematic point of view, we can imagine that packets smaller in amplitude are 

radiated earlier and, therefore, are farther from the source in space; the decaying structure 

in space is, therefore, formed from the sequence of ever larger disturbances produced at 

the source. If the spatial trapping in the problem is due only to the unstable growth, then 

the trapping should disappear when the growth disappears. There are two possibilities 

for making the growth rate small. 

Following Talley (1983), we can consider the limit c; —> 0 on the dispersion curve 

c = c(k). If, in this limit, both /; —> 0 and Z,//r —> 0, we can claim that the spatial decay 

of the solution is due only to the nonzero values of growth rate kci, and the solution 

is not trapped. However, this valuable criterion often has difficulties characterizing the 

nature of a solution that is not close to the limit of small Q in parameter space. There 

is no guarantee that a solution does not change its character along a dispersion curve. 
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Another way to "make" the growth rate small is to follow the nonlinear equilibration 

during which the initial fast exponential growth slows down significantly. As it will be 

shown in chapters 5 and 6, in many cases the radiation often starts when fast exponential 

growth of the trapped linear solution is halted by the nonlinear effects. The strong spatial 

trapping is, therefore, as temporary as the validity of the linear theory itself in those 

cases and solution is of the truly radiating nature. We should note now the importance 

of nonlinear considerations for the analysis of the radiating properties in the problem 

especially for the solution that does not correspond to the point close to the cut-off of 

the dispersion curve. 

Keeping that in mind, we however choose to stay within the limits of the linear theory 

in this preliminary study. For the consistency we can ask if the solution can simultane- 

ously reach the far field while not being increased significantly by the exponential growth 

in time and, henceforth, satisfying the assumptions of linearity. The wave packet prop- 

agates with the speed fcc,-/fc (Talley, 1983). Then, in order for the wave to move over a 

distance much greater than the scale of the jet during the e-folding time 1/ka, we need 

U  kc{      li 
T    >> Ljet, 

or li « l/Ljet, where Ljet is the jet scale.   It is interesting, that the above argument 

does not involve the oscillation scale l//r. 

Another physically meaningful condition for radiation is that the frequency and wave 

number of the solution of our linear problem match those of the Rossby wave in the 

far-field (Pedlosky, 1977; Mclntyre and Wessman, 1978; Talley, 1983; Malanotte-Rizzoli 

et al., 1987a; Ierly and Young, 1991). It is usually called the phase speed condition. We 

know that the Rossby wave always has a westward propagating phase. For this reason, it 

is difficult to satisfy the phase speed condition for the mostly eastward traveling unstable 

disturbances (Flierl and Kamenkovich, 1975; Pedlosky, 1977; Talley, 1983; Malanotte- 

Rizzoli et al., 1987a). For the tilted jet, the change in geometry leads to the change in 

the limits on the phase speed in the new x-direction required by the criterion. 
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We can find the minimum and maximum values that the Rossby wave phase speed in 

the s-direction of the tilted frame can take for a fixed k. The phase speed of the freely 

propagating Rossby wave in the far-field (ü = 0) lies, therefore, between these values: 

_    (1 + cosa) (1-cosa) 
P      2k2 P      2k2 V       J 

One can see from (2.13), that the tilt of the jet (a ^ 0) allows downstream propagating 

modes (c > 0) to satisfy the phase speed condition. To futher clarify the difference in 

the direction of phase propagation between zonal and nonzonal cases, we present here 

the phase diagram for a free Rossby wave in the far-field (Fig.2.2). 

Both non-rotated and rotated coordinate frames on the wavenumber plane are pre- 

sented in the plot; the wavenumbers in the rotated frame are defined by k' and /'. The 

radius of each circle equals ß/2u. The reader is referred to Pedlosky (1987), p.123 for 

the derivation of the form of the diagram. We now consider a positive x'-wavenumber 

k'. There are two waves with different values of a t/'-wavenumber /' with equal positive 

to and k'. The wave-vectors of both waves are shown by vectors OA and OB in the plot. 

First, we notice that both waves have their phase propagating downstream, since 

ojjk' > 0 for them. Their phase still propagates westward {ui/k < 0) in the agreement 

with the general property of the Rossby waves. The example illustrates the differences 

in the direction of the phase propagation between problems with a = 0 and a = 30°, 

also expressed in terms of the condition (2.13). 

We also consider the group velocity vectors, AC and BC (Pedlosky, 1987).    The 
—* 

group velocity of the wave that is longer in the y'-direction (vector BC) has a positive 

component in the cross-stream direction and therefore corresponds to the solution for 

positive y', since the energy must propagate away from the jet axis.   Analogously, the 
—t 

wave that is shorter in y' and has a group velocity AC corresponds to the region of 

negative y'. It is also interesting to note that the group velocities of both waves are 

directed upstream of the basic current. 

We expect that eastward zonal jets that are not radiating can become capable of 
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Figure 2.2: Phase diagram for a Rossby wave. The non-rotated coordinate frame (marked 
k-l) and rotated frame (marked k' - /') are shown in the plot. Left circle corresponds 
to positive w, right circle to negative oj. See the discussion in the text. 
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radiation if made nonzonal. For example, Ierley and Young (1991), in their studies of 

the stability of the western boundary layer, find modes with the extended oscillatory tail 

for small downstream wave numbers. In a study of the dynamic properties of nonzonal 

jets, Jae Yul-Yun (1986) reports the existence of the radiating solutions in the boundary 

forced problem with a disturbance traveling along a nonzonal current. 

We will use the phase speed condition (2.13) as the necessary condition for radiation 

and then check the smallness of Zt/Zr and look at the limit of c^ —* 0. This does not 

guarantee that the radiation from the mean current will be energetically significant. 

Even if the trapping is very weak, the amplitude of the exterior motions can be negligible 

compared to that in the jet region. We also need to examine the spatial structure of the 

calculated modes to convince ourselves in the existence of the radiation of energy. 

2.4     Basic state velocity profile and jump conditions. 

One way of representing a mean state, which is convenient for the analysis of the 

stability problem, is to divide our domain into intervals in y with different forms of u(y) in 

each of them. For example, we can study the problem on the two external semi-infinite 

regions with zero mean velocity and one internal finite interval with nonzero value of 

«(y): 

u 
U(y)   if |V| < 1 

0 if \y\ > 1. 

We non-dimensionalized our problem by using the half-width of the jet Ljet and its 

ratio to the dimensional maximum jet velocity Ljet/U, as characteristic space and time 

scale correspondingly. 

Note now, that the problem with the nonzonal jet is no longer symmetric in y. In the 

case of zero tilt (a = 0), we find modes symmetric in the y structure of the eigenmode 

(sinuous mode) and modes with an antisymmetric structure of the eigenmode (varicose 

mode). When the tilt is nonzero, neither a purely symmetric nor antisymmetric eigen- 
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mode structure is possible. It is easy to see by changing y to -y in (2.6), the equation 

then changes to its complex conjugate (note also that c changes to its complex conjugate 

as well). Henceforth, <j)(-y) = ±<f>(y)* and not ±cf>(y) as in the case of a = 0°. Therefore, 

we have to consider the solution for negative and positive y separately. 

We first solve the equation 2.6 in each of the three regions and then use matching or 

jump conditions to connect the solution. Jump conditions are obtained by integration of 

(2.6) for u(y) continuous, but rapidly varying across each interface from y = ±1 - e to 

y = ±l + e: 

I dy fa* ~c)~ ^ + T*V dy = -1 ((/?2 _ *2(fi - cM dy       (2-15) 
Now we let the interval of integration, in which the jump in the basic flow structure 

occurs, go to zero: e -» 0. The right-hand side of the above equation does not contain 

^-derivatives and, therefore, goes to zero in the limit. We get: 

A(tfv(« - c) - cfmy + %Jj±<j>) = 0, (2.16) 

where A stands for the "jump" across the point and is zero if a function is continuous. The 

condition is essentially the requirement of the continuity of pressure accross a material 

interface. 

One should note the presence of the term i^ßjk in the equation (2.16). The term 

is zero only for a zonal jet; it is very important for a problem with a nonzonal current, 

especially for those solutions that are long in x (small k). In the following sections, we 

will observe that there are the long waves that are of radiating character in the problem. 

For the derivation of the second jump condition, we rewrite (2.16) in the form: 

^(i^) =<*)-£* 
where G(y) is a continuous function.   Then by dividing by (ü - cf and following the 

same procedure as outlined above, we obtain: 
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A [ 3^-1=0 (2.17) 
\u — cj 

The condition is the requirements of the continuity of streamline slope. Indeed, consider 

streamline displacement defined by rj = N(y)elk(x~~ct'. Then, the continuity of the slope 

T]x requires the continuity of ikN(y), where N(y)  = <f>(y)/(ü — c) from the equation 

(&+ *&>!=*■ 

The jump conditions (2.16, 2.17) together with the boundary conditions (2.7) allow 

us to solve the eigenvalue problem and obtain the dispersion relation 

c = c(k;ß1,ß2). 

2.5     Summary 

We have formulated the stability problem for a barotropic model with a basic state in 

the form of a nonzonal current. The dynamical properties in the model are different from 

those in a conventional model with a zonal flow. 

The difference in the basic stability properties can be seen in the example of the 

stability theorem which is an analog of the sufficient condition for stability of a zonal 

current. The conventional sufficient condition for stability of a zonal current is modified 

in the case of a nonzonal flow to become a sufficient condition for the absense of stable 

normal modes. We have also demonstrated the destabilizing effect of the horizontal tilt 

on a simple analytical example. The more unstable character of a nonzonal current can 

also be seen in the following chapter that describes the results of computations. 

Among several criteria derived above for radiation of a linear solution, two are espe- 

cially important. First uses the idea that spatial trapping of the solution can be caused 

by the initially fast exponential growth alone. If this is the case, the radiating nature of 

the solution should become transparent when the growth slows down. Within the linear 

theory, the latter can be achieved by changing parameters so one approaches the cut-off 

of a dispersion curve. The idea of observing changes in solution caused by the decreasing 
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growth rate also becomes very useful in a nonlinear problem during the stage of nonlin- 

ear equilibration. The new form of another useful conditions for radiation, namely the 

phase speed condition, demonstrates the more radiating character of nonzonal currents 

compared to zonal flows. The more radiating character is supported by the results of the 

following chapters. 
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Chapter 3 

Results from the barotropic 

problem 

We have formulated the problem and defined what we understand by radiation in the 

linear theory, therefore, we are ready to proceed with the solution. The eigenvalue 

problem formulated in section 2.1 is solved numerically by using MATLAB. We report 

the results of computations in this chapter for two different forms of the mean velocity 

profile. We start from the simplest example of the broken-line top-hat jet in the section 

3.1 and then consider the problem with a continuous profile of the basic velocity in section 

3.2. For a better demonstration of the effects of a horizontal tilt, we first consider a zonal 

flow (section 3.2.1), and then start to increase the value of the tilt (sections 3.2.2, 3.2.3). 

The main finding is that even a very small value of the tilt causes non-radiating zonal 

flow to radiate waves that are long in the along-jet direction. To confirm the radiation, 

we look at both dispersion curves and spatial structure of the solutions. In addition, we 

report the more unstable character of a nonzonal current as compared to the zonal flow 

as suggested in section 2.2. 

In section 3.2.4, we also consider the balance between terms in the energy equation. 

The balance is interesting for the solutions that are close to the cut-offs of the dispersion 

curves, in other words for modes with very small growth rates. The terms in the energy 
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equation in this limit either go to zero or, instead, remain finite and balance each other. 

3.1     Top-Hat Jet 

The simplest possible example of a mean profile for the problem formulated in the 

previous section is the top-hat jet, for which the velocity in the internal region is constant: 

U(y) = U in (2.14). The instability found in this problem is most likely related to the 

discontinuity in the velocity field at y = ±1 and the artificial delta-function in the 

potential vorticity (Kelvin-Helmholtz type of instability). We consider this example 

because we want to compare our results with the case of zonal top-hat jet studied by 

Talley (1983). Some interesting changes in the radiating properties will be demonstrated. 

The U(y) is piece-wise constant: It is 1 for -1 < y < 1 and zero for y < -1 and 

y > 1. The solution (j>(y), therefore, is a sum of two waves with complex y-wavenumbers 

in each of the three regions: 

Aetli-2y + Beili-sy 

where indexes (1,4) correspond to the regions \y\ > 1 where U(y) = 0: 

'jt)   ~4c(^2+/32) (3.1) 

We denote the wavenumber with a negative imaginary part as llt so Aeih*y decays 

at y = -oo. The imaginary part of l4 is positive, so Beü*-*y decays at y = +oo. Note 

the different form of the y-wavenumber in each of the external regions as a result of the 

above mentioned non-symmetry in y. Boundary conditions (2.7) require the amplitude 

of the wave that increases away from the jet to be set to zero. Therefore, B = 0 for 

y < -1 and A = 0 for y > 1. 

Indices (2,3) correspond to the region \y\ < 1 where U(y) - U: 
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1     ßl 
l2'3- 2[^1T) [k ±\\k 

2 

(3.2) 

) 

ßf\   _4(c-f/)(P(c-f/)+/52) 

We now write two jump conditions (2.16, 2.17) and get the dispersion relation of the 

problem: 

(i2(u - cf + uß1/k - hc2)(i3(u - cf + ußx/k - i4c
2y«>-v = 

(h(U - cf + Ußxjk - hc2)(l2(U - cf + Ußjk - he2), (3.3) 

For the top-hat jet, we fix the planetary vorticity gradient ß and "rotate" the jet 

changing tilt angle a from zero looking at the effects of the tilt. Then, we can compare 

our results with those from the studies of the zonal top-hat jets (Talley, 1983) and look 

at the changes in the radiating properties of the solution caused by the changed jet 

orientation. We present our results in Fig. 3.1 in the form of the dispersion curves that 

are solutions of the dispersion relation 3.3 for complex c as a function of x-wavenumber 

k; and where we recall that the x-axis is tilted with the jet axis. Three values of the tilt 

angle are chosen for comparison: a = 0°, 30° and 45°. 

The first fact that comes to our attention is the change in the shape of the curves. 

There is a long-wave cut-off (LWC) for Mode 1 when a ^ 0, which is a varicose mode 

of the zonal top-hat jet modified by the nonzero value of the tilt angle a. The real part 

of the phase speed of Mode 1 is larger than the maximum value of the mean flow speed 

for small k. The phase of the wave travels faster than the flow itself in the downstream 

direction. 

The long-wave (LW) limit of Mode 1 is also a radiating limit, which supports our 

expectation to have more radiating solution when a ^ 0. One can check the conditions 

for radiation formulated in section 2.3. The real part of the phase speed c, is in the range 

for the Rossby wave phase speed (2.13); henceforth the phase speed condition is satisfied. 

To demonstrate that, we present the right-hand side of (2.13) by the dotted line in Fig. 

3.1b,c; the curve c^fe) goes beneath the dotted line in the figure. 
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Figure 3.1: Results for the Top-Hat jet for ß = 1.5: (a,d,g) a = 0°, (b,e,h) a = 30°, (c,f,i) 
a = 45°. Upper panel: Real parts of the phase speed c for the two modes vs k. The 
maximum Rossby wave phase speed (right-hand side of Eq. 2.13) is shown by the dotted 
line, (d-f) Imaginary parts of c. (g-i) Ratio of the imaginary part of the y-wavenumber 
/ to the real part £ vs k. The dotted line is a zero line. The curves below the zero line 
correspond to the region y <-1, above - to the region y > 1. Mode numbers are shown 
in the plot. 
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The t/-structure confirms the radiating properties of the solution in LW limit. The 

spatial decay scale is much longer than the oscillation scale; therefore, the solution is 

"wavy" in the exterior. Moreover, the ratio between two scales /{//,. goes to zero as Q 

approaches zero (Fig.3.1e,f). From all of the above we can conclude that Mode 1 is 

radiating in the LW limit. 

The situation for Mode 2, which is a modified sinuous mode of the zonal top-hat 

jet, is less clear. The solution seems to be radiating only for y > 1, because the ratio 

li/lT gets small only for the positive y. This example demonstrates us that the phase 

speed condition is only a necessary condition for radiation and does not guarantee us 

the radiation. In addition, the very existence of Mode 2 seems to be closely connected 

with the discontinuity of the velocity profile. Mode 2 does not have an analog in the 

problem with more realistic continuous profile of the mean velocity discussed in the next 

section. 

We also note the absence of a short-wave cut-off (SWC) in the problem as another 

very special feature of the piece-wise constant velocity profiles. We do not expect the 

waves arbitrarily short in x to be unstable in the inviscid problem with continuous mean 

velocity profile. 

We want to be confident that the changes in radiating properties we have found are 

not only consequences of the unrealistic choice of the broken-line mean velocity profile. 

For this purpose, we proceed now with a study of a continuous velocity profile. 

3.2     Continuous jet 

In order to keep the mean potential vorticity gradient finite, we require U,4-U in 

(2.14) to be continuous across y — ±1. For all our computations we use the following 

form: 

U(y) = (l-y2f. 

As one can check, for this choice U(±l) = 0 and Uy(±l) = 0.   We also make the 
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vorticity gradient continuous by choosing Uw(±l) = 0. The method of solution and 

main results do not depend on the particular choice of U{y) as long as the velocity 

itself and its two first derivatives are continuous. In calculations not presented in the 

following subsection, we considered three different velocity profiles: non-symmetric profile 

U(y) = exp[2{y - yft + 1)](1 - y^[A(3 - 2^)}^ and a less "sharp" symmetric one 

U(v) = K1 + cosiry). All results agree qualitatively with those reported below. 

The solution of this eigenvalue boundary problem is obtained by a shooting technique 

involving an iterative improvement of the initial guess in phase speed c. The method is 

described in the Appendix. 

To concentrate on the effects of the nonzonality on the radiating properties, we start 

from the zonal jet case (in other words, from a = 0). 

3.2.1     Zonal jet 

We find two unstable modes: the varicose mode (Mode 1) and the sinuous mode 

(Mode 2). The typical form of the dispersion curves is presented in Fig.3.2(a,b) for 

the two values of the planetary vorticity gradient: ß = 1 and ß = 4. The corresponding 

growth rates ka are shown in the heavy lines providing the information about the relative 

linear stability of both the modes. 

The range of the unstable x-wavenumbers is wider for ß = 1. Mode 1 is unstable for 

arbitrary long waves: LWC is absent. We observe a short-wave cut-off (SWC) for Mode 

1 and two cut-offs for Mode 2. Mode 2 is the most unstable mode in the problem for 

both values of ß chosen. Both the range of the unstable x-wavenumbers and the growth 

rate kci decrease with larger ß (ß = 4) as a consequence of the stabilizing effect of the 

planetary vorticity gradient. 

The real part of the phase speed c,. of both modes is positive and less than the 

maximum value of the mean flow speed; the latter is in agreement with the semi-circle 

theorem valid for the zonal current (Pedlosky, 1964). 

Since Q. is always within the range for the mean flow speed, the presence of critical 
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layers, at which ü = c, for all cut-off values of k should be anticipated. 

We present the general stability properties of the problem by showing the stability 

diagram in the k — ß parameter plane (Fig.3.2c). We construct this diagram using 

the following method. At a regular critical layer (y = yc) we have ü(yc) — c = 0 and 

ß—üyytyc) = 0. From the latter condition, we can find yc(ß), then find phase speed cc from 

the condition cc = u(yc) and get the corresponding value of the critical x-wavenumber kc 

treating k as an eigenvalue in the original problem. The curves ki,wc(ß) and kswc(ß) 

give us information about the regions of instability on the parameter plane. Shaded 

regions correspond to the existence of the unstable mode. The problem is stabilized for 

the large values of the planetary vorticity gradient; for ß > max{Uyy) = 4.8, the solution 

is stable satisfying the sufficient condition for stability of a zonal current. 

The solution is always trapped in agreement with the results of several previous 

investigations (Flierl and Kamenkovich, 1975; Pedlosky, 1977; Malanotte-Rizzoli et al., 

1987a; Talley, 1983). The phase speed condition cannot be satisfied as C{ —y 0, since all 

cut-offs correspond to the critical layers for which cc = ü(i/c) > 0; whereas, free Rossby 

waves always travel westward. 

3.2.2     Small tilt: a = 5° 

We now look at the changes caused by the nonzonality of the jet. In this section we 

demonstrate that even a very small change in the flow orientation modifies the radiating 

properties of the problem significantly. We rotate the jet by 5° from the east-west position 

and compare the results with those for the purely zonal jet that are shown by the dashed 

line in Fig.3.3. 

First we notice that the shape of the dispersion curves changes significantly in the 

LW limit of both modes. Longer waves in x are more likely to "feel" the presence of the 

downstream component of the planetary vorticity gradient according to Eq. 2.6. That 

is why the changes for the longer waves appear to be the largest, which is in a general 

agreement with the results for the top-hat profile. The results for the shorter waves are 

44 



0.6 

O    0.1 

3.5 

3.5 

3.5 

Figure 3.2: Results for the zonal continuous barotropic jet. (a) Real and imaginary parts 
of the phase speed c (labels are on the plot next to the corresponding curves ) vs jfc for 
two modes for ß = 1. Growth rates ka are shown in the heavy lines, (b) The same as 
(a) but for ß = 4. (c) Stability diagram in the ß-k plane. Shaded regions on the ß-k 
plane correspond to the existence of the unstable modes. 
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practically indistinguishable for a = 0° and for a — 5°. 

In the LW limit of Mode 1, in a way similar to the top-hat jet results, the phase always 

travels faster than the mean flow (cv > U(y)) eliminating the possibility of a critical layer. 

The wave vector becomes nearly normal to the jet axis at the LWC (k = k^wc), resulting 

in the fast phase propagation in the along-jet direction. The real part of the phase speed 

is also inside the interval for the Rossby wave phase speed (Eq.2.13). The upper bound 

on c in the phase speed condition, that is the right-hand side of (2.13), is shown by the 

dotted line in the figure. 

Changes in properties taking place with the change in the orientation of the flow are 

also observed for Mode 2. At the LWC c,. is negative (Fig.3.3d) for this mode, leading to 

the two important consequences. First, as in the case of Mode 1, no critical yc exists in 

the problem such that c = ü(yc). Second, the phase speed condition is satisfied, hinting 

at the possibility of radiation; the left-hand side of (2.13) is much smaller than the c,. 

and is not shown on the plot. 

The most interesting thing to observe is that both modes, strongly trapped in the case 

of the zonal jet, change their radiating properties when the jet is slightly rotated as it can 

be seen from looking at the y-structure (see Fig.3.4). Both the ratio between imaginary 

and real part of the y-wavenumber l{/lT and li itself go to zero as the x-wavenumber 

k approaches k^wc- This fact, together with the phase speed condition, allows us to 

conclude that both modes are radiating in the LW limit. The radiation is clearly made 

possible due to the small but non-zero value of the horizontal tilt. 

Near the SWC on the dispersion curve, both modes remain trapped, because the 

phase speed condition is not satisfied. The radiation remains the feature of only the long 

waves of each mode. 

3.2.3     Large tilt: a = 30° 

To emphasize the effects of the nonzonality on the radiating properties, we now 

proceed with the analysis of the strongly tilted nonzonal jet. In this section, the jet makes 
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Figure 3.3: Results for the tilted bare-tropic jet for a = 5° and ß = 1 (a) Real parts of 
the phase speed Cr vs k for two modes. Mode 1 is to the left (smaller k). (b) - imaginary 
parts of the phase speed Ci and growth rates (heavy lines) vs. jfe. (c) comparison with 
the zonal jet near the LWC for Mode 1. Real and imaginary parts of c are shown by the 
solid lines for the tilted jet and by the dashed lines for the zonal jet. The dotted line is 
the maximum Rossby wave speed, i.e. the right-hand side of (13). (d) the same as (c) 
but for Mode 2. K J 
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Figure 3.4: Complex y-wavenumbers / vs. A; for the same parameters as in Fig.3.3. Real 
and imaginary parts are labeled on the plot next to the corresponding curves. I for the 
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an angle of 30° with a latitude circle. We observe the evolution of the two unstable modes 

found earlier with a now larger value of the tilt. Both modes are shown in Fig.3.5(a,b) 

for ß — 1,4 and 6. Note, that some interesting properties of the dispersion curves found 

in the case of a — 5° are enhanced by the larger horizontal tilt. 

The behavior in the LW limit for a = 5° does not change qualitatively with a larger 

angle. The real part of the phase speed c,. tends to be larger than the maximum value of 

ü(y) for Mode 1 and smaller than the minimum value of ü(y) for Mode 2. Critical layers 

are, therefore, absent in this limit. 

It is also interesting to note that we find no solution for k larger than k^wc- In 

other words, no neutral modes longer than the cut-off wave-length exist. The fact is a 

consequence of the infiniteness of the interval in y. In the experiment not described here, 

the neutral mode for k > kmrc exists if reflecting walls are put at some distance from 

the jet axis; the basic radiating properties remain qualitatively unchanged. 

The phase speed condition is satisfied in the LW limit, since cv is within the range 

(2.13). In fact, for Mode 1, c,. is slightly smaller than the upper bound on c in (2.13). 

Mode 2 has negative Cj., which is significantly larger than the lower bound on c in the phase 

speed condition, that is, the left-hand side of (2.13). As a result, radiation is possible, 

according to the phase speed condition. The range of k for which c,. satisfies (2.13) 

increases with larger ß for Mode 2, which indicates the enhancement of the radiating 

properties by the planetary vorticity gradient. 

The shape of the dispersion curves for the long waves of Mode 1 can also be compared 

with the Mode 1 in the problem with the top-hat jet. The interesting fact is that despite 

the primitive character of the discontinuous velocity profile, the behavior of Mode 1 in 

the LW limit is represented quite well in the top-hat problem. 

The SWC is present for both modes. The temporal growth of arbitrarily short waves 

in the case of the top-hat profile is clearly the consequence of the infinitely narrow shear 

zone in its mean velocity profile. The phase speed at SWC (k — kSwc) is within the range 

of the mean velocity (at least for not very large values of ß).  The presence of critical 
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Figure 3.5: Results for a = 30°. Complex c vs. A;. Real and imaginary parts are labeled 
on the plot next to the corresponding curves. Growth rates are shown in the heavy lines. 
Dotted lines show maximum Rossby wave phase speed. Mode 1: (a) ß = 1, (c) ß = 6. 
(b) the same as for Mode 2 and ß = 1. (d) Mode 2, ß = 4. 
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layers should be anticipated although their structure is less clear than in the zonal jet 

case because of the presence of the x-component of the planetary vorticity gradient ßx. 

The phase speed condition is not satisfied, therefore, the solution is trapped. 

The stability diagram is shown on Fig.3.6. The first thing to notice is that the tilted 

jet is unstable for very large values of ß, even for those for which the t/-component of the 

mean potential vorticity gradient ß2~üyy is single-signed: ß > 5.54 since Max(üyy) = 4.8. 

Unstable Mode 1 exists for ß < 16, while the zonal jet is stable for ß > 4.8. Mode 2 is 

stabilized for smaller ß (ß = 7), but is still unstable for ß > 4.8. Our expectations for a 

nonzonal flow to be more unstable than a zonal current (see Chapter 1 and section 2.2) 

are supported by the results. However, the stabilizing effect of the planetary vorticity 

gradient is still present: with larger ß growth rate fee, becomes smaller (fig. 3.5), and 

the interval in the x-wavenumber kLWC <k< kswc corresponding to instability shrinks 

(fig. 3.6). 

The ability of radiation is not lost with a larger tilt of the jet, as we can see from 

Fig.3.7(a-d). We have already observed that the phase speed condition is satisfied. Let 

us check the other conditions for radiation. The imaginary parts of the y-wavenumbers 

are small for the long waves of both the modes. This means, as we have remarked 

in section 2.3, that modes are weakly trapped in the LW limit and wave packets can 

propagate far from the jet, while their amplitude is not significantly increased through 

the unstable temporal growth. The ratio k/lT -► 0 as k -► kLWC for both modes. The 

spatial trapping disappears when the mode becomes neutral, that is as a -»• 0, which 

hints to the radiating nature of the solution. For Mode 2, l{ is typically smaller for y > 1. 

It is interesting to note that, although for Mode 2 the ratio fc/Zr is small, l{ itself for the 

negative y is not, and only gets to zero for k close to kLWC. In contrast, the decay scales 

in both directions are similar for Mode 1. 

The y-structure of the eigenmode is shown in Fig.3.7(e,f) for k chosen close to kLWC. 

For Mode 1 the amplitude of the wave-like response of the exterior is large, compared 

to the interior motions, and is larger for y < -1 than in the rest of the region. For the 

51 



«ÜL   8 

Figure 3.6: Stability diagram for a = 30°. Shaded regions on the ß-k plane correspond 
to the existence of the unstable modes. 

north-eastward oriented flow, the above fact means a significant radiation of energy to 

the South-East from the current. We also observe that the radiating response for the 

negative y is represented by the wave that is shorter than the wave that radiates for 

positive y. See the discussion of the energy propagation diagram in section 2.3. for the 

explanation of this fact. 

The streamfunction of Mode 2 is very small in amplitude in both external regions. 

However, since the solution for y < — 1 takes the form of a very short wave, — <j)y (the 

zonal velocity) is rather large but still smaller than the amplitude in the interior region. 

It is more difficult to say that Mode 2 corresponds to energetic radiation. In fact, it is 

only at the very LWC at which the exterior motions are identifiable. For shorter waves 

in x the perturbation streamfunction either rapidly decays in space or is extremely small 

in amplitude in the region. Mode 1 obviously corresponds to a more significant radiation 
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Figure 3.7: Radiation of the two modes for a = 30°. Mode 1: a) ß = 1, c) ß = 6. Mode 
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of energy; however, this is not clear from looking only at the values of Z^. We therefore 

underline the importance of the analysis of the y-structure for the consideration of the 

radiating properties of a mode. 

3.2.4    Energy balance in LW limit 

We now want to study the balance between different terms in the energy equation in the 

radiating limit discovered above. First, we derive the equation itself. We multiply Eq. 

2.4 which is the linearized equation for the streamfunction by the streamfunction ij) and 

integrate it in x from 0 to L, and in y from — yi, to y^. We assume that a solution is 

periodic in x with a period L, i.e. ij)(0,y,t) — ip(L,y,t). After integration by parts, we 

obtain: 

„ Flux 
Fbrt 

d ry>> _ x r   _ x     x     l     x 

where a horizontal bar represents averaging in x: 

(3.4) 
-Vb 

-^       1   fL 

L Jo 

and 

rvb ]_. 

is the averaged in x and integrated in y perturbation kinetic energy. There are two terms 

on the right-hand side that are responsible for the temporal change in the perturbation 

kinetic energy. First (Ff„.t) is the energy conversion term, which represents the conversion 

of energy from the mean current to the perturbations. Second (Flux) is the group of flux 

terms that show how much energy is being fluxed into the region [—yb yb\- Note, that 

the flux terms are zero if the whole domain is considered (y& = oo). The terms represent 

the rate of working by the ageostrophic pressure force on a unit volume of fluid. 

As we can see, there is no energy source directly associated with the introduced forcing 

in the equation for potential vorticity (2.1), which depends on a. The tilt of the jet which 
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is capable of destabilizing the current (section 2.2) explicitly enters the equation only in 

the Flux terms, which do not change the total perturbation kinetic energy. 

We now can calculate all terms for solutions found in the previous section. We will 

focus on the balance between terms in the radiating limit of it approaching the LWC. In 

the limit of vanishing growth rate kci -* 0, the time derivative of the perturbation kinetic 

energy on the left-hand side of Eq. 3.4 vanishes. Do both terms on the right-hand side 

go to zero as well? 

The results are presented in Fig.3.8 for yb = 1.5. All terms in the energy equation 

are weighted by the kinetic energy integrated from -yb to y6; the left-hand side of the 

equation 3.4 then becomes 2ka (is shown by the solid lines in the plots). We should 

remind the reader that the jet itself occupies the region [-1 1]. For Mode 1, one can 

see that terms F^ and Flux do not vanish. Instead, they balance each other with Flux 

terms being negative. That means that the energy that is extracted from the kinetic 

energy of the mean flow through the energy conversion term is then being fluxed away 

from the jet region into the external domain. The kinetic energy in the internal ([-yb 

yb]) region does not grow, no energy is "spent" on the temporal growth of perturbations. 

The described dynamical process characterizes the radiation. 

In the described above limit, the growth rate is zero and the linear solution cannot 

grow to finite amplitudes; the fluxed kinetic energy remains small. A solution that is not 

on the cut-off of the dispersion curve and, therefore, possesses nonzero growth rates is 

more interesting dynamically. However, the balance in the equation for shorter waves is 

dominated by terms §-tKe and F^t, while Flux terms remain small (Fig.3.8). When we 

characterize the Mode 1 as radiating, we claim that if the growth rate of such a mode 

were set to zero the mode would become purely radiating and the balance between energy 

conversion term and the energy that is fluxed away from the jet would be established. 

The only way to achieve that within linear theory is to look at the dynamics of a solution 

at the cut-off itself. 

The energy balance for Mode 2 near the LWC is different. As one can see on Fig.3.8, 
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3.5 

Figure 3.8: The balance between terms in the barotropic energy equation, ß = 1, a — 30°. 
t/6 = 1.5. 2kci is shown by the solid lines, Fbn and Flux terms are divided by the integral 
of kinetic energy j_vb Kedy and are shown by the dashed lines, (a) Mode 1; (b) Mode 2. 
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in the LW limit all terms in the energy equation go to zero. The extraction of energy 

from the mean current disappears together with the growth of the perturbation energy in 

the jet region. Once again, we face the less clear situation for Mode 2. As we recall from 

the previous section, in the LW limit spatial trapping of Mode 2 disappears, however the 

amplitude of motions is relatively small. In addition, now we see that the energy balance 

also suggests that the energy is not fluxed from the region in the LW limit. Based on 

the above facts, we can say that according to the linear theory, Mode 2 corresponds to 

insignificant radiation in the LW limit. 

3.3    Summary 

We have discussed the results of the stability analysis of several simple examples of 

nonzonal currents. In the analysis, we focused on the radiating properties of a solution 

as well as on some new stability properties. 

Two velocity profiles were considered. First is the simplest top-hat broken-line profile 

with piece-wise constant velocity. The main mechanism for instability of this profile is 

the Kelvin-Helmholtz type of instability related to the infinitely narrow shear zone. The 

second is the more realistic continuous profile which is strongly barotropically unstable. 

Despite the difference in two choices, some results appear to be very similar in both cases. 

We now summarize the common properties of the solutions of two problems. 

In section 2.3, we formulated what we mean by the radiation in the linear theory. 

The real difficulty with determining whether a linear solution is of radiating character is 

due to the fact that fast exponential growth can lead to the strong spatial trapping. The 

question then is whether the trapping disappears if the growth is stopped. The only way 

to "stop" the growth in the linear problem is to consider the solution near the cut-off of a 

dispersion curve. Is a solution wave-like in the exterior in this limit? The other criterion 

is the phase-speed condition that is also formulated in section 2.3. 

In the case of a zonal jet, all solutions are trapped according to all criteria.   Since 

57 



spatial trapping does not disappear when growth rate is made small, we predict that all 

solutions will remain trapped in the nonlinear regime as well. This prediction will be 

confirmed in Chapter 5. 

When the horizontal tilt is increased slightly from zero to 5° for the continuous jet, 

the dynamical picture changes. The changes are the biggest for long waves of each mode 

found. The phase travels faster than the mean flow itself, therefore critical layers cannot 

be found at the LWC. The solution in the LW limit is radiating, which is confirmed by 

both phase speed condition and by the y-structure. We conclude that even a very small 

horizontal tilt of the jet axis changes trapped solutions to radiating in the LW limit. 

The radiating properties are well-pronounced for the larger value of the tilt, a = 30°. 

For both the velocity profiles, phase speed condition is satisfied by long waves. The 

solution has a wave-like radiating form in the limit of c^ —► 0 at the LWC. However, the 

radiation is very energetic for Mode 1 only. The amplitude of the radiating response by 

Mode 2 of the continuous jet is rather small and the phase speed condition is satisfied 

for very narrow range of parameters. 

The stability properties change for a nonzero horizontal tilt as well. In an agreement 

with the results from section 2.2, a continuous nonzonal current is more unstable. The 

unstable solutions are found for very large values of the planetary vorticity gradient, 

unlike in the case of a zonal jet. 

The energy balance in the radiating limit for a nonzonal continuous jet reveals more 

information about the dynamics of radiation. In this limit for the Mode 1, the balance 

is established between the energy conversion term and the flux terms, which represent 

a flux of energy from the region of the jet. The growth rate and the time derivative of 

the perturbation kinetic energy both go to zero in the limit, since we approach a cut-off. 

The situation for Mode 2 is less clear. All terms in the energy equation vanish in the 

limit, which leaves open the question whether the energy is really being radiated into the 

exterior. 

To summarize the results of this section, we should note that barotropic nonzonal 
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currents are capable of radiating long slowly growing waves. Fast growing waves remain 

trapped, but it is very likely that their spatial trapping is only due to their fast growth. 

Consideration of nonlinear development is needed for the complete understanding of the 

process. 
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Chapter 4 

Linear two-layer model 

We have observed the effects of nonzonality on simple barotropic currents. Our next 

objective is to look at the linear stability and radiating properties of the flows with some 

vertical structure. What overall effect does the baroclinicity have on radiating properties 

of nonzonal flows? Several changes could be anticipated. 

Generally, we expect an increase in the number of unstable modes in the baroclinic 

model. The radiating properties of the new baroclinic modes will be interesting to inves- 

tigate. The structure of solution should also change. A solution in the baroclinic problem 

has a depth-averaged barotropic component and vertically sheared baroclinic one. We 

will investigate whether both the components are radiating, or, rather, radiating response 

is dominated by the barotropic component only. 

In the baroclinic model, instability is due to both barotropic and baroclinic effects. 

The growth of the perturbation energy is due to the barotropic and baroclinic energy 

conversion terms in corresponding energy equation. We will look at both the terms and 

determine whether they are equally important for radiating solutions. In section 3.2.4, we 

observed for Mode 1 that in a radiating limit there is a balance between the barotropic 

energy conversion term and the flux of energy into the exterior region. This type of 

balance is characteristic for radiation and is very likely to be found in the baroclinic 

problem.   However, whether both the energy conversion terms will play an important 
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role in the balance is an intriguing question. 

We can try to answer the posed questions by considering the simplest baroclinic 

model: the two-layer model with no mean velocity in the lower layer. We formulate the 

problem and re-derive a sufficient condition for instability and criteria for radiation from 

the Chapter 2 in the section 4.1. As in Chapter 3, we will consider two velocity profiles: 

top-hat jet (section 4.2) and continuous jet (section 4.3). 

4.1     Formulation 

In the quasigeostrophic approximation the potential vorticity equation is written in the 

following form (Pedlosky, 1987): 

^VVn + J(^n + *B(V), V2^ + {-lfFfa - fc) + Qn) = ^ (4.1) 

with n = 1,2.   We follow the usual notation and use F for the squared ratio of the 

horizontal jet scale to the Rossby deformation radius (L.f)2/g'H.   We take the layer 

thickness H to be the same for both layers for simplicity. 

The unperturbed state is given by 

Qi = ßix + ß2y -üy- F$i; Q2 = ßlX + ß2y + F*x 

Vi = - j ü(y)dy; *2 = 0. (4.2) 

As in the barotropic problem, we introduced the forcing Tn in the equation (note that 

only Tx ^ 0). After linearization it follows that a solution in each layer is given by 

and satisfies the following system of equations: 
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^lyy+ ( 
fe— Uyy+Fu 

- (k2 + F))<h + j^K + F<f>2 = 0 

(4.3) 

Ku + (^5? - {k2 + F))<f>2 + ^fay + Fh = 0. 

We pick the velocity profile in the upper layer in the same form as in the barotropic 

problem (2.14). To satisfy the boundary conditions at the infinity we require each wave 

with nonzero amplitude to decay at y = ±oo. Thus, the statement of the eigenvalue 

problem is completed. As before, we search for the complex values of the phase speed 

corresponding to the unstable eigenmodes. 

Some results of the Chapter 2 can be re-derived for the two-layer problem. In particu- 

lar, the sufficient condition for instability of the section 2.2 can be generalized to include 

the second moving layer. Multiply the first equation in the system 4.3 by <j>\t second by 

<frl (asterix stands for a complex conjugate) integrate form —oo to oo, take the imaginary 

part and add the results together. We get: 

k*L \u 
—{ß2 -üyy + Fü) + M(Ä - Fü) dy+ 

ßiRej 
#^lV      .    4>*2<t>2y 

-r dy = 0. (4.4) 
(tx-c)       (-c) 

We modify the second pair of terms in the way identical to that in the section 2.2. 

We now note that 

Re 
J-L   (—C) J- 

l<^2yCr .      . ,, .     ,   Ci 
dy 

and the first term on the right-hand side of the above equation is zero. We finally get 

kciL \u — c 
11  j(ß2 ~üvy + Fü) + l-f^-(ß2 - Fü) - ß 

{Im<f>l<f>iy      Im4>*24>2y' 
1 Vit|ü-c|2 fc|c|2 dy+ 

+ ß 
2        J-L (ü 

\<t>\2üy 

c)2 dy = 0. (4.5) 

One can see that the condition 2.10 of section 2.2 does not change in the two-layer 

model with zero mean flow in the lower layer: If the last term is not zero and ßx ^ 0, the 
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solution is unstable. The former is true if, for example, uy is of the same sign everywhere 

in the domain. As in the section 2.2, we can conclude that nonzonal baroclinic currents 

tend to be more unstable than zonal flows. 

We now reformulate the conditions for radiation analogous to those of section 2.3. We 

first note that our solution now consists of the sum of two Rossby waves in each of the 

external regions where ü(y) = 0. Both waves have equal frequencies and z-wavenumbers 

and different y-wavenumbers. One wave is the non-divergent barotropic Rossby wave 

with the dispersion relation 

hc_-ß2k + ß1l 

The other is the baroclinic Rossby wave: 

hc_       -ftfc + ft/ 
(k2 + P + 2F)' 

Since the non-divergent wave is faster in terms of the phase propagation, the necessary 

condition for radiation becomes the ability of the real part of the phase speed to match the 

phase speed of the free barotropic Rossby wave. That is, it is the barotropic mode that 

allows a broader range of phase speeds to excite radiation and its phase speed should be 

used in the necessary condition for radiation. In other words, the phase speed condition 

stands the same as in the barotropic problem (Eq. 2.13). Since the range of phase speeds 

for radiation to exist is more narrow for the baroclinic component, it is very likely that 

the latter will be trapped and the radiating response in the far-field will be essentially 

depth-independent. We will see in the following sections that it is true in many cases. 

All other conditions remain the same, since they do not depend on the particular 

structure of the solution: One should also consider the limit c, -»■ 0 and pay close 

attention to the y-structure of an eigenmode. 

The last group of conditions that need to be re-derived for the two-layer model is 

the set of jump conditions analogous to (2.16),(2.17). The conditions are necessary for 

joining the solution across y = ±1 and for obtaining the dispersion relation. 
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We follow the same procedure as outlined in detail in the section 2.4. In the upper 

layer we obtain the conditions identical to (2.16), (2.17): 

A(-^-) = 0;   A(^lv(ü-c)-^1öy + ^) = 0 (4.6) 
u — c k 

In the lower layer where ü = 0 the conditions are the requirements of the continuity 

of the velocity field: 

A(cf>2,   <f>2y) = 0 (4.7) 

Having reformulated the conditions for radiation and jump conditions, we now proceed 

with the analysis of solutions. 

4.2     Top-Hat Jet 

As in the barotropic problem, we start from the simplest choice: the top-hat jet with 

piece-wise constant velocity profile. The resulting dispersion relation takes a complicated 

form and is presented in the Appendix A.l. 

A similar problem was first formulated in Yun et a/.,(1995). The authors used jump 

conditions different from the (4.6); that is, the second condition in 4.6 in their formulation 

does not have the term ^ <^>i- That error in the formulation of the problem resulted in 

a disagreement of the results in Yun et al.,(1995) with the results presented below; see 

Kamenkovich and Pedlosky (1996). 

We observe some changes imposed by the addition of the second layer to the problem. 

The number of unstable modes increases: two more modes are found in addition to the 

modified barotropic modes 1 and 2. We will call these new modes baroclinic modes 3 

and 4 since their existence is clearly connected to the presence of the lower layer. 

Let us look at fig.4.1. The results for the 4 most unstable modes are presented in 

the usual form of the dispersion curves c = c(k) for the jet tilted by 30°. First, we see 

that Modes 1 and 2 are modified by the presence of the second layer although the general 
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shape looks very familiar. The behavior of the Mode 1 in the LW limit holds qualitatively 

the same: <v gets larger than the maximum flow speed for Mode 1. As in the barotropic 

problem, SWC is absent for both modes due to the discontinuity of the mean velocity 

profile. 

Two additional baroclinic modes have somewhat different shapes: each of them has 

both long wave and short wave cut-offs. Mode 4, that corresponds to a shorter scale 

in x, has negative phase speed in the LW limit. Long waves of Mode 3 travel very fast 

reminding us of the similar behavior of the Mode 1; they are, however, always slower 

than the maximum mean current speed. 

We see that in the LW limit the real parts of the phase speeds of all modes are within 

the range of the barotropic Rossby wave phase speed (2.13). The phase speed condition 

is satisfied making the radiation possible. In the short-wave portion of the dispersion 

curves of all modes, the solutions are trapped. 

Keeping in mind the very special character of the discontinuous velocity profile and, 

at the same time, its ability to represent some general properties, we now move on to the 

more general form of the u(y). 

4.3     Continuous Jet 

In this section we are going to study the stability of the same continuous velocity 

profile for the upper layer as in the section 3.2, while the mean flow in the lower layer is 

zero. We will concentrate on the effects of the added second layer on the stability and 

radiating properties of the problem. 

We use the Shooting technique for the numerical solution of the formulated eigenvalue 

problem. Details are presented in the Appendix A.2. As a result, we obtain the complex 

phase speed c as a function of the parameters of the problem: k,ßuß2 and F. 

The addition of the lower active layer changes the dynamics of the problem signifi- 

cantly. To observe these changes, one can vary the parameter F which is the square of 
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Figure 4.1: Results for the baroclinic Top-Hat jet. ß = 1.5, a = 30° and F = 3. (a) - 
real parts of c for all 4 modes vs. k. Dashed line shows the maximum Rossby wave phase 
speed, (b) - the same but for the imaginary parts of c. Wave numbers are shown on the 
plot next to the corresponding curves. 
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the ratio between the horizontal spatial scale and the internal Rossby deformation radius. 

The parameter plays a role of the measure of baroclinicity in the problem: The larger it 

is, the stronger is the coupling between two layers. For example, in the calculations for 

F = 0.1, not presented here, Modes 1 and 2 are practically indistinguishable from those 

in the barotropic model (see section 3.2.1) and no additional strongly unstable modes 

are found. 

4.3.1     Nonzonal jet: a = 30° 

In addition to barotropic Mode 1 and Mode 2 now modified by the presence of the 

second layer, we now find an additional Mode 3. The existence of Mode 3 is clearly tied 

to the baroclinic effects of the coupling between layers. The mode does not exist for very 

small and zero F. For the results presented here (Fig.4.2) we choose our parameter F 

such that it allows a significant coupling between two layers; i.e. F = 3 and F = 10. 

Mode 1 and Mode 2 are familiar barotropic modes of section 3.2.3 modified by the 

presence of the lower layer. Some changes are, however, observable. For example, both 

real and imaginary parts of the phase speed are smaller than those in the barotropic 

problem. Nevertheless, the general properties of these two modes stay the same. We 

observe the familiar behavior in the LW limits of the each mode; at LWC phase always 

travels faster than the mean flow speed for the Mode 1 and slower than the mean flow 

for the Mode 2. A critical layer, therefore, is not present at LWC. At the SWC, on the 

contrary, it is present as a result of c lying inside the interval for the mean velocity: [0,1]. 

Mode 3 is absent for very small values of F for a = 30° and ß = 1, because it is 

the baroclinic effect that allows its existence. However, the mode can be found for F 

as small as 1. The fact illustrates the more unstable nature of the baroclinic nonzonal 

currents: if F = 3, for example, two unstable modes if a = 0° are found; but there are 

three unstable modes for a = 30°. Mode 3 has growth rate, Jbc,-, which is smaller than the 

growth rates of Mode 1 and 2 for F = 3. Larger F enhances the baroclinic mechanism for 

instability. Both the growth rate and interval in k corresponding to the baroclinic Mode 
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Figure 4.2: Results for the baroclinic continuous jet. a — 30°, ß = 1. (a,b) - Real parts 
of c vs. k. The maximum Rossby wave phase speed is shown by the dashed line. (c,d) - 
Imaginary parts of c. (a,c) - F = 3. (b,d) - F = 10. Mode numbers are shown next to 
the corresponding dispersion curves. 
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3 increase with larger F for all modes. The typical shape of the dependence of c, on jb 

for Mode 3 is somewhat similar to that of Mode 1. Longer waves travel faster, although 

Cr is never larger than the maximum ü(y) resulting in the possibility of the critical layer 

at the LWC. 

We now notice that the dispersion curve of Mode 3 of the continuous jet is similar 

to that of Mode 3 of the Top-Hat jet especially in the LWC. Once again (see sections 

3.1 and 3.2.3, we point out the ability of the simple problem with broken-line profile to 

reproduce some of the results for the more realistic continuous current. The difference 

between two cases is nevertheless substantial. In particular, no analog for the baroclinic 

Mode 4 of the Top-Hat jet is found in the case of the continuous current. The mode is 

believed to be an artifact of the top-hat profile. 

The phase speed condition is satisfied for all three modes in the LW limit, making the 

radiation possible. The interval in k in which <v is within the range (2.13) is relatively 

wide for the Mode 3. 

The analysis of the complex meridional wavenumbers in each of the external regions 

confirms the radiation of the long waves by each mode; see fig.4.3. We remember, that 

we need to check the largeness of the spatial decay scale and the smallness of l{/lT in 

the limit of c, -► 0 to conclude that solution radiates. In contrast, short waves of all 

three modes are trapped. One also should keep in mind that the solution is the sum of 

two waves with different wavenumbers; see section 4.1. From the fig.4.3 we can see that, 

for example, for Mode 2 both y-wavenumbers become real at LWC in both the external 

regions. For Modes 1 and 3, in contrast, only the non-divergent barotropic component 

of the solution in the external regions is radiating. Imaginary parts of / of the baroclinic 

component in the external region are still large for these modes. 

We could better illustrate this fact from fig.4.4 which shows barotropic (^ = ^ + <j>2) 

and baroclinic (^ = <j>x - <£2) streamfunctions as functions of y for values of k chosen 

at the LWC. For Mode 1 the magnitude of barotropic wave-like response is very large 

in the negative y-direction (fig.4.4a). The barotropic component fa is significant at the 
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southern jet edge y = -1, so we can conclude that it is the barotropic instability mode 

that projects on the radiating response in the exterior. At the other jet edge y = 1, the 

fa dominates, although the fa is prevailing in the region y > 1 as a result of the strong 

trapping of the baroclinic component. 

Mode 3 corresponds to the large amplitude of the streamfunction inside the jet region 

with the baroclinic component being the largest in amplitude (fig.4.4c). We should also 

keep in mind, that the very existence of the Mode 3 is connected with the presence of the 

second layer in the problem; it is, therefore, reasonable to expect that baroclinic effects 

are important role in the energy conversion process. The instability mode at both the 

jet edges is a mixture of fa and fa, although fa is larger in amplitude. The barotropic 

response in the exterior is smaller in amplitude than in the interior region, but is still 

clearly dominant over the trapped baroclinic component. It looks as though the mixed 

barotropic-baroclinic instability mode in the interior projects on the radiating barotropic 

response in the exterior. 

In contrast, both barotropic and baroclinic components of Mode 2 are not trapped 

in the external regions. However, the wave-like response in the exterior is very small 

in amplitude compared to that in the interior region. As in the barotropic case, the y- 

derivatives are rather large for y < -1 because of the short-wave structure of the solution 

in the region. The perturbations are surface intensified for y < 1; we can see it from the 

fact that fat and fac are very close to each other. <j>2 is, therefore, small in amplitude 

compared to <pi. 

In the LW limit of all modes a radiating component is typically presented by the long 

wave for y > 1. For y < -1 the solution is a much shorter wave in y. 

To better understand how the process of the energy conversion from the mean current 

to the far-field motions takes place one need to closely consider the energy balance in the 

equation. 
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Figure 4.4: Y-structure of the barotropic fat = (f>i(y) + fciy) (shown by the solid lines) 
and baroclinic 4>brC = <f>i(y) — faiy) components (shown by the dashed lines), ß = 1, 
a = 30°, F = 3. k is chosen close to the LWC: (a) Mode 1, k = 0.155; (b) Mode 2, 
k = 1.092; (c) Mode 3, k = 0.165 
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4.3.2     Energy balance 

We multiply the linearized equation (4.1) by \bn(x,y,t) and integrate in x over the 

period and in y from -yb to yb repeating the procedure employed in section 3.2.4. We 

end up with the energy equation; the horizontal overbar represents the averaging in x 

defined in section 3.2.4: 

d _      rv»     f 
F*l x fyb    

Fb" 
ßlE = /     uy(ym*Tpiy dy + F        üiy)M2x"dy + 
Ul J-Vb J-yb 

Flux 

+ -ux 
yb 

(4.8) 
V6 

where E is a perturbation energy (a sum of kinetic and potential energy) 

J-y>> Z n=l ^ 

We can traditionally distinguish two sources of the perturbation energy: l)barotropic 

energy conversion term F^ related to the horizontal shear in the mean current and 

2)baroclinic term F^, related to the vertical shear. The flux terms familiar from section 

3.2.4 now represent the flux of energy in both layers. 

Now we can compare relative sizes of the terms in the energy equation in an attempt 

to understand what mechanism draws energy from the mean current to the growing in 

time perturbations. Let us take a look at fig.4.5(a,c,e) where all three terms F^, F^ 

and Flux terms, normalized by the perturbation energy E, are shown as the functions 

of the x-wavenumber. 

For Mode 1, F^ is typically larger than F^ (fig.4.5a). The energy embedded in the 

horizontal shear of the mean current is the main source for the growing perturbation 

energy. The radiating LW limit of ka -► 0 is interesting. In this limit, in a way similar 

to that for the barotropic problem (see section 3.2.4), the balance between F^t and 

Flux terms is established. The baroclinic source for perturbation energy vanishes if the 

exponential growth of the energy disappears. The energy is being obtained through the 
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barotropic term and is being fluxed away from the region in this limit. The process of 

radiation is therefore barotropic in nature for Mode 1. 

The integrands in both the energy sources Fy-t and F^ are shown as functions of y for 

the k close to the LWC value on fig.4.5(b,d,f). For Mode 1 we also see that the integrand 

in Fbrt reaches its maximum near the southern edge of the jet at y — — 1 (fig4.5b). It is 

not surprising, therefore, that the radiating response to the south from the jet (negative 

y in our formulation) is so energetic. 

The long waves of Mode 2 grow due to the mixed barotropic-baroclinic mechanism for 

energy conversion, with Fy-t being the largest in magnitude. Short waves are amplified 

mainly by the process of barotropic instability. The Flux terms remain negligible for all 

values of k and all terms in the equation vanish in the LW limit. As in the barotropic 

model, it is hard to identify long waves of Mode 2 as radiating despite the fact that they 

are weakly trapped in the limit (see figs.4.3,4.4). The y-structure of the integrand in 

Fbrt (fig.4.5d) indicates that energy is taken from the perturbations to the mean flow for 

negative y and from the mean field to the perturbations for positive y. 

Situation for Mode 3 is more complicated. In fact, for the long waves of this mode 

the energy is being drawn from the perturbations to the mean current by the barotropic 

mechanism: F^t < 0. The baroclinic source overcomes the stabilization effect of the 

Fbrt and provides the perturbations with enough energy to grow and to flux energy 

away from the region considered. Flux terms become very small but do not vanish 

completely in the LW limit. It is interesting that despite the fact that the energy for 

growing perturbations is provided by the baroclinic mechanism, the radiating response 

is basically depth-independent in this limit (see fig.4.4). For short waves the situation 

is the opposite, with F^t being the positive and F^ playing the stabilization role. The 

sum of this two sources always stays positive. The presence of the critical layer at LWC 

is well-pronounced in the t/-structure of the integrand in the barotropic energy source 

(fig.4.5f). 
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Figure 4.5: Energetics of the problem. ß=l,a = 30°, F = 3. (a,c,e) - Integrated energy 
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4.4     Summary 

We have considered the model with a simple example of a baroclinic flow. The second 

moving layer with zero mean current is added to the barotropic model studied in chapters 

2 and 3. The resulting baroclinicity has several effects on the properties of solutions. We 

considered two forms of mean velocity profile, a piece-wise constant broken-line profile 

and a continuous jet. 

The number of unstable modes increases. In addition to the modes 1 and 2 of the 

barotropic problem, we have found two baroclinic modes in the case of a top-hat jet and 

one mode in the case of a continuous current. The existence of these additional modes 

is clearly tied to the baroclinic effects. We find these modes only if the nondimensional 

parameter F measuring the strength of the dynamical coupling between two layers F is 

large enough. 

The very existence of slowly growing radiating solutions in the LW part of each 

dispersion curve is not affected by the baroclinicity. All criteria for radiation formulated 

in section 2.3 are satisfied in the LW limit for each mode. In particular, the spatial 

trapping disappears in this limit if the growth rate vanishes. The additional baroclinic 

modes share this property with previously found modes of the barotropic problem. We 

will now briefly summarize the results of the analysis of the spatial structure of the 

solutions for the problem with a continuous mean velocity profile in the upper layer. 

For the analysis, we split the streamfunction in the external regions into depth- 

independent component and a baroclinic addition to it. The structure of these compo- 

nents appears to be very different. The amplitude of the barotropic wave-like response is 

large especially for negative y for Mode 1. The baroclinic component is trapped. More- 

over, the barotropic energy source in the described LW limit balances the flux terms, 

while both baroclinic energy conversion term and the growth rate vanish. The radiation 

is, therefore, dominated by the barotropic mechanism for Mode 1. 

Long waves of Mode 2 exist due to the mixed barotropic-baroclinic mechanism. Both 

barotropic and baroclinic components are not trapped in the LW limit. Their amplitudes, 
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however are very small. All energy terms vanish in the LW limit. As in the barotropic 

problem (see section 3.2), it is difficult to confirm significant energy radiation for Mode 

2. 

Similar to the Mode 1, wave-like response associated with Mode 3 is barotropic in 

structure. However, the baroclinic energy conversion term is the only source for radiating 

energy. The barotropic term is a sink of perturbation energy for the long waves of the 

mode. The balance is reversed for short waves. 

The problem reveals new aspects in the dynamics of radiation. The radiating response 

has barotropic structure for modes 1 and 3 no matter whether the main energy source is 

barotropic as for Mode 1 or baroclinic as for Mode 3. Given the more narrow range for 

the phase speed allowed by the phase speed condition for the baroclinic Rossby waves, it 

is not surprising to find that they are usually evanescent in structure. We can anticipate 

now that in a linear continuously stratified model with infinite number of Rossby modes, 

the radiating response is still going to be mainly barotropic in most cases. 
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Chapter 5 

Nonlinear regime. Single wave 

development 

In chapters 2, 3 and 4 we have studied the radiation of energy by nonzonal currents in 

linear models. As we noted, the task of verifying the radiating nature of the solution is 

difficult in the linear theory. The fast exponential growth of a linear solution can lead to 

the spatial trapping. The radiating nature of the solution is then disguised by the effects 

of the fast growth. We observed for those cases that when we choose the parameters that 

make the growth rate small, the radiating nature becomes transparent for the waves long 

in x. However, the dynamical development during the initial linear stage is dominated 

by faster growing and therefore trapped modes. Their growth cannot last forever, the 

nonlinear effects should halt it at some point in time. Will the solution start to radiate 

then or the radiation remain the feature of the long slowly growing linear waves? In the 

latter case, the radiation would be energetically insignificant. In the former, not only can 

we claim that radiation is energetic, but also that it can happen in the form of shorter 

waves that have more realistic length scale on the order of the jet half-width (if k ~ 1). 

That is why it is crucial for the present study to analyze the nonlinear development 

of the linear solutions found in the previous chapters. We want to keep our results 

simple yet not lose the important aspects of the dynamical picture. For this purpose we 
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will consider the nonlinear development in a barotropic model. As was demonstrated in 

Chapter 4, the incorporation of baroclinicity does not qualitatively change the radiating 

properties of the problem: The radiating response has essentially depth-independent 

structure. Therefore, we choose to consider the nonlinear development of barotropic 

linear solutions only. We believe, that it is sufficient for drawing general conclusions 

about the radiation in a nonlinear model. 

For solving our nonlinear problem, we need an efficient numerical method. The biggest 

challenge in developing such a method is formulating numerical boundary conditions. In 

the present study, we use a routine that assumes periodicity in x and open boundary 

conditions in y. The numerical formulation of the latter conditions is not generally an 

easy task. To further complicate the matter, the numerical solution appears to be very 

sensitive to the open boundary conditions because the radiating solutions are of finite 

amplitude far from the jet region. We employ modified Orlanski boundary conditions 

and they work well for most cases. The whole method is described in detail in section 

5.1 and in the Appendix. 

The results of nonlinear computations are generally difficult to analyze. A spectrum 

of modes is always excited by the nonlinear interactions. In section 5.1, we propose to 

decompose the solution in Fourier modes in x; which is possible to do because the solution 

is periodic in x. The analysis of the temporal evolution of each component helps us to 

understand the complicated process of the nonlinear evolution. 

We start with the analysis of the nonlinear development of a single mode. The linear 

solution is used as initial condition and is given small amplitude to ensure its validity 

during the initial stage of development. Mode 1 from the linear barotropic problem 

is first considered. As in Chapter 3, we first analyze the process in the model with a 

zonal current. We then increase the value of the tilt and concentrate on changes caused 

by the changed orientation of the mean current in section 5.2. The case of a strong tilt 

{a = 30°) is studied in detail in section 5.3. The dependence of the results on the value of 

the planetary vorticity gradient is analyzed in section 5.2.3. The nonlinear development 
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of Mode 2 is studied in section 5.4. 

5.1     Method of solution and analysis 

The nonlinear terms were ignored in the previous chapters due to their smallness during 

the initial stage of development. We now include the nonlinear terms into consideration. 

The equation 2.4 changes accordingly: 

\Jt + "(l/) Jx") V2^ + (/?2 " Üyy^x ~ My + J(^' V'^ = °- ^ 
We now need to discuss the form of initial and boundary conditions. Together they 

are the decisive factors in choosing the appropriate numerical method of solving 5.1. The 

problem is first formulated on the infinite /3-plane in Chapter 2. A single Fourier mode in 

x is then considered as a general solution. Due to the linearity, the separate consideration 

of each mode is sufficient for the accurate solution. 

Unlike the linear solution, the results of nonlinear computations strongly depend on 

initial conditions. For the representation of arbitrary initial conditions, the continuous 

spectrum of linear Fourier modes is needed and boundary conditions in x become very 

difficult to formulate. To keep all results simple, we choose to initialize a problem with 

either a single mode or a sum of two modes. Although it is hard to claim that a complete 

dynamical picture can be obtained by doing that, we hope to mimic the important 

properties of nonlinear interactions and the effects they have on the radiating properties 

in the problem. 

In this chapter, we study the nonlinear development of a single wave with a wavenum- 

ber k. In the course of nonlinear self-interactions, a set of secondary modes that are 

shorter in x is created in addition: 2k, 3k, etc. together with the x-independent com- 

ponent. Because of this special structure of the solution, we can assume periodicity in 

x with a period equal to the longest period in the set: 2-K/k. The extension to the case 

with the sum of two waves as initial condition is straightforward and is done in Chapter 
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6. 

The boundary conditions in y are more difficult to formulate. The conditions need 

to remain the same as in the linear problem and be the requirements of the boundness 

at ±00. It is not however easy to implement such conditions numerically. Ideally, one 

should require that any disturbance that approaches the numerical boundary in y should 

be able to leave the domain without even partial reflection. Essentially, one tries "to do 

nothing" at the boundary, as if the boundary did not exist at all. 

One way to allow free transmission of a wave through the boundary is to use Orlanski' 

boundary conditions (Orlanski, 1976). In one-dimensional problem, one can write the 

following relation: 

ft si 

^ + c(y,<)-V = 0 (5.2) 

The speed c, with which a disturbance propagates can be calculated numerically and 

is used to determine ^ at the boundary. In the one-dimensional case it is possible to 

demonstrate (Orlanski, 1976) that the reflection is totally absent. 

The situation in our problem, however, is more complicated. First, the problem is two- 

dimensional. As outlined in Durran et al., (1993), the additional dimension may require a 

more elaborate formulation. The second important problem is numerical stability. Even 

in a one-dimensional problem, the conditions in the form formulated above quickly lead 

to the numerical instability at the boundary (Blumberg and Kantha, 1985). To overcome 

this difficulty, it is proposed in Blumberg and Kantha (1985) to put a "damping" term 

on the right-hand side of the last equation: 

di^ + <y^)^ = -^f (5.3) 

where Tf controls the strength of damping. A large value of Tf returns us to the original 

formulation with the zero right-hand side, whereas infinitely small values of the parameter 

are equivalent to putting a rigid wall at the boundary. For all our computations we choose 

Tf = 1 which is sufficient for the above condition to work in our case. The finite-difference 
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form of the conditions are given in the Appendix. 

The next important task is to convince ourselves that the conditions actually work. 

We check that by first changing the size of our numerical domain. If the results do 

not change, we are convinced that the boundary effects, such as a reflection or the 

amplification of the boundary trapped numerical modes, are minimal. Otherwise the 

solution would depend on the size of the numerical domain. We normally stop the 

integration at the point when we suspect growing boundary effects. 

We then choose the numerical method for the solution that is the most efficient given 

the boundary conditions just formulated. We use a rectangular basin with Nx points in 

x and Ny points in y, where Ny is typically larger than Nx, the grid spacing are Ax and 

Ay correspondently. The equation 5.1 for the vorticity ( — V2i/> is time stepped forward 

using the leap-frog scheme. The resulting ( is then inverted to obtain streamfunction ip; 

in other words we have to to solve the Poisson equation: 

C = VV (5.4) 

where ( is known. 

The designed inverter is spectral in x and finite-difference in y. The numerical Fast 

Fourier Transform, or FFT, (Press et al, 1992) is first performed making use of the 

periodicity of the solution. It results in the set of Nx finite-difference ODEs in y. The 

equations have simple structure and are easy to solve numerically using the open bound- 

ary conditions 5.3. The inverse FFT is used to finally obtain ifi for the next time-step. 

The code is efficient and is easily made stable numerically by decreasing the time step 

At. The parameters used for various numerical experiments are given in the Appendix. 

5.1.1     Analysis of results. Fourier components. 

The solution obtained by the method outlined above has complicated structure. As was 

noted in the previous section, several Fourier components in x are created in the course 

of nonlinear development. Because the solution is periodic in x, it is possible to perform 

82 



the decomposition into Fourier series: 

oo 

#*,?,*) = ÄeE **»(?> *)**"* (5.5) 
n=0 

where 

1    fL 
**»(y,<) = ~r f Xrp(x,y,t)e~ik-xdx 

Lix Jo 

are the Fourier coefficients and A^ = 2irn/Lx. 

When we use the term, for example, "component "0.25"" it will mean the Fourier 

component with fc„ = 0.25 and corresponding coefficient $a2S. 

It is obvious that at the very beginning of the development, when only a single linear 

wave is present, we have 

$k{y,t) = <i>{y)e -ikct 

Other coefficients grow with time due to the nonlinear interactions that produce new 

components. We observe the temporal evolution of those components which helps us to 

understand how the structure of the solution changes with time. As we noted in the 

previous section, only a few of them are significant. Components "0", "2Jfc„" are created 

by the self-interactions of the initial wave with k = jfc„. Components "3^" "4kn" etc. 

emerge later as a result of secondary interactions. 

The Fourier representation of solution (5.5) possesses another convenient property. If 

we compute the x-averaged kinetic energy using the Eq. 5.5. We find: 

°° r°° 1 °°  1   /-oo 

*• = E*» = /„, 5*3^+ Ej/   («* + «**.)* (5.6) 
n_0 J-oo Z n=0 4 J-oa   v / ' 

All terms that are s-dependent disappear because of the ^-averaging over the inter- 

val [0 Lx]. We see that the contributions of each component to the total perturbation 

kinetic energy are additive. The property is convenient for analyzing the energetics in 

the problem. By analyzing the values of K^ we will be able to see which components 

contribute the most to the total value of Ke. 
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In the analysis of the energetics in the problem we will use another quantity which 

is the kinetic energy of each component | ($fc„y + &£$fc„) integrated from —oo to —2 

and from 2 to +00. We therefore, exclude the region that contains the jet (ü ^ 0 for 

y in the [—1 1]) and consider only the external part of energy. We will denote this 

value by Ei^ and will consider its ratio to the total perturbation energy Ke. The ratio 

serves as the measure of the effectiveness of radiation by each component. It is a more 

meaningful quantity than the absolute value of E^ since the latter strongly depends on 

initial conditions and would be hard to use in the comparison between different cases. 

For evaluation of the integral over the infinite interval in y, we will use the integration 

over the numerical interval. The latter is typically 15 or 20 times wider than the jet 

itself (see Appendix A.4); the numerical integration is usually stopped when the solution 

reaches finite amplitudes at the numerical open boundaries. Therefore, it makes sense to 

base the discussion of the value of the integral over an infinite domain on the analysis of 

the numerical integral. 

5.2    Mode 1. Zonal jet. 

We start our analysis with the study of the nonlinear development of a single mode the 

case of a zonal current, a = 0°. The linear theory predicts the strong spatial trapping of 

all solutions for all wavelengths. Does the solution remain trapped during the nonlinear 

development as well? 

We initialize the problem with a linear varicose mode for k = 1 and ß = 1. We now 

proceed with the analysis of the numerical results. 

We first plot the perturbation kinetic energy as a function of time. The logarithm 

of Ke(t)/Ke(0) is shown in Fig.5.1. One can see that at t = 16 the curve starts to 

deviate from the straight line that shows the linear growth 2ibct£. After that, the fast 

exponential growth of the energy slows significantly and remains small until t = 68. 

Then the solution starts to grow and later the growth slows once again. One can suspect 
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Figure 5.1: The logarithm of perturbation kinetic energy for a = 0°, k = 1 and ß = 1 
vs. time. log(Ke(t)/Ke(0)) is shown by the solid line with open dots, 2kat is shown by 
the dashed line. 

that the second phase of the fast growth is most likely related to the appearance of the 

additional strongly unstable mode. In order to check our guess and fully understand the 

dynamics and radiating properties, we now turn to the analysis of the spatial structure. 

The ID plots of the perturbation streamfunction vs. y for a fixed value of x are shown 

in fig.5.2. The solution is trapped initially in the agreement with the linear theory and is 

antisymmetric in y, since we consider a varicose mode. We now remark that the nonlinear 

interactions cannot change the antisymmetry of the solution, because nonlinear terms in 

the equation J(ip, V2
T/>) are antisymmetric if tp is antisymmetric itself. In other words, 

the solution should remain antisymmetric for all times. 

Nevertheless, we observe the change in the structure of the solution for t > 64. The 

strong symmetric component of the solution is present, and it amplifies even further for 

later times. In addition, we observe wave-like response in the exterior region that reaches 
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Figure 5.2: The streamfunction as function of y for x = 1.4, a — 0°. k = 1 and ß = 1. 
The time corresponding to a snapshot is given on the top of a panel. The linear solution 
is shown by the dashed lines on the first three plots. 
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far from the jet at t > 96. Do we indeed observe the influence of an additional strongly 

unstable symmetric mode as we guessed before? 

The analysis of the Fourier components of the streamfunction helps to clarify the 

picture. Components "0", "1" and "2" are shown in Fig.5.3. The problem is initialized 

at k = 1; the component "1" is much larger in amplitude than component "2" for t < 48. 

The latter is antisymmetric in y and, therefore, remains to be mainly produced by the 

nonlinear self-interactions of component "1". 

The situation changes at later times. At t = 64, the component "2" is practically 

symmetric and is almost the same amplitude as component "1"; it further amplifies with 

time. This moment in time also corresponds to the second stage of the rapid growth 

in the perturbation kinetic energy seen in Fig.5.1. We can conclude that starting from 

t = 64, the sinuous mode with k = 2 dominates the development (t = 80). The sinuous 

mode at k = 2 is the most unstable wave in the problem; in particular, it has a growth 

rate that is twice as big as that of a varicose mode for k = 1 (see Fig.3.2a). The wave 

is most likely initialized by the presence of round-off numerical error in the numerical 

method during the development of the component "2" created by the self-interactions of 

Mode 1. 

In a numerical experiment not presented here, we put the sinuous mode with k = 2 

in addition to the varicose mode as an initial condition. The sinuous mode initially 

has much smaller amplitude (by the factor of 350). The nonlinear development is very 

similar to that observed in the numerical run with a single varicose mode alone. Thus, 

this mimics the production of the sinuous mode in the previous experiment. Here it 

shows up earlier as if in a more advanced stage of nonlinear development. 

What is also interesting to see is that the component "1" with which the model is 

initialized starts to decrease in amplitude after t = 64. The amplitude of component 

"1" reduces by the factor of 10 from t = 64 to t = 96. Simultaneously it radiates away 

waves from the jet region to which it is initially trapped. The whole process looks as 

a transition from the development of the single varicose mode "1" to the development 
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T = 48 

Figure 5.3: The Fourier coefficients $0 (solid lines), $x (dashed lines) and $2 (dashed- 
dotted lines) of the streamfunction as functions of y. Corresponding times are given on 
the top of each panel, a = 0°, k = 1 and ß = 1. 
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of the single sinuous mode "2". During the transition, the component "1" gives way to 

the component "2" and radiates away the energy that it previously gained during the 

initial unstable growth. The radiating response is of transient nature and has very small 

amplitudes. 

One should also note the presence of the component "0"; its significance will be 

discussed in detail in the following sections. The x-independent component remains 

trapped throughout the whole process of nonlinear development. 

The next plot, Fig.5.4, showing the energy corresponding to each Fourier component 

(see section 5.1.2) helps to further clarify the dynamical picture. We see that component 

"2" starts to dominate the process after t = 64; the integrated over the whole domain 

energy corresponding to this mode K2 is the largest after that time (Fig.5.4a). 

The balance is very different if the energy for each component is integrated everywhere 

except the region [-2 2] which contains the jet itself. The component "1" is clearly 

dominant in the external region defined above; see the lower panel of Fig.5.4. The ratio 

Et/Ke further increases after the beginning of the radiation by this component. However, 

the radiation is not energetic; E1 is about one percent of the total kinetic energy Ke. 

The contribution of the other components to the external kinetic energy is much smaller. 

We conclude that the above described transient radiation is not efficient in our model. 

The radiation starts on the late stage of the development and the radiating response in the 

exterior is weak. The more effective mechanism for radiation related to the nonzonality 

of the mean current will be discussed in detail in the following sections. However, we 

should anticipate the emergence of a short, more linearly unstable wave in the course of 

the nonlinear development of a long wave. The process can have a significant effect on 

the dynamics of the problem. 
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Figure 5.4: Kinetic energy corresponding to each Fourier component vs. time, a) K/^ 
(energy integrated over the whole domain); b) Ej^ (energy integrated from —oo to —2 
and from 2 to oo) divided by the total energy Ke. Component numbers are shown on 
the plot, a = 0°, k = 1 and ß = 1. 

90 



100 

Figure 5.5: Logarithm of perturbation kinetic energy. As in Fig.5.1 but for a = 5° k = 1 
and ß = 1. 

5.3     Slightly nonzonal jet. 

We now increase the value of the horizontal tilt from zero to the small value of 5° as 

we did for the linear problem in section 3.2.2. We recall from that section that the 

solution changes its radiating properties qualitatively. The slowly growing long waves in 

the model become radiating, whereas the shorter linear waves remain trapped during the 

linear stage of development. Do the radiating properties of short waves change in the 

course of nonlinear development? 

To answer this question, we initialize the problem with Mode 1 which is the modified 

varicose mode of the zonal jet for k = 1, ß = 1. According to the linear theory (see 

section 3.2.2), the solution for this choice of k is strongly trapped. 

We start by analyzing the dependence of kinetic energy on time. As for the zonal jet, 

the logarithm of perturbation kinetic energy is presented in Fig.5.5.   The shape of the 

91 



0.04 

0.02 

O 

-0.02 

T = = 8 

1 
i ■ 

T= 16 T = 24 

-0.2 
20 -20 

A 
( 

20 

20 

20 

20 

Figure 5.6:   The streamfunction as function of y.   As in Fig.5.2 but for x = 1.37 and 
a = 5°. k = l and ß = l 
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curve is similar to that in Fig.5.1. The solution is very different from the linear one for 

t > 16. The curve shows the period of secondary growth from t = 32 to t = 42 and then 

tends to vacillate around a mean value. The integration for a longer time interval may be 

needed for the detailed dynamical picture. However the investigation of the development 

on very long time intervals is beyond the scope of the present research and is difficult 

because of the growing boundary effects (see section 5.1). Instead, we are interested in 

the existence of radiation on the relatively early (t < 100) stage of nonlinear development 

of the initially strongly trapped solution. We might expect equilibration to occur at later 

time in the sense of reaching a saturation amplitude. Only, it might not equilibrate to a 

steady solution but rather a vacillating one in the absence of dissipation. 

We now turn our attention to the ID plots of the streamfunction which are presented 

in Fig.5.6. The observed dynamical picture is similar to that in the case of a = 0. The 

strong symmetric component is clearly seen in the structure of the solution at t > 48 

and the radiation starts after that. These facts suggest the presence of the dynamical 

process described in the preceding section in which the interactions between initially 

posed varicose mode and the excited later highly unstable sinuous mode (Fig.3.4b) cause 

the former to radiate. As we recall from section 3.2.2, for the tilt as small as 5° the 

results are almost the same as for the zonal jet unless a wave is very long in z. It is not 

therefore surprising to find the nonlinear behavior in both cases similar as well. 

However, some differences with the case a = 0 are obvious. First of all, the radiation 

starts earlier, at t > 40. The amplitude of the radiating response is larger than that in 

the case a = 0° and has more complicated structure. Do we observe the new mechanism 

for radiation of short waves related to the nonzonality of the current at work here? 

We now consider the Fourier coefficients ^ in Fig.5.7. The comparison of this plot 

with Fig.5.3 reveals a significant difference in the dynamical development. The radiation 

in the exterior region now starts as early as t = 40 and is in the form of ^-independent 

component "0" ($0). Component "1" ($x) radiates for t > 64 and remains at least 

as large as $2-   Its amplitude does not decrease with time as it does for a = 0°.   The 

93 



T = 64 

0.05 

0 

-0.05 

1 

■N   / \ 

1 
1 

- 

■» ■~~                     ■*"           ""^ 

i v-       \ 

'   A^ 
\\/\V 

~ 

v. 
->----— = r — ̂ ^e^zr^r 

"-■  —  — ^ 

1   V          ' 

" 
\   1        ' 

1 "~" 

- 

Figure 5.7: The Fourier coefficients <J>0 (solid lines), $i (dashed lines) and $2 (dashed- 
dotted lines) of the streamfunction as functions of y. a = 5°. k = 1 and ß = 1. 
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0.025 — 

Figure 5.8: External kinetic energy E^ corresponding to each Fourier component vs. 
time. As in the lower panel of Fig.5.4 but for a = 5°, k = 1 and ß = 1. (E0 + E1 + E2)/Ke 

for the zonal jet (previous chapter) is shown by the dotted line (marked by a. - 0). 

radiation therefore does not simply accompany the transition from the Mode 1 to Mode 

2, but rather is a robust feature of the late stage of the development of component "1". 

The radiation is also more energetic now, as we can see in Fig.5.8. The external part 

of the energy corresponding to the component "1" is now approximately 2.5 percent of 

the total perturbation energy. One percent of the total energy is radiated into the exterior 

by each of the components "0" and "2". The sum of these numbers, (E0 + Ex + E2)/Ke, 

is 4.5 percent which is much bigger than the same quantity for a = 0° (dotted line in 

Fig.5.8). The more energetic radiation in the case of the slightly nonzonal current is 

apparent. 

The described radiation for a / 0 is different from the weak transient radiation in the 

case of the zonal jet. The radiation is more energetic and occurs much earlier in the case 
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of a nonzonal jet. The radiating response has complex structure and does not weaken 

with time. The discovered new mechanism for nonlinear radiation will be observed in 

many cases and studied in detail in the following sections. 

The role of component "0". 

Another very interesting feature of the nonlinear development for a ^ 0 is the strong 

x-independent component of the radiating exterior response (component "0"). The com- 

ponent represents the change in the x-averaged momentum, the influence that the grow- 

ing perturbations have on the mean current. The component is strongly trapped for the 

zonal jet. In contrast, $o has a large amplitude in the exterior for the nonzonal current. 

However, this component of the streamfunction corresponds to zero u-velocity and that 

results in the kinetic energy of component "0" (K0) being almost twice smaller than the 

kinetic energy of component "1". 

Well-pronounced radiating properties of the component "0" will be observed for all 

numerical experiments as long as the tilt is nonzero. In all those cases, component "0" 

starts to radiate first. Why is it that the ^-independent component radiates more easily 

than others? 

Imagine the forced-boundary problem in which the boundary is x-independent and 

oscillates with a given frequency u>. No linear solution is possible if the boundary is 

oriented zonally. The x-independent forced streamfunction corresponds to zero u-velocity 

and the oscillating response in the form of a Rossby wave is not possible. 

However, Rossby waves can exist if the boundary is tilted. The dispersion relation 

for the response in the rotated coordinate frame is 

ßi U = T 
If the frequency of the boundary oscillations OJ is complex (the magnitude of oscil- 

lations is growing in time), the I is complex as well and solution decays away from the 

boundary.   As long as u is purely real, the response is a plane wave regardless of the 
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value of the frequency. In other words, the only reason for the spatial trapping of the 

solution is its exponential growth in time. No additional constrains on the value of the 

frequency analogous to the phase speed condition exist. The added physical effects, such 

as the free surface, can restore some constraints on the frequency. 

This simple example explains why component "0" can radiate so easily if a ^ 0. As 

soon as the growth of the solution significantly slows due to the nonlinear effects, the 

spatial trapping of component "0" disappears. The frequency of the component does not 

have to satisfy any criterion in order for solution to radiate. The radiation in the form 

of x-independent component is then followed by the radiation of components "1" and 

"2". Their fast phase propagation in the x-direction has to slow before the beginning of 

radiation; see section 5.4.1 for details. 

The other property of this simple example that illustrates the properties of component 

"0" is the fact that the group velocity in 7/-direction is single-signed: 

ßi 
C3V ~        p 

Since the cgy is always negative, the linear radiation from the boundary can only exist 

for negative y. One can see that this holds true in our case for a = 5°. In Fig.5.7 we 

observe that component "0" initially radiates only to the left from the jet region. The 

radiation to the right starts later most likely as a local result of nonlinear interactions in 

the exterior and is not directly forced by the jet edge. 

5.4    Mode 1. a = 30° 

We now proceed with the analysis of the nonlinear development in the case of the large 

horizontal tilt. As usual, we are going to focus on the change in the radiating properties 

caused by the strongly nonzonal orientation of the current. As we have observed in the 

previous section, the nonzonality of the current allows the new mechanism for radiation 

to exist. The large tilt should enhance this mechanism and allow us to fully understand 

it. 
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The assumption that we made in the linear problem is that radiating nature of the 

solution can be disguised by the spatial trapping caused by the fast exponential growth 

(section 2.3). In an attempt to determine the radiating properties of a solution, one 

can only consider the structure of the solution for the small growth rates and speculate 

about the radiating properties of faster growing solutions. As we have seen in the previous 

section, the decrease in the growth due to the nonlinear effects is an important factor 

that leads to radiation in the model. That makes a connection to the aforementioned 

hypothesis of the linear theory and makes the idea very useful for the nonlinear analysis 

of radiating properties. 

As we recall from the section 3.2.3, the radiating properties are different at two cut- 

offs of both modes 1 and 2. At the long-wave cut-off the solution is radiating, whereas at 

the short-wave cut-off it is trapped. Are the radiating properties different between long 

and short waves in the nonlinear problem? To answer that question, we consider here 

the development of both short (k = 1) and long (A; = 0.25) waves. 

However, in comparing the results one should keep in mind that the more realistic 

spatial scales in the problem are associated with shorter waves. For example, k = .25 

corresponds to the dimensional wavelength of 8wLjet which is too long for being realistic 

in the ocean; k = 1 gives 2-wLjet. The more complete discussion of the relevance of the 

results to the available observations are presented in Chapter 7. 

One of the most important parameters in the problem is the growth rate, that sets 

the time scale for the exponential growth of the linear solution. Therefore, it is helpful 

to present growth rates for ß = 1 and a = 30° before we start. The growth rates for 

two linear modes are shown in Fig.5.9 as functions of the x-wavenumber k. The Mode 2 

is the most unstable mode in the problem with the maximum growth rate almost twice 

larger than the maximum growth rate for Mode 1. 
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Figure 5.9: Growth rates as function of k for two linear modes; ß = 1 and a = 30°. The 
marks on the curves show the choices of parameters for different numerical runs. 
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Figure 5.10:  Logarithm of perturbation kinetic energy.  As in Fig.5.1 but for a 
k = 1 and ß = 1. 

30°. 

5.4.1     Short wave: k = 1. 

We start with the analysis of the development of a short wave, k = 1. The comparison 

of the following results with the results from the previous sections 5.2 (a = 0°) and 

5.3 (a = 5°) for the same k will help us to understand the dynamical effects of the 

nonzonality. 

The logarithm of kinetic energy is shown in Fig.5.10. We observe the familiar picture: 

The solution starts to grow in the agreement with the linear theory, then the growth slows 

at t = 40, and the curve starts to oscillate reaching the period of relatively slow growth. 

We observe the evolution of the structure of the solution in the 2D contour plots 

of the total streamfunction *(y) + rj){x,y) (Fig.5.11). The full flow field is noticeably 

different from the basic state starting at t = 16. The initially parallel basic flow is 

strongly modified by the presence of meanders that are trapped to the jet region.  The 
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Figure 5.11: Two-dimensional contour plots of the total streamfunction V(y) + ip(x,y) 
Corresponding times are given on the top of each plot.  Heavy dashed lines are parallel 
to the latitude circles. Mode 1, k = 1, ß = 1 and a = 30°. 
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dominant wavenumber of those meanders is k = 1, since we observe that two wavelengths 

are fitted in the x-direction and 2 x 2TC/LX = 1. 

The solution remains trapped during the initial phase of development for t < 32. The 

perturbation field extends in the cross-jet direction for later times: t > 40. We remember 

that this time corresponds to the transition from the fast exponential growth to the phase 

of the very slow rate of increase in the kinetic energy. Therefore, that is at the moment 

at which the fast growth significantly slows when we observe the beginning of radiation. 

For negative y, eddies, that are elongated in the i-direction, are formed in the far-field 

by the end of the numerical experiment (t = 72). For positive y, the eddies are elongated 

in the direction that makes an angle to the jet axis, that, in turn, is tilted itself. The 

heavy dashed lines in the figure that are parallel to the latitude circles give us an idea 

about the orientation of these eddies in the conventional, non-rotated coordinate frame. 

As we can see from the figure at t = 72, the eddies for positive y are oriented nearly 

east-west once again demonstrating the asymmetry of the dynamical field in the cross-jet 

direction. 

We now analyze the ID plots of the streamfunction in Fig.5.12 which provide-us with 

additional information about the structure and the amplitudes of perturbation motions. 

The amplitude of the wave-like radiating response in the exterior grows in time after the 

start of radiation at t = 40. We can see that by t = 56 the perturbations with large 

amplitudes have filled the entire numerical domain, which is 15 times wider that the jet 

itself. What we observe is the process that effectively transfers energy from the energetic 

unstable current to the remote exterior regions. The importance of this process requires 

a detailed study. 

Before we proceed any further, we should notice one important feature. Compare 

the structure of the solutions inside the jet region ( — 1 < y < 1), where the most of the 

energy transformation occurs, between the discussed radiating case and non-radiating 

case with a zonal flow (section 5.2, Fig.5.2). The comparison reveals very little difference 

between both cases; the similarity in the structure points to the similar energy conversion 

102 



0.04 

0.02 

0 

-0.02 

-0.04 

-0.06 
-20 

T = = 8 

1 i 
■ 

T = 16 
0.1 

0.08 'l 

0.06 
'i 
i. 

0.04 

0.02 

0 

-0.02 

/ 

V 
-0 04 

I 

20 -20 

0.4 

0.2 

T = = 24 

1 

1 
0 

0.2 

; 

1 
i 

04 
i 

-0.8 

Figure 5.12:  The streamfunction as function of y.  As in Fig.5.2 but for x = 1 37 and 
a = 30°. k = 1 and ß = 1 
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mechanisms in both cases. The main effect of the nonzonal orientation of the current 

axis is therefore in producing the energetic radiation and not in changing the general 

features of the dynamical processes inside the jet region, which are responsible for the 

energy transformation. 

At first glance, the structure of the radiating response appears rather complex. As in 

the case of a slightly nonzonal current, several waves have radiating form in the exterior. 

What is the detailed structure of the obtained solution? Is Mode 2 excited the way it is 

in the previous numerical experiments for a = 0° and a. = 5°, and if so what is its role 

now? We note, that even if a = 30° short linear waves in the problem are still easy to 

identify as modified symmetric (Mode 2) and antisymmetric (Mode 1) modes of a zonal 

jet, which simplifies the answer to the last question. 

We present the Fourier coefficients as functions of y in Fig.5.13 for chosen times. The 

overall dynamical picture is similar to that for the case with a = 5°. The radiation 

starts in the form of x-independent component $0 after t = 40 and the radiation occurs 

mainly in the half-plane where y is negative. The component represents the change in 

the z-averaged velocity field; it reaches large amplitudes for y > 0 at later times. 

The component "1" starts to radiate immediately following component "0". The 

amplitude of the radiating response in both the exterior regions is almost as large as that 

inside the jet region [—1 1]. In contrast, component "2" mainly radiates for positive y. 

As in previous cases, we also find nearly symmetric «^(y) at t = 40. It is the sum 

of the very unstable nearly symmetric Mode 2 that is generated due to the presence 

of the numerical noise in the problem and the secondary component produced by self- 

interactions of component "1" which is antisymmetric. The symmetric structure in the 

interior points to the dominance of Mode 2 in component "2" in the region. However 

despite the large growth rate (see Fig.5.9) of Mode 2 for k = 2, component "2" is never 

larger than the component "1" and does not dominate the development. The amplitude 

of component "1" remains the largest. 

We now consider the plots of the kinetic energy calculated for each component 
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Figure 5.13: The Fourier coefficients $0 (solid lines), $x (dashed lines) and $2 (dashed- 
dotted lmes) of the streamfunction as functions of y. a = 30°. k = 1 and ß = 1 
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(Fig.5.14). The integrated over the whole domain values of K^ are shown in the upper 

panel. Component "1" is very important energetically. Component "2" does not domi- 

nate the late stage of the development unlike the case with a = 0, despite the presence 

of Mode 2 for k = 2 that definitely adds to the value of K2. 

In the lower panel, the external kinetic energy E^ is divided by Ke to give the portion 

of the total energy that is contained in both the regions [-00 -2] and [2 oo]. The picture 

further emphasizes the efficiency of the mechanism for radiation in the case of nonzonal 

current. The plotted values are very small before the beginning of the radiation, which is 

approximately at t = 40. After this time, we observe the increase in the radiated energy 

associated mainly with the component "1". More than 17 percent of Kc is radiated by 

this component by the time t — 72. 

The components "0" and "2" contribute approximately 10 and 6 percent of Ke to 

the total value of the external energy. The ^-independent component of the solution has 

large amplitudes; its contribution to the kinetic energy is however smaller mainly because 

of the zero v-velocity associated with it. 

As we have already remarked in section 5.2, the modified sinuous Mode 2 excited 

in the course of nonlinear development can play an important role in the process. As 

will be demonstrated below (section 5.5), the radiation in the case with a single Mode 

2 is weak but its ratio of the external energy to Ke is close to that by component "2" 

reported in the current section. Therefore, the radiation by component "2" is a result of 

both self-interactions of component "1" and the development of Mode 2. 

We can conclude that the mechanism which causes the solution to radiate as soon 

as its growth becomes very slow is much more effective compared to the relatively weak 

transient process of radiation that is found in the case of a = 0. More than 30 percent 

of Ke is eventually transferred into the external regions ata = 30°. The ability of short 

waves to radiate is related to the change in their dynamical nature related to the nonzonal 

orientation of the current. The change is the strongest for slowly growing solutions; in the 

linear problem, it can only be observed for long waves in the linear problem. Nonlinear 
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effects, that slow the growth, enable short waves to radiate. 

Evolution of the mean flow. 

As we have remarked in the discussion of the role of component "0" (section 5.3), the 

component represents the change in the x-averaged momentum in the system. We now 

want to derive the equation for the rate of change of the x-averaged velocity and discuss 

the role of different terms responsible for that change. 

We first write the momentum equation in the x-direction in terms of the perturbation 

streamfunction: 

-r/>yt + (ü- V'yX-V'y*) + M—I'm) ~ (fa + ß&W* = p'x (5.7) 
P 

where p'(x,y,i) is the ageostrophic pressure. 

We now x-average equation 5.7 and, after integration by parts, obtain: 

-V>vt   = ^-V'xV'y   +ßi1> + G(y,t) (5.8) 

where 

G(y, t) = ßlLxj(0,y,t)-~ \p'(Lx,y, t) - p'(0, y, t)} 

We now can prove that the terms G(y,t) are zero.    Take the y-derivative of the 

equation 5.8; we get 

d 
-i>yyt   -Q-^vy   -ß^v = Gv{y>t), 

since d$*yi>7 = °- Now we ^-average the potential vorticity equation 5.1; the result 

is identical to the above equation with a zero right-hand side. Therefore, Gy = 0, and 

G(y,t) is a function of t only. We then recall that ip —► 0 as y —► ±oo, therefore 

G{y,t) = 0. 

The derived equation 5.8 has clear physical interpretation. The left-hand side repre- 

sents the change in the x-averaged momentum and is therefore expressed in terms of the 

component "0", since ifi(x,y,i)   = $0(i/,£). 
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The first term on the right-hand side of (5.8) is the x-averaged divergence of the 

off-diagonal component uv of the Reynolds stress tensor with a minus sign. The term 

equals the x-average of the y-component of the perturbation potential vorticity flux in the 

system (see Pedlosky, 1987, p.398). We will use the term "PV flux" for brevity in the rest 

of this section. The second term is the product of the perturbation streamfunction and 

the downstream component of the planetary vorticity gradient /3X; the term is nonzero 

only for a nonzonal jet. 

We now illustrate the role of both terms on the right-hand side of equation 5.8 in a 

particular example. All three terms in Eq. 5.8 calculated for the numerical experiment 

described in the current section are presented in Fig.5.15. 

The rate of change in the x-averaged velocity is similar in general structure to the 

component "0" itself (see $0 in Fig.5.13 shown by the solid lines). — $0yt grows fast until 

t ~ 32. The radiation starts at later times first for negative y, then in the rest of the 

region. 

The second term plotted, namely the PV flux in the y-direction, is localized in space 

throughout the entire numerical experiment. The term plays an important role in the 

energy transfer to the perturbation field. Indeed, multiplied by the mean velocity, it can 

be modified to yield 

ÜQ-i>xi>y" = -üyipxipy~ + — (üVxV'if) 

The right-hand side, if integrated in y, can be easily identified with the first and 

second terms on the right-hand side of the barotropic energy equation 3.4 taken with 

a minus sign. Since ü is positive, the sign in the PV flux determines if the phase shift 

between two velocity components acts to transfer the energy to perturbations if the PV 

flux is negative, or from perturbations if the term is positive. The analysis makes sense 

only in the jet region, where ü ^ 0. We now note, that the PV flux tends to be negative 

for negative y therefore acting to increase the perturbation kinetic energy and positive 

for positive y acting to decrease the energy. The u and v velocities are nearly in phase 

in the far-field, resulting in zero values of PV flux. 
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and ß-^ (dotted lines) as functions of y. Corresponding times are shown on the top of 
each plot, k = 1, ß — 1 and a = 30°. 

110 



The last term plotted, ß^, is not localized in space during the radiative phase of 

the development. Instead, the term balances the change in the x-averaged momentum 

which is radiated to the far-field. This fact emphasizes the importance of the downstream 

component of the planetary vorticity gradient for the radiation in the model. 

Component phase speed. 

One of the most important criteria for radiation that we used in the linear problem was 

the phase speed condition that sets the limits on the phase speeds of a radiating wave 

(section 2.3). It is hard to apply the same condition to the finite amplitude solution 

because solution is no longer a wave with well-defined phase speed. However, it may 

be relevant to the radiating response in the exterior. The motions there have small 

amplitudes, at least during the beginning phase of radiation, and should be in a linear 

balance locally. Is the radiating response, which is a composition of several Fourier 

components, in the agreement with the phase speed condition? 

To answer this question, one needs to consider each component separately since 

bounds on the phase speed are determined by the x-wavenumber k. Our solution is 

not purely linear and is not in the form of the plane wave for which the frequency u> and 

the corresponding phase speed c = u/k are easy to determine. However, as long as the 

amplitude of the Fourier coefficient is small, we can define the phase speed through the 

time-derivative of the complex phase: 

It is easy to check that in the case of a plane wave, the above relation gives the 

correct constant phase speed. In our nonlinear problem, the phase speed defined by (5.9) 

is generally a function of time and y, but should be close to the constant value if $^ is 

nearly in the linear balance. The values cY computed for the component "1" are presented 

in Fig.5.16. 

At t = 16 the solution is still practically linear and the phase speed is very close 
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to constant. Its value lies outside the interval set by the phase speed condition (2.13), 

which implies spatial trapping according to the linear theory. The propagation of the 

phase slows at later times; in fact Cl at t = 8 is already smaller than that for the linear 

solution. At t = 40 which is the beginning of the strong radiation in the model, cx 

satisfies the phase speed condition (2.13) which is the necessary condition for radiation 

in the linear problem. The phase speed is mostly negative and small in absolute value. 

The solution in the exterior at t = 40 is still nearly linear because of its small am- 

plitude. As a result, the phase speed calculated using Eq.5.9 is reasonably close to the 

constant in the region -3 < y < -1 and for positive y. Therefore, the beginning of radi- 

ation is dynamically consistent with the linear theory. The phase speed c of the initially 

trapped solution decreases due to the nonlinear effects and the radiating response starts 

to develop as soon as c becomes small enough to satisfy the phase speed condition. 

The situation changes for later times: c strongly depends on y at t = 64 which can 

be explained by the nonlinear nature of the radiating response. The phase speed still 

satisfies the phase speed condition, however, the analogy with the linear boundary forced 

problem is difficult to draw in this case. 

5.4.2     Long wave: k = 0.25. 

In the linear problem, the influence of the z-component of the planetary vorticity gradient 

ßi = ßsina is the strongest for waves long in x making them radiating in the linear 

problem. In the nonlinear development of a long wave considered in this section, we 

also expect the nonzonal orientation of the current to further strengthen the nonlinear 

radiation found in the preceding sections. In addition, the excitation of the more unstable 

linear Mode 2 is unlikely in this case at least during sufficiently long period of time, since 

Mode 2 is stable for long waves {k < 1.1; see Fig.5.9). The process is more characteristic 

for the development of shorter waves (see preceding sections 5.2, 5.3 and 5.4.1). 

The results for a long wave presented below should therefore emphasize the effective- 

ness of the mechanism for radiation related to nonzonality (as it is described in sections 
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5.3 and 5.4.1). 

We choose our initial conditions in the form of a single linear wave for k = 0.25, ß = 1 

and a = 30°. Despite the fact that its growth rate is almost half as that of the wave 

with k = 1, the wave still grows fast (see Fig.5.9). As a result, the solution is initially- 

weakly trapped (section 3.2.3). We make the initial amplitude five times bigger than 

before to simplify the comparison to the previous cases in which k = 1. The wave with 

k — 0.25 then reaches the finite amplitudes at roughly the same times as in those cases. 

What are the dynamical characteristics of the radiation? What are the differences with 

the development of a shorter wave with k = 1? 

The Fourier coefficients are presented in Fig.5.17. We observe that $0.25 is weakly 

trapped starting from the very early stage of development. The spatial decay scale is 

longer than for a wave with k = 1; the difference is explained by smaller growth rate 

for k = 0.25. The radiation further develops at later times when nonlinear effects cause 

other components of the solution to emerge. 

Component "0" reaches finite amplitudes at t = 40 and the radiation starts quickly 

after that and occurs initially to the left from the jet region only (t = 64). Component 

"0.5" produces radiation as vigorous as that produced by the component "0.25" (t = 64). 

The radiation is very dramatic at later times; see Fig.5.17 for t = 88. All three 

components correspond to the very energetic radiation in the exterior region. The process 

of the transfer of energy from the jet to the remote in the cross-jet direction regions is 

very effective in the discussed case. 

The effectiveness of the above mentioned transfer of energy is further outlined by the 

values of the ratio of the external part of energy E^ to the total perturbation energy Ke 

(see Fig.5.18). 

The component "0.25" dominates the radiating response initially since the linear wave 

used as initial condition is weakly trapped. The corresponding energy in the external 

regions increases in absolute value together with the kinetic energy integrated over the 

whole domain.   As a result, the ratio between two values increases only slightly from 
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about 13 to 17.5 percent in the course of nonlinear development. 

In contrast, the relative importance of other components rapidly increases with time. 

All of them are negligible initially, but start to play an important role in the radiation 

at later times, after t = 56 (fig.5.18). As a result, the energetically significant part of 

spectrum is broad in the described numerical experiment. By the time t = 96, component 

"0" gives 5 percent and component "0.5" gives 8 percent. 

Short waves are very significant energetically (see section 5.1.1). Their wavenumbers 

correspond to large growth rates in the linear problem (see Fig.5.9). The secondary 

harmonics that are created by the nonlinear interactions can in turn cause the growth 

of unstable linear modes for the same wavenumbers because of the round-off error in 

the numerical method. The anticipated process is similar to the excitation of Mode 2 

in the preceding section and can explain the widening of the spectrum in the case being 

described. 

The secondary harmonic "1.25" contributes almost as much as the primary component 

"0.25" to the value of the external energy. Component "0.75" which is excited by the 

secondary interactions between components "0.25" and "0.5" quickly overcome the latter 

in terms of corresponding energy in the external region. Its external portion of energy is 

almost 14 percent of the Ke by the end of the numerical experiment. As we have discussed 

before in section 5.3, these short waves correspond to more realistic spatial scales. It is 

therefore especially important that they also possess large amounts of energy. 

One should expect the structure of the radiating response to become more complex 

in the course of development with larger number of short waves forming. One fact that 

will hold true is the remarkably energetic radiation. If we add individual contributions of 

each the component presented in the plot together we get almost 70 percent by t = 96! 

(compare to less than 40 percent for k = 1). 

The vigorous radiation observed in the numerical experiment initialized by the long 

wave is clearly a result of the change in the dynamical nature of the solution caused by 

the nonzonality of the mean current. In general, the long part of the spectrum is favored 
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by the radiation of nonzonal currents although energetic shorter and radiating waves also 

develop in the course of nonlinear interactions. 

5.4.3     Dependence on ß. 

We have observed that the nonzonality of the mean current and the resulting presence of 

the downstream component ß\ of the planetary vorticity gradient have a large effect on 

the radiating properties in the problem. Large ßx (see sections 5.4.1-5.4.2) results in the 

energetic radiation even for initially trapped short waves of Mode 1 (k = 1, for example). 

The ability to radiate energy to the regions remote from the jet itself is further enhanced 

if long waves are considered (k — .25). We recall from section 3.1, that the x-component 

of the planetary vorticity gradient has especially large influence on long waves. 

The value of ßx = ßsina in our model is controlled by both the nondimensional 

planetary vorticity gradient ß — L?et/U and the horizontal tilt a. We need to consider 

the influence of each of the parameters individually on the radiating properties in the 

model. 

We have already studied the case in which ß is relatively large, but the tilt is small: 

a = 5°,/3 = 1 in section 5.3. A slightly nonzonal, strong and narrow jet was therefore 

considered in the experiment and planetary vorticity gradient had small downstream 

component: ßx = 0.087. The comparison with the experiment for a = 30° and the same 

ß (section 5.4.1) reveals the enforcing effect that larger tilt has on the radiation. But does 

the tilt by itself or, rather the related increase in ßx enhance the radiation in the latter 

case? The question is especially important because the magnitude of forcing needed for 

balancing the basic flow ßiü is directly proportional to the value of ßx. 

In addition, the task of determining the oceanographically realistic value of the nondi- 

mensional planetary vorticity gradient ßL2
jetjU in our simplified model is not trivial. One 

reason is that it is not easy to derive the realistic value for the spatial scale Ljet from the 

observations of Gulf Stream. Reader is referred to Chapter 7 for a complete discussion. 

At this point, we can mention that it is important to study the range of the values of ß. 
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How sensitive are the radiating properties to the value of ßl 

It is possible to try to answer these questions by doing the numerical experiment with 

smaller ß. We are going to keep ßl as small as in the case ß = 1, a = 5°, but make a 

as large as in the case a = 30°, ß = 1. For the next numerical experiment we consider 

smaller value of the planetary vorticity gradient, ß = 0.25 for k = 1, a = 30°. The 

corresponding growth rate of the linear solution is .146 which is roughly equal to that for 

ß = 1. The downstream component ß1 is small and equals 0.125 making the comparison 

with the case ß = l,a = 5° meaningful. If ßx governs the process of radiation, the two 

cases will be very similar in radiating properties. 

The Fourier coefficients $0> $x and $2 are presented in Fig.5.19. The difference with 

the results for larger ß (see Fig.5.13) is apparent. 

The x-independent component of the solution reaches finite amplitudes by t = 48 and 

start to radiate very long waves to the left from the current. By the end of the numerical 

experiment, the component reaches very large amplitudes. In fact, the component is 

much larger in amplitude than others. The change in the downstream-averaged field 

is much larger than in the case of larger ß. The planetary vorticity gradient acts as a 

restoring force for Rossby wave oscillations, therefore a smaller beta destabilizes the jet 

even further leading to the large changes in the x-averaged momentum over the whole 

domain. 

Despite the absence of the corresponding u-velocity, the kinetic energy of component 

"0" at t = 96 is larger than of component "1" (Fig.5.20a). Unlike all cases considered 

before (see in particular Fig.5.14b and Fig.5.8), the radiating response is dominated 

energetically by the ^-independent component of the solution. Nearly 40 percent of the 

total perturbation energy is radiated by this component; one can compare this number 

to 10 percent for ß = 1 (Fig.5.14b) in which case the radiation is also very strong. 

Component "1" is mainly confined to the region from -2 to 2 until t = 56 which can 

be seen in both Fig.5.19 and Fig.5.20. After that, the component slowly extends in the 

y-direction especially to the right from the jet (Fig.5.19). However, even at t = 104 signif- 
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icant amplitudes of the streamfunction are only observed in the interval [—5 5] (Fig.5.19). 

The amplitudes are still smaller than those of component "0" of the streamfunction. 

This slow spreading of the component is different from the vigorous radiation of 

waves observed, for example, in section 5.4.2. The rate of spreading is in fact on the 

order of magnitude of the group velocity of the linear solution, which is about .12 in both 

directions. 

Nevertheless, we observe the transfer of energy from the jet to the regions that are five 

times further from the jet axis than the edge of the jet. The kinetic energy of component 

"1" is largely due to the big gradients of the streamfunction and larger resulting velocities. 

Although by the end of the numerical experiment the radiation by component "1" is less 

energetic than the radiation by component "0", the corresponding external energy E\ is 

still approximately 15 percent of Ke. The number is only slightly smaller than that for 

the case ß = 1, a. = 30° and is significantly larger than in the case of a — 5° (less than 

2.5 percent; see Fig.5.8). 

The remarkable growth in the external part of the kinetic energy in the described case 

leads us to the conclusion that the main factor in setting the radiation is the nonzonal 

orientation of the mean current, not the downstream component of the planetary vorticity 

gradient ßt and the related magnitude of the potential vorticity source in the model ßiü, 

which are both small. Small ß leads to the very energetic development of x-averaged 

component, but slows the radiation of the component "1". 

5.5     Mode 2 

We have already observed in section 5.2 that the emergence of the very unstable Mode 

2 in the course of nonlinear development of Mode 1 leads to the weak radiation by the 

latter. What are the radiating properties of Mode 2 alone? 

The mode is strongly trapped in the linear problem if the jet is zonal. The radiating 

properties in the problem change significantly if the horizontal tilt of the jet is made 
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nonzero. As we have observed in sections 3.2.2 and 3.2.3, the phase speed of long waves 

of Mode 2 satisfies the phase speed condition and the solution is non-trapped. However 

the amplitude of the wave-like response of this mode in the exterior is small compared 

to the amplitude in the interior and the radiation is not very energetic. What happens 

in the nonlinear regime? 

In the numerical experiment not presented here, no radiation is found in the case of 

a zonal jet for k = 2. The solution remains trapped to the jet throughout the whole 

nonlinear development (the problem is integrated until t = 96). It is, therefore, the 

interaction with shorter wave of Mode 1 that produced weak radiation in the section 5.2. 

The next step is to make the mean current nonzonal and observe changes in the 

radiating properties of the solution. For this purpose, we initialize the model with Mode 

2 for k = 1.8, ß = 1, a = 30. The wave evolves very rapidly because of the very fast 

initial growth; the growth rate is more than twice as large as that of Mode 1 for A; = 1 

(see Fig.5.9). As one can see from the plot of kinetic energy in the Fig.5.21, the nonlinear 

effects are important as early as at t = 8. The equilibration begins at t = 12 and the 

growth slows significantly at later times. The problem is integrated until t = 52. 

We now turn our attention to the Fourier coefficients of the solution (see Fig.5.22). 

In the way typical of the nonlinear development of in our model, the radiation starts 

in the form of the x-independent component of the solution at t = 24 and occurs for 

negative y. We note, that the beginning of the radiation is earlier than for the Mode 1, 

because of the faster development of the linear solution. The beginning of the nonlinear 

equilibration is once again the beginning of the radiative phase in the development. 

Component "1.8" dominates the development (Fig.5.23a). Unlike Mode 1, the nonlin- 

ear development of Mode 2 does not result in the excitation of the shorter, very unstable 

linear waves; the linear problem is stable for k larger than 3.2 (Fig.5.9). 

The x-dependence of the radiating response develops for t > 36, when components 

"1.8" and "3.6" start to radiate. However, the radiating response formed by component 

"1.8" decays in space away from the jet region.   The radiation still reaches as far as 
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y - -5 and y - 10 for negative and positive y correspondently by t = 52, but the 

amplitudes are much smaller than those for Mode 1. 

The energy K1A of component "1.8" that is contained in both the external regions is 

about 5 percent of the perturbation kinetic energy Ke. Large gradients of the stream- 

function compensate the smallness of its amplitude in the value of corresponding energy. 

We have observed the similar situation in the linear problem as well (see the discussion 

of the y-structure of the eigenfunctions in section 3.2.3). Component "3.6" contributes 

very little (less than 0.5 percent). 

One can recall from the linear problem, that even long waves of Mode 2 are weakly 

radiating. Despite the absence of spatial trapping of the solution at the LWC, the process 

of radiation is significantly less energetic than that for the long waves of Mode 1. As we 

have just observed, nonlinear effects do not significantly change the radiating properties 

of Mode 2; radiation is weak. The difference with the longer nonlinear waves of Mode 1, 

which radiate a significant portion of kinetic energy into the external regions, is apparent. 

5.6     Summary 

We have discussed a series of numerical experiments in which the nonlinear development 

of a single wave was considered. In the course of the nonlinear development, a number 

of additional modes are excited and the structure of the solution becomes more complex. 

The excitation of the very unstable Mode 2 in the course of nonlinear development of 

Mode 1 causes weak radiation by the latter in the case of a zonal jet. The transient radi- 

ation reported in this case is very closely related to the radiation by pulsating meanders 

discovered in a series of zonal boundary forced models (Malanotte-Rizzoli et al, 1987a; 

Hogg, 1988; Malanotte-Rizzoli et al., 1995). In these studies, it is demonstrated that the 

growth and decay periods in the life-cycle of meanders are essential for the mechanism 

discovered. In our case, the radiation in the form of component "1" starts at an advanced 

stage of nonlinear development, when component "1" starts to decay in amplitude. The 
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decay follows the period during which the component remains trapped to the jet region 

and has a large amplitude, therefore representing meanders of the jet with nondimen- 

sional wavelength 2%. Thus, the slow decay of these meanders can produce radiation in 

according with the mechanism described in (Malanotte-Rizzoli et al., 1987a; Hogg, 1988; 

Malanotte-Rizzoli et al., 1995). The mechanism, however, is not very effective in our 

case. The radiation is very weak in part as a result of the smallness of component "1" 

in the jet region. 

The situation changes if the mean current is nonzonal. We mostly consider waves that 

are rather short in x (k = 1); they grow fast and are strongly trapped according to the 

linear theory. However, the solution becomes radiating during the nonlinear development 

even if the tilt is very small. For a — 5°, the radiation starts when initially fast expo- 

nential growth significantly slows. The corresponding radiating response is much more 

energetic than that in the case of the zonal current. The trapping of a linear solution is 

most likely caused by the fast initial growth as discussed in section 2.3. 

The observed radiation by a nonzonal current is caused by the reduction in the distur- 

bance growth, which happens during the equilibration of solutions. On the other hand, 

the radiation does not seem to cause the equilibration in the model, since the latter also 

occurs in the case of a zonal current, in which case no energetically significant radiation 

is found. 

The radiating properties are further enhanced by the larger horizontal tilt. For a = 

30°, the radiation is very energetic for k — 1. The process starts with the radiation 

of x-independent component of the solution and is then immediately followed by the 

x-dependent harmonics. The latter usually correspond to the large values of the kinetic 

energy that is being transferred from the mean current into the far-field. The radiating 

response in the exterior is initially in agreement with the phase speed condition of the 

linear theory while the amplitudes are still small. 

The radiation is especially remarkable when longer waves are considered. For k = 

0.25, the broad spectrum of vigorously radiating waves is excited, eventually transporting 
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more than 70 percent of the total perturbation energy into the far-field. The radiation 

starts very quickly largely because of the small initial growth rate and resulting weak 

trapping of the linear solution. 

The most unstable mode in the problem is Mode 2 that is characterized by smaller x- 

wavenumbers. The long linear waves of this mode are weakly radiating and the nonlinear 

effects do not significantly change the radiating properties of the entire mode. For k = 1.8 

the radiation is weaker than in the case with Mode 1 for k = 1. 

For fixed both the orientation and strength of the current (expressed in terms of a 

and ß), the radiative properties are mainly controlled by the relative importance of the 

downstream component of the planetary vorticity gradient, ft = ßsina. The effects of 

the term are the largest for longer waves, therefore it is not surprising that short waves 

are usually less radiating; compare cases k = 1 and k = 0.25 for Mode 1 and Mode 1 for 

k = 1 and Mode 2 for k = 1.8. 

However, it is not always accurate to call short waves weakly radiating since they are 

usually more energetic than longer waves. The corresponding pressure field is typically 

smaller in amplitude than that for longer waves but has larger gradients. That results in 

large geostrophic velocities and often makes the radiation more energetically significant. 

The effects of smaller ß are also studied in detail. For ß = 0.25, the downstream 

component of planetary vorticity gradient ft is as small as in the case of larger ß but 

smaller tilt (ß = 1 and a = 5°). The radiation, however, is significantly stronger. We 

can conclude that the nonzonal orientation of the current is the main factor controlling 

the effectiveness of the mechanism for radiation. 

We recall that the forcing, that acts as a vorticity source necessary to balance the 

mean field, is proportional to ft (section 2.1). The fact that radiation is strong despite 

the smallness of ft demonstrates that the radiation is not directly related to the forcing 

itself, but is rather caused by the nonzonal orientation of the mean current. The role of 

forcing is limited to sustaining the nonzonal current. 

It is also interesting that the external part of perturbation energy for ß = 0.25 is 
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even larger than in the case of ß = 1 and a = 30°; the component "0" reaches especially 

large amplitudes. The planetary vorticity gradient normally acts as the restoring force 

stabilizing the Rossby waves. Smaller values of ß therefore further destabilize the problem 

which results in the large amplitudes of unstable solutions. 

We have considered only the nonlinear development in the problem initialized with 

a single Fourier mode. In the more general case in which initial conditions consist of 

a set of linear waves, the short waves that typically grow faster initially can eventually 

dominate the development in the region of the jet. The longer nonlinear waves that are 

more radiating can be either suppressed by those trapped short waves and not produce 

radiation or they can continue radiation dominating the far-field. In any case, the dy- 

namical properties of both types of modes should change. These changes will be studied 

in the following chapter. 
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Chapter 6 

Nonlinear interactions between 

waves 

In the preceding chapter, we have considered the nonlinear development of a single linear 

wave. Although that study provides us with important information about the nonlinear 

evolution in the model, the single wave development cannot completely describe the 

dynamics in the model. Realistic initial conditions generally contain the whole spectrum 

of Fourier modes and the nonlinear results strongly depend on its particular form. 

It is impossible to consider all possible combinations of linear solutions, but we can 

greatly simplify the task and study the effects that two initially excited modes have on 

each other. The interactions between those waves will alter the dynamical properties of 

each of them. Considering those changes, we can deduce important information about 

the effects of nonlinear interactions between waves in an arbitrary set of linear modes. 

We are mainly interested in the radiating properties in the problem and we have 

observed that those properties differ between waves that are long in x and waves that 

are short in x. Shorter waves are generally less radiative than long ones largely because 

long waves are more influenced by the downstream component of the planetary vorticity 

gradient. As we recall, the component is a key factor in the mechanism for nonlinear radi- 

ation discovered in the preceding chapter. However short, strongly trapped linear waves 
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have larger growth rates and have a potential to eventually dominate the dynamical pic- 

ture. Nevertheless, their properties will be affected by the development of of longer more 

radiating waves. It is therefore especially interesting to consider nonlinear interactions 

between a long and a short wave and study the changes in the resulting radiation. 

In this chapter, we initialize the problem with a sum of two primary waves with x- 

wavenumbers k\ and k2. As in the case of single wave, a set of secondary harmonics 

is generated: components "0", "kx + k2", 
uk2 - fci", "2^", "2k2" and so forth. Both 

primary modes can directly influence each other through these harmonics if 2ki = k2, in 

which case the interactions are the strongest. Two waves can also interact indirectly if 

2&i 7^ k2 and neither of secondary harmonics can directly affect both primary modes. 

We will study three types of interactions that occur in the development of a set of 

primary modes. By doing that, we do not pretend to obtain the complete dynamical 

picture. Rather, we hope to illustrate on these simple examples the processes going on 

in the nonlinear development of more complicated initial conditions. 

Both direct and indirect interactions will be modeled on the example of the evolution 

of strongly radiating Mode 1 and weakly radiating Mode 2 in section 6.1. The interactions 

between a long wave and a short wave of Mode 1, that both are strongly radiating will 

be analyzed in section 6.2. 

The individual evolutions of all waves which interactions are considered in the numer- 

ical experiments in this chapter were studied in the preceding Chapter 5. The comparison 

of the results between two chapters should help to understand the effects of the joint evo- 

lution of linear waves on their individual radiating properties. 

6.1     Mode 1 and Mode 2 

As we observed in Chapter 5, the nonlinear evolution of Mode 1 leads to the excitation 

of the more unstable Mode 2. The latter is generated because of the presence of the 

round-off error in the numerical method and it usually emerges at a late stage of the 
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development. Its role varies from dominant in the cases with a = 0 and a = 5° to 

secondary in the case of a = 30°. Very energetic radiation was reported in the case of a 

large horizontal tilt in the mean current (a = 30°). In that case, Mode 1 prevails during 

the nonlinear development and radiating properties in such cases are studied in detail 

(section 5.4.1). 

In contrast, the evolution of the single Mode 2 results in the radiation which is 

much weaker than in the numerical experiment with a single Mode 1 (chapter 5.5). 

However, as we recall from the linear problem, Mode 2 is generally more unstable than 

Mode 1 (Fig.5.9). Mode 2 is, therefore, likely to eventually prevail, if a pair of waves 

corresponding to both Mode 1 and Mode 2 with initially similar amplitudes is considered. 

It is therefore interesting to study such a case in which, unlike the case with a single Mode 

1, both modes are equally important from the start. Both the waves are going to evolve 

differently than if they developed separately. What are the changes in their radiating 

properties that can be attributed to the interactions between them? 

Our task in this section is to consider the mutual development of Mode 1 and Mode 

2. We choose their initial amplitudes in such a way to make both waves similar in size 

during the course of nonlinear development. We consider two cases: Case 1 in which we 

take Mode 1 with k = 1 and Mode 2 with k = 2, and Case 2 with Mode 1 with k = 1 

and Mode 2 with k = 1.5l The interactions between waves are the strongest in Case 1, 

where the waves interact directly. In all cases a = 30° and ß = 1. 

6.1.1     Case 1. Direct interactions. 

In this numerical experiment we put the sum of Mode 1 with k = 1 and Mode 2 with 

k = 2 as initial conditions. We make the initial amplitude of a latter wave 2.4 smaller 

than that of Mode 1. If both waves were growing exactly proportionally to e***, Mode 

2 would be 3 times as large as Mode 1 by the time t = 12. The nonlinear effects, 

however, slow the growth of both modes and make them similar in size during the whole 

development. 
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Both modes are going to strongly feel the presence of each other. Indeed, the sec- 

ondary harmonic produced by self-interactions of Mode 1 has the wavenumber that equals 

2; at the same time Mode 1 interacts with Mode 2 and creates a harmonic with k = 1. 

Both the harmonics add to the primary modes and can significantly change the energy 

partition between different wavelengths. 

As we recall from section 5.2, the secondary harmonic of nearly antisymmetric Mode 

1 is antisymmetric as well. In contrast, Mode 2 with k = 2 is almost symmetric and this 

difference in structure makes it possible to determine how strongly Mode 2 is modified 

by the secondary harmonic of Mode 1. 

We first present the 2D contour plots of the total streamfunction #(y) -f i>(x,y) 

(Fig.6.1). The solution remains trapped until t = 24 when radiation in the ^-independent 

form starts for negative y. Individual eddies are formed later in both the external regions. 

The dominant x-wavenumber of these eddies is k = 1, since two identical eddies are 

observed in the x-direction (2 X 27r/12.57 = 1). The eddies are elongated in the east-west 

direction to the north of the jet axis and are nearly parallel to the jet axis to the south 

from the jet similar to the case with a single Mode 1 (section 5.4.1, Fig.5.11). 

In contrast, the meanders, that are trapped to the basic flow axis have a different 

structure than in the case with a single Mode 1. In particular, the meanders with the 

wavenumber k = 2 are clearly very important (see Fig.6.1 at t — 40). 

To study the structure of the solution in greater detail, we now consider the plots of 

Fourier coefficients $0, $i and $2 shown in Fig.6.2. Component "0" follows a familiar 

path of development and radiates first for negative y and then for the other half-plane. 

The amplitudes of the radiating part are larger than in the case with a single Mode 2 

(Fig.5.22), because the self-interactions of a primary component "1" produce a significant 

portion of the x-independent component of the streamfunction. 

The evolution of x-dependent components "1" and "2" deserves further attention. 

Initially, components "1" and "2" are easily recognized as almost antisymmetric Mode 1 

and symmetric Mode 2. Both the components are significantly modified later by nonlinear 

134 



T = 8 

15 

10 ^ % s ^ 

5 

:>s   (1 

-5 
1 

-10 
* * % ^ * ^ 

-15 

on 

T = 16 

15 

10 

5 

*  0 

-5 

-10 

-15 

on 
2  4  6  8 10 12 

x 

T=24 

15 

10 

\  \            \* b 1* 

>   0 
/^SHJEHn^T^gjj 

^jj 
-5 * 

N s 
* ̂  

-10 

-15 

on —1 1 1     1      ■      1 

2  4  6  8 10 12 2  4  6  8 10 12 
x x 

T = 32 T = 40 

>>   0 

T = 48 

WWQ 

2  4  6  8 10 12 
x 

2  4  6  8 10 12 2  4  6  8 10 12 
x x 

Figure 6.1:  Two-dimensional contour plots of the total streamfunction $(t/) + if>(x,y) 
As in Fig.5.11 but for Case 1: Mode 1 (k = 1) and Mode 2 (k = 2). a = 30° and ß = 1. 

135 



T = 20 
0.4 

0.2 

0 

-0.2 

1 1 1 1 1       -,  

A   '     v - 
J    V         v 

- 

1 < • 1 ' 

0.2 

0.1 

0 

-0.1 

-0.2 

I ! i 1 * i 

/   V f\ " 

\   "*• —' y 
/ 

/ Vi / ,^ , 
V. 

— *r —■-    - 
J " 

i 1 i i r 

- 

20 

Figure 6.2: The Fourier coefficients $0 (solid lines), §x (dashed lines) and <J?2 (dotted 
lines) of the streamfunction as functions of y. Corresponding times are given on the top 
of each panel. Case 1: Mode 1 (k = 1) and Mode 2 (k = 2). a = 30° and ß = 1. 

136 



3.5 

3 

1                     '                —i— 1  

2.5 

—•"*"* 
2 " 

it: 

1.5 

1 / J^s^/       x<~X^ 
0.5 

O —.— i i 

°                            10                          2°                          30                          40                          50                          go 
time 

0.14 
 r-^p  

/ 
/ 

0.12 
/ 

0.1 /      .,-2- 

;|0.08 
y                                           :                                                 _ 

LU *■ "                                                            /"0" 
0.06 ^--x      / 
0.04 

y^ 
0.02 

0 
T 

c 10                            20                            30                           40                            50 
time 

Figure 6.3:  Kinetic energy corresponding to each Fourier component vs.  time, a) K^ 
(energy integrated over the whole domain); b) EK (energy integrated from -co to -2 
and from 2 to oo) divided by the total energy Ke. Component numbers are shown in the 
plot. Case 1: Mode 1 (k = 1) and Mode 2 (fc = 2). a = 30° and 0 = 1. 

137 



interactions with each other (see for example t = 44). 

As we remarked before, it is useful to compare the results of this section with the 

individual evolution of either of modes. We begin with component "1" and see that the 

radiation now starts much earlier than in the case with single Mode 1 (i = 48 in section 

5.4.1). That is attributed to the fact that now Mode 1 is given 5 times larger initial 

amplitude. The radiation in the model typically starts at the beginning of nonlinear 

equilibration following the stage of the rapid exponential growth; the equilibration begins 

earlier if initial amplitude is larger. 

During the late stage of development, the amplitude of component "1" is small com- 

pare to that in the case with a single Mode 1 (t > 44 in Fig.6.2 and Fig.5.13). In addition, 

in the energy plots (Fig.6.3a), we see that K% becomes larger than K\ after t = 32 and K\ 

further decreases after that. It is also interesting to note, that component "2" remains 

nearly symmetric in the immediate vicinity of the jet which points to the weak contribu- 

tion of nearly antisymmetric secondary harmonic of Mode 1. We can conclude that the 

jet region is dominated by Mode 2 during the advanced stage of nonlinear development; 

see also the discussion of the 2D field (Fig.6.1) above. 

In contrast, component "1" clearly dominates over component "2" in the exterior 

starting from t = 32 (see also Fig.6.1). The radiation of component "1" is very similar 

to that by a single Mode 1 (section 5.4.1). The amplitudes are large in both cases and 

the spatial scales are similar. As a result, component "1" radiates as much as almost 15 

percent of Ke by the end of the described numerical experiment. The value of Ei/Ke is 

therefore very close to that for the case with a single Mode 1; see Fig.6.3. 

The radiation by component "2" starts much later than in the case with a single 

Mode 2 with k = 1.8 (i = 52 compared to t = 24 in section 5.5). The start of radiation 

is delayed by development of the radiating response by component "1". The radiation is 

also weaker than that by component "1". Component "2" slowly extends into both the 

external regions, which are dominated by the longer and more radiating component "1". 

Nevertheless, as much as 11 percent of Ke is transferred by component "2" into the 
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external regions (Fig.6.3b). The number is twice as large as E1A/Ke reported in section 

5.5. The difference can be explained by the contribution of the secondary harmonic "2" 

produced by self-interactions of the radiating component "1" in Case 1. The value of 

E2/Ke is also twice as big as the same quantity in the case with a single Mode 1 in 

which Mode 2 with k — 2 is excited only on the late stage of development. 

The joint radiation by all components is very effective: (E0 + Ex + E2)/Ke is more 

than 35 percent. The value of the ratio is close to the same quantity in the case of a 

single Mode 1 (section 5.4.1). 

6.1.2    Case 2. Indirect interactions. 

We have observed in the previous section, that the weakly radiating Mode 2 eventually 

dominates the nonlinear development in the jet region, but does not prevent Mode 1 from 

radiation. Rather, component "1" prevails in the exterior regions; it produces a second 

harmonic with k = 2 that increases the radiation by component "2". What changes if 

direct mutual feedback between two primary modes are not possible? 

To answer this question, we carry out a numerical experiment in which we initialize 

the model with Mode 1 with k = 1 and Mode 2 with k = 1.5. The self-interactions 

of Mode 1 produce component "2" as before but now it does not affect Mode 2. The 

nonlinear interactions produce secondary harmonics "0.5", "2", "2.5" and "3"; neither 

of them can influence component "1" directly. It is therefore interesting to compare the 

results in Case 2 with the results in Case 1. That will help us to understand the role of 

interactions between modes in the dynamics of the problem. 

As in Case 1, Mode 1 is given larger initial amplitude than Mode 2. If both waves 

were growing exactly proportionally to ekci\ Mode 2 would be larger than Mode 1 by 3 

times by the time t = 14. 

2D contour plots of the total streamfunction #(t/) + V>(x,y) (Fig.6.4) provide us with 

general information about the structure of the solution. As in Case 1 (Fig.6.1), the 

solution is asymmetric in the t/-direction. Eddies to the north from the jet are oriented 
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east-west, whereas eddies to the south (y < 0) are elongated in the direction of the jet 

axis. The differences between Case 1 and Case 2 are also obvious to a viewer. The 

dominant scale in the z-direction is now twice as large as in Case 1, which indicates the 

dominance of the component with k — 0.5 wavenumber (since 2TT/12.57 = 0.5). The 

trapped meanders seem to be a mixture of two components with wavenumbers k = 1 and 

Jb = 0.5. 

The Fourier coefficients are shown in Fig.6.5. As in Case 1, component "0" starts its 

radiation for negative y after t = 20. The amplitude of its radiating part reaches large 

amplitudes at later times. We now focus on the differences in the development between 

components "1" and "1.5" and components "1" and "2" in Case 1. 

Component "1" in Case 2 has larger amplitudes than in Case 1 especially during the 

late stage of development (t > 32), as can be seen in Fig.6.5. The difference is striking 

at t = 52. In contrast, component "1.5" remains small until t = 36. As in Case 1, it then 

slowly overcomes component "1" in terms of the amplitude in the jet region (t = 36). 

Component "1.5" then start to slowly expand into both the external regions. The switch 

in the relative importance between two components is clearly seen in Fig.6.6a where the 

corresponding kinetic energies are presented. Shortly after t = 40, Ki5 becomes larger 

than K\. 

It is also interesting to observe the rapid growth of component "0.5" (Fig.6.5 and 

Fig.6.7a; see also the discussion of Fig.6.4 above). The component is produced by the 

interactions between two primary components "1" and "1.5". Its energy Ä"0.s becomes 

larger than the energies of other secondary components in the plot at the same time as 

component "1.5" begins to dominate in the development (i > 40; Figs. 6.6a and 6.7a). 

Simultaneously, the energy of component "2" which is the result of self-interactions of 

component "1" decreases together with K\ (Fig.6.6a). Ä0.5 is by an order of magni- 

tude larger than X2.5 which is another secondary harmonic produced by the interactions 

between two primary modes. The longest of two secondary harmonics is clearly more 

energetic. 
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T = 20 

20 

Figure 6.5: The Fourier coefficients $0 (solid lines), $x (dashed lines), $15 (dotted lines) 
and $0.5 (dashed-dotted lines) of the streamfunction as functions of y. Corresponding 
times are given on the top of each panel. Case 2: Mode 1 (& = 1) and Mode 2 (ifc = 1.5). 
a = 30° and ß = 1 
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One interesting and somewhat puzzling fact is the high values of a perturbation energy 

corresponding to each of the components. Both Kx and K1J& are much larger than Kx 

and K2 in Case 1. In an experiment not presented here, the problem was initialized with 

a single Mode 1 with the same amplitude as in Case 1 and Case 2. The resulting K^ was 

as large as in the Case 2; small Kx in Case 1 can be explained by the direct suppression 

by the Mode 2. 

üfi.5 is also significantly larger than K1£ in the case with a single Mode 2 (see section 

5.5). Secondary components further contribute to the total value of the perturbation 

kinetic energy; see Fig.6.7a. As a result, the value of Ke is much larger than in Case 1. 

The absence of direct interactions with component "1" has a dual effect on the radi- 

ating properties of component "1.5". The latter is no longer directly suppressed by the 

vigorously radiating component "1" in the external regions. In fact, EU5 becomes larger 

than Ex at the same time as the total energy of this component K1A becomes the largest 

as well (Fig.6.6b). On the other hand, secondary harmonic of component "1" cannot put 

the external energy into component "1.5" as in Case 1. 

As a result, E^/K,. is almost the same as E2/Ke in Case 1 by the end of development. 

Presumably, the absence of both the suppression and the feedback by the component "1" 

compensate each other and result in little overall effect on the effectiveness of radiation 

by component "1.5". 

In contrast, the radiating ability of component "1" is weaker in Case 2 than in Case 1; 

compare 8 percent in Fig.6.6b to almost 16 percent in Fig.6.3b. In Case 1, the presence 

of direct mutual feedback between two primary modes enables long and more radiating 

component "1" to account for the major part of the radiated energy. 

In Case 2, the energy instead escapes into radiating secondary harmonics that do not 

project back onto any of primary modes. In particular, self-interactions of component 

"1" produce component "2" that develops on its own. One can see in Fig.6.7b component 

"2" is associated with E2 that is almost 4 percent of Ke. 

As was noted above, the interactions between two primary components "1"  and 
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"1.5" produce another very energetic harmonic, component "0.5". The component is 

also strongly radiating: E0.s/Kc is almost 12 percent, which is even bigger than Ei/Ke 

(Fig.6.7b). Its large amplitudes in both the external regions are evident in Fig.6.5 and 

in Fig.6.4. Once again we observe that waves that are longer in x are more radiating; in 

our case even a secondary component "0.5" can dominate the radiating response in the 

exterior. 

The radiation in Case 1 with no direct mutual feedback between two primary compo- 

nents is more energetic than in Case 1 with direct interactions. The ratio of the sum of 

all external energies to the total energy (E0 + ... + E3) jKc is more than 39 percent by 

t = 52 which is slightly bigger than 35 percent in Case 1. We now recall that the value 

Ke is much larger in Case 2. 

We can conclude that the absence of direct mutual feedback between a strongly radi- 

ating wave of Mode 1 and a weakly radiating wave of Mode 2 allows the development of 

strongly radiating secondary harmonics. The radiating properties of Mode 2 appear to 

be almost not affected. 

6.2     Case 3. Mode 1. 

The study of interactions between different types of linear solutions would be incomplete 

without the experiment in which the development of a long and a short wave of Mode 

1 is considered. For the experiment we choose k — 0.25 and k = 1 as corresponding 

wavenumbers. The amplitude of the longest wave of a pair is 4 times larger than the 

amplitude of the wave with k = 1. 

As we recall from chapter 5 (sections 5.3.1 and 5.3.2), both waves are strongly radi- 

ating in the nonlinear regime. The wave with k — 1 has the growth rate which is almost 

twice as large as that of a wave with k = 0.25 (Fig.5.9). Therefore, the former has a 

tendency to dominate in the development. On the other side, a wave with k = 0.25 is 

more radiating (section 5.3.2). Which of the two waves will dominate the development 
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in the exterior regions? 

The direct mutual feedback between two waves is not possible for our choice of param- 

eters. The situation is similar to Case 2 described above, in which neither of secondary- 

harmonics created in the course of nonlinear development can directly affect primary 

modes. However, some differences should be anticipated. First, the shortest primary 

wave with k = 1 is capable of significant radiation, unlike Mode 2 for k = 1.5 in Case 

2. Second, both secondary harmonics "0.75" and "1.25" produced by the interactions 

between primary modes are shorter than the longest primary wave with k = 0.25. In 

contrast, one of the secondary harmonics in Case 2, namely component "0.5", is the 

longest in a set and dominates the radiative response in the far-field. Which component 

is the most energetically significant in the far-field in Case 3? 

To answer these questions, we first present the 2D contour plots of the total stream- 

function V(y) + ip(x,y) in Fig.6.8. The evolution of the structure of the solution is very 

different from Case 1 and Case 2 (Fig.6.1 and Fig.6.4). The radiation starts as early as 

t = 32 and is in the form of isolated eddies of various forms, unlike either of Case 1 or 

Case 2 in which the radiating response is i-independent initially. 

By the end of numerical experiment at t = 64, the radiated eddies fill the entire 

numerical domain which is 50 times as large as the width of the jet itself. The orientation 

of these eddies is different from that in either of previous cases described in this chapter. 

In fact, eddies are elongated in the direction nearly perpendicular to the jet axis for 

y > 0. The eddy axes to the south from the jet are tilted relative to both the jet axis and 

the latitude circles. The complicated structure of the solution indicates the importance 

of several z-wavenumbers. 

We now proceed with the detailed analysis of the structure of the solution and show 

the Fourier coefficients in Fig.6.9. The evolution of component "1" is very similar to that 

in the case with a single Mode 1 (Fig.5.13). The radiation of this component starts at the 

same time (t = 40) immediately following the radiation by component "0". The exterior 

part of component "1" later reaches amplitudes that are as large as in the case with a 
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Single Mode 1 (section 5.4.1). The development of component "1" seems to be very little 

affected by the presence of the long component "0.25", which does not directly influence 

the former. 

In contrast, component "0.25" develops differently in Case 3 compared to the case 

with a single Mode 1 for k = 0.25 (section 5.4.2, Fig.5.17). The structure of component 

"0.25" is identical in both cases until t = 16. Although, component "1" does not directly 

influence component "0.25", a smaller portion of the total energy is available for the 

development of the latter because of the rapid growth of component "1". As a result 

the amplitude of the component becomes smaller in Case 3 than in the case with a single 

mode for t > 40. 

Another very interesting property of the development in Case 3, is the very energetic 

component "1.25" that is a harmonic created by the nonlinear interactions between two 

primary modes. The amplitude of this component becomes larger than the amplitudes 

of both the primary modes by * = 64 in the jet region. The harmonic also has a well- 

pronounced symmetric component there, which suggests at the possible excitation of 

Mode 2 with k = 1.25. As we recall from chapter 5, the nonlinear interactions of nearly 

antisymmetric Mode 1 create harmonics that are almost antisymmetric as well. 

We now consider the values of E^/K. plotted in Fig.6.10. Component "0.25" is 

weakly trapped initially which is reflected in the high values of E0.25/Ke at the beginning 

of the numerical experiment: 11 percent at t = 8. The number then starts to decrease 

indicating rapidly growing importance of other components in the external regions. The 

decrease is especially sharp after t = 24; E0.25/Ke is only 3 percent during the second half 

of the experiment. The contribution of component "0.25" to the energy in the exterior 

regions is surprisingly small in comparison to 18 percent in section 5.4.2, Fig.5.18. 

Simultaneously with the decline of the importance of component "0.25" in the external 

regions, E^fK,. rapidly increases. The ratio reaches 11 percent by t = 64. As we observed 

in Fig.6.9, the second primary component "1" is of approximately the same amplitude 

as component "0.25".   The latter is not suppressed by component "1".   However, since 
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component "1" is shorter in x, it corresponds to larger kinetic energy than a longer 

primary component "0.25". 

The values of E^/Ke for secondary harmonics plotted in Fig.6.10b are very inter- 

esting. In particular, component "1.25", which is created by the interactions between 

two primary components "0.25" and "1", corresponds to the value of the external kinetic 

energy that is as large as .Eo.25- -Ea.25 is more than 11 percent of Ke. The same component 

is also very energetic in the case with a single component "0.25" (see section 5.4.2). 

Other secondary harmonics radiate less than 4 percent of the total energy Ke each. 

However, the radiation in Case 3 is very efficient. Altogether, all components radiate 

almost 45 percent of the total kinetic energy into both the external regions. This number 

is higher than the same quantity in the case with a single wave for A; = 1 but lower than 

in the case with a wave for k — 0.25 (see sections 5.4.1 and 5.4.2). 

We can conclude that although component "0.25" radiates very efficiently when the 

problem is initialized with a single wavenumber k = 0.25 (section 5.4.2), it does not 

dominate the radiating response in Case 3. Shorter waves, that correspond to more 

realistic spatial scales, have amplitudes that are at least as large as those of component 

"0.25". Moreover, the major part of radiated energy corresponds to those shorter scales 

in Case 3. 

6.3     Summary. 

We have considered three types of interactions between different waves that take place 

in the nonlinear development of a set of initially linear waves. All types are modeled by 

the numerical experiments in which the evolution of a pair of linear waves is studied. 

As Case 1 shows, the direct mutual feedback between a radiating wave of Mode 1 and 

a twice as short weakly radiating wave of Mode 2 does not affect the strong radiating 

ability of the former. Mode 1 still dominates the radiating motions in the far-field and 

the radiation is very effective.   However, Mode 1 is suppressed by Mode 2 in the jet 
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region and its amplitude becomes smaller than in the case with a single Mode 1. The 

case models the "direct" interactions between those waves which wavenumbers are such 

to allow secondary harmonics to immediately add to the primary waves. 

In Case 2, direct mutual feedback between two primary waves is not possible because 

of the values of their wavenumbers. Instead, very energetic secondary harmonics develop. 

One of those harmonics is the longest wave in the created set; it is also the most radiating 

component in the experiment. The total perturbation energy is much larger than in Case 

1. 

Unlike the Case 1, Case 2 models the "indirect" interactions between a strongly 

radiating wave of Mode 1 and a weakly radiating short wave of Mode 2. Such interactions 

produce secondary harmonics that do not immediately add to any of primary harmonics. 

The spectrum broadens as a result. Those harmonics that are long in x are capable 

of radiation which is more energetic than the radiation by a primary wave alone. The 

latter fact illustrates the possibility of a cascade of radiating energy into the longer x- 

wavelengths. 

In both Case 1 and Case 2, the radiating field is asymmetric in the cross-jet direction. 

In the northern half-plane, the eddies are elongated in the east-west direction, whereas 

the eddies are parallel to the jet axis to the south from the jet. 

The mutual development of two strongly radiating waves of Mode 1 is considered in 

Case 3. One of the waves is four times longer than the other and radiates more ener- 

getically if considered alone. However, in Case 3 both short and long waves have similar 

amplitudes in the exterior regions. Short wave together with its secondary harmonics are 

associated with the major part of radiated energy. Case 3 models the indirect interactions 

between strongly radiating waves in a set. 

The general dynamical picture of a development of an initially white spectrum of 

linear modes is complex. However, we have observed the general tendency of a spectrum 

of kinetic energy in the far-field to develop a maximum at k ~ 1. In other words, one 

should expect the short waves with z-wavenumber k ~ 1 to be energetically important 
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in the nonlinear development of any broad spectrum of initial conditions. 
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Chapter 7 

Comparison of the results with 

observations. 

In the preceding chapters, we have formulated and solved the problem of stability of 

a nonzonal ocean current. The focus of the research was on the ability of unstable 

perturbations to effectively transfer energy from an energetic mean current into far-field. 

By doing that, we attempted to model the Gulf Stream as an energy source for the eddy 

field in the interior of the North Atlantic Gyre. How relevant are our results to the real 

phenomena observed in the region? 

To answer this question, we need to compare the model predictions of such physical 

values as eddy kinetic energy, Reynolds stresses and etc., to the observed values in the 

region in the North Atlantic. In doing the comparison, we hope to understand to what 

degree the complicated dynamical process of the generation of highly energetic eddy 

fields can be explained by the radiation of energy from the Gulf Stream described by our 

model. 

We cannot claim that our simple model is an accurate representation of the Gulf 

Stream system and instead we are more interested in its ability to capture general dy- 

namic properties in the region. For this purpose, we need to understand what conse- 

quences certain assumptions made in the model have on the results. Below we list those 
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simplifications; one should realize that the main purpose of making them was to make 

the dynamics in the model easier to understand. 

Our nonlinear model is barotropic, therefore we neglect the effects of stratification and 

the movement of the free surface. As was demonstrated in Chapter 4, the addition of the 

second moving layer in the linear problem does not change depth-independent structure of 

the radiating response. Nevertheless, the real Gulf Stream is strongly vertically sheared 

(Halkin and Rossby, 1985; Hall and Bryden, 1985; Johns et al., 1995, etc.) and it is 

therefore still hard to claim that a barotropic model can fully describe the process of 

energy radiation. 

In addition to the unrealistic vertical structure, the horizontal structure of the Gulf 

Stream does not closely match the mean velocity profile chosen for the stability analysis. 

The jet is assumed to be uniform in the along-jet direction which is not the case for the 

Gulf Stream whose transport increases in the downstream direction (Johns et al., 1995; 

Hogg, 1992, etc.) and whose path is not a straight line. As a result of the assumption, the 

vorticity source is required in order to maintain our nonzonal jet within the constraints 

of the QG dynamics. The effects of the downstream dependence of the mean velocity on 

the radiating properties deserve a separate study and it is hard to comment on them at 

this point. 

The cross-jet structure is modeled by a symmetric profile, whereas the Gulf Stream is 

asymmetric in the cross-stream direction. Although the linear results do not qualitatively 

depend on the particular choice of the mean velocity profile (Chapter 3), the quantitative 

dependence of the results on the shear in the mean velocity should be expected. The 

recirculation zones in the basic state are also absent in the model that can affect the 

radiating properties in the problem (Talley, 1983) and further complicate the comparison 

with observations. 

The simplified representation of both the vertical and horizontal structure of the Gulf 

Stream also makes the choice of the appropriate scaling difficult as will be discussed in 

section 7.1. 

156 



The effects of topography are neglected in the model. The model attempts to represent 

the portion of the Gulf Stream after it leaves the Cape Hatteras and before its path 

becomes very complicated due to the strong meandering. The region is characterized by 

the presence of the continental slope that can have a large effect on the results of the 

barotropic model especially to the north from the Gulf Stream, changing the vector of 

planetary vorticity gradient (Hogg, 1988). 

For the comparison with observations, we will analyze the results of chapters 5 and 6 

in which the nonlinear development of either a single wave or a pair of waves is considered. 

The results of all nonlinear computations depend on the initial conditions used in any 

particular numerical experiment. Since the realistic initial conditions are difficult to 

define, we do the comparison for four cases with different initial conditions and look at 

the common dynamical features of corresponding solutions. 

Despite the model simplicity, our hope is that it captures the main features of the 

eddy field, which as we assume is mainly produced by the process of energy radiation. 

In this chapter we look for the supporting evidences of such an assumption. The choice 

of oceanographically consistent with observations scales is discussed in section 7.1. The 

comparison of observed physical fields to those produced by the model is presented in 

section 7.2. 

7.1     Scaling of results. 

As is remarked in the introduction to this chapter, the comparison of our simple barotropic 

model to the real Gulf Stream is not easy because of the simplified vertical and horizontal 

structure of the mean current in the model. We base our scaling on keeping such physical 

quantities as the total transport, the width and maximum velocity of the current as close 

as possible to being realistic. 

For our barotropic model, we need two dimensional numbers: the half-width of the 

jet Ljet, which is defined as a distance from the point of maximum velocity to the point 
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of zero velocity, and the maximum jet velocity U. Those two parameters define the 

spatial scale and scale for velocity correspondently. They also set the advection time- 

scale T = Ljet/U used in the model and non-dimensional planetary vorticity gradient 

ß.LM/U. 

The data for the Gulf Stream are taken from the article by Johns et al., 1995, in 

which the authors report the structure and transport of the current near 68° W using 

SYNOP current meter observations. Velocities are considered in the rotated, downstream 

coordinate frame. 

Based on the cross section of the stream-averaged velocity structure (Figure 9 in the 

article), we can estimate the distance between the point of maximum velocity and the 

southern zero contour to be more than 125 km. We choose Ljet equal to this distance 

although the observed profile is asymmetric and the part of the jet to the north from the 

axis is more narrow than the southern counterpart. We also observe that the assumption 

that the width of the current is depth-independent is rather realistic. 

The next parameter to be estimated from observations is the maximum velocity of 

the barotropic jet in the model. The difficulty is that the Gulf Stream velocity changes 

in the vertical and its maximum value at each depth varies from almost 2 m/s at 50 m 

depth to 0.12 m/s at the depth of 2 kilometers. For the value of U, we choose to average 

these peak values over the depth of 2 km which gives us approximately U = 0.5m/s. 

Before we proceed any further, we need to check if the volume transport in the model 

is reasonably close to the observed value. We point out that our choice of Ljet and U 

does not necessarily result in the realistic value for the transport in the model, because 

the profile chosen for the stability analysis does not closely match the observed one (see 

Fig.7.1). 

The dimensional transport per unit depth can be easily computed in the model to 

yield: 

ULjetj\l-y2fdy = .9UL3et 

Substituting the obtained above values for U and Ljet, we get approximately 56 
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Figure 7.1: Velocity profile chosen for computations. 

Sv/km. We now take the number for the total transport at 68°W from the surface to 

2 km from Table 1 in Johns et al., (1995), and divide the obtained 99 Sv by the water 

column depth. We get 50 Sv/km which is very close to the corresponding value in the 

model. Our choice of dimensional parameters is consistent with the observed value of the 

volume transport. 

We now estimate other parameters used in the model. All values are listed below: 

Ljet = 125km 

U = 0.5m/s    or    A3.2km/day 

T = Ljet/U = 2.9days 

ß = ß.L)jU = .65 

In the numerical experiments analyzed in the following chapter we use non-dimensional 

planetary vorticity gradient equal to either 0.25 or 1. As one can see, ß = .65 falls between 

those values. 

We also keep in mind that the topography in the region can increase the value of 

effective ß; in fact the value is nearly doubled to the north from the Gulf Stream axis 

(Hogg, 1988). 
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7.2     Model-Data comparison 

We are now ready to proceed with the comparison of the model results with the observa- 

tions. The following physical fields are chosen for the comparison: eddy kinetic energy, 

Reynolds stress and the characteristic time scales. We will analyze the model results for 

four cases with different initial conditions and values of ß: 1) Mode 1, ß = 1, k = 1 

(MR1) with initial amplitude 5 times larger than for the case described in section 5.4.1; 

2) Mode 1, ß = 0.25, k = 1 (MR2), section 5.4.3; 3) Case 2 of Chapter 6 (MR3); 4) Case 

3 of Chapter 6 (MR4). a = 30° for all cases. The analysis is performed on the advanced 

stage of nonlinear development during the nonlinear equilibration in the model. We will 

use the notations in brackets for brevity. 

7.2.1     Kinetic energy 

We start with the analysis of the perturbation kinetic energy (PKE) fields. In the next 

four contour plots (Fig. 7.2-7.5), we present the results from our model for all four cases 

(MR1 - MR4). First thing to notice in all four plots is the high values of PKE centered 

in the jet region. The band of high energy (values exceeding 500 cm2/s2) stretched for 

more than 500 km in the cross-stream direction for MR2 and MR3. The high-energy 

band is narrower for MR1 and MR4. The maximum values of PKE reach 1500 cm2/s2 

in the model for MR1, MR2 and MR3. Only in MR4 are the areas found in which PKE 

reaches 3000 cm2/s2. 

The values of PKE decrease away from the jet region. The values of 200 cm2/s2 are 

produced by the model at the distances of approximately 500 km both to the north and 

to the south from the stream axis in all four cases analyzed. The PKE penetration scale 

is slightly longer to the south for MR2. 

Here, we use the article by Richardson, (1983) as a source for data for the comparison. 

In the article, the author used the velocities of the near surface currents in the North 

Atlantic measured by the satellite-tracked drifting buoys to construct kinetic energy 
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MR1: Perturbation Kinetic Energy (100 cmA2/secA2) 
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Figure 7.2:   PKE for MR1.    The dashed contours show low values of the energy (< 
500cm2Is2). The heavy dashed lines show latitude circles. Units are 100 cm2/s2 
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MR2: Perturbation Kinetic Energy (100 cm*2/sec*2) 
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Figure 7.3: As in 7.2 but for MR2 
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MR3: Perturbation Kinetic Energy (100 cmA2fe©c*2) 
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Figure 7.4: As in 7.2 but for MR3 

163 



MR4: Perturbation Kinetic Energy 
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Figure 7.5: As in 7.2 but for MR4 
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Figure 7.6: Upper panel: EKE (cm2s-2) in the North Atlantic. After Richardson, (1983), 
Fig.10. Lower panel: EKE at 65°W. Different curves show the effect of smoothing the 
data and excluding ring observations. After Richardson, (1983), Fig.13. 
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maps. The resulting values of the eddy kinetic energy in the Gulf Stream region are 2 

times as high as those obtained from the ship drift measurements (Wyrtki et a/., 1976). 

The results from the article are reproduced in Fig. 7.6. 

The observed EKE (Fig. 7.6) is generally higher than the PKE in the model. The 

peak values as high as 3000 cm2 js2 are observed in the Gulf Stream region, which are 

twice as high as the corresponding peak values produced by the model. 

The band of high observed EKE with values of more than 1000 cm2/s2 is centered in 

the Gulf Stream axis and has a width of approximately 500 km after the current leaves 

the coast and then broadens to almost 1000 km width (Fig. 7.6; upper panel). If we 

accept the factor of 2 as the overall difference between the observed values of EKE and 

the barotropic PKE produced by the model, we can conclude that the meridional scale 

of the high energy region is reproduced correctly by the model. 

There are a number of reasons for the difference between the observed values of EKE 

and the model results apart from the simplicity of the model. First of all, the data 

describe near-surface values of EKE, whereas the eddy field in our barotropic model is 

depth-independent. The observed EKE in the vicinity of the Gulf Stream significantly 

decreases with depth; for example, the EKE decreases by more than 15 times from the 

depth of 400 m to the depth of 2000 m at 6S°W in the vicinity of the Gulf Stream axis 

(Schmitz and Luyten, 1991; see also the Table 7.1 below). The difference is lower in 

the regions away from the stream. It is not therefore surprising to find the values of 

depth-averaged kinetic energy to be smaller than those observed at the surface. 

Another reason is associated with the difficulty of choosing the correct initial condi- 

tions for our simple model as it was discussed in the introduction to this chapter. The 

level of the PKE produced by a numerical run depends on the amount of the initial 

kinetic energy. We can compare, for example, MR1 and MR3. In the latter case, Mode 2 

is added in addition to a single Mode 1 of MR1. As a result, MR3 corresponds to higher 

values of PKE than does MR1. We, therefore, need to reiterate that we are looking for 

features common to all four cases (MR1-MR4) that have very different initial conditions. 
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Figure 7.7: PKE averaged in the downstream direction for all four cases. Types of lines 
corresponding to the each of four cases are given in the plot. The negative values of y 
correspond to the region to the south from the jet axis. 

The downstream dependence of the mean current is neglected in the model. As a 

result, we cannot expect the model to reproduce the observed downstream increase of 

the EKE related to the increased meander activity. We now look at the distance at which 

PKE penetrates into the regions away from the Gulf Stream axis. 

Our numerical solution is a sum of a number of waves which results in several isolated 

maxima of PKE. As a result, the decay scale of the PKE in the meridional direction is 

difficult to estimate from the 2D contour plots. Instead, we choose to analyze the profile 

of the downstream-averaged energy (Fig.7.7) and estimate the decay scale in the cross- 

stream direction. 

All four cases (MR1-MR4) are shown in the figure. As one can observe in the plot, 

MR2 and MR3 correspond to larger values of the averaged kinetic energy than do MR1 

and MR4. Note also that the maximum i-averaged values are smaller than the absolute 
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maximum values in the 2D plot due to the strong x-dependence of the PKE. 

The approximate distances in the direction perpendicular to the jet axis over which 

the x-averaged PKE e-folds are then computed. One should keep in mind that the jet 

axis is tilted in the model and the cross-jet direction does not coincide with the longitude 

circles. 

The approximate decay scales are as follows ("S" means to the south, "N" means to 

the north): MR1 - 350km (N) and 250km (S); MR2 - 300km (S) and 250km (N); MR3 - 

250km (S) and 250km (N); MR4 - 250km(S) and 200km (N). 

We can summarize the results saying that the model predicts the e-folding decay scale 

of 250-300 km on average. The decay scale to the south from the jet axis (y < 0) is longer 

than to the north (y > 0) for MR1 and MR2; the distribution of x-averaged PKE is more 

symmetric for MR3 and MR4. 

The distribution of the observed EKE shows the good agreement with the model 

results in terms of the spatial decay scales in the cross-jet direction. For example, at 

65°W the energy reaches e-folding at larger than 320 km from the axis to the south and 

less than 280 km to the north (Fig. 7.6). The less rapid decay in the EKE to the south 

from the stream axis is reproduced by the model results MR1 and MR2. The ability 

of our simple model, that attempts to study the energy radiation in the cross-stream 

direction, to reproduce the observed meridional decay scale of EKE is encouraging. 

7.2.2     Reynolds stress. 

The next dynamical quantity to be analyzed is the off-diagonal Reynolds stress compo- 

nent uv. In the model, we consider the process of radiation in the rotated coordinate 

frame. Although the orientation of the coordinate frame does not affect the values of 

PKE, the values of uv do depend on the orientation of x- and y axis. We therefore 

choose to define the uv in the conventional, non-rotated coordinate frame. The velocity 

components in this frame are defined as: 

u = —tpycosa — ipxsina,    v = —ijjysina + ifixcosa 
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where if) is the streamfunction in the rotated coordinate frame used in our model. 

The results for four cases MR1-MR4 are presented in Figs.7.8 - 7.11. The first thing 

to notice is the fact that uv is not of a definite sign in each of the northern and southern 

half-planes. That is, both negative and positive values are found either to the north and 

to the south from the jet axis for all four cases. The uv is mostly negative at the distance 

more than 300 km to the north from the jet axis for MR3 and MR4. 

The results are qualitatively different from those in the problem in which radiation 

from a zonal meandering boundary is studied (Malanotte-Rizzoli et al, 1987b; Hogg, 

1988; Bower and Hogg, 1992, etc.). The zonal model predicts negative values of uv to 

the north from the jet and positive values to the south. The reasons for the difference 

with our model are the following. 

If a radiated Rossby wave propagates from a zonal current to the south, its y- 

component of the group velocity is negative, which implies kl < 0. The uv is proportional 

to -kl and is therefore positive. A similar argument gives negative uv to the north from 

the stream axis. 

If a wave carries energy to the right from the downstream direction of a current which 

axis is tilted horizontally, the y-component of the group velocity in the rotated coordinate 

frame is negative. However, the group velocity can have either negative or positive 

component in the meridional direction. Therefore, kl in the nonrotated coordinate frame 

is either negative or positive, making the resulting uv either positive or negative. 

In addition, the radiated field in our model does not consist of pure plain Rossby 

waves. Rather, the disturbances decay away from the jet region and their amplitudes 

strongly depend on time throughout the whole development. Furthermore, nonlinear 

effects of wave-wave interactions between different Fourier components of the solution 

alter the solution from the linear wave-like form. 

Another important property of the obtained uv maps is the wide bands of the high 

values (> 100 cm2/s2). In particular, for MR1 and MR2, the regions with high values 

extend to the 700 km to the south from the jet axis. The analogous penetration scale to 
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Figure 7.8: tiu for MR1. The solid contour lines show positive values; the dashed contour 
lines show negative values. The heavy dashed lines show latitude circles. Units are 100 
cm2/s2 
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MR2: Reynolds stress (100 011*2/560*2) 
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Figure 7.9: As in 7.8 but for MR2 
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MR3: Reynolds stress (100 0111*2/590*2) 
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Figure 7.10: As in 7.8 but for MR3 
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MR4: Reynolds stress 
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Figure 7.11: As in 7.8 but for MR4 
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Figure 7.12: Observed values of uv in cm2/s2 after Freeland et al., (1975), Table 1. 

the north from the stream axis is shorter: less than 400 km. 

For the comparison with the data we first turn to Freeland et al, (1975). Neutrally 

buoyant SOFAR floats are used to measure the currents at 1500 m depth in Sargasso 

Sea; the statistical behavior of the floats is reported in the article. The reported results 

include second moments of velocity (u2, v2 and uv) and phase propagation patterns. 

For the present purposes, we look at the values of uv computed by averaging over 

all floats passing through 1° squares (Table 1 in Freeland et al, (1975)). The presented 

numbers (Fig. 7.12) give us an idea about the distribution of uv with longitude in the 

region far from the Gulf Stream axis (more than 700 km from it). In addition, the 

amplitude of the first baroclinic mode is likely to be smaller at the 1500 m depth than 

it is at the surface; the barotropic component may then be better pronounced in data at 

this depth. 

The first thing to notice is the fact that the observed values are lower in magnitude 

than those predicted by the model; the reason is that the observed values correspond to a 
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Figure 7.13: Values of u'v' for Western North Atlantic (solid line, ordinate scale on left) 
at $h°W at 4000 m depth. After Schmitz (1982), Figure 1. 

considerable depth of 1500 m. The predicted by our model values of uv, which represent 

the eddy field averaged over the upper 2000 m can therefore exceed the observed values 

at depth. 

The sign of uv is a more convenient property for the comparison. In the general 

agreement with the model results, we observe mostly negative values at 30°N and values 

changing their sign and being smaller in magnitude for 29° JV and 28°iV in Fig.7.12. 

The uv changing sign to the south from the Gulf is also observed at greater depth, 

at 4000 m (Bower and Hogg, 1992). A number of current meter datasets from the large 

area in the North Atlantic is used for the analysis in the article. The alternating negative 

and positive values are reported everywhere in the North Atlantic. 

An attempt to account for the effects of topography in the region is then made and 

the uv is recomputed in a coordinate system aligned with the ambient potential vorticity 

gradient at each location. As a result of such transformation, values to the north from 

the current where topography is the most important, become mostly negative in the 

agreement with the predictions of the linear zonal model in Hogg (1988). However, 

values to the south from the Gulf Stream axis remain negative at many locations. 

The horizontal dependence of the observed uv can be estimated from Schmitz, (1982) 

175 



(reproduced in Fig. 7.13). We find the regions of high values within approximately 700 

km to the south from the Gulf Stream axis and less than 400 km to the north from it. 

As one can see, the model captures this aspect of the latitude dependence correctly. The 

observed uv also has a minimum in the magnitude at the stream axis. However, despite 

the fact that some zero contours cross the jet axis in Fig.7.8 - 7.11, the minimum in the 

magnitude is not well-pronounced in our results. 

7.2.3    Time scales. 

We now focus on the analysis of the time scales of the eddy motions produced by our 

model. In the linear theory, it is fairly straightforward to determine what time scales 

any particular linear solution corresponds to. In fact, linear theory provides two different 

time scales for a linear wave of the form Re e"itek(x~Crt)<f>(y)\: e-folding time scale I/o;,- 

which if divided by two defines the time interval over which the energy of a wave increases 

by e, and the period of the phase oscillations 2-K jkcr. 

Both time scales vs. corresponding wavelengths for two linear modes are shown in 

Fig. 7.14. As one can see in the figure, both the time scales are different for either of the 

modes. In particular, periods tend to be much longer than the e-folding time scales for 

the long waves of both the modes. 

We now briefly compare some facts that can be deduced from the figure to the data 

taken from the article by Pickart (1995). In the article, an inverse ray tracing model 

is applied to observations of 40-day Rossby waves near the Cape Hatteras. The results 

strongly suggest that such waves are radiated by the Gulf Stream in the region 710—72°W. 

The radiation is well-correlated with the bursting 40-day meanders that have a typical 

wavelength of 370 km. 

The most important fact to notice from Fig. 7.14 is that the most unstable wave in the 

problem (corresponding to the minimum of the e-folding time scale) has the wavelength 

of 390 km which is remarkably close to the observed most unstable wavelength (370 km). 

The wave has a period of 35 days and therefore can be identified with the 40-day waves 
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Figure 7.14:   Period of phase oscillations (solid lines) and e-folding time scale (dashed 
lines) vs. wavelengths for Mode 1 and Mode 2 of the linear problem, ß = 1 and a = 30°. 
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to which the Gulf Stream is particularly unstable (Pickart, 1995). 

One needs to realize that the nonlinear results are more relevant to the observations. 

It is in the finite-amplitude regime when the radiation for all wavelengths begins. As we 

observed in Chapter 5, both the linear time scales change significantly in the course of 

the nonlinear evolution. In particular, the growth rate of the kinetic energy slows during 

the nonlinear equilibration (sections 5.2-5.4); the phase propagation speed also changes 

by the beginning of the radiation in the agreement with the phase speed condition (see 

section 5.4.1). 

However, the structure of the nonlinear solution is more complicated than that of a 

linear wave. To deduce the prevailing time scales, we choose to analyze the spectral time 

scales. That is, we look at the distribution of the Power Spectral Density (PSD) computed 

for the time series of spatially integrated PKE. The MATLAB routine spectrum is used 

for computing the PSD; the procedure involves dividing the time series into overlapping 

sections, each of which is detrended and windowed by a Hanning window. The results 

for cases MR1-MR4 are presented in the variance-preserving form in Fig.7.15. 

Several features of the spectra are evident in the figure. All spectra have a simple 

form with a single maximum. The spectra peak at the following periods: MR1 at 50 days; 

MR2 at 70 days; MR3 at 40 days; MR4 at 80 days. The spectra are red in the short- 

period (high frequency) part for all cases and are slightly more white in the long-period 

(low frequency) part especially for MR2 and MR4. We now compare the general shape 

typical for all spectra computed and make the comparison with the analogous spectra 

obtained from the data in the North Atlantic. 

For the data source, we use an article by Schmitz and Luyten (1991) in which the 

authors use several current meter records from different locations in the world's ocean 

to compute the shape of the spectrum for low-frequency fluctuations. The spectrum is 

divided into three broad frequency bands: high frequency (period of 2 to 20 days), eddy 

scale (20 to 150 days) and secular scale (150 to twice the record length). The portion of 

the kinetic energy that is contained within each of the three bands is reported. 
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Figure 7.15: Power Spectral Density computed for the time series of PKE for four 
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mooring depth (m) Secular (%) Mesoscale(%) HF (%) Total EKE 
771 400 48 42 19 1059 

700 47 41 12 321 
2000 33 54 13 69 

780 500 38 51 11 527 
1000 39 53 8 161 
1500 34 54 11 141 

784 500 23 65 12 470 
1500 27 66 7 68 

788 148 18 62 20 322 
448 20 69 11 198 
998 24 69 7 42 

Table 7.1: After Schmitz and Luyten (1991). 

We now notice that the Nyquist frequencies of the time series of PKE in the model is 

too low for the detailed comparison of our results with those reported in the article for 

the high frequency band (Fig.7.15). Nevertheless, the comparison of the general form of 

the spectra is still possible if we assume smooth continuation of any of the four spectra 

in Fig.7.15 into the high frequency (HF) band. 

For the comparison, we choose four moorings in the North Atlantic: mooring 771 

at 37.6JV 68W (Fig. 15 in the article), mooring 780 at 60^ in the proximity to the 

Gulf Stream axis (Fig. 16), mooring 784 at 36.5iV 63W (Fig. 17) and mooring 788 at 

34N 70W (Fig. 18). The percentages of the total energy corresponding to each of the 

frequency bands are listed in the Table 7.1 for several depths. 

The EKE associated with secular and mesoscale bands are close in value at moorings 

771 and 780, which both are located on the Gulf Stream axis. In contrast, the HF band 

corresponds to much lower EKE at both moorings. In fact, the EKE associated with 

secular band is larger than that of the HF band for all four moorings considered. This 

general "redness" of the spectra is represented well by model results MR1 and MR4. 

The spectra at moorings 784 and 788, which are located to the south from the Gulf 

Stream axis are sharply peaked at the eddy band. We now notice that all four spectra 

MR1-MR4 produced by our model resemble the spectra at moorings 784 and 788 in this 
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regard: All of them to have peaks at the time scales from 40 to 80 days, as is discussed 

above. The ability of our simple model with the energy radiation to reproduce the general 

shape of the EKE spectrum in the regions away from the Gulf Stream is encouraging. 

7.3     Summary 

An attempt to compare the results of our simple model to the observations in the North 

Atlantic is made in the chapter. In doing the comparison, we keep in mind the limitations 

of the model and its inability to reproduce the observed dynamical fields in detail. How- 

ever, several general dynamic features of the observed phenomena in the North Atlantic 

are captured by the model convincingly well. 

Three physical quantities are chosen for the comparison. First, the perturbation 

kinetic energy is compared to the eddy kinetic energy observed in the North Atlantic. 

The level of PKE in the model appears to be close to the observed one despite the 

limitations of our simple model. The spatial decay scale in the cross-stream direction 

is reproduced remarkably well by the model. The model prediction of 300 km for the 

e-folding scale is supported by observations. 

The distribution of uv is then analyzed. The model does not require this quantity to 

be of a definite sign in each of the regions to the south and to the north from the stream. 

Rather, the alternating positive and negative values are produced in a general agreement 

with observations. As for the PKE, the horizontal spatial decay scales are realistic in the 

model. 

The analysis of the time scales completes the chapter. The most unstable linear dis- 

turbance predicted by the model has a realistic frequency and wavelength. The spectral 

power density for the time series of the kinetic energy for nonlinear solutions is then 

considered. The analyzed spectra are sharply peaked at the periods from 40 to 80 days 

and have shapes that resemble the observed spectra in the regions to the south from the 

Gulf Stream axis. 
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Chapter 8 

Conclusions. 

The present study concerns the ability of a nonzonal ocean current to support unstable 

disturbances that are not spatially trapped to the current, but rather are of radiating 

nature. These radiating instabilities can effectively transfer the kinetic energy of the 

basic current initially localized in space, into the regions remote from such an energy 

source. An energetic eddy field can be induced in the far-field as a result. 

Two main issues are addressed in the study. The first is the difference in radiating 

and stability properties between a zonal and nonzonal flow. The second is the effects 

that nonlinear interactions have on the radiating properties of a solution in the finite- 

amplitude regime. 

A simple QG model with a nonzonal current as a basic state is used in the study. 

Most computations are performed for a barotropic ocean. The work consists of two major 

parts: linear theory and nonlinear computations. The main findings are listed below and 

divided in the two parts accordingly. 

Linear theory. 

The dynamical properties in the linear model with a nonzonal basic current are differ- 

ent from those in a conventional model with a zonal flow. The differences in the stability 

properties can be illustrated by the example of the derived sufficient condition for the 

absence of any stable solutions for a nonzonal flow (see section 2.2 for details).   The 
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criterion becomes a conventional sufficient condition for stability if the stream axis is 

made zonal. 

The vulnerability of a nonzonal current to radiation can be anticipated from the new 

form of the phase speed condition. This widely used criterion for radiation requires the 

possibility of the coupling between an unstable disturbance and a free Rossby wave. If a 

mean current is nonzonal, the phase speed condition allows the downstream propagating 

disturbances to be radiating. In contrast, such coupling between downstream propagating 

disturbances and westward propagating Rossby waves is not possible for an eastward 

zonal flow. 

The fast exponential growth of linear unstable solutions generally leads to their strong 

spatial trapping to the basic current. Therefore, the task of determining if a growing 

disturbance is truly evanescent or its radiating nature is simply disguised by the effects 

of the fast growth, is difficult in the linear problem. The only way to distinguish between 

those two types of solutions is to consider the limit of the vanishing growth rate. If in 

this limit a solution becomes purely wave-like in the far-field, we classify it as radiating. 

The detailed stability analysis confirms our expectations that a nonzonal current is a 

more radiating basic state than a zonal flow. Slowly growing long waves are radiating if 

the current axis is tilted horizontally, whereas all solutions for a zonal flow are spatially 

trapped. The radiation is observed as long as the angle of the tilt is nonzero. The energy 

equation for radiating solutions becomes a balance between the energy conversion term, 

that transfers the energy from the basic state to the growing perturbations and the flux 

terms, that carry energy into the far-field. 

The addition of a second moving layer does not change the structure of the radiating 

solutions. In fact, the depth-averaged part of the solutions is still radiating, whereas 

the baroclinic part is trapped to the jet region. The barotropic energy conversion term 

dominates over the baroclinic term, making the radiation essentially a barotropic process. 

Nonlinear studies 

The radiation of short waves that are strongly linearly unstable and trapped during 
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the initial stage of development, takes place during the nonlinear equilibration in the 

model with a nonzonal current. The fast initial growth of those waves, which is the main 

cause for their spatial trapping, slows significantly during the equilibration and a solution 

starts to expand in the cross-jet direction. 

As in the linear problem, the difference in the radiating properties between a zonal 

flow and a nonzonal current is large. The radiation by the zonal flow is weak and takes 

place as a result of the transient growth of secondary instabilities in the model. In 

contrast, the radiation is robust and very energetic if the horizontal tilt is different from 

zero. 

We initialize the model with either a single linear mode or a pair of unstable waves. 

A wide spectrum of secondary modes is generated in the course of nonlinear develop- 

ment, in addition to the primary modes, as a result of wave-wave interactions. All these 

components become radiating when they reach finite amplitude. The radiation typically 

starts in the form of the ^-independent component that represents the change in the 

x-averaged momentum. The other harmonics in x follow; they extend into the regions 

remote from the axis of the basic current resulting in the complex spatial structure of 

the radiating response in the far-field. 

Although the details of the development depend on the initial conditions used in any 

particular numerical experiment, the transfer of energy is effective in all cases. A large 

portion of the perturbation kinetic energy is contained in the far-field by the end of all 

numerical experiments described in the present work. 

The consideration of several parameters allowed us to conclude that the strength of 

radiation is mainly controlled by the value of the horizontal tilt. Therefore, it is the 

nonzonal orientation of the basic current axis that is a key factor in the new discovered 

mechanism for radiation. 

Despite its simplicity, the model successfully reproduces some observed phenomena in 

the North Atlantic. In particular, the general features of the horizontal structure of the 

observed eddy kinetic energy and Reynolds stress are captured correctly by the model. 
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These results stress the possibility to describe the eddy variability in the North Atlantic 

interior as being in large part remotely generated by the Gulf Stream. 

Following a series of similar studies, the presented work emphasizes the importance 

of the energy radiation from boundary currents as one of the main mechanisms for the 

generation of eddies in the oceanic interior. As it is demonstrated by the results, taking 

into account such dynamical features of the structure of radiating basic states as their 

nonzonal orientation can enhance the mechanism. Further elaboration of the models with 

radiating basic states should include more realistic downstream and vertical dependence 

of the basic current. 

Two main results of the present research provide some guidance for the use of ocean 

general circulation models. First, the correct representation of thenonzonal orientation 

of the Gulf Stream leaving the coast is crucial for the reproduction of the large-scale 

distribution of eddy kinetic energy in the North Atlantic. Second, the importance of 

the non-local mechanism for the eddy generation calls for the revision of some existing 

techniques for the eddy parameterization in coarse resolution models. 
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Appendix A 

A.l    Dispersion relation for the two-layer top-hat 

profile 

The solution consists of the sum of four waves AnellnV in the internal region (n = 3,4,5,6) 

and two waves of the same form in each of the external regions: y < — 1 (n = 1,2) and 

y > 1 (n — 7,8). The application of the jump conditions 4.6, 4.7 results in the linear 

problem: 

DA = 0, 

where A is a 8 by 1 amplitude vector, and D is a following 8 by 8 matrix: 
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f     -e~ih          -e~ih         e~il*        e~il*        e~
ili        e~il* 0                0        > 

0                   0               eili           eil*          e*'6           e1'6 
-eih          -e* 

-he-ih        -l2e-l>       l3e~il>     l4e~il*     /„«>-*      /6C-a. 0                0 

0                   0             Z3e*        Ue*        l5e
il*        l6e

il* -l7eih       -l8e
il° 

-c?l\e-^    -c2l2e-il*   B3e~il>   B4e~^   Bse-a'    B^ 0                0 

0                  0            B3e
ü*     B4e

ü*     B5e
ü*      B6e

tl* ~c2l2^    -c2lleil> 

-Eie-^     -E2e~il*    C3e-
il>    C4e~il*    C5e~ü>    C&-** 0                0 

K         0                   0            C3e
a»      C4e

ü*      C5e
il*      C6e

a* -E^     -E8e
il*  ) 

where 

Bn = c2l2
n-c(k2 + l2

n)-ß2+ßl^ 
k 

Cn = £c(l - c) + t*J±(2c - 1) + ln(c(k2 + F) + ß2 ~F) + cF) 

En = -l3
nc

2 + l^2c. 

The dispersion relation c = c(k; F,ßx,ß2) is found numerically from solving the non- 

linear equation deiD = 0 using the modified Newton Method. 
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A.2     Continuous jet: numerical method 

A.2.1    Barotropic problem 

The method of solution involves writing the problem in the finite interval: — 1 < y < 1. 

Since the form of the solution in the external regions is known for us, 4>(y) = Aelly, from 

the continuity of the solution at y = ±1 we can derive the following boundary conditions: 

4>y — iht4<f> = 0        at       y = :f 1 

/ii4 is defined by (3.1) with the appropriate choice of the sign of an imaginary part 

satisfying the condition of the spatial decay at infinity (7). In other words, Imag(li) < 0 

and Imag{l^) > 0. 

Then, we can use the Shooting Technique. We start from an initial guess of c, and in- 

tegrate the equation (2.6) from -1 to 1. Function F(c) = (<f>y — il4<f>)\y=i is our discrepancy 

function and we find value of c that makes F zero using initial guess improvement, 

until the desired accuracy is met. The derivative dF/dc is computed numerically: 

dF(c) _ F(c + 8c) - F(c) 

dc 8c 

A.2.2     Two-layer problem 

Solution now consists of the sum of two waves in the each of the external regions: A\eillV + 

A2e
tl2V in y < —1 and yl7elfrv + A$ell*v in y > 1 (the notation is kept the same as in 

appendix A). From the continuity of the streamfunction and its first derivative in both 

layers we can derive boundary conditions for the problem in a finite interval: 

Fi = (Zi,r - /2,8)^ + MKhrh,s - K2,&lij) + i<t>2V{KXj - K2fi) = 0 

F2 - (h,7 - l2,&)<f>ly + i<f>2{Klt7 - K2,s)h,7k,H + <j>2y{K2ßl2fl ~ #1,7*1,7) = 0 
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at y = -1, +1; where Kn = (c(k2 + £ + F) + ß2 - FU - ßJJkycF. K = ±1 in the 

external regions( U = 0). ' 

For the solution of the stated problem we use Shooting Technique described above. 

We pick two unknown values: c and 7 = cf>2y at y = -1. We normalize the solution 

choosing 4>2{-l) = 1. Next, we compute &(-l),&„(-l) from the boundary conditions 

at V = — 1 and integrate (4.3). We improve our guess, using 

/ 

V7 
y=i 

where 

(  3Jl|y=l     3F2|V=1   \ 
3c 

J = 
ac 

\ 07 97 / 

All derivatives in matrix J are computed numerically. Iterations are repeated until 

the desired accuracy is met. 

For the portion of the dispersion curve for the Mode 2 the integration was performed 

from y = 1 to y = —1. 

A.3     Open boundary conditions 

For the open boundary conditions we use the modified Orlanski boundary conditions 

(5.3). For the finite-difference form, we first write (5.3) with unknown propagation speed 

c (Blumberg and Kantha, 1985): 

T + ^K+A-2)-^ </< 
t-2 
N 

(A.l) 

The index N represents a grid point on the open boundary. The upper sign in the double- 

sign expressions corresponds to the boundary on the right and the lower sign corresponds 

to the boundary on the left, z-dependence is omitted form all expressions in this section. 
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The next step is to determine the propagation speed c. To do that, we write the above 

expression now for a grid point neighboring to the boundary iV qp 1, rather than at the 

boundary itself, and without the dumping term. We get the expression for c (Orlanski, 

1976): 

V'Wi ~ rögi        Av (A2) 

§(v>Wi+^i)-v^2
2Ai 

As is pointed out in Orlanski (1976), we need also to make sure that the disturbance 

propagates to the boundary. Therefore, c should be set to zero if the expression A.2 gives 

negative number for the right boundary and positive value for the left boundary. 

The above conditions have proved to work very well for most cases in our model. 

The experiments show in particular, that open boundary conditions result in much less 

reflection than if sponge layers were used. 
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A.4    Parameters used in the numerical experiments. 

Single wave oc ß k ■"■initial ttotal At Ny Ay Nx Ax 

Mode 1 0 1 1 .013 96 .005 600 .05 65 .1963 

Mode 1 5 1 1 .013 72 .005 600 .05 65 .1963 

Mode 1 30 1 1 .013 72 .005 600 .05 65 .1963 

Mode 1 30 1 .25 .058 96 .0016 1000 .05 65 .3927 
Mode 1 30 .25 1 .058 112 .005 600 .05 65 .1963 

Mode 2 30 1 
.... 1.8 .055 52 .0025 400 .1 65 .2182 

Pair of waves 

Mode 1 

Mode 2 

30 1 1 

2 

.067 

.028 

52 .0016 800 .05 _65 .1963 

Mode 1 

Mode 2 

30 1 1 

1.5 

.067 

.045 

52 .0016 800 .05 65 .1963 

Mode 1 

Mode 1 

30 1 .25 

1 

.055 

.014 

64 .0016 1000 .05 129 .1963 

■ 
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