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Abstract

This thesis addresses the question of how a highly energetic eddy field could be gen-
erated in the interior of the ocean away from the swift boundary currents. The energy
radiation due to the temporal growth of non-trapped (radiating) disturbances in such a
boundary current is thought to be one of the main sources for the described variability.
The problem of stability of an energetic current, such as the Gulf Stream, is formulated.
The study then focuses on the ability of the current to support radiating instabilities
capable of significant penetration into the far-field and their development with time.

The conventional model of the Gulf Stream as a zonal current is extended to allow
the jet axis to make an angle to a latitude circle. The linear stability of such a nonzonal
flow, uniform in the along-jet direction on a beta-plane, is first studied. The stability
computations are performed for piece-wise constant and continuous velocity profiles.
New stability properties of nonzonal jets are discussed. In particular, the destabilizing
effect of the meridional tilt of the jet axis is demonstrated. The radiating properties
of nonzonal currents are found to be very different from those of zonal currents. In
particular, purely zonal flows do not support radiating instabilities, whereas flows with
a meridional component are capable of radiating long and slowly growing waves.

The nonlinear terms are then included in the consideration and the effects of the
nonlinear interactions on the radiating properties of the solution are studied in detail.
For these purposes, the efficient numerical code for solving equation for the QG potential
vorticity with open boundary conditions of Orlanski’s type is constructed. The results
show that even fast growing linear solutions, which are trapped during the linear stage of
developement, can radiate energy in the nonlinear regime if the basic current is nonzonal.
The radiation starts as soon as the initial fast exponential growth significantly slows.
The initial trapping of those solutions is caused by their fast temporal growth. The new
mechanism for radiation is related to the nonzonality of a current.
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Chapter 1

Introduction

Eddy energy increases by orders of magnitude while moving from the Eastern Atlantic
and from the equator to the North-West of the North Atlantic Gyre (Wyrtki et al.,
1976; Richardson, 1983; Wunsch, 1983), in which region the eddy field varies in relative
intensity. The ratio between eddy energy and mean energy is between 1 /2 and 1 in the
Gulf Stream region increasing to about 20 - 40 in the central portion of the gyre (Wyrtki
et al, 1976). This raises the question how such a highly energetic eddy field could be
generated in the interior of the ocean away from the swift boundary currents.

The most direct mechanism of the eddy formation might be the instability of the
mid-ocean. Gill et al., (1974) demonstrated that the potential energy stored in the
ocean modeled by the simple two-layer model is sufficient to produce the eddy field with
velocities larger than the gyre values. However, whether or not this energy can be entirely
released into the eddy motions is a more complicated question. Some numerical studies
of the stability of a horizontally uniform baroclinic flow suggest that the eddy energy
corresponding to the scales longer than the Rossby deformation radius can exceed the
background energy (Larichev and Held, 1995; Held and Larichev, 1995). In contrast,
existing theoretical evidence suggests (Pedlosky, 1975) that the mean ocean velocity is a
bound for the eddy velocity produced by the baroclinic instability of the oceanic interior.

One needs to examine the alternate sources of the eddy energy in the interior of the

15




ocean gyres. Very energetic currents such as the Gulf Stream in the North Atlantic are
the most likely candidates for energy sources. Some facts support this idea. As shown
in Halkin and Rossby (1985) and in Rossby (1987), approximately 2/3 of the kinetic
energy in the interior is attributed to the meandering Gulf Stream, leaving the rest of
the variance to the mesoscale eddy field. Hogg (1994) confirms that the velocity variance
is significantly (by 1/3) reduced when the process is viewed from the reference frame
aligned with the Stream itself.

The above evidence leaves the Gulf Stream as the possible origin of the eddy variability
in the north-western part of the Atlantic. Nevertheless, the mechanism of the eddy energy
penetration into the interior of the gyre is not well understood.

Several approaches to this problem have been tried in the past. Some studies consider
a boundary forced problem, in which the effect of the Gulf Stream meandering is modeled
by the time-dependent boundary. This method allows us to avoid the difficulties of
choosing a realistic mean velocity profile and discussing the dynamics of the stream itself
and makes all results relatively simple to analyze.

A steady propagating northern boundary is considered by many authors starting from
the early results by Flierl and Kamenkovich (1975) and Pedlosky (1977). The former work
considers both moving zonal and western boundaries. In the latter work, the effect of
the mean velocity field is also studied.

The form of the boundary is modified by Malanotte-Rizzoli et al., (1987a) to include
the case of a pulsating meander that allows, more readily, radiation of energy into the
interior. On the (-plane, without topography, radiation is found to be possible only if
the pulsation frequency is below the critical value. Topography in the form of a simple
parabolic relief does not change the process qualitatively. The problem is studied in the
periodic zonal channel.

Hogg (1988) makes a statistical extension of the transient meander model, focusing
on the far-field response. He found that in the case of a zonal jet, meander activity

must vary in the x-direction and have growth and decay periods. If both ingredients
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are present, the energy is transferred from the forcing to the interior motions and the
induced mean circulation in the far-field has realistic meridional distribution of eddy
kinetic energy. The observed Reynolds stress maps to the north from the Gulf Stream
(Bower and Hogg, 1992) show good agreement with the results of Hogg (1988).

The extension of the studies of the radiation by the pulsating meanders to the highly
nonlinear regime is made by Malanotte-Rizzoli et al., (1987b). Two boundary functions
are considered: a stationary pulsating meander and a slowly propagating meander. The
first type of forcing can produce highly nonlinear, isolated dipoles. In the second case, the
resonance mechanism in the presence of topography is effective in producing nonlinear
eddies.

As it is demonstrated in Rizzoli et al., (1995), the nonlinear interactions between the
forced radiating wave and a free wave in the interior can produce circulation patterns that
are consistent with observations. The strength of recirculation is realistic if a bowl-shaped
topography is introduced. The study demonstrates the effectiveness of the energy transfer
by radiating waves. The topography in the model allows coupling between meanders and
topographic Rossby waves. The supporting evidence for this mechanism for radiation is
presented in Pickart (1995) where the analysis of the 40-day topographic Rossby waves
observed to the north from the Gulf Stream is performed.

The above cited studies provide us with an important mechanism of energy radiation
from energetic ocean currents. However, the imposed boundary forced problem does not
show whether the radiation is dynamically consistent with the dynamics of the stream
itself. In this sense, such studies do not provide a complete dynamic picture of the
process.

We consider here a different approach to understanding the structure and the origin of
eddy variability and consider the unstable modes of the Gulf Stream viewed as a steady
current. Talley (1983) followed this idea and focused her research on instabilities that
are very weakly trapped to the current. Although, in the linear sense, these instabilities

possess growth rates that are smaller than those of the strongly trapped modes, she pro-
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posed that the non-trapped solutions are dominant in the far field. Unlike the previously
cited boundary-forced studies, Talley assumed that the growth of the trapped meander-
type disturbances does not directly cause the radiation of energy by the non-trapped
disturbances.

Talley (1983) found that zonal eastward parallel flows have difficulty radiating plane
waves. Only zonal jets with some westward components (purely westward, eastward
with westward undercurrent, or westward sidelobs) were found to be capable of radiating
energy. The possibility of Rossby waves radiation by westward frontal jets is confirmed
by some available observations. For example, the wave-like oscillations with north-west
to south-east orientation found in the southeastern North Atlantic are believed to be the
signature of radiating Rossby waves generated at the Cape Verde frontal Zone (Spall,
1992; Spall et al., 1993).

The nonlinear evolution of radiating waves is not considered in Talley (1983).

1.1 Nonzonal current.

One of the most important decisions in the model is the form of the mean current
itself. The main task is to choose the simplest possible model and yet not lose important
features. In many studies, steady purely zonal flows are considered which are found non-
radiating in many studies (Pedlosky, 1977; Talley, 1983). It seems important to explore
other possibilities in which an ocean current can radiate. In the present study we want
to consider the effect of nonzonality of the jet on the stability and radiating properties
in the problem.

Some observed facts support this idea. The portion of the Gulf Stream (in Iselin’s
definition) between Cape Hatteras and the New England Seamounts is characterized by
high values of the eddy kinetic energy (Wyrtki et al., 1976; Richardson, 1983). The axis
of the Gulf Stream in this region makes an angle of 30 - 40 degrees with a latitude circle.

An obvious question arises. How different is the dynamics of the zonal jet from the
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more general case of the flow with a meridional component? The linear stability of the
mean state in the form of the purely zonal current has been investigated in detail during
the last decades, for example by Pedlosky (1964). However, the results are not simple for
most mean velocity profiles, and not all properties are completely understood. Why do
we. want to make our problem even more complicated, trying to look at a more general
orientation of the mean current? We can see two main reasons.

First, we believe that the stability properties of the nonzonal jet are different from
those of the purely zonal current. From the physical point of view, it is reasonable
to expect that nonzonal currents are more unstable than zonal ones. In the baroclinic
problem, one could refer to the fact that the direction of the maximum energy release,
which is perpendicular to the jet axis is not parallel to the planetary vorticity gradient in
the case of a nonzonal jet, therefore reducing the stabilizing effect of 8 (Pedlosky, 1987).
The more unstable character of the nonzonal vertically sheared flows was reported in
previous studies (Kang et al., 1982; Lee and Niler, 1987). The horizontal tilt may excite
new unstable modes, or destabilize stable modes (if there are any). These possibilities
will be demonstrated in the following sections.

Second, in our analysis, we want to focus on the solutions that can penetrate signifi-
cantly far into the mid-ocean, in other words, radiating solutions. The ability of a zonal
flow to support these solutions is, however, limited. The dominant disturbances in the
Gulf Stream are eastward-propagating (Hogg, 1988). These disturbances are also favored
by the semi-circle theorem for the zonal jets on the B-plane derived by Pedlosky (1964).
In contrast, in the simple barotropic model without topography, only upstream traveling
solutions can be of radiative character (Flierl and Kamenkovich, 1975; Pedlosky, 1977;
Talley, 1983; Malanotte-Rizzoli et al., 1987a), which limits the radiating ability of the
zonal jets.

At the same time, there are reasons to expect that nonzonal jets more easily support
radiating solutions. Downstream propagating motions are now not necessarily strongly

trapped to the northward boundary current (Flierl and Kamenkovich, 1975; Ierly and

19




Young, 1991). The latter study is concerned with the stability of a parallel western
boundary flow described by the Orr-Sommerfeld equation with the S-term. The viscous
instabilities supported by the flow can have long oscillatory tails if a basic flow is highly
inertial. Nevertheless, these modes are classified as non-radiating because they cannot
be coupled with free basin modes; see section 2.3 for the description of the phase speed
condition.

In the study by Rizzoli et al., (1995), it is demonstrated that when the topography
makes the effective planetary vorticity gradient non-meridional and, therefore, not per-
pendicular to the jet axis, the very energetic radiation of Rossby waves is possible. The
change in the jet orientation relative to the mean potential vorticity gradient can lead to

significant changes in the radiating properties.

1.2 Overview of the thesis

We consider the problem first in a simple linear barotropic model. The model is described
in Chapter 2. In the chapter, we use the relative simplicity of the model to derive some
useful analytical results. In particular, the sufficient condition for stability of a barotropic
zonal current is re-derived for a nonzonal current to become a sufficient condition for the
absence of a neutral mode. On a simple example, we also demonstrate the destabilizing
role of the horizontal tilt of the jet axis with respect to the lati_isude circles. We then
formulate the criteria for determining whether a linear soluti.on is radiating. The task is
generally not trivial, because of the fast exponential growth of the solution.

We report the results of the barotropic problem in Chapter 3. We consider two mean
velocity profiles: top-hat broken line profile and a continuous jet. In both the cases, we
compare the results for the nonzonal jet with those for the purely zonal current. We report
the qualitative change in the radiating properties related to the changed orientation of
the currents. In particular, we find strong radiation by the waves that are long in the

along-jet direction. The radiation is observed even if the horizontal tilt of the jet axis is
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very small.

The second moving layer is added to the model in Chapter 4. We focus on the effects
of such a simplified baroclinic structure on the radiating properties. We observe the
appearance of an additional baroclinic mode and changes in the dispersion curves. How-
ever, the changes in the radiating properties are not significant. The radiating response
remains basically barotropic in structure.

The nonlinear development of the linear solutions is studied in detail in Chapter 5.
We develop an efficient numerical method for solving the nonlinear equation for potential
vorticity with the open boundary conditions in the cross-jet direction. The modified
Orlanski numerical open boundary conditions are employed for this purpose. For the
analysis of results, we decompose the streamfunction into Fourier modes, which provides
the detailed information about the structure of the solution. The decomposition also
simplifies the analysis of the energetics in the problem.

We start with the analysis of the nonlinear development of a single linear mode that
is put as an initial condition. As in the linear problem, we first consider the dynamical
properties of the solution for a zonal current. Then we make the jet nonzonal and compare
the results with the previous case. The main finding is that short linear waves that grow
rapidly initially, start to radiate when their growth substantially slows. The radiation
typically begins in the forrﬁ of an z-independent component. The physical mechanism
for that is illustrated on a simple example. We also check if the radiation is consistent
with the criteria of the linear theory.

An attempt to understand the effects of interactions between different waves is made
in Chapter 6. For simplicity, we study the mutual development of a pair of linear waves.
We consider three types of interactions that are expected in the development of a set
of linear solutions. First is the case in which a strongly radiating ﬁave and a weakly
radiating wave half as long strongly influence each other. In the second case, the direct

influence is not possible because of the relation between corresponding wavenumbers.

Both waves are long and strongly radiating in the third case.




The relevance of the results to observations is discussed in Chapter 7. We compare
results of four different numerical experiments with the observations in the Western
North Atlantic. For the comparison, we analyze eddy kinetic energy, Reynolds stress and

- characteristic time scales.
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Chapter 2

Linear barotropic model

We begin here the study of radiating properties of nonzonal ocean currents. The overall
idea is to analyze the effect of nonzonality of a current on stability and radiating proper-
ties. The approach taken is to simplify the analysis by considering the simplest possible
model, but yet not to loose the main dynamical features. In particular, we want to single
out the effects of the jet crossing the latitude circles.

We start from formulating such a simplified model for the vertically homogeneous
ocean in section 2.1. We take a steady nonzonal current as a basic state to which
perturbations of small amplitudes are added. The development of these perturbations in
time is a focus of our research. Nonlinear terms are neglected everywhere in chapters 2
and 3. All results are expected to be valid only during the initial stage of development,
while the magnitudes of perturbations remain small enough to make nonlinear terms
negligible. The extension of the model to nonlinear regime is made in Chapters 5 and 6.

In our model, we balance the nonzonal current by a vorticity source. We believe
that the dynamical role of this source is limited to supporting the parallel nonzonal flow.
The new radiating properties of nonzonal currents, reported in the following chapters,
therefore, are not the direct consequence of the non-conservation of potential vorticity
in the model. We base this claim mainly on the results of section 5.4 below, which

demonstrate that the magnitude of forcing does not control the strength of radiation.
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One can anticipate a more unstable nature of a nonzonal current beforehand, based
on a physical argument valid in the baroclinic model (Pedlosky, 1987) and results from
the previous studies; see section 1.2 for details. The simplicity of the formulated linear
problem allows us to demonstrate the (iua,litatively different stability properties of a
nonzonal current compared to a zonal flow in section 2.2. We will derive the stability
theorem for the simple nonzonal flow considered.

To proceed with the analysis, we need to define what we mean by a radiating mode
in our linear problem. In section 2.3, we both reformulate some existing and derive new
analytical criteria for an unstable mode to be of radiating character for our problem.
Under the limitations of the linear theory, we can only try to determine if a solution
has a radiating form during the initial stage of development while its amplitude remains
small. However, the ideas involved in derivation of some of the criteria are useful for
nonlinear consideration and will be additionally discussed in Chapter5.

Section 2.4 describes the general form of the mean velocity profile used for calculations
which is specified in the three intervals in y. We then derive the matching conditions that
are used to connect a solution obtained in each of the intervals and to obtain a dispersion
relation. One of the resulting conditions takes the form which is different from that in
the problem with a zonal flow. We present a detailed derivation to ensure the clarity of

the technique.

2.1 Model formulation

We assume that the motions are quasi-geostrophic, and we neglect friction and bot-
tom topography although the effect of a constant bottom slope can be included in the
B-term. We make a further assumption that the along-jet spatial variation scale is much
longer than the cross-jet spatial variation scale, so our jet is essentially uniform in the
along-jet direction.

Then we orient the x-axis of our coordinate frame along the jet and y-axis perpendic-
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Figure 2.1: The barotropic model

ular to the jet axis (see Fig.2.1). The advantage of such a rotated coordinate is a clear
distinction between along-jet and cross-jet directions, which is convenient for our studies
of the energy radiation away from the jet. The barotropic potential vorticity equation

(Pedlosky, 1987) in the new coordinate frame takes the form:

_V2¢ +J(+¥(y), V+ Q) = (2.1)

where unperturbed state is given by

Q=P5z+PBy—ay,; ¥=-— /ﬂ(y)dy, (2.2)

with B, = Bcosa, 8, = Bsina with o being the angle between our x-axis and a latitude
circle and f3 is the planetary vorticity gradient. We assume that Eq.2.1 holds for ¢y = 0
with unchanged forcing term F (Pedlosky, 1987). The potential vorticity is not conserved
in the model. Rather, we introduce a vorticity source, which could be associated, for

example, with the wind forcing and resulting Ekman pumping at the surface:

F=-p9,. (2.3)
The introduced forcing depends on the mean flow only and is different in nature from

the viscosity that supports a western boundary layer in, for example, Ierley and Young,
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(1991). The viscous term depends on the basic flow and perturbations in the latter case.

Before we proceed any further, one property of the equation 2.1 should be mentioned.
If the angle of the horizontal tilt of the jet axis « is changed to —a, the equation stays
the same if y is changed to —y and ¢ to —4. Therefore, the solution for a south-eastward
flowing current can be easily gotten from the solution for a north-eastward flowing current
by the above described transformation.

For small perturbations, we can linearize Eq. 2.1 and rewrite it in the following form:

0 0 _
— +a(y)= | V2 =0. .
(5 55s) T4+ 360,0) (24)
This is the equation that we solve for particular choices of the mean velocity profile

#(y) in chapters 2 and 3. The solution of our problem can be found in the form:

p = $y)e =), (2.5)

where phase speed c is allowed to be complex (¢ = ¢, +1¢;) and z-wavenumber k is real.
The solution is, therefore, a Fourier mode in =z which both oscillate in time and has an

amplitude growing in time exponentially. ¢(y) satisfies the following ODE:

P2 — Uy 2 2 _

The last term on the left-hand side of Eq.2.6 is related to the nonzonal orientation of
the jet axis in our model. The term is proportional to the downstream component of the
planetary vorticity gradient ; and is zero for a zonal current.

Boundary conditions in y-direction are

$(+L) =0, (2.7)

where L is allowed to be infinite. We study the problem on the infinite 8-plane, but the

results of the following section 2.2 are also valid for finite L (the problem in a channel).
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This gives us the.eigenva.lue problem for ¢ for a given value of k, resulting in the

function ¢ = c(k) for chosen values of By and a. The function defines a dispersion curve

for a given set of parameters.

2.2 New stability properties

Let us multiply (2.6) by ¢+ , integrate in y over the domain and take the imaginary
part of the result. We get (¢ = ¢, + i¢;):

k/ |u'¢l Iz(ﬂz uw)dy+ﬁ1Re/ (¢_¢yc) = 0. (2.8)

The second term on the left-hand side can be modified:
dy

Re /_ LL (ﬁzi”’c Jdy = /_ LL Re(¢'¢y)Rew—dj’c—) . /_ LL I, Im s =

L P dy [ Im(*4y)
- /_L 59l )yRe(ﬂ—c) _C‘/ G—op Y=
_ (|¢| )y L Im(‘ﬁ‘ﬁby) _
‘2Re La—o® C‘/_L G Y=

I<15l2 L Im(¢*¢y)

The integration by parts on the last step involves the assumption that the solution
vanishes at the boundaries ¥y = +L. On the infinite plane, that implies the decay at
infinity.

Finally, we get

L ¢ Imé*4, 1 |¢1*a,
ke | (I e (B ) — B l2)d + R/ —Sdv =0 (210)

" W - (@
Now one can see that if the last term is non-zero, kc; # 0. In other words, we have

a sufficient condition for a mode being not neutral. Note now that the existence of a
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decaying solution means the existence of a growing one and vice versa; in other words
there is always a growing mode as long as k¢; # 0. To demonstrate that, we change k to
—k in the Eq. 2.6 which changes the sign of the growth rate kc;. The solution is then
1(—y) where 9 is the solution of the original problem and c is the same.

Suppose now, that the first term in the brackets is of the same sign everywhere in the
domain, but that i, is single-signed, and f£; # 0. Then if a solution exists, it is growing
in time, despite the fact that the y-derivative of the mean vorticity field B, — @y is
single-signed, which is the sufficient condition for stability in the case of a zonal current.

We should keep in mind that the derived criterion cannot guarantee the existence
of the unstable modes. We can only say that if, for example, 1, is single-signed, there
cannot be any neutral modes in the problem. The last statement is true because for
a purely real ¢, (4 — c)? is always positive and the last term on the left-hand side is
non-zero.

Based on the above properties, one can expect to find nonzonal jets to be more
unstable. The same form of the cross-stream velocity profile & can correspond to a larger
number of unstable modes in the case of the jet oriented nonzonally compared to the zonal
orientation. In particular, one can anticipate the existence of the neutral modes of the
zonal jet destabilized by the change in the mean flow orientation or the appearance of the
completely new unstable solutions. We can illustrate the possibility of the destabilization
effect by a particular example.

Consider a neutral solution for the zonal jet. The example can be taken from Drazin

et al., (1982) problem in a channel |y| < 1:

U = —ﬁsinwy,
qS:cosT;—y,
3‘2
p= B
4 72

The mean flow is chosen to satisfy the sufficient condition for stability, so (8 — 4y,)

is positive everywhere in the domain.
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We now introduce an infinitesimal horizontal tilt of the jet (@ << 1), expand phase
speed in a power series in « and collect leading order terms. In this case, with ¢; = O(f,)
the second term in the brackets on the left-hand side of (2.10) is negligible. Thus, we

can calculate the imaginary part of the frequency kc:

-1 ] ]

SB[ e ) [ e

[/ (1 -Co-ssZry)z ] [/_11 (f%r = -O;—ﬁ(l - ?) >0 (211)

The obtained growth rate is proportional to the value of the tilt angle.

We observe how a neutral mode becomes unstable when the zonal jet becomes non-
zonal, while the mean potential vorticity gradient remains single-signed. In other words,
the horizontal tilt plays the role of a destabilizing factor in the problem. This simple
example demonstrates the fundamental destabilizing character of the tilt of the basic
current.

We return now to the original domain and in what follows will consider the problem

on the infinite horizontal plane.

2.3 Radiating modes

The concept of radiation can be easily applied to the purely neutral modes of the problem.
If a mode has the form of a plane wave in the region with no mean flow, it is a radiating
one. In contrast, if it decays in space away from the jet, it is trapped. But neutral modes
are unable to extract energy from the mean flow. Hence, we have to consider unstable
modes growing in time if we want to look at the process of the energy conversion from the

mean current into the far-field motions. However, the distinction between trapped and
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radiating for the growing modes is less obvious, since the complex phase speed always
corresponds to the complex y-wavenumber and, consequently, to the spatial decay in y.
However, some quantitative means of determining if a solution is radiating are avail-
able.
In the far-field (& = 0), the Eq. (2.6) becomes an ODE with constant coefficients,

and our solution there reduces to a plane wave:
1/J($) y) t) - Aekqt_l{yeik(m_crt)+t‘l,.y‘

One can call radiating those modes which “look” wavy in y (Talley, 1983). Thus, we

could require that for any ¢; the decay scale 1/1; is longer than the oscillation scale 1/,

2 <L (2.12)

This criterion, however, is not sufficient for our purposes. Strong spatial trapping
of a solution does not necessarily rule out the possibility of radiation. Spatial decay
can be present, as Talley (1983) states, because it takes a finite time for the packets
of disturbance to reach a point far from the jet while the disturbance itself is growing.
From the kinematic point of view, we can imagine that packets smaller in amplitude are
radiated earlier and, therefore, are farther from the source in space; the decaying structure
in space is, therefore, formed from the sequence of ever larger disturbances produced at
the source. If the spatial trapping in the problem is due only to the unstable growth, then
the trapping should disappear when the growth disappears. There are two possibilities
for making the growth rate small.

Following Talley (1983), we can consider the limit ¢; — 0 on the dispersion curve
¢ = c(k). If, in this limit, both ; — 0 and ;/I, — 0, we can claim that the spatial decay
of the solution is due only to the nonzero values of growth rate kc;, and the solution
is not trapped. However, this valuable criterion often has difficulties characterizing the
nature of a solution that is not close to the limit of small ¢; in parameter space. There

is no guarantee that a solution does not change its character along a dispersion curve.
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Another way to “make” the growth rate small is to follow the nonlinear equilibration
during which the initial fast exponential growth slows down significantly. As it will be
shown in chapters 5 and>6, in many cases the radiation often starts when fast exponential
growth of the trapped linear solution is halted by the nonlinear effects. The strong spatial
trapping is, therefore, as temporary as the validity of the linear theory itself in those
cases and solution is of the truly radiating nature. We should note now the importance
of nonlinear considerations for the analysis of the radiating properties in the problem
especially for the solution that does not correspond to the point close to the cut-off of
the dispersion curve.

Keeping that in mind, we however choose to stay within the limits of the linear theory
in this preliminary study. For the consistency we can ask if the solution can simultane-
ously reach the far field while not being increased significantly by the exponential growth
in time and, henceforth, satisfying the assumptions of linearity. The wave packet prop-
agates with the speed kc;/l; (Talley, 1983). Then, in order for the wave to move over a

distance much greater than the scale of the jet during the e-folding time 1/kc;, we need

ke; 1 1
- == Liet,
l,‘ kq l,'>> get

or I; << 1/Lje, where L. is the jet scale. It is interesting, that the above argument
does not involve the oscillation scale 1/1,.

Another physically meaningful condition for radiation is that the frequency and wave
number of the solution of our linear problem match those of the Rossby wave in the
far-field (Pedlosky, 1977; Mclntyre and Wessman, 1978; Talley, 1983; Malanotte-Rizzoli
et al., 1987a; lerly and Young, 1991). It is usually called the phase speed condition. We
know that the Rossby wave always has a westward propagating phase. For this reason, it
is difficult to satisfy the phase speed condition for the mostly eastward traveling unstable
disturbances (Flierl and Kamenkovich, 1975; Pedlosky, 1977; Talley, 1983; Malanotte-
Rizzoli et al., 1987a). For the tilted jet, the change in geometry leads to the change in

the limits on the phase speed in the new x-direction required by the criterion.
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We can find the minimum and maximum values that the Rossby wave phase speed in
the z-direction of the tilted frame can take for a fixed k. The phase speed of the freely

propagating Rossby wave in the far-field (@ = 0) lies, therefore, between these values:

+ cosa) ce — cosa) .

1 ¢!
-F 2k? <8 2k?

One can see from (2.13), that the tilt of the jet (a # 0) allows downstream propagating

(2.13)

modes (¢ > 0) to satisfy the phase speed condition. To futher clarify the difference in
the direction of phase propagation between zonal and nonzonal cases, we present here
the phase diagram for a free Rossby wave in the far-field (Fig.2.2).

Both non-rotated and rotated coordinate frames on the wavenumber plane are pre-
sented in the plot; the wavenumbers in the rotated frame are defined by k' and . The
radius of each circle equals 8/2w. The reader is referred to Pedlosky (1987), p.123 for
the derivation of the form of the dia,gra,m.. We now consider a positive z’-wavenumber
k'. There are two waves with different values of a y'-wavenumber !’ with equal positive
w and k'. The wave-vectors of both waves are shown by vectors OA and OB in the plot.

First, we notice that both waves have their phase propagating downstream, since
w/k' > 0 for them. Their phase still propagates westward (w/k < 0) in the agreement
with the general property of the Rossby waves. The example illustrates the differences
in the direction of the phase propagation between problems with e = 0 and a = 30°,
also expressed in terms of the condition (2.13).

We also consider the group velocity vectors, AC and BC (Pedlosky, 1987). The
group velocity of the wave that is longer in the y'-direction (vector B—b) has a positive
component in the cross-stream direction and therefore corresponds to the solution for
positive y', since the energy must propagate away from the jet axis. Analogously, the
wave that is shorter in y’ and has a group velocity AC corresponds to the region of
negative y'. It is also interesting to note that the group velocities of both waves are
directed upstream of the basic current.

We expect that eastward zonal jets that are not radiating can become capable of
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o>0 <0

Figure 2.2: Phase diagram for a Rossby wave. The non-rotated coordinate frame (marked
k — 1) and rotated frame (marked k' — I’ ) are shown in the plot. Left circle corresponds
to positive w, right circle to negative w. See the discussion in the text.




radiation if made nonzonal. For example, lerley and Young (1991), in their studies of
the stability of the western boundary layer, find modes with the extended oscillatory tail
for small downstream wave numbers. In a study of the dynamic prbperties of nonzonal
jets, Jae Yul-Yun (1986) reports the existence of the radiating solutions in the boundary
forced problem with a disturbance traveling along a nonzonal current.

We will use the phase speed condition (2.13) as the necessary condition for radiation
and then check the smallness of [;/l, and look at the limit of ¢; — 0. This does not
guarantee that the radiation from the mean current will be energetically significant.
Even if the trapping is very weak, the amplitude of the exterior motions can be negligible
compared to that in the jet region. We also need to examine the spatial structure of the

calculated modes to convince ourselves in the existence of the radiation of energy.

2.4 Basic state velocity profile and jump conditions.

One way of representing a mean state, which is convenient for the analysis of the
stability problem, is to divide our domain into intervals in y with different forms of @(y) in
each of them. For example, we can study the problem on the two external semi-infinite

regions with zero mean velocity and one internal finite interval with nonzero value of

u(y):

Uly) ifly| <1
0 if ly] > 1.

I
Il

(2.14)

We non-dimensionalized our problem by using the half-width of the jet L;., and its
ratio to the dimensional maximum jet velocity Lje/U. as characteristic space and time
scale correspondingly.

Note now, that the problem with the nonzonal jet is no longer symmetricin y. In the
case of zero tilt (a = 0), we find modes symmetric in the y structure of the eigenmode
(sinuous mode) and modes with an antisymmetric structure of the eigenmode (varicose

mode). When the tilt is nonzero, neither a purely symmetric nor antisymmetric eigen-
p y sy y g
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mode structure is possible. It is easy to see by changing y to —y in (2.6), the equation
then changes to its complex conjugate (note also that ¢ changes to its complex conjugate
as well). Henceforth, ¢(—y) = 3:¢(y)* and not +¢(y) as in the case of o = (°. Therefore,
we have to consider the solution for negative and positive y separately.

We first solve the equation 2.6 in each of the three regions and then use matching or
jump conditions to connect the solution. Jump conditions are obtained by integration of
(2.6) for 4(y) continuous, but rapidly varying across each interface from y=241—cto
y=+1l+e€

[a(#E-a-su+ 20 a= [[o-ra-ade e

Now we let the interval of integration, in which the jump in the basic flow structure
occurs, go to zero: € — 0. The right-hand side of the above equation does not contain
y-derivatives and, therefore, goes to zero in the limit. We get:

Agyfa— <) - 45, + Drg) =, (2.16)

where A stands for the ”jump” across the point and is zero if a function is continuous. The
condition is essentially the requirement of the continuity of pressure accross a material
interface.

One should note the presence of the term 1$B:/k in the equation (2.16). The term
1s zero only for a zonal jet; it is very important for a problem with a nonzonal current,
especially for those solutions that are long in z (small k). In the following sections, we
will observe that there are the long waves that are of radiating character in the problem.

For the derivation of the second jump condition, we rewrite (2.16) in the form:

uUu—c

@z (:2:) =0 -2,

where G(y) is a continuous function. Then by dividing by (@ — c)? and following the

same procedure as outlined above, we obtain:




A (ﬁ ‘f C) =0 (2.17)
The‘condition is the requirements of the continuity of streamline slope. Indeed, consider
streamline displacement defined by 7 = N(y)e*(*=<). Then, the continuity of the slope
7, Tequires the continuity of 1kN(y), where N(y) = ¢(y)/(% — c) from the equation
(5 +agn=v.

The jump conditions (2.16, 2.17) together with the boundary conditions (2.7) allow

us to solve the eigenvalue problem and obtain the dispersion relation

c = c(k; B1, B2)-

2.5 Summary

We have formulated the stability problem for a barotropic model with a basic state in
the form of a nonzonal current. The dynamical properties in the model are different from
those in a conventional model with a zonal flow.

The difference in the basic stability properties can be seen in the example of the
stability theorem which is an analog of the sufficient condition for stability of a zonal
current. The conventional sufficient condition for stability of a zonal current is modified
in the case of a nonzonal flow to become a sufficient condition for the absense of stable
normal modes. We have also demonstrated the destabilizing effect of the horizontal tilt
on a simple analytical example. The more unstable character of a nonzonal current can
also be seen in the following chapter that describes the results of computations.

Among several criteria derived above for radiation of a linear solution, two are espe-
cially important. First uses the idea that spatial trapping of the solution can be caused
by the initially fast exponential growth alone. If this is the case, the radiating nature of
the solution should become transparent when the growth slows down. Within the linear
theory, the latter can be achieved by changing parameters so one approaches the cut-off

of a dispersion curve. The idea of observing changes in solution caused by the decreasing
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growth rate also becomes very useful in a nonlinear problem during the stage of nonlin-
ear equilibration. The new form of another useful conditions for radiation, namely the
phase speed condition, demonstrates the more radiating character of nonzonal currents

compared to zonal flows. The more radiating character is supported by the results of the

following chapters.
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Chapter 3

Results from the barotropic

problem

We have formulated the problem and defined what we understand by radiation in the
linear theory, therefore, we are ready to proceed with the solution. The eigenvalue
problem formulated in section 2.1 is solved numerically by using MATLAB. We report
the results of computations in this chapter for two different forms of the mean velocity
profile. We start from the simplest example of the broken-line top-hat jet in the section
3.1 and then consider the problem with a continuous profile of the basic velocity in section
3.2. For a better demonstration of the effects of a horizontal tilt, we first consider a zonal
flow (section 3.2.1), and then start to increase the value of the tilt (sections 3.2.2, 3.2.3).
The main finding is that even a very small value of the tilt causes non-radiating zonal
flow to radiate waves that are long in the along-jet direction. To confirm the radiation,
we look at both dispersion curves and spatial structure of the solutions. In addition, we
report the more unstable character of a nonzonal current as compared to the zonal flow
as suggested in section 2.2.

In section 3.2.4, we also consider the balance between terms in the energy equation.
The balance is interesting for the solutions that are close to the cut-offs of the dispersion

curves, in other words for modes with very small growth rates. The terms in the energy
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equation in this limit either go to zero or, instead, remain finite and balance each other.

3.1 Top-Hat Jet

The simplest possible example of a mean profile for the problem formulated in the
previous section is the top-hat jet, for which the velocity in the internal region is constant:
U(y) = U in (2.14). The instability found in this problem is most likely related to the
discontinuity in the velocity field at y = =41 and the artificial delta-function in the
potential vorticity (Kelvin-Helmholtz type of instability). We consider this example
because we want to compare our results with the case of zonal top-hat jet studied by
Talley (1983). Some interesting changes in the radiating properties will be demonstrated.

The U(y) is piece-wise constant: It is 1 for —1 < y < 1 and zero for y < —1 and

y > 1. The solution ¢(y), therefore, is a sum of two waves with complex y-wavenumbers

in each of the three regions:

Aeill,zy n Beil“"’y

where indexes (1,4) correspond to the regions ly| > 1 where U(y) = 0:

e (8 () _4c(ckz+ﬂz>) o)

We denote the wavenumber with a negative imaginary part as l;, so Ae"?¥ decays

at y = —oo. The imaginary part of Iy is positive, so Beiltsv decays at y = +00. Note
the different form of the y-wavenumber in each of the external regions as a result of the
above mentioned non-symmetry in y. Boundary conditions (2.7) require the amplitude
of the wave that increases away from the Jet to be set to zero. Therefore, B = 0 for

y<-—-land A=0fory > 1.

Indices (2,3) correspond to the region |y| < 1 where U(y) = U:




b= 2(6—1_[-]—) % + J (%) — 4(c— UY(K(c—U) + ﬂz)) . (3.2)

We now write two jump conditions (2.16, 2.17) and get the dispersion relation of the

problem:
(lz(U - C)z + Uﬁl/k - llcz)(l3(U - C)2 -+ Uﬁl/k - 1462)6%(13*[2) =

(13U — ¢)* + UB1 [k — L) (1o(U — c)* + UBy [k — L), (3.3)

For the top-hat jet, we fix the planetary vorticity gradient S and "rotate” the jet
changing tilt angle a from zero looking at the effects of the tilt. Then, we can compare
our results with those from the studies of the zonal top-hat jets (Talley, 1983) and look
at the changes in the radiating properties of the solution caused by the changed jet
orientation. We present our results in Fig. 3.1 in the form of the dispersion curves that
are solutions of the dispersion relation 3.3 for complex ¢ as a function of x-wavenumber
k; and where we recall that the z-axis is tilted with the jet axis. Three values of the tilt
angle are chosen for comparison: « = 0°, 30° and 45°.

The first fact that comes to our attention is the change in the shape of the curves.
There is a long-wave cut-off (LWC) for Mode 1 when « # 0, which is a varicose mode
of the zonal top-hat jet modified by the nonzero value of the tilt angle a. The real part
of the phase speed of Mode 1 is larger than the maximum value of the mean flow speed
for small k. The phase of the wave travels faster than the flow itself in the downstream
direction.

The long-wave (LW) limit of Mode 1 is also a radiating limit, which supports our
expectation to have more radiating solution when « # 0. One can check the conditions
for radiation formulated in section 2.3. The real part of the phase speed ¢, is in the range
for the Rossby wave phase speed (2.13); henceforth the phase speed condition is satisfied.
To demonstrate that, we present the right-hand side of (2.13) by the dotted line in Fig.
3.1b,c; the curve c,(k) goes beneath the dotted line in the figure. |
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The y-structure confirms the radiating properties of the solution in LW limit. The
spatial decay scale is much longer than the oscillation scale; therefore, the solution is
"wavy” in the exterior. Moreover, the ratio between two scales ;/I, goes to zero as c;
approaches zero (Fig.3.1e,f). From all of the above we can conclude that Mode 1 is
radiating in the LW limit.

The situation for Mode 2, which is a modified sinuous mode of the zonal top-hat
jet, is less clear. The solution seems to be radiating only for y > 1, because the ratio
l;/l, gets small only for the positive y. This example demonstrates us that the phase
speed condition is only a necessary condition for radiation and does not guarantee us
the radiation. In addition, the very existence of Mode 2 seems to be closely connected
with the discontinuity of the velocity profile. Mode 2 does not have an analog in the
problem with more realistic continuous profile of the mean velocity discussed in the next
section.

We also note the absence of a short-wave cut-off (SWC) in the problem as another
very special feature of the piece-wise constant velocity profiles. We do not expect the
waves arbitrarily short in z to be unstable in the inviscid problem with continuous mean
velocity profile.

We want to be confident that the changes in radiating properties we have found are
not only consequences of the unrealistic choice of the broken-line mean velocity profile.

For this purpose, we proceed now with a study of a continuous velocity profile.

3.2 Continuous jet

In order to keep the mean potential vorticity gradient finite, we require U, %U in

(2.14) to be continuous across y = +1. For all our computations we use the following

form:

U(y) = (1 —y*).
As one can check, for this choice U(+1) = 0 and Uy(+1) = 0. We also make the

42



vorticity gradient continuous by choosing U,,(+1) = 0. The method of solution and
main results do not depend on the particular choice of U (y) as long as the velocity
itself and its two first derivatives are continuous. In calculations not presented in the

following subsection, we considered three different velocity profiles: non-symmetric profile

U(y) = exp[2(y — v2 + 1)](1 — ¥*)*[4(3 — 2v/2)] ! and a less “sharp” symmetric one
U(y) = (1 + cosmy). All results agree qualitatively with those reported below.

The solution of this eigenvalue boundary problem is obtained by a shooting technique
involving an iterative improvement of the initial guess in phase speed c. The method is
described in the Appendix.

To concentrate on the effects of the nonzonality on the radiating properties, we start

from the zonal jet case (in other words, from o = 0).

3.2.1 Zonal jet

We find two unstable modes: the varicose mode (Mode 1) and the sinuous mode
(Mode 2). The typical form of the dispersion curves is presented in Fig.3.2(a,b) for
the two values of the planetary vorticity gradient: § = 1 and p = 4. The corresponding

growth rates kc; are shown in the heavy lines providing the information about the relative

linear stability of both the modes.

The range of the unstable x-wavenumbers is wider for B = 1. Mode 1 is unstable for
arbitrary long waves: LWC is absent. We observe a short-wave cut-off (SWC) for Mode
1 and two cut-offs for Mode 2. Mode 2 is the most unstable mode in the problem for
both values of B chosen. Both the range of the unstable x-wavenumbers and the growth

rate kc; decrease with larger 8 (8 = 4) as a consequence of the stabilizing effect of the
planetary vorticity gradient.

The real part of the phase speed ¢, of both modes is positive and less than the
maximum value of the mean flow speed; the latter is in agreement with the semi-circle

theorem valid for the zonal current (Pedlosky, 1964).

Since ¢, is always within the range for the mean flow speed, the presence of critical
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layers, at which @ = ¢, for all cut-off values of k should be anticipated.

We present the general stability properties of the problem by showing the stability
diagram in the k — § parameter plane (Fig.3.2c). We construct this diagram using
the following method. At a regular critical layer (y = y.) we have u(y.) — ¢ = 0 and
B—1tiyy(yc) = 0. From the latter condition, we can find y.(3), then find phase speed c. from
the condition ¢, = u(y.) and get the corresponding value of the critical x-wavenumber k,
treating k as an eigenvalue in the original problem. The curves krwc(6) and kswc ()
give us information about the regions of instability on the parameter plane. Shaded
regions correspond to the existence of the unstable mode. The problem is stabilized for
the large values of the planetary vorticity gradient; for § > maz(U,,) = 4.8, the solution
is stable satisfying the sufficient condition for stability of a zonal current.

The solution is always trapped in agreement with the results of several previous
investigations (Flierl and Kamenkovich, 1975; Pedlosky, 1977; Malanotte-Rizzoli et al.,
1987a; Talley, 1983). The phase speed condition cannot be satisfied as ¢; — 0, since all
cut-offs correspond to the critical layers for which ¢. = 4(y.) > 0; whereas, free Rossby

waves always travel westward.

3.2.2 Small tilt: o = 5°

We now look at the changes caused by the nonzonality of the jet. In this section we
demonstrate that even a very small change in the flow orientation modifies the radiating
properties of the problem significantly. We rotate the jet by 5° from the east-west position
and compare the results with those for the purely zonal jet that are shown by the dashed
line in Fig.3.3.

First we notice that the shape of the dispersion curves changes significantly in the
LW limit of both modes. Longer waves in  are more likely to "feel” the presence of the
downstream component of the planetary vorticity gradient according to Eq. 2.6. That
is why the changes for the longer waves appear to be the largest, which is in a general

agreement with the results for the top-hat profile. The results for the shorter waves are
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practically indistinguishable for a = 0° and for a = 5°.

In the LW limit of Mode 1, in a way similar to the top-hat jet results, the phase always
travels faster than the mean flow (¢, > U(y)) eliminating the possibility of a critical layer.
The wave vector becomes nearly normal to the jet axis at the LWC (k = krwc¢), resulting
in the fast phase propagation in the along-jet direction. The real part of the phase speed
is also inside the interval for the Rossby wave phase speed (Eq.2.13). The upper bound
on c in the phase speed condition, that is the right-hand side of (2.13), is shown by the
dotted line in the figure.

Changes in properties taking piace with the change in the orientation of the flow are
also observed for Mode 2. At the LWC ¢, is negative (Fig.3.3d) for this mode, leading to
the two important consequences. First, as in the case of Mode 1, no critical y. exists in
the problem such that ¢ = %(y.). Second, the phase speed condition is satisfied, hinting
at the possibility of radiation; the left-hand side of (2.13) is much smaller than the c,
and is not shown on the plot.

The most interesting thing to observe is that both modes, strongly trapped in the case
of the zonal jet, change their radiating properties when the jet is slightly rotated as it can
be seen from looking at the y-structure (see Fig.3.4). Both the ratio between imaginary
and real part of the y-wavenumber [;/l, and [; itself go to zero as the x-wavenumber
k approaches krwc. This fact, together with the phase speed condition, allows us to
conclude that both modes are radiating in the LW limit. The radiation is clearly made
possible due to the small but non-zero value of the horizontal tilt.

Near the SWC on the dispersion curve, both modes remain trapped, because the

phase speed condition 1s not satisfied. The radiation remains the feature of only the long

waves of each mode.

3.2.3 Large tilt: a = 30°

To emphasize the effects of the nonzonality on the radiating properties, we now

proceed with the analysis of the strongly tilted nonzonal jet. In this section, the jet makes
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Figure 3.4: Complex y-wavenumbers [ vs. k for the same parameters as in Fig.3.3. Real
and imaginary parts are labeled on the plot next to the corresponding curves. [ for the
zonal jet is shown by the dashed line, for a = 5° by the solid line. (a,c) region y < —1.
(b,d) region y > 1. (a,b) Mode 1. (c,d) Mode 2.
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an angle of 30° with a latitude circle. We observe the evolution of the two unstable modes
found earlier with a now larger value of the tilt. Both modes are shown in Fig.3.5(a,b)
for f = 1,4 and 6. Note, that some interesting properties of the dispersion curves found
in the case of a = 5° are enhanced by the larger horizontal tilt.

The behavior in the LW limit for o = 5° does not change qualitatively with a larger
angle. The real part of the phase speed ¢, fends to be larger than the maximum value of
%(y) for Mode 1 and smaller than the minimum value of @(y) for Mode 2. Critical layers
are, therefore, absent in this limit.

It is also interesting to note that we find no solution for k larger than krwce. In
other words, no neutral modes longer than the cut-off wave-length exist. The fact is a
consequence of the infiniteness of the interval in y. In the experiment not described here,
the neutral mode for £ > kpwc¢ exists if reflecting walls are put at some distance from
the jet axis; the basic radiating properties remain qualitatively unchanged.

The phase speed condition is satisfied in the LW limit, since ¢, is within the range
(2.13). In fact, for Mode 1, ¢, is slightly smaller than the upper bound on ¢ in (2.13).
Mode 2 has negative c,, which is significantly larger than the lower bound on cin the phase
speed condition, that is, the left-hand side of (2.13). As a result, radiation is possible,
according to the phase speed condition. The range of k for which ¢, satisfies (2.13)
increases with larger B for Mode 2, which indicates the enhancement of the radiating
properties by the planetary vorticity gradient.

The shape of the dispersion curves for the long waves of Mode 1 can also be compared
with the Mode 1 in the problem with the top-hat jet. The interesting fact is that despite
the primitive character of the discontinuous velocity profile, the behavior of Mode 1 in
the LW limit is represented quite well in the top-hat problem.

The SWC is present for both modes. The temporal growth of arbitrarily short waves
in the case of the top-hat profile is clearly the consequence of the infinitely narrow shear
zone in its mean velocity profile. The phase speed at SWC (k = kswc) is within the range

of the mean velocity (at least for not very large values of B). The presence of critical




Mode 1 Mode 2

- 0.45
L. a) =1 J o.4t

0.35

0.3t

0.2571

O o2r

0.15¢

0.1}

0.05+}-

2.5

ost e 7 —0.05¢

—-0.1

Figure 3.5: Results for a = 30°. Complex ¢ vs. k. Real and imaginary parts are labeled
on the plot next to the corresponding curves. Growth rates are shown in the heavy lines.
Dotted lines show maximum Rossby wave phase speed. Mode 1: (a) 8 =1, (c) 8 = 6.
(b) the same as for Mode 2 and 8 = 1. (d) Mode 2, 5 =4. -

50



layers should be anticipated although their structure is less clear than in the zonal jet
case because of the presence of the z-component of the planetary vorticity gradient 8;.
The phase speed condition is not satisfied, therefore, the solution is trapped.

The stability diagram is shown on Fig.3.6. The first thing to notice is that the tilted
jet is unstable for very large values of 3, even for those for which the y-component of the
mean potential vorticity gradient 8, —1,, is single-signed: 8 > 5.54 since M az(ty,) = 4.8.
Unstable Mode 1 exists for 8 < 16, while the zonal jet is stable for 8 > 4.8. Mode 2 is
stabilized for smaller 8 (8 = 7), but is still unstable for 8 > 4.8. Our expectations for a
nonzonal flow to be more unstable than a zonal current (see Chapter 1 and section 2.2)
are supported by the results. However, the stabilizing effect of the planetary vorticity
gradient is still present: with larger 8 growth rate kc; becomes smaller (fig. 3.5), and
the interval in the x-wavenumber ke < k < kswc corresponding to instability shrinks
(fig. 3.6).

The ability of radiation is not lost with a larger tilt of the jet, as we can see from
Fig.3.7(a-d). We have already observed that the phase speed condition is satisfied. Let
us check the other conditions for radiation. The imaginary parts of the y-wavenumbers
are small for the long waves of both the modes. This means, as we have remarked
in section 2.3, that modes are weakly trapped in the LW limit and wave packets can
propagate far from the jet, while their amplitude is not significantly increased through
the unstable temporal growth. The ratio ; /l. > 0as k — krwe for both modes. The
spatial trapping disappears when the mode becomes neutral, that is as ¢; — 0, which
hints to the radiating nature of the solution. For Mode 2, L; is typically smaller for y > 1.
It is interesting to note that, although for Mode 2 the ratio l;/1. is small, [; itself for the
negative y is not, and only gets to zero for k close to krwe. In contrast, the decay scales
in both directions are similar for Mode 1.

The y-structure of the eigenmode is shown in Fig.3.7(e,f) for k chosen close to kzwc.
For Mode 1 the amplitude of the wave-like response of the exterior is large, compared

to the interior motions, and is larger for y < —1 than in the rest of the region. For the
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Figure 3.6: Stability diagram for a = 30°. Shaded regions on the 8-k plane correspond
to the existence of the unstable modes.

north-eastward oriented flow, the above fact means a significant radiation of energy to
the South-East from the current. We also observe that the radiating response for the
negative y 1s represented by the wave that is shorter than the wave that radiates for
positive y. See the discussion of the energy propagation diagram in section 2.3. for the
explanation of this fact.

The streamfunction of Mode 2 is very small in amplitude in both external regions.
However, since the solution for y < —1 takes the form of a very short wave, —¢, (the
zonal velocity) is rather large but still smaller than the amplitude in the interior region.
It is more difficult to say that Mode 2 corresponds to energetic radiation. In fact, it is
only at the very LWC at which the exterior motions are identifiable. For shorter waves
in z the perturbation streamfunction either rapidly decays in space or is extremely small

in amplitude in the region. Mode 1 obviously corresponds to a more significant radiation
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of energy; however, this 1s not clear from looking only at the values of ;. We therefore
underline the importance of the analysis of the y-structure for the consideration of the

radiating properties of a mode.

3.2.4 Energy balance in LW limit

We now want to study the balance between different terms in the energy equation in the
radiating limit discovered above. First, we derive the equation itself. We multiply Eq.
2.4 which is the linearized equation for the streamfunction by the streamfunction v and
integrate it in = from 0 to L, and in y from —y, to y5. We assume that a solution is
periodic in = with a period L, i.e. ¥(0,y,t) = ¥(L,y,t). After integration by parts, we
obtain: '

d w Tt | - 1

Ko = [ a BBy + |~y + T - A (3.4)

—V¥s Yo

where a horizontal bar represents averaging in x:
G L Gd
= — T,
7,

and

v 1
Ko= [ SO+ 8 dy.
Yo

is the averaged in z and integrated in y perturbation kinetic energy. There are two terms
on the right-hand side that are responsible for the temporal change in the perturbation
kinetic energy. First ( Fir¢) is the energy conversion term, which represents the conversion
of energy from the mean current to the perturbations. Second (Fluz) is the group of flux
terms that show how much energy is being fluxed into the region [~y y5]. Note, that
the flux terms are zero if the whole domain is considered (y, = o). The terms represent
the rate of working by the ageostrophic pressure force on a unit volume of fluid.

As we can see, there is no energy source directly associated with the introduced forcing

in the equation for potential vorticity (2.1), which depends on a. The tilt of the jet which
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is capable of destabilizing the current (section 2.2) explicitly enters the equation only in
the Fluz terms, which do not change the total perturbation kinetic energy.

We now can calculate all terms for solutions found in the previous section. We will
focus on the balance between terms in the radiating limit of k approaching the LWC. In
the limit of vanishing growth rate kc; — 0, the time derivative of the perturbation i(inetic
energy on the left-hand side of Eq. 3.4 vanishes. Do both terms on the right-hand side
go to zero as well?

The results are presented in Fig.3.8 for y, = 1.5. All terms in the energy equation
are weighted by the kinetic energy integrated from —¥s to yp; the left-hand side of the
equation 3.4 then becomes 2kc; (is shown by the solid lines in the plots). We should
remind the reader that the jet itself occupies the region [-1 1]. For Mode 1, one can
see that terms Fy,, and Fluz do not vanish. Instead, they balance each other with Fluz
terms being negative. That means that the energy that is extracted from the kinetic
energy of the mean flow through the energy conversion term is then being fluxed away
from the jet region into the external domain. The kinetic energy in the internal ([~y,

»}) region does not grow, no energy is “spent” on the temporal growth of perturbations.
y g g ) g g P

The described dynamical process characterizes the radiation.

In the described above limit, the growth rate is zero and the linear solution cannot
grow to finite amplitudes; the fluxed kinetic energy remains small. A solution that is not
on the cut-off of the dispersion curve and, therefore, possesses nonzero growth rates is
more interesting dynarnica.ﬂjr. However, the balance in the equation for shorter waves is
dominated by terms %Ke and Fi,, while Fluz terms remain small (Fig.3.8). When we
characterize the Mode 1 as radiating, we claim that if the growth rate of such a mode
were set to zero the mode would become purely radiating and the balance between energy
conversion term and the energy that is fluxed away from the jet would be established.
The only way to achieve that within linear theory is to look at the dynamics of a solution

at the cut-off itself.

The energy balance for Mode 2 near the LWC is different. As one can see on Fig.3.8,
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in the LW limit all terms in the energy equation go to zero. The extraction of energy
from the mean current disappears together with the growth of the perturbation energy in
the jet region. Once again, we face the less clear situation for Mode 2. As we recall from
the pfevious section, in the LW limit spatial trapping of Mode 2 disappears, however the
amplitude of motions is relatively small. In addition, now we see that the energy balance
also suggests that the energy is not fluxed from the region in the LW limit. Based on
the above facts, we can say that according to the linear theory, Mode 2 corresponds to

insignificant radiation in the LW limit.

3.3 Summary

We have discussed the results of the stability analysis of several simple examples of
nonzonal currents. In the analysis, we focused on the radiating properties of a solution
as well as on some new stability properties.

Two velocity profiles were considered. First is the simplest top-hat broken-line profile
with piece-wise constant velocity. The main mechanism for instability of this profile is
the Kelvin-Helmholtz type of instability related to the infinitely narrow shear zone. The
second is the more realistic continuous profile which is strongly barotropically unstable.
Despite the difference in two choices, some results appear to be very similar in both cases.
We now summarize the common properties of the solutions of two problems.

In section 2.3, we formulated what we mean by the radiation in the linear theory.
The real difficulty with determining whether a linear solution is of radiating character is
due to the fact that fast exponential growth can lead to the strong spatial trapping. The
question then is whether the trapping disappears if the growth is stopped. The only way
to "stop” the growth in the linear problem is to consider the solution near the cut-off of a
dispersion curve. Is a solution wave-like in the exterior in this limit? The other criterion
1s the phase-speed condition that is also formulated in section 2.3.

In the case of a zonal jet, all solutions are trapped according to all criteria. Since




spatial trapping does not disappear when growth rate 1s made small, we predict that all
solutions will remain trapped in the nonlinear regime as well. This prediction will be
confirmed in Chapter 5.

When the horizontal tilt is increased slightly from zero to 5° for the continuous jet,
the dynamical picture changes. The changes are the biggest for long waves of each mode
found. The phase travels faster than the mean flow itself, therefore critical layers cannot
be found at the LWC. The solution in the LW limit 1s radiating, which is confirmed by
both phase speed condition and by the y-structure. We conclude that even a very small
horizontal tilt of the jet axis changes trapped solutions to radiating in the LW limit.

The radiating properties are well-pronounced for the larger value of the tilt, a = 30°.
For both the velocity profiles, phase speed condition is satisfied by long waves. The
solution has a wave-like radiating form in the limit of ¢; — 0 at the LWC. However, the
radiation is very energetic for Mode 1 only. The amplitude of the radiating response by
Mode 2 of the continuous jet is rather small and the phase speed condition is satisfied
for very narrow range of parameters.

The stability properties change for a nonzero horizontal tilt as well. In an agreement
with the results from section 2.2, a continuous nonzonal current is more unstable. The
unstable solutions are found for very large values of the planetary vorticity gradient,
unlike in the case of a zonal jet.

The energy balance in the radiating limit for a nonzonal continuous jet reveals more
information about the dynamics of radiation. In this limit for the Mode 1, the balance
is established between the energy conversion term and the flux terms, which represent
a flux of energy from the region of the jet. The growth rate and the time derivative of
the perturbation kinetic energy both go to zero in the limit, since we approach a cut-off.
The situation for Mode 2 is less clear. All terms in the energy equation vanish in the
limit, which leaves open the question whether the energy is really being radiated into the
exterior.

To summarize the results of this section, we should note that barotropic nonzonal
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currents are capable of radiating long slowly growing waves. Fast growing waves remain
trapped, but it is very likely that their spatial trapping is only due to their fast growth.
Consideration of nonlinear development is needed for the complete understanding of the

process.
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Chapter 4

Linear two-layer model

We have observed the effects of nonzonality on simple barotropic currents. Qur next
objective is to look at the linear stability and radiating properties of the flows with some
vertical structure. What overall effect does the baroclinicity have on radiating properties
of nonzonal flows? Several changes could be anticipated.

Generally, we expect an increase in the number of unstable modes in the baroclinic
model. The radiating properties of the new baroclinic modes will be interesting to inves-
tigate. The structure of solution should also change. A solution in the baroclinic problem
has a depth-averaged barotropic component and vertically sheared baroclinic one. We
will investigate whether both the components are radiating, or, rather, radiating response
1s dominated by the barotropic component only.

In the baroclinic model, instability is due to both barotropic and baroclinic effects.
The growth of the perturbation energy is due to the barotropic and baroclinic energy
conversion terms in corresponding energy equation. We will look at both the terms and
determine whether they are equally important for radiating solutions. In section 3.2.4, we
observed for Mode 1 that in a radiating limit there is a balance between the barotropic
energy conversion term and the flux of energy into the exterior region. This type of
balance is characteristic for radiation and is very likely to be found in the baroclinic

problem. However, whether both the energy conversion terms will play an important
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role in the balance is an intriguing question.

We can try to answer the posed questions by considering the simplest baroclinic
model: the two-layer model with no mean velocity in the lower layer. We formulate the
problem and re-derive a sufficient condition for instability and criteria for radiation from
the Chapter 2 in the section 4.1. As in Chapter 3, we will consider two velocity profiles:

top-hat jet (section 4.2) and continuous jet (section 4.3).

4.1 Formulation

In the quasigeostrophic approximation the potential vorticity equation is written in the

following form (Pedlosky, 1987):

%vwn t+ I(n + Tnly), Vo4 + (—1)*F (%1 — 92) + Qn) = Fo, (4.1)

with n = 1,2, We follow the usual notation and use F for the squared ratio of the
horizontal jet scale to the Rossby deformation radius (L.f)*/g'H. We take the layer
thickness H to be the same for both layers for simplicity.

The unperturbed state is given by

leﬁlfﬁ+ﬁ2y—ﬁy—F‘I’1; Qz=ﬂ1$+ﬁ2y+F‘I’1

¥y = —/ﬁ(y)dy; ¥, =0. (4.2)
As in the barotropic problem, we introduced the forcing F,, in the equation (note that

only F; # 0). After linearization it follows that a solution in each layer is given by

Pn(2,y,1) = §aly )™=

and satisfies the following system of equations:




¢1yy+(ﬁ—2_:—‘w_y—:m"(k2+F))¢1+ﬁ}5¢1y+F¢2:0
(4.3)
ogy + (B — (B2 + F))s + 2oy + Fby = 0.

We pick the velocity profile in the upper layer in the same form as in the barotropic
problem (2.14). To satisfy the boundary conditions at the infinity we require each wave
with nonzero amplitude to decay at y = too. Thus, the statement of the eigenvalue
problem is completed. As before, we search for the complex values of the phase speed
corresponding to the unstable eigenmodes.

Some results of the Chapter 2 can be re-derived for the two-layer problem. In particu-
lar, the sufficient condition for instability of the section 2.2 can be generalized to include
the second moving layer. Multiply the first equation in the system 4.3 by ¢}, second by

¢35 (asterix stands for a complex conjugate) integrate form —oo to co, take the imaginary

part and add the results together. We get:

@ |ef?

ﬂlR / [(ilflz ‘f"’_‘iﬂ dy = 0. (4.4)

We modify the second pair of terms in the way identical to that in the section 2.2.

kc./ [ |¢1|2|2(/52 Uyy + Fu) + I¢2|2( Fﬁ)] dy+

We now note that
L ¢3¢2 L11g3¢s &
R / 2 yd — _/ - ra2yéy
€ L (—C) Y 12 lclz (¢2¢2y)| |2
and the first term on the right-hand side of the above equation is zero. We finally get:

o gl i | Imbi
te [ | 22t =+ o)+ ) - (i Il

1 L 2a,
+ '%Re/ 1% 4 o, ' (4.5)

-L (u — c)?
One can see that the condition 2.10 of section 2.2 does not change in the two-layer

model with zero mean flow in the lower layer: If the last term is not zero and 8; # 0, the
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solution is unstable. The former is true if, for example, 4, is of the same sign everywhere
in the domain. As in the section 2.2, we can conclude that nonzonal baroclinic currents
tend to be more unstable than zonal flows.

We now reformulate the conditions for radiation analogous to those of section 2.3. We
first note that our solution now consists of the sum of two Rossby waves in each of the
external regions where @(y) = 0. Both waves have equal frequencies and z-wavenumbers
and different y-wavenumbers. One wave is the non-divergent barotropic Rossby wave

with the dispersion relation

o= —Bak + Bil
CGED
The other is the baroclinic Rossby wave:
—Bak + Bil

Tty

Since the non-divergent wave is faster in terms of the phase propagation, the necessary
condition for radiation becomes the ability of the real part of the phase speed to match the
phase speed of the free barotropic Rossby wave. That is, it is the barotropic mode that
allows a broader range of phase speeds to excite radiation and its phase speed should be
used in the necessary condition for radiation. In other words, the phase speed condition
stands the same as in the barotropic problem (Eq. 2.13). Since the range of phase speeds
for radiation to exist is more narrow for the baroclinic component, it is very likely that
the latter will be trapped and the radiating response in the far-field will be essentially
depth-independent. We will see in the following sections that it is true in many cases.

All other conditions remain the same, since they do not depend on the particular
structure of the solution: One should also consider the limit ¢ — 0 and pay close
attention to the y-structure of an eigenmode.

The last group of conditions that need to be re-derived for the two-layer model is
the set of jump conditions analogous to (2.16),(2.17). The conditions are necessary for

joining the solution across ¥y = 41 and for obtaining the dispersion relation.
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We follow the same procedure as outlined in detail in the section 2.4. In the upper
layer we obtain the conditions identical to (2.16), (2.17):
?
Py =0, Al =)~ dui + 2g) =0 (45)

In the lower layer where & = 0 the conditions are the requirements of the continuity

A=
U
of the velocity field:

Algz, ¢2y) =0 (4.7)

Having reformulated the conditions for radiation and jump conditions, we now proceed

with the analysis of solutions.

4.2 Top-Hat Jet

As in the barotropic problem, we start from the simplest choice: the top-hat jet with
piece-wise constant velocity profile. The resulting dispersion relation takes a complicated
form and is presented in the Appendix A.1.

A similar problem was first formulated in Yun et al.,(1995). The authors used jump
conditions different from the (4.6); that is, the second condition in 4.6 in their formulation
does not have the term “%qﬁ That error in the formulation of the problem resulted in
a disagreement of the results in Yun et al,,(1995) with the results presented below:; see
Kamenkovich and Pedlosky (1996).

We observe some changes imposed by the addition of the second layer to the problem.
The number of unstable modes increases: two more modes are found in addition to the
modified barotropic modes 1 and 2. We will call these new modes baroclinic modes 3
and 4 since their existence is clearly connected to the presence of the lower layer.

Let us look at fig.4.1. The results for the 4 most unstable modes are presented in
the usual form of the dispersion curves ¢ = c¢(k) for the jet tilted by 30°. First, we see

that Modes 1 and 2 are modified by the presence of the second layer although the general
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shape looks very familiar. The behavior of the Mode 1 in the LW limit holds qualitatively
the same: c, gets larger than the maximum flow speed for Mode 1. As in the barotropic
problem, SWC is absent for both modes due to the discontinuity of the mean velocity
profile.

Two additional baroclinic modes have somewhat different shapes: each of them has
both long wave and short wave cut-offs. Mode 4, that corresponds to a shorter scale
in z, has negative phase speed in the LW limit. Long waves of Mode 3 travel very fast
reminding us of the similar behavior of the Mode 1; they are, however, always slower
than the maximum mean current speed.

We see that in the LW limit the real parts of the phase speeds of all modes are within
the range of the barotropic Rossby wave phase speed (2.13). The phase speed condition
is satisfied making the radiation possible. In the short-wave portion of the dispersion
curves of all modes, the solutions are trapped.

Keeping in mind the very special character of the discontinuous velocity profile and,
at the same time, its ability to represent some general properties, we now move on to the

more general form of the u(y).

4.3 Continuous Jet

In this section we are going to study the stability of the same continuous velocity
profile for the upper layer as in the section 3.2, while the mean flow in the lower layer is
zero. We will concentrate on the effects of the added second layer on the stability and
radiating properties of the problem.

We use the Shooting technique for the numerical solution of the formulated eigenvalue
problem. Details are presented in the Appendix A.2. As a result, we obtain the complex
phase speed ¢ as a function of the parameters of the problem: k, 31,8, and F.

The addition of the lower active layer changes the dynamics of the problem signifi-

cantly. To observe these changes, one can vary the parameter F' which is the square of
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Figure 4.1: Results for the baroclinic Top-Hat jet. 8 = 1.5, @ = 30° and F = 3. (a) -
real parts of c for all 4 modes vs. k. Dashed line shows the maximum Rossby wave phase
speed. (b) - the same but for the imaginary parts of c. Wave numbers are shown on the
plot next to the corresponding curves.
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the ratio between the horizontal spatial scale and the internal Rossby deformation radius.
The parameter plays a role of the measure of baroclinicity in the problem: The larger it
is, the stronger is the coupling between two layers. For example, in the calculations for
F = 0.1, not presented here, Modes 1 and 2 are practically indistinguishable from those
in the barotropic model (see section 3.2.1) and no additional strongly unstable modes

are found.

4.3.1 Nonzonal jet: o = 30°

In addition to barotropic Mode 1 and Mode 2 now modified by the presence of the
second layer, we now find an additional Mode 3. The existence of Mode 3 is clearly tied
to the baroclinic effects of the coupling between layers. The mode does not exist for very
small and zero F. For the results presented here (Fig.4.2) we choose our parameter F
such that it allows a significant coupling between two layers; i.e. F =3 and F = 10.

Mode 1 and Mode 2 are familiar barotropic modes of section 3.2.3 modified by the
presence of the lower layer. Some changes are, however, observable. For example, both
real and imaginary parts of the phase speed are smaller than those in the barotropic
problem. Nevertheless, the general properties of these two modes stay the same. We
observe the familiar behavior in the LW limits of the each mode; at LWC phase always
travels faster than the mean flow speed for the Mode 1 and slower than the mean flow
for the Mode 2. A critical layer, therefore, is not present at LWC. At the SWC, on the
contrary, it is present as a result of ¢ lying inside the interval for the mean velocity: [0, 1].

Mode 3 is absent for very small values of F for a = 30° and B = 1, because it is
the baroclinic effect that allows its existence.} However, the mode can be found for F
as small as 1. The fact illustrates the more unstable nature of the baroclinic nonzonal
currents: if F' = 3, for example, two unstable modes if & = 0° are found; but there are
three unstable modes for & = 30°. Mode 3 has growth rate, kc;, which is smaller than the
growth rates of Mode 1 and 2 for F' = 3. Larger F enhances the baroclinic mechanism for

instability. Both the growth rate and interval in % corresponding to the baroclinic Mode
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Figure 4.2: Results for the baroclinic continuous jet. o = 30°, 8 = 1. (a,b) - Real parts
of ¢ vs. k. The maximum Rossby wave phase speed is shown by the dashed line. (c,d) -

Imaginary parts of c. (a,c) - F =3. (b,d) - F = 10. Mode numbers are shown next to
the corresponding dispersion curves.
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3 increase with larger F for all modes. The typical shape of the dependence of ¢ on k
for Mode 3 is somewhat similar to that of Mode 1. Longer waves travel faster, although
¢, 1s never larger than the maximum u(y) resulting in the possibility of the critical layer
at the LWC.

We now notice that the dispersion curve of Mode 3 of the continuous jet is similar
to that of Mode 3 of the Top-Hat jet especially in the LWC. Once again (see sections
3.1 and 3.2.3, we point out the ability of the simple problem with broken-line profile to
reproduce some of the results for the more realistic continuous current. The difference
between two cases is nevertheless substantial. In particular, no analog for the baroclinic
Mode 4 of the Top-Hat jet is found in the case of the continuous current. The mode is
believed to be an artifact of the top-hat profile.

The phase speed condition is satisfied for all three modes in the LW limit, making the
radiation possible. The interval in k in which ¢, is within the range (2.13) is relatively
wide for the Mode 3.

The analysis of the complex meridional wavenumbers in each of the external regions
confirms the radiation of the long waves by each mode; see fig.4.3. We remember, that
we need to check the largeness of the spatial decay scale and the smallness of /I, in
the limit of ¢; — 0 to conclude that solution radiates. In contrast, short waves of all
three modes are trapped. One also should keep in mind that the solution is the sum of
two waves with different wavenumbers; see section 4.1. From the fig.4.3 we can see that,
for example, for Mode 2 both y-wavenumbers become real at LWC in both the external
regions. For Modes 1 and 3, in contrast, only the non-divergent barotropic component
of the solution in the external regions is radiating. Imaginary parts of [ of the baroclinic

component in the external region are still large for these modes.

We could better illustrate this fact from fig.4.4 which shows barotropic (¢r = ¢4 +¢2)
and baroclinic (@p. = ¢; — ¢2) streamfunctions as functions of y for values of k chosen
at the LWC. For Mode 1 the magnitude of barotropic wave-like response is very large

in the negative y-direction (fig.4.4a). The barotropic component ¢, is significant at the
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Figure 4.3: Complex meridional wavenumbers { vs. k. § = 1, a = 30°, F' = 3. Real parts
are shown by solid lines; imaginary are shown by dashed. Numbers next to the curves
indicate the type of the component: 1 - barotropic component, 2 - baroclinic component.

(a,c,e) External region y < —1. (b,d,f) y > 1. (a,b) Mode 1. (c,d) Mode 2. (e,f) Mode 3.
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southern jet edge y = —1, so we can conclude that it is the barotropic instability mode
that projects on the radiating response in the exterior. At the other jet edge y =1, the
$rc dominates, although the ¢, is prevailing in the region y > 1 as a result of the strong
trapping of the baroclinic component.

Mode 3 corresponds to the large amplitude of the streamfunction inside the jet region
with the baroclinic component being the largest in amplitude (fig.4.4c). We should also
keep in mind, that the very existence of the Mode 3 is connected with the presence of the
second layer in the problem; it is, therefore, reasonable to expect that baroclinic effects
are important role in the energy conversion process. The instability mode at both the
jet edges is a mixture of ¢y and ¢y, although ¢, is larger in amplitude. The barotropic
response in the exterior is smaller in amplitude than in the interior region, but is still
clearly dominant over the trapped baroclinic component. It looks as though the mixed
barotropic-baroclinic instability mode in the interior projects on the radiating barotropic
response in the exterior.

In contrast, both barotropic and baroclinic components of Mode 2 are not trapped
in the external regions. However, the wave-like response in the exterior is very small
in amplitude compared to that in the interior region. As in the barotropic case, the y-
derivatives are rather large for ¥ < —1 because of the short-wave structure of the solution
in the region. The perturbations are surface intensified for y < 1; we can see it from the
fact that ¢prs and ¢y, are very close to each other. ¢2 is, therefore, small in amplitude
compared to ¢;.

In the LW limit of all modes a radiating component is typically presented by the long
wave for y > 1. For y < —1 the solution is a much shorter wave in y.

To better understand how the process of the energy conversion from the mean current

to the far-field motions takes place one need to closely consider the energy balance in the

equation.
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Figure 4.4: Y-structure of the barotropic ¢ = $1(y) + ¢2(y) (shown by the solid lines)
and baroclinic ¢pre = ¢1(y) — ¢2(y) components (shown by the dashed lines). g = 1,
a = 30° F = 3. k is chosen close to the LWC: (a) Mode 1, k = 0.155; (b) Mode 2,
k =1.092; (c) Mode 3, k = 0.165
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4.3.2 Energy balance

We multiply the linearized equation (4.1) by v,(z, v, t) and integrate in z over the
period and in y from —y; to y, repeating the procedure employed in section 3.2.4. We

end up with the energy equation; the horizontal overbar represents the averaging in z

defined in section 3.2.4:

Fy.
E /y uy(y 1!11,1/)1,, dy + F/ u(y)'sf’ﬂ/’zz dy +
Fluz

+ [_uW + :V; (mm —~ %ﬁ@?)r (4.8)

Y

where E is a perturbation energy (a sum of kinetic and potential energy)

E = / Z("/’z +v2,) +§(¢1—¢2)2 dy

We can traditionally distinguish two sources of the perturbation energy: 1)barotropic
energy conversion term F., related to the horizontal shear in the mean current and
2)baroclinic term Fp,., related to the vertical shear. The flux terms familiar from section
3.2.4 now represent the flux of energy in both layers.

Now we can compare relative sizes of the terms in the energy equation in an attempt
to understand what mechanism draws energy from the mean current to the growing in
time perturbations. Let us take a look at fig.4.5(a,c,e) where all three terms Fy,,, Fy,.
and Fluz terms, normalized by the perturbation energy F, are shown as the functions
of the x-wavenumber.

For Mode 1, Fi.¢ is typically larger than Fj,. (fig.4.5a). The energy embedded in the
horizontal shear of the mean current is the main source for the growing perturbation
energy. The radiating LW limit of kc; — 0 is interesting. In this limit, in a way similar
to that for the barotropic problem (see section 3.2.4), the balance between Fy: and
Fluz terms is established. The baroclinic source for perturbation energy vanishes if the

exponential growth of the energy disappears. The energy is being obtained through the
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barotropic term and is being fluxed away from the region in this limit. The process of
radiation is therefore barotropic in nature for Mode 1.

The integrands in both the energy sources Fy,¢ and Fi,. are shown as functions of y for
the k close to the LWC value on fig.4.5(b,d,f). For Mode 1 we also see that the integrand
in Fyr¢ reaches its maximum near the southern edge of the jet at y = —1 (figd.5b). It is
not surprising, therefore, that the radiating response to the south from the jet (negative
y in our formulation) is so energetic.

The long waves of Mode 2 grow due to the mixed barotropic-baroclinic mechanism for
energy conversion, with Fi,, being the largest in magnitude. Short waves are amplified
mainly by the process of barotropic instability. The Fluz terms remain negligible for all
values of k and all terms in the equation vanish in the LW limit. As in the barotropic
model, it is hard to identify long waves of Mode 2 as radiating despite the fact that they
are weakly trapped in the limit (see figs.4.3,4.4). The y-structure of the integrand in
Fire (fig.4.5d) indicates that energy is taken from the perturbations to the mean flow for
negative y and from the mean field to the perturbations for positive y.

Situation for Mode 3 is more complicated. In fact, for the long waves of this mode
the energy is being drawn from the perturbations to the mean current by the barotropic
mechanism: Fi < 0. The baroclinic source overcomes the stabilization effect of the
Fyre and provides the perturbations with enough energy to grow and to flux energy
away from the region considered. Fluz terms become very small but do not vanish
completely in the LW limit. It is interesting that despite the fact that the energy for
growing perturbations is provided by the baroclinic mechanism, the radiating response
is basically depth-independent in this limit (see fig.4.4). For short waves the situation
is the opposite, with Fi, being the positive and Fj,. playing the stabilization role. The
sum of this two sources always stays positive. The presence of the critical layer at LWC

1s well-pronounced in the y-structure of the integrand in the barotropic energy source

(fig.4.5f).
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Figure 4.5: Energetics of the problem. 8 =1, a = 30°, F' = 3. (a,c,e) - Integrated energy
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4.4 Summary

We have considered the model with a simple example of a baroclinic flow. The second
moving layer with zero mean current is added to the barotropic model studied in chapters
2 and 3. The resulting baroclinicity has several effects on the properties of solutions. We
considered two forms of mean velocity profile, a piece-wise constant broken-line profile
and a continuous jet.

The number of unstable modes increases. In addition to the modes 1 and 2 of the
barotropic problem, we have found two baroclinic modes in the case of a top-hat jet and
one mode in the case of a continuous current. The existence of these additional modes
is clearly tied to the baroclinic effects. We find these modes only if the nondimensional
parameter F' measuring the strength of the dynamical coupling between two layers F' is
large enough.

The very existence of slowly growing radiating solutions in the LW part of each
dispersion curve is not affected by the baroclinicity. All criteria for radiation formulated
in section 2.3 are satisfied in the LW limit for each mode. In particular, the spatial
trapping disappears in this limit if the growth rate vanishes. The additional baroclinic
modes share this property with previously found modes of the barotropic problem. We
will now briefly summarize the results of the analysis of the spatial structure of the
solutions for the problem with a continuous mean velocity profile in the upper layer.

For the analysis, we split the streamfunction in the external regions into depth-
independent component and a baroclinic addition to it. The structure of these compo-
nents appears to be very different. The amplitude of the barotropic wave-like response is
large especially for negative y for Mode 1. The baroclinic component is trapped. More-
over, the barotropic energy source in the described LW limit balances the flux terms,
while both baroclinic energy conversion term and the growth rate vanish. The radiation
is, therefore, dominated by the barotropic mechanism for Mode 1.

Long waves of Mode 2 exist due to the mixed barotropic-baroclinic mechanism. Both

barotropic and baroclinic components are not trapped in the LW limit. Their amplitudes,
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however are very small. All energy terms vanish in the LW limit. As in the barotropic
problem (see section 3.2), it is difficult to confirm significant energy radiation for Mode
2.

Similar to the Mode 1, wave-like response associated with Mode 3 is barotropic in
structure. However, the baroclinic energy conversion term is the only source for radiating
energy. The barotropic term is a sink of perturbation energy for the long waves of the
mode. The balance is reversed for short waves.

The problem reveals new aspects in the dynamics of radiation. The radiating response
has barotropic structure for modes 1 and 3 no matter whether the main energy source is
barotropic as for Mode 1 or baroclinic as for Mode 3. Given the more narrow range for
the phase speed allowed by the phase speed condition for the baroclinic Rossby waves, it
1s not surprising to find that they are usually evanescent in structure. We can anticipate

now that in a linear continuously stratified model with infinite number of Rossby modes,

the radiating response is still going to be mainly barotropic in most cases.




Chapter 5

Nonlinear regime. Single wave

development

In chapters 2, 3 and 4 we have studied the radiation of energy by nonzonal currents in
linear models. As we noted, the task of verifying the radiating nature of the solution is
difficult in the linear theory. The fast exponential growth of a linear solution can lead to
the spatial trapping. The radiating nature of the solution is then disguised by the effects
of the fast growth. We observed for those cases that when we choose the parameters that
make the growth rate small, the radiating nature becomes transparent for the waves long
in z. However, the dynamical development during the initial linear stage is dominated
by faster growing and therefore trapped modes. Their growth cannot last forever, the
nonlinear effects should halt it at some point in time. Will the solution start to radiate
then or the radiation remain the feature of the long slowly growing linear waves? In the
latter case, the radiation would be energetically insignificant. In the former, not only can
we claim that radiation is energetic, but also that it can happen in the form of shorter
waves that have more realistic length scale on the order of the jet half-width (if k ~ 1).

That is why it is crucial for the present study to analyze the nonlinear development
of the linear solutions found in the previous chapters. We want to keep our results

simple yet not lose the important aspects of the dynamical picture. For this purpose, we

78



will consider the nonlinear development in a barotropic model. As was demonstrated in
Chapter 4, the incorporation of baroclinicity does not qualitatively change the radiating
properties of the problem: The radiating response has eessentially depth-independent
structure. Therefore, we choose to consider the nonlinear development of barotropic
linear solutions only. We believe, that it is sufficient for drawing general conclusions
about the radiation in a nonlinear model.

For solving our nonlinear problem, we need an efficient numerical method. The biggest
challenge in developing such a method is formulating numerical boundary conditions. In
the present study, we use a routine that assumes periodicity in z and open boundary
conditions in y. The numerical formulation of the latter conditions is not generally an
easy task. To further complicate the matter, the numerical solution appears to be very
sensitive to the open boundary conditions because the radiating solutions are of finite
amplitude far from the jet region. We employ modified Orlanski boundary conditions
and they work well for most cases. The whole method is described in detail in section
5.1 and in the Appendix.

The results of nonlinear computations are generally difficult to analyze. A spectrum
of modes is always excited by the nonlinear interactions. In section 5.1, we propose to
decompose the solution in Fourier modes in z; which is possible to do because the solution
is periodic in z. The analysis of the temporal evolution of each component helps us to
understand the complicated process of the nonlinear evolution.

We start with the analysis of the nonlinear development of a single mode. The linear
solution is used as initial condition and is given small amplitude to ensure its validity
during the initial stage of development. Mode 1 from the linear barotropic problem
is first considered. As in Chapter 3, we first analyze the process in the model with a
zonal current. We then increase the value of the tilt and concentrate on changes caused
by the changed orientation of the mean current in section 5.2. The case of a strong tilt
(o = 30°) is studied in detail in section 5.3. The dependence of the results on the value of

the planetary vorticity gradient is analyzed in section 5.2.3. The nonlinear development
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of Mode 2 is studied in section 5.4.

5.1 Method of solution and analysis

The nonlinear terms were ignored in the previous chapters due to their smallness during
the initial stage of development. We now include the nonlinear terms into consideration.

The equation 2.4 changes accordingly:

(% + ﬁ(!:db%) V2¢ + (ﬁz - ﬁyy)¢a: - ﬁﬂby + J(¢) V2¢) = 0 (51)

We now need to discuss the form of initial and boundary conditions. Together they
are the decisive factors in choosing the appropriate numerical method of solving 5.1. The
problem is first formulated on the infinite 8-plane in Chapter 2. A single Fourier mode in
z is then considered as a general solution. Due to the linearity, the separate consideration
of each mode is sufficient for the accurate solution.

Unlike the linear solution, the results of nonlinear computations strongly depend on
initial conditions. For the representation of arbitrary initial conditions, the continuous
spectrum of linear Fourier modes is needed and boundary conditions in = become very
difficult to formulate. To keep all results simple, we choose to initialize a problem with
either a single mode or a sum of two modes. Although it is hard to claim that a complete
dynamical picture can be obtained by doing that, we hope to mimic the important
properties of nonlinear interactions and the effects they have on the radiating properties
in the problem.

In this chapter, we study the nonlinear development of a single wave with a wavenum-
ber k. In the course of nonlinear self-interactions, a set of secondary modes that are
shorter in z is created in addition: 2k, 3k, etc. together with the z-independent com-
ponent. Because of this special structure of the solution, we can assume periodicity in
z with a period equal to the longest period in the set: 2x/k. The extension to the case

with the sum of two waves as initial condition is straightforward and is done in Chapter
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The boundary conditions in y are more difficult to formulate. The conditions need
to remain 