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Abstract  

The U.S. Navy's 5-in 54-cal. (5754) gun system Mark (Mk) 45 was subjected to first-order 
dynamic analysis tools that allowed rapid assessment of ballistic dispersion of a typical naval 
high-explosive projectile. 

The interior ballistics high-velocity gun version 2 (IBHVG2) modeled the 5-in propelling 
charge Mk 67, and gun barrel centerline data were obtained from two 5754 Mk 19 gun barrels. 
The "Little RASCAL" program was used to estimate the tipoff angles and angular rates for the 
Mk 64 5-in projectile, and the "PC-PRODAS" computer program was used to estimate the 
projectile yaw and yaw rates resulting from the bore and bourrelet clearance. The tipoff angles 
and rates obtained for the Little RASCAL program were then combined with the yaw data to 
establish a matrix of possible worst-case conditions of initial projectile yaw and yaw rate. 

A total of 32 possible muzzle exit conditions were identified and used as initial conditions 
for a 6 degrees of freedom trajectory program. The resulting variation in range obtained from 
the 32 trajectory calculations was used to calculate the range probable error. The results obtained 
from this relatively simple analysis technique have shown very good correlation with ballistic 
dispersion measurements made during actual firing tests. 
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1. INTRODUCTION 

The high cost of prototype fabrication and testing of today's complex weapon systems has placed 

an increasing emphasis on simulation and modeling to evaluate system design alternatives and 

effectiveness prior to actual hardware manufacture. In the area of large-caliber gun systems, some 

of the most expensive tests are those required to determine the ballistic dispersion of the gun and/or 

its ammunition. Although there are several very sophisticated computer models available today that 

will accurately predict the dynamic response of large-caliber gun systems during firing, these models 

typically require precise three-dimensional models of the gun system configuration and its mass 

properties. Therefore, these models are not well suited to conducting the "sanity check" type 

evaluations often required to assess the impact of potential design alternatives and/or proposed 

design modifications in a timely manner. 

In a joint government/industry collaboration, the U.S. Army Research Laboratory (ARL) and the 

Armament Systems Division of United Defense, LP have investigated the feasibility of utilizing the 

"Little RASCAL" (Erline, Kregel, and Pantano 1990) gun dynamics simulation program in 

conjunction with "standard" interior and exterior ballistic programs to provide a "desktop" analysis 

capability to evaluate the ballistic dispersion of intermediate-caliber gun systems. The gun system 

chosen for analysis in this study was the U.S. Navy's 5-in 54-cal. (5754) Mark (Mk) 45 gun mount. 

The Mk 45 is the main gun armament of the majority of current U.S. surface combatants and is slated 

to be upgraded in capability as part of the Naval Surface Fire Support (NSFS) program. Therefore, 

considerable interest exists in obtaining a more detailed understanding of the system-error budget. 

The analysis procedure described in this report has been shown to yield reasonable estimates of 

the ballistic dispersion of an intermediate-caliber indirect-fire weapon, offers a relatively simple 

method for obtaining "first-order" estimates of the impact of proposed design changes to either the 

weapon or its ammunition, and can provide a useful tool for gun system designers to assess the 

potential impact of small changes to major parameters affecting gun and projectile dynamics. 



2. BACKGROUND 

This study was based on two ARL-developed computer models: the Interior Ballistics High- 

Velocity Guns version 2 (IBHVG2) (Anderson and Fickie 1987) program, the Little RASCAL gun 

dynamics program, plus the commercially available projectile design and analysis program 

PRODAS.* 

IBHVG2 is a lumped-parameter, interior ballistics computer code. The code, which was 

developed at ARL, is an updated version of the classic Baer-Frankle interior ballistic code. IBHVG2 

is used to calculate interior ballistic trajectories, including gas pressure, projectile displacement, and 

projectile velocity as a function of time. IBHVG2 was used to compute the interior ballistic cycle 

of the standard 5-in propelling charge Mk 67. The Mk 67 charge is designed to produce a nominal 

exit velocity of 2,650 ft/s (808 m/s) with a 70-lb (31.75 ks) projectile. The projectile velocity and 

breech pressure vs. time data computed by B3HVG2 were used as input to the Little RASCAL gun 

dynamics program. 

The Little RASCAL is a comprehensive modeling code for predicting lateral gun dynamics and 

projectile dynamics. When fired, the bore-riding projectile undergoes a complex sequence of 

mechanical and gas dynamic interactions on its way out the barrel. The Little RASCAL gun and 

projectile dynamics program is capable of simulating the inertial loading conditions brought about 

by the projectile interacting with the barrel in a plane as it accelerates the length of a gun rube's 

unique centerline. Thus, in tracking the projectile interacting with the barrel, the initial launch 

conditions of the projectile at shot exit can be predicted. Projectile pitch and pitch rates, as well as 

muzzle motion, are calculated and available for use as input to the exterior ballistic programs. 

The Little RASCAL gun and projectile dynamics program is a dynamic displacements code 

employing a direct structural dynamics analysis approach to the simulation of firing a projectile from 

a gun.   Both the gun system and the projectile are modeled using a series of equally spaced 

* PRODAS is a commercial multifunction ballistics program developed by ARROW Tech., Inc. 
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cylindrical elements. Nodes are centered and assigned equivalent mass and stiffness values based 

on standard engineering formulae. Inertial forces and flexural forces are calculated using this 

simplified description. Flexure at each node is approximated by a second-order finite difference 

method, which allows the bending forces to be computed. Transverse nodal accelerations caused 

by these forces are integrated with respect to time to obtain transverse nodal velocities and integrated 

again to obtain lateral node displacements. Loads induced by pressure effects, mounting conditions, 

breech center of gravity offset, and the projectile interaction forces with the barrel are accounted for 

in the Little RASCAL program. All forces are then integrated by a predictor-corrector technique 

stabilized by a numerically stiff ordinary differential equation solver (Kregel and Lortie 1973). 

The gun system, which includes the breech, barrel, and two gun supports, and the projectile 

system are two separate models. They are accounted for individually, except for a variational 

algorithm that handles their interaction. The interaction of the projectile with the barrel occurs 

through contact points. The two contact points defined on the projectile are usually positioned where 

they occur geometrically. The two projectile contact point positions on the barrel are dynamic and 

change as the projectile traverses the bore. The gun system model and the projectile model are two 

separate, flexible entities with each projectile contact point requiring a user-defined spring constant. 

The spring constants serve to define the interface loads between the projectile model and the gun 

model. 

The Little RASCAL program has proven that simple modeling techniques in which the primary 

components of a gun system are included can produce reasonably accurate results in a timely 

manner. The code is generic enough so that almost any gun system and projectile can be modeled 

in a simple manner. Gun dynamics predictions made by Little RASCAL of barrel motion have been 

shown to agree quite well with experimental results over a wide range of gun system size and type 

(Erline and Kregel 1988). 

The PROD AS program is a multifaceted projectile analysis package. The principal features of 

the program used for this study were the muzzle exit analysis feature and the six degree-of-freedom 

(6DOF) trajectory model. The muzzle exit segment of PRODAS was used to compute the initial 



muzzle exit tipoff angle and tipoff rate resulting from the clearance between the projectile and the 

bore of the gun. The 6D0F trajectory model was used to determine the effect on achieved range of 

various initial pitch and yaw angles and angular rates. 

The projectile geometry and mass properties used throughout the study were based on the 

standard 5-in Mk 64 projectile body (Figure 1) with high-explosive load and Mk 73 CVT proximity 

fuze. The mass properties of the projectile are summarized in Table 1. 
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Figure 1. Mk 64 5-in projectile. 

Table 1. Projectile Mass Properties 

Weight 68.49 lb (31.07 kg) 

Center of Gravity From Nose 16.56 in (420.6 mm) 

Axial Moment of Inertia 240.83 lbm-in2 (16.97 kg-m2) 

Transverse Moment of Inertia 2803.50 lbm-in2 (2299.71 kg-m2) I 



As with any gun dynamics model, the accuracy of the results obtained from the Little RASCAL 

model is dependent upon detailed, precise knowledge of the weapon being analyzed. Since the 

Mk 45 gun mount has been in production for over 20 years, a considerable volume of detailed 

information concerning the geometry, mass properties, and stiffness of various system components 

was available to facilitate the modeling process. This was also true for the ammunition components. 

The single area where detailed information did not exist was the gun barrel. Although dimensional 

and mass property data existed for the 5-in gun barrel Mk 19, there was little, if any, information on 

the centerline variations existent in previously manufactured gun barrels. To overcome this lack of 

information, centerline measurements of two Mk 19 Mod 2 gun barrels, serial numbers (S/N) 518 

and 17343, were made by the ARL author using laser measuring equipment. A third gun barrel, 

S/N 17423, was also measured; however, data from this barrel became available too late to be 

included in this study. 

The original objective of this study was to determine the ability of the Little RASCAL program 

to accurately predict the dynamic response of the Mk 45 gun mount during firing for the purpose of 

gaining a greater understanding of the total error budget of the system. However, as the analysis 

proceeded, it became apparent that the analysis methodology being employed could be utilized as 

a relatively simple means of assessing the potential impact of changes to certain key system design 

parameters upon the ballistic dispersion of the system. 

3. APPROACH 

The analysis methodology developed during this study involves a four-step process: (1) The 

Little RASCAL model is used to predict the projectile pitch and yaw angles and angular rates 

resulting from the dynamic response of the system during firing; (2) The tip off angle and angular 

rate resulting from the in-bore yaw of the projectile are computed for both nominal and maximum 

projectile-clearance conditions. These muzzle exit conditions are combined numerically with the 

Little RASCAL results to obtain a set of initial projectile launch conditions to be used with the 

6DOF trajectory model; (3) The 6DOF trajectory model is used to compute the range to impact for 

each of the initial conditions defined in step 2; (4) The results of the trajectory calculations are 



tabulated, and the mean and standard deviation of the achieved range are computed to give an 

estimate of the ballistic dispersion that would result from the system configuration being modeled. 

The Little RASCAL modeling process involves describing the projectile, projectile interior 

ballistics, and the gun system. The projectile is described by its geometry and mass properties, plus 

a definition of the location and spring constant for each of the two contact points between the 

projectile and the gun barrel. The interior ballistics information consists of the projectile velocity 

vs. time history for the in-bore cycle. The gun system information required includes the geometry 

and mass description of the gun barrel and breech along with breech center of gravity offsets, if any, 

trunnion and elevation support locations, and their equivalent spring constants. The final gun system 

data requirement is the data describing the variations in the centerline of the gun barrel. 

A simplified schematic representation of the gun system, as modeled in the Little RASCAL 

program, is shown in Figure 2. The breech assembly of the Mk 45 has a weight of 2,344 lb 

(1,063 kg), and its center of gravity is offset 0.141 in (3.58 mm) vertically and 0.0302 in (0.77 mm) 

horizontally. The trunnion supports are located 19 in forward of the rear face of the breech assembly 

and were assigned a spring constant of 3,200,000 lb/in (57.15e+6 kg/m). The effective elevation 

support of the gun assembly is located 17 in aft of the trunnion and was assigned a spring constant 

of 135,800 lb/in (2.44e6 kg/m). As previously stated, the centerline variations of two 5-in Mk 

19 Mod 2 gun barrels, S/N 518 and S/N 17343, were measured by ARL personnel for use during this 

study. The vertical and horizontal centerline deviations of the two barrels are shown in Figures 3 and 

4. 

The muzzle exit conditions computed by the PROD AS program include the magnitude of the 

tipoff angle and tipoff rate resulting from the bore to bourrelet clearance and spin of the projectile. 

The dimensional tolerances on the bourrelet of the projectile and the bore of gun barrel were 

examined to define the extreme clearance conditions likely to occur in fielded systems and the tipoff 

angle and angular rates for minimum and maximum clearance conditions computed. Since the 

orientation of these exit conditions (i.e., up, down, left, right, etc.) is random in nature, a baseline 
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Figure 2. Gun system model. 
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Figure 4. Gun barrel S/N 17343 centerline data. 

analysis. These combinations of pitch and yaw angle and angular rate were combined numerically 

with the results from the Little RASCAL program to produce a matrix of initial launch conditions 

for the 6DOF trajectory model. Thus, a total of 64 possible launch conditions was established for 

each case to be analyzed. 

Prior to beginning the analysis, the 6DOF trajectory model was "calibrated" by adjusting the 

projectile input data to obtain range results under standard conditions that corresponded to published 

information (Naval Sea Systems Command 1985) on the range performance of the 5754 gun system. 

Once the trajectory model was calibrated, the launch condition matrices were used to generate input 

data files for the trajectory model. Computation time for the test case trajectories varied between 

2 and 20 min, depending on the gun elevation being used and the speed of the individual computer. 



To facilitate analysis and manipulation of the data, the trajectory results were compiled in a 

computer spreadsheet. This approach permitted rapid computation of various statistical data such 

as the mean and standard deviation of the range results and plotting of the data. 

4. RESULTS 

The initial series of simulations performed using the Little RASCAL model consisted of 

determining the dynamic response of each gun barrel at seven different gun elevation angles. The 

elevation angles chosen corresponded to nominal gun ranges of 1,000 (914 m); 2,000 (1,828 m); 

5,000 (4,572 m); 7,500 (5,212 m); 10,000 (9,140 m); 15,000 (13,716 m); and 20,000 (18,280 m) yd. 

The results obtained from this initial modeling of the Mk 45's dynamic response at various 

elevation angles were used to assess the ability of methodology established for this study to provide 

a reasonable estimate of the ballistic dispersion that result from actual gun firings. Trajectory 

calculations were made using the results from both barrel centerlines at each evaluation angle. The 

range standard deviation obtained in each case was then compared to the best available estimates 

(Updike 1996) of actual gun system performance under proving ground conditions. The results of 

this assessment are shown in Figure 5. 

The proving ground range dispersion values shown in Figure 5 are based on post-test analysis 

of a large volume of firing data collected by the Naval Surface Warfare Center/Dahlgren Division 

over the last 20+ years from numerous 5754 gun systems under various firing conditions. These 

values are derived during the post-test data reduction process and may be characterized as the 

standard deviation of the residual uncertainty that exists between the observed range of each around 

and the value computed when all known conditions (i.e., meteorological conditions, projectile 

weight, actual muzzle velocity, etc.) are factored into the standard 5754 fire-control equations. It 

has also been noted that observed ballistic dispersion of the 5754 gun system has been declining in 

recent years. This is evident in the results of a recent shipboard ammunition effectiveness test (Jones 

and Updike 1995) conducted under closely controlled conditions at a gun tartet range of 

approximately 18,000 yd; the observed standard deviation error in range was 48 yd (12 yd less than 
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Figure 5. Calculated and proving ground range dispersion. 

the established proving ground value). While the reasons for this decline in dispersion are beyond 

the scope of this report, a major contributing factor could be the improvements in dimensional 

consistency achieved in projectile bodies manufactured using numerically controlled machining 

processes. 

The distinctive "U," or "bathtub," shape of the proving ground range dispersion curve is 

characteristic of most naval gun systems. Because naval guns employ a single service charge for 

both direct- and indirect-fire targets, variations in the departure angle of the projectile tend to be the 

dominate cause of range dispersion at short range, while factors that affect the drag and flight 

characteristics of the projectile (i.e., dimensional variations, surface finish, center-of-gravity location, 
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inertia, etc.) are the dominate source of error at long range. In addition, transient meteorological 

effects have a greater impact on the long-range trajectories. 

A further detail that must be considered when interpreting the results illustrated in Figure 5 is 

the effect on the projectile initial tipoff angle and angular rate caused by the torsional response of 

the gun barrel due to the rifling reaction as the projectile is spun up during the ballistic cycle. This 

response is not modeled in the Little RASCAL program and could account for the underprediction 

of dispersion at the shorter ranges. 

In light of the considerations discussed previously and the limited amount of barrel centerline 

data available, it was concluded that the analysis methodology developed for this study was 

providing a reasonably (accurate first-order indication of range dispersion resulting from the dynamic 

response of the gun). In addition, further analysis of the trajectory results revealed that the average 

achieved range of rounds fired from gun barrel S/N 518 was always less than that achieved by gun 

barrel S/N 17343 as illustrated in Figure 6. 

While it has frequently been observed that some guns are "long shooters" while others are "short 

shooters" and that retubing can change a gun from a long shooter to a short shooter and vice versa, 

the cause of this phenomenon has never been adequately explained or investigated. Although the 

limited sample size used in this study precludes any definitive conclusions concerning the cause of 

this phenomenon, the authors feel that further investigation of the effect of gun barrel centerline 

variations on average achieved range could lead to a more thorough understanding. 

Encouraged by these initial results, the authors set out to determine if the analysis technique 

could be used to characterize the effect on ballistic dispersion of changes to major system design 

parameters. The system parameters chosen for further analysis were the effective spring constants 

of the gun trunnions, the elevation support structure, and the forward and aft bourrelets of the 

projectile body. Since design changes to both the trunnions and elevation drive of the Mk 45 gun 

11 
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Figure 6. Achieved range differential of gun barrels S/Ns 518 and 17343. 

mount are currently being considered as part of the Naval Surface Fire Support upgrade package, the 

potential impact of changes in these components on ballistic dispersion was of particular interest. 

Although the significance of accurate estimates of projectile body spring constants on Little 

RASCAL analysis results has been previously investigated (Erline 1991), the impact of changes or 

variations in these physical characteristics of the projectile upon the ballistic dispersion of indirect- 

fire weapons has not been explored. 

To assess the utility of the analysis methodology in the characterization of the sensitivity of 

system ballistic dispersion to variations in the identified system parameters, additional calculations 

were conducted using the range of values shown in Table 2. Each parameter was varied over the 

range of values while all the others were held constant at the baseline values previously established 

for the system. Separate calculations were conducted for each of the two gun barrel centerlines. 
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Table 2. System Parameters Varied During Analysis 

Parameter Spring Constant 
lb/in (kg/m) 

Lower Values Baseline Higher Values 

Trunnions 1.92e+6 
(34.29e+6) 

2.24e+6 
(40.06e+6) 

2.72e+6 
(48.57e+6) 

3.20e+6 
(57.15e+6) 

— 

Elevation 
Support 

109,440 
(1.95e+6) 

123,120 
(2.20e+6) 

135,800 
(2.43e+6) 

150,480 
(2.69e+6) 

164,160 
(2.93e+6) 

Fwd 
Bourrelet 

0.5e+6 
(8.93e+6) 

0.8e+6 
(14.29e+6) 

1.18e+6 
(21.07e+6) 

2.0e+6 
(35.72e+6) 

3.0e+6 
(53.57e+6) 

Aft 
Bourrelet 

0.5e+6 
(8.93e+6) 

0.8e+6 
(14.29e+6) 

1.08e+6 
(19.28e+6) 

2.0e+6 
(35.72e+6) 

3.0e+6 
(53.57e+6) 

The range of values chosen for the trunnions and the elevation support was based on engineering 

experience and the results of numerous shock and vibration analyses and tests that have been 

conducted on the Mk 45 gun mount since its introduction to the fleet in the early 1970s. The range 

of spring constants for the projectile bourrelets was based on test results from two Mk 64 projectile 

bodies and data collected by ARL on the radial stiffness of 120-mm tank projectiles (Lyon 1994). 

The results obtained from the Little RASCAL model for the variations of the gun mount parameters 

are shown in Table 3, and the results for variations of the projectile parameters are shown in Table 4. 

The small changes in projectile initial conditions that resulted from rather large changes in the 

spring constants of the gun trunnions and elevation support would seem to indicate that the ballistic 

dispersion of the Mk 45 gun system is relatively insensitive to major changes in these parameters. 

The changes in the initial projectile pitch and yaw angles and angular rates resulting from the 

changes in the spring constants of both the forward and aft bourrelets are shown in Table 4. 

The dynamic shape of the two gun barrels during firing with the baseline initial conditions is 

shown in Figures 7 and 8. Each figure illustrates the shape of the barrel when the projectile has 

13 



Table 3. Gun Mount Parameter Variation Results 

Parameter 
Barrel 

S/N 
Support 
Stiffness 

(lb/in) 
Pitch Angle 

(rad) 
Yaw Angle 

(rad) 
Pitch Rate 

(r/s) 
Yaw Rate 

(r/s) 

Elevation Support 518 164,160 6.9920e-04 6.7707e-04 1.7406 0.4797 

150,480 6.9905e-04 6.7707e-04 1.7405 0.4798 

135,800 6.9871e-04 6.7707e-04 1.7404 0.4798 

123,120 6.9876e-04 6.7707e-04 1.7403 0.4798 

109,440 6.9816e-04 6.7707e-04 1.7402 0.4798 

17343 164,160 -7.7922e-04 4.9129e-04 -0.8651 1.5032 

150,480 -7.7956e-04 4.9129e-04 -0.8656 1.5032 

135,800 -7.7990e-04 4.9130e-04 -0.8661 1.5032 

123,120 -7.8023e-04 4.9131e-04 -0.8666 1.5032 

109,440 -7.8058e-04 4.9131e-04 -0.8671 1.5032 

Trunnions 518 3,200,000 6.9871e-04 6.7707e-04 1.7404 0.4798 

2,720,000 7.0022e-04 6.7708e-04 1.7412 0.4798 

2,240,000 7.0154e-04 6.7709e-04 1.7419 0.4798 

1,920,000 7.0241e-04 6.7709e-04 1.7423 0.4798 

17343 3,200,000 -7.7990e-04 4.9130e-04 -0.8661 1.5032 

2,720,000 -7.7990e-04 4.9132e-04 -0.8662 1.5032 

2,240,000 -7.7992e-04 4.9133e-04 -0.8663 1.5032 

1,920,000 -7.7991e-04 4.9134e-04 -0.8663 1.5032 

traveled three-fourths of the distance to the muzzle, seven-eighths of the distance to the muzzle, and 

at muzzle exit. The reference for gun barrel motion in these figures is as follows: at time zero all 

nodal displacments are zero. The dynamic response of the two gun barrels is unique to their 

individual centerline variations, as shown in Figures 7 and 8. These unique reaction characteristics 

are also evident in the transverse velocity of the gun muzzle during the in-bore cycle. As can be seen 

in Figures 9-12, the frequency and amplitude of the transverse velocity response shift with changes 

in the spring constant of the forward bourrelet of the projectile. This frequency shift is due to a 

change in the projectile's rigid-body rocking modes. Since there are two rocking modes (Thomson 

1981), changing the spring constants of projectile bourrelets changes the response of the gun barrel. 

14 



Table 4. Projectile Parameter Variation Results 

Parameter 
Barrel 
S/N 

Support 
Stiffness 
(lb/in) 

Pitch Angle 
(rad) 

Yaw Angle 
(rad) 

Pitch Rate 
(r/s) 

Yaw Rate 
(r/s) 

Fwd Bourrelet 518 3,000,000 1.7604e-04 3.6752e-03 -4.4191 1.5883 

2,000,000 1.2332e-03 3.7083e-03 -1.4797 6.1585 

1,185,000 6.9871e-04 6.7707e-04 1.7404 0.4798 

800,000 -4.0800e-04 1.3737e-03 -0.3266 -1.6183 

500,000 -2.8924e-04 1.9709e-03 -3.3228 -0.5196 

17343 3,000,000 1.7451e-03 2.7548e-04 -0.5799 3.4469 

2,000,000 1.5485e-03 2.0303e-03 3.9567 0.1358 

1,185,000 -7.7990e-04 4.9130e-04 -0.8661 1.5032 

800,000 5.5708e-04 1.3142e-03 -0.0378 -1.8546 

500,000 1.3455e-04 1.8419e-04 1.5311 0.2972 

Aft Bourrelet 518 3,000,000 1.0206e-04 7.6987e-04 1.0323 4.1891 

2,000,000 8.3561e-04 5.908 le-04 2.1809 1.0394 

1,085,000 6.9871e-04 6.7707e-04 1.7404 0.4798 

800,000 4.7562e-04 9.9157e-04 1.8221 -0.7687 

500,000 8.1551e-05 1.5270e-04 1.5868 -0.1344 

17343 3,000,000 -6.9767e-04 9.4122e-04 0.6385 2.2155 

2,000,000 -7.2585e-04 8.1648e-04 -0.3713 3.4534 

1,085,000 -7.7990e-04 4.9130e-04 -0.8661 0.4798 

800,000 -6.4252e-04 5.0799e-04 -1.2817 0.2990 

500,000 3.4813e-04 2.1200e-03 0.8365 1.6513 

From all of the results generated during this study, it was noted that the changes in the spring 

constant of the forward bourrelet produced much larger changes in the dynamic response of the 

system than changes to the spring constant of the aft bourrelet. The dominant influence of the 

forward bourrelet results from several factors, the most obvious being that the forward bourrelet is 

the first point on the projectile body to encounter the variations in the barrel, and that the center of 

gravity of the projectile is closer to the forward bourrelet. 
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These results prompted further investigation of the potential impact of changes to the forward 

bourrelet spring constant on range dispersion. Using the procedure previously described, a series 

of trajectory calculations was performed for each initial condition at a gun elevation corresponding 

to a nominal range of 7,500 yd (5,212 m). The results of these calculations are shown in Figures 13 

and 14. 

As expected, the changes in range dispersion that resulted from changes to the spring constant 

of the forward bourrelet are significantly larger than those for corresponding changes to the aft 

bourrelet. Although this study analyzed the response of only two individual gun barrels, these results 

would seem to indicate that if further improvements in the ballistic dispersion of the 5754 gun 

system are to be realized, then attention must be focused on the gun barrel manufacturing process 

with the objective of producing gun barrels whose characteristic centerline variations are more 

consistent. 

5. SUMMARY AND CONCLUSIONS 

The ballistic tools used in this study are proven products. They are fast, and as shown in this 

report, produce reasonable first-order results. Utilizing the analysis methodology described in this 

report, these models produce estimates of the ballistic dispersion of the 5"/54 gun system, that 

compare favorably to available proving ground data. In addition, these simulations were used to 

analyze the effect on shot exit conditions due to changes on a single, major parameter of the gun 

mount or the projectile. The results of these analyses indicate that major changes in the spring 

constant of the gun supports produce negligible effects on the projectile at shot exit. Much more 

noticeable changes in shot exit conditions occur when the projectile's contact spring coefficient 

changes.    This is especially true when the forward bourrelet spring constant is changed. 

One of the more important conditions to note in this gun system is that the very small center of 

gravity offsets in the breech have an insignificant effect on the dynamic response of the gun. The 

results indicate that each individual gun barrel centerline produces a unique gun response. This 

unique response appears to cause the mean achieved range for a fixed set of firing conditions to be 
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different for each gun barrel. This unique response may be the root cause of the short shooter or long 

shooter characteristic often observed in the 5754 and other long-range-type gun systems. 

The analyses conducted during this investigation have yielded a considerable volume of 

information about the overall dynamic response characteristics of the 5754 gun system. A complete 

presentation of the data derived to date is far beyond the scope of this report. The interpretation of 

this information is an ongoing process and will undoubtedly lead to a more complete understanding 

of the key factors that influence the ballistic dispersion of the Mk 45 gun mount. 

While the dynamic response of large-caliber indirect-fire gun systems is a relatively minor 

contributor to the overall delivery error, the importance of understanding the magnitude and source 

of all errors cannot be overstated. As the range of indirect-fire gun weapon systems is increased and 

greater emphasis is placed on improving delivery accuracy at these extended ranges, the need to 

identify, quantify, and understand the interdependencies of all sources of error will become 

increasingly important. Because of the ever-increasing cost of conducting live firing tests, computer 

modeling and simulation are often the only affordable means available to acquire the necessary 

knowledge and understanding necessary to make intelligent decisions concerning the overall 

accuracy potential of a gun weapon system. However, as the speed and power of computers have 

continued to increase, so have the sophistication and complexity of the models. Although these 

models are capable of providing precise information, often at levels of detail heretofore impossible 

to instrument, the time and expense required to develop and calibrate these models for existing 

weapon systems are often prohibitive. Therefore, there is a definite need for an accurate and simple 

means of conducting the quick-look-type analyses and first-order effect assessments necessary to 

guide and focus the application of more sophisticated techniques. 

Although this study has admittedly been limited in scope, the authors believe that the analysis 

methodology developed during the investigation and described in this report offers a relatively 

simple and effective means of characterizing the dynamic response of a large-caliber gun system and 

assessing that system's sensitivity to changes in key parameters that affect its dynamic response. This 
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desktop procedure provides the gun and ammunition designer with an effective tool to quickly and 

economically assess the potential impact of proposed changes to key system parameters and can also 

provide design guidance during the early stages of new system development. 
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