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34 
New and Improved Vaccines Against 
Meningococcal Disease 

Wendell D. Zollinger 
Walter Reed Army Institute of Research, Washington, D.C. 

1.    BACKGROUND 

A. Causative Agent 

Meningococcal disease in its various forms is caused 
by Neisseria meningitidis, an aerobic, gram-negative 
diplococcus. Its sole natural habitat is human mucosal 
membranes, primarily the nasopharynx, which it nor- 
mally colonizes without causing disease. Virulent 
strains freshly isolated from the blood or cerebrospinal 
fluid are typically encapsulated, whereas throat isolates 
may or may not be encapsulated. The capsules are 
composed of anionic polysaccharides, which are the 
basis for classification of the species into serogroups. 
Twelve different serogroups are current recognized: A, 
B, C, 29E, H, I, K, L, W135, X, Y, and Z. The re- 
spective capsular polysaccharides (CP) have all been 
chemically and structurally defined [1]. 

Meningococci have been further subdivided into se- 
rotypes, serosubtypes, and immunotypes on the basis 
of the antigenic specificity of two major outer 
membrane proteins (OMP) and the lipopolysaccharide 
(LPS) [2]. The serotype and serosubtype are based on 
antigenic variation of the porins PorB and PorA re- 
spectively and are defined on the basis of reactivity 
with specific monoclonal antibodies. About 18 differ- 
ent serotype determinants, 13 serosubtype determi- 
nants, and 12 LPS immunotypes have been identified. 
These subcapsular antigens are independent of the ser- 
ogroup. A recommended nomenclature for specifying 
the major antigens on a given strain has been pub- 
lished [2]. According to this nomenclature, a strain is 
described by a strain number followed parenthetically 
by serogroup: serotype: serosubtype: immunotype. 

In addition to serological classification based on 
surface antigens, classification of meningococci on the 
basis of genetic relatedness has been found to be very 

useful for purposes of global epidemiology and iden- 
tification of virulent clones with epidemic potential 
[3,4]. The principal method for doing genetic typing 
is multilocus enzyme electrophoresis or enzyme typing 
[5], but pulsed field gel electrophoresis of restricted 
whole-cell DNA also appears to have potential for de- 
termining genetic relatedness [6]. Using genetic typing 
along with serological analysis, Achtman and cowork- 
ers have extensively studied the global epidemiology 
of group A meningococcal disease [3]. Caugant and 
coworkers, using enzyme typing, identified a genetic 
clone called ET5 that, together with closely related 
strains, has been responsible for recent group B epi- 
demics in Norway, Cuba, Chile, and Brazil [4]. 

B.   Description of the Disease 

The clinical manifestations of meningococcal disease 
are diverse and range from the asymptomatic carrier 
state to fulminant meningococcemia, which can pro- 
gress very rapidly, often leading to death in 12-48 hr 
from the onset of symptoms. Most systemic disease, 
however, is manifest in the form of meningitis, men- 
ingococcemia, or both. Meningococcemia may be be- 
nign, severe, fulminant, or chronic. Associated with 
these primary disease states may be a variety of neu- 
rological and/or immunological complications. The 
clinical aspects of meningococcal disease have re- 
cently been reviewed by Cartwright [7]. 

In the preantiserum, preantibiotic era, the case fa- 
tality ratio for meningococcal disease was about 
65-80%. Treatment with antimeningococcal antise- 
rum, introduced in 1908 [8], eventually reduced the 
mortality rate to about 20-30%, and the level was fur- 
ther reduced to the current level of 4-15% by the dis- 
covery and use of antibiotics beginning with the use 
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of sulfanilamide in 1937 [9]. Even with antibiotic 
treatment, the prognosis for cases of fulminant men- 
ingococcemia without meningitis is quite poor. Case 
fatality rates varying from 15 to 71% have been re- 
ported for such cases in recent years [10]. 

Meningococcal disease primarily affects young 
children, but the age distribution varies with the ser- 
ogroup [11] and the serotype or genetic clone of the 
infecting strain [12]. The peak incidence of endemic 
meningococcal disease due to all serogroups combined 
to about 6 months to 1 year of age, which corresponds 
to the age when serum antibody levels are lowest 
[13,14]. During epidemics, the median age of cases 
increases to the 5- to 10-year-old range [10,15,16]. 

osubtype combinations have been found to be associ- 
ated with epidemic group B and group C disease. For 
group B disease, serotype 2 strains (mostly 2a:P1.2) 
were most common in the early 1960s [22,25] but 
were gradually replaced by 2b:P1.2 strains between 
the late 1960s and about 1980, depending on the coun- 
try [12,22,26]. More recently, several closely related 
strains—including types 15:P1.16 [12,24], 4:P1.15 
[20,21], and 15:P1.3 [15]—have emerged as epidemic 
strains. These strains have been shown by Caugant et 
al. [4] to belong to a cluster of genetically closely 
related strains called the ET5 complex. For group C 
disease, strains with the 2a:P1.2 and 2b:P1.2 antigenic 
phenotype still predominate [26,27]. 

C.   Historical Disease Pattern and 
Geographic Distribution 

Historically, meningococcal disease has occurred 
worldwide, often in large epidemic waves, with a pe- 
riodicity of about 10 years. These periodic epidemics 
have been superimposed on a background of endemic 
disease, which is epidemiologically distinct. Endemic 
disease is usually much more heterogeneous with re- 
spect to both the serogroup and subcapsular antigens 
expressed on causative strains [10,17]. The attack rate 
during endemic periods is normally about 1:100,000 
to 3:100,000 per year in most countries [12,14]. Epi- 
demics, on the other hand, involve attack rates from 
about 10:100,000 to as high as 400:100,000 to 
500:100,000 per year and most often have been caused 
by group A strains [10,18,19]. Serogroup B and C 
strains generally are most prevalent during endemic 
periods, but they have also been responsible for nu- 
merous outbreaks and epidemics of a reduced scale 
[15,16,19-22]. Epidemic serogroup A disease has 
largely been absent from the United States and most 
European countries since 1950 but is still a major 
problem in many areas of the world, especially the 
meningitis belt in Central Africa and China. Menin- 
gococci of serogroups Y and W135 cause a much 
smaller but not insignificant amount of disease, partic- 
ularly in complement-deficient individuals [23]. Sys- 
temic disease due to serogroups 29E, H, I, K, L, X, 
and Z is rare. 

Recently, well over half of all meningococcal dis- 
ease in North and South America and Europe— 
including epidemics in Norway, Cuba, Brazil, and 
Chile—has been due to group B [15,16,20,21]. Epi- 
demics or major outbreaks of meningococcal disease 
usually involve a single predominant strain or clone 
[3,12,15,20,24], but in prolonged epidemics the anti- 
genic profile of the causative strain tends to become 
more heterogeneous with time. Certain serotype/ser- 

D.   Current Vaccines 

Currently licensed meningococcal vaccines consist of 
different combinations of the purified high-molecular- 
weight CP from serogroups A, C, Y, and W-135. In 
addition, a group B/C outer membrane protein-C CP 
vaccine has been licensed in Cuba [28,29]. The group 
A and group C CP vaccines, which have been quite 
successful, were developed in the late 1960s by 
Gotschlich et al. [30,31]. These vaccines have been 
shown in multiple controlled field trials to provide ex- 
cellent protective immunity in adults, but efficacy in 
young children varies with the age of the children and 
with the vaccine [32]. In an important trial in Finland, 
the group A vaccine was found to be effective in chil- 
dren as young as 6 months, but a second dose was 
required about 3 months after the first [33]. Gold et 
al. [34] concluded that a protective level of antibody 
against group A could be maintained throughout child- 
hood by an appropriately timed sequence of immuni- 
zations. The group C polysaccharide, however, is less 
immunogenic in children under 2 years [35]. In an 
efficacy study of group C polysaccharide in young 
children in Brazil, no protection was observed in chil- 
dren under 24 months of age, and in children 24 to 36 
months of age, the efficacy was only 52%. Although 
there is evidence that the vaccine used in this study 
may not have been of the highest quality [36], mea- 
surements of antibody responses in young children 
support the conclusion that the C vaccine is less im- 
munogenic in children under 2 years of age than the 
A vaccine [34]. 

It is also important to note that children appear to 
acquire antibodies to the A CP by natural immuniza- 
tion more quickly and in greater amounts than anti- 
bodies to group C CP [34]. Thus, the apparent differ- 
ence in the antibody responses of children to the A 
and C vaccines may simply reflect the different levels 
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and rate of increase of preexisting antibodies to the 
respective polysaccharides at the time of vaccination. 

The efficacy of the Y and W-135 CP vaccines has 
not been proven due to the low incidence of disease 
caused by strains of these serogroups. They were li- 
censed on the basis of molecular size, chemical purity, 
and their capacity to induce high titers of bactericidal 
antibodies. Since 1984 a tetravalent A, C, Y, W-135 
CP vaccine has been given to all U.S. military recruits 
upon entrance into basic training. During that time 
there have been no reported cases of Y or W-135 me- 
ningococcal disease in vaccinated individuals [22]. 
This observation provides some evidence for efficacy 
of Y and W-135 vaccines. 

Both the initial antibody response and the persist- 
ence of elevated titers of antibody to the CP vaccines 
is dependent on the quality of the vaccine used, the 
age of the vaccinated individuals, and the antibody 
level before vaccination [37]. Vaccine quality is to a 
large extent determined by the molecular size of the 
polysaccharide. High molecular weight and a high de- 
gree of aggregation of the capsular polysaccharides are 
associated with greater immunogenicity [38,39]. The 
presence of a stabilizer such as lactose and control of 
the cold chain are required to preserve the quality of 
the vaccines, particularly the group A vaccine [38]. 
The duration of protection, as determined by efficacy 
trials or by monitoring of anti-CP antibody levels, is 
much better in adults than in children. In a study in 
Air Force recruits, elevated levels of anticapsular an- 
tibodies and serum bactericidal activity against a group 
C strain were found to persist for at least 10 years 
after immunization [40]. After 10 years, 75% of the 
recruits had >2 /xg/mL of anti-A antibody, and 85% 
had 2:2 fj.g/mL of anti-C antibody. In children, how- 
ever, the persistence of anti-CP antibody and the du- 
ration of protection is less satisfactory. In a case con- 
trol study in Burkina Faso [41], efficacy of the A 
vaccine in children less than 4 years of age decreased 
from 100% the first year to 8% by the third year. In 
children of ages 4 years and older, the efficacy de- 
creased from 85% the first year to 67% the third year. 

The A and C vaccines are generally well tolerated 
and have now been given to many millions of people 
without any fatalities or serious permanent sequelae. 
Nevertheless, the CP vaccines are not currently rec- 
ommended for routine use in civilian populations in 
industrialized countries [42]. They are used primarily 
to control epidemics and localized outbreaks and for 
immunization of high-risk populations [43]. 

The deficiencies associated with the licensed me- 
ningococcal A and C CP vaccines cited above and the 
lack of an effective group B vaccine have prevented 
the existing CP vaccines from being used on a routine 

basis in children. In addition, group A disease has his- 
torically appeared as large epidemics that occur with 
a periodicity of about 10 years. The relatively short 
duration of protection provided young children by the 
current group A vaccine makes it unsuitable for use 
for routine vaccination because protection would not 
likely extend to the next major epidemic. 

II.   CONJUGATE CAPSULAR 
POLYSACCHARIDE VACCINES 

A.   Conjugate Vaccines for Groups A and C 

In the wake of the highly successful Haemophilus in- 
fluenzae type b (Hib) conjugate protein-polysaccharide 
vaccines, it is widely anticipated that similar vaccines 
consisting of protein-polysaccharide conjugates of me- 
ningococcal A and C CP will be equally successful. 
The deficiencies associated with the meningococcal A 
and C CP vaccines can most likely be attributed to 
their T-cell-independent properties, but it is not en- 
tirely clear why the CP vaccines perform better in 
adults than in children. The maturation of the immune 
system has been cited, but other factors may also be 
important. In adults, the high-molecular-weight CPs 
appear to be able to stimulate CP-specific B lympho- 
cytes and induce production of antibody by cross- 
linking the immunoglobulin surface receptors [44]. 
Most adults have likely had exposure to the CPs 
through colonization by meningococci or other cross- 
reacting organisms. If the cell associated CP behaves 
as a T-cell-dependent antigen, then natural priming 
can be considered a T-cell-dependent process. Thus, 
when adults are vaccinated with the meningococcal CP 
vaccines, they likely respond with secondary type of 
antibody response. 

Preparation of optimized meningococcal poly- 
saccharide-protein conjugate vaccines for serogroups 
A and C requires evaluation of a number of variables. 
These variables include which protein carrier to use, 
the size of the oligosaccharide or polysaccharide moi- 
ety, the conjugation chemistry, the substitution ratio, 
and the use of an adjuvant. Since the Hib conjugate 
vaccines were licensed, many clinical studies have 
been done to analyze and compare the characteristics 
of the immune response induced by each. These stud- 
ies have produced a great deal of important informa- 
tion about the design, use, and effectiveness of con- 
jugate vaccines that can be useful in optimizing the 
design of meningococcal conjugate CP vaccines. One 
Hib vaccine, which contained the meningococcal outer 
membrane protein complex (PRP-OMPC) as the car- 
rier, behaved differently in several respects from those 
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that used tetanus toxoid (TT), diphtheria toxoid (DT), 
or the CRM197 nontoxic mutant toxin as the carrier. 
The PRP-OMPC vaccine was able to induce an anti- 
body response in 2-month-old children after a single 
dose, whereas the vaccines with DT or TT as carrier 
required two or three doses [45,46]. A second and 
third dose of the PRP-OMPC vaccine, however, did 
not result in a substantial boost in antibody levels, and 
after three doses, the quantity, avidity, and bactericidal 
potency of the antibodies induced were lower than the 
antibodies induced in children by three doses of the 
toxoid-PPvP conjugates [45]. Interestingly, an immu- 
nization schedule consisting of one dose of PRP- 
OMPC followed by two booster doses with a 
toxoid-PRP vaccine resulted in higher antibody levels 
at each stage in the vaccination schedule than three 
doses of a single-conjugate vaccine [48]. Carrier prim- 
ing between 1 and 6 months of age was important for 
an optimal antibody response to the toxoid-based con- 
jugates but was not required for the PRP-OMPC con- 
jugate [49]. On the other hand, higher preexisting ma- 
ternal antibody to tetanus toxoid in infants resulted in 
a reduced antibody response to the tetanus toxoid- 
PRP conjugate vaccine [50], and boosting the level of 
anti-tetanus toxoid antibodies in adults did not in- 
crease the anti-PRP antibody response to vaccination 
with PRP-tetanus toxoid vaccine [51]. 

The optimal length of the polysaccharide fragment 
to couple to the protein carrier was studied by Jen- 
nings et al. [52,53] using type III group B streptococ- 
cal polysaccharide conjugated to tetanus toxoid. They 
found that an intermediate length of oligosaccharide 
consisting of about 14 repeating units gave a greater 
functional antibody response in rabbits than shorter (6 
repeating units) or longer (25 repeating units) frag- 
ments. They suggest that the shorter oligosaccharides 
lack the internal conformational length-stabilized epi- 
tope that is postulated to induce functional antibodies, 
and the longer fragments may result in the vaccine 
beginning to exhibit T-cell independence. 

Several human studies have now been done with 
meningococcal group A and C conjugate vaccines pro- 
duced by Sclavo R&D Vaccines (Siena, Italy) using 
the CRMI97 mutant diphtheria toxin as the carrier 
[54-56]. These vaccines were produced by coupling 
oligosaccharides with an average chain length of 6 to 
the CRM197 protein carrier by reductive amination of 
the oligosaccharides followed by activation with the 
N-hydroxysuccinamide diester of adipic acid and re- 
action of the activated oligosaccharides with the 
CRM197 to give an oligosaccharide to protein ratio of 
about 0.25 to 0.3 [55]. The resulting vaccines, which 
were adsorbed to aluminum hydroxide, were tested for 
safety and immunogenicity in mice and rabbits and 

then in human volunteers [55]. The conjugates were 
clearly more immunogenic in mice than the free poly- 
saccharides. In the human study, a good antibody re- 
sponse to the first dose was obtained, but a second 
dose resulted in only a slight increase in antibody. In 
a further phase II study in 50 adults [54], the conjugate 
A and C vaccines were compared to an approved tet- 
ravalent vaccine (Menomune, Connaught Laboratories, 
Inc., Swiftwater, PA). The conjugates were given at 
three dosage levels ranging from 5.5 to 22 yu.g of con- 
jugated polysaccharide, and the approved vaccine was 
given at the standard dosage of 50 /ng of each poly- 
saccharide per dose. The conjugate vaccines induced 
bactericidal antibody titers against a group C organism 
that were two- to threefold higher at 30 days post- 
vaccination than titers induced by the licensed tetrava- 
lent CP vaccine. As determined by an isotype-specific 
enzyme-linked immunosorbent assay (ELISA), how- 
ever, the conjugate vaccine induced antibody re- 
sponses that were not significantly different than those 
of the approved polysaccharide vaccine for any of the 
antibody isotypes. At 1 year postvaccination, antibody 
levels remained highest in those volunteers who re- 
ceived the approved CP vaccine. This suggests that the 
approved CP vaccine may be better for use in adults 
than a conjugate of this design. 

The A-plus-C conjugate vaccine was also tested for 
safety and immunogenicity in about 300 Gambian in- 
fants 8 to 10 weeks of age [56]. The conjugate vaccine, 
which contained 11 fig of each polysaccharide cou- 
pled to 49 /xg CRM197 protein, was compared to an 
approved A-plus-C CP vaccine (Menpovax A + C, 
Biocine, Siena, Italy). Several different vaccine sched- 
ules were used, and blood samples taken were limited 
to two per child. The conjugate vaccine was found to 
be safe and immunogenic. The antibody levels induced 
by the conjugate vaccine as measured by ELISA after 
two doses at 2 and 6 months of age were about the 
same (group A) or double (group C) the antibody lev- 
els induced by the CP vaccine after two doses at 3 and 
6 months. Three doses of conjugate vaccine at 2, 3, 
and 4 months resulted in titers that were twofold 
higher than the titers obtained after two doses. By 3 
months after the third dose, the titers had fallen to 
about 25-30% of the peak levels. The geometric mean 
anti-C CP antibody titer induced by the conjugate vac- 
cine was higher after one dose at 6 months than after 
two doses at 2 and 6 months. This raises the possibility 
that the first dose of vaccine given at 2 months induced 
a state of partial unresponsiveness. 

Although this first conjugate A-plus-C vaccine 
shows improved immunogenicity in children as com- 
pared to unconjugated polysaccharide, it not clear 
whether the design of the vaccine is optimal. For ex- 
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ample, the average length of the oligosaccharides cou- 
pled to the CRM197 carrier (six repeating units) may 
have been too short. Oligosaccharides consisting of 
about 14 repeating units was optimal for inducing the 
best antibody response to a conjugate of type III group 
B streptococcal polysaccharide [52,53]. The results to 
date with the conjugate vaccines are encouraging and 
will hopefully lead to a product that can be used for 
routine vaccination of infants and young children to 
produce a solid, long-lasting protective antibody 
response. 

B.   Other Approaches to Improved A and 
C Vaccines 

Other approaches to the development of an improved 
vaccine for groups A and C are also being successfully 
pursued. One such approach is the use of an anti- 
idiotype vaccine. Westerink et al. [57] performed se- 
quence analysis on the variable regions of an anti- 
idiotype antibody that mimics meningococcal group C 
polysaccharide and identified the amino acid sequence 
that was responsible. Based on this peptide sequence, 
they prepared a synthetic peptide vaccine which was 
able to induce in mice protective antibodies specific 
for group C polysaccharide. To improve the immu- 
nogenicity of the peptide a lauroyl group was attached 
to the N terminus, and the modified peptide then com- 
plexed to proteosomes. These exciting results dem- 
onstrate the validity and feasibility of this alternative 
approach. Further studies should be done to evaluate 
the potential of this vaccine in human volunteers. 

Some of the approaches being pursued in the de- 
velopment of a group B vaccine involve the use of 
subscapsular antigens, many of which are shared by 
meningococci of different serogroups. In the event a 
highly successful group B vaccine is developed, it may 
be equally effective against meningococci of other 
serogroups. 

C.   Prospects for a Conjugate B Vaccine 

Extension of the polysaccharide-protein conjugate ap- 
proach to a group B vaccine is not straightforward 
since the purified group B capsular polysaccharide (B 
CP), which is a homopolymer of a(2—8)-linked N- 
acetylneuraminic acid, is a poor immunogen [58]. An 
explanation for the poor antigenicity of the B CP is 
provided by the studies by Finne et al. [59], who dem- 
onstrated the presence of polysialic acid chains with 
the same structure as the B polysaccharide in glyco- 
proteins of developing and adult tissues. The chains of 
polysialic acid associated with embryonic tissue are 

relatively long (>12 residues) and react with antibod- 
ies to B polysaccharide [60]. The polysialic acid 
chains become significantly shorter soon after birth, 
but the longer, embryonic form has been detected on 
certain adult tissues such as NK cells [61] and discrete 
areas of the brain. In addition, it appears to be tran- 
siently reexpressed in adults during muscle regenera- 
tion in several pathological situations and on certain 
types of tumor cells [62]. The implication of this mo- 
lecular mimicry is that the use of a vaccine based on 
the B CP might induce autoimmunity. Although this 
is a legitimate concern, there have been no reports of 
adverse effects associated with the presence of either 
natural or vaccine-induced anti-B CP antibody. The 
immune system does not appear to recognize short, 
linear oligosaccharides of a(2—8)-linked polysialic 
acid as foreign, but can recognize and respond, to a 
limited extent, to larger conformational epitopes 
[63-67]. 

Two approaches have been used to attempt to in- 
crease the immunogenicity of the B CP. The first at- 
tempts were based on observations that B CP associ- 
ated with whole cells or complexed to OMPs had 
greater antigenicity and immunogenicity than free CP. 
Candidate vaccines consisting of noncovalent com- 
plexes of B CP and OMPs were prepared and eval- 
uated in phase I and phase II human safety and 
immunogenicity studies [68,69]. These studies dem- 
onstrated that the vaccines were safe and that the B 
CP was moderately immunogenic when bound to the 
OMPs. The optimal antibody response to the B CP 
was obtained with a 1:3 w/w ratio of CP to protein 
[69]. Lifely and coworkers optimized the preparation 
of noncovalent complexes to reduce the amount of un- 
bound B CP and adsorbed the complexes to aluminum 
hydroxide. In a human safety and immunogenicity 
study [70] they demonstrated that (1) antibody re- 
sponses could be induced that persisted for at least a 
year after vaccination at geometric mean levels two to 
three times the prevaccination level; (2) the antibodies 
induced could provide passive protection in a iron 
dextran-sensitized mouse model; (3) a booster effect 
could be obtained after a second dose; and (4) 93% 
seroconversion (>twofold increase) could be obtained 
after three doses. 

The mechanism by which the complexing of the B 
CP with the OMPs enhances its immunogenicity is not 
fully understood. Binding of the B CP to the OMP 
may stabilize a conformational epitope [66,67] that is 
characteristic of cell-associated polysaccharide and 
important for immunogenicity. In addition, an adjuvant 
effect associated with the OMP is suggested by results 
obtained with meningococcal outer membrane proteins 
used as proteosomes to improve the immunogenicity 
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of hydrophobically bound antigens such as synthetic 
peptides, lipopolysaccharides, and capsular polysac- 
charides [71-73]. The OMPs have been shown to have- 
mitogenic activity [74] and to induce B lymphocyte 
costimulatory factor B7-2 [75]. It is unclear whether 
noncovalent complexing of the B-CP to the OMP con- 
verts it to a T-cell-dependent antigen. 

The antibodies to B CP induced by natural infec- 
tions or vaccination with noncovalent complexes are 
predominantly of the IgM class [63,68,70], have lower 
avidity at 37°C, than at 4°C, and are generally not 
functional in a bactericidal assay with complement 
from the same species [63,64]. These characteristics 
are not shared by the antibodies to group C CP. On 
the other hand, anti-B CP antibodies have been shown 
to support opsonophagocytosis with homologous com- 
plement and to protect in animal models [76,77]. At 
higher antibody concentrations, protection could also 
occur by anti B CP antibodies binding to the organism 
and neutralizing the anticomplement activity of the 
sialic acid capsule [78,79]. Lack of bactericidal activ- 
ity with homologous complement, however, causes 
significant doubt to remain about whether these anti- 
B CP antibodies are protective against group B disease 
in humans. 

The second approach to improving the immuno- 
genicity of the B CP has been to prepare covalent 
conjugates with appropriate protein carriers. By this 
approach the B CP can be converted to a 
T-cell-dependent antibody and probably stabilize con- 
formational epitopes as well. Several different meth- 
ods have been used in the preparation of B CP-protein 
conjugates. Jennings and Lugowski [80] coupled me- 
ningococcal A, B, and C CP to tetanus toxoid by re- 
ductive amination and found that their approach was 
effective for group A and group C polysaccharides but 
not for B CP. The anti-B CP antibody response ob- 
tained in animals was directed primarily against the 
linkage point between the CP and the protein. In sub- 
sequent studies, Jennings and coworkers [81] at- 
tempted to overcome the poor immunogenicity of the 
B CP by specific chemical modification. The N-acetyl 
groups were removed from the CP and replaced by 
N-propionyl groups. This modified structure was sub- 
sequently covalently linked to tetanus toxoid. Vacci- 
nation of mice with this conjugate resulted in high 
levels of IgG antibody cross-reactive with the group B 
CP. Several specificities of antibodies were identified 
in the antisera. One population reacted with the mod- 
ified polysaccharide but not with the native B CP. An- 
other population of antibodies reacted with purified 
group B CP, and a third population reacted with whole 
cells or B CP linked to an affinity column via a long 
spacer arm but not to soluble B CP Only the third 

antibody population that mostly consisted of IgG2a and 
IgG2b isotypes was found to be bactericidal for group 
B meningococci. These antibodies appeared to be re- 
acting with an epitope on the cell-associated CP that 
was not present on free, soluble B CP [82]. 

A different conjugation methodology was used by 
Devi et al. [83] and Bartoloni et al. [84], who linked 
unmodified, high-molecular-weight CPs to tetanus tox- 
oid or CRM,97 through an adipic acid spacer arm. Devi 
prepared tetanus toxoid conjugates of CP from group 
B and group C N. meningitidis, E. coli Kl, and E. coli 
K92, which is an alternating copolymer of a(2—»8) and 
a(2—»9)-linked N-acetyl neuraminic acid. These con- 
jugates were injected as saline suspensions in mice and 
were found by ELISA to induce antibody responses 
consistent with a T-cell-dependent antigen. The E. coli 
K92 CP conjugates induced a good antibody response 
against both B CP and C CP. Both IgM and IgG an- 
tibodies were induced in each case, but the bactericidal 
activity of the antibodies was not determined. The 
anti-B CP antibodies showed lower binding at 37°C 
than at 22°C, suggesting that the quality of the anti- 
bodies was similar to that of antibodies induced by 
noncovalent complexes or natural infections. Using 
similar methods, Bartoloni et al. [84] prepared tetanus 
toxoid and CRM197 conjugates of native B CP and 
studied the immunogenicty of the vaccines in mice and 
the specificity of the antibodies induced. Both IgG and 
IgM antibodies specific for B CP were induced and 
found to be bactericidal, but most of the antibodies 
induced by the vaccine were directed against the link- 
age region of the conjugate. 

Although conjugation of B CP or chemically mod- 
ified B CP to a carrier protein enhances immuno- 
genicity and converts the polysaccharides to T- 
cell-dependent antigens, it is not clear whether the 
quality of the antibodies induced is adequate to pro- 
vide solid, long-term protection. Although both IgG 
and IgM antibodies are induced in animals and bac- 
tericidal activity can be demonstrated, the antibodies 
show decreased avidity at 37°C and have not been 
shown to support bactericidal activity with a homol- 
ogous complement source. A study of antibodies in- 
duced by several conjugate B CP vaccines in rhesus 
monkeys failed to demonstrate bactericidal activity 
with homologous complement [85]. Although strong 
correlation has been established between the presence 
of serum bactericidal activity and immunity to menin- 
gococcal disease [86], it has been suggested that phag- 
ocytosis may play a greater role in protection against 
group B disease than in protection against meningo- 
coccal disease caused by the other serogroups [87]. It 
is of interest, however, that studies with human IgM 
paraproteins from individuals with monoclonal gam- 
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mopathy have shown that some of these antibodies 
with specificity for B CP have bactericidal activity 
with human complement providing antibody concen- 
trations are sufficiently high [88]. 

The question of the safety of antibodies induced by 
conjugate B CP vaccines is also still unresolved. Stud- 
ies of the binding of a variety of monoclonal and po- 
lyclonal antibodies with specificity for B CP or chem- 
ically modified B CP showed that all the antibodies 
that bound to high-molecular-weight al—»8-hnked 
polysialic acid (colominic acid) could also bind to the 
polysialic acid present on glycopeptides of human em- 
bryonic brain [60]. One polyclonal mouse serum made 
against N-propionyl B CP using aluminum hydroxide 
as an adjuvant did not bind to colominic acid or to 
polysialyl glycopeptides but had bactericidal activity 
against group B meningococci. If this result is not sim- 
ply due to the low sensitivity of the binding assay, it 
suggests that there may be potential for using the 
N-propionylated B CP conjugates as a vaccine to in- 
duce antibodies that are bactericidal against group B 
meningococci but do not cross-react with polysialic 
acid on human tissues. 

Results of human studies of N-propionyl B CP con- 
jugate vaccines may soon be available and will provide 
important information about the potential of these vac- 
cines to induce protective immunity against group B 
disease in humans. 

III.    SUBCAPSULAR VACCINE APPROACHES 
FOR GROUP B 

A.   Existing Outer Membrane Protein Vaccines 

The candidate group B vaccines that have been most 
extensively tested in humans are all based primarily 
on a complex mixture of OMPs extracted directly from 
cells or from outer membrane vesicles using either so- 
dium deoxycholate or the zwitterionic detergent Em- 
pigen BB. Isolation of the OMPs using deoxycholate 
is effective in removing most of the LPS and phos- 
pholipid but a residual of 5 to 7% LPS remains as- 
sociated with the proteins [89] The OMPs extracted in 
this way assume a membrane vesicle-like morphology 
and presumably retain a relatively native conformation 
[89]. Use of Empigen BB for protein purification can 
yield OMPs with less than 1% associated LPS but re- 
sults in somewhat greater dissociation of the 
membrane structure, resulting in a range of subunit or 
particle sizes from vesicles to multimeric complexes 
of about 300 kDa [90]. 

The  capacity  of vaccines  based  on  the  outer 
membrane proteins to induce protective immunity 

against group B meningococcal disease has now been 
demonstrated in several large field trials and case- 
control studies [28,29,89,91]. A summary of the re- 
sults of these trials is given in Table 1. Although ef- 
ficacy in the range of 51-83% was demonstrated in 
each of the trials, improvements are clearly needed. 
Each of these efficacy trials has contributed important 
information to our understanding of human immunity 
to group B N. meningitidis and to the knowledge base 
required for development of more effective group B 
vaccines. In several of the trials [90,91] there was an 
indication that efficacy was higher in the first 6 to 10 
months of the study, which suggests that the duration 
of the antibody response needs to be increased. The 
trials in Chile and Brazil that included young children 
showed poor protection in children under 4 years of 
age. The reason for this is not clear, but it is consistent 
with a rather poor bactericidal antibody response in 
this age group. The capacity of young children to 
mount a good overall antibody response to the outer 
membrane proteins is seen by the results of ELISA 
assays on pre- and postvaccination sera of children in 
the studies in Brazil and Chile [90,92]. The immuno- 
genicity of the Norwegian vaccine in young children 
has not been reported. In the Chilean trial, the 1-4- 
year-old age group had higher geometric mean anti- 
body responses by ELISA than the older children. 
These results suggest that the specificity and/or the 
isotype of most of the antibodies induced in young 
children were not optimal for expression of bacteri- 
cidal activity. 

A further observation of importance was the appar- 
ent lack of serotype or serosubtype specificity of the 
protection observed in the trials in Norway and Brazil, 
where there was significant heterogeneity in the sero- 
subtype and/or serotype of the case isolates 
[28,29,93]. This result suggests that although PorA is 
immunodominant in some animals and appeared to in- 
duce bactericidal antibodies in at least some of the 
volunteers in these trials [94,95], protection was likely 
due to antibodies against multiple antigens. OMP vac- 
cines of the kind tested in field trials to date contain 
multiple proteins that can potentially induce bacteri- 
cidal antibodies, and in some cases a significant 
amount of LPS was also present. Some of these OMPs 
remain relatively uncharacterized, which makes anal- 
ysis of the specificity of the bactericidal antibodies 
induced by these vaccines complex. Analysis of the 
bactericidal antibody responses in the Norwegian trial 
provided evidence that both PorA and Ope induced a 
significant amount of bactericidal antibody [94,96]. 
Additional studies are needed to identify other OMPs 
that are important for inducing protective antibodies. 
The role of the residual LPS present in several of the 
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vaccines also needs further clarification. The presence 
of LPS could affect vaccine immunogenicity in several 
ways. It might directly induce protective antibodies or 
endotoxin-neutralizing antibodies, it might be impor- 
tant in stabilizing native OMP structure, and it might 
act as an adjuvant. Without a better understanding of 
the important protective antigens in these complex 
OMP vaccines, it will be difficult to establish adequate 
quality control for their production. 

The efficacy results observed in the field trials of 
group B OMP vaccines discussed above may have 
been modulated by the effects of prior or subsequent 
carriage of meningococci or other bacteria with cross- 
reactive antigens. In the Chilean trial, evidence was 
obtained that vaccination resulted in an enhanced an- 
tibody response to subsequent natural infections 
[90,97]. In the case-control study in Rio de Janeiro, 
Brazil [98], a higher vaccine efficacy was observed in 
areas of highest disease incidence. This may reflect a 
priming of the population by carriage of the epidemic 
strain or an enhancing effect of postvaccination car- 
riage on the level of vaccine-induced efficacy. 

B.   Improved Outer Membrane Protein Vaccines 

Several attractive options are being pursued by various 
investigators to develop improved OMP vaccines. 
These approaches include (1) genetic engineering of 
custom vaccine strains that express desirable antigens, 
in some cases mutltiple copies, and do not express 
undesirable antigens [99-101]; (2) growth of the vac- 
cine strain under iron-limiting conditions to induce ex- 
pression of the iron-uptake proteins [102]; (3) com- 
bination of the OMPs with detoxified LPS and/or 
liposomes to attempt to reconstitute the outer 
membrane and present the OMPs in a more native con- 
figuration [103,104]; and (4) presentation of the OMPs 
and LPS in their native state (native outer membrane 
vesicles) as a mucosal vaccine [105]. 

Starting with a spontaneous mutant that was PorB 
deficient, Van der Ley et al. constructed multivalent 
vaccine strains expressing three antigenically different 
PorA variants at the same time. The new porA. genes 
were inserted in the place of one of the opa genes and 
the rmpM gene [99]. Additional genetic alterations 
were made to delete the porB gene and the cps gene 
which disabled expression of PorB, capsular polysac- 
charide, and the lacto-N-neotetraose group on the LPS. 
The latter two components both share the same struc- 
ture as oligosaccharides in certain human tissues. 
Poolman and coworkers used two such trivalent PorA 
vaccine strains to prepare a hexavalent vaccine that 
contained 6 different PorA proteins [100]. This vac- 
cine, which was modeled after the Norwegian vaccine, 

consisted of deoxycholate-extracted vesicles from each 
of the two vaccine strains. Clinical studies with this 
vaccine are under way [106] but results are not yet 
available. 

A second approach used by Van der Ley et al. to 
express multiple serosubtype specific epitopes in a sin- 
gle strain was to insert foreign PorA VR1 (loop 1) or 
VR2 (loop 4) peptide sequences into loops 5 and 6 of 
PorA, thereby elongating these loops with additional 
serosubtype specific epitopes [107]. When injected 
into mice as components of outer membrane com- 
plexes, these hybrid PorA proteins were effective in 
inducing bactericidal antibodies against the foreign 
serosubtype specific epitopes as well as the original 
epitopes. This approach offers the possibility of further 
increasing the number of serosubtype epitopes pre- 
sented in a vaccine while minimizing the number of 
different vaccine strains required and also minimizing 
the amount of residual endotoxin contained in the 
vaccine. 

The importance of deleting the class 4 OMP gene 
(rmpM) from vaccine strains to be used for production 
of OMP vaccines is not clear. Under certain conditions 
antibodies to the class 4 OMP have been shown to 
block bactericidal activity of other antibodies [108]. 
The OMP vaccines used in the efficacy trials discussed 
above all contained this protein, but no evidence has 
been reported to indicate that its presence adversely 
affected the efficacy of the vaccines. To address the 
question of whether the presence of the class 4 OMP 
in a vaccine has a negative impact on vaccine effect- 
iveness, two vaccines for human use were prepared 
from a class 4 OMP deletion mutant [101] and its 
isogenic parent. These two outer membrane vesicle 
vaccines were tested in a Phase I clinical study to com- 
pare their capacity to induce bactericidal antibodies. 
The results of the study showed no significant differ- 
ence in the geometric mean bactericidal titers induced 
by the two vaccines [109]. These results suggest that 
for this type of vaccine the presence of RmpM does 
not have a significant adverse effect the bactericidal 
titers induced by the vaccine. 

OMP vaccines might also be improved by including 
several additional antigens that have emerged as pos- 
sible vaccine candidates. The OMP vaccines tested in 
efficacy trials did not contain the iron-regulated pro- 
teins (IRP) [90,110] and could possibly be improved 
by including them (see discussion of Tbp2 below). 
One approach to including these proteins is to simply 
grow the vaccine strain under iron limiting conditions 
[102]. It is not clear, however, if this approach will be 
the most effective way to present the IRP. Another 
antigen of potential importance in OMP vaccines is 
Ope (see discussion below), an opacity protein that 
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appears to function as an invasin [111]. Although 
nearly all strains appear to have the capacity to express 
Ope its expression is subject to phase variation at a 
relatively high frequency. The Norwegian vaccine con- 
tained Ope, but only a minor percentage (—20%) of 
the case isolates obtained during the Norwegian trial 
expressed it [96]. Genetic alteration of vaccine strains 
to stabilize high-level expression of Ope might be 
useful. 

It may be possible to improve the quality of the 
antibody response to OMP vaccines by presenting 
them in a way that more closely mimics their natural 
environment in the outer membrane. Two approaches 
have been taken in an effort to reconstitute the OMPs 
into an outer membrane-like environment. Wetzler et 
al. [112] found that when gonococcal OMPs were 
combined with liposomes, a higher percentage of the 
antibodies induced in rabbits could bind to intact or- 
ganisms. The binding of the OMPs to liposomal lipids 
may stabilize the conformation of the OMPs and/or 
mask immunogenic portions of the proteins that are 
normally buried in the lipid bilayer of the outer 
membrane. Noncovalent complexing of OMPs to al- 
kaline detoxified meningococcal LPS has also been 
used in our laboratory [103,113] and by others [114] 
in an attempt to partially reconstitute the outer 
membrane environment and add the LPS to the vac- 
cine as an antigen. 

Even without the improvements discussed above, 
some increase in the effectiveness of existing OMP 
vaccines appears to be possible by giving a third dose 
of vaccine 6 months or more after the second dose. 
Studies with both the vaccine developed in Cuba and 
the vaccine developed in Norway showed a substantial 
boost in antibody titers after a third dose of vaccine 
[28,115,116]. 

C.   Vaccines Based on Specific Outer 
Membrane Proteins 

The current OMP vaccines contain most or all of the 
proteins of the outer membrane and are, therefore, 
fairly complex vaccines that present some challenges 
from the point of view of quality control and stan- 
dardization. From this perspective the development of 
vaccines based on a single well-characterized OMP is 
an attractive alternative. Significant progress has been 
made toward the development of several vaccines of 
this type. Among the more promising candidates are 
vaccines based on PorA; synthetic peptides derived 
from PorA; transferrin binding protein 2; and Ope. 

Multivalent PorA Vaccines 

PorA, which bears the determinants of serosubtype 
specificity, has a number of characteristics that rec- 
ommend it as a vaccine candidate. Among these are 
its capacity to induce bactericidal antibodies that are 
protective in animal models [117], its relatively stable 
expression, and its moderate degree of antigenic var- 
iation [2,118]. The structural gene was initially cloned 
and sequenced by Barlow et al. [119]. It has subse- 
quently been amplified from many different serosub- 
types using the polymerase chain reaction, and the en- 
tire gene, or the variable regions, were sequenced 
[120,121]. Based on comparative DNA sequences of 
PorA from a number of different serosubtypes two 
principal variable regions, VR1 and VR2, have been 
identified. When the PorA sequence was fit into the 
beta barrel model of bacterial porins and epitope map- 
ping done with serosubtype specific monoclonal anti- 
bodies, it was found that the principal serosubtype ep- 
itopes corresponded to VR1 and VR2 which were 
located near the tips of the surface exposed loops 1 
and 4 [122,123]. Thus each PorA carries two different 
serosubtype specific epitopes, which appear to serve 
as a targets for bactericidal antibodies. 

In an effort to develop a vaccine based on purified 
PorA, a system for the production of large amounts of 
pure, endotoxin-free PorA was developed by express- 
ing the cloned gene as inclusion bodies in the Gram 
positive bacterium Bacillus subtilis. PorA could be 
quite easily isolated and purified, but solubilization of 
the inclusion bodies required denaturing conditions. 
The resultant purified PorA was found to be able to 
induce a good, relatively cross-reactive, antibody re- 
sponse in animals, but the antibodies were devoid of 
bactericidal activity. It was discovered, however, that 
complexing the denatured PorA with lipopolysacchar- 
ide from homologous or heterologous species enabled 
the PorA to renature and acquire the capacity to induce 
bactericidal antibodies in animals [124]. Further work 
showed that when the denatured PorA was combined 
into liposomes, the same renaturing effect could be 
achieved in the absence of lipopolysaccharide [125]. 
Liposome-based vaccine preparations containing PorA 
were found to induce serosubtype-specific antibodies 
that were bactericidal and protective in the infant rat 
meningitis model [104]. These results provide evi- 
dence that a purified PorA vaccine may be feasible. 
Although cross-reactive antibodies were induced by 
the denatured form of the protein, the antibodies with 
bactericidal activity that were induced by LPS or li- 
posome renatured PorA were highly serosubtype spe- 
cific [104]. This means that a vaccine designed to pro- 
tect against group B meningococcal disease must be 
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multivalent and contain all or most of the different 
serosubtypes (about 12 to 15) that have been identi- 
fied. Even a single amino acid substitution in the pep- 
tide sequence forming a serosubtype specific epitope 
can lead to failure of bactericidal antibodies to rec- 
ognize it [126]. This may be a problem for a vaccine 
of this design depending on the frequency with which 
mutations occur. 

Two different groups have demonstrated the feasi- 
bility of producing synthetic peptides based on the 
PorA variable regions that are able to induce bacteri- 
cidal antibodies in mice [127-129]. Both circularized, 
relatively long peptides and shorter peptides combined 
with universal T-cell epitopes in the multiple antigen 
peptide format have been successfully used. This 
raises the possibility that an effective semisynthetic 
and highly defined multivalent vaccine for group B 
could be produced. It may be possible to increase the 
immunogenicity of such peptides by attaching a lipid 
moiety at one end and combining the peptides with 
liposomes or proteosomes. The synthetic peptide ap- 
proach would be expected to induce highly serosub- 
type-specific antibodies unless conserved epitopes can 
be identified that are able to induce protective 
antibodies. 

Transferrin-Binding Protein 2 

The proteins of the meningococcal iron uptake system 
have been the focus of considerable interest and re- 
search over the past 5 to 10 years. Much progress has 
been made in understanding both the mechanisms by 
which the organism scavenges essential iron from the 
environment and the potential of the proteins involved 
in this process for use as a vaccine against group B 
disease. The various proteins involved in the acquisi- 
tion of iron are induced under conditions of low iron 
availability and are usually referred to as iron regu- 
lated proteins (IRPs). A number of different pro- 
teins are involved in the acquisition of iron including 
specific surface receptors for transferrin [130], 
lactoferrin [131], and heme [132], which appear to be 
the major sources of iron in vivo. Antibodies to an 
appropriate IRP might protect against disease by 
initiating complement-mediated lysis of meningococci 
and./or by binding in such way that the uptake of iron 
is blocked and growth stopped. Antibodies with both 
of these activities are induced by the transferrin recep- 
tor [133]. The transferrin receptor has been shown 
consist of a complex made up of two separate proteins 
called transferrin binding proteins 1 and 2 [Tbpl and 
Tbp2]. Tbpl has a molecular weight of about 95-98 
kDa, whereas Tbp2, which is a lipoprotein, has a mo- 
lecular weight in the range of 68 to 85 kDa, depending 

on the strain [134,135]. Within the transferrin binding 
complex, Tbp2 appears to be the most active in in- 
ducing antibody that is active in bactericidal assays 
and in blocking the binding of human transferrin 
[136]. 

The degree of antigenic variability in Tbp2 is an 
important consideration in evaluating its potential as a 
vaccine or vaccine component. Rokbi et al. found that 
most meningococci could be divided into two groups 
or families based on the immunological and genomic 
characteristics of their Tbp2 molecules [137]. Group I 
Tbp2 have molecular weights in the range of 78-85 
kDa, and group II Tbp2 have molecular weights in the 
range of 67-73 kDa [134,138]. Amino acid sequence 
homology of 76.6-81.2% was observed for different 
Tbp2 from the same group [139], and 47% homology 
was found between Tbp2 from different groups [140]. 
Of particular importance in assessing antigenic varia- 
bility is the degree of cross-reactivity associated with 
functional human antibody that can block binding of 
transferrin or kill meningococci in the presence of 
complement. Gorringe et al. [141] recently demon- 
strated broadly cross-reacting anti-Tbpl and Tbp2 an- 
tibodies in human sera from cases and carriers using 
ELISA and western blotting, but functional antibody 
was not measured. Ferrieros et al. [142] also found by 
western blotting that anti-Tbp2 antibody in three hu- 
man case sera showed intragroup cross-reactivity. The 
cross-reactivity of bactericidal antibodies in rabbit hy- 
perimmune anti-Tbp serum was measured by Danve 
et al. [133] using 11 different strains of meningococci. 
The serum killed about half of the strains at about the 
same titer but showed no activity against the other 
strains. These results suggest intragroup cross- 
reactivity of the rabbit bactericidal antibodies, but the 
molecular weight category of the Tbp2 produced by 
these strains was not given. Protection by mouse anti- 
Tbp in active and passive mouse protection studies 
was also demonstrated. In further studies, Lissolo et 
al. [136] demonstrated that the functional activity as- 
sociated with mouse and rabbit anti-Tbp antiserum 
was predominantly associated with antibodies to Tbp2 
rather than Tbpl. Although more basic work needs to 
be done to evaluate the cross-reactivity of functional 
antibody, Tbp2 appears to be emerging as a viable 
vaccine candidate. A suitable vaccine would need to 
contain a minimum of two different Tbp2s, one from 
each group. Until now no vaccines based entirely on 
transferrin binding proteins have been reported, but the 
tbp genes have been cloned and, Tbp2 expressed as a 
complete lipoprotein in E. coli [143,144]. The prepa- 
ration and evaluation of a vaccine based on recombi- 
nant Tbp2 might be expected in the not too distant 
future. 
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Opa and Ope Proteins 

The Opa and Ope proteins, previously referred to as 
class 5 proteins, are surface-exposed proteins that are 
associated with colony opacity under appropriate con- 
ditions. These proteins have a basic PI and monomer 
molecular weights in the range of 25 to 30 kDa [145]. 
Although Ope and the Opa proteins share a number 
of characteristics, they differ in other important re- 
spects. Ope was initially identified and characterized 
in group A strains by Achtman et al. [145] as a class 
5 OMP that was called 5C or 5c, depending on 
whether it was expressed at a high or low level. After 
the gene for Ope was cloned and sequenced [146] it 
became clear that Ope was significantly different than 
the other class 5 proteins (Opa proteins) that had been 
characterized. Ope was found to have only about 27% 
amino acid sequence homology with Opa proteins, and 
although it exhibits a high level of phase variation in 
expression, like the Opa proteins, the mechanism in- 
volved is different [146]. Expression of Opa proteins 
is controlled by a series of CTCTT pentameric repeats 
in the DNA coding for the signal peptide. Addition or 
deletion of one or more pentameric repeats shifts the 
reading frame and in most cases results in a truncated 
protein. Expression of Ope, on the other hand, is con- 
trolled at the level of transcription by a string of con- 
tiguous C residues in the promoter sequence [146]. 
Changes in the number of C residues in the string 
results in changes in the efficiency of transcription. 
Ope further differs from the Opa proteins in that it is 
coded for by a single gene and it does not seem to 
show antigenic variation. The Opa proteins are coded 
for by a family of four genes that share a conserved 
framework interspersed by a semivariable region and 
two hypervariable regions [147]. Both the Opa pro- 
teins and Ope have been shown to be able to induce 
bactericidal antibodies in humans [148-150]. The fact 
that Ope is antigenically conserved makes it a some- 
what more attractive candidate for use in a vaccine 
than the Opa proteins. 

Certain Opa proteins have been shown to be effec- 
tive in mediating attachment of meningococci to hu- 
man epithelial cells, but Ope appears to be quite ef- 
fective in mediating attachment to and invasion of both 
epithelial and endothelial cells [151,152]. This activity 
is seen only when unencapsulated meningococci with 
nonsialylated LPS are used. These observations sug- 
gest that Ope may play an important role in the initial 
stages of pathogenesis by unencapsulated meningo- 
cocci colonizing the nasopharyngeal mucosal surfaces. 
Achtman et al. [153] and Rosenqvist [148] found that 
a higher percentage of throat isolates expressed a high 
level of Ope than did case isolates. These results sug- 

gest that Ope may be predominantly expressed and 
functional while the meningococci are at the mucosal 
surface and then turned off before they enter the 
bloodstream and become subject to lysis by antibody 
and complement. 

Ope was present in the outer membrane vesicle vac- 
cine produced in Norway and tested in the efficacy 
trial done there. Rosenqvist et al. [148] showed that 
the Ope component of the vaccine was highly immu- 
nogenic in humans and was responsible for a substan- 
tial proportion of the bactericidal antibody that was 
induced by the vaccine. This was especially true when 
the postvaccination sera were tested against strains that 
had heterologous serotype and serosubtype. It is not 
known whether these bactericidal antibodies were im- 
portant in the protection observed in the trial, since the 
bactericidal antibodies to Ope were only effective 
against strains expressing high levels of Ope, and a 
relatively small percentage of case isolates obtained 
during the trial were found to have a high level of Ope 
expression [148]. Though strongly bactericidal, anti- 
Opc antibody may turn out to be most useful in pre- 
venting infection when present at the mucosal surface 
where it could interfere with attachment and invasion 
[152]. From this point of view, Ope might be an ef- 
fective component of a vaccine designed to be deliv- 
ered via the intranasal route. 

D.   Vaccines Based on LPS 

The LPS of N. meningitidis consists of a lipid A moi- 
ety linked to one of a series of short, branched oli- 
gosaccharides of about 7 to 10 sugar residues, and is 
often referred to as lipooligosaccharide. A given strain 
may simultaneously express several different LPS 
structures or immunotypes which can be visualized as 
distinct bands on silver-stained SDS polyacrylamide 
gels [153-155]. The most prevalent immunotype is en- 
dogenously sialylated, which results in a terminal pen- 
tasaccharide that is largely nonimmunogenic and iden- 
tical in structure to oligosaccharides present on certain 
human cells [158]. 

The use of the LPS as a vaccine or vaccine com- 
ponent has been hampered by several factors, includ- 
ing its toxicity and the molecular mimicry associated 
with the lacto-N-neotetraose group. Nevertheless, the 
LPS appears to have some potential for use as a group 
B vaccine or vaccine component. Anti-LPS murine 
monoclonal antibodies were shown by Saukkonen et 
al. [117] to be bactericidal and to give protection in a 
infant mouse model. Rhesus monkeys vaccinated with 
a conjugate meningococcal OMP-B polysaccharide 
vaccine developed high titers of anti-LPS bactericidal 
antibodies against the small amount of residual L3,7,9 
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LPS present in the vaccine. These antibodies were spe- 
cifically inhibited by L3,7,9 LPS [85]. Griffiss et al. 
[159] were able to inhibit the bactericidal activity of 
antibodies in convalescent sera from children and in- 
fants with LI,8 LPS, and we have observed that a high 
percentage of naturally acquired bactericidal antibod- 
ies in the sera of Chilean children could be specifically 
inhibited with L3,7,9 LPS (unpublished data). How- 
ever, in spite of these indications that LPS is capable 
of inducing bactericidal antibodies in humans, the an- 
tibodies to LPS induced in volunteers by LPS- 
containing OMP vesicle vaccines were apparently not 
bactericidal [94,148]. 

The use of LPS as a vaccine or major vaccine com- 
ponent has thus far met with limited success, espe- 
cially with respect to the L3,7,9 immunotype. Non- 
toxic LPS-based vaccines have been produced in 
several laboratories by conjugating the oligosaccharide 
portion of the LPS to a suitable protein. The initial 
studies by Jennings and coworkers [160] used de- 
phosphorylated oligosaccharides coupled to tetanus 
toxoid by reductive amination. These conjugates in- 
duced bactericidal antibodies in rabbits, but in the case 
of the L3,7,9 immunotype, immunogenicity was mar- 
ginal. Verheul et al. reasoned that the poor immuno- 
genicity of the L3,7,9 conjugate was due to the re- 
moval of the phosphoethanolamine groups and 
prepared conjugates using alternative chemical meth- 
ods that preserved the phosphoethanolamine groups on 
the L3,7,9 and L2 oligosaccharides [161]. Although 
conjugates prepared in this way using tetanus toxoid 
or meningococcal OMP as the carrier protein induced 
high titers of IgG in rabbits and mice the antibodies 
were not bactericidal [162]. Gu and Tsai used similar 
chemistry to prepare a conjugate of the L8 oligosac- 
charide with tetanus toxoid and found it was able to 
induce bactericidal antibodies in rabbits [163]. Some 
cross-reactivity of the rabbit antibodies with L3,7,9 
LPS was demonstrated by ELISA. Alternative ap- 
proaches to producing a safe LPS vaccine are to de- 
toxify the LPS by alkaline deacylation of the lipid A 
or decrease its toxicity by incorporating it in lipo- 
somes. Alkaline detoxified LPS binds to purified OMP 
hydrophobically to form soluble noncovalent com- 
plexes which can be used safely as a vaccine. We have 
tested one such vaccine containing L3,7,9 detoxified 
LPS and OMP from two different strains, 44/76(15: 
Pl.7,16) and 8047(2b:P1.2), in a Phase I study and 
found that it was safe and immunogenic. Most of the 
bactericidal activity induced by the vaccine appeared 
to be directed against the OMP, and although a geo- 
metric mean threefold increase in anti-LPS antibodies 
was measured by ELISA, we were not able to dem- 
onstrate bactericidal  activity  for these  antibodies. 

[103]. Incorporation of this type of vaccine into lipo- 
somes may improve the results. Petrov et al. [164] 
found that native LPS incorporated into liposomes had 
greatly reduced toxicity and that the liposomal LPS 
was safe and moderately immunogenic in animals. 
They suggested the addition of a T-cell-dependent an- 
tigen to the liposomes to improve the anti-LPS re- 
sponse. Liposomes containing lipid A have been 
shown to be an effective adjuvant for presentation of 
a malaria antigen R32NS1 in humans [165]. In a sim- 
ilar manner, liposomes containing native meningococ- 
cal LPS may be an effective means of presenting one 
or more meningococcal OMPs to the immune system. 
Alternatively, it may be possible to safely give native 
LPS as an intranasal vaccine as a component of native 
outer membrane vesicles or incorporated in liposomes. 

Concern about the safety of using L3,7,9 LPS con- 
taining the lacto-N-neotetraose group in a vaccine has 
led several investigators to attempt to identify cross 
reactive LPS epitopes that do not contain this group, 
but are capable of inducing a protective immune re- 
sponse against strains carrying the L3,7,9 LPS. Studies 
that measured the ability of immune human sera to 
inhibit the binding of LPS-specific monoclonal anti- 
bodies to purified LPS led to the identification of an 
epitope associated with a 3.6-kDa LPS that bound a 
bactericidal monoclonal antibody D6A, and this bind- 
ing was inhibited by immune human sera [166]. Fur- 
ther characterization of this epitope is needed. Other 
investigators have attempted to define the minimal oli- 
gosaccharide structures necessary to induce an im- 
mune response to meningococcal LPS by direct chem- 
ical synthesis of the basic core structures of the LPS 
[167]. This elegant approach has had some success, 
but thus far the structures produced have failed to in- 
duce bactericidal or protective antibodies. 

It is not known whether vaccination with the L3,7,9 
LPS represents a significant risk. OMP vesicle vac- 
cines containing significant amounts of L3,7,9 LPS 
have been given to millions of people to date without 
any reports of problems associated with an autoim- 
mune response induced by the lacto-N-neotetraose 
group of the LPS. Also, patients recovering from sys- 
temic meningococcal disease have no known sequelae 
that have been reported to be associated with antibod- 
ies to the lacto-N-neotetraose group. Nevertheless the 
molecular mimicry that is evident demands that cau- 
tion be used in pursuing human studies of vaccines 
based on LPS that contains the lacto-N-neotetraose 
group. In some cases vaccine strains have been genet- 
ically engineered to express an LPS that does not con- 
tain the lacto-N-neotetraose group [99,100]. Including 
LPS that consists only of the common inner core 
region  of the  oligosaccharide  may  not  result in 
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induction of bactericidal antibodies cross-reactive with 
the L3,7,9 LPS but could induce endotoxin neutraliz- 
ing antibodies. 
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