
RL-TR-97-92, Volume II (of two)
Final Technical Report
September 1997

CERTIFICATION FRAMEWORK
VALIDATION FOR REUSABLE ASSETS
CERTIFICATION FIELD TRIAL,
VOLUME II (OF TWO)

Data & Analysis Center for Software,
KAMAN Sciences Corporation

Sharon Rohde and Karen Dyson,

of Software Productivity Solutions, Inc.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19971027 044
^CQÜALIttlIif0?S0Tsi5g

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-92, Volume II (of two) has been reviewed and is approved for
publication.

MtUal ju.jGuiri
APPROVED:

DEBORAH A. CERINO
Project Engineer

L: WMu^ FOR THE DIRECTOR:
^JOHN A. GRANIERO, Chief Scientist

Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of inforraotion is estimoted to average 1 hour par response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the date needed, end comple mg and review ng
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for redxing this hurien to Washington Headquarters Services, Directorate for Information
Dperetions end Reports 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Monagement and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1997
4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Final Apr 94 - Feb 97

CERTIFICATION FRAMEWORK VALIDATION FOR REUSABLE ASSETS
CERTIFICATION FIELD TRIAL, VOLUME U (OF TWO)
6. AUTHOR(S)

Sharon Rohde and Karen Dyson of Software Productivity Solutions, Inc.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Data & Analysis Center for Software
KAMAN Sciences Corporation
Griffiss Business & Technology Park
775 Daedalian Drive
Rome. NY 13440-4909
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3CB
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F30602-92-C-0158 T/32
PE -63728F
PR -2527
TA -02
WU-35

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-92, Vol D (of two)

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Deborah A. Cerino/C3CB/(31) 330-2054

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The purpose of this effort was to further develop, apply, and validate the Rome Laboratory Software Certification
Framework for designating various levels of confidence in the quality of reusable software. This effort fine-tuned the
Framework's ability to distinguish between reusable assets of differing quality.

The effort resulted in a two volume final technical report. Volume I - the Project summary, describes the complete
contractual effort. The report discusses how the quality assessment methodology, techniques, and metrics embodied
within the Rome Laboratory Software Quality Framework (SQF) could be applicable to the certification of reusable
assets. The report discusses potential upgrades and re-engineering the Rome Laboratory Software Quality
Framework (SQF). In addition, it also overviews the application of the Certification Framework to a small set of
software components (i.e., source code). Volume H - Certification Field Trial, fully details the procedures, collection
forms, results, and lessons learned from the application of the certification process to the software components.

14. SUBJECT TERMS

Software Certification, Software Assessment and Evaluation

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSDTED

15. NUMBER OF PAGES

16. PRICE CODE
J22-

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89] (EG]
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHSIDI0R, Oct 94

Table of Contents

1 Introduction 1

2 Field Trial Procedures 3

2.1 Default Certification Process 3

2.2 Procedures for Applying Techniques 5

2.3 Asset Readiness 7

2.4 Static Analysis 8

2.5 Code Inspection 9

2.6 Hybrid Structural-Functional Testing 20

2.7 Data Collection Plan 24

3 Results 29

3.1 Field Trial Overview 29

3.2 Asset Certified 30

3.3 Certification Results 33

3.4 Lessons Learned 44

Acronyms 49

Appendix A - Data Collection Forms A-l

Appendix B - Certification Defect Reports B-l

List of Figures

Figure 2-1. Default certification process used in field trial 3

Figure 2-2. Certification Tool Set 5

Figure 3-1. Comparison of Actual Effort to Predicted 36

Figure 3-2. Defect Detection 39

Figure 3-3. Asset's Defect Profile 41

Figure 3-4. Comparison of Asset's Defect Profile to Default Profile 42

Figure 3-5. Cumulative Effectiveness of Certification Steps 43

IX

List of Tables

Table 2-1. Product Characteristic Data Elements 24

Table 2-2. Certifier Profile Data Elements 25

Table 2-3. Process Characteristic Data Elements 26

iii

Contributors to the ATD Project

Listed in alphabetical order, the following persons contributed to the ATD Project:

Lynda L. Burns, Software Productivity Solutions, Inc.

Deborah A. Cerino, Rome Laboratory of the U.S. Air Force Materiel Command

Karen A. Dyson, Software Productivity Solutions, Inc.

Jeffrey A. Heimberger, Software Productivity Solutions, Inc.

Beth Layman, Lockheed Martin Corporation

Holly G. Mills, Software Productivity Solutions, Inc.

Annette Myjak, Software Productivity Solutions, Inc.

Sharon L. Rohde, Software Productivity Solutions, Inc.

Tom Strelich, GRC International, Inc.

Steven Wee, Software Productivity Solutions, Inc.

IV

1 Introduction

This volume of the Final Technical Report (FTR) of the Certification Framework
Validation for Reusable Assets describes a certification field trial performed by the
prime contractor, Software Productivity Solutions, Inc.

Section 2 of this report details the procedures used to perform the field trial. These
procedures are also known as the Certification Framework's Default Certification
Process. Information about the derivation of the default process is contained in
Volume 2. Section 2 of this report, along with the blank data collection forms in
Appendix A, was originally published as a stand-alone document provided to the
personnel performing the field trial as an instruction manual.

Section 3 of this report describes the results of the field trial both in terms of the
asset certified and the lessons learned by having attempted the field trial. This
section includes the completed data collection forms.

Appendix A contains the blank data collection forms used during the field trial.

Appendix B contains the certification defect reports resulting from the certification
of the asset in the field trial.

This document, FTR Volume 2 - Additional Certification Field Trial - details the
procedures, collection forms, results, and lessons learned from the second
certification field trial performed by Software Productivity Solutions, Inc. The
following documents serve as supporting information to this document:

• Volume 1 - Project Summary, describes the work performed and the results of
the CRC project.

• Volume 2 - Certification Framework (CF) - describes the research conducted to
develop the CF.

• Volume 3 - Cost/Benefit Plan - describes a systematic approach to evaluating
the costs and benefits of applying certification technology in the context of a
reuse program.

• Volume 4 - Operational Concept Document (OCD) - defines the operational
concept of an automated certification environment and reports the results of
field interviews with potential users.

• Volume 6 - Certification Toolset, identifies the requirements for certification
tools and reports the evaluation and selection of tools based on these
requirements. Additional supporting information is found in the following
succeeding volumes of the project documentation suite:

• Volume 7 - Code Defect Model - provides a model of code defects based on
empirical data collected from studies of industry projects.

The details of the work completed in each of these topic areas can be found in the
designated supporting document.

2 Field Trial Procedures

This section describes the procedures used in the certification field trial. This section
plus Appendix A, Data Collection Forms, was originally published as a stand alone
instruction manual for the personnel performing the field trial.

A field trial is an implementation of a technology in a realistic situation under
controlled conditions. Field studies permit a more detailed examination of a specific
effect than is possible by monitoring normal repository operations. Field studies
may be conducted to measure effects of certification other than those captured in
cost avoidance models or to obtain a finer calibration of model parameters. Also
deficiencies in the data provided by the cooperating repository(s) may be
compensated for by field studies.

The purpose of this field trial is to assess the effort required to implement the
certification process and its effectiveness in detecting defects in the assets. Sections
2.1 through 2.5 describe in detail the default certification process and the steps
necessary to execute each testing procedure. The data collection requirements are
outlined in Section 2.7.

2.1 Default Certification Process

The certification field trial will use the default certification process illustrated in
Figure 2-1 below.

Default Certification Process Overview

Fix Defects]

Defects

Readiness
J

• Pretty Print to standard
format

• Compile, Link, Execute

Fix Defects |

Static
Analysis

Defects J
• LOC
• Error checking
• Structural analysis
• Type checking
• Complexity
• Programming standards

Fix Defects

Code
Inspection

Defects,

• Single inspector
• Code inspection

checklist

Testing

Fix Defects

• Functional test cases
• Decision-to-decision

(DD) path coverage
stopping criteria

• DD path test cases

Certified
Code
Asset

Figure 2-1. Default certification process used in field trial

This default process certifies code components (as opposed to other types of reusable
assets) and addresses the certification concerns of Completeness, Correctness, and
Understandability. The default certification process consists of four main steps
which correspond to four increasingly stringent "levels" of certification. Each step
of the certification process is discussed in more detail in sections 2.2-2.5.

• Step 1: Readiness. The objective of the first step is to demonstrate that the
code asset is complete by making sure that it compiles and links successfully,
and to prepare it for further certification steps with a pretty printer. This step
requires minimal resources.

• Step 2: Static Analysis. The second step consists of largely automated static
analysis of the code. The process shown in Figure 2-1 lists the analyses to be
performed for C++ code. These analyses were selected based on the
capabilities of readily available commercial tools. Because this step uses
automated static analysis tools, the resources required are mainly for setting
up the analysis and interpreting the results.

• Step 3: Code Inspection. The third step is an inspection of the code by a single
inspector using a reuse certification code inspection checklist. The reuse
certification-specific checklist was synthesized from numerous checklists and
concentrates on Correctness and Understandability defects. This is a human-
intensive technique and requires a software engineer knowledgeable in the
implementation language.

• Step 4: Testing. The fourth step is a hybrid of functional and structural
testing. Functional test cases are constructed. The code is instrumented to
record structural coverage information, and all of the functional test cases are
executed. If the coverage criterion is met, the testing step is complete;
otherwise, the functional test cases are supplemented with structural test
cases to achieve the required coverage. Like Step 3, this step is also human-
intensive and requires knowledgeable personnel.

The process used in the field trial will include all four steps, so that we can evaluate
all of the techniques embodied in the default process. It is not necessary to perform
all four steps in practice unless the objective is to certify to the highest level. The
certification process could terminate after any step.

Completion Criteria. The steps are intended to be followed in the order shown, and
each step must be successfully completed before proceeding on to the next step. No
steps are to be skipped. Successful completion means that no major defects are
found in that step. If major defects are found, they must be corrected and the step
repeated, if necessary, in order to achieve that level of certification. The decision as
to whether a step or portion of a step should be repeated depends on the nature of
the defect encountered and corrected.

Major defects are defined as defects that

• prevent completion of the current certification step, or

• would result in a failure during testing.

For example, failure to successfully compile would be a major defect,
conformance to a style guideline would be a minor defect.

Non-

Certification and Quality. Because of the requirement that major defects found must be
corrected before a component is considered to have achieved a particular level of
certification, we can make certain assumptions about the quality of certified
components.

Tool Support Environment. The current tool environment, shown in Figure 2-2, to
support this default certification process will be installed on a Dell Pentium PC, 40
MB RAM, running MS-DOS and the Windows 95 environment.

71
PC-Lint 7.0

Y

Static Analysis
Error checking
Module dependencies
Programming standards

Borland C++ 5.0
Interactive Development

Environment

C-Vision 4.0

McCabe Visual
Toolset 5.2

Compiler
Debugger
Code management

Static Analysis
Sty le Guideli nes & Formatti ng
Size
Outliners
Cross References
Trees

Static & Dynamic Analysis
Complexity
Test Case Generation & Instrumentation

Figure 2-2. Certification Tool Set

The specific tools are the McCabe Visual Toolset, PC Lint and C-Vision. The steps in
the certification process provide instructions for when and how these tools should
be used and, if necessary, tool substitution guidelines. Tool selection for the C++
Certification Field Trial was made to closely match the functional environment of
the Ada Certification Field Trial.

2.2 Procedures for Applying Techniques

The following sections describe in detail the required steps for each of the activities
in the default certification process: asset readiness, static analysis, code inspection,
and testing. For each activity, the following information is provided:

Entry Criteria
Inputs
Objectives
Outputs

• Exit Criteria
• Tools
• Procedures

These sections are provided as step by step instructions for executing the default
certification process.

Important Note

All defects encountered in performing any step of the process should be
documented using the Certification Defect Report found in Section 2.7, Data
Collection Plan. Do not record defects for more than one C++ module or separately
compilable file on the same report form. If the same type of error is found in
multiple places within the same C++ module or separately compilable file, simply
note all lines of code in which the error occurs.

2.3 Asset Readiness

Entry
Criteria

Input

Objectives

Output

Exit
Criteria

Tools

Procedure

• Budget: minimal - only requires resources to compile and link the component source
code

• Personnel skill level: entry level programmer able to operate compiler and
construct dummy main program, if needed.

• C++ source code

• Source code formatting standards or defaults for pretty printing

• Completeness - Demonstration that the component includes all source code
comprising the full "include" closure and has no dependencies on missing software.
This includes vendor, platform, class libraries and API dependencies.
Demonstration that the components can be successfully linked into an executable
program.

Pretty-printed source code

Effort expended on this process

Certification Advancement flag: true if compile and link successful else false

Defect reports, if compile and/or link failure r___

All steps in the procedure completed.

Definition of success ==> Components compile and link without error

All defects recorded and disposition determined.

Borland C++ Compiler/pretty printer

Text editor

Linker

Determine component completeness by compiling component source code to verify
complete "include" closure and that the component compiles without error.

If needed, construct dummy main program to "include" (but not call) components.

If appropriate, compile dummy main program and link.

Identify any superfluous code files delivered with the components.

If compilation and linking is successful then pretty-print source code to ensure
adherence to source code formatting standards.

Each defect should be reviewed to determine whether it is a major or minor defect.
All major defects should be repaired to consider this certification step to be
successful, and before proceeding on with the next step in certification. Defects
that are not repaired should be reported to reusers.

2.4 Static Analysis

Entry
Criteria

Input

Objectives

Output

Exit
Criteria

Tools

Procedure

• Successful completion of Asset Readiness procedure

• Budget: minimal - only requires resources to set-up, execute, and analyze results of
automated tools.

• Personnel skill level: entry level programmer able to operate compiler and static
analysis tools. Must understand basic program structure concepts and semantics.

• Formatted (i.e., pretty-printed) C++ source code

• C++ guideline settings (i.e., thresholds, checks enabled/disabled)

• Correctness - Identification of computation, logic, data, interface, and other
defects. Incorrect control flow and decision structures represent logic defects.
Erroneous initialization, definition and accessing data represent data defects.
Exception propagation reveals the presence of interface defects and supports the
concept of robustness.

Understandability - Demonstration of the degree of compliance with the C++
style and quality guidelines

Effort expended on this process

Certification Advancement flag: true if no defects or minor defects only; else false.

Defect reports, if any defects are detected

All steps in the procedure completed

All defects recorded and disposition determined

C-Vision

PC-Lint

McCabe Visual Toolset

Apply PC-Lint to analyze code structure, control flow and decision logic.

Apply PC-Lint to detect erroneous initialization definitions and data access (data
defects).

Apply McCabe Visual Toolset to determine thresholds of cyclomatic complexity,
design complexity, and integration complexity (logic defects).

Apply PC-Lint to check for errors across modules (interface defects)

Apply PC-Lint to check compliance with C++ guidelines (computational, logic,
data, interface, and other defects)

Each defect should be reviewed to determine whether it is a major or minor defect.
All major defects should be repaired to consider this certification step to be
successful, and before proceeding on with the next step in certification. Defects
that are not repaired should be reported to reusers.

2.5 Code Inspection

Entry
Criteria

Inputs

Objectives

Outputs

Exit
Criteria

Tools

Successful completion of Static Analysis procedure

Budget resources—one person tool

Code has successfully compiled and linked with no errors

Code processed by pretty printer

Functional description of component

Code inspection checklist, for applicable language

Correctness - evaluation according to the inspection checklist

Understandability - evaluation according to the inspection checklist

Completeness - assessment of the adequacy of the functional description

Defect reports, if any defects are detected (note which checklist item or inspection
activity prompted isolation of the defect)

Effort expended on this process

Subjective evaluation of checklist items for understandability, objectivity,
organization, etc.

Observations: undocumented features, items for test, portability concerns,
copyrights, design issues

Certification Advancement flag: true if no defects or minor defects only; else false

All code statements inspected

All checklist items answered (Yes, No, or Not Applicable)

All defects recorded and disposition determined

Definition of success ==> no major defects found, or all major defects corrected

C-Vision, for:

- code outlining

- cross references

- call tree

Procedure The code inspection procedure is to be applied by a single inspector. The inspector
should record effort expended separately for each of the three steps of the procedure.
The purpose of the code inspection is to assess the implementation, rather than the
design, of the component. The assumption is that the design of the component, as
expressed by the functional description, is correct. If the inspection reveals doubts
about the design, such information should be recorded in the Observations.

1. Preparation

The purpose of the preparation step is for the inspector to familiarize himself with
these aspects of the component listed below. There are no specific outputs of this
step.

• component's functional description The functional description may be a
separate document, or it may simply be the prologue of comments and the
description of the component's interface from the C++ header.

• overall structure of the component For example, how many modules comprise
the component, how many functions are in the packages, and how the
modules are related in terms of the calling structure. The purpose of
analyzing the overall structure is to give the inspector an idea of the
magnitude of the inspection task, i.e., how many items. This information
may be obtained by generating a call tree diagram using the McCabe Visual
Toolset.

• review results of static analysis All major defects found during static
analysis should have been corrected prior to starting code inspection. A
review of the defects found during static analysis, both major and minor, may
provide the inspector with insight into what aspects of the code should
receive special attention during inspection.

2. Inspection and Recording of Defects

During this step, the inspector assesses each item on the inspection checklist, in
order, one at a time. If you spot a defect associated with a checklist item that you
haven't gotten to yet, make a brief note and move on. As each checklist item is
completed, it must be marked as Yes, No or Not Applicable.

When a defect is found, it should be immediately be recorded on a defect report form.
It is important to note the exact line(s) of code associated with the defect, and which
inspection checklist item lead to its discovery. Some inspectors also like to annotate
a hard copy of the code listing to avoid inadvertently recording the same defect
twice. It is also important to classify the defect by type. All checklist items are
preclassified to make this easier.

3. Disposition of Defects

The purpose of this step is to determine whether or not to correct the defects found
during code inspection, and to perform the required repair activity. Each defect
should be reviewed to determine whether it is a major or minor defect. All major
defects should be repaired to consider this certification step to be successful, and
before proceeding on with the next step in certification. Defects that are not
 repaired should be reported to reusers.

10

To assist in the Code Inspection step, we used the five classes of defects defined in
the CRC Volume 7 - Code Defect Model:

Computational: Any defect of a computational or mathematical nature

Logic: Any defect in any logical construct of the code or algorithm, including defects in control flow and
decision structures

Data: Any defect related to the usage, initialization, definition, or access of any data defined by or
used in the code

Interface: Any defect in how the code uses or interacts with any internal code objects or any external
objects, such as the operating system, files, hardware devices, and other software components

Other: Any other defect that does not fit one of the previous categories, such as defects in
documentation, programming standards, or unclassified defects.

Checklist Development. For the second Field Trial, formatting conventions were
observed to document updates and refinements to the code checklist as an attempt
to preserve the integrity of the checklist from the first Field Trail. Specifically,
italicized checklist questions indicate those questions used for Ada source code in
the first Field Trial. Non-italic questions are those that have been added to modify
the existing Ada checklist for a C++ source code component in the second Field
Trial. Strikethroughs in the checklist questions indicate that the question was valid
for an Ada source code component, but was not appropriate for a C++ source code
component due to specific language characteristics. The following references were
used to generate the C++ checklist: [BAL92], [DST96], [FAG96], [FAU94], [GER95],
[HUM95], [KOE92], [KOE95], [MCC96], [POT94], [SOF95], [SOF96], and [VAN95].
Additional details about the development of the checklist are found in ATD
Volume 1 - Project Summary.

Checklist identifiers. Each checklist item has an alphanumeric identifier. The first
letter indicates the defect type, and the last letter indicates whether it is an
Understandability (U) or Correctness (C) defect. Correctness defects are typically
classified as major while Understandability defects are typically classified as minor.

Reuse Certification Code Inspection Checklist for C++

Identifier Question Answer

Computational

C.01.U For functions that perform computations, are accuracy
tolerances documented?

For functions that perform computations, are accuracy
tolerances documented for variable types that hold
data?

Yes / No / NA

11

Identifier Question Answer

C.02.C Do all computations use variables with consistent
types, modes, and lengths (e.g., no boolean variables in
arithmetic expressions, or mixed integer and floating-
point)?

Do all computations use variables with consistent types
and/or type casting, values, and lengths? (i.e., no
boolean variables in arithmetic expressions)

If variable types are mixed, are expected outcomes
anticipated and external to the program block?

Yes / No / NA

C.03.C Are all expressions free from the possibility of an
underflow or overflow exception?

Yes / No / NA

C.04.C Are all expressions free from the possibility of a
division by zero?

Yes / No / NA

C.05.C Is the order of computation and precedence of
operators correct in all expressions?

Yes / No / NA

C.06.C Are all expressions free from invalid uses of integer
arithmetic, particularly divisions?

Yes / No / NA

C.07.C Are all computations free from non-arithmetic
variables?

Yes / No / NA

C.08.C Are all comparisons between variables of compatible
data types, modes, and lengths?

Are all comparisons between variables of compatible
data types, type cast data types, and lengths?

Yes / No / NA

C.09.C Do all comparisons avoid equality comparison of
floating-point variables?

Yes / No / NA

C.IO.C Is the code free from assignment of a real expression to
an integer variable?

Yes / No / NA

C.ll.C Are all bit manipulations correct? Yes / No / NA

C.12.C Is the "%" modulus operator used correctly (i.e. not
intended as a percentage)?

Yes / No / NA

C.13.C Is the "/" division operator used to accommodate a
discarded remainder?

Yes / No / NA

C.14.C Are compound operators assigned correctly? Yes / No / NA

• Data •

D.Ol.C Are all data items referenced? Yes / No / NA

12

L

Identifier

D.02.U

D.03.C

D.04.C

Question

Do all references to the same data use single unique
names?

Are all character strings complete and correct,
including delimiters?

Are all character strings and character arrays complete
and correct, including delimiters (i.e., value is assigned
and enough elements are reserved to hold entire
character string and terminating null zero)?

Answer

Yes / No / NA

Yes / No / NA

D.05.C

D.06.C

D.07.C

P.08.C

D.09.C

Are illegal input values systematically handled':

Are all variables set or initialized before referenced?

Are all array indexes integers?

For all references through pointer variables, is the
referenced storage currently allocated?

Arc all storage areas free from alias names with
different pointer variables?

D.10.C

D.ll.U

D.12.C

Are all variables correctly initialized?

Are all variable and constants correctly initialized?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Are all variables assigned to the correct length, type,
storage class and range?

Are all variables and constants assigned to the correct
length, type, sign, precision, and range?

Is the code free from variables with similar names (e.g.,
VOLT and VOLTS)?

Is the code free from variables and constants with
similar names (e.g., VOLT and VOLTS)?

Yes / No / NA

Yes / No / NA

D.13.U

D.14.U

D.15.C

Are all indexes properly initialized?

Are all indexes properly initialized (i.e., start at zero)?

Are all data declarations commented?

Are all data names descriptive enough?

Are constant values declared as constants and not as
variables?

Are constant values used as numbers, characters,
words, or phrases?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

13

Identifier Question Answer
D.16.C For all arrays or enumeration types, are ranges used for

each data type instead of numeric literals?
Yes / No / NA

D.17.U Are error tolerances documented for all external input
data?

Yes / No / NA

D.18.U Are variable names in lower case as is the customary
convention?

Yes / No / NA

D.19.U For object-oriented code, are the first letters of class
names capitalized as is the customary convention?

Yes / No / NA

D.20.U Are upper case letters used for "#define" directives as
is the customary convention?

Yes / No / NA

D.21.U Are "#define" statement used judiciously? Yes / No / NA

D.22.C Are assignment equals "=" and equals to "=="
operators used correctly?

Yes / No / NA

D.23.C Have assignment expressions been included in the
same condition as the logical test?

Yes / No / NA

D.24.U Are parenthesis used in the expressions of the "sizeof"
operator (i.e., in "sizeof data", parentheses is optional,
but it is good programming to include ();

Are parenthesis used in the expressions of the "sizeof
(data type) where parentheses are required?

Yes / No / NA

D.25.C Are bitwise operators, bitwise shift, and compound
bitwise shift used correctly (i.e., &, vertical bar, A, ~, »,
«, «=, »=)?

Yes / No / NA

D.26.C For object-oriented components, do classes have any
virtual functions?

If so, is the destructor non-virtual?

Yes / No / NA

D.27.C For object-oriented components, do classes have all
three necessary copy-constructors, assignment
operators, and destructors?

Yes / No / NA

D.28.C For object-oriented components, do all structures and
classes use the "." reference?

Yes / No / NA

D.29.C Are all pointers initialized to "null", deleted only after
"new", and new pointers deleted after use?

Yes / No / NA

D.30.C Are names used within the declared scope? Yes / No / NA

14

Identifier

D.31.C

D.32.C

D.33.U

D.34.U

Question

For object-oriented components, is each class declared
and implemented in a single file (i.e., with the
exception of helper classes packaged with the primary
file)?

Are function arguments free from variable argument
lists (...) to avoid the inherently type-unsafe?

Is multiple inheritance avoided?

Answer

Yes / No / NA

Yes / No / NA

Yes / No / NA

D.35.C

D.36.C

D.37.C

D.38.U

D.39.U

D.40.U

D.41.U

WLG

im&

I.03.C

I.04.C

I.05.U

Are "return" types always provided, even if "void"?

For object-oriented components, does every
constructor initialize every data member in its class?

For object-oriented components, do assignment
operators correctly handle assigning an object to itself?

Is "delete []" used when deleting an array to determine
the size of the array being deleted?

For object-oriented components, are object fine
grained?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

For object-oriented components, is the object
encapsulated (i.e., highly related methods and data
isolated)?

For object-oriented components, is there low
dependency between objects?

For object-oriented components, do objects exhibit high
fan in?

Yes / No / NA

Yes / No / NA

Yes / No / NA

• Interface •

Arc all propagated exceptions declared ao visible and
documented?

Arc all propagated exceptions handled (not raised) by
the calling unit?

Are reasonable ranges declared for all output values?

For all global variables, is their use justified, and are
they documented?

Are all subprogram parameter modes shown and usage
described via comments?

Are all subprogram parameter types shown and usage
described via comments?

Yes / No / NA

YGD / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

15

Identifier Question Answer

I.06.U Does the prologue document all side effects, such as
propagated exceptions?

Does the prologue document all side effects?

Yes / No / NA

I.07.U Are the interface data items free from negative
qualification logic (e.g., boolean values that return
"true" upon failure rather than success)?

Yes / No / NA

I.08.C Do all units systems of formal parameters match actual
parameters (such as degrees vs. radians, or miles per
hour vs. feet per second)?

Yes / No / NA

I.09.C Are all functions free from modification of input
parameters?

Yes / No / NA

I.10.C Are global variables consistently used in all references? Yes / No / NA

I.ll.C Are files opened before use and closed when finished?

Are files opened immediately prior to access and closed
as soon as done?

Yes / No / NA

I.12.C Are all input parameter variables referenced? Are all
output values assigned?

Yes / No / NA

I.13.U Does each unit have a single function, and is it clearly
described?

Yes / No / NA

I.14.C Are all functions free from side effects? Yes / No / NA

I.15.C Is there a single entry and a single exit? Yes / No / NA

I.16.C Does the program and all its functions end with a
return statement?

Yes / No / NA

I.17.C Does each return have a closing brace (i.e., after the end
of a block, the end of the main function [main ()], and
the end of the program?

Yes / No / NA

I.18.C Are the widths and formats of numbers specified
correctly for printing?

Yes / No / NA

I.19.C Are the most frequently executed statements in a
"switch" arranged at the top of the list to improve the
efficiency of the code?

Yes / No / NA

I.20.C If "ios::out" is used to open a file for writing (i.e., C++
creates the file), does it overwrite the filename that
exists?

Yes / No / NA

16

Identifier

I.21.U

I.22.C

I.23.C

I.24.C

I.25.C

I.26.C

I.27.C

I.28.C

I.29.C

L.01.C

L.02.C

L.03.C

Question

L.04.C

Is code free from "non-standard" syntactic constructs
such as unconventional preprocessor directives?

L.05.C

L.06.C

L.07.C

Is passing objects by value, or by reference avoided (e.g.,
where implicit conversions result in member wise
copying)?
Are dynamically allocated application objects passed as
pointers?

Answer

Yes / No / NA

Yes / No / NA

To decrease performance overhead, are local variables
created and assigned at once?

Are files properly declared, opened, and closed?

Is a file closed in the case of an error return?

Yes / No / NA

Are all "include" statements complete?

Are "inline" functions used only when performance is
needed?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Are "new" and "delete" used to allocate and deallocate
storage rather then "malloc" and "free" (i.e., which are
type-unsafe)?

Have timing, sizing, and throughput been addressed?

Yes / No / NA

Yes / No / NA

Logic

Are all negative boolean and compound boolean
expressions correct?

For all case statements, is the domain partitioned
exclusively and exhaustively?

For all "switch" statements, is the domain partitioned
exclusively and exhaustively? __

Are all indexing operations and subscript references
free from off-by-one defects?

Are all comparison operators correct?

Are all boolean expressions correct?

Yes / No / NA

Yes / No / NA

Is the precedence or evaluation order of boolean
expressions correct?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Do the operands of boolean expressions have logical
values (0 or 1) or a non zero value which is interpreted
as true?

Yes / No / NA

17

Identifier Question Answer

L.08.C Does every loop eventually terminate? Yes / No / NA

L.09.C Is the program free from goto statements?

Are "gotos" used judiciously or can other code be
substituted?

L.10.C Are all loops free from off-by-one defects (i.e., more
than one or fewer than one iteration)?

Yes / No / NA

L.ll.C Are all switch statements free from "others" branches? Yes / No / NA

L.12.C Are all decisions exhaustive? Yes / No / NA

L.13.C Are end-of-file conditions detected and handled
correctly?

Yes / No / NA

L.14.C Are end-of-line conditions detected and handled
correctly?

Yes / No / NA

L.15.C Do processes occur in the correct sequence? Yes / No / NA

L.16.C Are all loops free from unnecessary statements? Yes / No / NA

L.17.C Are all loop limits correct? Yes / No /• NA

L.18.C Are all branch conditions correct? Yes / No / NA

L.19.C Are loop index variables used only within the loop? Yes / No / NA

L.20.C Are all loops free from loop index modification? Yes / No / NA

L.21.C Is all loop nesting in the correct order? Yes / No / NA

L.22.U Do all loops have single exit and entry points? Yes / No / NA

L.23.U For all nested loops, are loops and loop exits labeled? Yes / No / NA

L.24.C Is the ternary conditional operator "?:" used correctly? Yes / No / NA

L.25.C Are the increment and decrement operators properly
used in postfix and prefix order?

Yes / No / NA

L.26.U Do braces surround the body of a "for" and "while"
loop even though it only has one statement (i.e.,
exhibiting good programming practices)?

Yes / No / NA

L.27.U Are the expected executions anticipated with "while",
"do while", and "if while", even though the code will
compile?

Yes / No / NA

L.28.C Are "exit (status)", "break in case", and "break and
continue" used to correctly exit the program or exit the
loop?

Yes / No / NA

18

Identifier

L.29.C

L.30.C

L.31.C

L.32.C

L.33.C

O.01.U

O.02.C

O.03.U

O.04.U

O.05.C

O.06.U

O.07.U

Question

Are counters initialized to zero and the increment
operator (i.e., "++") used appropriately?

When "for" loops are used, is the intent for the
condition to be tested at the top of the loop (i.e., is the
condition ever "True" so that the loop executes)?

Is redundancy eliminated in "for" loops for better
efficiency?

Do all "switch" statements contain a default branch to
handle unexpected cases?

Answer

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Does logic handle bad input as well as good input? Yes / No / NA

Other

Is the descriptive prologue complete and correct':

Are all printed or displayed messages free from
grammatical or spelling errors?

Does the code follow basic structured programming
techniques?

Are all assumptions documented?

Is the code written only in Ada?

Is the code written only in C or C++?

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Yes / No / NA

Is each variable declared on a single line to improve
readability and maintainability?

Does code contain mapping to parent documents, or
functional specifications?

Yes / No / NA

Yes / No / NA

19

2.6 Hybrid Structural-Functional Testing

Entry
Criteria

Inputs

Objectives

Outputs

Exit
Criteria

Tools

Code Inspection procedure has been successfully completed

Code is complete with respect to executability

Functional specification or description is available

Source code and pretty printer listing

Functional specification or description

Test requirements derived during code review (if any)

Correctness - determination of whether the component correctly performs its
intended function within the specified requirements.

Completeness - determination of whether the component is complete with respect
to the functional specification or description.

Understandability - assessment of the understandability of the functional
specification or description.

Test cases

Coverage metrics

Result summary report

Effort expended on this process

Defect reports, if any defects are detected

Certification Advancement flag; true if no major defects found, else false

All functional tests completed

At least 90% decision-to-decision (DD) path coverage for 100% of the components
has been achieved

All defects recorded and disposition determined

McCabe Visual Toolset for unit level test case generation and unit level
instrumentation.

Structural-Functional Testing Procedure

The basic procedure is to develop functional test cases, and to instrument the code to
measure logical branch coverage, also known as decision-to-decision (DD) path
coverage. Run the functional test cases, and if at least 90% DD path coverage has
been achieved on 100% of the components (with the possible exceptions noted
below), testing is complete. If the coverage criterion has not been met, then
supplement the functional test cases with structural test cases until the coverage
criterion has been met.

1. Instrument code for DD path coverage using the McCabe Visual Toolset.

20

2. Design functional test cases by following the Functional Test Case Creation
Guidelines listed below.

3. Create test harness (driver and stubs) if required to run the functional test
cases.

4. Run each functional test case. Compare the actual test outputs to the expected
outputs, determine if there is a difference and, if so, a defect in the code has
been detected.

5. Fill out a Defect Report for each defect detected.

6. Determine DD path coverage achieved by the complete suite of test cases by
running the McCabe Visual Toolset (see Appendix B for detailed
instructions). If all components have at least 90% coverage, then testing is
complete—go on to the next step. Otherwise, create supplemental structural
test cases to increase the coverage. Use the McCabe Visual Toolset to display
DD paths not executed, and determine the values the decision variables must
have in order to execute these paths. Repeat steps 2-6 for the supplemental
test cases until the coverage criterion is met.

7. Prepare test summary report, summarizing the test cases, noting the defects (if
any) that were found, and stating the coverage achieved.

8. Review each defect to determine whether it is a major or minor defect. All
major defects should be repaired to consider this certification step to be
successful. Defects that are not repaired should be reported to reusers.

Exceptions to Coverage Requirements. The test coverage requirement of 90% DD path
coverage is a key to achieving certification. The exceptions listed below describe
cases that may prevent achievement of DD path coverage. The most efficient
approach to certification is probably to achieve the best coverage possible with these
exceptions, and then to make the necessary changes to the asset and continue
testing. Another possibility is to certify the asset subject to exceptions which are
then well documented in the certification results.

For cases a and b, the defective code must be repaired before certification can
continue. For case c, the decision about certification depends on whether the entire
reused module is intended to be made available as a separate entity. If so, then
additional test drivers may be needed to exercise it completely. For case d, it may be
difficult to trigger an exception to execute the path.

a. Paths blocked by defects. Defects must be repaired before coverage can be
increased and certification can be achieved.

b. Leftover debugging code, or dead code. This code should be removed to
verify that it is superfluous so that certification can be achieved.

c. Code which is intentionally never executed, such as unused functions in
reused packages that are used by the asset being certified.

d. Non-specific "others" exception handlers.

21

Functional Test Case Creation Guidelines

1. Using the functional specification for the code and /or documentation within
the code, identify the functional requirements of the code (what it is intended
to do and any restrictions, limitations, or special conditions on how it
performs its function(s)), the input and output variables, and the allowable
ranges of values for the input and output variables. Determine (on a
functional, not code structure, level) how the input variables are combined
and processed to produce the desired outputs.

2. Create at least two equivalence classes for each input variable that at a
minimum divide the possible input values into valid and invalid values.
Equivalence classes partition the possible input values into disjoint sets
(classes) such that any input value in one class should result in an output
equivalent to that resulting from any other input value selected from that
same class. Create equivalence classes for variables that are defined by
bounded or discrete ranges according to the following rules:

• If the allowable values for the input variable are defined as a range
between two values, create three equivalence classes - values below the
lower limit, values within the specified range, and values above the upper
limit. For example, if an input velocity was specified as 0 < velocity < 100
mph, the three classes would be velocity < 0, 0 < velocity < 100, and
velocity > 100.

• If the allowable values for the input variable are defined as a discrete
range, create equivalence classes for each of the values that are treated
differently from other variables. For example, if an input vehicle variable
was specified to be either a bicycle, car, truck, boat, or plane, and if the code
processes the input differently according to type of vehicle, then there are
six equivalence classes: vehicle = bicycle, vehicle = car, vehicle = truck,
vehicle = boat, vehicle = plane, and vehicle * bicycle, car, truck, boat, or
plane. However, if the code processes the input differently according to the
physical environment in which the vehicle operates, then there are four
possible equivalence classes: vehicle = bicycle, car, or truck; vehicle = boat;
vehicle = plane; and vehicle * bicycle, car, truck, boat, or plane.

Pick at least one input value from each equivalence class, making sure to
include a value at the boundary of each class.

3. Identify pseudo-boundary conditions and, for each condition, pick at least one
input value that would cause it to arise. A pseudo-boundary condition is a
combination or use of variables in the code that makes invalid some
otherwise valid input value for the variables. For example, consider a code
component ratio_a whose function is to compute the function z=(x/y)*c,
where x and y are inputs of measures of some physical phenomena whose
values are expected to fall within specified numerical ranges and c is a
constant. In this example, the use of the variable y as a divisor is a pseudo-
boundary condition: since a zero-divide condition could result, y = 0 is an

22

invalid input. The code should be tested with y = 0 to determine if zero-
divide conditions would arise and be handled properly.

4. Identify equivalence classes for each output variable following the procedure
described for input variables. Determine the input values required to produce
each class of outputs. For the ratio_a example, creating these equivalence
classes addresses whether or not combinations of input values for x and y
could result in out of range values for z.

5. Create test cases by combining the inputs determined in steps 3 - 4 so that each
input is tested without unnecessary duplication. For example, an input for a
pseudo-boundary condition might also be an input for one of the input
equivalence classes or one of the output equivalence classes.

6. Using the functional requirements of the code, predict the expected outcome
of each test case. An outcome is a change (or the absence of a change) in
anything observable as a result of executing a test, including changes in
memory, mass storage, I/O devices, registers, and output variables1. For the
ratio_a example, an expected outcome is an output value for z for each pair of
input values x and y and can be determined by a simple computation. For a
stack management routine, the contents of a stack as well as a returned entry,
a return code, or a pointer are possible outcomes. In cases where the expected
outcomes can not be easily computed or derived from the inputs, an oracle or
best engineering judgment can be used to predict them.

1 Beizer, Boris. Software Testing Techniques. 2nd Ed. New York: Van Nostrand Reinhold, 1990.

23

2.7 Data Collection Plan

The objective of this field trial is to evaluate the overall effectiveness of the
certification process in assessing the correctness of the asset. This can be used as an
indicator of avoidance within a reuse context. In order to evaluate effectiveness,
data must be collected in four basic categories in the field trial: (1) product
characteristics, (2) certifier profile, (3) process execution, and (4) certification defect
profile.

Product Characteristics

Descriptive information about the assets being certified needs to be collected in order
to assess its impact on the effort required to execute the certification process. The
following information should be recorded for each asset:

Table 2-1. Product Characteristic Data Elements

ASSET NAME

Origin of Asset

Application Domain

Purpose of asset

Language

Number distinct "packages" contained
in the asset

Physical lines of code (non-blank lines)

Supporting packages

Age of asset

Version number of asset

Previous inspection and testing
activities

Additional documentation

24

Certifier Profile

In addition, the knowledge and experience of the certifier has an impact on the
effectiveness of performing the certification procedures. This data must be collected
in order to measure the impact of certifier's skills. It is assumed that one person will
perform all of the procedures; however, if more than one person is involved in the
process, a form should be filled out for each certifier. Also, this must be noted in the
Certifier Identification block provided in the process implementation data sheets (in
Appendix A).

Table 2-2. Certifier Profile Data Elements

CERTIFIER IDENTIFICATION

Number of years of programming
experience

Number of years of programming
experience in asset's language

Education (list degrees)

Tool experience (hours with each tool)

(note: before starting certification
process)

Process Execution

The two major components of evaluating process execution are (1) the level of effort
required to complete each procedure and the number of defects found during each
activity. This information, in conjunction with the other data categories, will
permit a very general "cost-effectiveness" assessment of this overall certification
process. See Appendix A for the specific data collection forms.

25

Table 2-3. Process Characteristic Data Elements

Default Certification Activities

Readiness Static
Analysis

Code
Inspection

Testing

Certifier Name or ID
Number

Level of Effort
(hours)

Number of Defects Found

Computational

Data

Interface

Logic

Other

Total

Problems in Applying
Techniques

Problems in Using
Tools

Problems with
Process Guidance

Certification Defect Report

It is important to record the defects detected at each step in the process. Defects
found should be classified according to type (computational, data, interface, logic,
other).

It is not intended that the field trial include repairing defects unless the defect
impairs further certification steps. If defects are repaired, the effort to repair should
be recorded. If the defect is not isolated by virtue of the certification technique (e.g., a
test case results in a failure that must then be traced to a line of code), then the effort
to isolate should be recorded separately from the effort to repair.

A standard Defect Report form is shown below. All data collection forms are
provided in Appendix A for convenient data collection.

26

♦ Certification Defect Report ♦

Defect Report Identifier

Asset Identifier
Originator

Severity □ MaJor

□ Minor

Defect D Computational I
Type □ Data j

D Interface ■!:

□ Logic 1
□ Other "

mm§mmMMMsa^m^^^Bmii^^BmmmMMmMMms ia

Tool □ C-Vision i
Used [j PC-Lint I

D McCabe Toolset

□ C++ env. (compiler, etc.)

D None

Technique Used

□ Readiness
□ Static Analysis □ Data Flow

□ Order Dependency

□ Alias Usage

□ Unreachable Code

□ Style Guideline
□ Other

□ Code Inspection D Item
D Testing □ Functional Test Case

□ Stru ctu ral Tes t Case

□ Other

S^SSl mmmmmSsssrnMaissäsiiiiii

Code Line Number(s).
Effort to Isolate.
Effort to Repair.

Description of Defect:

27/28

3 Results

This section presents the results of the second field trial performed by SPS. The first
subsection is an overview of the field trial. The next subsection presents the results
of the certification of the asset in terms of defects found. The final subsection
discusses the lessons learned as a result of the second field trial. The first field trial
is documented in CRC Volume 5.

3.1 Field Trial Overview

The certification field trial described in this report was performed by SPS personnel
Sharon Rohde, Pat Aymond and Karen Dyson.

Personnel. Ms. Rohde was selected to perform the field trial because of her
experience with the C++ language, and also because she was not involved in the
derivation of the default certification process or in writing the field trial procedures
(in Section 2). Ms. Rohde installed the certification tools and performed all of the
certification steps.

Ms. Dyson was a contributor to the derivation of the default certification process and
co-author of the field trial procedures. Pat Aymond selected the asset to certify and
seeded additional defects into the asset, consulting with Karen Dyson. Ms. Dyson
served as consultant for the analysis of the results and Lessons Learned.

Objectives

The objectives of the field trial were as follows:

• Perform all of the steps in the default certification process

• Use all of the tools in the certification tool set

• Assess the accuracy and understandability of the procedures guidance

• Collect effort and technique effectiveness data

• Select a single asset to certify sized for a 2 staff-week certification effort

While technique effectiveness data was collected, the field trial was not intended to
be an experiment to determine the effectiveness of the techniques that comprise the
default certification process. The design and implementation of an experiment of
that type is quite involved and is significantly beyond the scope of the CRC/ATD
contract. The effort and technique effectiveness data was collected in order to
compare the actual results with comparable values culled from other research
studies.

29

Accomplishments

All of the above objectives were satisfied by the field trial.

3.2 Asset Certified

The resources allocated to the field trial task allowed for certification of a single
asset. The asset to certify was selected based on its similarity with the asset certified
in the Ada field trial. Since the default certification process was derived for Ada
code assets, it was modified for a C++ code asset. The Reuse Code Inspection
Checklist was modified for a C++ code asset.

Size. It was estimated that an asset of about 1000 logical lines of code would be large
enough to not be trivial and yet small enough to be certified in a 2 staff-week effort.
The effort constraint was developed based on extensive interviews of reuse library
personnel performed early in the CRC contract [see the CRC Volume 4 - Operational
Concept Document], which indicated that 2 staff-weeks were about the right amount
to devote to certifying a single asset.

Defect history. In order to assess the effectiveness of the certification process at
finding defects, it was necessary to have an asset with defects known in advance. To
achieve this requirement of a defect history, we seeded defects into the selected
component to the similar extent as the Ada component in the previous initial field
trial.

Selected Asset

The selected asset was a labels program packaged with the Borland compiler as
example code. This single executable program automatically generates mailing
labels from a master list. It reads a subscription list, inserts new subscriptions into a
master list, and prints the contents of the master list in a standard label format. It
had no recorded defect history.

Size of Asset

Lines of code (physical) 3,356 lines (est.)

Number of class libraries 3

Number of supporting "C'files 2

30

The size of the asset was determined by counting lines which included compiler
directives and the following header files with seeded defects:

<classlib\listimp.h>

<classlib \ objstrm .h>

<classlib \ date .h>

An informal desk check type code review turned up no major or minor defects.
Therefore we decided to seed 14 additional major defects in order to have a
significant number of major defects known in advance of the field trial. The seeded
defects are summarized in the table below. All seeded defects are documented in
Appendix B and have an identifier starting with "PA_". These known defects were
not shown to Ms. Rohde prior to or during the field trial.

31

Summary of Seeded Defects

Identifier Unit Lines

PA_001 labels.cpp 386-387

Description "Type

Changed write to read output file in Interface
subscription list destructor. Does not write
subscriptions to master file.

PA_002 date.h 31 Changed value of constant Julian date of
1/1/1901 from "2415386L" to "1415386L"

Data

PA_003 date.h 106 Changed operator "-=" to "=" and data type
from integer to constant.

Interface

PA_004 date.h 253,256 Changed operator "-=" to "=" in inline
operator definition.

Interface

PAJ305 date.h 272 Changed inline function that checks for
valid months so that months January and
December are not valid.

Logic

PA_006 listimp.h 82,83,91 Instead of zeroing out the list element
counter, it was set to 1.

Logic

PA_007 listimp.h 719 In ForEach function, incorrect while
condition does not iterate through list
properly.

Logic

PA_008 listimp.h 889 Changed notation from class name to
arithmetic operator.

Logic

PA_009 objstrm.h 299 Address of object is not stored in database. Logic

PA_010 objstrm.h 626 Changed inline function clear, changed
"hardfail" to "basefield".

Data

PA_011 objstrm.h 1020 Improper terminator in switch statement;
changed "break" to "switch".

Logic

PA_012 labels.cpp 414 Wrong while loop condition, changed "iter
!=0 to "iter == 7". Will not correctly write
susbscription list to output file.

Logic

PA_013 labels.cpp 429 Incorrect initialization of for loop iterator;
changed "i = 0" to "i = 11". Will not read in
subscriptions from master file unless count >
11.

Logic

PA_014 labels.cpp 605 Changed type declaration of main routine
from "int" to "unsigned int".

Interface

The seeded defects were not created in an attempt to duplicate a particular defect
profile (i.e., distribution of defect types). There are more logic defects than other
types simply because these are the easiest type to invent. It turned out to be rather
more difficult than we anticipated to create defects that were not caught by the
compiler, nor caused immediate catastrophic failure on execution.

32

In the results section below, we look at all of the known defects in the certified asset
after having completed the certification process.

3.3 Certification Results

This subsection presents the results of the second certification field trial performed
by SPS. Analysis of the data collected during the field trial and of the defects found
in the asset are included in these results. Lessons learned are discussed in the next
subsection.

Data collection forms described in Section 2.7 were completed during the field trial.
All certification defect reports are in Appendix B, and the other completed forms are
contained in this subsection under the appropriate topic.

Staff Experience

As mentioned the overview in subsection 3.1, three SPS personnel were involved
in the field trial. Their completed Certifier Profile Worksheets are shown below.

33

CERTIFIER PROFILE WORKSHEET

CERTIFIER NAME OR ID NUMBER Sharon Rohde

Number of years of programming experience 5 yrs

Number of years of programming experience in
asset's language

.5 yrs in C++

Education (list degrees) MS Computer Science

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE 10 hr

PC-Lint 3 hrs

McCabe Visual Toolset 32 hrs

C-Vision 8 hrs

CERTIFIER NAME OR ID NUMBER Pat Aymond

Number of years of programming experience 10 yrs

Number of years of programming experience in
asset's language

5 yrs

Education (list degrees) MS, Education

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE 2 yrs

PC-Lint 0

McCabe Visual Toolset 0

C-Vision 0

CERTIFIER NAME OR ID NUMBER Karen Dyson

Number of years of programming experience 8

Number of years of programming experience in
asset's language

.5 in Ada

Education (list degrees) BS Civil Engineering

Experience with Certification Tools (hours with
each tool before starting certification process)

Borland C++ IDE 0 hrs

PC-Lint 0 hrs

McCabe Visual Toolset 0 hrs

C-Vision 0 hrs

34

Asset Description

The information contained on this worksheet is also discussed in subsection 3.2.

ASSET DESCRIPTION WORKSHEET

ASSET NAME Labels

Origin of asset Borland International

Application domain Information Management

Purpose of asset Updates and displays the contents of a
mailing list.

Language C++

Number distinct "includes" contained
in the asset

5

Physical lines of code includes blank
lines and comments

4828

Source lines of code (physical) includes
non-blank, non-comment lines

3356 (est.)

Age of asset 1993

Version number of asset 1.0

Previous inspection and testing
activities

unknown

Additional documentation short prologue

Effort

Effort to apply the techniques for each step of the certification process was reported
on the Overall Process Data Worksheet. Included in the reported effort is the effort
to record defects, but not the effort learn how to use the tool. The graph in Figure
3-1 compares the actual effort to apply the techniques to the predicted, or default,
effort. Default effort data is taken from CRC's Volume 3- Cost Benefit Plan.

35

Technique Effort Comparison

Testing

Code Inspection

c
■C
U
® Static Analysis

Readiness No default data available
for Readiness

0 5 10 15

Field Trials

I Default

Total effort for Labels
asset certification =
84 hours

20 25 30 35

Hours/KSLOC (Physical)

40 45

Figure 3-1. Comparison of Actual Effort to Predicted

In general, the actual effort was close to the prediction.

Since our initial effort of structural testing yielded high coverage (i.e., 97%), we
elected to conclude the testing activity.

36

OVERALL PROCESS DATA WORKSHEET

ASSET:

Labels

Certifier ID

Level of
Effort (hrs)

Problems in
Applying
Techniques

Problems in
Using Tools

Problems
with Process
Guidance

Other
Problems

Certification Step

ASSET READINESS

Sharon

Borland required
proper path
settings for all
included
libraries and
supporting
reference files

STATIC ANALYSIS

Sharon

16

CODE INSPECTION

Sharon

24

TESTING

Sharon

40

Borland 5.00 and
McCabe 5.2 were
incompatible;
upgraded to 5.01
and 5.22,
respectively

Defects

Many more natural defects were found in the asset during the field trial than were
known prior to the start. All are recorded on defect report forms in Appendix B.
Each report has an identifier that indicates the source of the report using the
following codes.

Defect Report Identifier Codes

RD

CI

TE

Code Source
Readiness

SA Static Analysis

Code Inspection

Testing

PA Aymond's Seeded Defect

37

In terms of certification, the asset passed the certification concern of Completeness,
and failed in the other two concerns of Correctness and Understandability. In
practice, the certifier would face the following choices:

• Reject the asset

• Report the asset as uncertified and record all known defects

• Return the asset to the donor and request repair of known defects; repeat the
certification process after repairs

• Repair the defects; repeat the certification process after repairs

Some certifiers may choose to include defect repair as part of their certification
process. There is some debate as to whether it would be necessary to repeat the
certification process after repairs have been effected, depending on the nature and
the number of the defects found. The purpose of repeating the certification would
not only be to insure that the defects were repaired, but also to catch any new defects
inserted as a result of the repair activity.

Counting Defects. In the following graphs and tables, unless otherwise noted,
defects are counted as unique defect reports. The uniqueness criterion means that if
the same defect was detected by more than one technique, it is counted only once
and credited to the first technique to detect it. In filling out the defect reports, each
report is limited to a single package or separately compilable file. All occurrences of
the same type of error, such as a style violation, in a module are recorded on the
same report, with all defective lines of code noted on the form.

Figure 3-2 shows how many defects were found by the steps in the certification
process versus how many are known to exist at completion of the field trial. Defects
categorized as not found are seeded defects.

38

22

20

18

fiie o
°- 14

12
u
» 10
a>
Q 8

6

4

2

0

O
z

Labels Certification Results
Defect Detection

Not Found
■ Found

Major Minor

Defect Severity

Figure 3-2. Defect Detection.

Summary of Defect Reports. The following table summarizes the defect reports
logged during the certification process steps and the seeding activity. Duplicate
reports are listed in the "prior step" shaded rows.

39

Defect Report Summary

Defect Type

Step When Found Comp. Data l/F Logic Other Total

Readiness This Step First 0 0 2 0 0 2

Static
Analysis

This Step First 0 3 8 3 0 14

Code

Inspection

This Step First

Prior Step

0 0 2

1

6

0

1 9

1

Testing This Step First

Prior Step

0 0 0 9

0

1 10

Seeding Not Found

Other Steps

1

0

1

0

0

4

0

8

0

0

2

12

Asset's Defect Profile. Figure 3-3 shows the defect profile of the asset in terms of the
known defects. The defect density of the asset's major defects, including the seeded
defects, is about average for C [see CRC's Cost Benefit Plan]. Major defects as we've
defined them for the field trial are equivalent to what are typically reported as
defects.

Defect Density

Defect Density

Defect (defects/1000 physical lines)

Severity Asset's Average for C
Major

Minor N/A

40

Total Known Defects in Labels Asset

12 ^^^^^^m^g^m^^^^^s^^^^—^

10 10 ^^^S5SS5^^^^^^^5^S^H ^^^^^5
£ Major
»8 7 7 ■ Minor

oc '" """ """""' **

S 6 v
■^

Q A

1 1

Defect Category

Figure 3-3. Asset's Defect Profile.

Figure 3-4 compares the asset's defect profile, including both major and minor,
seeded and natural defects, to the default profile [see CRC's Cost Benefit Plan]. One
notable difference is that there is a much lower proportion of computational defects.
This fact could have two interpretations:

• the techniques used are not effective at finding computational defects

• the asset does not have computational defects

The second explanation is more likely, since the asset is not heavily computational
in nature, only the date is computed in the labels program. No seeded defects were
of the computational category. This then indicates that we cannot assess the
effectiveness of the techniques at finding computational defects based on this field
trial.

In certification, it will typically be the case that an individual asset's defect profile is
different from the default profile of any given group of assets. The more that is
known about the expected defect profile of assets to be certified, the more cost
effective a process can be designed to certify them. For example, if a group of assets
to be certified is known not to be computational, then you would not need to
include a technique that is effective at detecting computational defects.

41

Defect Profile Comparison

50%
ill
Pil

(0

40%

■

Default

o
0)
© 30%
Q

ltSiii|plsll|l§p™t*fi

o
I- ^_ __
_ 20% H ^H ■ Labels o ...

^ p Ijllli
io% ;

0% I
Computation Data Interface Logic Ottier

Defect Category

Figure 3-4. Comparison of Asset's Defect Profile to Default Profile.

Technique Effectiveness

As Figure 3-2 shows, all but two of the known major defects was found, and the two
not found were seeded defects. Effectiveness of the default certification process at
finding defects is better represented by the proportion of the total seeded defects
found than by the proportion of known defects found. This is because there may be
additional natural major defects in the asset, so the total number defects in the asset
is unknown.

Effectiveness at Detecting Major Seeded Defects

Found Known Effectiveness

18 20 90%

Figure 3-5 shows the cumulative effectiveness of the steps in the certification
process where effectiveness is defined as the proportion of known defects found.
From this we can draw several important conclusions. We cannot, however, claim
that the combined effectiveness of the default certification process is more than 90%
because we do not know the total number of natural defects in the asset.

42

Furthermore, based on the effectiveness at finding seeded defects, we have reason to
believe that more natural defects exist.

Readiness step. There were two major defects found during the Readiness step.
Even though initially, all code needed to create an executable was available and
compiled without error, we found a major defect in documentation of the code's
functionality. After we upgraded our Borland compiler to operate with the
upgraded McCabe Visual Toolset, we uncovered a seeded error during linking in
compilation.

Static Analysis step. As Figure 3-5 shows, both major and minor defects were found
by this step. The particular tool selected for this step was very good at finding
defects. The 55% effectiveness rating for minor defects shown on the graph may be
misleading, however. The automated tools used in this step are virtually 100%
effective at finding the defects that they are designed to find. The effectiveness
rating indicates that what the tools are designed to find were only about half of the
known minor defects in the asset.

Cumulative Effectiveness at each Certification Step

% Known Defects Detected

0% 20% 40% 60% 80% 100%

Readiness
Major

■ Minor
o. "Both
0)

(0 Static Analysis
c
o
(0 u

; ~ Code Inspection
0) o

Testing HE

Figure 3-5. Cumulative Effectiveness of Certification Steps.

Code Inspection step. As Figure 3-5 shows, this step found about 25% of the major
errors. This is lower than the industry studies that support code inspection as a
useful technique to detect defects. The first field trial also had a lower than expected
result. Consequently, we modified our checklist to add additional granularity to the
questions in hope of improving our results. Our repeated results show that this

43

may not be the factor behind the shortfall. Other explanations may be the certifier
skill and years of experience with the code asset language.

Testing step. Less than one-third of the defects were found in the testing step, as can
be seen by subtracting the effectiveness of the code inspection step from that of the
testing step in Figure 3-5. This may be low for this step, but using the cumulative
effectiveness of other steps, adequate coverage was achieved.

3.4 Lessons Learned

Choice of Component Language

Even though C++ is a popular and industry-endorsed language, several flavors are
in existence. These are two standard forms (i.e., ANSI/ISO and ARM), but others
have created de facto standards. These varieties come into play when choosing
compilers and tools that pre-process code. Different flavors of the C++ language
pose interoperability problems. Some tool vendors do not support a wide variety of
C++ flavors and special customizations of the tool need to be performed. These
customizations are not supported by the tool vendor. These factors eventually
affected the selection of the asset to be certified.

Tools that support C++ are not robust. C++ is widely acclaimed as an excellent
language of choice over C, but this trend is a fairly new one. Tool vendors need
additional time to provide mature tools to meet the market demand.

Defects

All defects found in the Testing Step were unique. The first field trial has some
minor overlap of errors found in succeeding steps and separation was not as clearly
evident as in the second field trial. Nonetheless, this finding confirms that a
certification process should include a series of steps using distinct techniques
designed to detect different kinds of errors. Overall, we found that each technique is
special and cannot be omitted from the process.

The components used Field Trial #1 and Field Trial #2 differed in the total number
of minor defects. Field Trial #1 found 77 of a total of 85 minor defects and Field
Trial #2 found 17 of a total of 17. This may be due to the differences in the initial,
unseeded component, as well as the differences in tools used in the two certification
environments. Field Trial #1 had the advantage of AdaQuest to find minor
violations of coding style whereas no such tool existed as a counterpart in the C++
certification environment. In Field Trial #2, PC-Lint was used as a thorough static
analysis tool and can be thought of as a parallel tool that detects minor defects.

Many major defects were found in the earlier certification steps (i.e., prior to Code
Inspection). This finding also confirms the need for a multi-step certification
process. Defects found in earlier steps are less costly to find and to repair than those

44

found in later steps. Finding defects late in a development process (i.e., during
testing) is not usually cost-effective.

Defect Categories

The categorization of defects, both seeded and natural, is difficult to assign from the
definitions alone. The definitions as they appear in the CRC Code Defect Model
could be improved by elaboration with additional details specific to each component
language. Examples to illustrate assignments of categories would be helpful.

The Field Trial procedures would benefit by adding these examples for each kind of
defect to help the Certifier and Certification Analyst to make this determination.
We were able to adequately maintain consistency across the two Field Trials
conducted at SPS through individual staffing.

Field Trial - Certification Tools

The configuration of the certification environment is time-consuming. We needed
to artificially create the experimental environment prior to conducting the test. In a
repository situation, this environment would already be established.

Installation, learning, integration, and application of tools to a particular component
is very time-consuming. The activities are difficult to plan because of unknown
obstacles that are encountered. It is suggested to build a three month period into the
schedule for these activities alone. Using an example component that is available to
the tool vendor's technical support staff is helpful in tracking bugs and errors in
installation and operation of the tool.

Configuration and integration of tools is problem-fraught. Version incompatibility
across tools can present problems in operation. Tools are marketed as compatible,
but, as each vendor may issue monthly changes, particular versions of one tool may
not work with a version of another. Upgrades to one tool may cause an new
incompatibility in another tool which once functioned properly. Fortunately, for
Field Trial #2, vendor support was excellent and enabled us to work through the
barriers.

Since vendors issue frequent versions of their software, documentation does not
match tool versions. Patches may be available, but are difficult to secure.
Installation of patches may be time-consuming and problem-ridden. This presents
problems with those who are learning the new tools or learning the differences in
the new version.

Support for tools that instrument code is weak. For example, the instrumentation
mode was not sufficiently tested using a sample program provided by the vendor
with the Borland compiler and McCabe Visual Toolset. Documentation of the
process was non-existent and was created "on the fly" as the problem was solved.
Bugs in the tools were uncovered as the problem was resolved. We recommend

45

that tool vendors who have an instrumentation mode provide samples to test tool
installation and functionality.

With the McCabe Battlemap, the ability to jump to the actual source line of code
from the Battlemap would improve its capabilities.

Training is a requirement for high-end tools. Complex tools give sophisticated
results and require a high learning curve to operate the tools properly. User
documentation is typically weak; we found this to be true of both Logiscope used in
the first field trial and the McCabe Visual Toolset used in the second field trial. We
found that McCabe provides manuals in large binders making it difficult to find the
desired information. On many occasions, once the information was found, it was
incorrect and out-of-date, not matching the most current version of the tool issued.
Additional expertise is required to sift through the volume of information available
from the tool and interpret the results. A high level of expertise is required to learn
the tools, get them up and running, use, interoperate, and interpret the results.

Training for the McCabe tools focuses on the theoretical underpinnings of the tool's
complexity measures and control flow theory. We found this useful; however,
another course targeting the application of the tools to a real-world situation is
needed. Currently, these services are available only on an in-house consulting basis
and can prove to be very costly for those on limited funds.

For complex tools, an excellent technical support staff relationship is required. The
tool vendors must be responsive to tool problems, otherwise, a failure to complete
could result.

Field Trial - Testing Effort

The design of the component under test greatly affects the testing effort when using
a structural testing approach. The component for Field Trial #2 had a flat calling
tree structure and was highly coupled across modules. Modules were small and had
low control flow complexity. This structure is typical, and can be expected, for a
component implemented in the C++ language. Branch coverage of 97% was easily
achieved. Whereas the calling tree structure of the component in Field Trial #1 was
deeper and the modules were longer and more complex, it proved difficult to
achieve more than 80% branch coverage.

Certifier Skills

The suite of certification techniques that comprise the default certification process
includes two techniques whose effectiveness is highly dependent upon the training
and experience of the certification engineer applying the technique: code inspection
and testing. These techniques are also less automated and require more human
involvement than the readiness and static analysis steps. This implies that the
results may not be repeatable when comparing different certification engineers. To

46

reduce the variability among different engineers, and to maximize the effectiveness
of the techniques, training is essential.

The default process steps are intentionally ordered in terms of increasing skill level
as well as increasing investment of effort, so that, for example, a failure in an early
step could save wasted effort in later steps. In general, we would like the automated
static analysis tools to detect as much as possible, and we view enhancements in
static analysis capabilities as a valuable contribution to certification.

Effectiveness of Techniques

The combined effectiveness of all of the steps in the certification process is
impressive because each step tends to find different types of defects. The second
field trial confirms the results of the first, that all four steps are necessary to detect a
high proportion of defects.

Figure 3-5 shows, for example, that many of the major defects would have been
missed if we had only done static analysis. The Defect Report Summary table also
shows that there are numerous defects that testing alone would not have found.

We recommend that defect detection be pushed to the earlier certification steps. For
example, automated static analysis is a cost-effective, objective, non-cognitive
technique as compared with code inspection which requires trained staff and
considerable effort. The effectiveness of some techniques are contingent upon the
persons using them.

The Code Inspection Step for Field Trial #1 and #2 were only moderately effective in
detecting defects (i.e., 37% and 27% respectively). This may be due to a relatively
small body of detectable defects over both field trials. A more definitive trial of the
process would to certify multiple assets with thousands of defects. Here, in this
experiment, we inserted "controlled" defects which may not necessarily be typical of
the kind of defects that arise naturally.

We were impressed with the ability of the upgraded Borland compiler to detect a
previously undected major error during the Readiness step. We hope that this
finding is a trend among vendor upgrades as support the software developer and
maintainer in detecting defects early in the software life cycle.

Modifications to the Process Guidance

General. The certification process as defined by the steps of Readiness, Static
Analysis, Code Inspection, and Testing is valid. Many natural defects, as well as the
seeded defects, were found in the certified COTS components. Field Trial #2 found
7 natural defects, and Field Trial #1 found 12.

Code Inspection step. In C++ with numerous, short modules, code design and its
"checklist" may become more important to major and minor errors, corrections

47

understandability. Design appears more closely tied to implementation of function.
It may be useful to add a reverse engineering tool to the certification environment
to help understand code structure. We found that McCabe Visual Toolset does not
provide sufficient insight.

Recommendations

Seeding defects was a difficult activity, and we cannot confirm that the defects
seeded are typical of the defects that software developers and maintainers
inadvertently introduce into source code. We recommend conducting a study to
determine examples of defects that are typical across defect types.

Additional planned empirical research should attempt to validate the certification
reuse process and procedures. Additional data could be collected for Ada, C++,
components as well as other programming languages (i.e., COBOL, FORTRAN,
Pascal, C, etc.) in follow-on pilot studies.

After a significant number of pilot tests, we recommend an additional phase of
applying the certification reuse process to multiple components of a reuse library
and collecting additional data analyses, and results for the purpose of comparison.
The next phase of validation could involve multiple reuse libraries to determine
the relative efficiency of those processes and procedures. The certification process
could alternately be expanded to other quality concerns, other domains, and other
component types.

The disappointing results achieved in the Code Inspection step, suggest a topic for
future research, i.e., the study of ways to make code inspection more effective. This
research topic is also of interest to software maintainers who routinely struggle with
the comprehension of code written by others.

The results of the Field Trials is of interest to the software /systems community. The
technical paper and presentation of the first field trial at the IEEE International
Conference on Engineering of Complex Computer Systems '96 (ICECCS) was well-
received and drew additional conversation from its participants. We intend to
follow-up with an additional paper about the second field trial and its comparison to
the first at a future conference.

48

Acronyms

CRC Certification of Reusable Software Components

DD Decision-to-Decision

FTR Final Technical Report

49

Appendix A: Data

Collection Forms

A-l/A-2

ASSET DESCRIPTION WORKSHEET

ASSET NAME

Origin of asset

Application domain

Purpose of asset

Language

Number distinct "includes" contained
in the asset

Physical lines of code (non-blank lines)

Lines of some code

Age of asset

Version number of asset

Previous inspection and testing
activities

Additional documentation

A-3

CERTIFIER PROFILE WORKSHEET

CERTIFIER NAME OR ID NUMBER

Number of years of programming
experience

Number of years of programming
experience in asset's language

Education (list degrees)

Experience with Certification Tools
(hours with each tool)
(note: before starting certification
process)

Borland C++ IDE, PC Windows 95

PC-Lint

C-Vision

McCabe Visual Toolset

A-4

♦ Certification Defect Report ♦

Defect Report Identifier

Asset Identifier
Originator

Defect D Computational
Type □ Data

D Interface

D Logic
□ Other

Tool
Used

□ C-Vision

□ PC-Lint
D McCabe Toolset
□ C++ env. (compiler, etc.)

D None

Severity □ MaJor

□ Minor

Technique Used

□ Readiness
□ Static Analysis D Data Flow

□ Order Dependency

□ Alias Usage

□ Unreachable Code
□ Style Guideline

□ Other

□ Code Inspection D Item
□ Testing □ Functional Test Case

□ Structural Test Case

□ Other

Code Line Number(s)_
Effort to Isolate _
Effort to Repair _

Description of Defect

A-5

OVERALL PROCESS DATA WORKSHEET
ASSET:

ASSET
READINESS

STATIC
ANALYSIS

CODE
INSPECTION Äras^NG^-

"3™.:. :.-■•: J. ■.*: >■■■

Certifier ID

Level of
Effort (hrs)

Problems in
Applying
Techniques

Problems in
Using Tools

Problems
with Process
Guidance

Other
Problems

A-6

Appendix B: Certification

Defect Reports

B-l/B-2

■ Certification Defect Report ■

Defect Report Identifier RD_0 01

Unit Name date_.±L

Originator Sharon

Defect T ^ j.
Category Interface

Tool Used Borland C++ 5.01
IDE

Severity

Certification 1_Readiness

Specific nth
Technique UCner

Major

Code Line 253, 256
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:
Fatal error during link with new version of compiler iden.ti.fed..

problems...on.these lines...

Removed PA_004 to correct,

Certification
Concern Correctness

Defect
Source Seeded

Report removed ..PA^.O.Q.4

B-3

■ Certification Defect Report ■

Defect Report Identifier RD_002

Unit Name oh j.S.trm_ ..h.

Originator Sharon

Defect
Category Computational

Tool Used Borland C++ 5.01
IDE

Code Line 626
Numbers

Severity Minor

Certification „ _.
Step 1-Readiness

Specific
Technique

Effort to Isolate

Effort to Repair

Description of Defect:

Compiler warning:conversion may lose significant digits.

.(Warning, was...not present with.Borland 5...00...compiler..) Not able..

to discern whether this is a defect or intentional.

Note: this inline function, was never ..executed--unable... to create,

a test case to exercise that branch.

Certification
Concern

Defect
Source

Correctness

Seeded

Related . ,
Report partial PA_J).1Q

B-4

Certification Defect Report ■

Defect Report Identifier RD_003 i
I

Unit Name dat.e^...h..

Originator Sharon

Defect T ^ _
Category Interface

f^^\r.3!J"^.'^r^^ !

Tool Used Borland C++ 5.01
IDE

Severity Major

Certification
Step

Specific
Technique

1-Readiness

Code Line Compiler.....indicated line 255 which.used defective.
Numbers .definit.iQn.from line...10.6

Effort to Isolate

Effort to Repair

Description of Defect:

Compiler error: "TDate: : operator ..-.=..(.int.)...' is not a member of
..\ID.ate.'..."... (Warning...not present, with.Borland. 5 .00 compiler).

Found to he due to line 106. Removed PA_003 by changing from
.».==»....tQ ".-=." and "dt" to "dd"

Certification
Concern Correctness

Defect
Source Seeded

Report found & removed PA^.0 03

B-5

Certification Defect Report ■

Defect Report Identifier SA__001

Unit Name .cstring.h..

Originator Sharon

Defect
Category Logic

Tool Used PC-Lint

Severity

Certification „ ni_ ^ . , _
Step 2-Static Analysis

Specific „ „■,-,•
Technique Error Checking

Code Line 133, 139, 506
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Syntax Error 10 : Expecting identifier.

..".{." on a....line by. itself

Certification
Concern

Defect
Source

Correctness

Natural

Related
Report

B-6

Certification Defect Report

SA 002 Defect Report Identifier

Unit Name .cs.tring.. h

Originator Sharon

Defect
Category rjaf a

Tool Used PC-Lint

Severity Major

Certification _ _. . . , ,
Step 2-Static Analysis

Specific „ _, , .
Technique Error Checking

Code Line 148, 15.0, 15.2., 15.4, 1.5.6., 15.8, 1.5.9., 1.6.1, 1.6.2., 1.64, 1.6.5..,.
Numbers 168 # 172 , 174, 195 .,206, 214, 217, 228, 286, 290, 297,

308, 347,..34.9., 38.0, 382, 49.0, 556, 558, 559, 56.0, 564 .

Effort to Isolate

Effort to Repair

Description of Defect:

Syntax Error 49:Expected a type. "xalloc"

Certification
Concern Correctness

Related
Report

Defect
Source Natural

B-7

Certification Defect Report ■

Defect Report Identifier SA_003

Unit Name .cs.tr ing.h.

Originator Sharon

Defect
Category Logic

Tool Used PC-Lint

Severity Major

Certification . .
Step 2-Static Analysis

Specific , . ,
Technique Error Checking

Code Line 654, 659
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Syntax Error.10: Expecting identifier. "xmsg"

Certification
Concern Correctness

Defect

Related
Report

Source Natural

B-8

■ Certification Defect Report

Defect Report Identifier | SA__004

Unit Name labels^., cpp

Originator Sharon

Defect
Category Interface

Tool Used PC-Lint

piJSHi*|:lS«i*iiP SSSS'.?

Severity Minor

Certification _ _^ ,_ . , n Step 2-Static Analysis

Technique Programming Standards

" fSf" ■ ..'S'l:-v ■■'.;* US

Code Line 35
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Warning 537:Repeated include file:\c:\lint\fstream.h'

Certification . .
Concern IJnderstandahility-

Related
Report

Defect
Source Natural

B-9

Certification Defect Report

Defect Report Identifier SA_005

Unit Name .labels._....cpp

Originator Sharon

Defect
Category Logic

Tool Used PC-Lint

Severity Minor

Certification .
Step 2-Static Analysis

Specific
Technique Programming Standards

CK?deuine 151' 153' 165' 170< 305' 3Q6< 3.13.,.... 3.1.7, 4.05., 4.10, 4.11,.. Numbers 415 # 421/ ^^ ^^ 43^ 5Q3 ^ 5Q6; 5Q9/ 512< 515> 51g^

.53.4.,. .537.

Effort to Isolate

Effort to Repair

Description of Defect:

Warning. 534.: Ignoring return value of operators...

Certification
Concern

Defect
Source

Correctness

Natural

Related
Report

B-10

Certification Defect Report

Defect Report Identifier SA_0 0 6

Unit Name labels^.-Cpp..

Originator Sharon

Defect
Category Data

Tool Used PC-Lint

Severity Minor

Certification _ _^_ ^ . _ n Step 2-Static Analysis

Specific „ _n . .
Technique Type Checking

Code Line .1.6.7., 3.15., 42.3...
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Warning.6.4.1: Converting....enum...to. int.
...."in..cle.ar.(.i.o.s..:..:..failbit.)..;."

Certification
Concern Understandability

Defect
Source

Related
Report

Natural

B-11

■ Certification Defect Report ■

Defect Report Identifier SA 007

Unit Name labels^.- Cpp

Originator Sharon

Defect j.
Category Interlace

wmmmmmmmmm$mmmmmmmmmmmmmmmmmm

Severity

Certification „„,_,_. , -,
Step 2-Static Analysis

Technique Error Checking

s

m&u:i,uj+.'iWiJ ^rwv,-,- .-."^...^^ mmMmmmmmmmammim

Code Line 294
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Info 1702:operatorVoperators' is both an ordinary function
..\Qperator<;.(const TPWQbj&, .const.TPWOhj&..)...' and ..a member
function VTDate: ..:Operator.<.(const...TDat.e...&) const'

Certification
Concern Correctness

Related
Report

Defect
Source Natural

B-12

■ Certification Defect Report ■

Defect Report Identifier SA 008

Unit Name labels^. Cpp

Originator Sharon

Defect ^ ^ ,.
Category Interface

 zz s 1 : . :

Tool Used PC-Lint

Severity Minor

Certification „ „. . . , T „ • „ Step 2-Static Analysis

Tefrfnfque Error Checking

i-Y. .t..«lV *'^"*»d!K-/-aWft\i'J!»fa^5,5BWWW5!

Code Line .3.7.4., 479..
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Info 1712:default constructor not defined for classes
ZTSubscriptionList' and MNewSubscrihers..'

Certification
Concern Completeness

Related
Report

Defect
Source Natural.

B-13

Certification Defect Report

Defect Report Identifier SA_009 Severity Minor

Unit Name labels— cpp

Originator Sharon

Defect
Category Interlace

Tool Used PC-Lint

Certification n , _
Step 2-Static Analysis

Specific
Technique

Code Line 382
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Warning 1541:member TS.ubscrip.tionL.ist::Subscriptions(line

369) possibly, not initialized by .constructor

Certification
Concern Completeness

Defect

Related
Report

Source Natural

B-14

■ Certification Defect Report ■

Defect Report Identifier SA_010

Unit Name .labels.^.-.cpp..

Originator Sharon

Defect
Category Data

Tool Used PC-Lint

Ksj.\i J*!?;* i rw^y-i

Severity Minor

Certification „„,_,_. ' -,
Step 2-Static Analysis

Specific „ _, , .
Technique Error Checking

Code Line 477
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Info 1725:class member "TNewSubscribers::List" is a reference

Certification
Concern Correctness

Defect
Source

Related
Report

Natural

B-15

■ Certification Defect Report ■

Defect Report Identifier

Unit Name label S.^.-Cpp

Originator Sharon

Defect
Category Interface

Tool Used PC-Lint

Severity

Certification . .
step 2-Static Analysis

Specific .
Technique Error Checking

r?*S-.=j;».'.reii>i.i

Code Line .5.04, 5.0.1, 51Q., 511, 51.6.
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

C++ Syntax Error.....1.03.6 ..:ambiguous reference to constructors-

candidates:.'string :.:.string (const.char*) and string: :.string(const

char far*) Assignment statements.

Certification
Concern Correctness

Defect
Source

Related
Report

Natural

B-16

■ Certification Defect Report ■

Defect Report Identifier SA_012

Unit Name labels^- cpp.

Originator Sharon

Code Line .fill, .6.1.4.
Numbers

Severity Major I

Certification n „,_ . . , -,
Step 2-Static Analysis

Tecrfnfque Error Checking

Effort to Isolate

Effort to Repair

Description of Defect:

C++ Syntax Error....10.3.6.: ambiguous reference to constructor;
.candidates: '..string.:...: string(const char....*..) and
string::string(const char far...*..)... Reference to an array of.
arguments..

Certification
Concern

Defect
Source

Correctness

Natural

Related
Report

B-17

■ Certification Defect Report ■

Defect Report Identifier SA_013

Unit Name lab.els^.cpp

Originator Sharon

Defect
Category Interface

Tool Used PC-Lint

Severity Minor

Certification _ _ . ,
Step 2-Static Analysis

Specific _ _. , .
Technique Error Checking

Code Line 174, 179, 184, 189
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Info 17.14: Member functions not referenced:

TSubscriber:..:GetName(void)const,

^Subscriber:iGetAddress(void) const,

TS.ubscr.iber..::GetCity(void)const, and

TSubscriber::GetState(void) const

Certification
Concern Understandability

Defect
Source

Related
Report

Natural

B-18

■ Certification Defect Report

Defect Report Identifier SA 014

Unit Name lahels._....Cpp.

Originator Sharon

Defect ^ ^ _
Category Interface

Tool Used PC-Lint

Severity Minor
■HHHHBianDI

Certification _ ni_ ,_ , , ,
Step 2-Static Analysis

Technique Error Checking

Code Line 282, 287
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Info 1714:. Member functions not referenced:

..TSuhs.crip.ti.QnIn.fo...:..:..Qperat.Qr==..(.const....T.S.ubsc.rip.tiQnInf.o....&.) and..

.TSubscriptionlnf o::operators(const TSubscriptionlnfo&)

Certification
Concern Under standabi.li.ty.

Defect
Source

Related
Report

Natural.

B-19

■ Certification Defect Report ■

Defect Report Identifier SA_015

Unit Name labels^.-Cpp

Originator Sharon

mmmmmam^^iK^^^^miMM^IM

Code Line 408
Numbers

Severity Minor

Certification _ „ . ,
Step 2-Static Analysis

Specific _ _, , .
Technique Error Checking

Effort to Isolate

Effort to Repair

Description of Defect:

Info 1714:Member function not referenced:

.TSuhscriptionList: :WriteStream(ops.tream...&.)....

Note: if checked,this warning might have lead to discovery of

seeded errar...PA...Q..0.1

Certification
Concern Understandabi.li.ty..

Defect
Source

Related _ _
Report related to..PA_001.

Seeded

B-20

■ Certification Defect Report ■

Defect Report Identifier

Unit Name date^-h

Originator Sharon

CI 001

Defect T ,_ _.
Category Interface

Tool Used CI Checklist

Severity Major

Certification _ _ , _. „„,..,•,,
Step 3-Code Inspection

crfniaue Code Inspection Item Technique

Vzm®

C.14.C

■»»■■Ml

■ A*- • »W

Code Line 256
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Incorrect assigment using compound operator

Certification
Concern Correctness

°efect Seeded Source

RRepordt foundPA_0.0.4.

B-21

■ Certification Defect Report ■

Defect Report Identifier CI_002

Unit Name date^.h

Originator Sharon

Defect
Category Logic

Tool Used ci Checklist

Code Line 272
Numbers

Severity Major

Certification _
Step 3-Code Inspection

Specific _
Technique Code Inspection Item

D.10.C

suv-z?*.-vL!"i:.->:<} '-•-•„-CJI.J-MüS'.ä'T.'T. ":: ^^-v^-i.>*illiiiii*fciiBiill*i

Effort to Isolate

Effort to Repair

Description of Defect:

Lower and upper bounds of range incorrectly assigned

Certification
Concern Correctness

Defect
Source

Related _ , „„_
Report found....PA^.O05

Seeded

B-22

Certification Defect Report ■

CI 003 Defect Report Identifier

Unit Name labels^-cpp

Originator Sharon

Defect „. ^
Category Interface

Tool Used CI Checklist

 ^r^-xgy

Severity Minor
wmMmmmMMmmsMMm

Certification _ _ .. _
Step 3-Code Inspection

crmique Code Inspection Item Technique
D.10.C

Code Line 605
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Type assignmentfor return of main is inconsistent with

..comments..

Certification
Concern Correctness

Related ,. . _, __ .
Report found PA^.O.14

Defect
Source Seeded.

B-23

Certification Defect Report

Defect Report Identifier CI_004

Unit Name .l.ab.els._....cpp..

Originator Sharon

Defect „.
Category Interface

Tool Used ci Checklist

Severity Major

Certification _ _ .
Step 3-Code Inspection

Specific ,
Technique Code Inspection Item

I.24.C

Code Line 386
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

In-type callfor an out-type operation

Certification
Concern Correctness

Defect
Source

Related _ , _.„
Report found PA_0 01

Seeded

B-24

■ Certification Defect Report ■

CI 005 Defect Report Identifier _____^__
"T-.. -" " ■

Unit Name lab.els._..cpp

Originator Sharon

Severity Major

Defect ,. ,_ _
Category Interface

Tool Used CI Checklist
*

"MilBliHIsSiliiii

Certification 3_Code Inspection

fCaue Code Inspection Item Technique
I.24.C

wmsm

Code Line 387
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:
Read operation applied to an out-type parameter

Certification
Concern Correctness

££2 seeded

Report found PA_J)01

B-25

Certification Defect Report ■

Defect Report Identifier CI_006

Unit Name lab.els_.cpp..

Originator Sharon

Defect
Category Logic

Tool Used ci Checklist

Severity Major

Certification
Step 3-Code Inspection

Specific
Technique Code Inspection Item

L.01.C

Code Line 414
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Incorrect assignment of. ..compound boolean expression for while
loop...condition

Certification
Concern Correctness

Defect
Source Seeded

Related
Report found PA_012

B-26

Certification Defect Report

Defect Report Identifier CI 007 Severity Major

Unit Name listimp^.h..

Originator Sharon

Defect
Category Logic

Tool Used CI Checklist

Certification _ _ . _ , .
Step 3-Code Inspection

Specific „ _ _ . . _,
Technique Code Inspection Item

L.05.C

Code Line 83
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Incorrect boolean expression for if statement

Certification
Concern

Defect
Source

Correctness

Seeded

Related . .. _, -._,
Report partial PA_006

B-27

■ Certification Defect Report ■

Defect Report Identifier CI_008 |

Unit Name labels^., cpp..

Originator Sharon

Defect
Category Logic

Tool Used ci Checklist

Severity Minor

Certification 3^^ Inspection

Specific
Technique Code inspection item

L.26.U

■5,—--.- i-jflftQ. .-rrärov. »TK.T JT. .>.-*->.'-.XKK.>-J:-<L ■- - *W«K^\"-5WW*«»»

Code Line 414-415.
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Braces missing from while loop with one statement

Certification
Concern Understandability.

Defect

Related
Report

Source Natural.

B-28

■ Certification Defect Report ■

Defect Report Identifier

Unit Name listimp^.h.

Originator Sharon

Defect
Category Logic

T3t'.iM 3E»ZX"»S

Tool Used CI Checklist

Certification _ _ ., . . _ Step 3-Code Inspection

Technique Code Inspection Item
L.26.U

Code Line .23.9-3.0.0., 3.61-3.65, 5.8.0.-581, 705=7.06., 731-73.5, 8.52=85.5,..
Numbers 1Q11-1013

Effort to Isolate

Effort to Repair

Description of Defect:

.Braces....missing...from....while..loop...with...one.„statement....or....with.,
„if-else..block...

Certification
Concern Understandability..

Defect
Source Natural

Related
Report

B-29

■ Certification Defect Report ■

CI 010 Defect Report Identifier
mmmm

Unit Name ,ohj.S.trm_...h

Originator Sharon

J Severity Minor
■

Defect
Category Logic

Tool Used CI Checklist

Certification

Tec!

anon _ _, . _ . .
Step 3-Code Inspection

crfnique Code Inspection Item
L.28.C

Code Line .648-650, 7.5.6^758..,7.60-763, 765-767, 769-771. 786-788,..
Numbers 79Q-793, 7.95-7.98

Effort to Isolate

Effort to Repair

Description of Defect:

Missing return in inline function call

Certification ■>•-,•
Concern Understandability

Related
Report

Defect
Source Natural.

B-30

■ Certification Defect Report ■

Defect Report Identifier CI_011

Unit Name labels.^.- cpp.

Originator Sharon

Defect
Category Logic

Tool Used CI Checklist

Severity Major

tma :<.► /*fcA f<:i:-; '!*■ vW«*S"i3!!*SV3

Certification _ _ . „.
Step 3-Code Inspection

Technique Code Inspection Item
L.29.C

Code Line 429
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

For loop ounter not initialized to zero

Certification
Concern Correctness Report found PA^O 13

Defect
Source Seeded

B-31

■ Certification Defect Report ■

Defect Report Identifier CI 012

Unit Name labels^-Cpp..

Originator Pat

Defect _ ,
Category Other

Tool Used ci Checklist

Severity Major

Certification
Step 3-Code Inspection

Specific „ , _
Technique Code Inspection Item

O.01.U

Code Line 1-23
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Description of what the component does and how it doesit was
lacking...in detail

Certification
Concern Unders tandabi.li.ty..

Defect
Source

Related
Report

Natural.

B-32

■ Certification Defect Report ■

Defect Report Identifier TE 001

Unit Name .ohj.S.trm^..h..

Originator Sharon

Defect _
Category Logic

Tool Used McCabe Toolset
5.2

1

I

Severity Major i

Certification . „
Step 4-Testing

Specific
Technique Otner

"L

Code Line 1020.
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Syntax erroron thisline detected by ...pr.e-process.or. for

instrumentation...of...code...

Removed PA Oil to correct this,

Certification
Concern

Defect
Source

Correctness

Seeded

Related .. „, „„ „
Report removed PA^O 11

B-33

Certification Defect Report

Defect Report Identifier | TE_002

Unit Name .Dhj.Strm^,...h

Originator Sharon

Severity Major

Defect
Category Logic

Tool Used Borland C++ 5.01
IDE

. ^x^i'Ks^^a

Certification
Step 4-Testing

Specific
Technique

Code Line 299
Numbers

Effort to Isolate 0 . 5 hr

Effort to Repair

Description of Defect:

Program aborted using test case supplied with component.Traced
to line 299 in debugger.

Removed PA 009to correct this,

Certification
Concern Correctness

Defect
Source Seeded

Related _, _-~
Report removed PA_009

B-34

■ Certification Defect Report

Defect Report Identifier TE_003

Unit Name .lisfcimp^.-h..

Originator Sharon

Defect
Category Logic

 ££

Tool Used Borland C++ 5.01
IDE

Severity

Certification . m
Step 4-Testing

Specific
Technique Otner

Major

Code Line 719
Numbers

Effort to Isolate 0.25 hr

Effort to Repair

Description of Defect:

Program aborted on test case supplied with component,

this line....with...debugger.

Traced to

Removed PA 007 to correct this

Certification
Concern Correctness

Defect
Source Seeded

Related _. _,„ „„„
Report removed PA,_007

B-35

■ Certification Defect Report ■

Defect Report Identifier TE_004

Unit Name listimp^.h..

Originator Sharon

Defect
Category

—^^g^^^ZS^

Tool Used Borland C++ 5.01
IDE

&..':« H I'.«''««*

Severity Major

Certification . „
Step 4-Testing

Technique Functional Test Case
test_01 with listimp_.h

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Program aborts with numerous test cases (test^Ol, t.es.t^.0.5.,..
..test^Oß., and....test^ll)....

Reverted to original version of listimp. h, removing defects
PA 0.0.6 and PA 0.08 to correct...this..

Certification
Concern Correctness

Defect
Source Seeded

Report removed PA^O06 and.
PA 00.8

B-36

■ Certification Defect Report

Defect Report Identifier TE 005

Unit Name labels^.. Cpp.

Originator Sharon

Defect
Category Logic

Tool Used None

Severity Minor

Certification . _
Step 4-Testmg

Technique Functional Test Case
test_02 with listimp.h

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Test case with invalid input file—new subscription file is a

master file ...format.. Program does not diagnose the... problem.

Certification
Concern

Defect
Source

Correctness

Natural

Related
Report

B-37

Certification Defect Report

Defect Report Identifier TE_006

Unit Name labels^.-cpp

Originator Sharon

Severity Minor

Defect
Category Logic

Tool Used None

Certification
Step 4-Testing

Specific
Technique Functional Test Case

test_04 with listimp.h

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Test case with very long address string. Program reports

subscription...is...invalid, ...but does....not report which.part of

subscription is incorrect. Documentation does not indicate a.

limit for subscription field length.

Certification
Concern Understan.dabili.ty

Defect
Source

Related
Report

Natural..

B-38

Certification Defect Report ■

Defect Report Identifier TE_007

Unit Name lab.els_-.Cpp,.

Originator Sharon

Defect
Category Other

Tool Used None

Severity Minor

Certification . „
Step 4-Testing

Test Case
Specific _ . . n

Tecfinique Functional
test_05 wi

oiictx retjL. ^ciäfe;
i5 with listimp.h

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Test case contains state as a word instead of a two-letter
abbreviation. Program accepts, this. Documentation does not
indicate how the state should be input—should be more.„specific.

Certification
Concern Understan.dabi.li.ty.

Related
Report

Defect
Source Natural

B-39

■ Certification Defect Report ■

Defect Report Identifier TE_008

Unit Name lab.els._,..cpp

Originator Sharon

Defect
Category Logic

Tool Used None
w

Severity

Certification
Step 4-Testing

Specific
Technique Functional Test Case

test_06 with listimp.h m

mmm nsH r-^itt

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Test case with incorrect zip code"000000"
this; does not check validity..of.„zip code.
not describe required zip code format.

Program ace ept s
. Documentat ion. does.

Certification
Concern Understandahility^

Defect
Source

Related
Report

Natural.

B-40

Certification Defect Report ■

Defect Report Identifier TE 009 Severity Major
wmmmMMmmsmmmmmmm

Unit Name labels^.- cpp

Originator Sharon

Defect
Category Logic

Tool Used None

Certification . _
Step 4-Testing

Technique Functional Test Case
test_09 with listimp.h

Code Line
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Test case specifying non-existent input files on command line.

Program does.not give any. indication of an error.

Certification
Concern Understandabxlity

Related
Report

Defect
Source Natural.

B-41

■ Certification Defect Report ■

Defect Report Identifier PA_001

Unit Name labels... cpp

Originator Pat

Defect
Category Interface

Severity Major

Certification
Step

Specific
Technique

Code Line 386, 3.8.1.
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed write to.read on. output file., so it...no longer ...writes

subscription listto master^file.when subscription list .object
is....destroyed..

.386 .changed "ofpstream" to ..".ifpstream"
387. ...changed .."wr.itestream"....to .."readstream"

Certification
Concern Correctness.

Defect

Related
Reports CX_QQ4, CX_.Q05, SA.jO.15.

Source „Seeded..

B-42

■ Certification Defect Report ■

Defect Report Identifier PA 002

Unit Name date .h

Originator Pat

1 Severity Major

Certification
Step

Specific
Tecnnique

Code Line 31
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed value of constant for Julian date of .1/1/1901 from
.W2415386L" to "1415386L"

Certification
Concern Correctness

Dne,frrCi Seeded Source

Related
Reports

B-43

■ Certification Defect Report ■

Defect Report Identifier PA_003

Unit Name date.h

Originator Pat

Defect ,. ^
Category Interface

Tool Used

Severity

Certification
Step

Specific
Technique

Code Line 106
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed data type from ..integer.....".d.d.". to constant "dt", plus

changed operator from ..-.+.....to ...==..

Certification
Concern

Defect
Source

Correctness

..Seeded

Related
Reports PAJD.Q.4, removed RD_003

B-44

Certification Defect Report

Defect Report Identifier PA-.004 Severity

Unit Name date.h

Originator Pat

Defect T ^ _
Category Interface

Tool Used
 |

Certification
Step

Specific
Technique

; ;•-*«]

Code Line 253, 256
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed inline, function from assignment "-=" to. equality ".==."

Certification
Concern Correctness.

Ztcl Seeded

Related , „„„
Reports CX_0.D1, removed...RD_QQl..

B-45

Certification Defect Report

Defect Report Identifier PA_005

Unit Name date .h

Originator Pat

Defect
Category Logic

Tool Used

M,

Certification
Step

Specific
Technique

Severity Major

Code Line 272
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed inline function AssertIndexOfMonth so thatmonths of Jan

& Dec would not be valid. Changed "m ..>.= 1 && m<=.....12." to "m. >=2

.&.&..m ..<=... 1.1".

(Note:this function neverexecuted.)

Certification
Concern Correctness.

Defect
Source

Related
Reports CI_002

Seeded.

B-46

■ Certification Defect Report ■

Defect Report Identifier

Unit Name .list imp.. 2l.

Originator Pat

Defect T
Category Logic

Severity

Certification
Step

Specific
Technique

il^jj^,aLJ<afeW»l.lhAt.:i^--.l,it: 'i-Jf-.;^,"^^««*'?*»:!

Code Line 82 ,83 ,91
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Instead, of. zeroing out .the.list eiement counter., it...was ..set to 1.
in .the ..TMListBlocklnitializer. destructor..

Certification
Concern Correctness

2ü>™ Seeded Source

Rotated
Reports removed TE_0.Q4,.. ,CI_0Q7...is.

partial

B-47

Certification Defect Report

Defect Report Identifier PA_007

Unit Name listimp ...h

Originator Pat

Defect
Category Logic

Tool Used

Certification
Step

Specific
Technique

Severity Major

Code Line 719
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

In EorEach list iterator.while loop should continue while

checking for inequality;this has been changed to check for
equality.

Changed "cur->Next. 1= cur" to "cur->Next ==...cur".

Certification
Concern

Defect
Source

Correctness

Seeded

Related
Reports removed TE_.003

B-48

Certification Defect Report

Defect Report Identifier PA 008

Unit Name .listimp.-h..

Originator Pat

Defect
Category Logic

Tool Used

Severity Major
KSäKa

Certification
Step

Specific
Technique

Code Line 889
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Evaluates a list of pointerstoobjectsoftype T.Defect,
changes notation from class name to arithmetic operators...
Changed "<T'' to ";>T"

Certification
Concern

Defect
Source

Correctness.

Seeded

Related
Reports removed TE_004

B-49

■ Certification Defect Report ■

Defect Report Identifier PA_009

Unit Name ohjstntl.h.

Originator Pat

Defect
Category Logic

Tool Used

Severity

Certification
Step

Specific
Technique

Code Line 299
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Change syntax, of line so....that address of object is not ..stored, in..
the database Changed ..**>.'. to....«>.."...

Certification
Concern

Defect
Source

Correctness

Seeded

Related
Reports removed ..TE_0 02

B-50

■ Certification Defect Report ■

Defect Report Identifier | PA_010

Unit Name objstritl.h.

Originator Pat

Defect
Category Computational

Tool Used

Certification
Step

Specific
Technique

Severity Major
mmasm

1 ^v^w

Code Line 626
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Changed return value computation of inlinefunction clear by

changing from "hardfail"to"basefield", where "basefield" isa

different data, type (long....int...vs.. ..int.)...

Certification
Concern Correctness

Related
Reports

Defect
Source Seeded

B-51

■ Certification Defect Report ■

Defect Report Identifier PA_011 Severity Major m

msammmmmmmamm

Unit Name objstrm.h

Originator Pat

a £ ■

Defect
Category Logic

Certification
Step

Specific
Technique

Tool Used

Code Line 1020
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Improper terminator in switch .../.statement...Changed from "break"

to "switch"., in first case

Certification
Concern Correctness.

Related
Reports removed. TE^O01

Defect
Source Seeded.

B-52

■ Certification Defect Report ■

Defect Report Identifier PA_012

Unit Name labels ..cpp

Originator Pat

Defect _
Category Logic

Tool Used

I
Severity

Certification
Step

Specific
Technique

Code Line 414
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Wrong condition in while loop. Changed "iter ! = ..0". to. "iter....=.=

.7.".. Will not correctly....write contents of subscription..list to

.output ...file..

Certification
Concern Correctness

Related
Reports CI_0.Q6

Defect
Source Seeded.

B-53

Certification Defect Report

Defect Report Identifier PA_Q13

Unit Name labels . cpp

Originator Pat

Defect
Category Logic

Tool Used

Certification
Step

Specific
Technique

Severity Major

r* „juris-:»'" i

F

I
Code Line 429
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

Incorrect initialization.of ..for loop iterator. Changed "i=0".to
."i=ll"... Will not read subscriptions from masterfile unless
count > 11..

Certification
Concern

Defect
Source

Correctness

Seeded

Related
Reports .CI_0.11.

B-54

■ Certification Defect Report ■

Defect Report Identifier PA 014

Unit Name labels . cpp

Originator Pat

1 Severity Minor J

Certification
Step

Specific
Technique

Code Line 605
Numbers

Effort to Isolate

Effort to Repair

Description of Defect:

.Type....declaratiQn....Qf...main...re.turn...do.es not. match commented

description. Changed "int" .to "unsigned.int".

Certification
Concern Correctness

Related
Reports CI_014

Defect
Source „Seeded.

«U.S. GOVERNMENT PRINTING OFFICE: 1997-509-127-61068

B-55

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

