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INTRODUCTION 

During the period 1992 through 1994, a 21-mm long crack was observed in a prototype 
cannon following five firings, and 50-mm long cracks were observed in a similar cannon following 
thirty firings . Fatigue cracks are known to develop in cannon components after thousands of 
firings, but this type of very rapid cracking was unprecedented. Experience with a 1.7-m long 
environmentally controlled crack in a cannon tube that had experienced no firings (ref 1) 
suggested environmental cracking as the cause of the cracks of concern here. First, however, an 
investigation was performed to determine if the cracks observed after up to thirty firings could 
have been caused by pressure oscillations during firing that had the effect of increasing the 
effective number of firings. The results (ref 2) showed that many more than the indicated number 
of stress cycles did occur, but that they were at too low a stress level to have caused the growth 
of 21- to 50-mm long cracks by mechanical fatigue alone. 

The objective here is to describe the observed rapid cracking, some laboratory 
environmental cracking tests of the cannon materials, and analysis and modeling of the cracking. 
This information will be used to identify the probable cause of the cracking and to recommend 
preventative measures for this type of cracking in cannon components. As would be expected, 
the U.S. Army and its contractors have proprietary interests in the cannon components discussed 
here. Therefore, limits are applied to some of the discussions here, hopefully in a way that does 
not interfere with the understanding of the cracking that occurred and its cause and prevention. 
The approach used in reporting the work is a chronological description of the events and the 
interim analyses performed and conclusions drawn. Analyses were performed using mean or 
typical input values, rather than worst case values. If a series of worst case values and 
assumptions is combined in an analysis, the results will probably be conservative, but such results 
are often unrealistic and of little use in gaining an understanding of the cause of the event. 

COMPONENTS AND CRACKING 

Configurations and Materials 

The general configuration of the cannon components that sustained rapid cracking is 
shown in Figure 1. Cannon chamber and tube sections are connected using a cylindrical coupler 
with segmented threads on its inner surface. As the coupler draws the chamber and tube together, 
a preload is applied to the pressure seal between the two sections. Two seal locations that have 
experienced separate occurrences of rapid cracking are described here. Seal location #1, shown in 
Figure 2, is at a position about midway through the 84-mm wall thickness of chamber and tube. 
A triangular-shaped copper beryllium seal was used, along with a vented guard ring that allowed 
pressure on the seal while preventing a direct flow of cannon propellant combustion products 
onto the seal. 



Seal location #2, shown in Figure 3, is at a position near the inner surface of the chamber 
and tube. A six-sided 17-4 PH stainless steel seal was used in a pocket configured to allow 
pressure on the seal while, as at location #1, preventing direct flow of propellant products onto 
the seal contact surfaces. The measured yield and ultimate strengths of the 17-4 PH steel used for 
the seal at location #2,984 and 1053 MPa, respectively, were used in the finite element stress 
analysis discussed later. Strength and fracture properties measured from the 13-8 Mo stainless 
steel chamber and the ASTM A723 alloy steel tube are shown in Table 1. Fracture toughness was 
measured using ASTM Method E813 for Jlc, and the hydrogen cracking threshold measurements 
were performed as described in Reference 3. 

Table 1. Measured Material Properties 

Material Yield Strength 
(MPa) 

Tensile Strength 
(MPa) 

Fracture 
Toughness 
(MPa m*) 

Hydrogen Cracking 
Threshold; 3000 hrs 

(MPam") 

A723 Grade 1 
Alloy Steel 

1160 1275 125 10; Electrolytic Cell 
16; Acid Solution 

PH 13-8 Mo 
Stainless Steel 

1276 1344 145 17; Electrolytic Cell 

Additional hydrogen cracking test results are described later. 

Pescription of Cracking 

Location #1 

Cracking in the prototype cannon with the seal at location #1 was suspected due to a small 
pressure leak that was observed during the fifth firing cycle. The typical crack size and location 
sketched in Figure 2 show a 21-mm (surface length) crack that provided a pressure path around 
the seal and thus accounted for the observed leak. Two other cracks were observed at other 
angular positions of the seal, a 19-mm surface length crack at a position 185° away from the 21- 
mm crack, and a 6-mm surface length crack 1110 away from the 21-mm crack. The angular 
positions are significant because the two largest cracks were within a few degrees of alignment 
with the two 180°-spaced vent holes in the guard ring, and the 6-mm crack was closely aligned 
with a plugged test hole in the guard ring contact surface of the tube. The presence of the 
plugged hole could have affected the contact surface and allowed passage of combustion products 
at this location. Thus, each of the three positions of cracking was closely aligned with angular 
positions of known (guard ring vent holes) or suspected (plugged hole) sources of propellant 
combustion products. This is strong evidence that the source of the environment that contributed 
to the cracking was the combustion products. Regarding initiation of the three cracks, each of the 
three cracks included the internal corner of the seal pocket adjacent to the seal. This comer is a 
likely origin of cracking. As shown in Figure 2, the larger two cracks extended farther from the 
corner toward the outer radius of the tube rather than toward the inner radius; this can be 



explained in terms of the residual stresses in the cannon tube, discussed in the next section. The 
6-mm crack was nearly centered on the internal seal pocket corner, thus indicating that this seal 
pocket corner was the origin of the cracks. 

The fracture surfaces of the location #1 cracks were characterized using scanning electron 
microscopy. Figure 4[a] shows an area near the farthest extent of the crack, where the fracture 
surface was less affected by apparent corrosion products. Even though the surface was partially 
obscured, the intergranular nature of the fracture can be seen, indicating that environmental 
cracking had occurred. Figure 4[b] shows the microvoid coalescence fracture that occurred 
ahead of the area of firing-related cracking when the sample was broken apart. 

location #2 

Cracking in the prototype cannon with the seal at location #2 was found to be quite 
extensive when the cannon was disassembled after thirty firing cycles. Nearly identical crack 
configurations were observed in both the chamber and tube sections of the cannon, initiating from 
a location in the seal pocket about 30° from the axial direction in each section; see Figure 3. The 
cracks extended through to the inner radius surface and extended about 50 mm in the 
circumferential direction in each section. The similar location, size, and orientation of rapid 
cracking in components of different material is quite remarkable. The similar cracking suggests 
that a significant load was applied about equally at locations close to the seal pocket radius of 
both the chamber and tube, thereby overwhelming the expected differences in cracking resistance 
of the two materials. Referring again to Figure 3, the seal contact load that is applied to the seal 
surfaces of the chamber and tube meets this criterion of a significant local load being applied to 
both cannon sections. The question of whether or not seal contact loads can result in tension 
stresses in the seal pocket radius will be addressed later, in relation to the finite element results. 

Attempts were made to view the location #2 fracture surfaces near the initiation of 
cracking at the seal pocket radius. However, these fracture surfaces had long since been removed 
by thermal and chemical action of the combustion products impinging on the crack surfaces 
during firing. Apparently, after cracks had grown through to the inner radius of the chamber and 
tube, the direct blast of combustion products quickly obliterated the fracture surfaces. 

Summary of Cracking in Locations #1 and #2 

Table 2 lists some of the key information related to the cannon firing and the cracking that 
resulted. Note that the crack orientation at the two locations was different, with radial cracking in 
the plane normal to the circumferential direction for location #1, and longitudinal cracking in the 
plane normal to the radial direction for location #2. Note also the difference in radial position of 
the initiation point of cracking, which will affect the firing and sustained stresses present in the 
components, considered next. 



Table 2. Summary of Failure Conditions at Two Locations 

Location Firing Pressure 
(MPa) 

Number 
of Firings 

Crack 
Orientation 

Radial Position 
(mm) 

Longest Crack 
Dimension 

(mm) 

#1 405 5 C-R 110 A723:      21 

#2 405 30 R-L 86 A723:      50 
13-8 Mo: 50 

Firing and Sustained Stresses 

The firing stress of concern at location #1 is the hoop direction stress in the tube wall, 
°d-FiRiNG> since itis normal to the plane of the crack. At location #2, it is the radial direction stress, 
oR.rimG. The standard expressions for these stresses are (ref 4) 

°o-nRiNG = M(>-2/r)
2 + l]/f(r2/rj)

2 - 1] (1) 

°R-FIR,NG =  -PUr-Jr? - l]/fr2/r,)
2 - 1] (2) 

where p is firing pressure, r, and r2 are inner and outer radius, and r is the radial position being 
considered. 

The sustained stresses at the two locations due to the overstrain of the tube are available 
from Hill (ref 5). As above, the hoop stress relates to location #1 and the radial stress to location 
#2. The expressions are 

o 0 -OVERSTRAIN 
OylWJrf + 1] [l/ürj/r,}2 - 1)] [(r2

p - r2
2)/2r2

2 - 1/!{/>//-,}] 

+ ix\ + r2
2)/2r2

2 + 1/»{/•//•}] 
for r. < r < rp 

(3) 



G R-OVERSTRAIN = oy[\\ (r2lr)2\ \\l{{r2lr,)2 

for r, 
r7 )/2r, 

-1)] m 
ln{r,Jr)] 

< r < rr. 

2\n   2 
r2 )/2r2 ln[rp/rj] 

(4) 

where ay is the tube yield strength, rP is the overstrain elastic-plastic radius, and the other terms 
have been defined. The tube section of the cannon was overstrained in both case #1 and #2 to a 
nominal 55 percent, that is, (/> - r,)/(r2 - r,) = 0.55. The chamber section was not overstrained in 
either case. 

For the location #2 configuration, another source of nominal sustained stress that could 
affect cracking at the seal pocket radius is the load on the ends of the tube and chamber sections 
due to the coupler. In prior work (ref 2) the end load was calculated to be a nominal 156 MPa 
axial compression that could result in a tensile stress at the seal pocket radius. Later finite 
element results will show that the end load does result in tensile stress at the radius, but at a 
relatively low value. The finite element results will also show the important effect of local seal 
contact loads, mentioned earlier, in causing tensile stress in the seal pocket radius. 

A summary of the nominal firing and sustained stresses calculated as above for both 
locations is shown in Table 3. Since these are nominal stresses, no account has yet been made of 
stress concentration. Note that the duration of firing stresses is about 0.01 second, which raises 
the question of whether there is sufficient time for firing stresses to make any contribution to 
environmental cracking. Also, the firing stresses are compressive at location #2, so could only 
retard cracking at this location. The nominal sustained stresses due to overstrain (only the tube 
had overstrain) were tensile only at location #1. Note that the value of tension increases 
significantly for 45 percent overstrain, which could be within the variation expected for an 
intended overstrain of 55 percent. 

Table 3. Comparison of Firing and Sustained Stresses at Two Locations 

Location Nominal Firing Stress Nominal Sustained Stress 

Level 
(MPa) 

Duration 
(seconds) 

Overstrain 
(%)                       (MPa) 

Preload 
(MPa) 

Location #1 
Hoop Stress +387 0.01 

45 
55 
65 

+107 
+35 
-20 

0 

Location #2 
Radial Stress -311 0.01 

45 
55 
65 

-58 
-67 
-73 

+156 



INTERIM CONCLUSION 

At this point in the work, the following interim conclusion was drawn: the cracking in the 
prototype cannon with the location #1 seal, given an aggressive environment and susceptible 
material, was caused by the tensile hoop direction overstrain residual stress and the stress 
concentration at the internal seal pocket corner adjacent to the seal. Based on this conclusion, the 
location #1 configuration and any further analysis of this location were abandoned. These 
decisions were based on: 

• Work indicating that gun propellant combustion products typically contain 
hydrogen in significant quantity (ref 6); 

• Knowledge that high strength martensitic steels are highly susceptible to hydrogen 
cracking; 

• Presence of sustained tensile stresses due to overstrain at the point of crack 
initiation, as has been discussed here. 

In order to understand the location #2 cracking, further tests and analysis were performed, 
discussed next. 

TESTS AND ANALYSIS 

Laboratory Hydrogen Cracking Tests 

Laboratory hydrogen cracking tests (ref 3) have been performed in response to the earlier 
environmental cracking incident (ref 1) and to the cracking under discussion here. Results from 
the prior work with direct application to the discussions here are shown in Figure 5. Bolt-loaded 
compact specimens were machined from the tube and chamber sections described here and tested 
in an electrolytic cell containing a 3.5 percent aqueous NaCl solution containing As203 poison and 
using a current density of 40 ma/cm2. Additional information on the tests is in Reference 3. 
Crack growth rate from a five-point moving average varies over four orders of magnitude for the 
two materials. A larger increase in da/dt with increasing applied K was noted for the 13-8 Mo 
steel, compared with A723. The two materials had about the same da/dt of 10"5 mm/s at an 
applied K of 30 MPa m1/2. Since there was a similar amount of observed cracking at location #2 
for the chamber and tube cannon sections, it will be interesting to see if this value of 30 MPa mI/2 

is consistent with the calculation of applied K based on finite element results, described later. 

Scanning electron fractography was performed on samples from the hydrogen cracking 
tests described in Figure 5. Results are shown for the 13-8 Mo and A723 steels in the sustained 
cracking area affected by environment, Figures 6[a] and 6[b], respectively. The 13-8 Mo fracture 
surface was quite classic intergranular fracture, typical of hydrogen cracking. The A723 steel also 
shows clear evidence of intergranular cracking, as well as secondary cracking, both obscured to 
some degree by corrosion products. More effects of corrosion are expected with the A723 steel 



because of its much lower Cr and Ni content. Note also that there is a general similarity between 
Figure 6[b], from the A723 laboratory tests, and Figure 4[a], from the location #1 failure of the 
A723 tube section as a result of firing. 

Finite Element Analysis 

The important unanswered question at this point of the fracture case study was whether or 
not a significant sustained tensile stress could be accounted for at the location #2 failure location. 
A finite element analysis was performed to answer this question, using the ALGOR program. The 
portion of the grid in the area of the seal pocket is shown in Figure 7. The two types of sustained 
loads discussed previously were considered in the analysis and are shown schematically in Figure 
7. The end load is caused by the contact between the chamber and tube sections of the cannon as 
they are drawn together by the coupler, see again Figure 1. An average end load of 156 MPa was 
determined from prior work (ref 2), based on typical loads on the coupler threads. The seal load, 
the other type of loading considered, was determined from the yield and ultimate strengths of the 
seal material given earlier and the significant values of triaxial stresses that are present in contact 
stress situations. Based on prior work (ref 7), the contact stresses are 2.97 times larger than the 
uniaxial yield strength of the material, the lower strength seal material in this case. Using this 
value of 2.97 and the average of the yield and ultimate strengths of the seal material, 1019 MPa, 
gives a seal load of 3023 MPa. 

Results of the finite element analysis are given in Figures 8 and 9, which show contour 
plots of the radial direction stresses in the area of the seal pocket. Recall from Figure 3 that the 
location #2 cracking in both components started within 30° of normal to the radial direction. 
Figure 8 shows the radial stress distribution resulting from the 156 MPa end load. The maximum 
radial tensile stress in the seal pocket radius is 12 MPa at an angle of 29° from the radial 
direction, compared with 30° from the radial direction for the observed cracks in Figure 3. Note 
that most stresses in the area of the seal pocket are compressive and that the o = 0 contour 
approximates the direction of the observed cracks shown in Figure 3. Figure 9 shows the radial 
stress distribution resulting from the 3023 MPa seal contact load. The maximum radial tensile 
stress in the seal pocket radius is 233 MPa at an angle of 14° from the radial direction. As with 
Figure 8, most stresses in the area of the seal pocket are compressive and the o = 0 contour 
approximates the direction of the observed cracks. It is clear from these results that stresses from 
both end loads and from seal contact loads can account for the initiation location and the growth 
directions of the ob'served cracking, and that the seal contact loads have the more significant 
quantitative effect on cracking. Next, these results will be used to calculate the approximate value 
of applied stress intensity factor, for comparison with the measured crack growth rate versus 
applied K data presented earlier. 

Applied K at Location #2 

An expression for the applied stress intensity factor at the initiation of cracking at the seal 
pocket radius can be written based on the well-known short crack K expression and the 
expression (ref 4) for elastic stress concentration factor, k„ for a notch, as follows: 



*.„iuä = 1.12*,ow/w(7Ki)» + l.Upina)* (5) 

k, = 1 + 2(a/r)* (6) 

where 1.12 is the constant for short cracks; ovplied is the sum of the end load and seal contact load 
stresses from the finite element analysis, 245 MPa; p is the firing pressure, 405 MPa; a is the 
depth of a preexisting notch assumed to be present (due to a machining defect) at the seal pocket 
radius, 0.1 mm; and r is the radius of the preexisting notch, 0.02 mm. For these values, k, = 5.5 
and the two terms of Eq. (5) become: 

K   r , = 26.7 + 8.0 = 34.7 MPa rnh (7) 
applied v   ' 

The first term in Eqs. (5) and (7) accounts for the maximum sustained tensile stress at the 
seal pocket radius caused by the end load and seal contact loads and the concentration of this 
sustained stress by a local defect. The second term in Eqs. (5) and (7) accounts for the pressure 
in the notch during firing. The sustained stress effects predominate during initiation of cracking, 
as described in Eq. (7). As the crack grows the sustained stresses diminish, as seen in Figures 8 
and 9, and the pressure effect can become predominant. However, as mentioned earlier, the 
pressure is applied for a very short time, and this may limit its effect in inducing crack growth. 

Discussion 

The value of applied K determined above, 34.7 MPa m1/2, compared with the growth data 
in Figure 5, can account for the cracking observed at location #2 in both the A723 steel tube and 
the 13-8 Mo steel chamber. Of course, the value of applied K depends on the assumption of a 
0.1-mm deep, 0.02-mm radius defect, but these values are believed to be representative of typical 
manufacturing methods. Recent work (ref 8) in fatigue initiation with cannon components 
supports this belief. 

It is not known how well the electrolytic cell tests simulate the actual environmental 
cracking that occurs in the cannon firing environment. It is encouraging that tests conducted 
using an acid hydrogen cracking environment and the same two steels discussed here (ref 3) give 
similar crack growth results to those shown in Figure 5. 



CONCLUSIONS 

Cause 

The cause of cracking at location #2 of both the A723 tube and the 13-8 Mo chamber 
sections of a prototype cannon, given the presence of hydrogen-laden propellant products and 
susceptible high strength steels, was the sustained tensile stresses arising from assembly preloads 
required to maintain pressure seals between cannon components. The seal contact load produced 
a sustained tensile stress in the seal pocket radius near the location of the observed cracking. The 
end load between the tube and chamber produced a small addition to the sustained tensile stress at 
the observed cracking location. Firing pressure loads may have contributed to the initiation of 
cracking and are believed to be the predominate cause of continued growth of the cracks. 

Prevention 

Recommended preventative measures, given that hydrogen-containing products cannot be 
avoided, involve either decreasing the cracking susceptibility of the material or reducing the level 
of sustained tensile stress.   Decreased material susceptibility can be attained by reducing the 
strength level of the existing martensitic steels, or, if possible, by changing to austenitic nickel- 
iron base alloys. The technical literature, including results in Reference 3, documents the 
decreases in hydrogen cracking susceptibility that can be obtained. 

A reduced level of sustained tensile stress near pressure seals in these cannon components 
can be accomplished by design changes that reduce stress concentrations near the seal contact 
area. An increased seal pocket radius and a machining process with smaller inherent defect size 
would reduce the sustained stresses. A small further reduction in sustained stress can be 
accomplished by increasing the separation distance between the seal pocket area and areas of end 
load between cannon components. 
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[a] 

[b] 

FIG. 4 • Scanning Electron Micrographs of Location #f Fracture Surfaces; 
[a] environmental cracking, SOOx; [b] ductile fracture for comparison, 500x 
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FIG. 5 ■ Hydrogen Cracking for Two Steels; 3000 hours in Electrolytic Cell 
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FIG. 6 - Scanning Electron Fractographs from Electrolytic Cell Tests; 
[a] 13-8 Mo, 500x, 3000 hours exposure; [b] A723, 500x, 3000 hours exposure 
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FIG. 7 - Finite Element Grid for Analysis of Cracking at Location #2 

FIG. 8 - Radial Stresses for Location #2 with Average End Load of 156 
MPa 
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FIG. 9 - Radial Stresses for Location #2 with Average Seal Load of 3023 
MPa 
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