### FORT SILL ARMY BASE

### ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

CONTRACT NO. DACA 63-82-C-0173

### FINAL REPORT

### VOLUME I EXECUTIVE SUMMARY

### 1982



PREPARED BY

TALL CONTINUES DESCRIPTION B

ENERGY MASTERS CORPORATION 13154 COIT ROAD SUITE 105

DALLAS, TX., 75240

19971023 097

DEPARTMENT OF THE ARMY CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF: TR-I Library

REPLYTO

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

white I

Marie Wakeffeld, Librarian Engineering

### EXECUTIVE SUMMARY

### ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

INCREMENTS F AND G

CONTRACT NO DACA63-82-C-0173

### FINAL SUBMITTAL

FOR FORT SILL ARMY BASE LAWTON OK

### ENERGY MASTERS CORPORATION 13154 COIT ROAD SUITE 105 DALLAS TX 75240

214-669-8801

.

### TABLE OF CONTENTS

۰.

.

|     |                                                                 | PAGE NO.    |
|-----|-----------------------------------------------------------------|-------------|
| I   | INTRODUCTION                                                    | 1           |
| II  | EXISTING ENERGY CONSUMPTION                                     | 2           |
|     | 1 SOURCE ENERGY CONSUMPTION                                     |             |
|     | 2 TOTAL ANNUAL ENERGY USED                                      |             |
|     | 3 BUILDING GROUP SOURCE ENERGY CONSUMPTIC                       | N           |
|     | 4 TYPICAL BUILDING ENERGY CONSUMPTION                           |             |
| III | ENERGY CONSERVATION MEASURES DEVELOPED                          | 9           |
|     | l ECMs INVESTIGATED                                             |             |
|     | 2 POLICY CHANGES/RECOMMENDATIONS                                |             |
| IV  | ENERGY AND COST SAVINGS                                         | 14          |
|     | 1 BASEWIDE CONSUMPTION AFTER ENERGY<br>CONSERVATION PROJECTS    |             |
|     | 2 ALLOCATION OF ENERGY CONSERVATION PROJE                       | ECT SAVINGS |
| V   | INCREMENT "C" - RENEWABLE ENERGY, PRINCIPA<br>SOLAR AND BIOMASS | ALLY<br>16  |
|     | 1 SCOPE                                                         |             |
|     | 2 RESULTS AND RECOMMENDATIONS                                   |             |
| VI  | INCREMENT "D" - COGENERATION AND SOLID WAS                      | STE 18      |
|     | 1 SCOPE                                                         |             |
|     | 2 RESULTS AND RECOMMENDATIONS                                   |             |

TABLE OF CONTENTS PAGE TWO

. PAGÈ NO.

19

\*\* ·

۰.

|      | 1         | SCOPE                                                  |         |
|------|-----------|--------------------------------------------------------|---------|
|      | 2         | RESULTS AND RECOMMENDATIONS                            |         |
| VIII | INC<br>ME | CREMENT "F" FACILITY ENGINEER CONSERVATION<br>ASURES   | 20      |
|      | 1         | ENERGY CONSERVATION MODIFICATIONS ACCOMPLIS SINCE 1975 | HED     |
|      | 2         | ENERGY USE ESTIMATE FOR PLANNED FACILITIES             | CHANGES |
| IX   | ENE       | ERGY PLAN                                              | 24      |
|      | 1         | ENERGY USAGE REDUCTIONS                                |         |

VII INCREMENT "E" - CENTRAL BOILER PLANTS

2 SCHEDULE OF ENERGY CONSERVATION PROJECTS

### I INTRODUCTION

Included in this summary are the data and results of the first five energy analysis and study increments (A, B, C, D and E) which were developed under a previous contract to provide a Basewide Energy Systems Plan for the Fort Sill Army Base at Lawton, Oklahoma. Also included in this Summary are the data and results of increments F and G that are the responsibility of Energy Masters Corporation.

The primary goals outlined in the scope of work for this study are as follows:

- Develop low cost energy conservation projects within the Facilities Engineer Funding Authority.
- 2. Update and modify, as required, energy conservation projects developed in Increments A, B, C, D, and E.
- Combine all proposed energy conservation projects into one comprehensive list.
- 4. List the recommended projects in an order of priority based on each project's savings investment ratio (SIR). Also schedule the construction of the recommended projects.
- 5. Calculate energy and cost savings and project basewide energy consumption after implementation of recommended projects.

This submittal is based on work done for Increments F and G as outlined in the Prenegotiation Meeting and Manual DAEN-MPE-E entitled Scope of Work for Energy Engineering Analysis Program ( EEAP); paragraphs 3.5.6 and 3.5.7. See page 1 Appendix for complete text of Prenegotiation Meeting.

- 1 -

### II EXISTING ENERGY CONSUMPTION

The Energy Use Analysis of existing and proposed facilities are herewith analyzed and are based on field investigation data, building load calculations and meter readings.

Source Energy consumption Source energy consumption will be based on year 1975.

|             |          |        | <u>Dollar Cost</u> | BTU                         |
|-------------|----------|--------|--------------------|-----------------------------|
| Electricity | 113.3 m  | KWH/Yr | \$ 619,300         | 1314.419 (10 <sup>9</sup> ) |
| Natural Gas | 1582.5 m | CF/Yr  | 1,139,600          | 1631.552 (10 <sup>9</sup> ) |

- 2 Total Annual Energy Used The chart that follows shows the Three Year Load (1975-1977) Profiles on Energy Consumption.
- 3 Building Group Source Energy Consumption The second chart that follows shows the 1977 One Year Energy Consumption Load Profiles.

- 2 -

5 Total Annual Energy Used

|                      | ·····                      | ENERGY CO                | NSUMPTION                                     | – THREF                    | YEAR LO                  | D PROFELI                                              | is.                        |                          |       |
|----------------------|----------------------------|--------------------------|-----------------------------------------------|----------------------------|--------------------------|--------------------------------------------------------|----------------------------|--------------------------|-------|
|                      |                            | <u>FY '75</u>            |                                               |                            | FY 76                    | · · · · · · · · · · · · · · · · · · ·                  |                            | FY '77                   |       |
|                      | sq ft<br>x 10 <sup>6</sup> | BTU<br>x 10 <sup>9</sup> | $     \frac{Avg}{BTU}     sq ft     x 103   $ | sq ft<br>x 10 <sup>6</sup> | вти<br>х 10 <sup>9</sup> | $     \frac{Avg}{BTU}     \frac{Sq}{s} ft     x 10^3 $ | sq ft<br>x 10 <sup>6</sup> | BTU<br>x 10 <sup>9</sup> |       |
| (1) Gas:             |                            |                          |                                               |                            |                          |                                                        |                            |                          |       |
| A. Heating           |                            | 1226.4                   |                                               |                            | 1411.3                   |                                                        |                            | 1157.8                   |       |
| B. Cooking           |                            | 35.5                     |                                               |                            | 40.8                     |                                                        |                            | 33.5                     |       |
| C. DHU               |                            | 146.8                    |                                               |                            | 169.0                    |                                                        |                            | 138.6                    |       |
| Subtotals: (1)       | 12.3 <u>+</u>              | 1408.7                   | 114.5                                         | 12 <b>.3</b> +             | 1621.1                   | 131.8                                                  | 12.3                       | 1329.9                   | 108.1 |
| 2) Electricity:      |                            |                          |                                               |                            |                          |                                                        |                            |                          |       |
| A. Cooling           |                            | 238.7                    |                                               |                            | 279.7                    |                                                        |                            | 303.9                    |       |
| B. Lights            |                            | 365.2                    |                                               |                            | 428.1                    |                                                        |                            | 465.0                    |       |
| C. Mise.             |                            | 197.2                    |                                               |                            | 231.1                    |                                                        |                            | 251.1                    |       |
| Subtotals:(1)        | 12.3±                      | 801.1                    | 65.1                                          | 12.3±                      | 938.9                    | 76.3                                                   | 12.3                       | 1020.0                   | 82.9  |
| MALS:                | 12.3+*                     | 2209.8                   | 179.6                                         | 12.3-*                     | 2560.0                   | 208.1                                                  | 12.3*                      | 2349.9                   | 191.0 |
| nergy<br>Cost: (K\$) |                            |                          |                                               |                            |                          |                                                        |                            | 9                        |       |
| Gas                  |                            | \$1139.6                 |                                               |                            | \$1509.2                 |                                                        |                            | \$1423.0                 |       |
| Electricity          |                            | 619.3                    |                                               |                            | 842.2                    |                                                        | -                          | 1060.8                   |       |
| TOTAIS:              |                            | \$1758.9                 |                                               |                            | \$2351.4                 |                                                        |                            | \$2483.8                 |       |

\*Not additive.

Defense Energy Information System (DEIS)

(1) HQ TRADOC shows total facilities energy consumption as follows:

|             |        |                   |   | <br>-^~ 1975 |
|-------------|--------|-------------------|---|--------------|
| Electricity | (BTU x | 10 <sup>9</sup> ) |   | 1208.870     |
| Natural Gas | (BTU x | 10 <sup>9</sup> ) | • | 1495.454     |

2704.324

LPG usage is not included in these figures because it is relatively minor  $(1.453 \times 10^9 \text{ BTU})$ . The natural gas and electricity energy totals for FY 1976 & 1977 from DEIS HQ TRADOC are similarly different than the figures in the above chart. The DEIS HQ TRADOC figures for FY 1975 are used in % energy reduction calculation - page 22

2.

|   |                |         |                                          |          |                |                | ··· ·         |            |                      |                        |          |         |            |         |
|---|----------------|---------|------------------------------------------|----------|----------------|----------------|---------------|------------|----------------------|------------------------|----------|---------|------------|---------|
|   |                | cç      | AVR<br>BTT<br>sq ft<br>x 103             | :        |                | 1              |               | 93.1       |                      |                        |          |         | 88.0       | 186.7   |
|   |                | Housin  | вту<br>х 10 <sup>9</sup>                 |          | 483.1          | 25.0           | 115.7         | 623.8      |                      | 169. <i>ĭ</i>          | 244.6    | 148.8   | 563.1      | 1186.9  |
|   |                | -       | Area<br>x 10 <sup>6</sup>                |          |                |                | <b>a</b><br>1 | 6.36       |                      |                        |          | ł       | 6.36       | 6.36*   |
|   |                | ry      | Avg<br>BTU<br>sq ft<br>x 103             |          | , <u></u>      | ł              |               | 77.3       |                      |                        |          |         | 170.1      | 247.4   |
|   | LES **         | omnissa | BTU<br>x 109                             |          | 7.5            | 1              | 1.0           | 8.5        |                      | 2.8                    | 7.2      | 8.7     | 18.7       | 27.2    |
|   | AD PROFI       |         | Areg<br>x 10 <sup>6</sup>                |          |                | 1              |               | 0.11       |                      |                        | 1        | 1       | 0.11       | 0.11*   |
|   | 77) LO         | lge     | AVE<br>BTU<br>Sq ft<br>x 103             |          |                |                | !             | 104.9      |                      |                        |          |         | 0.011      | 223.9   |
|   | <b>EAR (19</b> | Lxchan  | вти<br>х 10 <sup>9</sup>                 |          | 17.8           | 0.53           | 0.95          | 19.3       |                      | 0.8                    | 6.4      | 4.7     | 21.9       | 41.2    |
|   | - ONE YI       | Post    | Area<br>x 10 <sup>6</sup>                |          |                | 1              |               | 0.184      |                      | <u><u><u>u</u></u></u> |          | 1       | 0.184      | 0.184   |
|   | IPTION NOT LON | ted++   | AVR<br>BTU<br>Sq ft<br>x 10 <sup>3</sup> |          |                | ł              |               | 111.6      |                      |                        |          |         | 77.0       | 188.6   |
| • | CONSUM         | propria | втU<br>x 10 <sup>9</sup>                 |          | 12.7           | 0.06           | 2.3           | 15.1       |                      | 6.4                    | 2.5      | 1.5     | 10.4       | 25.5    |
|   | ENERGY         | Nonal   | $x 10^6$                                 |          |                | ł              |               | 0.135      |                      |                        | }        |         | 0.135      | 0.135*  |
|   |                | 1ble +  | AVB<br>BTU<br>sq ft<br>x 10 <sup>3</sup> |          |                | 1              |               | 120.6      | <u></u>              |                        |          |         | 73.8       | 194.4   |
|   |                | eímburs | вти<br>х 10 <sup>9</sup>                 |          | 636.7          | 6- 1           | 18.6          | 663.2      |                      | 114.2                  | 204.2    | 87.5    | 405.9      | 1069.1  |
|   |                | Nonr    | Areg x 10 <sup>6</sup>                   |          |                | 1              |               | 5.50       |                      |                        |          |         | 5.50       | 5.50    |
|   |                |         |                                          | (1) Gas: | A.Heat-<br>ing | B.Cook-<br>ing | c. DHW        | Subtotals: | (2)Elec-<br>tricity: | A.Cool-<br>ing         | B.Lights | C.Misc. | Subtotals: | TOTALS: |

- 4

\_

\* Not Additive. \*\* Figures in this table don't agree with Defense Energy Information System (DEIS) records.

+ Non-reimbursable - facilities funded for operations from appropriated funds.

++ Non-appropriated - facilities for moral, welfare and recreation funded from non-appropriated funds.

FORT SILL EEAP INCREMENTS F AND G CONTRACT NO DACA63-82-C-0173

Building Group Source Energy Consumption

ŝ

### 4 Typical Building Energy Consumption

A Load Calculation

Scheduled herein are calculations for heating and cooling loads including lighting and miscellaneous loads. It is a general estimation of total capacities and energy consumptions of the structures; it should not be used for equipment sizing.

B U-Values

U-Values were determined through results of our field investigations and are in accordance with ASHRAE Standards. Glass and door U-Values are generally the same throughout; i e, glass is considered to be single pane everywhere at 1.1; two types of doors are considered: Wooden doors at 0.5 and metal doors at 1.0. U-Values for floors, roofs and walls are as scheduled for each building.

C Design Heating (KBH) and Cooling (Tons) Loads Areas, U-Values, temperature differences for walls, floors, glass, etc, with sensible and latent loads for people, lights and infiltration were considered to produce an estimated heating and cooling load for each building. These totals also include a 10% safety factor. (ASHRAE Fundamentals, 1977; Section IV, Chapter 24.)

- 5 -

- D Lighting, Yearly Consumption (KWH/LIT) Lighting consumption for each building is in KWH per year and is not an hourly load. Consumption was estimated by calculating a KWH/SF.Yr factor for each type of building based on typical maximum demand/SF, hours of Operation/Yr and load factors. (IEEE Recommended Practice for Electric Power Systems in Commercial Buildings, Standard 241, 1974, Chapter 2.)
- E Miscellaneous, Yearly Consumption (KWH/MISC) Miscellaneous consumption, which consists of appliances and miscellaneous motor loads other than HVAC and lighting, was also estimated in a similar manner, by taking into consideration the hours of operation/Yr, type and size of loads. (IEEE Recommended Practice for Electric Power Systems in Commercial Buildings, Standard 241, 1974, Chapter 2.) Units are in Kilowatt Hour/Year (KWH/Yr).
- F Design Conditions

| 1 | Lat | itude                              | 34°     |
|---|-----|------------------------------------|---------|
| 2 | Lon | gitude                             | 98°     |
| 3 | Ele | vation                             | 1187 Ft |
| 4 | Sum | mer                                |         |
|   | а   | Outdoor Dry Bulb                   | 99° F   |
|   | Ъ   | Outdoor Wet Bulb                   | 76° F   |
|   | c   | Indoor Dry Bulb                    | 78° F   |
|   | d   | Indoor Relative Humidity           | 50%     |
|   | e   | Outdoor Temperature Range<br>- 6 - | 21° F   |

| FORT SILL ENER                  | CCY CONSUMPTION            | BASED ON YEAR                                       | 1977 IN CC                       | NCREMENTS F A       | AND G<br>ACA63-82-C-017:   |
|---------------------------------|----------------------------|-----------------------------------------------------|----------------------------------|---------------------|----------------------------|
| Cat.                            | Area<br>(Ft <sup>2</sup> ) | Design Heating<br>Load<br>(BTUH x 10 <sup>3</sup> ) | Design Cooling<br>Load<br>(Tons) | Lights<br>(KWH/yr.) | Miscellaneous<br>(KWH/vr.) |
| <pre>(1) Non-Reimbursable</pre> | 5,344,353.0                | 293,135.0                                           | 6,120.8                          | 22,959,173.0        | 9,751,275.0                |
| (2) Non-Appropriated            | 134,888.0                  | 5,926.0                                             | 269.9                            | 289,800.0           | 166,979.0                  |
| (3) PX                          | 179,937.0                  | 8,208,5                                             | 459.6                            | 720,060.0           | 525,894.0                  |
| (4) Commissary                  | 109,976.0                  | 3,402.6                                             | 151.4                            | 831,539.0           | 996,214.0                  |
| (5) Housing:                    |                            |                                                     |                                  |                     |                            |
| a. Family Housing               | 2,362,630.0                | 81,942.5                                            | 4,982.7                          | 9,922,590.0         | 5,906,374.0                |
| b. Barracks w/o<br>Mess         | 2,336,982.0                | 95,518.2                                            | 2,150.1                          | 10,607,603.0        | 5,734,528.0                |
| c. Barracks w/<br>Mess          | 1,280,608.0                | 38,442.5                                            | 1,822.5                          | 6,403,040.0         | 4,738,237.0                |
| Total Housing:                  | 5,980,220.0                | 215,903.2                                           | 8,955.3                          | 26,933,233.0        | 16,379,139.0               |
| SRAND TOTAL:                    | 11,749,374.0*              | 526,575.3                                           | 15,957.0                         | 51,733,805.0        | 27,819,501.0               |
|                                 |                            |                                                     |                                  |                     |                            |

- 7 -

\*-Vacant buildings account for: 210,116 Ft<sup>2</sup>

• ,

.

!

÷

| Win | nter             |                 |             |
|-----|------------------|-----------------|-------------|
| а   | Outdoor Dry Bulb | 16°             | F           |
| Ъ   | Outdoor Wet Bulb | 16°             | F           |
| с   | Indoor Dry Bulb  | 65 <sup>°</sup> | F           |
| d   | Degree Day       | 2899            | (1977)*     |
|     |                  | 3367            | (10 Yr.Avg) |
|     |                  |                 |             |

5

\* 2899 Degree days were used for the basewide energy consumption profile which is based on the 1977 utility data.

T

### III ENERGY CONSERVATION MEASURES DEVELOPED

1 The chart on the following two pages details the following for each project investigated under each increment (A-G):

Project (listed from highest SIR to lowest)
Increment (that project was developed under)
Construction Cost ( \$ )
Total Initial Investment Cost (includes SIOH,
 Design Cost, Energy Credit & Salvage Value)
Annual Savings ( \$/Yr )
Annual Energy Savings ( MBTU/Yr )
Labor Manhours (by worker classification)
SIR (Calculated Savings Investment Ratio)
Funding Classification
Year Initiated (Projected Project Start Date)
Year Completed (Projected Project Completion Date)
Calculation Page Numbers (Back-Up Material)

- 9 -

### FORT SILL EEAP

# PROJECTS RECOMMENDED FOR FUNDED

|                                           | There- | Const niction      | Thtal Initial      | Annial Cawinge   | Annual Energy    |            |              | ;        | :                 |                   |                               |
|-------------------------------------------|--------|--------------------|--------------------|------------------|------------------|------------|--------------|----------|-------------------|-------------------|-------------------------------|
| PROJECT                                   | ment   | Cost \$            | Investment \$      | \$ / Year        | M BTU/Year       | Mirs(1)    | (3)          | r una.ng | rear<br>Initiated | Year<br>Completed | Calculations<br>Vol II, Pages |
| Unoccupied Cycle                          | ц      | 12,160             | 11 <b>,</b> 844    | 56,914           | 25,003           | 256 B      | 53.77        | A        | 1984              | 1985              | 68,69                         |
| Reset Mixed Air                           | ы      | 2,240              | 2,259              | 7,959            | 3,039            | 112 A      | 44.3         | A        | 1984              | 1984              | 70,71                         |
| Unoccupied Cycle Bldg 3040                | եւ     | 20,710             | 24,444             | 38,864           | 15,568           | 315 A      | 17.62        | A        | 1984              | 1985              | 72,73                         |
| Tuning Boilers                            | A (F)  | 45,172             | 42,846             | 41,592           | 16,000           | N/A        | 12.11        | 4        | 4                 | 4                 | 41,42                         |
| Economizer Lockout                        | Ŀч     | 65,780             | 68,676             | 64,325           | 26,745           | 572 B      | 11.88        | A        | 1984              | 1985              | 74,75                         |
| Pump Impeller Bldg 3040                   | ۴ų     | 860                | 850                | 737              | 296              | 8<br>B     | 9.54         | A        | 1984              | 1985              | 76,77                         |
| Calibrate Controls/<br>Restore Economizer | 며      | 105,490            | 100,790            | 71,643           | 39,616           | 1424 B     | 8.34         | A        | 1983              | 1984              | 78,81                         |
| De-Energize Ballasts                      | ۴ч     | 12,940             | 11,650             | 5,380            | 2,159            | 838 C      | 5.08         | A        | 1984              | 1985              | 82,83                         |
| Chiller Optimizer                         | ٤      | 45,440             | 44,990             | 20,347           | 8,169            | 256 B      | 4.98         | A        | 1985              | 1986              | 84-93                         |
| Heat Reclaim Bldg 1719                    | A (F)  | 29,500             | 26,340             | 9,276            | 3,724            | N/A        | 3.88         | A        | 1985              | 1986              | 27,28                         |
| Controls/Dampers Bldg 3040                | ы      | 16,010             | 16,857             | 4,745            | 1,854            | 197        | 3.34         | A        | 1984              | 1985              | 94,95                         |
| Chiller Bldg 3040                         | ٤u     | 136,927            | 138,023            | 25,642           | 7,566            | N/A        | 2.19         | A        | 1984              | 1985              | 96,97                         |
| Relighting Bldg 730                       | A ( F) | 50,010             | 47,400             | 6,063            | 1,304            | N/A        | 1.3          | A        | 1984              | 1985              | 29,30                         |
| Replace Chiller Bldg 462                  | A(F)   | 136,927            | 138,023            | 13,265           | 4,674            | N/A        | 1.29         | A        | 1986              | 1987              | 31,32                         |
| Modular Boilers w/o mess<br>with mess     | ես ես  | 720,310<br>847,330 | 739,035<br>869,319 | 71,139<br>82,056 | 20,050<br>23,507 | N/A<br>N/A | 1.22<br>1.19 | 4 A      | 1986<br>1986      | 1988<br>1988      | 98,99<br>100,101              |
| Hot Water Heater Bldg 3040                | Ь      | 6,400              | 6,210              | 606              | 238              | 64 B       | 1.14         | A        | 1984              | 1985              | 102,103                       |
| Wall Insulation Blown-In                  | A      | 256,523            | 258,582            | 22,308           | 8,651            | N/A        | l.04         | щ        | 1985              | 1986              | . (5)                         |
|                                           |        |                    |                    |                  |                  |            |              |          |                   |                   |                               |

Increment F Projects Only. The letters represent worker classification: A = Equipment Maintenance; B = KVAC and C = Electric. 5

Funding Thru: A - Facilities Engineer Funding Authority or B - Energy Conservation Investment Program (ECIP) (2)

SIR (Savings Investment Ratio) is calculated per BCIP Guidance (See Volume II Page 32 for typical calculation). This calculation insures that the maximum non-energy savings used is 25% of the energy savings. (3)

(4) Tuning Boilers Project is already in progress.

(5) Detailed Analysis is in separate ECIP Analysis.

-10-

FORT SILL EEAP

## PROJECTS NOT RECOMMENDED

~1

| PROJECT.                            | Incre-<br>ment | Construction<br>Cost \$ | Total Initial<br>Investment S | Arnual Savings<br>\$ / Year | Annual Energy<br>Savings<br>M BTU/Ycar | ML s (1)   | SIR<br>(3)   | Funding (2)  | Year<br>Initiated | Year<br>Completed | Calculations<br>Vol II, Pages |
|-------------------------------------|----------------|-------------------------|-------------------------------|-----------------------------|----------------------------------------|------------|--------------|--------------|-------------------|-------------------|-------------------------------|
| Steam Boilers w/o mess<br>with mess | لتا بتأ        | 305,950<br>391,545      | 313,920<br>404,118            | 42,297<br>44,926            | 12,650<br>15,213                       | N/A<br>N/A | 1.69<br>1.55 | None<br>None | 14                | F 1               | 119,120<br>119,121            |
| CEP 3400                            | ធ              | 2,224,770               | 2,105,670                     | 238,096                     | 46,145                                 | N/P.       | 0.97         | None         | ı                 | I                 | 58,59                         |
| CEP 1815                            | ш              | 5,935,607               | 5,548,000                     | 468,131                     | 128,192                                | N/A        | 0.95         | None         | ı                 | ł                 | 60,61                         |
| Hanger Alterations                  | A              | 148,453                 | 140,810                       | 10,440                      | 3,980                                  | V/N        | 0.84         | None         | ı                 | ł                 | 33,34                         |
| AHU Speed Reduction                 | íц             | 30,960                  | 30,564                        | 2,076                       | 822                                    | N/A        | 0.75         | None         | I                 | I                 | 106,107                       |
| Lamp Replacement                    | A              | 2,087,000               | 1,991,000                     | 50,930                      | 20,445                                 | N/A        | 0.37         | None         | i                 | ł                 | 39,40                         |
| Low Leakage Dampers                 | ٤ų             | 65,535                  | 66,059                        | 5,270                       | 2,064                                  | N/A        | 0.70         | None         | ſ                 | ł                 | 104,105                       |
| CEP 800                             | ដ              | 7,081,999               | 6,818,960                     | 465,164                     | 117,140                                | N/A        | 0.70         | None         | I                 | ł                 | 62,63                         |
| Wall Insulation Built-Up            | А              | 2.94/ft <sup>2</sup>    | 3.17/ft <sup>2</sup>          | 0.223/ft <sup>2</sup>       | 0.0685/ft <sup>2</sup>                 | N/A        | 0.70         | None         | I                 | I                 | 35,36                         |
| Trim Pump Impellers                 | Ŀц             | 3,720                   | 4,023                         | 252                         | 101                                    | N/A        | 0.69         | None         | 1                 | t                 | 108,109                       |
| Storm Windows                       | A              | 445,720                 | 425,210                       | 17,435                      | 6,715                                  | N/A        | 0.50         | None         | i                 | I                 | 37,38                         |
| Solar DHW Bldg 5678                 | U_             | 218,000                 | 219,740                       | 1,750                       | 669                                    | N/A        | 0.10         | None         | ı                 | 1                 | 49,50                         |
| Solar DHW Artil. Village            | υ              | 943,700                 | 951,250                       | 7,030                       | 2,684                                  | N/A        | 0.09         | None         | ı                 | I                 | 51,52                         |
| Cas/Elec. Metering                  | щ              | This Proj               | ect is not Feasil             | ole.                        |                                        |            |              |              |                   |                   | 45                            |
| EMCS                                | В              | This Proj               | ect Requires fur              | ther Investigation          |                                        |            |              |              |                   |                   | 46                            |
| CEP RDF 5900 Area                   | Δ              | =                       | 2                             | =                           |                                        |            |              |              |                   |                   | 55                            |
| Shutoff Return Fans                 | եւ             | This Proj               | ect is not Feasil             | ole.                        |                                        |            |              |              |                   |                   | 110                           |
| Lower DHW Temp.                     | Ľ٩.            | 2                       | -                             |                             |                                        |            |              |              |                   |                   | 111                           |
| Flow Restrictors                    | Ŀ              | -                       |                               |                             |                                        |            |              |              |                   |                   | 112                           |
| Two-Stage Cooling                   | ſĿı            | -                       |                               |                             |                                        |            |              |              |                   |                   | 113                           |
| Boiler Turbulators                  | ۲ų             | 2                       |                               |                             |                                        |            |              |              |                   |                   | 114                           |
| Boiler Stack Recovery               | ц              | =                       | -                             |                             |                                        |            |              |              |                   |                   | 115                           |
| Water Treatments                    | Ĺı             | This Proj               | oct Requires furt             | ther Investigation          | J.                                     |            |              |              |                   |                   | 116                           |
| CCC-Type V-Belts                    | Ĺц             | -                       | =                             | =                           |                                        |            |              |              |                   |                   | 117,118                       |

-11-

### 2 POLICY CHANGES/RECOMMENDATIONS

### A RECOMMENDATIONS

We recommend that a new classification be formed in Public Works to specialize in planned maintenance and repair of pneumatic and electric control systems.

We estimate that this will require an additional two qualified control mechanics. These mechanics can eventually become the base crew to also be responsible for maintenance on the Energy Management Control System that is being planned for Fort Sill. Servicing the control systems and the EMC System will eventually require a crew of 6 to 8 mechanics.

Assuming they would be in the same wage scale as air conditioning repairmen, the initial cost to develop the new classification is approximately \$63,000 per year.

- B A previous study pointed out that the heating and RVAC shops are undermanned and we concur with this observation. These classifications are short of manpower as follows:
  - 1 Heating Shop 12 people.
  - 2 RVAC 14 people.

- 12 -

We suggest that consideration be given to increasing the budget for Public Works to provide sufficient personnel to properly maintain the equipment at Fort Sill. The cost of adding the above mentioned increase would be approximately \$ 810,000 per year including overhead.

This change in policy would enable Public Works to implement a Planned Maintenance Program (PMP) and maintain the schedule for the PMP.

An increase in staffing will reduce energy consumption as well as equipment repair cost. However, the additional staffing should not be justified by energy savings since it is required to properly maintain the equipment controls.

### IV. ENERGY AND COST SAVINGS

•

1. Projected Basewide Consumption

|                                | (Actual)<br>1983 | (Projec<br>1985 | ted)   | (Projecte<br>1990 | d)  |
|--------------------------------|------------------|-----------------|--------|-------------------|-----|
| Energy Usage (MBTU             | /Yr) (4)         |                 |        |                   |     |
| Electricity                    | 1,504,566.4      | 1,458,637.4     | (1)(2) | 1,396,353.4       | (2) |
| Natural Gas                    | 1,199,276        | 1,053,029       | (1)(2) | 1,046,542         | (2) |
| Fuel Oil                       | 1,343            | 1,343           | (1)(2) | 1,343             | (2) |
| Total                          | 2,705,185.4      | 2,513,009.4     |        | 2,444,238.4       |     |
| Fuel Cost                      |                  |                 |        |                   |     |
| <pre>Electricity(\$/kwh)</pre> | 0.0318           | 0.0367          | (3)    | 0.0591            | (3) |
| Natural gas(1,000c             | f) 2.97          | 3.43            | (3)    | 5.52              | (3) |
| Fuel Oil(\$/gal)               | 0.726            | 0.84            | (3)    | 1.353             | (3) |
| Fuel Cost (\$/yr)              |                  |                 |        |                   |     |
| Electricity                    | 4,124,587        | 4,417,763       |        | 7,114,180         |     |
| Natural Gas                    | 3,454,752        | 3,481,707       |        | 5,603,212         |     |
| Fuel Oil                       | 7,030            | 8,131           |        | 13,101            |     |
| Total                          | 7,586,369        | 7,907,601       |        | 12,730,493        |     |

 Planned facility changes include 3 buildings to be added and 114 buildings to be demolished/mothballed before F.Y. 1986.

- (2) Includes Projected Energy Savings from Projects scheduled before the appropriate date (1985 or 1990).
- (3) Projected fuel cost has an annual 10% increase.
- (4) Basewide consumption includes Fort Sill Base and Reserve Center.

.

Allocation of energy conservation project savings.

¥`

|                                            | 1                      |                |
|--------------------------------------------|------------------------|----------------|
|                                            | Annual Energy S        | avings MBTU/Yr |
|                                            | Electricity            | Natural Gas    |
| Administrative/Classrooms <sup>(</sup>     | 1) 74,114              | 52,596         |
| Family Housing                             | 2,730                  | 5,917          |
| Commissary                                 | 3,724                  | -              |
| 3400 Area (Barracks)                       | (4,830) <sup>(2)</sup> | 48,387         |
| Building 3040<br>Administrative/Classrooms | 16,049                 | 9,472          |

- (1) Projects that affect the whole base (tuning boiler, etc) are grouped under Administrative/Classrooms since that group will receive the majority of the energy savings.
- (2) Number in "()" indicates an increase in energy consumption.

### V <u>INCREMENT C - RENEWABLE ENERGY</u>, PRINCIPALLY SOLAR AND BIOMASS

1 Scope

The AE shall analyze the possibility of utilizing renewable energy sources for space heating, space cooling, domestic hot water and/or process heat. <u>NOTE</u> The Scope of Work for EEAP (Energy Engineering Analysis Program), DAEN - MPE - E, Revised 22 September 1982, Increment C, is included in the Appendix Pages 10-12.

- 2 Results and Recommendations
  - A Solar

Perhaps the most promising renewable energy source in the world today is solar energy.

Though the marketing of solar collectors and systems is varied at this point in time there is a question as to performance reliability. The actual results (based on the DOE Conference held in Denver 28 November to 1 December 1978, show the average efficiencies to be 20% (total insolation to usable energy). This report will show that efficieicies based upon this amount will not recover the initial investment during the life of the project. It is to be expected that through better development and quality control there will be practical and economical justifications for solar plants at Fort Sill.

- 16 -

INCREMENTS F AND G CONTRACT NO DACA63-82-C-0173

B Wind

ť,

Energy from wind is another field that is slow in development. Experimentation is bringing the results of wind energy closer to practical use; however, this again should be left to private concerns, especially since the basic conversions of this energy is to electricity and for Fort Sill the present and future rates of purchased electricity are relatively inexpensive.

C Biomass

Biomass is not analyzed in this report.

### VI INCREMENT D - COGENERATION AND SOLID WASTE

1 Scope

Determine the feasibility of new cogeneration and solid waste plants utilizing solid fuels supplemented with refuse derived fuels (RDF) and waste oil fuels. <u>NOTE</u> The Scope of Work for EEAP (Energy Engineering Analysis Program), DAEN - MPE - E Increment D, is included in the Appendix Pages 12-14.

- 2 Results and Recommendations A central energy plant (CEP) utilizing refuse derived fuel (RDF) was investigated in an earlier project titled: RDF 5900 CEP. While updating this project, the following was noted:
  - A Separate hauling of combustible and noncombustible was recommended, yet the hauling costs were assumed to decrease.
  - B The current situation was not accurately presented. Combustible waste is now sold, not buried as assumed in the previous analysis.

Therefore, further analysis is required before any recommendations can be made.

-18

### VII INCREMENT E - CENTRAL BOILER PLANTS

### 1 Scope

;

Determine the feasibility of installing central boiler plants firing solid fuels serving all or discrete parts of the base. <u>NOTE</u> The Scope of Work for EEAP (Energy Engineering Analysis Program), DAEN-MPE-E, Increment E, in included in the Appendix Pages 14 and 15.

2 Results and Recommendations

Three central boiler plants have been proposed by a previous analysis. After updating and analyzing the proposals per Army Manual DAEN-ZCF-U, Energy Conservation Investment Program (ECIP) Guidance, none of the proposals meet ECIP standards.

3400 Central Heating Plant

1815 Central Energy Plant

800 Central Energy Plant

However, as part of Increment G, two other boiler options were considered. They are as follows:

- A Install a new steam boiler with modulating burner for the heating load and separate gas fired domestic hot water heater.
- B Remove existing boilers and install modular high efficiency boilers and convert steam heating system to hot water.

Option A and Option B were found to be viable solutions. However, it is recommended that Option B be implemented since hot water heating is more desirable.

### VIII INCREMENT F - FACILITY ENGINEER CONSERVATION MEASURES

The purpose of this Increment is to provide recommendations for modifications and changes in system operation which are within the facilities engineer funding authority (\$200,000 for alteration type work; \$500,000 for maintenance and repair type work) and management control. See Appendix Pages 15-18 for complete general scope of work.

 Energy Conservation Modifications Accomplished since 1975.

### SUMMARY

| 1980                                                                              | NO BUILDINGS                          |       |
|-----------------------------------------------------------------------------------|---------------------------------------|-------|
| STORM WINDOWS<br>RESIDING                                                         | 55<br>84                              | 139   |
| 1981                                                                              |                                       |       |
| SIDING<br>UNDERSKIRT<br>NIGHT SETBACKS<br>INSULATION<br>STORM WINDOWS<br>RESIDING | 74<br>109<br>290<br>313<br>417<br>566 | 1,769 |
| <u>1982</u>                                                                       |                                       |       |
| STORM WINDOWS<br>SIDING                                                           | 36<br>122                             | 158   |
| TOTAL                                                                             |                                       | 2,066 |
|                                                                                   |                                       |       |

NOTE: See complete listing of projects in Appendix pages 114 through 131B.

2 Energy Use Estimate for Planned Facilities Changes.

ہ ج

Total Planned Facility Changes to 1985 are as follows: (1)

| _1                                   | Electricity | Natural Gas           | Area                                  |   |
|--------------------------------------|-------------|-----------------------|---------------------------------------|---|
| 3 Buildings Added:                   | (11,530)    | (4,294)               | (60,356)                              |   |
| 114 Buildings Removed <sup>(2)</sup> | : 27,956    | 40,656                | 394,980                               |   |
| Total Reduction                      | 16,426 M    | BTU/<br>Yr 36,362 MBT | <sup>U/</sup> 334,624 Ft <sup>2</sup> | , |

(1) Details in Volume VI Appendix Pages 132-149.

(2) 30 Buildings demolished, 84 Buildings mothballed.

•

### IX ENERGY PLAN

### 1. ENERGY USAGE REDUCTIONS

|                                                                | (Base Year)<br>1975 | (Projected)<br>1985 | (Projected)<br>1990 |
|----------------------------------------------------------------|---------------------|---------------------|---------------------|
|                                                                |                     |                     |                     |
| Energy Usage<br>(MBTU/yr (1)                                   | 2,704,324           | 2,513,009.4         | 2,444,238.4         |
| Active Building Area<br>(Ft <sup>2</sup> ) <sup>(1)</sup>      | 12,300,000          | 11,964,000          | 11,964,000          |
| % Energy Reduction<br>from 1975                                | -                   | 7.1                 | 9.6                 |
| Energy Usage Per<br>Ft <sup>2</sup> (KBTU/yr/ft <sup>2</sup> ) | 219.9               | 210.0               | 204.3               |

(1) Analysis includes Fort Sill Base and Reserve Center

2. Schedule of Energy Conservation Projects. The following projects should be initiated immediately. <u>Calibrate and Restore Controls throughout Base</u> This project has a high SIR value (8.34) and other projects with higher SIR values cannot be initiated until this project is completed.

### Reset Mixed Air Temperature

### Deenergize Ballasts of Delamped Light Fixtures

### Building 3040 Projects

These projects all have a relatively high SIR value; therefore, should be implemented before projects with lower SIR values.

The following projects should be initiated in 1984: <u>Provide Unoccupied Cycle for AHUs on 14 Buildings</u> <u>Surveyed in Increment F</u>

This project has the highest SIR value (53.77) but cannot be initiated until the project "Calibrate and Restore Controls throughout Base" is completed.

### Heat Reclaim Building 1719

### Install Economizer Lockout Control

These projects have a relatively low SIR value and cannot be initiated until the project "Calibrate and Restore Controls throughout Base" is completed.

The following projects should be initiated in 1985:

Install Chiller Optimizers

Relighting Corridors Building 730

### Install Wall Blown-In Insulation

These projects have a relatively low SIR value; therefore, should be implemented after projects with higher SIR values.

The following projects should be initiated in 1986:

Replace Chiller Building 462

### Install Modular Boilers

These projects have a relatively low SIR value; therefore, should be implemented after projects with higher SIR values.