LIMITED ENERGY STUDIES FORT RUCKER, ALABAMA

CONTRACT NUMBER DACA01-92-C-0119

PREPARED FOR: MOBILE DISTRICT U.S. ARMY CORPS OF ENGINEERS MOBILE, ALABAMA

PREPARED BY: ENGINEERING RESOURCE GROUP, INC. P.O. BOX 360687 BIRMINGHAM, ALABAMA 35236 205/985-9090

DISTRIBUTION STATEMENT A

Approved for petitie mission Distribution United

MARCH 1993

19971021 115

DITIC QUALITY INSEECTED 8

P O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Wahill

Marie Wakeffeld, Librarian Engineering

TABLE OF CONTENTS

ACE

<u>SEC</u>	TION	·	PAGE
1.0	INT	RODUCTION AND PROJECT OVERVIEW	1
	1.1	Scope Of Work	1
		1.1.1 LP Gas Storage	1
		1.1.2 Lyster Army Community Hospital	1
		1.1.2.1 Cooling Storage System For	2
		Peak Demand Reduction	2
		1.1.2.2 Chiller Heat Recovery For Domestic Hot Water	2
	1.2		2
	1.2	Description Of Work Criteria And Methodology	2 2 3
	1.5	Organization	4
	1.1	Orgunization	
2.0	EXE	ECUTIVE SUMMARY	6
3.0	ENE	ERGY CONSERVATION OPPORTUNITY:	
	LP C	Gas Storage	10
	3.1	Existing Conditions	10
		3.1.1 Steam Heating Plants	11
		3.1.2 Total Natural Gas Use And Cost	11
	3.2	Size And Demand Considerations	13 13
	3.3	LP Gas Storage Plant	13
		3.3.1 Plant Description3.3.2 Cost Of Plant	14
		3.3.3 Projected Savings	18
	3.4		20
	3.5	Section 3.0 Appendix	31
	~	Appendix 3A. Natural Gas Billing History	32
		- Tr	

TABLE OF CONTENTS

<u>SEC</u>	TION			PAGE
4.0	ENE	RGY CONSERV	VATION OPPORTUNITY:	
	Cool	ing Storage Syste	m For Peak Demand Reduction	56
	4.1	Existing Condi	tions	56
	4.2	U	hand Considerations	56
			1 Metering	58
		4.2.2 Base M		60
	4.3	Cooling Storag	0	63
	4.4	Load And Stor		63
			Strategy	63
	4.5	Cooling Storag	e System	65
		4.5.1 Sizing	-	65
	,	4.5.2 Concept	tual Design	66
		4.5.3 Cost Of	•	70
		4.5.4 Projecte		70
	4.6		ntation And DD Form 1391	74
	4.7	Section 4.0 Ap		79
		* *	Original ECO From 1989 Study-Variable Pumping	80
		Appendix 4B.		101
		Appendix 4C.	Electrical Metering Profiles KW & KVA Demand	104
		Appendix 4D.	Lessons From Field Demonstration And Testing	110
			Of Storage Cooling Systems	116
		Appendix 4E.	Trane TRACE Output 24 Hour Load Profiles	138
		Appendix 4F.	Evaluation Of Storage Strategies 12 Hour To 6 Hou	r 145
			On Peak Storage Scenarios	
		Appendix 4G.	Trane TRACE Output For Chiller Operating KW	174
		Appendix 4H.	Case Studies And Other Technical Support Data On	
		A 1º 4T	Stratified Chilled Water Storage	180
		Appendix 4I.	Brochure And Proposal For Concrete Chilled Water	232
			Storage Tank	<i>L</i> 3 <i>L</i>

TABLE OF CONTENTS

<u>SEC</u>	TION		PAGE
5.0		RGY CONSERVATION OPPORTUNITY:	
	Chill	er Heat Recovery For Domestic Hot Water	239
	5.1	Existing Conditions	239
	5.2	Reevaluation Of Proposed Modifications	239
	5.3	Revised ECIP Documentation For Original ECO Project	
		And DD Form 1391	241
	5.4	ECO Analysis With Cooling Storage	246
	5.5	Section 5.0 Appendix	247
		Appendix 5A. Original ECO From 1989 Study-Chiller	
		Auxiliary Condenser	248
	ENDIX		259
APP	ENDIX	K B. Trane TRACE Building Baseline Model Input And Output	276

1.0 INTRODUCTION AND PROJECT OVERVIEW

In August of 1992, Engineering Resource Group, Inc., was retained by the Mobile District U.S. Army Corps of Engineers to perform Limited Energy Studies at Fort Rucker, Alabama. These studies were to address specific projects at Fort Rucker and at the Lyster Army Community Hospital on base that had potential to reduce energy costs through energy demand control or energy conservation. This report summarizes results from the investigations made by Engineering Resource Group and their consultant into the specific projects defined by the Contract Scope Of Work.

1.1 Scope Of Work

There are two main areas of work addressed under this contract, an LP gas storage study for Fort Rucker and the evaluation of two energy conservation opportunities for Lyster Army Community Hospital.

1.1.1 LP Gas Storage:

The objective of this project was to evaluate the technical and economic feasibility of building and operating a liquified petroleum gas (LPG) storage facility at Fort Rucker. The primary heating fuel at Fort Rucker is natural gas; it is used in central steam plants and in central forced-air furnaces for family housing. Natural gas is purchased from the Southeast Alabama Gas District at their lowest rate. However, Fort Rucker also pays a natural gas demand charge based on the amount of natural gas used during curtailment. During a curtailment period, the natural gas demand is intended to be reduced as much as possible by switching the central steam plants to oil; but the family housing area continues to use natural gas. An LPG storage system would provide the capability of injecting a mixture of air and propane into the natural gas distribution system during curtailment to reduce natural gas demand. This would result in lower gas bills throughout the year.

1.1.2 Lyster Army Community Hospital

An Energy Engineering Analysis Program study was completed for Lyster Army Community Hospital in 1989. The following two projects address one additional project not included in the original EEAP study and a reevaluation of one that had been included. Further analysis is to determine the interrelationship of these two projects.

1.1.2.1 Cooling Storage System For Peak Demand Reduction

The objective of this project was to evaluate the technical and economic feasibility of reducing peak electrical demand at the hospital by use of a cooling storage system. This study will determine the optimum type of cooling storage system for the hospital. Accurate evaluation of this project required the modeling of building thermal loads with an approved computer simulation program such as Trane TRACE.

1.1.2.2 Chiller Heat Recovery For Domestic Hot Water

The objective of this project was to evaluate the technical and economic feasibility of recovering heat from the hospital chillers for preheating domestic hot water with and without the cooling storage system mentioned above. Heat recovery from chillers was recommended in the 1989 study but has not been implemented.

1.2 Description Of Work

In order to completely address all of the considerations required to properly evaluate the projects defined in the Scope Of Work, the following procedures were to be followed in accordance with the contract.

- 1. Review the previously completed energy studies which apply to the buildings, systems, or energy conservation opportunities (ECOs) covered by this study.
- 2. Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.
- 3. Reevaluate the specific project or ECO from the previous study to determine its economic feasibility based on revised criteria, current site conditions and technical applicability.
- 4. Evaluate specific ECOs to determine their energy savings potential and economic feasibility.
- 5. Provide project documentation for recommended ECOs as detailed herein.
- 6. Prepare a comprehensive report to document all work performed, the results and all recommendations.

1.3 Criteria And Methodology

Criteria utilized to reach the conclusions established in this study are as follows. Where appropriate, this information in whole or part is included as part of the appendices.

- 1. "Engineering and Design Energy Conservation", Department of the Army, Office of the Chief of Engineers, Washington, D. C., 20314, ETL 1110-3-282, dated 10 February 1978.
- 2. "Energy Conservation Investment Program (ECIP) Guidance", memorandum CEHSC-FU-M dated 23 November 1991 and revisions dated 28 June 1991 and 4 November 1992.
- 3. "Military Construction, Army (MCA) Program Development", Headquarters Department of the Army, Washington , D. C., Army Regulation 415-15, effective 1 January 1984.
- 4. "Facilities Engineering Energy Storage Systems, Lessons From Field Demonstration And Testing Of Storage Cooling Systems", Department of the Army, U. S. Army Engineering and Housing Support Center, Fort Belvoir, VA, 22060-5516, Technical Note No. 5-670-1, dated 16 April 1992.
- 5. The Southeast Alabama Gas District Billing History, Fort Rucker.
- 6. Alabama Power Company Revision No. 8 Rate Schedule MR-1.
- 7. Alabama Power Company Customer Data Sheet, Year 1992, U. S. Army Aviation Center, Ft. Rucker.
- 8. Alabama Power Company KW/KVA/KVAR Power Factor Summary, U. S. Army Aviation Center.
- 9. 1989 Energy Survey, Lyster Army Community Hospital, Fort Rucker, Alabama, U. S. Army Corps of Engineers Mobile District, Contract Number DACA01-87-C-0084, Energy Management Consultants, Inc., Birmingham, Alabama.
- 10. ASHRAE Handbooks: "1987 HVAC Handbook, Systems and Applications", American Society of Heating Refrigerating and Air Conditioning Engineers, Inc.
- 11. "Means Mechanical Cost Data", 1993 Edition.
- 12. "Investigation Report And Draft Acquisition Plan", Exeter Associates, Inc., Contract Number DACA72-88-D-0005, dated June 1989.

- 13. "Seminar Notes: Thermal Energy Storage Systems", Mackie Associates, November 1992.
- 14. "Case Studies Of Chilled Water Storage", John S. Andrepont, Product Manager, Thermal Systems, Chicago Bridge & Iron Co., 1993.
- 15. "Case Study Of A Large, Naturally Stratified, Chilled-Water Thermal Energy Storage System", Donald P. Fiorino, P.E., Member ASHRAE, IN-91-20-2.
- 16. "Thermal Energy Storage Program For The 1990s", Donald P. Fiorino, P.E., Texas Instruments, Inc., Vol. 89, No. 4, 1992.
- 17. "How To Put A Chill On Rising Energy Costs", NATGUN, 1991.
- 18. "Stratified Chilled-Water Storage Design Guide", Electric Power Research Institute (EPRI), May 1988.

Methodology to evaluate the LP Gas Storage system included a comprehensive review of gas bills from Southeast Alabama Gas District, applicable gas rates and the report prepared by Exeter Associates, Inc., listed above in the criteria utilized list.

Methodology to determine cooling load profiles at Lyster Army Community Hospital included the utilization of Trane TRACE to model the facility. Input data from the original 1989 EEAP Study was retrieved, verified, and a new input model was developed for the specific purpose of evaluating cooling storage. This data was then used to perform manual simulations to determine the impact of cooling storage at the hospital on the base electrical meter.

1.4 Organization

An entry interview was held at Lyster Army Community Hospital on September 9, 1992, to review the project objectives and discuss each participants role and procedures for execution. All parties listed below with the exception of Ms. Winnett were present. Field visits were made by Mr. Jackins and Mr. Guthrie during October, November and December 1992. Evaluations and analysis of the selected projects were done during January and February 1993. The report has been written in March 1993 for the Interim Submittal to be made by 31 March 1993.

The principal participants in the preparation of this study are:

For The Owner: U. S. Army Mr. Tony Battaglia Mobile District U. S. Army Corps Of Engineers

Mr. Bill DeJournett, Energy Manager, DEH Fort Rucker, Alabama

Mr. Alan Plant, Facility Manager, EMCS Lyster Army Community Hospital Fort Rucker, Alabama

For The Contractor: Engineering Resource Group, Inc. Mr. George A. Jackins, P.E. Project Manager

Mr. Boyce Guthrie, P.E. L.P. Gas Peak Shaving Consultant

Ms. Kelly L. Winnett Project Engineer

2.0 EXECUTIVE SUMMARY

In August of 1992, Engineering Resource Group, Inc., of Birmingham, Alabama was retained by the Mobile District U. S. Army Corps of Engineers to perform Limited Energy Studies at Fort Rucker, Alabama. These studies were limited to the evaluation of specific projects that have potential to reduce energy costs through energy demand control or conservation. These projects are:

- 1. <u>LP Gas Storage</u>: Evaluate the technical and economic feasibility of building and operating a liquified petroleum gas (LPG) storage facility at Fort Rucker to reduce natural gas demand charges.
- 2. <u>Cooling Storage System For Peak Demand Reduction</u>: Evaluate the technical and economic feasibility of reducing peak electrical demand at Lyster Army Community Hospital by the use of a cooling storage system.
- 3. <u>Chiller Heat Recovery For Domestic Hot Water</u>: Evaluate the technical and economic feasibility of recovering heat from the hospital chillers for preheating domestic hot water at Lyster Army Community Hospital.

Each project is summarized individually in the following discussions.

LP Gas Storage

During the twelve month period from September 1991 to August 1992, Fort Rucker paid the Southeast Alabama Gas District a total of \$2,019,981.50 for the delivery of natural gas to the base. This natural gas was used to fire boilers in five central steam plants and to heat family housing. Of this total cost, \$491,647.22 or 24% was demand charges. The demand charges each month is established by the highest daily usage during a period of curtailment. On January 16, 1992, when the base was on curtailment, the daily usage was recorded at 3,436 MCF which set the basis for demand charges for the following eleven months. If this one day demand could have been reduced, it would have resulted in a lower delivered natural gas cost for the rest of the year.

One method of reducing this peak daily usage during a period of curtailment is to switch the dual fuel boilers in the central steam plants from natural gas to oil. The investigations conducted in this study indicated, however, that this was not done during the January 1992 period of curtailment. Assuming that there was good reason for not switching to oil during that period, this study examines the use of an appropriately sized LP Gas Peak Shaving plant as the only means of reducing demand during curtailment and evaluates the added benefit of switching from natural gas to oil in the central steam plants. The economics of utilizing various sizes of LP Gas Peak Shaving plants are examined in this study. Considering good practice in the design and operation of such plants coupled with the added benefits of fuel switching in the central steam plants, a capacity of 1,500 MCF per day was selected for the proposed LP Gas Peak Shaving plant.

Annual Savings, MCF Demand	-	1,500
Annual Cost Savings	-	\$200,794
Total Investment		\$970,050
Simple Payback	-	4.83 Years
Total Net Discounted Savings	-	\$4,136,356
Savings To Investment Ratio (SIR)	-	4.26
Adjusted Internal Rate Of Return (AIRR)	-	12.00%

Cooling Storage System For Peak Demand Reduction

Lyster Army Community Hospital, Building 301 located at Fort Rucker, Alabama is a 72 bed total health care facility with a gross area of 206,720 square feet. It is presently cooled by a chilled water plant in the building utilizing three centrifugal chillers with a total capacity of 820 tons. These chillers are currently manually staged by operating personnel to meet building cooling loads.

A comprehensive Energy Engineering Analysis Program (EEAP) was performed at Lyster Army Community Hospital in 1989. The results of this program were available to facilitate the appropriate direction of the Limited Energy Studies evaluated under this contract. One of the Energy Conservation Opportunities (ECO 2) defined in the 1989 study has a significant impact on the ease of implementation of a Cooling Storage System. This ECO provides for the installation of primary-secondary chilled water loops with variable speed pumping in the secondary loop. Base personnel advised that this ECO has been selected for implementation and engineering has been done. The project implementation is now predicated on funding. This project to study a Cooling Storage System for Peak Demand Reduction has been developed assuming that ECO 2 from the 1989 study will be implemented.

An analysis of the 24 hour electrical load profile of the hospital during a peak summer day indicates a relatively level load. This, plus the fact that there are no specific incentives in the electric rate applicable to the base such as off peak demand cost reduction, would indicate that little potential existed for load shifting for demand reduction. However, an examination of the same profile for the entire base reveals a significant swing from on peak loads to off peak loads. This swing on a peak summer day is as much as 15,000 KVA, more than enough to absorb the off peak use of the remaining unused capacity of the hospital chillers for storage. Utilizing Trane TRACE 24 hour cooling load profiles of the hospital, a strategy was developed to store adequate chilled water during off peak hours to meet the total cooling requirements of the hospital during the on peak six hour period the next day. This strategy results in a reduction of monthly demands at the base electric meter for 8 of the 12 months due to the 75% demand ratchet applicable to the peak summer month.

Annual Savings, KVA Demand	-	3,093.6
Annual Cost Savings	-	\$47,964
Total Investment	-	\$338,824
Simple Payback	-	7.06 Years
Total Net Discounted Savings	-	\$651,831
Savings To Investment Ratio (SIR)	-	1.92
Adjusted Internal Rate Of Return (AIRR)	-	7.45%

Chiller Heat Recovery For Domestic Hot Water

The Energy Engineering Analysis Program (EEAP) performed at Lyster Army Community Hospital in 1989 identified and recommended and ECO to utilize waste heat from one centrifugal chiller to preheat domestic hot water. This ECO is reevaluated in this study based on current implementation and energy costs. Additionally, an analysis has been performed of the impact of the selected chilled water storage strategy on this ECO.

Based on a review of the original estimate to implement the chiller heat recovery ECO, it was found that this estimated cost increased from \$21,870 to \$27,820. At the same time energy costs reduced from those used in the original ECO as follows:

Electrical Energy:	From \$0.043993/KWH To \$0.0215/KWH
Natural Gas:	From \$0.411/Therm To \$0.289/Therm

It was established that the methodology and estimates made of energy savings in the original ECO were reasonable and would be used in this reevaluation. The economics of the project change significantly as follows.

Annual Energy Savings:		
Electric	-	139.56 MBTU/Year
Natural Gas	-	963.60 MBTU/Year
Total	-	1,103.16 MBTU/Year
Annual Cost Savings:		
Electric	-	\$879
Natural Gas	-	\$2,785
Total	-	\$ <u>3,664</u>
Total Investment	-	\$31,019
Simple Payback		8.47
Total Net Discounted Savings	-	\$70,248
Savings To Investment Ratio (SIR)	-	2.26
Adjusted Internal Rate Of Return (AIRR)	-	8.00%

The revised economics for this ECO make its desirability for implementation questionable. It must be combined with other projects to be considered as an ECIP project.

As part of this ECO, further analysis was performed to determine the impact of the proposed cooling storage strategy on the heat recovery capability of the centrifugal chiller. Based on Trane TRACE projections of ton-hours produced by the chiller before and after, there was a projected reduction of chiller operating time of 36%. This reduction impacted the estimated energy savings and costs by the same amount. The resulting payback of the heat recovery ECO if combined with the cooling storage ECO is 11.85 years making this ECO not recommended if the cooling storage ECO is implemented.

3.0 ENERGY CONSERVATION OPPORTUNITY: LP GAS STORAGE

The purpose of this study is to determine the economic and technical feasibility of a propane-air peak shaving facility to reduce overall natural gas cost by reducing the monthly demand charge for natural gas.

The calculations for savings use the actual billing figures (see Table 3.1) for natural gas from September 1991 through August 1992 demonstrating what savings would have occurred if a propane-air peak shaving plant were used to reduce demand of natural gas. For purposes of this study propane cost is assumed at \$0.50 per gallon. Lower propane prices are possible during the months of low propane demand.

3.1 Existing Conditions

Ft. Rucker purchases natural gas from Southeast Alabama Gas District under contract No. DA-01-044-A111-278 that bills a commodity charge plus a demand charge. Southeast Alabama Gas District purchases gas from Southern Natural Gas Company, an interstate pipeline Company, then adds a margin for billing to Ft. Rucker under rate schedule OCD-2. The commodity margin is \$0.17307 per MCF and the demand margin is \$0.5903 per MCF per the contract. An adjustment to convert from volumetric to thermal basis is added to the commodity charge. The demand charge per month is determined by the highest daily usage during the year.

Some information for this study was obtained from "Investigation Report and Draft Acquisition Plan" prepared under contract No. DACA72-88-D-0005 by Exeter Associates, Inc. in June 1989. The results of that report found that Ft. Rucker, at the present time, cannot participate in direct purchase and transportation of natural gas because Southeast Alabama Gas District does not offer transportation services. The Exeter study suggests that Ft. Rucker continue negotiations with Southeast Alabama Gas District for direct purchase and transportation.

During the 12 month period from September 1991 to August 1992, the lowest commodity charge of \$2.3678 per MCF occurred in September 1992 and the highest commodity charge of \$3.0357 per MCF occurred in December 1992. The demand charge has a low of \$8.9520 per MCF in June 1992 and a high of \$21.5123 per MCF in February and March 1992. See Table 3.1. The lowest daily usage of 594 MCF occurred on August 5, 1992 and the highest daily usage of 3,436 MCF occurred on January 16, 1992. Ft. Rucker gas supply was on curtailment from January 15 to January 22, 1992. The monthly demand charge for 1991 was established on January 15, 1991, at 3,234 MCF per day. The monthly demand charge for 1992 was established on January 16, 1992 at 3,436 MCF per day.

3.1.1 Steam Heating Plants

Ft. Rucker has five dual fuel (natural gas and No. 2 fuel oil) steam heating plants located throughout the facility. This study can find no evidence that the boilers were switched to fuel oil at any time during the period from October 1991 to September 1992. The demand of 3,436 MCF per day established on January 16, 1992, could have been reduced by approximately 1,000 MCF per day to 2,436 MCF per day if the boilers had been switched to No. 2 fuel oil. The 1,000 MCF per day reduction is based on the Exeter Study, page I-4, Par. 2 which stated, "Ft. Rucker personnel estimated these boilers would add a load of 1,000 MCF per day during peak periods."

3.1.2 Total Natural Gas Use And Cost

The total natural gas usage from September 1992 to August 1992 was 528,600 MCF at a total cost of \$2,019,981.40. The demand portion was \$491,647.22 and the commodity portion with BTU adjustment was \$1,528,334.30. Refer to Table 3.1. This study will focus on reducing the demand cost with a propane-air peak shaving plant.

TABLE 3.1: NATURAL GAS USAGE AND COST (SEPTEMBER 1991 TO AUGUST 1992)

2,019,981.50 116,156.18 113,173.47 112,288.35 115,652.06 112,353.06 216,113.91 274,087.68 315,125.29 251,044.82 178,905.61 117,771.87 97,309.51 TOTAL COST S DEMAND 491,647.22 29,187.82 69,428.48 30,962.83 30,952.52 30,652.82 29,187.82 30,760.10 30,760.10 30,760.10 73,916.26 73,916.26 31,162.11 COST € Strath Rank of CHARGE PER MCF DEMAND 9.4783 9.0253 9.0253 21.4683 21.5123 21.5123 9.0693 8.9523 9.0113 9.0083 8.9523 8.9523 € DEMAND 1/15/91 (MCF) (NEW DEMAND SET ON JANUARY 16, 1992 AT 3,436 MCF) 3,436 3,436 3,436 3,436 3,436 3,436 3,234 3,234 3,234 3,234 3,436 3,436 1,528,334.30 COMM. & 177,128.56 147,743.50 241,209.03 ADJUST. 186,926.09 204,659.20 66,656.69 86,968.36 84,689.23 87,011.77 82,413.37 81,528.25 81,400.54 COST 3 ADJUST. 32,285.03 3,660.18 2,996.27 1,755.39 3,862.64 4,444.76 5,215.46 1,747.20 1,844.13 1,907.83 1,737.05 1,358.21 1,755.91 COST BTU ٩ ADJUST. BTU 2.110 2.190 2.226 2.400 2.080 2.060 2.220 2.210 2.110 2.070 2.030 2.177 (%) 1,496,649.40 183,063.45 200,214.44 235,993.57 173,468.38 79,781.05 82,845.10 79,492.71 44,747.23 85,274.72 65,298.48 85,212.97 80,657.46 COMM. COST Ð 2.84832 2.78237 2.86565 2.86565 3.03576 2.55612 2.65504 2.89129 2.36786 2.99800 2.69185 2.92832 2.82470 COST MCF PER € USAGE 528,600 (MCF) 27,577 29,736 63,882 65,952 78,717 60,902 52,023 33,361 30,379 29,638 28,291 28,142 GAS 222222222 91 91 91 91 91 91 TOTALS MONTH MAR МАҮ AUG NOV DEC APR ND OCT JAN FEB JUL SEP

12

3.2 Size And Demand Considerations

This study analyzed four different sizes of peak shaving systems: 1,000 MCF per day, 1,500 MCF per day, 2,000 MCF per day and 2,500 MCF per day. See Table 3.2. A life cycle cost analysis, included in Section 3.4, indicates the optimum economical size at 2,000 MCF per day. Reducing the demand by 2,000 MCF per day yields a net annual savings of \$251,096.54. A 1,500 MCF per day reduction in demand yields a net annual savings of \$188,322.40. These savings are based on reducing demand with a propane-air peak shaving system operating during curtailment and the heating boilers remaining on natural gas. Additional reduction in demand is available with boilers switched to fuel oil.

While life cycle costing favors a 2,000 MCF per day plant, technical considerations concerning the ratio of propane-air flow to natural gas flow and switching the boilers to fuel oil during curtailment dictate a 1,500 MCF per day plant. The mixture of propane-air flow in relation to natural gas flow is not governed by codes or law, however it is considered good practice to keep equivalent propane-air flow at less than 50% of natural gas flow; particularly if any burners supplied by the system do not have 100% safety shut-off. With a demand of 3,436 MCF per day (January 16, 1992) and a propane-air system size of 2,000 MCF per day the propane-air flow will exceed 50% of natural gas flow at full load even with boilers using natural gas.

Please note that the demand of 3,436 MCF per day was established with the heating boilers using natural gas. If the boilers had been switched to fuel oil during curtailment the demand could have been reduced by approximately 1,000 MCF per day to 2,436 MCF per day without a propane-air system. This is based on the Exeter study Par. 2, Page I-4 which stated, "Ft. Rucker personnel estimated these boilers would add a load of 1,000 MCF per day during peak periods."

A 1,500 MCF per day plant would exceed 50% of 2,436 MCF per day. However, the 1,000 MCF per day demand reduction available by switching the boilers to fuel oil is only an estimate, and the possibility of one boiler having problems with fuel oil exists. Therefore, a 1,500 MCF per day plant provides reserve as well as flexibility with operations.

3.3 LP Gas Storage Plant

In the previous section we state that life cycle costing favors a 2,000 MCF per day plant, however technical considerations concerning mixture of propane-air and natural gas and switching the heating boilers to oil during curtailment dictate a 1,500 MCF per day plant.

The net savings of a 1,500 MCF per day plant with heating boilers using natural gas would have been \$188,322.40. See Table 3.2.

The net savings calculations for reduction of demand charges would apply for any method of reducing demand. If the boilers had been switched to fuel oil during January 15-22, 1992, and the estimate of 1,000 MCF per day reduction in demand noted in the Exeter report is correct, the savings would have been approximately \$120,000 for 1992 without a propane-air peak shaving system.

A new 1,500 MCF per day plant in addition to switching the five heating boilers to oil would have reduced the demand to 1,218 MCF per day (50% of 2,436 MCF per day) on January 16, 1992, producing a demand savings of approximately \$323,733.27. The estimated cost difference between natural gas and a combination of propane/fuel oil is \$50,000.00 during curtailment, for an estimated net savings of \$273,733.27.

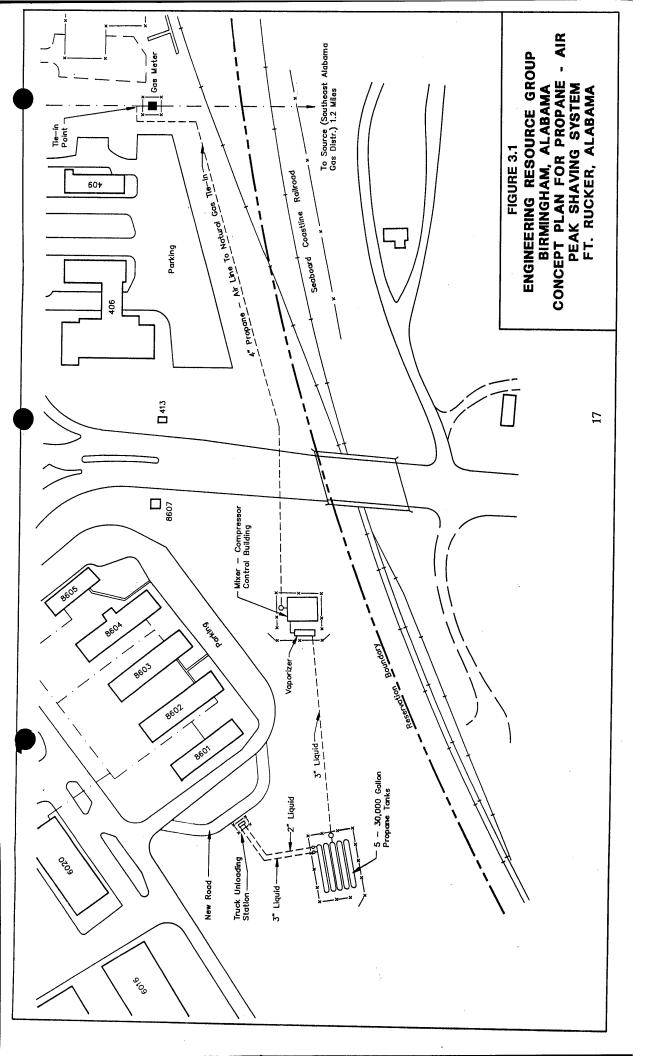
This study recommends the installation of a 1,500 MCF per day propane-air peak shaving system and diligence in switching boilers to fuel oil during curtailment.

3.3.1 Plant Description

The propane-air peak shaving system should have a minimum of five 30,000 gallon storage tanks (7.5 days storage), a high capacity truck unload station, a duplex liquid pumping system with controls, vaporizer, mixer with control package, two 50 hp air compressors, flow control package and building.

The injection point of propane-air into the natural gas line should be just downstream of the natural gas meter and before any branch take-offs of the Ft. Rucker natural gas distribution system. Backfeeding is not recommended because of small line sizes and lack of good mixing of propane-air and natural gas.

A review of plot plan drawings and field inspection dictates only one site suitable for location of the propane-air system. NFPA #58 and 59 codes and good engineering practice dictate distances from storage tanks, vaporizers, mixers and unloading stations from each other and from buildings, property lines, power lines, etc. The only site available is the vacant field across the main entrance road from the natural gas meter station. This vacant field is across the parking area from buildings 1098 and 2098. See Figure 3.1.


This location has been discussed with Ft. Rucker long range planning and does not interfere with future plans.

3.3.2 Cost Of Plant

The following is a breakdown of estimated cost of a 1,500 MCF per day plant.

COST ESTIMATE ANALYSIS For use of this form, in TM 5-800-21 the properties assert is URACE.	E ANAL	Y818 Ment eren	AU IL UBA		INVITATI	INVITATION/GONTRAGTOR	TOA	effotive faiging date $3/93$	AIGINO D.	ATE	DATE PREPARED	0	
PROPANE - AIR PEAK SHAVING SYSTEM	SHA	VING	5.YST	5	CODE (Chuk ent)	╏┕	۴	DAAWING NO.			SHEET /	0 0	SHEETS
LYSTER ARMY COMMUNITY HOSPITAL	NITY	Hos	PITAL	•			,	ESTIMATOR			CHECKED 8Y		
	AVD	QUANTITY			LABOR			EQUIPMENT	Ň	MATERIAL			SHIPPING
TASK DESCAIPTION	NO. OF UNITS	UNIT	MH UNIT	TOTAL HAS	UNIT PAICE	COST	PAICE	COST	UNIT	COST	TOTAL	UNIT	TOTAL
30,000 GALLON					-								
PROPANE TANKS													
AND TRIM	5	EACH	\sum	\sum	000'01	50,000	\square	<u>\</u>	65,000	325,000	375,000		
							ļ				2221212		
TRUCK TRANSPORT			·										
UNLOAD STATION	``	TOB	\square	\square	9,500	9,500	$\left \right $		8,500	8.500	(8,000		
							ļ						
DUPLEX LIGUID		Ĺ		<u> </u>					_				
PUMPING SYSTEM	~	Job		\square	4,000	4,000			(3,000	(3,000	17.000		
										1			
VAPORIZER / MIXER							<u> </u>						
UNIT		JOB		\sum	30,000	30,000			150,000	150,000	180.000		
			 		[<u> </u>	 					
			 	 			. 						
(CONTINUED)													
TOTAL THIS SHEET							<u> </u> .					<u> </u>	
DA FORM HILR, API 25						•							

COST ESTIMATE ANALYBIS Per uit of this form, in TM 6.800-21 the properties arongy is USAGE.	E ANAL	Y818 Ment eren	XaU A Ye		INVITAT	INVITATIÓN/GONTRAGTOR	TOA	LPFEGTIVE PRICING DATE	AJCINO D.		DATE PAEPANED	0	
PROPANE - AIR PEAK SHAVING SYSTEM	HAV	NG C	YSTE				r	DAAWING NO.	-		SHEET 0	0 0	2 HILL
LYSTER ARMY COMMUNITY	UNL	도 · ·	HOSPITAL	-AL		ОТНЕЛ		ESTIMATOR			2		
	V N	<u></u>			LABOA		2	EQUIPMENT	Ň	MATERIAL		Ĭ	SHIPPING
I ALL DESCRIFTION	NO. OF UNITE	UNIT MEAS	UNIT	TOTAL	P.RICE	COST	PRIOR	COST	UNIT PAICE	COST	TOTAL	UNIT	TOTAL
DUAL AIR COMPRESSOR												Ē	¥.
System		JoB		\square	40,000	40,000	\square		80,000	Bown	000021		
											_		
PEAK SHAVING CONTROLS	~	JOB	\backslash	\backslash	(5,000	15,000	\square	$\left[\right]$	80.00	BO.OM	9500		
-										. I	0001/2-1		
BUILDING	-	Job	\square	\square	20,000	20,000			45.000	45,000	12000		
											20074		
NOTE: SITE WORK		ŀ						. .					
TALLOUED IN TTEMS			 -										
1,2,3 AND 7							•						
				-	· ·								
						-							
					[
			 				<u> </u>						
TOTAL THIS SHEET		 									~~~~~~		
DA FORM E418-R, Apr 25											mn'n/Q		

3.3.3 Projected Savings

Calculations based on 1,500 MCF per day peak shaving system, boilers using natural gas and on the following information:

Natural Gas Replaced Per Day	1,500 MCF
BTU Value Natural Gas Jan. 1992	1,022 BTU/ft ³
Commodity Cost Natural Gas Jan. 1992	\$2.998/MCF
BTU Adjustment Jan. 1992	2.21%
BTU Value Propane/Gallon	91,000 BTU/Gal
Propane Cost/Gallon	\$0.50/Gal
Duration of Curtailment (Jan. 15-22, 1992)	8 days

Gallons of propane required for 8 day curtailment:

(1,500,000 ft³/day X 1,022 BTU/ft³ X 8 days)/91,000 BTU/Gal propane = 134,769 Gallons

Cost of 8 day supply of propane:

\$0.50/Gal X 134,769 Gallons	= \$67,384.0	52
------------------------------	--------------	----

Commodity savings at 1,500 MCF per day for 8 days:

1,500 MCF/day X 8 days X \$2.998/MCF	=	\$35,976.00
Plus BTU Adjustment of 2.21%	=	795.07
Commodity Savings	=	\$36,771.07

Cost Increase To Use Propane During Curtailment:

\$67,384.62 - \$36,771.07	=	\$30,613.55
---------------------------	---	-------------

Demand Savings at 1,500 MCF per day:

See Table 3.2	=	\$218,935.95
Less Cost Increase To Use Propane	=	30,613.55
Net Annual Savings	=	\$188,322.40

Simple Payback:

Estimated Cost 1,500 MCF per day plant	=	\$870,000.00
\$870,000.00 / \$188,328.51	=	4.62 years

			/STEM			
MONI	'H/YEAR	DEMAND COST PER MCF	SAVINGS AT 1,000 MCF/DAY	SAVINGS AT 1,500 MCF/DAY	SAVINGS AT 2,000 MCF/DAY	SAVINGS AT 2,500 MCF/DAY
SEP	1991	\$9.4783	\$9,478.30	\$14,217.45	\$18,956.60	\$23,695.75
OCT	1991	\$9.0253	\$9,025.30	\$13,537.95	\$18,050.60	\$22,563.25
NOV	1991	\$9.0253	\$9,025.30	\$13,537.95	\$18,050.60	\$22,563.25
DEC	1991	\$21.4683	\$21,468.30	\$32,202.45	\$42,936.60	\$53,670.75
JAN	1992	\$21.5123	\$21,512.30	\$32,268.45	\$43,024.60	\$53,780.75
FEB	1992	\$21.5123	\$21,512.30	\$32,268.45	\$43,024.60	\$53,780.75
MAR	1992	\$9.0693	\$9,069.30	\$13,603.95	\$18,138.60	\$22,673.25
APR	1992	\$8.9523	\$8,952.30	\$13,428.45	\$17,904.60	\$22,380.75
MAY	1992	\$8.9520	\$8,952.00	\$13,428.00	\$17,904.00	\$22,380.00
JUN	1992	\$8.9523	\$8,952.30	\$13,428.45	\$17,904.60	\$22,380.75
JUL	1992	\$9.0013	\$9,001.30	\$13,501.95	\$18,002.60	\$22,503.25
AUG	1992	\$9.0083	\$9,008.30	\$13,512.45	\$18,016.60	\$22,520.75
ANNU	AL DEMANI	O SAVINGS	\$145,957.30	\$218,935.95	\$291,914.60	\$364,893.25
Gallon	s Of Propane	Per Day	11,231	16,846	22,462	28,077
Propan	e Cost At \$0.5	50/gal/day	\$5,615.50	\$8,423.00	\$11,231.00	\$14,038.50
	Interruption C Propane	lost	\$44,923.08	\$67,384.62	\$89,846.15	\$112,307.69
	odity Savings I 2.21% BTU 2		\$24,514.05	\$36,771.07	\$49,028.09	\$61,285.12
	ncrease To Use ng Curtailmen		\$20,409.03	\$30,613.55	\$40,818.06	\$51,022.57
Natura	l Gas Savings	(Net)	\$125,548.27	\$188,322.40	\$251,096.54	\$313,870.68
Estima	ted System Co	ost	\$715,000.00	\$870,000.00	\$1,050,000.00	\$1,350,000.00

TABLE 3.2: COST AND SAVINGS FOR VARIOUS SIZES OF PROPANE-AIR PEAK SHAVING SYSTEMS

Note: Heating boilers were not switched to oil during eight day curtailment January 15 - 22, 1992. Demand could have been reduced by approximately 1,000 MCF/day if boilers had been switched to oil during that time. A combination of switching boilers to fuel oil and a propane-air peak shaving system will produce greater savings.

3.4 ECIP Documentation And DD Form 1391

Since this project has an estimated cost exceeding \$300,000, it may qualify for the Energy Conservation Investment Program (ECIP). The project Life Cycle Cost Analysis for the 1,500 MCF per day plant indicates the following:

Annual Savings, MCF Demand	-	1,500
Annual Cost Savings	-	\$200,794
Total Investment		\$970,050
Simple Payback	-	4.83 Years
Total Net Discounted Savings	-	\$4,136,356
Savings To Investment Ratio (SIR)	-	4.26
Adjusted Internal Rate Of Return (AIRR)	-	12.00%

Based on this analysis, the project meets the other requirements to be recommended as an ECIP project since the simple payback is less than eight years and the savings to investment ratio is greater than 1.0.

On this basis, programming documentation consisting of DD Form 1391 for the 1,500 MCF per day plant and life cycle cost analysis summary sheets for all four plant sizes investigated are included in this section.

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

•

	REGION NO. 3 PROJECT NO. 2392
LOCATION: Ft. Rucker	REGION NOIROSLOI AUT FISCAL YEAR_1993
DISCRETE PORTION NAME: 1000 MCT 110perto	r Peak Shaving System
ANALYSIS DATE: 10/12/92 ECONOMIC LIFE 20	PREPARER Jackins
	4. 14
1. INVESTMENT COSTS:	
A. CONSTRUCTION COST 30 325	
B. SION	
C. DESIGN COST	
	0
E. SALVAGE VALUE OF EXISTING EQUIPMENT	0
F. PUBLIC UTILITY COMPANY REBATE \$	s 797,225
G. TOTAL INVESTMENT (1D-1E-1F)	
2. ENERGY SAVINGS (+)/COST(-):	
DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FAC	TORS
ENERGY COST SAVING ANNUAL \$ DIS	COUNT DISCOUNTED
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FAC	TOR(4) SAVINGS(5)
SOURCE STILLIO(1) ILLIO(100(-)	
4 FIFC \$	\$
A. EBEO V	\$
B. DIST \$ \$	\$\$
C. RESID \$\$\$ D. NG \$ 2.89 45,956 \$_132,813 2	0.60 \$ 2,735,948
D. NG $\frac{2.09}{43,350}$ $\frac{45,350}{5}$	\$
E. PPG \$ \$	\$
F. COAL \$ \$	\$
-G. SOLAR \$ \$	<
H. GEOTH \$ \$	v
I. BIOMA \$ \$	v
J. REFUS \$ \$	\$
K. WIND \$\$?
L. OTHER \$\$	>
M. DEMAND SAVINGS \$	S
N. TOTAL <u>45,956</u> \$ <u>132,813</u>	\$_2,735,948
3. NON ENERGY SAVINGS (+) OR COST (-):	
5. NON ENERGY ON THE C	
A. ANNUAL RECURRING (+/-) \$	
A. ANNUAL RECORDING ((1-) V	
(1) DISCOUNT FACTOR (TABLE A)	\$\$
(2) DISCOUNTED SAVINGS/COST (3A X 3A1)	

B. NON RECURRING SAVINGS (+) OR COST (-)

-

•

÷

ITEM	SAVINGS(+)	YEAR OF	DISCOUNT	DISCOUNTED SAV-
	• COST(-)(1)	OCCUR. (2)	FACTOR(3)	INGS(+)COST(-)(4)
				•
a	\$	<u> </u>		\$
b	\$		<u></u>	\$
c	\$			\$
d. TOTAL	\$			\$
C. TOTAL NON	ENERGY DISCOUN	TED SAVINGS (3A2+3Bd4)	\$
4. SIMPLE PAY	BACK 1G/(2N3+3	A+(3Bd1/ECONC	MIC LIFE))	. <u>6.00</u> YEARS
	DISCOUNTED SAV			\$ <u>2,735,948</u>
) INVESTMENT RA			3.43
	INTERNAL RATE O			10.00z

.

.

- -

۰

22

• . •

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

.

-

	REGION NO. 3 PROJECT NO. 2392
LOCATION: Ft. Rucker	FISCAL YEAR 1993
PROJECT TITLE: Limited Energy Studies	At Deale Shaving System
PROJECT TITLE: Limited Energy Studies DISCRETE PORTION NAME: 1500 MCF - Propane-	Air Peak Shaving System
ANALYSIS DATE: 10/12/92 ECONOMIC LIFE	20 PREPARER_Jackins
1. INVESTMENT COSTS:	· · ·
A. CONSTRUCTION COLL 5 47,850	
B. SION 57 200	
C. DESIGN COST	
D. TOTAL COST (INCLOSED) - FOUTPMENT	\$ 0
E. SALVAGE VALUE OF EXISTING EQUITIENT	s
F. PUBLIC UTILITY COMPANY REBATE	\$ 970,050
G. TOTAL INVESTMENT (1D-1E-1F)	
2. ENERGY SAVINGS (+)/COST(-):	RACTORS Oct 1992
2. ENERGY SAVINGS (4)/COST(-). DATE OF NISTIR 85-3273-X USED FOR DISCOUNT H	ACTORS
	DISCOUNT DISCOUNTED
ENERGY COST SAVING ANNUAL \$ I	DISCOURT DISCOURTED
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3)	FACTUR(4) SAVINGS(3)
A. ELEC \$ \$	\$
B. DIST \$ \$	\$\$
C PESTD S S	\$
D. NG \$ 2.89 69,479 \$ 200,794	20.60 \$ 4,136,356
E. PPG \$ \$	\$
	\$
F. COAL \$ \$	\$
-G. SOLAR \$ \$	\$
H. GEOTH \$ \$	\$
I. BIOMA \$ \$	\$
J. REFUS \$ \$	\$
K. WIND \$ \$	\$
L. OTHER \$ \$	s
M. DEMAND SAVINGS 5 N TOTAL 69.479 \$ 200,794	\$ 4,136,356
N. TOTAL <u>69,479</u> \$ 200,794	
3. NON ENERGY SAVINGS (+) OR COST (-):	
A. ANNUAL RECURRING (+/-) \$	
(1) DISCOUNT FACTOR (TABLE A)	
(2) DISCOUNTED SAVINGS/COST (3A X 3A1)	\$

B. NON RECURRING SAVINGS (+) OR COST (-)

•

÷

	ITEM	SAVINGS(+)	YEAR OF		DISCOUNTED SAV-
	•	COST(-)(1)	OCCUR. (2)	FACTOR(3)	<pre>INGS(+)COST(-)(4)</pre>
_		s			\$
a	····	<u></u>			¢
b		\$			ə
с.		\$			\$
	TOTAL	\$			\$
c.	TOTAL NON E	NERGY DISCOUNT	ED SAVINGS (3A2+3Bd4)	\$
4.	SIMPLE PAYE	ACK 1G/(2N3+3A	+(3Bd1/ECONO	MIC LIFE))	: <u>4.83</u> YEARS
		ISCOUNTED SAVI			\$ 4,136,356
6.	SAVINGS TO	INVESTMENT RAT	10 (SIR) 5/1	<u>G</u> :	4.26
		TERNAL RATE OF			12.00 x

- -

24

۰. ۱

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

.

٠

	•			DECI	IN NO	3 PROJECT	NO. 239	92	
LOCATION:	Ft. Ruc	cker		KEG	LON NO		FISCAL	YEAR	1993
			y Studies		<u>Cl</u>	- Custom	_1 100.10		
DISCRETE	PORTION N	AME: 2000 N	MCF - Propane	-Air Peak	Shavin	g System			
ANALVETS	DATE: 10/	12/92	ECONOMIC LIFE	20 PREI	PARER	Jackins			
ANALISIS									
		c			·•				
	STMENT CO		s 1,050,000						
	RUCTION CO	351	\$ 57,750						
B. SIOH			\$ 63,000						
	N COST		s 1,170,750						
D. TOTAL	COST (1A	+1B+1C)		s 0					
E. SALVA	GE VALUE	OF EXISTING	G EQUIPMENT	s					
F. PUBLI	IC UTILITY	COMPANY RI	EBATE	≥	(1,170,750			
G. TOTAL	. INVESTME	NT (1D-1E-3	LF)		`		-		
2 ENERG	Y SAVINGS	(+)/COST(-	<u>-)</u> :		0-+ 100	17			
DATE OF 1	TSTTR 85-	3273-X USE	D FOR DISCOUNT	FACTORS _	<u>UCT 195</u>	<u> </u>			
DATE OF 1									
	~^~ ~	SAVING	ANNUAL \$	DISCOUNT	DISCOU	NTED			
ENERGY	COST) SAVINGS(3)	FACTOR(4)	SAVING	S(5)			
SOURCE	\$/MBTU(1)	MBIU/IK(2) 54(1800(5)						
			<u>^</u>		Ŝ				•
A. ELEC	\$		»		s .				
B. DIST	\$		\$		č				
C. RESID	\$		\$		\$ 5,514	001			
D. NG	\$ 2.89	92,636	\$ 267,718	20.60	\$ <u>5,51-</u>	<u>+, , , , , , , , , , , , , , , , , , , </u>			
E. PPG	\$		\$		>				
F. COAL	\$		\$	·	<u> </u>				
-G. SOLAR	\$		\$		\$				
H. GEOTH			\$		\$	<u></u>			
I. BIOMA			\$		\$				
J. REFUS			\$		\$				
	÷		s		\$				
K. WIND	»		\$		\$				
L. OTHER		<u> </u>	\$		s				
	D SAVINGS		0.010 740		\$ 5,51	4,991			
N. TOTAL		92,636	\$ 267,718		* <u></u>				
3. NON	ENERGY SAV	<u>/INGS (+) 0</u>	<u>R_COST_(-)</u> :						
A. ANNIIA	L RECURRIN	NG (+/-)	\$						
(1) DTS	COUNT FACT	TOR (TABLE	A)						
	COINTED SA	AVINGS/COST	(3A X 3A1)		\$				
(2) 015	COURTED OF								

B. NON RECURRING SAVINGS (+) OR COST (-)

.

-

٠

.

÷

17	rem	SAVINGS(+)	YEAR OF		DISCOUNTED SAV-
	•	COST(-)(1)	OCCUR. (2)	FACTOR(3)	INGS(+)COST(-)(4)
		<u>^</u>			\$
a		\$	······		¢
b		\$. <u> </u>	\$
c		\$			\$
d. T01	TAL	\$			\$ <u></u>
C. TO	CAL NON E	VERGY DISCOUN	TED SAVINGS (3A2+3Bd4)	\$
					* 27
4. SIN	PLE PAYB	ACK 1G/(2N3+3/	A+(3Bd1/ECONO	MIC LIFE))	. <u>4.37 YEARS</u>
		SCOUNTED SAV			\$ 5,514,991
		INVESTMENT RAT			4.71
the second s		TERNAL RATE OF			<u>12.00</u> z

.

. ..

.

• . •

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

•

LOCATION: Ft. Rucker PROJECT TITLE: Limited Energy Studies DISCRETE PORTION NAME: 2500 MCF - Propar ANALYSIS DATE: 10/12/92 ECONOMIC LIFE	ne-Air Peak Shaving System	FISCAL YEAR 1995
1.INVESTMENT COSTS:A.CONSTRUCTION COST\$ 1,240,000B.SIOH\$ 68,200C.DESIGN COST\$ 74,400D.TOTAL COST (1A+1B+1C)\$ 1,382,600E.SALVAGE VALUE OF EXISTING EQUIPMENTF.PUBLIC UTILITY COMPANY REBATEG.TOTAL INVESTMENT (1D-1E-1F)	\$\$\$\$\$\$\$	
2. ENERGY SAVINGS (+)/COST(-): DATE OF NISTIR 85-3273-X USED FOR DISCOUNT ENERGY COST SAVING ANNUAL \$ SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3)	DISCOUNT DISCOUNTED	
A. ELEC \$	\$\$ 20.60 \$_6,617,977 \$\$ \$	
 3. NON ENERGY SAVINGS (+) OR COST (-): A. ANNUAL RECURRING (+/-) \$ (1) DISCOUNT FACTOR (TABLE A) (2) DISCOUNTED SAVINGS/COST (3A X 3A1) 	\$	

B. NON RECURRING SAVINGS (+) OR COST (-)

.

.

-

÷

ITH	· · · ·	YEAR OF OCCUR. (2)		DISCOUNTED SAV- INGS(+)COST(-)(4)							
	• COST(-)(1)	00001. (2)	INOIOR()								
a	\$	<u></u>		\$							
Ъ	\$			\$							
с	\$			\$							
d. TOTA	L \$			\$							
C. TOTA	L NON ENERGY DISCOU	NTED SAVINGS ((3A2+3Bd4)	\$							
4. SIMPLE PAYBACK 1G/(2N3+3A+(3Bd1/ECONOMIC LIFE)): 4.30 YEARS 5. TOTAL NET DISCOUNTED SAVINGS (2N5+3C): \$6,617,977											
J. TOTAL REI DISCOUNTED BRITINGS (ENDIDO)											
B. SAVINGS TO INVESTMENT RATIO (DIR/ 5/10.											
7. ADJU	ISTED INTERNAL RATE	OF RETURN (AIF	<u>(K)</u> :	12.00 2							

-

. ..

28

• . •

DLOCA	19_93_ MILITARY CO			N PR	OJECT DA	ra 25	March 93				
	TION		4 280								
				PROJECT TITLE							
т		Fort Rucker					ECIP				
т	Alabama										
	6. CATEGORY CODE	7. PROJE	7. PROJECT NUMBER 8. PROJECT C			CT COST (\$	000)				
	80000		97			970	70				
	9. COS	ST ESTIM	TES		· · · · · · · · · · · · · · · · · · ·						
ITEM				U/M	QUANTITY	UNIT COST	COST (\$000)				
30,000 Gallon Propane Tanks And Trim				EA	5	75,000	375				
Truck Transport Unload Station				LS			18				
Duplex Liquid Pumping System				LS			17				
Vaporizer/Mixer Unit				LS			180				
Dual Air Compressor System							120				
Peak Shaving Controls				LS			95				
Building							65				
Supervision, Inspection & Overhead (5.5%)							48				
Design (6.0%)							52				
							970				
					-						
	rt Un Pumpi r Unit ressor Contro	9, coo ITEM Propane Tanks And Tri rt Unload Station Pumping System r Unit ressor System Controls	9. COST ESTIMA 9. COST ESTIMA Propane Tanks And Trim rt Unload Station Pumping System r Unit ressor System Controls	Propane Tanks And Trim Propane Tanks And Trim rt Unload Station Pumping System r Unit ressor System Controls	9. COST ESTIMATES ITEM Propane Tanks And Trim FA Pumping System r Unit ressor System Controls LS LS LS LS LS LS LS L	9. COST ESTIMATES ITEM U/M QUANTITY Propane Tanks And Trim EA 5 rt Unload Station LS Pumping System LS r Unit LS ressor System LS Controls LS LS LS	ITEM 9. COST ESTIMATES ITEM U/M QUANTITY UNIT COST Propane Tanks And Trim EA 5 75,000 rt Unload Station LS Pumping System LS r Unit LS ressor System LS Controls LS LS				

10. DESCRIPTION OF PROPOSED CONSTRUCTION

The primary facility of the propane-air peak shaving system will include storage tanks, a high capacity truck unload station, a duplex liquid pumping system with controls, vaporizer, mixer with control package, air compressors, flow control package and building. The work is new construction at Fort Rucker. The purpose of this facility is to reduce overall natural gas cost by reducing the monthly demand charge for natural gas. Demolition of existing buildings is not required for site clearance. Accessibility for the handicapped is not required for functional reasons.

11. Project:

Install a propane-air peak shaving facility. This project will save \$200,794 per year and 69,479 MBTU per year of natural gas.

DD FORM 1391

PAGE NO.

PREVIOUS EDITIONS MAY BE USED INTERNALLY

FOR OFFICIAL USE ONLY

Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand	
Fort Rucker Alabama # PROJECT TITLE ECIP REQUIREMENT: This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propal peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	-ch 93
Alabama FROJECT TITLE ECIP REQUIREMENT: This project is required to provide a reduction of overall natural gas cost reducing the monthly demand charge for natural gas by utilizing a proparized shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
REQUIREMENT: This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propar peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
REQUIREMENT: This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propau peak shaving system during a period of curtailment. The project has a savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
REQUIREMENT: This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propau peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propar peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailmen and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
This project is required to provide a reduction of overall natural gas cos reducing the monthly demand charge for natural gas by utilizing a propar peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailmen and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
reducing the monthly demand charge for natural gas by utilizing a propar peak shaving system during a period of curtailment. The project has a Savings To Investment Ratio (SIR) of 4.26. The ECIP Life Cycle Cost A summary sheet is attached. CURRENT SITUATION: Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailment and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
Fort Rucker is billed for natural gas demand charges each month by establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailmen and will lose a potential annual savings of \$200,794 in natural gas demand costs.	ne-air
establishing the highest daily usage during a period of curtailment. This day demand sets the basis for demand charges for the following eleven m An LP Gas Storage plant would reduce this one day demand during curta resulting in a lower delivered natural gas cost for the rest of the year. IMPACT: Fort Rucker will continue to set the same demand usage during curtailmen and will lose a potential annual savings of \$200,794 in natural gas demand costs.	•
IMPACT: Fort Rucker will continue to set the same demand usage during curtailmen and will lose a potential annual savings of \$200,794 in natural gas demand costs.	onths.
and will lose a potential annual savings of \$200,794 in natural gas demand costs.	
	nt d
PREVIOUS EDITIONS MAY BE USED INTERNALLY PAGE NO. UNTIL EXHAUSTED	
FOR OFFICIAL USE ONLY	

SECTION 3.0 APPENDIX

LP GAS STORAGE

FORT RUCKER

APPENDIX 3A

NATURAL GAS BILLING HISTORY

.

•			<u></u>	
60-151	4	AST ALABAMA GZ OST OFFICE 50X 1330 LUSIA, ALABAMA 3		
			25-1002	
SOLD TO DEH			DATE January 8,	
Buildir Utiliti L Fort Ru	ng 1404 Les Division Leker, Alabama 36362		Andalusia Of	fice
SERVICE ADDRESS	Fort Rucker	Da	ABTO 1-74-0153	
DATÉ EX	PLANATION OF CHANGE			AMOUNT
December 1991				
Meter Station #1	2405			
See Analysis She	eet for meter readings and	d consumption = .	33,701 Mcf.	
Meter Station #1				
For daily consume analysis sheets:	nption and meter readings : 32,251 Mcf.	see attached mo	nthly meter	
Commodity Charge	2.			\$200,214.4
65,952 Mcf @ \$3.	- .035760 per Mcf			\$200,214.5
Add BTV adjustme	ent @ 2.22%		•••••	204,659.
Demand Charge: 3,234 Mcf @ \$21	L.468300 per Mcf	Balance Due		<u>69,428</u> <u>\$274,087</u>
Average BTU cont	tent for the month was 10	22.19.		
	cf established February	15 1001	Sworn to and subs this 8th day of J	erib d be anuary 1:
not been received; production and lat applicable to the s	bill is correct and just; that payment the 'hat all statutory requirements as to bor standards, and all conditions of trefnoactions have been complied with a three are not included in the amou By	and that	Sworn to and sub- this 8th day of J arma Notar	Public mission Expires 2
		Clerk	wry Con	

	ן ד אר		11 9	11 6)	=	11 61	1 2	11 9	11 20			9		8	2	11 03	35 11	11 24	37 11	17 11	11 281	72 11	51 11	11 61	53 11	47 11	56 11	11 68	52		59 11	97 11	97 11	= =	: -		952 11		
	TOT	11	112	113	••	m	321	m	a I	175	132	191	179	151		ഫ		JD .	- T	J	336	Ъ.	18,	18	16.	5	S	0	ູ		ึก		- T -	T 1 1			629		18 11 11 11
11 11 11	= =		Ξ	= 0	=	=	=	=	=	= :		-		-	= 0	=	=	1 =	= 6	5	7 ==	=	= 0	- 0	= 0	- 0	-	-	=	- 0	- 0	= 0	- 0		 				
16 81 11 11	۱L.	11	Ű		` 0	67	4	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	J	Ŭ		~	S	0	0	28	ŝ	-	-	-											11 11 11 11	æ		
11 11 11 11			- 6	- 6	 6	- 6	- 6	- 6	- б	- ი	- -	- 6			- 6	- 6	<u>-</u> б	- 6	16	- 6	- 6	- 6	- 6	- 6		- 6		- 6	<u>-</u>		- 6		- 6		-	Ħ	CUSTOME		
17 17 18 19 19	12302 DEFF.	11 11 11 11	20.3	Ś	20.3	20.3	20.3	20.3	20.3	20. J	m i	20. J	620.3	So.	80. 20	20.	20.	20.	620.3	20.		620.3	20.	20.	20.	620:3	20 .	-	20 .	20.	20.	620.3	20 .		* * * *		l u		
8 81 11		11 61 44		_	-	-	-	-	_	-	-		-		_	-		-	-	_	-	-	-	-	-		-	-				-			к — н		THI		
81 61 61 61	12302 NT. DIF	11 11 14	0	0	0	818	ഗ	0	0	0	0	0	0	0	0	0	87		(7)		709	0	0	0	0	0	0	0	0	0	0	0	0		*****		TOTAL, DELIVERY		
11 16 81 81 81		1(1) 11 11 11 11	- 0	122 1	. ^	^	\sim	\mathbf{n}	.	10	N 1	æ		- T		a	a	-	0	H I	-	u .	CU.	CU.	01	1.	78 1	w	u J	0	ν.	-	ų.	1 -	- 0	(8 54 14 14	JL DEI		
41 60 11 11	MCF	11 11 11			വ	15	14	12	6	9	4		0	-⊲		ഗ	đ	12	12	12	14	10	G	σ		19	11	10		2	-	15	12		5	4 11 11	101		
11 11 11			14 1	14	14	14	14 1	14 1	14	14 1	14	14	141	14	14 1	14 1	14	14 1	14 1	14 1	14	14 1	14	141	14	141	14	14	141	4	14	14	14		***				
19 13 18 19	4 L P		375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.	375.				*******				
	1 - 1	11 11 11	- 0	4 I	- 5	7 1	- 9	-0	8	- 6	-		 2	 2	- 0	6 1	1 4 1	121	- 0	1 2		5 1	2 1	- - - - - - - - - - - - - -	1 20	- 02		51 -	- 5 -	1 10	22	65 1	1 1		* * * *				58
- 11	I 🕶 Z	- 11 - 11 - 11		24	ິ	0	60	240	187	m	50	186	162	88	5	116	ው	- T	- T	- T	S.	C)	a)	a	U.	253	F J	-	m	0	S	0	S		* * *		CTED	1638	301
41 41 11	5	• # # #	^	17 1	. ^	\sim		^	. 0	\mathbf{O}	~	\sim	\mathbf{O}	\mathbf{c}	a		a	r.	cu	J		÷	· · · ·	U	U J	-	-	\mathbf{u}	0.	U J	• •	44.7	0.	1 (101	11 01 11	DRRE	92	16-1
	1 4 U	1 11 - 11 - 11	11	10	1	11	ũ 1	11	ā	11	0	σ		11	ъ	10	10	11	11	11	13	11	σ	8	Q	11	10	10	10		12	14	11		337	11 11 11 11		1-1-	5 S
1 t G	ι <u>α</u>		58 1	98 1	74 1	50 1	40 1	66 1	77 1	66 1	27 J	52 1	JD I	- T	ιu	ŝ						• • •	\sim	\sim				\sim	•	Υ.		• •		1	***			2405	
1 	EXT EXT Fort		Ö		m			1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33	1.33		1.33	1.33	1.33			1.34	1.34	1.33	1.34	1.34	1.34	1.33	1.33	1.34	1.34			****			RUN 12	•
1	·	- 8 11 11		A 1	· ·	•••	A.	~	- 13	A 1	23	^ 1	A 1	^ 1	^	<u>م</u> ،	- ^ 1	- M I	- ΛI	່ດເ	24	01	0 1	പ	പ	22	പ			23 1	22	51	22		88	81 81 11	6	•	
	 ВТU	11 11 11 11	108	102	101	108	108	102	102	102	102	102	100	102	10	103	10	10	10	10	0	10	10	10	10	10	10	10	10		10		10	1	316	11 14 11 15 11	6001		
1	. — -	11 14 - 11 11	-	_		-	_		_		_		-	_	-	-	_	-					- 2	– N		_	- 1	– ა	ہ۔ ح		·		. – . വ		-	11 11 11	1	I	
ж Ш С Ш К	P. GR.	11 12 14 14 11	0.572	57			0.574		57	0.573	0,573	5	57	5	5	5	57	5	5	5	5	5.	51	. 57	5	.57	.57	0.57	.57	.57	5	ົ້	5.	1	17.74	11 11 11 11 11 11		r	
	<u> </u>	- 11 11 11	- 0	- 5	1	- 1	- 6	8 1	н В	8				-0		- 6	- 6	- 6	-						8			9	2		. –				**		C	ų.	
KER		11 11 11 11		S	S	ഗ	4	4	4	4	л	4	4	ທ –	(J)	4	4	4	4	. 4	• 4	4	4	. 4	. 4	• •	4	4	4	· 4	. 4			1	PLS -				
Q			å	0	Dec 1				Dec 1	Dec 1	Dec	Dec	Dec	Dec 1	d	a						a C		ć			Ô				1 C		$a \alpha$		101		1000	1755	
œ	DAT		- 1	- (1	1	1	ŧ	1-LC	1	1	-01	1	12-	- 1	- 1		1	1	1	3 0	1			, [,]		5	1.0			הכ	1	, <u> </u>	- 4 -	* * *				

.

= =

NOTE EST. MADE ON THE 25TH 12301

TOTAL 33701

IPREPARED BY:

QD-1	BI THE SOUTHEAST ALABAMA GAS DISTRICT POST OFFICE BOX 1338 ANDALUSIA, ALABAMA 36420	
		25-1082
SOLD TO	DEH PLEASE MAKE REMI Building 1404 Utilities Division	ny 10, 1992 Itance to
1	Fort Rucker, Alabama 36362	
SERVI	Fort Rucker DABTO 1-74-	0153
DATE	EXPLANATION OF CHARGE	AMOUNT
	January 1992	
	Meter Station #12405	
	See Analysis Sheet for meter readings and consumption = 36,631	
	Meter Station #12301 and #12302	
	For daily consumption and meter readings see attached monthly meter analysis sheets: 42,086 Mcf.	
	Commodity Charge:	
	78,717 Mcf @ \$2.998000 per Mcf	\$235,993.57
	Add BTU adjustment @ 2.21%	$\frac{5,215.46}{241,209.03}$
	Demand Charge:	•
	3,436 Mcf @ \$21.512300 per Mcf Balance due	73,916.26 \$315,125.29
	Average BTU content for the month was 1022.10.	
	Billing Demand Mcf established January 16, 1992	
	i certify that this bill is correct and just; that payment therefor has not been received; that all statutory requirements as to American production and labor standards, and all conditions of purchase applicable to the transactions have been complied with and that State or local sales three are bot included in this amounts billed. By With an Office Clark	
🕒 th	norm to and subscribed before me is <u>1075</u> day of <u>2</u> 19 <u>12</u> <u>La acce Perre</u> Notary Public	
	40	

ЧЧ К				
$H \vdash \sigma$;		787 ====	
	" ଅଭିନ୍ୟାର୍ଥ୍ୟ କରୁକ୍ତି ଅଭିନ୍ୟ କରୁ " " " " " " " " " " " " " " " " " " "	3179		1 0 1
1230 0677	ສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສາມສ	* * *	ER D FROM; B:30	Y . W
2302 T. DI		 	S CUSTOM CT DEMAN	
		38907 1	TVERY THT ****** ER CONTRA B:00 TO J	0
SE SE		**************************************	NOTE: UNDE	
1 12301 1 1 INT. DIF	ູ່ ກັດເວັ້ນແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ ແມ່ນ	(* *	200490 1 163859 1 36631 1	
1 12405 1 MCF	100	36631	ing ng 405 =	
l EXT. I FACTOR EESESES	ได้หลังก็ดีดังก็ดังก็ดังก็ดังก็ดังก็ทั่งที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ที่ท	* * * * *	Uff Read On Readi Total 12	
BTU sesesses		31685	022.097	•
5 ii		17. 753 ======= =	14.73 =1	
	ן ו איזעערערערערערערערערערערערערערערערערערערע	 * *	BY: BY: Brid	(
	101-100 102-100 102-100 100-1-100 100-1-100 100-1-100 100-1-100 100-1-100 100-100 10	** TOTAL	AVERAGE E PREPARED	

• •

THE SOUTHEAST ALABAMA GAS DISTRICT GAS CONTROL DEPT.

....

-. ...

- - -

41

. .

GD-181	THE SO	UTHEAST ALABAMA POST OFFICE BOX 13 ANDALUSIA, ALABAM	38	25-1002
SOLD TO DEH Building 140 Utilities Di Fort Rucker,		 	DATE March PLEASE MAKE RE Andalusia	
SERVICE ADDRESS	Fort Rucker		DABTO 1-74-0153	3
DATE EXPLANA	TION OF CHARGE	······································		AMOUNT
Meter Station For daily con analysis she Commodity Cha 60,902 Mcf @ Add BTU adju Demand Charge	Sheet for meter <u>n #12301 and #12</u> nsumption and me ets: 30,952 Mcf <u>urge:</u> \$2.848320 per M stment @ 2.11%	2302 eter readings see a 5.		\$173,468.38 <u>3,660.18</u> 177,125.56
3,436 Mcf @ \$	21.512300 per M		•••••	<u>73,916.26</u> \$251,044.82
Average Btu c	ontent for the	month was 1021.14.		
Billing Deman	d Mcf establish	ed January 16, 199	2.	
not been received production and i applicable to the	; that all statutory req abor standards, and a transaction. have been	that payment therefor has pairements as to American ill conditions of purchase a complied with and that led in the amounts billed. Clerk	me this 9th day	eron

THE SOUTHEAST ALABAMA GAS DISTRICT GAS CONTROL DEPT.

FORT RUCKER FEBRUARY 1992

I DATE	1	TEMP	15	iP.GR.	. 1		BTU	1	EXT		1	12405	1	12301 1	12	301	1	NCF	11	12302 1	1230	2	I MCF	11	TUT
IPUT ON			L		ļ									NT. DIFI						IT.DIFI					DAY
1======		====:	:==																						
101-Feb	ł	43	ŧ	0.57	3 1		1023	1	1.34	33	1	1133	1	2423 1	37	5. 14	1	1221	1	0 1	- 620.	39	1	0 11	235
102-Feb				0.57			1023									5.14		1351		01					255
103-Feb				0.572			1022							2399 1		5.14		1210			620.			6 11	
104-Feb				0.572			1023					935		2044 1		5.14		1031		154 1				8 11	
105-Feb				0.572								1164		2505 1		5.14		1263			620.				242
106-Feb				0.571			1021					1438		3043 1		5.14		1536		01					297
107-Feb				0.572			1022					1348		2854 1		5.14		1439		01					278
108-Feb				0.571			1021							2986 1		5.14		1509		74 1			-		296
109-Feb				0.571			1021					1229				5.14		1382		493 1				2 11	
10-Feb				0.571			1021					1133				5.14		1279		440 1					278
11-Feb				0.571			1020					1110		2418		5.14		1223		283 1			-		257
12-Feb				0.571			1020					970		2137 1		5.14		1080		01					205
13-Feb				0.571			1021					903		1957 1		i. 14		989		01					189
14-Feb				0.572			1021	-			-	733		1601 1		j. 14	-	806	-	01			-		153
15-Feb	1			0.571			1021							1553		i. 14		782		01					148
16-Feb	I			0.572			1022					670		1469		5.14		739			620.				140
17-Feb				0.571			1021					770		1695 1		5.14		852			620.				162
18-Feb		47	. (D . 57 2	I		1021					802		1712		5.14		860			620.				166
19-Feb		48	1 (0.571	I		1020					918	1	2006 1		i. 14		1008	1	01	620.3	39			192
20-Feb l	ļ	46	1 (). 571	I		1020	1	1.34	5	I.	1075	L	2275 1	375	i. 14	F	1145	1	01	620.3	39	1 ()	m
21-Feb		46	1 (). 571	I		1021	1	1.341	5	1	9 99	L	1373 1	375	. 14	1	691	1	01	620.3	39	1 () H	169
22-Feb l		47	1 (). 572	1		1020	1.3	1.33	0	I	780	I	1617 I	375	i. 14	1	812	1	01	620.3	39	1 ()	159
23-Feb 1		49	1 (0.571	i		1020	11	1.337	6	ł	1116	I	819 I	375	. 14	I	411	1	01	620.3	39	I () []	152
24-Feb I		49	1 (). 571	I		1020	11	1.337	6	I	996	L	698 I	375	. 14	1	350	i	01	620.3	39	1 () IÌ	134
25-Feb 1		51	1 0	.572	ł		1021	1 1	1.333	8	I	1014	ł.	393 1	375	. 14	1	197	I	01	620.3	39	I ()	121
26-Feb I				.572			1021	11	1.339	0	I	1276	L	2724 1	375	. 14	1	1368	ł	155 I	620.3	19	1 12)	277.
27-feb l				.573			1022					1111		2413 1	375	. 14	1	1211	1	245 1	620.3	9	1 203	3 11	252
28-Feb I				.573			1021					856		1846 I		. 14		927			620.3				178
29-Feb I				.572										1184 I							620.3				161
AAA TOTA	LS	44													4444	4444			44		44444	44			
			==	=====		===:					==	13122					==							=11:	
WCDLCC					_						-														
AVERAGE	B1 (! 1	4.73	=1	.021.	138		HETE					Т	UTAL	DEL.	IVE	RY TH	IS (CUSTOME	R				6090
												0440												11:	
												0490													
00001000	ارر											=====													
PREPARED	.	I Ŧ							TOTA	L	2	9950													
/	/				/	0								•											
					/(C .					-	3-5	- <	-											

CO 111 POST OF	LABAMA GAS DISTRIC FICE BOX 1338 L, ALABAMA 36420	T	
	25-1002		
	DATE	April 7, 199	92
	l PLEAS	E MAKE REMITT	ANCE TO
DEH Building 1404	And	lalusia Offic	e
usilisios Division			
L Fort Rucker, Alabama 36362			
SERVICE ADDRESS Fort Rucker	DABTO 1-74-0153		AMOUNT
CATE EXPLANATION OF CHARGE			ANOUNI
March 1992			· - ·
Meter Station #12405	consumption = 32,322	Mcf.	
Meter Station #12405 See Analysis Sheet for meter readings and	Company and		
Meter Station #12301 and #12302	cee attached monthly	meter	
Meter Station #12301 and #12502 For daily consumption and meter readings analysis sheets: 19,701 Mcf.	SEE actually may y		
Commodity Charge:			\$144,747.23
$\frac{1}{50,022}$ Maf @ \$2,782370 per Mcf	•••••••••••••••••••••••••••••		2,996.27
Add BTU adjustment @ 2.07%			147,743.50
Demand Charge:		• • • • • • • • • • • • •	31,162.11
3,436 Mcf @ \$9.069300 per Mcf Bala	nce Due	• • • • • • • • • • • • •	<u>\$178,905.61</u>
Average BTU content for the month was 10 Billing Demand Mcf established January 1	6, 1992.		
I certify that this bill is correct and just; that payment the not been received; that all statutory requirements as to production and labor standards, and all conditions of applicable to the transactions have been complied with	American this 7t purchase and that	b day of April	Erron
State or local sales trace are not included in the amoun By Aline		Notary Public	
by <u>Limits</u>	Clork	My Commission Eq	ins Feb. 14, 1996
	44		

• .

THE SOUTHEAST ALABAMA GAS DISTRICT GAS CONTROL DEPT.

:

ORT SUCKER	KARCH 1992						3732243 4	.222222222	
	EMP 1SP.GR. 1	BTU- I EXT. I I	2405 1 123	01 1 12301 1		12302 1 1			iotal I
DHIE IV PUTONI		I FACTOR I I	MCF LINT.	IFI COEFF. I	111	NT.DIFI CC	EFF. I		DAY I
	* <u></u>			, y po g 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					-
01-Kar i	49 1 8.571 1	1828 1.3376	1169 1 6	91 375.14	347 1		28.39 1		1516 I 1387 I
82-Kar 1	50 1 0.572 1	1821 1.3352		83 1 375.14 1	342 1		20.39		1307 1
03-Kar I	49 1 8.572 1	1021 1.3363		56 1 375.14 1	229 1		20.39		1229 1
04-Mar I	51 1 0.572 1	1821 1.3338		68 1 375.14 1			20.39 28.39		1327 1
05-Kar I	58 1 0.572 1	1021 1.3352		27 375.14	464 l		20.39	011	1224
06-Nar I	52 0.572			28 375.14			20.39 1	0 11	1027 1
07-Har 1	0 1 8.572 1		1027 1	0 375.14		-	20.39		1153
88-Mar I	50 1 0.572 1			13 375.14			20.39 1		1152
09-Nar I	54 1 0.573 1			60 375.14			28.39 1	75 11	2160
1 0 M ar 1	49 1 8.572 1			37 375.14	1386 I		20.39 1		2931 1
11-Har I	50 0.571		1281 1 27		1218	_	520.39 1		2366 1
112-Har I	49 1 0.572 1				1158 I		20.39 1	0 11	2250 1
13-Har I	49 1 0.571 1		-	08 375.14 16 375.14		÷ -	628.39 1	0 11	1685
114-Kar I	49 8.571			36 1 375.14 I		- ·	528.39 1	8 11	1727 1
115-Har I	49 1 8.572 1			56 1 375.14 1			620.39 1	0 11	2025
116-Har I	49 1 8.572 1			39 1 375.14 1		-	620.39 1	011	1269
117-Har I	51 0.575			74 375.14	·	81	620.39 1	011	1429
118-Nar I	49 1 0.576 1		-	74 375.14		01	620.39 1	0 11	1362
119-Mar	50 1 0.576 1	1021 1.3363		76 375.14		01	628.39 1	9 11	1933
128 Har 1	49 1 0.572 1 48 1 0.572 1	1621 1.3377		99 375.14		81	620.39 1	0 11	1854
121-Har 122-Har	48 1 0.571 1	1828 1.3389		42 I 375.14 I	925 1	1 8	620.39 1	011	1789
123-Har 1	48 1 6 572 1		1192 1 25		1266 1		629.39 1	52 11	2510
124-Mar I	48 1 8.572 1	1821 1.3377		19 1 375.14 1	1013 1	-	623.39 1	0 11	1960
125-Har 1	48 1 8.571 1	1828 1.3389	683 1 18	193 375.14	951 1		620.39	0 II	1634
126-Har I	49 1 8.572 1	1828 1.3363	1166 14	103 375.14	703 1		628.39 1	0 11	1869
127-Kar I	58 1 8.571 1	1829 1.3364	964 1 13	96 375.14			620.39 1	0 11	1619
128-Mar 1	51 1 8.571 1	1820 1.3350	1214 1 5	548 1 375.14			620.39 1	0 11	1484
129-Har I	49 1 8.571 1	1620 1.3376		597 375.14			628.39 1	011	1549 1500
138 Mar I	51 1 8.571 1	1820 1.3350	1061 1	877 <u>3</u> 75.14			629.39 1	9 11	1796
131-Har 1	51 0.571	1828 1.3350	1005 1 15	579 375.14	791	81	629.39 1	011	175
	S ++ 17.733 =	31642 +++++++ ;		****	19310 + 		#111 ###	391 ====== :	
I	·				10000 7117)		52023
IAVERAGE B	UTU e =1	020.710 IOff Readin IOn Reading	230	762 ITUTAL DEL 440 1	TAFKI IHT		L Contraction of the second seco	-	-=====
IPREPARED	BY:	I		I					
Ram	<u>tall Dr</u> 6-52	1Total 1248	5 = 32	322 I I		<u> </u>			
	<u> </u>								
4-	6-12								

u	; ;	-	
GD-151	HEAST ALABAMA POST OFFICE BOX 13 NDALUSIA, ALABAD	36	·
		25-1002	r K
		DATE May 4, 19	92
SOLD TO DEH Building 1404 Utilities Division Fort Rucker, Alabama 36362		l PLEASE MAKE REM Andalusia Of	- • •
SERVICE ADDRESS	Fort Rucker	DABTO 1-74-0153	•
DATE EXPLANATION OF CHARGE			AMOUNT
<u>April 1992</u>			
Meter Station #12405			
See analysis sheet for meter readings	s and consumptio	n= 26,690 Mcf.	
Meter Station #12301 and #12302			
For daily consumption and meter read: analysis sheets: 6,671 Mcf.	ings see attache	d monthly meter	
Commodity Charge:			+ of 074 70
33,361 Mcf @ \$2.556120 per Mcf		•	\$ 85,274.72
Add Btu adjustment @ 2.037%		• • • • • • • • • • • • • • • • • • • •	<u>1,737.05</u> 87,011.77
Demand Charge:			
3,436 Mcf @ \$8.952300 per Mcf	Bal	ance due	$\begin{array}{c} 30,760.10 \\ \underline{\$117,771.87} \\ \end{array}$
Average Btu content for the month was	s 1020.37.		
Billing Demand Mcf established Januar	ry 16, 1992.	-	
I certify that this bill is correct and just; that payment not been received; that all statutory requirements as production and labor standards, and all conditions applicable to the transaction have been complied wi State or local sales torse are not included in the em By Silical	to Americaa of purchae s th and that	Sworn to and subsc this 5th day of Ma <u>Atmia</u> Notary	y 1992 Canon Public
		My Commission Expires Fe	a. 18, 1995
	46		

		`		
GD-181	THE SOUTHEAST ALAB Post office ANDALUSIA, AL	BOX 1338		•
-			25-1002	
SOLD TO			ne 4, 1992 Make Remittai	NCE TO
DEH Building 1404 Utilities Div L Fort Rucker, A		Anda1	usia Office	
SERVICE ADDRESS	Fort Rucker	DABTO-1-74-0153		AMOUNT
DATE EXPLANATIO	N OF CHANGE			
		•		
<u>May 1992</u>		•		
Meter Station #12405				
See analysis sheet for	r meter readings and consump	ption = 28,808 Mcf.		
eter Stations #12301				
For daily consumption analysis sheets: 1,5	and meter readings see atta 71 Mcf.	ached monthly meter		
Commodity Charge:		;		. · · · · · · · · · · · · · · · · · · ·
30,379 Mcf @ \$2.65504	0 per Mcf		\$	80,657.46
Add Btu adjustment @ 3	2.177%		••••••	<u>1,755.91</u> 82,413.37
Demand Charge:				
3,436 Mcf @ \$8.952300	per Mcf	Balance d	ue	30,760.10 \$113,173.47
Average Btu content f	or the month was 1021.77.			
Billing Demand Mcf es	tablished January 16, 1992.			
not been received; that all (production and labor stand applicable to the trapsaction	ect and just; that payment therefor has statutary requirements as to American ards, and all conditions of purchase has have been complied with and that to not included in the amounts billed.	• me this	4th day of	x Abr
			No Domentesion Expires P	-

EMP ISP.GR. I ITU I EACTOR MCF IINT.DIF I2301 I2 I I I I FACTOR MCF IINT.DIF COEI 65 I 0.572 I 1022 I 3159 964 71 37 65 I 0.572 I 1021 I 4058 934 0 37 66 I 0.572 I 1021 I 4058 1014 0 37 66 0.572 I 1021 I 3147 1034 27 37 58 0.572 I 1020 I 3247 1034 27 37 57 I 0.572 I 1020 I 37 37 59 0.570 I 1020 I 3247 1034 27 37 57 0.570 I 1020 I 3247 1036 84 37 57 0.570 I 1020 I 326<	12301 MCF CDEFF. MCF 375.14 355.14 375.14 135 375.14 135 375.14 135 375.14 135 375.14 135 375.14 135 375.14 135 375.14 133 375.14 193 375.14 193 375.14 193 375.14 193 375.14 193 375.14 193 375.14 193 375.14 193 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75 375.14 75		12302 COEFF. 620.39 620.39	MCF MCF	TOTAL DAY ======= 934
5 10.572 1022 1.3159 964 71 0 0.572 1021 1.4058 934 0 0 0.572 1021 1.4058 934 0 0 0.572 1021 1.4058 934 0 0 0.572 1021 1.3147 1034 27 6 0.572 1021 1.3147 1034 27 8 0.572 1021 1.3247 1034 27 9 0.572 1020 1.3247 1036 84 7 1020 1.3247 1036 84 76 7 0.570 1019 1.3220 936 390 9 7 0.570 1019 1.3220 936 390 9 8 0.572 1020 1.4082 946 0 0 1 0.572 1020 1.4082 946 0 0 1 0.572 1020 1.4082 946 0 0 1 0.572			620. 620. 620. 620. 620. 620. 620. 620.	71 持 7	
0 0.572 1021 1.4058 934 0 0 0.572 1021 1.4058 934 0 6 0.572 1021 1.4058 1014 0 6 0.572 1021 1.3147 1034 27 6 0.572 1021 1.3247 1034 27 9 10.572 1021 1.3247 1034 27 7 10.572 1020 1.3247 1036 84 7 10.570 1019 1.3283 760 1620 2 10.570 1019 1.3220 936 390 0 2 10.570 1019 1.3220 946 0 0 0 0.572 1020 1.4053 946 0 0 1 0.572 10220 1.4053 945 0 0 1 1 1020 1.4053 945 0 0 1 0.572 10220 1.4053 945 0 0 1		0000000000000000	620.39 620.39 620.39 620.39 620.39 620.39 620.39 620.39 620.39		
0 0.572 1021 1.4058 1014 0 6 0.572 1021 1.3147 1034 27 8 0.572 1021 1.3147 1034 27 9 0.572 1021 1.3247 1034 27 9 0.572 1020 1.3247 1036 84 7 10.572 1020 1.3247 1028 715 7 10.570 1019 1.3283 760 1620 2 10.570 1019 1.3220 936 390 1 2 10.570 1019 1.4082 946 0 0 0 0.572 1020 1.4058 946 0 0 1 1020 1.4053 973 151 0 1 1 10.577 1020 1.3209 973 151 0 1 2 10.577 1020 1.3209 973 151 0 1 2 10.577 1020 1.3209 985 <td< td=""><td></td><td>000000000000000000</td><td>620.39 620.39 620.39 620.39 620.39 620.39 620.39 620.39 </td><td></td><td></td></td<>		000000000000000000	620.39 620.39 620.39 620.39 620.39 620.39 620.39 620.39		
6 0.572 1021 1.3147 1034 27 8 0.572 1021 1.3247 1036 84 9 0.572 1021 1.3247 1036 84 7 10.572 1020 1.3247 1036 84 7 10.572 1019 1.3247 1028 715 7 10.570 1019 1.3283 760 1620 2 10.570 1019 1.3220 936 390 0 10.572 1019 1.4082 946 0 0 10.572 1020 1.4058 1026 0 1 10.572 1020 1.4058 945 0 2 0.572 1020 1.3209 973 151 2 0.577 1020 1.3209 945 0		0000000000000	620.39 620.39 620.39 620.39 620.39 620.39 620.39		1014
B 0.572 1021 1.3247 1036 84 9 0.571 1020 1.3247 1028 715 7 10.571 1019 1.3247 1028 715 2 10.570 1019 1.3220 936 390 2 10.570 1019 1.3220 936 390 1 0 10.572 1019 1.4082 946 0 0 1 0 10.572 1020 1.4058 1026 0 0 1 1 10.572 1020 1.3209 973 151 0 1 0.572 1020 1.3209 955 1033 1 2 0.571 1020 1.3209 953 1033 1 2 0.571 1020 1.3209 955 1033 1 0 1			620.39 1 620.39 1 620.39 1 620.39 1 620.39 1 620.39 1		1047
9 0.571 1020 1.3247 1028 715 7 0.570 1019 1.3283 760 1620 2 0.570 1019 1.3220 936 390 0 0.570 1019 1.3220 936 390 0 0.572 1019 1.4082 946 0 1 0.572 1020 1.4058 1026 0 1 0.572 1020 1.4058 1026 0 2 0.572 1020 1.3209 973 151 1 2 0.571 1020 1.3209 985 1033 1 2 0.571 1020 1.3209 985 1033 1 2 0.571 1020 1.4070 1078 0 1		0000000000	620.39 620.39 620.39 620.39 620.39 620.39		1078
7 0.570 1019 1.3283 760 1620 2 0.570 1019 1.3220 936 390 0 0.572 1019 1.4082 946 0 1 0.572 1020 1.4058 1026 0 1 0.572 1020 1.3209 973 151 2 0.571 1020 1.3209 985 103 0 0.571 1020 1.4070 1078 0			620.39 620.39 620.39 620.39	 0 0	1383
2 1 0.570 1 1019 1 .3220 936 1 390 1 0 1 0.570 1 1019 1 .4082 946 0 1 0 1 0.572 1 1020 1 .4058 1 026 0 1 1 1 0.572 1 1020 1 .4058 1 026 1 0 1 1 1 0.572 1 1020 1 .3209 973 1 151 1 2 1 0.571 1 1020 1 .3209 985 1 103 1 0 0.571 1 1020 1 .4070 1 078 0 0 1 0 1		00000000	620.39 620.39 620.39	0	1567
0 0.570 1019 1.4082 946 0 0 0.572 1020 1.4058 1026 0 1 0.572 1020 1.3209 973 151 2 0.571 1020 1.3209 985 103 0 0.571 1020 1.4070 1078 0		0000000	620.39 620.39		1129
0 0.572 1020 1.4058 1026 0 1 0.572 1020 1.3209 973 151 2 0.571 1020 1.3209 985 103 0 0.571 1020 1.4070 1078 0		000000	620.39 1	- 0	946
1 0.572 1020 1.3209 973 151 2 0.571 1020 1.3209 985 103 0 0.571 1020 1.4070 1078 0	44444	00000		0	1026
2 0.571 1020 1.3209 985 103 0 0.571 1020 1.4070 1078 0	- 41 - 41 - 44 - 44 - 44 - 44 - 44 - 44	0000	620.39 1		1048
1 0.571 I 1020 I 1.4070 I 1078 I 0 I	14 14 14	000	620.39		1036
	14 14 14	00	620.39 1	- 0	1078
1 0.571 1 1019 1 1.4070 1 1073 1 0 1	14 14	0			1073
1 0.571 1 1019 1 1.4070 1 1030 1 0 1	. 14	•	620.39 1		1030
I 0.570 I 1019 I 1.4082 I 1035 I 0 I		- 0 -			1035
1 0.572 1 1022 1 1.4058 1 977 1 0 1	141	101	620.39 1	- 0	279
1 0.571 1 1020 1 1.4070 1 946 1 0 1	14	- 0 -	620.39		946
I 0.576 I 1028 I 1.4009 I 802 I 0 I	. 14 1	- 0 -	620.39 1		802
I 0.581 I 1036 I 1.3948 I 793 I 0 I	14 1	101	620.39 1	- 0	262
1 0. 582 1 1037 1 1. 3936 1 829 1 0 1	14	101	620.39 1	- 0	829
I 0.579 I 1035 I 1.3973 I 766 I 0 I	14 1	101	620.39 1	- 0	766
1 0.571 1 1019 1 1.4070 1 683 1 0 1	14	- 0 -	So.		683
1 0.570 1 1018 1 1.4082 1 658 1 0 1	14 1	101			658
1 0. 569 1 1018 1 1. 4095 1 752 1 0 1	5.14	101	so.	- 0	752
1 0.571 1 1021 1 1.4070 1 815 1 0 1	. 14 1	- 0 -	m.	- 0	815
0.571 1020 1.4070 910 0	. 14	101		- 0	910
I 0.570 1019 1.4082 1035 0	. 14	101	20 .	- 0	1035
I 0.571 1020 1.4070 1020 0	375.14 1 0	- 0	80 .	- 0	1020
I 0.571 I 1021 I 1.4070 I 979 I 0 I	375.14 1 0	- 0 -	620.39 1		979
0.571 1021 1.4070 991 0 3	75.14 1 0	101	620.39	1 0	166
** 117.735 31675 *******! 28808 *******!	*******1 1571	*****	-****	11 0	
@ 14.73 =1021.774 10ff Reading 310953 1T0TAL	AL DELIVERY THI	IS CUSTOMER	IER		30379

THE SOUTHEAST ALABAMA GAS DISTRICT GAS CONTROL DEPT.

.

48

•

<u> </u>	
GD-151 THE SO	OUTHEAST ALABAMA GAS DISTRICT Post office box 1338 ANDALUSIA, ALABAMA 36420
DEH Building 1404 Utilities Division Fort Rucker, Alabama 36362	2 DATE July 7, 1992 PLEASE MAKE REMITTANCE TO Andalusia Office
SERVICE ADDRESS Fort Ruckey	r DABTO-1-74-0153
DATE EXPLANATION OF CHARGE	AMOUNT
June 1992	
Meter Station #12405	
See analysis sheet for meter rea	adings and consumption =29,638 Mcf.
Meter Stations #12301 and #12302	
	readings see attached monthly meter
Commodity Charge:	
29,638 Mcf @ \$2.691850 per Mcf	\$79,781.05
Add Btu adjustment @ 2.19%	
Demand Charge:	
3,436 Mcf @ \$8.952300 per Mcf	Balance due $30,760.10$
Average Btu content for the mont	th was 1021.900.
Billing Demand Mcf established J	January 16, 1992.
I certify that this bill is correct and ju not been received; that all statutory production and labor standards, and applicable to the transactions have be State or local sales these are not the Sworn to Althe subscribe	ed before me
this 7th day of July 1 atmic anno Notary Public	49 22
•	ission Expires Feb. 14, 1996

THE SCUTHEAST ALABHRA GHS DISTRICT GAS CONTROL DEPT.

.

	EMP ISP.GK. 1		I EXT.	1	12405	1 12301 1	12301	i	" KCF	1 12302	ł	12302	1	ncf	11	TOTAL
PUT ON I	1 1					IINT.DIFI				11NT.DIF					11	D AY
===========		========	==========	===	:======		========	==:	======	*******	:=:		:===	====	===:	======
01-Jun I	0 0.570		1 1.4082				375.14					620.39		Û	11	1007
02-Jun I	0 1 0.572 1		1 1.4058		1033		375.14	ł	0	1 0	I.	620.39	1	C	11	1033
03-Jun 1	0 1 0.570 1		1.4082	ł	1094	1 01	375.14	I	Ú	I Ú	1	620.39	Ł	Û	11	1094
104-Jun 1	0 0.572		1 1.4058				375.14	1	ύ	l Û	I.	620.39	1	0	11	1052
05-Jun I	0 0.572		1 1.4058		886		375.14	ł	Û	1 0	ł	620.39	I	0	11	388
106-Jun 1	0 0.572		1 1.4058	i	980	1 01	375.14	1	0	1 0	I	620.39	1	0	11	980
07-Jun I	0 1 0.572 1		1 1.4058	t	933	1 01	375.14	I	Û	1 0	1	620.39	I.	0	11	933
108-Jun i	0 0.571	1021	1 1.4070	I	1034	1 01	375.14	1	0	1 0	I	620.39	1	0	П	1034
09-Jun 1	0 0.571		1 1.4070		1065		375.14	ł	0	1 0	1	620.39	ł	0	11	1065
10-Jun i	0 0.571		1.4070		1091	1 01	375.14	1	0	1 0	1	620.39	i	0	11	1091
11-Jun I	0 0.571	1021	1 1.4070	l	1095	1 01	375.14	ł	0	1 0	l	620.39	1	0	11	1095
12-Jun	0 1 0.570 1	1020	1 1.4082	I	1043	1 01	375.14	1	0	1 0	I	620.39	ł	0	11	1049
13-Jun I	0 0.571		1.4070		1002	1 01	375.14	ł	0	1 0	I	620.39	1	0	11	1002
14-Jun l	0 0.571		1 1.4070		926	1 01	375.14	ł	0	1 0	ł	620.39	t	0	11	926
15-Jun I	0 0.571		1 1.4070		970		375.14	I	0	1 0	l	620.39	I	0	11	970
16-Jun I	0 0.571		1 1.4070		987		375.14		0	1 0	1	620.39	ł	0	П	987
17-Jun i	0 1 0.572 1		1 1.4058		999		375.14	1	0	1 0	I	620.39	ł	Ú	П	999
18-Jun I	0 0.572		1 1.4058		990	-	375.14		0	1 0	i	620.39	ł.	0	11	990
19-Jun I	0 1 0.572 1		1 1.4058		891		375.14				I	620.39	ł	0	11	891
20-Jun I	0 1 0.572 1		1 1.4058		860		375.14			i 0	ł	620.39	L	0	11	860
21-Jun I	0 0.572		1 1.4058		934		375.14		0	1 0	L	620.39	I	0	11	934
22-Jun I	0 1 0.572 1		1 1.4058		1021		375.14		0	1 0	ł	620.39	1	0	11	1021
23-Jun 1	0 1 0.572 1		1 1.4058		1007		375.14		0	1 0	1	620.39	1	0	11	1007
24-Jun I	0 1 0.573 1		1 1.4046		1000		375.14				1	620.39	1	0	11	1000
25-Jun i	0 0.572		1 1.4058		993		375.14		0	1 0	I	620.39	1	0	11	993
26-Jun 1	0 0.572		1 1.4058		973		375.14		Û	1 0	ł	620.39	1	0	н	973
27-Jun 1	0 0.572		1 1.4058		959		375.14		0		I	620.39	1	0	11	959
26-Jun I	0 0.571		1 1.4070		888		375.14		0	1 0	I	620.39	ł	0	11	888
29-Jun I	0 0.572		1 1.4058		936		375.14				۱	620.39	t	0	11	936
30-Jun I	0 0.572		1 1.4058		983		375.14				ł	620.39	1	0	11	983
*** TOTALS	** 117.146 I	30657	******	E	29638	<u> ******</u>	*******	¥1	Û	*****	6 I	*******	¥ į	0	11	
	*******	******		=	======	:		:	=====	=			==	====	=11	
·																
AVERAGE BT	U (2 = ;					340591 1		LI	iery ti	HIS CUST	DHE	ER				29638
			10n Readi	ing		310953									:	======
PREPARED B	Y:		1			1										
			ITotal 12	240	5 =	29638 1										

50

•

THE SOUTHEAST ALABAMA CAS DISTRICT	
ANDALÚSIA, ALAŬAMA 36120 25-1002	
DATE August 6, DEH PLEASE MAKE REMIT Building 1404 Utilities Division Fort Rucker, Alabama 36362 Andalusia Off	TTANCE TO
SERVICE ADDRESS Fort Rucker DABT0-1-74-0153	
INTE EARLANNTION OF CHANGE	THUOMA
<u>July 1992</u> <u>Meter Station #12405</u> See analysis sheet for meter readings and consumption = 28,291 Mcf.	
eter Stations #12301 and #12302	
For daily consumption and meter readings see attached monthly meter analysis sheets: 0 Mcf.	
Commodity Charge:	- · ·
28,291 Mcf @ \$2.928320 per Mcf	\$ 82,845.10
Add Btu adjustment @ 2.2267	<u>1,844.13</u> 84,689.23
Demand Charge:	
3,436 Mcf @ \$9.011300 per Mcf Balance due	<u>30,962.83</u> \$115,652.06
Average Bty content for the month and 1029 26	
Average Btu content for the month was 1022.26. Billing Demand Mcf established January 16, 1992.	
I certify that this bill is correct and just; that payment therefor has not been received; that all statutery requirements as to American production and labor standards, and all conditions of purchase applicable to the transactions have been complied with and that State or local sales takes any not instructed in the amounts billed.	of August 1992
By Stand Classical Adda Adda Adda Adda Adda Adda Adda Ad	y Public pires Feb. 14, 1996

SOUTHERN NATURAL GAS COMPANY Ferc gas Tariff Siath Revised Volume No. 1

~

 Une Nundred Twentleth Rev. Sheet No. 4A. Superseding One Nundred Mineteenth Rev. Sneet No. 4A

Lesued by: Greg P. Meyers, Vice-Pres. Rates Issued on: July 29, 1992

THE SOUTHEAST ALABANA GAS DISTRICT GAS CONTROL DEPT.

.

FORT RUCK	ŒR	JULY 1997	2						========================		=======	
I DATE I	TEMP	ISP.GR.	BTU			i 12301		I NCF	1 12302 1		BCF II	TOTAL I
IPUT ON I		1		I FACTOR		IINT.DIF			IINT.DIF			
=====================================		1 0.572		1.4058			375.14			620.39 1		
101-Jul 1 102-Jul 1		1 0.572		1.4058					-			757 1
103-111		1 0.570		1 1.4082			375.14					
104-Jul 1	0	1 0.572	1022	1.4058								
105-Jul 1		1 0.571		1 1.4070								
106-Jul 1		1 0.571		1 1.4070								
107-Jul 1		1 0.572		1 1.4058				-		620.39 I 620.39 I		
108-Jul		1 0.572		1.4058 1.4021		-		-				
109-Jul 110-Jul		0.575 0.571		1.4021							ŏii	
110-Jul 1		1 0.572		1.4058		•			• • • •	620.39 1		
112-Jul 1		1 0.572 1		1.4058		•			• • •			881 11
113-Jul 1		1 0.572		1.4058			375.14		1 01			
114-Jul 1		1 0.572 1		1 1.4058		1 01	375.14					
115-Jul 1		1 0.572 1		1 1.4058		•				620.39		
116-Jul 1		1 0.574 1		1.4033			375.14		1 01	620.39 1	0 11	
117-Jul 1		1 0.572		1 1.4058						620.39 I 620.39 I	011	
118-Jul 1	0			1.4070				I 0 I 0			0 11	
119-Jul 1		1 0.571		1.4070 1.4058					• • •	620.39	0 11	
120-Jul 121-Jul		1 0.572 I 1 0.571 I		1.4070					i õi	620.39 1	0 11	
122-Jul		0.572		1.4058				i õ	• • •	620.39 1	Ō İI	965 11
123-Jul 1		1 0.573 1		1.4046				• -		620.39 1	0 11	1011 11
124-Jul		1 0.572 1		1.4058		• • •		Î Û	1 01	620.39 1	0 11	
125-Jul 1	Ō	1 0.572 1		1.4058		1 01					0 11	
126-Jul 1		1 0.572 1		I 1.4058 I						620.39	0 11	
127-Jul 1		1 0.572 1		1.4058							0 11	
128-Jul		1 0.572 1		1.4058						620.39 620.39	011	
129-Jul 1		1 0.572 1		1.4058				I 0 I 0		620.39 1	ŎIJ	
130-Jul 131-Jul		0.572 0.573		1.4058 1.4046		• • • •		• -		620.39 I	ŏii	
			1043		001) V I 	J/J+11	· · ·				
	LS 44	117.731 1	31690	44444444	28291	*******	44444444	1 0	[4444444]	********	0 11	
					222222			======	•		======	1 1
AVERAGE 1	ianii		1022.251	Ilff Dondi	70	TARA T	TUTAL DEL	IVERT TH	IS CIESTIN			28291
татьаясь 1 [- 11010 -	20220 <i>2</i> 010	IOn Readin	M	340591					·	=======
PREPARED	BY://	P			-							11
1		<	\frown i	Total 124	05 =	25291						
	1.0	-6-97	7_ 1			1						11

GD-181	THE SOUTHEAST ALAE POST OFFICE ANDALUSIA, AL	BOX 1338	,
		25-1002	
		DATE September 8	, 1992
SOLD TO	DEH	PLEASE MAKE REMIT	ANCE TO
	Building 1404 Utilities Division		
L	Fort Rucker, Alabama 36362	Andalusia Offi	ce
SERVICE	Fort Rucker	DABTO-1-74-0153	AMOUNT
DATE	EXPLANATION OF CHARGE		
August 1	<u>1992</u>		
	tation #12405	: :	
See anal	lysis sheet for meter readings and consu	nption = 28, 142 Mcf.	
Meter St	cations #12301 and #12302_		
	ly consumption and meter readings see att s sheets: 0 Mcf.	cached monthly meter	
Commodit	y Charge:		
28,142 M	acf @ \$2.824700 per Mcf		\$ 79,492.71
Add Btu	adjustment @ 2.4007		<u>1,907.83</u> 81,400.54
Demand C	harge:		
3,436 Mc	f @ \$9.008300 per Mcf	Balance due	30,952.52 \$112,353.06
Average	Btu content for the month was 1024.00.		
Billing	Demand Mcf established January 16, 1992.		
	-	Sworn to and before me this September 1992	8th day of
I certify the	at this hill is correct and just; that payment therefor has		W.
Droguetion	coived; that all exatutory requirements as to Assorican and labor standards, and all conditions of purchase to the transactions, here here consolid with and that	(uma) (a	nnor-
State or les	to the trapeaction have been complied with and that cal cales there are not indicated in the suspents billed.	Notery	
	and the second s	My Commission Expires (pb. 14, 1996
	54		
}			

THE SOUTHEAST ALABAMA GAS DISTRICT GAS CONTROL DEPT.

DAY	04000000000000000000000000000000000000	and for the second	
==		==	
j	000000000 000000000000000000 000		
MCF		i 11 1 14 1 11 1 11	
			.
0 1 1 0	ַרַיּוּריניוניוניוניוניוניוניוניוניוניוניוניא יש א נאנאנאנאנאנארא פארא פארא פארא איירא איירא איירא א	 -	
	຺ ຎຉຉຉຉຉຉຉຉຉຉຉຉ <mark>ຉຉຎຎຎ</mark> ຎຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉຉ	# # # #	E R
		¦∓ ¥	INOT
12302 NT. DIF	000000000000000000000000000000000000000		cust
_=			SIH
MCF	000000000000000000000000000000000000000		ERY TI
			IVE
	444444444444444444444444444444444444444		
301 1.		· * *	
COEF		1 * 1 * 1 *	ATOT A
	000000000000000000000000000000000000000) — * *	Fala
12301 INT. DI		·	39702 ¹ 368882 28142
i			
12405 MCF	I − − − − − − − − − − − − − − − − − − −	2814	
			5512
B		* * *	
PCT PCT	14444444444444444444444444444444444444		
		* *	
	MWO-00444400404M4404040000040404M460	i 1	0
<u>ה</u>	000000000000000000000000000000000000000	174	000
B1	· · · ·	1 10 11	1024.
			1.4 6.71
			m la
69		17	F.]
SP.	000000000000000000000000000000000000000	17.	
		-	e /a
d E	i de la constante de	# # 	
		່ວ	
]		010	GE RED
щN		ĨĔ	E C C
αĿ			PREI

•

i

ł

ŧ

4.0 ENERGY CONSERVATION OPPORTUNITY: COOLING STORAGE SYSTEM FOR PEAK DEMAND REDUCTION

4.1 Existing Conditions

The Lyster Army Community Hospital is presently cooled by chilled water provided by three centrifugal chillers located in the main mechanical room in the building. The total plant capacity is 820 tons with two 230 ton chillers and one 360 ton chiller. These chillers are presently manually staged by operating personnel to meet building loads.

As part of the Energy Engineering Analysis Program performed in 1989 in the Lyster Army Community Hospital, ECO 2 was identified to convert this chilled water plant from constant chilled water flow to variable water flow utilizing primary-secondary chilled water loops. A copy of this ECO is included in Appendix 4A of this section for review. Personnel at Fort Rucker have indicated that this ECO has been selected for implementation and designs have been completed with funding yet to be committed to the project. The considerations contained in this new study are based on the assumption that a cooling storage system would be interfaced with this plant following the implementation of the primary-secondary chilled water pumping system. It should also be noted that this modification is necessary in order to facilitate the most functional use of the proposed cooling storage system.

4.2 Rate And Demand Considerations

Fort Rucker is provided electrical energy by Alabama Power Company as a municipal customer under Rate Schedule MR-1. Service is provided to Fort Rucker at transmission voltage of 115 KV. Charges for service are as follows:

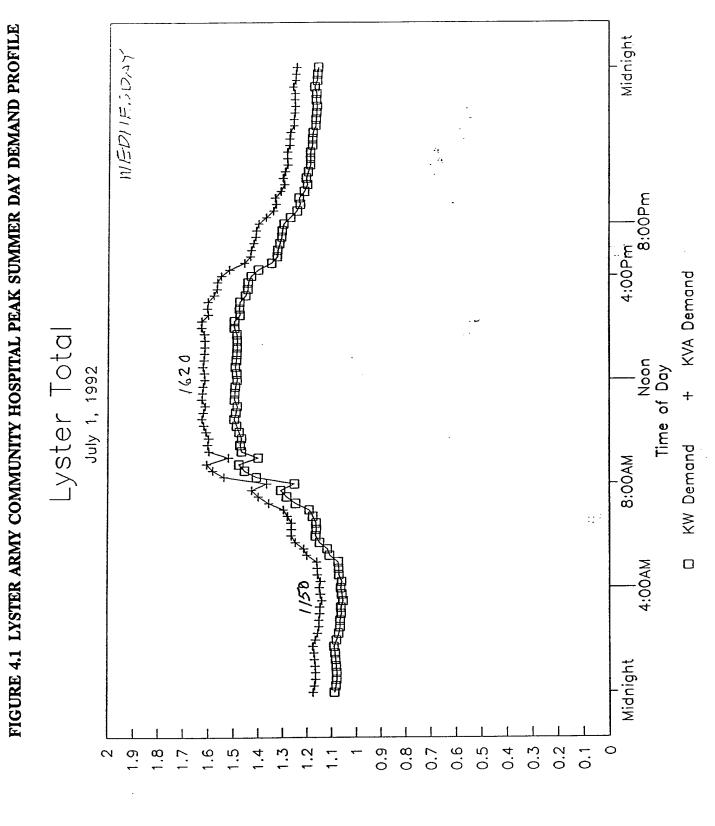
Billing Demand		\$10.09 per KVA
Energy	-	\$0.0215 per KWH

The electrical rate applicable to the base is also subject to a 75% ratchet of peak summer demands. A peak demand occurring during the months of June through October result in a minimum billed demand for the following eleven months of 75% of that peak. For example, the electrical billing history of the base included in this section shows the peak summer demand at the base occurring in July, 1991 was 28,800 KVA. Based on the 75% ratchet, a minimum billed demand for the following eleven months would be 21,600 KVA. This feature of the electrical rate is significant in evaluating the economic impact of cooling storage at the hospital.

The following is a history of demands, energy use and cost for the electrical service to Fort Rucker for the twelve month period beginning July, 1991 through June, 1992. A copy of the applicable rate schedule and billing history is included in Appendix 4B of this ECO section.

MONTH	ACTUAL DEMAND (KVA)	BILLED DEMAND (KVA)	CONSUMPTION (KWH)	TOTAL COST (\$)
JUL 1991	28,800	28,800	12,936,000	537,460
AUG 1991	28,656	28,656	14,136,000	559,904
SEP 1991	28,627	28,627	13,104,000	539,060
OCT 1991	27,936	27,936	9,816,000	445,832
NOV 1991	21,225	21,600	8,808,000	367,513
DEC 1991	16,704	21,600	7,896,000	354,644
JAN 1992	16,588	21,600	7,344,000	344,239
FEB 1992	16,473	21,600	7,920,000	355,095
MAR 1992	16,963	21,600	7,368,000	373,109
APR 1992	21,772	21,772	7,776,000	377,678
MAY 1992	25,776	25,776	9,672,000	456,600
JUN 1992	26,496	26,496	11,592,000	491,756
TOTALS			118,368,000	\$5,202,890

TABLE 4.1: FORT RUCKER ELECTRICAL BILLING HISTORY


Another significant factor regarding the applicable electric rate at Fort Rucker to the utilization of cooling storage for demand control is the fact that there is no time of day rate incentive for off peak power use. Demand rates remain constant at all times of the day. Alabama Power Company, however, is presently developing a time of day rate to encourage off peak power use. They anticipate that this new rate will be available to their large commercial and industrial customers within the next year. Present indications are, however, that this rate will not be available for municipal customers at this time due to the already low energy pricing. The fact that this new rate will be offered by Alabama Power Company is cause for energy managers at Fort Rucker to monitor the situation closely to determine if it can be advantageous. Such a rate would certainly make off peak cooling storage more economically attractive.

4.2.1 Hospital Metering

Lyster Army Community Hospital has owner installed electrical sub-metering equipment to interface with the Building Automation System so that demand control strategies may be implemented by building operators. As a part of this study, this metering equipment was utilized to do a 24 hour demand profile for a period of 10 days in the peak cooling period last summer. The purpose of this sub-metering was to assess the diversity of load over a peak 24 hour period to determine if there was an opportunity to levelize the load with cooling storage and reduce the peak connected load of the hospital. These meters are not used for billing purposes by Alabama Power Company.

Figure 4.1 shown on the following page indicates the load profile of the hospital for a typical peak cooling day. The load profiles for the total ten days of metering is included in Appendix 4C of this ECO section.

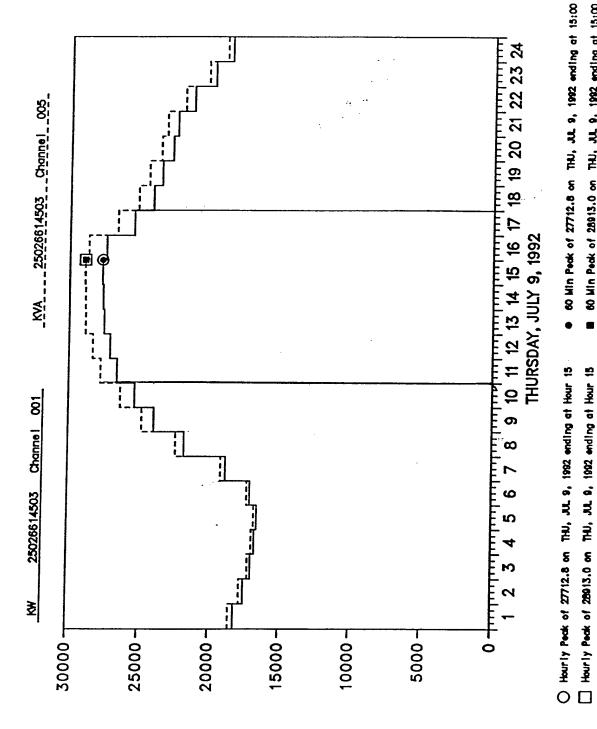
This data indicates that the 24 hour load profile of the hospital is relatively level with high off peak loads. The swing in loads from on peak to off peak ranges from 400 to 500 KVA. This provides little opportunity within the hospital to incorporate a load shifting strategy for demand control.

(spuosnoy1) Demand

4.2.2 Base Metering

Similar metering of the main electrical service to Fort Rucker indicated a very different situation. The peak electrical load during the past year was set on Thursday, July 9, 1992 at 28,913 KVA at 1,500 hours. The off peak minimum load during that same day was 16,582 KVA set at 0400 hours. The swing in the daily load of 12,331 KVA provides a significant opportunity for a load shifting strategy for demand control. It should also be noted that the peak demand recorded on this date set the ratcheted minimum billed demand for the next eleven months at 21,600 KVA. Figure 4.2 and Table 4.2 on the following pages depict the loads during this peak day in tabular and graphical form.

Based on this information and the fact that anything done at the hospital to reduce connected electrical loads during this peak period will reduce base demand charges provides adequate basis to pursue a cooling storage strategy.



60 Min Peck of 28913.0 on THU, JUL 9, 1982 anding at 15:00 $\,$

JCT APCo Load Research

DEMAND

APCO PEAK SUMMER DAY ELECTRICAL DEMAND DATA **TABLE 4.2**

ł

4.3 Cooling Storage System Type

The existing chilled water cooling system in Lyster Army Community Hospital makes chilled water storage the logical choice for the system to be evaluated. Preliminary economic analysis indicates that the savings potential for demand reduction will not justify duplication of refrigeration equipment as would be required with ice storage. In addition, space for a chilled water storage tank is readily available in reasonable proximity of the mechanical room outside the hospital.

Further, Technical Note No. 5-670-1, entitled "Lessons From Field Demonstrations And Testing Of Storage Cooling Systems" dated 16 April 1992 distributed by Department of the Army, Facilities Engineering, provides system selection criteria that would support this choice. A copy of this technical note is included in Appendix 4D of this ECO section for reference.

4.4 Load And Storage Analysis

The Trane TRACE program was utilized to establish the hourly cooling demand for a design day for each month of the year for the Lyster Army Community Hospital. Input to develop this data was extracted from the Trace Analysis included in the original 1989 study of this facility, verified, and re-entered into the program to perform this specific analysis. Output from this analysis is included in Appendix 4E of this ECO section.

The hourly cooling demand data identified the peak cooling day for the year in the hospital occurring during the month of August. The total cooling required during this 24 hour day is 9,046.1 ton-hours. At the present time, the chiller plant is producing most of this capacity during peak cooling hours which correspond to the Base peak electrical load period. Numerous strategies were evaluated with this data to examine means of shifting a portion of this load through chilled water storage to reduce the peak demand at the base electrical meter. This analysis showing storage strategies ranging from 6 to 12 off peak storage hours is included in this study in Appendix 4F in this ECO section.

4.4.1 Storage Strategy

Analysis of 24 hour load profiles on peak days for the base indicates that the peak occurs at 1400 hours. Load shedding that could occur during the six hour period from 1100 hours to 1700 hours would have approximately 2200 KVA of connected load to work with, far in excess of shedding potential from the chiller plant at the hospital. For this reason a storage strategy was selected to meet the total cooling requirements of the hospital during this six hour period. The peak storage requirement occurring in August is 3078.9 ton-hours and the system selected for this ECO is based on this criteria. This selection results in the smallest possible storage tank to achieve the optimum demand reduction. The total cost benefit occurs from the reduction of peak demand during the peak month and the associated reduction in other months due to the 75% ratchet. The following tabulation, Table 4.3, indicates the anticipated reduction in connected loads for each month due to the chiller plant not operating during the six hour on-peak period. The KW values shown were extracted from TRACE data as the monthly connected loads for each chiller. Note the storage system is not utilized during the winter months since monthly base demands were already below ratcheted minimums and there was no further benefit to be realized. The TRACE data showing chiller KW data is included in Appendix 4G of this ECO section.

MONTH	CHILLER #1 (KW)	CHILLER #2 (KW)	CHILLER #3 (KW)	TOTAL SAVINGS (KW)
JAN	0.0	0.0	0.0	0.0
FEB	0.0	0.0	0.0	0.0
MAR	0.0	0.0	0.0	0.0
APR	176.6	187.9	0.0	364.5
MAY	177.5	232.0	0.0	409.5
JUN	190.3	246.9	35.7	472.9
JUL	194.6	251.7	37.8	484. 1
AUG	193.8	253.0	0.0	446.8
SEP	179.4	239.8	33.5	452.7
OCT	168.6	139.5	0.0	308.1
NOV	155.0	0.0	0.0	155.0
DEC	0.0	0.0	0.0	0.0

TABLE 4.3: MONTHLY DEMAND SAVINGS FOR COOLING THERMAL STORAGE

There should be a nominal reduction in the energy consumption of the chillers operating during cooler night time hours. These reductions are likely to be offset by thermal losses in the chilled water storage system. For this reason, only the savings achieved by demand reductions are considered in this analysis. It should be anticipated, however, that once this system performance in optimized by experience, the total electrical cost reductions will exceed the projections in this study.

4.5 Cooling Storage System

The chilled water cooling storage system selected for this ECO is based on the utilization of the concept of thermally stratified chilled water. Thermally stratified systems take advantage of the tendency of water to separate into horizontal layers by density, a temperature-dependent characteristic. Under proper conditions, density differences create a temperature gradient region - a thermocline - that forms a barrier between warm and cold water. This greatly simplifies the withdrawal and charging processes. In recent years a great deal of research and development has been performed on this thermal storage concept and a number of systems are operating very successfully. Reliable design information is now available from several sources such as the Electric Power Research Institute.

Two documents that were helpful in developing this conceptual information are "Stratified Chilled Water Storage Design Guide" developed for the Electric Power Research Institute, and a paper entitled "Chilled Water Storage" authored by E. Ian Mackie, P.E. This paper is included in Appendix 4H of this section. The design guide can be made available.

4.5.1 Sizing

Based on the established peak storage requirement of 3,078.9 ton-hours and a consideration that an estimated 10% of the volume is not usable, the total storage capacity for this system should be approximately 3,500 ton-hours. The current chilled water discharge temperature from the chiller plant of 42°F will be maintained for storage. It will be assumed for the purposes of this study that water is returning from storage at 54°F for a 12°F average temperature difference. Therefore, the volume of the storage tank is calculated as follows:

VOLUME (Gallons) =		Load (BTU)	
	8.33 lbs/gal	Specific X Heat	Avg. Temp. X Difference
VOLUME (Gallons) =	3,500 2	X 1,2000	
	8.33 X 1	1.0 X 12	

VOLUME (Gallons) = 420,000 Gallons

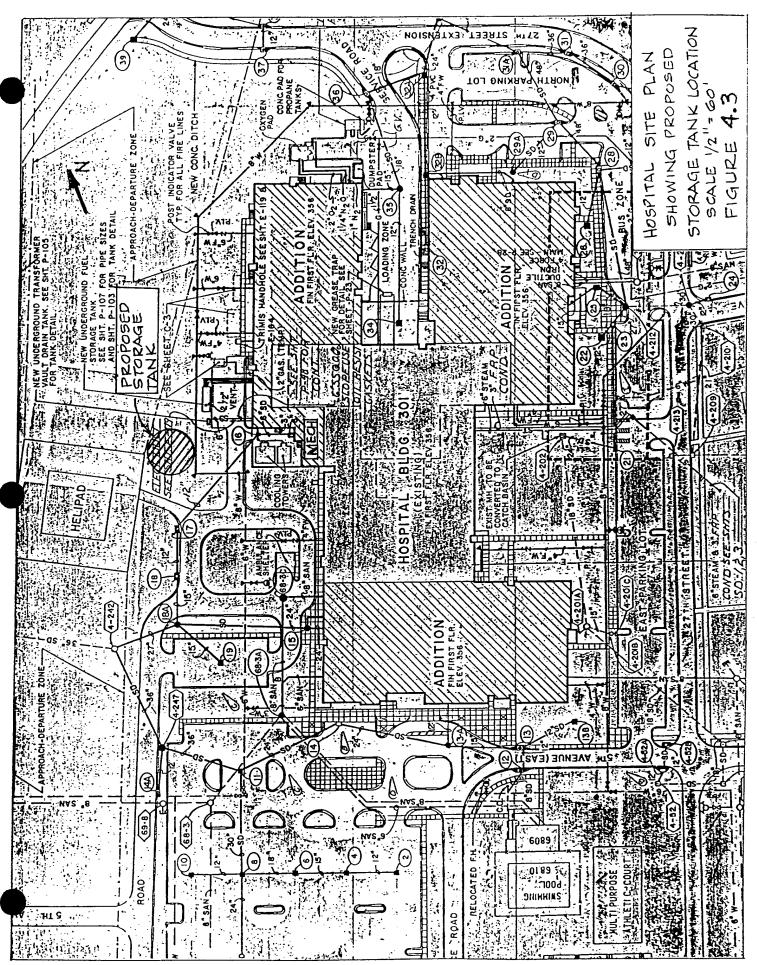
4.5.2 Conceptual Design

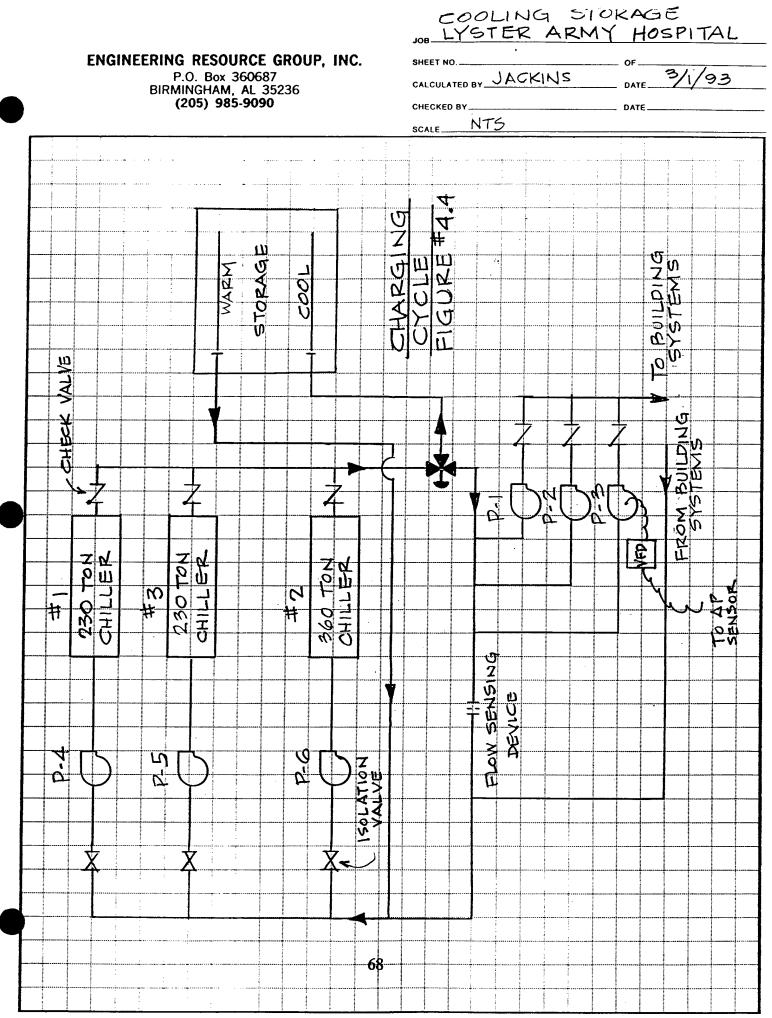
The proposed system will consist of an insulated steel tank 30' in height and 60' in diameter located above grade on the west side of the hospital directly opposite the cooling towers and in the vicinity of the mechanical equipment room as shown on Figure 4.3. The tank will include appropriate inlet diffusers to prevent turbulence and maintain the temperature gradient.

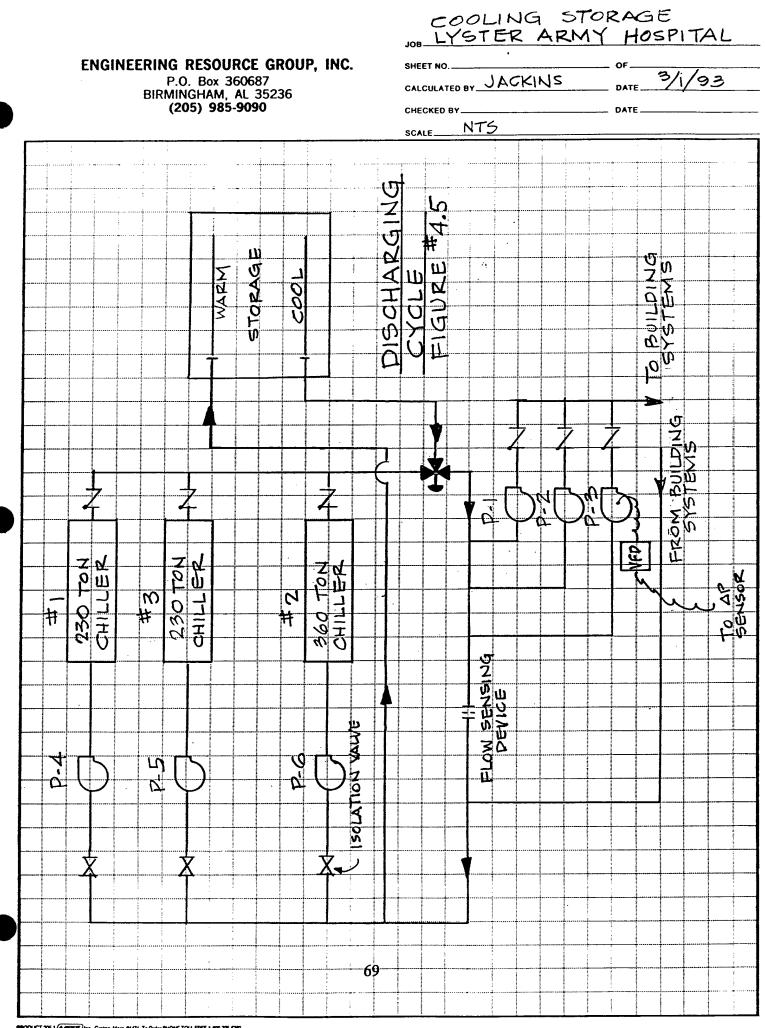
The principal consideration in the selection of a design concept utilizing a steel storage tank above ground was economic. This concept allowed the lowest possible first cost for the system. The above ground tank permits the chilled water levels in the tank and in the building to be hydrostatically equal so an isolating heat exchanger is not required. A tank below grade would double the tank cost and require an isolating heat exchanger. Also, a concrete tank would double the tank cost with the benefit of reduced maintenance. A steel tank will require periodic draining to coat interior surfaces for corrosion control.

As previously discussed in this study, the primary-secondary variable pumping chilled water ECO defined in the 1989 study should be implemented if this cooling storage ECO is considered. This will facilitate the best interface of the cooling storage with the chilled water plant.

Based on this arrangement, the cooling storage charging and discharging cycles will be accomplished as follows:


Charging Cycle - Off Peak (See Figure 4.4)


Chiller plant will be in operation with chillers and pumps staged to meet required building load and programmed storage requirements for the following day. Pumps P-4, P-5 and P-6 will be modified to maintain design flow with the additional head required to charge the storage tank and supply the secondary loop. The three-way valve will modulate to control necessary flow to the building and storage.


Discharging Cycle - On Peak (See Figure 4.5)

Chiller plant will not operate. Total building cooling load will be satisfied from storage. Pumps P-1, P-2 and P-3 will be staged to satisfy building cooling requirements. The threeway valve will be fully open to the storage.

The cooling storage system will be interfaced with the existing building automation system to control charging and discharging rates based on predicted cooling loads and storage monitoring.

4.5.3 Cost Of System

Cost estimates for the addition of the storage tank, insulation and diffuser were developed from discussions with vendors and others who had developed similar information. An estimated cost of \$50.00 per ton-hour was mentioned in the paper "Chilled Water Storage" and this is comparable to costs established in the following estimate. Vendor information and cost estimates are included as Appendix 4I in this section. Other cost information was developed utilizing 1993 Means Cost Data.

Based on these estimates the total cost to add stratified chilled water storage to the Lyster Army Community Hospital following the implementation of the Variable Pumping ECO in the 1989 study will be \$303,878.00.

4.5.4 Projected Savings

Savings resulting from the implementation of Cooling Storage at Lyster Army Community Hospital are shown in Table 4.4 following the cost estimate forms. These savings are calculated using the base cost of \$10.09 per KVA saved. The reduction in KVA recorded by the Base meter is shown each month with the impact of the 75% demand ratchet included. The total annual savings are projected to be \$47,964.

COST ESTIMATE ANALYSIS For use of this form, see TM 5-500-21 the properties of this USAGE.	E ANAL	Y818 Ment eren	ey II UBA(INVITATI	INVITATION/GONTRAGTOR	TOA	LFFECTIVE FRIGING DAT 3/93	AICINO DI	116	DATE PAEPAREO	9	
COOLING THERMAL STORAGE SYSTEM	LORAG	ري ش	'S.TEN	4	000E (Chirk eni)		Ů	ORAWING NO.			SHEET	° 2	8HEETS
LYSTER ARMY COMMUNITY HOSPITAL	してく	Hosp	ITAL			OTHER	1	ESTIMATOR			CHECKED 8Y		
	No.	QUANTITY			LABOR			EQUIPMENT .	H.	MATERIAL		Ĭ	ONIGAINS
TASK DESCAIPTION	NO. OF UNITS	UNIT MEAS	MH UNIT	TOTAL	UNIT PAIOE	cost	PAICE	COST	UNIT	COST	TOTAL	TINU	TOTAL
420,000 GALLON													
STEEL, GROUND LEVEL													
STORAGE TANK		EACH	\backslash	\setminus	\backslash	$\left \right $	\square	$\left \right $		$\left \right $	160.000		
							<u> </u>						
TNSULATION) +	JoB	\sum	\sum	\backslash	\backslash	\sum			$\left \right $	37.270		
				L_			.						
DIFFUSER		EACH	\sum	\sum	\sum		\square				21.000		
		•						·	<u></u>				
SITE PREPARATION			•										
AND FOUNDATIONS		JOB	\backslash	\sum	\sum						30,000		
UPGRADE CHILLER													
PUMPING SYSTEM		TOB	\sum	\sum	\sum		\square		\square		7,500		
(σοντιν υεδ)													
TOTAL THIS SHEET							. 					<u> </u>	
da form miler, api 15													

	,	

COST ESTIMATE ANALYSIS For use of this form, see TM 5-800-21 the properant spanety is USAGE.	E ANAL	YSIS Ant sent	V In URAG		INVITATI	INVITATION/CONTRACTOR		EFECTIVE FRICING DATE 3/43	13 13		DATE PAEPANED	0	
COOLING THERMAL STORAGE	ORAG	Ń ш	System		000E (Chiek on)		۔ م	DAAWING NO.			BHELT 2	0. 2	SHEETS
LYSTER ARMY COMMUNITY	UNIT		HOSPITAL	AL -		ОТНЕЛ	·	E STIMATOR			CHECKED 8Y		
	OUAI	-			LABOR		101	LOUIPMENT	M	MATERIAL		Ē	DNIGAIMS
TASK DESCAIPTION	NO. OF UNITS	UNIT MEAS	MH UNIT	TOTAL HAS	UNIT PAICE	COST	PAICE	COST	UNIT	COST	TOTAL	THU	TOTAL
400'- 6" DIAMETER													
STEEL PIPING WITH													
FITTINGS	400	L.F.			17.05	6,820	1.27	508	15.70	6,280	(3,608		
											, ,		
INTERFACE WITH BAS													
- CONTROL VALVE		EACH					\square		\backslash	$\left \right $	4,500		
- 30 CONTROL POINTS	30	EACH	\setminus	\setminus	\backslash		\square		750	22,500	22,500		
-													
MISCELLANEOUS													
MECHANICAL AND										ā,			
ELECTRICAL		JOB	\sum	\sum		\backslash	\square	$\left \right $	\square	$\left \right $	7,500		
					• •	-						<u> </u>	
NOTE : TOTAL COSTS													
INCLUDE LABOR							-		 				
TOTAL THIS SHEET											303,878		
DA FORM BUILR, API BE													

HLNOW	ACTUAL BASE KW (BEFORE)	BILLED BASE KW (BEFORE)	BASE KW COST (BEFORE)	HOSPITAL SAVINGS (KW)	ACTUAL BASE KW (AFTER)	BILLED BASE KW (AFTER)	BASE KW COST (AFTER)	BASE METER KW COST SAVINGS
JAN	16,588	21,600	\$217,944	0.0	16,588.0	21,237.0	\$214,281	\$3,663
MAR	10,475 16.963	21.600	\$217,944 \$217,944	0.0	10,475.0 16,963.0	21,237.0 21,237.0	\$214,201 \$214.281	\$3,003 \$3.663
APR	21,772	21,772	\$219,679	364.5	21,407.5	21,407.5	\$216,002	\$3,678
MAY	25,776	25,776	\$260,080	409.5	25,366.5	25,366.5	\$255,948	\$4,132
JUN	26,496	26,496	\$267,345	472.9	26,023.1	26,023.1	\$262,573	\$4,772
JUL	28,800	28,800	\$290,592	484.1	28,315.9	28,315.9	\$285,707	\$4,885
AUG	28,656	28,656	\$289,139	446.8	28,209.2	28,209.2	\$284,631	\$4,508
SEP	28,627	28,627	\$288,846	452.7	28,174.3	28,174.3	\$284,279	\$4,568
oct	27,936	27,936	\$281,874	308.1	27,627.9	27,627.9	\$278,766	\$3,109
NOV	21,225	21,600	\$217,944	155.0	21,070.0	21,237.0	\$214,281	\$3,663
DEC	16,704	21,600	\$217,944	0.0	16,704.0	21,237.0	\$214,281	\$3,663
TOTAL							-44 -	\$47,964

TABLE 4.4: PROJECTED COST SAVINGS FOR COOLING STORAGE AT LYSTER ARMY COMMUNITY HOSPITAL

4.6 ECIP Documentation And DD Form 1391

Since this project has an estimated cost exceeding \$300,000, it may qualify for the Energy Conservation Investment Program (ECIP). The project Life Cycle Cost Analysis indicates the following:

Annual Savings, KVA Demand	-	3,093.6
Annual Cost Savings	-	\$47,964
Total Investment		\$338,824
Simple Payback	-	7.06 Years
Total Net Discounted Savings	-	\$651,831
Savings To Investment Ratio (SIR)	-	1.92
Adjusted Internal Rate Of Return (AIRR)	-	7.45%

Based on this analysis, the project meets the other requirements to be recommended as an ECIP project since the simple payback is less than eight years and the savings to investment ratio is greater than 1.0.

On this basis, programming documentation consisting of DD Form 1391 and life cycle cost analysis summary sheets are included in this section.

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

•

•

LOCATION: Ft. Rucker	REGION NO. 3 PROJECT NO. 2392
PROJECT TITLE: Limited Energy Studies	FISCAL YEAR 1993
DISCRETE PORTION NAME, Cooling Thermal Storage	
ANALYSIS DATE: 3/11/93 ECONOMIC LIFE 20	PREPARER Jackins
1.INVESTMENT COSTS:A.CONSTRUCTION COST\$ 303,878	
B. SIOH \$ 16,713	
C. DESIGN COST \$ 18,233	
D. TOTAL COST (1A+1B+1C) \$ 338,824	
E. SALVAGE VALUE OF EXISTING EQUIPMENT \$	0
F. PUBLIC UTILITY COMPANY REBATE \$	0
G. TOTAL INVESTMENT (1D-1E-1F)	\$338,824
2. ENERGY SAVINGS (+)/COST(-):	0 + 4000
DATE OF NISTIR 85-3273-X USED FOR DISCOUNT FACT	ORSOCT 1992
ENERGY COST SAVING ANNUAL \$ DISC	OUNT DISCOUNTED
SOURCE \$/MBTU(1) MBTU/YR(2) SAVINGS(3) FACT	OR(4) SAVINGS(5)
A. ELEC \$\$	\$
B. DIST \$\$	\$
C. RESID \$ \$	\$
D. NG \$ \$	\$
E. PPG \$\$	\$
F. COAL \$\$	\$
-G. SOLAR \$\$	\$
H. GEOTH \$ \$	\$
I. BIOMA \$ \$	\$
J. REFUS \$ \$	\$
K. WIND \$\$	\$
L. OTHER \$\$	<u>59</u> \$ 651,831
	<u>.59</u> \$ 651,831 \$ 651,831
N. TOTAL <u>\$ 47,964</u>	\$
3. NON ENERGY SAVINGS (+) OR COST (-):	
A. ANNUAL RECURRING $(+/-)$ \$	
(1) DISCOUNT FACTOR (TABLE A)	s
(2) DISCOUNTED SAVINGS/COST (3A X 3A1)	

B. NON RECURRING SAVINGS (+) OR COST (-)

2

ITEM	SAVINGS(+)	YEAR OF		DISCOUNTED SAV-
	- COST(-)(1)	OCCUR. (2)	FACTOR(3)	INGS(+)COST(-)(4)
а.	s			\$
b.	\$			\$
c	\$			\$
d. TOTAL	\$			\$ <u> </u>
C. TOTAL NON	ENERGY DISCOUN	TED SAVINGS (3A2+3Bd4)	\$
4. SIMPLE PAY	BACK 1G/(2N3+3	A+(3Bd1/ECONC	MIC LIFE))	: <u>7.06 YEARS</u>
5. TOTAL NET	DISCOUNTED SAV	INGS (2N5+3C)	:	\$ 651,831
	INVESTMENT RA			1.92
7. ADJUSTED I	NTERNAL RATE O	F RETURN (AIR	<u>R)</u> :	7.45 z

. .

.. ·

ARMY	FY 1	9 <u>93</u> MILITARY CO	ONSTRU	ιςτιο	on pr	OJEC	T DAT	TA 2	5 March	93
Lyster Arm Fort Rucker	y Con	nmunity Hospital		4. ряо. ЕС	JECT T	TTLE				
5. PROGRAM ELEMENT 6. CATEGORY CODE 7. PROJECT NU					MBER	ľ	B, PROJE	CT COST	r (\$000)	
		80000 9. cos	T ESTIMA	TES				339		
, , , ,, <u>, , , , , , , , , </u>		ITEM			U/M	QUA	NTITY	UNIT COST		
420,000 Gallon	Steel	, Thermal Storage	Tank		ΕÂ	1		160,0	00 160	_
Insulation					LS	-	-		37	
Diffuser					EA	1		21,0	00 21	
Site Preparation And Foundations					LS	-	-		30	
Upgrade Chiller Pumping System					LS		-		7	
400' – 6" Diameter Steel Piping With Fittings					LF	4	00	34.	02. 14	
Control Valve For Building Automation System					EA	1		4,5	00 5	
30 Control Points For Building Automation Sys.					EA	3	0	7	50 22	
Miscellaneous Mechanical And Electrical					LS	-	-		8	
Supervision, Inspection & Overhead (5.5%)								4	17	
Design (6.0%)						-			18	
TOTAL	<u></u>	<u> </u>							339	
storage tank, i of chiller pump points to interf construction at facility is to re cooling storage buildings is no is not required 11. Project: Install a cooling	nsula ing s ace w Lyst duce syste for f for f	of the cooling sto tion, diffuser, sit ystem, steel pipin with the Building we er Army Communit peak electrical de em utilizing the ex uired for site clea functional reasons rage system for per year in electrica	e prep g with Automa ty Hosp mand a kisting rance.	arati fitti tion oital. at th chill Aco mand	on a ngs Sys e ho lers. cess red	and f and tem. he p ospita De ibilit	founda contr The urpos al by emoliti y for	ations, rol val work e of t use o on of the h	, upgradi ive and is new his f a existing andicapp	_
р голм 1391 1 dec 76	-	PREVIOUS EDITIONS MA	AY BE USE				ILY		GE NO.	

1. COMPONENT ARMY	FY 19_93_MILITARY CONSTRUCTION PROJECT DATA	2. DATE 25 March 93
3 INSTALLATION AI Lyster Arm Fort Ruckei	y Community Hospital	
4. PROJECT TITLE	5. PROJECT I	IUMBER
ECIP		

REQUIREMENT:

This project is required to provide a reduction of overall electrical cost by reducing the monthly demand charge for electricity by utilizing a chilled water storage system. The project has a Savings To Investment Ratio (SIR) of 1.92. The ECIP Life Cycle Cost Analysis summary sheet is attached.

CURRENT SITUATION:

Ft. Rucker is billed for electrical demand charges each month by establishing the highest fifteen minute period usage for the entire year. This on-peak demand sets the basis for demand charges for the following eleven months subject to a 75% ratchet clause. A chilled water cooling storage system at Lyster Army Community Hospital would reduce this peak demand at the base meter by shifting the electrical demand of the chillers to off-peak periods. The chillers would produce chilled water during off-peak periods and this water would be stored for use during on-peak periods.

IMPACT:

Ft. Rucker will continue to operate the chillers at Lyster Army Community Hospital during the on-peak hours when the basis for electrical demand charges are set and lose a potential annual savings of \$47,964 in electrical demand costs.

PREVIOUS EDITIONS MAY BE USED INTERNALLY

UNTIL EXHAUSTED

(WHEN DATA IS ENTERED) 78

FOR OFF

USE ONLY

PAGE NO

DD FORM 1391c

SECTION 4.0 APPENDIX

COOLING STORAGE SYSTEM FOR PEAK DEMAND REDUCTION

LYSTER ARMY COMMUNITY HOSPITAL

APPENDIX 4A

2.

ORIGINAL ECO FROM 1989 STUDY

VARIABLE PUMPING

ECO 2 Variable Pumping

Lyster Army Hospital

The central chilled water system Existing Conditions: consists of three centrifugal chillers: two 230 ton chillers and one 360 ton chiller. Each chiller is served by an individual cooling tower. The two 230 ton chillers are served by a 50 hp chilled water pump (P-1) and an equal stand-by pump (P-2). At the time of the field survey for this study, the piping arrangement was configured so that the pump in use must pump through both chillers anytime that either chiller is operating. This configuration has since Valves have now been installed to eliminate been modified. to pump water through both chillers. No the need modifications to pumping velocity was addressed when valves Tube were installed. Excess velocity could damage tubes. wear should be closely monitored.

The chillers are manually staged by operating personnel to meet the building load. Refer to the existing chilled water system schematic. Pumps now run at full speed and flow. Both three-way and two-way valves are in use at the air handling units. The hospital has a year-round, 24 hour per day cooling load.

Recommended Modification: The chilled water system should be converted into a primary/secondary loop system with Automatic variable water flow in the secondary loop. chiller staging would be accomplished via a flow measuring device (turbine meter or an oriface) in the bypass leg of the primary loop. According to the TRACE load profile, one 230 ton chiller and the 360 ton chiller would meet the anticipated load. The other 230 ton chiller would remain as a stand-by and would be available on the rare occasions that the building load tops 590 tons (Note: This "stand-by" chiller would operate in the same fashion as the other chillers should its use be necessary). Three new constant flow primary pumps should be installed; a 15 HP pump for the 360 ton service (P-6) and 2 - 7.5 HP pumps for the 230 ton chillers (P-4 & P-5). Each chiller should be controlled by leaving supply water temperature, and its associated primary loop pump should operate coincident with the chiller. Each chiller should be isolated from the others by an automatic isolation valve in the primary loop. Existing piping will require revision in order to institute a primary/secondary loop system.

Existing pump P-3, a 40 HP pump which currently serves the 360 ton chiller, should be relocated into a secondary loop The pump impeller should be trimmed for the position. Pumps P-1 and P-2 should have an secondary loop head. impeller change-out and should be revised to 1150 rpm constant speed operation with new 1150 rpm motors for These pumps are only 5 years old secondary loop service. and can be effectively modified for secondary loop service. A variable frequency drive should be installed to provide variable flow from pump P-3.

The variable frequency drive should be controlled by a differential pressure sensor which will sense the pressure between the supply and return chilled water lines at the AHU furthermost from the chillers (at the end of the "longest should use а sensor run"). The pressure proportional/integral controller to maintain setpoint. The differential pressure sensor will be initially set to maintain pressure required for design water flow for the air handling unit (AHU) at the end of the "longest run". This setting is usually between 10 to 30 feet head. This design setting is the starting point for balancing the water flow. Trial and error adjustments will be necessary to properly balance water flow.

The chilled water flow modulation should be as follows. Pump P-3 will modulate chilled water flow in the secondary loop up through its full speed operation at an approximate If additional chilled water is required, load of 360 tons. control logic would bring on one of the constant speed Pump P-3 would then modulate its flow in secondary pumps. combination with the constant flow of P-1 (or P-2) to meet the load. A primary loop bypass should be maintained. **All** existing three-way valves should be revised to two-way operation by blocking the valve bypass port. Some large 3 way valves can require different springs or pilot positions to operate as a 2 way valve. The only 3 way valves where this might be necessary, AC-2 and AC-3, are to be replaced under a different project (new controls for these two AHUS). Refer to the recommended chilled water system schematic.

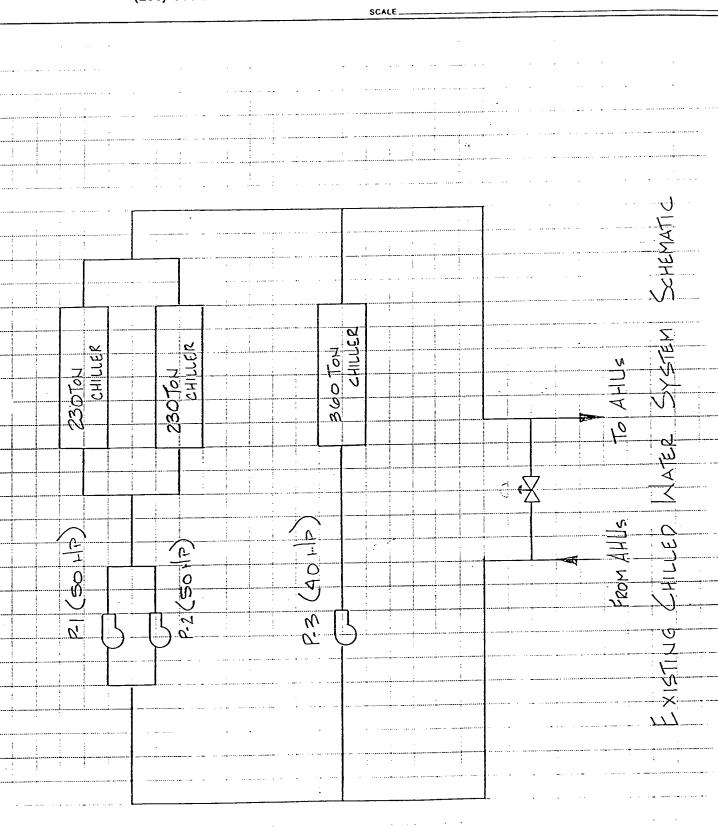
Calculations use one of the two 230 ton chillers as the base load chiller, supplemented by the 360 ton chiller. This operational schematic is necessary for ECO 11 - Automatic Tube Cleaners and ECO 12 - Auxiliary Condenser to be cost effective. Operation of chillers in the primary loop is independent of secondary loop pump operation. The secondary loop pumps will vary according to building load, as will the chillers. No problems will occur by using a pump with flow capacity of 360 tons in conjunction with a 230 ton base load chiller. This configuration also maximizes energy savings.

Economic Summary:

Implementation Cost \$69,300

Energy Savings

Electric	1,879.9 MBTU/YR	\$24,232
Nat Gas	0 MBTU/YR	\$0
Total	1,879.9 MTBU/YR	\$24,232
Simple Payback	2.9 years	
SIR	2.99	

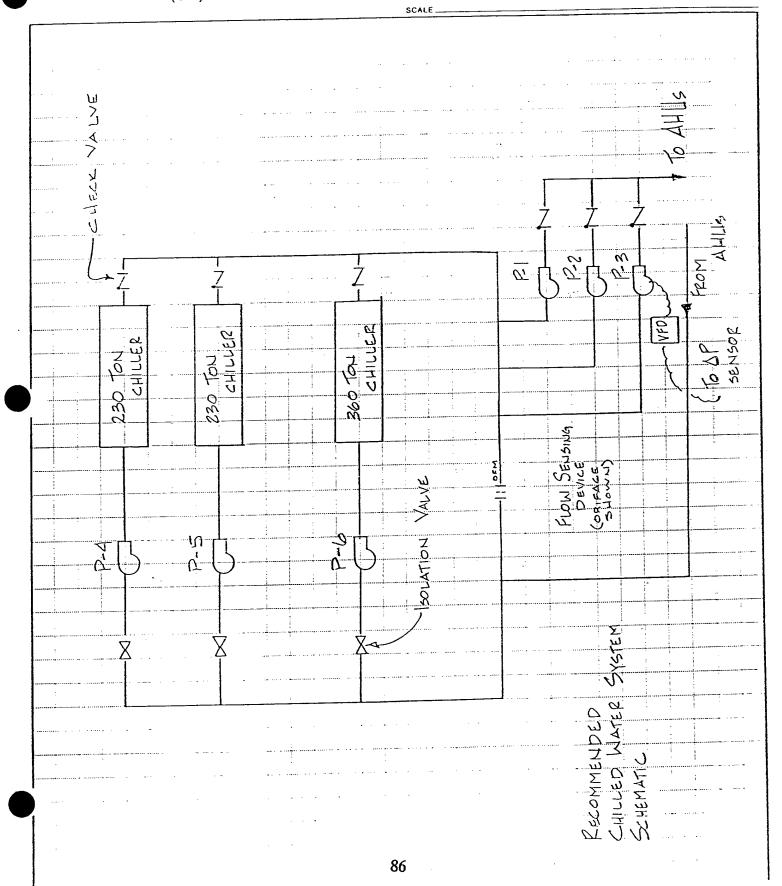

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION: FORT RUCKER REGION NO.: 4 PROJECT PROJECT TITLE: VARIABLE PUMPING FISCAL YEAR DISCRETE PORTION NAME: TITLE C:\CMW\RECO2.L ANALYSIS DATE: 11-14-88 ECONOMIC LIFE: 15	: 1990
1. INVESTMENT A. CONSTRUCTION COST B. SIOH (1A * 5.5%) C. DESIGN COST(1A * 6%) D. ENERGY CREDIT CALC (1A+1B+1C) * 90% E. SALVAGE VALUE F. TOTAL INVESTMENT (1D-1E)	\$69,058.00 \$3,798.19 \$4,143.48 \$69,299.70 \$0.00 \$69,299.70
C. RESI\$0.000.00\$0.00D. NG.\$4.110.00\$0.00	DISCOUNT DISCOUNTED
F. TOTAL 1,879.91 \$24,232.04	\$206,941.60
 3. NON ENERGY SAVINGS (+) / COST (-) A. ANNUAL RECURRING (+/-) (1). DISCOUNT FACTOR (TABLE A) (2). DISTILLATE HANDLING COST (.0603*2B) (3). DISCOUNTED SAVINGS/COST 	\$0.00 9.10 \$0.00 \$0.00
<pre>((3A*3A2)*3A1) B. NON RECURRING SAVINGS/COST NONE C. TOTAL NON ENERGY DISCOUNTED SAVINGS (+) COST (-) (3A3+3B) D. NON ENERGY DISCOUNTED SAVINGS IS = OR</pre>	\$0.00
4. FIRST YEAR DOLLAR SAVINGS (2F3+3A+(3B/ECONOMIC LIFE))	\$24,232.04
5. TOTAL NET DISCOUNTED DOLLAR SAVINGS (2F5+30	C) \$206,941.60
6. DISCOUNT SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALIFY) (SIR) = $(5/1F)$	2.99

ENERGY MANAGEMENT CONSULTANTS, INC. P.O. Box 360687 BIRMINGHAM, AL 35236 (205) 985-9090

SHEET NO	Of
CALCULATED BY	DATE
СНЕСКЕД ВУ	DATE

JOB



.

ENERGY MANAGEMENT CONSULTANTS, INC.

P.O. Box 360687 BIRMINGHAM, AL 35236 (205) 985-9090

SHEET '40	OF
CALCULATED BY	DATE
CHECKED BY	DATE

BOL

	108 - UNSTEE MARTA HEALTH BELL
ENERGY	SHEET NO
MANAGEMENT CONSULTANTS, INC. P.O. Box 360687	CALCULATED BY DATE
BIRMINGHAM, AL 35236	CHECKED BY DATE
(205) 985-9090	SCALE
ECO 2 VARIAZZE AND MAR	
PUPPOSE: TO CALCUCATE THE EMERGY	SAVINGS FEOM IMPLEMENTING
MAGNARIE FIDW RUMDING IN	A STEONIAS I CHILLED VIRIES
1000 THE TWO PUMPS SERVI	ING THE 230 CHILLERS WILL REVISED
- 1150 RPM FOR SECON	DARY LOOP SERVICE. THE IMPELLER
LILL RE TRIMMED ON THE	360 TON CHILLED WATER PUMP, AND THE
RIMO WILL RE USED IN THE	SECONDARY LOOP. THREE NEW PRIMARY
RIMPS WILL BE ADDED.	
FULLIPS WITCH ISE FORCE.	
APPROACH: THE EXISTING PUMPING EN	IFRGY IS BASED UPON MANUAL
STAGING OF THE EXISTING	
STAGING OF THE CRISTING	IPING ENERGY WILL ZE
TYEW CHILLED WATER PUP	FLOW PRIMARY FUMPS AME
VARIABLE HOW SECONORIE!	
VARIABLE FLUM SECONDARY	
	IS TAVIEN FORM THE TRUCK FIRS
	S TAKEN FROM THE TRACE ENKS
PuN.	
	ERGY WILL CALCULATED IN THE
FOLLOWING SEPS.	
	AND SECONDARY LOOP HEADS
2 CALCULATE NEW PRIMA	They PUMP HP
3. CALCULATE PRIMARY	PUMPING ENERGY
4. CALCULATE NEW SECON	DARY PUMP HP
3. CHICULATE NEW SECON	NDARY PUMPING ENERGY EASED
UPEN VARIABLE FREG	QUENCY DEIVE TYPICAL LUIGING
the second se	LOADING CURVE FOR COULING
CUEVE AND EMILS	
CUEVE AND ENTLS	a a second a second
CUEVE AND ENILS	and a second

JOB LYSTER AFMI HOSPITHL 188050 ENERGY SHEET NO _ MANAGEMENT CONSULTANTS, INC. TDB DATE 7/7/83 CALCULATED BY P.O. Box 360687 BIRMINGHAM, AL 35236 CHECKED BY (205) 985-9090 SCALE CALCULATIONS NEW PRIMARY AND SECONDARY PUMP HEADS. PRIMARY LOOP HEAD 20.7 EVAPORATOR WATER PRESS. DROP (FROM CHILLER =3 SCHEDULE) PIPING AND PIPING ACCESSORIES 10 30.7 Assume -> 32' OF PRIMARY HEAD SECONDARY LOOP HEAD FROM PUMP TEST REPORT, PUMP P-3 HAD DIFFERENTIAL HEAD OF 118 118'-32 86 Assume: SEC. LOOP HEAD = NEW PRIMARY PUMP HP. GPM X HD BHP = 3970 X 7 pump BHP X 0.746KW X KW = HP MOTOR ASSUME: Noump = 0.70 NOMOTOR = 0.85 GPM: TONS X 24 GRACEFISIN 10°DT 88

12222 parte a statistica IOB. ENERGY SHEET NO OF MANAGEMENT CONSULTANTS, INC. DATE CALCULATED B P.O. Box 360687 BIRMINGHAM, AL 35236 CHECKED BY DATE (205) 985-9090 SCALE CHECHONIC NEW PRIMARY PJEIP 11P CON'T. 360 TON CHILLER : 360 TONS X 24 GANTAG GPH : 10° AT 864 GPM Ξ 864 GPM X 33 BHP = 3970 X 0.70 9.9 HP KW = 9.9 HP X 0.746 KW/HP X 10.85 S.7KW 1 230 TON CHILLER GPM F/TON x /10°DT 24 GP1-1 = 230 TON X 552 GPM Ξ 552 GPM X 32 EHP = 3970 X 0.70 6.4 HP 6.4 HP X 0.746 KHI/HP X 15.85 K61 = 5.6141 Ξ 89

ENERGY SHEET NO MANAGEMENT CONSULTANTS, INC. CALCULATED P.O. Box 360687 BIRMINGHAM, AL 35236 CHECKED B (205) 985-9090 NEW PRIMARY PUMPING ENERGY. IN ACCORDANCE WITH ECO II & ECO 12, THE 230 TON CHILLER ADDRESSED BY THESE ECO'S MUST BE FRIMARY. FROM THE EMCS SYSTEM COOLING LOAD PROFILE, THE 250 TON WILL OPERATE FOR 6745 HOURS/YR (5-35% LOAD) ALONE SUPPLEMENT CAN EITHER BE DOME WITH THE OTHER 230 TON MACHINE OR THE 360 TON MACHINE, FOR MAXIMUM ENERGY CONSUMPTION, RESULTING IN CONSERVATIVE SAVINGS CALCULATIONS, THE 360 TON MACHINE WILL BE USEDALONG WITH THE 250 TON MACHINE FOR 1961 HOURS/VR E (5.6 Kw) (6745 HRS/YR) + (5.6+8.7) Kw (1961 HRS/Y EPRIM = 65,814 KWH/YR NEW SECONDARY PUMP HP 360 TOU CHILLER -> 864 GPM FROM THE EXISTING PUMP CURVE, THE MINIMUM IMPELLER SIZE IS IN'. HEAD FOR 864 GPM IS 112' AT AN EFFICIENCY OF 75% (SEE ATTACHED PUMP CURVE). HP FROM CURVE 13 35HP. MARTOR = 85% KW = 35 HP x 0.746 KM HP x 1/0.85 = 30.7 KW 90

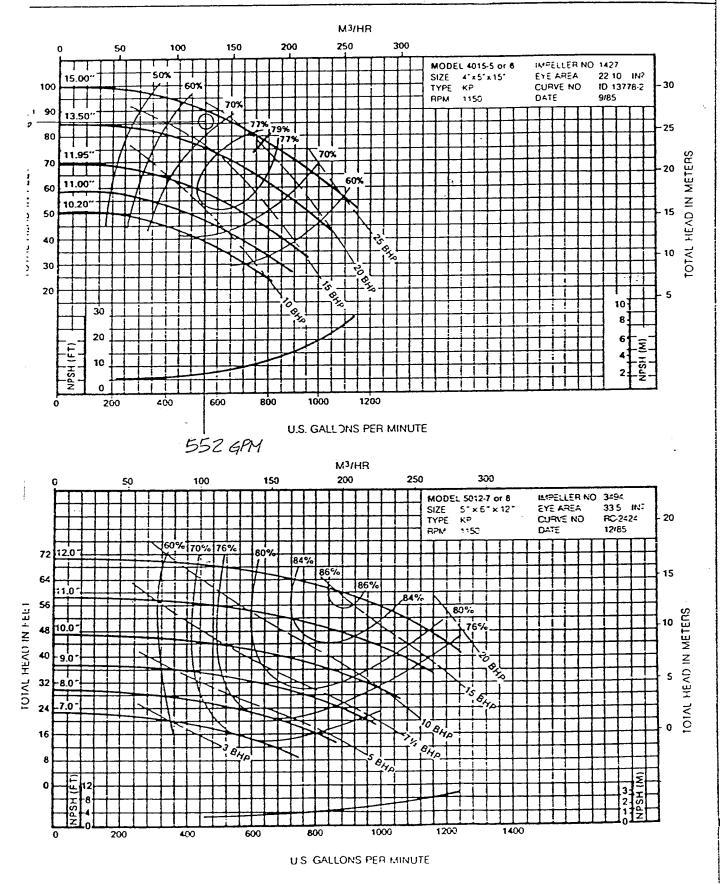
108 LYSTER MIN HELLITE 13995 ENERGY SHEET NO MANAGEMENT CONSULTANTS, INC. DATE CALCULATED BY _____ P.O. Box 360687 BIRMINGHAM, AL 35236 CHECKED BY (205) 985-9090 SCALE. DICHCIMON NEW SECONDARY PUMP HP GPM = 552 HEAD = 86 230 TON CHILLER FROM NEW 150 FOR DUMP CURVE AND NEW MARCHER FOR 86 HEAD, THE HORSEPOWER IS 17.3 KIN = 17.3 HP X 0.746 KW/ HP X 10.85 = 15.3 KH SECONDARY CHILLED WATER RUMP P-3 WILL OPERATE AT YARVING SPEEDS UNTIL IT IS FULLY WHOED. AT A 360 TON LOAD CHILLED WATER PUMP P-1 (OP P-2) - WILL STRET UP AND PUNI AT CONSTANT, FULL SPEED AND CHWP P-3 WILL VARY SPEED TO MEET ABOVE A 230 TON LOAD THE REDUCED SPEED FART LOAD HORSEPOWER PERCENTAGES ARE TAKEN FROM A TYPICAL VARIABLE FREQUENCY DRIVE MANUFACTURER'S DATA, COOLING LOAD PROFILE TAKEN FROM EMCS ALTERNATIVE IN THE TRACE PUN. CHWP KW = % BHP X 30.7 KWH. TOTAL KW = 360 TON CHWP KW + 230 TON CHWP KW (P-1) (P-3) FROM THE FOLLOWING PAGE OF SPREADSHEET DATA ESEC = 89,149 KWH SHUSF-91

PACO PUMPS PERFORMANCE CURVES SPLIT CASE CENTRIFUGAL PUMPS TYPES KP & KPV

1750 RPM

92

10 Box 1234, 642 92nd Avenue Ockland, California 94604


PUMPS

a division of Baltimore Airott InterAmerican Co. 35 Sinclair Ave., Georgetown, Oritano, Canada A Division of Battimore Aircoil Company P.O. Box 12924 • 845 92nd Avenue Oakland, Catifornia 94604-2924

Type KP and KPV

8

IPERSEDES 6/81

CLG. LOAD	HOURS	C	HWP P-3	1	CHM	IP P−1	TOTAL	SEC. PUMP ENERGY
TONS		% LOAD	% BHP	KW	& BHP	KW	KW	KWH
97	5579	26.94%	21.0	6.45	0.0	0.00	6.45	35,968
130	664	36.11%	22.0	6.75	0.0	0.00	6.75	4,485
162	153	45.00%	24.0	7.37	0.0	0.00	7.37	1,127
194	· 187	53.89%	30.0	9.21	0.0	0.00	9.21	1,722
227	162	63.06%	38.0	11.67	0.0	0.00	11.67	1,890
259	152	71.94%	52.0	15.96	0.0	0.00	15.96	2,427
291	371	80.83%	52.0	15.96	0.0	0.00	15.96	5,923
324	309	90.00%	73.0	22.41	0.0	0.00	22.41	6,925
356	385	98.89%_	_92.0	28.24	0.0	0.00	28.24	10,874
389	191	44.17%	24.0	7.37	100.0	15.20	22.57	4,310
421	253	53.06%	30.0	9.21	100.0	15.20	24.41	6,176
453	300	61.94%	30.0	9.21	100.0	15.20	24.41	7,323

VARIABLE SPEED SECONDARY PUMPING ENERGY

TOTAL

89,149

CHWP P-3 DEEFATES AT VARIABLE SPEED UP TO APPROXIMATELY 360 TONS. CHWPP-1, A CONSTANT SPEED PUMP, THEN IS BROUGHT ON LINE TO SUPPLEMENT CHWP P-3.

TOTAL KW COLUMN INDICATES LOAD OF VARIABLE SPEED AND CONSTANT SPEEP PUMP.

TRANE AIR CONDITIONING ECONOMICS

07/18/88

.

PAGE AP - 43 V 00500 CP 4

1

SYSTEM LOAD PROFILE ALTERNATIVE 4 EMCS SCHEDULED START STOP

	T	OFALS		Т	OTALS		т	OTALS	
PCT	CCOLING	PERCENT	HF'5	HEATING	PERCENT	HRS	CFM	PERCENT	HRE
	TONS	HRS		MBH	HRS			HRS	
5	32.39	38.90	3387	203.38	52.88	4632	8251.76	0.0	0
10	64.77	15.20	1323	406.76	14.60	1279	16503.52	0.0	0
15	97.16	9.98	869	610.15	6.74	590	24755.29	0.0	0
20	129.55	7.63	664	813.53	14.95	1310	33007.05	0.0	0
25	161.94	1.76	153	1016.91	1.89	166	41258.81	13.73	1203
30	194.32	2.15	187	1220.29	1.59	139	49510.57	36.27	3177
35	226.71	1.85	162,	7451423.67	1.64	144	57762.33	0.0	0
40	259.10	. 1.75	152	1627.05	1.64	144	66014.06	0.0	0
45	291.49	4.25	371	1830.44	1.14	100	74265.81	0.0	. 0
50	323.87	3.55	309	2033.82	1.13	99	82517.56	0.0	0
55	356.26	4.42	385	2237.20	0.76	67	90769.37	0.0	0
60	388.65	2.19	191	2440.58	0.49	43	99021.12	0.0	0
65	421.04	2.91	253	2643.96	0.33	29	107272.87	0.0	0
70	453_42	3.45	300	2847.34	0.14	12	115524.62	0.0	0
75	485.81	0.0	0	3050.73	0.07	6	123776.37	0.0	0
80	518.20	0_0	С	3254.11	0.0	0	132028.19	0.0	0
85	550.59	0.0	C	3457.49	0.0	0	140279.94	0.0	0
90	582.97	0.0	0	3650.87	0.0	0	148531.69	0.0	0
95	615.36	0.0	0	3864.25	0.0	0	156783.44	0.0	0
100	647.75	0.0	Ũ	4067.63	0.0	0	165035.19	50.00	4380
HOURS	OFF		54			0			0

LYSTER MENT HOSPITH 15. JOB -ENERGY SHEET NO MANAGEMENT CONSULTANTS, INC. DATE CALCULATED BY P.O. Box 360687 BIRMINGHAM, AL 35236 CHECKED F (205) 985-9090 SCALE CALCULATION ENERGY SAVINGS EXISTING CHWP ENERGY (FROM TRACE OUTPUT) EEXET = 705,773 Harris CHNP NEW SHUP ENERGY ENEX - EPRI - ESEC = (65,814 + 89,149) KUH = 154,963 KWH ENERGY SAVINGS AE = EEXST - ENEW! CHWP CHWP CHWP = 705,773 - 154,963 DE = 550,810 KNH METU/YR = (550,810 Kwul/vR) (3413)= 1879.91 МБТИ. 96

LUNUMICS
THAVE ATH CIMUTITANING ECONUMICS CTTOSTHA
14445 A 18 C7705788

CP 4 V 00500 PAGE AP- 45

:

•

.n	SCHEDULEU SIAMI SIUM											
	11'1 1	нолам	APRIL	MAY	יראפ	יטר	AUG	SEFT	001	> 		TUTAL
KEFCPENCE 7010 22.0	1		N 1 R 1 F UG A 4 8 6 5 5 1 8 0 • 0	CENTRIFUGAL CHILLER 19923 48655 7527 10 90:2 180:0 217.4 2	R. THREE 101461 262.1	256.0	113291 266•2	90172 250.5	44295	10363	11265	644995
ш	1 54241 80+8	C107 C0107 D0.8	CHILLEC #ATC 58168 6 80.8	ATER PUMP 50107 86.0	58168 20• 8	60107 80.6	60107 80+8	5 e 1 6 A 0 0 • U	60107 80.07	58168 80.0	60107 00.0	£11201
нсгенгисі. J9602 54+2	1 36402 54.2	C (40 302 5 4 • 2	C UNUENSER 39002 54.2	**100 PL	11UMP 2 39002 2 54.2	. 2000		39002 54.2	. 10 3 0 2 . 1 4 2	39002 54.2	40102 54.2	47.1224
₽8 89 0.4	1 120	C(10066 64.9	CUULING TURE 26431 3 64.9	R FAN 4988 64.9	5 10637	42666	44637 64•5	41320 64.9	26570 64.9	215 2.1	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	268016
KEFEVENCE 32217 93+2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01168 01168	MAKE-LF MATE NAKE-LF MATE	#ATER Ac7537 1507-5	611401 1751.4	611869	665736 1776.6	584956	249064 1090.5	42704	201.0	3762494
REFERENCE 2232 3.0	2016	2232	CCN1FOL PANE 2160. 2.0	PANEL AND 2232 3.0	INTERLUCKS 2160	CKS 2232	232.	2140	2232	2160	5232	
REFERENCE 12573 166-1	1 .01 . 7	2 4 0 2 4 0 2 4 0 1 0 1 0 1 0 1 0 1 0 1 0	51CAM EULER 1530 13.9	0-1 690 5•3	50 P21 GAS 194 1.6	E.	ATERTUBE 265 345 266	316 0.0	1561	5967 5.16	6769 29.6	45969
0.10110 1855 1855		0 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	CCUUENSATE R 1795	E RETURN 1055 2+5	PUMP 1795 2.5	1117	1 2 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1795	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 2	1855	21162
негененсс 1947 5+3	1 3565 5 - 3	0 2 4 6 E 2 4 4 6	001LER FORCE 3019 5.3	1100 0111 1547 5+3	2104 2104 0.0	1762 5 - 3	5 S C	919 6 6.4	5+6 E C + 6	619r 5.3	1406 . 1426 .	46.305
БЕГЕРЕНИСЕ 719 1.0	0.1	1 v ÷ v	ROLLE CCM14 720 1.0	N1 FCL5.	0.1	744	7 4 A 1 • C	720	743	1.0	•••	8760
ыскій иск 45.15 16.7	1 3746 1 4 - 11	1 0 2 1	MAKE-UP #ATE 557 561	1.0 250 1.0	671		- - - -		111	2009	2454	1666

.

.

......

•

;

.

•

66965

5708

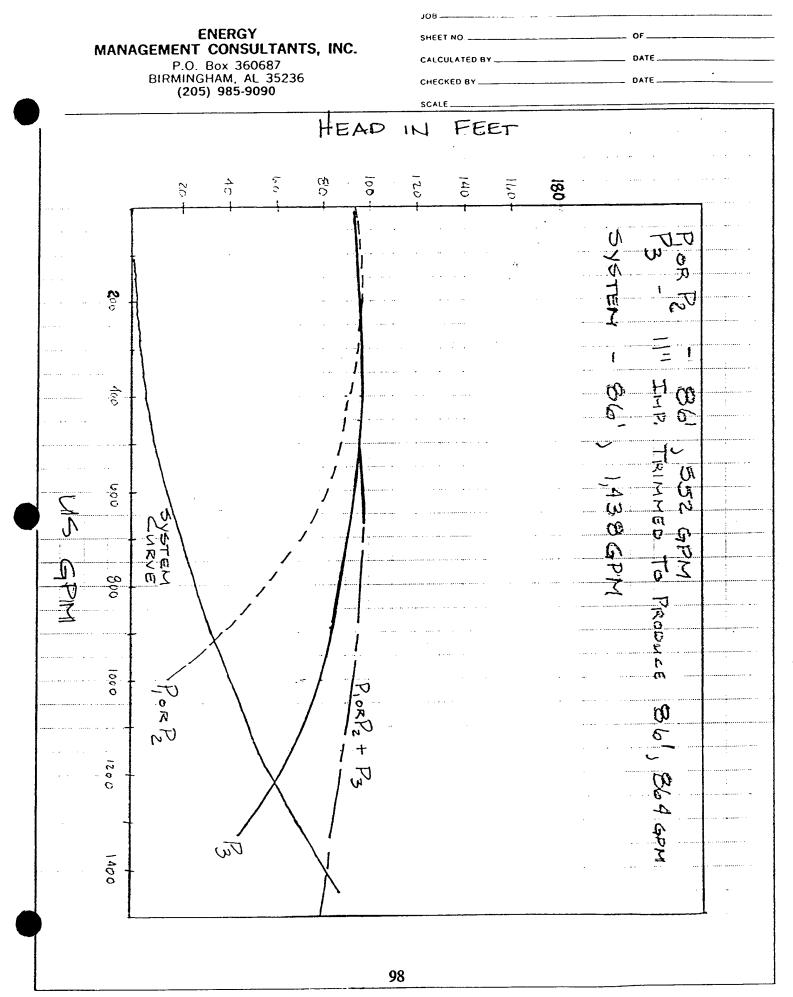
5523

5708

5523

5708 7.7

1 HEATING WATER CIRCULATION PUMP 5155 5700 5523 5470 7.7 7.7 7.7 7.7 7.7 7.7


5020 HLFENENCE 1 FLEC 5738 5 PEAK 7.7

;

•

•

÷

	JOB	<u>/ ·</u>	
ENERGY	SHEET NO		Qr
MANAGEMENT CONSULTANTS, INC. P.O. Box 360687	CALCULATED BY		DATE
BIRMINGHAM, AL 35236	CHECKED BY		_ DATE
(205) 985-9090	SCALE		
VARIABLE PUMPING LOST ESTIMA	TE		•
WRINBLE TUMPING COLL OF			· · · ·
ITEM		MATERIAL	LABOR
11001	<u></u>	-	
VARIABLE FREQUENCY DRIVE (40 HP)	}	9,395	TOHES
(MANUFACTURER'S MAT. COST)	the second s	.,	
	en e	4,000	4-0
2 - 7.5 KP PRIVAL FARME (MEAN	Contraction and the second s	3,500	20
1 - 15 HP PRIMER PUMP (MEANS	2010	1,900	30
2 - 1150 RPM FIOTORS (MEAN)	12UHT	1, 222	25
IMPELLER TRIM (P.3) (MANU.)	a constant of the second se	1, 2, 2 2, 46 4	50
2 - NEW IMPELLERS (P-1 \$ P-2) (1	<u>24.112-1</u>	ہ وہ ہے	· ···· ··· ··· ··· ··· ··· ··· ··· ···
ELIMINATE 3 WHY VALVES (CONT.	<u>(,)</u>	1,215	60
PRESSURE SENSOR / PI CONTROLLER	ء معرف المعرفين المعرف	1, 210	ec -
T ACCESSOFIES (MANU)	<u>`````````````````````````````````````</u>		30
REWIOFK CHILLER CONTROLS	• • • • • • • • • • • • • • • • • • •	600	180
PIPING ADDITIONS (MEANS)		9,000	
100 - 10" PIPE W/INSULATION	· · · · · · · · · · · · · · · · · · ·	<u>_</u>	
APING ACCESSOCIES	· · · · · · · · · · · · · · · · · · ·		20
ISOLATION VALVES	· · · · · · · · · · · · · · · · · · ·	900	30
ELECTRICAL INTERLOCKS	· · · · · · · · · · · · · · · · · · ·	୧୬୦	30
FLOW SENSOR CONTROL		1,000	20
ELECTRICAL SERVICE TO NEW EQUIPM	1EN1	2,000	30
ADDITIONAL FOINTS TO EMCS & PR	POGRAMMING	3,500	90
WIRING		400	60
MOTOR STARTERS	: 	980	10
······································			
SUIZTOTAL		42,87?	775
	_** 		

. 99

•••

COST ESTIMATE ANALYSIS for used this form, see TM 5 800.2; the Moponent symmey is USACE. Ovect	TE ANAI	L YSIS	mey la US		ואעודאו	NUTATION/CONTRACTOR	CTOR	EFFECTIVE PRICING DATE	HICING C	∆1É	UATE PREPARED	E0 E0	
YAR IABLE PUMPING	20					CODE (Check one)	 [DRAWING NO.	Ġ		///		
CATION	-	'					<u>v</u>				SHEET /	05 /	SHEETS
LYSTER ARMY HOSPITAL	JELIJS	1	FORT RUCKEE	CKEF	Ĉ	סדאובת		TDB TDB			CHECKED 0Y		
	00	31-			LANON		ΕQ	EQUIPACAT		MATERIAL			
	NO. OF	UNIT MEAS		TOTAL	UNIT	0031	UNIT		UNIT			Ğ	SHIPPING
		<u> </u>			FRICE		PNICE	C031	PNICE	COST	101AL	T T M	TOTAL WT
						A Designed of the second of the second of	A short the state						
NETALLATION OF													
HERIABLE RUNPINIG	*	Jo <u>B</u>		775	10.62	\$ 8.721	$\left \right $			£	4		
										42, 879	1011/5		
-													
18/ NADEN 18%					X ./8	1,482			1		140		
0,					X.16	1,317				/ 0/ 1	1100		
									9/·X	1929	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>		
Drii 1010					X./0	823	ļ		X.10	4, 285	5,111		
265 714 5.5%	~ 8]	1			X.055	7258	1		
						\$11.852				5 - 202	5		
										-26,506	62,234		
1001													
1.1									X.012		819		
71/-											\$69 058		
											000		
TOTAL THIS SHEET													
JAM 6410 11, Apr NS													

·

APPENDIX 4B

ALABAMA POWER COMPANY APPLICABLE ELECTRIC RATE - FT. RUCKER BILLING HISTORY - JULY 1991 TO JUNE 1992

ALABAMA POWER COMPANY

REVISION NO. 8 - RATE SCHEDULE MR-1

1. AVAILABILITY

Available for electric service to military installations operating electric distribution systems for the resale of electric power and having service and load characteristics demonstrably similar to municipalities operating electric distribution systems for the resale of electric power.

2. CHARACTER OF SERVICE

Three-phase, 60 cycle per second service at the nominal voltage mutually agreed upon, which voltage is reasonably required to meet the immediate capacity requirements and necessary to meet the growth anticipated within the foreseeable future at the delivery point specified.

3. MONTHLY RATE

 Service at Distribution Voltage (Nominal Voltage of 25 kV or less):

> Charge for Billing Demand: \$11.090 per kVA of billing demand

Charge for Energy: 2.15 cents per kWh

(2) Service at Subtransmission Voltage (Nominal Voltage of 46 kV):

> Charge for Billing Demand: \$10.615 per kVA of billing demand

Charge for Energy: 2.15 cents per kWh

(3) Service at Transmission Voltage (Nominal Voltage of 115 kV):

> Charge for Billing Demand: \$10.090 per kVA of billing demand

Charge for Energy: 2.15 cents per kWh

The monthly rate provided herein shall apply separately for power supplied hereunder at each delivery point.

Issued by:

Travis J. Bowden Executive Vice President Effective: February 1, 1992

FT. RUCKER

5% D ATCHE

Issued on: December 3, 1991

CUSTORER DATA SHEET

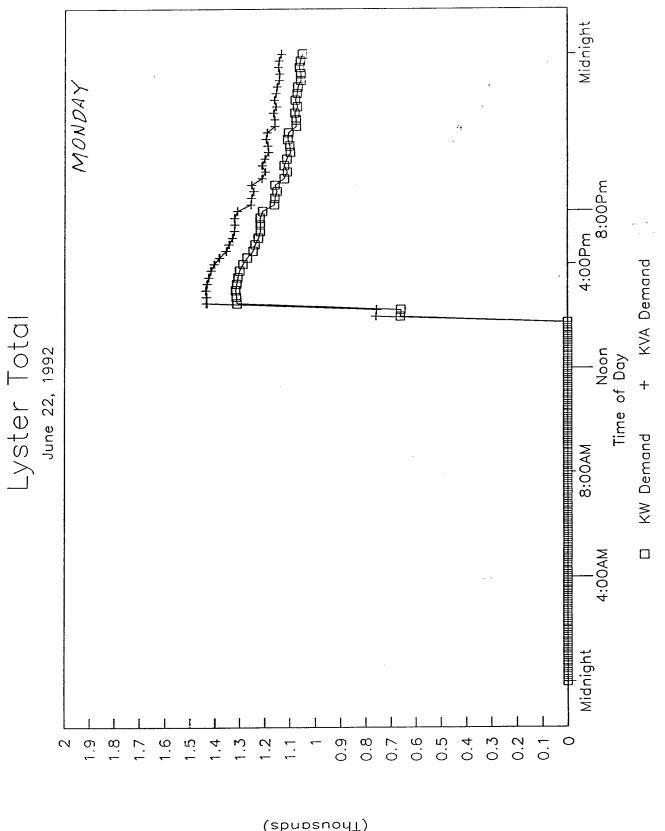
APCO - IPS

YEAR 1992

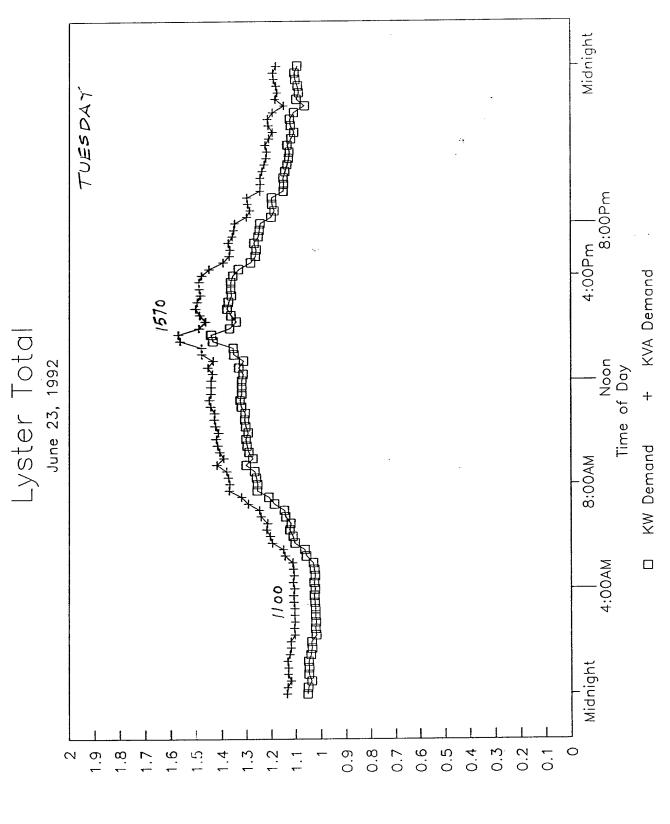
٩

SERVICE ADDRESS: PT RUCKER Y AVIATION CENTER CUSTOMER NAME: US

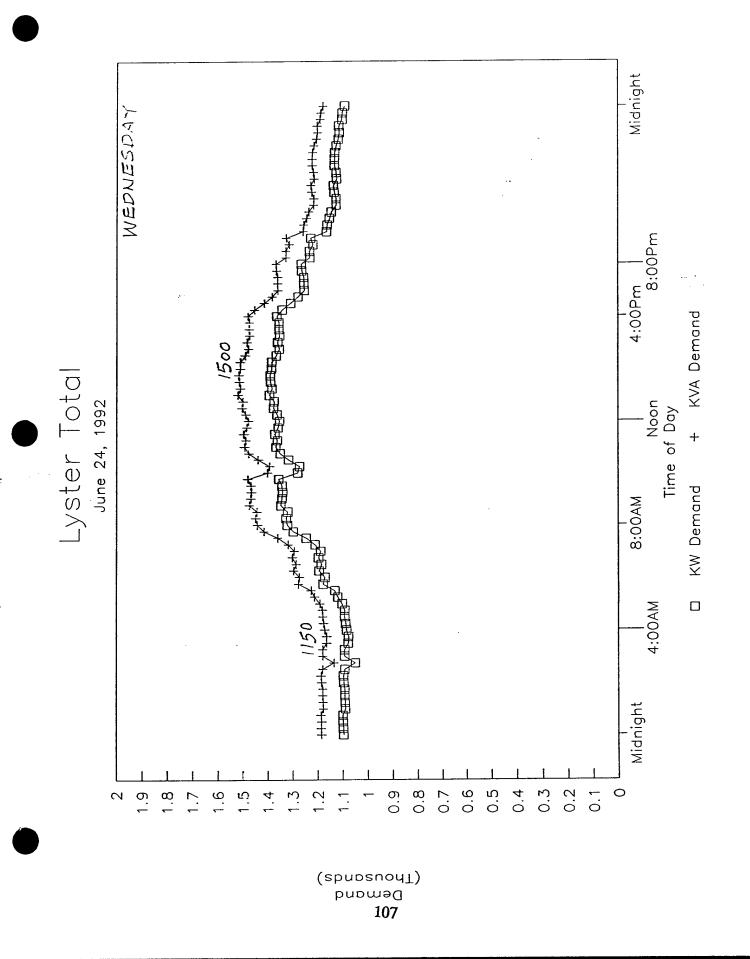
в <u>3</u> 3		050	NO.	ľ	5	* 07	80	* 08	60	60 *	10	11	12	* 12	01	10 *	02	* 02	εo	* 03	* 03	04	* 04	* 04	* 04	05	90	• 06	
SENT CODE	REVENILE AD.T		TAX	500 770 10	01-6171676	8,180.66	551,723.32	8,180.66	530,878.93	8,180.66	445,832,33	367,512.71	350,540.34	4,103.74	340,135.47	4,103.74	350,991.50	4,103.74	359,163.91	4,103.74	9,841.23	376,980.25	00.0	00.0	637.59	456,599.55	502,155.55	10,399.84-	5,202,888.95
SIC CODE 9710		TAX	ADJUSTHENT	8.534.48		00-0	8,713.68	00-0	8,430.75	00.0	6,798.61	5,631.88	5,443.96	00*0	5,198.09	0.00	5,453.42	00.0	5,619.24	0.00	00.00	5,054.47	00-0	00-0	00.0	- 7,151.62	7,851.14	00-00	79,881.34
9708		PUEL	ADJUSTNENT	23.750.50-		00 · 00 T 40	25,953.70-	8,180.66	24,058.94-	8,180.66	30,390.34-	27,269.57-	24,446.02-	4,103.74	22,737.02-	4,103.74	24,520.32-	4,103.74	22,811.33-	4,103.74	00.0	14,937.70-	00.00	00.0	00.0	18,579.91-	22,268.23-	10,399.84~	251,166.48-
BASIC NETER NUNBER: 069708		KILOWATT	HOURS	12.936.000			14,136,000	0	13,104,000	0	9,816,000	8,808,000	7,896,000	0	.7,344,000	•	7,920,000	0	7,368,000	0	0	7,776,000	0	•	0	9,672,000	11,592,000	•	118,368,000
)-50 BASIC NET 1580	STINU	DEMAND OF	BILLING DEM	28.800 KVA							27,936 KVA		21,600 KVA			O KVA			21,600 KVA			21,772 KVN						O KVA	296,063
70-87580-5 0663270875		DEMAND	ACTUAL	28,800	C		28,655	0	28,627	0	27,936	21,225	16,704	0	16,589	0	16,473	0	16,963	0	Q	21,772	0	0	0	25,776	26,495	0	276,016
ACCOUNT NO. 663270-87580 PERM PREM ID 80006632708	READING	しいて民	ок но рау	5 07 18	C	. (08 19	08		60	10	2 11 18	12	12		01		02		03	03		40	40	40	05	06 18	06	ALS
ACCOUNT PERM PE		RATE	NAMB RDR	-1 75	1-1		ה/ ו-אש		MR-1 75		X-1 75	NR-1 75			NR-1 75		NR-1 75		NR-1 75	KR-1		MR-1 75	KR-1	NR-1			MR-1 75	MR-1	TOTALS

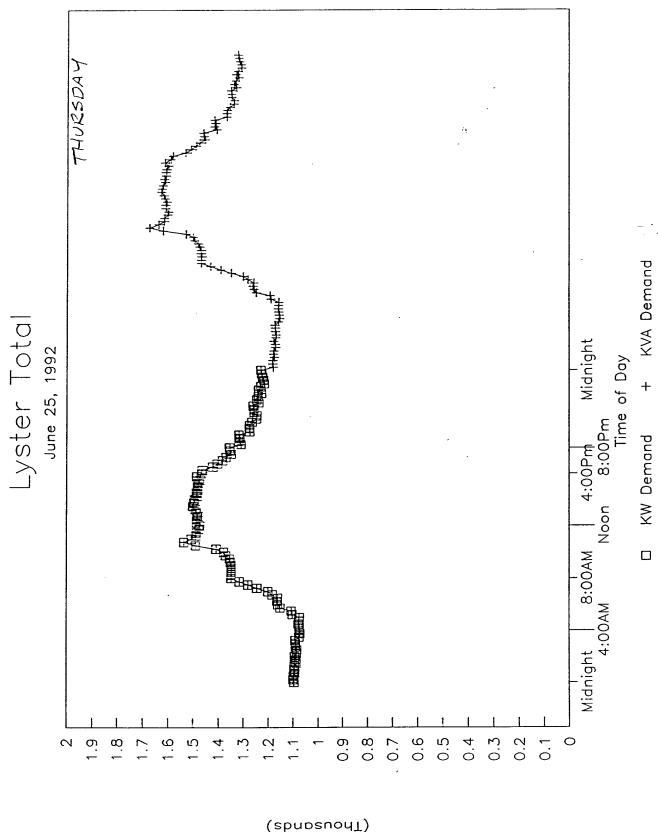

APPENDIX 4C

,

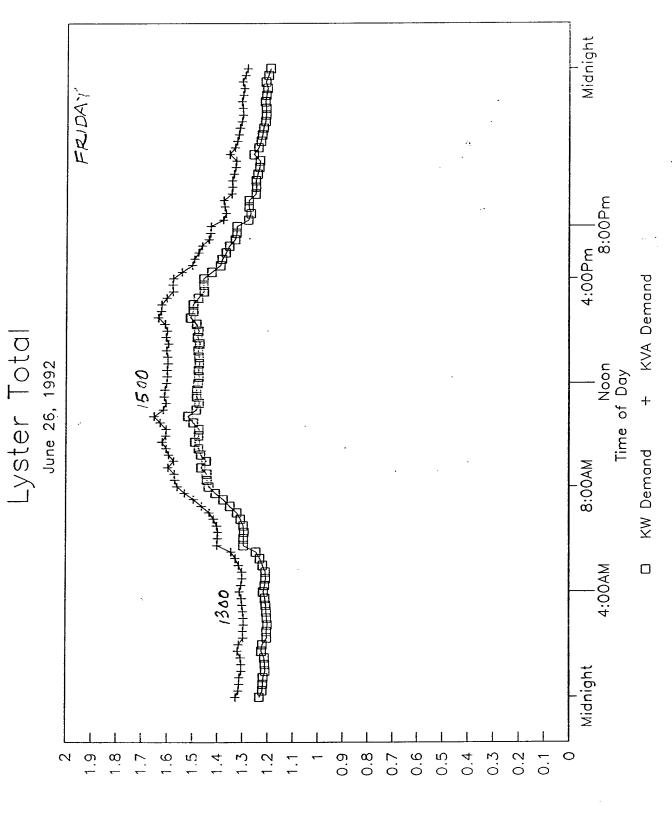

ELECTRICAL METERING PROFILES

KW & KVA DEMAND

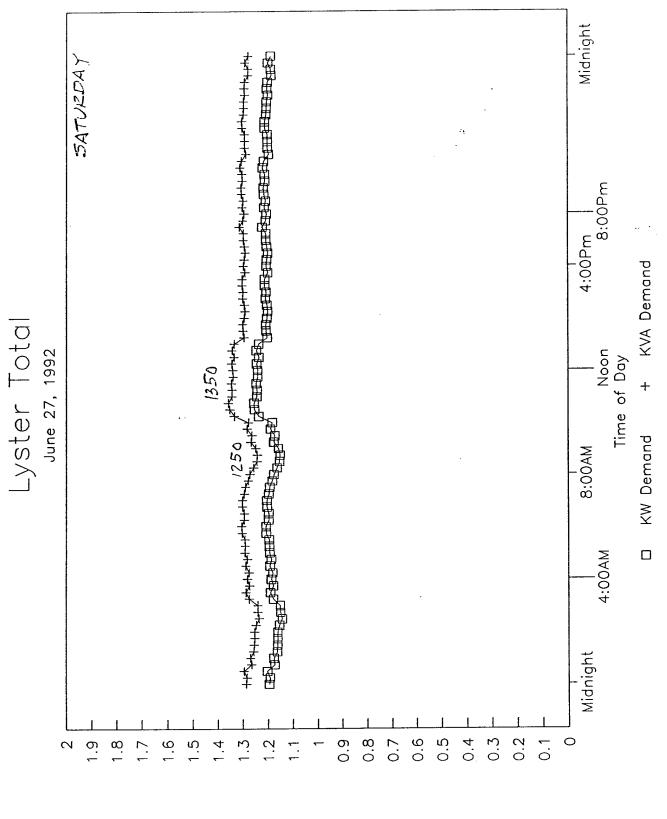

JUNE 22 TO JULY 2, 1992

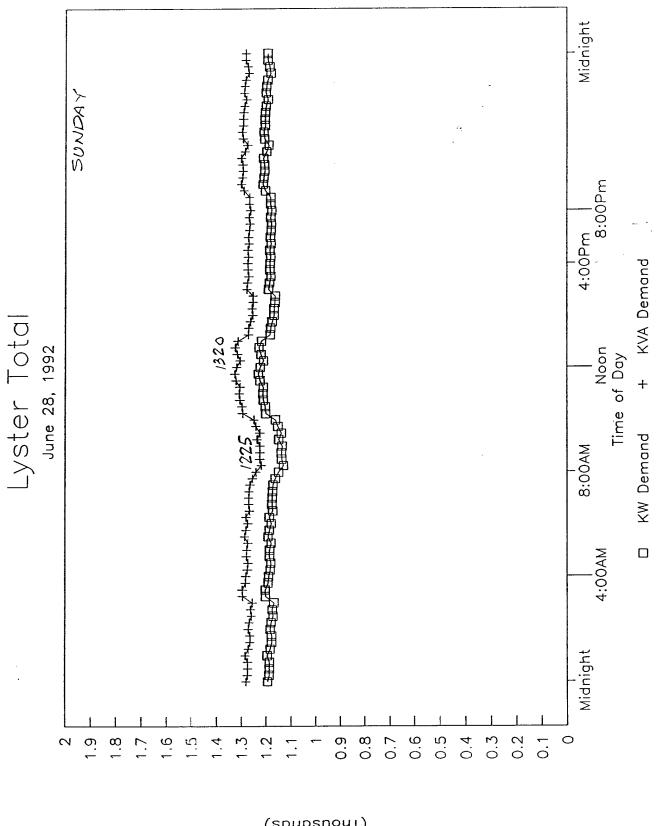


(spubsnoy<u>)</u> рившәд **105**

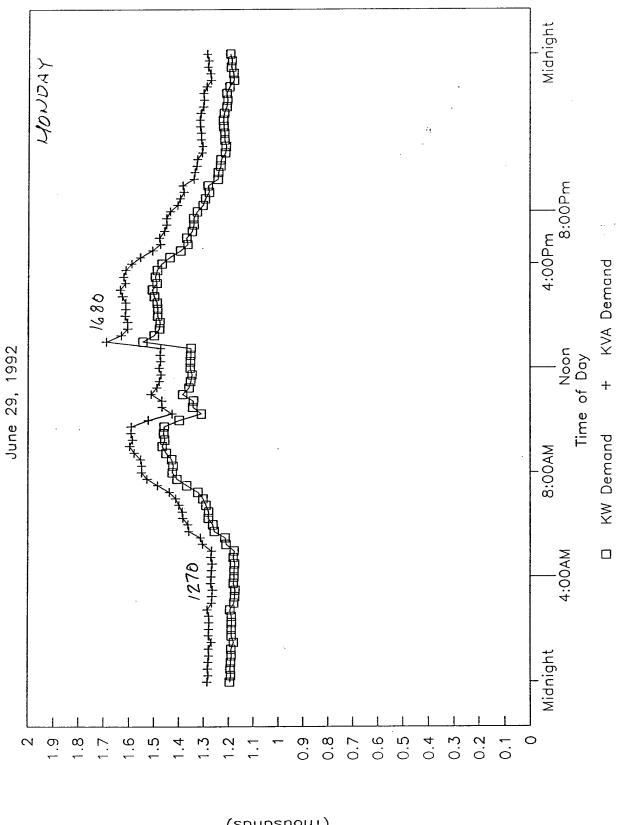


(spubsnoy<u>)</u> pubwəg **106**



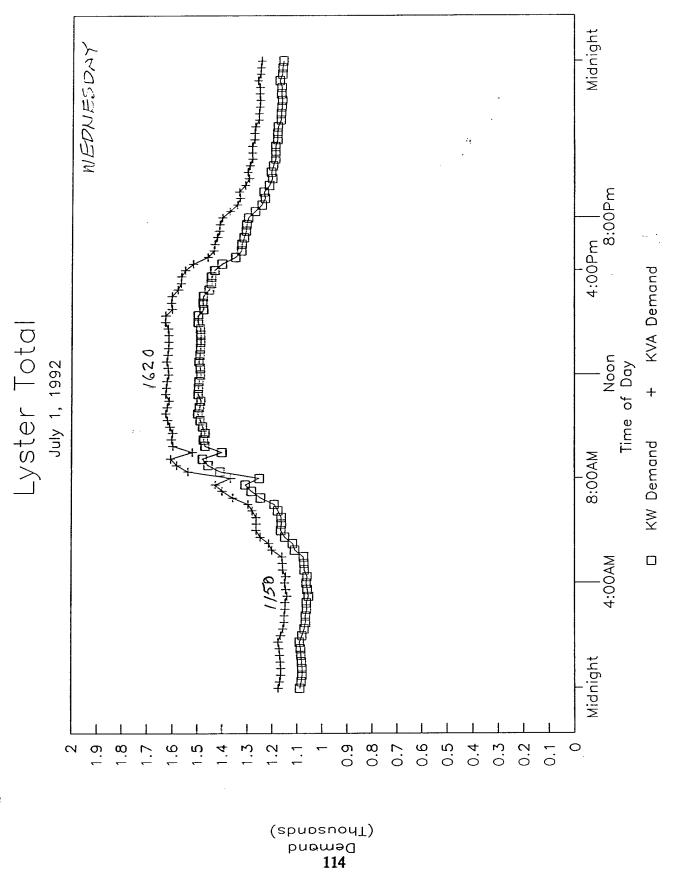

(spubsnoy<u>)</u> pubwag **108**

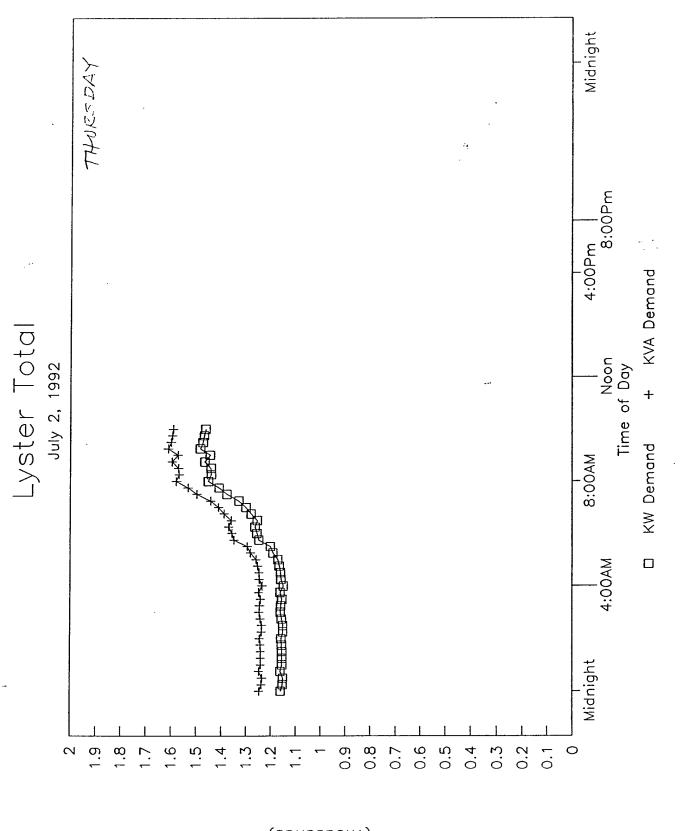
(spubsnoy⊥) pubw∂G **109**



(spuosnoy<u>i</u>) puowəQ **110**


(spubsnoy<u>)</u> pubwag 111


•



(spubsnoy<u>)</u> pubwag **112**

Lyster Total

(spubsnoy<u>)</u> pubwag **115**

APPENDIX 4D

LESSONS FROM FIELD DEMONSTRATION AND TESTING OF STORAGE COOLING SYSTEMS DEPARTMENT OF THE ARMY FACILITY ENGINEERING TECHNICAL NOTE NO. 5-670-1

DEPARTMENT OF THE ARMY U.S. Army Engineering and Housing Support Center Fort Belvoir, VA 22060-5516

Technical Note No. 5-670-1 16 April 1992

FACILITIES ENGINEERING Energy Storage Systems .

LESSONS FROM FIELD DEMONSTRATION AND TESTING OF STORAGE COOLING SYSTEMS

1. <u>Purpose</u>. The purpose of this Technical Note (TN) is to provide lessons learned from the field demonstration of three diurnal ice storage cooling systems at Fort Stewart, GA, Yuma Proving Ground, AZ, and Fort Bliss, TX; and a chilled water storage cooling system at the New Mexico State University (NMSU), Las Cruces, NM.

2. <u>Applicability</u>. This Technical Note applies to all Army facilities engineering activities.

3. <u>Reference</u>. Technical Manual (TM) 5-670, Refrigeration, Air Conditioning, Mechanical Ventilation, and Evaporative Cooling, February 1962.

4. Background. For the majority of Army installations, the demand portion of the electrical utility bill is estimated between 30 and 50 percent. An Army installation has a number of unique characteristics favorable for storage cooling systems (SCS). To verify the applicability of SCS to Army facilities, the U.S. Army Engineering and Housing Support Center (EHSC) funded the U.S. Army Construction Engineering Research Laboratory (USACERL) to demonstrate three generic diurnal ice storage (DIS) cooling systems: Fort Stewart, in 1987 (ice-in-tank system, also known as the brine system); Yuma Proving Ground (YPG), in 1988 (ice-on-coil system); and Fort Bliss, in 1990 (ice harvester system, also known as ice shucking or dynamic system). During the cooling season of 1990, USACERL and NMSU monitored the performance of a 3-million gallon chilled water storage cooling system for cooling the NMSU campus.

5. <u>Discussion</u>. Although an ice storage cooling system can be designed following the routine guidelines for a conventional cooling system, particular attention must be paid to sizing of the "shift window," storage capacity, compressor derating, short cycling, construction labor costs, and system operation and maintenance. Appendix A contains a discussion of these factors for the demonstration sites. A chilled water storage cooling system can be operated under either chiller priority or tank TN 5-670-1 16 April 1992

priority. System operation and maintenance, system performance, and economic performance of these two methods of operation are also discussed in appendix A.

6. <u>Conclusions</u>.

a. The efficacy of storage cooling systems to reduce electric demand costs of providing air conditioning to Army facilities has been verified in the field. The most cost-effective applications are for new construction and for replacement of existing cooling systems. For these applications, storage cooling systems are encouraged.

b. Ice storage cooling systems save the electric demand costs, but increase energy consumption up to 30 percent. Due to the energy penalty and the insensitivity of the economy of scale in the system first cost, ice storage cooling systems are recommended only for small to medium storage capacity systems (up to 2000 ton-hours).

c. Chilled water storage cooling systems save the electric demand costs as well as conserve energy up to 20 percent. Due to the economy of scale in the system first cost, chilled water storage cooling systems are not recommended for small storage capacity systems (under 1000 ton-hours).

7. <u>Point of contact</u>. Questions and/or comments regarding this subject, which cannot be resolved at installation or MACOM level, should be directed to U.S. Army Engineering and Housing Support Center, Directorate of Public Works, CEHSC-FU-M, Fort Belvoir, VA 22060-5516, at (703) 704-1552, AUTOVON 654-1552 or PAX ID CEHSCFUM. The USACERL point of contact is CECER-ES (217) 398-5433.

FOR THE DIRECTOR:

Frunk J. Chunio

FRANK JY SCHMID Acting Director Directorate of Public Works

16 April 1992

APPENDIX A

Storage Cooling Systems

1. Ice Storage Cooling System.

a. Demonstration system descriptions. Summaries of project data for Fort Stewart, Yuma Proving Ground, and Fort Bliss, are presented in tables A-1, A-2, and A-3, respectively.

b. Feasibility. The feasibility of a system can be quantified by the payback period. The payback period depends on the savings in demand charges and the system first cost. The ice storage cooling systems reduce the electric demand costs but not energy costs and usage.

Demand savings. The demand cost savings depend on (1) the electric rate structure of each Army installation. Rarely do two installations have the same rate structures. (Note that there are over 3000 electric utility companies in the United States) For example, to calculate typical annual demand cost savings per each kilowatt shifted from onpeak to offpeak periods, assume the demand charge is \$10/kW with an 80 percent ratchet clause. For the 5 summer months (May through September), the demand cost is \$50 (1 kW * \$10/kW/m * 5 m). For the 7 nonsummer months (October through April), the demand cost is \$56 (0.8 * 1 kW * \$10/kW/m * 7 m). Therefore, the specific annual savings due to shifting 1 kW from onpeak to offpeak periods is \$106/kW/yr. The total savings can be obtained by calculating the product of the total power shifted in kW multiplied by the specific annual savings in \$/kW/yr. The three demonstration systems shift 122 kW, 157 kW, and 105 kW from onpeak to offpeak for Fort Stewart, YPG, and Fort Bliss, respectively. Based on the rate schedules for these locations, the actual savings are \$10,132/yr, \$22,450/yr, and \$21,000/yr for Fort Stewart, YPG, and Fort Bliss, respectively. The cost of the energy penalty has been included in the calculation for YPG. Although the Fort Bliss system shifts less power (105kW) than the Fort Stewart system (122kW), the actual savings by the Fort Bliss system is more than twice as much as the Fort Stewart system because the demand charge for Fort Bliss is \$19.50/kW whereas the demand charge for Fort Stewart is only \$7.00/kW. Other factors affecting the savings are the ratchet schedule, the time-of-use rate, and the power band blocks.

(2) System first cost. The system first cost consists of three roughly equal parts: (1) condensing unit (i.e., icemaker) cost, (2) storage tank cost, and (3) installation labor cost. Depending on the type of application (i.e., new construction, replacement, or retrofit application), the first

119

APPENDIX A

Storage Cooling Systems

1. Ice Storage Cooling System.

a. Demonstration system descriptions. Summaries of project data for Fort Stewart, Yuma Proving Ground, and Fort Bliss, are presented in tables A-1, A-2, and A-3, respectively.

b. Feasibility. The feasibility of a system can be quantified by the payback period. The payback period depends on the savings in demand charges and the system first cost. The ice storage cooling systems reduce the electric demand costs but not energy costs and usage.

Demand savings. The demand cost savings depend on (1) the electric rate structure of each Army installation. Rarely do two installations have the same rate structures. (Note that there are over 3000 electric utility companies in the United States) For example, to calculate typical annual demand cost savings per each kilowatt shifted from onpeak to offpeak periods, assume the demand charge is \$10/kW with an 80 percent ratchet clause. For the 5 summer months (May through September), the demand cost is 50 (1 kW * 10/kW/m * 5 m). For the 7 nonsummer months (October through April), the demand cost is \$56 (0.8 * 1 kW * \$10/kW/m * 7 m). Therefore, the specific annual savings due to shifting 1 kW from onpeak to offpeak periods is \$106/kW/yr. The total savings can be obtained by calculating the product of the total power shifted in kW multiplied by the specific annual savings in \$/kW/yr. The three demonstration systems shift 122 kW, 157 kW, and 105 kW from onpeak to offpeak for Fort Stewart, YPG, and Fort Bliss, respectively. Based on the rate schedules for these locations, the actual savings are \$10,132/yr, \$22,450/yr, and \$21,000/yr for Fort Stewart, YPG, and Fort Bliss, respectively. The cost of the energy penalty has been included in the calculation for YPG. Although the Fort Bliss system shifts less power (105kW) than the Fort Stewart system (122kW), the actual savings by the Fort Bliss system is more than twice as much as the Fort Stewart system because the demand charge for Fort Bliss is \$19.50/kW whereas the demand charge for Fort Stewart is only \$7.00/kW. Other factors affecting the savings are the ratchet schedule, the time-of-use rate, and the power band blocks.

(2) System first cost. The system first cost consists of three roughly equal parts: (1) condensing unit (i.e., icemaker) cost, (2) storage tank cost, and (3) installation labor cost. Depending on the type of application (i.e., new construction, replacement, or retrofit application), the first

16 April 1992

cost varies significantly. For new construction or a replacement application, only the cost of the storage tank should be used for calculating the payback period. For these applications, the costs for the chiller and installation labor are the same for a conventional system and a storage cooling system. For a retrofit application, on the other hand, the existing chiller may not produce ice. A new icemaker must be purchased and installed along with the storage tank. Table A-4 lists the actual system first costs paid for the three demonstration systems. Note that the installation labor costs for the demonstration system were 41 percent, 63 percent, and 84 percent of the total construction cost for Fort Stewart, YPG, and Fort Bliss, respectively. USACERL hired the Science Applications International Corporation (SAIC), an independent private consulting company, to investigate the causes of such high installation labor costs. The major causes cited by SAIC are as follows:

(a) System sizes are small. Therefore, the relative contribution of the labor cost is high.

(b) Systems are retrofits instead of new installations.

(c) High markups on Government projects.

(d) Overbid by contractors inexperienced in storage cooling systems.

It should be remembered that these causes are not unique to the demonstration systems. Retrofit application of storage cooling systems is expensive. If the storage systems are installed for new constructions or replacing old cooling systems, the net cost of the storage cooling systems will be the cost of the storage Even for a conventional cooling system, the tank only. condensing unit must be bought and the installation labor cost must be paid. Recalculating the payback periods of the three demonstration systems based only on the cost of the storage tanks, would yield 5.2, 2.7, and 1.2 years for Fort Stewart, YPG, and Fort Bliss, respectively. Incentive programs available from the electric utility, would reduce the system first cost substantially. For the Yuma Proving Ground (YPG), system, the incentive from the Arizona Public Service covered more than 20 percent of the total system cost.

120

Table A-1. Fort Stewart System Project Summary

Project Chronology

Da	te		Event
01	Oct	85	Project authorized.
01	Nov	85	Fort Stewart, GA was selected to be the demo site. Initial project conference at Fort Stewart.
27	Nov	85	ORNL's system design and draft construction specifications completed and sent to Fort Stewart.
06	Feb	86	Project advertised through the Commerce Business Daily by Fort Stewart.
12	Feb	86	ORNL initiated major equipment procurement process.
07	Мау	86	Construction specifications completed, and RFP issued by Fort Stewart.
09	Jun	86	Bid opening (3 bids received).
10	Jul	86	Major equipment delivered to Fort Stewart.
20	Jul	86	Contract awarded to Erickson's, Inc.
01	Aug	86	Preconstruction conference and Notice to Proceed issued.
07	Nov	86	Preacceptance test.
01	Apr	87	Final acceptance of system by Fort Stewart.

Design and Construction

Retrofit, demand-limiting storage
51,000 sq ft
1200-1800 hours
700 ton-hr
10 in two rows (Calmac Model 2090)
900 ton-hr
136 ton
10 hrs
25 percent brine (ethylene glycol)
25 F
Reciprocating chiller (Trane CGWB-
D18E), designed for 175 ton unit,
200 ton unit delivered and installed

Measured System Energy Performance

Peak power shifted	122 kW
Icemaker kW/ton ratio	0.96 kW/ton (direct cooling)
	1.19 kW/ton (storage cooling)

System Economics

System first cost	\$153,295
Annual savings	\$10,132/yr
Payback period	15 yrs

Table A-2. YPG System Project Summary

Project Chronology

Date	Event
01 Oct 86 18 Dec 86	Project authorized. Building #506, YPG selected.
10 Mar 87	ORNL draft design/bid specifications to YPG.
21 Apr 87	Specs completed; contracting process began.
06 Jul 87	Four bids were opened (\$222K, \$237K, \$223K, and \$269K)
15 Jul 87	Bids were rejected on the basis of lack of funds. Separation of hardware procurement and system installation. Storage tank and heat exchanger were to be procured by USACERL.
05 Nov 87	Revised draft bid package to YPG.
15 Dec 87	Hardware contract to Roger L. Echelmeir Co. (\$68,034).
02 Mar 88	Hardware shipped from factory to YPG.
22 Mar 88	Five bids were opened at YPG (\$234K, \$179,281, \$159K, \$135,679, and \$114,435)
10 May 88	AT Mechanical, the lowest bidder, was awarded installation contract (\$114,435); preconstruction conference at YPG; and Notice to Proceed issued.
05 Aug 88	Preliminary system performance testing completed.
25 Aug 88	Formal acceptance of system by YPG.

Design and Construction

Type of design	Retrofit, demand-limiting storage
Facility floor area	86,100 sq ft
Chiller shutoff window	1200-1600 hours
Design tank capacity	900 ton-hr
Storage tank	One tank (BAC Model TSU-1050C)
Nominal tank capacity	1050 ton-hr
Charging time	maximum 20 hrs
Coolant	30 percent brine (ethylene glycol)
Entering brine temperature	25 F
Icemaker	Existing reciprocating chiller
	(YORK Model LCHA-85-46C, Nominal
	capacity as water cooler - 85 ton; as
	icemaker - 45 ton)

Measured System Energy Performance

Peak power shifted	157 kW
Icemaker kW/ton ratio	2.72 kW/ton
	(seasonal average)

System Economics

Gross system first cost	\$182,469
Incentive award from utility	\$37,500
Net system first cost	\$144,969
Net annual savings	\$22,450
Simple payback period	6.5 yrs

Table A-3. Fort Bliss System Project Summary

Project chronology

Date	Event
17 Nov 87	Icemaker (laboratory tested at ORNL) purchased.
01 Oct 88	Fort Bliss project authorized.
18 Nov 88	ORNL's system design and draft construction specifications completed and delivered to Fort Bliss.
25 May 89	Project advertised through the Commerce Business Daily by Fort Bliss.
23 Jun 89	Bid opening; 3 bids received (\$129K, \$130K, and \$167K).
01 Jul 89	Icemaker delivered to Fort Bliss.
08 Sep 89	Contract awarded to Graham Construction, Co. Notice to Proceed issued.
31 May 90	Acceptance test.
01 Aug 90	Final acceptance of system by Fort Bliss.
19 Nov 90	System performance monitoring completed.

Design and Construction

Type of design Facility floor area Chiller shutoff window Design tank capacity Storage tank Charging time Icemaker

Retrofit, Demand-limiting storage 18,500 sq Ft 1200-1600 hours 300 ton-hr One steel tank, above ground Maximum 12 hrs 40-ton water cooling 26-ton ice making (Dynamic Icemaker Unit Model HP 300 ASC, Royce Compressor Model #CGO40)

Measured System Energy Performance

Peak power shifted	105 kW
Icemaker kW/ton ratio*	1.94 kW/ton
Chiller kW/ton ratio	1.50 kW/ton (conventional cooling)

System Economics

Gross system first cost	\$153,999
Annual savings	\$21,000
Expected payback period	7.3 yrs

*Energy performance of the icemaker has been tested at the Oak Ridge National Laboratory prior to field installation. The ORNL data ranged from 1.25 to 1.60 kW/ton. The ORNL testing was performed in a laboratory environment with the tank installed indoors.

Location	Fort Stewart	YPG	Fort Bliss
Government Furnished Material Costs Chiller/Ice Harvester Heat Exchanger Storage Tank(s) Subtotal	\$52,793 15,935 <u>53,460</u> 122,188	* 7,836 <u>60,198</u> 68,034	\$24,990 ** <u>***</u> 24,990
Contractor Installation Costs	83,900	114, 435	129,000
Total Costs (rounded)	\$206,000	\$182,000	\$154,000

Table A-4. Demonstration System Actual Costs

* Existing reciprocating chiller was converted into an icemaker.

** The heat exchanger is not needed in this system. ***The bid specifications required the contractor to procure and install-the tank. Therefore, the cost of the tank is included in the system installation cost.

(3) Feasibility study tool. A draft version of a userfriendly PC software program (STOFEAS) has been prepared by USACERL. Required inputs are the installation electric demand information and the local rates. A set of default system first costs have been built into the program. The default costs can be modified by the user-if better cost data are available. STOFEAS analyzes the economic feasibility of the storage cooling system shifting 1 to 15 percent of the peak power demand of an installation from onpeak to offpeak periods.

c. System Design and Construction. A storage cooling system can be designed following the routine guidelines for a conventional cooling system. Particular attention is required for the following areas.

(1) Sizing of the "shift window" and storage capacity. Most Army installations are centrally metered by a master meter. Selection of the shift window (the length of time during which power consumption is shifted from onpeak to offpeak) must be determined from the master meter demand profile, not from the candidate building cooling demand profile. The window should be large enough to contain the peak in the master meter demand profile. Excessive window size, however, would result in increased system first cost and a longer payback period. The capacity of the storage tank can be determined from the selected period of shift and the amount of the peak demand to be shifted during that time interval.

124

16 April 1992

(2) Compressor derating. In an icemaking operation, the compressors rated for water cooling are significantly derated (about 30 percent). The operating conditions under which compressors are rated must be carefully reviewed. Generous sizing of the compressors, evaporators, and storage is recommended.

(3) Short cycling. Short cycling of compressors may be a problem (as experienced by the Fort Stewart, system in an early phase of operation) after the tank is fully charged with ice. This results from the fluid temperatures in the piping system causing the compressor to turn off after making ice. In some systems, a full charge of ice results in a significant lowering of the return water temperature, which deactivates the compressor. After a while, the water temperature in the pipe may rise due to ambient heat gain and the compressor would be turned on. A control unit based on the ice inventory resolves this problem.

(4) Construction labor cost. The labor cost for field installation of an ice storage system is high. Savings in installation costs by using prepackaged or modular systems could be significant. However, for larger systems (storage capacity over 2000 ton-hours), the modular systems may require multiple tanks. Extensive piping could adversely affect the system first cost as well as future operation and maintenance.

d. System operation and maintenance. The storage cooling system requires no particular operation and maintenance practices other than those required by conventional cooling systems. One specific concern in the maintenance of the storage cooling system is that it is often installed outdoors because the storage tank (especially in a retrofit application) is too large to fit inside the mechanical room. The piping loop containing chilled water or condenser water must be protected from freezing either by draining or by heat tape. The following maintenance problems were experienced during the operation of the three demonstration ice storage cooling systems.

(1) Fort Stewart system.

(a) This system has 10 storage tanks connected by a set of main supply and return headers. Figure 1 is a schematic diagram of the system and figure 2 is a photograph of the system. The header moved slightly when priming the main circulation pump. This motion caused stress on the rigid connecting tubes (PVC tubing) between the header and the nipples of the tank. Eventually, a number of the PVC connectors developed hairline cracks and antifreeze leaked out. The problem was solved by replacing the rigid PVC tubing with flexible rubber tubing.

16 April 1992

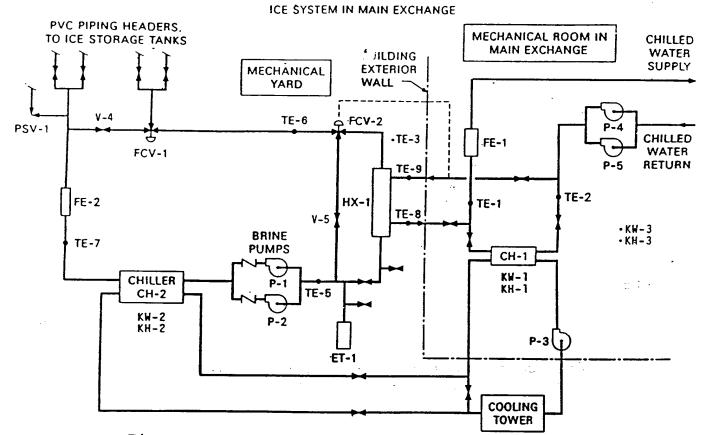


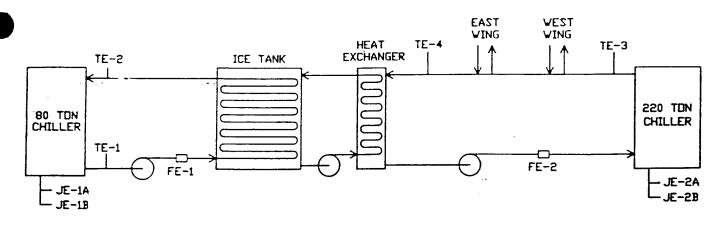
Figure 2. Fort Stewart system

(b) During the winter of 1989, the condenser loop was not drained. The water in the condenser barrel froze and ruptured the condenser coils. Through the ruptured coils, moisture migrated into the cylinders of the icemaker compressor. The coils in the condenser barrel and the compressors had to be repaired.

(2) YPG system.

(a) During the first few weeks of operation in August 1988, an air blower for the ice storage tank failed. The blower agitates the water in the tank to achieve uniform freezing and melting of ice on the coil in the tank. The manufacturer replaced it under warranty.

(b) In June 1989, the high pressure switch of the icemaker tripped the compressor a number of times, resulting in no ice being made in the tank. The icemaker has an air-cooled condenser, which is partly blocked by a decorating wall. Cleaning the air passage to the condenser coil and supplying more air with an external fan brought down the condenser operating temperature, and resolved the problem. Note that this was a typical condenser cooling problem, not related to the storage cooling system. Figure 3 is a schematic diagram of the system and figure 4 shows a photograph of the system.


(3) Fort Bliss system.

(a) During the commissioning period of the system in July 1990, the conventional chiller experienced short cycling while the ice storage cooled the building. Correcting the interface of the ice system control with the chiller control resolved the problem.

(b) In June 1991, the icemaker leaked refrigerant through a ruptured pressure gauge. The pressure gauge was replaced, and the system was recharged with refrigerant. This could happen to any refrigeration system, and is not particularly related to the ice storage cooling operation. Figure 5 is a schematic diagram of the system and figure 6 shows a photograph of the system.

e. System performance. Each demonstration system has been instrumented to collect data on demand shift capability and energy performance. The typical daily performance of each system is shown in figures 7, 8, and 9 for Fort Stewart, YPG, and Fort Bliss, respectively.

127

CHAN	LABEL	DESCRIPTION
101	TE-1	BRINE SUPPLY TEMPERATURE TO ICE TANK
102	TE-2	BRINE RETURN TEMPERATURE FROM ICE TANK
103 -	TE-3	CHILLED WATER SUPPLY TEMPERATURE TO BUILDING
104	TE-4	CHILLED WATER RETURN TEMPERATURE FROM BUILDING
105	TE-5	DUTSIDE AIR TEMPERATURE
106	TE-6	INSIDE AIR TEMPERATURE
107 108 109 110		80 TON CHILLER DEMAND (KV) 220 TON CHILLER DEMAND (KV) 80 TON CHILLER ENERGY (KV-HR/15 MIN) 220 TON CHILLER ENERGY (KV-HR/15 MIN)
111 112	FE-1 FE-2	BRINE FLOW RATE (GAL/15 MIN) CHILLED WATER FLOW RATE (GAL/15 MIN)

Figure 3. YPG system diagram

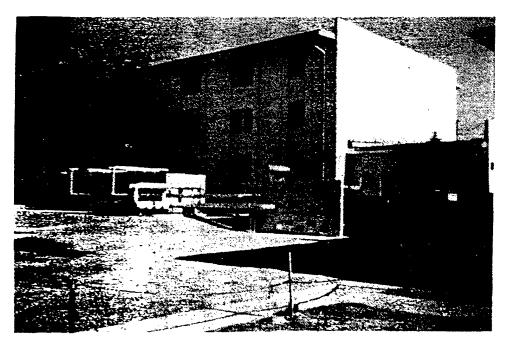
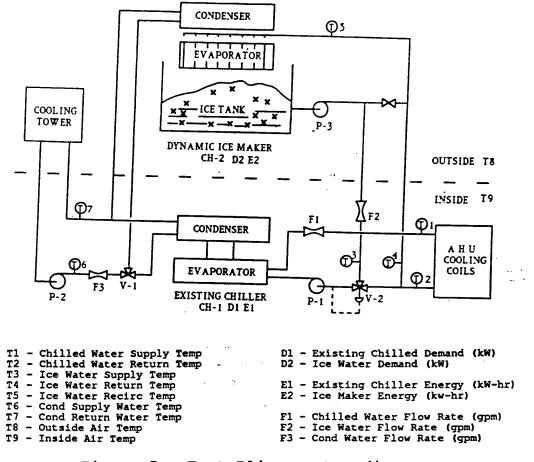
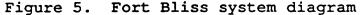




Figure 4. YPG system

16 April 1992

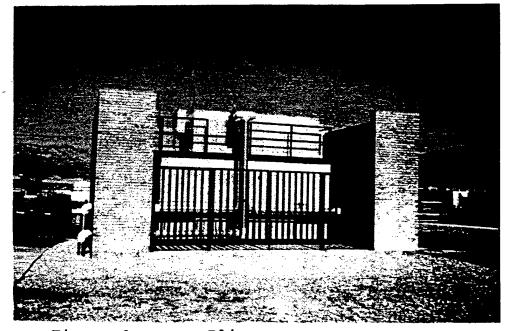
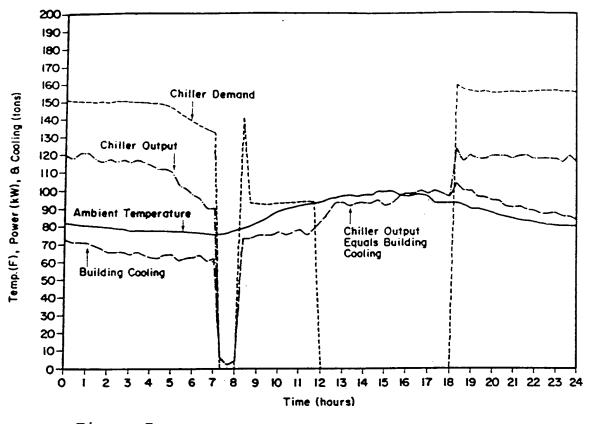
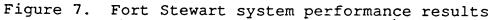
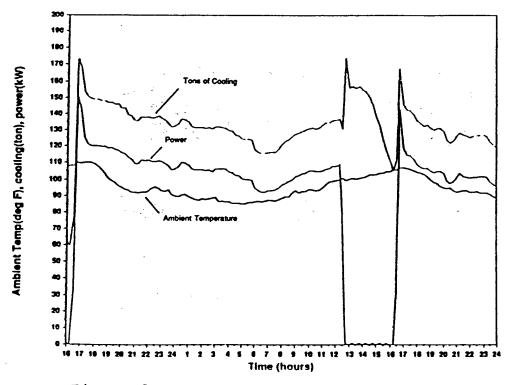
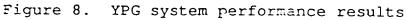






Figure 6. Fort Bliss system

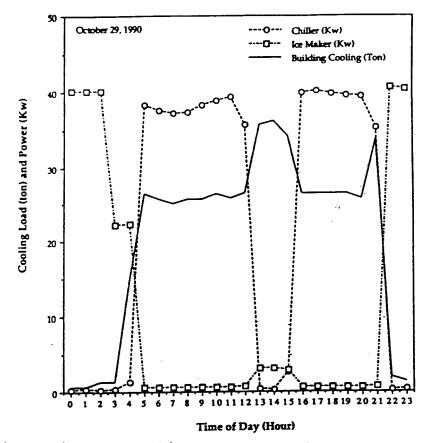


Figure 9. Fort Bliss system performance results

(1) Demand shift from onpeak to offpeak periods. All three demonstration systems successfully shifted electric demands for cooling from onpeak (shift window) to offpeak periods (nighttime). The demand reduction was 120 kW for Fort Stewart, 157 kW for YPG, and 105 kW for Fort Bliss.

(2)Energy performance. The energy performance of the demonstration systems was measured in terms of the power consumption factor (in kW/ton ratio). The power consumption factors of conventional cooling chillers were also measured to compare the energy performance between conventional and ice storage cooling systems. The results are 1.39 kW/ton (ice) and 1.18 kW/ton (conventional) for the Fort Bliss system, 2.72 kW/ton (ice) and 0.82 kW/ton (conventional) for the YPG system, and 1.94 kW/ton (ice) and 1.50 kW/ton (conventional) for the Fort Bliss The data from the YPG system is not significant, because system. the conventional chiller is a new, water-cooled, relatively large capacity (220-ton) centrifugal chiller, whereas the icemaker is an old (more than 10 years old), air-cooled, small (four compressors of 20-ton capacity each) reciprocating chiller. The new icemaker at Fort Stewart is the same type and same capacity as the existing chiller. The new icemaker at Fort Bliss is the

131

same type with a capacity similar to the existing chiller. In these two systems, the energy penalty was 18 and 29 percent compared to the conventional chillers.

Economic performance. Economic performance of the (3)demonstration systems is measured in terms of the system payback period. The payback period was calculated based on the system first cost and the annual savings in demand charges. The calculated results are 20, 6.5, and 7.3 years for the Fort Stewart, YPG, and Fort Bliss systems, respectively. Note that the goal of the Fort Stewart system was the demonstration of the technical feasibility, rather than the economic feasibility, of the ice storage cooling technology. Also note that all three systems were retrofit applications, which is the least costeffective application. If these systems were for new systems or replacement applications, the payback period would be 5.3, 2.7, and 1.2 years for the Fort Stewart, YPG, and Fort Bliss systems, respectively.

2. Chilled water storage cooling system.

a. Background. A chilled water storage cooling system is an alternative to reduce the electric demand costs in space airconditioning. During the cooling season of 1990, USACERL and the Department of Mechanical Engineering, New Mexico State University (NMSU), Las Cruces, NM, monitored the performance of a 3-million gallon storage capacity chilled water storage cooling system cooling the NMSU campus. The purpose of the project was to measure the energy performance and obtain field experience from a typical operating chilled water storage cooling system.

b. NMSU system description. The NMSU campus of 48 buildings is cooled by a central cooling plant (with three chillers of 1000-1500- and 1500-ton capacity) like an Army installation with a central cooling plant. In 1985, the campus cooling load approached the capacity of the cooling plant. NMSU had two options: (1) build an additional cooling plant at a cost of \$2.5 million, or (2) install a chilled water storage system to increase the cooling capacity of the existing plant. The second option was selected and a 3-million gallon stratified chilled water storage tank was installed in 1986 at a total cost of \$3.25 million. The nominal storage capacity is 20,000 ton-hours, with a peak tank discharge rate of 2300 tons.

c. System operation and maintenance. Two strategies are available for system operation. One is the chiller priority and the other is the tank priority operation. The concept and the field experience of these strategies from the NMSU system are discussed in the following paragraphs.

(1) Chiller priority operation. By 0600 hours, the tank is fully charged. The campus cooling load starts to rise from 0700 hours. Two cooling sources are used to meet the load. One is the stored chilled water in the tank and the other is the chiller in the plant. In the chiller priority operation, the chiller meets the load first until the campus cooling load exceeds the cooling capacity of the chiller in the plant. The extra cooling requirement beyond the capacity of the chiller is met by the chilled water stored in the tank. In this way, the operator always keeps a reserve cooling capacity and is prepared for any emergencies, such as a failure of a chiller. If a chiller fails, the shortfall can be met by the chilled water stored in the tank while the failed chiller is serviced. The tank serves as a standby chiller ready to meet the extra cooling load that cannot be satisfied by the chillers. The disadvantage of this chiller priority, however, is that the chilled water stored in the tank is not fully used on a daily cycle. This decreases the energy performance of the storage tank and does not maximize the electric demand reduction potential.

(2) Tank priority operation. At the beginning of the preselected shift window (during the utility onpeak period), the tank, rather than the chiller, meets the cooling load at the maximum discharge rate. If the campus cooling load becomes greater than the maximum cooling provided by the storage tank, the difference is met by the chiller. In such a way, use of the storage tank is maximized (i.e., better energy performance) and the chiller demand during the onpeak period is minimized (i.e., the maximum savings in the electric demand cost). This is the most typical operating strategy of a chilled water storage cooling system. One disadvantage from the point of view of the system operator is the loss of the reserve capacity.

d. System performance. During the 1990 cooling season, the NMSU system operated mainly on the chiller priority schedule. The NMSU Physical Plant Department was more concerned about providing reliable cooling to the campus than maximizing the demand cost savings potential of the system. Only on a few occasions (when one of the three chillers in the plant was down) did the tank fully discharge.

(1) Chiller priority operation. The seasonal average power consumption ratio of the NMSU storage cooling system during the monitoring period (March to August 1990) was 0.93 kW/ton. The overall system power consumption factor, including the conventional mode of operation, was 0.88 kW/ton. For typical chilled water storage, the power consumption of the storage mode operation is lower than that of convention cooling by about 20 percent. The energy conservation of a chilled water storage system occurs in two ways: (1) the typical nighttime ambient temperature is lower than the day temperature, which increases the refrigeration cycle coefficient-of-performance (COP) due to a lower condensing temperature, and (2) charging the storage tank

133

is a steady operation, not like cooling the building with a fluctuating cooling load. The COP of a fully loaded chiller in a steady-state operation (storage mode) is much higher than the COP of a part-loaded chiller in intermittent operation (conventional cooling mode). The reason for the high power consumption factor for the NMSU system in the storage cooling mode was the low duty cycle of the chillers in the storage mode. The seasonal average duty cycle of the chillers during the storage mode was 46 percent, and 58 percent while in the conventional cooling mode. Note that, under the chiller priority schedule, the chiller (rather than the storage) provided cooling in a fully-loaded condition during most of the afternoon hours.

(2) Tank priority operation. The energy efficiency of storage cooling (compared to conventional cooling) was observed on a number of occasions when the tank was fully discharged. During the charging period (the night immediately following the full discharge of tank during the day) the power consumption factor of the chiller was 0.78 kW/ton, which is about 11 percent lower than that of the seasonal average in the conventional cooling mode. Again, the favorable condensing conditions during the night and the steady operation of the chiller would make the chilled water storage cooling system conserve energy (up to 20 percent of the energy required by the conventional chiller operation) as well as shift the electric demand for cooling from onpeak to offpeak periods.

(3) Economic performance.

(a) Chiller priority. The maximum cooling load observed during the monitoring period was 4600 tons. Although the nominal rating of the three chillers was 4000 tons, the actual maximum output was 3500 tons. During the peak setting, therefore, the chilled water storage met 1100 tons of cooling Based on the power consumption factor of 0.88 kW/ton for a load. conventional cooling system, the storage system reduced the NMSU electric demand by 968 kW. Under the current demand charge of \$19.50/kW with a 75 percent ratchet, reducing the electric demand by 968 kW amounts to an actual saving of demand cost of \$193,500 The differential construction cost between an for a year. additional cooling plant and the chilled water storage was \$0.75 million (\$2.5 million vs \$3.25 million). Therefore, the payback period of the NMSU chilled water storage system is 3.9 years.

(b) Tank priority. Note that the design discharge rate of the storage tank is 2300 tons. If the system is operated on the tank priority schedule, the demand shifting would be more than doubled (2300 tons instead of 1100 tons); this would also double the savings in electric demand costs.

e. Additional comment on the NMSU system. The primary goal of the NMSU chilled water storage cooling system was to increase the capacity of the central cooling plant. Even under the

134

conservative mode of system operation (chiller priority), the savings in the electric demand cost was significant enough to payback the system differential first cost within 4 years. Note that, however, if the NMSU system was for a retrofit application, the entire amount of the system cost (\$3.25 million) should be used to calculate the payback period. In that case, even with an aggressive tank priority schedule for the maximum savings of the demand cost, the payback period would extend to 8 years. This shows a good example of cost effectiveness of an application of storage cooling system in a new construction or a replacement situation compared to a retrofit application.

3. System Selection.

a. Either ice or chilled water is suitable as a storage medium for a storage cooling system for Army facilities. The characteristics of each medium are compared in table A-5.

b. Ice systems are recommended for a small cooling plant (storage capacity up to 2000 ton-hours) that is not tied into a central cooling plant. The energy penalty for a small system is negligible compared to the benefit of reduced demand cost savings. For a larger system, however, the energy penalty should be weighed seriously in the system selection. Due to the economy of scale, a chilled water system is not recommended for smaller systems with a storage capacity under 1000 ton-hours unless free storage devices are available.

c. For a larger system (storage capacity over 2000 ton-hours), a chilled water storage system is recommended. Modular ice systems for a large cooling plant require extensive piping and flow balancing. This increases the system first cost as well as future system maintenance costs. Note that the size of the cool storage is given in terms of ton-hours. The cooling capacity of the cool storage in terms of tons depends on the discharge period (i.e., the shift window). As an example, a 2000 ton-hr cool storage system will provide 500 tons of cooling for a discharge period of 4 hours (shift window of 4 hours, such as from 1200 to 1600 hours) or 250 tons of cooling for a discharge period of 8 hours (such as from 0900 to 1700 hours).

Table A-5. Comparison of Ice and Chilled Water as Storage Media

Ice

Characteristic

Water

Volume	Compact	Large
System	Modular	Becoming modular
Economy of scale	Low	High
Compressor derating	Severe (30%)	None
Energy penalty	High (up to 30%)	None
Blending control	Simple	Being Established

d. Ice systems can deliver lower temperature air than conventional or chilled water storage systems. The concept has a number of merits including reduced hardware size, pumping, and fan power. The operation and maintenance of such systems, however, has yet to be proven through field validations. The low temperature air systems are not recommended for Army applications until their performance is fully established. In retrofit applications, however, where cooling loads have outgrown the delivery capacity of the existing system, a low temperature air system may be used to supplement the capacity without major changes in piping and ducting.

e. Regardless of the type of storage medium, retrofit applications are the least cost effective. The payback of a storage cooling system for new construction or replacement is two to three times quicker than for a retrofit application. TN 5-670-1 16 April 1992

APPENDIX 4E

÷,

TRANE TRACE OUTPUT

. . .

24 HOUR LOAD PROFILES

55.9 47.7

53.7 48.5

52.2 47.8

50.5 46.7

48.7 44.9

46.8 43.3

48.6

58.7

56.5

53.2

-1,489,186

-1,339,654

-1,734,560

-1,430,684

-1,582,404

-1,736,011

54.9

18

19

20

21

22

23

24

UILDING COOL-HEAT DEMAND - ALTERNATIVE 1 ASELINE MODEL

Janua	rv		Desi	qn	Weekd	ay	Satu	rday	Sund	ay	Monda	ау
Hour	OADB	OAWB	Htg Btuh	-	Htg Btuh	-	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton
1	42.6	39.9	-1,429,445	50.6	-1,976,341	47.3	-1,981,861	47.4	-2,011,151	47.4	-1,978,873	47.4
2	41.4	38.7	-1,795,620	48.5	-2,146,285	46.4	-2,133,486	46.5	-2,133,419	46.5	-2,153,592	46.5
3	40.7	38.1	-1,575,065	47.3	-2,147,770	45.3	-2,156,432	45.4	-2,130,530	45.4	-2,123,153	45.4
4	40.4	37.8	-1,882,677	46.1	-2,213,713	44.1	-2,202,781	44.2	-2,230,458	44.2	-2,245,730	44.2
5	40.8	38.1	-1,660,262	44.7	-2,176,526	42.8	-2,184,812	42.9	-2,169,349	42.8	-2,157,982	42.8
6	41.8	39.1	-1,862,672	44.5	-2,141,921	43.0	-2,152,871	41.8	-2,160,926	41.8	-2,141,944	43.0
7	43.4	40.7	-1,324,200	59.0	-1,697,081	55.9	-2,023,023	40.6	-2,012,229	40.6	-1,702,463	55.9
8	45.4	42.8	-1,098,025	83.2	-1,339,991	77.1	-1,858,296	40.7	-1,871,155	40.7	-1,338,981	77.1
9	47.7	44.9	-863,272	87.1	-1,019,007	79.7	-1,339,608	56.6	-1,453,681	52.6	-1,010,047	79.6
10	50.2	46.6	-643,544	90.7	-1,108,813	82.7	-1,227,317	57.0	-1,322,712	52.7	-1,108,813	82.7
11	52.5	47.9	-511,804	98.6	-660,508	87.0	-1,085,423	58.2	-1,030,194	53.7	-671,611	86.9
12	54.5	49.3	-313,768	108.2	-761,749	91.6	-871,123	60.4	-964,468	55.6	-752,074	91.6
13	56.1	50.5	-230,781	117.5	-446,388	97.7	-752,032	64.9	-764,567	59.6	-446,388	97.7
14	57.1	51.1	-138,691	127.7	-530,652	103.7	-785,571	46.4	-814,895	46.2	-530,652	103.1
15	57.5	50.8	-117,358	135.8	-469,520	107.6	-817,667	49.4	-788,690	49.3	-479,918	107.6
16	57.2	50.4	-130,609	136.9	-591,703	109.2	-845,332	51.7	-878,450	51.7	-580,273	109.2
17	56.5	49.9	-300,113	131.4	-500,704	106.8	-902,457	52.1	-843,875	52.1	-510,195	106.8
18	55.3	49.7	-371,579	122.0	-764,735	102.1	-1,093,856	50.6	-1,098,878	50.6	-752,051	102.1
19	53.8	49.3	-716,354	90.3	-1,027,900	71.2	-1,129,154	49.7	-1,153,087	49.7	-1,042,312	71.2
20	52.0	48.2	-975,013	62.1	-1,293,410	51.4	-1,348,311	50.1	-1,345,607	50.1	-1,278,956	51.4
21	50.0	46.6	-1,119,588	58.2	-1,435,830	51.3	-1,414,016	50.2	-1,419,191	50.2	-1,450,050	51.3
22	47.9	44.8	-1,284,863	55.4	-1,605,938	49.9	-1,646,187	50.1	-1,638,922	50.1	-1,592,112	49.9
23	45.9	43.0	-1,358,481	53.5	-1,755,193	49.6	-1,720,964	49.8	-1,715,631	49.8	-1,768,577	49.6
24	44.1	41.2	-1,557,509	50.8	-1,926,527	48.2	-1,868,064	49.2	-1,895,886	49.3	-1,913,351	48.2
Febru	ary		Desi	.gn	Weekd	ay	Satu	=	Sund		Mond	-
Hour	OADB	OAWB	Etg Btuh	Clg Ton	Etg Btuh	Clg Ton	Etg Btuh	-	Etg Btuh		Htg Btuh	-
1	45.0	41.6	-1,640,022	51.9	-1,742,617	46.8	-1,864,379	47.0	-1,775,736	47.0	-1,869,275	46.9
2	43.3	40.3	-1,762,636	50.2	-2,098,749	46.3	-1,994,058	46.4	-2,065,266	46.4	-1,996,087	46.4
3	41.8	39.1	-1,804,280	48.4	-1,974,738	46.0	-2,070,580	46.1	-2,003,840	46.1	-2,072,622	46.1
4	40.5	38.0	-1,842,258	47.2	-2,303,886	45.1	-2,192,654	45.2	-2,270,748	45.2	-2,194,733	45.1
5	39.6	37.1	-1,898,307	45.9	-2,122,335	44.0	-2,246,653	44.1	-2,151,763	44.1	-2,248,794	44.1
6	39.0	36.8	-1,855,353	45.7	-2,395,731	44.1	-2,300,931	43.0	-2,387,178	43.0	-2,267,415	44.2 55.7
7	38.8	36.6	-1,513,445	59.1	-1,898,127	55.7	-2,305,876	42.4	-2,235,280	42.4	-2,017,981	74.0
8	39.4	37.2	-1,110,659	83.1	-1,554,302	74.0	-2,147,933	43.3	-2,202,949	43.3	-1,485,549	76.0
9	40.9	38.1	-927,999	86.5	-1,522,581	76.0	-1,803,387	57.0	-1,930,553	53.6	-1,493,293	
10		39.3	-713,117	85.8	-1,358,988	78.6	-1,650,019	58.2	-1,686,618	54.5	-1,358,845	78.6
11	46.2	40.8	-559,388	97.1	-1,021,492	81.9	-1,424,697	59.7	-1,433,451	55.6	-1,117,882	81.9
12		42.7	-340,231	107.9	-991,946	86.8	-1,358,209	62.2	-1,335,490	57.7	-991,946	86.8
13	52.2		-266,875	118.1	-746,812	91.3	-891,964	63.9	-1,091,926	59.2	-692,062	91.3
14	54.5	46.8	-167,736	128.3	-646,502	96.4	-1,067,300	46.0	-964,602	45.9	-646,502	96.4
15		47.8	-138,805	136.6	-482,612	102.4	-766,930	49.0	-868,030	48.9	-482,612	102.4
16		48.0	-154,768	139.6	-536,091	105.7	-958,524 -761,728	51.2 52.1	-807,691	51.2 52.1	-592,642 -496,235	105.7 105.4
17		47.7	-244,361		-575,240	105.4			-949,923			

52.1 -761,728 -949,923 52.1 -244,361 135.1 -575,240 105.4 -787,752 101.4 -1,192,027 50.0 -1,020,674 50.0 -393,191 124.9 -713,084 -907,370 -1,107,888 50.1 -636,028 93.9 -996,663 71.7 -984,861 50.1 -1,299,777 48.6 -1,194,007 48.6 -1,251,774 -1,159,962 49.9 -1,140,169 68.6 -1,211,415 48.7 -1,069,688 61.9 -1,303,052 49.8 -1,196,812 48.7 -1,303,925 -1,550,266 48.8 -1,443,457 48.8 -1,520,285

-1,446,465

-1,809,154

48.7

48.5

-1,553,419

-1,703,500

V 600 PAGE 1

101.4

71.7

49.9

49.8

48.5

48.5

47.2

-1,494,278

-1,822,838

48.7

48.5

48.5

48.5

47.2

ŧ

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 ASELINE MODEL

							Satu	rd	Sund	av	Nonda	av
March			Desi	-	Weekd Etg Btuh		Satu Htg Btuh		Etg Btuh	-	Htg Btuh	-
Hour	OADB	OAWB	Htg Btuh	60.0	-1,093, 4 72	52.5	-1,058,574	54.7	-1,071,687	54.5	-1,060,037	54.4
1 2	55.3 53.5	52.2 50.4	-760,624 -1,053,787	56.7	-1,187,324	49.7	-1,227,480	50.5	-1,214,438	50.5	-1,229,125	50.4
2	52.0	49.2	-903,076	54.3	-1,361,270	49.6	-1,313,882	50.1	-1,326,767	50.1	-1,315,553	50.0
4	50.7	48.0	-1,171,311	51.8	-1,401,637	49.1	-1,448,976	49.5	-1,436,135	49.5	-1,450,752	49.4
5	49.8	46.9	-980,608	50.1	-1,537,838	48.2	-1,484,383	48.4	-1,497,123	48.4	-1,486,108	48.4
6		46.4	-1,145,699	49.2	-1,516,176	48.7	-1,586,139	47.3		47.3	-1,567,704	48.7
7	49.0	46.4	-682,375	69.8	-1,307,886	64.8	~1,535,962	46.8	-1,546,728	46.8	-1,260,690	64.8
8		46.7	-546,033	104.2	-813,273	89.7	-1,371,981	47.8	-1,371,981	47.8	-827,460	89.8
9		47.8	-265,094	112.6	-933,968	93.2	-959,735	65.2	-1,132,964	60.7	-952,829	93.3
10	55.3	49.6	-136,422	124.0	-517,925	98.7	-948,740	66.8	-787,376	61.7	-517,925	98.7
1 11	59.2	52.1	-43,140	147.0	-455,192	107.7	-481,421	71.4	-670,547	65.1	-446,453	108.3
12		54.5	-7,526	171.6	-143,608	118.2	-318,776	75.0	-266,848	67.6	-143,608	118.5
13	66.4	56.9	-2,585	193.1	-116,607	137.5	-150,217	88.2	-187,535	77.4	-116,607	137.5
14	68.6	58.5	-3,426	208.7	-28,799	155.4	-55,699	69.2	-47,332	68.1	-37,166	155.5
15	69.4	58.7	-3,084	218.6	-20,458	165.1	-26,509	76.7	-26,509	75.9	-20,458	165.1
16	69.2	58.6	-4,391	220.2	-112,348	166.3	-112,864	78.4	-122,849	78.0	-102,362	166.3
17	68.6	58.8	-5,175	212.7	-113,968	162.2	-142,886	77.7	-132,687	77.5	-124,166	162.2
18	67.7	58.7	-7,069	193.6	-134,503	161.3	-156,071	76.9	-167,412	76.6	-123,162	161.3
19	66.4	59.0	-104,855	137.5	-197,626	114.0	-269,868	72.3	-256,279	72.1	-211,215	114.0
20	64.9	59.3	-233,248	97.8	-359,952	79.4	-304,443	74.0	-318,793	73.9	-345,602	79.4
21		58.5	-384,107	86.7	-429,944	69.5	-494,986	67.3	-480,735	67.3	-444,195	69.5
22		57.2	-513,050	76.7	-639,382	64.8	-597,493	65.3	-611,457	65.3	-625,418	64.8
23	59.2	55.4	-664,117	71.6	-754,290	64.1	-772,268	64.7	-758,535	64.7	-768,023	64.1
24		53.9	-758,692	64.8	-947,640	57.0	-907,201	59.2	-920,572	59.2	-934,269	57.0
			•									
April			Desi	gn	Weekd	ay	Satu	rday	Sund	ay		ay
April Hour	OADB	OAWB	Desi Htg Btuh	-	Weekd Etg Btuh	-	Satu Htg Btuh	-	Sund Etg Btuh	-	Htg Btuh	Clg Ton
		0AWB 60.6		-		-		-		-		Clg Ton 81.2
Hour			Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton	Htg Btub	Clg Ton 81.2 73.7
Hour 1	63.1 62.0	60.6	Htg Btuh -168,426	Clg Ton 87.2	Htg Btuh -476,514	Clg Ton 82.3	Htg Btuh -586,483	Clg Ton 81.4	Htg Btuh -538,280	Clg Ton 81.4	Htg Btoh -587,215	Clg Ton 81.2
Hour 1 2	63.1 62.0	60.6 59.6	Htg Btuh -168,426 -218,879	Clg Ton 87.2 81.4	Htg Btuh -476,514 -545,654	Clg Ton 82.3 75.3	Htg Btuh -586,483 -464,136	Clg Ton 81.4 73.9	Htg Btuh -538,280 -512,403	Clg Ton 81.4 73.8	Htg Btuh -587,215 -465,159	Clg Ton 81.2 73.7 69.5 67.3
Hour 1 2 3	63.1 62.0 61.1	60.6 59.6 58.8	Htg Btuh -168,426 -218,879 -222,128	Clg Ton 87.2 81.4 76.6	Btg Btuh -476,514 -545,654 -665,815	Clg Ton 82.3 75.3 70.6	Htg Btuh -586,483 -464,136 -728,196	Clg Ton 81.4 73.9 69.7	Htg Btuh -538,280 -512,403 -679,417	Clg Ton 81.4 73.8 69.7	Htg Btub -587,215 -465,159 -729,342	Clg Ton 81.2 73.7 69.5 67.3 67.8
Hour 1 2 3 4	63.1 62.0 61.1 60.5	60.6 59.6 58.8 58.3	Htg Btuh -168,426 -218,879 -222,128 -274,325	Clg Ton 87.2 81.4 76.6 71.6	Htg Btuh -476,514 -545,654 -665,815 -661,433	Clg Ton 82.3 75.3 70.6 66.8	Htg Btuh -586,483 -464,136 -728,196 -606,839	Clg Ton 81.4 73.9 69.7 67.4	Htg Btuh -538,280 -512,403 -679,417 -655,271	Clg Ton 81.4 73.8 69.7 67.4	Htg Btuh -587,215 -465,159 -725,342 -608,077	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2
Hour 1 2 3 4 5	63.1 62.0 61.1 60.5 60.4	60.6 59.6 58.8 58.3 58.4	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713	Clg Ton 87.2 81.4 76.6 71.6 71.4	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789	Clg Ton 82.3 75.3 70.6 66.8 67.6	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748	Clg Ton 81.4 73.9 69.7 67.4 65.0	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917	Clg Ton 81.4 73.8 69.7 67.4 65.0	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7
Hour 1 2 3 4 5 6	63.1 62.0 61.1 60.5 60.4 60.9 62.3	60.6 59.6 58.8 58.3 58.4 58.7	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430 -443,719 -348,618 -171,371	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8
Hour 1 2 3 4 5 6 7	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6	60.6 59.6 58.8 58.3 58.4 58.7 60.1	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5
Hour 1 2 3 4 5 6 7 8	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3
Hour 1 2 3 4 5 6 7 8 9	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2	Htg Btub -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -98,731 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7
Hour 1 2 3 4 5 6 7 8 9 10	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 70.3	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6
Hour 1 2 3 4 5 6 7 8 9 10	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 70.3	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -98,731 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5
Hour 1 2 3 4 5 6 7 8 9 10 11 12	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 65.1 66.6	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -98,731 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0 76.5	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0 76.5 75.6	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0 76.5 75.6 74.4	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 0 0	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7 161.8	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 70.3 75.2 76.7 77.0 75.2 77.0 76.5 75.6 74.4 73.0	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8 66.0	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6 245.6	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 0 0 0 0 0	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8 160.3	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 0 -157,072 -32,510	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7 161.8 160.3	Htg Btuh -587,215 -465,159 -729,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 70.3 75.2 76.7 77.0 75.2 77.0 75.6 75.6 74.4 73.0 71.4	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8 66.0 66.1	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6 245.6 197.1	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 -158,996 -32,510 -182,770	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8 160.3 149.1	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 0 -157,072 -32,510 -182,770	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7 161.8 160.3 149.1	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -98,731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4 128.9
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0 76.5 75.6 74.4 73.0 71.4 69.7	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8 66.0 66.1 66.3	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6 245.6 197.1 184.1	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 -158,996 -32,510 -182,770 -33,714	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 -126,897 -77,287 -141,599 -80,199	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8 160.3 149.1 142.5	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 -157,072 -32,510 -182,770 -33,714	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7 161.8 160.3 149.1 142.5	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 76.7 77.2 77.0 76.5 75.6 74.4 73.0 71.4 69.7 67.9	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8 66.0 66.1 66.3 65.6	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6 245.6 197.1 184.1 156.0	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 0 0 -158,996 -32,510 -182,770 -33,714 -241,834	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4 128.9	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8 160.3 149.1 142.5 129.7	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 0 -157,072 -32,510 -182,770 -33,714 -241,834	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 176.7 161.8 160.3 149.1 142.5 129.7	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4 128.9
Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	63.1 62.0 61.1 60.5 60.4 60.9 62.3 64.6 67.3 70.3 73.0 75.2 75.2 75.7 77.2 77.0 76.5 75.6 74.4 73.0 71.4 69.7 67.9 66.2	60.6 59.6 58.8 58.3 58.4 58.7 60.1 61.8 63.2 64.3 65.3 66.1 66.6 66.9 66.4 66.2 65.8 66.0 66.1 66.3 65.6 64.6	Htg Btuh -168,426 -218,879 -222,128 -274,325 -247,713 -229,818 -37,803 -133,007 -1,152 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 87.2 81.4 76.6 71.6 71.4 102.9 160.6 186.2 205.4 213.1 244.5 266.1 283.6 298.9 307.9 307.0 299.6 245.6 197.1 184.1 156.0 135.9	Htg Btuh -476,514 -545,654 -665,815 -661,433 -677,789 -497,916 -372,924 -109,986 -47,846 -98,731 -25,675 0 0 0 0 0 0 -158,996 -32,510 -182,770 -33,714 -241,834 -107,872	Clg Ton 82.3 75.3 70.6 66.8 67.6 95.1 153.2 166.0 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4 128.9 110.6	Htg Btuh -586,483 -464,136 -728,196 -606,839 -771,748 -585,355 -497,810 -219,188 -124,600 -100,353 0 0 0 0 0 0 0 0 0 0 -126,897 -77,287 -141,599 -80,199 -192,696 -157,090	Clg Ton 81.4 73.9 69.7 67.4 65.0 62.1 70.7 108.0 119.0 149.6 175.9 194.6 165.3 175.2 177.6 176.8 161.8 160.3 149.1 142.5 129.7 112.6	Htg Btuh -538,280 -512,403 -679,417 -655,271 -725,917 -627,783 -522,116 -186,645 -124,793 -100,809 -25,675 0 0 0 0 0 -157,072 -32,510 -182,770 -33,714 -241,834 -107,184	Clg Ton 81.4 73.8 69.7 67.4 65.0 62.1 70.7 98.4 106.2 134.0 159.5 178.3 163.4 174.6 177.4 174.6 177.4 176.7 161.8 160.3 149.1 142.5 129.7 112.6	Htg Btuh -587,215 -465,159 -725,342 -608,077 -727,430 -443,719 -348,618 -171,371 -72,856 -58,731 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 81.2 73.7 69.5 67.3 67.8 95.2 152.7 165.8 179.5 214.3 238.7 255.6 268.5 277.3 278.7 274.0 252.9 207.2 160.5 150.4 128.9 110.6

V 600

PAGE 2

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 ASELINE MODEL

Hay			Desi	qn	Weekd	lay	Satu	rday	Sund	ay	Hond	ay
Bour	OADB	OAWB	Etg Btuh	-	Htg Btuh	-	Htg Btuh	-	Etg Btuh	- Clg Ton	Htg Btuh	Clg Ton
1		66.0	-180,838	152.9	-159,586	114.1	-279,642	112.5	-279,512	111.9	-279,931	111.7
2	66.4		-155,307	146.0	-372,220	104.1	-237,310	99.3	-237,277	99.6	-237,735	99.4
3	65.6	63.5	-42,451	125.8	-225,200	97.3	-369,259	94.1	-369,259	94.2	-370,047	94.0
4	65.0	62.4	-221,696	116.1	-450,305	95.3	-295,726	92.3	-295,726	92.3	-299,659	92.2
5	64.8	62.3	-43,135	115.5	-258,639	96.6	-421,086	89.7	-421,086	89.7	-408,982	93.3
6	65.2		-197,028	167.3	-291,985	136.8	-225,718	90.0	-225,718	90.0	-160,134	136.0
7	66.2		-137,020	242.5	-167,555	204.6	-248,098	101.2	-248,098	101.2	-181,930	205.4
8	68.0		-118,619	248.5	-19,204	206.1	-63,735	145.4	-70,870	131.6	-27,670	206.3
9	70.6	63.4	-110,019	268.0	-29,645	228.4	-30,630	164.7	-30,906	148.7	-29,645	228.4
10	73.7		0	293.5	-87,747	254.0	-87,747	192.0	-87,747	175.6	-87,747	253.9
10	77.1			323.1] 0	282.3	-07,747	221.6	0	205.0	0	282.2
12			-88,672		0		0	261.3		243.9	0	323.1
		67.0	0	354.2		323.1			0	239.3	-85,988	346.9
13	82.8		0	397.7	-85,988	346.9	-85,988	241.2	-85,988	260.6	0	364.8
14	84.4		-93,975	420.5	0	364.9	0	261.1	0	270.8	-88,192	373.4
15	85.0		0	432.1	-88,192	373.5	-88,192	270.9	-88,192		-00,192	380.0
16	84.4		-107,389	428.8	0	380.0	0	278.9	0	278.9		364.6
17	83.0	70.0	-79,036	416.5	-126,270	364.7	-126,270	267.9	-126,270	267.9	-126,270	300.5
18		70.5	-87,259	351.3	-29,318	300.5	-29,318	253.5	-29,318	253.5	-29,318	235.3
19		71.0	-95,676	291.9	-218,002	235.3	-228,670	222.8	-228,670	222.8	-228,670	
20	75.5		-101,030	272.0	-106,824	213.1	-106,824	203.8	-106,824	203.8	-106,824	213.1
21		71.8	-99,040	247.4	-85,994	192.8	-85,994	190.4	-85,994	190.4	-85,994	192.8
22	71.2		-192,060	212.5	-166,528	162.0	-166,528	160.3	-166,528	160.3	-166,528	162.0
23	69.6	69.0	-88,543	188.7	-106,117	133.7	-106,117	137.2	-106,117	137.2	-106,117	133.7
24	68.4	67.5	-198,198	175.2	-217,687	124.8	-218,202	122.9	-218,202	122.9	-217,687	124.8
_											Mond	
June			Desi		Weekd	-	Satu	-	Sund	-	Mond	-
Eour	OADB	OAWB	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton
Eour 1	73.1	70.5	Htg Btuh -194,572	Clg Ton 227.6	Htg Btuh -79,047	Clg Ton 184.3	Htg Btuh -168,426	Clg Ton 187.0	Htg Btuh -79,047	Clg Ton 184.1	Htg Btuh -168,426	Clg Ton 183.7
Ecur 1 2	73.1 72.2	70.5 69.6	Htg Btuh -194,572 -128,790	Clg Ton 227.6 219.3	Htg Btuh -79,047 -123,389	Clg Ton 184.3 173.7	Htg Btub -168,426 -32,484	Clg Ton 187.0 171.7	Htg Btuh -79,047 -123,390	Clg Ton 184.1 169.6	Htg Btuh -168,426 -32,484	Clg Ton 183.7 169.3
Hour 1 2 3	73.1 72.2 71.5	70.5 69.6 68.6	Htg Btuh -194,572 -128,790 -181,120	Clg Ton 227.6 219.3 207.6	Htg Btuh -79,047 -123,389 -140,272	Clg Ton 184.3 173.7 163.3	Htg Btuh -168,426 -32,484 -232,245	Clg Ton 187.0 171.7 162.3	Htg Btuh -79,047 -123,390 -140,272	Clg Ton 184.1 169.6 159.8	Htg Btuh -168,426 -32,484 -232,245	Clg Ton 183.7 169.3 158.6
Eour 1 2 3 4	73.1 72.2 71.5 71.0	70.5 69.6 68.6 68.2	Htg Btuh -194,572 -128,790 -181,120 -125,692	Clg Ton 227.6 219.3 207.6 199.4	Htg Btuh -79,047 -123,389 -140,272 -129,941	Clg Ton 184.3 173.7 163.3 148.7	Htg Btuh -168,426 -32,484 -232,245 -36,003	Clg Ton 187.0 171.7 162.3 147.0	Htg Btuh -79,047 -123,390 -140,272 -129,941	Clg Ton 184.1 169.6 159.8 144.6	Htg Btuh -168,426 -32,484 -232,245 -36,003	Clg Ton 183.7 169.3 158.6 145.4
Eour 1 2 3 4 5	73.1 72.2 71.5 71.0 70.8	70.5 69.6 68.6 68.2 68.0	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428	Clg Ton 227.6 219.3 207.6 199.4 199.4	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940	Clg Ton 184.3 173.7 163.3 148.7 147.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345	Clg Ton 187.0 171.7 162.3 147.0 141.0	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014	Clg Ton 184.1 169.6 159.8 144.6 139.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270	Clg Ton 183.7 169.3 158.6 145.4 144.5
Eour 1 2 3 4 5 6	73.1 72.2 71.5 71.0 70.8 71.1	70.5 69.6 68.6 68.2 68.0 68.1	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5
Eour 1 2 3 4 5 6 7	73.1 72.2 71.5 71.0 70.8 71.1 72.0	70.5 69.6 68.6 68.2 68.0 68.1 68.6	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 113,105	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9
Ecur 1 2 3 4 5 6 7 8	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 113,105 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5
Ecur 1 2 3 4 5 6 7 8 9	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5
Ecur 1 2 3 4 5 6 7 8 9 10	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6
Eour 1 2 3 4 5 6 7 8 9 10 11	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 113,105 0 -79,598 0 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3
Eour 1 2 3 4 5 6 7 8 9 10 11 12	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0
Ecur 1 2 3 4 5 6 7 8 9 10 11 12 13 14	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7 88.2	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9
Ecorr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7 88.2 88.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1
Ecur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 84.6 86.7 88.2 88.7 88.2	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.2	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 84.6 86.7 88.2 88.7 88.2 88.9	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 76.2 75.2 74.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 76.2 75.2 74.7 74.3	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9 82.6	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 76.2 75.2 74.7 74.3 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 142.1 142.1 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7
Ecur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9 82.6 80.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 75.2 74.3 74.3 74.8	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7
Ecur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9 82.6 80.3 78.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 75.2 74.3 74.4 74.8 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9 82.6 80.3 78.3 76.5	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.2 74.7 74.3 74.4 74.8 74.4 73.5	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960 -137,536	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7 296.4	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2 247.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5 245.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5 245.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9 247.0
Ecur 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	73.1 72.2 71.5 71.0 70.8 71.1 72.0 73.7 76.0 78.7 81.7 81.7 84.6 86.7 88.2 88.7 88.2 88.7 88.2 86.9 84.9 82.6 80.3 78.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 76.2 75.2 74.7 74.3 74.4 74.8 74.4 73.5 72.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9

V 600 PAGE 3

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 ASELINE MODEL

July			Desi	an	Weekd	av	Satu	rdav	Sund	ay	Mond	ay
Hour	OADB	OAWB	Htg Btuh	-	Htg Btuh	-	Etg Btuh	-	Etg Btuh	-	Htg Btuh	Clg Ton
1	74.0	72.9	-106,743	254.9	-156,345	206.7	-82,076	209.7	-82,076	207.4	-82,076	207.0
2	73.2	71.6	-215,081	238.8	-123,985	192.6	-203,113	191.0	-203,113	189.0	-203,113	188.6
3	72.6	70.7	-102,407	229.2	-157,550	183.7	-77,740	181.8	-77,740	179.5	-77,740	179.1
4	72.1	70.0	-216,581	221.5	-46,108	165.8	-126,911	167.0	-126,911	164.6	-126,911	162.9
5	72.0	69.6	-96,962	222.0	-217,377	167.8	-138,588	157.9	-138,588	157.2	-138,588	165.4
6		69.4	-195,340	269.6	-42,424	223.1	-113,579	161.8	-113,579	162.4	-113,579	222.6
7	73.1	70.0	-81,014	344.4	-117,703	320.3	-117,703	192.1	-117,703	192.3	-117,703	320.9
8	74.5	70.0	0	357.7	0	321.3	0	256.5	0	238.7	0	321.0
9	76.5	70.7	-122,890	378.6	-87,643	339.3	-87,643	270.8	-87,643	252.5	-87,643	339.0
10	78.8	71.5	0	401.4	0	360.8	0	293.6	0	275.0	0	360.5
111	81.4	73.0	-95,103	428.0	(o	400.6	0	332.9	0	313.8	0	400.3
12	83.9	74.3	0	473.6	-106,814	442.4	-106,814	374.9	-106,814	355.3	-106,814	442.1
13	85.8	76.1	-87,552	516.2	0	481.7	O	359.7	0	358.4		481.5
14	87.0	77.3	o	537.3	-89,307	498.7	-89,307	382.5	-89,307	382.2	-89,307	498.4
15	87.5	77.9	-95,631	560.6	O	519.9	0	402.5	0	402.5	0	519.6
16	87.0	77.9	· 0	546.8	-121,812	510.8	-121,812	398.8	-121,812	398.8	-121,812	510.6
17	85.9	78.1	-144,717	534.4	-81,245	495.4	-81,245	387.8	-81,245	387.8	-81,245	495.1
18	84.2	77.6	-98,838	467.6	-113,598	411.2	-113,598	362.0	-113,598	362.0	-113,598	411.0
19	82.2	77.7	-108,306	390.6	-90,788	343.0	-90,788	330.1	-90,788	330.1	-90,788	342.8
20	80.2	78.0	-117,475	372.5	-204,453	323.1	-195,275	313.4	-195,275	313.4	-195,275	322.9
21	78.5	77.5	-117,849	335.7	-93,182	293.7	-93,182	290.7	-93,182	290.7	-93,182	293.4
22	76.9	76.6	-137,029	311.2	-203,861	264.6	-203,861	263.0	-203,861	263.0	-203,861	264.3
23	75.7	75.3	-169,545	290.3	-86,553	234.7	-86,553	239.0	-86,553	239.0	-86,553	234.4
24	74.8	74.1	-147,237	264.7	-202,765	225.7	-202,765	221.7	-202,765	221.7	-202,765	225.4
											_	
Augus			Desig	gn	Weekda	-	Satu	-	Sund	-	Mond	-
Hour	OADB	OAWB	Htg Btuh	-	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton
Hour 1	OADB 74.4	72.7	Htg Btuh -107,361	-	Htg Btuh -122,810	Clg Ton 212.6	Etg Btuh -204,160	Clg Ton 214.8	Htg Btuh -204,160	Clg Ton 212.8	Htg Btuh -204,160	Clg Ton 212.4
Bour 1 2	OADB 74.4 73.5	72.7 71.6	Htg Btuh -107,361 -212,744	Clg Ton	Htg Btuh -122,810 -160,532	Clg Ton 212.6 197.5	Etg Btuh -204,160 -80,919	Clg Ton 214.8 195.9	Htg Btuh -204,160 -80,919	Clg Ton 212.8 194.0	Htg Btuh -204,160 -80,919	Clg Ton 212.4 193.6
Hour 1 2 3	OADB 74.4 73.5 72.9	72.7 71.6 70.9	Htg Btuh -107,361	Clg Ton 258.6	Htg Btuh -122,810	Clg Ton 212.6 197.5 187.4	Etg Btuh -204,160 -80,919 -203,169	Clg Ton 214.8 195.9 185.7	Htg Btuh -204,160 -80,919 -203,169	Clg Ton 212.8 194.0 183.3	Htg Btuh -204,160 -80,919 -203,169	Clg Ton 212.4 193.6 183.0
Hour 1 2 3	OADB 74.4 73.5 72.9 72.4	72.7 71.6 70.9 70.2	Htg Btuh -107,361 -212,744 -102,531 -215,396	Clg Ton 258.6 239.9 231.3 223.2	Htg Btuh -122,810 -160,532 -122,959 -158,762	Clg Ton 212.6 197.5 187.4 176.7	Etg Btuh -204,160 -80,919 -203,169 -77,616	Clg Ton 214.8 195.9 185.7 178.9	Htg Btuh -204,160 -80,919 -203,169 -77,616	Clg Ton 212.8 194.0 183.3 176.5	Htg Btuh -204,160 -80,919 -203,169 -77,616	Clg Ton 212.4 193.6 183.0 174.6
Eour 1 2 3 4 5	OADB 74.4 73.5 72.9 72.4 72.2	72.7 71.6 70.9 70.2 69.6	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867	Clg Ton 258.6 239.9 231.3 223.2 212.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779	Clg Ton 212.6 197.5 187.4 176.7 173.8	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389	Clg Ton 212.8 194.0 183.3 176.5 164.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389	Clg Ton 212.4 193.6 183.0 174.6 171.4
Eour 1 2 3 4 5 6	OADB 74.4 73.5 72.9 72.4 72.2 72.5	72.7 71.6 70.9 70.2 69.6 69.6	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1
Hour 1 2 3 4 5 6 7	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4	72.7 71.6 70.9 70.2 69.6 69.6 70.3	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2
Hour 1 2 3 4 5 6 7 8	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5	Etg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2
Eour 1 2 3 4 5 6 7 8 9	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6
Eour 1 2 3 4 5 6 7 8 9 10	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8
Eour 1 2 3 4 5 6 7 8 9 10 11	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4
Eour 1 2 3 4 5 6 7 8 9 10 11 12	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -88,929	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13	OADB 74.4 73.5 72.9 72.4 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OADB 74.4 73.5 72.9 72.4 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.4 88.4	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.4 88.4 88.4 88.4 87.2 85.4	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 553.9 564.7 556.9 471.9	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.4 88.9 88.4 87.2 85.4 83.2	72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 364.7 556.9 471.9 407.2	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2	<pre>Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066</pre>	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	OADB 74.4 73.5 72.9 72.4 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 87.2 85.4 83.2 81.0	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 553.9 554.7 556.9 471.9 407.2 375.7	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.6	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.4 88.9 88.4 87.2 85.4 83.2 81.0 79.2	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5 78.5 78.5	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 554.9 554.7 556.9 471.9 407.2 375.7 352.4	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7	Etg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.6 303.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 87.2 85.4 83.2 81.0 79.2 77.5	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5 77.6 76.2	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058 -170,967	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 407.2 375.7 352.4 314.1	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639 -91,840	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7 274.8	Etg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.6 303.2 273.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2 273.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5 274.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.4 88.9 88.4 87.2 85.4 83.2 81.0 79.2	72.7 71.6 70.9 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5 77.6 76.2 75.0	Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058	Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 554.9 554.7 556.9 471.9 407.2 375.7 352.4	Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7	Etg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.6 303.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5

PAGE 4

UILDING COOL-HEAT DEMAND - ALTERMATIVE 1

ASELINE MODEL

Septe	mber		Desi	ap	Weekd	av	Satu	rdav	Sunda	ay	Honda	ny
Bour	OADB	OAWB	Etg Btub	-	Htg Btuh	-	Etg Btuh	-	Htg Btuh	=	Htg Btuh	Clg Ton
1	71.2	70.1	-212,764	204-1	0	143.7	-126,242	143.3	-96,140	143.9	-126,242	143.6
2		68.7	-93,908	185.5	-277,854	131.4	-148,150	129.0	-179,663	129.2	-148,150	128.7
2		67.5	-207,366	176.5	-14,375	124.1	-147,660	122.1	-114,745	122.2	-147,660	121.8
4		66.7	•	168.2	-310,679	121.5	-172,512	118.9	-206,500	118.9	-173,135	118.7
* 5		66.0	-89,264	166.9	-31,850	118.0	-174,286	110.7	-140,842	110.7	-166,157	115.5
	68.9		-200,507				-164,056	110.6	-196,141	110.6	-153,111	164.8
6		65.4	-85,042	212.6	-278,963	164.5		127.7	-77,433	127.7	-99,479	248.5
7		65.6	0	282.7	-6,579	247.9	-102,954	199.5	-98,898	182.5	-98,898	266.9
8		65.4	-164,958	296.9	-98,898	266.9	-98,898			194.7	0	278.0
9		65.5	0	318.2	-33,216	278.0	0	211.8	-24,504	217.5	-85,159	299.7
10		66.1	-109,067	342.4	-85,159	299.7	-85,159	234.9	-85,159		-00/100	339.1
11		67.7	0	372.4	0	339.1	0	273.4	0	255.3	-90,721	362.0
12		69.9	-93,340	401.6	-90,721	362.0	-90,721	298.0	-90,721	280.0	-90,721	394.3
13		71.5	0	443.5	0	394.3	0	280.9	0	279.2		424.2
14	86.1	72.9	-99,472	464.7	-104,762	424.2	-104,762	311.2	-104,762	310.8	-104,762 0	429.7
15		73.3	0	474.6	0	429.7	0	318.9	0	318.8		
16		73.0	-138,803	470.8	-136,315	421.1	-136,315	315.8	-136,315	315.8	-136,315	421.1
17	84.8	73.3	-98,741	457.2	-166,007	402.8	-160,862	301.6	-160,862	301.6	-160,862	402.8
18	82.9	74.8	-110,263	399.7	-93,766	345.3	-123,706	295.4	-93,766	295.4	-123,706	345.3
19	80.6	76.2	-118,124	341.9	-209,538	290.8	-175,813	279.9	-209,538	279.9	-175,813	290.8
20	78.3	76.1	-199,116	312.7	-92,127	260.6	-118,239	252.0	-92,127	252.0	-118,239	260.6
21	76.3	75.4	-110,956	288.8	-202,364	230.3	-175,888	229.6	-202,364	229.6	-175,888	230.3
22	74.6	74.3	-189,096	253.4	-81,259	204.0	-108,179	202.9	-81,259	202.9	-108,179	204.0
23	73.1	73.1	-101,495	232.8	-120,216	180.8	-92,220	186.8	-120,216	186.8	-92,220	180.8
24	72.1	71.6	-217,107	209.6	-138,555	162.8	-167,669	161.2	-138,555	161.2	-167,669	162.8
							Catu		- Sund		Kondi	av
Octob			Desi	-	Weekd	-	Satu	-	Sund	-	Kond	-
Hour	OADB	OAWB	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btub	Clg Ton
Hour 1	OADB 58.4	55.8	Htg Btuh -533,725	Clg Ton 68.8	Htg Btuh -725,340	Clg Ton 58.3	Htg Btuh -889,827	Clg Ton 62.6	Htg Btuh -731,072	Clg Ton 62.6	Htg Btub -891,073	Clg Ton 62.5
Eour 1 2	OADB 58.4 56.7	55.8 53.9	Htg Btuh -533,725 -727,549	Clg Ton 68.8 60.0	Htg Btuh -725,340 -1,093,392	Clg Ton 58.3 54.3	Htg Btuh -889,827 -927,413	Clg Ton 62.6 55.8	Htg Btuh -731,072 -1,083,551	Clg Ton 62.6 55.8	Htg Btub -891,073 -928,832	Clg Ton 62.5 55.7
Eour 1 2 3	OADB 58.4 56.7 55.3	55.8 53.9 52.7	Htg Btuh -533,725 -727,549 -713,217	Clg Ton 68.8 60.0 55.8	Htg Btuh -725,340 -1,093,392 -964,644	Clg Ton 58.3 54.3 52.2	Htg Btuh -889,827 -927,413 -1,131,420	Clg Ton 62.6 55.8 53.0	Htg Btuh -731,072 -1,083,551 -977,890	Clg Ton 62.6 55.8 53.0	Htg Btub -891,073 -928,832 -1,132,988	Clg Ton 62.5 55.7 52.9
Eour 1 2 3 4	OADB 58.4 56.7 55.3 54.1	55.8 53.9 52.7 51.8	Htg Btuh -533,725 -727,549 -713,217 -849,679	Clg Ton 68.8 60.0 55.8 52.8	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338	Clg Ton 58.3 54.3 52.2 49.6	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557	Clg Ton 62.6 55.8 53.0 50.0	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842	Clg Ton 62.6 55.8 53.0 50.0	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109	Clg Ton 62.5 55.7 52.9 49.9
Eour 1 2 3 4 5	OADB 58.4 56.7 55.3 54.1 53.2	55.8 53.9 52.7 51.8 51.0	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691	Clg Ton 68.8 60.0 55.8 52.8 52.6	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549	Clg Ton 58.3 54.3 52.2 49.6 49.7	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308	Clg Ton 62.6 55.8 53.0 50.0 48.1	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156	Clg Ton 62.6 55.8 53.0 50.0 48.1	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580	Clg Ton 62.5 55.7 52.9 49.9 49.8
Eour 1 2 3 4 5 6	OADB 58.4 56.7 55.3 54.1 53.2 52.6	55.8 53.9 52.7 51.8 51.0 50.4	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1
Eour 1 2 3 4 5 6 7	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4	55.8 53.9 52.7 51.8 51.0 50.4 50.4	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0
Eour 1 2 3 4 5 6 7 8	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7
Eour 1 2 3 4 5 6 7 8 9	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3
Eour 1 2 3 4 5 6 7 8 9 10	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0
Eour 1 2 3 4 5 6 7 8 9 10 11	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8
Eour 1 2 3 4 5 6 7 8 9 10 11 12	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 74.1	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.3 97.2 108.9	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 74.1 73.9	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 0	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 74.1 73.9 73.3	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 0 0 -206,072	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 0 0	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 74.1 73.9 73.3 72.4	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8 61.7	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 0 -206,072 0	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 0 -206,072 0	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 74.1 73.9 73.3 72.4 71.2	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 61.8 61.7 62.8	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 0 -206,072 0 -232,030	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7 100.7	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 0 -206,072 0 -232,030	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 74.1 73.9 73.3 72.4 71.2 69.8	55.8 53.9 52.7 51.8 51.0 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 61.8 61.7 62.8 64.0	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7 137.2	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 -206,072 0 -232,030 -20,712	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8 99.6	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.3 97.2 108.9 112.8 111.8 105.7 100.7 99.6	Htg Btub -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 0 -206,072 0 -232,030 -20,712	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 74.1 73.9 73.3 72.4 71.2 69.8 68.1	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8 61.7 62.8 61.7 62.8 64.0 63.7	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7 137.2 113.3	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -156,982	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 -206,072 0 -232,030 -20,712 -323,909	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8 99.6 101.3	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -153,211	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7 100.7 99.6 101.3	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 0 -206,072 0 -232,030 -20,712 -327,680	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 73.0 74.1 73.9 73.3 72.4 71.2 69.8 68.1 66.2	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8 61.7 62.8 64.0 63.7 62.5	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7 137.2 113.3 54.3	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -156,982 -337,801	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 -206,072 0 -202,030 -20,712 -323,909 -170,225	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8 99.6 101.3 88.6	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -153,211 -339,424	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7 100.7 99.6 101.3 88.6	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 -206,072 0 -206,072 0 -232,030 -20,712 -327,680 -168,602	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 73.0 73.0 73.0 73.0 73	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8 61.7 62.8 64.0 63.7 62.5 60.9	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7 137.2 113.3 54.3 78.5	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -156,982 -337,801 -334,056	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3 82.2	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 -206,072 0 -232,030 -20,712 -323,909 -170,225 -497,318	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8 99.6 101.3 88.6 83.3	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -153,211 -339,424 -331,103	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7 100.7 99.6 101.3 88.6 83.3	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 -206,072 0 -232,030 -20,712 -327,680 -168,602 -500,270	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3 82.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 58.4 56.7 55.3 54.1 53.2 52.6 52.4 53.5 56.5 60.8 65.7 70.0 73.0 73.0 73.0 73.0 74.1 73.9 73.3 72.4 71.2 69.8 68.1 66.2 64.2 62.3	55.8 53.9 52.7 51.8 51.0 50.4 50.4 51.1 52.9 54.3 57.3 60.0 62.0 62.2 62.2 61.8 61.7 62.8 64.0 63.7 62.5	Htg Btuh -533,725 -727,549 -713,217 -849,679 -745,691 -671,341 -411,378 -317,289 -115,391 -36,467 -2,036 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Clg Ton 68.8 60.0 55.8 52.8 52.6 73.8 109.1 117.3 130.4 147.4 171.8 202.1 222.8 238.1 246.6 243.5 232.5 183.7 137.2 113.3 54.3	Htg Btuh -725,340 -1,093,392 -964,644 -1,287,338 -1,099,549 -1,146,838 -748,266 -678,633 -621,616 -394,658 -91,898 -15,353 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -156,982 -337,801	Clg Ton 58.3 54.3 52.2 49.6 49.7 68.0 94.9 98.7 107.3 118.1 134.1 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3	Htg Btuh -889,827 -927,413 -1,131,420 -1,116,557 -1,298,308 -1,232,914 -1,287,104 -834,033 -801,867 -544,940 -181,423 -17,528 0 0 -206,072 0 -202,030 -20,712 -323,909 -170,225	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 67.6 71.8 75.2 82.9 111.8 99.1 109.8 113.3 112.1 105.8 100.8 99.6 101.3 88.6	Htg Btuh -731,072 -1,083,551 -977,890 -1,268,842 -1,152,156 -1,369,517 -1,195,049 -932,360 -878,015 -536,590 -178,995 -18,138 0 -9,546 -87,696 -68,261 -123,855 -84,669 -186,414 -153,211 -339,424	Clg Ton 62.6 55.8 53.0 50.0 48.1 47.5 48.3 62.6 65.4 67.5 73.2 97.3 97.2 108.9 112.8 111.8 105.7 100.7 99.6 101.3 88.6	Htg Btuh -891,073 -928,832 -1,132,988 -1,118,109 -1,263,580 -994,260 -840,321 -705,645 -519,811 -449,902 -101,887 -15,353 0 0 -206,072 0 -206,072 0 -232,030 -20,712 -327,680 -168,602	Clg Ton 62.5 55.7 52.9 49.9 49.8 68.1 95.0 98.7 107.3 118.0 133.8 168.9 192.8 203.2 206.0 201.6 192.8 146.6 107.7 104.1 87.3

PAGE 5

Trane Air Conditioning Economics By: ENGINEERING RESOURCE GROUP, INC.

November

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE HODEL

						<u>-</u> _		;				•
Hour	OADB	OAWB	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton
1	56.4	54.8	-665,778	55.8	-1,145,732	53.2	-885,015	57.6	-914,067	57.7	-886,415	57.6
2	54.7	53.1	-975,526	53.1	-998,770	50.2	-1,254,004	51.9	-1,224,656	51.9	-1,255,601	51.8
3	53.3	51.8	-809,399	51.1	-1,382,354	48.5	-1,119,905	49.4	-1,149,485	49.4	-1,121,500	49.3
4	52.1	50.4	-1,082,277	48.3	-1,203,266	47.3	-1,465,509	47.7	-1,435,623	47.7	-1,467,236	47.6
5	51.2	49.7	-884,326	47.2	-1,556,191	47.1	-1,301,356	47.3	-1,331,595	47.3	-1,303,071	47.2
6	50.6	49.1	-1,045,431	46.9	-1,302,959	47.6	-1,566,760	46.1	-1,537,813	46.1	-1,535,198	47.7
7	50.5	49.0	-608,384	67.0	-1,357,620	64.4	-1,367,545	45.2	-1,394,972	45.2	-1,141,566	64.5
8		49.7	-568,120	104.9	-750,442	91.0	-1,423,079	46.0	-1,423,079	46.0	-876,922	91.0
9	53.3	50.9	-240,459	114.0	-775,424	95.5	-863,389	64.7	-962,708	59.8	-802,670	95.6
10	56.4	52.3	-108,726	125.7	-559,992	101.6	-822,871	67.7	-738,063	61.7	-486,390	101.6
11	60.0	54.1	-34,182	145.8	-455,328	113.0	-453,813	72.3	-587,357	65.0	-386,952	111.9
12	63.7	56.5		173.7		124.5			-398,601	68.4	-263,446	124.5
13	66.8	58.1	-1,920		-153,199		-411,545	88.4	-121,060	77.2	-55,882	140.0
14	68.9	59.6	o	194.3	-55,882	140.0	-89,183	72.1	-50,765	70.4	-36,072	164.5
15			0	208.5	-26,130	164.5	-50,765		-	79.3	-18,792	175.1
	69.6	60.0	0	216.0	-106,969	175.1	-24,177	80.3	-24,177		-155,149	175.1
16	69.4	60.2	-8,482	214.2	-87,318	174.3	-161,201	80.3	-161,201	79.8		
17	68.9	60.4	-157,598	201.6	-35,488	167.1	-81,735	76.8	-53,031	76.6	-66,884	167.1
18	68.0	62.1	-11,685	192.8	-285,936	176.7	-256,312	83.0	-291,803	82.8	-224,738	176.7
19	66.8	62.5	-230,397	136.8	-120,722	126.5	-191,851	82.7	-161,165	82.6	-151,407	126.5
20	65.4	62.0	-126,171	87.5	-445,521	80.5	-405,415	78.5	-435,656	78.4	-415,280	80.5
21	63.7	60.8	-438,013	75.3	-294,210	79.1	-352,232	77.2	-322,242	77.2	-324,200	79.1
22	61.9	59.5	-384,054	64.9	-697,454	69.4	-651,264	70.4	-680,946	70.4	-667,772	69.4
23	60.0	58.0	-686,293	60.4	-596,733	68.0	-623,868	68.9	-594,798	68.9	-625,803	68.0
24	58.2	56.3	-578,267	55.9	-989,561	59.7	-935,231	62.4	-964,066	62.4	-960,726	59.7
Decemi	ber		Desi	gn	Weekd	ay	Satu:	rday	Sund	ay	Mond	-
Decemi Hour	OADB	OAWB	Htg Btuh	-	Htg Btub	-	Satu: Htg Btuh	-	Sund Htg Btuh	-	Htg Btuh	-
		0AWB 45.9		-		-		-		-		-
Hour	OADB 47.7		Htg Btuh	Clg Ton	Htg Btub	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton
Hour 1	OADB 47.7 46.2	45.9	Htg Btuh -1,176,115	Clg Ton 50.3	Htg Btub -1,541,616	Clg Ton 48.0	Htg Btuh -1,735,267	Clg Ton 48.3	Htg Btuh -1,657,040	Clg Ton 48.2	Htg Btuh -1,777,015	Clg Ton 48.1
Hour 1 2	OADB 47.7 46.2 45.0	45.9 44.5	Htg Btuh -1,176,115 -1,461,035	Clg Ton 50.3 48.3	Htg Btuh -1,541,616 -1,881,858	Clg Ton 48.0 47.5	Htg Btuh -1,735,267 -1,688,344	Clg Ton 48.3 47.6	Htg Btuh -1,657,040 -1,777,405	Clg Ton 48.2 47.6	Htg Btub -1,777,015 -1,675,556	Clg Ton 48.1 47.5
Hour 1 2 3	OADB 47.7 46.2 45.0	45.9 44.5 43.4 42.7	Htg Btuh -1,176,115 -1,461,035 -1,335,883	Clg Ton 50.3 48.3 47.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532	Clg Ton 48.0 47.5 46.8	Htg Btuh -1,735,267 -1,688,344 -1,960,151	Clg Ton 48.3 47.6 46.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248	Clg Ton 48.2 47.6 46.8	Htg Btuh -1,777,015 -1,675,556 -1,934,636	Clg Ton 48.1 47.5 46.8
Eour 1 2 3 4	OADB 47.7 46.2 45.0 44.3	45.9 44.5 43.4 42.7 42.8	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907	Clg Ton 50.3 48.3 47.1 46.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917	Clg Ton 48.0 47.5 46.8 46.4	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595	Clg Ton 48.3 47.6 46.8 46.4	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649	Clg Ton 48.2 47.6 46.8 46.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497	Clg Ton 48.1 47.5 46.8 46.3
Hou <i>r</i> 1 2 3 4 5	OADB 47.7 46.2 45.0 44.3 44.1	45.9 44.5 43.4 42.7 42.8 43.1	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694	Clg Ton 50.3 48.3 47.1 46.0 45.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306	Clg Ton 48.0 47.5 46.8 46.4 45.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330	Clg Ton 48.3 47.6 46.8 46.4 45.2	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821	Clg Ton 48.2 47.6 46.8 46.4 45.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727	Clg Ton 48.1 47.5 46.8 46.3 45.2
Hour 1 2 3 4 5 6	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9	45.9 44.5 43.4 42.7 42.8 43.1	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9
Eour 1 2 3 4 5 6 7	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6
Hour 1 2 3 4 5 6 7 8	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4
Eour 1 2 3 4 5 6 7 8 9	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2
Hour 1 2 3 4 5 6 7 8 9 10	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3
Hour 1 2 3 4 5 6 7 8 9 10 11	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 43.6 42.2 42.0 54.7 54.0 57.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1
Hour 1 2 3 4 5 6 7 8 9 10 11 12	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 53.6 55.5 59.1	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8	<pre>Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572</pre>	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 55.3 56.2	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2	<pre>Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501</pre>	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 55.3 56.2 56.3	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 52.8 56.2	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8 56.4	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 52.8 56.2 57.5	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.5 47.3 50.0 52.5 52.8 56.2 57.8 57.4	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.6 57.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 57.4 53.3	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.6 57.2 53.3	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 55.7 53.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.3 56.2 56.1 56.4 55.1 53.5 51.3	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.4 53.3 49.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 55.7 53.6 51.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5 51.3 49.6	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528 -961,996	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6 54.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152 -1,442,698	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5 50.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205 -1,348,994	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.4 53.3 49.6 50.3	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474 -1,467,998	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5 50.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385 -1,340,916	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5 50.1
Eour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 55.7 53.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5 51.3 49.6	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.4 53.3 49.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5

----- Design ----- ---- Weekday ----- ----- Saturday---- ----- Sunday ----- ----- Monday -----

V 600 Page 6

APPENDIX 4F

EVALUATION OF STORAGE STRATEGIES

12 HOUR TO 6 HOUR ON PEAK STORAGE SCENARIOS

. - -

12 HOUR ON-PEAK PERIOD (8 AM - 8 PM)

APRIL

TOTALS	4,408.3	3,055.0	1,353.3	3,055.0	MAX =	438.7
24	107.8	0.0	107.8	254.58		362.4
23	117.8	0.0	117.8	254.58		372.4
22	135.9	0.0	135.9	254.58		390.5
21	156.0	0.0	156.0	254.58		410.6
20	184.1	0.0	184.1	254.58		438.7
19	197.1	197.1	0.0			0.0
18	245.6	245.6	0.0			0.0
17	299.6	299.6	0.0			0.0
16	307.0	307.0	0.0			0.0
15	307.9	307.9	0.0			0.0
14	298.9	296.9	0.0			0.0
13	263.6	283.6	0.0			0.0
12	266.1	266.1	0.0			0.0
11	244.5	244.5	0.0			0.0
10	213.1	213.1	0.0			0.0
9	205.4	205.4	0.0			0.0
8	186.2	186.2	0.0			0.0
7	160.6	0.0	160.6	254.58		415.2
6	102.9	0.0	102.9	254.58		357.5
5	71.4	0.0	71.4	254.58		326.0
4	71.6	0.0	71.6	254.58		326.2
3	76.6	0.0	76.6	254.58		331.2
2	81.4	0.0	81.4	254.58		336.0
1	87.2	0.0	87.2	254.58		341.8
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
	Load	Peak	Peak	Storage		Chiller
	Cooling	On	Off	Required		Required

MAY

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	152.9	0.0	152.9	352.2		505.1
2	146.0	0.0	146.0	352.2		498.2
3	125.8	0.0	125.8	352.2		478.0
4	116.1	0.0	116.1	352.2		468.3
5	115.5	0.0	115.5	352.2		467.7
6	167.3	0.0	167.3	352.2		519.5
7	242.5	0.0	242.5	352.2		594.7
8	248.5	248.5	0.0			0.0
9	268.0	268.0	0.0			0.0
10	293.5	293.5	0.0			0.0
11	323.1	323.1	0.0			0.0
12	354.2	354.2	0.0			0.0
13	397.7	397.7	0.0			0.0
14	420.5	420.5	0.0			0.0
15	432.1	432.1	0.0			0.0
16	425.8	428.8	0.0			0.0
17	416.5	416.5	0.0			0.0
18	351.3	351.3	0.0			0.0
19	291.9	291.9	0.0			0.0
20	272.0	0.0	272.0	352.2		624.2
21	247.4	0.0	247.4	352.2		599.6
22	212.5	0.0	212.5	352.2		564.7
23	188.7	0.0	188.7	352.2		540.9
24	175.2	0.0	175.2	352.2		527.4
OTALS	6,388.0	4,226.1	2,161.9	4,226.1	MAX =	624.2

JUNE

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	227.6	0.0	227.6	443.0		670.6
2	219.3	0.0	219.3	443.0		662.3
3	207.6	0.0	207.6	443.0		650.6
4	199.4	0.0	199.4	443.0		642.4
5	199.4	0.0	199.4	443.0		642.4
6	249.2	0.0	249.2	443.0		692.2
7	321.1	0.0	321.1	443.0		764.1
8	336.5	336.5	0.0			0.0
9	343.7	343.7	0.0			0.0
10	383.2	363.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	457.7	0.0			0.0
14	508.8	506.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	506.7	0.0			0.0
18	439.8	439.8	0.0			0.0
19	378.3	378.3	0.0			0.0
20	345.7	0.0	345.7	443.0		788.7
21	319.7	0.0	319.7	443.0		762.7
22	296.4	0.0	296.4	443.0		739.4
23	273.1	0.0	273.1	443.0		716.1
24	247.9	0.0	247.9	443.0		690.9
DTALS	8,422.7	5.316.3	3,106.4	5,316.3	MAX =	788.7

÷÷

JULY

	Cooling	On	Off	Required		Required
	Load	Feek	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	254.9	0.0	254.9	466.1		721.0
2	238.8	0.0	238.8	466.1		704.9
3	229.2	0.0	229.2	466.1		695.3
4	221.5	0.0	221.5	466.1		687.6
5	222.0	0.0	222.0	466.1		688.1
6	269.6	6.0	269.6	466,1		735.7
7	344.4	0.0	344.4	466.1		810.5
8	357.7	357.7	0.0			0.0
9	378.6	378.6	0.0			0.0
10	401.4	401.4	0.0			0.0
11	428.0	425.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	563.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	534.4	0.0			0.0
18	467.6	467.6	0.0			0.0
19	390.6	390.6	0.0			0.0
20	372.5	0.0	372.5	466.1		838.6
21	335.7	0.0	335.7	466.1		801.8
22	311.2	0.0	311.2	466.1		777.3
23	290.3	0.0	290.3	466.1		756.4
24	264.7	6.0	264.7	466.1		730.8
OTALS	8,947.6	5,592.8	3,354,8	5,592.8	MAX =	838.6

AUGUST

	Cooling	On	Off	Required		Required
	Load	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	258.6	۵٥	258.6	471.3		729.9
2	239.9	0.0	239.9	471.3		711.2
3	231.3	0.0	231.3	471.3		702.6
4	223.2	0.0	223.2	471.3		694.5
5	212.7	0.0	212.7	471.3		684.0
6	257.4	0.0	267.4	471.3		738.7
7	344.7	0.0	344.7	471.3		816.0
8	358.1	358.1	0.0			0.0
9	379.1	379.1	0.0			0.0
10	403.8	403.8	0.0			0.0
11	433.7	433.7	0.0			0.0
12	479.0	479.0	0.0			0.0
13	505.7	505.7	0.0			0.0
14	541.9	541.9	0.0			0.0
15	553.9	553.9	0.0			0.0
16	564.7	564.7	0.0			0.0
17	556.9	556.9	0.0			0.0
18	471.9	471.9	0.0			0.0
19	407.2	407.2	0.0			0.0
20	375.7	0.0	375.7	471.3		847.0
21	352.4	0.0	352.4	471.3		823.7
22	314.1	0.0	314.1	471.3		785.4
23	291.5	0.0	291.5	471.3		762.8
24	278.7	0.0	278.7	471.3		750.0
TOTALS	9,046.1	5.655.9	3.390.2	5,655.9	MAX =	847.0

÷,

SEPTEMBER

ς.

	Cooling	Qn	Off	Required		Required
	Loed	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hes)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	204.1	0.0	204.1	398.7		602.8
2	185.5	0.0	185.5	398.7		584.2
3	176.5	0.0	176.5	398.7		575.2
4	168.2	0.0	168.2	398.7		566.9
5	166.9	0.0	166.9	398.7		565.6
6	212.6	0.0	212.6	398.7		611.3
7	282.7	0.0	282.7	398.7		681.4
8	296.9	295.9	0.0			0.0
9	318.2	318.2	0.0			0.0
10	342.4	342.4	0.0			0.0
11	372.4	372.4	0.0			0.0
12	401.6	401.6	0.0			0.0
13	443.5	443.5	0.0			0.0
14	464.7	464.7	0.0			0.0
15	474.6	474.5	0.0			0.0
16	470.8	470.8	0.0			0.0
17	457.2	457.2	0.0			0.0
18	399.7	399.7	0.0			0.0
19	341.9	341.9	0.0			0.0
20	312.7	0.0	312.7	398.7		711.4
21	288.8	0.0	268.8	398.7		687.5
22	253.4	0.0	253.4	398.7		652.1
23	232.8	0.0	232.8	398.7		631.5
24	209.6	0.0	209.6	398.7		608.3
TOTALS	7,477.7	4,783.9	2,693.8	4,783.9	MAX =	711.4

OCTOBER

	Cooling	On	Off	Required		Required
	Load	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	68.8	0.0	68.8	189.5		258.3
2	60.0	0.0	60.0	189.5		249.5
3	55.8	0.0	55.8	189.5		245.3
4	52.8	0.0	52.8	189.5		242.3
5	52.6	0.0	52.6	189.5		242.1
6	73.8	0.0	73.8	189.5		263.3
7	109.1	0.0	109.1	189.5		298.6
8	117.3	117.3	0.0			0.0
9	130.4	130.4	0.0			0.0
10	147.4	147.4	0.0			0.0
11	171.8	171.8	0.0			0.0
12	202.1	202.1	0.0			0.0
13	222.8	222.8	0.0			0.0
14	238.1	236.1	0.0			0.0
15	246.6	246.6	0.0			0.0
16	243.5	243.5	0.0			0.0
17	232.5	232.5	0.0			0.0
18	183.7	183.7	0.0			0.0
19	137.2	137.2	0.0			0.0
20	113.3	0.0	113.3	189.5		302.8
21	94.3	0.0	94.3	189.5		283.8
22	78.5	0.0	78.5	189.5		268.0
23	68.3	0.0	68.3	189.5		257.8
24	61.3	0.0	61.3	189.5		250.8
OTALS	3,162.0	2,273.4	888.6	2,273.4	MAX =	302.8

NOVEMBER

Hour	Cooling Load (Ton-Hrs)	On Peek (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	55.8	0.0	55.8	169.0		224.8
2	53.1	0.0	53.1	169.0		222.1
3	51.1	0.0	51.1	169.0		220.1
4	48.3	0.0	48.3	169.0		217.3
5	47.2	0.0	47.2	169.0		216.2
6	46.9	0.0	46.9	169.0		215.9
7	67.0	0.0	67.0	169.0		236.0
8	104.9	104.9	0.0			0.0
9	114.0	114.0	0.0			0.0
10	125.7	125.7	0.0			0.0
11	145.8	145.8	0.0			0.0
12	173.7	173.7	0.0			0.0
13	194.3	194.3	0.0			0.0
14	208.5	206.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	201.6	0.0			0.0
18	192.8	192.8	0.0			0.0
19	136.8	136.8	0.0			0.0
20	87.5	0.0	87.5	169.0		256.5
21	75.3	0.0	75.3	169.0		244.3
22	64.9	0.0	64.9	169.0		233.9
23	60.4	0.0	60.4	169.0		229.4
24	55.9	0.0	55.9	169.0		224.9
OTALS	2,741.7	2.028.3	713.4	2.028.3	MAX =	256.5

149

•

а .

.

.

.

11 HOUR ON-PEAK PERIOD (8 AM - 7 PM)

Hour	Cooling Load (Ton-Hrs)	On Peek (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	87.2	م	87.2	219.84		307.0
2	81.4	0.0	81.4	219.84		301.2
3	76.6	0.0	76.6	219.84		296.4
4	71.6	0.0	71.6	219.84		291.4
5	71.4	0.0	71.4	219.84		291.2
6	102.9	0.0	102.9	219.84		322.7
7	160.6	0.0	160.6	219.84		380.4
8	186.2	185.2	0.0	210.04		0.0
9	205.4	205.4	0.0			0.0
10	213.1	213.1	0.0			0.0
11	244.5	244.5	0.0			0.0
12	266.1	266.1	0.0			0.0
13	263.6	263.6	0.0			0.0
14	298.9	296.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	299.6	0.0			0.0
18	245.6	245.6	0.0			0.0
19	197.1	0.0	197.1	219.84		416.9
20	184.1	0.0	184.1	219.84		403.9
21	156.0	0.0	156.0	219.84		375.8
22	135.9	0.0	135.9	219.84		355.7
23	117.8	0.0	117.8	219.84		337.6
24	107.8	0.0	107.8	219.84		327.6
TOTALS	4.408.3	2,857.9	1,550.4	2.857.9	MAX =	416.9

••

.

MAY

Hour	Cooling Load (Ton-Hirs)	On Peek (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	152.9	مە	152.9	302.6		455.5
2	146.0	0.0	146.0	302.6		448.6
3	125.8	0.0	125.8	302.6		428.4
4	116.1	0.0	116.1	302.6		418.7
5	115.5	0.0	115.5	302.6		418.1
6	167.3	0.0	167.3	302.6		469.9
7	242.5	0.0	242.5	302.6		545.1
8	248.5	248.5	0.0			0.0
9	255.0	268.0	0.0			0.0
10	293.5	253.5	0.0			0.0
11	323.1	323.1	0.0			0.0
12	354.2	354.2	0.0			0.0
13	397.7	397.7	0.0			0.0
14	420.5	420.5	0.0			0.0
15	432.1	432.1	0.0			0.0
16	425.5	425.8	0.0			0.0
17	416.5	416.5	0.0			0.0
18	351.3	351.3	0.0			0.0
19	291.9	0.0	291.9	302.6		594.5
20	272.0	0.0	272.0	302.6		574.6
21	247.4	0.0	247.4	302.6		550.0
22	212.5	0.0	212.5	302.6		515.1
23	155.7	0.0	188.7	302.6		491.3
24	175.2	0.0	175.2	302.6		477.8
OTALS	6,388.0	3,934.2	2.453.8	3,934.2	MAX =	594.5

JUNE

	Cooling	On	Off	Required		Required
Hour	Load (Ton-Hirs)	Peak (Ton-Hirs)	Peak (Ton-Hrs)	Storage (Ton-Hrs)		Chiller (Tons)
	<u> </u>					
1	227.5	٥٥	227.6	379.8		607.4
2	219.3	0.0	219.3	379.8		599.1
3	207.5	0.0	207.6	379.8		587.4
4	199.4	0.0	199.4	379.8		579.2
5	199.4	0.0	199.4	379.8		579.2
6	249.2	0.0	249.2	379.8		629.0
7	321.1	0.0	321.1	379.8		700.9
8	336.5	336.5	0.0			0.0
9	343.7	343.7	0.0			0.0
10	383.2	383.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	457.7	487.7	0.0			0.0
14	508.8	508.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	506.7	0.0			0.0
18	439.8	439.8	0.0			0.0
19	378.3	0.0	378.3	379.8		758.1
20	345.7	0.0	345.7	379.8		725.5
21	319.7	0.0	319.7	379.8		699.5
22	296.4	0.0	296.4	379.8		676.2
23	273.1	0.0	273.1	379.8		652.9
24	247.9	0.0	247.9	379.8		627.7
OTALS	8,422.7	4,938.0	3,484.7	4,938.0	MAX =	758.1

JULY

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hirs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	254.9	0.0	254.9	400.2		655.1
2	236.8	0.0	238.8	400.2		639.0
3	229.2	0.0	229.2	400.2		629.4
4	221.5	0.0	221.5	400.2		621.7
5	222.0	0.0	222.0	400.2		622.2
6	255.5	0.0	269.6	400.2		669.8
7	344.4	0.0	344.4	400.2		744.6
8	357.7	357.7	0.0			0.0
9	378.6	378.6	0.0			0.0
10	401.4	401.4	0.0			0.0
11	428.0	425.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	545.8	0.0			0.0
17	534.4	534.4	0.0			0.0
18	457.6	467.5	0.0			0.0
19	390.6	0.0	390.6	400.2		790.8
20	372.5	0.0	372.5	400.2		772.7
21	336.7	0.0	335.7	400.2		735.9
22	311.2	0.0	311.2	400.2		711.4
23	250.3	0.0	290.3	400.2		690.5
24	254.7	0.0	264.7	400.2		664.9
OTALS	8,947.5	5,202.2	3,745.4	5,202.2	MAX =	790.8

AUGUST

	Cooling	On	Off	Required		Required
	Load	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	258.6	0.0	258.6	403.7		662.3
2	239.9	0.0	239.9	403.7		643.6
3	231.3	0.0	231.3	403.7		635.0
4	223.2	0.0	223.2	403.7		626.9
5	212.7	0.0	212.7	403.7		616.4
6	267.4	0.0	267 A	403.7		671.1
7	344.7	0.0	344.7	403.7		748.4
8	358.1	358.1	0.0			0.0
9	379.1	379.1	0.0			0.0
10	403.8	403.8	0.0			0.0
11	433.7	433.7	0.0			0.0
12	479.0	479.0	0.0			0.0
13	505.7	505.7	0.0			0.0
14	541.9	541.9	0.0			0.0
15	553.9	553.9	0.0			0.0
16	564.7	564.7	0.0			0.0
17	556.9	556.9	0.0			0.0
18	471.9	471.9	0.0			0.0
19	407.2	0.0	407.2	403.7		810.9
20	375.7	0.0	375.7	403.7		779.4
21	352.4	0.0	352.4	403.7		756.1
22	314.1	0.0	314.1	403.7		717.8
23	291.5	0.0	291.5	403.7		695.2
24	278.7	0.0	278.7	403.7		682.4
OTALS	9,046.1	5,248.7	3,797.4	5,248.7	MAX =	810.9

Ą

SEPTEMBER

-

_

	Cooling Load	On Peak	Off Peak	Required Storage		Required
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	204.1	0.0	204.1	341.7		545.8
2	185.5	0.0	185.5	341.7		527.2
3	176.5	0.0	176.5	341.7		518.2
4	168.2	0.0	168.2	341.7		509.9
5	166.9	0.0	166.9	341.7		508.6
6	212.6	0.0	212.6	341.7		554.3
7	282.7	0.0	282.7	341.7		624.4
8	296.9	296.9	0.0			0.0
9	318.2	318.2	0.0			0.0
10	342.4	342.4	0.0			0.0
11	372.4	372.4	0.0			0.0
12	401.6	401.6	0.0			0.0
13	443.5	443.5	0.0			0.0
14	464.7	464.7	0.0			0.0
15	474.6	474.6	0.0			0.0
16	470.8	470.8	0.0			0.0
17	457.2	457.2	0.0			0.0
18	399.7	399.7	0.0			0.0
19	341.9	0.0	341.9	341.7		683.6
20	312.7	0.0	312.7	341.7		654.4
21	268.8	0.0	268.8	341.7		630.5
22	253.4	0.0	253.4	341.7		595.1
23	232.8	0.0	232.8	341.7		574.5
24	209.6	0.0	209.6	341.7		551.3
TOTALS	7,477.7	4,442.0	3,035.7	4,442.0	MAX =	683.6

٠.

OCTOBER

.

Hour	Cooling Load (Ton-Hrs)	On Fesk (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
		()				
1	66.8	مە	68.8	164.3		233.1
2	60.0	0.0	60.0	164.3		224.3
3	55.8	0.0	55.8	164.3		220.1
4	52.8	0.0	52.8	164.3		217.1
5	52.6	0.0	52.6	164.3		216.9
6	73.8	0.0	73.8	164.3		238.1
7	109.1	0.0	109.1	164.3		273.4
8	117.3	117.3	0.0			0.0
9	130.4	130.4	0.0			0.0
10	147.4	147.4	0.0			0.0
11	171.8	171.8	0.0			0.0
12	202.1	202.1	0.0			0.0
13	222.8	222.8	0.0			0.0
14	238.1	236.1	0.0			0.0
15	246.6	246.6	0.0			0.0
16	243.5	243.5	0.0			0.0
17	232.5	232.5	0.0			0.0
18	183.7	183.7	0.0			0.0
19	137.2	0.0	137.2	164.3		301.5
20	113.3	0.0	113.3	164.3		277.6
21	94.3	0.0	94.3	164.3		258.6
22	78.5	0.0	78.5	164.3		242.8
23	68.3	0.0	68.3	164.3		232.6
24	61.3	٥٥	61.3	164.3		225.6
OTALS	3,162.0	2,136.2	1,025.8	2,136.2	MAX =	301.5

.

-

• •

NOVEMBER

Hour	Cooling Load (Ton-Hrs)	On Feek (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	55.8	0.0	55.8	145.5		201.3
2	53.1	0.0	53.1	145.5		198.6
3	51.1	0.0	51.1	145.5		196.6
4	48.3	0.0	48.3	145.5		193.8
5	47.2	0.0	47.2	145.5		192.7
6	46.9	0.0	46.9	145.5		192.4
7	67.0	0.0	67.0	145.5		212.5
8	104.9	104.9	0.0			0.0
9	114.0	114.0	0.0			0.0
10	125.7	125.7	0.0			0.0
11	145.8	145.8	0.0			0.0
12	173.7	173.7	0.0			0.0
13	194.3	164.3	0.0			0.0
14	206.5	205.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	201.5	0.0			0.0
18	192.8	192.5	0.0			0.0
19	136.8	0.0	136.8	145.5		282.3
20	87.5	6.0	87.5	145.5		233.0
21	75.3	6.0	75.3	145.5		220.8
22	64.9	0.0	64.9	145.5		210.4
23	60.4	0.0	60.4	145.5		205.9
24	55.9	2.2	55.9	145.5		201.4
TOTALS	2,741.7	1,891.5	850.2	1,891.5	MAX =	282.3

153

10 HOUR ON-PEAK PERIOD (8 AM - 6 PM)

APRIL

	Cooling	On	Off	Required		Required
	Lond	Peek	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	87.2	0.0	87.2	186.59		273.8
2	81.4	د د	81.4	186.59		268.0
3	76.6	0.0	76.6	186.59		263.2
4	71.6	0.0	71.6	186.59		258.2
5	71.4	0.0	71.4	186.59		258.0
6	102.9	0.0	102.9	186.59		289.5
7	160.6	0.0	160.6	186.59		347.2
8	185.2	185.2	0.0			0.0
9	205.4	205.4	0.0			0.0
10	213.1	213.1	0.0			0.0
11	244.5	244.5	0.0			0.0
12	256.1	266.1	0.0			0.0
13	263.6	283.6	0.0			0.0
14	298.9	296.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	299.6	0.0			0.0
18	245.6	0.0	245.6	186.59		432.2
19	197.1	0.0	197.1	186.59		383.7
20	184.1	0.0	184.1	186.59		370.7
21	156.0	0.0	156.0	186.59		342.6
22	135.9	0.0	135.9	186.59		322.5
23	117.8	0.0	117.8	186.59		304.4
24	107.8	0.0	107.8	186.59		294.4
OTALS	4.408.3	2.612.3	1.796.0	2.612.3	MAX =	432.2

÷,

MAY

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(ĩ on-làs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	152.9	0.0	152.9	255.9		408.8
2	146.0	0.0	146.0	255.9		401.9
3	125.8	0.0	125.8	255.9		381.7
4	116.1	0.0	116.1	255.9		372.0
5	115.5	0.0	115.5	255.9		371.4
6	167.3	0.0	167.3	255.9		423.2
7	242.5	0.0	242.5	255.9		498.4
8	248.5	248.5	0.0			0.0
9	268.0	258.0	0.0			0.0
10	293.5	293.5	0.0			0.0
11	323.1	325.1	0.0			0.0
12	354.2	354.2	0.0			0.0
13	397.7	397.7	0.0			0.0
14	420.5	420.5	0.0			0.0
15	432.1	432.1	0.0			0.0
16	425.5	428.5	0.0			0.0
17	416.5	416.5	0.0			0.0
18	351.3	0.0	351.3	255.9		607.2
19	291.9	2.0	291.9	255.9		547.8
20	272.0	2.0	272.0	255.9		527.9
21	247.4	3.0	247.4	255.9		503.3
22	212.5	0.0	212.5	255.9		468.4
23	188.7	0.0	188.7	255.9		444.6
24	175.2	0.0	175.2	255.9		431.1
OTALS	6.388.0	3.582.9	2.905.1	3,582.9	MAX =	607.2

JUNE

	Cooling	On	Off	Required		Required
	Load	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	227.6	0.0	227.6	321.3		548.9
2	219.3	0.0	219.3	321.3		540.6
3	207.6	0.0	207.6	321.3		528.9
4	199.4	0.0	199.4	321.3		520.7
5	199.4	0.0	199.4	321.3		520.7
6	249.2	0.0	249.2	321.3		570.5
7	321.1	0.0	321.1	321.3		642.4
8	336.5	336.5	0.0			0.0
9	343.7	343.7	0.0			0.0
10	383.2	363.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	487.7	0.0			0.0
14	508.8	508.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	505.7	0.0			0.0
18	439.8	0.0	439.8	321.3		761.1
19	378.3	0.0	378.3	321.3		699.6
20	345.7	0.0	345.7	321.3		667.0
21	319.7	0.0	319.7	321.3		641.0
22	296.4	0.0	296.4	321.3		617.7
23	273.1	0.0	273.1	321.3		594.4
24	247.9	0.0	247.9	321.3		569.2
OTALS	8.422.7	4.498.2	3.924.5	4,498.2	MAX =	761.1

١

JULY

Hour	Cooling Load (Ton-Hrs)	On Feak (Ton-Hini)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	254.9	0.0	254.9	338.2		593.1
2	238.8	0.0	238.8	338.2		577.0
3	229.2	0.0	229.2	338.2		567.4
4	221.5	0.0	221.5	338.2		559.7
5	222.0	0.0	222.0	338.2		560.2
6	269.6	0.0	269.6	336.2		607.8
7	344.4	0.0	344.4	338.2		682.6
8	357.7	357.7	0.0			0.0
9	378.6	378.6	0.0			0.0
10	401.4	401.4	0.0			0.0
11	428.0	425.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	534.4	0.0			0.0
18	467.6	0.0	467.6	338.2		805.8
19	390.6	6.0	390.6	338.2		726.8
20	372.5	0.0	372.5	338.2		710.7
21	335.7	6.0	335.7	338.2		673.9
22	311.2	0.0	311.2	338.2		649.4
23	290.3	0.0	290.3	338.2		628.5
24	264.7	مى	264.7	338.2		602.9
TOTALS	8.947.6	4.734.6	4.213.0	4,734.6	MAX =	805.8

AUGUST

TALS	9,046.1	4,776.8	4,269.3	4,776.8	MAX =	813.1
24	278.7	0.0	278.7	341.2		619.9
23	291.5	0.0	291.5	341.2		632.7
22	314.1	مە	314.1	341.2		655.3
21	352.4	0.0	352.4	341.2		693.6
20	375.7	0.0	375.7	341.2		716.9
19	407.2	0.0	407.2	341.2		748.4
18	471.9	0.0	471.9	341.2		813.1
17	556.9	556.9	0.0			0.0
16	564.7	564.7	0.0			0.0
15	553.9	553.9	0.0			0.0
14	541.9	541.9	0.0			0.0
13	505.7	505.7	0.0			0.0
12	479.0	479.0	0.0			0.0
11	433.7	433.7	0.0			0.0
10	403.8	403.8	0.0			0.0
9	379.1	379.1	0.0			0.0
8	358.1	358.1	0.0			0.0
7	344.7	0.0	344.7	341.2		685.9
6	267.4	0.0	267.4	341.2		608.6
5	212.7	0.0	212.7	341.2		553.9
4	223.2	مە	223.2	341.2		564.4
3	231.3	0.0	231.3	341.2		572.5
2	239.9	0.0	239.9	341.2		581.1
1	258.6	0.0	258.6	341.2		599.8
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
	Load	Peak	Peak	Storage		Chiller
	Cooling	On	Off	Required		Required

.

• •

· • •

SEPTEMBER

Hour	Cooling Load (Ton-Hirs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Require Chiller (Tons)
1	204.1	0.0	204.1	288.7		492.8
2	185.5	0.0	185.5	288.7		474.2
3	176.5	0.0	176.5	288.7		465.2
4	168.2	0.0	168.2	268.7		456.9
5	166.9	0.0	166.9	288.7		455.6
6	212.6	0.0	212.6	268.7		501.3
7	282.7	0.0	282.7	268.7		571.4
8	296.9	295.9	0.0			0.0
9	318.2	318.2	0.0			0.0
10	342.4	342.4	0.0			0.0
11	372.4	372.4	0.0			0.0
12	401.6	401.6	0.0			0.0
13	443.5	443.5	0.0			0.0
14	464.7	464.7	0.0			0.0
15	474.6	474.6	0.0			0.0
16	470.8	470.8	0.0			0.0
17	457.2	457.2	0.0			0.0
18	399.7	0.0	399.7	268.7		688.4
19	341.9	0.0	341.9	288.7		630.6
20	312.7	0.0	312.7	288.7		601.4
21	268.8	0.0	288.8	288.7		577.5
22	253.4	0.0	253.4	268.7		542.1
23	232.8	0.0	232.8	288.7		521.5
24	209.5	2.0	209.6	288.7		498.3
TOTALS	7,477.7	4,042.3	3,435.4	4,042.3	MAX =	688.4

OCTOBER

Hour	Cooling Load (Ton-Hrs)	On Peek (Ton-Hins)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	68.8	0.0	68.8	139.5		208.3
2	60.0	0.0	60.0	139.5		200.3
3	55.8	0.0	55.8	139.5		199.5
4	52.8	0.0	52.8	139.5		195.3
5	52.6	0.0	52.6	139.5		192.3
6	73.8	0.0	73.8	139.5		213.3
7	109.1	0.0	109.1	139.5		213.3
8	117.3	117.3	0.0	108.0		0.0
9	130.4	130.4	0.0			0.0
10	147.4	147.A	0.0			0.0
11	171.8	171.8	0.0			0.0
12	202.1	202.1	0.0			0.0
13	222.8	222.8	0.0			0.0
14	238.1	236.1	0.0			0.0
15	246.6	245.5	0.0			0.0
16	243.5	263.5	0.0			0.0
17	232.5	232.5	0.0			0.0
18	183.7	0.0	163.7	139.5		323.2
19	137.2	9.0	137.2	139.5		323.2 276.7
20	113.3	0.0	113.3	139.5		252.8
21	94.3	0.0	94.3	139.5		233.8
22	78.5	20	78.5	139.5		233.0
23	68.3	<u>.</u>	68.3	139.5		207.8
24	61.3	0.0	61.3	139.5		200.8
OTALS	3,162.0	1,952.5	1,209.5	1.952.5	MAX =	323.2

÷

.

NOVEMBER

Hour	Cooling Loed (Ton-Hrs)	On Peak (Ton-Hiss)	Off Peak (Ton-Hrs)	Required Storagé (Ton-Hrs)		Required Chiller (Tons)
			((10413)
1	55.8	0.0	55.8	121.3		177.1
2	53.1	0.0	53.1	121.3		174.4
3	51.1	0.0	51.1	121.3		172.4
4	48.3	0.0	48.3	121.3		169.6
5	47.2	0.0	47.2	121.3		168.5
6	46.9	0.0	46.9	121.3		168.2
7	67.0	0.0	67.0	121.3		188.3
8	104.9	104.9	0.0			0.0
9	114.0	114.0	0.0			0.0
10	125.7	125.7	0.0			0.0
11	145.B	145.4	0.0			0.0
12	173.7	173.7	0.0			0.0
13	164.3	194.3	0.0			0.0
14	208.5	206.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	201.6	0.0			0.0
18	192.8	0.0	192.8	121.3		314.1
19	136.8	0.0	136.8	121.3		258.1
20	87.5	0.0	87.5	121.3		208.8
21	75.3	مە	75.3	121.3		196.6
22	64.9	0.0	64.9	121.3		186.2
23	60.4	0.0	60.4	121.3		181.7
24	55.9	2.0	55.9	121.3		177.2
TOTALS	2,741.7	1,696.7	1,043.0	1,698,7	MAX =	314.1

APRIL

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	87.2	0.0	87.2	161.74		248.9
2	81.4	0.0	81.4	161.74		243.1
3	76.6	0.0	76.6	161.74		238.3
4	71.6	0.0	71.6	161.74		233.3
5	71.4	0.0	71.4	161.74		233.1
6	102.9	0.0	102.9	161.74		264.6
7	160.6	0.0	160.6	161.74		322.3
8	186.2	0.0	186.2	161.74		347.9
9	205.4	205.4	0.0			0.0
10	213.1	213.1	0.0			0.0
11	244.5	244.5	0.0			0.0
12	266.1	266.1	0.0			0.0
13	263.6	283.6	0.0			0.0
14	298.9	298.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	299.6	0.0			0.0
18	245.6	0.0	245.6	161.74		407.3
19	197.1	0.0	197.1	161.74		358.8
20	184.1	0.0	184.1	161.74		345.8
21	156.0	0.0	156.0	161.74		317.7
22	135.9	0.0	135.9	161.74		297.6
23	117.8	0.0	117.8	161.74		279.5
24	107.8	0.0	107.8	161.74		269.5
TOTALS	4,408.3	2,426.1	1,982.2	2,426.1	MAX =	407.3

.

.

4

MAY

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hins)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Require Chiller (Tons)
1	152.9	0.0	152.9	222.3	375.2
2	146.0	0.0	146.0	222.3	368.3
3	125.8	0.0	125.8	222.3	348.1
4	116.1	0.0	116.1	222.3	338.4
5	115.5	0.0	115.5	222.3	337.8
6	167.3	0.0	167.3	222.3	389.6
7	242.5	0.0	242.5	222.3	464.8
8	248.5	0.0	248.5	222.3	470.8
9	268.0	268.0	0.0		0.0
10	293.5	293.5	0.0		0.0
11	323.1	323.1	0.0		0.0
12	354.2	354.2	0.0		0.0
13	397.7	397.7	0.0		0.0
14	420.5	420.5	0.0		0.0
15	432.1	432.1	0.0		0.0
16	426.8	428.8	0.0		0.0
17	416.5	416.5	0.0		0.0
18	351.3	0.0	351.3	222.3	573.6
19	291.9	0.0	291.9	222.3	514.2
20	272.0	0.0	272.0	222.3	494.3
21	247.4	0.0	247.4	222.3	469.7
22	212.5	0.0	212.5	222.3	434.8
23	188.7	0.0	188.7	222.3	411.0
24	175.2	0.0	175.2	222.3	397.5
OTALS	6,388,0	3,334.4	3,053.6	3.334.4	MAX = 573.6

JUNE

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
		· · ·			<u> </u>	
1	227.8	0.0	227.6	277.4		505.0
2	219.3	0.0	219.3	277.4		496.7
3	207.6	0.0	207.6	277.4		485.0
4	199.4	0.0	199.4	277.4		476.8
5	199.4	0.0	199.4	277.4		476.8
6	249.2	0.0	249.2	277.4		526.6
7	321.1	0.0	321.1	277.4		598.5
8	336.5	0.0	336.5	277.4		613.9
9	343.7	343.7	0.0			0.0
10	383.2	383.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	487.7	0.0			0.0
14	508.8	508.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	506.7	0.0			0.0
18	439.8	0.0	439.8	277.4		717.2
19	378.3	0.0	378.3	277.4		655.7
20	345.7	0.0	345.7	277.4		623.1
21	319.7	0.0	319.7	277.4		597.1
22	296.4	0.0	296.4	277.4		573.8
23	273.1	0.0	273.1	277.4		550.5
24	247.9	0.0	247.9	277.4		525.3
TOTALS	8,422.7	4,161.7	4,261.0	4,161.7	MAX =	717.2

,:-

JULY

Hour	Cooling Loed (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	254.9	0.0	254.9	291.8	•	546.7
2	238.8	0.0	238.8	291.8		530.6
3	229.2	0.0	229.2	291.8		521.0
4	221.5	0.0	221.5	291.8		513.3
5	222.0	0.0	222.0	291.8		513.8
6	269.6	0.0	269.6	291.8		561.4
7	344.4	0.0	344.4	291.8		636.2
8	357.7	0.0	357.7	291.8		649.5
9	378.6	378.6	0.0			0.0
10	401.4	401.4	0.0			0.0
11	426.0	428.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	534.4	0.0			0.0
18	467.6	0.0	467.6	291.8		759.4
19	390.6	0.0	390.6	291.8		682.4
20	372.5	0.0	372.5	291.8		664.3
21	335.7	0.0	335.7	291.8		627.5
22	311.2	0.0	311.2	291.8		603.0
23	290.3	0.0	290.3	291.8		582.1
24	264.7	0.0	264.7	291.8		556.5
OTALS	8.947.6	4,376.9	4.570.7	4,376.9	MAX =	759.4

AUGUST

	Cooling Load	On Peak	Off Peak	Required		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	Storage (Ton-Hrs)		(Tons)
1	258.6	0.0	258.6	294.6		553.2
2	239.9	0.0	239.9	294.6		534.5
3	231.3	0.0	231.3	294.6		525.9
4	223.2	0.0	223.2	294.6		517.8
5	212.7	0.0	212.7	294.6		507.3
6	267.4	0.0	267.4	294.6		562.0
7	344.7	0.0	344.7	294.6		639.3
8	358.1	0.0	358.1	294.6		652.7
9	379.1	379.1	0.0			0.0
10	403.8	403.8	0.0			0.0
11	433.7	433.7	0.0			0.0
12	479.0	479.0	0.0			0.0
13	505.7	505.7	0.0			0.0
14	541.9	541.9	0.0			0.0
15	553.9	553.9	0.0			0.0
16	564.7	564.7	0.0			0.0
17	556.9	556.9	0.0			0.0
18	471.9	0.0	471.9	294.6		766.5
19	407.2	0.0	407.2	294.6		701.8
20	375.7	0.0	375.7	294.6		670.3
21	352.4	0.0	352.4	294.6		647.0
22	314.1	0.0	314.1	294.6		608.7
23	291.5	0.0	291.5	294.6		586.1
24	278.7	0.0	278.7	294.6		573.3
OTALS	9,046.1	4,418.7	4,627.4	4,418.7	MAX =	766.5

 $\dot{\alpha}$

SEPTEMBER

	Cooling	On	Off	Required		Required
Hour	Loed (Ton-Hirs)	Peak (Ton-Hrs)	Peak (Ton-Hrs)	Storage (Ton-Hrs)		Chiller (Tons)
nour	(ion-nis)	(IGHES)	(IOIHIN)	(ton-his)		(10118)
1	204.1	۵.0	204.1	249.7		453.8
2	185.5	0.0	185.5	249.7		435.2
3	176.5	0.0	176.5	249.7		426.2
4	168.2	0.0	168.2	249.7		417.9
5	166.9	0.0	166.9	249.7		416.6
6	212.6	0.0	212.6	249.7		462.3
7	262.7	0.0	282.7	249.7		532.4
8	296.9	0.0	296.9	249.7		546.6
9	318.2	318.2	0.0			0.0
10	342.4	342.4	0.0			0.0
11	372.4	372.4	0.0			0.0
12	401.6	401.6	0.0			0.0
13	443.5	443.5	0.0			0.0
14	464.7	464.7	0.0			0.0
15	474.6	474.6	0.0			0.0
16	470.8	470.8	0.0			0.0
17	457.2	457.2	0.0			0.0
18	399.7	0.0	399.7	249.7		649.4
19	341.9	0.0	341.9	249.7		591.6
20	312.7	0.0	312.7	249.7		562.4
21	268.8	0.0	288.8	249.7		538.5
22	253.4	0.0	253.4	249.7		503.1
23	232.8	0.0	232.8	249.7		482.5
24	209.6	0.0	209.6	249.7		459.3
TOTALS	7,477.7	3.745.4	3,732.3	3,745.4	MAX =	649.4

OCTOBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	68.8	0.0	68.8	122.3		191.1
2	60.0	0.0	60.0	122.3		182.3
3	55.A	0.0	55.8	122.3		178.1
4	52.8	0.0	52.8	122.3		175.1
5	52.6	0.0	52.6	122.3		174.9
6	73.8	0.0	73.8	122.3		196.1
7	109.1	0.0	109.1	122.3		231.4
8	117.3	0.0	117.3	122.3		239.6
9	130.4	130.4	0.0	122.0		0.0
10	147.4	147.4	0.0			0.0
11	171.8	171.8	0.0			0.0
12	202.1	202.1	0.0			0.0
13	222.8	222.8	0.0			0.0
14	238.1	238.1	0.0			0.0
15	246.5	246.6	0.0			0.0
16	243.5	243.5	0.0			0.0
17	232.5	232.5	0.0			0.0
18	183.7	0.0	183.7	122.3		306.0
19	137.2	0.0	137.2	122.3		259.5
20	113.3	0.0	113.3	122.3		235.6
21	94.3	0.0	94.3	122.3		216.6
22	78.5	0.0	78.5	122.3		200.8
23	68.3	0.0	68.3	122.3		190.6
24	61.3	0.0	61.3	122.3		183.6
TOTALS	3,162.0	1.835.2	1,326.8	1,835.2	MAX =	306.0

-

4

Ì

NOVEMBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hirs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	55.8	0.0	55.8	106.3		162.1
2	53.1	0.0	53.1	106.3		159.4
3	51.1	0.0	51.1	106.3		157.4
4	48.3	0.0	48.3	106.3		154.6
5	47.2	0.0	47.2	106.3		153.5
6	45.9	0.0	46.9	106.3		153.2
7	67.0	0.0	67.0	106.3		173.3
8	104.9	مە	104.9	106.3		211.2
9	114.0	114.0	0.0			0.0
10	125.7	125.7	0.0			0.0
11	145.8	145.8	0.0			0.0
12	173.7	173.7	0.0			0.0
13	194.3	194.3	0.0			0.0
14	206.5	206.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	201.6	0.0			0.0
18	192.8	0.0	192.8	106.3		299.1
19	136.5	0.0	136.8	106.3		243.1
20	87.5	0.0	87.5	106.3		193.8
21	75.3	0.0	75.3	106.3		181.6
22	64.9	0.0	64.9	106.3		171.2
23	60.4	0.0	60.4	106.3		166.7
24	55.9	0.0	55.9	106.3		162.2
TOTALS	2,741.7	1,593.8	1,147.9	1,593.8	MAX =	299.1

APRIL

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	1-Hrs) (Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	87.2	0.0	87.2	132.91		220.1
2	81.4	0.0	81.4	132.91		214.3
3	76.6	0.0	76.6	132.91		209.5
4	71.6	0.0	71.6	132.91		204.5
5	71.4	0.0	71.4	132.91		204.3
6	102.9	0.0	102.9	132.91		235.8
7	160.6	0.0	160.6	132.91		293.5
8	186.2	0.0	186.2	132.91		319.1
9	205.4	205.4	0.0			0.0
10	213.1	213.1	0.0			0.0
11	244.5	244.5	0.0			0.0
12	266.1	266.1	0.0			0.0
13	283.6	283.6	0.0			0.0
14	298.9	298.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	0.0	299.6	132.91		432.5
18	245.6	0.0	245.6	132.91		378.5
19	197.1	0.0	197.1	132.91		330.0
20	184.1	0.0	184.1	132.91		317.0
21	156.0	0.0	156.0	132.91		268.9
22	135.9	0.0	135.9	132.91		268.8
23	117.8	0.0	117.8	132.91		250.7
24	107.8	0.0	107.8	132.91		240.7
OTALS	4.408.3	2,126.5	2,281.8	2,126.5	MAX =	432.5

.

÷,

MAY

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hirs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Required Chiller (Tons)
((10.1104)	()		
1	152.9	0.0	152.9	182.4	335.3
2	146.0	0.0	146.0	182.4	328.4
3	125.8	0.0	125.8	182.4	308.2
4	116.1	0.0	116.1	182.4	298.5
5	115.5	0.0	115.5	182.4	297.9
6	167.3	0.0	167.3	182.4	349.7
7	242.5	0.0	242.5	182.4	424.9
8	248.5	0.0	248.5	182.4	430.9
9	268.0	268.0	0.0		0.0
10	293.5	293.5	0.0		0.0
11	323.1	323.1	0.0		0.0
12	354.2	354.2	0.0		0.0
13	397.7	397.7	0.0		0.0
14	420.5	420.5	0.0		0.0
15	432.1	432.1	0.0		0.0
16	428.8	425.8	0.0		0.0
17	416.5	0.0	416.5	182.4	598.9
18	351.3	0.0	351.3	182.4	533.7
19	291.9	0.0	291.9	182.4	474.3
20	272.0	0.0	272.0	182.4	454.4
21	247.4	0.0	247.4	182.4	429.8
22	212.5	0.0	212.5	182.4	394.9
23	168.7	مە	188.7	182.4	371.1
24	175.2	0.0	175.2	182.4	357.6
OTALS	6,388.0	2,917,9	3,470.1	2.917.9	MAX = 598.9

JUNE

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	227.6	0.0	227.6	228.4		456.0
2	219.3	0.0	219.3	228.4		447.7
3	207.6	0.0	207.6	228.4		436.0
4	199.4	0.0	199.4	228.4		427.8
5	199.4	0.0	199.4	228.4		427.8
6	249.2	0.0	249.2	226.4		477.6
7	321.1	0.0	321.1	228.4		549.5
8	336.5	0.0	336.5	228.4		564.9
9	343.7	343.7	0.0			0.0
10	383.2	383.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	487.7	0.0			0.0
14	508.8	506.6	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	0.0	506.7	228.4		735.1
18	439.8	0.0	439.8	226.4		668.2
19	378.3	0.0	378.3	228.4		606.7
20	345.7	0.0	345.7	228.4		574.1
21	319.7	0.0	319.7	228.4		548.1
22	296.4	0.0	296.4	228.4		524.8
23	273.1	0.0	273.1	228.4		501.5
24	247.9	0.0	247.9	228.4		476.3
DTALS	8,422.7	3.655.0	4.767.7	3,655.0	MAX =	735.1

JULY

	Cooling Load	On Peak	Off Peak	Required Storage		Required
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	254.9	0.0	254.9	240.2		495.1
2	238.8	0.0	238.8	240.2		479.0
3	229.2	0.0	229.2	240.2		469.4
4	221.5	0.0	221.5	240.2		461.7
5	222.0	0.0	222.0	240.2		462.2
6	269.6	0.0	269.6	240.2		509.8
7	344.4	0.0	344.4	240.2		584.6
8	357.7	0.0	357.7	240.2		597.9
9	378.6	376.6	0.0			0.0
10	401.4	401.4	0.0			0.0
11	428.0	426.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	0.0	534.4	240.2		774.6
18	457.6	0.0	467.6	240.2		707.8
19	390.6	0.0	390.6	240.2		630.6
20	372.5	0.0	372.5	240.2		612.7
21	335.7	0.0	335.7	240.2		575.9
22	311.2	0.0	311.2	240.2		551.4
23	290.3	0.0	290.3	240.2		530.5
24	264.7	0.0	264.7	240.2		504.9
OTALS	8,947.6	3,842.5	5,105.1	3,842.5	MAX =	774.6

163

AUGUST

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	258.6	0.0	258.6	241.4		500.0
2	239.9	0.0	239.9	241.4		481.3
3	231.3	0.0	231.3	241.4		472.7
4	223.2	0.0	223.2	241.4		464.6
5	212.7	0.0	212.7	241.4		454.1
6	267.4	0.0	267.4	241.4		508.8
7	344.7	0.0	344.7	241.4		586.1
8	358.1	0.0	358.1	241.4		599.5
9	379.1	379.1	0.0			0.0
10	403.8	403.8	0.0			0.0
11	433.7	433.7	0.0			0.0
12	479.0	479.0	0.0			0.0
13	505.7	505.7	0.0			0.0
14	541.9	541.9	0.0			0.0
15	553.9	553.9	0.0			0.0
16	564.7	564.7	0.0			0.0
17	556.9	0.0	556.9	241.4		798.3
18	471.9	0.0	471.9	241.4		713.3
19	407.2	0.0	407.2	241.4		648.6
20	375.7	0.0	375.7	241.4		617.1
21	352.4	0.0	352.4	241.4		593.8
22	314.1	0.0	314.1	241.4		555.5
23	291.5	0.0	291.5	241.4		532.9
24	278.7	0.0	278.7	241.4		520.1
TOTALS	9.046.1	3,861.8	5,184.3	3,861.8	MAX =	798.3

•

Ą

SEPTEMBER

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	204.1	0.0	204.1	205.5		409.6
2	185.5	0.0	185.5	205.5		391.0
3	176.5	0.0	176.5	205.5		382.0
4	168.2	0.0	168.2	205.5		373.7
5	166.9	0.0	166.9	205.5		372.4
6	212.6	0.0	212.6	205.5		418.1
7	262.7	0.0	282.7	205.5		488.2
8	296.9	0.0	296.9	205.5		502.4
9	318.2	318.2	0.0			0.0
10	342.4	342.4	0.0			0.0
11	372.4	372.4	0.0			0.0
12	401.6	401.6	0.0			0.0
13	443.5	443.5	0.0			0.0
14	464.7	464.7	0.0			0.0
15	474.6	474.6	0.0			0.0
16	470.8	470.8	0.0			0.0
17	457.2	0.0	457.2	205.5		662.7
18	399.7	0.0	399.7	205.5		605.2
19	341.9	0.0	341.9	205.5		547.4
20	312.7	0.0	312.7	205.5		518.2
21	255.5	0.0	288.8	205.5		494.3
22	253.4	0.0	253.4	205.5		458.9
23	232.8	0.0	232.8	205.5		438.3
24	209.6	0.0	209.6	205.5		415.1
TOTALS	7.477.7	3.288.2	4,189.5	3,288.2	MAX =	662.7

OCTOBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Require Chiller (Tons)
1	68.8	0.0	68.8	100.2	169.0
2	60.0	0.0	60.0	100.2	160.2
3	55.8	0.0	55.8	100.2	156.0
4	52.8	0.0	52.8	100.2	153.0
5	52.6	0.0	52.6	100.2	152.8
6	73.8	0.0	73.8	100.2	174.0
7	109.1	0.0	109.1	100.2	209.3
8	117.3	0.0	117.3	100.2	217.5
9	130.4	130.4	0.0	100.2	0.0
10	147.4	147.4	0.0		0.0
11	171.8	171.8	0.0		0.0
12	202.1	202.1	0.0		0.0
13	222.8	222.8	0.0		0.0
14	238.1	238.1	0.0		0.0
15	246.6	246.6	0.0		0.0
16	243.5	243.5	0.0		0.0
17	232.5	0.0	232.5	100.2	332.7
18	183.7	0.0	183.7	100.2	263.9
19	137.2	0.0	137.2	100.2	237.4
20	113.3	0.0	113.3	100.2	213.5
21	94.3	0.0	94.3	100.2	194.5
22	78.5	0.0	78.5	100.2	178.7
23	68.3	0.0	68.3	100.2	168.5
24	61.3	0.0	61.3	100.2	161.5
OTALS	3,162.0	1,602.7	1,559.3	1,602.7	MAX = 332.7

.

. •

•

÷

. •

NOVEMBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Requir Chille (Tons
1	55.8	0.0	55.8	87.0	142.8
2	53.1	0.0	53.1	87.0	140.
3	51.1	مە	51.1	87.0	138.1
4	48.3	0.0	48.3	87.0	135.3
5	47.2	0.0	47.2	87.0	134.:
6	46.9	0.0	46.9	87.0	133.9
7	67.0	0.0	67.0	87.0	154.0
8	104.9	0.0	104.9	87.0	191.9
9	114.0	114.0	0.0		0.0
10	125.7	125.7	0.0		0.0
11	145.8	145.8	0.0		0.0
12	173.7	173.7	0.0		0.0
13	194.3	194.3	0.0		0.0
14	206.5	206.5	0.0		0.0
15	216.0	216.0	0.0		0.0
16	214.2	214.2	0.0		0.0
17	201.6	0.0	201.6	87.0	268.6
18	192.8	0.0	192.8	87.0	279.8
19	136.8	0.0	136.8	87.0	223.6
20	87.5	0.0	87.5	87.0	174.
21	75.3	0.0	75.3	87.0	162.3
22	64.9	0.0	64.9	87.0	151.0
23	60.4	0.0	60.4	87.0	147.4
24	55.9	0.0	55.9	87.0	142.0
TOTALS	2,741.7	1,392.2	1,349.5	1,392.2	MAX == 288.0

165

7 HOUR ON-PEAK PERIOD (10 AM - 5 PM)

APRIL

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	87.2	0.0	87.2	113.01		200.2
2	81.4	0.0	81.4	113.01		194.4
3	78.6	0.0	76.6	113.01		189.6
4	71.6	0.0	71.6	113.01		184.6
5	71.4	0.0	71.4	113.01		184.4
6	102.9	0.0	102.9	113.01		215.9
7	160.6	0.0	160.6	113.01		273.6
8	186.2	0.0	186.2	113.01		299.2
9	205.4	0.0	205.4	113.01		318.4
10	213.1	213.1	0.0			0.0
11	244.5	244.5	0.0			0.0
12	266.1	266.1	0.0			0.0
13	263.6	283.6	0.0			0.0
14	298.9	296.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	0.0	299.6	113.01		412.6
18	245.6	0.0	245.8	113.01		358.6
19	197.1	0.0	197.1	113.01		310.1
20	184.1	0.0	184.1	113.01		297.1
21	156.0	0.0	156.0	113.01		269.0
22	135.9	0.0	135.9	113.01		248.9
23	117.8	0.0	117.8	113.01		230.8
24	107.8	0.0	107.8	113.01		220.8
OTALS	4.408.3	1,921.1	2,487.2	1,921.1	MAX =	412.6

4

1

MAY

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hirs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	152.9	0.0	152.9	155.9		308.8
2	146.0	0.0	146.0	155.9		301.9
3	125.8	0.0	125.8	155.9		281.7
4	116.1	0.0	116.1	155.9		272.0
5	115.5	0.0	115.5	155.9		271.4
6	167.3	0.0	167.3	155.9		323.2
7	242.5	0.0	242.5	155.9		398.4
8	248.5	0.0	248.5	155.9		404.4
9	268.0	0.0	268.0	155.9		423.9
10	293.5	293.5	0.0			0.0
11	323.1	323.1	0.0			0.0
12	354.2	354.2	0.0			0.0
13	397.7	397.7	0.0			0.0
14	420.5	420.5	0.0			0.0
15	432.1	432.1	0.0			0.0
16	428.8	426.8	0.0			0.0
17	416.5	0.0	416.5	155.9		572.4
18	351.3	0.0	351.3	155.9		507.2
19	291.9	0.0	291.9	155.9		447.8
20	272.0	0.0	272.0	155.9		427.9
21	247.4	0.0	247.4	155.9		403.3
22	212.5	0.0	212.5	155.9		368.4
23	188.7	0.0	188.7	155.9		344.6
24	175.2	0.0	175.2	155.9		331.1
DTALS	6,388.0	2.649.9	3,738.1	2.649.9	MAX =	572.4

JUNE

	Cooling Load	On	Off. Peak	Required		Required Chiller
Hour	(Ton-Hrs)	Peak (Ton-Hrs)	(Ton-Hrs)	Storage (Ton-Hrs)		(Tons)
1	227.6	0.0	227.6	194.8		422.4
2	219.3	0.0	219.3	194.8		414.1
3	207.6	0.0	207.6	194.8		402.4
4	199.4	0.0	199.4	194.8		394.2
5	199.4	0.0	199.4	194.8		394.2
6	249.2	0.0	249.2	194.8		444.0
7	321.1	0.0	321.1	194.8		515.9
8	336.5	0.0	336.5	194.8		531.3
9	343.7	0.0	343.7	194.8		538.5
10	383.2	383.2	0.0			0.0
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	487.7	0.0			0.0
14	508.8	508.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	0.0	506.7	194.8		701.5
18	439.8	0.0	439.8	194.8		634.6
19	378.3	0.0	378.3	194.8		573.1
20	345.7	0.0	345.7	194.8		540.5
21	319.7	0.0	319.7	194.8		514.5
22	296.4	0.0	296.4	194.8		491.2
23	273.1	0.0	273.1	194.8		467.9
24	247.9	0.0	247.9	194.8		442.7
OTALS	8,422.7	3,311.3	5,111.4	3,311.3	MAX =	701.5

24

JULY

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	254.9	0.0	254.9	203.8		458.7
2	238.8	0.0	238.8	203.8		442.6
з	229.2	0.0	229.2	203.6		433.0
4	221.5	0.0	221.5	203.8		425.3
5	222.0	0.0	222.0	203.8		425.8
6	269.6	0.0	269.6	203.8		473.4
7	344.4	0.0	344.4	203.8		548.2
8	357.7	0.0	357.7	203.8		561.5
9	378.6	0.0	378.6	203.8		582.4
10	401.4	401.4	0.0			0.0
11	428.0	428.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	0.0	534.4	203.8		738.2
18	467.6	0.0	467.6	203.8		671.4
19	390.6	0.0	390.6	203.8		594.4
20	372.5	0.0	372.5	203.8		576.3
21	335.7	0.0	335.7	203.8		539.5
22	311.2	0.0	311.2	203.8		515.0
23	290.3	0.0	290.3	203.8		494.1
24	264.7	0.0	264.7	203.8		468.5
OTALS	8,947.6	3,463.9	5,483.7	3,463.9	MAX =	738.2

AUGUST

TOTALS	9,046.1	3,482.7	5,563.4	3,482.7	MAX =	761.8
24	278.7	0.0	278.7	204.9		483.6
23	291.5	0.0	291.5	204.9		495.4
22	314.1	0.0	314.1	204.9		519.0
21	352.4	0.0	352.4	204.9		557.3
20	375.7	0.0	375.7	204.9		580.6
19	407.2	0.0	407.2	204.9		612.1
18	471.9	0.0	471.9	204.9		676.8
17	556.9	0.0	556.9	204.9		761.8
16	564.7	564.7	0.0			0.0
15	5 53.9	553.9	0.0			0.0
14	541.9	541.9	0.0			0.0
13	505.7	505.7	0.0			0.0
12	479.0	479.0	0.0			0.0
11	433.7	433.7	0.0			0.0
10	403.8	403.8	0.0			0.0
9	379.1	0.0	379.1	204.9		584.0
8	358.1	0.0	358.1	204.9		553.0
7	344.7	0.0	344.7	204.9		549.6
6	267.4	0.0	267.4	204.9		472.3
5	212.7	0.0	212.7	204.9		417.6
4	223.2	0.0	223.2	204.9		426.1
3	231.3	0.0	231.3	204.9		436.2
2	239.9	0.0	239.9	204.9		444.8
1	258.6	0.0	258.6	204.9		463.5
Hour	(Ton-Hrs)	(Ton-Hrs) (Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
	Load	Peak	Peak	Storage		Chiller
	Cooling	On	Off	Required		Required

. .

SEPTEMBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	. Requin Chille (Tons
					·
1	204.1	0.0	204.1	174.7	378.1
2	185.5	0.0	185.5	174.7	360.2
3	176.5	0.0	176.5	174.7	351.2
4	168.2	0.0	168.2	174.7	342.9
5	166.9	0.0	166.9	174.7	341.6
6	212.6	0.0	212.6	174.7	367.3
7	262.7	0.0	282.7	174.7	457 <i>.</i> 4
8	296.9	0.0	296.9	174.7	471.6
9	318.2	0.0	318.2	174.7	492.9
10	342.4	342.4	0.0		0.0
11	372.4	372.4	0.0		0.0
12	401.6	401.6	0.0		0.0
13	443.5	443.5	0.0		0.0
14	464.7	464.7	0.0		مە
15	474.6	474.6	0.0		مە
16	470.8	470.8	0.0		مە
17	457.2	0.0	457.2	174.7	631.9
18	399.7	0.0	399.7	174.7	574.4
19	341.9	0.0	341.9	174.7	516.6
20	312.7	0.0	312.7	174.7	487.4
21	268.8	0.0	288.8	174.7	463.5
22	253.4	0.0	253.4	174.7	428.1
23	232.8	0.0	232.8	174.7	407.5
24	209.6	0.0	209.6	174.7	384.3
DTALS	7,477.7	2.970.0	4,507,7	2,970.0	MAX = 631.6

OCTOBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hirs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Required Chiller (Tons)
1	68.8	0.0	68.8	86.6	155.4
2	60.0	0.0	60.0	86.6	146.6
3	55.8	0.0	55.8	86.6	142.4
4	52.8	0.0	52.8	86.6	139.4
5	52.6	0.0	52.6	86.6	139.2
6	73.8	0.0	73.8	86.6	160.4
7	109.1	0.0	109.1	86.6	195.7
8	117.3	0.0	117.3	86.6	203.9
9	130.4	0.0	130.4	86.6	217.0
10	147.4	147.4	0.0		0.0
11	171.8	171.8	0.0		0.0
12	202.1	202.1	0.0		0.0
13	222.8	222.8	0.0		0.0
14	238.1	238.1	0.0		0.0
15	246.6	246.6	0.0		0.0
16	243.5	243.5	0.0		0.0
17	232.5	0.0	232.5	86.6	319.1
18	183.7	0.0	183.7	86.6	270.3
19	137.2	0.0	137.2	86.6	223.8
20	113.3	0.0	113.3	86.6	199.9
21	94.3	0.0	94.3	86.6	180.9
22	78.5	0.0	78.5	86.6	165.1
23	68.3	0.0	68.3	86.6	154.9
24	61.3	0.0	61.3	86.6	147.9
TOTALS	3,162.0	1.472.3	1.689.7	1,472.3	MAX = 319.1

-

4

NOVEMBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hirs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
1	55.8	0.0	55.8	75.2		131.0
2	53.1	0.0	53.1	75.2		128.3
3	51.1	0.0	51.1	75.2		126.3
4	48.3	0.0	48.3	75.2		123.5
5	47.2	0.0	47.2	75.2		122.4
6	46.9	0.0	46.9	75.2		122.1
7	67.0	0.0	67.0	75.2		142.2
8	104.9	0.0	104.9	75.2		180.1
9	114.0	0.0	114.0	75.2		189.2
10	125.7	125.7	0.0			0.0
11	145.8	145.8	0.0			0.0
12	173.7	173.7	0.0			0.0
13	194.3	194.3	0.0			0.0
14	208.5	208.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	0.0	201.6	75.2		276.8
18	192.8	0.0	192.8	75.2		268.0
19	136.8	0.0	136.8	75.2		212.0
20	87.5	0.0	87.5	75.2		162.7
21	75.3	0.0	75.3	75.2		150.5
22	64.9	0.0	64.9	75.2		140.1
23	60.4	0.0	60.4	75.2		135.6
24	55.9	0.0	55.9	75.2		131.1
OTALS	2,741.7	1,278.2	1,463.5	1,278.2	MAX =	276.8

169

APRIL

	Cooling Load	On Peek	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	87.2	0.0	87.2	94.89		182.1
2	81.4	0.0	81.4	94.89		176.3
3	76.6	0.0	76.6	94.89		171.5
4	71.6	0.0	71.6	94.89		166.5
5	71.4	0.0	71.4	94.89		166.3
6	102.9	0.0	102.9	94.89		197.8
7	160.6	0.0	160.6	94.89		255.5
8	186.2	0.0	186.2	94.89		281.1
9	205.4	م٥	205.4	94.89		300.3
10	213.1	0.0	213.1	94.89		308.0
11	244.5	244.5	0.0			0.0
12	266.1	266.1	0.0			0.0
13	283.6	263.6	0.0			0.0
14	298.9	298.9	0.0			0.0
15	307.9	307.9	0.0			0.0
16	307.0	307.0	0.0			0.0
17	299.6	0.0	299.6	94.89		394.5
18	245.6	0.0	245.6	94.89		340.5
19	197.1	0.0	197.1	94.89		292.0
20	184.1	0.0	184.1	94.89		279.0
21	156.0	0.0	156.0	94.89		250.9
22	135.9	0.0	135.9	94.89		230.8
23	117.8	0.0	117.8	94.89		212.7
24	107.8	0.0	107.8	94.69		202.7
OTALS	4,408.3	1,708.0	2,700.3	1,708.0	MAX =	394.5

4

MAY

Hour	Cooling Load (Ton-Hrs)	On Peek (Ton-Hirs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)		Required Chiller (Tons)
	152.9	0.0	152.9	130.9		283.8
1 2	146.0	0.0	132.9	130.9		276.9
2	146.0	0.0	146.0	130.9		256.7
4	120.8	0.0	116.1	130.9		247.0
4 5	115.5	0.0	115.5	130.9		247.0
6	167.3	0.0	167.3	130.9		298.2
0 7	242.5	0.0	242.5	130.9		373.4
		0.0	242.5	130.9		379.4
8 9	248.5 268.0	0.0	248.5	130.9		398.9
9 10		0.0	206.0	130.9		390. 9 424.4
	293.5	+		130.9		424.4
11	323.1	323.1	0.0			0.0
12	354.2	354.2	0.0			
13	397.7	397.7	0.0			0.0
14	420.5	420.5	0.0			0.0
15	432.1	432.1	0.0			0.0
16	426.8	425.6	0.0			0.0
17	416.5	0.0	416.5	130.9		547.4
18	351.3	0.0	351.3	130.9		482.2
19	291.9	0.0	291.9	130.9		422.8
20	272.0	0.0	272.0	130.9		402.9
21	247.4	0.0	247.4	130.9		378.3
22	212.5	0.0	212.5	130.9		343.4
23	188.7	2.3	188.7	130.9		319.6
24	175.2	0.0	175.2	130.9		306.1
OTALS	6.388.0	2.356.4	4,031.6	2,356.4	MAX =	547.4

JUNE

	Cooling Load	On Peak	Off Peak	flequired Storage		Required Chillier
Hour	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	227.6	0.0	227.6	162.7		390.3
2	219.3	0.0	219.3	162.7		382.0
3	207.6	0.0	207.6	162.7		370.3
4	199.4	0.0	199.4	182.7		362.1
5	199.4	0.0	199.4	162.7		362.1
8	249.2	0.0	249.2	162.7		411.9
7	321.1	0.0	321.1	162.7		483.8
8	336.5	0.0	336.5	162.7		499.2
9	343.7	0.0	343.7	162.7		506.4
10	383.2	0.0	383.2	162.7		545.9
11	414.1	414.1	0.0			0.0
12	444.3	444.3	0.0			0.0
13	487.7	487.7	0.0			0.0
14	508.8	508.8	0.0			0.0
15	537.7	537.7	0.0			0.0
16	535.5	535.5	0.0			0.0
17	506.7	0.0	506.7	162.7		669.4
18	439.8	0.0	439.8	162.7		602.5
19	378.3	0.0	378.3	162.7		541.0
20	345.7	0.0	345.7	162.7		508.4
21	319.7	0.0	319.7	162.7		482.4
22	296.4	0.0	296.4	162.7		459.1
23	273.1	0.0	273.1	162.7		435.8
24	247.9	0.0	247.9	162.7		410.6
OTALS	8,422.7	2,928.1	5,494.6	2,928,1	MAX =	669.4

ė,

JULY

. . .

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hirs)	(Ton-Hrs)		(Tons)
1	254.9	0.0	254.9	170.1		425.0
2	238.8	0.0	238.8	170.1		408.9
3	229.2	0.0	229.2	170.1		399.3
4	221.5	0.0	221.5	170.1		391.6
5	222.0	0.0	222.0	170.1		392.1
6	269.6	0.0	269.6	170.1		439.7
7	344.4	0.0	344.4	170.1		514.5
8	357.7	0.0	357.7	170.1		527.8
9	378.6	0.0	378.6	170.1		548.7
10	401.4	0.0	401.4	170.1		571.5
11	428.0	426.0	0.0			0.0
12	473.6	473.6	0.0			0.0
13	516.2	516.2	0.0			0.0
14	537.3	537.3	0.0			0.0
15	560.6	560.6	0.0			0.0
16	546.8	546.8	0.0			0.0
17	534.4	0.0	534.4	170.1		704.5
18	467.6	0.0	467.6	170.1		637.7
19	390.6	0.0	390.6	170.1		560.7
20	372.5	0.0	372.5	170.1		542.6
21	335.7	0.0	335.7	170.1		505.8
22	311.2	0.0	311.2	170.1		481.3
23	290.3	۵٥	290.3	170.1		460.4
24	264.7	0.0	264.7	170.1		434.8
OTALS	8,947.6	3,062.5	5,885.1	3,062.5	MAX =	704.5

AUGUST

	Cooling Load	On Peak	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	258.6	0.0	258.6	171.1		429.7
2	239.9	0.0	239.9	171.1		411.0
3	231.3	0.0	231.3	171.1		402.4
4	223.2	0.0	223.2	171.1		394.3
5	212.7	0.0	212.7	171.1		383.8
6	267.4	0.0	267.4	171.1		438.5
7	344.7	0.0	344.7	171.1		515.8
8	358.1	0.0	358.1	171.1		529.2
9	379.1	0.0	379.1	171.1		550.2
10	403.8	0.0	403.8	171.1		574.9
11	433.7	433.7	0.0			0.0
12	479.0	479.0	0.0			0.0
13	505.7	505.7	0.0			0.0
14	541.9	541.9	0.0			0.0
15	553.9	553.9	0.0			0.0
16	564.7	564.7	0.0			0.0
17	556.9	0.0	556.9	171.1		728.0
18	471.9	0.0	471.9	171.1		643.0
19	407.2	0.0	407.2	171.1		578.3
20	375.7	0.0	375.7	171.1		546.8
21	352.4	0.0	352.4	171.1		523.5
22	314.1	0.0	314.1	171.1		485.2
23	291.5	0.0	291.5	171.1		462.6
24	278.7	0.0	278.7	171.1		449.8
OTALS	9,046.1	3,078.9	5,967.2	3,078.9	MAX =	728.0

24

SEPTEMBER

Hour	Cooling Load (Ton-Hrs)	On Peak (Ton-Hrs)	Off Peak (Ton-Hrs)	Required Storage (Ton-Hrs)	Required Chiller (Tons)
1	204.1	0.0	204.1	146.0	350.1
2	185.5	0.0	185.5	146.0	331.5
3	176.5	0.0	176.5	146.0	322.5
4	168.2	0.0	168.2	146.0	314.2
5	166.9	0.0	166.9	146.0	312.9
6	212.6	0.0	212.6	146.0	358.6
7	282.7	0.0	282.7	146.0	428.7
8	296.9	0.0	296.9	146.0	442.9
9	318.2	0.0	.318.2 -	146.0	464.2
10	342.4	0.0	342.4	146.0	488.4
11 (372.4	372.4	0.0	· · ·	0.0
12	401.6	401.6	0.0	•	0.0
13	443.5	443.5	0.0		0.0
14	464.7	464.7	0.0		0.0
15	474.6	474.6	0.0		0.0
16	470.8	470.8	0.0		0.0
17	457.2	0.0	457.2	146.0	603.2
18	399.7	0.0	399.7	146.0	545.7
19	341.9	0.0	341.9	146.0	487.9
20	312.7	0.0	312.7	146.0	458.7
21	288.8	0.0	268.6	146.0	434.8
22	253.4	0.0	253.4	146.0	399.4
23	232.8	0.0	232.8	146.0	378.8
24	209.6	0.0	209.6	146.0	355.6
TALS	7,477.7	2.627.6	4,850.1	2,627.6	MAX = 603.2

OCTOBER

	Cooling	On	Off	Required		Required
	Load	Peak	Peak	Storage		Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	68.8	0.0	68.8	73.6		142.4
2	60.0	0.0	60.0	73.6		133.6
3	55.8	0.0	55.8	73.6		129.4
4	52.8	0.0	52.8	73.6		126.4
5	52.6	0.0	52.6	73.6		126.2
6	73.8	0.0	73.8	73.6		147.4
7	109.1	0.0	109.1	73.6		182.7
8	117.3	0.0	117.3	73.6		190.9
9	130.4	0.0	130.4	73.6		204.0
10	147.4	0.0	147.4	73.6		221.0
11	171.8	171.8	0.0			0.0
12	202.1	202.1	0 .0			0.0
13	222.8	222.8	0.0			0.0
14	238.1	238.1	0.0			0.0
15	246.6	246.6	0.0			0.0
16	243.5	243.5	0.0			0.0
17	232.5	0.0	232.5	73.6		306.1
18	183.7	0.0	183.7	73.6		257.3
19	137.2	0.0	137.2	73.6		210.8
20	113.3	0.0	113.3	73.6		186.9
21	94.3	0.0	94.3	73.6		167.9
22	78.5	0.0	78.5	73.6		152.1
23	68.3	0.0	68.3	73.6		141.9
24	61.3	0.0	61.3	73.6		134.9
TOTALS	3,162.0	1,324.9	1,837.1	1,324.9	MAX =	306.1

.

-

.

-4 .

NOVEMBER

	Cooling Load	On Peek	Off Peak	Required Storage		Required Chiller
Hour	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)	(Ton-Hrs)		(Tons)
1	55.8	0.0	55.8	64.0		119.8
2	53.1	0.0	53.1	64.0		117.1
3	51.1	0.0	51.1	64.0		115.1
4	48.3	0.0	48.3	64.0		112.3
5	47.2	0.0	47.2	64.0		111.2
6	46.9	0.0	46.9	64.0		110.9
7	67.0	0.0	67.0	64.0		131.0
8	104.9	0.0	104.9	64.0		168.9
9	114.0	0.0	114.0	64.0		178.0
10	125.7	0.0	125.7	64.0		189.7
11	145.8	145.8	0.0			0.0
12	173.7	173.7	0.0			0.0
13	194.3	194.3	0.0			0.0
14	208.5	208.5	0.0			0.0
15	216.0	216.0	0.0			0.0
16	214.2	214.2	0.0			0.0
17	201.6	0.0	201.6	64.0		265.6
18	192.8	0.0	192.8	64.0		256.8
19	136.8	0.0	136.6	64.0		200.8
20	87.5	0.0	87.5	64.0		151.5
21	75.3	0.0	75.3	64.0		139.3
22	64.9	0.0	64.9	64.0		128.9
23	60.4	0.0	60.4	64.0		124.4
24	55 .9	0.0	55.9	64.0		119.9
TOTALS	2,741.7	1,152.5	1,589.2	1,152.5	MAX =	265.6

APPENDIX 4G

TRANE TRACE OUTPUT FOR CHILLER OPERATING KW

7

Trane Air Conditioning Economics By: ENGINEERING RESOURCE GROUP, INC.

••.

.

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 ASELINE MODEL

							Jumperon.								lef
Tot	Dec	7	Nov	Oct	Sep	Aug	July	June	May	Apr	Mar	Feb	Jan	Code	um
					ي. ب									LIGHTS	o
1,152,9	94858	3	93168	99227	93220	101425	94858	97590	99227	93220	101425	87721	97029	ELEC	
279	279.4	1 :	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	PK	
														MISC LD	1
72,1	6034	L	5861	6170	5890	6246	6034	6027	6170	5890	6246	5513	6095	ELEC	
. 14	14.7	,	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	PK	
														MISC LD	2
	0)	0	0	0	0	0	0	0	0	0	0	0	GAS	
O	0.0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
														NISC LD	3
	0	ł	0	0	0	0	0	0	0	0	0	0	0	OIL	
0	0.0	I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
														MISC LD	4
·	0		0	0	0	0	0	0	0	0	0	0	0	P STEAM	
0	0.0	i -	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
														MISC LD	5
	o		0	0	٥	0	0	0	0	0	0	0	0	P HOTH20	
0	0.0	I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
														MISC LD	
	0		0	C	0	0	0	0	0	0	0	0	0	P CHILL	
0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	PK	
											UTILITY				1
438,0	37200		36000	37200	36000	37200	37200	36000	37200	36000	37200	33600	37200	BLEC	
50	50.0		50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	50.0	PK	
											UTILITY				2
15,1	1284		1243	1284	1243	1284	1284	1243	1284	1243	1284	1160	1284	EOTLD	
1	1.7		1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	PK	
		-					<u></u>				G CIV >2			EQ1008L	
637,9	37962		45044	54626	54813	68388	66725	60038	61511	75875	45542	31748	35635	ELEC .	
194	108.7	_ '	155.0	168.6	179.4	193.8	194.6	190.3	177.5	176.6	156.5	88.3	86.7	PK .	
										R	ING TOWE			205100	
118,7	9854		13435	14795	8352	8014	8014	7755	10480	14317	12186	4278	7295	ELEC	
19	19.9		19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	2 K	:
										R	ING TOWE	COOL		205100	
3,3	200		242	296	282	335	329	301	322	401	247	163	184	ATER	
0	0.6		0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.5	0.5	PK ·	1

------ EQUIPHENT ENERGY CONSUMPTION -------

· • -

By: ENGINEERING RESOURCE GROUP, INC.

V 600 Page 2

.....

.

	LINE MODEL													
1	EQ5001		CHII	LLED WATH	ER PUMP	c.v.								
-	ELEC	36987	33407	36987	35794	26199	19388	20035	20035	20880	36987	35794	36987	359,478
	PK	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7
1	EQ5010		CONI	DENSER W	ATER PUMI	e.v.								
	ELEC	14795	13363	14795	14317	10480	7755	8014	8014	8352	14795	14317	14795	143,791
	PK	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9
1	EQ5300		CON	TROL PANE	el & INTH	RLOCK				· •				7,231
	ELEC	744	672	744	720	527	390	403	403	. 420	744	720 1.0	744 1.0	1.0
	PK	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	EQ1008L		3-5	IG CTV >2	200 TONS								7	
	ELEC	0	0	0	4941	45683	82744	89876	93612	67028	0	0	0	383,883
	PK	0.0	0.0	0.0	187.9	232.0	246.9	251.7	253.0	239.8	139.5	0.0	0.0	253.0
2	EQ5100		C001	LING TOWN	ER								_	67 60 0
	ELEC	0	0	0	3480	7258	11434	12329	12901	10191	o	0	0	57,593
	PK	0.0	0.0	0.0	24.9	24.9	24.9	24.9	24.9	24.9	24.9	0.0	0.0	24.9
2	EQ5100		C001	LING TOWN	ER									2,139
	WATER	O	0	0	20	269	461	495	512	382	0	0	0 0.0	1.4
	PK	0.0	0.0	0.0	1.2	1.4	1.4	1.4	1.4	1.4	0.9	0.0	0.0	1.4
2	EQ5001		CHI	LLED WAT	ER PUMP	c.v.								
	ELEC	0	0	0	5568	11613	18613	19925	20641	16306	0	0	0	92,666
	PK	0.0	0.0	0.0	39.8	39.8	39.8	39.8	39.8	39.8	39.8	0.0	0.0	39.8
2	EQ5010		CON	denser w	ATER PUM	P C.V.								57,916
	ELEC	0	0	0	3480	7258	11633	12453	12901	10191	0	0	0 0.0	24.9
	PK	0.0	0.0	0.0	24.9	24.9	24.9	24.9	24.9	24.9	24.9	0.0	0.0	
2	EQ5300		CON	TROL PAN	EL & INT	ERLOCK								
	ELEC	0	0	0	140	292	468	501	519	410	0	0	0	2,330
	PK	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0
3	EQ1008L		3-5	IG CIV >	20 <u>0 TONS</u>				<u></u>			<u>. </u>	-	
	ELEC	0	0	O	0	0	34	115	0	36	0	0	0	18:
	PK	0.0	0.0	0.0	0.0	0.0	35.7	37.8	0.0	33.5	0.0	0.0	0.0	27.0
3	EQ5100		C00	LING TOW	ER									
	ELEC	0	0	0	0	1750	4057	4454	4991	2088	0	0	0	17,34
	PK	0.0	0.0	0.0	0.0	19.9	19.9	19.9	19.9	19.9	0.0	0.0	0.0	19.1
3	EQ5100		C00	LING TOW	er							_	-	26
	WATER	0	0	0	0	4	61	77	97	22	0	0	0	20
	PK	0.0	0.0	0.0	0.0	0.3	0.7	0.8	0.8	0.4	0.0	0.0	0.0	0.
3	EQ5001				er pump				_			~	0	
	ELEC	0	0	0	0	0	0	0	0	0	0	0 0.0	0.0	0.
,	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.
3	EQ5010		CON		ATER PUM							~	-	1,11
	ELEC	0	0	0	0	0	398	616	0	99	0	0	0	1,11
	ELEC	0.0	0.0	0.0	0.0	0.0	19.9	19.9	19.9	19.9	19.9	0.0	0.0	19.

176

By: ENGINEERING RESOURCE GROUP, INC.

	PMENT ENERGY													
3	EQ5300		CON	TROL PAN	EL & INTE	RLOCK								
	ELEC	0	0	0	0	0	20	31	0	5	0	0	0	56
	PK	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0
1	EQ4003		FC	CENTRIF.	FAN C.V.								21.40	84,096
	ELEC	7142	6451	7142	6912	7142	6912	7142	7142	6912	7142	6912	7142	9.6
	PK	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.0
1	EQ4003		FC	CENTRIF.	FAN C.V.					· ·		2875	2971	34,975
	ELEC	2971	2683	2971	2875	2971	2875	2971	2971	2875	2971		4.0	4.0
	PK	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
1	EQ4002		BI	CENTRIF.	FAN C.V.								74	874
	ELEC	74	67	74	72	74	72	74	74	72	74	72		0.1
	PK	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
2	BQ4003		FC	CENTRIF.	FAN C.V.								16740	197,100
	ELEC	16740	15120	16740	16200	16740	16200	16740	16740	16200	16740	16200	16740	22.5
	PK	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
2	EQ4 003		FC	CENTRIF.	FAN C.V.								6963	81,989
	ELEC	6963	6290	6963	6739	6963	6739	6963	6963	6739	6963	6739	9.4	9.4
	PK	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	2.4	
2	EQ4002		BI	CENTRIF.	FAN C.V.	•						72	74	872
	ELEC	74	67	74	72	74	72	74	74	72	74	0.1	0.1	0.1
	PK	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	
3	EQ4001				TRIF. FAL					24984	25817	24984	25817	303,972
	ELEC	25817	23318	25817	24984	25817	24984	25817	25817 34.7	24984 34.7	34.7	34.7	34.7	34.7
	PK	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	5417		••••	
3	EQ4002	BI CENTRIF. PAN C.V.										287	296	3,490
	ELEC	296	268	296	287	296	287	296	296	0.4	· · 29-6 0.4	0.4	0.4	0.4
	PK	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4		
4	EQ4001				TRIF. FA					22006	23659	22896	23659	278,568
	ELEC	23659	21370	23659	22896	23659	22896	23659	23659	22896 31.8	31.8	31.8	31.8	31.6
	PK	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.0	31.0	5110	
5	EQ4003				FAN C.V					10/5/	20311	19656	20311	239,14
	ELEC	20311	18346	20311	19656	20311	19656	20311	20311	19656 27.3	20311	27.3	27.3	27.
	PK	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	21.3	21.3	27.3	2763	
5	EQ4003				. FAN C.V				-		0407	9123	9427	111,00
	ELEC	9427	8515		9123	9427	9123	9427	9427	9123	9427	12.7	12.7	12.
	PK	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	
5	EQ4002		BI		. FAN C.V								0.476	29,08
	ELEC	2470	2231		2390	2470	2390	2470	2470	2390	2470	2390	2470	
	PK	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.
6	EQ4003		FC	CENTRIF	. FAN C.V	•								
	ELEC	7589	6854	7589	7344	7589	7344	7589	7589	7344	7589	7344	7589	89,35
	PK	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.
							177							

177

V 600

PAGE 3

By: ENGINEERING RESOURCE GROUP, INC.

	LINE MODEL				:										
6	EQ4003	1705			FAN C.V			1705	1705	1707	1785	1727	1785	-	21,01
	ELEC PK	1785 2.4	1612 2.4	1785 2.4	1727 2.4	1785 2.4	1727 2.4	1785 2.4	1785 2.4	1727 2.4	2.4	2.4	2.4	-	2.
	F.K.	2.4	2.3	2.4	2.4	2.4	2.4	2.4	2.13						_
6	EQ4002		ві	CENTRIF.	FAN C.V.										
	ELEC	3494	3156	3494	3382	3494	3382	3494	3494	3382	3494	3382	3494	4	41,1
	PK	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7		4
7	EQ4003		FC (CENTRIF.	FAN C.V.										
	ELEC	32066	28963	32066	31032	32066	31032	32066	32066	31032	32066	31032	32066	37	77,5
	PK	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1		43
7	EQ4003	Q4003 FC CENTRIF. FAN C.V.													
•	ELEC	10025	9054	10025	9701	10025	9701	10025	10025	9701	10025	9701	10024	11	18,0
	PK	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5		13
7	EQ4002				FAN C.V.				_					_	
	ELEC	2805	2534	2805	2715	2805	2715	2805	2805	2715	2805	2715	2805	-	33,0 3
	PK	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8		د
8	EQ4003	03 FC CENTRIF. FAN C.V.													
	ELEC	19344	17472	19344	18720	19344	18720	19344	19344	18720	19344	18720	19344	22	27,7
	PK	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	. 26.0		26
8	EQ4003	1003 FC CENTRIF. FAN C.V.													
	ELEC	6016	5434	6016	5822	6016	5822	6016	6016	5822	6016	5822	6016	-	70,8
	PK	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1		8
8	EQ4002 BI CENTRIF. FAN C.V.														
	ELEC	1695	1531	1695	1640	1695	1640	1695	1695	1640	1695	1640	1695	3	19,9
	PK	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3		2
1	EQ2004		GAS	WATER T	JBE STEAM	1									
-	GAS	16459	15400	9170	4243	3322	2744	2870	2904	2896	7126	8576	13262		88,9
	PK	34.5	36.7	25.1	13.5	8.9	5.8	5.6	5.5	6.9	22.0	24.8	31.9		36
	BQ5020				CIRC. PUM										
	ELEC	1981	1789	1981	1917	1981	1917	1981	1981	1917	1981	1917	1981	2	23,3
	PK	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7		2
	R ASO (0														
	EQ5240 ELEC	4307	3890	4307	2D DRAFT : 4168	4307	4168	4307	4307	4168	4307	4168	4307	-	50,7
	PK	5.8	5.8	4307 5.8	4108 5.8	4307 5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	-	5
	EQ5307			ER CONTR							- 7 -	200	370		
	ELEC	372	336	372	360	372	360	372	372	360	372	360	372		4,3
	PK	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		Ľ
L	EQ5062		CONT	DENSATE P	ETURN PU	м₽									
	BLEC	2024	1828	2024	1959	2024	1959	2024	2024	1959	2024	1959	2024	:	23,8
	PK	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7		:
	EQ5406		MAKE	-UP WATE	IR.										
	WATER	22	20	22	22	22	22	22	22	22	22	22	22		:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

PK

0.0

0.0

0.0

0.0

0.0

÷ . .

By: ENGINEERING RESOURCE GROUP, INC.

			100												
ASE	LINE MODEL														
2	EQ2004		GAS	WATER TU	BE STEAM	ť									
	GAS	0	0	0	0	0	0	0	0	0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	EQ5020	HEAT WATER CIRC. PUMP C.V.													
	ELEC	0	0	0	0	0	0	0	0	0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	EQ 5240														
	ELEC	0	0	0	0	0	0	0	0	. 0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	EQ5307	Q5307 BOILER CONTROLS													
	ELEC	O	0	0	0	0	0	0	0	0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	BQ5062		COND	ENSATE R	ETURN PU	MP									
	ELEC	0	0	0	0	0	0	0	0	0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0
2	BQ5406	MAKE-UP WATER													
	WATER	0	0	0	0	0	0	0	0	0	0	0	0		0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0

V 600 PAGE 5

,

APPENDIX 4H

.

CASE STUDIES AND OTHER TECHNICAL SUPPORT DATA ON STRATIFIED CHILLED WATER STORAGE

Thermal Energy Storage systems

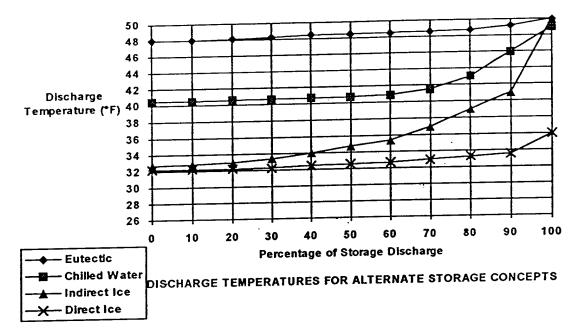
November, 1992

CHILLED WATER STORAGE

E. Ian Mackie P. Eng. Mackie Associates

INTRODUCTION

Chilled water storage; operating with only a sensible heat exchange, requiring a large storage volume, and totally dependent on secondary coolant temperature differentials can be the most cost and energy effective of the current cooling storage technologies. In both new and existing systems, chilled water storage can achieve the primary aim of leveling the demand of electrically driven cooling and at the same time reduce the first cost and energy consumption.


Typical of most storage concepts, the technology of chilled water storage is being enhanced by the demand side management incentives of the electric utilities. Current technology for chilled water storage favors the use of stratified storage. Significant advances have come from research sponsored by: Electric Power Research Institute (EPRI), Construction Engineering Research Laboratory of the US Army (CERL), Oak Ridge National Laboratory (ORNL), American Society of Refrigerating and Air Conditioning Engineers (ASHRAE), and the University of New Mexico (UNM).

This presentation includes; a cursory comparison of the chilled water storage and ice storage systems, a brief history of chilled water storage, details of the design of stratified chilled water storage, information on system interface and comments on operation.

BASIC COMPARISONS TO OTHER TYPES OF STORAGE:

Operational Temperature:

The initial consideration for selecting the type of storage in a specific application is the range of operational temperature. Figure 1 illustrates the approximate discharge temperature characteristics of common cool storage systems. Significant variations in the temperature ranges occur with changes in storage discharge rates.

The curves on the graph of Figure 1 are read from left to right, with the 0% reading being the intial discharge temperature. The chilled water discharge temperature is a representation of stratified storage that operates with a 40°F charging temperature. The discharge begins slightly above the charging temperature, rising gradually to about 80% discharge. Above the 80% discharge, the temperature rises more steeply as the thermocline exits the tank.

Use of "Conventional" or existing equipment:

Chilled water storage systems use standard chillers operating at common chiller operating temperatures. Use of this conventional equipment eases design, installation, operation, maintenance, and has the advantage of being able to utilize "idle" equipment capacity in existing installations.

Energy Consumption:

Energy consumption of chilled water storage is in the order of 10% less than conventional non storage, and 20 to 30% less than ice storage systems. The reduction from the non-storage systems is due to minimizing part load operation and to production of cooling load at night with lower wet bulb temperatures. Water chillers operate with suction temperatures of 35°F to 37°F. Ice making equipment operates with suction temperatures ranging from 15°F to 22°F. This 12°F to 15°F difference in suction temperatures affords a 20 to 30 % energy advantage for the chilled water systems.

Mackie Associates\Tsarc3

Capital Costs:

The major element in the cost of chilled water storage is the cost of the storage tank. Tank costs depends on the amount of tank surface that is purchased to contain a given volume. The relationship between surface and volume is not linear, with much more surface and hence a greater unit cost appling to smaller tanks. The cost of tanks also vary with local labor practice and with local soil conditions.

For storage greater than 4500 ton-hours, say 500,000 gal. operating with conventional temperature differenctials, the capital cost of stratified chilled water storage is approximately \$50 per ton-hour. At this cost, it is possible, in new installations, to purchase partial storage systems for a lower first cost than a non storage system.

Chilled water storage applies readily to increasing the overall output of existing facilities. Where a cooling load profile has peaks and valleys, the <u>idle</u> capacity during the valley, charges storage. This use to increase capacity of existing plants often costs less than half of the cost of new capacity and is the most common application of water storage.

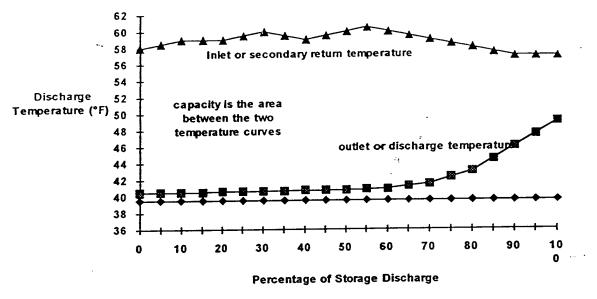
Large Volume and Dependence on Performance of Secondary Systems:

Chilled water storage requires a large volume. At conventional temperature differentials, water storage requires 12 to 16 cu. ft./ton hour. The large volumes and the dependence on the water temperature performance of secondary systems result from chilled water storage operating with only a sensible heat exchange.

Calculating stratified chilled water storage capacity involves an integration (or averaging) of the temperature difference between coincident tank leaving and entering water temperatures over the cycle of storage discharge using the following equation:

$Q_{st} = M_w \times c \times (t_{in} - t_{out})$

where.


 $Q_{\rm rr} = {\rm cooling \ capacity \ in \ storage}$

 M_w = weight of the "useful" volume of water in storage

c = specific heat of water

 t_{in} = temperature of the water entering the storage during discharge

 t_{out} = temperature of the water exiting the storage during discharge

GRAPHICAL DETERMINATION OF STORAGE CAPACITY

Charging temperature — Leaving (secondary supply) temperature return) temperature

Figure 2

Capacity in the chilled water storage is the "area" between the inlet and outlet temperatures as illustrated in Figure 2. Reduction of the storage inlet temperature (secondary return) during the storage discharge, reduces the stored cooling capacity. Maintenance of the high secondary system return temperatures implies that chilled water storage systems have variable flow in secondary pumping and throttling (rather than bypass) control on the secondary coils.

DEVELOPMENT OF CHILLED WATER STORAGE:

Chilled water storage systems involve two water volumes at different temperatures: the first is a volume at low temperature to service load, the second is a volume returning from load at a warmer temperature. Mixing of these two volumes results in a loss of effective cooling storage capacity. The development of chilled water storage concepts traces the improvements is separating the two water volumes.

The measure of water storage performance is the degree of separation of the two water volumes. Ideally, the concept should limit internal energy transfer from the warm to the cold, avoid mixing, and be capable of delivery of a high percentage of the total storage volume at or near the charging temperature. Recovery of the water from storage at or near the charging temperature, maximizes the storage capacity and reduces a potential energy penalty of operating the refrigeration at too low a suction temperature.

A brief evolution of chilled water storage includes the following systems:

- -Labyrinth
- Baffle
- Tank Series
- -Empty Tank
- -Flexible Membrane
- -Thermal stratification

Labyrinth, Baffle and Tank Series operate with varying degrees of success, however, they are generally inefficient due to internal energy transfers.

Empty tank systems, with the cold and the warm volumes in separate tanks, provide a positive separation of the two volumes. Overall storage volume is larger than stratified systems, due to the requirement for the "empty" volume. Piping and valving are extensive, requiring coordinated control to facilitate the volume transfers.

Flexible membrane systems are the first of the stratified designs; both the warm and the cold volumes are in a single, common tank. The flexible membrane, usually a reinforced polyester, separates the warm and the cold water and moves up and down in the tank with charge and discharge. The disadvantages include: the membrane; monitoring of storage capacity, membrane maintenance, and limits to pump operation.

Current technology favors the use of naturally stratified chilled water, which separates the warm and the cold water by utilizing the natural tendency for water at different temperatures to stratify because of the density differences.

Stratified storage uses a single tank for the two operational volumes affording simple operation, effective utilization of the total water volume and low capital cost. Properly designed and operated stratified chilled water systems will yield up to 70 % of the total tank volume within 1.5°F of the charging temperature and in excess of 90 % of the total tank volume within 5°F of the charging temperature.

A 1985, EPRI sponsored research project at the University of New Mexico is the major event leading to the current stratified storage technology. (EPRI Report EM-5432 Vols. 1 & 2) This initial investigation, and subsequent investigations define conservative calculations for stratified storage design.

THERMALLY STRATIFIED STORAGE SYSTEMS:

Thermally stratified storage systems operate by storing cold water *below* warm water in a single tank. The concept uses the *natural tendency of water to stratify* in horizontal layers according to temperature. (density) Almost any tank containing both chilled water and warmer water will naturally, reliably stratify. If stored water consists of horizontal planes of temperature that increase in an upward direction, buoyant forces maintain stratification. If temperature decreases in an upward direction, with warm water below cold water, buoyant forces produce vertical fluid motion causing mixing.

Water Density Varies with Temperature:

The density of water increases with reducing temperature down to a limit of 39.2°F (See Figure 3 and tables reference 1). Below 39.2°F, water density decreases with a further reduction in temperature.

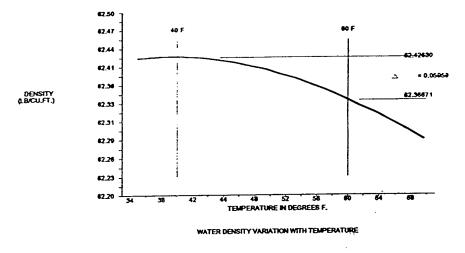
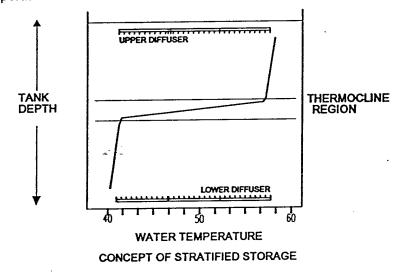



Figure 3

Thermocline:

If the temperatures are controlled, and the **colder water is properly introduced into** *the bottom* of a tank of warm water, the water in the tank will stratify creating a region of vertical temperature difference called a *thermocline* as shown in Fig. 4

Figure 4

The thermocline is a relatively thin horizontal layer in which the temperature and density gradients are much larger than in the rest of the tank. The thermocline acts as a physical boundary between the cold and the warm water. In operation of stratified storage, there is a reversal of the flow through the tank. The thermocline shifts upward during charging(bottom inlet) and downward during discharging (top inlet).

Internal Heat Transfer:

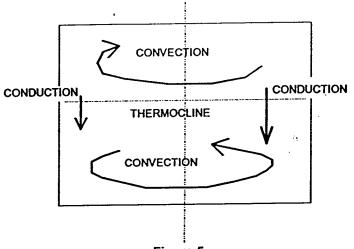


Figure 5

There are two mechanisms that will move heat from the warm water to the cold water in a stratified tank, conduction and convection as illustrated in the diagram of Figure 5. With the cold and the warm water is contact there is conduction, however, water is a poor conductor and the internal heat transfer due to conduction alone is nor major. Storing the cold (more dense) water below the warm (less dense) water, eliminates density currents and free convection. Charging involves injecting cold water into the bottom of the tank. Discharging involves injecting warm water into the top of the tank. The injection, if not properly controlled, causes forced convection, which, in the extreme could thoroughly mix the tank. The primary criterion, therefore, in the design of a stratified storage system is control of forced convection.

Diffusers:

There are two diffusers, one in the top and one in the bottom, that introduce and withdraw water, creating and maintaining thermoclines. The upper diffuser creates a thermocline at the top of the tank during the discharge cycle. The lower diffuser creates a thermocline at the bottom of the tank during the charge cycle.

Mixing in the tank increases with increasing velocity of the incoming stream and decreases with increases in the density difference. If the incoming water is a "jet-like" flow, the inertial and the shear forces will completely mix the contents. Even distribution and limited inlet velocity allows the buoyant forces, caused by the density differences, to be dominant, resulting in stratification of the tank. With the buoyant force dominant over inertia and shear, the incoming flow creates a *gravity current*, which propagates across the top or the bottom of the tank driven by the density difference.

Figure 6 illustrates the gravity current. Note the characteristic "head" at the front of the flow.

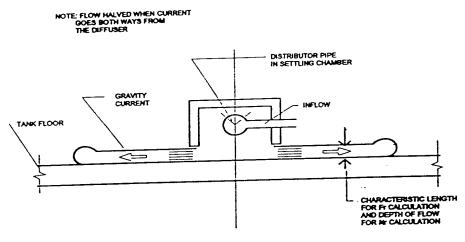


ILLUSTRATION OF A GRAVITY CURRENT

DESIGN OF DIFFUSERS FOR STRATIFIED STORAGE

Froude Number (Fr) and Reynolds Number (Nr):

Two dimensionless parameters for fluid flow, namely: the densimetric Froude Number (*Fr*) and the Reynolds number (Nr) characterizes effective diffuser design. (2,4,6,8)

The following equations define the dimensionless parameters:

$$Fr = \frac{u}{\sqrt{(gL\beta(t_w - t_c))}}$$

where:

Fr = Densimetric Froude Number

g = acceleration of gravity

 \mathbf{u} = average velocity in the density current

L = characteristic depth of the density current

 β = coefficient of volumetric expansion

 $t_w =$ temperature of the ambient water

 $t_c = temperature of the inlet water$

The L term, in theory, is the depth of the gravity current as indicated in Figure 6. The depth of the gravity current is *approximately* the height of the outlet slot of the diffuser, therefore, substitute the slot height "h" for the characteristic dimension "L". Substituting "h" for "L", the Fr is Fr_i , pertaining to the inlet, and this is a convenient design parameter.

Replacing the volumetric expansion term " β " with the ratio of the density difference, as:

$$\beta(t_w - t_c) = \frac{(\rho_i - \rho_a)}{\rho_a}$$

where:

 ρ_a = density of the ambient fluid

 ρ_i = density of the inlet fluid

and replacing the velocity term "u" by the flow per unit length of diffuser "q", using the slot height, "h" as the depth of the flow, then the equation for the inlet Froude number, Fr; becomes:

$$Fr_i = \frac{q}{\left(g\frac{\Delta\rho}{\rho}h_i^3\right)^{\nu_2}}$$

A recommended value for the Fr is one. Making the substitutions and setting Fr = 1.0, the equation solves for the minimum slot height as:

$$h_{\min} = \frac{q^{2/3}}{(g(\frac{\rho_i - \rho_a}{\rho_a}))^{1/3}}$$

Note that this calculated dimension for the slot height applies to the upper diffuser (depth from the water surface) and the lower diffuser (depth from the floor).

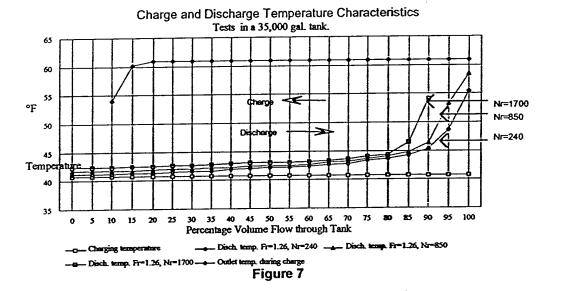
The second dimensionless parameter, Nr, or Reynolds Number is defined as follows:

$$Re = \frac{ul}{\eta}$$
where:

$$Re = Reynolds Number$$

$$u = average velocity in the density current$$

$$l = depth of the flow$$


$$\eta = kinematic viscosity$$

Similar to the modification of the equation for Fr, the Re equation, in terms of the flow per unit length is:

$$\operatorname{Re} = \frac{q}{\eta}$$

Discharge Temperature Characteristic Varying with Nr:

Research investigation⁽⁸⁾ of a 35,000 gal storage tank established that the temperature differential between the charging temperature and the discharge temperature increases with increasing Nr. The graph of Figure 7 indicates the shift of the temperature characteristic with variation in Nr.

In Figure 7, the charging temperature, or the tank inlet temperature during charge reads from right to left and is a plot of the temperature entering the tank as the charge progresses for a 100% warm tank to a cold tank. The next three lines, indicated as "discharge temperatures", read from left to right, and are plots of the tank outlet temperatures for the three indicated Nr values. The uppermost line, indicated as "outlet temperature during charge" reads from right to left, and is a plot of the temperature leaving the top of the tank during the charging process.

Studies of initial thermocline formation determined that thermclines will form with Fr as high as 15, however there is excessive mixing immediatly outside the diffuser for values exceeding 2. Below a value of 1.0, there is not a noticeable reduction in the mixing.

Figure 7 indicates the shift in the performance of the stratified tank for increasing Nr. With higher values of Nr: the initial temperature differential between the charging temperature and the discharge temperature is greater, the thermocline exits earlier, the temperature profile rises sharply at a lower percentage of the tank volume, and the thermocline is "thicker". The shift of the temperature discharge profile affects the storage capacity of the tank by changing the overall temperature differential and by reducing the percentage of useful volume.

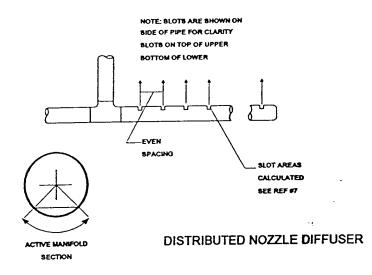
The required values for Nr and Fr depend, in part, on the depth of the tank. In a shallow tank, say 7 to 10 feet deep, a thin thermocline (12 to 18 inches) is desirable to maximize the useful percentage of the tank volume. In deeper tanks, say 40 feet deep and greater, a thicker thermocline is accommodated with less of a percentage of the total volume. For example, in

one successful application, a thermocline of 7 ft depth occurs in a 70 ft. deep tank. In this very deep tank, the thick thermocline only involves 10 % of the total tank volume.

Obtaining a thin thermocline requires that Fr be in the order of 1 and Nr be in the order of 450 or less. Low values of F_r are obtained by; reducing the flow per unit length, increasing the density difference and by increasing the depth of flow of the gravity current. Nr, however, is increased by increasing the depth of the flow. In combination, both the parameters are reduced by reducing the flow per unit length. For a fixed flow, the reduction in the flow per unit length is achieved by increasing the active length of the diffuser. In shallow tanks, with relatively large surface areas, increasing the active length of the diffuser is easily accomodated. In deeper tanks, with smaller surface areas it is difficult to increase the active length, however the thicker thermocline from the higher Nr values has less impact.

Flow Rate for Diffuser Design:

The diffusers are designed for the greatest flow rate that occurs over the complete cycle of the storage operation. This greatest flow rate establishes the flow per unit length for the defined parameters. The flow requirement applies to the start operations when the thermoclines are being formed and to the continued operation after the thermclines move away from the diffusers.

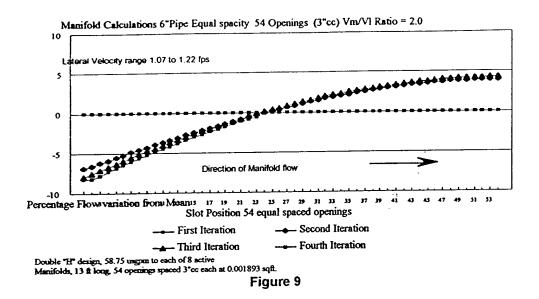

The charging operation, as described later, often involves a greater flow than the discharging operation because the charge circulates more than the total tank volume, wheras the discharge circulates less than the total volume. The discharge is usually terminated at the limiting discharge temperature. In addition, the off-peak period, used for charging, is often shorter than the on-peak period used for discharging.

A normal operating strategy, provides a constant circulation (partial storage) or no circulation (full storage) in the chiller circuit during the discharge operation. Flow variation in the secondary circuit is absorbed by the storage. In specific application, the peak flow to the secondary circuits may be the greatest flow through the diffusers. In other applications, the storage strategy involves a peak draw from the storage in a default or emergency situation, such as failure of a chiller. It is common to check this emergency flow to ensure that the tank contents will not mix at the higher parameters, but to design the diffusers for the normal flow rates.

Controlling Flow Per Unit Length - Uniform flow distribution:

Designing diffusers involves obtaining a (relatively) uniform flow over the entire length of the active diffuser. The diagram of Figure 6 illustrates a pipe in an enclosure to distribute the flow. The outer enclosure acts as a "settling chamber" which presents a continuous slot for a low velocity flow into the storage tank over the entire length of the diffuser.

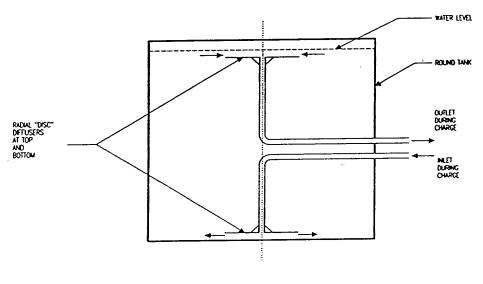
The use of an inner and outer pipe arrangement for the diffuser is expensive. It is possible to eliminate the outer enclosure by limiting the velocity of the openings and avoiding the "jet like" flows. This procedure involves increasing the size of the distributor pipe, minimizing the variation in flow out of the orifices due to changes in internal header pressure because of friction and velocity pressure regain.


Figure 8

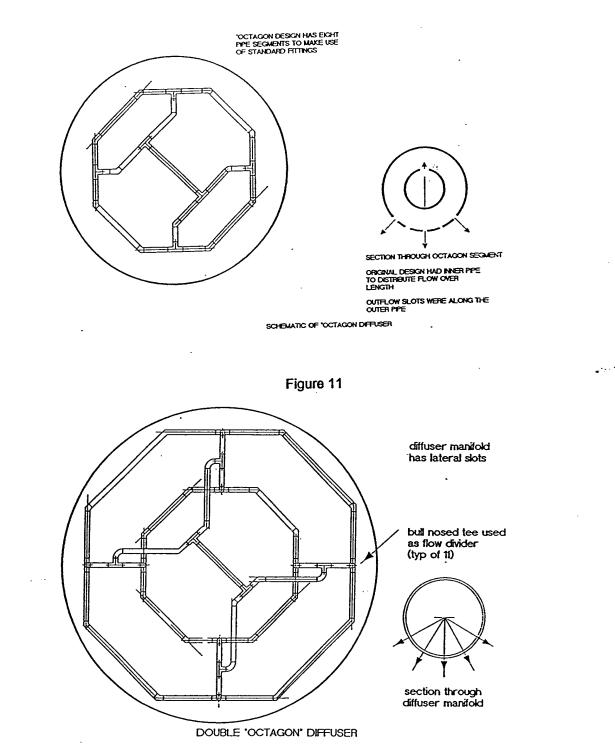
The simpler, less expensive diffuser is a single manifold with evenly spaced orifices as shown in the diagram for a distributed nozzle diffuser in Figure 8. If all of the orifices are the same, having the same flow coefficient, the flow through each orifice is a function of the difference in static pressure across the orfice as per the following equation:

 $Q = C_v \sqrt{\Delta p}$ where. Q = flow $C_{u} = orifice flow coefficient$ $\Delta p = static pressure difference$

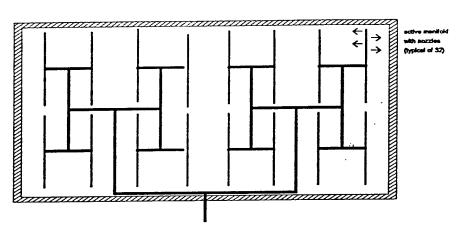
The outer static pressure is the pressure in the tank at the level of the diffuser, and is a constant. The inner static pressure is the static pressure at the location of the specific orifice in the manifold. This pressure varies down the length of the manifold depending on the friction loss and the static regain in the manifold. If the pressure drop across the orifice is high in relation to the static pressure variation down the length of the manifold, the flows out each of the orifices tend to be the same. Too high pressure drop across the orifices requires velocities through the orifices that produces "jet like" flow from the individual openings, which causes mixing in the tank. The pressure drop and the velocities through the orifices can be reduced while maintaining even flow by increasing the size of the manifold, thus reducing the pressure variations due to friction and static regain.


Flow visualization tests indicate that if the velocities out of the openings are in the order of 1 fps. and the spacing is 4 to 8 inches on centers, "jet like" flow conditions are avoided and the incoming flow will form a pool adjacent the series of openings in the manifold forming a uniform gravity current. Given the tolerance in the values of Fr and Nr that are possible for the operation of stratified storage, a reasonable variation in the flow over the length of the diffuser can be tolerated. Using the calculation procedure from reference 7 and considering the openings as evenly distributed ,square edged, laterals off a manifold, the distribution of the flow can be approximated. An example of the calculated variation in the flow down the length of a single element of a distributed nozzle diffuser is illustrated in the diagram of Figure 9.

The example of Figure 8 indicates a variation in the flow out of the evenly spaced openings as approximately \pm 5 %.


Self Balancing Headers - Diffuser Examples:

There are a variety of successful diffuser designs including: <u>linear slot</u> diffuser similar to Figure 6, <u>distributed nozzle</u> diffuser of Figure 8, <u>radial diffuser</u> of Figure 10, and the <u>octagonal</u> diffusers of Figures 11 and 12.


RADIAL DISC DIFFUSER

Self balancing headers connect the active lengths of the diffusers in the preceding examples. Self balancing arrangements make use of "bull headed" tees with equal piping lengths to balance the flow as shown in figure 13.

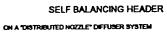


Figure 13

CALCULATION OF TANK VOLUME FOR STRATIFIED STORAGE:

Limiting Discharge Temperature:

Calculation of the volume of a stratified tank requires coincident temperature profiles of water leaving and entering the tank over the discharge cycle and definition of a project specific *limiting discharge temperature*. Discharge of the storage tank continues until the discharge temperature rises to some temperature where it is above the useful cooling temperature for the specific project. This temperature is termed the *"secondary system limiting supply temperature"*. Designers determine limiting temperature establishes the inlet water design of systems with full storage, selection of the limiting temperature that the coils will receive at the end of the storage discharge. In partial storage designs, the design coil inlet temperature is a blend of the temperature of water out of the storage and water coming off the chiller. In partial storage designs, therefore, it is possible to discharge the storage to a higher limiting temperature without having to increase the design coil inlet temperature. With the higher discharge temperature limit, a greater percentage of the storage is usually available in the partial storage systems.

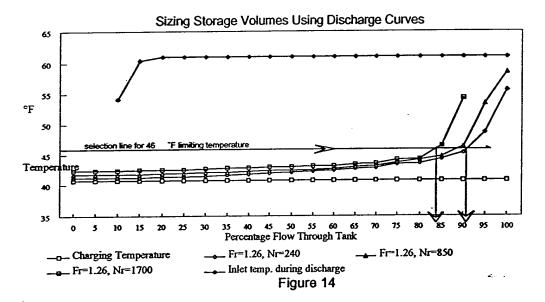


Figure 14 shows an example of the determination of useable storage volume using a 46°F limiting temperature. Reading across from the temperature axis, the selection is approximately 85% of the total volume for a diffuser with Nr=1700 and slightly over 90% of the total for a diffuser with Nr=240.

CHILLER CAPACITY REQUIRED TO CHARGE THE STORAGE TANK:

Chiller Inlet Temperature:

Determination of the chiller output capacity required for charging the tank, depends required charge flow rate and the temperature differential between chiller inlet and outlet temperatures. If, during the charging operation, the secondary pumps are not in operation, the inlet temperature to the chillers will be the outlet temperature from the storage. If secondary pumps are operating during the charging operation, servicing a night load, the inlet temperature to the chillers will be a blend of the outlet temperature from the storage and the secondary system return temperature.

At the start of the charging operation, water leaving the top of the tank will be slightly cooler than the return temperature, similar, but reversed to the storage discharge temperature characteristic, due to mixing and conduction. The outlet temperature declines gradually at first, and then more rapidly as the residual from the discharge and the top of the charging thermocline exit the top of the tank. At a given flow, the greatest temperature differential for the chiller will occur at the start of the charge operation.

Tank Flow more than 100 % of Tank Volume for "Full" Charge:

In order to completely charge the storage tank it is necessary to circulate more than the full volume of the tank, purging the thermocline. The required circulation volume depends on the specific diffuser design and is generally in the order of 110% of the tank volume. Note that if the charge cycle time and the discharge cycle time are the same, for example both at 12 hours, the flow rate through the tank is greater during the charging because 110% of the volume is handled during charge and only 90% is handled during discharge.

Chiller output is not uniform during the charging operation:

When the chiller flow and leaving temperature are fixed during the charging operation, the declining outlet temperature will cause the chiller output to decline over the charging operation. Some designs arrange to vary the flow through the chiller evaporator to moderate the influence of the declining inlet temperature.

TANK SHAPES FOR STRATIFIED STORAGE:

Testing limited to Flat Floors and Vertical Walls:

Testing for thermally stratified storage tanks is confined to tanks with flat floors and vertical walls. Tanks with continuously curving bottoms such as horizontal cylindrical tanks have not been tested. Some unpublished, private testing has been done on below grade fire tanks with sloping walls. Beyond the essential requirement for the flat floor and the vertical walls, the only other considerations are surface-to-volume ratio and the impact of depth on usable volume.

Surface to Volume Ratio:

Surface to volume ratio affects the performance of the storage tanks. The magnitude of the impact has not been quantified in either research or field testing. Without having internal tank insulation, there could be heat conduction down the walls of the tank, from the warm volume to the cold volume. This conduction could cause an "internal" heat transfer that would reduce the effective storage capacity of the tank. Although anticipated, the result is not apparent in tanks with a "reasonable" surface-to-volume ratio. Flow visualization reveals the presence of the conduction down the walls. Attempts to measure and quantify wall conduction are not conclusive because the effects are small.

Added to the potential for greater internal heat transfer, very high surface-to-volume ratios could lead to excessive losses to the surround. Similar to the potential for internal transfer, the losses to the surround tend to be small in relation to the storage capacities. Attempts to measure the losses to the surround have been generally unsuccessful, due to the relatively small temperature differentials involved and the very high levels of accuracy required to measure small losses. Some recent operational monitoring of existing installations indicates thermal losses to the surround in the order of 15% when the tanks are being used in a "full

charge" condition to service only partial loading. Monitoring of the same tanks under full or near full load conditions indicates losses to the surround are incidental.

Tank Depths:

The depth of the tank can have a significant influence on the usable or "useful" volume of the tank. Varying the depth of the tank impacts the design of the stratified tanks (diffusers) in two ways. In shallow tanks, diffuser design becomes more critical. It is necessary, in the shallow tanks, to develop a thin thermocline so that the thickness of the thermocline occupies a minimum percentage of the tank depth. In deeper tanks, with reduced plan area, the limited space available makes it difficult, or impossible, to achieve low values of Nr.

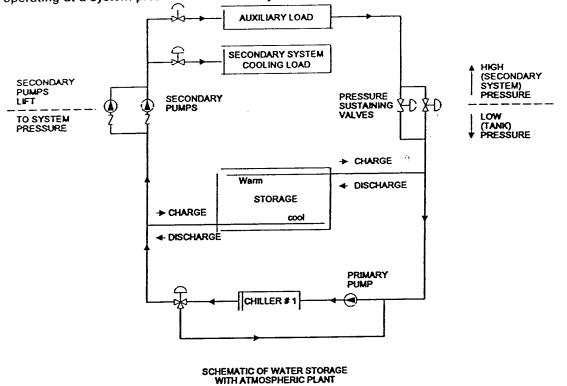
e 📜

Initial mixing and conduction, even with desirable values of Fr and Nr will create thermoclines in the order of 12 inches. For a very shallow tank, say, 6 ft. in depth, the thermocline will occupy 1/6th of the depth, or 16.6 % of the tank total volume. As the depth of the tank reaches and exceeds 8 ft, the depth of the thermocline loses significance. Refer to the previous section relating to dimensionless parameters.

CHEMICAL TREATMENT:

It is essential to provide cleaning, initial, and on going chemical treatment in chilled water storage tanks. The cleaning and treatment are not unlike the treatment required for all chilled water systems. The problem is made more difficult by; the increase in volume, the presence of the (usually atmospheric) open tank, and by very low velocity circulation through the tank. For detailed information on storage water treatment, refer to the EPRI publication for treatment of water storage systems.⁽¹⁰⁾

SYSTEM ARRANGEMENT:

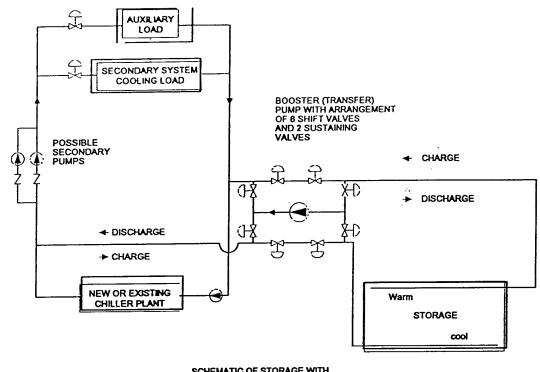

Basic configuration:

The simplified flow diagram of Fig. 15 illustrates the major components and one possible configuration of chiller and tank. With the need to maintain secondary system temperature differentials, the secondary systems use throttling control (rather than bypass control) and variable flow pumping. A parallel arrangment of the storage and the chiller with primary pump is used to maintain the flow through the chiller. Note that the connection to the supply of the secondary system is from the bottom of the storage and the return connection is to the top of the tank.

Atmospheric Plant Pressure:

Most large volume, chilled water storage tanks are atmospheric. Pressure sustaining valves maintain the operating pressure of the secondary systems. Without the use of an interface heat exchanger (not shown) the secondary pumps need to include static lift from the atmospheric tank to the operating system pressure. Heat exchangers for pressure or chemical isolation of the tank eliminates the need for the secondary pumps to handle the static lift. Adding the heat exchanger involves adding a second set of variable flow pumps to circulate through the storage. In addition, the approach temperatures required by the heat exchanger directly reducing the storage capacity of the tank by reducing the tank temperature differential.

The simplified diagram of Fig. 15 illustrates a system where the plant (chillers) is operating at a system pressure established by the relative elevation of the plant and the storage.


Figure 15

The advantage of this atmospheric arrangement is that the system can shift from use of the chillers to use of the tank simply by adjusting the relative flow in the primary and secondary circuits. In the discharge mode, if the chiller primary pump is off, flow through the secondary pumps is directed through the storage tank and the tank discharges to carry the building load. Starting the chiller primary pump will contribute the output of the chiller either to the secondary pumps or to the storage tank. If the flow through the secondary pumps exceeds the output flow of the chiller pumps, the chiller and the storage will share the building load (partial storage). The rate of storage discharge will depend on the difference between the flow from the chiller pump and the flow through the secondary pumps. The three way valve in the discharge line off the chiller, is one method of reducing the contribution of the primary pump to the system thus "demand limiting" the chiller output. If the flow through the chiller pumps exceeds the flow through the secondary pumps, flow through the storage tank will reverse charging the storage.

The configuration of Fig. 15 accommodates an easy shift from charge to discharge (or discharge to charge) simply by starting or stopping the chiller primary pumps.

Pressurized Plants:

The diagram of figure 16 shows a typical connection to an existing system. In this case, the plant operates at system pressure. Connection to the storage include a transfer pump and a sustaining valve.

SCHEMATIC OF STORAGE WITH SYSTEM PRESSURE PLANT

Figure 16

The transfer pump always pumps from the low pressure tank to the high pressure system. Duplicate pumps and sustaining valves or an arrangement of isolating valves reverses the flow when the operation shifts from charging to discharging. This configuration is not as convenient as the atmospheric plant arrangement of Figure 15, since the shift from charge to discharge requires the switching of the operation of the transfer pumps and the pressure control valve.

OPERATION AND CONTROL:

Energy Management:

Cooling storage is a true energy management system that facilitates the management of the operation of cooling plant. The common primary reason for using storage is to manage the operation of the cooling plant to avoid electrical rate structure penalties with on-peak operation of the cooling plants. A secondary reason, which in the case of chilled water storage is gaining importance, is optimization of the operation of the plant to reduce energy consumption.

Initial operating concerns, primarily relating to load anticipation have not materialized. The reverse is true; storage systems are simpler to operate than non-storage systems. Storage cooling plants operate with high load factors, avoiding inefficient operation at part load. The high load factor, combined with plant operation at low evening wet bulb temperatures, results in significant reduction of cooling energy requirement. Storage operates with relatively high thermal efficiencies, and it is possible to conservatively accumulate a moderate excess of cooling capacity with little energy penalty. Cooling capacity available from the storage without concern for part load operation simplifies the overall operation of the cooling plant.

Monitoring:

Mackie Associates\Tsarc3

Operational planing and cooling load monitoring are essential to achieve the primary objectives of using storage. With storage being an energy management system, effective control requires monitoring of the system energy status and instantaneous flows. This control is best handled by automation systems that are capable of recording and displaying data over the extended time frames of the storage cycles. Operational experience with storage systems reveals that records of historical data for seasonal operation simplify the planning operation.

Planning the operation of the system requires monitoring of the available cooling in the storage. One method is to fit the tank with a vertical arrangement of temperature sensors with spacing of 1 to 2 ft. centers, depending on the level of accuracy desired. Display of the vertical temperature profile in the tank facilitates tracking of the thermocline. A simple algorithm using operating temperatures and tank volume yields available cooling.

Operating Temperatures:

Chillers on stratified storage systems operate with discharge temperatures at or above the 39.2 density limit temperature and at or below the temperature of the bottom of the storage tank during the charging operation. Stratification requires that the water being introduced to the bottom of the tank is the same or colder than the volume in the tank. For this reason, most stratified storage systems operate with fixed leaving chiller temperature controlled by conventional chiller controls. Reducing chiller inlet temperature to the chiller at a controlled flow reduces chiller output. One method of achieving this reduction in chiller inlet temperature is the three way valve on the chiller loop in the diagram of Figure 14. Chiller leaving temperatures rise, upsetting the stratified tanks when standard chiller limit controls limit vane position at elevated inlet temperatures.

Load Prediction:

The operational plan, in most cases, is to accumulate the stored cooling during the evening, preceding the "on peak" period. When operating at or near design load conditions, this operation amounts to accumulating a full charge in the storage. When operating at part load (seasonal) conditions the ideal plan would be to accumulate only that quantity required for the next on peak operation. Accumulating a portion of the storage capacity requires a prediction of the load and provision of a safety quantity to allow for errors in predictions and avoiding the operating cost penalties of depleting the storage prior to the completion of the on peak cycle. A simplistic approach to dealing with the part load operation has been to keep the storage fully charged at all operating load conditions. Maintaining the full charge, however, incurs thermal losses representative of full load conditions. Thermal losses from chilled water storage tend to be a very small percentage of the design capacity. If only a small percentage of the design capacity is required the full charge losses can be a significant percentage of the partial day operating load.

Partial Charging:

Limited project data is available to confirm the advantage of partially charging chilled water storage systems. The results that are available indicate that the partial charging of the storage can yield energy reductions in the order of 10 to 15 % over the full charging practice.

Repeated partial charging of chilled water storage leads to eventual increased mixing in the storage due to the reduction of the density differences. There can be several thermoclines in existence in the tank at one time, giving the indication of a "smeared" thermocline. The stratification will still work with the lower density (temperature) differentials. Current indications are that the partial charging is better than the simplistic full charge practice.

Declining Tank Outlet Temperature during Charging:

During the charging process, the outlet temperature of the storage declines, similar to the rising temperature during discharge. With a fixed flow in the primary circuits through the chillers and a fixed leaving temperature, the load on the chillers reduces toward the end of each charging cycle. This drop in output moves the chillers into part load operation with a resultant increase in energy consumption. Increasing the flow through the chiller evaporators, consistent with design, reduces the energy penalty of this drop in output.

REFERENCES

- 1. Mackie, E. I. & Reeves G, <u>Electric Power Research Institute EPRI-EM-4852</u>, 1986 Design Guide for Thermally Stratified Chilled Water Storage.
- 2. Gatley D.P., Riticher J.J., Successful Thermal Storage. <u>ASHRAE Transactions</u> 1985 Vol. 91 Part 1.
- 3. Wildin M.W, & Truman, C. R., -Electric Power Research Institute EPRI-EM-4352 Vols 1 & 2, 1985 -Evaluation of Stratified Chilled Water Storage.
- Ahlgren, R.M., December 1987, Water Treatment Technologies for Thermal Storage Systems. <u>Electric Power</u> Research Institute <u>EPRI-EM-5545</u>
- Wildin, M. W. and Truman, C.R., "Perfomance of Stratified Vertical Cylindrical Thermal Storage Tanks: Part
 1: Scale Model Tank, and Part 2: Prototype Tank", <u>ASHRAE Transactions</u> Vol 95,pp 1086-1105
- 6. Jein Yoo An Investigation of Reynolds Number Effects in Thermally Driven Currents Applied to Stratified Thermal Storage Tanks Dessertation University of New Mexico 1986.
- 7a. Hudson, H.E., Uhler, R.B., Bailey, R.W., Dividing Flow Manifolds with Square Edged Laterals, <u>Journal of the</u> Environmental <u>Division</u>, EE4, Aug. 1979
- 7b. M^CNown, J.S., Discussion of Paper by Henderson et al, <u>Journal of Environmental Engineering Division</u>, ASCE, Vol EE4, pp 864-866, August 1980
- Wildin, M. W., Flow Near the Inlet and Design Parameters for Stratified Chilled Water Storage <u>ASME 91 HT</u> 4 July 1991
- Wildin, M. W., "Diffuser Design for Naturally Stratified Thermal Storage" <u>ASHRAE Transations</u>, V96 Pt 1, 1990 pp. 1094-1110.
- 10. Jein Yoo, M.W. Wildin, and C.R. Truman. Initial Formation of a Thermocline in Stratified Thermal Storage Tanks. <u>ASHRAE Transaction Paper</u> 1986 Vol. 92 Part 2.
- 11. Mackie, E.L., Application of a Nozzle Matrix in Large Volume Thermal Storage, Proceedings of International Conference of Thermal Storage, Aug. 1980
- 12. Mackie, E. I., Thermal Storage In Robson Square ASHRAE Transactions
- 13. Fiorino, D. P., Thermal Energy Storage Retrofit Project at a Large Manufacturing Facility. <u>ASHRAE</u> <u>Transactions</u> 1991
- 14. Krieder, J.F., Field Evaluation of Chilled Water Storage ASHRAE transactions, Vol 95, Part 1
- 15. Andrepont, J. S. Chilled Water Storage Case Studies: The International District Heating and Cooling Association, Fifth Annual College/University Conference Proceedings, Auburn, AL, Feb. 1992

CASE STUDIES OF CHILLED WATER STORAGE

Case histories highlight central chilled water plant expansions and their relation to the CFC issue

By JOHN S. ANDREPONT, Product Manager, Thermal Systems, Chicago Bridge & Iron Co., Oak Brook, Ill.

entralized chilled water systems are commonly used to meet the air conditioning needs of colleges, universities, medical complexes, and other large campuses or district cooling facil-

ities. Data from the Association of Higher Ed ucation Facilities Officers (APPA) indicate that over half its members operate central cooling plants.

Various configurations are in use, including single and multiple central chilling plants serving single distribution systems, nonconnected miniature central systems, and combinations of one central and one or more satellite plants on a single distribution loop. Central plant chillers may

be electric motor-driven centrifugal compressors, gas engine-

driven centrifugal compressors, steam turbine-driven centrifugal compressors, heat-driven absorption chillers, or combinations of these types. The usual refrigerants are chlorofluorocarbons (CFCs): but alternatives such as HCFCs, HFCs, ammonia (NH₃), and absorption solutions may also be employed. Free cooling via cooling towers is sometimes used, directly or indirectly, during periods

facility.

• Centralization of a distributed cooling system.

• Addition of a new building to a cooling loop. • Increase of cooling loads at existing buildings. W Viewer 1000 • Replacement of aging chiller equipment. -FX31078 Conversion of chiller or fuel e status en statistica types. Necessary efficiency im-

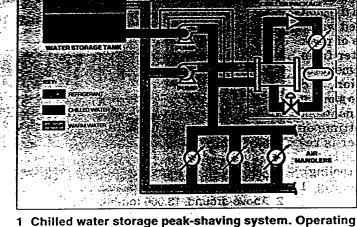
provements.

• Phaseout or replacement of CFCs. During any central plant capacity expansion, O&M, capital, and life cycle costs are among the major concerns, as are the increasingly critical issues of reliability, flexibility, safety, and the environment. Specifically, atmospheric ozone depletion and the CFC refrigerant issue are now impacting everyone involved in the air conditioning field. Anyone selecting or planning for new

of relatively low ambient air tem-

mode shown is real-time cooling and cooling from storage.

peratures. For the following reasons, it is often necessary to increase or up-


grade a central plant's cooling capacity.

- Construction of a new facility.
- Expansion of an existing

chiller capacity is faced with choosing from such options as CFCs, HCFCs, HFCs, ammonia, and absorption refrigeration. These choices have unique and serious drawbacks such as:

 CFC production is banned, effective in 2000 (possibly 1996).

DISION

This article is based on a paper presented at the 79th annual meeting of The Association of Higher Education Facilities Officers (APPA), Indianapolis, Ind., July 26-29, 1992.

• HCFC production is banned. effective in 2020 (possibly 2005).

• HFC equipment is less developed than most HCFC equipment.

• Ammonia is toxic and hazardous, which requires special precautions.

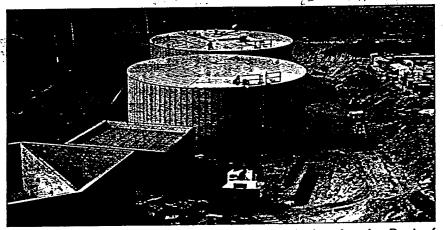
• Absorption chiller installations are generally more expensive to buy and unfamiliar to many O&M personnel.

Modifications of existing CFC equipment for HCFC or HFC use are not only costly but also projected to result in losses of capacity, typically up to 10 percent. However, an alternative approach is now experiencing increased application.

Chilled water storage option

Thermal energy storage (TES), specifically when accomplished through the use of chilled water storage, is a technology with many benefits for facilities or campuses requiring CFC phaseout or capacity expansions of their central chilled water plants. Storage is located at the central plant or remotely along the distribution loop. Connected to both the supply and return headers, the mass of water in storage provides thermal capacitance for the chilled water system. During periods of peak cooling loads, cold water from. storage is used to supplement (or replace) chiller operation, and warm water is returned to storage simultaneously. During nonpeak periods (typically nighttime or weekends), warm water is removed from storage, cooled by the chiller plant (or via free cooling), and returned to storage. Fig. 1 shows a basic system.

Installations dating back to the early 1980s often configured chilled water storage in dual or multiple tanks employing the "empty tank method" to separate the supply and return water. The stored supply and return water volumes never occupied the same tank at the same time. This eliminated any chance of mixing but added volume, complexity, and cost to the systems. Other early systems employed single tanks with internal membranes or diaphragms to separate the supply and return water, which also added cost and maintenance problems.


Research and development efforts were conducted throughout the 1980s by the electric utility industry, academia, and independently by private industry. This led to a proven means for storing supply and return water volumes together in a single tank with separation being maintained via thermal stratification. Based on its superior performance and economics, thermal stratification has become the standard approach for chilled water storage.

Chilled water storage is compatible with whatever chiller technology is currently in use at central plants and, by its nature, equally compatible with whatever water chilling technology may become the choice in the 21st century. Installations already in use are being recharged by an array of technologies, including electric motor-driven centrifugal comally be met via the addition of storage, thus postponing the need to buy any new chillers for 5 to 10 years or more.

For example, recent years have seen a rapid growth in the use of chilled water storage by colleges and universities in both the public and private sectors. Installations are either operating or in the planning stages in virtually all parts of North America.

In recent years, a single storage system supplier has designed and installed chilled water storage installations representing the equivalent of over 50,000 tons of peak chiller capacity and totaling more than 500,000 ton-hr of storage capacity. (One ton-hr equals 12,000 Btuh.) Data from some of these installations will be used for illustration in the sections that follow.

Sizing criteria for storage The required volume of storage is a function of the following variables: • Volume is proportional to the

2 Above-ground, 13,000 ton-hour installation at the Los Angeles Dept. of Water and Power for its new office complex in Sun Valley, Calif.

pressors, steam turbine-driven centrifugal compressors, and steam-driven absorption chillers. Although chilled water storage is not the complete answer to the CFC issue, it can often be the option of choice for central plant operators throughout the 1990s. Cooling capacity growth can usurequired thermal storage capacity.

• Volume is inversely proportional to the chilled water supplyto-return temperature difference (ΔT) .

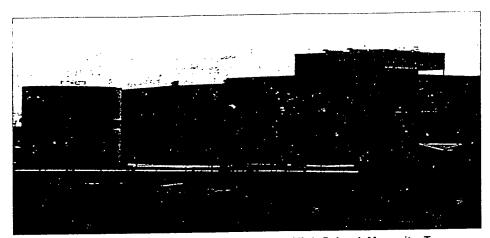
• Volume is inversely proportional to the product of all volumetric and thermal efficiencies associated with storage.

Volumetric and thermal efficiencies involve as a minimum: external heat gain; internal heat transfer; internal mass transfer (mixing): and unusable volumes due to the thermocline (temperature gradient) zone: the inlet/outlet zones: the operating water depth range; and the minimum air space (at times significant—e.g., when sized for a seismic,

sloshing wave). Based on allowances. an approximate rule-ofthumb for typical stratified chilled water storage installations is that the gross storage tank volume, in gallons, is equal to the capacity, in ton-hours. times 1800 divided by the temperature difference, in degrees F.

This formula is appropriate for typical tank heights (32 to 48 ft). However. many variables affect the final volume and the optimum choice of height and diameter; therefore an experienced designer or supplier should be consulted regarding the optimal size for each situation.

Similarly, care should be taken to optimize the required thermal storage capacity, which is a function of many factors, including cooling load profile, electric rate structure, electric load profile, available chiller capacity, expansion plans, and local electric utility cash incentives, if any.


Design and operation issues

Chilled water storage systems should be designed to accommodate various operating modes, including:

• Full storage (load shifting) discharging storage to meet cooling loads without any concurrent chiller operation.

• Partial storage (load leveling)—discharging storage to meet cooling loads with concurrent operation of at least some chillers (in parallel with storage).

• Full recharge—recharging

3 5000 ton-hour installation at the North Mesquite High School, Mesquite, Tex.

storage via chiller operation.

• Partial recharge—recharging storage via chiller operation while simultaneously providing cooling to the loads from the chillers.

• Standby—no circulation through storage, allowing the chillers to serve the cooling loads as they would in the absence of storage.

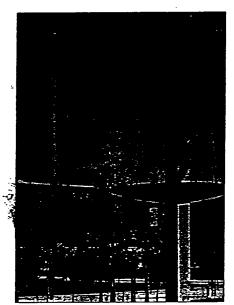
Where possible, the free water surface at the top of storage should be the high point of the chilled water distribution loop, which will permit the simplest system hydraulically. However, wherever this is not practical to achieve, either of the following two alternatives should be considered.

• A plate-and-frame heat exchanger can be used to segregate the system into hydraulically independent loops, a high pressure distribution loop and a low pressure storage loop. The drawbacks of this approach include the added capital cost of the heat exchanger and additional pumps and controls, and most significantly, the approach temperature at the heat exchanger, which reduces the ΔT available in storage, thus increasing the necessary storage volume. A benefit is the segregation of the stored water, allowing greater flexibility in the choice of water treatment.

• A back-pressure sustaining valve can be used to maintain the required minimum positive pressure throughout the distribution loop. Therefore, a booster pump is required for reinjection of the water from storage back into the higher pressure distribution circuit. The drawbacks of this approach include the capital cost of the control valves and pumps as well as the (usually moderate) parasitic operating cost of the booster pump. The benefit is that the ΔT and size of storage are unaffected.

It is not economically practical to design large chilled water tanks for any significant internal pressure beyond the hydrostatic pressure of the head of stored water.

Whenever possible, the chilled water system should be operated in a manner that maximizes the supply-to-return temperature difference (ΔT). This can most easily be accomplished through the use of variable flow chilled water pumping and two-way, rather than three-way, control valves at the cooling loads. Maximizing the ΔT will minimize storage volume and capital cost. The ΔT for typical storage installations ranges from below 10 F to over 20 F. but higher is better.


Maintenance issues

Maintenance for a stratified chilled water storage system should always be less than for equivalent conventional chiller plant capacity. Although early methods of chilled water storage did involve maintenance-intensive components (e.g., the large membranes or diaphragms of membrane-separated storage or the large switching values of

"empty tank method" storage), stratified storage requires no moving parts.

Maintenance of the storage element is largely limited to periodic (long-term) cycles of repainting and reinsulating and to water treatment. Properly installed systems can be expected to experience approximately 10 to 15 years between repainting and 15 to 25 years or more before reinsulating.

Water treatment requirements vary with each installation based on unusual combinations of water chemistry and materials of construction within the distribution

4 Carillon (bell tower) tank on the campus of the State University of New York, Albany, N.Y.

system. Water treatment is not required to protect most storage tanks as the tanks themselves are lined with a paint system approved by the American Water Works Association (AWWA), which is identical to one used for municipal potable water storage tanks. Typical installations do involve an initial treatment of the storage volume for purposes of protecting the balance of the piping system from corrosion, biological growth, etc. Initial costs are usually in the range of one to several cents per gallon treated. On-going

treatment costs for the chilled water system are generally unchanged by the addition of storage.

A program of regular monitoring, inspection, and remedial action (as necessary) is recommended to ensure long life. In any case, maintenance should be less than for the chiller and cooling tower capacity avoided by the use of storage.

Above-vs. below-ground

Consideration is sometimes given to locating storage partially or fully below grade. This may be for esthetic reasons or to allow the on-going utilization of the location for other purposes, such as parking, an athletic field, or a green space. Placing storage below grade should be done only after considering the following various factors.

• System hydraulics are often complicated by a below-ground tank.

• The tank should be designed for external pressure for instances when the tank is empty • Soil and groundwater tions can impact design and the Regulations regarding buried tanks are increasingly restrictive? may be limited if the tank is buried. u zavá edž

• Total capital cost is often double that of an above-ground tank.

For example, a 54,000 ton-hour, 5.5 million gal chilled water storage system was recently installed at Arizona State University in Tempe. This direct-buried storage facility, which was located beneath an athletic field out of necessity, incurred an installed cost of \$5.1 million. At about the same time, a 68,000 ton-hour, 6.1 million gal above-ground installation for Chrysler's new R&D campus was completed outside Detroit, Mich. The above-ground storage installation was completed for only \$2.6 million.

If the top of storage must be kept low, a technically and economically viable alternative may

be to build an above-ground tank within an excavated depression. This was done for the 13,000 tonhour installation for the Los Angeles Dept. of Water and Power at its new office complex in Sun Valley, Calif. (Fig. 2).

Steel vs. concrete

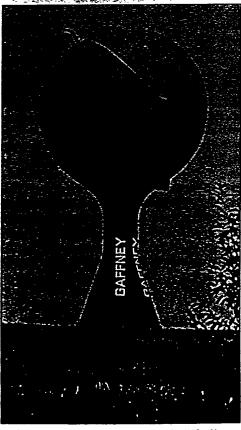
Neither concrete nor steel tanks are maintenance free. However, lower initial costs and lower life cycle costs for steel construction have led to the dominance of steel tanks throughout the range of water storage applications, whether for municipal, fire protection, or chilled water storage. Some steel water storage tanks have been documented to achieve more than 100 years of continuous service.

Concrete water storage tanks are typically specified, designed, and constructed in accordance with AWWA Standard D-110. However, even this standard permits leakage rates of up to one tenth of one percent of the tank capacity per day. For a 3 million gal tank, this equates to over 1 million gal of leakage per year! Welded-steel tanks by contrast can be selected, installed, and tested in accordance with AWWA • Choice of water treatment + Standard D-100, which does not permit any leakage.

Thin-walled steel tanks also offer a performance advantage over thick-walled concrete tanks. The thermal capacitance of the tank wall must be alternately cooled and reheated, across the operating ΔT , during each cycle of the chilled water storage system. This represents an inherent storage inefficiency that is roughly an order of magnitude larger for the more massive concrete tanks.

Esthetic considerations

Esthetics is often an issue for chilled water storage, particularly for college and university campuses and for sensitive private industry sites.


In some cases, even large multimillion gallon storage tanks can be effectively hidden from public continued on page 111

continued from page 108

view through careful placement behind central plant buildings or trees. Where tanks cannot be hidden from view, it is possible to choose a tank shape and an insulation finish either to blend with or complement the surrounding architecture or to make their own visual statements.

Conventional choices include various roof styles (cone, dome, ellipsoidal, etc.) and insulation types (urethane foam without a rigid jacket, foam panels with horizontally strapped aluminum jacketing, or foam panels with vertically ribbed aluminum jacketing). Various paint colors are available, as are custom paint schemes, which the North Mesquite High School "Stallions" in Mesquite, Tex. used on its 5000 ton-hour installation (Fig. 3).

Chilled water storage tanks are also available with a synthetic stucco insulation system that per-

5 One million gallon "Peachoid," Gaffney, S.C.

mits custom combinations for color, texture, and three-dimensional relief to achieve virtually any desired architectural style. Storage tank suppliers have also built many oneof-a-kind tanks such as the carillon (bell tower) tank on the campus of the State University of New York at Albany (Fig. 4) and the 1 million gal "Peachoid" in Gaffney, S.C. (Fig. 5).

Dual-service applications

Approximately 30 percent of a leading supplier's chilled water storage installations are designed for dual-service applications where, in addition to thermal storage, they provide fire protection water storage. This is possible because of two characteristics: • Thermally stratified chilled water storage tanks operate full at times, with all the water available for fire protection if needed.

 When used for fire protection, tanks must be designed, constructed, and tested in accordance with the National Fire Protection Association's Standard NFPA 22-Water Tanks for Private Fire Protection. a stillsjee In addition, chilled water storage for dual-service thermal/fire protection applications can be provided with Factory Mutual approval; as was obtained for the 8500 ton-hour installation at the Phoenix Newspaper's new printing facility in Phoenix, المعور ويحق ويوقد والمع Ariz.

O&M cost

The use of chilled water storage as thermal capacitance within a central chilled water distribution system provides various operating and maintenance benefits. Decoupling the chillers from the time-varied cooling load profile allows them to be operated at full or optimum capacity levels, avoiding inefficient, severe part-load conditions. Increased nighttime use of chillers also results in efficiency improvements due to the lower condensing temperatures. On the maintenance side, less total chiller capacity is required, thus reducing the size or quantity of installed chillers, cooling towers, condenser pumps, and fans and yielding a reduction in equipment maintenance costs.

However, the greatest importance for O&M costs is, in the case of electric motor-driven chillers, the significant reduction in facility peak electric demand charges and the shifting of electrical energy consumption from high-cost on-peak periods to low cost offpeak periods at night. It is common to achieve simple paybacks on investment of 1 to 2 years or better.

The Austin (Texas) Independent School District is now in its fourth year of operation of the 2600 ton-hour storage system at the 2000 to 3000 student James Bowie High School. After earning a \$95,450 cash incentive from the City of Austin Electric Dept., the school district achieved a simple payback of only 10 months based on a combination of operating and maintenance savings of over \$25,000 per year.

In 1991, the Brazosport Community College in Lake Jackson, Tex., (a campus of 3000 to 4000 students) brought its 4000 tonhour storage tank on-line. The system eliminated the need for 600 tons of new chiller capacity, earning a cash incentive of \$152,200 from its electric utility, Houston Lighting & Power. Annual electric energy savings for the college were independently estimated to be \$62,500 at current electric rates with more in the future.

Recent chilled water storage installations at the Sacramento campus of California State University and at the Hershey Medical Center at Pennsylvania State University provide 12,300 and 12,500 ton-hours of storage, respectively. The CSU-Sacramento

system avoided the need for 2500 tons of chillers and cooling towers, achieving a peak electric demand saving of 2000 KW and earning approximately \$400,000 of cash incentive from Pacific Gas & Electric (Fig. 6). The medical center avoided 1500 tons of chillers and cooling towers for a demand reduction of about 1200 KW and a cash incentive of \$100,000 from Pennsylvania Power & Light.

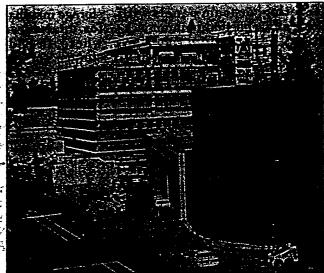
The 68,000 ton-hour system at Chrysler Motors Corp.'s new Technology Development Center campus in Auburn Hills, Mich., represents a peak electric demand reduction of 5.3 megawatts. At current Detroit Edison electric rates, this equates to a demand saving of \$74,000 per month or nearly \$1 million annually. 1533-16

Capital cost savings 💷 👘

...In the case of large chilled water storage installations, it is common to achieve not merely rapid paybacks but immediate capital cost savings, even without utility cash incentives. This is achieved (either for new construction or for retrofit capacity expansions or replacements) through the use of central chiller plants sized not for the peak load (plus spare capacity) but for the average load over a 24 hr peak design-day, plus spare capacity). The dramatic economy of scale inherent to large tank construction results in installed tank costs that are less than the avoided cost of installed conventional chiller plant capacity.

In the mid-1980s, General Motors Corp. planned an expansion of its GMC Truck and Bus plant in Pontiac, Mich., requiring an increase in the peak chiller plant capacity from 5000 to 7000 tons. GM chose to install a 17,000 ton-hour chilled water system (2000 tons times 8.5 hr) rather than a conventional 2000-ton electric chiller addition or a 2000-ton absorption chiller addition. The chilled water storage system is recharged without the need for any new chillers, simply using the otherwise unused nighttime capacity of the original 5000-ton central plant. GM realized an immediate capital cost saving (versus the cost of an electric chiller capacity addition) of \$196,000 or essentially \$100 per ton installed without any utility cash incentive.

Chrysler's 68,000 ton-hour system provided even greater savings. Through the addition of storage, its requirement for new central plant capacity was reduced from 17,700 tons to 11,400


tons. Chrysler realized an immediate capital cost saving of \$3.6 million, again without any utility cash incentives. Gist Capital savings need not stop at the central plant. Storage: can sometimes be advantageously located (as one. might do with satellite а chiller plant) somewhere along the distribution loop

In this manner, the chilled water pumping and pipeline capac- iness and thermal performance. ity can be peak-shaved as well. Increasingly, it is also possible of retrofit growth of a distribution loop, the need to increase the diameter of existing piping can be avoided. And unlike a satellite chiller plant, a remote storage tank does not require additional O&M personnel.

Contracting for performance

The chilled water storage tank is a critical performance element of any air conditioning system of which it is a part. Not only is the thermal storage capacity critical, so too are the rates at which storage can be charged and discharged, the ambient heat gain, the discharge temperatures, and the pressure drop.

It is common, and recommended, to procure storage through the use of a performance type specification in the same manner commonly employed to procure a chiller, a cooling tower, or any other major mechanical equipment element of a central plant. Chilled water storage installations should be provided to

6 12,300 ton-hour installation at the Sacramento campus of California State University.

The second s remote from the central plant. meet such requirements, including a guarantee of both leak tight-

Smaller pumps and piping can to contract with third parties who be installed initially, or for cases design, finance, install, and operate systems. Various possible arrangements include shared savings, guaranteed savings, and lease/purchase contracts.

Summary and conclusions

Chilled water storage is experiencing rapid growth in applications for large central chilled water systems. With or without utility cash incentives, storage can provide not only significant O&M savings but a low capital cost option versus conventional central plant capacity additions.

Chilled water storage offers an option for capacity additions without adding CFCs. It will allow many facilities to meet their immediate growth needs while postponing new chiller acquisitions for 5 to 10 years, at which time new refrigerant and new equipment choices should be much clearer than at present. Storage will, by its nature, be compatible with whatever water chilling technology is chosen in the future.

The technology evolved through the 1980s to the point where chilled water storage is now available with various esthetic options and guarantees of leak tightness and thermal performance. The dozens of installations currently in operation are likely to be the predecessors of many, many more in the years to come. Ω

Bibliography

1) "Summary of Central Cooling/Heating Plant Data," from Survey of Colleges and Universities, 1986.

2) APPA, Survey of Thermal Energy Storage Installations in the U.S. and Canada, ASHRAE, ISBN 0-910110-37-9, 1984.

3) Thermal Energy Storage System Incentive Program Submittal at Bowie High School, BLGY, Inc., Austin, Tex., May 1989.

4) Carver, G. L., Thermal Energy Storage for the Large and Small Campus, Proceedings of the 77th Annual Meeting of APPA, Ottawa, Ontario, July 1-4, 1990.

5) Dahir, M. S., "Tangled Refrigerant Issues Leave Users, Vendors Perplexed," *Energy User News*, January 1992.

6) Holness, G. V. R., "Thermal Storage Retrofit Restores Dual Temperature System," ASHRAE Transactions, Paper No. DA-88-25-2, Dallas, Tex., February 1988.

7) Steel Tanks, Steel Plate Fabricators Association, Inc., Westchester, Ill., undated.

8) Warren, M., Thermal Energy Storage System for Brazosport College, ACR Engineering, Inc., Austin, Tex., June 26, 1990.

We've gotten ourselves in the tightest spot yet.

Introducing ULTRA-SORBTM The greatest innovation in humidification in 20 years.

The leaders in humidification once again lead the way with virtually instantaneous absorption.

The need for rapid, drip-free steam absorption in "tight space" duct systems can now, for the first time ever, be truly satisfied with the ULTRA-SORB multiple dispersion tube panel from DRI-STEEM.

The ULTRA-SORB multiple tube panel provides virtually instantaneous absorption allowing it to be safely mounted within inches

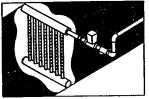
upstream of fans, coils, dampers, etc. with no fear of wetness.

Eliminates unwanted heating of duct air. Because of the revolutionary design of the ULTRA-SORB panel, there is no need for steam jacketed dispersion tubes. The ULTRA-SORB dispersion tubes are hot only when actually humidifying, and that means energy cost savings for you. Works on any steam pressure

down to mere ounces. In ULTRA-SORB, steamborne water droplets are removed by separation instead of re-evaporation, the method currently used in conventional steam jacketed humidifiers.

The separation of condensation in ULTRA-SORB occurs as the steam passes through the header/separator, down the closely spaced duct tubes and finally to the air stream through non-metallic orificed tubelets.

This design requires only ounces of pressure to function. Because of this, ULTRA-SORB can be used with boiler steam, as well as


steam from any of our evaporative humidifiers such as STS, LTS or VAPORSTREAM.

Easy Installation. Because the ULTRA-SORB

panel comes pre-assembled within a mounting frame, it is easily installed or retrofitted into any duct system. Simply mount ULTRA-SORB, connect the steam and drain piping, and it's ready for use.

So call DRI-STEEM today and let us show you just how easy and dependable humidification can be...even in the tightest of spots.

ULTRASORB connected to boller steam

14949 Technology Drive, Eden Prairie, MN 55344, in MN: (612) 949-2415, Fax (612) 949-2933 © 1991, DRI-STEEM Humidifier Co. Call toll-free: 1-800-397-8336

CASE STUDY OF A LARGE, NATURALLY STRATIFIED, CHILLED-WATER THERMAL ENERGY STORAGE SYSTEM

D.P. Fiorino, P.E. Member ASHRAE

ABSTRACT

This case study describes a 24,500 ton-hour (310,199 MJ) thermal energy storage system with a 2.681 million gallon (10,161 m³) naturally stratified, cylindrical, chilledwater storage reservoir serving a 1.142 million ft² (106,092 m^{2}) electronics manufacturing facility in Dallas, TX. This retrofit project was completed in 10½ months at a total cost of less than \$70.00 per ton-hour (\$5.53 per MJ) and has performed well since start-up in August 1990, enabling the facility to reduce its peak electrical demand by 2.9 MW (e). Several of its design features and operating methods are discussed in detail for the benefit of engineers interested in chilled-water thermal energy storage.

INTRODUCTION

^h The purpose of the thermal energy storage system was to shift 2.9 MW (e) of electrical demand related to operation of the facility's existing 4,200-ton (14,771-kJ/s) central chiller plant from on-peak to off-peak in order to reduce annual electricity costs and offset anticipated electric rate increases.¹ Given a major cash incentive from the local electric utility and a favorable time-of-day rate option, a thermal energy storage retrofit project involving the installation of a naturally stratified chilled-water storage reservoir interconnected with the facility's central chiller plant was determined to be feasible and cost-effective (Table 1). Following project review and approval, construction was completed between September 30, 1989, and August 13, 1990.

A 2.681 million gallon (10,161 m) ANSI/AWWA Standard D110-86 (Type III) precast, prestressed, cylindrical concrete water tank with an enclaved steel disphragm and a clear-span spherical dome roof was installed as the cold storage reservoir. Thousands of tanks of this design have been used for water storage and waste water process applications in hundreds of communities throughout the United States for many years with an excellent record of reliability, low maintenance, and environmental adaptability. The use of a continuous, mechanically bonded, embedded steel diaphragm in the tank's circular wall ensures watertightness. Tension cracks are eliminated by wrapping the entire tank from top to bottom in multiple layers of high-strength steel wire stressed to 140,000 psi (964,600 kps). In the application under study, the cold storage reservoir was buried to the top of its circular wall, and its spherical dome roof was insulated with 2 in. (51

The anticipated electric rate increases were related to a 2,300 MW (c) nuclear generating station coving \$10 billion. Start-up of in first 1,150 MW (c) generating unit is mid-1990 resulted in a 54% increase in the demand charge pail by the facility. mm) thick spray-on polyurethane foam, a butyl vapor barrier, and a highly reflective white urethane top coat (Figure 1).

An integral primary/secondary "bridge" was installed as the interface between the cold storage reservoir's 16 in. (406 mm) diameter transfer piping system, i.e., the primary circuit, and the facility's existing multi-zone distribution piping system, i.e., the secondary circuit. It physically and hydraulically connects the primary and secondary circuits, placing the variable-speed distribution pumps in the supply of each of the facility's two secondary subcircuits in series with the constant-speed transfer pumps in the primary circuit. It also ensures the highest possible primary temperanne differential at the lowest possible primary flow rate by recirculating warm water from the common secondary return line into the common secondary supply line via a one-way crossover line.

A distributed, direct digital control (DDC) system synchronizes primary/secondary flow rates and provides sustaining pressure-modulated control of secondary return water temperature throughout the entire cycle of operation. During the charge cycle, it operates the centrifugal chillers at 100% of capacity and provides flow-modulated control of evaporator leaving water temperature. At cycle switch-over, it reverses flow direction in the lines transferring warm and cold water to and from the cold storage reservoir without shutting off the transfer pumps. It also has a PC-based graphical interface that enables the operator to continuously monitor the system's performance, including the tempera-

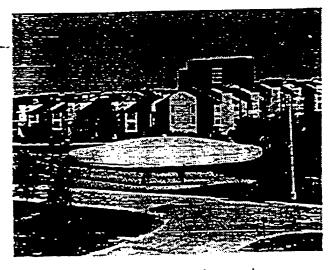


Figure 1 Cylindrical reservoir

Donald P. Fiorino is a Facility Engineer and a Member of the Group Technical Staff at Texas Instruments, Inc., Dallas, TX.

Chilled water storage offers an option for capacity additions without adding CFCs. It will allow many facilities to meet their immediate growth needs while postponing new chiller acquisitions for 5 to 10 years, at which time new refrigerant and new equipment choices should be much clearer than at present. Storage will, by its nature, be compatible with whatever water chilling technology is chosen in the future.

The technology evolved through the 1980s to the point where chilled water storage is now available with various esthetic options and guarantees of leak tightness and thermal performance. The dozens of installations currently in operation are likely to be the predecessors of many, many more in the years to come. Ω

Bibliography

1) "Summary of Central Cooling/Heating Plant Data," from Survey of Colleges and Universities, 1986.

2) APPA, Survey of Thermal Energy Storage Installations in the U.S. and Canada, ASHRAE, ISBN 0-910110-37-9, 1984.

3) Thermal Energy Storage System Incentive Program Submittal at Bowie High School, BLGY, Inc., Austin, Tex., May 1989.

4) Carver, G. L., Thermal Energy Storage for the Large and Small Campus, Proceedings of the 77th Annual Meeting of APPA, Ottawa, Ontario, July 1-4, 1990.

5) Dahir, M. S., "Tangled Refrigerant Issues Leave Users, Vendors Perplexed," *Energy User News*, January 1992.

6) Holness, G. V. R., "Thermal Storage Retrofit Restores Dual Temperature System," ASHRAE Transactions, Paper No. DA-88-25-2, Dallas, Tex., February 1988.

7) Steel Tanks, Steel Plate Fabricators Association, Inc., Westchester, Ill., undated.

8) Warren, M., Thermal Energy Storage System for Brazosport College, ACR Engineering, Inc., Austin, Tex., June 26, 1990.

Introducing ULTRA-SORBTM The greatest innovation in humidification in 20 years.

The leaders in humidification once again lead the way with virtually instantaneous absorption.

The need for rapid, drip-free steam absorption in "tight space" duct systems can now, for the first time ever, be truly satisfied with the ULTRA-SORB multiple dispersion tube panel from DRI-STEEM.

The ULTRA-SORB multiple tube panel provides virtually instantaneous absorption allowing it to be safely mounted within inches

upstream of fans, coils, dampers, etc. with no fear of wetness.

Eliminates unwanted heating of duct air. Because of the revolutionary design of the ULTRA-SORB panel, there is no need for steam jacketed dispersion tubes. The ULTRA-SORB dispersion tubes are hot only when actually humidifying, and that means energy cost savings for you. Works on any steam pressure

down to mere ounces. In ULTRA-SORB, steamborne water droplets are removed by separation instead of re-evaporation, the method currently used in conventional steam jacketed humidifiers.

The separation of condensation in ULTRA-SORB occurs as the steam passes through the header/separator, down the closely spaced duct tubes and finally to the air stream through non-metallic orificed tubelets.

This design requires only ounces of pressure to function. Because of this, ULTRA-SORB can be used with boiler steam, as well as

steam from any of our evaporative humidifiers such as STS, LTS or VAPORSTREAM.

Easy Installation. Because the ULTRA-SORB panel comes pre-assembled within a mounting frame, it is easily installed or retrofitted into any duct system. Simply mount ULTRA-SORB, connect the steam and drain piping,

and it's ready for use. So call DRI-STEEM today

and let us show you just how easy and dependable humidification can be...even in the tightest of spots.

cted to VAPORSTREAM.

14949 Technology Drive, Eden Prairie, MN 55344, In MN: (612) 949-2415, Fax (612) 949-2933 © 1991, DRI-STEEM Humidiñer Co. Call toll-free: 1-800-397-8336

CASE STUDY OF A LARGE, NATURALLY STRATIFIED, CHILLED-WATER THERMAL ENERGY STORAGE SYSTEM

D.P. Fiorino, P.E. Member ASHRAE

ABSTRACT

This case study describes a 24,500 ton-hour (310,199 MJ) thermal energy storage system with a 2.681 million gallon (10,161 m³) naturally stratified, cylindrical, chilledwater storage reservoir serving a 1.142 million fr² (106,092 m²) electronics manufacturing facility in Dallas, TX. This retrofit project was completed in 10½ months at a total cost of less than \$70.00 per ton-hour (\$5.53 per MJ) and has performed well since start-up in August 1990, enabling the facility to reduce its peak electrical demand by 2.9 MW (e). Several of its design features and operating methods are discussed in detail for the benefit of engineers interested in chilled-water thermal energy storage.

INTRODUCTION

¹ The purpose of the thermal energy storage system was to shift 2.9 MW (e) of electrical demand related to operation of the facility's existing 4,200-ton (14,771-kJ/s) central chiller plant from on-peak to off-peak in order to reduce annual electricity costs and offset anticipated electric rate increases.¹ Given a major cash incentive from the local electric utility and a favorable time-of-day rate option, a thermal energy storage retrofit project involving the installation of a naturally stratified chilled-water storage reservoir interconnected with the facility's central chiller plant was determined to be feasible and cost-effective (Table 1). Following project review and approval, construction was completed between September 30, 1989, and August 13, 1990.

A 2.681 million gallon (10,161 m) ANSI/AWWA Standard D110-86 (Type III) precast, prestressed, cylindrical concrete water tank with an enclaved steel disphragm and a clear-span spherical dome roof was installed as the cold storage reservoir. Thousands of tanks of this design have been used for water storage and waste water process applications in hundreds of communities throughout the United States for many years with an excellent record of reliability, low maintenance, and environmental adaptability. The use of a continuous, mechanically bonded, embedded steel diaphragm in the tank's circular wall ensures watertightness. Tension cracks are eliminated by wrapping the entire tank from top to bottom in multiple layers of high-strength steel wire stressed to 140,000 psi (964,600 kpa). In the application under study, the cold storage reservoir was buried to the top of its circular wall, and its spherical dome roof was insulated with 2 in. (51

'The anticipated electric rate increases were related to a 2,300 MW (c) nuclear generating station costing \$10 billion. Start-up of its first 1,150 MW (c) generating unit in mid-1990 resulted in a 54% increases in the demand charge paid by the facility. mm) thick spray-on polyurethane foam, a butyl vapor barrier, and a highly reflective white urethane top coat (Figure 1).

An integral primary/secondary "bridge" was installed as the interface between the cold storage reservoir's 16 in. (406 mm) diameter transfer piping system, i.e., the primary circuit, and the facility's existing multi-zone distribution piping system, i.e., the secondary circuit. It physically and hydraulically connects the primary and secondary circuits, placing the variable-speed distribution pumps in the supply of each of the facility's two secondary subcircuits in series with the constant-speed transfer pumps in the primary circuit. It also ensures the highest possible primary temperanire differential at the lowest possible primary flow rate by recirculating warm water from the common secondary return line into the common secondary supply line via a one-way crossover line.

A distributed, direct digital control (DDC) system synchronizes primary/secondary flow rates and provides sustaining pressure-modulated control of secondary return water temperature throughout the entire cycle of operation. During the charge cycle, it operates the centrifugal chillers at 100% of capacity and provides flow-modulated control of evaporator leaving water temperature. At cycle switch-over, it reverses flow direction in the lines transferring warm and cold water to and from the cold storage reservoir without shutting off the transfer pumps. It also has a PC-based graphical interface that enables the operator to continuously monitor the system's performance, including the tempera-

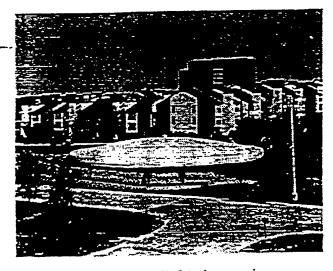
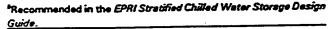


Figure 1 Cylindrical reservoir

Donald P. Fiorino is a Facility Engineer and a Member of the Group Technical Staff at Texas Instruments, Inc., Dallas, TX.

TABLE 1 System Design Parameters

Parameter	Value
Integrated Cooling Load	24,500 ton-hours (310,199 MJ) ¹
Instantaneous Cooling Load	3.200 tons (11,254 kJ/s)2
Charge Cycle Duration	16 hours ³
Charge Inlet Temperature	40°F (4.4°C)4
Discharge Cycle Duration	8 hours ⁸
Limiting Discharge Cycle	
Outlet Temperature	42*F (5.6*C)*
Discharge Inlet-Temperature	56*F-(13.3*C) ⁷ - ~
Reservoir Diameter	105.5 ft (32.16 m) ^e
Reservoir Depth	41 ft (12.50 m)
Reservoir Volume	2,680,904 gal (10,161 m ³)
Usable Reservoir Volume	90% ^e


Includes a 15% allowance for storage heat gain, transfer pump heat gain, and future integrated cooling load growth.

Includes a 14% allowance for future instantaneous cooling load growth.

Extends from 8:00 p.m. to 12:00 noon.

Limited by the density inversion of water at 39.2°F (4.0°C). Extends from 12:00 noon to 8:00 p.m.

Limited by economic sizing of the transfer pumpe and piping. Limited by the 58.3°F (14.6°C) average design leaving water temperature of the facility's existing chilled-water cooling coilsless a 2.3*F (1.3*C) allowance for bypass, laminar flow, atc. "Limited by the space available as well as a zoning requirement to take a 10 ft (3.05 m) minimum property line setback.

ture profile inside the cold storage reservoir and electric demand at the facility's power meter.

DIFFUSER DESIGN CRITERIA

In order to realize maximum integrated cooling capacity, the diffuser system must simultaneously introduce and withdraw flow from the cold storage reservoir with minimum mechanical disturbances, i.e., mixing, during the entire cycle of operation. This allows a thermocline zone to form and maintain separation of the lighter warm water, stored above, from the heavier cold water, stored below, without a physical barrier (Figure 2).2 Diffuser design criteria developed as the result of performance testing of various designs of diffuser systems in both scale-model and prototypical naturally stratified, cylindrical, chilled-water storage tanks (Wildin and Truman 1989) were adopted for use in the application under study:


1. Inlet Reynolds number (Re.) of 850 or less.³

$$\operatorname{Re}_{i} = q/\nu \tag{1}$$

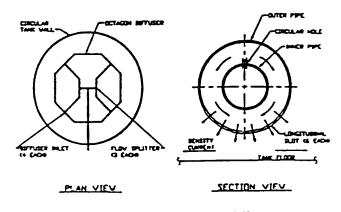
where

- volume flow rate per unit diffuser length q kinematic viscosity of the inlet water. =
 - 2. Inlet Froude number (Fr.) of 2.0 or less."

$$Fr_{t} = q/(g \times h_{t}^{3} \times (P_{t} - P_{a})/P_{a})^{1/2}$$
(2)

where

acceleration of gravity 8 h =


- minimum inlet opening height =
- density of the inlet water

P_i P density of the ambient water.

- 3. Uniform flow velocity at all diffuser openings.
- Self-balancing at all flow conditions. 4.

SINGLE-OCTAGON DIFFUSER

Recent research on diffuser performance disclosed that a single-octagon diffuser system (Figure 3) with an inlet

Single-octagon diffuser Figure 3

[&]quot;A thermocline zone is a thin, horizonal layer of water with a storp vertical return eredient.

The inlet Reynolds as instant ratio of inertial and viscous forces. di. tionies ratio of incrtial and buoyancy forces. "The inlet Froude number is the dime

Reynolds number (Re.) of 240 had produced little mixing and stratified well in a 35,300 gal (134 m³), partially insulated, cylindrical, post-tensioned concrete chilled-water storage reservoir (Wildin and Truman 1989). In repeated tests, the single-octagon diffuser system performed well, demonstrating single-cycle figures of merit as high as 38.5% under optimal operating conditions.³ Based on these results, the single-octagon diffuser system was selected for the application under study and an initial design was attempted. Because the resultant inlet Reynolds number (Re.) of 1,508 was greater than permitted by the first diffuser design criterion, an analysis was made to determine how it might be reduced.

One factor impacting the result was the system's relatively low discharge temperature differential of 15.0°F (8.3°C), which caused its maximum volume flow rate (Q) of 5.120 gpm (323 L/s) to be relatively high.⁶ Another factor impacting the result was the cold storage reservoir's relatively high height-to-diameter ratio of 0.39, which caused its diameter to be relatively low and limited the effective length (L) of the single-octagon diffuser system.⁷ Because the volume flow rate per unit diffuser length (q), which appears in the numerators of Equations 1 and 2, is related to the maximum volume flow rate (Q) and the effective diffuser length (L), as shown in Equation 3 below, it became clear that both of these factors contributed to increasing the inertia of the water being introduced into the cold storage reservoir.

$$q = Q/L.$$
 (3)

The maximum volume flow rate (Q) is a function of system design and cannot be changed by diffuser design practices. However, the effective diffuser length (L) is, by definition, a function of diffuser design. Therefore, the approach adopted to reduce the volume flow rate per unit diffuser length (q) and, in turn, reduce the inlet Reynolds and Froude numbers (Re_i, Fr_i) was to increase the effective diffuser length (L) of the octagonal diffuser system.

DOUBLE-OCTAGON DIFFUSER

Increasing the effective length (L) of the octagonal diffuser system was accomplished by employing two octagons, arranged concentrically, with both octagons centered on the cold storage reservoir's vertical axis. (Figures 4 through 6). In order to promote formation of a uniform and continuous density current across the cold storage reservoir's entire plan area, each octagon introduces 50% of the maximum volume flow rate (Q). Also, the areas inside the inner octagon and between the outer octagon and the cold storage reservoir's circular wall are each equal to 25% of the cold storage reservoir's total plan area. Furthermore, the area between the inner and outer octagons is equal to 50% of the cold storage reservoir's total plan area.

Based on the above, design of a double-octagon diffuser system was attempted (Appendix A), revealing that the double-octagon diffuser system had approximately twice the

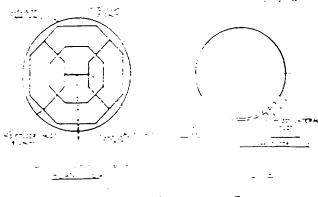


Figure 4 Double-octaic natifiaser

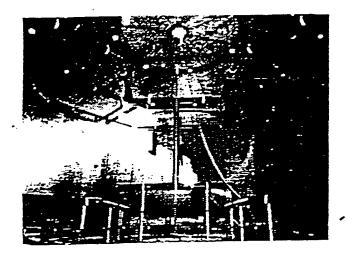


Figure 5 Double-octazon diffuser

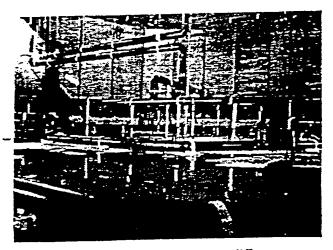


Figure 6 Double-octazon diffuser

effective length (L) of the single-oligion diffuser system. The inlet Reynolds numbers (Re) of 1.063 and 615 for the inner and outer octagons, respectively, of the doubleoctagon diffuser system were significantly lower than the inlet Reynolds number (Re) of 1.508 for the single-octagon diffuser system and were reasonably close to the value of 850 given in the first diffuser design interior. Also, given a common inlet opening height (Re) of 2.53 and 0.12 were realized for the under and outer components reduced.

The figure of merit is a dimensionless index that accounts for losses in thermal courgy storage capacity due to mixing and heat transfer through the thermocline zone, best transfer between the ambient water and the reservoir's floor and wall, and heat transfer between the reservoir and its surroundings.

^{*}Discharge temperature differencials of 10.0* to 25.0*P (5.6* to 13.9*C) are common m chilled-water thermal energy storage applications, with retrofit projects most often being toward the low end of the mage.

A beight-to-diameter ratio of 0.25 and 0.33 is considered optimal for a naturally structured chilled-water thermal energy storage reservoir.

UNIFORM FLOW VELOCITY

Having satisfied the first and second diffuser design criteria pertaining to acceptable values for the inlet Reynolds number (Re,) and inlet Froude number (Fr,), respectively, it was next necessary to satisfy the third diffuser design criterion pertaining to uniform flow velocity at all diffuser openings. Regarding this, the single-octagon diffuser system had employed an inner pipe drilled with equally sized and spaced holes to promote uniform flow velocity along its entire perimeter length (Wildin and Truman 1988; Figure 3). The outer pipe had a pattern of three longitudinal slot-shaped openings on either side of its vertical centerplane that introduced flow into the cold storage reservoir in individual flow streams, which then merged to form a continuous horizontal density current propagating equally in both the inward and outward radial directions.

In the application under study, these two functions were more cost-effectively accomplished by using equally spaced lateral slot-shaped openings along the perimeter lengths of the inner and outer octagons (Appendix B and Figure 4). By spacing 0.25 in. (6.4 mm) wide lateral slot-shaped openings at 6 in. (162 mm) and 10.5 in. (267 mm) intervals along the perimeter of the inner and outer octagons, respectively, the total area of the slot-shaped openings in each of the 12 in. (305 mm) diameter linear diffuser pipes was maintained equal to the linear diffuser pipes' common cross-sectional area, i.e., 0.78 ft² (0.07 m⁻), ensuring uniform flow velocity at all diffuser openings without using an inner pipe drilled with equally sized and spaced holes.

Also, by centering the 120° (2.09 rad) lateral slotshaped openings on the vertical centerplanes of the linear diffuser pipes, flow was introduced into the cold storage reservoir in individual fan-shaped flow streams, which then merged to form a continuous horizontal density current propagating equally in both the inward and outward radial directions in much the same manner as the single-octagon diffuser system. Furthermore, the low inlet velocity of 0.9 ft/s (0.274 m/s) precluded turbulent, jet-like flow near the diffuser openings.

SELF-BALANCING

The last diffuser design criterion remaining to be satisfied pertained to self-balancing under all flow conditions. The single-octagon diffuser system had employed a distribution system involving three flow-splitters that distributed equally subdivided flow from a single incoming pipe at the cold storage reservoir's vertical axis into four horizontal branch pipes extending radially outward (Wildin and Truman 1988; Figure 3).⁹ In turn, the four horizontal branch pipes introduced the flow into four reduced-diameter inlets spaced equally along the octagon's perimeter length. This distribution system was adopted for the double-octagon diffuser system with two modifications (Figure 4):

- 1. Flow-splitters were added in the horizontal branch pipes at the mid-point between the inner and outer octagons.
- Pipe diameter reductions were taken at each flowsplitter rather than at the inlets to the inner and outer octagons.

In this manner, the distribution system for the doubleoctagon diffuser system maintains the symmetry and equal pressure drop characteristics of the single-octagon diffuser system, ensuring equal subdivision of flow. In addition, the distribution system for the double-octagon diffuser system reduces flow velocity and momentum by nearly 75% before it reaches the inlets to the inner and outer octagons. This reduces dynamic pressure at the inlets to the inner and outer octagons and, in turn, reduces viscous pressure drops and static pressure gains inside the 12 in. (305 mm) diameter linear diffuser pipes, ensuring uniform internal static pressure throughout the inner and outer octagons and promoting uniform flow velocity at all diffuser openings."

In the application under study, the maximum flow velocity at the inlets to the inner and outer octagons is 1.34 ft/s (0.561 m/s). Because the flow splits equally into two directions as it enters the inner and outer octagons, its maximum velocity inside the linear diffuser pipes is reduced to 0.92 ft/s (0.280 m/s)—approximately equal to the desired maximum outlet velocity of 0.9 ft/s (0.274 m/s).

COMMISSIONING

Following completion of the construction phase, the chilled-water thermal energy storage system was started up on August 13, 1990, according to systematic, documented start-up procedures (Utesch 1990). During a commissioning phase extending from August 13 to August 31, 1990, the system was operated continuously at full-load cooling conditions; the operators were closely supervised in the operation of the system; the system was tested, adjusted, and balanced; and operational problems were identified and corrected.¹¹

The system performed as intended, allowing the facility's central chiller plant to be entirely shut off from 12:00 noon to 8:00 p.m. daily during full-load cooling conditions and fulfilling its objective of shifting 2.9 MW (e) of electrical demand from on-peak to off-peak (Figure 7). During a single cycle of operation extending from August 24 to August 26, 1990, the cold storage reservoir was fully charged, then fully discharged, demonstrating a maximum integrated cooling capacity of 27,643 ton-hours (349,993 MJ) and a figure of merit of 92.2% (Table 2).

Of particular significance is the small difference of 1.1°F (0.6°C) between the average outlet temperature during discharging and the average inlet temperature during charging, which directly-measures the loss of integrated cooling capacity during storage. This result evidences little mixing below the thermocline zone during charging and is attributable to the low inertia of the inlet water as it is introduced into the cold storage reservoir (Wildin 1989).

Following completion of the commissioning phase on August 31, 1990, the operational phase commenced on September 1, 1990, under the local electric utility's time-ofday rate option and with the system's control functions being performed automatically according to systematic, documented operating and maintenance procedures (Utesch 1990).

[&]quot;A densary current is a low-velocity, sometrivelent current that moves horizonally across the cold storage reservoir's floor and gently displaces the loss dense ambient water upward.

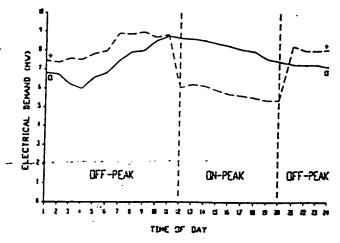
[&]quot;A flow splitter is a "bull's-head" me that equally divides a single incoming flow streams mto two outgoing flow streams traveling in opposite directions.

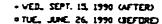
[&]quot;Vincous pressure drops and static pressure gains inside a diffuser pipe are both proportional to the dynamic pressure at in inlet. Hence, it is desirable to reduce this pressure in order to achieve uniform static pressure inside the diffuser pipe.

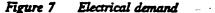
[&]quot;The success of the project's commissioning phase was largely attributable to (1) review of designs, specifications, shop drawings, and submittal data; (2) preparation of operating and maintenance instructions; (3) inspection of equipment, materials, and work-in-progress; (4) operator training; and (5) functional performance testing of components and controls—all completed in advance of start-up.

TABLE 2 System Thermal Performance¹

Parameter	Charge Cycle	Discharge Cycle
Duration	894 min	863 min
High Row Rate	4,632 gpm (292 L/s)	4,159 gpm (262 L/s)
Low Row Rate	314 gpm (20 L/s)	2,661 gpm (168 L/s)
Avg_ Row Rate	3,243 gpm (205 L/s)	3,071 gpm (194 L/s)
Total Flow	2,899,254 gal	2,650,464 gal
	(10,998 m ²)	(10,045 m ²)
% Tank Volume	108.1%	98.9%
Start Inlet Temp.	50.5*F (10.3*C)	-58.0°F (14.4°C)
End Inlet Temp.	38.2°F (3.4°C)	64.4°F (18.0°C)
Avg. Inlet Temp.	41.2°F (5.1°C)	57.3*F (14.1*C)
Start Outlet		,
Temp.	57.4*F (14.1*C)	42.1*F (5.6*C)
End Outlet Temp.	42.1*F (5.6*C)	57.2*F (14.0*C)
Avg. Outlet Temp	. 56.0°F (13.3°C)	42.3*F (5.7*C)
Avg. Temp. Diff.	14.8°F (8.2°C)	15.0°F (8.3°C)
Avg. Energy Rate	2,001 tons	1,922 tons
	(7,038 kJ/s)	(6,760 kJ/s)
Total Energy	29,813 ton-hours	27,633 ton-hours
	(367,339 MJ)	(349,993 MJ)


1.0 × (57.3 - 41.2)) = 92.2%


'This thermal performance test was conducted during a single cycle of operation extending from August 24 to August 26, 1990, midway through the system's commissioning phase. As of that weekend, certain control functions were still being performed manually. Also, data were taken at varying intervals rather than continuously. Despite these ambiguities, the results indicate that the system stratified well and produced better-than-expected thermal performance.


DISCHARGING

During full-load cooling conditions, discharging commences shortly before 12:00 noon daily (Figure 8). All four chillers and all of their suxiliary equipment are turned off and just two 40-hp (29.8-kJ/s) constant-speed transfer pumps, one 40-hp (29.8-kJ/s) variable-speed distribution pump serving Zone 1, and one 100-hp (74.6-kJ/s) variablespeed distribution pump serving Zone 2 are operated to meet the facility's on-peak cooling load, which ranged from 2,528 to 2,800 tons (8,891 to 9,848 kJ/s) and totaled 21,248 ton-hours (269,025 MJ) on July 17, 1989. Thus, at full-load, total pumping energy for the facility totals only 0.06 kW (e) per ton (0.02 kW [e] per kl/s). The digitally controlled pressure-sustaining valve in the line transferring warm water to the cold storage reservoir (PSV-1) is active and automatically modulates to vary the secondary supply temperature from 45° to 52°F (7.2° to 11.1°C) in order to maintain the secondary return temperature at a setpoint of 56.0°F (13.3°C)."

For example, if the secondary return temperature drops to $55^{\circ}F$ (12.8°C), a -1.0°F (-0.6°C) deviation from its sepoint, PSV-1 closes slightly, raising the system's sustaining pressure and throttling the constant-speed transfer

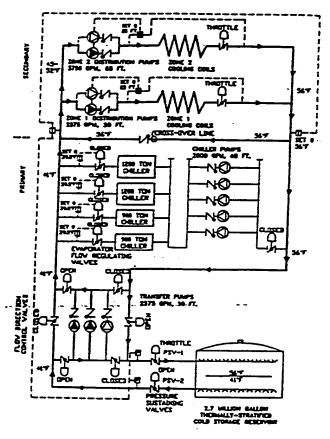


Figure 8 Discharging cycle

pumps—consistent with the transfer pumps' common cut-off and run-out pressure limits. This reduces the flow of 41°F (5.0°C), cold water from the cold storage reservoir and causes more of the warm water returning from the secondary system to recirculate into the suction of the secondary distribution pumps via the one-way crossover line. In this manner, the temperature of the blended water entering the secondary system is "floated"—consistent with maintaining

¹⁰As a runk of testing, adjusting, and balancing of the secondary distribution system during the commissioning phase, the secondary runar water temperature suppoint was runal from in design value of 56.0°F (13.3°C) to an operating value of 57.5°F (14.2°C) with no adverse consequences.

space temperature and humidity limits—in order to raise the secondary return temperature back to its setpoint.

To preclude "hunting," the control algorithm only adjusts the secondary supply temperature by -50% of the deviation between the secondary return temperature and its setpoint. In the example given, the adjustment to the secondary supply temperature would be -0.5 times -1.0°F (-0.6°C) equals +0.5°F (+0.3°C). Also, after an adjustment to the secondary supply temperature is made, a five-minute delay is imposed to allow the warmer blended water to circulate entirely through the secondary system and cause the secondary return temperature to rise. Thus, this interactive flow control method not only synchronizes primary/secondary flow rates, but it also ensures a constant secondary return temperature, even at part-load cooling conditions. Furthermore, it minimizes the flow rate of 41°F (5.0°C) cold water from the cold storage reservoir, thereby extending the discharge cycle.

CHARGING

During full-load cooling conditions, charging commences shortly after 8:00 p.m. daily (Figure 9). All four chillers and all of their auxiliary equipment, less designated back-up chilled-water and condenser cooling water pumps, are operated in order to simultaneously meet the facility's off-peak cooling load, which ranged from 1,980 to 2,601 tons (6,964 to 9,148 kJ/s) and totaled 34,790 ton-hours (440,483 MJ) on July 17, 1989, as well as to regenerate the cold storage reservoir for the next day's on-peak cooling load, which totaled 21,248 ton-hours (269,025 MJ) on July 17, 1989. Allowing 1% for storage reservoir and transfer pump heat gains, the facility's 4,200-ton (14,771-kJ/s) central chiller plant must operate at an average load of 3,516 tons (12,366 kJ/s) during the 16-hour charge cycle. Or, if the facility's 4,200-ton (14,771-kJ/s) central chiller plant is continuously operated at full load, the charge cycle can be completed in 13.4 hours.

The latter method of charging was adopted because it consumed less total energy. That is, although the amount of cooling produced by the chillers is equal, the amount of energy consumed by the auxiliary equipment is 16.3% less. This is accomplished by setting each chiller's control panel to maintain an evaporator leaving temperature of $38.0^{\circ}F$ (3.3°C) and externally throttling each chiller's evaporator flow rate to maintain an evaporator leaving temperature of $39.5^{\circ}F$ (4.2°C)—consistent with each evaporator's minimum and maximum flow rate limits.

In operation, the evaporators' leaving temperatures remain at $39.5^{\circ}F$ (4.2°C) and the chillers cannot satisfy their internal setpoints of $38.0^{\circ}F$ (3.3°C). As a result, their inlet guide vanes remain fully open, and they operate at 100% of capacity throughout the charge cycle. As the evaporators' common entering temperature and the condensers' common entering temperature vary during charging, the digitally controlled, evaporator flow-throttling valves automatically modulate to maintain each evaporator's leaving temperature at $39.5^{\circ}F$ (4.2°C), thus preventing the chillers from unloading. This method of chiller operation is, therefore, not only more efficient than the part-load method, but it also provides a more constant evaporator leaving temperature.

Also, division of the 39.5°F (4.2°C) flow leaving the evaporators is synchronized between the secondary system and the cold storage reservoir using the same interactive flow control method as described for discharging, with the only difference being that the active pressure-sustaining

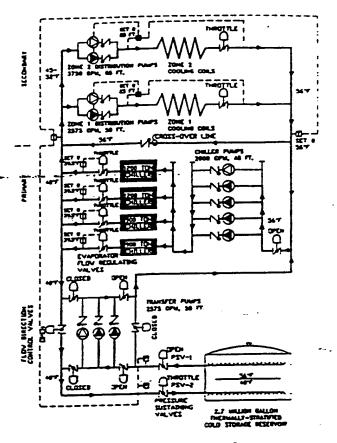


Figure 9 Charging cycle

valve (PSV-2) is in the line transferring cold water to the cold storage reservoir. This maximizes the flow rate of 39.5°F (4.2°C) cold water to the cold storage reservoir, thereby shortening the charge cycle.

SWITCHING OVER

Switching over between cycles is accomplished by six digitally actuated flow-direction control valves installed in the transfer pump suction/discharge/bypass manifold, as well as one digitally actuated flow-direction control valve installed in the chiller pump suction header (Figures 8 and 9). For this large-diameter, fail-safe application, pneumatic actuators were more reliable and much less expensive than electric actuators. Based thereon, butterfly valves with pneumatic scotch-yoke actuators having fail-safe air reservoirs were specified for flow-direction control. Also, two electronic limit switches were installed on each flowdirection control valve in order to provide positive feedback of valve position to the control system.

These valves automatically reverse the direction of flow in the lines transferring warm and cold water to and from the cold storage reservoir by opening or closing, as appropriate, in a prescribed "combination" that precludes hydraulic shock or loss of system-sustaining pressure. Also, the active pressure-sustaining valve becomes fully open and the fully open pressure-sustaining valve becomes active during cycle switch-over.

During switch-over from the charge cycle to the discharge cycle, flow direction to and from the cold storage reservoir is reversed before the central chiller plant is shut off. Conversely, during switch-over from the discharge cycle to the charge cycle, the central chiller plant is started up before flow direction to and from the cold storage reservoir is reversed. Thus, in the event a flow-direction control valve malfunctions, the secondary system's supply of cold water is uninterrupted. Also, this method of switching over avoids starting and stopping transfer pumps during cycle switch-over and requires only a single set of three transfer pumps (Figure 10), each sized at 50% of required capacity, with one designated as a dedicated backup.

PART-LOAD OPERATION

Because the facility has cleanrooms, computer rooms, manufacturing equipment (e.g., vapor degreasers), and facility equipment (e.g., compressed air aftercoolers) that require continuous cooling, its daytime cooling loads average 1,242 tons (4,368 kJ/s)/9,941 ton-hours (125,865 MJ) from October to May.¹³ Thus, year-round operation of the chilled-water thermal energy storage system is feasible and is practiced in order to reduce annual energy consumption as well as peak electrical demand.

Beginning on October 1, 1990, the inlet water temperature to the cold storage reservoir during charging was raised from 39.5°F (4.2°C) to 42.5°F (5.8°C), increasing chiller capacity by approximately 5%. Also, by operating with 70.0°F (21.1°C) condenser cooling water at part-load cooling conditions, rather than 83.0°F (28.3°C) condenser cooling water at full-load cooling conditions, chiller capacity was increased by an additional increment of approximately 6%. Thus, all four chillers and all of their auxiliary equipment were not needed to simultaneously meet the facility's reduced nighttime cooling load as well as regenerate the cold storage reservoir for the next day's reduced daytime cooling load.

Also, beginning on October 1, 1990, rather than commencing the charge cycle shortly after 8:00 p.m. daily, as was the practice during full-load cooling conditions, start of the charge cycle was delayed until nearly all of the cold water in the cold storage reservoir was depleted. Thus, the discharge cycle typically totaled 10 to 14 hours during partload cooling conditions, rather than only 8 to 10 hours during full-load cooling conditions.

CONCLUSIONS

In the application studied, naturally stratified chilledwater thermal energy storage has proved to be a viable, cost-effective means of reducing the facility's annual electric costs and offsetting anticipated electric rate increases. The system's cost, schedule, performance, reliability, and profitability have all exceeded expectations, with the last criterion being boosted by the impact of nuclear generating station construction costs on the demand charge as well as the sensitivity of the energy charge to load factor improvements. Also, several advances in water storage tank construction, diffuser design and performance, plant interface methods, system commissioning practices, system operating strategies, and flow/temperature control techniques have been demonstrated. Finally, the importance of sound planning, good design, committed management, and proper commissioning, operation, and maintenance in successful thermal energy storage has been underscored.

Figure 10 Transfer pumps

ACKNOWLEDGMENTS

The author would like to acknowledge the considerable assistance he received from Mr. Ian Mackie of Mackie Associates, Mr. Robert Tackett of TU Electric, Mr. A.L. Utesch of Cybernetic Systems Management, Mr. Ronald Wendland of the Electric Power Research Institute, and Dr. Maurice "Bud" Wildin of the University of New Mexico during the course of this project.

BIBLIOGRAPHY

- ACI. 1988. "Committee 344 report on design and construction of circular wire and strand-wrapped prestressed concrete structures." Detroit, MI: American Concrete Institute.
- ASHRAE. 1987. ASHRAE handbook-1987 HVAC systems and applications, ch. 46. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- ASHRAE. 1989. ASHRAE Guideline 1-1989, "Guideline for commissioning of HVAC systems." Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- AWWA. 1987. ANSI/AWWA Standard D110-86 for wire wound circular prestressed-concrete water tanks. Denver, CO: American Water Works Association.
- Hansen, E.G. 1985. Hydronic system design and operation. New York: McGraw-Hill.
- Hodge, B.K. 1985. Analysis and design of energy systems. Englewood Cliffs, NJ: Prentice-Hall.
- King, R.C. 1967. Piping handbook, 5th ed. New York: McGraw-Hill.
- Stratified chilled-water storage design guide. 1988. Reid, Crowther, & Partners and George Reaves Associates for Electric Power Research Institute, Palo Alto, CA.
- Utesch, A.L. 1989. "Variable speed CW booster pumping." Heasing/Piping/Air Conditioning, May, pp. 49-58.
- Utesch, A.L. 1990. "Control of stratified chilled-water thermal storage systems." ASHRAE Transactions, Vol.
- 96, Part 1.
- Westaway, C.R., and A.W. Loomis. 1981. Cameron hydraulic data, 16th ed. Woodcliff Lake, NJ: Ingersoll-Rand.

[&]quot;The facility's air-conditioned spaces are equipped with fas coil air-bandling unin that have digitally controlled outdoor air economy cooling cycles. As a result, the facility does not utilize chilled water for space conditioning when outdoor air conditions favor economy cooling.

- Wildin, M.W. 1989. "Performance of stratified vertical cylindrical thermal storage tanks, part II: Prototype tank." ASHRAE Technical Data Bulletin, Cool Storage Applications, pp. 73-82. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.
- Wildin, M.W., and C.R. Truman. 1986. User manual for STRAT.UNM: A finite difference model of stratified thermal storage. Albuquerque: Department of Mechanical Engineering, University of New Mexico.
- Wildin, M.W., and C.R. Truman. 1988. "Performance of stratified vertical cylindrical thermal storage tanks and improved finite difference model of stratified thermal storage." Albuquerque: Department of Mechanical Engineering, University of New Mexico.
- Wildin, M.W., and C.R. Truman. 1989. "Performance of stratified vertical cylindrical thermal storage tanks, part I: Scale model tank." ASHRAE Technical Data Bulletin, Cool Storage Applications, pp. 63-72. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.

APPENDIX A

Double-Octagon Diffuser Design

Total Tank Plan Area

 $3.1416 \times (105.5 \text{ ft}/2)^2 = 8,741.7 \text{ ft}^2$

Inner Octagon

Area Inside Inner Octagon

 $8,761.7 \text{ ft}^2 \times 0.25 = 2,185.4 \text{ ft}^2$

Radial Distance to Elbow Joint of Inner Octagon

 $(2.185.4 \text{ ft}^2/3.1416)^4 = 26.4 \text{ ft}$

Perimeter Length of Inner Octagon

 $8 \times 2 \times 26.4$ ft $\times \sin 22.5^{\circ} = 161.5$ ft

Effective Diffuser Length (L) of Inner Octagon

 $2 \times 161.5 \,ft = 323.0 \,ft$

Maximum Volume Flow Rate (Q) of Inner Octagon

5,120 gal/min/(60 s/min \times 7.48 ft³/gal \times 2) = 5.71 ft³/s

Volume Flow Rate per Unit Diffuser Length (q) of Inner Octagon

 $5.71 \text{ ft}^3/\text{s}/323.0 \text{ ft} = 0.0177 \text{ ft}^2/\text{s}$

Inlet Reynolds Number (Re.) of Inner Octagon

 $0.0177 \text{ ft}^2/\text{s}/0.000016576 \text{ ft}^2/\text{s} = 1,068$

Minimum Inlet Opening Height (h) of Inner Octagon to Yield an Inlet Froude Number (Fr.) of 1.0

 $(0.0177 \text{ ft}^3/\text{s}/1.0)^{29}/(32.17 \text{ ft/s}^2 \times (62.42630 \text{ lb/ft}^3)^{-62.38641 \text{ lb/ft}^3)/(62.38641 \text{ lb/ft}^3)^{-62.55 \text{ ft}^3}$

Outer Octagon

Area Inside Outer Octagon

 $8.761.7 \text{ ft}^2 \times (1.0 - 0.25) = 6.570.5 \text{ ft}^2$

Radial Distance to Elbow of Outer Octagon

 $(6,570.5 \text{ ft}^2/3.1416)^4 = 45.7 \text{ ft}$

Perimeter Length of Outer Octagon

 $8 \times 2 \times 45.7$ ft $\times \sin 22.5^{\circ} = 279.3$ ft

Effective Diffuser Length (L) of Outer Octagon

 2×279.3 ft = 558.6 ft

Maximum Volume Flow Rate (Q) of Outer Octagon

5,120 gal/min/(60 s/min × 7.48 ft³/gal × 2) = 5.71 ft³/s

Volume Flow Rate per Unit Diffuser Length (q) of Outer Octagon

 $5.71 \text{ ft}^3/\text{s}/558.6 \text{ ft} = 0.0102 \text{ ft}^2/\text{s}$

Inlet Reynolds Number (Re,) of Outer Octagon

 $0.0102 \text{ ft}^2/\text{s}/0.000016576 \text{ ft}^2/\text{s} = 615$

Inlet Froude Number (Fr.) of Outer Octagon with a Minimum Inlet Opening Height (h.) of 0.47 ft¹

 $\begin{array}{l} 0.0102 \ \text{ft}^2/\text{s}/(32.17 \ \text{ft}/\text{s}^2 \times (0.47 \ \text{ft})^3 \times (62.42630 \ \text{fb}/\text{ft}^3 \\ - 62.38641 \ \text{lb}/\text{ft}^3)/62.38641 \ \text{lb}/\text{ft}^3)^4 = 0.22 \end{array}$

For ease of installation, the inlet opening heights (h) of the inner and outer octagons were both set at 0.47 ft.

APPENDIX B

---- Lateral Slot-Shaped Openings Design

Maximum Volume Flow Rate (Q) of Each Linear Diffuser Pipe

$$5,120 \text{ gal/min}/(60 \text{ s/min} \times 7.48 \text{ ft}^{3}/\text{gal} \times 16) = 0.71 \text{ ft}^{3}/\text{s}$$

Inner Octagon

Length of Each Linear Diffuser Pipe in Inner Octagon

161.5 ft/8 = 20.2 ft

Spacing between Openings along Each Linear Diffuser Pipe in Inner Octagon

0.5 ft¹ Number of Openings along Each Linear Diffuser Pipe in Inner Octagon

$$20.2 \text{ ft} \times 0.8/0.5 \text{ ft} = 32^2$$

Maximum Volume Flow Rate (Q) of Each Opening in Inner Octagon

 $0.71 \text{ ft}^3/\text{s}/32 = 0.022 \text{ ft}^3/\text{s}$

Minimum Area of Each Opening in Inner Octagon to Yield a Maximum Outlet Velocity of 0.9 ft/s³

 $0.022 \text{ ft}^3/\text{s}/0.9 \text{ ft/s} = 0.024 \text{ ft}^2$

Minimum Cross-Sectional Area of Each Linear Diffuser Pipe in Inner Octagon

 $32 \times 0.024 \, \text{ft}^2 = 0.77 \, \text{ft}^2 \, \text{^4}$

Length of Each Opening in Inner Octagon

 $0.33 \times (12.75 \text{ in.} - (2 \times 0.406 \text{ in.})) \times 3.1416/12$ in./ft = 1.03 ft

Minimum Width of Each Opening in Inner Octagon to Yield a Maximum Outlet Velocity of 0.9 ft/s

 $0.024 \text{ ft}^2/1.03 \text{ ft} = 0.023 \text{ ft}$

DISCUSSION

John S. Andrepont, Product Manager-Thermal Systems, Chicago Bridge & Iron Co., Oak Brook, IL: In light of the fact that the AWWA code for prestressed concrete tank construction permits up to 0.1% leakage per day (roughly 1 million gallons per year for your 2.7 million gallon tank) vs. zero leakage for welded-steel tanks, please comment on what special precantions, if any, were taken regarding selection of water treatment chemicals to minimize concerns of soil contamination.

D.P. Fiorino: Regarding leakage, our prestressed concrete chilled-water storage reservoir measured zero leakage during a leakage test conducted according to Section 4.13 of ANSI/AWWA Standard D110-86 in June 1990 and has measured zero leakage since. The overall result has been a cost-effective (less than \$0.25 per gallon) and completely--maintenance-free structure.

Regarding water treatment chemicals, we had employed a blended compound of silicate-based corrosion inhibitors, deposition controllers, and biofouling retarders at a concentration of 1,000 ppm and a pH of 8.5 for several years

Outer Octagon*

Length of Each Linear Diffuser Pipe in Outer Octagon

279.3 ft/8 = 34.9 ft

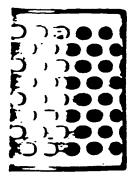
Spacing between Openings along Each Linear Diffuser Pipe in Outer Octagon

 $34.9 \text{ ft} \times 0.8/32 = 0.87 \text{ ft}^2$

¹This arbitrary selection was made to initiate the solution algorithm. ²A 20% allowance was taken to account for fittings and offsets that block out openings.

³This velocity was determined by scale-model testing conducted in a 325gallon neurally stratified cylindrical stock tank.

¹12-in.-diameter Schedule 40 PVC pipe, having an outer diameter of 12.75 in. and a wall thickness of 0.405 in., provides a cross-sectional area of 0.78 ft².

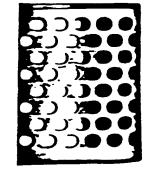

¹For ease and economy of linear diffuser pipe fabrication, the pipe and opening sizes determined for the inner octagon were adopted for the const octagon. Thus, only the lengths of the linear diffuser pipes and the specing between the slot-shaped openings varied between the inner and outer octagons.

prior to installation of our prestressed concrete chilled-water storage reservoir and have continued this inexpensive and effective water treatment program since. Because silicatebased water treatment chemicals are nontoxic and nonhazafdous, the chilled-water storage reservoir is not an EPAregulated underground storage tank (UST) and special precautions relative to potential soil contamination were not required. And, because silicate-based water treatment chemicals are nonreactive with concrete, treatment of the prestressed concrete chilled-water storage reservoir's interior surfaces was not required.

Finally, one matter highly important to successful thermal energy storage in either prestressed concrete or welded steel chilled-water storage reservoirs is pre-operational cleaning. Effective removal of contaminants before start-up of a thermal energy storage system precludes a wide-variety of future problems and failures. In the application under study, we employed the pre-operational cleaning procedures outlined in Table 4-1 of Water Treatment Technologies for Thermal Storage Systems 1987, Ahlgren Associates, for the Electric Power Research Institute, Palo Alto, CA.

Thermal Energy Storage Program for the 1990s

Donald P. Fiorino, P.E. Texas Instruments, Inc. P.O. Box 655474 - MS 311 Dallas, Texas 75265


- 4

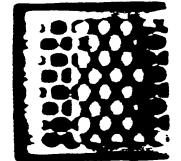
Introduction

Texas Instruments has chilled water thermal energy storage systems in operation at two of its major defense electronics manufacturing facilities in North Texas. The first system was commissioned in August 1990 at a 10year-old, 1.1 million sq ft Electro-Optics manufacturing facility in Dallas, Texas. Its capacity is 2,900 kW/2.7 million gal/24,500 ton-hours. The second system was commissioned in June 1992 at an eight-year-old, 1.2 million sq ft Avionics manufacturing facility in McKinney. Its capacity is 3,200 kW/3.1 million gal/28,800 ton-hours. This paper will discuss the objectives, strategy, method, design, operation, schedule, cost, return, and performance of the first system within the context of the energy cost outlook in North Texas as well as existing conditions at the retrofitted facility. In addition, this paper will describe improvements in operation of the first system as well as advancements in design of the second system.

Energy Cost Outlook

The energy cost outlook in North Texas is dominated by the 2,300 MW Comanche Peak Nuclear Generating Station. In mid-1989, when formal economic analysis of the first thermal energy storage system was being performed, Comanche Peak was more than 11 years behind schedule and was more than 10 times as expensive as originally estimated. Its two 1,150

Energy Engineering

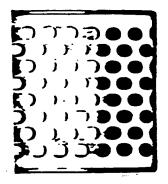

MW nuclear generating units were scheduled to begin commercial operation separately—the first in 1990 and the second in 1992. Comanche Peak was then projected to cost \$9.1 billion upon completion, and utility officials were planning to request separate 10% rate increases as each nuclear generating unit became operational. In fact, Comanche Peak Unit #1 did become operational in 1990, and the utility implemented a 10.2% bonded rate increase in August of that year. However, start-up of Comanche Peak Unit #2 has been delayed until 1993, and Comanche Peak is now projected to cost \$10 billion-\$11 billion when completed.

Characteristic of nuclear rate cases, a large percentage increase in the demand charge was necessary for the utility to recover the high fixed cost of its investment. In the case of Comanche Peak Unit #1, the demand charge for primary voltage customers increased 54% from \$6.98/kW to \$10.72/kW. Also characteristic of nuclear rate cases, the less expensive uranium fuel reduced the utility's fuel charge. In the case of Comanche Peak Unit #1, the fuel charge for primary voltage customers decreased 14% from \$0.0215/kWh to \$0.0186/kWh. Looking ahead, Comanche Peak Unit #2 is expected to result in a second increase in the demand charge and a second decrease in the fuel charge, both of approximately the same magnitude as Comanche Peak Unit #1.

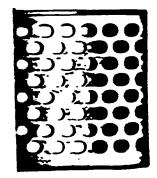
Thus, from a customer's perspective, control of kilowatt demand has become much more important than before Comanche Peak while control of kilowatt hour usage has become somewhat less important. And, from the utility's perspective, demand-side management has become more important than before Comanche Peak while construction of expensive new generating capacity has become less important. In fact, a \$1.4 billion disallowance by the Public Utility Commission of Texas in the Comanche Peak Unit #1 rate increase wiped out the utility's retained earnings and downgraded its debt rating, causing the utility to defer indefinitely construction of three planned generating stations.

Existing Conditions

The Electro-Optics manufacturing facility was a modular, one- and two-floor manufacturing complex having continuous operations and yeararound cooling loads. Its annual energy usage was approximately 170,000 Btu/sq ft/yr. Cooling loads consisted of: (1) space air cooling/dehumidifying, e.g., assembly areas, cleanrooms, computer rooms; (2) outdoor air


Vol. 89, No. 4 1992

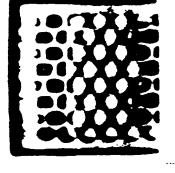
cooling/dehumidifying to replace exhausted space air; and (3) watercooled equipment, e.g., compressed air intercoolers and aftercoolers, refrigerant condensers on environmental test chambers, vapor condensing coils on solvent degreasers, etc. As a result of the above, the facility's electric and cooling demand factors were both approximately 75%. Also, the facility's peak cooling load was approximately 3,000 tons (2.6 tons/1000 sq ft) and its peak cooling kilowatt demand totaled approximately 33% of its peak kilowatt demand.


As for chilled water generation, the Electro-Optics manufacturing facility was equipped with a central chiller plant with parallel arrangements of high efficiency, electric-driven chillers, pumps, and cooling towers, with redundant chillers, pumps, and cooling towers for back-up. Its chillers consisted of four low pressure centrifugal machines having multi-stage, direct drive hermetic compressors, CFC-11 refrigerant, refrigerant economizers, and impeller inlet guide vanes. Installed chilling capacity totaled 4,200 tons, with one 1,200-ton chiller designated as a dedicated back-up.

Regarding chilled water distribution, the Electro-Optics manufacturing facility had a closed, variable flow, direct return chilled water piping network with five, 125-hp primary pumps in the primary return main immediately upstream of the chillers. Pressurization of 12 psig was applied at the suction of the primary pumps, and two primary sub-circuits were direct-connected to the primary supply and return mains. A secondary circuit (for equipment cooling) was physically and hydraulically separated from the primary circuit by a shell/tube heat exchanger. Primary supply temperature was maintained at 45°F, and secondary supply temperature was maintained at 75°F.

The Electro-Optics manufacturing facility's chilled water distribution system achieved its design temperature differential of 12°F (2 gpm/ton) at peak cooling loads but fell to as low as 8°F (3 gpm/ton) at partial cooling loads. Resulting imbalances between the facility's variable chilled water flow demand and the chillers' fixed evaporator flow limits were resolved by: (1) operating the chillers partly loaded with maximum evaporator flow rates and below-design evaporator temperature differentials; or (2) bypassing excess return water through the evaporator of an off-line chiller and reducing the evaporator outlet temperatures of the on-line chillers below 45°F in order to maintain a 45°F "blended" supply temperature. Also, the 125 hp primary pumps normally operated well to the right of their selection points.

3


Energy Management Objectives

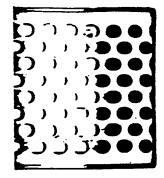
After consideration of the energy cost outlook in North Texas and existing conditions in the Electro-Optics manufacturing facility, four energy management objectives were adopted. First, electricity costs, which accounted for more than 90% of total energy costs, needed to be reduced from levels in effect prior to the Comanche Peak Unit #1 rate case in order to reduce expenses and improve competitiveness. Second, both of the upcoming Comanche Peak rate increases needed to be entirely offset in order to maintain control of energy costs. Third, excess kilowatt hour usage related to live-load chiller plant operation needed to be reduced. Fourth, any capital project undertaken to accomplish the first three objectives needed to: (1) earm an attractive after-tax return with little risk; (2) have no adverse environmental impact; and (3) be consistent with future conversion of the existing chillers to HCFC-123 refrigerant.

Energy Management Strategy

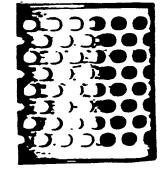
Cogeneration, purchase of high voltage electricity, and thermal energy storage were evaluated for technical feasibility, economic attractiveness, and conformance to the energy management objectives outlined above. Cogeneration was unacceptable because of its combustion emissions and technically infeasible due to a lack of beneficial use for waste heat. Purchase of high voltage electricity was technically feasible, but was less economically attractive than thermal energy storage because of: (1) the need to purchase and install redundant transformers, transmission lines, switchgear, etc. in order to assure reliability; and (2) the large utility incentive payments offered to install thermal energy storage. Also, purchase of high voltage electricity would only partially offset the Comanche Peak Unit #2 rate increase and would do nothing to reduce excess kilowatt hour usage by the central chiller plant.

Having selected thermal energy storage as the best energy management alternative for the manufacturing facility, determining a strategy for its implementation was straight-forward. Simply put, all 2,900 kW of peak cooling demand would be shifted from peak demand periods, i.e., noon to 8:00 p.m., to off-peak demand periods, i.e., 8:00 p.m. to noon. A new thermally stratified chilled water storage reservoir would be interconnected with the facility's existing 4,200 ton central chiller plant in order to:

(1) minimize capital expenditures; and (2) simultaneously satisfy the facility's nighttime cooling load and recharge the thermal energy storage reservoir.


The large incentive payments and the favorable "Time-of-Day" rate option offered by the utility would be taken advantage of in order to reduce electricity costs. In addition, kilowatt demand savings from thermal energy storage would be "leveraged" by the large increases in the demand charge associated with each unit of Comanche Peak. Also, by operating the central chiller plant fully loaded at nighttime, excess kilowatt hour usage associated with live-load chiller plant operation would be eliminated. Furthermore, chilled water thermal energy storage using non-hazardous water treatment chemicals had no adverse environmental impact. Finally, chilled water thermal energy storage could tolerate the 5%-15% decrease in chiller capacity normally associated with conversion to HCFC-123 refrigerant with no adverse impact on integrated cooling capacity.

Thermal Energy Storage Method


Several factors favored thermally stratified chilled water storage in the first application. In addition to the availability of the existing 4,200 ton central chiller plant to generate and to distribute chilled water, the cost, efficiency, simplicity, reliability, and maintenance of a large thermally stratified chilled water storage reservoir were superior to either ice or eutectic salt storage alternatives.

Thus, a 2.7 million gal thermally stratified chilled water storage reservoir was designed to provide 24,500 ton-hours of integrated cooling capacity with a 15°F average discharge temperature differential and 90% usable volume for the Electro-Optics manufacturing facility. An AWWA Standard D110-86 (Type III) cylindrical precast, prestressed concrete water storage tank with an interior diameter of 105 ft - 6 in and a water capacity level of 41 ft was installed to meet the requirement. The tank was buried to the top of its circular wall, and its clear-span spherical dome roof was insulated with 2-in thick spray-on polyurethane foam, a butyl rubber vapor barrier, and a highly reflective white outer coating.

Its concentric ring diffuser system consisted of two octagons fabricated using 12-in diameter PVC pipe having 120° arc by 1/4-in wide lateral slot-shaped openings. Reynolds numbers of the concentric ring diffuser system were 1,068 for the inner octagon and 615 for the outer octagon. with a common inlet opening height of 5-5/8 in, the Froude numbers of the

٠÷

Energy Engineering

concentric ring diffuser system were 0.38 for the inner octagon and 0.22 for the outer octagon.

Transfer pumps and piping were sized for 5,120 gpm and consisted of two 16-in diameter buried, pre-insulated, welded-steel pipes and three 40hp vertical, split-case, centrifugal pumps, each sized for 2,575 gpm, with one designated as a dedicated back-up. Two-position pneumatic direction control valves with fail-safe air reservoirs and electronic end switches were installed to reverse flow direction between the chilled water storage reservoir and the central chiller plant during cycle switch-over. Also, two modulating pneumatic pressure-sustaining valves having fail safe air reservoirs were installed to continuously maintain 5 psig pressure at the highest point in the facility's chilled water distribution system.

The Electro-Optics facility's existing chilled water distribution system was modified by installing pairs of variable speed booster pumps in the supply lines of each of the primary sub-circuits to automatically maintain individual sub-circuit differential pressure setpoints. In addition, crossover piping was installed between the primary return main, downstream of the downsized 30-hp primary pumps and the suction lines of each pair of booster pumps. Modulating pneumatic temperature-regulating valves were installed in both branches of the crossover piping to "inject" warm return water into the suction lines of each pair of booster pumps. These valves automatically adjusted each primary sub-circuit's supply temperature in order to maintain individual return temperature setpoints and the latter were automatically reset based on outdoor air enthalpy.

Lastly, a direct digital control system consisting of 70 input/output points, three distributed control panels, and a PC-based graphical monitor/ operator interface was installed. Displays included the facility's hourly kilowatt demand profile, the storage reservoir's vertical temperature distribution, valve positions, flow rates, temperatures, pressures, etc. In addition, the control system calculated the integrated cooling capacity of the storage reservoir and continuously updated the operator as integrated cooling capacity was added during the charge cycle and withdrawn during the discharge cycle.

Thermal Energy Storage Operation

The thermally stratified chilled water storage system at the Electro-Optics manufacturing facility is operated to fully shift cooling kilowatt

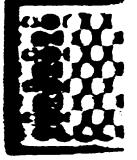
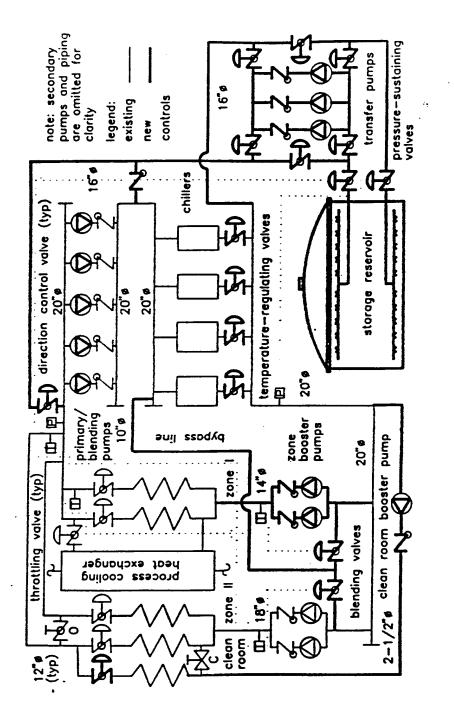
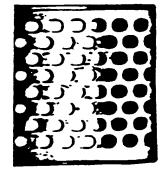
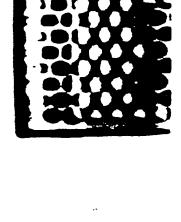




Figure 1. Chilled water TES at TI's Electro-Optics facility.


Energy Engineering

demand to nighttime.

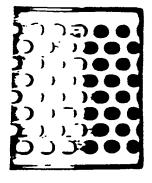
From 8:00 p.m. to noon daily, the facility's existing central chiller plant is operated to: (1) provide live-load chilling to satisfy the facility's nighttime cooling load; and (2) charge the chilled water storage reservoir. By setting the chillers' control panels for 38°F and modulating external pneumatic temperature-regulating valves to actually maintain each chiller's evaporator leaving water temperature at 39.5°F, the inlet guide vanes stay fully open and the compressors stay fully loaded throughout the charge cycle. Then, given: (1) consistently high evaporator inlet temperatures of 56°F-59°F because of automatic control of sub-circuit return temperatures during both the current nighttime charge cycle and the previous daytime discharge cycle; and (2) maximum condenser water flow at inlet temperatures ranging from 83°F to as low as 65°F because of nighttime cooling tower operation, the chillers consistently produce greater-than-design tonnage using design compressor kilowatt demand and design auxiliary equipment kilowatt demand.

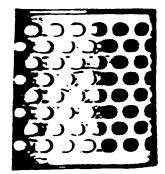
From noon to 8:00 p.m. daily, the central chiller plant is entirely shut off, and the Electro-Optics facility's integrated daytime cooling load is satisfied by the chilled water storage reservoir. By: (1) automatically maintaining the sub-circuit flow rates no greater than necessary to satisfy each distribution zone's instantaneous cooling load and (2) automatically blending the sub-circuit supply temperatures to no colder than necessary to maintain each distribution zone's space humidity requirements, the facility's integrated daytime (and nighttime) cooling load is minimized. This reduces the withdrawal rate of cold water from the storage reservoir, thereby increasing thermal stratification effectiveness and reducing transfer pump kilowatt hour usage. It also assures a consistently high return temperature to the storage storage reservoir, thereby increasing integrated storage capacity and further increasing thermal stratification effectiveness.

Switch-over from charge-to-discharge and discharge-to-charge is automatically accomplished by reversing the positions of the direction control valves in a prescribed sequence that precludes hydraulic shock and avoids loss of system sustaining pressure. In this manner, the transfer pumps continue to operate without interruption. The operator initiates cycle switch-over and manually starts/stops the chillers and auxiliary equipment based on prompts and acknowledgements between himself and the PC-based monitor/operator interface. Using suitable prompts and acknowledgements, as well as positive feedback of proper positioning of

control valves, the operator and control system are able to switch over surprisingly fast and reliably.

Project Costs, Schedules, Returns, and Performance


The thermally stratified chilled water storage system had a gross cost of \$1.67 million (\$68/ton-hour). After two utility incentive payments totaling \$610,500 (\$25/ton-hour), the system's net cost totaled \$1.06 million (\$43/ ton-hour). Construction began on October 26, 1989, and the system started up on August 13, 1990, 10-1/2 months after breaking ground and coincident with implementation of the Comanche Peak Unit #1 rate increase. Commissioning was completed in two weeks, and the system commenced operation under the utility's "Time-of-Day" rate option on September 1, 1990.


Savings totaled \$221,000 during the system's first year of operation and consisted of \$186,500 of kilowatt demand savings and \$34,500 of kilowatt hour usage savings. Annual kilowatt demand savings are projected to escalate to \$251,600 after implementation of the Comanche Peak Unit #2 rate increase in 1993, increasing total annual savings to \$286,100. Thus, simple payback of the project's net cost will occur within five years.

To date, the system has been 100% reliable in shifting peak cooling kilowatt demand to nighttime and has reduced annual cooling kilowatt hour usage by approximately 1,380,000 kWh or 12%. The former result is attributable to adequate design margins, simple system operation, and thorough system commissioning—including operator training and written operation/maintenance/emergency instructions. The latter result is attributable to full-load chiller operation year-around with reduced condenser water inlet temperatures and elevated evaporator water inlet temperatures, reduced (charge cycle) and eliminated (discharge cycle) evaporator pressure drops, improved flow/temperature control in the primary sub-circuits, and negligible storage reservoir heat gains.

Operating Improvements

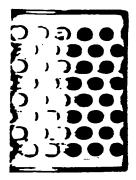
Subsequent improvements in operation of the thermally stratified chilled water storage system at the Electro-Optics manufacturing facility have included an integrated indirect evaporative chilling/condenser water

Energy Engineering

Vol. 89, No. 4 1992

2

. . .

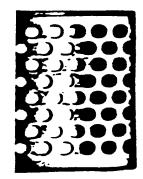

heat recovery/demand-limiting partial-discharge operating strategy between mid-October and mid-March.

Making use of a spare 630-ton counterflow, forced-draft cooling tower and a spare 1,800 sq ft shell/tube heat exchanger allowed for indirect evaporative chilling of the 56°F-59°F warm water as it returned from the facility's chilled water distribution system to the top of the chilled water storage reservoir during the discharge cycle. This sub-strategy's coefficientof-performance ranges from 5.0 when the outdoor wet-bulb temperature is 51°F to as high as 22.6 when the outdoor air wet-bulb temperature is 17°F, making it more efficient than operating a centrifugal chiller and its auxiliary equipment. The indirect evaporative chilling sub-strategy operates approximately 3,500 hr/yr and produces approximately 1.1 million ton-hr/yr of "free" chilling.

The remainder of the integrated wintertime operating strategy involves continuously operating the thermal energy storage system in a partialdischarge cycle, with one centrifugal chiller and its auxiliary equipment operating with an elevated evaporator water outlet temperature in the heat recovery mode and the indirect evaporative chilling sub-strategy enabled whenever the outdoor air wet-bulb temperature is 51°F or below. This strategy elevates the chiller's coefficient-of-performance from 5-6 (cooling only) to 7-9 (heating and cooling) and makes operation of the facility's 400hp hot water boiler unnecessary. In fact, the hot water boiler has been decommissioned, entirely eliminating facility natural gas usage and emissions. Also, the facility's oversized constant speed hot water pumps, oversized heating coils, and pneumatic hot water valves with limited spring closing force provide much better control with 95°F inlet water (using condenser waste heat) than with 180°F inlet water (using boiler heat). Finally, continuous operation of one centrifugal chiller and its auxiliary equipment levels the facility's wintertime kilowatt demand, yielding additional kilowatt demand savings.

Design Advancements

Several technical advancements were incorporated in to the design of the second, larger thermally stratified chilled water storage system at the Avionics manufacturing facility. First, because the evaporators of the chillers at the Avionics manufacturing facility were selected for 2.4 gpm/ ton, rather than 2.0 gpm/ton as at the Electro-Optics manufacturing facility, series chiller operation was feasible and yielded greater capacity and efficiency than parallel chiller operation. In addition, the Avionics manufacturing facility's equipment cooling load was served in series with, rather than in parallel with, the facility's space and outdoor air cooling/dehumidifying loads, yielding a higher return temperature and all of the associated operating advantages. Also, variable speed, rather than constant speed, transfer, primary, and blending pumps were selected in order to improve controllability and minimize pumping kilowatt hour usage year-around. Finally, piping to a large, existing plate/frame heat exchanger was modified to provide indirect evaporative chilling whenever the outdoor air wet-bulb temperature is 51°For below (approximately 3,500 hr/yr between mid-October and mid-March).



Conclusions

The thermal energy storage program described was implemented with due consideration given to the energy cost outlook in North Texas as well as existing conditions in the retrofitted facilities. It now exceeds 50,000 ton-hours in integrated storage capacity and has established a solid record of efficiency, performance, profitability, and reliability. Although several of its design features and operating strategies are at the leading edge of thermal energy storage practice, the program's success to date rests largely on fundamentals such as thorough analysis, sound planning, good design, and effective operation and maintenance.

About the Author

Donald P. Fiorino is a facility engineer and member of the group technical staff at Texas Instruments Inc., Dallas. He received his B.S. in engineering science from the U.S. Military Academy at West Point and his M.S. in industrial engineering from the University of Texas at Arlington. Fiorino serves on the National Advisory Council for the Thermal Storage Applications Research Center at the University of Wisconsin at Madison. The TES project at TI's Electro-Optics manufacturing facility received AEE's 1991 Energy Project of the Year Award.

FOREST LANE

THERMAL ENERGY STORAGE BEFORE VS. AFTER ENERGY COSTS

(000\$)

•

VEAD		2387.3	69.2	30.9	2487.4	YEAR	2161.9	2.4	2164.3	323.1	T.TI	145.4	81.8
	UECAS	211.6	6.1	7.6	225.3	DEC91	175.6	0.2	175.8	49.5	13.0	36.5	280.81
	6BVON	194.1	5.6	2.8	202.5	16 VON	179.9	0.2	180.1	22.4	13.1	9.3	11.02
	00189	189.9	5.5	2.6	0.861	00191	178.8	0.2	179.0	, 19.0	17.1	1.9	6 11.12
	SEP89	204.1	5.9	0.2	210.2	SEP92	183.1	0.2	183.3	26.9	19.0	7.9	41.62
	AUGB9	201.9	5.9	0.3	208.1	AUG92	186.5	0.2	186.7	21.4	18.2	3•2	17.75
	<u>101-90</u>	212.6	6.2	0.2	219.0	<u>101-92</u>	192.0	0.2	192.2	26.8	17.7	9.1	51.45
	<u>06NUL</u>	205.4	6.0	0.2	211.6	20NUL	183.4	0.2	183.6	28.0	15.4	12.6	81.87
	<u> MAY90</u>	190.0	5.5	0.2	195.7	HAY92	178.0	0.2	178.2	17.5	14.6	2.9	19.91
	<u>APR90</u>	204.6	5.9	1.7	212.2	APR92	182.9	0.2	183.1	29.1	12.9	16.2	53.3% 125.6%
	<u>MAR90</u>	185.8	5.4	1.2	192.4	MAR92	173.8	0.2	174.0	18.4	12.0	6.4	53.3%
	<u>FEB90</u>	184.3	5.3	6.5	196.1	EEB92	173.0	0.2	173.2	22.9	12.4	10.5	235.0% 84.7%
	JAN90	203.0	5.9	7.4	216.3	JAN92	174.9	0.2	175.1	41.2	12.3	28.9	235.0%
	12 MONTHS BEFORE: JAN90	ELEC. BILL	Comuche very C/P UNIT #1	GAS BILL	ENERGY BILL	LAST 12 MONTHS:	ELEC. BILL	231 CASE BILL	ENERGY BILL	ACTUAL SAVINGS	Projuted PROJ. SAVINGS:	EXTRA SAVINGS	LEXTRA SAVINGS

.

APPENDIX 4I

BROCHURE AND PROPOSAL FOR CONCRETE

CHILLED WATER STORAGE TANK

Established 1929

March 3, 1993

Ms. Kelly Winett Engineer Resource Group 158 Business Center Drive Birmingham, AL 35244

Reference: TES Tank Lyster Army Community Hospital

Dear Ms. Winett:

As discussed during our telephone conversation, based on 1992 construction costs, suitable budget estimating figures for the design and construction in the Birmingham, Alabama area of a 1.0 MG Thermal Energy Storage tank is approximately \$550,000; a 0.5 MG Thermal Energy Storage tank is approximately \$413,270; and a 0.2 MG Thermal Energy Storage tank is approximately \$260,320. These figures include internal diffuser piping, exterior insulation (with protective coating), dome with hatch and vent, and foundation.

. . •

These prices do not include earth excavation, rock excavation, backfill, dewatering systems, underdrain, or landscaping. A rough preliminary breakdown for these budget figures are as follows:

TANK SIZE	1.0 MG	0.5 MG	0.2 MG
DIMENSIONS	(70'd x 35'h)	(55.5'd x 28'h)	(41'd x 20.5'h)
TANK	\$450,000	\$355,000	\$230,000
INSULATION	60,000	37,270	20,320
DIFFUSER	40,000		10,000
TOTAL	\$555,000	\$413,270	\$260,320

The above prices are for a naturally stratified, prestressed, precast, concrete storage tank to be constructed at existing grade. If the tank can be buried, partially or fully, the backfill can be utilized as insulation thereby reducing the cost of applying complete insulation of the tank; this cost may be

233

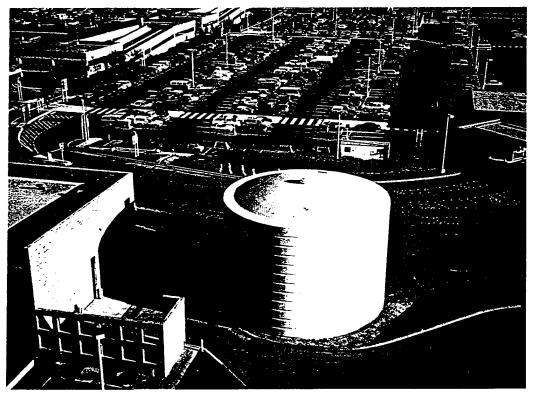
PRECAST PRESTRESSED PREFERRED

Natgun Corporation Precast Concrete Tanks 11 Teal Road Wakefield, MA 01880-1292 Telephone 617-246-1133 FAX 617-245-3279 Ms. Kelly Winett Engineer Resource Group March 3, 1993 Page 2

significant. Various dimensions can be utilized for the tank sizes; I have used the height-diameter ratio of approximately 0.50, which appears to be an efficient design. A Natgun prestressed, precast, concrete Thermal Energy Storage tank requires virtually no maintenance.

If you require any additional information or have any questions, please contact the writer at your convenience.

Conservation is Power for the future.


Very truly yours,

NATGUN CORPORATION

Frederick A. McDonough, Jr. Vice President - Construction

FAM/djh

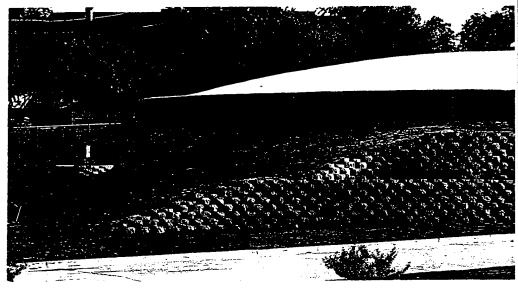
• HOW TO PUT A CHILL ON RISING ENERGY COSTS

0.55 MG Thermal Storage Tank for the San Antonio. Texas Airport.

THERMAL STORAGE TANKS SAVE HU

The natural forces which cause the deeper layers of water in a still ake or pond to remain the coldest have a lot to do with the way more and more companies are saving hundreds of thousands of dollars per year on their electric bills.

It's naturally-stratified chilled water storage, a proven technology for keeping layers of warm and cold water separated in a single storage tank — and a proven method for companies to lower electric costs each year at every one of their facilities equipped with chilled water air conditioning systems. For many large industrial plants and commercial buildings, savings of hundreds of thousands of dollars per year are possible.

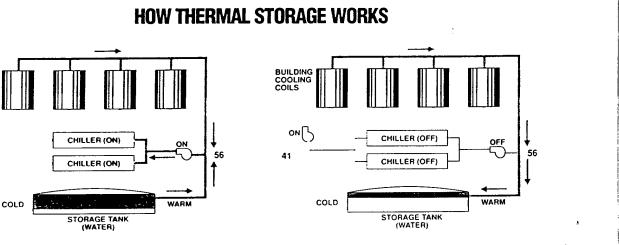

As electric rates continue to increase, large users and utilities alike are being challenged to manage kilowatt demand. More and more, in both moderate and hot climates, their most cost-effective option is thermal storage.

Here's how thermal storage

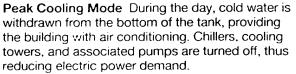
BUILDING COOLING COILS

ON

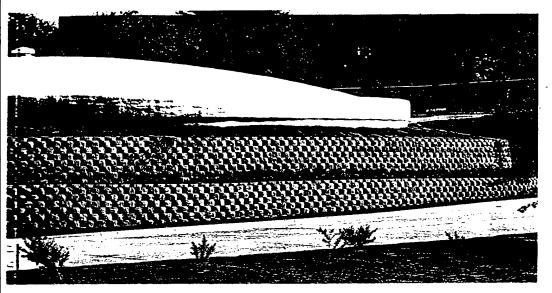
40



Partially buried 2.7 MG Chilled Water Storage Tank for Texas Instr


saves money in a typical air conditioning installation:

Using a prestressed concrete storage reservoir (see diagram). a facility produces chilled water at night, during the local utility's "offpeak" period. The following day. during the utility's "on-peak" period. the chiller plant is turned off and the facility is cooled by withdrawing cold water from the bottom of the thermal storage reservoir. The company saves money in four ways:


1- Reduced Demand Charges By operating its chiller plant only during the local utility's off-peak period. a facility's on-peak demand is reduced by up to 40%, yielding significant

Off-Peak Cooling Mode The water storage tank is "charged" with cold water at night using chillers, cooling towers. and associated pumps to take advantage of lower electric usage rates.

INDREDS OF THOUSANDS OF DOLLARS.

traments, Inc., Dallas Texas. Engineered by Texas Instruments, Inc.

annual savings in demand charges.

2- Lower Usage Rates Off-peak usage rates are lower than on-peak usage rates. These lower rates can take the form of downwardly sliding price scales or discounts off the utility's standard off-peak usage rate.

3- Shared Construction Costs Because thermal storage helps postpone or avoid construction of expensive new generating stations, most electric utilities offer major cash incentives to companies installing thermal storage systems. These incentives are usually based on the amount of kilowatt demand that will be shifted from on-peak to off-peak. Many electric utilities also share the cost of an engineering study to assess the feasibility and profitability of a thermal storage installation.

4- Fewer Equipment Purchases In both new construction and facility expansion projects, it is often possible to substitute a thermal storage tank for some or all of the chiller plant equipment that would otherwise need to be purchased. Current capital outlays and future operating costs are both reduced, yielding significant energy cost savings for years to come.

BUT DON'T JUST TAKE OUR WORD FOR IT.

Here's what Mr. Don Fiorino. Facility Engineer for Texas Instruments in Dallas, Texas wrote about the Natgun thermal storage tank pictured above.

"This 24,500 ton-hour thermal energy storage system utilizes a precast, prestressed concrete tank to store chilled water. It was installed as a retrofit project in just 10.5 months at a total cost of S68 per tonhour (62¢ per gallon). Since start-up in August. 1990, it's performance has exceeded our expectations. In particular, we've enjoyed 100° e reliability. 92.7% cycle thermal efficiency. 34% greater savings than projected, and 13% greater capacity than designed.

"In addition to reducing our onpeak electric demand by 2 900 kW, as projected, we have reduced electric usage by an average of 175.000 kWh per month. or 3 7%.

"First-month savings on cur electric bill were \$25,256. Present annual savings are now calculated at about \$241,000, rising to approximately \$340,000 by the year 1993

WHY PRESTRESSED CONCRETE MAKES THE BEST THERMAL STORAGE TANK

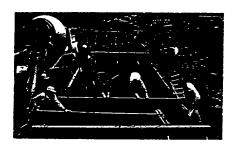
There are two commonly accepted materials for constructing watertight storage tanks prestressed concrete and steel. Today, tank users specify prestressed concrete for its minimal maintenance, rapid construction time, and lower long-term cost.

Prestressed concrete is preferred for thermal storage systems over steel tanks for several important reasons:

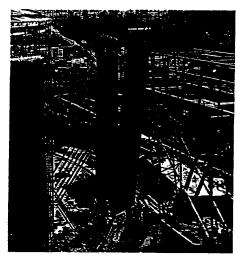
1- Higher R Rating Concrete has a higher R rating than steel.

2- Siting Options Prestressed concrete can be totally or partially buried. In such cases the R rating advantage over steel is even further increased.

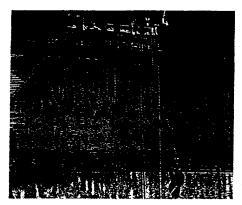
3- No Routine Maintenance Because they rust, steel tanks must be periodically drained and taken out of service to be maintained, usually in the summer months when the system is needed most. No such problems with prestressed concrete.


Moreover, prestressed concrete eliminates the need for corrosion protection where the tank wall comes in contact with additional insulation that may be installed.

4- Decades of Reliable Service Only prestressed concrete tanks have a continuous steel diaphragm embedded in the wall to provide positive assurance of watertightness. The entire tank is wrapped top-tobottom in multiple layers of highstrength wire, placing the tank in permanent compression and eliminating tension cracks.


BUILDING A NATGUN THERMAL STORAGE TANK

1 After excavation, Natgun places casting beds around the perimeter. Wall and dome panels are poured simultaneously with the tank floor, speeding construction.


2 Panels are cast in "stacks" with a waterproof steel diaphragm (which becomes an integral part of each panel) serving as the bottom of the form. Expensive form work is minimized, and optimum quality achieved with ground level construction.


3 Wall panels are erected after the floor is completed. Panel joints are sealed water-tight using steel plates and high-strength mortar.

4 Dome panels are erected on shoring. The circumferential and radial joints are then cast in place.

5 After encasing the tank's steel diaphragm in shotcrete, Natgun places the tank in permanent compression by wrapping it with high-strength wire stressed to 140,000 psi, eliminating the potential for tension cracks. Each layer of prestressing is individually encased in shotcrete.

6 Once the prestressing wire has been encased, Natgun applies an additional layer of shotcrete to provide further corrosion protection. The tank is now complete and ready to be put in service. After evaluation of a system's thermal energy needs by a plant or consulting engineer, Natgun Corporation provides complete design and construction services for the thermal storage tank.

No matter what your needs in a thermal storage tank, we have the expertise and experience to see your job through — not just to completion, but years down the line — providing durable, reliable, costsaving service for generations to come.

Natgun has over five decades of experience designing and building precast, prestressed concrete water storage tanks. In that time, we have contributed numerous technical advances to prestressed concrete tank construction. Today, thousands of prestressed concrete tanks some very old, and some brand new — are providing safe, reliable, costeffective water storage to communities and industries across America.

PRECAST PRESTRESSED PREFERRED Eleven Teal Road Wakefield, Massachusetts 01880-1292 8111 Preston Road, Suite 701

Dallas, Texas 75225-6307 Or call 1-800-662-8486

5.0 ENERGY CONSERVATION OPPORTUNITY: CHILLER HEAT RECOVERY FOR DOMESTIC HOT WATER

The Energy Engineering Analysis Program (EEAP) performed at Lyster Army Community Hospital in 1989 identified an Energy Conservation Opportunity (ECO 12) to utilize waste heat from one centrifugal chiller to preheat domestic hot water. The original ECO 12 is included as Appendix 5A of this ECO section. The objective of this analysis is to reevaluate the technical and economic feasibility of recovering heat from the chillers under present circumstances since this ECO has not been implemented. Additionally, consideration is given to the performance of this ECO based on the implementation of the previously described Cooling Storage ECO.

5.1 Existing Conditions

Domestic hot water is provided to the hospital from one 1,200 gallon storage tank in the main mechanical room. The water is heated by base steam and maintained at a temperature of 134°F for delivery to meet hospital requirements. The water in the tank is heated by an insertion type steam heater rated at 700 pounds of steam per hour.

5.2 Reevaluation Of Proposed Modifications

The recommended ECO proposes to add a 60 ton auxiliary condenser to one 230 ton centrifugal chiller, making it the primary chiller. The auxiliary condenser would then be utilized to preheat domestic hot water improving chiller performance by lowering head pressure and reducing the steam required to heat water. The analysis procedures to establish energy reductions in the original ECO have been reviewed and determined to be reasonable and are used in this new analysis. The implementation costs and energy cost savings are revised to be representative of current prices.

Installation cost based on the enclosed estimate has been increased from \$21,870 to \$27,820.

COST ESTIMATE ANALYSIS For use of this form, see TM 5-800-21 the prependent aronay is USAGE.	ANALY	/818 Iont opene	Y II UBA(INVITATI	INVITATION/GONTRAGTOR		effective pricing date	AICINO O	AT6	0711/11/0 3/20/93	193	
AUXILARY CONDENSER	SER		<u>-</u> +		000E (Chink on)			DRAWING NO.	ō ·		8HEET /) 10	SHEETS
FT. RUCKER - LYSTER ARMY	RAF		Hose.	٨.	ן ר <u>פ</u>	ОТНЕЛ	,	ESTIMATOR			CHECKED 8Y		
	QUAN				LABOR	-	101	LOUIPMENT	X	MATCAIAL			DHIAAIHS
TASK DESCAIPTION	NO. OF UNITS	UNIT MEAS	MH UNIT	TOTAL	UNIT PAIOE	COST	PRICE	COST	VNIT	COST	TOTAL	TINU	TOTAL
60 TON AUX.					-								
CONDENSER				-									
INSTALLED BY													
TRANE	/					8500			-	6700			
•													
PUMP	~			<u> </u>		80				950			
CONTROL VALVE	/					00/				1500		_	
REGULATING VALVE	/	-				50				220			
PIPE, VALVES, FTOS	101					000/			 	15.00			
INSULATION						200	. .			600			
						9930				01411	21400	6	
OH, TAXES &											1	<u> </u>	
PROFIT @ 30%											6420	6	
TOTAL EST. COST							-		 	*	#27820		
SOURCE: TRAUE	8 tr	rý ·	61	93	NGAN	ys cos	1	D414					
TOTAL THIS SHEET					 							<u> </u>	
DA FORM EALER, Apr 25				ļ									

Natural gas costs have been reduced from \$0.411/therm to \$0.289/therm reducing projected savings from \$3,960 to \$2,785.

Electricity cost has been reduced from \$0.043993/KWH to \$0.0215/KWH reducing projected savings from \$1,799 to \$879.

The revised total projected savings are \$3,664.

5.3 Revised ECIP Documentation For Original ECO Project And DD Form 1391

Since this project has an estimated cost less than \$300,000, it must be grouped with other projects to qualify for the Energy Conservation Investment Program (ECIP). The project Life Cycle Cost Analysis indicates the following:

Annual Energy Savings:		
Electric	-	139.56 MBTU/Year
Natural Gas	-	963.60 MBTU/Year
Total	-	1,103.16 MBTU/Year
Annual Cost Savings:		
Electric	-	\$879
Natural Gas	-	\$2,785
Total	-	\$3,664
Total Investment	-	\$31,019
Simple Payback	-	8.47
Total Net Discounted Savings	-	\$70,248
Savings To Investment Ratio (SIR)	-	2.26
Adjusted Internal Rate Of Return (AIRR)	-	8.00%
•		

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

•

	•			DECT	ON NO	3 PROJEC	г NO. 2 <u>392</u>
LOCATION:	Ft. Rucl	ker		REGI	.04 40.		FISCAL YEAR 1993
			y Studies	Ton Dor	nostic	Hot Water	
				TY FOI DOI	ADED	Jackins	
ANALYSIS D	DATE: 3/2	4/93	ECONOMIC LIFE_	<u> </u>	ARER	Jucitino	
					÷4		
1. INVES	TMENT COS	TS:			. * *		
	RUCTION CO		\$ <u>27,820</u>				
B. SIOH		:	\$				
C. DESIGN	I COST	:	\$1,669				
	COST (1A+	1B+1C)	\$ 31,019	•			
F SALVAG	SE VALUE C	F EXISTING	EQUIPMENT	\$			••• *
F PIIRLTO	UTILITY	COMPANY RE	BATE	\$ <u>0</u>		A 21 010	
C TOTAL	TNVESTMEN	T (1D-1E-1	F)			\$31,019	
G. 101112		•					
2 ENERGY	V SAVINGS	(+)/COST(-):				
Z. ENLING	TSTTR 85-3	273-X USED	FOR DISCOUNT	FACTORS _	Oct 1	992	
DATE OF M.							
EVEDOV (C05T	SAVING	ANNUAL \$	DISCOUNT	DISCO	UNTED	
ENERGI V	CU31 C (WRTH(1)	METTI/YE(2)	SAVINGS(3)	FACTOR(4)	SAVIN	GS(5)	
SOURCE	\$/MD10(1)	Im10/18(2)					
	• C 20	139.56	\$ <u>879</u>	14.65	\$ <u>12</u> ,	877	
A. ELEC	\$ 0.30		\$		\$		
B. DIST	\$		¢		Ş		•
C. RESID		963.60	\$ 2,785	20.60	\$ 57,	371	
	\$ 2.89	903.00	\$		S		
E. PPG	\$		°		S		
F. COAL	\$		°		\$		
-G. SOLAR			\$\$	• <u> </u>	s		
	\$		\$		s		
	\$		\$		s		
J. REFUS	\$		\$		s		
K. WIND	\$		\$		š		
L. OTHER			\$		č		
M. DEMAND	SAVINGS		\$		ş 70	248	
N. TOTAL		<u>1,103.16</u>	\$_3,664_		Q <u></u>		
3. NON E	ENERGY SAV	INGS (+) 01	<u>R COST (-)</u> :				
						·	
A. ANNUAL	RECURRIN	G (+/-)	\$				
(1) DISC	COUNT FACT	OR (TABLE	A)		•		
(2) DISC	COUNTED SA	VINGS/COST	(3A X 3Al)		\$		

B. NON RECURRING SAVINGS (+) OR COST (-)

ź

ITEM	SAVINGS(+)	YEAR OF		DISCOUNTED SAV-
	- COST(-)(1)	OCCUR. (2)	FACTOR(3)	INGS(+)COST(-)(4)
а.	\$			\$
b	\$			\$
c	\$			\$
d. TOTAL	\$			\$
C. TOTAL NON	ENERGY DISCOUN	TED SAVINGS	(3A2+3Bd4)	\$
	BACK 1G/(2N3+3			$\frac{8.47}{70.248}$ YEARS
	DISCOUNTED SAV			\$ <u>70,248</u> 2,26
	INVESTMENT RA			
7. ADJUSTED I	NTERNAL RATE C	F RETURN (AII	<u>(R)</u> :	<u>8.00</u> Z

• •

243

I. COMPONENT	FY 1	9 <u>93</u> MILITARY CO	ONSTR	UCTIO	N PR	OJECT DA	7A 25 1	τε March 93	
ARMY									
LUCTOR ARMY		iunity Hospital		-					
Fort Rucker,	Alab	ama		EC	CIP				
PROGRAM ELEMEN		6. CATEGORY CODE	7. PROJ	ECT NU	MBER	8, PROJE	CT COST (S	000)	
		80000					31		
			T ESTIM	ATEC		<u>_</u>			
AP		1TEM	STESTIM		U/M	QUANTITY	UNIT COST	COST (\$000)	
60 ton Auxilia	ry Co	ndenser			LS			15	
Pump					EA	1	1,030	1	
Control Valve					EA	1	1,600	2	
Regulating Va	lve				EA	1	270	0	
Pipe, Valves,	Fittin	ngs			LS			2	
Insulation					LS			1	
Miscellaneous	Taxes				LS			6	
Supervision, I	Inspec	tion & Overhead	(5.5%)			i		2	
Design (6.0%)								2	
TOTAL								31	
						-			

10. DESCRIPTION OF PROPOSED CONSTRUCTION

The primary facility of the chiller heat recovery for domestic hot water system will include an auxiliary condenser, pump, control and regulating valve, pipes, valves, fittings and insulation. The work is new construction at Lyster Army Community Hospital. The purpose of this facility is to utilize waste heat from one of the existing chillers to preheat domestic hot water. Demolition of existing buildings is not required for site clearance. Accessibility for the handicapped is not required for functional reasons.

11. Project:

Install a chiller heat recovery system for preheating domestic hot water. This project will save \$879 and 139.56 MBTU per year in electrical charges, and \$2,785 and 963.60 MBTU per year in natural gas charges.

> (WHEN DATA IS ENTERED) 244

FOR OFFICIAL USE

DD FORM 1391

PREVIOUS EDITIONS MAY BE USED INTERNALLY

ONLY

PAGE NO.

1. COMPONENT			2. DATE
ARMY	FY 19_93_MILITARY CONSTRUCT	TION PROJECT DATA	25 March 9
Lyster Army Fort Rucker,	Community Hospital		L
4. PROJECT TITLE		5. PROJECT NU	IMBER
ECIP			
REQUIREMENT	:		
electrical costs	required to provide a reducti by utilizing an auxiliary cond ic hot water. The project has 2.26. The ECIP Life Cycle C	lenser on one of the s a Savings To Inve	e chillers to stment
			 * *
CURRENT SIT	JATION:		
from a storage Base steam sy auxiliary cond pressure and be reduced by	ater is currently provided to tank in the main mechanical re- tem which uses natural gas as nser would improve chiller per hereby lower electrical energy using the waste heat from the of the Base steam system.	oom and is heated b its energy source. rformance by loweri use. Natural gas	by Ft. Rucke The ng head usage would
IMPACT:			
Community Ho	ll continue to heat domestic ho pital by the basewide steam sy of \$3,664 in electrical and nat	stem and lose a po	tential
			-
FORM 1391c	PREVIOUS EDITIONS MAY BE USED IN	TERNALLY	AGE NO.
	OR OFFICIAL US		•
	(WHEN DATA IS ENTERI		

5.4 ECO Analysis With Cooling Storage

The cooling storage strategy proposed in this study is based on avoiding all chiller operation during peak load hours for as much as eight months of the year. This would correspond to the same period as there would be peak domestic hot water usage. Since the heat recovered from the auxiliary condenser cannot be stored - water can only be preheated as use occurs - the cooling storage strategy will significantly reduce the potential for heat recovery with this ECO.

The original analysis of the heat recovery ECO was based on 915,253 ton-hours of chiller operation to determine both the electric and natural gas savings. If we assume that we eliminate the 230 ton chiller operation for 6 hours a day for eight months, we reduce the available ton-hours by up to (6 hrs X 30 days X 8 months X 230 tons) 331,200 ton-hours or 36%. This would reduce the total potential energy savings by the same amount to \$2,345 increasing the simple payback to 11.85 years.

Chiller heat recovery for domestic hot water is not feasible if the Cooling Storage project is implemented.

SECTION 5.0 APPENDIX

CHILLER HEAT RECOVERY FOR DOMESTIC HOT WATER

LYSTER ARMY COMMUNITY HOSPITAL

APPENDIX 5A

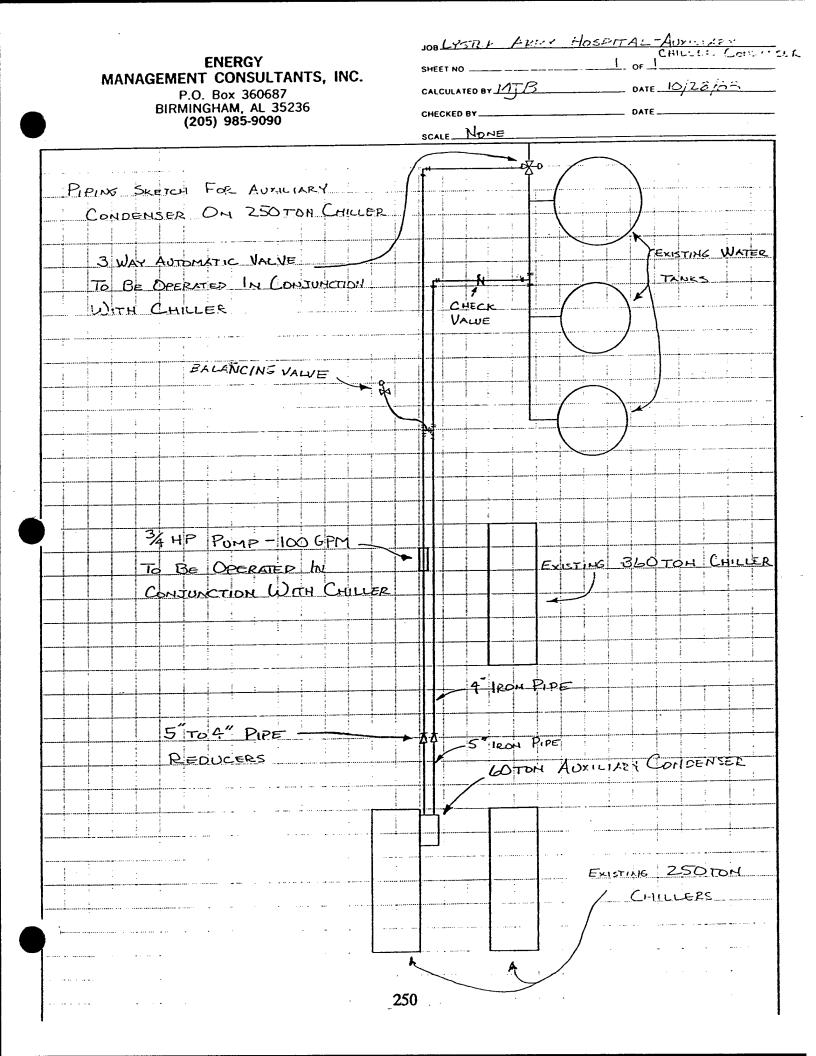
4

ORIGINAL ECO FROM 1989 STUDY CHILLER AUXILIARY CONDENSER

ECO 12 CHILLER AUXILIARY CONDENSER

LYSTER ARMY HOSPITAL

Existing Conditions: The centrifugal chilled water system consists of three centrifugal chillers: two 230 ton chillers and one 360 ton chiller. When in operation, each chiller produces waste heat due to the refrigeration cycle. The chillers are presently manually staged by operating personnel to meet buildings cooling load. Cooling is required year round.


Recommended Modifications: Add a 60 ton auxiliary condenser to one 230 ton chiller, making it the primary chiller. This auxiliary condenser can then be used for domestic hot water (DHW) preheat by connecting to the DHW system. Since DHW will not be adequate to operate the auxiliary flow condenser, a circulating pump will be required. A sketch of recommended modifications follows. DHW will be All This preheated to 95°F when the chiller is in operation. will reduce the steam required at the hospital, resulting in natural gas savings. When an auxiliary condenser is added, electrical energy consumption is also decreased due to increased condenser heat transfer surface area and a lower pressure differential required by the compressor.

Economic Summary:

Implementation Cost: \$21,870

Energy Savings

Electric	139.56 MBTU/YR	\$1,799
Nat Gas	963.60 MBTU/YR	\$3,960
Total	1,103.16 MBTU/YR	\$5,759
Simple Payback	3.8 years	
SIR	3.86	

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION: FORT RUCKER REGION NO.: 4 PROJECT PROJECT TITLE: ENERGY SURVEY FISCAL YEAR: 199 DISCRETE PORTION NAME: CHILLER AUXILIARY CONDER ANALYSIS DATE: 1-26-89 ECONOMIC LIFE: 20	90
<pre>1. INVESTMENT A. CONSTRUCTION COST B. SIOH (1A * 5.5%) C. DESIGN COST(1A * 6%) D. ENERGY CREDIT CALC (1A+1B+1C) * 90% E. SALVAGE VALUE F. TOTAL INVESTMENT (1D-1E)</pre>	\$21,793.27 \$1,198.63 \$1,307.60 \$21,869.54 \$0.00 \$21,869.54
2. ENERGY SAVINGS (+) / COST (-) BASE YEAR ANNUAL SAVINGS, UNIT COST & DISCOU UNIT COST SAVINGS ANNUAL \$	DISCOUNT DISCOUNTED
FUEL \$/MBTU(1) MBTU/YR(2) SAVINGS(3)	FACTOR(4) SAVINGS(5)
A. ELEC \$12.89 139.56 \$1,798.99	
B. DIST \$0.00 0.00 \$0.00	14.21 \$0.00
C. RESI \$0.00 0.00 \$0.00	14.39 \$0.00
D. NG. \$4.11 963.60 \$3,960.40	16.76 \$66,376.24
E. COAL \$0.00 0.00 \$0.00	12.09 \$0.00
F. TOTAL 1,103.16 \$5,759.38	\$84,348.09
3. NON ENERGY SAVINGS (+) / COST (-) A. ANNUAL RECURRING (+/-) (1). DISCOUNT FACTOR (TABLE A) (2). DISTILLATE HANDLING COST	\$0.00 L0.59
(.0603*2B)	\$0.00
(3). DISCOUNTED SAVINGS/COST	
((3A*3A2)*3A1)	\$0.00
B. NON RECURRING SAVINGS/COST	
NONE	
C. TOTAL NON ENERGY DISCOUNTED SAVINGS (+)	
COST (-) (3A3+3B)	\$0.00
D. NON ENERGY DISCOUNTED SAVINGS IS = OR	< 25% OF TOTAL
4. FIRST YEAR DOLLAR SAVINGS	
(2F3+3A+(3B/ECONOMIC LIFE))	\$5,759.38
5. TOTAL NET DISCOUNTED DOLLAR SAVINGS (2F5+3C)	\$84,348.09
6. DISCOUNT SAVINGS RATIO (IF < 1 PROJECT DOES NOT QUALIFY) (SIR) = (5/1F)	3.86

ł

ELECTRICAL ENERGY SAVINGS ASSOCIATED WITH INSTALLATION OF AUXILIARY CHILLER CONDENSER

Calculation For Estimated Electrical Energy Savings

Since chiller energy consumption varies with cooling loads, hours at a specific cooling load have been taken from TRACE. Only one 230 ton chiller will be fitted with an auxiliary condenser and instead of staggering chiller operation between the three chillers present, the 230 ton chiller with auxiliary condenser will be the primary chiller and the other chillers will be brought on line when cooling loads increase past capacity of the primary chiller. Electrical energy required for a 3/4 hp circulating pump must also be taken into consideration.

COOLING LOAD TONS	ANNUAL HOURS AT LOAD	TON-HOURS
32.39	3,387	109,704.93
64.77	1,323	85,690.71
97.16	869	84,432.04
129.55	664	86,021.20
161.94	153	24,776.82
194.32	187	36,337.84
230.00	2,123	488,290.00
	ANNUAL TON-HOURS	915,253.54

Without an auxiliary condenser, chiller energy consumption is 0.6700 KW/Ton. With an auxiliary condenser, chiller energy consumption is 0.6200 KW/Ton.

ANNUAL ELECTRICAL ENERGY CONSUMPTON

With automatic tube cleaners and no auxiliary condenser

0.6700 KW/Ton * 915,253.54 Ton-Hours = 613,220 KWH

With automatic tube cleaners and auxiliary condenser and 3/4 hp circulating pump

(0.6200 KW/Ton * 915,253.54 Ton-Hours)+(0.75 hp * 0.746 KW/hp * 8,706 Hours) = 572,328 KWH

ELECTRICAL ENERGY SAVINGS ASSOCIATED WITH INSTALLATION OF AUXILIARY CHILLER CONDENSER

ANNUAL ELECTRICAL ENERGY SAVINGS

613,220 KWH - 572,328 KWH = 40,892 KWH

ANNUAL DOLLAR SAVINGS

40,892 KWH * \$0.043993/KWH = \$1,799

X.0215 = \$ 879

ENERGY	JOB LYSTER APINY HOSPICAL FORT RUCKET
MANAGEMENT CONSULTANTS, INC.	SHEET NO I OF Z
P.O. Box 360687	CALCULATED BY MJB DATE
BIRMINGHAM, AL 35236	CHECKED BY DATE
(205) 985-9090	SCALE
NATURAL GAS SAVINGS INSTALLATION OF AUXILIAE CALCULATION FOR NATURAL GAS SAVI	

ASSUME 424,860 GALLON'S PER MONITH POMESTIC HOT WATER CONSUMPTION. THIS AMOUNT IS DERIVED FROM THE TRACE RUN BASE NATURAL GAS CONSUMPTION WITH BOILER EFFICIENCY OF 80.8%. ALL DOIASSTIC HOT WATER WILL BE PREHEATED TO 85°F FROM 65°F. SINCE THE CHILLER DOES NOT OPERATE, THESE CALCULATIONS WILL ASSUME AN OPERATING THAT OF 11 MONITHS PER YEAR.

CURRENT NATURAL GAS CONSULTATION 424,860 GAL/MONTH × 12 MONTHS/ EAD × 8.33 PONDAL × BTV/ COUND-OF × (115°F-65°F)

 $\frac{124,060}{100,000} \xrightarrow{BTV}_{THERM} \sim B\Delta S^{*}_{6}$ $= 26,280 \xrightarrow{THERM}_{IERR}$

NATURAL GAS CONSUMPTION AFTER INSTALLATION DE AUXILIARY CONDENSER

(424,860 GAL/MONTH XII MONTH/102 8.33 BUNDS/ GALZ BTU/ POUND-OF X (115°F-85°F)

+ (424,860 (115F-65°F)

= 16,644 THERMY

ANNUAL MATURAL GAS SAUMAS

26,280 THERMS/YEAR - 16,644 THERMS/YEAR - 9636 THERMS/YEAR

ENERGY			I VSTE	<u>e</u> A	RMY			741 <u>-</u>		DCKE S
MANAGEMENT CONSULTANTS, IN	IC.	CALL	CULATED BY	, MT	B					<u> </u>
P.O. Box 360687 BIRMINGHAM, AL 35236			CKED BY					ATE	· ·	
(205) 985-9090		SCA							_,	
		304								
			• •				····· · · ·			
NATURAL GAS SAU	migs A	-5.5.00	17-2D	w	174		<u>.</u>			······································
NETALLATION OF	AUXILI	ler C	HILLER	CON	DENSE	R	-			
ANNIDLI DOLLAR SAVINES							<u> </u> .			
						i	-			
9,636 THERMS YEAR X \$ D.411	FUERIA	_ \$	3,960							· · · · ·
									···· ···· ··· ···	
289	4	-12	2785							
									•.	
	1		1		- I I	:		1		
			•••• ··· •····			 I		 		· .
	<u>i</u>					 !				·······
	<u>.</u>						<u> </u>			
			<u></u>							
		;								
		-								
		:								
	•								-	
		:					++			
		;				İ				
			1		_		-		· ·	
			<u> </u>						l 	
							_			
		•	- -	-						
										1
			••••••••••••••••••••••••••••••••••••••							
		· ···· • ·····		i					}	
		:	<u>.</u>							
·										
					:				i •	:
							:	:	. 	
<u> </u>	••• •			· ·						
	• • •				•					
				•			• · · •			
· · · · · · · · · · · · · · · · · · ·		255				. .	•		. ·	

COST ESTIMATE ANALYSIS	E ANAL'	rsis and	V 11 U8AC	·	INVITATIC	INVITATION/CONTRACTOR	TOR	EFFECTIVE PRICING OATE	AICING D	ν τ ε	DATE PREPARED	A E O	
LOUIST CONTREVE OR FOR ONE 2555 TOM PULL	۲. ۲. 0	12 L 7	1401-0		C00E (Che	Check one)	۴	DAAWING NO.			SHEET	0. 7	ShEETS
	Apras H	Llinepit AL		1] []]	1	ESTIMATOA			CHECKED BY		
	121	QUANTITY			LABOR		ТО Ш	EQUIPMENT	W	MATERIAL		ŝ	SHIPPING
TASK DESCAIPTION	NO. OF UNITS	UNIT MEAS	MH UNIT	TOTAL HAS	UNIT PRICE	COST	PAICE	COST	UNIT PRICE	COST	TOTAL	12×1	101AL
LO TUN AUFUREY CONC. NEER													
Fri (NUIE-025 U. T													
INSTALLED BY TRANE													
Exclusing Controls													
ANTE DISINE	-	Uni T				6201				P'I 15			
3Y4 HP													
くで - 1000 G	-	¥ Щ	4	4	10.62	4-2.48			දිප්ර	880	-		
4" 3 WAY AUTORATIC						-							
Vr. Ve	1	EA	7	۲.	10.62	74,34			1,330	1,330			
4 "PEBULATOR. VALVE		EA.	2	2	201.01	21.24			165	591	•		
Plac RECOVER S'TO 4"	2	Щ		Ч	10,62	21.24			<u>5</u>	24	·		
4" CHECK VALVE		E A	I	و	10.62	63.72			135	135			
4" ROE TEE FITTING	Ю	ĒÀ	2	l	2901	63.72			16.4)	98.40	-		
4 C ELEON PITTING	00	≯ Ш		12	10.62	127,44			50.01	80.40			
4" Ison Dige Included	80	ц Г	50	0 7	29101	424.80	~		6.60	528			
COUPLINES AL PHANNES		 				6838.9B				9415.80	0		
DA FORM 6418-R. Apr 85													

.

-

DA FORM 6418-R, Apr 85

256

	COST ESTIMATE ANALYSIS For use of this form, see TM 5-800-2; the propodent ageney is USACE.	E ANAL	YSIS	iev la USA(5	INVITAT	INVITATION/CONTRACTOR	стоя	EFFECTIVE PRICING DATE	RICING D	ATE	DATE PREPARED	с Э Е С	
	PROJECT AUXILIARY CONDENSER FOR DNE 230 TON CHI	E CA	N N	30 T 01	א כאורי	CODE (C)	CODE (Check one)		DRAWING NO.			sheet Z	, o	Z BHEETS
វ ផ្តែ	EDET RUCKER - LYSTER ARMY HOSPITAL	AV H	2261TA	7			отнея	1	ESTIMATOR			СНЕСКЕО ВУ		
		AUA	QUANTITY			LABOR		E O	EQUIPMENT	Σ	MATERIAL		Ű	ONIGGINS
	TASK DESCRIPTION	NO. OF UNITS	UNIT MEAS	MH UNIT	TOTAL HRS	PRICE	COST	UNIT	COST	UNIT	COST	TOTAL		TOTAL
a	PIPE INSULATION LIJITH													•
J	COVER -4L.F. ADDED													
Γġ	FOR EACH FITTING													
4	VALVE AND' FLANGE	44	۲. F.	O.114	16.4	10.62	174.17			3.05	439.20			
 	SUB-TOTAL						7013.15				<u> 855</u>			
25	-ABOR BURDEN (18%)						12,62.37							
<u> </u>	OVERHEAD (16%)						-				1576.80			
6Å	PROFIT (10%)										985,50			
Ň	SALES TAX (5.5%)					· _		-			542.03		•	
	SUR-TDTAL						8575.52				12 959 27	12 959 22 7 1534 RT		
Q	BOND (1.2%)				+	1.15	2985					258.42		
	TOTAL											21.793.27		
<u>بر</u>	SOURCES: TRANE - BIRMINS HAM	MINB	JAM											
	1988 MEANS MECHANILAL	Mec	TANL	24 5 0	-25C	OATA						. • •		
	TOTAL THIS SHEET													
۲ ۵	DA FORM 5418-R, Apr 85													

Birmingham Sales District Commercial Systems Group The Trane Company 620 S. Ninth Street Birmingham AL 35233 205 251 2421 Jack M. Ballard, Jr. District Manager

October 19, 1988

Energy Management Consultants P.O. Box 360687 Birmingham, Al 35236

Attn: Mark Barnett

Re: Auxiliary Condensers for Trane model CVHE

Mark,

Please find below a price for installing auxiliary condensers on Trane model CVHE units. This price does not include any water piping run to the condenser nor any controls.

Nominal 60 ton unit: \$12,175.00 $+ \# /3,800^{-2}$ Nominal 100 ton unit: \$13,110.00

Please advise if we could be of any further service.

Yours very truly,

THE TRANE COMPANY

Scott Bourgeois Birmingham Sales District

ESB/1kb

APPENDIX A

LIMITED ENERGY STUDIES

SCOPE OF WORK

259

CESAM-EN-CC

SCOPE OF WORK

FOR

FY92 LIMITED ENERGY STUDIES

AT

FORT RUCKER, ALABAMA

1.14

Performed as part of the

ENERGY ENGINEERING ANALYSIS PROGRAM (EEAP)

. . . .

·_ -

APPENDIX "A"

CONTRACT NO: DACA01-92-C-0119

SCOPE OF WORK FOR FY92 LIMITED ENERGY STUDIES FORT RUCKER, ALABAMA

TABLE OF CONTENTS

1. BRIEF DESCRIPTION OF WORK

2. GENERAL

- 3. PROJECT MANAGEMENT
- 4. SERVICES AND MATERIALS
- 5. PROJECT DOCUMENTATION
 - 5.1 ECIP Projects
 - 5.2 Non-ECIP Projects
 - 5.3 Nonfeasible ECOs
- 6. DETAILED SCOPE OF WORK
- 7. WORK TO BE ACCOMPLISHED
 - 7.1 Review Previous Studies
 - 7.2 Perform a Limited Site Survey
 - 7.3 Reevaluate Selected Projects
 - 7.4 Evaluate Selected ECOs
 - 7.5 Combine ECOs into Recommended Projects
 - 7.6 Submittals, Presentations and Reviews

ANNEXES

- A DETAILED SCOPE OF WORK
- **B EXECUTIVE SUMMARY GUIDELINE**
- C REQUIRED DD FORM 1391 DATA

1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:

1.1 Review the previously completed energy studies which apply to the buildings, systems, or energy conservation opportunities (ECOs) covered by this study.

1.2 Perform a limited site survey of specific buildings or areas to collect all data required to evaluate the specific ECOs included in this study.

1.3 Reevaluate the specific project or ECO from the previous study to determine its economic feasibility based on revised criteria, current site conditions and technical applicability.

1.4 Evaluate specific ECOs to determine their energy savings potential and economic feasibility.

1.5 Provide project documentation for recommended ECOs as detailed herein.

1.6 Prepare a comprehensive report to document all work performed, the results and all recommendations.

2. GENERAL

2.1 This study is limited to the evaluation of the specific buildings, systems, or ECOs listed in Annex A, DETAILED SCOPE OF WORK.

2.2 The information and analysis outlined herein are considered to be minimum requirements for adequate performance of this study.

2.3 For the buildings, systems or ECOs listed in Annex A, all methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunity considered infeasible shall also be documented in the report with reasons for elimination.

2.4 The study shall consider the use of all energy sources applicable to each building, system, or ECO.

2.5 The "Energy Conservation Investment Program (ECIP) Guidance", described in letter from CEHSC-FU, dated 28 June 1991 and the latest revision from CEHSC-FU establishes criteria for ECIP projects and shall be used for performing the economic analyses of <u>all</u> ECOs and projects. The program, Life Cycle Cost In Design (LCCID), has been developed for performing life cycle cost calculations in accordance with ECIP guidelines and is referenced in the ECIP Guidance. If any program other than LCCID is proposed for life cycle cost analysis, it must use the mode of calculation specified in the ECIP Guidance, the output must be in the format of the ECIP LCCA summary sheet, and it must be submitted for approval to the Contracting Officer.

Computer modeling will be used to determine the energy 2.6 savings of ECOs which would replace or significantly change an existing heating, ventilating, and air-conditioning (HVAC) system. The requirement to use computer modeling applies only to heated and air-conditioned or air-conditioned-only buildings which exceed 8,000 square feet or heated-only buildings in excess of 20,000 square feet. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex A, will list programs that are acceptable to the Contracting Officer. If the AE desires to use a different program, it must be submitted for approval with a sample run. an explanation of all input and output data, and a summary of program methodology and energy evaluation capabilities.

2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP, MCA, or PCIP funding, and determining in coordination with installation personnel the appropriate packaging and implementation approach for all feasible ECOs.

2.7.1 Projects which qualify for ECIP funding shall be identified, separately listed, and prioritized by the Savings to Investment Ratio (SIR).

2.7.2 All feasible non-ECIP projects shall be ranked in order of highest to lowest SIR.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this contract. Upon award of this contract, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this contract. The Contracting Officer will designate a project manager to serve as the Government's point of contact and liaison for all work required under this contract. This individual will be the Government's representative.

3.2 <u>Installation Assistance</u>. The Commanding Officer or authorized representative at the installation will designate an individual to assist the AE in obtaining information and establishing contacts necessary to accomplish the work required under this contract. This individual will be the installation representative.

3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this contract, except as authorized by the Contracting Officer.

3.4 <u>Meetings</u>. Meetings will be scheduled whenever requested by the AE or the Contracting Officer for the resolution of questions or problems encountered in the performance of the work. The AE's project manager and the Government's representative shall be required to attend and participate in all meetings pertinent to the work required under this contract as directed by the Contracting Officer. These meetings, if necessary, are in addition to the presentation and review conferences.

3.5 <u>Site Visits. Inspections. and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 <u>Records</u>

3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the records.

3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.

3.7 <u>Interviews</u>. The AE and the Government's representative shall conduct entry and exit interviews with the Director of Engineering and Housing before starting work at the installation and after completion of the field work. The Government's representative shall schedule the interviews at least one week in advance. 3.7.1 Entry. The entry interview shall describe the intended procedures for the survey and shall be conducted prior to commencing work at the facility. As a minimum, the interview shall cover the following points:

- a. Schedules.
- b. Names of energy analysts who will be conducting the site survey.
- c. Proposed working hours.
- d. Support requirements from the Director of Engineering and Housing.

3.7.2 Exit. The exit interview shall briefly describe the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Director of Engineering and Housing.

4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), equipment, labor, supervision and travel necessary to perform the work and render the data required under this contract are included in the lump sum price of the contract.

5. <u>PROJECT</u> <u>DOCUMENTATION</u>. All energy conservation opportunities which the AE has considered shall be included in one of the following categories and presented in the report as such:

5.1 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio greater than one and a simple payback period of less than eight The overall project and each discrete part of the project years. shall have an SIR greater than one. All projects meeting the above criteria shall be arranged as specified in paragraph 2.7.1 and shall be provided with programming documentation. Programming documentation shall consist of a DD Form 1391, life cycle cost analysis (LCCA) summary sheet(s) (with necessary backup data to verify the numbers presented), and a Project Development Brochure (PDB). A life cycle cost analysis summary sheet shall be developed for each ECO and for the overall project when one or more ECOs are combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs.

5.2 <u>Non-ECIP Projects</u>. Projects which do not meet ECIP criteria with regard to cost estimate, payback period, or non-energy (75%) qualification test, but which have an SIR greater than one shall be documented. Projects or ECOs in this category shall be arranged as specified in paragraph 2.7.2 and shall be provided with the following documentation: the life cycle cost analysis (LCCA) summary sheet completely filled out, a description of the work to be accomplished, backup data for the LCCA, ie, energy savings calculations and cost estimate(s), and the simple payback period. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition these projects shall have the necessary documentation prepared, as required by the Government's representative, for one of the following categories:

a. Quick Return on Investment Program (QRIP). This program is for projects which have a total cost greater than \$3,000 but less than \$100,000 and a simple payback period of two years or less.

b. Productivity Enhancing Capital Investment Program (PE-CIP). This program is for projects which have a total cost of greater than \$3,000 but less than \$100,000 and a simple payback period of four years or less.

c. OSD Productivity Investment Funding (OSD PIF). This program is for projects which have a total cost of more than \$100,000 and a simple payback period of four years or less.

The above programs and the required documentation forms are all described in detail in AR 5-4, Change No. 1.

d. Regular Military Construction Army (MCA) Program. This program is for projects which have a total cost greater than \$300,000 and a simple payback period of eight to twenty-five years. Documentation shall consist of DD Form 1391 and a Project Development Brochure.

e. Low Cost/No Cost Projects. These are projects which the Director of Engineering and Housing (DEH) can perform using his resources. Documentation shall be as required by the DEH.

5.3 <u>Nonfeasible ECOs</u>. All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.

6. <u>DETAILED</u> <u>SCOPE</u> <u>OF</u> <u>WORK</u>. The Detailed Scope of Work is contained in Annex A.

7. WORK TO BE ACCOMPLISHED.

7.1 <u>Review Previous Studies</u>. Review the previous studies which apply to the specific building, system, or ECO covered by this study. This review should acquaint the AE with the work that has been performed previously. Much of the information the AE may need to develop the ECOs in this study may be contained in the previous studies.

7.2 <u>Perform a Limited Site Survey</u>. The AE shall obtain all necessary data to evaluate the ECOs or projects by conducting a site survey. However, the AE is encouraged to use any data that may have been documented in a previous study. The AE shall document his site survey on forms developed for the survey, or on standard forms, and submit these completed forms as part of the report. All test and/or measurement equipment shall be properly calibrated prior to its use.

7.3 <u>Reevaluate Selected Projects</u>. The AE shall reevaluate the projects listed in Annex A. These projects were previously identified but have not been accomplished. If a project is acceptable as is, that is, there are no changes to the basic project, the energy savings shown in the previous study may be accepted as accurate but the energy cost and construction cost estimates shall be updated based on the most current data available. With the above information the project shall then be analyzed based on current ECIP criteria. If the original project evaluation is suspected of being inaccurate, but the project or ECO is still considered feasible, the AE shall develop the project from the beginning and analyze it with the current ECIP guidance. This project shall be separately listed in the report.

7.4 Evaluate Selected ECOs. The AE shall analyze the ECOs -These ECOs shall be analyzed in detail to delisted in Annex A. termine their feasibility. Savings to Investment Ratios (SIRs) shall be determined using current ECIP guidance. The AE shall provide all data and calculations needed to support the recommended All assumptions and engineering equations shall be clearly ECO. Calculations shall be prepared showing how all numbers in stated. the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. A life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data.

7.5 <u>Combine ECOs Into Recommended Projects</u>. During the Interim Review Conference, as outlined in paragraph 7.6.1, the AE will be advised of the DEH's preferred packaging of recommended ECOs into projects for implementation. Some projects may be a combination of several ECOs, and others may contain only one. These projects will be evaluated and arranged as outlined in paragraphs 5.1, 5.2, and 5.3. Energy savings calculations shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. The results of this effort will be reported in the Final Submittal per par 7.6.2.

7.6 <u>Submittals</u>, <u>Presentations and Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and shall be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. Names of the persons primarily responsible for the project shall be included. The AE shall give a formal presentation of the interim submittal to installation, command, and other Government personnel. Slides or view graphs showing the results of the study to date shall be used during the presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study.

267

A review conference will be conducted the same day, following the presentation. Each comment presented at the review conference will be discussed and resolved or action items assigned. It is anticipated that the presentation and review conference will require approximately one working day. The presentation and review conference will be at the installation on the date agreeable to the Director of Engineering and Housing, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

7.6.1 Interim Submittal. An interim report shall be submitted for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and containa plan of the work remaining to complete the study. Calculations showing energy and dollar savings, SIR, and simple payback period of all the ECOs shall be included. The results of the ECO analyses shall be summarized by lists as follows:

a.All ECOs eliminated from consideration shall be grouped into one listing with reasons for their elimination as discussed in par 5.3.

b.All ECOs which were analyzed shall be grouped into two listings, recommended and non-recommended, each arranged in order of descending SIR. These lists may be subdivided by building or area as appropriate for the study. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. At the Interim Submitthe Government's and AE's representatal and Review Conference, tives shall coordinate with the Director of Engineering and Housing to provide the AE with direction for packaging or combining ECOs for-programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

7.6.2 Final Submittal. The AE shall prepare and submit the final report when all sections of the report are 100% complete and all comments from the interim submittal have been resolved. The AE shall submit the Scope of Work for the study and any modifications to the Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and sources of information. The report shall integrate all aspects of the study. The recommended projects, as determined in accordance with paragraph 5, shall be presented in order of priority by SIR. The lists of ECOs specified in paragraph 7.6.1 shall also be included for continuity. The final report and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The final report shall be arranged to include:

a. An Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex B for minimum requirements).

b. The narrative report describing the problem to be studied, the approach to be used, and the results of this study.

c. Documentation for the recommended projects (includes LCCA Summary Sheets).

d. Appendices to include as a minimum:

- 1) Energy cost development and backup data
- 2) Detailed calculations
- 3) Cost estimates

4) Computer printouts (where applicable)

5) Scope of Work

ANNEX A

DETAILED SCOPE OF WORK

FY92 LIMITED ENERGY STUDIES, FORT RUCKER, ALABAMA

1. All of the facilities to be studied in this contract are located at Fort Rucker, Alabama.

2. The AE shall provide all necessary effort, services, and materials required to accomplish the work specified.

3. The installation representative for this contract will be Mr. William DeJournett, Energy Manager, Directorate of Engineering and Housing.

4. Completion and Payment Schedule: The following schedule shall be used as a guide in approving payments on this contract. The final report for this study shall be due not later than 270 days after Notice to Proceed.

OF CONTRACT ANOUNT

MILESTONE	AUTHORIZED FOR PAYMENT
Entry Interview	10
Completion of Field Work	25 - 10/15/92 75 - 11/15/92
Receipt of Interim Submittal	75 - 11/15/92
Completion of Interim Presentation	n & Review 85 - 12/15 /92
Receipt of Final Report	100 - 12/31/92

5. Work To Be Accomplished: There are two main areas of work in this contract, an LP gas storage study, and evaluation of two energy conservation opportunities (ECOs) for Lyster Army Hospital.

LP Gas Storage: Evaluate the technical and economic a. feasibility of building and operating a liquified petroleum gas (LPG) storage facility. The primary heating fuel at Fort Rucker is natural gas; it is used in central steam plants and in central forced-air furnaces for family housing. Natural gas is purchased from the Southeast Alabama Gas District at their lowest rate. However, Fort Rucker also pays a natural gas demand charge based on the amount of natural gas used during curtailment. During a curtailment period, the natural gas demand is reduced as much as possible by switching the central steam plants to oil; but the family housing area cotinues to use natural gas. An LPG storage system would provide the capability of injecting a mixture of air and propane into the natural gas disribution system during curtailment to reduce natural gas demand. This would result in lower gas bills throughout the year.

b. Lyster Army Hospital: An EEAP study was completed for Lyster Army Hospital in 1989. The final report of this study will be provided to the AE. The following two ECOs should be evaluated separately and in combination. 1) Cooling Storage System for Peak Demand Reduction: Evaluate the technical and economic feasibility of reducing peak electrical demand at the hospital by use of a cooling storage system. The AE will determine the optimum type of cooling storage system for the hospital. For accurate evaluation of this ECO, building thermal loads must be modeled. In the 1989 EEAP study, the building was modeled using Trane TRACE. TRACE will be an acceptable program to use for modeling. If the AE wants to obtain and reuse the TRACE input from the 1989 study, such plan will first be submitted to the Contracting Officer for approval. Other acceptable programs are listed in paragraph 6.

2) Chiller Heat Recovery for Domestic Hot Water: Evaluate the technical and economic feasibility of recovering heat from the hospital chillers for preheating domestic hot water with and without the cooling storage system mentioned above. Heat recovery from chillers was recommended in the 1989 study but has not been implemented.

6. The simulation programs acceptable for use in this study are listed below. Any substitutes must be submitted and approved as outlined in the basic scope of work.

a. Building Loads and System Thermodynamics (BLAST)

b. DOE 2.1B

c. Carrier E20 or Hourly Analysis Program (HAP)

d. Trane Air-Conditioning Economics (TRACE)

7. Government-Furnished Information: The following documents will be furnished to the AE:

a. ENERGY SURVEY, LYSTER ARMY COMMUNITY HOSPITAL, FORT RUCK-ER, ALABAMA; February 1989, Energy Management Consultants, Inc, Birmingham, AL.

b. ETL 1110-3-282, Energy Conservation

c. Energy Conservation Investment Program (ECIP) Guidance, dated 28 June 1991 and the latest revision with current energy prices and discount factors for life cycle cost analysis.

d. TM 5-785, Engineering Weather Data (applcable portions)

e. TM 5-800-2, Cost Estimates, Military Construction.

f. AR 5-4, Change No. 1, Department of the Army Productivity Improvement Program.

g. AR 415-15, 1 Jan 84, Military Construction, Army (MCA) Program Development

271

h. The latest MCP Index.

. . . .

8. A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOs. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.

9. Direct Distribution of Submittals: The AE shall make direct distribution of correspondence, minutes, report submittals, and responses to comments as indicated by the following schedule:

AGENCY	CORR		TIVE REPOR	SUMMARIES TS FIELD NOTES
Commander US Army Aviation Center and Fort Ruck ATTN: ATZQ-DEH-U (DeJournett) Fort Rucker, AL 36362	ker -	3	3	1*
Commander US Army Training and Doctrine Comman ATTN: ATEN-FE (Mr Capra) Fort Monroe, VA, 23651	d -	1	1	-
Commander US Army Corps of Engineers ATTN: CEMP-ET (Mr Gentil) 20 Massachusetts Avenue NW Washington, DC, 20314 - 1000	_	1	1	-
Commander USAED, South Atlantic ATTN: CESAD-EN-TE (Mr Baggette) 77 Forsyth Street, SW Atlanta, GA 30335 - 6801	_	1	1	-
Commander USAED, Mobile ATTN: CESAM-EN-CC (Battaglia) PO Box 2288; Mobile, AL 36628	2	2	2	1*
Commander US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr Keath) New Cumberland Army Depot New Cumberland, PA, 17070 - 5007	_	1	1	-

* Field Notes submitted in final form at interim submittal.

ANNEX B

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data (types, number of similar buildings, sizes, etc.)
- 3. Present Energy Consumption of Buildings or Systems Studied.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - KWH, Dollars, BTU Fuel Oil - GALS, Dollars, BTU Natural Gas - THERMS, Dollars, BTU Propane - GALS, Dollars, BTU Other - QTY, Dollars, BTU

- 4. Reevaluated Projects Results.
- 5. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.
 - o ECOs Rejected. (Provide economics or reasons)
 - o ECIP Projects Developed. (Provide list)*

o Non-ECIP Projects Developed. (Provide list)*

o Operational or Policy Change Recommendations.

* Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date.

6. Energy and Cost Savings.

- o Total Potential Energy and Cost Savings.
- o Percentage of Energy Conserved.
- o Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.

ANNEX C

REQUIRED DD FORM 1391 DATA

To facilitate ECIP project approval, the following supplemental data shall be provided:

a. In title block clearly identify projects as "ECIP."

b. Complete description of each item of work to be accomplished including quantity, square footage, etc.

c. A comprehensive list of buildings, zones, or areas including building numbers, square foot floor area, designated temporary or permanent, and usage (administration, patient treatment, etc.).

d. List references, and assumptions, and provide calculations to support dollar and energy savings, and indicate any added costs.

(1) If a specific building, zone, or area is used for sample calculations, identify building, zone or area, category, orientation, square footage, floor area, window and wall area for each exposure.

(2) Identify weather data source.

(3) Identify infiltration assumptions before and after improvements.

(4) Include source of expertise and demonstrate savings claimed. Identify any special or critical environmental conditions such as pressure relationships, exhaust or outside air quantities, temperatures, humidity, etc.

e. Claims for boiler efficiency improvements must identify data to support present properly adjusted boiler operation and future expected efficiency. If full replacement of boilers is indicated, explain rejection of alternatives such as replace burners, nonfunctioning controls, etc. Assessment of the complete existing installation is required to make accurate determinations of required retrofit actions.

f. Lighting retrofit projects must identify number and type of fixtures, and wattage of each fixture being deleted and installed. New lighting shall be only of the level to meet current criteria. Lamp changes in existing fixtures is not considered an ECIP type project. g. An ECIP life cycle cost analysis summary sheet as shown in the ECIP Guidance shall be provided for the complete project and for each discrete part included in the project. The SIR is applicable to all segments of the project. Supporting documentation consisting of basic engineering and economic calculations showing how savings were determined shall be included.

h. The DD Form 1391 face sheet shall include, for the complete project, the annual dollar and MBTU savings, SIR, simple amortization period and a statement attesting that all buildings and retrofit actions will be in active use throughout the amortization period.

i. The calendar year in which the cost was calculated shall be clearly shown on the DD Form 1391.

j. For each temporary building included in a project, separate documentation is required showing (1) a minimum 10-year continuing need, based on the installation's annual real property utilization survey, for active building retention after retrofit, (2) the specific retrofit action applicable and (3) an economic analysis supporting the specific retrofit.

k. Nonappropriated funded facilities will not be included in an ECIP project without an accompanying statement certifying that utility costs are not reimbursable.

1. Any requirements required by ECIP guidance dated 25 April 1988 and any revisions thereto. Note that unescalated costs/savings are to be used in the economic analyses.

m. The five digit category number for all ECIP projects except for Family Housing is 80000. The category code number for Family Housing projects is 71100.

APPENDIX B

÷

LIMITED ENERGY STUDIES

TRANE TRACE BUILDING BASELINE MODEL

INPUT AND OUTPUT

TRACE 600 input file C:\JOBS\FTRUCKER.TN by ENGINEERING RESOURCE GROUP, INC.

Summer Winter

Ground Ground

Page #1

_____ Project: LYSTER ARMY COMMUNITY EOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP, INC. Comments: LIMITED ENERGY STUDIES -----CARD 08-- Climatic Information ------Summer Winter Summer Summer Weather Clearness Clearness Design Design Dry Bulb Wet Bulb Dry Bulb Orientation Reflect Reflect Number Number Code 80 MOBILE .9 .9 94

01 Card - Job Information

-----CARD 09--- Load Simulation Periods------1st Month Last Month Peak 1st Month Last Month 1st Month Last Month Cooling Cooling Summer Summer Daylight Daylight Cooling Simulation Simulation Load Hr Period Period Savings Savings APR OCT

Winter

24

Design

Building

-----CARD 10 -- Load Simulation Parameters-----Cooling Heating Airflow Airflow Room ____ Put Wall Load Ventilation Input Output Circulation RA Load Load Method Method Units Units Rate to Room YES TETD-TA1 UATD

-----CARD 11-- Energy Simulation Parameters-----Building 1st Month Last Month Level Energy Of Holiday Calendar Floor Energy Simulation Simulation Calculation Code Code Area ZONE

----- Load Section Alternative #1 -----

---- Load Alternative ----Number Description 1 BASELINE MODEL TRACE 600 input file C:\JOBS\FTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC.

.

Alternative #1

Page #2

.

	Zone						Acoustic	Floor to	Duplicate	Duplicate	Perimete
Room	Reference	Room	Floor	Floor	Const	Plenum	Ceiling	Floor	Floors	Rooms per	Depth
Number	Number	Descrip	Length	Width	Type	Height	Resistance	Height	Multiplier	Zone	
1	1	SURGERY1	441	1		0		11			
2	2	SUR CORR	927	1		0		11			
3	3	SURGERY2	400	1		0	-	11			
4	4	DEL 1	294	1		0		11			
5	5	DEL 2	273	1		0	4	11			
6	6	LABOR	1695	1		0		11			
7	7	SUR. LOUN	1968	1		0	·	11			
8	8	NURSERY	879	1		0		11			
9	9	OB RECOV	252	1		0		11			
10	10	OR RECOV	405	1		0		11			
11	11	PERIM N.	4644	1		0		11		•	
12	12	PERIM. S	1980	1		0		11			
13	13	INT. N	4968	1		0		11			
14	14	INT. S	5244	1		0		11			
15	15	ICU	756	1		0		11			
16	16	KIT ADMIN	1032	1		1		12			
17	17	FOOD PRE	1828	1		1		12			
18	18	XRAY EXT	5336	1		1		12			
19	19	XRAY INT	2352	1		1		12			
20	20	PHY THER	4404	1		1		12			
21	21	ADMIN	1790	1		1		12			
22	22	SUR.CLINIC	3116	1		1		12			
23	23	SUR.CLINIC	5822	1		1		12			
24	24	MECH	1072	1		1		12			
25	25	E.R.AC10	3915	1		1		12			
26 ·	26	ADMIN	2964	1		1		12			
27	27	DENT EXT	1210	1		1		12			
28	28	DENT INT	5899	1		1		12			
29	29	EENT EXT	1512	1		1		12			
30	30	EENT INT	3696	1		1		12			
31	30	AREA S	3240	1		1		12			
32	31	AREA S DINING	1734	1		1		12			
33	32		1734	1		1		12			
		ACS NORT		-		1		12			
34	34	AC8 EAST	2367	1		1		12			
35	35	AC7 SO	4967	1		1		12			
36	36	AC8 SO	2268	1				12			
37	37	AC7 WEST	1772	1		1					
38	38	AC7 INT	13657	1		1		12			
39	39	AC8 INT	15184	1		1		12			
40	40	AC9 LAB	8039	1		1		12			
41	41	WEST CMS	4776	1		1		12			
42	42	AC11 WES	3671	1		1		12			
43	43	AC14 WES	1763	1		1		12			
44	44	AC13 SOU	1798	1		1		12			
45	45	AC11 EAS	3067	1		1		12			
46	46	AC14 EAS	6380	1		1		12			

TRACE 600 input file C:\JOBS\FTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC. Alternative #1

-Page #3

.

	Zone						Acoustic	Floor to	Duplicate	Duplicate	
Room	Reference	Room	Floor	Floor	Const	Plenum	Ceiling	Floor	Floors	Rooms per	Depth
Number	Number	Descrip	Length	Width	Type	Height	Resistance	Height	Multiplier	Zone	
48	48	AC11 INT	4485	1		1		12			
49	49	AC14 INT	5828	1		1		12			
50	50	AC13 INT	7562	1		1		12			
51	51	AC17 WES	1119	1		1	-	12			
52	52	AC17 NOR	3295	1		1	÷.	12			
53	53	AC17 INT	9055	1		1	. **	12			
54	54	AC16 INT	3278	1		1		12			
55	55	AC16 NOR	680	1		1		12			
56	56	AC16	8368	1		1		12			
57	57	AC18	1170	1		1		12			

CA	RD 21 The	ermostat	Parameters -							
	Cooling	Room	Cooling	Cooling	Heating	Heating	Heating	T'stat	Mass /	Carpet
Room	Room	Design	T'stat	T'stat	Room	T'stat	T'stat	Location	No. Hrs	On
Number	Design DB	RH	Driftpoint	Schedule	Design DB	Driftpoint	Schedule	Flag	Average	Floor

	ACCOUNT.	ACCOM.	Deardn	TOLAC	T OCTO						
	Number	Design DB	RH	Driftpoint	Schedule	Design DB	Driftpoint	Schedule	Flag	Average	Floor
	1	72		72	THERM72	72	72	THERM72	ZONE		
	2	72		72	THERM72	72	72	THERM72	ZONE		
	3	72		72	THERM72	72	72	THERM72	ZONE		
	4	72		72	THERM72	72	72	THERM72	ZONE		
	5	72		72	TEERM72	72	72	THERM72	ZONE		
	6	72		72	THERM72	72	72	THERM72	ZONE		
•	7	72		. 72	THERM72	72	72	THERN72	ZONE		
	8	72		72	THERM72	72	72	THERM72	ZONE		
	9	72		72	THERM72	72	72	THERN72	ZONE		
	10	72		72	THERM72	72	72	THERM72	ZONE		
	11	72		72	THERM72	72	72	THERM72	ZONE		
	12	72		72	THERM72	72	72	THERM72	ZONE		
	13	72		72	THERM72	72	72	THERM72	ZONE		
	14	72		72	THERM72	72	72	THERM72	ZONE		
	15	72		72	THERM72	72	72	THERM72	ZONE		
	16	72		72	THERM72	72	72	THERM72	ZONE		
	17	72		72	THERM72	72	72	THERM72	ZONE		
	18	72		72	THERM72	72	72	THERM72	ZONE		
	19	72		72	THERM72	72	72	THERM72	ZONE		
	20	72		72	THERM72	72	72	THERM72	ZONE		
	21	72		72	THERM72	72	72	THERM72	ZONE		
	22	72		72	THERM72	72	72	THERM72	ZONE		
	23	72		72	THERM72	72	72	THERM72	ZONE		
	24	72		72	THERM72	72	72	THERM72	ZONE		
	25	72		72	THERM72	72	72	THERM72	ZONE		
	26	72		72	THERM72	72	72	THERM72	ZONE		
	27	72		72	THERM72	72	72	THERM72	ZONE		
	28	72		72	THERM72	72	72	THERM72	ZONE		
	29	72		72	THERM72	72	72	THERM72	ZONE		
	30	72		72	THERM72	72	72	THERM72	ZONE		

TRACE 600 input file C:\JOBS\PTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC.

Page

-. · · #4

	Cooling	Room	Cooling	Cooling	Heating	Heating	Eeating			-
loom	Room	Design	T'stat	T'stat	Room	T'stat	T'stat	Location		
lumber	Design DB	RH	Driftpoint	Schedule	Design DB	Driftpoint	Schedule	Flag	Average	Floor
1	72		72	THERM72	72	72	TEERM72	ZONE		
2	72		72	THERM72	72	72	TEERM72	ZONE		
3	72		72	THERM72	72	72	TEERM72	ZONE		
4	72		72	THERM72	72	72	THERM72	ZONE		
5	72		72	THERM72	72	72	TEERN72	ZONE		
6	72		72	THERM72	72	72	THERM72	ZONE		
7	72		72	THERM72	72	72	THERN72	ZONE		
8	72		72	THERM72	72	72	THERM72	ZONE		
9	72		72	THERM72	72	72	TEERN72	ZONE		
0	72		72	THERM72	72	72	TEERH72	ZONE		
1	72		72	THERM72	72	72	THERM72	ZONE		
2	72		72	THERM72	72	72	TEERM72	ZONE		
3	72		72	THERM72	72	72 .	THERN72	ZONE		
4	72		72	THERM72	72	72	TEERM72	ZONE		
5	72		72	THERM72	72	72	TEERM72	ZONE		
6	72		72	THERM72	72	72	TEERM72	ZONE		
7	72		72	THERM72	72	72	TEERM72	ZONE		
8	72		72	THERM72	72	72	THERM72	ZONE		
9	72		72	THERM72	72	72	THERM72	ZONE		
0	72		72	THERM72	72	72	TEERN72	ZONE		
1	72		72	THERM72	72	72	TEERM72	ZONE		
2	72		72	THERM72	72	72	TEERM72	ZONE		
3	72		72	THERM72	72	72	THERM72	ZONE		
4	72		72	THERM72	72	72	TEERM72	ZONE		
5	72		72	THERM72	72	72	THERM72	ZONE		
6	72		72	THERM72	72	72	TEERM72	ZONE		
7	72		72	THERM72	72	72	TEERM72	ZONE		

-----CARD 22-- Roof Parameters -----Roof Roof Roof Roof Const Roof Room Roof Equal to Roof Roof U-Value Type Direction Tilt Alpha Number Number Floor? Length Width 1 1 YES .1 48 .1 48 2 1 YES .1 48 3 1 YES 4 YES .1 48 1 5 1 YES .1 48 48 6 1 YES .25 7 1 YES .1 48 8 1 YES .1 48 9 1 YES .1 48 10 1 YES .1 48 11 1 YES .1 48 12 1 YES .1 48 13 1 YES .1 48

• • • • • •

280

TRACE 600 input file C:\JOBS\FTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC.

Alternative #1

RoofRo	CA	RD 22	Roof Param	eters						
NumberNumberPloor?LengthWidthU-ValueTypeDirectionTiltA141YES.148151YES.148191YES.0548231YES.05482415001.0548251YES.0548261YES.05482716051.0548291YES.0548301YES.0548311YES.0548331YES.1523341YES.1523351YES.1523361YES.1523371YES.1523381YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523461YES.1523471YES.15 <td></td> <td></td> <td>Roof</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			Roof							
14 1 YES .1 4 ⁶ 15 1 YES .05 4 ⁸ 23 1 YES .05 4 ⁸ 23 1 YES .05 4 ⁸ 24 1 500 1 .05 4 ⁸ 24 1 500 1 .05 4 ⁸ 25 1 YES .05 4 ⁸ 27 1 605 1 .05 4 ⁸ 30 1 YES .05 4 ⁸ 31 1 YES .05 4 ⁸ 33 1 YES .15 23 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 YES .15 23	Room	Roof	Equal to	Roof	Roof	Roof	Const	Roof	Roof	Roof
1 YES .1 48 19 1 YES .05 48 23 1 YES .05 48 24 1 500 1 .05 48 25 1 YES .05 48 27 1 605 1 .05 48 30 1 YES .05 48 30 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 33 1 YES .15 23 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 39 1 YES .15 23 41 YES .15 23 42 1 YE	Number	Number	Floor?	Length	Width	U-Value	Туре	Direction	Tilt	Alpha
19 1 YES .05 48 23 1 YES .05 48 24 1 500 1 .05 48 25 1 YES .05 48 27 1 605 1 .05 48 29 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 YES .15 23 42 1 YES .15 23 43	14	1	YES			.1	48			
23 1 YES .05 48 24 1 500 1 .05 48 25 1 YES .05 48 27 1 605 1 .05 48 29 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 34 1 YES .05 48 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44	15	1	YES			.1	48			
24 1 500 1 .05 48 25 1 YES .05 48 27 1 605 1 .05 48 29 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 44 1 YES .15 23 4	19	1	YES			.05	48			
25 1 YES .05 48 27 1 605 1 .05 48 29 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 48 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45	23	1	YES			.05	48			
27 1 605 1 .05 48 29 1 YES .05 48 30 1 YES .05 48 31 1 YES .05 48 33 1 YES .05 48 33 1 YES .05 23 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 48	24	1		500	1	.05	48			֥,
29 1 YES .05 48 30 1 YES .05 48 31 1 YES .15 23 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 39 1 YES .15 23 40 1 YES .15 23 41 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES <t< td=""><td>25</td><td>1</td><td>YES</td><td></td><td></td><td>.05</td><td>48</td><td></td><td></td><td></td></t<>	25	1	YES			.05	48			
301YES.0548311YES.0548331YES.1523341YES.1523351YES.1523361YES.1523371YES.1523381YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523501YES.1523511YES.1523	27	1		605	1	.05	48			
31 1 YES .05 48 33 1 YES .15 23 34 1 YES .15 23 35 1 YES .15 23 36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 39 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 44 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1	29	1	YES			.05	48			
331YES.1523341YES.1523351YES.1523361YES.1523371YES.1523381YES.1523391YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523501YES.1523511YES.1523	30	1	YES			.05	48			
341YES.1523351YES.1523361YES.1523371YES.1523381YES.1523391YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523501YES.1523511YES.1523	31	1	YES			.05	48			
351YES.1523361YES.1523371YES.1523381YES.1523391YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523501YES.1523511YES.1523	33	1	YES			.15	23			
36 1 YES .15 23 37 1 YES .15 23 38 1 YES .15 23 39 1 YES .15 23 40 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	34	1	YES			.15	23			
371YES.1523381YES.1523391YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523491YES.1523501YES.1523511YES.1523	35	1	YES			.15	23			
381YES.1523391YES.1523401YES.1523411YES.1523421YES.1523431YES.1523441YES.1523451YES.1523461YES.1523471YES.1523481YES.1523501YES.1523511YES.1523	36	1	YES			.15	23			
39 1 YES .15 23 40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	37	1	Yes			.15	23			
40 1 YES .15 23 41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	38	1	YES			.15	23			
41 1 YES .15 23 42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	39	1	YES			.15	23			
42 1 YES .15 23 43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	40	1	YES			.15	23			
43 1 YES .15 23 44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	41	1	YES			.15	23			
44 1 YES .15 23 45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	42	1	YES			.15	23			
45 1 YES .15 23 46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	43	1	YES			.15	23			
46 1 YES .15 23 47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	44	1	YES			.15	23			
47 1 YES .15 23 48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	45	1	YES			.15	23			
48 1 YES .15 23 49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	46	1	YES			.15	23			
49 1 YES .15 23 50 1 YES .15 23 51 1 YES .15 23	47	1	YES			.15	23			
50 1 YES .15 23 51 1 YES .15 23	48	1	YES			.15	23			
51 1 YES .15 23	49	1 ·	YES			.15	23			
	50	1	YES			.15	23			
	51	1	YES			.15	23			
52 I YES .15 23	52	1	YES			.15	23			
53 1 YES .15 23	53	1	YES			.15	23			
57 1 YES .15 23	57	1	YES			.15	23			

-----CARD 24-- Wall Parameters ----Ground Wall Wall Wall Reflectance Wall Wall Wall Wall Constuc Wall Room Direction Tilt Alpha Multiplier Number Number Length Height U-Value Type .25 .25 .25 .25 .1 .25 .25 .25

Page #5

.

... ·

TRACE 600 input file C:\JOBS\FTRUCKER.TH by ENGINEERING RESOURCE GROUP, INC.

.

CA	RD 24	Wall Para	meters						
					Wall				Ground
Room	Wall	Wall	Wall	Wall	Constuc	Wall	Wall	Wall	Reflectance
Number	Number	Length	Height	U-Value	Туре	Direction	Tilt	Alpha	Multiplier
15	1	468	1	.25	59	23			
17	1	130	1	.15	59	23			
19	1 .	1274	1	.15	59	293			
25	1	592	1	.25	59	293			
27	1	1157	1	.25	59	113			- .
29	1	1092	1	.15	59	113			
32	1	663	1	.25	59	23			
33	1	962	1	.15	58	23			
34	1	2420	1	.15	58	113			
35	1	1417	1	.15	58	203			
36	1	2119	1	.15	58	203			
37	1	2093	1	.15	58	293			
40	1 ·	494	1	.15	58	113			
41	1	910	1	.15	58	293			
42	1	910	1	.15	58	293			
43	1	1222	1	.15	58	293			
44	1	1079	1	.15	58	203			
45	1	910	1	.15	58	113			
46	1	936	1	.15	58	113			
47	1	1976	1	.15	58	113			
51	1	481	1	.15	58	293			
52	1	2041	1	.15	58	23			
55	1	520	1	.15	58	23			
57	1	600	1	.15	58	293			

· . · -

•

				Pct Glass			External	Internal	Percent		Inside
Room	Wall	Glass	Glass	or No. of	Glass	Shading	Shading	Shading	Solar to	Visible	Visible
Number	Number	Length	Width	Windows	UValue	Coefficient	Type	Туре	Ret. Air	Transmittance	Reflectanc
11	1			17	1.13	1		3		.9	
12	1			5	1.13	1		3		.9	
15	1			17	1.13	1		3		•9	
25	1			20	1.13	1		3		.9	
27	1			10	1.17	1		3		.9	
32	1			55	1.17	1		3		.9	
33	1			11	.49	.58		4		.5	
34	1			8	.49	.58		4		•5	
35	1			18	.49	.58		4		.5	
36	1			12	. 49	.58		4		•5	
37	1			10	.49	.58		4		.5	
42	1			5	.49	.58		4		.5	
43	1			5	.49	.58		4		.5	
44	1			8	.49	.58		4		.5	
15	1			10	. 49	.58		4		.5	
46	-			10	. 49	.58		4		.5	

•

.

--- · _ · TRACE 600 input file C:\JOBS\FTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC.

Alternative #1

Page #7

•

					Pct Glass			External	Internal	Percent			Inside
	Room	Wall	Glass	Glass	or No. of	Glass	Shading	Shading	Shading	Solar to	Visible		Visible
	Number	Number	Length	Width	Windows	U-Value	Coefficient	Туре	Туре	Ret. Air		ttance	Reflectanc
	51	1			5	.49	.58		4		.5		
	52	1			5	- 49	.58		4		.5		
										·			
										•			
									44 - 44				
	CA Room	RD 26	Schedules				Reheat		Heating	Auxiliary	Room	Dayligh	ting
		People	Lights	Vent	ilation In	filtration		-	Fan	Fan	Exhaust	Control	.8
	1	PEOP10	LITE10					AVAIL					
	2	PEOP10	LITE10				AVAIL	AVAIL					
	3	PEOP10	LITE10				AVAIL	AVAIL				-	•
	4	PEOP10	LITE10				AVAIL	AVAIL					
	5	PEOP10	LITE10				AVAIL	AVAIL					
	6	PEOP10	LITE10				AVAIL	AVAIL					
	7	PEOP10	LITE10				AVAIL	AVAIL					
;	8	PEOP10	LITE10				AVAIL	AVAIL					
:	9	PEOP10	LITE10				AVAIL	AVAIL					
	10	PEOP10	LITE10				AVAIL	AVAIL					
	11	PEOP15	LITE15				AVAIL	AVAIL		AVAIL			
	12	PEOP15	LITE15				AVAIL	AVAIL		AVAIL			
	13	PEOP15	LITE15				AVAIL	AVAIL					
	14	PEOP15	LITE15				AVAIL	AVAIL					
	15	PEOP15	LITE15				AVAIL	AVAIL		AVAIL			
•	16	PEOP26	LITE26					AVAIL					• · ·
	17	PEOP26	LITE26					AVAIL					
	18	PEOP26	LITE26					AVAIL					
	19	PEOP26	LITE26					AVAIL					
:	20	PEOP26	LITE26					AVAIL					
:	21	PEOP26	LITE26					AVAIL					
:	22	PEOP26	LITE26					AVAIL					
:	23	PEOP26	LITE26					AVAIL					
:	24	PEOP26	LITE26					AVAIL					
:	25	PEOP26	LITE26					AVAIL					
:	26	PEOP26	LITE26					AVAIL					
:	27	PEOP57	LITE57					AVAIL					
:	28	PEOP57	LITE57					AVAIL					
	29	PEOP57	LITE57					AVAIL					
	30	PEOP57	LITE57					AVAIL					
	31	PEOP57	LITE57					AVAIL					
	32	PEOP57	LITE57					AVAIL					
	33	PEOP57	LITE57					AVAIL					
	34	PEOP57	LITE57					AVAIL					
	35	PEOP57	LITE57					AVAIL					
	36	PEOP57	LITE57					AVAIL					
	37	PEOP57	LITE57					AVAIL					
-	38	PEOP57	LITE57					AVAIL					

TRACE 600 input file C:\JOBS\FTRUCKER.TM by ENGINEERING RESOURCE GROUP, INC.

Alternative #1

Page #8

.

•

Room					Reheat	Cooling	Heating	Auxiliary		Daylighting
	People	Lights	Ventilation	Infiltration	Minimum	Fans	Fan	Fan	Exhaust	Controls
40	PEOP57	LITE57				AVAIL				
41	PEOP57	LITE57				AVAIL				
42	PEOP57	LITE57				AVAIL				
43	PEOP57	LITE57				AVAIL				
44	PEOP57	LITE57				AVAIL		•		
45	PEOP57	LITE57				AVAIL	֥			
46	PEOP57	LITE57				AVAIL	. **			
47	PEOP57	LITE57				AVAIL	·			
48	PEOP57	LITE57				AVAIL				
49	PEOP57	LITE57				AVAIL				
50	PEOP57	LITE57				AVAIL				
51	PEOP57	LITE57				AVAIL				
52	PEOP57	LITE57				AVAIL				
53	PEOP57	LITE57				AVAIL				
54	PEOP57	LITE57				AVAIL				
55	PEOP57	LITE57				AVAIL				
56	PEOP57	LITE57				AVAIL				
57	PEOP57	LITE57				AVAIL				

							Lighting		Percent	Daylig	
Room	People	People	People	People	Lighting	Lighting	Fixture		Lights to		
Number	Value	Units	Sensible	Latent	Value	Units	Туре	Factor		Point 1	Point 2
1	75	SF-PERS	345	435	5.9	WATT-SF			0		
2	300	SF-PERS	345	435	1.0	WATT-SF			0		
3	75	SF-PERS	345	435	7.0	WATT-SP			0		
4	75	SF-PERS	345	435	8.2	WATT-SF			0		
5	75	SF-PERS	345	435	8.8	WATT-SF			0		
6	150	SF-PERS	345	435	1.5	WATT-SP			0		
7	300	SF-PERS	345	435	.94	WATT-SP			0		
8	150	SF-PERS	255	255	1.4	WATT-SP			0		
9	75	SF-PERS	255	325	1.4	WATT-SF			0		
10	100	SF-PERS	315	325	1.0	WATT-SF			0		
11	100	SF-PERS	230	190	1.1	WATT-SF			0		
12	100	SF-PERS	230	190	.92	WATT-SF			0		
13	300	SF-PERS	230	190	.47	WATT-SF			0		
14	300	SF-PERS	230	190	.47	WATT-SF			o		
15	150	SF-PERS	230	190	1.0	WATT-SP			0		
16	200	SF-PERS	255	255	1.22	WATT-SF			5		
17	500	SF-PERS	345	435	1.53	WATT-SF			5		
18	500	SF-PERS	315	325	1.25	WATT-SF			5		
19	400	SF-PERS	345	435	1.67	WATT-SF			5		
20	400	SF-PERS	315	325	1.12	WATT-SF			5		
21	100	SF-PERS	255	255	1.86	WATT-SF			5		
22	250	SF-PERS	255	255	1.44	WATT-SF			5		
23	200	SF-PERS	255	255	1.62	WATT-SP			5		

TRACE 600 input file C:\JOBS\FTRUCKER.TH by ENGINEERING RESOURCE GROUP, INC.

• • • • •

Alternative #1

							Lighting		Percent	Daylig	neing
Room	People	People	People	People	Lighting	Lighting	Fixture	Ballast	Lights to	Reference	Reference
Number	Value	Units	Sensible	Latent	Value	Units	Type	Factor	Ret. Air	Point 1	Point 2
24	1000	SF-PERS	345	435	.97	WATT-SF			5		
25	200	SF-PERS	345	435	1.39	WATT-SF			5		
26	300	SF-PERS	345	435	2.21	WATT-SF			5.		
27	300	SF-PERS	345	435	2.19	WATT-SF			5		
28	300	SF-PERS	345	435	1.75	WATT-SF		4	5		
29	300	SF-PERS	345	435	1.39	WATT-SF		-	5		
30	300	SF-PERS	345	435	1.39	WATT-SF			5		
31	300	SF-PERS	345	435	1.45	WATT-SF			5		
32	50	SF-PERS	345	435	1.13	WATT-SF			5		
33	300	SF-PERS	345	435	2.08	WATT-SF			5		
34	300	SF-PERS	345	435	1.56	WATT-SF			5		
35	300	SF-PERS	345	435	1.25	WATT-SF			5		-
36	300	SF-PERS	345	435	1.94	WATT-SF			5		
37 -	300	SF-PERS	345	435	1.82	WATT-SF			5		
38	200	SF-PERS	345	345	1.45	WATT-SF			5		
39	200	SF-PERS	345	435	1.15	WATT-SF			5		
40	200	SF-PERS	345	435	1.37	WATT-SF			5		
41	500	SF-PERS	345	435	1.24	WATT-SF			5		
42	500	SF-PERS	345	435	1.76	WATT-SF			5		
43	500	SF-PERS	345	435	1.59	WATT-SF			5		
44	500	SF-PERS	345	435	2.28	WATT-SF			5		
45	500	SF-PERS	345	435	.92	WATT-SF			5		
46	500	SF-PERS	345	435	1.71	WATT-SF			5		
47	500	SF-PERS	345	435	1.83	WATT-SF			5		
48	500	SF-PERS	345	435	1.00	WATT-SF			5		
49	500	SF-PERS	345	435	1.30	WATT-SF			5		
50	500	SF-PERS	345	435	1.55	WATT-SF			5		
51	500	SF-PERS	345	435	1.38	WATT-SF			5		
52	500	SF-PERS	345	435	2.04	WATT-SF			5		
53	500	SF-PERS	345	435	1.45	WATT-SF			5		
54	500	SF-PERS	345	435	1.34	WATT-SF			5		
55	500	SF-PERS	345	435	1.72	WATT-SF			5		
56	500	SF-PERS	345	435	.95	WATT-SF			5		
57	100	SF-PERS	345	435	1.79	WATT-SF			5		

CA	RD 28 Mi	scellaneous Equ	ipment						***********		
	Misc		Energy	Energy		Energy	Percent	Percent	Percent		
Room	Equipment	Equipment	Consump	Consump	Schedule	Meter	of Load	Misc. Load	Misc. Sens	Radiant	Optiona
Number	Number	Descrip	Value	Units	Code	Code	Sensible	to Room	to Ret. Air	Fraction	Air Pat
1	1	MISC EQ	1	BTUH-SF	MISC10	ELEC					SYS-EXE
2	1	MISC EQ	1	BTUH-SF	MISC10	ELEC					SYS-EXE
3	1	MISC EQ	1	BTUH-SF	MISC10	ELEC					SYS-EXE
4	1	MISC EQ	1	BTUH-SF	MISC10	ELEC					SYS-EXE
5	1	MISC EQ	1	BTUH-SF	MISC10	ELEC					SYS-EXE
6	1	MISC EO	1	BTUH-SF	MISC10	ELEC					SYS-EXE
		-									

Page #9

.

.

• •

.

	Misc	_ ·	Energy	Energy		Energy	Percent	Percent	Percent		_
loom	Equipment		Consump	Consump	Schedule		of Load		Misc. Sens	Radiant	Optio
	Number	Descrip	Value	Units	Code	Code	Sensible	to Room	to Ret. Air	Fraction	Air 1
	1	MISC EQ	1	BTUH-SF		ELEC					SYS-
1	1	MISC EQ	1	BTUH-SF		ELEC	-				SYS-
)	1	MISC EQ	1	BTUH-SP	MISC10	ELEC	•				SYS-
.0	1	HISC EQ	1	BTUE-SF	MISC10	ELEC	•				SYS-
1	1	MISC EQ	.5	BTUH-SP	MISC15	ELEC	֥				SYS-
.2	1	MISC EQ	•5	BTUE-SF	MISC15	ELEC	· **				SYS-
.3	1	MISC EQ	.5	BTUH-SF	MISC15	ELEC					SYS-
.4	1	MISC EQ	.5	BTUH-SF	MISC15	BLEC					SYS-
5	1	MISC EQ	.5	BTUH-SF	MISC15	ELEC					SYS-
6	1	MISC EQ	.25	BTUE-SF	MISC26	ELEC					SYS-1
7	1	HISC EQ	1	BTUE-SF	MISC26	ELEC	50				SYS-I
8	1	MISC EQ	.5	BTUH-SF	MISC26	ELEC				-	SYS-1
9	1	MISC EQ	1.5	BTUH-SF	MISC26	ELEC					SYS-1
0	1	MISC EQ	.75	BTUH-SP	MISC26	ELEC	67				SYS-I
1	1	MISC EQ	.25	BTUH-SF	MISC26	ELEC					SYS-I
2	1	NISC EQ	.25	BTUH-SF	MISC26	ELEC					SYS-I
3	1	NISC EQ	.25	BTUH-SF	MISC26	ELEC					STS-I
4	1	HISC EQ	.25	BTUH-SF	MISC26	RLEC					SYS-1
5	1	MISC EQ	.25	BTUH-SF	MISC26	ELEC					SYS-
6	1	MISC BO	.2		HISC26	ELEC					SYS-1
7	1	HISC BO	.2	BTUH-SF	MISC57	ELEC					SYS-
8	1	HISC EQ		BTUH-SF	HISC57	ELEC					SYS-
9	1	MISC BQ		BTUH-SF	MISC57	ELEC					SYS-
0	1	MISC EQ		BTUH-SF	MISC57	ELEC					SYS-
1	1	HISC BQ		BTUH-SF	MISC57	ELEC					SYS-
2	1	MISC EQ	•2	BTUH-SF	HISC57	ELEC					SYS-I
3	1					ELEC					SYS-I
4	1	MISC EQ		BTUH-SF	MISC57						SYS-I
* 5		MISC EQ		BTUH-SF	MISC57	ELEC					SYS-1
	1	MISC EQ		BTUH-SF	MISC57	ELEC					
6	1	MISC EQ		BTUE-SP	MISC57	ELEC					SYS-I
7	1	MISC EQ		BTUH-SF	MISC57	ELEC					SYS-I
8	1	MISC BQ		BTUH-SF	MISC57	ELEC					SYS-I
9	1	MISC EQ			HISC57	ELEC					SYS-I
0	1	MISC BO			MISC57	ELEC					SYS-I
1	1	MISC EQ			MISC57	ELEC	83				SYS-I
2	1	MISC EQ			MISC57	ELEC					SYS-I
3		MISC EQ			MISC57	ELEC					SYS-
4	1	MISC EQ	.25	BTUH-SP	MISC57	ELEC					SYS-
5	1	MISC BQ	.25	BTUH-SP	MISC57	ELEC					SYS-
5	1	MISC BQ	.25	BTUH-SP	MISC57	ELEC					SYS-
1	1	MISC EQ	.25	BTUH-SF	MISC57	ELEC					SYS-I
3	1	MISC EQ	.25	BTUH-SP	HISC57	ELEC					SYS-
9	1	MISC EQ	-25	BTUH-SF	HISC57	ELEC					SYS-
)	1	MISC BO			MISC57	ELEC					SYS-
L		HISC EQ			MISC57	ELEC					SYS-
		MISC BQ		BTUH-SF	MISC57	ELEC					SYS-
	1	MISC EQ			MISC57	ELEC					SYS-

.

Page #11

.

Misc		Energy	Energy		Energy	Percent	Percent	Percent		
Equipment	Equipment	Consump	Consump	Schedule	Meter	of Load	Misc. Load	Misc. Sens	Radiant	Option
Number	Descrip	Value	Units	Code	Code	Sensible	to Room	to Ret. Air	Praction	Air Pa
1	MISC EQ	.2	BTUH-SP	MISC57	FLEC					SYS-EX
1	MISC EQ	.2	BTUH-SP	MISC57	ELEC					SYS-EX
1	MISC EQ	.2	BTUH-SP	MISC57	ELEC					SYS-EX
1	MISC EQ	.2	BTUH-SF	MISC57	ELEC					SYS-EX
						÷.				
						. 4		-		
	Equipment Number 1 1	Equipment Equipment Number Descrip 1 MISC EQ 1 MISC EQ 1 MISC EQ	EquipmentEquipmentConsumpNumberDescripValue1MISC EQ.21MISC EQ.21MISC EQ.2	EquipmentEquipmentConsumpConsumpNumberDescripValueUnits1MISC EQ.2BTUH-SF1MISC EQ.2BTUH-SF1MISC EQ.2BTUH-SF	EquipmentEquipmentConsumpConsumpScheduleNumberDescripValueUnitsCode1MISC EQ.2BTUH-SFMISC571MISC EQ.2BTUH-SFMISC571MISC EQ.2BTUH-SFMISC57	EquipmentEquipmentConsumpConsumpScheduleHeterNumberDescripValueUnitsCodeCode1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC	InscEquipmentEquipmentConsumpConsumpScheduleMeterof LoadNumberDescripValueUnitsCodeCodeSensible1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC	InscEntropyEntropyEntropyEntropyEntropyEntropyEntropyEquipmentEquipmentConsumpConsumpScheduleMeterof LoadMisc. LoadNumberDescripValueUnitsCodeCodeSensibleto Room1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC1MISC EQ.2BTUH-SFMISC57ELEC	Hist Energy Energy	Hisc Energy Energy

-----CARD 29--- Room Airflows ------Infiltration---____

		Ventila					ration		Reheat Mir	i
Room	Cool:	-	Eeati	-	Cooli	-	Eeati	-	Value	Units
Number		Units	Value	Units	Value	Units	Value	Units		CPH-SF
1	100	PCT-HCLG	100	PCT-HCLG	.01	CPH-SP	.01	CFM-SF	1.50	CPH-SF
2	100	PCT-HCLG	100	PCT-MCLG	.01	CPM-SF	.01	CFM-SF	1.50	CPH-SF
3	100	PCT-MCLG	100	PCT-MCLG	.01	CPH-SP	.01	CFM-SF	1.50	
4	100	PCT-MCLG	100	PCT-MCLG	.01	CPH-SF	.01	CFM-SF	1.50	CPH-SF
5	100	PCT-MCLG	100	PCT-MCLG	.01	CPN-SP	.01	CFM-SF	1.50	CPH-SP
6	100	PCT-HCLG	100	PCT-MCLG	.01	CFH-SP	.01	CFM-SF	1.50	CPH-SP
7	100	PCT-HCLG	100	PCT-MCLG	.01	CPH-SP	.01	CFM-SF	1.50	CFM-SF
8	100	PCT-MCLG	100	PCT-MCLG	.01	CPH-SP	.01	CFM-SF	1.50	CPH-SF
9	100	PCT-MCLG	100	PCT-MCLG	.01	CPM-SF	.01	CFM-SF	1.50	CPH-SF
10	100	PCT-HCLG	100	PCT-MCLG	.01	CFH-SF	.01	CFM-SF	1.50	CPH-SF
11	100	PCT-MCLG	100	PCT-MCLG	.01	CFH-SF	.01	CFM-SF	.427	CPN-SP
12	100	PCT-MCLG	100	PCT-MCLG	.01	CFH-SF	.01	CFM-SF	.427	CPH-SF
13	100	PCT-MCLG	100	PCT-MCLG	.01	CPH-SP	.01	CFM-SF	.427	CPH-SP
14	100	PCT-MCLG	100	PCT-MCLG	-01	CFH-SF	.01	CFM-SF	.427	CPH-SP
15	100	PCT-MCLG	100	PCT-MCLG	.01	CFM-SF	.01	CFM-SF	.427	CPH-SF
16	172	срн	172	CPH	.01	CFM-SF	.01	CFM-SF		
17	306	CPH	306	CFH	.01	CPH-SP	.01	CFH-SF		
18	892	Срн	892	CPH	.01	CPH-SP	.01	CFM-SF		
19	393	CPM	393	CFM	.01	CFH-SF	.01	CFM-SF		
20	736	СРН	736	CFM	.01	CPH-SP	.01	CFM-SF		
21	299	срн	299	CFM	.01	CFM-SF	.01	CFM-SF		
22	520	CPH	520	CFH	.01	CFN-SP	.01	CFM-SF		
23	973	CPH	973	CFM	.01	CPM-SP	.01	CFM-SF		
24	179	CPM	179	CFH	.01	CFM-SF	.01	CFM-SF		
25	654	CFM	654	CFM	.01	CFM-SF	.01	CFM-SF		
26	638	CPH	638	CFM	.01	CFM-SP	.01	CFM-SF		
27	261	CPH	261	CFM	.01	CFH-SF	.01	CFM-SF		
28	1271	CPH	1271	CFM	.01	CPH-SP	.01	CFM-SF		
29	326	CPH	326	CFH	.01	CFH-SF	.01	CFM-SF		
30	796	CPH CPH	796	CFM	.01	CFH-SF	.01	CFM-SF		
30	698	CPH	698	CFM	.01	CPH-SF	.01	CFM-SF		
32	374	CFN	374	CFM	.01	CFH-SP	.01	CFM-SF		
33	141	CPN	141	CFM	.01	CPH-SP	.01	CFM-SF		
34	211			CFM	.01	CFN-SF	.01	CFM-SF		
		CPH	211			CFH-SF CFH-SF	.01	CFM-SF		
35	443	CPH	443	CPM	.01			CFM-SF		
36	202	CPH	202	CFM	.01	CPH-SF	.01	Crn-or		

Page #12

.

		Venti	lation			Infilt	ration			
Room	Coo	ling	Beat	ting	Coo	ling	Heat	ing	Reheat	Mini zur- -
Number	Value	Units	Value	Units	Value	Units	Value	Units	Value	Units
37	158	CFH	158	CFM	.01	CFM-SF	.01	CFM-SF		
38	1219	CFM	1219	CFM	.01	CPM-SP	.01	CFM-SF		
39	1355	CFH	1355	CPM	.01	CPM-SF	.01	CFM-SF		
40	6810	CFH	6810	CFM	.01	CFM-SF	.01	CFH-SF		
41	1090	CPH	1090	CFM	.01	CPM-SP	.01	CPM-SF		
42	838	CFH	838	CFM	.01	CPH-SF	.01	CFM-SF		
43	402	срн	402	CFM	.01	CFH-SP	.01	CFM-SF		
44	410	срн	410	CPH	.01	CFM-SF	.01	CFM-SF		
45	700	CPH	700	CPH	.01	CFM-SF	.01	CFM-SF		
46	1456	срн	1456	CFM	.01	CPM-SP	.01	CFM-SF		
47	1212	Срн	1212	CFM	.01	CFM-SF	.01	CFM-SF		. ·
48	1024	CPH	1024	CFH	.01	CPM-SP	.01	CFM-SF		•
49	1330	CFH	1330	CPH	.01	CPM-SF	.01	CFH-SF		
50	1726	срн	1726	CPH	.01	CFM-SF	.01	CFM-SF		
51	158	срн	158	CPM	.01	CFH-SF	.01	CFM-SF		
52	465	CPH	465	CPM	.01	CFM-SF	.01	CFM-SF		
53	1279	CPH	1279	Срн	.01	CFM-SF	.01	CFM-SF		
54	463	CPH	463	CPM	.01	CPH-SP	.01	CFM-SF		
\$5	96	Срн	96	CPH	.01	CFM-SF	.01	CFM-SF		
56	1182	CFH	1182	CPH	.01	CFM-SF	.01	CFM-SF		
57	165	CFH	165	CFH	.01	CFM-SF	.01	CFM-SF		

· · ·

		Ma	in			Auxi	liary			
Room	Coo	ling	Bea	ting	Coo	ling	Hea	ting	Room E	xhaust
Number	Value	Units	Value	Units	Value	Units	Value	Units	Value	Unite
1	662	CPH	662	CFH						
2	1391	CPH	1391	CPM						
3	600	CPM	600	CPM						
4	531	CFM	531	CPM						
5	474	CPH	474	CFM						
6	2543	CFM	2543	CPM						
7	2952	CPM	2952	CFM						
8	1319	CFM	1319	CFM						
9	378	СРН	378	CFM						
10	608	CPH	608	CFM						
11	2994	CFH	2994	CFM	992	CPM	992	CFM		
12	1304	CFH	1304	Срн	381	CPH	381	CPM		
13	2121	Срн	2121	CPM						
14	2239	Срн	2239	CFM						
15	475	CPH	475	CFM	203	CPH	203	CFN		
16	434	Срн	434	CPH						
17	887	CFM	887	CFM						
18	2124	CFM	2124	CPM						
19	1640	CFM	1640	CFM						

• • • • •

Page #13

		Ma	in			Aux1	liary			
moc	Coo]	ing	Heat	ing	Coo	ling	Heat	-	Room B	
umber	Value	Units	Value	Units	Value	Units	Value	Units	Value	Units
C	1664	CFH	1664	CFM						
L	1214	CFM	1214	CFM						
2	1421	CPM	1421	CFM					-	
3	3555	CFM	3555	CFM					•	
1	353	CFH	353	CFM				•		
5	3800	CFH	3800	CFM						
5	1939	CFM	1939	CFM				-		
7	2417	CFM	2417	CFM						
3	3182	CFM	3182	CFM						
,	1061	CFH	1061	CPM						
C	1996	CFM	1996	CFM						
L	1506	CFM	1506	CFM						
2	3406	CPM	3406	CPM						
3	1750	CPH	1750	CFM						
4	2787	CFM	2787	CFM						
5	5033	Срн	5033	CFM						
5	3273	CPH	3273	CFM						
7	2571	Срн	2571	CFM						
B	11929	CFM	11929	CPM						
9	12507	CPM	12507	CFM						
0	9026	CFN	9026	CFM						
1	4592	CFM	4592	CFM						
2	3884	срн	3884	CFM						
3	2056	CPM	2056	CPM						
4	2409	CPM	2409	CFM						
5	2898	CFM	2898	CFM						
6	6608	CPH	6608	CFM						
7	2130	CPH	2130	CFM						
в	3802	CPH	3802	CFM						
9	5267	CFM	5267	CFM						
0	7187	CPH	7187	CPM						
1	1332	CFH	1332	CPM						
2	4370	срн	4370	CFM						
3	9612	CPH	9612	CFM						
4	1130	срн	1130	CPM						
5	298	CPH	298	CFM						
6	2187	CPH	2187	CFM						

-----CARD 34-- Internal Shading ------ Lockowite ------ Lockowite ----------- Lockouts ------Overall Min Max Solar Max Glare Shading Overall Shading Schedule Shade Visible U-Value Coefficent Code Location Transmittance OADB Solar Ctrl Prob Glare Ctrl Prob туре .81 .64 AVAIL INSIDE .21 3 .43 .39 4 AVAIL INSIDE .12

·•• · ••

.

----- System Section Alternative #1 ------

-----CARD 39-- System Alternative -----Number Description 1 BASELINE MODEL

-----CARD 40--- System Type -----

			OPTION	UAL VENTII	ATION SYST	RH	
System		Ventil					Fan
Set	System	Deck	Cooling	Heating	Cooling	Heating	Static
Number	Туре	Location	SADBVh	SADBVh	Schedule	Schedule	Pressure
1	BPMZ						
2	TRH						
3	DD						
4	DD						
5	MZ						
6	MZ						
7	MZ						
8	HZ						

-----CARD 41-- Zone Assignment -----------System Set Ref #1 Ref #4 Ref #5 Ref #6 Ref #2 Ref #3 Begin End Begin End Begin End Number Begin End Begin End Begin End 1 1 10 2 11 15 3 16 25 4 26 32 5 33 39 6 40 40 7 41 50 8 51 57

CA	RD 42-	Fan	SP and	Duct Par	ameter	8					
System	Cool	Heat	Return	Mn Exh	Aux	Rm Exh	Cool	Return	Supply	Supply	Return
Set	Fan	Fan	Fan	Fan	Fan	Fan	Fan Mtr	Fan Mtr	Duct	Duct	Air
Number	SP	SP	SP	SP	SP	SP	Loc	Loc	Ht Gn	Loc	Path
1	4.3		.97	. 20			OHIT	OHIT			DUCTED
2	4.3		2.28	.20	.5		OMIT	OHIT			DUCTED
3	5.96			.21			OMIT	OHIT			DUCTED
4	4.37						OHIT	OHIT			DUCTED
5	4.32		1.25	.50			ONIT	ONIT			DUCTED
6	1.68		.50	1.63			OMIT	OMIT			DUCTED
7	9.1		1.45	2.4			OHIT	ONIT			DUCTED

.

Page i	11	5
--------	----	---

.. •

System	Cool	Heat	Return	n Mn Exh	Aux	Rm Exh	Cool	Re	turn	Su	pply	Sup	ply	Retu	rn
Set	Fan	Fan	Pan	Fan	Fan	Fan	Pan Htr	Fa	n Mtr	Du	ct	Duc	t	Air	
Number	SP	SP	SP	SP	SP	SP	Loc	Lo	c	Ħt	Gn	Loc		Path	
8	5.5		.80	1.43			ONIT	OH	IT					DUCT	ED
														•	
														•	
				ign Temp											
System				Minimum											
Set	Coolin	ig Co	oling	Heating	Heating	g Cooli	ng Cooli	ng	Prehe	at	Preb	eat	Roo	0	Ht Rec
Number	SADB	SA	DB	SADB	SADB	Lv DB	LV DE	6	Lv DB		LV D	8	RH		Diff
1	50.1	50	.1	86	86								45		
2	56	56		86	86										
3	60	60		100	100										
4	60	60		100	100										
5	54	54		86	86										
6	58	58		86	86										
7	56	56		86	86										

-----CARD 44-- System Options ---------- Exhaust Air Heat Recovery -----Econ Max Pct Direct Indirect 1st Stage System Econ Outside Evap Evap Fan --- Effectiveness --- Control Method ---Set Туре On Point Air Cooling Cooling Cooling Cycling System Room System Room Number Flag COOL 50 1 2 3 4 CLG-HTG 60 5 . 60 CLG-HTG 6 7 8

System	Main		Direct	Indirect	Auxiliary	Main	Main			Auxiliary
Set	Cooling		Evap	Evap	Cooling	Beating	Preheat	Reheat	Mech.	Heating
Number	Coil	Economizer	Coil	Coil	Coil	Coil	Coil	Coil	Humidity	Coil
1	AVAIL					AVAIL		AVAIL	AVAIL	
2	AVAIL				AVAIL	AVAIL		AVAIL		AVAIL
3	AVAIL					AVAIL				
4	AVAIL					AVAIL				
5	AVAIL					AVAIL				
6	AVAIL					AVAIL				
7	AVAIL					AVAIL				
8	AVAIL					AVAIL				

Set (Night	Optimum	Optimum	DU	TY CICLIN	6	System HR	100000 1000
	Control	Purge	Start	Stop	On Period	Pattern	Maximum	Exhaust	Exhaust
Number S	Schedule	Schedule	Schedule	Schedule	Schedule	Length	Off Time	Schedule	Schedul
1								AVAIL	
2								off	
3								OPP	
4								OFF	
5								AVAIL	
6								AVAIL	
o 7								OFF	

		-CARD	47	Fan	Override	s							
	Sys	Clg	Etg	Ret	Mn Exh	Aux	Rm Exh	Opt Vnt			MAIN COO	OLING FAN-	
	-	Fan					Fan	Sys Fan	Mech	Air	Air	Size	
		Eff				Bff	Bff	Bff	Bff	Value	Units	Meth	Confg
	1	85	-	85	85								
	2	85		85	85	75							
	3	75			75								
	4	75											
	5	85		85	85								
)	6	85		85	85								
	7	85		85	85								
	8	85		85	85								

•••••

CARD 48 Cooling Capacity Overrides										
System			Misc			COOLING		AUX CO	OLING	
Set	People Variance	· •	Loads Variance	-	Capacity Units	Ca pacity Sizing	Capacity Location		Capacity Units	
1 2								100	PCT-CAP	
3										
5										
6 7										
8										

.

--- ·

Alternative #1

2

З

-----CARD 49-- Heating Capacity Overrides ------System ---MAIN HEATING--- ----PREHEAT----- -----REHEAT----- --HUMIDIFICATION-- ---AUX HEATING----Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Capacity Set Number Value Units Value Units Value Units Value Units Units Value 4 5 6 7 8 ----- Equipment Section Alternative #1 ----------CARD 59-- Equipment Description / TOD Schedules -----Elec Consump Elec Demand Demand Alternative Time of Day Time of Day Limit Schedule Max KW Alternative Description Number Schedule BASELINE MODEL 1 -----CARD 60--- Cooling Load Assignment-----Load All Coil Cooling Asgn Loads To Equipment -Group 1- -Group 2- -Group 3- -Group 4- -Group 5- -Group 6- -Group 7- -Group 8- -Group 9-Begin End Begin End Ref Cool Ref Sizing 1 BLKPLANT 1 8 1 -----CARD 61-- Optional Coil Assignment -----Misc. Load System Room Assignment Main Direct Indirect Aux Optional Exh Heat Exh Heat Cooling Reference Coil Evap Evap Coil Ventil Recovery Recovery Load 1 1 1 -----CARD 62-- Cooling Equipment Parameters ----------HEAT RECOVERY------Demand Cool Equip Num -----COOLING------Seq Order Seq Limit Ref Code Of ---Capacity-------Energy-------Capacity------Energy----Type Number Num Name Units Value Units Value Units Value Units Value Units Num EQ1008L 1 1 230 TONS .86 KW-TON 1

.70

.86

KW-TON

KW-TON

2

3

EQ1008L 1

EQ1008L 1

360

230

TONS

TONS

• • • • •

5

6

EQ4003

EQ4003

EQ4003 EQ4002

EQ4002

EQ4003

294

Alternative #1

.

	CARD 63	Cooli	ng Pump	ps and i	Reference										
								or AUX							
Ref	Full Lo	ad Full	Load	Full La	oad Full	Load	Full Load	Full Load		Cold	Cooling				
Num	Value	Unite	5	Value	Unit	5	Value	Units		Storage	Tower	Ассев	8.		
1	50	HP		20	HP				1		1				
2	40	ĦP		25	HP				1	1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	2 3				
3	0	HP		20	HP						3				
									֥	- •					
	ANDD (4	G -ali		inmont (Ontions .										
Cool		Load	ig Edu	ipment (Free		Cond	Cond	Cond Rej	Cond Re	j Cond F	lej			
Ref	CW	Shed	E	vap	Cooling	Heat		Min Oper		To Ref	6 HM				
Num		Economi		-	-		Temp	Temp	Туре	Number	Temp				
1					NONE										
2					NONE										
3					NONE										
	-CARD 65	Heatin	ng Load	d Assig	nment										
Load		All Coil										-			- 9 an
Assi	mment	Loads To	-0	Group 1	Grou	p 2G	roup 3(Group 4	Group 5-	-Group (Grou <u>i</u>)/ 7-4 5	Group a	d Bea	in End
Refe					d Begin	End Be	gin End Bo	egin End B	egin End	Begin El	na Begin	Pud 1	egin 24	~ ~~	
1		1	1	8											
	CAPD 66	Ontio		ating C	oil lesi	anment -									
Load		0pt10	TAT DEC	acing c		9		Misc.							
		Main Pro	eheat	Reheat	Mech	Aux	Optional								
	-	Coil Co		Coil		f Coil	Ventil	Load							
1				1	1	1									
_															
	-CARD 67	Heati	ng Equi	ipment :	Paramete	rs									
Heat	Equi	p Nu	nber 1	HW Pmp				Energy		Seq	Switch				Demand
Ref	Code	e of	1	Full Ld		Cap	У	Rate		Order	over	Hot	Misc.	_	Limit
Numb	er Name	u Un	its '	Value	Units	Valu	e Units	Value	Units	Number	Control	Strg	Acc.	Cogen	Number
1	EQ20	04 1	:	20	FT-WAT	er		70	PCTEFP						
2	EQ20	04 1	:	20	FT-WAT	ER		70	PCTEFF						
	-CARD 69	Fan E	quipme	nt Para	meters -										
Syst								-	- · ·	- 1					
Set		cooling	Heati	•		Exhaust	Auxiliar	-	Option						
Numb		'an	Fan	Fa		Fan	Supply	Exhaust	Ventil	ation					
1		204003		-	-	EQ4002									
2	I	2Q4003		EQ	4003	EQ4002									
~					-										
3 4		2Q4001 3Q4001			-	EQ4002									

EQ4003

7

EQ4003

03 EQ4002

este z

.

.

295

-

•

--- • .

RD 69-	- Fan	Equips	ent P	aramete	rs							
Co	oling	Heat	ing	Return	n Ex	haust	Auxi	liary	Room		Optiona	1
Fa	n	Fan		Pan	Fa	n	Supp	ly	Exhau	ist	Ventila	tion
EQ	4003			EQ4003	E E	4002						
RD 70-	- Fan	Equips	ent K	W Overn	ides -							:,
	MAIN S	YSTEM-		OTE	IER SYS	TEM	I	EMAND	LIMIT	PRIOR	ITY	
Cool	Eeat	Ret	Exh	Aux	Room	Opt				Room	Opt	•
Fan	Fan	Fan	Fan	Sup	Exh	Vent	Cool	Heat	Aux	Exh	Vent	
KW	KW	KW	KW	KW	KW	KW	Fan	Fan	Fan	Fan	Fan	
9.6		4.0	0.1									
22.5		9.4	0.1									
34.7			0.4									
31.8												
27.3		12.7	3.4									
10.2		2.4	4.7									
43.1		13.5	3.8									
26.0		8.1	2.3									
	Co Fa EQ RD 70- Cool Fan KW 9.6 22.5 34.7 31.8 27.3 10.2 43.1	Cooling Fan EQ4003 RD 70 Fan MAIN S Cool Heat Fan Fan KW KW 9.6 22.5 34.7 31.8 27.3 10.2 43.1	Cooling Heat Fan Fan EQ4003 Fan RD 70 Fan Fan Fan Cool Heat Ret Fan Fan Fan KW KW 9.6 4.0 22.5 9.4 34.7 31.8 27.3 12.7 10.2 2.4 43.1 13.5	Cooling Heating Fan Fan EQ4003 Fan RD 70 Fan EQ4003 Fan RD 70 Fan EQ4003 Fan Fan Fan <t< td=""><td>Cooling Heating Return Fan Fan Fan Fan EQ4003 EQ4003 EQ4003 RD 70 Fan Equipment KW Overra MAIN SYSTEM OTH Cool Heat Ret Exh Aux Fan Fan Fan Fan Sup KW KW KW KW KW 9.6 4.0 0.1 134.7 0.4 31.8 27.3 12.7 3.4 10.2 2.4 4.7 43.1 13.5 3.8 10.2 134.5 1.8 10.1 10.5 1.8</td><td>Cooling Heating Return Ex Pan Pan Pan Pan Fa EQ4003 EQ4003 EQ4003 EQ RD 70 Pan Equipment EQ EQ RD 70 Pan Equipment EQ Overrides - MAIN SYSTEM OTHER SYS Cool Heat Ret Exh Aux Room Fan Pan Pan Pan Sup Exh KW KW KW KW KW Sup Exh 9.6 4.0 0.1 1</td><td>Cooling Heating Return Exhaust Pan Fan Pan Pan Fan EQ4003 EQ4003 EQ4002 EQ4002 RD 70 Fan Equipment KW Overrides MAIN SYSTEM OTHER SYSTEM OTHER SYSTEM Opt Fan Fan Fan Fan Sup Exh Vent KW KW KW KW KW KW KW SU </td><td>Cooling Heating Return Exhaust Auxie Pan Pan Pan Pan Supplement Suplem</td><td>CoolingHeatingReturnExhaustAuxiliaryFanFanPanFanSupplyEQ4003EQ4003EQ4002EQ4002RD 70Fan Equipment KWOverridesDEMANDCoolHeatRetExhAuxRoomOptFanFanFanFanFanFanFanSupplySYSTEMOTHERSYSTEMDEMANDCoolHeatRetExhAuxRoomOptFanFanFanSupplySupplyExhVentCoolFanFanFanSupplySupply9.64.00.122.59.40.134.70.431.827.312.727.312.73.410.22.44.743.113.53.8</td><td>CoolingHeatingReturnExhaustAuxiliaryRoomPanFanFanFanSupplyExhauEQ4003EQ4003EQ4002EQ4002RDFor</td><td>PanFanPanFanSupplyExhaustEQ4003EQ4003EQ4002EQ4002RD 70 Pan Equipment KW Overrides</td><td>CoolingHeatingReturnExhaustAuxiliaryRoomOptionalPanPanPanFanSupplyExhaustVentilaEQ4003EQ4003EQ4002EQ4002EQ4003EQ4002RD 70PanEquipment KWOverrides</td></t<>	Cooling Heating Return Fan Fan Fan Fan EQ4003 EQ4003 EQ4003 RD 70 Fan Equipment KW Overra MAIN SYSTEM OTH Cool Heat Ret Exh Aux Fan Fan Fan Fan Sup KW KW KW KW KW 9.6 4.0 0.1 134.7 0.4 31.8 27.3 12.7 3.4 10.2 2.4 4.7 43.1 13.5 3.8 10.2 134.5 1.8 10.1 10.5 1.8	Cooling Heating Return Ex Pan Pan Pan Pan Fa EQ4003 EQ4003 EQ4003 EQ RD 70 Pan Equipment EQ EQ RD 70 Pan Equipment EQ Overrides - MAIN SYSTEM OTHER SYS Cool Heat Ret Exh Aux Room Fan Pan Pan Pan Sup Exh KW KW KW KW KW Sup Exh 9.6 4.0 0.1 1	Cooling Heating Return Exhaust Pan Fan Pan Pan Fan EQ4003 EQ4003 EQ4002 EQ4002 RD 70 Fan Equipment KW Overrides MAIN SYSTEM OTHER SYSTEM OTHER SYSTEM Opt Fan Fan Fan Fan Sup Exh Vent KW KW KW KW KW KW KW SU	Cooling Heating Return Exhaust Auxie Pan Pan Pan Pan Supplement Suplem	CoolingHeatingReturnExhaustAuxiliaryFanFanPanFanSupplyEQ4003EQ4003EQ4002EQ4002RD 70Fan Equipment KWOverridesDEMANDCoolHeatRetExhAuxRoomOptFanFanFanFanFanFanFanSupplySYSTEMOTHERSYSTEMDEMANDCoolHeatRetExhAuxRoomOptFanFanFanSupplySupplyExhVentCoolFanFanFanSupplySupply9.64.00.122.59.40.134.70.431.827.312.727.312.73.410.22.44.743.113.53.8	CoolingHeatingReturnExhaustAuxiliaryRoomPanFanFanFanSupplyExhauEQ4003EQ4003EQ4002EQ4002RDFor	PanFanPanFanSupplyExhaustEQ4003EQ4003EQ4002EQ4002RD 70 Pan Equipment KW Overrides	CoolingHeatingReturnExhaustAuxiliaryRoomOptionalPanPanPanFanSupplyExhaustVentilaEQ4003EQ4003EQ4002EQ4002EQ4003EQ4002RD 70PanEquipment KWOverrides

	CAR	D 71 Base Utility	Parameters										
	Base	Base	Hourly	Hourly			Equip	Demand					
	Utility	Utility	Demand	Demand	Schedule	Energy	Reference	Limiting	Entering	Leaving			
•	Number	Descrip	Value	Units	Code	Type	Number	Number	Temp	Temp			
	1	BASE	50	KW	AVAIL	ELEC							
	2	BASE DHW	300	GALS	AVAIL	HOT-LD	1		65 ·	134			

CARD 72 Switchover Controls								
			Outside					
Control	Load	Load	Air	Sched				
Reference	ference Value		DB	Code				
1			80					

C	CARD 74 Condenser / Cooling Tower Parameters										
	Cooling			Energy	Energy			Number	Percent	Low Spd	Low Spd
Tower	Tower	Capacity	Capacity	Consump	Consump	Fluid	Tower	Of	Airflow	Energy	Energy
Ref	Code	Value	Units	Value	Units	Туре	Туре	Cells	Low Spd	Value	Units
1	EQ5100	230	TONS	20	HP	T-WATER	CTOWER	1			
2	BQ5100	360	TONS	25	HP	T-WATER	CTOWER	1			
3	EQ5100	230	TONS	20	HP	T-WATER	CTOWER	1			

Page #20

Utility Description Reference Table

```
Schedules:
        AVAIL AVAILABLE (100%)
        LITE10 LYSTER ARMY COMMUNITY HOSPITAL
        LITE15 LYSTER ARMY COMMUNITY HOSPITAL
        LITE26 LYSTER ARMY COMMUNITY HOSPITAL
        LITE57 LYSTER ARMY COMMUNITY HOSPITAL
        MISC10 LYSTER ARMY COMMUNITY HOSPITAL
        MISC15 LYSTER ARMY COMMUNITY HOSPITAL
        MISC26 LYSTER ARMY COMMUNITY HOSPITAL
        MISC57 LYSTER ARMY COMMUNITY HOSPITAL
        OFF ALWAYS OFF
        PEOP10 LYSTER ARMY COMMUNITY HOSPITAL
        PEOP15 LYSTER ARMY COMPUNITY HOSPITAL
        PEOP26 LYSTER ARMY COMMUNITY HOSPITAL
        PEOP57 LYSTER ARMY COMMUNITY HOSPITAL
        THERN72 LYSTER ARMY COMMUNITY HOSPITAL
   System:
        BPMZ BYPASS MULTIZONE
        DD DOUBLE DUCT
        MZ MULTIZONE
       TRH TERMINAL REHEAT
   Equipment:
        Cooling:
            EQ1008L 3-STG CTV >200 TONS
        Heating:
            EQ2004 GAS WATER TUBE STEAM
       Fan:
            EQ4001 AIRFOIL CENTRIF. FAN C.V.
            EQ4002 BI CENTRIF. FAN C.V.
            EQ4003 FC CENTRIF. FAN C.V.
            Tower:
                 EQ5100 COOLING TOWER
```

Schedule Name: AVAIL Project: AVAILABLE (100) Location: Client: Program User: Comments:

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: SUN

Eour Util Percent

- 0 100
 - 24
 - ---

- - -

. Page #21

. .

... ·

Schedule Name: LITE10

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: LIGHTING SCHEDULE ZONES 1-10

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Bour Util Percent

0	20
6	40
7	90
8	100
16	90
17	80
18	20
24	

Starting Month: JAN Ending Month: HTG Starting Day Type: SAT Ending Day Type: SAT

Hour Util Percent

0	20
8	50
13	20
24	

.

Starting Month: JAN Ending Month: ETG Starting Day Type: SUN Ending Day Type: SUN

Page #22

Schedule Name: LITE15

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: LIGHTING SCHEDULE ZONES 11-15

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0	25
5	40
6	50
7	100
15	80
16	50
17	25
24	

• • • • • • •

Page #23

• ... •

Schedule Name: LITE26

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: LIGHTING SCHEDULE ZONES 16-26

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	25
6	50
7	100
18	75
21	50
23	25
24	

Starting Month: JAN Ending Month: HTG Starting Day Type: SAT Ending Day Type: SUN

 Bour
 Util Percent

 ---- -----

 0
 25

 7
 50

 24

Page #24

÷.

÷.,

Schedule Name: LITE57

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: LIGHTING SCHEDULE ZONES 27-57

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	10
6	50
7	100
18	50
19	10

24

Starting Month: JAN Ending Month: HTG Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent

0	10
8	50
13	10
24	

•

Page #25

302

Schedule Name: MISC10 Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: MISC. EQUIPMENT SCHEDULE ZONES

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	20
6	40
7	80
16	50
18	20
24	

Starting Month: JAN Ending Month: ETG Starting Day Type: SAT Ending Day Type: SAT

Hour Util Percent

25

50

25

• •

Starting Month: JAN Ending Month: HTG Starting Day Type: SUN Ending Day Type: SUN

Hour Util Percent ---- -----0 25 24 .

Schedule Name: MISC15

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: MISC. EQUIPMENT SCHEDULE ZONES

Starting Honth: JAN Ending Month: ETG Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 25 7 50 24

.

ية. وقتي

Schedule Name: MISC26

Project: LYSTER ARMY COMMUNITY BOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: MISC. EQUIPMENT SCHEDULE ZONES

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	10
6	50
7	100
18	50
19	10
24	

Starting Month: JAN Ending Month: ETG Starting Day Type: SAT Ending Day Type: SUN

Hour Util Percent ---- 25 7 50 24

• • • • •

Schedule Name: MISC57 Project: LYSTER ARMY COMMUNITY BOSPITAL

Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: MISC. EQUIPMENT SCHEDULE ZONES

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

_

0	25
7	50
8	75
18	50
19	25
24	

Starting Month: JAN Ending Month: ETG Starting Day Type: SAT Ending Day Type: SAT

Hour Util Percent

---0

8

13

24

25

50

25

....

Starting Month: JAN Ending Month: ETG Starting Day Type: SUN Ending Day Type: SUN

 Hour
 Util Percent

 0
 25

 24
 25

306

Page #29

Schedule Name: OFF Project: ALWAYS OFF Location: Client: Program User: Comments:

Starting Month: JAN Ending Month: ETG Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0 0 24

- - - - -

Page #30

.

-- ·

·.

Schedule Name: PEOP10

Project: LYSTER ARMY COMMUNITY EOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: PEOPLE SCHEDULE ZONES 1-10

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	10
5	50
6	80
7	100
15	60
16	20
17	10
24	

Starting Month: JAN Ending Month: ETG Starting Day Type: SAT Ending Day Type: SUN

Hour	Util Percent
0	10
8	50
13	10
24	

. . -

4

Page #31

Schedule Name: PEOP15

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: PEOPLE SCHEDULE ZONES 11-15

Starting Month: JAN Ending Month: ETG Starting Day Type: DSGN Ending Day Type: SUN

Hour Util Percent

0	25
5	40
6	50
7	100
15	80
16	50
17	25
24	

Page #32

Schedule Name: PEOP26

Project: LYSTER ARMY COMMUNITY HOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: PEOPLE SCHEDULE ZONES 16-26

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	10
6	50
7	100
18	50
19	10

24

Starting Month: JAN Ending Month: HTG Starting Day Type: SAT Ending Day Type: SUN

24

- 20

Page #33

· · · · · ·

Page #34

Schedule Name: PEOP57

Project: LYSTER ARMY COMMUNITY BOSPITAL Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: PEOPLE SCHEDULE ZONES 27-57

Starting Month: JAN Ending Month: HTG Starting Day Type: DSGN Ending Day Type: WKDY

Hour Util Percent

0	0
5	20
6	40
7	90
8	100
16	90
17	80
18	20
19	0
24	

Starting Month: JAN Ending Month: HTG Starting Day Type: SAT Ending Day Type: SAT

Hour	Util Percent
0	0
8	50
13	0
24	

• • • • •

Starting Month: JAN Ending Month: ETG Starting Day Type: SUN Ending Day Type: SUN

Hour Util Percent -----0 0 24

Schedule Name: THERM72 Project: LYSTER ARMY COMMUNITY HOSPITAL

Location: FORT RUCKER, ALABAMA Client: U.S. ARMY CORPS OF ENGINEERS Program User: ENGINEERING RESOURCE GROUP Comments: THERMOSTAT SCHEDULE FOR 72 DEG

Starting Month: JAN Ending Month: DEC Starting Day Type: DSGN Ending Day Type: SUN

Hour Temperature

- 0 72
 - 24

. . .

· • ,

By: ENGINEERING RESOURCE GROUP, INC.

***********	• • • • • • • • • • • • • • • •	********	***********************	******
******	***********	********	*****************************	******
••				**
**	TRACE	600	ANALYSIS	**
••				**
**	ьу	**		
••				**
*************	***********	********	*************************	*******
***************	***********	********	**********************	******

LYSTER ARMY COMMUNITY HOSPITAL FORT RUCKER, ALABAMA U.S. ARMY CORPS OF ENGINEERS ENGINEERING RESOURCE GROUP, INC. LIMITED ENERGY STUDIES

Winter Ground Relectance:

Weather File Code:	MOBILE.W	
Location:	FT RUCKER	
Latitude:	30.0	(deg)
Longitude:	88.0	(deg)
Time Zone:	6	
Elevation:	211	(ft)
Barometric Pressure:	29.7	(in. Hg)
Summer Clearness Number:	0.90	
Winter Clearness Number:	0.90	
Summer Design Dry Bulb:	94	(F)
Summer Design Wet Bulb:	80	(F)
Winter Design Dry Bulb:	24	(F)
Summer Ground Relectance:	0.20	

Air Density:	0.0754	(Lbm/cuft)
Air Specific Heat:	0.2444	(Btu/lbm/F)
Density-Specific Heat Prod:	1.1064	(Btu-min./hr/cuft/F)
Latent Heat Pactor:	4,870.3	(Btu-min./hr/cuft)
Enthalpy Factor:	4.5263	(Lb-min./hr/cuft)

0.20

Design Simulation Period: JuneTo NovemberSystem Simulation Period: JanuaryTo DecemberCooling Load Methodology:TETD/Time Averaging

Time/Date Program was Run:	17:27: 1 2/16/93
Dataset Name:	FTRUCKER .TM

....

AIRFLOW - ALTERNATIVE 1

BASELINE MODEL

------SYSTEM SUMMARY------

(Design Airflow Quantities)

				Main			Auxil.	Room
		Outside	Cooling	Heating	Return	Exhaust	Supply	Exhaust
System	System	Airflow	Airflow	Airflow	Airflow	Airflow	Airflow	Airflow
Number	- Туре	(Cfm)	(Cfm)	(Cfm)	(Cfm)	(Cfm)	(Cfm)	(Cfm)
							÷.	
1	BPMZ	11,458	11,458	11,458	11,479	11,479	, •• O	0
2	TRH	9,133	9,133	9,133	9,173	9,173	12,044	0
3	DD	5,124	17,092	17,092	17,112	5,144	0	0
4	4,36	4 15,507	15,507	19,900	4,364		0	0
5	MZ	3,729	39,850	39,850	39,940	3,819	0	0
6	MZ	6,810	9,026	9,026	9,031	6,815	0	0
7	MZ	10,188	40,833	40,833	40,912	10,267	0	0
8	MZ	3,808	20,562	20,562	20,598	3,844	0	0
Totals		54,614	163,461	163,461	168,146	54,906	12,044	0

CAPACITY - ALTERNATIVE 1 BASELINE MODEL

(Design Capacity Quantities)

System Number	-		Main Sys. Capacity (Tons)	Aux. Sys.	ling Opt. Vent Capacity (Tons)	Cooling Totals (Tons)	Main Sys. Capacity (Btuh)		Preheat Capacity (Btuh)	Reheat		Opt. Vent Capacity (Btnh)	Heating Totals (Btuh)
,	BPMZ	·	105.4	0.0	0.0	105.4	-455,108	o	-304,596	0	-342,079	o	-1,101,784
	TRH		72.1		0.0	83.0	-303,142	-184,290	-302,407	-132,976	0	0	-789,839
	DD		57.2			57.2	-710,118	0	o	0	0	0	-710,118
4		46.			.0 46.9		-	0	0	0	0	0 -630,	718
	MZ	40.	105.3	0.0		105.3	-723,917	0	0	o	0	0	-723,917
	HZ		53.7			53.7	-279,618	0	-213,667	o	0	0	-493,285
				0.0		148.7	-959,030	0	0	0	0	0	-959,030
	HZ		148.7			55.9	-416,548	0	0	0	0	• •	-416,548
8 Totals	MZ		55.9 645.1				-4,478,199	-184,290	-820,669	-132,976	-342,079	0	-5,825,238

The building peaked at hour 16 month 8 with a capacity of 642.6 tons

PAGE 2

ENGINEERING CHECKS - ALTERNATIVE 1 BASELINE MODEL

• • • • • •

			Percent		Cool	ing		Heat	ing	
System	Main/	System	Outside	Cfm/	Cfm/	Sq Ft	Btuh/	Cfm/	Btuh/	Floor Area
Number	Auxiliary	Type	Air	Sq Ft	Ton	/Ton	Sq Ft	Sq Pt	Sq Ft	Sq Ft
1	Main	BPMZ	100.00	1.52	108.7	71.5	167.86	1.52	-146.24	7,534
2	Main	TRE	100.00	0.52	126.7	244.1	49.15	0.52	-34.42	17,592
2	Auxiliary	TRH	0.00	0.68	1,102.7	1,610.6	7.45	0.41	-10.48	17,592
3	- Main	DD	29.98	0.56	298.7	536.0	22.39	0.56	-23.16	30,667
4	Main	28.14	0.77	330.9	432.3	27.76	0.77	-31.14	20,	,255
5	Main	MZ	9.36	0.95	378.5	397.0	30.23	0.95	-17.32	41,794
6	Main	MZ	75.45	1.12	168.2	149.8	80.09	1.12	-61.36	8,039
7	Main	MZ	24.95	0.91	274.6	300.2	39.97	0.91	-21.48	44,640
8	Main	MZ	18.52	0.76	367.6	482.1	24.89	0.76	-15.45	26,965

-----ENGINEERING CHECKS------

JURCE GR

۰<u>۲</u>۰

Block

BPMZ

1

System

. 5

- BYPASS MULTIZONE

			***** HEATI		-		-								********		
	13/ 1	Mo/Er:		*	/14	Hr: 6	Ho/	٠				8/16	o/Hr: 8	1	=>	t Time ==:	Peaked at
	24	OAD3:		*	5	DB: 9	OP	٠)	95/ 81/138.0	B/HR: 9	OADB/			Outside A
Percnt	l Peak			*				*									
Of Tot	t Sens		Space Peak	*	Percnt	ace	-		Percnt			Ret. Air	et. Air	ce i	Space		
(3)	(Btuh)		Space Sene	*	Of Tot		Sensi		Of Tot	tal		Latent	ensible	t. :	Sens.+Lat.	S	
0.00	(Bcui)	0	(Btuh)	*	(• • •		(Bt	*	(\$)	-	(Bti	(Btuh)	(Btuh)	h)	(Btuh)	Loads	Envelope
0.00	0	0			0.00	0			0.00	0			0	0	0	e Solr	Skylite
6.3	-48,367				0.00	• 0			0.00	0			0	0	0	e Cond	Skylite
0.00	0	0	-48,367		35.67		99,		6.68	542	84,		0	42	84,542	ond	Roof Co
0.0	0	-			0.00	0			0.00	0			0	0	0	Solar	Glass :
2.8		0			0.00	0			0.00	0			0	0	0	Cond	Glass (
0.0	-21,684		-21,684		3.81		10,		0.95	073	12,0		0	73	12,073	ond	Wall Co
	0	0			0.00	0		*	0.00	0				0	0	ion	Partit
0.0	0	0			0.00	0		*	0.00	0				0	0	d Floor	Exposed
0.1	-1,126		-1,126		0.19	534		*	0.14	833	1,			33	1,833	ration	Infilt
9.3	-71,177	.77 -	-71,177		39.67	124	110,	*	7.78	447	98,4		. 0	47	98,447	tal==>	Sub Tot
. e	11 750			*				*								Loads	Internal
-1.5	11,759		11,759		21.54		59,		4.21	239	53,2		0	39	53,239		Lights
	1,711		1,713		6.24	331	17,	*	0.61	652	7,			52	7,652		People
-0.2	1,504		1,504		2.17	024	6,	*	0.30	767	3,	0	0	67	3,767		Nisc
-1.9	14,973		14,973		29.95	161	83,	*	5.11	658	64,0	0	0	58	64,658	tal==>	Sub Tot
0.0	0	0		*	0.00	0		*	0.00	0			0	0	0	Load	Ceiling 1
80.1	508,501	0 -6	C	*	0.00	0		*	78.36	960	990,	0	0	0	0	Air	Outside A
-3.4	26,277			*	0.00			*	2.08	277	26,					Heat	Sup. Fan
0.0	0			*	0.00			*	0.48	111	6,		6,111			Heat	Ret. Fan
0.0	0				0.00			*	0.00	0			0			t Pkup	Duct Heat
15.9	121,276	276 -3	-121,276	*	30.38	343	84,	*	6.67	343	84,			43	84,343	Sizing	OV/UNDR :
0.0 0.0	0			*	0.00			*	-0.48	111	-6,	0	-6,111			Heat	Exhaust 1
0.0	0			*	0.00				-0.00	0		0	0			Bypass	Terminal
100.0	759,704		-177,480	*	100.00	~~~		*									
			-1//,400	•	100.00	629	277	*	100.00	686	1,264,	0	0	49	247,449	tal==>	Grand Tot
		ARE								i	LECTION	LING COIL SE	C00I				
f) (%)	Glass (S	-	Gross Total		/WB/ER	ing DB	Leav	/HR	g DB/WE	erin	Ent	Coil Airfl	s Cap.	y Sei	Capacity	Total (
		7,534	Floor	1	Grains	Deg F	Deg F	ins	F Gra	Deg	Deg F	(cfm)	Mbh)) 4	(Mbh)	(Tons)	
		0	Part	1	46.3	46.9	48.0	8.0	.7 13	80	94.9	11,458	558.5	.7	1,264.7	105.4	Main Clg
		0	ExFlr	:	0.0	0.0	0.0	0.0	.0	0	0.0	0	0.0	.0	0.0	0.0	Aux Clg
0		7,534			0.0	0.0	0.0	0.0	.0	0	0.0	0	0.0	.0	0.0	0.0	Opt V ent
0		2,119	Wall 3	1										.7	1,264.7	105.4	Totals
S (F)	PERATURE	151	CHECKS	NG	NGINEERI	B		cfm)-	FLOWS (-AIR			ON	SELECT	NG COIL SE	HEATIN	
		TTP	100.0		1 1 OA	Clg	Reating		Cooling		Туре	Lvg		l Airf		Capacit	
	50.	SADB	1.52	t	Cfm/Sqf	Clg	11,458		11,458		Vent	Deg F	Deg F	(cfm)) (c	(Mbh)	
	n 72.	Please	108.72	L	Cfm/Ton	Clg	21		23		Infil	86.0	50.1	11,458	.1 11	-455.	Main Etg
	n 72.	Retur	71.49	m	∫ Sqft/To	Clg	11,458		11,458		Supply	0.0	0.0	0	.0	0.	Aux Etg
.9 24	a 94.	Ret/O	167.86	ſft	g Btuh/Sg	Clg	11,301		11,30		Mincfm	48.0	24.0	11,458	.6 11	-304.	Prebeat
.0 72	nd 72.	Runar	53		People	No.	11,458		11,45		Return	0.0	0.0	0		0.	Rebeat
.4 0.	rTD 0.	Pn Mt	100.0		J & OA	Htg	11,458		11,451	:	Exhaust	52.8	10.0	11,479	.1 11	-342.	Rumidif
		1					-										
.5 0.	dTD 0.	Fn Bl	1.52	π	g Cfm/SqF	Htg	0		(Rm Exh	0.0	0.0	0	.0	0.	ppt Vent

V 600

PAGE 4

.

• •

System

2 Peak

TRE - TERMINAL REHEAT

Peaked at Time =	=>	Mo/Hr:	7/15			•	Mo/Hr:	6/14	• 1	40/Hr: 13/ 1	
Outside Air ==>			94/ 80/137.2			•	OADB:	95	•	OADB: 24	
						•			*		
	Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt	 Space Peak 	Coil Peak	Percnt
:	Sens.+Lat.	Sensible	Latent	Total	Of Tot	•	Sensible	Of Tot	* Space Sens	Tot Sens	Of Tot
Envelope Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(\$)	*	(Btuh)	. (\$)	* (Btuh)	(Btuh)	(\$)
Skylite Solr	o	0		0	0.00	٠	G	0.00	* 0	0	0.00
Skylite Cond	0	0		0	0.00	•	., 0	0.00	• 0	0	0.00
Roof Cond	163,989	0		163,989	18.97	*	170,945	105.73	+ -84,442	-84,442	13.94
Glass Solar	13,786	0		13,786	1.59	*	17,234	10.66	* 0	0	0.00
Glass Cond	9,473	0		9,473	1.10	*	9,570	5.92	* -22,029	-22,029	3.64
Wall Cond	22,196	0		22,196	2.57	*	20,748	12.83	* -41,084	-41,084	6.78
Partition	o			0	0.00	*	o	0.00	* 0	0	0.00
Exposed Floor	0			0	0.00	*	o	0.00	* 0	<u> </u>	0.00
Infiltration	2,999			2,999	0.35	*	963	0.60	★ -2,099	- `-2,099	0.3
Sub Total==>	212,444	0		212,444	24.57	*	219,461	135.74	+ -149,654	-149,654	24.7
Internal Loads						•			*		
Lights	32,200	0		32,200	3.72	*	42,613	26.36	+ 10,653	10,653	-1.70
People	32,823			32,823	3.80	*	24,224	14.98	* 6,056	6,056	-1.00
Misc	4,398	0	0	4,398	0.51	*	4,398	2.72	* 2,199	2,199	-0.36
Sub Total==>	69,421	0	0	69,421	8.03	*	71,235	44.06	* 18,908	18,908	-3.12
Ceiling Load	0	0		0	0.00	*	0	0.00	* 0	0	0.00
Outside Air	O	0	o	690,883	79.90	*	0	0.00	* 0	-485,027	80.10
Sup. Fan Heat				20,945	2.42	+		0.00	*	20,945	-3.40
Ret. Fan Heat		11,203		11,203	1.30	•		0.00	*	0	.0.0
Duct Heat Pkup		0		0	0.00	*		0.00	*	0	0.0
OV/UNDR Sizing	-129,020			-129,020	-14.92	*	-129,020	-79.80	-	-10,721	1.7
Exhaust Heat		-11,203	0	-11,203	-1.30	*		0.00	•	v7 0	0.0
Terminal Bypass		0	o	0	0.00	*		0.00		o	0.0
						+	•		*		
Grand Total==>	152,845	0	· 0	864,673	100.00	÷	161,676	100.00	* -141,466	-605,549	100.0

				DLING COIL SE											
	Total	Capacity	Sens Cap.	Coil Airfl	Ent	ering I	B/WB/ER	Lea	wing DI	3/WB/HR	Gross	Total	Glass	(\$f)	(1)
	(Tons)	(Mbh)	(Hbh)	(cfm)	Deg F	Deg P	Grains	Deg P	Deg F	Grains	Floor	17,592			
Main Clg	72.1	864.7	380.5	9,133	94.1	80.5	137.3	53 .9	53.1	59.3	Part	0			
Aux Clg	10.9	131.1	131.1	7,258	72.0	60.0	58.9	55.8	53.7	58.6	ExFlr	0			
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	17,592		0	0
Totals	83.0	995.7									Wall	3,952		528	13

	HEATING COIL SELECTION				2	IRFLOWS (cf	m)	ENGINEERING	CHECKS		(F)	
	Capacity	Coil Airfl	Ent	Lvg	Type	Cooling	Heating	Clg & OA	100.0	Type	Clg	Htg
	(Mbh)	(cfm)	Deg P	Deg F	Vent	9,133	9,133	Clg Cfm/Sqft	0.52	SADB	56.0	86.0
Main Htg	-303.1	9,133	53.9	83.9	Infil	40	40	Clg Cfm/Ton	126.75	Plenum	72.0	72.0
Aux Htg	-184.3	12,044	72.0	85.8	Supply	9,133	9,133	Clg Sqft/Ton	244.14	Return	73.1	72.0
Preheat	-302.4	9,133	24.0	53.9	Mincfm	7,512	7,512	Clg Btuh/Sqft	49.15	Ret/OA	94.1	24.0
Reheat	-133.0	7,512	56.0	72.0	Return	9,133	9,133	No. People	105	Runarnd	72.0	72.0
Humidif	0.0	0	0.0	0.0	Exhaust	9,133	9,133	Htg & OA	100.0	Pn MtrTD	0.4	0.0
Opt Vent	0.0	0	0.0	0.0	Rm Exh	0	0	Htg Cfm/SqFt	0.52	Fn BldTD	0.5	0.0
Total	-789.8				Auxil	7,258	12,044	Etg Btuh/SqFt	-34.42	Pn Prict	1.6	0.0

V 600

PAGE 5

.

- ·

By: ENGINEERING RESOURCE GROUP, INC.

	**********	OLING COTI.	PEAK *******		*******	*****	** CLG SPAC	E PEAK ***	***	***** HEATING	G COIL PEAK	*******
Peaked at Time			/16			*	Mo/Hr:	6/15	*	н	o/Er: 13/ 1	
Outside Air ==>		B/WB/HR: 9				*	OADB:	95	٠	•	DADB: 24	
Outblue All 222	0.12					*			٠			
	Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt	*	Space Peak	Coil Peak	Percnt
	Sens.+Lat.	Sensible	Latent	Total	Of Tot	*	Sensible	Of Tot	٠	Space Sens	Tot Sens	Of Tot
Envelope Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(\$)	*	(Btuh)	(1)	*	(Btub)	(Btuh)	(\$)
Skylite Solr	、 , 0	0		0	0.00	*	0	. 0.00	٠	0	0	0.00
Skylite Cond	0	0		0	0.00	*	<u>.</u> 0	0.00	*	0	0	0.00
Roof Cond	0	49,288		49,288	7.18	*	. 6	0.00	*	0	-26,289	3,5
Glass Solar	13,261	0		13,261	1.93	*	14,090	6.21	*	0	0	0.0
Glass Cond	2,194	o		2,194	0.32	*	2,167	0.96	*	-4,937	-4,937	0.6
Wall Cond	7,673	0		7,673	1.12	+	7,386	3.25	*	-15,792	-15,792	2.1
Partition	0			0	0.00	*	0	0.00	*	0	0	0.0
Exposed Floor	0			C	0.00	*	0	0.00	*	0	0	0.0
Infiltration	1,451			1,451	0.21	*	499	0.22	*	-1,060	-1,060	0.1
Sub Total==>	24,579	49,288		73,867	10.76	*	24,142	10.64	*	-21,789	-48,079	6.4
Internal Loads	-					*			*			
Lights	140,446	7,392		147,837	21.53	*	140,446	61.89	*	35,111	36,959	-4.9
People	70,383			70,383	10.25	*	33,725	14.86	*	3,372	3,372	-0.4
Misc	15,514	o	0	15,514	2.26	*	13,510	5.95	*	1,351	1,351	-0.1
Sub Total==>	226,342	7,392	0	233,734	34.04	*	187,680	82.71	*	39,835	41,683	-5.6
Ceiling Load	54,385	-54,385		0	0.00	*	63,204	27.85	*	-26,640	0	0.0
Outside Air	0	0	0	372,366	54.24	*	0	0.00	*	0	-272,121	36.5
Sup. Fan Heat				54,694	7.97	*		0.00	*		54,694	-7.3
Ret. Fan Heat		0		0	0.00	*		0.00	*		Q	0.0
Duct Heat Pkup		o		0	0.00	*		0.00	*		0	0.0
OV/UNDR Sizing	-48,099			-48,099	-7.01	*	-48,099	-21.20	*	-520,901	-520,901	69.5
Exhaust Heat	-	0	0	0	0.00	*		0.00	*		0	0.0
Terminal · Bypass		0	o	0	-0.00	* 2	•**` •~	0.00	*		0.	. 0.0
42						*			*			
Grand Total==>	257,207	2,294	C	686,561	100.00	*	226,927	100.00	*	-529,495	-744,723	100.0

				DLING COIL SE	LECTION	[AR	EAS		
	Total	Capacity		Coil Airfl			B/WB/HR			/WB/ER	Gross !	Total	Glass (sf)	(\$)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F	Deg F	Grains	Deg F	Deg F	Grains	Floor	30,667			
Main Clq	57.2	686.6	404.4	17,092	78.9	68.8	90.4	57.1	56.4	67.7	Part	0			
Aux Clq	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0			
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	12,589	,	0	0
Totals	57.2	686.6									Wall	1,996	11	8	6

		COIL SELECTIO	N		A	IRFLOWS (cf	m)	ENGINEERING (TEMPERA	(F)		
	Capacity	Coil Airfl	Ent	Lvq	Type	Cooling	Heating	Clg & OA	30.0	Type	Clg	Htg
	(Mbh)	(cfm)	Deg P	Deq F	Vent	5,124	5,124	Clg Cfm/Sqft	0.56	SADB	60.0	100. 0
Main Htg	-710.1	17,092	62.4	100.0	Infil	20	20	Clg Cfm/Ton	298.74	Plenum	77.6	69.4
Aux Etg	0.0	0	0.0	0.0	Supply	17,092	17,092	Clg Sqft/Ton	536.01	Return	72.0	72.0
Prebeat	-0.0	17,092	57.6	57.1	Mincfm	0	0	Clg Btuh/Sqft	22.39	Ret/OA	78.9	57.6
Rebeat	0.0	0	0.0	0.0	Return	17,092	17,092	No. People	116	Runarad	72.0	72.0
Rumidif	0.0	0	0.0	0.0	Exhaust	5,124	5,124	Htg & OA	30.0	Pn MurTD	1.0	0.0
Pot Vent	0.0	0	0.0	0.0	Rm Exh	0	0	Htg Cfm/SqFt	0.56	Fn BldTD	0.7	0.0
Total	-710.1	•			Auxil	o	C	Etg Btuh/SqFt	-23.16	Fn Frict	2.2	0.0

•

- . -

By: ENGINEERING RESOURCE GROUP, INC.

V 600

PAGE 7

.

System	4	Block	-											
********	*******	******** C	COLING COIL	PEAK ******	********	*******	****				***** <u>HEA</u> T	ING COIL PEA		• • • • •
Peaked at	Time ==	>	Mo/Er: 0	8/16			*	Мо/Н1		* 14		Mo/Er: 13/	1	
Outside A	ir ==>	OAL	DB/WB/ER:	95/ 81/138.0			*	OADE	3: 95	5 *		OADB: 24		
							*			*				
		Space	Ret. Air	Ret. Air	Net	Percnt	٠	Spac	e	Percnt *	Space Pea			ercnt
	s	ens.+Lat.	Sensible	Latent	Total	Of Tot	*	Sensibl	le	Of Tot +	Space Sen			f Tot
Envelope	Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(\$)	*	(Btuł	ı) ⁻	, (%) *	(Btuh			(\$)
Skylite		0	o		0	0.00	*		ο.	0.00 *		0	0	0.00
Skylite		0	0		0	0.00	*		0	0.00 *		0	0	0.00
Roof Co		0	34,673		34,673	6.17	*		-0	0.00 *		0 -18,88		2.80
Glass S		7,686	0		7,686	1.37	*	40,61)2	19.72 *		0	0	0.00
Glass C		8,936	0		8,936	1.59	*	3,5	15	1.71 *	-20,00	8 -20,00	8	2.97
Wall Co		17,884	o		17,884	3.18	*	12,3	54	6.00 *	-23,93	8 -23,93	38	3.55
Partiti		0			0	0.00	*		0	0.00 +		0	0	0.00
Exposed		0			0	0.00	×		0	0.00 *		٥.	0	0.00
Infiltz		2,068			2,068	0.37	*	4:	91	0.24 *	-1,54	71,5	47	0.23
Sub Tot		36,574	34,673		71,247	12.67	*	56,9	61	27.67 *	-45,49	2 -64,3	81	9.55
Internal		20,214			•		*			*				
	LOADS	100 260	5,703		114,063	20.29	*	108,3	60	52.63 *	13,95	4 14,6	88	-2.18
Lights		108,360	57105		68,108	12.11		33,2	64	16.16 *	34	1 3	41	-0.05
People		68,108	0	o	3,180	0.57		3,1		1.54 *	92	:4 9:	24	-0.14
Misc		3,180	5,703		185,351	32.96		144,8		70.33 *	15,21	8 15,9	53	-2.37
Sub Tot		179,648	-46,850		0	0.00		44,7		21.73 *	-19,61	0	0	0.00
Ceiling I		46,850	-40,050		309,926	55.12		•	0	0.00 +		0 -231,7	59	34.37
Outside 1		0	Ŭ	Ŭ	36,390	6.47				0.00 +		36,3	90	-5.40
Sup. Pan			o		30,350	0.00				0.00 +			0	0.00
Ret. Fan			0		0	0.00				0.00 *			0	0.00
Duct Heat	-	40 (21	U		-40,621	-7.22		-40,6	21	-19.73 *	-430,5	LO -430,5	10	63.84
OV/UNDR S	-	-40,621	0	0	-40,421	0.00		•		0.00 *			0	0.00
Exhaust I			. 0		. 0	-0.00				0.00 +			0	0.00
Terminal	Вуравв			U U	• •	-0100	*			*				
Grand Tot	al==>	222,450	-6,474	. 0	562,292	100.00	*	205,8	83	100.00 *	-480,3	94 -674,3	07	100.00
			000	LING COIL SE	LECTION							AREAS		
	Total	Capacity	Sens Cap.	Coil Airfl	Enteri	ng DB/WB	/HR	Leavi	ng DB	/WB/HR	Gross Tot		(sf)	(\$)
	(Tons)	(Hbh)	(Hob)	(cfm)	Deg F De	g F Gra	ins	Deg F D	eg F	Grains	Floor	20,255		
Main Clg	46.9	562.3	323.6	15,507	79.0 6	8.9 9	0.8	58.4	57.9	71.7	Part	0		
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0		0 0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	9,053		-
Totals	46.9	562.3									Wall	2,912	48	0 16
		NG COIL SEL	ECTION		AI	RFLOWS (cfm)			INGINEERING				
	Capaci	ty Coil A	irfl Ent	Lvg	Type	Cooling	r :	Heating	Clo	I & OA	28.1	Type	Clg	Etg
	- (Mbh	-		Deg F	Vent	4,364		4,364	-	g Cfm/Sqft	0.77	SADB	60.0	100.0
Main Htg	-630		507 63.2	100.0	Infil	29		29	-	g Cfm/Ton	330.94	Plenum	79.3	68.7
Aux Htg		.0	0 0.0	0.0	Supply	15,507		15,507	Clo	g Sqft/Ton	432.27	Return	72.0	72.(
Preheat	-0		507 72.0	57.9	Mincfm	C)	0	Clo	g Btuh/Sqfi	27.76	Ret/OA	78.4	58.5
Reheat		.0	0 0.0		Return	15,507	,	15,507	No	. People	96	Rnnarnd	72.0	72.(
Humidif		.0	0 0.0		Exhaust	4,364	l	4,364	Hte	g 🕻 OA	28.1	Fr MtrTD	0.7	0.(
Opt Vent		.0	0 0.0		Rm Exh	c)	0	Hte	g Cfm/SqFt	0.77	Fn BldTD	0.5	0.(
Total	-630				Auxil	c)	0	Hte	g Btuh/SqF	t -31.14	Pn Frict	1.6	0.(

By: ENGINEERING RESOURCE GROUP, INC.

Block

5

System

- ·.

MZ

- MULTIZONE

V 600

•														
	at Time =		Mo/Er:		********	*******	****		SPAC	6/17	·******* HJ	Mo/Er: 1		******
Outside			DB/WB/ER:		0		•		ADB:	93 4		OADB:		
Vacbiae	R11 229		06/ WB/ ER:	33/ 61/130.	0		-	Ŭ	ADD:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UNDD.	24	
		Space	Ret Nir	Ret. Air	Net	. Percnt	-	<pre></pre>	pace	Percnt *	Space I	eak Coil	Peak	Perch
		Sens.+Lat.	Sensible			l Of Tot			ible	Of Tot	•		Sens	Of To
Envelope	Loade	(Btuh)	(Btuh)		(Btuh)				tuh)	(\$)	-		Stuh)	(1
-	e Solr	(Deall)	(2001)	· · ·	(Bean)			(5	0	· 0.00 +	•	0	0	0.0
-	e Cond	0	0						O	0.00 +		0	0	0.0
Roof C		0	245,971		245,973				. 0	0.00 +			1,533	28.2
Glass		37,600	0		37,600			51	,587	6.51 +		0	. 0	0.0
Glass	Cond	10,027	0		10,027				,408	1.19		.800 -21	,800	3.0
Wall C	ond	35,237	0		35,237				, 388	4.46 +			,549	7.9
Partit	ion	0							0	0.00 *		0	0	0.00
Expose	d Floor	o			C				0	0.00 *		٥	0	0.0
Infilt	ration	7,298			7,298			2	,156	0.27 +	-4,	786 -4	,786	0.6
Sub To	tal==>	90,162	245,971		336,132				,538	12.43 *	-		,667	39.88
Internal	Loads	•	•				*		-	+				
Lights		188,299	9,910		198,209	15.69	*	188	,299	23.75 *	18,	015 18	,963	-2.62
People		124,644			124,644		*		,626	6.76 +	-	0	0	0.00
Misc		4,081	0	0	4,081				,081	0.51 *	1,	369 1	,369	-0.19
Sub To	tal==>	317,023	9,910	0	326,934				,006	31.03 +			,331	-2.8
Ceiling 1	Load	256,440	-256,440		. 0				,480	33.61 *	-203,	589	0	0.00
Outside 2		0	0	0	302,002	23.90	*		- 0	0.00 *		0 -198	,036	27.36
Sup. Fan	Heat				91,389	7.23	*			0.00 +		91	,389	-12.62
Ret. Fan	Heat		27,629		27,629	2.19	*			0.00 *			0.	0.00
Duct Heat	t Pkup		0		0	0.00	*			0.00 *			0	0.00
OV/UNDR :	Sizing	181,877			181,877	14.40	*	181,	,877	22.94 *	-348,	919 -348	,919	48.20
Exhaust I	Heat		-2,585	0	-2,585	-0.20	*	7-	֥	0.00 *			G	0.00
Terminal	Bypass		0	· 0	0	-0.00	*			0.00 *			0	0.00
Grand Tot	tal==>	845,502	24,485	0	1,263,378	100.00	*	792,	,901	100.00 *	-617,	260 -723	,902	100.00
			C001	LING COIL SE	LECTION							AREAS-		
	Total	Capacity	Sens Cap.	Coil Airfl	Enteri	ng DB/WB/	'HR	Leav	ving D	B/WB/HR	Gross To	tal Gla	58 (8f) (\$)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F De	g F Grai	ins	Deg F	Deg F	Grains	Floor	41,794		
Main Clg	105.3	1,263.4	983.7	39,850	74.7 6		5.5	51.9	51.0	54.5	Part	0		
Aux Clg	0.0	0.0	0.0	0	0.0	0.0 0	0.0	0.0	0.0	0.0	ExFlr	0		
Opt Vent	0.0	0.0	0.0	0	0.0	0.0 0	0.0	0.0	0.0	0.0	Roof	41,794		0 0
Totals	105.3	1,263.4									Wall	9,011	1,0	18 11
		G COIL SELE	CTION		A II	RFLOWS (C	:fm)-			ENGINEERING	CHECKS	TEMPER		(F)
	Capacit	•	rfl Ent	Lvg	Туре	Cooling	H	eating		g t OA	9.4	Туре	Clg	Etg
	(Hob)	•	•	Deg P	Vent	3,729		3,729		g Cfm/Sqft	0.95	SADB	54.0	
Main Htg	-723.	•			Infil	90		90	Cl	g Cfm/Ton	378.51	Plenum	91.4	
Aux Htg	0.		0 0.0	0.0	Supply	39,850		39,850		g Sqft/Ton	396.97	Return	72.6	
Preheat	-0.	-			Mincfm	0		0	Cl	g Btuh/Sqft	30.23	Ret/OA	74.7	
Rebeat	0.		0 0.0	0.0	Return	39,850		39,850	No	. People	187	Runarnd	72.0	
Bumidif	0.		0 0.0		Exhaust	3,729		3,725	Ht	g t OA	9.4	Fn MtrTD		
Opt Vent	0.	0	0 0.0	0.0	Rm Exh	0		Û	Ħt	g Cfm/SqFt	0.95	Pn BldID	0.5	0.0
otal	-723.	9			Auxil	0		0	Ht	g Btuh/SqFt	-17.32	Fn Frict	1.6	0.0

• ~

*													
Peaked at Time		COOLING COIL Mo/Hr: 1	PEAK ****** 8/16	********	********	****	<pre>**** CLG SPAC Mo/Hr:</pre>	E PEAK *** 6/17	***	***** HEATIN	o/Er: 13/ 1		
			95/ 81/138.0			-	OADB:	93	*		OADB: 24		
Outblue All ==>	0.		57 81/138.0			-	0,200.	22	*				
	Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt	*	Space Peak	Coil Peak	Perch	
	Sens.+Lat.	Sensible	Latent	Total	Of Tot	*	Sensible	Of Tot	*	Space Sens	Tot Sens	Of To	
Envelope Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(\$)	*	(Btuh)	. (1)	*	(Btuh)	(Btuh)	(1)	
- Skylite Solr	0	0		0	0.00	٠	0	0.00	*	0	0	0.00	
Skylite Cond	o	0		0	0.00	*	<u>.</u> 0	0.00	*	0	0	0.00	
Roof Cond	o	47,355		47,355	7.36	*	, Ö	0.00	*	o	-39,344	7.98	
Glass Solar	0	0		0	0.00	*	Ō	0.00	*	C	0	0.00	
Glass Cond	. 0	0		0	0.00	*	0	0.00	*	o	0	0.00	
Wall Cond	2,860	0		2,860	0.44	*	2,705	1.93	*	-3,557	-3,557	0.72	
Partition	0			0	0.00	*	0	0.00	*	0	0	0.00	
Exposed Floor	0			0	0.00	*	C	0.00	*	-0	. 0	0.00	
Infiltration	350			350	0.05	*	117	0.08	*	-262	-262	0.05	
Sub Total==>	- 3,210	47,355		50,565	7.85	*	2,822	2.02	*	-3,819	-43,163	8.75	
Internal Loads	-	-		•		*			*				
Lights	35,709	1,879		37,589	5.84	*	35,709	25.54	*	3,571	3,759	-0.76	
People	28,078			28,078	4.36	*	10,955	7.84	±	0	0	0.00	
Misc	1,206	0	0	1,206	0.19	*	1,206	0.86	*	402	402	-0.08	
Sub Total==>	64,993	1,879	0	66,873	10.39	*	47,870	34.24	*	3,973	4,161	-0.84	
Ceiling Load	49,235	-49,235		0	0.00	*	53,900	38.55	*	-39,156	0	0.00	
Outside Air	0	0	0	482,410	74.93	ŧ	0	0.00	*	0	-361,659	73.32	
Sup. Fan Heat				8,184	1.27	ŧ		0.00	*		8,184	-1.66	
Ret. Fan Heat		2,407		2,407	0.37	*		0.00	*		0	0.00	
Duct Heat Pkup		0		0	0.00	*		0.00	*		0	0.00	
OV/UNDR Sizing	35,217			35,217	5.47	÷	35,217	25.19	*	-100,806	-100,806	20.44	
Exhaust Heat		-1,816	o	-1,816	-0.28	*		0.00	*		0	0.00	
Terminal Bypass		0	0	0	-0.00	• •		0.00	*		0	0.00	
						*			*				
Grand Total==>	152,656	591	O	643,840	100.00	*	139,809	100.00	*	-139,809	-493,285	100.00	
		COOL	ING COIL SE	LECTION							-AREAS		
Total	Capacity	Sens Cap.	Coil Airfl	Enterin	ng DB/WB/	'HR	Leaving	DB/WB/HR		Gross Total	Glass (s	f) (%)	
(Tons)	(Mbh)	(Mbh)	(cfm)	Deg P Deg	F Grai	ns	Deg F Deg	F Grains		Floor 8,	039		

	Total	Capacity	Sens Cap.	Coil Airfl	Ent	Entering DB/WB/HR			Leaving DB/WB/HR			Gross Total) (\$)
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg P	Deg F	Grains	Deg F	Deg F	Grains	Floor	8,039			
Main Clg	53.7	643.8	318.0	9,026	89.3	77.0	122.0	57.2	56.6	68.1	Part	0			
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0			
Opt Ve nt	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof.	8,039		0	0
Totals	53.7	643.8									Wall	494	-	0	0

	HEATING C	COIL SELECTIO	N		>	IRFLOWS (cf	ш)	ENGINEERING C	HECKS	TEMPERA	SADB 58.0 Plenum 91.3 Return 72.2 Ret/OA 89.3 Runarnd 72.0 Fn MtrTD 0.1	
	Capacity	Coil Airfl	Ent	Lvg	Туре	Cooling	Heating	Clg & OA	75.4	Type	Clg	Etg
	(Hbh)	(cfm)	Deg P	Deg F	Vent	6,810	6,810	Clg Cfm/Sqft	1.12	SADB	58.0	86.0
Main Etg	-279.6	9,026	58.0	86.0	Infil	5	5	Clg Cfm/Ton	168.23	Plenum	91.3	56.6
Aux Htg	0.0	o	0.0	0.0	Supply	9,026	9,026	Clg Sqft/Ton	149.83	Return	72.2	72.0
Preheat	-213.7	9,026	35.8	57.2	Mincfm	0	٥	Clg Btuh/Sqft	80.09	Ret/OA	89.3	35.8
Reheat	0.0	0	0.0	0.0	Return	9,026	9,026	No. People	40	Runarnd	72.0	72.0
Bumidif	0.0	0	0.0	0.0	Exhaust	6,810	6,810	Htg 🕻 OA	75.4	Fn MtrTD	0.1	0.0
pt Vent	0.0	o	0.0	0.0	Rm Exh	0	D	Btg Cfm/SqFt	1.12	Fn BldTD	0.2	0.0
otal	-493.3				Auxil	0	0	Etg Btuh/SqFt	-61.36	Fn Frict	0.6	0.0

V 600

PAGE 9

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

. . -

V 600 , PAGE 10

											•		
System	1 7	Block	MZ	- MULTIZON	IE								
*****	********	********	COOLING COIL	PEAK ******	*******	********	····· CLG	SPACE	PEAK *****	****** HEA	TING COIL P	EAK ++	*****
Peaked	l at Time ≖	=>	Mo/Hr: 4	8/16			* Ho/	Hr: 6	/17 +		Mo/Hr: 13,	/ 1	
Outsid	e Air ==>	07	ADB/WB/ER: 9	95/ 81/138.0)		+ 0A	DB: 9	3 +		OADB: 2	4	
							*		*				
		Space	Ret. Air	Ret. Air	Net	Percnt	* Sp	ace	Percnt *	Space Pe	ak Coil Po	eak	Percnt
	:	Sens.+Lat.	Sensible	Latent	Total	Of Tot	* Sensi	ble	Of Tot *	Space Se	ns Tot Se	ens	Of Tot
Envelo	pe Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(1)	+ (Bt	uh) .	. (1) *	(Btu	h) (Btu	ih)	(\$)
	ite Solr	0	0		0	0.00	*	0	0.00 +		0	0	0.00
-	ite Cond	0	0		0	0.00	•	. 0	0.00 *		o	0	0.00
Roof	Cond	0	262,600		262,600	14.72			0.00 *		0 -218,	508	22.40
Glas	s Solar	12,548	0		12,548	0.70	+ 14,	240	1.97 *		0	0	0.00
Glas	s Cond	3,718	0		3,718	0.21	÷ 3,	444	0.48 +	-8,0	84 -8,0	084	0.83
Wall	Cond	35,679	0		35,679	2.00	* 36,	828	5.09 *	-54,4	71 -54,4	471	5.58
Part	ition	0			0	0.00	*	0	0.00 +		0	0	0.00
Expo	sed Floor	0			0	0.00	+	0	0.00 +		0	0	0.00
Infi	ltration	6,411			6,411	0.36	• 1,	872	0.26 +	-4,2	184,3	218	0.43
Sub 3	Total==>	58,355	262,600		320,956	17.99	• 56,	383	7.80 +	-66,7	74 -285,2	281	29.25
Intern	al Loads						*		+				
Ligh	ts	215,672	11,351		227,023	12.72	* 215,	672	29.84 *	21,3	58 22,4	182	-2.30
Peop	le	62,037			62,037	3.48	+ 24,	679	3.41 *		0	0	0.00
Misc		11,725	O	0	11,725	0.66	* 10,	995	1.52 *	3,6	81 3,0	581	-0.38
Sub 1	Total==>	289,433	11,351	0	300,785	16.86	* 251,	345	34.77 *	25,0	38 26,	162	-2.68
Ceilin	g Load	274,156	-274,156		٥	0.00	* 297,	487	41.16 *	-217,3	77	0	0.00
Outside	e Air	0	0	0	822,249	46.08	*	0	0.00 +		0 -541,6	055	55.47
Sup. Fa	an Heat				198,176	11.11	*		0.00 *		198,	176	-20.32
Ret. Fa	an Heat		32,666		32,666	1.83	•		0.00 +			.0	0.00
Duct He	eat Pkup		0		0	0.00	+		0.00 *			0	0.00
ov/undi	R Sizing	117,626			117,626	6.59	* 117,	626	16.27 +	-373,3	73 -373,	373	38.28
Exhaust	t Heat	•	8,150	0	-8,150	-0.46	*		0.00 *			0	0.00
Termina	al Bypass		0	. 0	0	-0.00	*		0.00 *		-	0	0.00
							*		*				
Grand :	Total==>	739,570	24,312	0	1,784,308	100.00	* 722,	841	100.00 *	-632,4	86 -975,	371	100.00
											AREAS		
				ING COIL SE						Gross Tot		s (sf)	())
		Capacity	Sens Cap.			ng DB/WB/H		-	/WB/ER		44,640	5 (82)	
Main Clo	(Tons) g 148.7	(Hbh) 1,784.3	(Moh)	(cfm)		F Grain .3 78.	-	50.6	53.8	Part	0		
Aux Clo	-	0.0	1,180.5 0.0	40,833 0).0 0.		0.0	0.0	ExFlr	0		
Opt Vent	•	0.0	0.0	0).0 0.		0.0	0.0		44,640		ο τ
Totals	148.7	1,784.3	0.0	v	0.0			••••		Wall	7,943	37	18 5
		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									·		
	HEATIN	IG COIL SEL	ECTION		AIF	FLOWS (cf	m)	E	NGINEERING	CHECKS	TEMPERA	TURES	(F)
		y Coil A		Lvg	Туре	Cooling	Beating	Clg	t OA	25.0	Type	Clg	Htg
	- (Mbh)	-		÷	Vent	10,188	10,188	Clg	Cfm/Sqft	0.91	SADB	56.0	86.(
Main Htg		•		-	Infil	. 79	79	Clg	Cfm/Ton	274.61	Plenum	91.4	56.4
Aux Htg	- g 0.	-	0 0.0		Supply	40,833	40,833	Clg	Sqft/Ton	300.22	Return	72.7	72.(
Preheat	-0.	.0 40,	833 60.0		Mincfm	0	0	Clg	Btuh/Sqft	39.97	Ret/OA	78.3	60.(
Reheat	0.	.0	0 0.0	0.0	Return	40,833	40,833	No.	People	89	Runarnd	72.0	72.(
Rumidif	٥.	. 0	0 0.0	0.0	Exhaust	10,188	10,188	Ħtg	& OA	25.0	Fn MtrTD	0.8	0.(
Opt Vent	t 0.	.0	0 0.0	0.0	Rm Exh	0	0	Ħtg	Cfm/SqFt	0.91	Fn BldTD	1.1	0.(
Total	-959.	0			Auxil	0	0	Ħtg	Btuh/SqFt	-21.48	Fn Frict	3.3	0.(

System 8	Block	MZ	- MULTIZON	E								
******		COOLING COIL	PEAK ******	*********	******	***	**** CLG SPAC	E PEAK ***	***	***** HEATIN	G COIL PEAK	*******
Peaked at Time	==>	Mo/Hr: 8	3/16			*	Mo/Br:	6/17	*	М	o/Hr: 13/ 1	
Outside Air ==>	. 0	ADB/WB/HR: 9	5/ 81/138.0			*	OADB:	93	*	•	OADB: 24	
						٠			*			
	Space	Ret. Air	Ret. Air	Net	Percnt	*	Space	Percnt	*	Space Peak	Coil Peak	Percnt
	Sens.+Lat.	Sensible	Latent	Total	Of Tot	*	Sensible	Of Tot	*	Space Sens	Tot Sens	Of Tot
Envelope Loads	(Btuh)	(Btuh)	(Btuh)	(Btuh)	(\$)	*	(Btuh)	. (\$)	*	(Btuh)	(Btuh)	(\$)
Skylite Solr	0	0		0	0.00	*	0	0.00	*	0	0	0.00
Skylite Cond	0	0		0	0.00	*	្លុ	0.00	*	0	0	0.00
Roof Cond	0	105,556		105,556	15.73	*	0	0.00	*	0	-72,606	16.17
Glass Solar	2,656	. 0		2,656	0.40	*	2,746	0.92	*	0	0	0.00
Glass Cond	1,242	0		1,242	0.19	*	1,162	0.39	*	-2,700	-2,700	0.60
Wall Cond	12,715	0		12,715	1.89	*	15,220	5.11	*	-25,314	-25,314	5.64
Partition	0			0	0.00	*	0	0.00	*	0	0	0.00
Exposed Floor	· 0			0	0.00	*	0	0.00	*	0	0	0.00
Infiltration	2,744			2,744	0.41	*	863	0.29	*	-1,934	1,934	0.43
Sub Total==>	19,357	105,556		124,914	18.61	*	19,991	6.71	*	-29,949	-102,555	22.84
Internal Loads						*	·		*			
Lights	119,973	6,314		126,287	18.81	*	119,973	40.26	*	11,929	12,557	-2.80
People	43,966			43,966	6.55	*	19,035	6.39	*	0	0	0.00
Misc	4,021	0	0	4,021	0.60	*	4,021	1.35	*	1,348	1,348	-0.30
Sub Total==>	167,960	6,314	o	174,275	25.96	*	143,029	48.00	*	13,278	13,905	-3.10
Ceiling Load	89,962	-89,962		0	0.00	*	117,349	39.38	*	-83,351	0	0.00
Outside Air	0	0	o	286,947	42.75	*	0	0.00	*	0	-202,232	45.04
Sup. Fan Heat				60,315	8.99	*		0.00	*		60,315	-13.43
Ret. Fan Heat		8,773		8,773	1.31	*		0.00	*		Ö	0.00
Duct Heat Pkup		0		0	0.00	*		0.00	*	,	0	0.00
OV/UNDR Sizing	17,636			17,636	2.63	*	17,636	5.92	*	-218,474	-218,474	48.65
Exhaust Heat	·	-1,625	. 0	-1,625	-0.24	*		0.00	*		0	0.00
Terminal Bypass	•	0	0	0	-0.00	*		0.00	*		0	0.00
Grand Total==>	294,916	29,057	o	671,236	100.00	*	298,004	100.00	*	-318,497	-449,040	100.00
		COOI	LING COIL SE	LECTION	~						-AREAS	
Tota	l Capacity	Sens Cap.	Coil Airfl	Enterir	ng DB/WB/	HR	Leaving	DB/WB/HR	•	Gross Total	Glass (s	f) (1)
(Tons		(Mbh)	(cfm)	Deg F Deg	F Grai	ns	Deg P Deg	F Grains		Floor 26,	965	

				WING COID OF		•									
	Total C	Capacity	Sens Cap.	Coil Airfl	Ent	ering D	B/WB/HR	Lea	wing DE	s/wb/hr	Gross	Total	Glass (sf)	(\$)	
	(Tons)	(Mbh)	(Mbh)	(cfm)	Deg F	Deg F	Grains	Deg P	Deg F	Grains	Floor	26,965			
Main Clg	55.9	671.2	454.5	20,562	76.6	65.9	79.4	56.2	55.5	65.0	Part	0			
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	ExFlr	0			
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Roof	14,639	(יכ	0
Totals	55.9	671.2									Wall	3,642	120	5	3

	HEATING (COIL SELECTIO	N		A	IRFLOWS (cf	m)	ENGINEERING C	CHECKS	TEMPERA	TURES	(F)
	Capacity	Coil Airfl	Ent	Lvg	Type	Cooling	Heating	Clg & OA	18.5	Type	Clg	Etg
	(Mbh)	(cfm)	Deg F	Deg F	Vent	3,808	3,808	Clg Cfm/Sqft	0.76	SADB	58.9	86.0
Main Htg	-416.5	20,562	67.7	86.0	Infil	36	36	Clg Cfm/Ton	367.60	Plenum	82.5	63.9
Aux Htg	0.0	0	0.0	0.0	Supply	20,562	20,562	Clg Sqft/Ton	482.07	Return	72.4	72.0
Preheat	-0.0	20,562	63.1	56.2	Mincfm	0	0	Clg Btuh/Sqft	24.89	Ret/OA	76.6	63.1
Reheat	0.0	0	0.0	0.0	Return	20,562	20,562	No. People	63	Runarnd	72.0	72.0
Bumidif	0.0	0	0.0	0.0	Exhaust	3,808	3,808	Htg & OA	18.5	Fn HtrTD	0.5	0.0
pt Vent	0.0	0	0.0	0.0	Rm Exh	0	0	Htg Cfm/SqFt	0.76	Fn BldTD	0.7	0.0
otal	-416.5				Auxil	0	0	Htg Btuh/SqFt	-15.45	Fn Frict	2.0	0.0

V 600

•.

. .

MAIN SYSTEM COOLING - ALTERNATIVE 1 BASELINE MODEL PAGE 12

(Main System)

													Coil		
						Space							Coil	Coil	Coil
		Peak	OA	Rm	Supp.	Space	Space	Space		-	Rm Suj		Air	Sens.	Lat.
	. •	Time	Cond.	Dry	Dry	Air	Sens.	Lat.		Cond. D		Dry		Load	Load
. *	Room	Mo/Hr	DB/WB	Blb	Bulb	Flow	Load	Load	Mo/Hr	DB/WB B		ilb	Flow		
	Number	Description	(F)	(F)	(F)	(Cfm)	(Btuh)	(Btuh)	44.	(F) (1	F)	(F)	(Cfm)	(Btuh)	(Btuh)
	1	SURGERY1 6/14	95 78	72	50.1	662	16,040	2,817	7/15		72 5	1.3	662	32,826	41,972
	Zone	1 Total/Ave.	95 78	72	50.1	662	16,040	2,817		94 80	72 5	1.3	662	32,826	41,972
	žone	1 Block 6/14	95 78	72	50.1	662	16,040	2,817	7/15	94 80	72 5	1.3	662	32,826	41,972
	2	SUR CORR 6/14	95 78	72	50.1	1,391	33,704	1,474	8/16	95 81	72 5	1.8	1,391	69,479	85,493
	Zone	2 Total/Ave.	95 78	72	50.1	1,391	33,704	1,474		95 81	72 5	1.8	1,391	69,479	85,493
	Zone	2 Block 6/14	95 78	72	50.1	1,391	33,704	1,474	8/16	95 81	72 5	1.8	1,391	69,479	85,493
	3	SURGERY2 6/14	95 78	72	50.1	600	14,538	2,320	7/15	94 80	72 5	1.5	600	29,619	37,743
	Zone	3 Total/Ave.	95 78	72	50.1	600	14,538	2,320		94 80	72 5	1.5	600	29,619	37,743
	Zone	3 Block 6/14	95 78	72	50.1	600	14,538	2,320	7/15	94 80	72 5	1.5	600	29,619	37,743
	4	DEL 1 8/14	95 80	72	50.1	531	12,866	1,963	7/15	94 80	72 5	1.1	531	26,414	33,469
	Lone	4 Total/Ave.	95 80	72	50.1	531	12,866	1,963		94 80	72 5	1.1	531	26,414	33,469
	Ione	4 Block 8/14	95 80	72	50.1	531	12,866	1,963	7/15	94 80	72 5	1.1	531	26,414	33,469
	5	DEL 2 8/14	95 80	72	50.1	474	11,485	1,679	7/15	94 80	72 5	1.1	474	23,583	29,769
	Zone	5 Total/Ave.	95 80	72	50.1	474	11,485	1,679		94 80	72 5	1.1	474	23,583	29,769
	Zone	5 Block 8/14	95 80	72	50.1	474	11,485	1,679	7/15	94 80	72 5	1.1	474	23,583	29,769
	6	LABOR 6/14	95 78	; 72	50.1	2,543	61,617	4,916	7/15	94 80	72 5	1.3	2,543	126,051	157,016
	Zone	6 Total/Ave.	95 78	72	50.1	2,543	61,617	4,916		94 80	72 5	1.3	2,543	126,051	157,016
	Ione	6 Block 6/14	95 78	72	50.1	2,543	61,617	4,916	7/15	94 80	72 5	1.3	2,543	126,051	157,016
	7	SUR. LOUN 6/14	95 78	3 72	50.1	2,952	71,527	3,100	8/16	95 81	72 5	1.9	2,952	147,236	181,398
	Ione	7 Total/Ave.	95 78	3 72	50.1	2,952	71,527	3,100		95 81	72 5	1.9	2,952	147,236	181,398
	Zone	7 Block 6/14	95 78	3 72	50.1	2,952	71,527	3,100	8/16	95 81	72 5	1.9	2,952	147,236	181,398
	8	NURSERY 6/14	95 78	3 72	50.1	1,319	31,960	1,494	8/16	95 81		2.3	1,319	65,201	80,953
	Zone	8 Total/Ave.	95 78	3 72	50.1	1,319	31,960	1,494		95 81		2.3	1,319	65,201	80,953
	Lone	8 Block 6/14	95 78	3 72	50.1	1,319	31,960	1,494	8/16			2.3	1,319	65,201	80,953
	9	OB RECOV 8/14	95 80	72	50.1	378	9,159	1,180	8/16			2.7	378	18,534	23,417
	Ione	9 Total/Ave.	95 80) 72	50.1	378	9,159	1,180		95 81		2.7	378	18,534	23,417 23,417
	Sone	9 Block 8/14	95 80	72	50.1	378	9,159	1,180				2.7	378	18,534	37,441
	10	OR RECOV 6/14	95 78	3 72	50.1	608	14,732	1,316	. 8/16			2.9	608	29,646	37,441
	Lone	10 Total/Ave.	95 78	3 72	50.1	608	14,732	1,316		95 81		2.9	608	29,646	37,441
	Zone	10 Block 6/14	95 78	3 72	50.1	608	14,732	1,316				2.9	608	29,646 568,588	708,672
	System	1 Total/Ave.	95 78			11,458	277,629	22,260				1.7	11,458	558,547	706,139
	System				50.1	11,458	277,403			95 81			11,458	124,103	161,171
	11	PERIM N. 6/14			56.0	2,994	53,001			94 80			2,994	124,103	161,171
	Lone	11 Total/Ave.			56.0	2,994	53,001	9,692		94 80			2,994	124,103	161,171
	Sone				56.0	2,994	53,001			94 80			2,994	52,429	69,846
	12	PERIM. S 9/14	93 70			1,304	23,084			95 81			1,304 1,304	52,429	69,846
	Ione	12 Total/Ave.			56.0	1,304	23,084	4,147		95 81			-	52,429	69,846
	Sone	-	93 70			1,304	23,084			95 81			1,304 2,121	89,607	110,833
			95 76			2,121	37,547			94 80			2,121	89,607	110,833
	Zone	13 Total/Ave.			56.0	2,121	37,547	3,146		94 80			2,121	89,607	110,833
	Ione		95 78			2,121	37,547			94 80 94 80			2,121	94,633	117,032
					56.0	2,239	39,636			94 80 94 80			2,239	94,633	117,032
	Ione	14 Total/Ave.			56.0	2,239	39,636 39,636	3,321		94 80 94 80			2,239	94,633	117,032
	Ione				56.0	2,239 475	8,409			5 94 80 5 94 80			475	19,749	25,270
	12	ICU 6/14	30 A	o /2	56.0			***33	.,,,,					•	-
							324								

Zone	15	Total/Ave.		95	78	72	56.0	475	8,409	1,135		94	80 72	58.5	475	19,749	25,270
Zone	15	Block	6/14	95	78	72	56.0	475	8,409	1,135	7/15	94	80 72	58.5	475	19,749	25,270
System	2	Total/Ave.		95	78	72	56.0	9,133	161,676	21,443		94	80 72	58.5	9,133	380,520	484,153

MAIN SYSTEM COOLING - ALTERNATIVE 1 BASELINE MODEL

. . - ·

(Main System)

									_							Coil		
				_					Space			Peak			Supp.	Coil	Coil	Coil
				Peak				Supp.	Space	Space	Lat.	Time			Dry	Air	Sens.	Lat.
				Time			Dry	Dry	Air	Sens. Load		Mo/Hr		rB Blb	Bulb	Flow	Load	Load
	Room	_		No/Hr	DB/			Bulb	Flow	(Btuh)	(Btuh)	10/ 11		?) (F)	(F)	(Cfm)	(Btub)	(Btuh)
1	Number	Descr	iption		(Y)	(F)	(F)	(Cfm)	(bran)	(Beam)	ية. ية	•	/ (-/	(-,			
	System	2	Block	6/14	95	78	72	56.2	9,133	159,635	21,512	7/15		80 72	58.3	9,133	381,973	484,540
	-	KIT A		6/15	95		72	60.0	434	5,762	1,316	8/16	95	81 72	60.5	434	5,597	9,457
	Lone	16	Total/Ave.		95		72	60.0	434	5,762	1,316		95	81 72	60.5	434	9,597	9,457
	Lone	16	Block	6/15	95		72	60.0	434	5,762	1,316	8/16	95	81 72	60.5	434	5,597	9,457
	17			6/17	93	77	72	60.0	887	11,777	2,547	8/16	95	81 72	63.4	887	18,985	17,050
:	Zone	17	Total/Ave.		93	77	72	60.0	887	11,777	2,547		95	81 72	63.4	887	18,985	17,050
:	Ione	17	Block	6/17	93	77	72	60.0	887	11,777	2,547	8/16	95	81 72	63.4	887	18,985	17,050
	18	XRAY	EXT	6/14	95	78	72	60.0	2,124	28,200	3,468	8/16	95	81 72	64.2	2,124	47,739	45,689
:	Lone	18	Total/Ave.		95	78	72	60.0	2,124	28,200	3,468		95	81 72	64.2	2,124	47,739	45,689
:	Ione	18	Block	6/14	95	78	72	60.0	2,124	28,200	3,468	8/16	95	81 72	64.2	2,124	47,739	45,689
	19	XRAY	INT	6/14	95	78	72	60.0	1,640	21,774	2,987	8/16	95	81 72	60.0	1,640	41,714	21,763
:	Sone	19	Total/Ave.		95	78	72	60.0	1,640	21,774	2,987		95	81 72	60.0	1,640	41,714	21,763
2	Ione	19	Block	6/14	95	78	72	60.0	1,640	21,774	2,987	8/16	95	81 72	60.0	1,640	41,714	21,763
	20	PHY T	HER	6/14	95	78	72	60.0	1,664	22,093	4,668	8/16	95	81 72	64.5	1,664	37,831	39,505
	Zone	20	Total/Ave.		95	78	72	60.0	1,664	22,093	4,668		95	81 72	64.5	1,664	37,831	39,505
	Zone	20	Block	6/14	95	78	72	60.0	1,664	22,093	4,668	8/16	95	81 72	64.5	1,664	37,831	39,505
	21	ADMIN		8/15	95	80	72	60.0	1,214	16,118	4,565	8/16	95	81 72		1,214	24,458	18,717
	Lone	21	Total/Ave.		95	80	72	60.0	1,214	16,118	4,565		95	81 72		1,214	24,458	18,717
:	Lone	21	Block	8/15	95	80	72	60.0	1,214	16,118	4,565	8/16	95	81 72		1,214	24,458	18,717 27,791
	22	SUR.C	LINIC	6/14	95	78	72	60.0	1,421	18,866	3,178	8/16	95	81 72		1,421	30,933	27,791
	Zone	22	Total/Ave.	•	95	78	72	60.0	1,421	18,866	3,178		95	81 72		1,421	30,933 30,933	27,791
	Zone	22	Block	6/14	95	78	72	60.0	1,421	18,866	3,178	8/16	95	81 72		1,421	93,715	53,478
	23	SUR.C		6/14			72	60.0	3,555	47,199	7,423	8/16	95	81 72		3,555 3,555	93,715	53,478
	Zone	23	Total/Ave.		95		72	60.0	3,555	47,199	7,423		95	81 72 81 72		3,555	93,715	53,478
	Zone	23	Block	6/14	95		72	60.0	3,555	47,199	7,423	8/16	95	81 72		353	10,261	8,939
	24	MECH		6/14			72	60.0	353	4,687	466	8/16	95 95	81 72		353	10,261	8,939
	Ione	24	Total/Ave.		95		72	60.0	353	4,687	466 466	8/16	95	81 72		353	10,261	8,939
	Zone	24	Block	6/14			72	60.0	353	4,687	8,741		95 95	81 72		3,800	85,206	39,751
		E.R.A		6/16	95		72	60.0	3,800	50,452 50,452	8,741	0/10	95	81 72		3,800	85,206	39,751
	Zone	25	Total/Ave.		95		72	60.0	3,800	50,452	8,741	8/16		81 72		3,800	85,206	39,751
	Zone		Block Total/Ave.	6/16			72	60.0 60.0	3,800 17,092	226,927	39,359				61.6	17,092	400,440	282,139
	System		Block					60.1	17,092	224,369					60.5	17,092	404,422	282,139
	System 26	ADMIN						60.0	1,939	25,744					60.0	1,939	41,031	33,442
	Zone		Total/Ave.					60.0	1,939	25,744	4,298				60.0	1,939	41,031	33,442
	Zone		Block					60.0	1,939	25,744			95	81 72	60.0	1,939	41,031	33,442
		DENT						60.0	2,417	32,090					62.4	2,417	37,908	14,013
	Lone		Total/Ave.					60.0	2,417	32,090	2,056				62.4	2,417	37,908	14,013
	Zone		Block					60.0	2,417	32,090			95	81 72	62.4	2,417	37,908	14,013
		DENT		-				60.0	3,182	42,247					63.4	3,182	69,904	65,758
	Zone		Total/Ave.					60.0	3,182	42,247	8,554				63.4	3,182	69,904	65,758
	Zone		Block					60.0	3,182	42,247	8,554	8/16	95	81 72	63.4	3,182	69,904	65,758
		EENT						60.0	1,061	14,087					60.0	1,061	27,235	17,364
	Zone	29	Total/Ave.	•	95	80	72	60.0	1,061	14,087	2,646		95	81 72	60.0	1,061	27,235	17,364
	Zone		Block		95	80	72	60.0	1,061	14,087	2,646	8/16	95	81 72	60.0	1,061	27,235	17,364
										201								

30	EENT	INT	6/14	95 78	72	60.0	1,996	26,500	5,359						58,221	
Zone	30	Total/Ave.		95 78	72	60.0	1,996		5,359						58,221	
Zone	30	Block	6/14	95 78	72	60.0	1,996	26,500	5,359	7/15	94	80 72	60.0	1,996	58,221	41,272

<u>م</u>

. .

327

ч.

MAIN SYSTEM COOLING - ALTERNATIVE 1 BASELINE MODEL PAGE 14

(Main System)

_____ PEAK COOLING LOADS _____

							_						Coil		
		Desk		 D-	Supp.	Space	space		Peak			Supp.	Coll	Coil	Coil
		Peak Time	Cond.		Dry	Air	Sens.	Lat.	Time	-		Dry	Air	Sens.	Lat.
Room		Time Mo/Hr	DB/WB	-	Bulb	Flow	Load		Mo/Hr	DB/WI	-	Bulb	Flow	Load	Load
Number		10/ IL	(F)		(F)	(Cfm)	(Btuh)	(Btuh)	, .,		(F)	(F)	(Cfm)	(Btub)	(Btuh)
			1 -)	(-)	(-)	,,									
31	AREA S	6/14	95 78	72	60.0	1,506	19,995	4,698	7/15	94 8	80 72	60.0	1,506	47,263	36,190
Zone	31 Total/Ave.		95 78	72	60.0	1,506	19,995	4,698		94 8	80 72	60.0	1,506	47,263	36,190
Zone	31 Block	6/14	95 78	72	60.0	1,506	19,995	4,698	7/15	94 8	30 72	60.0	1,506	47,263	36,190
32	DINING	6/8	80 71	72	60.0	3,406	45,221	15,219	7/15	94 8	30 72	64.6	3,406	45,042	32,259
Zone	32 Total/Ave.		80 71	72	60.0	3,406	45,221	15,219		94 8	80 72	64.6	3,406	45,042	32,259
Zone	32 Block	6/8	80 71	72	60.0	3,406	45,221	15,219	7/15	94 8	30 72	64.6	3,406	-45,042	32,259
System	4 Total/Ave.		95 78	72	60.0	15,507	205,883	42,829		95 E	31 72	62.1	15,507	326,604	240,297
System	4 Block	6/14	95 78	72	61.2	15,507	185,628	42,873	8/16	95 8	31 72	61.3	15,507	323,603	238,688
- 33		6/17	93 77	72	54.0	1,750	34,820	2,206	8/16	95 E	31 72	54.4	1,750	43,029	10,420
Sone	33 Total/Ave.		93 77	72	54.0	1,750	34,820	2,206		95 8	31 72	54.4	1,750	43,029	10,420
Zone	33 Block	6/17	93 77	72	54.0	1,750	34,820	2,206	8/16	95 8	81 72	54.4	1,750	43,029	10,420
34	AC8 EAST	6/16	95 79	72	54.0	2,787	55,453	4,179	8/16	95 8	31 72	54.0	2,787	69,034	16,143
Ione	34 Total/Ave.		95 79	72	54.0	2,787	55,453	4,179		95 8	31 72	54.0	2,787	69,034	16,143
Ione	34 Block	6/16	95 79	72	54.0	2,787	55,453	4,179	8/16	95 8	31 72	54.0	2,787	69,034	16,143
35	AC7 SO	9/15	93 76	72	54.0	5,033	100,142	7,721	8/16	95 8	31 72	55.4	5,033	118,618	31,851
Zone	35 Total/Ave.		93 76	72	54.0	5,033	100,142	7,721		95 â	31 72	55.4	5,033	118,618	31,851
Ione	35 Block	9/15	93 76	72	54.0	5,033	100,142	7,721	8/16	95 I	81 72	55.4	5,033	118,618	31,851
36	ACB SO	9/15	93 76	72	54.0	3,273	65,123	4,064	8/16	95 1	31 72	55.7	3,273	73,896	15,380
Zone	36 Total/Ave.		93 76	72	54.0	3,273	65,123	4,064		95 t	81 72	55.7	3,273	73,896	15,380
Zone	36 Block	9/15	93 76	72	54.0	3,273	65,123	4,064	8/16	95 8	81 72	55.7	3,273	73,896	15,380
37	AC7 WEST	6/17	93 77	72	54.0	2,571	51,156	2,894	8/17	94 1	BO 72	54.6	2,571	60,891	11,871
Ione	37 Total/Ave.		93 77	72	54.0	2,571	51,156	2,894		94 1	BO 72	54.6	2,571	60,891	11,871
Ione	37 Block	6/17	93 77	72	54.0	2,571	51,156	2,894	8/17	94 8	BO 72	54.6	2,571	60,891	11,871
38	AC7 INT	6/17	93 77	72	54.0	11,929	237,353	18,847	8/16	95 1	B1 72	54.1	11,929	301,834	88,803
Zone	38 Total/Ave.		93 77	72	54.0	11,929	237,353	18,847		95	81 72	54.1	11,929	301,834	88,803
Lone	38 Block	6/17	93 77	72	54.0	11,929	237,353	18,847	8/16	95	B1 72	54.1	11,929	301,834	88,803
39	AC8 INT	6/17	93 77	72	54.0	12,507	248,854	26,420	8/16	95	81 72	54.1	12,507	317,752	104,797
Zone	39 Total/Ave.		93 77	72	54.0	12,507	248,854	26,420		• -	81 72		12,507	317,752	104,797
Zone	39 Block	6/17	93 77	72	54.0	12,507	248,854	26,420	8/16	95	81 72	54.1	12,507	317,752	104,797
System	5 Total/Ave.		93 77	72	54.0	39,850	792,901	66,331			81 72		39,850	985,054	279,266
System	5 Block	6/17	93 77	72	54.6	39,850	766,058	63,894				54.5	39,850	983,740	279,639
40	AC9 LAB	6/17	93 77	72	58.0	9,026	139,809	14,142	8/16				9,026	318,022	325,818
Ione	40 Total/Ave.		93 77	72	58.0	9,026	139,809	14,142				58.3	9,026	318,022	325,818
Ione	40 Block	6/17	93 77	72	58.0	9,026	139,809	14,142					9,026	318,022	325,818
System	6 Total/Ave.		93 77	72	58.0	9,026	139,809	14,142				58.3	9,026	318,022	325,818
System	6 Block	6/17	93 77	72	58.0	9,026	139,809	14,142					9,026	318,022	325,818
41	WEST CHS	6/17	93 77	72	56.0	4,592	81,289		8/16				4,592	130,992	65,285
Sone	41 Total/Ave.		93 77	72	56.0	4,592	81,289	4,387				56.6	4,592	130,992	65,285
Zone	41 Block	6/17	93 77	72	56.0	4,592	81,289		8/16				4,592	130,992	65,285
42	AC11 WES	6/17	93 77	72	56.0	3,884	68,756	2,928	8/16				3,884	106,824	49,746
Zone	42 Total/Ave.		93 77	72	56.0	3,884	68,756	2,928				56.6	3,884	108,824	49,746
Zone	42 Block	6/17	93 77	72	56.0	3,884	68,756	2,928	8/16	95	81 72	56.6	3,884	108,824	49,740
	AC14 WES	6/17	93 77	72	56.0	2,056	36,396	1,713	8/16	95	81 72	56.9	2,056	55,915	24,300
43															
43 Zone	43 Total/Ave.		93 77	72	56.0	2,056	36,396	1,713				56.9	2,056	55,915	24,300
			93 77 93 77			2,056 2,056	36,396 36,396	-				56.9 56.9	-	55,915 55,915	24,300

	44	ACI	3 1	BOU	9/16	93	76	72	56.0	2,409	42,645	1,780	8/16	95	81 72	56.8	2,409	64,095	24,691
1	lone	4	4	Total/Ave.		93	76	72	56.0	2,409	42,645	1,780		95	81 72	56.8	2,409	64,095	24,691
	one	4	4	Block	9/16	93	76	72	56.0	2,409	42,645	1,780	8/16	95	81 72	56.8	2,409	64,095	24,691

MAIN SYSTEM COOLING - ALTERNATIVE 1 BASELINE MODEL

PAGE 15

.

. .

							c							Coil		
			Peak			Supp.	Space	Space	Space	Peak			Supp.	Coil	Coil	Coi
			Time	Cond.			Air	Sens.	Lat.	Time			Dry	Air	Sens.	Lat
Da	. ·	•	Mo/Hr	DB/WB	-	Bulb	Flow	Load		Mo/Hr	DB/W	-	Bulb	Flow	Load	Loa
Room	Dece		NO/ BI				(Cfm)	(Btuh)	(Btuh)) (F)	(F)	(Cfm)	(Btuh)	(Btuh
mper	Desci	ription		(1)	(F)	(F)	(010)	(2000)	(2000)	4 i 1 i	、 - ·	, <u> </u>		•		
45	A C11	EAS	6/17	93 77	72	56.0	2,898	51,301	2,508	8/16	95 8	31 72	56.3	2,898	83,750	41,63
me	45	Total/Ave		93 77			2,898	51,301	2,508		95 8	31 72	56.3	2,898	83,750	41,63
one	45	Block	6/17	93 77			2,898	51,301	2,508	8/16	95 8	31 72	56.3	2,898	83,750	41,63
	AC14		6/17	93 77			6,608	116,977	4,769	8/16	95 8	31 72	56.3	6,608	187,794	86,0
DDe	46	Total/Ave		93 77			6,608	116,977	4,769		95 4	31 72	56.3	6,608	187,794	86,07
one	46	Block	6/17	93 77			6,608	116,977	4,769	8/16	95 8	31 72	56.3	6,608	187,794	86,07
	AC13		6/17	93 77			2,130	37,706	4,506	8/16	95	B1 72	56.7	2,130	77,927	72,30
one		Total/Ave		93 77			2,130	37,706	4,506		95	81 72	56.7	2,130	77,927	72,30
me		Block	6/17	93 77			2,130	37,706	4,506	8/16	95	B1 72	56.7	2,130	77,927	72,30
	AC11		6/17	93 77			3,802	67,304	3,083	8/16	95	B1 72	56.6	3,802	111,591	60,1
me	48	Total/Ave	-	93 77			3,802	67,304	3,083		95	B1 72	56.6	3,802	111,591	60,1
me	48	Block	6/17	93 77			3,802	67,304	3,083	8/16	95	B1 72	56.6	3,802	111,591	60,1
49	AC14		6/17	93 77			5,267	93,238	4,056	8/16		B1 72	56.5	5,267	152,820	78,1
me	49	Total/Ave		93 77			5,267	93,238	4,056	-	95	B1 72	56.5	5,267	152,820	78,1
me	49	Block	• 6/17				5,267	93,238	4,056	8/16	95	B1 72	56.5	5,267	152,820	78,1
	AC13		6/17			56.0	7,187	127,227	5,197	-	95	B1 72	56.4	7,187	206,757	. 101,4
ae	50	Total/Ave	-	93 77			7,187	127,227	5,197			B1 72	56.4	7,187	206,757	101,4
ae	50	Block		93 77			7,187	127,227	5,197	8/16	95	81 72	56.4	7,187	206,757	101,4
nsten		Total/Ave		93 77			40,833	722,841	34,928		95	B1 72	56.5	40,833	1,180,465	603,8
sten		Block	• 6/17				40,833	718,868	34,826	8/16	95	B1 72	56.5	40,833	1,180,464	603,8
	AC17			93 77			1,332	19,305	950	8/16	95	81 72	59.4	1,332	30,443	9,0
one		Total/Ave		93 77			1,332	19,305	950		95	81 72	59.4	1,332	30,443	9,0
ne		Block	6/17				1,332	19,305	950	8/16	95	B1 72	59.4	1,332	30,443	9,0
	AC17		-	93 77			4,370	63,334	2,993	8/16	95	B1 72	58.9	4,370	94,678	26,8
one		Total/Ave		93 77		58.9	4,370	63,334	2,993		95	81 72	58.9	4,370	94,678	26,8
ae			6/17	93 77			4,370	63,334	2,993	8/16	95	81 72	58.9	4,370	94,678	26,8
	AC17			93 77		58.9	9,612	139,306	6,302		95	81 72	58.9	9,612	220,162	70,9
ae	53	Total/Ave		93 77		58.9	9,612	139,306	6,302		95	81 72	58.9	9,612	220,162	70,9
one		Block		93 77			9,612	139,306		8/16	95	81 72	58.9	9,612	220,162	70,9
	AC16			95 78			1,130	16,377	2,852		95	81 72	69.9	1,130	17,966	25,6
me		Total/Ave				58.9	1,130	16,377	2,852				69.9	1,130	17,966	25,6
ne		Block		95 78			1,130	16,377	-	8/16				1,130	17,966	25,6
	AC16			93 77			298	4,319		8/16				298	4,621	5,5
же		Total/Ave				58.9	298	4,319	653				68.3	298	4,621	5,5
		Block		93 77			298	4,319		8/16				298	4,621	5,5
ne FC		BLOCK		95 79			2,187	31,696		8/16				2,187	32,795	65,5
	AC16	mot = 1 / 1	-			58.9	2,187	31,696	7,280				71.9	2,187		65,5
ne 		Total/Ave					2,187	31,696		8/16				2,187		65,5
57	56 AC18	Block		95 79			1,633	23,667		8/16				1,633		13,0
		matel /		93 77			1,633	23,667	4,286				58.9	1,633		13,0
one		Total/Ave				58.9	-						58.9	1,633		13,0
one		Block		93 77			1,633	23,667					61.1	20,562		216,
sten	8	Total/Ave	•	93 77	72	58.9	20,562	298,005	25,316			JI 12	01.1	20,002		

-----PEAK COOLING LOADS -----

AUXILIARY SYSTEM COOLING - ALTERNATIVE 1 BASELINE MODEL PAGE 16

(Auxiliary System)

								Space								Coil		
			Peak		OA	Rm	Supp.	Space	Space	Space	Peak		OA	Rm	Supp.	Coil	Coil	Coil
			Time	Con	d.	Dry	Dry	Air	Sens.	Lat.	Time	Con	d, 1	Dry	Dry	Air	Sens.	Lat.
Room			Mo/Hr	DB/	WB	вір	Bulb	Flow	Load	Load	No/Hr	DB/	WB E	31Ь	Bulb.	Flow	Load	Load
Number	Descr	iption		C	F)	(F)	(F)	(Cfm)	(Btuh)	(Btuh)		(F) ((F)	(F)	(Cfm)	(Btuh)	(Btuh)
11	PERIM	N.	6/14	95	78	72	56.0	992	17,561	0	6/14		78	72	56.0	992	17,913	O
Zone	11	Total/Ave.		95	78	72	56.0	9 92	17,561	0		95	78	72	56.0	992	17,913	0
Zone	11	Block	6/14	95	78	72	56.0	992	17,561	0	6/14	95	78	72	56.0	992	17,913	0
12	PERIM	. s	8/15	95	80	72	56.0	381	6,745	0	8/15	95	80	72	56.0	381	6,880	0
Zone	12	Total/Ave.		95	80	72	56.0	381	6,745	0		95	80	72	56.0	381	6,880	0
Zone	12	Block	8/15	95	80	72	56.0	381	6,745	0	8/15	95	80	72	56.0	381	6,880	0
13	INT.	ท	6/14	95	78	72	56.0	2,764	48,935	0	6/14	95	78	72	56.0	2,764	49,918	0
Zone	13	Total/Ave.		95	78	72	56.0	2,764	48,935	0		95	78	72	56.0	2,764	49,918	0
Zone	13	Block	6/14	95	78	72	56.0	2,764	48,935	0	6/14	95	78	72	56.0	2,764	49,918	0
14	INT.	5	6/14	95	78	72	56.0	2,918	51,653	0	6/14	95	78	72	56.0	2,918	52,691	0
Sone	14	Total/Ave.		95	78	72	56.0	2,918	51,653	0		95	78	72	56.0	2,918	52,691	0
Ione	14	Block	6/14	95	78	72	56.0	2,918	51,653	0	6/14	95	78	72	56.0	2,918	52,691	0
15	ICU		6/14	95	78	72	56.0	203	3,594	0	6/14	95	78	72	56.0	203	3,666	0
Zone	15	Total/Ave.		95	78	72	56.0	203	3,594	0		95	78	72	56.0	203	3,666	0
Zone	15	Block	6/14	95	78	72	56 .0	203	3,594	0	6/14	95	78	72	56.0	203	3,666	0
System	2	Total/Ave.		95	78	72	56.0	7,258	128,487	0		95	78	72	56.0	7,258	131,068	0
System	2	Block	6/14	95	78	72	56.0	7,258	128,098	0	6/14	95	78	72	56.0	7,258	130,679	0

، -

....

MAIN SYSTEM HEATING - ALTERNATIVE 1 BASELINE MODEL

- -:

						a							Coil		
						-	Space	Space	Peak	0	A F		ipp.	Coil	Coil
			Peak		A Rm	Supp. Dry	Air	Sens.	Time	Cond			Dry	Air	Sens.
		Floor	Time	Cond DB/V	-	-	Flow	Load	-	DB/W		- ць 1	Bulb	Flow	Load
Room		Area	Mo/Hr				(Cfm)	(Btub)		(F) (1	?)	(F)	(Cfm)	(Btuh)
Number	Description	(Sq Ft)		(F) (1)	(-)	(/	••		-					
	SURGERY1	441	13/ 1	74	20 72	86.0	662	-10,254	13/ 1	24	20	72 8	86.0	662	-26,294
I Zone	1 Total/Ave.	441	13/ 1	24	20 72		662	-10,254		24	20	72	B6.0	662	-26,294
Zone	1 Block	441	13/ 1		20 72		662	-10,254	13/ 1	24	20	72 1	86.0	662	-26,294
	SUR CORR	927	13/ 1	24	20 72		1,391	-21,546	13/ 1	24	20	72	86.0	1,391	-55,250
Zone	2 Total/Ave.	927		24	20 72		1,391	-21,546		24	20	72	86.0	1,391	-55,250
Zone	2 Block	927	13/ 1	24	20 72	86.0	1,391	-21,546	13/ 1	24	20	72	86.0	1,391	-55,250
	SURGERY2	400	13/ 1	24	20 72	86.0	600	-9,294	13/ 1	24	20	72	86.0	600	-23,832
Zone	3 Total/Ave.	400		24	20 72	86.0	600	-9,294		24	20	72	86.0	600	-23,832
Lone	3 Block	400	13/ 1	24	20 72	86.0	600	-9,294	13/ 1	24	20	72	86.0	600	-23,832
	DEL 1	294	13/ 1	24	20 72	86.0	531	-8,225	13/ 1	24	20	72	86.0	531	-21,091
Ione	4 Total/Ave.	294		24	20 72	86.0	531	-8,225		24	20	72	86.0	531	-21,091
Zone	4 Block	294	13/ 1	24	20 72	86.0	531	-8,225	13/ 1	24	20	72	86.0	531	-21,091
5	DEL 2	273	13/ 1	24	20 72	86.0	474	-7,342	13/ 1	24	20		86.0	474	-18,827
Zone	5 Total/Ave.	273		24	20 72	86.0	474	-7,342		24	20	• –	86.0	474	-18,827
Zone	5 Block	273	13/ 1	24	20 72	86.0	474	-7,342	13/ 1	24	20		86.0	474	-18,827
6	LABOR	1,695	13/ 1	24	20 72	86.0	2,543	-39,390	13/ 1	24			86.0	2,543	-101,007
Zone	6 Total/Ave.	1,695		24	20 72	86.0	2,543	-39,390		24	_	72	86.0	2,543	-101,007
Zone	6 Block	1,695	13/ 1	24	20 72	86.0	2,543	-39,390	13/ 1		_	72	86.0	2,543	-117,25:
7	SUR. LOUN	1,968	13/ 1	24	20 72	86.0	2,952	-45,725	13/ 1			72	86.0	2,952 2,952	-117,25
Zone	7 Total/Ave.	1,968		24	20 72	86.0	2,952	-45,725			-	72	86.0	2,952	-117,25
Zone	7 Block	1,968	13/ 1	24	20 72	86.0	2,952	-45,725	13/ 1			72	86.0 86.0	1,319	-52,390
8	NURSERY	879	13/ 1	24	20 73	86.0	1,319	-20,431	13/ 1			72 72	86.0	1,319	-52,390
Zone	8 Total/Ave.	879		24	20 72	86.0	1,319	-20,431		24		72	86.0	1,319	-52,391
Zone	8 Block	879	13/ 1	24	20 73		1,319	-20,431	13/ 1			72	86.0	378	-15,01
9	OB RECOV	252	13/ 1	24	20 7:		378	-5,855	13/ 1	24		72	86.0	378	-15,01
Zone	9 Total/Ave.	252		24	20 73		378	-5,855	17/ 1		20	72	86.0	378	-15,01
Zone	9 Block	252	13/ 1		20 7:		378	-5,855	13/ 1 13/ 1		20	72	86.0	608	-24,15
10	OR RECOV	405	13/ 1		20 7:		608	-9,418	13/ 1	24	20	72	86.0	608	-24,15
Zone	10 Total/Ave.	405		24	20 7:		608	-9,418 -9,418	13/ 1		20	72	86.0	608	-24,15
Zone	10 Block	405	13/ 1		20 7:		608	-177,480	13/ 1	24	20	72	86.0	11,458	-455,10
System	1 Total/Ave.	7,534		24	20 7:		11,458	-177,479	13/ 1			72	86.0	11,458	-455,10
System	1 Block	7,534	13/ 1				11,458 2,994	-46,376					86.0	2,994	-99,37
	PERIM N.	4,644	13/ 1				2,994	-46,376			20		86.0	2,994	-99,37
Lone	11 Total/Ave.	4,644			20 7		2,994	-46,376					86.0	2,994	-99,37
Zone		4,644	13/ 1				1,304	-20,198				72	86.0	1,304	-43,28
	PERIM. S	1,980	13/ 1				1,304	-20,198				72	86.0	1,304	-43,28
	12 Total/Ave.	1,980	12/1		20 7 20 7		1,304	-20,198					86.0	1,304	-43,28
	12 Block	1,980					2,121	-32,853					86.0	2,121	-70,40
	INT. N	4,968	13/ 1		20 7 20 7		2,121	-32,853			20		86.0	2,121	-70,40
	13 Total/Ave.	4,968			20 7		2,121	-32,853					86.0	2,121	-70,40
	13 Block INT. S	4,968 5,244			20 7		2,239	-34,681					86.0	2,239	-74,3]
Zone	14 Total/Ave.	5,244	13/ 1		20 7		2,239	-34,681			20		86.0	2,239	-74,3]
zone		5,244			20 7		2,239	-34,681					86.0	2,239	-74,31
	ICU	756			20 7		475	-7,358					86.0	475	-15,76
			10/ 1			227		-							

					~ ~			86.0	475	-7,358		24	20	72	86.0	475	-15,7€6
Zone	15	Total/Ave.	756							-7,358	12/1	24	20	72	86.0	475	-15,766
Zone	15	Block	756	13/ 1	24	20	72	86.0	475	-1,358						· · · · · ·	202 1/2
System	2	Total/Ave.	17,592		24	20	72	86.0	9,133	-141,466		24	20	72	86.0	9,133	-303,142

- - -

MAIN SYSTEM HEATING - ALTERNATIVE 1 BASELINE MODEL

PAGE 18

.

							_							Coil		
								Space	Space	Peak	c	A	Rm	Supp.	Coil	Coil
			Peak	Cond	AC	Rm Dry	Supp. Dry	Air	Sens.	Time	Cond		Dry	Dry	Air	Sens.
_		Floor	Time Mo/Hr	DB/1		Blb	Bulb	Flow	Load	Mo/Br	DB/¥		Blb	Bulb	Flow	Load
Room		Area	HO/HI		75 ?)	(F)	(F)	(Cfm)	(Btuh)		(1	•	(F)	(F)	(Cfm)	(Btuh)
Number	Description	(Sq Ft)		()	.)	(1)	(1)	()			-					
System	2 Block	17,592	13/ 1	24	20	72	86.0	9,133	-141,466	13/ 1	24	20	72	86.0	9,133	-303,142
16	KIT ADHIN	1,032	13/ 1		20	72	100.0	434	-13,445	13/ 1	24	20	72	100.0	434	-19,207
Zone	16 Total/Ave.	1,032		24	20	72	100.0	434	-13,445		24	20	72	100.0	434	-19,207
Zone	16 Block	1,032	13/ 1	24	20	72	100.0	434	-13,445	13/ 1	24	20	72	100.0	434	-19,207
	FOOD PRE	1,828	13/ 1	24	20	72	100.0	887	-27,479	13/ 1	24	20	72	98.3	887	-37,548
Zone	17 Total/Ave.	1,828		24	20	72	100.0	887	-27,479		24	20	72	98.3	- 887	-37,548
Zone	17 Block	1,828	13/ 1	24	20	72	100.0	887	-27,479	13/ 1	24	20	72	98.3	887	-37,548
18	XRAY EXT	5,336	13/ 1	24	20	72	100.0	2,124	-65,800	13/ 1	24	20	72	97.9	2,124	-89,080
Zone	18 Total/Ave.	5,336		24	20	72	100.0	2,124	-65,800		24	20	72	97.9	2,124	-89,080
Zone	18 Block	5,336	13/ 1	24	20	72	100.0	2,124	-65,800	13/ 1	24	20	72	97.9	2,124	-89,080
19	XRAY INT	2,352	13/ 1	24	20	72	100.0	1,640	-50,806	13/ 1	24	20	72	101.5	1,640	-69,116
Zone	19 Total/Ave.	2,352		24	20	72	100.0	1,640	-50,806		24	20	72	101.5	1,640	-69,116
Zone	19 Block	2,352	13/ 1	24	20	72	100.0	1,640	-50,806	13/ 1	24	20	72	101.5	1,640	-69,116
20	PHY THER	4,404	13/ 1	24	20	72	100.0	1,664	-51,549	13/ 1	24	20	72	97.8	1,664	-69,606
Zone	20 Total/Ave.	4,404		24	20	72	100.0	1,664	-51,549		24	20	72	97.8	1,664	-69,606 -69,606
Zone	20 Block	4,404	13/ 1	24	20	72	100.0	1,664	-51,549	13/ 1		20	72	97.8	1,664	-47,906
21	ADMIN	1,790	13/ 1	24	20	72	100.0	1,214	-37,609	13/ 1		20	72	98.7	1,214	-47,906
Zone	21 Total/Ave.	1,790		24	20	72	100.0	1,214	-37,609		24	20	72	98.7	1,214	-47,906
Zone	21 Block	1,790	13/ 1	24	20	72	100.0	1,214	-37,609	13/ 1		20	72	98.7	1,214 1,421	-59,989
22	SUR.CLINIC	3,116	13/ 1	24	20	72	100.0	1,421	-44,021	13/ 1		20	72	98.2	1,421	-59,989
Zone	22 Total/Ave.	3,116		24	20	72	100.0	1,421	-44,021		24	20	72	98.2 98.2	1,421	-59,989
Zone	22 Block	3,116	13/ 1	24	20		100.0	1,421	-44,021	13/1		20	72 72	101.7	3,555	-157,091
23	SUR.CLINIC	5,822	13/ 1	24	20		100.0	3,555	-110,131	13/ 1		20 20	•	101.7	3,555	-157,091
Zone	23 Total/Ave.	5,822		24	20		100.0	3,555	-110,131	17/ 1	24	20	72	101.7	3,555	-157,093
Zone	23 Block	5,822	13/ 1		20		100.0	3,555	-110,131	13/1 13/1		20	72	100.4	353	-15,768
	MECH	1,072	13/ 1		20		100.0	353 353	-10,936	13/ 1	24	20	72	100.4	353	-15,768
Zone	24 Total/Ave.	1,072		24	20		100.0	353	-10,936	13/ 1		20	72	100.4	353	-15,768
Zone	24 Block	1,072	13/ 1		20		100.0 100.0	3,800	-117,721	-		20	72	101.1	3,800	-144,80
	E.R.AC10	3,915	13/ 1		20 20		100.0	3,800	-117,721		24	20	72	101.1	3,800	-144,80
Zone	25 Total/Ave.	3,915	13/ 1	24	20		100.0	3,800	-117,721	13/1		20	72	101.1	3,800	-144,80
Zone	25 Block	3,915 30,667	13/ 1				100.0	17,092	-529,496			20	72	99.9	17,092	-710,11
System System	3 Total/Ave. 3 Block	30,667	12/1				100.0	17,092	-529,495				72	99.9	17,092	-745,67:
-	ADMIN	2,964					100.0	1,939	-60,069					100.0	1,939	-85,81
Zone	26 Total/Ave.	2,964					100.0	1,939	-60,069			20		100.0	1,939	-85,81
Zone	26 Block	2,964	13/1				100.0	1,939	-60,069	13/ 1	24	20	72	100.0	1,939	-85,81
	DENT EXT	1,210					100.0	2,417	-74,877					100.0	2,417	-83,19
Zone	27 Total/Ave.	1,210					100.0	2,417	-74,877			20		100.0	2,417	-83,19
Zone	27 Block	1,210	13/ 1				100.0	2,417	-74,877	13/ 1	24	20	72	100.0	2,417	-83,19
	DENT INT	5,899					100.0	3,182	-98,576	13/ 1	24	20	72	98.3	3,182	-134,93
Zone	28 Total/Ave.	5,899					100.0	3,182	-98,576			20		98.3	3,182	-134,93
Zone	28 Block	5,899	13/ 1				100.0	3,182	-98,576	13/ 1	24	20	72	98.3	3,182	-134,93
	EENT EXT	1,512					100.0	1,061	-32,869	13/ 1	24	20	72	101.4	1,061	-48,59
Zone	29 Total/Ave.	1,512					100.0	1,061	-32,869			20		101.4	1,061	-48,59
Zone	29 Block	1,512	13/ 1				100.0	1,061	-32,869	13/ 1	. 24	20	72	101.4	1,061	-48,59
							334	1								

30	EENT	INT	3,696	13/ 1	24	20	72	100.0	1,996	-61,834	13/ 1	24	20	72	101.8	1,996	-92,342
Zone	30	Total/Ave.	3,696		24	20	72	100.0	1,996	-61,834		24	20	72	101.8	1,996	-92,342
Zone	30	Block	3,696	13/ 1	24	20	72	100.0	1,996	-61,834	13/ 1	24	20	72	101.8	1,996	-92,342

MAIN SYSTEM HEATING - ALTERNATIVE 1 BASELINE MODEL

- s *t

(Main System)

												Coil		
						-		Space	Peak	 0			Coil	Coil
		•	Peak 	OA		Supp.	Space Air	Sens.	Time	Cond		Dry	Air	Sens.
_		Floor	Time	Cond.	Dry Blb	Dry Bulb	Flow	Load	Mo/Hr	DB/W	-	Bulb	Flow	Load
Room		Area	Mo/Hr	DB/WB		(F)	(Cfm)	(Btuh)		(F		(F)	(Cfm)	(Btuh)
Number	Description	(Sq Ft)		(F)	(F)	(F)	(01111)	(Deail)		(-	/ (-/		• •	
31	AREA S	3,240	13/ 1	24 2	0 72	100.0	1,506	-46,655	13/ 1	24	20 72	102.1	1,506	-70,160
Zone	31 Total/Ave.	3,240		24 2	0 72	100.0	1,506	-46,655		24	20 72	102.1	1,506	-70,160
Zone	31 Block	3,240	13/ 1	24 2	0 72	100.0	1,506	-46,655	13/ 1	24	20 72	102.1	1,506	-70,160
32	DINING	1,734	13/ 1	24 2	0 72	100.0	3,406	-105,515	13/ 1	24	20 72	99.5	3,406	-115,672
Zone	32 Total/Ave.	1,734		24 2	0 72	100.0	3,406	-105,515		24	20 72	99.5	3,406	-115,672
Zone	32 Block	1,734	13/ 1	24 2	0 72	100.0	3,406	-105,515	13/ 1	24	20 72	99.5	3,406	-115,672
System	4 Total/Ave.	20,255		24 2	0 72	100.0	15,507	-480,394		24	20 72	100.1	15,507	-630,718
System	4 Block	20,255	13/ 1	24 2	0 72	100.0	15,507	-480,393	13/ 1	24	20 72	100.1	15,507	-677,456
33	AC8 NORT	1,579	13/ 1	24 2	0 72	86.0	1,750	-27,107	13/ 1	24	20 72	86.0	1,750	-30,582
Zone	33 Total/Ave.	1,579		24 2	0 72	86.0	1,750	-27,107		.24	20 72	86.0	1,750	-30,582
Zone	33 Block	1,579	13/ 1	24 2	0 72	86.0	1,750	-27,107	13/ 1	24	20 72	86.0	1,750	-30,582
34	AC8 EAST	2,367	13/ 1	24 2	0 72	86.0	2,787	-43,169	13/ 1	24	20 72	86.0	2,787	-47,977
Zone	34 Total/Ave.	2,367		24 2	0 72	86.0	2,787	-43,169		24	20 72	86.0	2,787	-47,977
Zone	34 Block	2,367	13/ 1	24 2	0 72	86.0	2,787	-43,169	13/ 1	24	20 72	86.0	2,787	-47,977
35	AC7 50	4,967	13/ 1	24 2	0 72	86.0	5,033	-77,959	13/ 1	24	20 72		5,033	-89,948
Zone	35 Total/Ave.	4,967		24 2	0 72	86.0	5,033	-77,959		24	20 72		5,033	-89,948
Zone	35 Block	4,967	13/ 1	24 2	0 72	86.0	5,033	-77,959	13/ 1		20 72		5,033	-89,948
36	AC8 50	2,268	13/ 1	24 2	0 72	86.0	3,273	-50,697	13/ 1		20 72		3,273	-53,908
Zone	36 Total/Ave.	2,268		24 2	0 72	86.0	3,273	-50,697			20 72		3,273	-53,908
Zone	36 Block	2,268	13/ 1	24 2	0 72	86.0	3,273	-50,697	13/ 1		20 72		3,273	-53,908
37	AC7 WEST	1,772	13/ 1	24 2	0 72	86.0	2,571	-39,824	13/ 1		20 72		2,571	-42,308
Zone	37 Total/Ave.	1,772		24 2	0 72	86.0	2,571	-39,824			20 72		2,571	-42,308 -42,308
Zone	37 Block	1,772	13/ 1	24 2	0 72	86.0	2,571	-39,824	13/ 1		20 73		2,571	-222,137
38	AC7 INT	13,657	13/ 1	24 2	0 72	86.0	11,929	•	13/ 1		20 72		11,929	-222,137
Zone	38 Total/Ave.	13,657		24 2	0 72	86.0	11,929	-184,775		24	20 72		11,929 11,929	-222,137
Zone	38 Block	13,657	13/ 1		0 72	86.0	11,929	•	13/ 1		20 72		12,507	-237,057
39	AC8 INT	15,184	13/ 1	24 2	0 72	86.0	12,507	-193,728	13/ 1	24	20 73		12,507	-237,057
Zone	39 Total/Ave.	15,184		24 2	0 72	86.0	12,507	-193,728		24	20 73		12,507	-237,057
Zone	39 Block	15,184	13/ 1		0 72	86.0	12,507	-193,728	13/ 1		20 7: 20 7:		39,850	-723,917
System	5 Total/Ave.	41,794		24 2		86.0	39,850	-617,260		24			39,850	-723,917
System	5 Block	41,794	13/ 1		0 72	86.0	39,850	-617,259			-		9,026	-279,618
40	AC9 LAB	8,039	13/ 1			86.0	9,026	-139,809	13/ 1		20 7		9,026	-279,618
Zone	40 Total/Ave.	8,039	-		0 72		9,026	-139,809	12/ 1	24	20 7: 20 7:		9,026	-279,618
Zone	40 Block	8,039	13/ 1				9,026	-139,809	13/ 1		20 7: 20 7:		9,026	-279,618
System	6 Total/Ave.	8,039		24 2			9,026	-139,809 -139,809	12/ 1	24	20 7		9,026	-279,618
System	6 Block	8,039	13/ 1				9,026				20 7		4,592	-106,728
	WEST CMS	4,776	13/ 1				4,592	-71,128	13/ 1				4,592	-106,728
Zone	41 Total/Ave.	4,776		24 2			4,592	-71,128	13/ 1	24	20 7 20 7		4,592	-106,728
Zone	41 Block	4,776	13/ 1				4,592	-71,128					3,884	-85,810
	AC11 WES	3,671	13/ 1				3,884	-60,162	1 /1				3,884	-85,810
Zone	42 Total/Ave.	3,671			0 72		3,884	-60,162	13/ •				3,884	-85,810
Zone	42 Block	3,671	13/ 1				3,884	-60,162					2,056	-43,215
	AC14 WES	1,763	13/ 1				2,056	-31,847	12/ 1		20 7		2,056	-43,215
Zone	43 Total/Ave.	1,763		24 2			2,056	-31,847 -31,847	13/ 1	24			2,056	-43,215
Zone	43 Block	1,763	13/ 1	24 2	0 72		2,056	-31,847	12/ 1	24	20 /		2,050	
						33	D							

	44	AC13	SOU	1,798	13/ 1	24	20	72	86.0	2,409	-37,314	13/ 1	24	20	72	86.0	2,409	-47,380
Zo	one	44	Total/Ave.	1,798		24	20	72	86.0	2,409	-37,314		24	20	72	86.0	2,409	-47,380
Zc	one	44	Block	1,798	13/ 1	24	20	72	86.0	2,409	-37,314	13/ 1	24	20	72	86.0	2,409	-47,380

2 ** 2

÷

MAIN SYSTEM HEATING - ALTERNATIVE 1 BASELINE MODEL

. . . .

PAGE 20

.

									67200							Coil		
					Peak		 0a	Rm	Supp.	Space	Space	Peak	0		Rm	Supp.	Coil	Coil
				Floor	Time	Con		Dry	Dry	Air	Sens.	Time	Cond		ry	Dry	Air	Sens.
	Room			Area	Mo/Er	DB/		Blb	Bulb	Flow	Load	Mo/Er	DB/W		ъ	Bulb	Flow	Loac
		Desc	cription	(Sq Ft)	NO/ 11		F)	(F)	(F)	(Cfm)	(Btub)		(F		F)	(F)	(Cfm)	(Btuh)
AC.		Dest	Liption -	(54.10)		``	- /	(-7	(-)	\								
	45	AC11	EAS	3,067	13/ 1	24	20	72	86.0	2,898	-44,889	13/ 1	24	20	72	86.0	2,898	-68,015
Zor	e	45	Total/Ave.	3,067		24	20	72	86.0	2,898	-44,889		24	20	72	86.0	2,898	-68,015
Zor	e	45	Block	3,067	13/ 1	24	20	72	86.0	2,898	-44,889	13/ 1	24	20	72	86.0	2,898	-68,015
	46	AC14	EAS	6,380	13/ 1	24	20	72	86.0	6,608	-102,355	13/ 1	24	20	72	86.0	6,608	-147,591
Zor	e	46	Total/Ave.	6,380		24	20	72	86.0	6,608	-102,355		24	20	72	86.0	6,608	-147,591
Zor	e	46	Block	6,380	13/ 1	24	20	72	86.0	6,608	-102,355	13/ 1	24	20	72	86.0	- 6,608	-147,593
	47	AC13	EAS	5,310	13/ 1	24	20	72	86.0	2,130	-32,993	13/ 1	24	20	72	86.0	2,130	-70,677
Zor	e	47	Total/Ave.	5,310		24	20	72	86.0	2,130	-32,993		24	20	72	86.0	2,130	-70,677
žor	e	47	Block	5,310	13/ 1	24	20	72	86.0	2,130	-32,993	13/ 1	24	20	72	86.0	2,130	-70,677
	48	AC11	INT	4,485	13/ 1	24	20	72	86.0	3,802	-58,891	13/ 1	24	20	72	86.0	3,802	-94,845
Sor	e	48	Total/Ave.	4,485		24	20	72	86.0	3,802	-58,891		24	20	72	86.0	3,802	-94,845
Zor	e	48	Block	4,485	13/ 1	24	20	72	86.0	3,802	-58,891	13/ 1	24	20	72	86.0	3,802	-94,845
	49	AC14	INT	5,828	13/ 1	24	20	72	86.0	5,267	-81,584	13/ 1	24	20	72	86.0	5,267	-126,66!
Zor	e	49	Total/Ave.	5,828		24	20	72	86.0	5,267	-81,584		24	20	72	86.0	5,267	-126,66!
Zor	ne -	49	Block	5,828	13/ 1	24	20	72	86.0	5,267	-81,584	13/ 1	24	20	72	86.0	5,267	-126,66
	50	AC13	INT	7,562	13/ 1	24	20	72	86.0	7,187	-111,324	13/ 1	24	20	72	86.0	7,187	-168,09!
Zor	ıe	50	Total/Ave.	7,562		24	20	72	86.0	7,187	-111,324			20	72	86.0	7,187	-168,09!
Zor	le	50	Block	7,562	13/ 1	24	20	72	86.0	7,187	-111,324	13/ 1		20	72	86.0	7,187	-168,09
Sys	stem	7	Total/Ave.	44,640		24	20	72	86.0	40,833	-632,486			20	72	86.0	40,833	-959,034
Sys	stem	7	Block	44,640	13/ 1	24	20	72	86.0	40,833	-632,486	13/ 1		20	72	86.0	40,833	-975,35
	51	AC17	WES	1,119	13/ 1	24	20	72	86.0	1,332	-20,632	13/ 1		20	72	86.0	1,332	-25,11(
Zor	ne	51	Total/Ave.	1,119		24	20	72	86.0	1,332	-20,632			20	72	86.0	, 1,332	-25,11(-25,11(
Zor	e	51	Block	1,119	13/ 1	24	20	72	86.0	1,332	-20,632	13/ 1		20	72	86.0	1,332	-25,11
	52	AC17	NOR	3,295	13/ 1	24	20	72	86.0	4,370	-67,689	13/ 1		20	72	87.2	4,370	-85,40
Zor	1e	52	Total/Ave.	3,295		24	20	72	86.0	4,370	-67,689			20	72	87.2	4,370 4,370	-85,40
Zor	he	52	Block	3,295	13/ 1		20	72	86.0	4,370	-67,689	13/1		20	72	87.2	9,612	-204,72
	53	AC17	INT	9,055	13/ 1	24	20	72	86.0	9,612	-148,886	13/ 1		20	72	87.5	9,612	-204,72
Zor	le	53	Total/Ave.	9,055		24	20	72	86.0	9,612	-148,886			20	72	87.5 87.5	9,612	-204,72
Zor)e	53	Block	9,055	13/ 1		20	72	86.0	9,612	-148,886	13/1		20	72		1,130	-23,67
		AC16		3,278	13/ 1		20	72	86.0	1,130	-17,503	13/ 1		20 20	72 72	77.8 · 77.8	1,130	-23,67
Zor	he		Total/Ave.	3,278		24		72	86.0	1,130	-17,503					77.8	1,130	-23,67
Žor			Block	3,278	13/ 1				86.0	1,130	-17,503 -4,616					79.6	298	-6,71
_		AC16		680	13/ 1				86.0	298	-4,616	13/ 1	24			79.6	298	-6,71
Zor			Total/Ave.	680			20		86.0	298	-4,616	13/ 1			72	79.6	298	-6,71
Žor			Block	680	13/1				86.0	298 2,187	-4,616				72	75.3	2,187	-39,57
_		AC16		8,368	13/ 1				86.0	2,187	-33,876	13/ 1	24		72	75.3	2,187	-39,57
Zor			Total/Ave.	8,368			20		86.0	2,187	-33,876	17/ 1			72		2,187	-39,57
Zor			Block	8,368	13/1				86.0		-33,876 -25,294				72		1,633	-31,34
		AC18		1,170	13/ 1				86.0	1,633 1,633	-25,294	13/ 1	24		72		1,633	-31,34
201			Total/Ave.	1,170			20		86.0	1,633	-25,294	12/ 1			72		1,633	-31,34
	ne 		Block	1,170	13/ 1				86.0 86.0	20,562	-318,497		24		72		20,562	-416,54
-	stem		Total/Ave.	26,965	13/ 1		20			20,562	-318,496						20,562	-446,10
ayı	stem	đ	Block	26,965	13/ 1	24	20	12		201002					-		•	

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS-----

System 1

Coil Airflow

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Humid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F) ·
Space	72.0	58.0	42.5	50.1	25.1	
Main System						-
Return Air Heat Pickup						0.0
Return Fan						0.5
Return Air	72.5	58.2	41.8	50.1	25.2	
Outdoor Air	94.9	80.7	54.8	138.0	44.5	
Return/Outdoor Air Mix	94.9	80.7	54.8	138.0	44.5	
Blow through Fan						0.5
Entering Coil	95.4	80.9	54.0	138.0	44.7	
Leaving Coil	48.5	47.4	92.3	47.2	19.0	
Draw Through Fan						0.0
Duct Frictional Heat						1.6
Supply Duct Heat Gain						0.0
Cold Deck Supply Air	50.1	48.3	88.0	47.7	19.4	
Supply Air	53.5	49.8	77.6	47.7	20.2	
Percent Outside Air	I	100.00 (%)				
Sensible Heat Ratio (SHR)		0.926				
Percent Supply Air Bypassing Coil		15.51 (%)				

9,681 (Cfm)

~~

V 600

· . . .

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHRONETRIC STATE POINTS------

System 2

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Humid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F) ·
Space	72.0	61.1	53.9	63.8	27.2	÷4
Main System						. ·•
Return Air Heat Pickup						0.0
Return Fan						1.1
Return Air	73.1	61.5	52.0	63.8	27.5	
Outdoor Air	94.0	80.4	56.1	137.2	44.2	
Return/Outdoor Air Hix	94.0	80.4	56.1	137.2	44.2	
Blow through Fan						0.0
Entering Coil	94.0	80.4	56.1	137.2	44.2	
Leaving Coil	53.9	52.7	92.5	57.9	21.9	
Draw Through Fan						0.5
Duct Frictional Heat						1.6
Supply Duct Heat Gain						0.0
Cold Deck Supply Air	56.0	53.6	85.8	57.9	22.4	
Supply Air	56.0	53.6	85.8	57.9	22.4	
Percent Outside Air	10	0.00 (1)			
Sensible Heat Ratio (SHR)	0.	.882				
Percent Supply Air Bypassing Coil		0.00 (\$)			
Coil Airflow	9	,133 (0	fm)			

V 600 PAGE 2

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS ------

System 3

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Humid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(1)	(GR)	(Btu/Lb)	(F)
Space	72.0	62.5	59.1	70.0	28.2	·.
Main System						4. - •
Return Air Heat Pickup						0.0
Return Fan						0.0
Return Air	72.0	62.5	59.1	70.0	28.2	
Outdoor Air	94.9	80.7	54.8	138.0	44.5	
Return/Outdoor Air Mix	78.9	68.8	60.4	90.4	33.1	
Blow through Fan		•				0.7
Entering Coil	79.6	69.0	59.0	90.4	33.3	
Leaving Coil	57.8	56.8	94.1	68.0	24.4	
Draw Through Fan						0.0
Duct Frictional Heat						2.2
Supply Duct Heat Gain						0.0
Cold Deck Supply Air	60.0	57.6	87.1	68.0	25.0	
Supply Air	60.0	57.6	87.1	68.0	25.0	
Percent Outside Air	2	9.98 (1)			

..

Percent Outside Air	29.98	(4)
Sensible Heat Ratio (SHR)	0.852	
Percent Supply Air Bypassing Coil	0.00	(\$)
Coil Airflow	17,092	(Cfm)

V 600 Page 3

.

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS------

System 4

	Dry	Wet	Relat.	Humid.		Temp.			
	Bulb 1	Bulb	Humid.	Ratio	Enthalpy	Diff.	· .		
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F)			
Space	72.0	53.0	61.1	72.4	28.6	÷.			
Main System									
Return Air Heat Pickup						0:0			
Return Fan						0.0			
Return Air	72.0	53.0	61.1	72.4	28.6				
Outdoor Air	94.9	30.7	54.8	138.0	44.5				
Return/Outdoor Air Mix	78.4	58.7	61.6	90.8	33.0				
Blow through Fan						0.5			
Entering Coil	79.0	58.9	60.5	90.8	33.2				
Leaving Coil	58.4 5	57.3	93.9	69.2	24.8				
Draw Through Fan						0.0			
Duct Frictional Heat						1.6			
Supply Duct Heat Gain						0.0			
Cold Deck Supply Air	60.0	57.9	88.7	69.2	25.2				
Supply Air	60.0	57.9	88.7	69.2	25.2				
Percent Outside Air	28.14	(\$)							
Sensible Heat Ratio (SHR)	0.828	3							
Percent Supply Air Bypassing Coil	0.00	(1)							
Coil Airflow	15,503	(Cfm)						

PAGE 4

•

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS-----

System 5

.

	Dry	w	et	Relat.	Humid.		Temp.
	Bulb) Bu	1ь	Bumid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(1)	(GR)	(Btu/Lb)	(P) .
Space	72.0	59	.8	49.1	58.0	26.3	بو
Main System							
Return Air Heat Pickup							-0.0
Return Pan							0.6
Return Air	72.6	60	. 1	48.1	58.0	26.5	
Outdoor Air	94.9	80	.7	54.8	138.0	44.5	
Return/Outdoor Air Mix	74.7	62	. 4	50.5	65.5	28.2	
Blow through Fan							0.5
Entering Coil	75.2	62	.6	49.7	65.5	28.3	
Leaving Coil	52.5	51	.1	91.4	54.2	21.0	
Draw Through Fan							0.0
Duct Frictional Heat							1.6
Supply Duct Heat Gain							0.0
Cold Deck Supply Air	54.0	52	. 3	89.6	56.2	21.7	
Supply Air	57.8	53	.9	78.1	56.2	22.6	
Percent Outside Air		9.36	(1)				
Sensible Heat Ratio (SHR)		0.923					
Percent Supply Air Bypassing Coil		17.91	(\$)				

Percent Supply Air Bypassing Coil17.91 (%)Coil Airflow32,714 (Cfm)

.....

V 600

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS -----

System 6

Coil Airflow

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Humid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F) .
Space	72.0	63.0	61.3	72.6	28.6	24 24
Main System						• •
Return Air Heat Pickup						-0.0
Return Fan						0.2
Return Air	72.2	63.1	60.8	72.6	28.7	
Outdoor Air	94.9	80.7	54.8	138.0	44.5	
Return/Outdoor Air Mix	89.3	77.0	57.8	122.0	40.6	
Blow through Fan						0.2
Entering Coil	89.5	77.1	57.4	122.0	40.7	
Leaving Coil	57.4	57.2	99.1	70.5	24.7	
Draw Through Fan						0.0
Duct Frictional Heat						0.6
Supply Duct Heat Gain						0.0
Cold Deck Supply Air	58.0	57.5	97.4	70.8	24.9	
Supply Air	58.0	57.5	97.4	70.8	24.9	
Percent Outside Air		75.45 (%)				
Sensible Heat Ratio (SHR)		0.908				
Percent Supply Air Bypassing Coil		0.00 (%)				

9,026 (Cfm)

▼ 600 Page 6

. ...

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCEROMETRIC STATE POINTS------

System 7

	Dry	We	et R	Relat.	Humid.		Temp.	
	Bulb	Bu.	lb B	Jumid.	Ratio	Enthalpy	Diff.	
	(F)	(1	₹)	(\$)	(GR)	(Btu/Lb)	(F)	
Space	72.0	59.	. 9	49.5	58.4	26.4		
Main System							44 - 44	
Return Air Heat Pickup							0.0	
Return Fan							0.7	
Return Air	72.7	60.	.2	48.3	58.4	26.6		
Outdoor Air	94.9	80.	.7	54.8	138.0	44.5		
Return/Outdoor Air Mix	78.3	66.	.3	53.5	78.3	31.0		
Blow through Fan							1.1	
Entering Coil	79.4	66.	. 6	51.6	78.3	31.3		
Leaving Coil	52.7	51.	.9	94.8	56.7	21.4		
Draw Through Fan							0.0	
Duct Frictional Heat							3.3	
Supply Duct Heat Gain							0.0	
Cold Deck Supply Air	56.0	53.	. 6	85.7	57.8	22.4		
Supply Air	57.3	54.	.1	81.9	57.8	22.7		
Percent Outside Air	2	24.95	(\$)					
Sensible Heat Ratio (SHR)	c	.954						
Percent Supply Air Bypassing Coil		5.41	(\$)					
Coil Airflow	38	8,626	(Cfm)					

••••

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

SYSTEM PSYCHROMETRICS - ALTERNATIVE 1

BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS------

System 8

	Dry	W	et R	elat.	Humid.		Temp.
	Bulb	Bu	1b B	umid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F)
Space	72.0	61	.6	55.9	66.1	27.6	4
Main System							
Return Air Heat Pickup							-0.0
Return Fan							0.4
Return Air	72.4	61	.8	55.2	66.1	27.7	
Outdoor Air	94.9	80	.7	54.8	138.0	44.5	
Return/Outdoor Air Mix	76.6	65	.9	57.5	79.4	30.8	
Blow through Fan							0.7
Entering Coil	77.2	66	.1	56.2	79.4	31.0	
Leaving Coil	56.9	55	.6	92.6	64.7	23.7	
Draw Through Fan							0.0
Duct Frictional Heat							2.0
Supply Duct Heat Gain							0.0
Cold Deck Supply Air	58.9	56	.5	86.4	64.8	24.2	
Supply Air	60.0	56	.9	83.1	64.8	24.5	
Percent Outside Air	:	18.52	(\$)				
Sensible Heat Ratio (SHR)	4	0.922					
Percent Supply Air Bypassing Coil		8.25	(\$)				
Coil Airflow	1	8,866	(Cfm)				

V 600 Page 8

.

··· ·

. .

AUXILIARY PSYCHROMETRICS - ALTERNATIVE 1

BASELINE MODEL

Room 11

----- PSYCHROMETRIC STATE POINTS------

	Dry	Wet	Relat.	Humid.		Temp.	
	Bulb	Bulb	Bumid.	Ratio	Enthalpy	Diff.	•
	(F)	(F)	(\$)	(GR)	(Btu/Lb)	(F)	-
Space	72.0	60.0	49.8	58.9	26.5		
Auxiliary System						-+ +	
Blow through Fan						0.1	
Entering Coil	72.1	60.1	49.6	58.9	26.5		
Leaving Coil	55-8	53.7	87.8	58.9	22.5		
Draw Through Fan						0.0	
Duct Frictional Heat						0.2	
Supply Air	56.0	53.8	87.2	58.9	22.6		

Sensible	Heat	Ratio	(SHR)	
Coil Airs	low			

1	**	****	***	****	****	****	***	****	*****	**
* 2	THE	PSI	CER	HETR.	IC L	OOP	DID	NOT	CLOSE	*
* 5	UPF	PLY	AIR	TEMP	ERAT	URE	RESI	T		*
***	***	***	***	****	****	****	****	****	*****	**

1.000

992 (Cfm)

Room

Space	Dry Balb (F) 72.0	Wet Bulb (F) 60.0	Relat. Eumid. (%) 49.8	Humid. Ratio (GR) 58.9	Enthalpy (Btu/Lb) 26.5	Temp. Diff. (F)
Auxiliary System Blow through Fan Entering Coil	72.1	60.1	49.6	58.9	26.5	0.1
Leaving Coil Draw Through Fan Duct Frictional Heat Supply Air	55.8	53.7	87.8 87.2	58.9 58.9	22.5	0.0 0.2

Sensible	Heat	Ratio	(SER)	1.000	
Coil Air:	flow			381	(Cfm)

* THE PSYCHROMETRIC LOOP DID NOT CLOSE *
* SUPPLY AIR TEMPERATURE RESET *

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

AUXILIARY PSYCHROMETRICS - ALTERNATIVE 1 BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS-----

Room	13

	Dry	Wet	Relat.	Humid.		Temp.	
	Bolb	Bulb	Rumid.	Ratio	Enthalpy	Diff.	•
	(F)	(F)	(1)	(GR)	(Btu/Lb)	(F)	
Space	72.0	60.0	49.8	58.9	26.5		
Auxiliary System							
Blow through Fan						0.1	
Entering Coil	72.1	60.1	49.6	58.9	26.5		
Leaving Coil	55.8	53.7	87.8	58.9	22.5		
Draw Through Fan						0.0	
Duct Frictional Heat						0.2	
Supply Air	56.0	53.8	87.2	58.9	22.6		

Sensibl	e Heat	Ratio	(SER)	
Coil Ai	rflow			• 2-

1.000 2,764 (Cfm)

* THE PSYCHROMETRIC LOOP D	ID NOT CLOSE +
SUPPLY AIR TEMPERATURE R	ESET *
************************	***********

------PSYCHROHETRIC STATE POINTS------

Room

14

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Bumid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(\$)	(GR)	(Btu/Ib)	(F)
Space	72.0	60.0	49.8	58.9	26.5	
Auxiliary System						
Blow through Fan						0.1
Entering Coil	72.1	60.1	49.6	58.9	26.5	
Leaving Coil	55.8	53.7	87.8	58.9	22.5	
Draw Through Fan						0.0
Duct Frictional Heat						0.2
Supply Air	56.0	53.8	87.2	58.9	22.6	

Sensible Heat	Ratio	(SER)	
Coil Airflow			

* THE PSYCHROMETRIC LOOP DID NOT CLOSE * * SUPPLY AIR TEMPERATURE RESET *

1.000

2,918 (Cfm)

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

AUXILIARY PSYCHROMETRICS - ALTERNATIVE 1

BASELINE MODEL

----- PSYCHROMETRIC STATE POINTS ------

Room 15

	Dry	Wet	Relat.	Humid.		Temp.
	Bulb	Bulb	Humid.	Ratio	Enthalpy	Diff.
	(F)	(F)	(1)	(GR)	(Btu/Lb)	(F)
Space	72.0	60.0	49.8	58.9	26.5	
Auxiliary System						
Blow through Fan						0.1
Entering Coil	72.1	60.1	49.6	58.9	26.5	
Leaving Coil	55.8	53.7	87.8	58.9	22.5	
Draw Through Fan						0.0
Duct Frictional Heat						0.2
Supply Air	56.0	53.8	87.2	58.9	22.6	

Sensible Heat Ratio (SHR)	1.000	
Coil Airflow	203	(Cfm)

* THE PSYCHROMETRIC LOOP DID NOT CLOSE *
* SUPPLY AIR TEMPERATURE RESET *

--- · ,

BUILDING U-VALUES - ALTERNATIVE 1 BASELINE MODEL

Room

Room

2.67

13.3

----- Room U-Values -----Capac. (Btu/hr/sqft/F) Mass Summr Wintr (1b/ (Btu/ Summr Wintr Room sqft) sqft/F) Roof Windo Windo Wall Ceil. Part. ExFlr Skylt Skylt Number Description 29.95 148.0 0.000 0.000 0.250 0.000 0.000 0.000 0.100 1 SURGERY1 0.000 0.000 148.0 29.95 0.250 0.000 0.000 0.000 1 Total/Ave. 0.000 0.000 0.000 0.000 0.100 Zone 10.81 0.000 0.250 0.000 51.1 0.000 0.000 0.100 0.000 0.000 2 SUR CORR 0.000 0.000 0.250 0.000 51.1 10.81 0.000 0.000 0.100 0.000 2 Total/Ave. 0.000 0.000 Zone 20.9 4.83 0.000 0.000 0.000 0.000 0.100 0.000 0.000 3 SURGERY2 0.000 0.000 4.83 0.000 0.000 0.000 20.9 0.000 3 Total/Ave. 0.000 0.000 0.000 0.000 0.100 Ione 36.23 179.7 0.000 0.250 0.000 0.000 0.000 0.100 0.000 0.000 0.000 4 DEL 1 179.7 36.23 0.000 0.250 0.000 0.100 0.000 4 Total/Ave. 0.000 0.000 0.000 0.000 Lone 17.39 84.4 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.100 5 DEL 2 0.000 0.250 0.000 84.4 17.39 0.000 0.100 0.000 0.000 0.000 0.000 5 Total/Ave. Tone 0.000 20.9 4.83 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 6 LABOR 20.9 4.83 0.000 0.000 0.000 0.250 0.000 6 Total/Ave. 0.000 0.000 0.000 0.000 Zone 10.19 48.0 0.000 0.000 0.100 0.000 0.000 0.000 0.000 0.100 0.000 7 SUR. LOUN 48.0 10.19 0.100 0.000 0.100 0.000 0.000 0.000 0.000 0.000 0.000 Zone 7 Total/Ave. 20.9 4.83 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.100 8 NURSERY 4-83 0.000 0.000 0.000 0.000 20.9 0.100 0.000 0.000 0.000 0.000 Ione 8 Total/Ave. 0.000 0.250 84.4 17.39 0.100 0.000 0.000 0.000 0.000 0.000 0.000 Q. OB RECOV 0.000 84.4 17.39 0.000 0.000 0.250 0.100 0.000 Zone 9 Total/Ave. 0.000 0.000 0.000 0.000 20.9 4.83 0.000 0.000 0.100 0.000 0.000 10 OR RECOV 0.000 0.000 0.000 4.83 20.9 0.000 0.000 0.000 0.000 0.100 0.000 0.000 10 Total/Ave. 0.000 0.000 Zone 10.54 49.8 0.000 0.000 0.213 0.000 0.000 0.000 0.134 1 Total/Ave. 0.000 0.000 System 13.13 62.9 0.000 0.100 1.130 1.247 0.250 0.000 0.000 11 PERIM N. 0.000 0.000 13.13 1.130 1.247 0.250 0.000 62.9 0.000 0.000 0.100 0.000 0.000 11 Total/Ave. Ione 16.47 1.130 1.247 0.250 79.8 0.000 0.100 0.000 0.000 12 PERIM. S 0.000 0.000 0.000 79.8 16.47 1.130 1.247 0.250 0.000 0.000 0.100 12 Total/Ave. 0.000 0.000 Zone 20.9 4.83 0.000 0.000 0.000 0.000 0.000 0.100 0.000 0.000 13 INT. N 0.000 20.9 4.83 0.000 0.000 0.000 0.100 0.000 0.000 0.000 0.000 13 Total/Ave. 0.000 Zone 20.9 4.83 0.000 0.000 0.000 0.100 0.000 0.000 0.000 14 INT. S 0.000 0.000 4.83 20.9 0.100 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 14 Total/Ave. Zone 73.6 15.26 0.000 0.000 0.000 0.100 1.130 1.247 0.250 0.000 0.000 15 TCII 0.000 73.6 15.26 0.100 1,130 1.247 0.250 0.000 0.000 0.000 0.000 Zone 15 Total/Ave. 0.000 40.9 8.78 1.130 1.247 0.250 0.100 0.000 0.000 2 Total/Ave. 0.000 0.000 System 2.67 13.3 0.000 0.000 0.317 0.000 0.000 0.000 0.000 0.000 0.000 16 KIT ADMIN 13.3 2.67 0.317 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Zone 16 Total/Ave. 0.000 4.11 0.317 20.6 0.000 0.000 0.000 0.150 0.000 17 FOOD PRE 0.000 0.000 0.000 4.11 20.6 0.150 0.317 0.000 0.000 0.000 0.000 0.000 0.000 17 Total/Ave. 0.000 2one 13.3 2.67 0.000 0.000 0.000 0.317 0.000 0.000 0.000 0.000 0.000 18 XRAY EXT 13.3 2.67 0.000 0.317 0.000 0.000 0.000 0.000 0.000 18 Total/Ave. 0.000 0.000 Sone 76.5 15.82 0.000 0.150 0.317 0.000 0.000 0.000 0.000 0.050 19 XRAY INT 0.000 76.5 15.82 0.000 0.150 0.317 0.000 0.050 0.000 0.000 Zone 19 Total/Ave. 0.000 0.000 13.3 2.67 0.000 0.000 0.000 0.317 20 PHY THER 0.000 0.000 0.000 0.000 0.000 2.67 13.3 0.000 0.000 0.000 0.317 0.000 0.000 0.000 0.000 0.000 Zone 20 Total/Ave. 13.3 2.67 0.000 0.000 0.000 0.317 0.000 0.000 0.000 21 ADMIN 0.000 0.000 2.67 13.3 0.000 0.000 0.000 0.317 0.000 0.000 0.000 0.000 0.000 Zone 21 Total/Ave.

------BUILDING U-VALUES------

22 SUR.CLINIC

0.000

0.000

0.000

0.000

0.000

0.000 0.000 0.317

Zone	22 Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
23	SUR.CLINIC	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	20.9	4.83
Zone	23 Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	20.9	4.83

٠.

351

BUILDING U-VALUES - ALTERNATIVE 1 BASELINE MODEL

		Room U-Values										Room
						/hr/sqf				· ·	Room Mass	Capac.
D				Summer	Wintr	1.111.041	Summr	Wintr			(15/	- (Btu/
Room	Description	Part.	P-Pl-	-	Skylt	Roof	Windo		Wall	Ceil.	sqft)	sqft/F)
Number	Description	Fait.	EAT 11	JAYIC	DAJIC	ROOT						
24	MECH	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	16.9	3.68
Zone	24 Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	16.9	3.68
25	E.R.AC10	0.000	0.000	0.000	0.000	0.050	1.130	1.247	0.250	0.317	33.3	7.29
Zone	25 Total/Ave.	0.000	0.000	0.000	0.000	0.050	1.130	1.247	0.250	0.317	33.3	7.29
System	3 Total/Ave.	0.000	0.000	0.000	0.000	0.050	1.130	1.247	0.175	0.317	22.7	4.80
- 26	ADMIN	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
Zone	26 Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
27	DENT EXT	0.000	0.000	0.000	0.000	0.050	1.170	1.296	0.250	0.317	105.4	21.21
Zone	27 Total/Ave.	0.000	0.000	0.000	0.000	0.050	1.170	1.296	0.250	0.317	105.4	21.21
28	DENT INT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
Zone	28 Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
29	EENT EXT	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.150	0.317	95.0	19.49
Zone	29 Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.150	0.317	95.0	19.49
30	BENT INT	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0-000	0.317	20.9	4.83
Zone	30 Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	20.9	4.83
31	AREA S	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	20.9	4.83
Zone	31 Total/Ave.	0.000	0.000	0.000	0.000	0.050	0.000	0.000	0.000	0.317	20.9	4.83
32	DINING	0.000	0.000	0.000	0.000	0.000	1.170	1.296	0.250	0.317	31.0	6.16
Zone	32 Total/Ave.	0.000	0.000	0.000	0.000	0.000	1.170	1.296	0.250	0.317	31.0	6.16
System	4 Total/Ave.	0.000	0.000	0.000	0.000	0.050	1.170	1.296	0.205	0.317	29.0	6.07
33	AC8 NORT	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	120.3	24.82
Zone	33 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	120.3	24.82
34	AC8 EAST	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	161.1	32.88
Zone	34 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	161.1	32.88
35	AC7 S0	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	88.7	18.59
Zone	35 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	88.7	18.59
36	AC8 SO	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	148.9	30.49
Zone	36 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	148.9	30.49
37	AC7 WEST	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	173.6	35.36
Zone	37 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	173.6	35.36
38	AC7 INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	38 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
39	AC8 INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	39 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
System	5 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	84.4	17.73
40	AC9 LAB	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	71.1	15.10
Zone	40 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	71.1	15.10
System	6 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	71.1	15.10
41	WEST CHS	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	84.3	17.71
Zone	41 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	84.3	17.71
42	AC11 WES	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	88.9	18.62
Zone	42 Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	88.9	18.62
43	AC14 WES	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	132.2	27.17
Zone	43 Total/Ave.	0.000	0.000	0.000						0.317	132.2	
44	AC13 SOU	0.000	0.000	0.000	0.000	0.150 352	0.490	0.511	0.150	0.317	121.3	25.02

_____ BUILDING U-VALUES _____

.

Zone	44	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	121.3	25.02
45	AC11	EAS	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	92.1	19.26
Zone	45	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	92.1	19.26

-4

BUILDING U-VALUES - ALTERNATIVE 1 BASELINE MODEL

						Roo	m U-Val	lues				Room	Room
						(Btu	/hr/sqf	t/F)				Mass	Capac.
Room					Summr	Wintr		Summr	Wintr			(1b/	(Btu/
Number	Des	cription	Part.	ExFlr	Skylt	Skylt	Roof	Windo	Windo	Wall	Ceil.	sqft)	sqft/F)
										֥,	•		
46	AC14	EAS	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	78.3	16.53
Zone	46	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	78.3	16.53
47	AC13	EAS	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	102.9	21.38
Zone	47	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	102.9	21.38
48	AC11	INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	48	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
49	AC14	INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	49	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
50	AC13	INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	50	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
System	7	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	82.2	17.29
51	AC17	WES	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	106.6	22.12
Zone	51	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	106.6	22.12
52	AC17	NOR	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	125.0	25.76
Zone	52	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	125.0	25.76
53	AC17	INT	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
Zone	53	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.000	0.317	64.8	13.86
54	AC16	INT	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
Zone	54	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
55	AC16	NOR	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.150	0.317	91.6	18.13
Zone	55	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.150	0.317	91.6	18.13
56	AC16		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
Zone	56	Total/Ave.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.317	13.3	2.67
57	AC18		0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	117.3	24.23
Zone	57	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.000	0.000	0.150	0.317	117.3	24.23
System	8	Total/Ave.	0.000	0.000	0.000	0.000	0.150	0.490	0.511	0.150	0.317	54.6	11.38
Buildin	g		0.000	0.000	0.000	0.000	0.130	0.770	0.833	0.172	0.317	58.8	12.38

.

---<u>.</u>* .

BUILDING AREAS - ALTERNATIVE 1

BASELINE MODEL

				Floor	Total		Exposed							
		Numbe	er of	Area/Dupl	Floor	Partition	Floor	Skylight	Skl	Net Roof	Window	Win	Net Wall	
Room		Dupli	lcate	Room	Area	Area	Area	Area	/Rf	Area	Area	/w1	Area	
Number	Description	Plr	Rm	(sqft)	(sqft)	(sqft)	(sqft)	(sqft)	(\$)	(sqft)	(sqft)	(\$)	(sqft)	
								4					546	
1	SURGERY1	1	1	441	441	0	O	. O	0	441	0	0	546	
Ione	1 Total/Ave.				441	0	0	0	0	441	0	0	546	
2	SUR CORR	1	1	927	927	0	0	0	0	927	0	0	273 273	
Zone	2 Total/Ave.				927	0	0	0	0	927	0	0	273	
3	SURGERY2	1	1	400	400	0	0	0	0	400	0	0	0	
Lone	3 Total/Ave.				400	0	0	0	0	400	0. 0	0	455	
4	DEL 1	1	1	294	294	0	0	0	0	294	0	0	455	
Ione	4 Total/Ave.				294	0	0	0	0	294	0	0	169	
5	DEL 2	1	1	273	273	0	0	0	0	273	0	o	169	
Ione	5 Total/Ave.				273	0	0	0	0	273	0	ŭ	0	
6	LABOR	1	1	1,695	1,695	0	0	0	0	1,695	0	0	0	
Lone	6 Total/Ave.				1,695	0	0	0	0 0	1,968	0	0	520	
7	SUR. LOUN	1	1	1,968	1,968	0	0	0		1,968	. 0	0	520	
Zone	7 Total/Ave.				1,968	0	0	0	0	879	0	0	0	
8	NURSERY	1	1	879	879	0	0	0	0	879	0	0	0	
Ione	8 Total/Ave.				879	0	0	0	0	252	0	- 0	156	
9	OB RECOV	1	1	252	252	0	0	0	0	252	0	0	156	
Sone	9 Total/Ave.		_		252	0	0 0	0	0	405	0	0	ä	
10	OR RECOV	1	1	405	405	0	0	0	- O		· 0	0	0	
Ione	10 Total/Ave.				405	0		0	0	7,534	0	o	2,119	
System	1 Total/Ave.	-	-		7,534	0	0	0	0	4,644	389	17	1,899	
	PERIM N.	1	1	4,644	4,644	0	0	0	0	4,644	389	17	1,899	
Zone	11 Total/Ave.			1 000	4,644	0	0	0	0	1,980	60	5	1,136	
	PERIM. S	1	1	1,980	1,980 1,980	0	0	0	0	1,980	€0	5	1,136	
Sone 13	12 Total/Ave. INT. N	1	1	4,968	4,968	0	0	0	0	4,968	0	0	C	
Zone	13 Total/Ave.	1	1	4,500	4,968	0	0	0	0	4,968	0	0	C	
201e 14		1	1	5,244	5,244	0	0	0	0	5,244	0	0	C	
20ne	14 Total/Ave.	-	•	57244	5,244	0	0	0	0	5,244	0	0	C	
	ICU	1	1	756	756	0	0	0	0	756	80	17	388	
Ione	15 Total/Ave.	-	•		756	0	0	0	0	756	80	17	38£	
System	2 Total/Ave.				17,592	0	0	0	0	17,592	528	13	3,424	
-	KIT ADMIN	1	1	1,032	1,032	0	0	0	0	٥	0	0	C	
Zone	16 Total/Ave.		-		1,032	0	C	0	0	0	0	0	C	
	FOOD PRE	1	1	1,828	1,828	0	o	0	0	0	0	0	130	
Zone	17 Total/Ave.		-	•	1,828	0	C	0	0	0	0	0	13(
	XRAY EXT	1	1	5,336	5,336	0	Ċ	0	0	0	٥	0	(
Ione	18 Total/Ave.		-		5,336	o	0	0	0	0	٥	0	(
	XRAY INT	1	1	2,352	2,352	0	G	0	0	2,352	0	0	1,27.	
Ione	19 Total/Ave.		-	• · · · ·	2,352	0	C	0	0	2,352	0	0	1,27.	
	PHY THER	1	1	4,404	4,404	0	C	0	0	0	0	0	(
Zone	20 Total/Ave.		-	-	4,404	0	G	0	0	0	0	C		
	ADMIN	1	1	1,790	1,790	0	٥	0	0	0	0	Q		
Ione	21 Total/Ave.			-	1,790	0	0	0	0	0	0	C		
22	SUR.CLINIC	1	1	3,116	3,116	0	0	0	0	0	0	C	•	

BUILDING AREAS -----

Zone	22 Total/Ave.				3,116	0	O	O	0	0	o	0
23	SUR.CLINIC	1	1	5,822	5,822	0	0	0	0	5,822	0	0
Zone	23 Total/Ave.				5,822	0	0	0	0	5,822	0.	0

· ·

.

÷.,

BUILDING AREAS - ALTERNATIVE 1 BASELINE MODEL

			Floor	Total		Exposed			N-1 5-5	11 i	Win	Net Wall
		Number o	of Area/Dupl	Floor	Partition	Floor	Skylight		Net Roof	Window		
Room		Duplicat	e Room	Area	Area	Area		/Rf	Area	Area	/w1	Area
Number	Description	Flr Rm	a (sqft)	(sqft)	(sqft)	(sqft)	(sqft)	(\$)	(sqft)	(sqft)	(\$)	(sqft)
										_	•	
24	MECH	1 1	1,072	1,072	0	0	. 0	0	500	0	0	(
Zone	24 Total/Ave.			1,072	0	0	0	0	500	0	0	(
25	E.R.AC10	1 1	3,915	3,915	0	0	0	0	3,915	118	20	47.
Zone	25 Total/Ave.			3,915	0	O	0	0	3,915	118	20	47,
System	3 Total/Ave.			30,667	0	0	0	0	12,589	118	6	1,87
-	ADMIN	1 1	2,964	2,964	0	0	0	0	0	0	0	1
Zone	26 Total/Ave.			2,964	0	0	0	0	0	0	0	4
27	DENT EXT	1 1	1,210	1,210	0	0	0	0	605	116	10	1,04
Zone	27 Total/Ave.			1,210	0	0	0	0	605	116	10	1,04
28	DENT INT	1 1	5,899	5,899	0	0	0	0	0	0	0	(
Ione	28 Total/Ave.			5,899	0	0	0	0	0	0	0	1
29	EENT EXT	1 1	1,512	1,512	0	0	0	0	1,512	0	0	1,09
Ione	29 Total/Ave.			1,512	0	0	0	0	1,512	· · · O ·	0	1,09.
30	EENT INT	1 1	3,696	3,696	0	0	0	0	3,696	0	0	
Zone	30 Total/Ave.			3,696	0	0	0	0	3,696	0	0	
	AREA S	1 1	3,240	3,240	0	0	0	0	3,240	0	0	
Zone	31 Total/Ave.			3,240	0	0	· 0	0	3,240	0	0	
	DINING	1 1	1,734	1,734	0	0	0	0	0	365	55	29
Ione	32 Total/Ave.			1,734	0	0	0	0	0	365	55	29
System	4 Total/Ave.		·	20,255	0	0	0	0	9,053	480	16	2,43
33		1 1	1,579	1,579	0	0	C	0	1,579	106	11	85
Zone	33 Total/Ave.		-	1,579	C	0	0	0	1,579	106	11	
34	AC8 EAST	1 1	2,367	2,367	0	0	0	0	2,367	194	8	2,22
Zone	34 Total/Ave.			2,367	0	0	0	0	2,367	194	·* 8	2,22
35	AC7 S0	1 1	4,967	4,967	0	0	0	0	4,967	- 255	18	1,16
Zone	35 Total/Ave.		-•	4,967	0	0	0	0	4,967	255	18	1,16
	AC8 SO	1 1	2,268	2,268	0	0	0	0	2,268	254	12	1,86
Zone	36 Total/Ave.			2,268	. 0	0	0	0	2,268	254	12	1,86
201e 37		1 1	1,772	1,772	0	0	0	0	1,772	209	10	1,88
Zone	37 Total/Ave.			1,772	0	0	0	0	1,772	209	10	1,88
201e 38	AC7 INT	1 1	13,657	13,657	0	0	0	0	13,657	0	0	
			Lopus	13,657	0	0		0	13,657	0	0	
Zone			1 15,184	15,184	0	0		0	15,184	0	0	
	ACS INT			15,184		0	0		15,184	· 0	0	I.
Zone				41,794		0	0	0	41,794	1,018	11	7,9
•	5 Total/Ave.		- 0.030	8,039		0			8,039			4:
	AC9 LAB		1 8,039	8,039		0			8,039		0	a 4:
	40 Total/Ave.			-		0		-	8,039		0) 4 '
-	6 Total/Ave.		4.776	8,039		0		-	4,776	0		9
	WEST CMS		1 4,776	4,776		0			4,776	0		9
	41 Total/Ave.			4,776		0		-	3,671	46	5	5 8
	AC11 WES		1 3,671	3,671					3,671			
	42 Total/Ave.			3,671		0			1,763			
	AC14 WES		1 1,763	1,763		0			-			
	43 Total/Ave.			1,763		0			1,763			
44	AC13 SOU	1 1	1 1,798	1,798		0) C) 0	1,798		-	· -
					357							

BUILDING AREAS -----

Exposed

Total

Floor

Zone	44	Total/Ave.				1,798	o	o	o	0	1,798	86	8	99:
45	AC11	EAS	1	1	3,067	3,067	0	0	0	0	3,067	91	10	81!
Zone	45	Total/Ave.				3,067	0	0	0	0	3,067	91	10	81!

BUILDING AREAS - ALTERNATIVE 1

				Floor	Total		Exposed						
		Numb	er of	Area/Dupl	Floor	Partition	Floor	Skylight	Skl	Net Roof	Window	Win	Net Wall
Room			icate	Room	Area	Area	Area	Area	/Rf	Area	λrea	/wl	Area
	Description	-	Rm	(sqft)	(sqft)	(sqft)	(sqft)	(sqft)	(1)	(sqft)	(sqft)	(\$)	(sqft)
Aumoci	Deneraperon			(-1)	• • •			44 - 74					
46	AC14 EAS	1	1	6,380	6,380	0	0	·. 0	0	6,380	94	10	842
Zone	46 Total/Ave.	-	-	·	6,380	0	0	0	0	6,380	54	10	842
	AC13 EAS	1	1	5,310	5,310	O	0	0	0	5,310	0	0	1,97€
Zone	47 Total/Ave.		-		5,310	0	0	0	0	5,310	0	0	1,976
	AC11 INT	1	1	4,485	4,485	0	0	0	0	4,485	0	0	C
Zone	48 Total/Ave.		-	•	4,485	o	0	0	0	4,485	• 0	0	(
49		1	1	5,828	5,828	0	0	0	0	5,828	0	0	C
Zone	49 Total/Ave.		-	- •	5,828	0	0	0	0	5,828	0	0	C
50		1	1	7,562	7,562	0	0	0	0	7,562	0	0	ſ
Zone	50 Total/Ave.	-		•	7,562	٥	C	0	0	7,562	0	0	(
System					44,640	0	0	0	0	44,640	378	5	7,56
-	AC17 WES	1	1	1,119	1,119	0	0	0	0	1,119	24	5	45'
Zone	51 Total/Ave.				1,119	0	0	0	0	1,119	24	5	45
52	AC17 NOR	1	1	3,295	3,295	0	0	0	0	3,295	102	5	1,93
Zone	52 Total/Ave.				3,295	0	0	0	0	3,295	102	5	1,93
53	AC17 INT	1	1	9,055	9,055	0	0	0	0	9,055	0	0	
Zone	53 Total/Ave.			-	9,055	0	0	0	0	9,055	0	0	
	AC16 INT	1	1	3,278	3,278	0	0	0	0	0	0	0	
Sone	54 Total/Ave.				3,278	0	0	0	0	0	O	0	
55	-	1	1	680	680	0	0	. O	0	0	. 0	0	52
Zone	55 Total/Ave.				680	0	0	0	0	0	0	0	52
56	AC16	1	1	8,368	8,368	0	0	0	0	0	0	0	

0 0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

BUILDING AREAS

BASELINE MODEL

57 AC18

56 Total/Ave.

57 Total/Ave.

8 Total/Ave.

Zone

Zone

System

Building

1 1

0

0

3

8

60

60

3,51

29,42

0

0

126

2,649

ο . 0

0

1,170

1,170

14,639

155,880

8,368

1,170

1,170

26,965

197,486

1,170

ASHRAE 90 ANALYSIS - ALTERNATIVE 1 BASELINE MODEL

----- ASHRAE 90 ANALYSIS-----

Overall Roof U-Value=0.130 (Btu/Hr/Sq Pt/F)Overall Wall U-Value=0.222 (Btu/Hr/Sq Ft/F)Overall Building U-Value0.145 (Btu/Hr/Sq Ft/F)

Roof Overall Thermal Transfer Value (OTTVr) = 7.33 (Btu/Hr/Sq Pt) Wall Overall Thermal Transfer Value (OTTVw) = 11.39 (Btu/Hr/Sq Pt)

V 600

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

SYSTEM LOAD PROFILE - ALTERNATIVE 1 BASELINE MODEL

Main System 1 BPMZ BYPASS MULTIZONE

Percent	Cool	ing Los	d	Heatin	g Load		Cooling	Airflow		Heating	Airflow	
Design		Hours		Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Hours	Hours
Load	(Ton)	(1)		(Btub)	(\$)		(Cfm)	(\$)		(Cfm)	(\$)	
0 - 5	5.3	20	967	-55,089	19	807	572.9	ò	0	0.0	0	0
5 - 10	10.5	13	644	-110,178	15	652	1,145.8	0	0	0.0	0	0
10 - 15	15.8	13	629	-165,268	17	722	1,718.7	. 0	0	0.0	O	0
15 - 20	21.1	11	524	-220,357	14	614	2,291.6	. o	0	0.0	0	0
20 - 25	26.3	7	329	-275,446	14	582	2,864.5	0	0	0.0	0	0
25 - 30	31.6	8	400	-330,535	8	335	3,437.4	0	0	0.0	0	0
20 - 30 30 - 35	36.9	6	272	-385,624	8	356	4,010.3	0	0	0.0	0	0
30 - 35 35 - 40	42.2	6	316	-440,713	5	235	4,583.2	0	0	0.0	0	0
40 - 45	47.4	5	233	-495,803	0	0	5,156.1	0	0	0.0	0	0
45 - 50	52.7	4	209	-550,892	0	0	5,729.0	0	0	0.0	0	O
50 - 55	58.0	2	109	-605,981	0	0	6,301.9	0	0	0.0	0	0
55 - 60	63.2	2	88	-661,070	0	0	6,874.8	0	0	0.0	0	0
60 - 65	68.5	4	173	-716,159	o	0	7,447.7	0	0	0.0	0	0
65 - 70	73.8	0	23	-771,249	0	0	8,020.6	0	0	0.0	0	0
70 - 75	79.0	o	O	-826,338	0	0	8,593.5	0	0	0.0	0	0
75 - 80	84.3	0	0	-881,427	0	0	9,166.4	0	0	0.0	0	0
80 - 85	89.6	0	o	-936,516	0	0	9,739.3	0	0	0.0	0	0
85 - 90	94.9	0	0	-991,605	0	0	10,312.2	0	0	0.0	0	0
90 - 95	100.1	o	0	-1,046,695	0	0	10,885.1	0	0	0.0	0	0
95 - 100	105.4	0	o	-1,101,784	0	0	11,458.0	100	8,760	0.0	0	
Hours Off	0.0	0	3,844	0	0	4,457	0.0	0	0	0.0	0	8,760

Main System

2 TRH

TERMINAL REHEAT

Percent	Cool	ing Loa	d	Heatin	g Load		Cooling	Airflow		Heating		
Design	Cap.	Hours		Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Hours	Hours
Load	(Ton)	(\$)		(Btuh)	(\$)		(Cfm)	(\$)		(Cfm)	(\$)	
0 - 5	4.1	10	693	-46,141	10	773	456.6	0	0	0.0	0	0
5 - 10	8.3	-*	338	-92,282	21	1,627	913.3	0	0	0.0	0	0
	12.4	8	551	-138,422	23	1,824	1,370.0	0	0	0.0	0	0
	16.6	5	368	-184,563	13	1,043	1,826.6	0	0	0.0	0	0
	20.7	6	426	-230,704	13	1,018	2,283.3	0	0	0.0	0	0
20 - 25		5	368	-276,845	7	520	2,739.9	0	٥	0.0	0	0
25 - 30	24.9		276	-322,985	6	499	3,196.6	0	0	0.0	0	0
30 - 35	29.0	4	_	-369,126	4	308	3,653.2	0	0	0.0	·- 0	0
35 - 40	33.2	7	483	-415,267	2	131	4,109.9	0	0	0.0	0	0
40 - 45	37.3	3	194	-	0	34	4,566.5	0	0	0.0	0	0
45 - 50	41.5	5	320	-461,408	0	32	5,023.2	0	0	0.0	0	- 0
50 - 55	45.6	6	398	-507,549		32 0	5,479.8	0	0	0.0	0	0
55 - 60	49.8	6	370	-553,689	. 0		5,936.5	0	0	0.0	0	0
60 - 65	53.9	7	460	-599,830	. 0	0	•	ů	0	0.0	0	0
65 - 70	58.1	4	275	-645,971	0		6,393.1	0	0	0.0	0	0
70 - 75	62.2	3	212	-692,112	0	0	6,849.8		0	0.0	0	0
75 - 80	66.4	3	213	-738,252	0		7,306.4	0		0.0	0	0
80 - 85	70.5	3	214	-784,393	0	0	7,763.1	0	0		0	0
85 - 90	74.7	2	153	-830,534	0	0	8,219.7	0	0	0.0		0
90 - 9 5	78.8	3	185	-876,675	0	0	8,676.4	0	0	0.0	0	
9 5 - 100	83.0	3	216	-922,815	0	0	9,133.0	100	8,760	0.0	0	0
Hours Off	0.0	0	2,047	0	0	951	0.0	0	0	0.0	0	8,760

V 600 Page 1

SYSTEM LOAD PROFILE - ALTERNATIVE 1 BASELINE MODEL

Main System 3 DD DOUBLE DUCT

Percent	Cool	ing Loa	d	Heatin	ng Load		Cooling	Airflow		Heating	Airflow	
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Hours	Hours
Load	(Ton)	(1)		(Btuh)	(1)		(Cfm)	(\$)		(Cfm)	(\$)	
0 – 5	2.9	0	0	-35,506	33	1,435	854.6	0 [°]	. 0	0.0	0	0
5 - 10	5.7	3	295	-71,012	19	825	1,709.2	. 0	0	0.0	0	0
10 - 15	8.6	13	1,182	-106,518	17	737	2,563.8	. 0	0	0.0	0	0
15 - 20	11.4	18	1,578	-142,024	18	772	3,418.4	• 0	0	0.0	0	0
20 - 25	14.3	11	956	-177,529	12	524	4,273.0	· 0	0	0.0	0	0
25 - 30	17.2	11	957	-213,035	2	86	5,127.6	0	0	0.0	0	0
30 - 35	20.0	7	636	-248,541	0	0	5,982.2	0	0	0.0	0	0
35 - 40	22.9	6	520	-284,047	0	0	6,836.8	0	0	0.0	0	0
40 - 45	25.7	3	290	-319,553	0	0	7,691.4	0	0	0.0	0	0
45 - 5 0	28.6	4	341	-355,059	0	0	8,546.0	0	0	0.0	0	C
50 - 5 5	31.5	4	307	-390,565	0	0	9,400.6	0	0	0.0	0	0
55 - 60	34.3	3	237	-426,071	0	0	10,255.2	0	0	0.0	0	0
60 - 65	37.2	3	227	-461,577	0	0	11,109.8	0	0	0.0	0	0
65 - 7 0	40.0	4	330	-497,083	0	0	11,964.4	0	0	0.0	0	0
70 - 75	42.9	3	268	-532,589	0	0	12,819.0	0	0	0.0	0	0
75 - 80	45.8	2	205	-568,094	0	0	13,673.6	0	0	0.0	0	O
80 - 85	48.6	1	105	-603,600	0	0	14,528.2	0	0	0.0	0	0
85 ~ 90	51.5	2	132	-639,106	0	0	15,382.8	0	0	0.0	0	0
90 - 95	54.4	1	105	-674,612	0	0	16,237.4	0	0	0.0	0	0
95 - 100	57.2	1	89	-710,118	0	0	17,092.0	100	8,760	0.0	0	0
Hours Off	0.0	0	0	0	0	4,381	0.0	0	C	0.0	O	8,760

Main System

4 DD

DOUBLE DUCT

Percent	Cool	ing Loa	d	Heatir	ng Load		Cooling	Airflow		Heating	Airflow	
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Eours	Cap.	Hours	Hours
Load	(Ton)	(\$)		(Btuh)	(\$)		(Cfm)	(\$)		(Cfm)	(\$)	
0 5	2.3	0	o	-31,536	19	873	775.4	0	0	0.0	0	o
5 - 10	4.7	4	355	-63,072	24	1,120	1,550.7	0	0	0.0	0	0
10 - 15	7.0	28	2,464	-94,608	13	589	2,326.1	0	0	0.0	O	0
15 - 20	9.4	13	1,138	-126,144	15	704	3,101.4	0	0	0.0	0	0
20 - 25	11.7	12	1,062	-157,679	15	682	3,876.7	0	0	0.0	0	0
25 - 30	14.1	7	640	-189,215	13	593	4,652.1	0	0	0.0	0	0
30 - 35	16.4	5	478	-220,751	1	46	5,427.5	0	C	0.0	0	0
35 - 40	18.7	5	427	-252,287	0	O	6,202.8	0	0	0.0	0	0
40 - 45	21.1	3	280	-283,823	0	0	6,978.2	0	0	0.0	0	0
45 - 50	23.4	2	211	-315,359	0	0	7,753.5	0	0	0.0	o	0
50 - 55	25.8	3	279	-346,895	0	0	8,528.9	0	0	0.0	0	0
55 - 60	28.1	2	198	-378,431	0	0	9,304.2	0	0	0.0	0	0
60 - 65	30.5	2	202	-409,967	0	0	10,079.6	0	0	0.0	0	0
65 - 70	32.8	3	230	-441,502	0	0	10,854.9	0	0	0.0	0	0
70 - 75	35.1	3	240	-473,038	0	0	11,630.3	0	0	0.0	0	0
75 - 80	37.5	1	125	-504,574	0	0	12,405.6	0	0	0.0	0	0
80 - 85	39.8	1	127	-536,110	0	0	13,181.0	0	0	0.0	0	0
85 - 90	42.2	1	110	-567,646	0	0	13,956.3	0	0	0.0	0	0
90 - 95	44.5	1	105	-599,182	0	0	14,731.7	0	0	0.0	0	0
95 - 100	46.9	1	89	-630,718	0	0	15,507.0	100	8,760	0.0	0	0
Hours Off	0.0	o	o	o	0	4,153	0.0	0	0	0.0	0	8,760

362

V 600 Page 2

SYSTEM LOAD PROFILE - ALTERNATIVE 1 BASELINE MODEL

Main System 5 MZ MULTIZONE

Percent	Cool	ing Loa	d	Heatin	ng Load		Cooling	Airflow		Heating	Airflow	
Design	Cap.	-	Hours	Capacity	Hours		Cap.	Hours	Hours	Cap.	Hours	Hours
Load	(Ton)	(\$)		(Btuh)	(1)		(Cfm)	(1)		(Cfm)	(1)	
0 - 5	5.3	0	o	-36,196	10	396	1,992.5	6	0	0.0	0	0
5 - 10	10.5	0	34	-72,392	13	491	3,985.0	. 0	0	0.0	0	0
10 - 15	15.8	28	2,476	-108,588	14	534	5,977.5	0	0	0.0	0	0
10 - 13 15 - 20	21.1	10	904	-144,783	15	558	7,970.0	·	0	0.0	0	0
13 - 20 20 - 25	26.3	9	767	-180,979	14	534	9,962.5	. o	0	0.0	0	0
20 - 23 25 - 30	31.6	11	993	-217,175	12	443	11,955.0	0	0	0.0	0	0
25 - 30 30 - 35	36.8	12	1,052	-253,371		268	13,947.5	0	0	0.0	0	0
	42.1	8	685	-289,567	8	297	15,940.0	0	o	0.0	0	0
35 - 40		6	493	-325,763	6	245	17,932.5	0	0	0.0	0	0
40 - 45	47.4		288	-361,958	2	74	19,925.0	0	o	0.0		0
45 - 50	52.6	3	∡88 405	-398,154	- 0	0	21,917.5	0	o	0.0	0	0
50 - 55	57.9		405 173	-434,350	0	0	23,910.0	0	0	0.0	0	0
55 - 60	63.2	2	1/3	-470,546	0	0	25,902.5	0	0	0.0	0	0
60 - 65	68.4	2		-506,742	0	0	27,895.0	0	o	0.0	0	0
65 - 70	73.7	1	130	-	0	0	29,887.5	0	0	0.0	0	0
70 - 75	79.0	2	173	-542,938	0	0	31,880.0	0	o	0.0	0	0
75 - 80	84.2	0	0	-579,134	0	0	33,872.5	0	0	0.0	0	0
80 - 8 5	89.5	0	0	-615,329	-	0	35,865.0	0	0	0.0	C	O
85 - 90	94.8	0	0	-651,525	0	-	37,857.5	ů o	0	0.0	o	0
90 - 95	100.0	0	0	-687,721	0	0	•	100	8,760	0.0	0	0
95 - 1 00	105.3	0	0	-723,917	0	0	39,850.0	0	0	0.0	0	8,760
Hours Off	0.0	0	O	0	0	4,920	0.0	U	0	••••		-

Main System

MULTIZONE

6 MZ

Percent	Cool	ing Loa	.d	Heatin	ng Load		Cooling	Airflow		Heating		
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.		Hours
Load	(Ton)	(\$)		(Btuh)	(\$)		(Cf≖)	(\$)		(Cfm)	(\$)	_
0 - 5	2.7	29	2,008	-24,664	15	784	451.3	0	0	0.0	0	0
5 - 10	5.4	21	1,421	-49,328	11	561	902.€	0	0	0.0	0	0
10 - 15	8.0	9	638	-73,993	11	550	1,353.9	0	0	0.0	0	0
15 - 20	10.7	6	443	-98,657	15	775	1,805.2	0	0	0.0	0	0
20 - 25	13.4	8	523	-123,321	15	784	2,256.5	0	0	0.0	0	0
25 - 30	16.1	5	326	-147,985	18	957	2,707.8	0	0	0.0	0	0
30 - 35	18.8	6	411	-172,650	15	772	3,159.1	0	0	0.0	0	0
35 - 40	21.5	5	308	-197,314	0	0	3,610.4	0	0	0.0	0	0
40 - 45	24.1	3	212	-221,978	0	0	4,061.7	0	0	0.0	0	0
45 - 50	26.8	2	138	-246,642	0	0	4,513.0	0	0	0.0	0	0
50 - 55	29.5	1	96	-271,307	0	0	4,964.3	0	0	0.0	0	0
55 - 60	32.2	2	109	-295,971	0	0	5,415.6	0	0	0.0	0	0
60 - 65	34.9	- 1	85	-320,635	0	0	5,866.9	0	0	0.0	٥	0
65 - 70	37.6	1	86	-345,299	0	0	6,318.2	0	0	0.0	0	0
70 - 75	40.2	-	23	-369,964	0	0	6,769.5	0	0	0.0	0	0
75 - 80	42.9	0		-394,628	0	o	7,220.8	0	0	0.0	0	0
80 - 85	45.6	0	0	-419,292	0	0	7,672.1	0	0	0.0	0	0
85 - 90	48.3	0	0	-443,956	0	0	8,123.4	0	0	0.0	0	0
90 - 95	51.0	0	0	-468,621	G	0	8,574.7	0	0	0.0	٥	0
9 5 - 100	53.7	0	0	-493,285	0	0	9,026.0	100	8,760	0.0	0	0
Bours Off		0		-4357205	0	3,577	0.0	0	o	0.0	0	8,760
HOULD VII	0.0	U	1,733	Ű	-							

SYSTEM LOAD PROFILE - ALTERNATIVE 1 BASELINE MODEL

NULTIZONE Main System 7 MZ

Percent	Cool	ing Loa	ud	Heatin	ng Load		Cooling	Airflow		Heating	Airflow	
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Ecurs	Hours
Load	(Ton)	(1)		(Btuh)	(%)		(Cfm)	(\$)		(Cfm)	(\$)	
0 – 5	7.4	0	0	-47,951	11	397	2,041.7	ò	0	0.0	0	0
5 - 10	14.9	20	1,785	-95,903	14	488	4,083.3	· 0	0	0.0	0	0
10 - 15	22.3	13	1,181	-143,854	15	537	6,125.0	0	0	0.0	0	0
15 - 20	29.7	14	1,234	-191,806	16	551	8,166.6	÷. 0	0	0.0	0	0
20 - 25	37.2	5	447	-239,757	14	478	10,208.2	· 0	0	0.0	0	0
25 - 30	44.6	8	738	-287,709	8	273	12,249.9	0	0	0.0	0	0
30 - 35	52.0	7	614	-335,660	8	275	14,291.6	0	0	0.0	0	0
35 - 40	59.5	6	512	-383,612	7	259	16,333.2	0	0	0.0	٥	0
40 - 45	66.9	5	458	-431,563	6	217	18,374.9	0	0	0.0	•	0
45 - 50	74.3	5	465	-479,515	0	9	20,416.5	0	0	0.0	0	0
50 - 55	81.8	5	397	-527,466	0	0	22,458.2	0	0	0.0	0	0
55 - 60	89.2	3	269	-575,418	0	0	24,499.8	0	0	0.0	0	0
60 - 65	96.7	3	229	-623,370	0	0	26,541.5	0	0	0.0	0	0
65 - 70	104.1	1	128	-671,321	0	0	28,583.1	0	0	0.0	o	0
70 - 75	111.5	1	107	-719,273	0	0	30,624.8	0	0	0.0	G	O
75 - 80	119.0	. 1	127	-767,224	0	0	32,666.4	0	0	0.0	o	0
80 - 8 5	126.4	1	69	-815,175	0	0	34,708.1	0	0	0.0	0	0
85 - 90	133.8	0	0	-863,127	0	0	36,749.7	0	0	0.0	0	0
90 - 95	141.3	0	0	-911,079	0	0	38,791.4	0	0	0.0	0	0
95 - 1 00	148.7	0	0	-959,030	0	O	40,833.0	100	8,760	0.0	0	0
Hours Off	0.0	0	0	0	0	5,276	0.0	0	0	0.0	0	8,760

Main System

8 MZ

MULTIZONE

Percent	Cool	ing Loa	d	Heatin	ig Load	<u></u>	Cooling	Airflow		Heating	Airflow	
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Ecurs	Hours
Load	(Ton)	(\$)		(Btuh)	(1)	2 4	(Cfm)	(\$)		(Cfm)	(\$)	
0 - 5	2.8	o	0	-20,827	11	448	1,028.1	0	0	0.0	0	0
5 - 10	5.6	2	186	-41,655	12	462	2,056.2	0	0	0.0	0	0
10 - 15	8.4	31	2,745	-62,482	15	613	3,084.3	0	0	0.0	0	0
15 - 20	11.2	6	556	-83,310	14	573	4,112.4	0	0	0.0	0	0
20 - 25	14.0	11	977	-104,137	12	472	5,140.5	O	0	0.0	O	0
25 - 30	16.8	11	933	-124,964	13	506	6,168.6	0	0	0.0	0	0
30 - 35	19.6	7	606	-145,792	6	236	7,196.7	0	0	0.0	0	0
35 - 40	22.4	7	618	-166,619	8	327	8,224.8	0	0	0.0	0	٥
40 - 45	25.2	4	382	-187,447	6	. 252	9,252.9	0	0	0.0	0	0
45 - 50	28.0	4	382	-208,274	2	74	10,281.0	0	0	0.0	0	0
50 - 55	30.8	4	381	-229,102	0	0	11,309.1	0	0	0.0	0	0
55 - 60	33.6	4	330	-249,929	0	0	12,337.2	0	0	0.0	0	0
60 - 65	36.4	2	193	-270,756	0	0	13,365.3	0	0	0.0	0	0
65 - 70	39.2	2	146	-291,584	0	0	14,393.4	0	0	0.0	0	0
70 - 75	42.0	1	65	-312,411	0	0	15,421.5	0	0	0.0	0	0
75 ~ 80	44.7	2	151	-333,239	0	0	16,449.6	0	0	0.0	0	0
80 - 85	47.5	1	109	-354,066	0	0	17,477.7	0	0	0.0	0	0
85 - 90	50.3	0	0	-374,893	0	0	18,505.8	0	0	0.0	٥	0
90 - 9 5	53.1	0	0	-395,721	0	0	19,533.9	0	0	0.0	0	0
95 - 1 00	55.9	o	0	-416,548	0	0	20,562.0	100	8,760	0.0	0	0
Hours Off	0.0	0	0	0	0	4,797	0.0	0	0	0.0	0	8,760

v 600 PAGE

SYSTEM TOTALS LOAD PROFILE - ALTERMATIVE 1 BASELINE MODEL

•

System Totals

Percent	Cool	ing Loa	d	Heatin	ng Load		Cooling	Airflow		Heating	Airflow	
Design	Cap.	Hours	Hours	Capacity	Hours	Hours	Cap.	Hours	Hours	Cap.	Hours	Hours
Load	(Ton)	(\$)		(Btuh)	(\$)		(Cf=)	(1)		(Cfm)	(\$)	
							-	÷				
0 - 5	32.8	0	0	-297,911	52	4,065	8,173.0	· 0	0	0.0	0	0
5 - 10	65.6	26	2,272	-595,821	11	868	16,346.1	0	0	0.0	0	0
10 - 15	98.4	15	1,315	-893,732	10	756	24,519.2	0	0	0.0	0	0
15 - 20	131.2	11	1,005	-1,191,643	8	658	32,692.2	O	0	0.0	0	0
20 - 25	164.0	7	575	-1,489,553	7	585	40,865.2	0	0	0.0	0	O
25 - 30	196.8	8	714	-1,787,464	5	374	49,038.3	0	0	0.0	_ 0	0
30 - 35	229.6	6	517	-2,085,375	4	296	57,211.4	0	0	0.0	0	0
35 - 40	262.4	4	376	-2,383,286	3	252	65,384.4	0	0	0.0	Q	0
40 - 45	295.2	5	438	-2,681,197	0	21	73,557.5	0	0	0.0	0	0
45 - 50	328.0	4	326	-2,979,107	0	0	81,730.5	0	0	0.0	0	0
50 - 55	360.8	4	308	-3,277,018	0	0	89,903.6	0	0	0.0	C	0
55 - 60	393.6	3	292	-3,574,929	0	0	98,076.6	0	0	0.0	0	0
60 - 65	426.4	2	211	-3,872,840	0	0	106,249.7	0	0	0.0	0	0
65 - 70	459.2	1	108	-4,170,751	0	0	114,422.7	0	0	0.0	0	O
70 - 75	492.0	1	109	-4,468,662	0	0	122,595.8	0	0	0.0	0	0
75 - 80	524.8	2	148	-4,766,571	0	0	130,768.8	0	0	0.0	G	0
80 - 85	557.6	1	46	-5,064,482	0	0	138,941.9	0	0	0.0	0	0
85 - 90	590.4	0	0	-5,362,394	0	0	147,114.9	0	0	0.0	٥	0
90 - 95	623.2	0	0	-5,660,305	0	0	155,288.0	0	0	0.0	0	0
95 - 100	656.0	0	0	-5,958,215	0	٥	163,461.0	100	8,760	0.0	0	0
Hours Off	0.0	0	0	0	0	885	0.0	0	0	0.0	0	8,760

V 600 PAGE 5

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE MODEL

Januai	cy.		Desi	gn	Weekd	ay	Satu	rday	Sund	ay	Mond	ay
Hour	OADB	OAWB	Htg Btub	Clg Ton	Btg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton
1	42.6	39.9	-1,429,445	50.6	-1,976,341	47.3	-1,981,861	47.4	-2,011,151	47.4	-1,978,873	47.4
2	41.4	38.7	-1,795,620	48.5	-2,146,285	46.4	-2,133,486	46.5	-2,133,419	46.5	-2,153,592	46.5
3	40.7	38.1	-1,575,065	47.3	-2,147,770	45.3	-2,156,432	45.4	-2,130,530	45.4	-2,123,153	45.4
4	40.4	37.8	-1,882,677	46.1	-2,213,713	44.1	-2,202,781	44.2	-2,230,458	44.2	-2,245,730	44.2
5	40.8	38.1	-1,660,262	44.7	-2,176,526	42.8	-2,184,812	42.9	-2,169,349	42.8	-2,157,982	42.8
6	41.8	39.1	-1,862,672	44.5	-2,141,921	43.0	-2,152,871	41.8	-2,160,926	41.8	-2,141,944	43.0
7	43.4	40.7	-1,324,200	59.0	-1,697,081	55.9	-2,023,023	40.6	-2,012,229	40.6	-1,702,463	55.9
8	45.4	42.8	-1,098,025	83.2	-1,339,991	77.1	-1,858,296	40.7	-1,871,155	40.7	-1,338,981	77.1
9	47.7	44.9	-863,272	87.1	-1,019,007	79.7	-1,339,608	56.6	-1,453,681	52.6	-1,010,047	79.6
10	50.2	46.6	-643,544	90.7	-1,108,813	82.7	-1,227,317	57.0	-1,322,712	52.7	-1,108,813	82.7
11	52.5	47.9	-511,804	98.6	-660,508	87.0	-1,085,423	58.2	-1,030,194	53.7	-671,611	86.9
12	54.5	49.3	-313,768	108.2	-761,749	91.6	-871,123	60.4	-964,468	55.6	-752,074	91.6
13	56.1	50.5	-230,781	117.5	-446,388	97.7	-752,032	64.9	-764,567	59.6	-446,388	97.7
14	57.1	51.1	-138,691	127.7	-530,652	103.7	-785,571	46.4	-814,895	46.2	-530,652	103.1
15	57.5	50.8	-117,358	135.8	-469,520	107.6	-817,667	49.4	-788,690	49.3	-479,918	107.6
16	57.2	50.4	-130,609	136.9	-591,703	109.2	-845,332	51.7	-878,450	51.7	-580,273	109.2
17	56.5	49.9	-300,113	131.4	-500,704	106.8	-902,457	52.1	-843,875	52.1	-510,195	106.8
18	55.3	49.7	-371,579	122.0	-764,735	102.1	-1,093,856	50.6	-1,098,878	50.6	-752,051	102.1
19	53.8	49.3	-716,354	90.3	-1,027,900	71.2	-1,129,154	49.7	-1,153,087	49.7	-1,042,312	71.2
20	52.0	48.2	-975,013	62.1	-1,293,410	51.4	-1,348,311	50.1	-1,345,607	50.1	-1,278,956	51.4
21	50.0	46.6	-1,119,588	58.2	-1,435,830	51.3	-1,414,016	50.2	-1,419,191	50.2	-1,450,050	51.3
22	47.9	44.8	-1,284,863	55.4	-1,605,938	49.9	-1,646,187	50.1	-1,638,922	50.1	-1,592,112	49.9
23	45.9	43.0	-1,358,481	53.5	-1,755,193	49.6	-1,720,964	49.8	-1,715,631	49.8	-1,768,577	49.6
24	44.1	41.2	-1,557,509	50.8	-1,926,527	48.2	-1,868,064	49.2	-1,895,886	49.3	-1,913,351	48.2
Februa	iry		Desi	.gn	Weekd	ay	Satu	rday	Sund	lay	Hond	-
Hour	OADB	OAWB	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	
1	45.0	41.6	-1,640,022	51.9	-1,742,617	46.8	-1,864,379	47.0	-1,775,736	47.0	-1,869,275	46.9
2	43.3	40.3	-1,762,636	50.2	-2,098,749	46.3	-1,994,058	46.4	-2,065,266	46.4	-1,996,087	46.4
3	41.8	39.1	-1,804,280	48.4	-1,974,738	46.0	-2,070,580	46.1	-2,003,840	- 46.1	-2,072,622	46.1
4	40.5	38.0	-1,842,258	47.2	-2,303,886	45.1	-2,192,654	45.2	-2,270,748	45.2	-2,194,733	45.1
5	39.6	37.1	-1,898,307	45.9	-2,122,335	44.0	-2,246,653	44.1	-2,151,763	44.1	-2,248,794	44.1
6	39.0	36.8	-1,855,353	45.7	-2,395,731	44.1	-2,300,931	43.0	-2,387,178	43.0	-2,267,415	44.2
7	38.8	36.6	-1,513,445	59.1	-1,898,127	55.7	-2,305,876	42.4	-2,235,280	42.4	-2,017,981	55.7
8	39.4	37.2	-1,110,659	83.1	-1,554,302	74.0	-2,147,933	43.3	-2,202,949	43.3	-1,485,549	74.0
9	40.9	38.1	-927,999	86.5	-1,522,581	76.0	-1,803,387	57.0	-1,930,553	53.6	-1,493,293	76.0
10	43.3	39.3	-713,117	89.8	-1,358,988	78.6	-1,650,019	58.2	-1,686,618	54.5	-1,358,845	78.6
11	46.2	40.8	-559,388	97.1	-1,021,492	81.9	-1,424,697	59.7	-1,433,451	55.6	-1,117,882	81.9
											001 046	02 0

-1,358,209

-1,067,300

-891,964

-766,930

-958,524

-761,728

-984,861

-1,192,027

-1,299,777

-1,196,812

-1,550,266

-1,446,465

-1,809,154

62.2

63.9

46.0

49.0

51.2

52.1

50.0

50.1

48.6

48.7

48.8

48.7

48.5

-1,335,490

-1,091,926

-964,602

-868,030

-807,691

-949,923

-1,020,674

-1,107,888

-1,194,007

-1,303,925

-1,443,457

-1,553,419

-1,703,500

12

13

14

15

16

17

18

19

20

21

22

23

24

49.3 42.7

52.2 44.9

54.5 46.8

56.1 47.8

56.6 48.0

56.4 47.7

55.9 47.7

54.9 48.6

53.7 48.5

52.2 47.8

50.5 46.7

48.7 44.9

46.8 43.3

-340,231

-266,875

-167,736

-138,805

-154,768

-244,361

-393,191

-636,028

-1,140,169

-1,069,688

-1,489,186

-1,339,654

-1,734,560

107.9

118.1

128.3

136.6

139.6

135.1

124.9

93.9

68.6

61.9

58.7

56.5

53.2

366

86.8

91.3

96.4

102.4

105.7

105.4

101.4

71.7

49.9

49.8

48.5

48.5

47.2

-991,946

-746,812

-646,502

-482,612

-536,091

-575,240

-713,084

-996,663

-1,159,962

-1,303,052

-1,430,684

-1,582,404

-1,736,011

V 600

86.8

91.3

96.4

102.4

105.7

105.4

101.4

71.7

49.9

49.8

48.5

48.5

47.2

-991,946

-692,062

-646,502

-482,612

-592,642

-496,235

-787,752

-907,370

-1,251,774

-1,211,415

-1,520,285

-1,494,278

-1,822,838

57.7

59.2

45.9

48.9

51.2

52.1

50.0

50.1

48.6

48.7

48.8

48.7

48.5

March

2. ..

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE MODEL

	March			Desi	gn	Weekd	ay	Satu	rday	Suna	ay	Aonda	ay
	Hour	OADB	OAWB	Etg Btuh	Clg Ton	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btuh	Clg Ton
	1	55.3	52.2	-760,624	60.0	-1,093,472	52.5	-1,058,574	54.7	-1,071,687	54.5	-1,060,037	54.4
	2	53.5	50.4	-1,053,787	56.7	-1,187,324	49.7	-1,227,480	50.5	-1,214,438	50.5	-1,229,125	50.4
	3	52.0	49.2	-903,076	54.3	-1,361,270	49.6	-1,313,882	50.1	-1,326,767	50.1	-1,315,553	50.0
	4	50.7	48.0	-1,171,311	51.8	-1,401,637	49.1	-1,448,976	49.5	-1,436,135	49.5	-1,450,752	49.4
	5		46.9	-980,608	50.1	-1,537,838	48.2	-1,484,383	48.4	-1,497,123	48.4	-1,486,108	48.4
	6		46.4	-1,145,699	49.2	-1,516,176	48.7	-1,586,139	47.3	-1,573,963	47.3	-1,567,704	48.7
	7	49.0	46.4	-682,375	69.8	-1,307,886	64.8	-1,535,962	46.8	-1,546,728	46.8	-1,260,690	64.8
	8	49.8	46.7	-546,033	104.2	-813,273	89.7	-1,371,981	47.8	-1,371,981	47.8	-827,460	89.8
	9	52.0	47.8	-265,094	112.6	-933,968	93.2	-959,735	65.2	-1,132,964	60.7	-952,829	93.3
	10	55.3	49.6	-136,422	124.0	-517,925	98.7	-948,740	66.8	-787,376	61.7	-517,925	98.7
	11	59.2	52.1	-43,140	147.0	-455,192	107.7	-481,421	71.4	-670,547	65.1	-446,453	108.3
	12	63.1	54.5	-7,526	171.6	-143,608	118.2	-318,776	75.0	-266,848	67.6	-143,608	118.5
	13	66.4	56.9	-2,585	193.1	-116,607	137.5	-150,217	88.2	-187,535	77.4	-116,607	137.5
	14	68.6	58.5	-3,426	208.7	-28,799	155.4	-55,699	69.2	-47,332	68.1	-37,166	155.5
	15	69.4	58.7	-3,084	218.6	-20,458	165.1	-26,509	76.7	-26,509	75.9	-20,458	165.1
	16	69.2	58.6	-4,391	220.2	-112,348	166.3	-112,864	78.4	-122,849	78.0	-102,362	166.3
					212.7	-113,968	162.2	-142,886	77.7	-132,687	77.5	-124,166	162.2
	17		58.8	-5,175	193.6	-134,503	161.3	-156,071	76.9	-167,412	76.6	-123,162	161.3
	18	67.7		-7,069		-197,626	114.0	-269,868	72.3	-256,279	72.1	-211,215	114.0
	19		59.0	-104,855	137.5 97.8	-359,952	79.4	-304,443	74.0	-318,793	73.9	-345,602	79.4
	20	64.9	59.3	-233,248		-429,944	69.5	-494,986	67.3	-480,735	67.3	-444,195	69.5
	21		58.5	-384,107	86.7		64.8	-597,493	65.3	-611,457	65.3	-625,418	64.8
)	22		57.2	-513,050	76.7	-639,382	64.1	-772,268	64.7	-758,535	64.7	-768,023	64.1
	23		55.4	-664,117	71.6	-754,290	57.0	-907,201	59.2	-920,572	59.2	-934,269	57.0
	24	57.2	23.9	-758,692	64.8	-947,640	27.0	-,01/202		,			
	April			Desi		Weekd	27	Satu	rdav	Sund	ay	Monda	ay
	Hour	OADB	OAWB	Etg Btuh	-	Etg Btuh	-	Htg Btuh	-	Htg Btuh		Htg Btuh	Clg Ton
	1	63.1	60.6	-168,426	87.2	-476,514	82.3	-586,483	81.4	-538,280	81.4	-587,215	81.2
	2	62.0	59.6	-218,879	81.4	-545,654	75.3	-464,136	73.9	-512,403	73.8	-465,159	73.7
	3	61.1	58.8	-222,128	76.6	-665,815	70.6	-728,196	69.7	-679,417	69.7	-729,342	69.5
	4		58.3	-274,325	71.6	-661,433	66.8	-606,839	67.4	-655,271	67.4	-608,077	67.3
	5	60.4	58.4	-247,713	71.4	-677,789	67.6	-771,748	65.0	-725,917	65.0	-727,430	67.8
	6	60.9	58.7	-229,818	102.9	-497,916	95.1	-585,355	62.1	-627,783	62.1	-443,719	95.2
	7		60.1	-37,803	160.6	-372,924	153.2	-497,810	70.7	-522,116	70.7	-348,618	152.7
	8	64.6		-133,007	186.2	-109,986	166.0	-219,188	108.0	-186,645	98.4	-171,371	165.8
	9	67.3		-1,152	205.4	-47,846	179.5	-124,600	119.0	-124,793	106.2	-72,856	179.5
	10	70.3		0	213.1	-98,731	214.3	-100,353	149.6	-100,809	134.0	-98,731	214.3
	11	73.0		0	244.5	-25,675	238.7	. 0	175.9	-25,675	159.5	0	238.7
	12	75.2		0	266.1	0	255.6	C	194.6	0	178.3	0	255.6
	13	76.7		0	283.6	0	268.5	0	165.3	0	163.4	0	268.5
	14	77.2		0	298.9	0	277.3	0	175.2	0	174.6	0	277.3
	15	77.0		0	307.9	0	278.7	0	177.6	0	177.4	0	278.7
	16	76.5		0	307.0	0	274.0	0	176.8	0	176.7	O	274.0
		75.6			299.6	-158,996	252.9	-126,897	161.8	-157,072	161.8	-126,897	252.9
	17	73.6	•	0	299.6	-32,510	207.2	-77,287	160.3	-32,510	160.3	-77,287	207.2
	18						160.5	-141,599	149.1	-182,770	149.1	-141,599	160.5
	19	73.0		0	197.1	-182,770	150.4	-80,199	142.5	-33,714	142.5	-80,199	150.4
		/1.4	66.3	0	184.1	-33,714							128.9
	20	co -	18 1	100 007	150 0	241 024	120 0	-102 604	129.7	-241.834	129.7	-192,696	
	21	69.7		-123,097	156.0	-241,834 -107 872	128.9 110.6	-192,696	129.7 112.6	-241,834 -107,184	129.7 112.6	-192,696 -157,778	110.6
	21 22	67.9	64.6	-91,001	135.9	-107,872	110.6	-157,090	112.6	-107,184	112.6		
	21 22 23	67.9 66.2	64.6 63.4	-91,001 -174,656	135.9 117.8	-107,872 -391,665	110.6 97.6	-157,090 -334,207	112.6 103.0	-107,184 -383,135	112.6 103.0	-157,778	110.6
	21 22	67.9	64.6 63.4	-91,001	135.9	-107,872	110.6	-157,090	112.6	-107,184	112.6	-157,778 -342,737	110.6 97.6

----- Design ----- Weekday ----- ----- Saturday---- Sunday ----- Sunday -----

367

PAGE 7

.

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE MODEL

			Deed		Weekd	av	Satu	rday	Sund	ay	Monda	y
May			Desi	-	Etg Btuh	-	Htg Btuh		Htg Btuh	Clg Ton	Htg Btch	Clg Ton
Hou		OAWB	Htg Btuh	-	-159,586	114.1	-279,642	112.5	-279,512	111.9	-279,931	111.7
	1 67.4	66.0	-180,838	152.9	-372,220	104.1	-237,310	99.3	-237,277	99.6	-237,735	59.4
	2 66.4	64.6	-155,307	146.0	-225,200	97.3	-369,259	94.1	-369,259	94.2	-370,047	54.0
	3 65.6	63.5	-42,451	125.8	-	95.3	-295,726	92.3	-295,726	92.3	-299,659	92.2
	4 65.0		-221,696	116.1	-450,305		-421,086	89.7	•	89.7	-408,982	93.3
	5 64.8		-43,135	115.5	-258,639	96.6		90.0	-225,718	90.0	-160,134	136.0
	6 65.2		-197,028	167.3	-291,985	136.8	-225,718	101,2	-248,098	101.2	-181,930	205.4
	7 66.2	62.4	0	242.5	-167,555	204.6	-248,098		-70,870	131.6	-27,670	206.3
	8 68.0	62.5	-118,619	248.5	-19,204	206.1	-63,735	145.4		148.7	-29,645	228.4
	9 70.6	63.4	0	268.0	-29,645	228.4	-30,630	164.7	-30,906 -87,747	175.6	-87,747	253.9
1	0 73.7	64.2	0	293.5	-87,747	254.0	-87,747	192.0	-	205.0	0	282.2
1	1 77.1	65.5	-88,672	323.1	0	282.3	0	221.6	0		0	323.1
1	2 80.3	67.0	0	354.2	0	323.1	0	261.3	0	243.9	-85,988	346.9
1	3 82.8	68.7	0	397.7	-85,988	346.9	-85,988	241.2	-85,988	239.3	-03,988	364.8
1	4 84.4	69.4	-93,975	420.5	0	364.9	0	261.1	0	260.6		373.4
1	5 85.0	69.4	0	432.1	-88,192	373.5	-88,192	270.9	-88,192	270.8	-88,192 0	380.0
1	6 84.4	69.7	-107,389	428.8	0	380.0	0	278.9	0	278.9		
1	7 83.0	70.0	-79,036	416.5	-126,270	364.7	-126,270	267.9	-126,270	267.9	-126,270	364.6
1	8 80.7	70.5	-87,259	351.3	-29,318	300.5	-29,318	253.5	-29,318	253.5	-29,318	300.5
1	9 78.1	71.0	-95,676	291.9	-218,002	235.3	-228,670	222.8	-228,670	222.8	-228,670	235.3
2	0 75.5	71.9	-101,030	272.0	-106,824	213.1	-106,824	203.8	-106,824	203.8	-106,824	213.1
2	1 73.3	71.8	-99,040	247.4	-85,994	192.8	-85,994	190.4	-85,994	190.4	-85,994	192.8
2	2 71.2	70.4	-192,060	212.5	-166,528	162.0	-166,528	160.3	-166,528	160.3	-166,528	162.0
	3 69.6		-88,543	188.7	-106,117	133.7	-106,117	137.2	-106,117	137.2	-106,117	133.7
2		67.5	-198,198	175.2	-217,687	124.8	-218,202	122.9	-218,202	122.9	-217,687	124.8
Jur	e		Desi	ign	Weeka	lay	Satu	irday	Sund	lay	Mond	-
Jur Hou		OAWB	Desi Etg Btuh		Weeko Etg Btuh			Clg Ton		lay Clg Ton	Etg Btuh	Clg Ton
Hou								-		Clg Ton 184.1	Htg Btuh -168,426	Clg Ton 183.7
Hou	Ir OADB	70.5	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh -168,426 -32,484	Clg Ton 183.7 169.3
Hou	1 73.1	70.5 69.6	Htg Btuh -194,572	Clg Ton 227.6	Htg Btuh -79,047	Clg Ton 184.3	Htg Btuh -168,426	Clg Ton 187.0 171.7	Htg Btuh -79,047	Clg Ton 184.1 169.6 159.8	Htg Btuh -168,426 -32,484 -232,245	Clg Ton 183.7 169.3 158.6
Hou	er OADE 1 73.1 2 72.2	70.5 69.6 68.6	Htg Btuh -194,572 -128,790	Clg Ton 227.6 219.3	Htg Btuh -79,047 -123,389	Clg Ton 184.3 173.7	Htg Btuh -168,426 -32,484	Clg Ton 187.0 171.7 162.3	Htg Btuh -79,047 -123,390	Clg Ton 184.1 169.6	Etg Btuh -168,426 -32,484 -232,245 -36,003	Clg Ton 183.7 169.3 158.6 145.4
Hou	er OADB 1 73.1 2 72.2 3 71.5	70.5 69.6 68.6 68.2	Htg Btuh -194,572 -128,790 -181,120	Clg Ton 227.6 219.3 207.6	Htg Btuh -79,047 -123,389 -140,272	Clg Ton 184.3 173.7 163.3	Htg Btuh -168,426 -32,484 -232,245	Clg Ton 187.0 171.7 162.3 147.0	Htg Btuh -79,047 -123,390 -140,272	Clg Ton 184.1 169.6 159.8	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270	Clg Ton 183.7 169.3 158.6 145.4 144.5
Hou	er OADB 1 73.1 2 72.2 3 71.5 4 71.0	70.5 69.6 68.6 68.2 68.0	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428	Clg Ton 227.6 219.3 207.6 199.4	Htg Btuh -79,047 -123,389 -140,272 -129,941	Clg Ton 184.3 173.7 163.3 148.7 147.0	Htg Btuh -168,426 -32,484 -232,245 -36,003	Clg Ton 187.0 171.7 162.3 147.0 141.0	Htg Btuh -79,047 -123,390 -140,272 -129,941	Clg Ton 184.1 169.6 159.8 144.6	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5
Hou	er OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8	70.5 69.6 68.6 68.2 68.0 68.1	Htg Btuh -194,572 -128,790 -181,120 -125,692	Clg Ton 227.6 219.3 207.6 199.4 199.4	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940	Clg Ton 184.3 173.7 163.3 148.7 147.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014	Clg Ton 184.1 169.6 159.8 144.6 139.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9
Hou	or oade 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0	70.5 69.6 68.6 68.2 68.0 68.1 68.6	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5
Hou	OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7	70.5 69.6 68.6 68.2 68.0 68.1 68.1 68.6 69.1	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5
Hou	OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6
Hou :	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3
Hor :	I OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3
Hot : :	Image: Constraint of the second se	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0
Hot : : :	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -79,598	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2	70.5 69.6 68.6 68.2 68.0 68.1 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 2 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -79,598 0 0	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 331.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1
Hoo : : : :	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1
Hox : : : : :	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 76.2 2 75.2	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.5	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 2 75.2	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0
	I OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.5 18 84.5	70.5 69.6 68.6 68.2 68.0 68.1 68.6 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.2 75.2 74.7 8 74.7	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0
	I OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.5 18 84.9 19 82.6	70.5 69.6 68.6 68.2 68.0 68.1 68.6 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 75.2 75.2 74.3 5 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 387.3 333.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7
	I OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.5 18 84.5 19 82.0 20 80.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 75.7 75.2 74.7 9 74.3 5 74.4 8 74.8	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -188,157	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.9 19 82.4 20 80.2 21 78.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.7 75.2 75.2 75.2 74.4 3 74.4 3 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 88.2 17 86.5 18 84.9 19 82.6 20 80.1 21 78.2 22 76.3	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.2 75.2 75.2 74.4 3 74.4 3 74.4 3 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960 -137,536	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7 296.4	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2 247.3	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5 245.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5 2	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9 247.0
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 84.5 17 86.5 18 84.5 19 82.0 20 80.2 21 78.2 22 76.5 23 75.5	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.7 75.7 75.7 75.7 75.7 74.6 75.7 75.7 74.6 75.7 75.7 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.4 74.5 74.4 74.5 74.4 74.4 74.4 74.4 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960 -137,536 -108,376	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7 296.4 273.1	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698 -167,998	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2 247.3 226.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703 -83,710	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5 245.5 230.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698 -167,998	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5 245.5 230.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703 -83,710	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9 247.0 226.3
	Ir OADE 1 73.1 2 72.2 3 71.5 4 71.0 5 70.8 6 71.1 7 72.0 8 73.7 9 76.0 10 78.7 11 81.7 12 84.6 13 86.7 14 88.2 15 88.7 16 84.5 17 86.5 18 84.5 19 82.0 20 80.2 21 78.2 22 76.5 23 75.5	70.5 69.6 68.6 68.2 68.0 68.1 68.6 69.1 70.7 72.9 74.6 75.3 75.7 75.7 75.7 75.2 75.2 75.2 74.4 3 74.4 3 74.4 3 74.4	Htg Btuh -194,572 -128,790 -181,120 -125,692 -174,428 -117,672 0 -129,113 0 -100,527 0 -89,060 0 -85,853 0 -115,375 -87,287 -99,266 -109,051 -116,793 -115,960 -137,536 -108,376	Clg Ton 227.6 219.3 207.6 199.4 199.4 249.2 321.1 336.5 343.7 383.2 414.1 444.3 487.7 508.8 537.7 535.5 506.7 439.8 378.3 345.7 319.7 296.4 273.1	Htg Btuh -79,047 -123,389 -140,272 -129,941 -143,940 -108,441 -113,105 0 -79,598 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698	Clg Ton 184.3 173.7 163.3 148.7 147.0 202.1 294.4 293.8 319.9 348.0 371.7 401.7 450.3 485.2 505.4 481.9 466.3 387.3 333.0 300.0 270.2 247.3 226.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,345 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703	Clg Ton 187.0 171.7 162.3 147.0 141.0 141.4 170.6 231.1 253.2 281.7 307.5 338.4 334.7 371.5 392.0 375.7 363.0 338.7 318.9 290.4 266.5 245.5 230.5	Htg Btuh -79,047 -123,390 -140,272 -129,941 -144,014 -108,441 -113,105 0 -79,598 0 -106,782 0 -106,782 0 -126,095 -84,623 -115,558 -91,532 -119,953 -188,147 -117,698 -167,998	Clg Ton 184.1 169.6 159.8 144.6 139.1 142.1 170.9 214.5 235.5 263.5 289.3 320.1 333.1 371.2 391.9 375.7 363.1 338.7 318.9 290.3 266.5 245.5 230.5	Htg Btuh -168,426 -32,484 -232,245 -36,003 -236,270 -31,651 -113,105 0 -79,598 0 0 -106,782 0 -92,234 0 -126,095 -84,623 -115,558 -91,532 -188,157 -92,314 -199,703 -83,710	Clg Ton 183.7 169.3 158.6 145.4 144.5 201.5 294.9 293.5 319.5 347.6 371.3 401.3 450.0 484.9 505.1 481.6 466.0 387.0 332.7 299.7 269.9 247.0 226.3

V 600

BUILDING COOL-HEAT DEMAND - ALTERHATIVE 1 BASELINE MODEL

											· ·	
July			Desi	gn	Weekd	ay	Satur		Sunda		Monda Etg Btuh	
Hour	OADB	OAWB	Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Etg Btuh		Htg Btuh			207.0
1	74.0	72.9	-106,743	254.9	-156,345	206.7	-82,076	209.7	-82,076	207.4	-82,076	188.6
2	73.2	71.6	-215,081	238.8	-123,985	192.6	-203,113	191.0	-203,113	189.0	-203,113	179.1
3	72.6	70.7	-102,407	229.2	-157,550	183.7	-77,740	181.8	-77,740	179.5	-77,740	
4	72.1	70.0	-216,581	221.5	-46,108	165.8	-126,911	167.0	-126,911	164.6	-126,911	162.9
5	72.0	69.6	-96,962	222.0	-217,377	167.8	-138,588	157.9	-138,588	157.2	-138,588	165.4
6	72.3		-195,340	269.6	-42,424	223.1	-113,579	161.8	-113,579	162.4	-113,579	222.6
7	73.1		-81,014	344.4	-117,703	320.3	-117,703	192.1	-117,703	192.3	-117,703	320.9
8		70.0	0	357.7	0	321.3	0	256.5	0	238.7	0	321.0
9		70.7	-122,890	378.6	-87,643	339.3	-87,643	270.8	-87,643 .	252.5	-87,643	339.0
10	78.8	71.5	0	401.4	0	360.8	0	293.6	0	275.0	0	360.5
11		73.0	-95,103	428.0	0	400.6	0	332.9	· 0	313.8	0	400.3
11	83.9	74.3	0	473.6	-106,814	442.4	-106,814	374.9	-106,814	355.3	-106,814	442.1
13		76.1	-87,552	516.2	0	481.7	o	359.7	0	358.4	. 0	481.5
		77.3	0,,552	537.3	-89,307	498.7	-89,307	382.5	-89,307	382.2	-89,307	498.4
14			-95,631	560.6	0	519.9	0	402.5	0	402.5	0	519.6
15		77.9		546.8	-121,812	510.8	-121,812	398.8	-121,812	398.8	-121,812	510.6
16	87.0	77.9	0	534.4	-81,245	495.4	-81,245	387.8	-81,245	387.8	-81,245	495.1
17	85.9	78.1	-144,717	467.6	-113,598	411.2	-113,598	362.0	-113,598	362.0	-113,598	411.0
18		77.6	-98,838	390.6	-90,788	343.0	-90,788	330.1	-90,788	330.1	-90,788	342.8
19	82.2	77.7	-108,306	372.5	-204,453	323.1	-195,275	313.4	-195,275	313.4	-195,275	322.9
20	80.2		-117,475		-93,182	293.7	-93,182	290.7	-93,182	290.7	-93,182	293.4
21	78.5		-117,849	335.7	-203,861	264.6	-203,861	263.0	-203,861	263.0	-203,861	264.3
22	76.9	76.6	-137,029	311.2		234.7		239.0	-86,553	239.0	-86,553	234-4
23	75.7		-169,545	290.3	-86,553	234.7				221.7	-202,765	225.4
24					707 765	225 7	-202.765	221.7	-2U2,/0J	~~	•	
••	/4.0	74.1	-147,237	264.7	-202,765	225.7	-202,765	221.7	-202,765	22107	•	
		74.1	-						Sund		Mond	
August	:		Desi	ign	Weekd	lay	Satu	rday		ay		
August Hour	OADB	OAWB	Desi Etg Btuh	ign Clg Ton	Weekd Htg Btuh	lay Clg Ton	Satu Etg Btuh	rday	Sund	ay	Mond	
A ugust Hour 1	OADB 74.4	0AWB 72.7	Desi Etg Btuh -107,361	ign Clg Ton 258.6	Weekd Htg Btuh -122,810	lay Clg Ton 212.6	Satu	rday Clg Ton	Sund Htg Btuh	ay Clg Ton	Mond Etg Btuh	Clg Ton
August Hour 1 2	OADB 74.4 73.5	OAWB 72.7 71.6	Desi Etg Btub -107,361 -212,744	ign Clg Ton 258.6 239.9	Weekd Htg Btuh -122,810 -160,532	lay Clg Ton 212.6 197.5	Satu Htg Btuh -204,160 -80,919	rday Clg Ton 214.8	Sund Htg Btuh -204,160	ay Clg Ton 212.8	Mond Htg Btuh -204,160	Clg Ton 212.4
August Hour 1 2 3	OADB 74.4 73.5 72.9	OAWB 72.7 71.6 70.9	Desi Btg Btuh -107,361 -212,744 -102,531	ign Clg Ton 258.6 239.9 231.3	Weekd Htg Btuh -122,810 -160,532 -122,959	Lay Clg Ton 212.6 197.5 187.4	Satu Htg Btuh -204,160 -80,919 -203,169	rday Clg Ton 214.8 195.9	Sund Htg Btuh -204,160 -80,919	ay Clg Ton 212.8 194.0	Mond Htg Btuh -204,160 -80,919	Clg Ton 212.4 193.6
August Hour 1 2 3 4	OADB 74.4 73.5 72.9 72.4	OAWB 72.7 71.6 70.9 70.2	Desi Btg Btuh -107,361 -212,744 -102,531 -215,396	ign Clg Ton 258.6 239.9 231.3 223.2	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762	Clg Ton 212.6 197.5 187.4 176.7	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616	rday Clg Ton 214.8 195.9 185.7	Sund Htg Btuh -204,160 -80,919 -203,169	ay Clg Ton 212.8 194.0 183.3	Mond Htg Btuh -204,160 -80,919 -203,169	Clg Ton 212.4 193.6 183.0
August Hour 1 2 3 4 5	OADB 74.4 73.5 72.9 72.4 72.2	OAWB 72.7 71.6 70.9 70.2 69.6	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867	ign Clg Ton 258.6 239.9 231.3 223.2 212.7	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779	Clg Ton 212.6 197.5 187.4 176.7 173.8	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389	rday Clg Ton 214.8 195.9 185.7 178.9	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616	clg Ton 212.8 194.0 183.3 176.5	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616	Clg Ton 212.4 193.6 183.0 174.6
August Hour 1 2 3 4 5 6	OADB 74.4 73.5 72.9 72.4 72.2 72.5	OAWB 72.7 71.6 70.9 [°] 70.2 69.6 69.6	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389	ay Clg Ton 212.8 194.0 183.3 176.5 164.2	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389	Clg Ton 212.4 193.6 183.0 174.6 171.4
August Hour 1 2 3 4 5 6 7	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4	OAWB 72.7 71.6 70.9 70.2 69.6 69.6 70.3	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092	rday Clg Ton 214.8 195.9 185.7 178.9 164.9	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1
August Hour 1 2 3 4 5 6 7 8	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9	OAWB 72.7 71.6 70.9° 70.2 69.6 69.6 70.3 71.2	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2
August Hour 1 2 3 4 5 6 7 8 9	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0	OAWB 72.7 71.6 70.9 69.6 69.6 70.3 71.2 72.0	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2
August Hour 1 2 3 4 5 6 7 8 9 10	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5	OAWB 72.7 71.6 70.9° 70.2 69.6 69.6 70.3 71.2 72.0 73.5	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0	clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6
August Hour 1 2 3 4 5 6 7 8 9 10 11	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929	clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8
August Hour 1 2 3 4 5 6 7 8 9 10 11	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225	Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1	OAWB 72.7 71.6 70.9 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4	Satu Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0	clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,925 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0	Desi Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.0	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778	clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	rday Clg Ton 214.8 195.9 185.7 178.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	OADB 74.4 73.5 72.9 72.4 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.4 88.4	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.0	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 87.2 85.4	OAWB 72.7 71.6 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 0 407.2	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066	rday Clg Ton 214.8 195.9 185.7 178.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 74.4 73.5 72.9 72.4 72.2 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 88.9 88.4 83.2	OAWB 72.7 71.6 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 407.2 375.7	Weekd Htg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.8	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705	clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	OADB 74.4 73.5 72.9 72.4 72.2 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 85.0 87.1 88.4 88.4 88.9 88.4 87.2 85.4 83.2 81.0	OAWB 72.7 71.6 70.2 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 564.7 556.9 407.2 375.7 352.4	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 413.9 413.9 412.4 378.5 354.6 326.8 303.2	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 87.2 85.4 83.2 81.0 79.2	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 74.9 77.5 78.0 78.2 78.6 78.1 78.3 78.3	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058	ign Clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 407.2 375.7 352.4 314.1	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639 -91,840	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7 274.8	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	rday Clg Ton 214.8 195.9 185.7 178.9 164.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 413.9 412.4 378.5 354.6 326.8 303.2 273.3	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2 273.3	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5 274.6
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 88.9 88.4 83.2 81.0 79.2 77.5	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5 77.6	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -101,182 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058 -170,967	clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 407.2 375.7 352.4 314.1 291.5	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 -88,130 -93,007 -193,368 -99,705 -204,639 -91,840 -202,631	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7 274.8 242.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840 -202,631	rday Clg Ton 214.8 195.9 185.7 178.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.8 303.2 273.3 247.5	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840 -202,631	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2 273.3 247.5	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840 -202,631	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5 274.6 242.7
August Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 74.4 73.5 72.9 72.4 72.2 72.5 73.4 74.9 77.0 79.5 82.4 85.0 87.1 88.4 88.9 88.4 88.9 88.4 87.2 85.4 83.2 81.0 79.2 77.5 76.2	OAWB 72.7 71.6 70.2 69.6 69.6 70.3 71.2 72.0 73.5 74.9 76.5 76.9 77.5 78.0 78.2 78.6 78.1 78.3 78.5 77.6 77.6	Des: Htg Btuh -107,361 -212,744 -102,531 -215,396 -96,867 -199,631 -84,366 -77,963 0 -118,598 0 -101,182 0 -92,449 0 -120,657 -93,778 -107,462 -117,960 -122,330 -120,058 -170,967 -148,799	clg Ton 258.6 239.9 231.3 223.2 212.7 267.4 344.7 358.1 379.1 403.8 433.7 479.0 505.7 541.9 553.9 564.7 556.9 471.9 407.2 375.7 352.4 314.1 291.5	Weekd Rtg Btuh -122,810 -160,532 -122,959 -158,762 -43,779 -205,758 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -193,368 -99,705 -204,639 -91,840	Lay Clg Ton 212.6 197.5 187.4 176.7 173.8 226.6 321.7 332.5 351.0 368.2 407.8 451.2 478.4 502.8 530.2 525.7 523.9 427.5 368.2 336.3 305.7 274.8 242.9	Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	rday Clg Ton 214.8 195.9 185.7 178.9 164.5 193.7 265.4 281.3 300.8 340.1 383.9 359.1 387.1 412.9 413.9 412.4 378.5 354.6 326.8 303.2 273.3 247.5	Sund Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	ay Clg Ton 212.8 194.0 183.3 176.5 164.2 165.2 193.8 247.1 262.7 282.2 321.0 364.3 357.8 386.9 412.8 413.9 412.4 378.5 354.6 326.8 303.2 273.3 247.5	Mond Htg Btuh -204,160 -80,919 -203,169 -77,616 -122,389 -132,821 -23,092 -106,189 0 -88,929 0 -87,225 0 -97,625 0 -130,625 -88,130 -93,007 -204,066 -99,705 -204,639 -91,840	Clg Ton 212.4 193.6 183.0 174.6 171.4 226.1 322.2 332.2 350.6 367.8 407.4 450.9 478.1 502.5 529.9 525.4 523.6 427.2 368.0 336.1 305.5 274.6 242.7

PAGE 9

V 600

September

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE MODEL

Bour OADB OAWB Htg Btuh Clg Ton

Hour	OADB	OAWB	Htg Btuh	Cig Ton	Htg Btun	CIG ION	aly blun	cig ion	neg bean	019 100		
1	71.2	70.1	-212,764	204.1	0	143.7	-126,242	143.3	-96,140	143.9	-126,242	143.6
2	70.3	68.7	-93,908	185.5	-277,854	131.4	148,150	129.0	-179,663	129.2	-148,150	128.7
3	69.6	67.5	-207,366	176.5	-14,375	124.1	-147,660	122.1	-114,745	122.2	-147,660	121.8
4			-89,264	168.2	-310,679	121.5	-172,512	118.9	-206,500	118.9	-173,135	118.7
5		66.0	-200,507	166.9	-31,850	118.0	-174,286	110.7	-140,842	110.7	-166,157	115.5
6		65.4	-85,042	212.6	-278,963	164.5	-164,056	110.6	-196,141	110.6	-153,111	164.8
7		65.6	0	282.7	-6,579	247.9	-102,954	127.7	-77,433	127.7	-99,479	248.5
					-		-98,898	199.5	-98,898	182.5	-98,898	266.9
8		65.4	-164,958	296.9	-98,898	266.9	-30,830	211.8	-24,504	194.7	0	278.0
9		65.5	0	318.2	-33,216	278.0				217.5	-85,159	299.7
10		66.1	-109,067	342.4	-85,159	299.7	-85,159	234.9	-85,159 0	255.3	0	339.1
11		67.7	0	372.4	0	339.1	0	273.4		280.0	-90,721	362.0
12		69.9	-93,340	401.6	-90,721	362.0	-90,721	298.0	-90,721			394.3
13		71.5	0	443.5	0	394.3	0	280.9	0	279.2		424.2
14		72.9	-99,472	464.7	-104,762	424.2	-104,762	311.2	-104,762	310.8	-104,762	
15	86.6	73.3	0	474.6	0	429.7	0	318.9	0	318.8	0	429.7
16	86.1	73.0	-138,803	470.8	-136,315	421.1	-136,315	315.8	-136,315	315.8	-136,315	421.1
17	84.8	73.3	-98,741	457.2	-166,007	402.8	-160,862	301.6	-160,862	301.6	-160,862	402.8
18	82.9	74.8	-110,263	399.7	-93,766	345.3	-123 ,70 6	295.4	-93,766	295.4	-123,706	345.3
19	80.6	76.2	-118,124	341.9	-209,538	290.8	-175,813	279.9	-209,538	279.9	-175,813	290.8
20	78.3	76.1	-199,116	312.7	-92,127	260.6	-118,239	252.0	-92,127	252.0	-118,239	260.6
21	76.3	75.4	-110,956	288.8	-202,364	230.3	-175,888	229.6	-202,364	229.6	-175,888	230.3
22	74.6	74.3	-189,096	253.4	-81,259	204.0	-108,179	202.9	-81,259	202.9	-108,179	204.0
23		73.1	-101,495	232.8	-120,216	180.8	-92,220	186.8	-120,216	186.8	-92,220	180.8
24		71.6	-217,107	209.6	-138,555	162.8	-167,669	161.2	-138,555	161.2	-167,669	162.8
					-							
Octo	ber		Desi		Weekd	ay	Satu	rday	Sund	ay	Hond	ay
Hour		OAWB	Htg Btuh	-	Etg Btuh	-	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton
1			-533,725	68.8	-725,340	58.3	-889,827	62.6	-731,072	62.6	-891,073	62.5
2		53.9	-727,549	60.0	-1,093,392	54.3	-927,413	55.8	-1,083,551	55.8	-928,832	55.7
-		52.7	-713,217	55.8	-964,644	52.2	-1,131,420	53.0	-977,890	53.0	-1,132,988	52.9
4		51.8	-849,679	52.8	-1,287,338	49.6	-1,116,557	50.0	-1,268,842	50.0	-1,118,109	49.9
5		51.0	-	52.6	-1,099,549	49.7	-1,298,308	48.1	-1,152,156	48.1	-1,263,580	49.8
		50.4	-745,691		-1,146,838	68.0	-1,232,914	47.5	-1,369,517	47.5	-994,260	68.1
6			-671,341	73.8			-1,287,104	48.3	-1,195,049	48.3	-840,321	95.0
7		50.4	-411,378	109.1	-748,266	94.9		67.6	-932,360	62.6	-705,645	98.7
8		51.1	-317,289	117.3	-678,633	98.7	-834,033	71.8	-878,015	65.4	-519,811	107.3
9		52.9	-115,391	130.4	-621,616	107.3	-801,867		-536,590	67.5	-449,902	118.0
10		54.3	-36,467	147.4	-394,658	118.1	-544,940	75.2			-101,887	133.8
11		57.3	-2,036	171.8	-91,898		-181,423		-178,995	97.3	-15,353	168.9
12		60.0	0	202.1	-15,353	168.9	-17,528	111.8	-18,138		0	192.8
13		62.0	0	222.8	0	192.8	0	99.1	0	97.2	0	203.2
14	74.1	62.2	0	238.1	-9,546	203.2	0	109.8	-9,546	108.9	0	206.0
15	73.9	62.2	0	246.6	-87,696	206.0	٥	113.3	-87,696	112.8		201.6
16	73.3	61.8	0	243.5	-68,261	201.6	-206,072	112.1	-68,261	111.8	-206,072	
17	72.4	61.7	0	232.5	-123,855	192.8	0	105.8	-123,855	105.7	0	192.8
18	71.2	62.8	-157,004	183.7	-84,669	146.6	-232,030	100.8	-84,669	100.7	-232,030	146.6
19	69.8	64.0	0	137.2	-186,414	107.7	-20,712	99.6	-186,414	99.6	-20,712	107.7
20	68.1	63.7	-234,934	113.3	-156,982	104.1	-323,909	101.3	-153,211	101.3	-327,680	104.1
21	66.2	62.5	-98,354	94.3	-337,801	87.3	-170,225	88.6	-339,424	88.6	-168,602	87.3
22	64.2	60.9	-407,921	78.5	-334,056	82.2	-497,318	83.3	-331,103	83.3	-500,270	82.2
23		59.2	-267,449	68.3	594,104	71.4	-413,746	75.1	-576,129	75.1	-431,721	71.4
24		57.4	-632,436	61.3	-654,512	64.9	-813,820	65.0	-653,310	65.0	-815,022	64.9
	_	-	-		·	370						
						2.0						

----- Design ----- Weekday ----- Saturday---- Sunday ----- Sunday -----

Htg Btuh Clg Ton Htg Btuh Clg Ton Htg Btuh Clg Ton

•

Htg Btuh Clg Ton

BUILDING COOL-HEAT DEMAND - ALTERNATIVE 1 BASELINE MODEL

				_ ,		**1-4		Satu	rd	Sund	9V	Monda	17
	Novem		0.1VID	Desi	-	Weekd Htg Btuh	-	Etg Btuh	-	Htg Btuh	-	Htg Btuh	-
	Hour	OADB	OAWB	Etg Btuh	•	-1,145,732	53.2	-885,015	57.6	-914,067	57.7	-886,415	57.6
	1	56.4	54.8	-665,778 -975,526	55.8	-1,143,732	50.2	-1,254,004	51.9	-1,224,656	51.9	-1,255,601	51.8
	2	54.7	53.1	-	53.1	-1,382,354	48.5	-1,119,905	49.4	-1,149,485	49.4	-1,121,500	49.3
	3	53.3	51.8	-809,399	51.1 48.3	-1,203,266	47.3	-1,465,509	47.7	-1,435,623	47.7	-1,467,236	47.6
	4	52.1	50.4	-1,082,277		-1,203,200	47.1	-1,301,356		-1,331,595	47.3	-1,303,071	47.2
	5	51.2	49.7	-884,326	47.2			-1,566,760	46.1	-1,537,813	46.1	-1,535,198	47.7
	6	50.6	49.1	-1,045,431	46.9	-1,302,959	47.6 64.4	-1,367,545	45.2	-1,394,972	45.2	-1,141,566	64.5
	.7	50.5	49.0	-608,384	67.0	-1,357,620	91.0	-1,423,079	46.0	-1,423,079	46.0	-876,922	91.0
	8	51.2		-568,120	104.9	-750,442	91.0	-1,423,079	64.7	-962,708	59.8	-802,670	95.6
	9	53.3	50.9	-240,459	114.0	-775,424	101.6	-822,871	67.7	-738,063	61.7	-486,390	101.6
	10	56.4	52.3	-108,726	125.7	-559,992	113.0	-453,813	72.3	-587,357	65.0	-386,952	111.9
	11	60.0	54.1	-34,182	145.8	-455,328	124.5	-411,545	76.8	-398,601	68.4	-263,446	124.5
	12	63.7	56.5	-1,920	173.7	-153,199	140.0	-89,183	88.4	-121,060	77.2	-55,882	140.0
	13	66.8	58.1	0	194.3	-55,882	164.5	-50,765	72.1	-50,765	70.4	-36,072	164.5
	14	68.9	59.6	0	208.5	-26,130		-24,177	80.3	-24,177	79.3	-18,792	175.1
	15	69.6	60.0	0	216.0	-106,969	175.1 174.3	-161,201	80.3	-161,201	79.8	-155,149	174.3
	16	69.4	60.2	-8,482	214.2	-87,318	167.1	-81,735	76.8	-53,031	76.6	-66,884	167.1
	17	68.9	60.4	-157,598	201.6	-35,488 -285,936	176.7	-256,312	83.0	-291,803	82.8	-224,738	176.7
	18	68.0	62.1	-11,685	192.8	-	176.7	-191,851	82.7	-161,165	82.6	-151,407	126.5
	19	66.8	62.5	-230,397	136.8	-120,722	80.5	-405,415	78.5	-435,656	78.4	-415,280	80.5
	20	65.4	62.0	-126,171	87.5	-445,521 -294,210	79.1	-352,232	77.2	-322,242	77.2	-324,200	79.1
	21	63.7	60.8	-438,013	75.3	-294,210	69.4	-651,264	70.4	-680,946	70.4	-667,772	69.4
	22 23	61.9	59.5 58.0	-384,054	64.9 60.4	-596,733	68.0	-623,868	68.9	-594,798	68.9	-625,803	68.0
	23 24	60.0 58.2	56.3	-686,293 -578,267	55.9	-989,561	59.7	-935,231	62.4	-964,066	62.4	-960,726	59.7
	24	30.2	20.3	-378,287	33.3	-909,501						·	
	Decem	ber		Desi	gn	Weekd	ay	Satu	rday	Sund	ay	Hond	-
	Decemi Hour	oadb	OAWB	Desi Etg Btuh		Weekd Htg Btuh	-	Satu Htg Btuh	-	Sund Htg Btuh	-	Htg Btuh	Clg Ton
		OADB	0AWB 45.9				-		-		-	Htg Btuh -1,777,015	Clg Ton 48.1
	Hour	OADB 47.7		Etg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh	Clg Ton	Htg Btuh -1,777,015 -1,675,556	Clg Ton 48.1 47.5
	Hour 1	OADB 47.7	45.9	Etg Btuh -1,176,115	Clg Ton 50.3	Htg Btuh -1,541,616	Clg Ton 48.0	Htg Btuh -1,735,267	Clg Ton 48.3	Htg Btuh -1,657,040	Clg Ton 48.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636	Clg Ton 48.1 47.5 46.8
	Eour 1 2	OADB 47.7 46.2	45.9 44.5	Htg Btuh -1,176,115 -1,461,035	Clg Ton 50.3 48.3	Htg Btuh -1,541,616 -1,881,858	Clg Ton 48.0 47.5	Htg Btuh -1,735,267 -1,688,344	Clg Ton 48.3 47.6	Htg Btuh -1,657,040 -1,777,405	Clg Ton 48.2 47.6 46.8 46.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497	Clg Ton 48.1 47.5 46.8 46.3
	Hour 1 2 3	OADB 47.7 46.2 45.0	45.9 44.5 43.4	Htg Btuh -1,176,115 -1,461,035 -1,335,883	Clg Ton 50.3 48.3 47.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532	Clg Ton 48.0 47.5 46.8	Htg Btuh -1,735,267 -1,688,344 -1,960,151	Clg Ton 48.3 47.6 46.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248	Clg Ton 48.2 47.6 46.8	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727	Clg Ton 48.1 47.5 46.8 46.3 45.2
	Hour 1 2 3 4	OADB 47.7 46.2 45.0 44.3	45.9 44.5 43.4 42.7	Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907	Clg Ton 50.3 48.3 47.1 46.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917	Clg Ton 48.0 47.5 46.8 46.4	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595	Clg Ton 48.3 47.6 46.8 46.4	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9
	Eour 1 2 3 4 5	OADB 47.7 46.2 45.0 44.3 44.1	45.9 44.5 43.4 42.7 42.8	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306	Clg Ton 48.0 47.5 46.8 46.4 45.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330	Clg Ton 48.3 47.6 46.8 46.4 45.2	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6
	Hour 1 2 3 4 5 6	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4
	Hour 1 2 3 4 5 6 7	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2
	Eour 1 2 3 4 5 6 7 8	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 43.6 42.2 42.0 54.7 54.0	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3
	Eour 1 2 3 4 5 6 7 8 9	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1
	Hour 1 2 3 4 5 6 7 8 9 10	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1
	Hour 1 2 3 4 5 6 7 8 9 10 11	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2
	Hour 1 2 3 4 5 6 7 8 9 10 11 12	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 53.6 56.5 59.1 61.2 62.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 55.3 56.2	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 53.6 56.5 59.1 61.2 62.6 63.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 55.3 55.3 56.2 56.3	<pre>Btg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2	<pre>Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129</pre>	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8 56.4	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 53.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1	<pre>Btg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 57.8	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.6	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 127.6 88.2 59.8
	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 55.1 53.5	<pre>Btg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 56.2 57.8	<pre>Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224</pre>	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 57.2 53.3	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1
•	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 53.6	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5 51.3	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 56.2 57.4 53.3 49.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5
•	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 53.6 51.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5 51.3 49.6	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528 -961,996</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6 54.1	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152 -1,442,698	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5 50.1	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205 -1,348,994	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 56.2 57.8 57.4 53.3 49.6 50.3	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474 -1,467,998	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5 50.2	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385 -1,340,916	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5 50.1
)	Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	OADB 47.7 46.2 45.0 44.3 44.1 44.6 45.9 48.0 50.6 53.6 56.5 59.1 61.2 62.6 63.0 62.8 62.1 61.0 59.5 57.7 55.7 53.6 51.5	45.9 44.5 43.4 42.7 42.8 43.1 44.4 46.5 48.8 51.0 52.8 54.3 55.3 56.2 56.3 56.2 56.3 56.2 56.1 56.8 56.4 55.1 53.5 51.3	<pre>Htg Btuh -1,176,115 -1,461,035 -1,335,883 -1,562,907 -1,414,694 -1,543,574 -1,098,410 -821,849 -651,368 -389,166 -256,768 -89,294 -52,280 -30,306 -24,560 -183,293 -47,707 -256,289 -291,091 -776,743 -668,914 -1,083,528</pre>	Clg Ton 50.3 48.3 47.1 46.0 45.2 45.0 61.1 87.8 94.8 102.2 111.9 123.9 141.0 155.9 163.2 162.6 149.4 137.4 96.2 66.0 61.1 56.6	Htg Btuh -1,541,616 -1,881,858 -1,773,532 -1,984,917 -1,868,306 -1,997,324 -1,450,514 -1,183,199 -911,967 -721,747 -642,779 -471,766 -294,184 -172,429 -217,236 -198,072 -420,000 -334,274 -787,386 -772,505 -1,125,595 -1,101,152	Clg Ton 48.0 47.5 46.8 46.4 45.2 44.9 58.6 81.3 86.0 90.2 99.1 109.4 115.8 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5	Htg Btuh -1,735,267 -1,688,344 -1,960,151 -1,793,595 -2,058,330 -1,830,976 -1,920,915 -1,572,664 -1,126,957 -1,105,943 -777,272 -561,572 -419,400 -409,501 -340,628 -425,755 -546,466 -623,609 -765,702 -888,582 -1,044,882 -1,186,205	Clg Ton 48.3 47.6 46.8 46.4 45.2 43.6 42.2 42.0 59.0 59.1 63.9 69.0 71.9 47.3 50.0 52.5 52.8 56.2 57.8 56.2 57.4 53.3 49.6	Htg Btuh -1,657,040 -1,777,405 -1,853,248 -1,906,649 -1,956,821 -1,911,327 -1,848,796 -1,646,462 -1,225,033 -1,101,891 -726,966 -736,887 -423,005 -436,061 -318,335 -355,263 -607,144 -540,129 -891,181 -768,721 -1,165,224 -1,066,474	Clg Ton 48.2 47.6 46.8 46.4 45.2 43.6 42.2 42.0 54.7 54.0 57.6 61.5 63.8 46.4 49.3 51.9 52.4 55.9 57.6 57.2 53.3 49.5	Htg Btuh -1,777,015 -1,675,556 -1,934,636 -1,835,497 -2,049,727 -1,781,034 -1,669,297 -1,004,913 -932,042 -873,706 -574,729 -395,692 -294,184 -220,420 -169,756 -294,239 -324,095 -429,278 -678,931 -882,865 -1,017,076 -1,206,385	Clg Ton 48.1 47.5 46.8 46.3 45.2 44.9 58.6 81.4 86.2 90.3 99.1 109.1 116.2 122.2 126.3 128.4 125.1 127.6 88.2 59.8 55.1 49.5

V 600

. .

BUILDING TEMPERATURE PROFILES - ALTERNATIVE 1 BASELINE MODEL

Temperature									2	lone Nu	umber -								
Range	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
(F)																			
Max. Temp.	72.6	72.1	72.8	72.7	73.5	72.5	72.0	73.5	72.0	73.4	74.5	73.3					73.7		
Mo./Hr.	6 15	51	6 14	8 15	6 15	53	1 1	61	1 1	61	6 1,6	··9 16	4 15	4 15	6 16	6 17	6 17	6 17	6 17
Day Type	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	• • • • •								Nur	aber of	E Hours	3							•••••
Above 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95 - 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
90 - 95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
85 - 90	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80 - 85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
75 - 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70 - 75	8,760	8,506	7,470	8,760	8,408	8,301	8,450	8,158	8,737	8,150	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
65 - 70	0	254	1,290	0	352	459	310	602	23	610	0	0	0	0	0	0	0	0	0
60 - 65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55 - 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
50 - 55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Below 50	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o	0	0
Min. Temp.	70.8	68.9	66.8	70.8	69.7	66.8	68.7	66.7	70.0	66.7	71.1	71.3	70.8	70.8	71.3	71.9	71.9	71.9	71.9
Mo./Er.	17	19	15	1 1	1 1	29	18	17	28	17	2 10	18	1 15	1 15	15	1 20	1 11	1 20	1 10
Day Type	2	2	2	2	2	2	2	1	2	2	3	1	2	2	1	1	1	1	1

------BUILDING TEMPERATURE PROPILES ------

V 600 PAGE 12

.**.** ·

BUILDING TEMPERATURE PROFILES - ALTERNATIVE 1 BASELINE NODEL

mperature Range	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
(F)	10																		
ax. Temp.	73.7	73.4	73.7	72.6	73.2	72.1	73.6	72.0	73.6	72.7		• 73.6	72.4	72.0	72.0	72.0	72.0	72.0	72.0
Mo./Hr.	6 17		6 17		6 17									1 1					
Day Type	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	:
	•••••					•••••	•••••	•••••	Num	ber of	Hours		• • • • • •	•••••	•••••	•••••			••••
bove 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
95 - 1 00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	
90 - 95	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	
85 - 90	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Û	0	
80 - 85	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
75 - 80	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
70 - 75	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760			8,760	8,7
65 - 70	0	0	0	0	0	0	0	0	0	0	O r	; O	0	0	0	0	0	0	
60 - 65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
55 - 60	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
50 - 55	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Below 50	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
n. Temp.	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9									71.9	71
Mo./Hr.	1 20	1 20	1 20	1 11	1 11	1 1	1 19	14	1 19	1 11	1 11	1 19	12	1 18				2 15	4
Day Type	1	1	1	1	. 1	1	1	1	1	1	1	1	1	2	1	1	1	2	

------BUILDING TEMPERATURE PROFILES ------

.

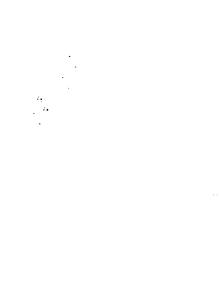
V 600 PAGE 13

BUILDING TEMPERATURE PROPILES - ALTERNATIVE 1 BASELINE MODEL

.....

Temperature									2	one Nu	mber -								
Range	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57
(F)																			
Max. Temp.	72.0	72.0	72.0	72.0	72.0	72.0	72.0	72.0	74.4	72.0	72.0	•• 72.0	72.0	72.0	72.0	75.3	74.7	75.4	72.0
Mo./Er.	1 1			1 1			12	1 1	6 18	1 1	1 I	1 1	1 1	1 1	1 1	6 17		6 18	1 1
Day Type	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
									Num	ber of	E Hours								
Above 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
95 - 100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0
90 - 95	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
85 - 90	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
80 - 85	٥	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	O	0	0
75 - 80	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70 - 75	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760	8,760
65 - 70	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
60 - 65	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
55 - 60	0	0	0	0	0	Ð	0	0	0	O	0	0	0	0	0	o	0	0	0
50 - 55	0	0	0	o	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0
Below 50	0	0	0	0	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0
Min. Temp.	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.9	71.8	71.9	71.9
Mo./Hr.	4 23	1 22	1 12	1 10	2 16	1 1	1 1	2 16	18	1 4	1 21	1 21	1 15	1 3	1 15	1 20	1 16	1 3	1 15
Day Type	1	1	1	2	2	1	1	1	3	1	1	. 1	1	1	1	1	3	1	1

------BUILDING TEMPERATURE PROFILES ------


PAGE 14

V 600

NONTHLY ENERGY CONSUMPTION - ALTERNATIVE 1

BASELINE MODEL

	ELEC	DEMAND	GAS		GAS DMND	
	On Peak	On Peak	On Peak	WATER	On Peak	
Honth	(kWh)	(kW)	(Therm)	(1000 Gl)	(Thrm/hr)	
Jan	445,229	802	16,459	206	35	
Feb	399,481	803	15,400	183	37	
March	464,572	872	9,170	270	25	
April	496,435	1,029	4,243	443	13	
May	535,096	1,048	3,322	618	9	
June	567,035	1,056	2,744	844	6	
July	591,031	1,077	2,870	923	6	
Aug	604,737	1,087	2,904	966	6	
Sept	536,973	1,057	2,896	709	7	
Oct	473,992	878	7,126	318	22	
Nov	447,031	871	8,576	264	25	
Dec	447,881	825	13,262	222	32	
Total	6,009,495	1,087	88,973	5,965	37	

Building Energy Consumption = Source Energy Consumption = 359,027 (Btu/Sq Ft/Year)

۰.

148,910 (Btu/Sq Ft/Year)

Floor Area =

197,486 (Sq Ft)

1 EQ5100

PK

WATER

184

0.5

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASELINE MODEL

Ref	Equip					Mon	thly Cons	umption						
Num	Code	Jan	Feb	Mar	Apr	May	June	- July	Aug	Sep	Oct	Nov	Dec	Total
0	LIGHTS													
	ELEC	97029	87721	101425	93220	99227	97590	94858	101425		99227	93168	94858	1,152,968
	PK	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4	279.4
1	MISC LD													
	ELEC	6095	5513	6246	5890	6170	6027	6034	6246	5890	6170	5861	6034	72,176
	PK	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7	14.7
													-	-
2	MISC LD			_			-				o	o	0	0
	GAS	0	0	0	0	0	0	0	0 0.0	0 0.0	0.0	0.0	0.0	0.0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	
,	MISC LD													
3	OIL	0	. 0	o	o	0	0	0	0	o	0	o	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	•••	••••												
4	MISC LD													
	P STEAM	0	o	0	0	0	0	o	o	o	0	o	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
5	HISC LD													
	P HOTH20	0	0	0	٥	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
6	MISC LD													
	P CHILL	0	O	0	0	0	O	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1				E UTILIT					27200	26000	37200	36000	37200	438,000
	ELEC	37200	33600	37200	36000	37200	36000	37200	37200 50.0	36000 50.0	50.0	50.0	50.0	50.0
	PK	50.0	50.0	50.0	50.0	50.0	50.0	50.0	30.0	50.0	50.0	2010	2000	
2			PAC	E UTILIT	v									
*	HOTLD	1284	1160	1284	1243	1284	1243	1284	1284	1243	1284	1243	1284	15,123
	PK	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7		1.7	1.7	1.7
1	EQ1008L		3-5	TG CTV >	200 TONS									
	ELEC	35635		45542		61511	60038	66725	68388	54813	54626	45044	37962	637,905
	PK	86.7	88.3		176.6		190.3	194.6	193.8	179.4	168.6	155.0	108.7	194.6
1	EQ5100		coo	LING TOW	ER									
	ELEC	7295	4278	12186	14317	10480	7755	8014	8014	8352	14795	13435	9854	118,775
	PK	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9

------ EQUIPMENT ENERGY CONSUMPTION ------

PAGE 2

200

0.6

242

0.8

3,303

0.9

V 600

376

301

0.9

329

0.9

335

0.9

282

0.9

296

0.9

322

0.9

COOLING TOWER

247

0.8

401

0.9

163

0.5

1 EQ5001

CHILLED WATER PUMP C.V.

-... ·

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASELINE MODEL

	ELEC	36987	33407	36987	35794	26199	19388	20035	20035	20880	36987	35794	36987	359,478
	PK	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7	49.7
1	EQ5010		CON	DENSER W	ATER PUM	P C.V.								
	ELEC	14795	13363	14795	14317	10480	7755	8014	8014	8352	14795	14317	14795	143,791
	PK	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9	19.9
1	EQ5300		CON	TROL PAN	EL 4 INT	ERLOCK			•.	•				
	ELEC	744	672	744	720	527	390	403	403	420	744	720	744	7,231
	PK	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
2	EQ1008L		3-5	IG CTV >	200 TONS									
	ELEC	0	0	0	4941	45683	82744	89876	93612	67028	O	0	0	383,883
	PK	0.0	0.0	0.0	187.9	232.0	246.9	251.7	253.0	239.8	139.5	0.0	0.0	253.0
2	EQ5100		C00	LING TOW	ER									
	ELEC	0	0	0	3480	7258	11434	12329	12901	10191	0	0	0	57,593
	PK	0.0	0.0	0.0	24.9	24.9	24.9	24.9	24.9	24.9	24.9	0.0	0.0	24.9
2	EQ5100		C00	LING TOW	ER									
	WATER	0	0	0	20	269	461	495	512	382	0	0	0	2,139
	PK	0.0	0.0	0.0	1.2	1.4	1.4	1.4	1.4	1.4	0.9	0.0	0.0	1.4
2	EQ5001		CHI	LLED WAT	ER PUMP	c.v.								
	ELEC	0	O	o	5568	11613	18613	19925	20641	16306	0	0	0	92,666
	PK	0.0	0.0	0.0	39.8	39.8	39.8	39.8	39.8	39.8	39.8	0.0	0.0	39.8
2	EQ5010		CON	DENSER W	ATER PUM	P C.V.								
	ELEC	0	0	. O	3480	7258	11633	12453	12901	10191	0	0	0	57,916
	PK	0.0	0.0	0.0	24.9	24.9	24.9	24.9	24.9	24.9	- 24.9	0.0	0.0	24.9
2	EQ5300		CON	EROL PAN	el 4 INTI	ERLOCK								
	ELEC	0	0	0	140	292	468	501	519	410	0	0	0	2,330
	PK	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0
3	EQ1008L		3-51	IG CIV >	200 TONS									
	ELEC	0	0	0	0	0	34	115	0	36	C	0	0	185
	PK	0.0	0.0	0.0	0.0	0.0	35.7	37.8	0.0	33.5	0.0	0.0	0.0	37.8
3	EQ5100		coor	LING TOW	ER									
	ELEC	0	0	0	0	1750	4057	4454	4991	2088	0	0	0	17,340
	PK	0.0	0.0	0.0	0.0	19.9	19.9	19.9	19.9	19.9	0.0	0.0	0.0	19.9
3	EQ5100		C001	LING TOW	ER									
	WATER	0	0	0	0	4	61	77	97	22	0	0	0	261
	PK	0.0	0.0	0.0	0.0	0.3	0.7	0.8	0.8	0.4	0.0	0.0	0.0	0.8
3	EQ5001		CEI	LLED WAT	ER PUMP	c.v.								-
	ELEC	0	0	0	0	0	0	0	٥	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3	EQ5010		CON	DENSER W	ATER PUM	P C.V.								
	ELEC	0	0	0	0	0	398	616	0	99	0	0	0	1,114
	PK	0.0	0.0	0.0	0.0	0.0	19.9 378	19.9	19.9	19.9	19.9	0.0	0.0	19.9

.

•...

.

.

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASELINE MODEL

	ELEC	0	0	0	0	0	20	31	0	5	0	0	0	56 1.0
	PK	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0	1.0	1.0	0.0	0.0	1.0
1	EQ4003				FAN C.V.				7140	6612	7142	6912	7142	84,096
	ELEC	7142	6451	7142	6912	7142	6912	7142	7142	6912 9.6	9.6	9.6	9.6	9.6
	PK	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.6	9.0	9.0	3.0	2.0	
_										•				
1	EQ4003				FAN C.V.		2875	2971	2971		2971	2875	2971	34,975
	ELEC	2971	2683	2971	2875	2971	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	PK	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		••••		
-	EQ4002		BT	CHANGED TH	FAN C.V.									
1	ELEC	74	67	CENIRIF . 74	72	74	72	74	74	72	74	72	74	874
	PK	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
	FA	0.1	0.1	0.1	0.1		•••	•••					•	
2	EQ4003		PC	CENTRIF.	FAN C.V.									
-	ELEC	16740	15120	16740	16200	16740	16200	16740	16740	16200	16740	16200	16740	197,100
	PK	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5	22.5
2	EQ4003		FC	CENTRIF.	FAN C.V.									
	ELEC	6963	6290	6963	6739	6963	6739	6963	6963	6739	6963	6739	6963	81,989
	PK	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4	9.4
2	EQ4002		BI	CENTRIF.	FAN C.V.									
	ELEC	74	67	74	72	74	72	74	74	72	74	72	74	872
	PK	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
3	EQ4001		AIR		TRIF. FAR								-5017	303,972
	ELEC	25817	23318	25817	24984	25817	24984	25817	25817	24984	25817	24984	25817	303,972
	PK	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	34.7	54.7
-														
3	EQ4002				FAN C.V.		007	296	296	287	296	287	296	3,490
	RLEC	296	268	296	287	296	287 0.4	296	298	0.4	0.4	0.4	0.4	0.4
	PK	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.1	•••	•••	
	EQ4001		N .TT	BOTT CEN	TRIF. FAS									
	ELEC	23659	21370	23659	22896	23659	22896	23659	23659	22896	23659	22896	23659	278,568
	PK	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8	31.8
	**	31.0	31.0	31.0	51.0	5110								
5	EQ4003		PC	CENTRIF.	FAN C.V.									
-	ELEC	20311	18346	20311	19656	20311	19656	20311	20311	19656	20311	19656	20311	239,148
	PK	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3	27.3
5	EQ4003		FC	CENTRIF.	FAN C.V.									
	ELEC	9427	8515	9427	9123	9427	9123	9427	9427	9123	9427	9123	9427	111,001
	PK	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7	12.7
5	EQ4002		ві	CENTRIF.	FAN C.V.									
	ELEC	2470	2231	2470	2390	2470	2390	2470	2470	2390	2470	2390	2470	29,081
	PK	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6	EQ4003		FC	CENTRIF.	FAN C.V.									
	ELEC	7589	6854	7589	7344	7589	7344	7589	7589	7344	7589	7344	7589	89,352
	PK	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2	10.2
							200							

V 600 Page 4 6 EQ4003

FC CENTRIP. FAN C.V.

Trane Air Conditioning Economics

- .

By: ENGINEERING RESOURCE GROUP, INC.

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASELINE MODEL

	ELEC	1785	1612	1785	1727	1785	1727	1785	1785	1727	1785	1727	1785	21,012
	PK	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
6	EQ4002		BI	CENTRIF.	FAN C.V.									<i>(* 1/0</i>
	ELEC	3494	3156	3494	3382	3494	3382	3494	3494	3382	3494	3382	3494	41,142
	PK	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7	4.7
7	EQ4003		FC	CENTRIF.	FAN C.V.	•			÷.					
	ELEC	32066	28963	32066	31032	32066	31032	32066		31032	32066	31032	32066	377,556
	PK	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43.1	43-1	43.1
7	EQ4003		FC	CENTRIF.	FAN C.V	•								
	ELEC	10025	9054	10025	9701	10025	9701	10025	10025	9701	10025	9701	10024	118,030
	PK	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
7	EQ4002		BI	CENTRIF.	FAN C.V	•								
	ELEC	2805	2534	2805	2715	2805	2715	2805	2805	2715	2805	2715	2805	33,030
	PK	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
8	EQ4003		FC	CENTRIF.	FAN C.V	•								
	ELEC	19344	17472	19344	18720	19344	18720	19344	19344	18720	19344	18720	19344	227,760
	PK	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0	26.0
8	EQ4003		FC	CENTRIF.	FAN C.V	•								70.001
	ELEC	6016	5434	6016	5822	6016	5822	6016	6016	5822	6016	5822	6016	70,831 8.1
	PK	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	0.1
8	EQ4002		BI	CENTRIF.	FAN C.V	•							1005	19,957
	ELEC	1695	1531	1695	1640	1695	1640	1695	1695	1640	1695	1640	1695 2.3	2.3
	PK	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	110
1	EQ2004		GAS	WATER T	UBE STEA	M								00.073
	GAS	16459	15400	9170	4243	3322	2744	2870	2904	2896	7126	8576	13262	88,973 36.7
	PK	34.5	36.7	25.1	13.5	8.9	5.8	5.6	5.5	6.9	22.0	24.8	31.9	20.7
1	EQ5020		HEA	T WATER	CIRC. PU	MP C.V.								23,326
	ELEC	1981	1789	1981	1917	1981	1917	1981	1981	1917	1981	1917	1981	23,320
	PK	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.,
1	EQ5240		BOI	LER FORC	ED DRAFT	FAN					_			50,710
	ELEC	4307	3890	4307	4168	4307	4168	4307	4307	4168	4307	4168	4307	5.8
	PK	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.8	5.0
1	EQ5307		BOI	LER CONT	ROLS									4 202
	ELEC	372	336	372	360	372	360	372	372	360	372	360	372	4, 380 0.5
	PK	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
1	EQ5062		CON	IDENSATE	RETURN P	UMP								
	ELEC	2024	1828	2024	1959	2024	1959	2024	2024	1959	2024	1959	2024	23,834 2.7
	PK	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7
1	EQ5406		нал	E-UP WAT	TER								. -	
	WATER	22	20	22	22	22		22	22	22	22		22	263 0.0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

V 600

.

:

2 EQ2004

GAS WATER TUBE STEAM

.

.

.

V 600 Page

CALIFORNIA TITLE 24 COMPLIANCE - ALTERNATIVE 1 BASELINE MODEL

------ CALIFORNIA TITLE 24 COMPLIANCE REPORT

Weather Name	MOBILE.W
Gross Conditioned Floor Area (sqft)	197,486
ACH Multiplier	1.025

-----BNERGY USE SUMMARY

			ia ia	PERCENT	TOTAL	ADJUSTED
			•	OF TOTAL	SOURCE	UNIT SOURCE
	ELEC	GAS	WATER	ENERGY	ENERGY	ENERGY
	(kWh/yr)	(kBtu/yr)	(1000 gal)	(\$)	(kBtu/yr)	(kBtu/yr-sf)
Primary Heating	78,923.2	6,736,824.0	198.9	23.8	7,899,569.0	41.0
Primary Cooling						
Compressor	1,021,974.1	0.0	0.0	11.9	10,465,038.0	54.3
Tower/Cond Fans	193,708.0	0.0	5,702.8	2.2	1,983,574.8	10.3
Condenser Pump	202,821.0	0.0	0.0	2.4	2,076,891.6	10.8
Other Accessories	9,617.0	0.0	0.0	0.1	98,478.3	0.5
Auxiliary						
Supply Fans	2,363,839.0		0.0	27.4	24,205,768.0	125.6
Circulation Pumps	475,470.3	0.0	0.0	5.5	4,868,827.0	25.3
Base Utilities	438,000.0	0.0	0.0	5.1	4,485,130.5	23.3
Subtotal	3,277,309.2	0.0	0.0	38.0	33,559,724.0	174.2
Lighting	1,152,967.5	0.0	0.0	13.4	11,806,414.0	59.8
Receptacle	72,175.6	0.0	0.0	0.8	739,080.3	3.7
Domestic Hot Water	0.0	2,160,435.8	63.8	7.3	2,274,143.0	11.5
Cogeneration	0.0	0.0	0.0	0.0	0.0	0.0
Totals	6,009,495.5	8,897,260.0	5,965.4	100.0	70,902,912.0	366.1

. . .

^₽

UTILITY PEAK CHECKSUMS - ALTERNATIVE 1 BASELINE MODEL

Utility ELECTRIC DEMAND

Peak Value 1,087.2 (kW) Yearly Time of Peak 10 (hr) 8 (mo)

Hour 10 Month 8

Eqp.			Utility	Percnt
Ref.	Equipment		Demand	Of Tot
Num.	Code Name	Equipment Description	(kW)	(1)
		••		
Cooling	Equipment			
1	EQ1008L	3-STG CTV >200 TONS	279.1	25.67
2	EQ1008L	3-STG CTV >200 TONS	182.5	16.79
Sub Tot	al		461.6	42.46
Heating	Equipment			
1	EQ2004	GAS WATER TUBE STEAM	11.7	1.07
Sub Tot	al	-	11.7	1.07
Air Hov	ing Equipment	*		
1		SUMMATION OF FAN ELECTRICAL DEMAND	13.7	1.26
2		SUMMATION OF FAN ELECTRICAL DEMAND	32.0	2.94
3		SUMMATION OF FAN ELECTRICAL DEMAND	35.1	3.23
4 1		SUMMATION OF PAN ELECTRICAL DEMAND	31.8	
5		SUMMATION OF FAN ELECTRICAL DEMAND	43.3	
6		SUMMATION OF FAN ELECTRICAL DEMAND	17.3	
7		SUMMATION OF FAN ELECTRICAL DEMAND	60.3	
8		SUMMATION OF FAN ELECTRICAL DEMAND	36.4	3.34
Sub Tot	al		269.8	24.82
Sub Tot	a 1		0.0	0.00
Miscel]	Laneous			
Lighte			279.4	25.69
Base (Jtilities		50.0	4.60
Misc H	Equipment		14.7	1.35
Sub Tot	tal	,	344.1	31.65
Grand 1	fotal		1,087.2	100.00

ک

V 600

PAGE 1

Trane Air Conditioning Economics

By: ENGINEERING RESOURCE GROUP, INC.

EQUIPMENT ENERGY CONSUMPTION - ALTERNATIVE 1 BASELINE MODEL

	GAS	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	EQ5020		HEAT	WATER C	IRC. PUM	P C.V.								
	ELEC	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	EQ5240		BOIL	ER FORCE	D DRAFT	PAN			4					
	ELEC	0	0	0	0	0	0	0	0	0	0	0	O	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	EQ5307		BOIL	ER CONTRO	OLS									
	ELEC	0	0	0	o	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	EQ5062		CONDI	INSATE RI	TURN PU	æ								
	ELEC	O	0	0	O	0	0	٥	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	EQ5406		MAKE-	-UP WATER	ર									
	WATER	0	0	0	0	0	0	0	0	0	0	0	0	0
	PK	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

. •

1. n

V 600

PAGE