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EXECUTIVE SUMMARY 

OBJECTIVE 
The objective of this work was to examine the frequency dependencies of target high- 

lights in order to determine where computational savings could be realized in broadband 
applications. 

RESULTS 

Significant savings can be achieved by simply separating all frequency independent calcu- 
lations from the frequency loop. In some cases, highly accurate approximations will provide 
additional savings. In other cases, and contingent on the user's fidelity requirements, coarser 
approximations will yield yet more savings. 

RECOMMENDATIONS 
Separation of frequency-independent factors and accurate approximations should be im- 

plemented as soon as feasible. Coarser approximations should be implemented, but their use 
should be contingent on a tolerance test. 

in 
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INTRODUCTION 

Accurate target models that predict submarine and surface ship echo time history are essential 
tools for antisubmarine warfare and ship vulnerability studies. A realistic model must account for the 
target's many highlights as well as insonification conditions. It must predict the highlight amplitude 
and phase as well as temporal and spectral behavior. These predictions require that researchers 
properly identify scattering mechanisms and incorporate them into the model. 

Over the past 30 years, Naval Command, Control and Ocean Surveillance Center RDT&E 
Division (NRaD) researchers developed Uniform Theory of Diffraction (UTD) target models that 
provide an invaluable asset for torpedo signal-processing algorithms and torpedo-simulation 
development. NRaD has exported these models throughout the Navy. Previous NRaD target model 
formulations, dictated by past weapons' requirements and test scenarios, were monostatic, far field, 
and narrowband. They also used a simple Doppler implementation. These restrictions simplified the 
numerical implementation (as well as theoretical development) considerably. These models serve 
well in deep water and other benign environments. However, the littoral environment requires more 
sophistication. 

A promising avenue for study involves broadband processing. Obviously simulation studies in 
this area require high-fidelity broadband target models. Practical considerations demand computa- 
tional efficiency. This report examines the frequency dependencies of target highlights and deter- 
mines how computational savings may be realized without undo loss of fidelity. The report first 
discusses general considerations followed by each highlight class, in turn. 

GENERAL CONSIDERATIONS 

Following Primakoff and Keller (1947), the scattering amplitude is taken to be the product of a 
geometrical factor, a phase-cancellation (directivity) factor, and a reflection factor. In addition, we 
include a loss factor to account for cover penetration. 

GEOMETRICAL FACTOR 

For a surface, the geometrical factor is 

i 
G = - 

where r is the range and RA and RB are the principal radii of curvature. For a line, 

1 
G = 

1 + 2rsin^ 

RA 



where y/ is the inclination angle. This factor is obviously independent of frequency. 

PHASE-CANCELLATION FACTOR 

The phase-cancellation factor is 
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with £ the wavenumber. Now, 
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where /"(«) and g(uj are auxiliary functions (Gautschi, 1965). These are odd functions and, for 
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Alternatively, series representations may be used (Boersma, 1960). Note that, if %n -y     and 

;Tmax>4,0.90<|P„|<1.10. 

The case of a straight side must be treated separately. The observation point will be referenced to 
mid-height. Let h be the height of the side and y the orientation angle with respect to the side. In 

the monostatic case, it can be shown (Chabries, 1975) that we may still use our earlier definition of 
Pv, but with 

r \2k( 1, 

V 7JT V 2 

and 

Cm =i—\rcosy--h 
V 7tr V 2 

kh2 

Alternatively, the results of Skudrzyk et al. (1973) may be used when r » . Here they may be 
2/T 

expressed as 

Py = -he 
sml (khcosy) 

khcosy 

Note that the first term in brackets is the Sommerfeld-MacDonald factor for effecting the near field to far 
field transition (Ruck et al., 1970). The second term in brackets is the directivity of a line array. Note 
that for khcosy > 30, Pv is usually insignificant. 

REFLECTION AND TRANSMISSION COEFFICIENTS 

Consider an acoustic wave in medium 3, a fluid (water), incident on medium 2, an elastic plate of 
thickness d, which in turn is backed by medium 1, a fluid (water or air). The reflection and 
transmission coefficients are given by Brekhovskikh (1980): 
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where 

and 
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The propagation angles (measured from the normal) are related by Snell's law, 

k3 sin#, = k2C sin#2C = k2S sin#2S = &, sm.6x . 

Typical values for steel are p = 7.8 x 103 —j, E = 2.17 x 10n —j, and a = 0.284 . Hence, 
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m m 
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Monostatic Reflection Factor 

In the monostatic case, 93 = 0 and, consequently, all the other propagation angles are zero as 
well. Here, 
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The extrema are found from the requirement 
d\R M\ 

dp 
0 to be given by the conditions cos PM = 0 and 
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sin PM = 0. Correspondence with maxima and minima depends on the impedances. Hence, 
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while an air-backed plate has U?Mmin = 0.6332 and U?Mmax = 0.9995. For a 2.5-cm-thick plate, the 

minima and maxima are separated by 55 kHz. 



Loss Factor 

n 
Since the penetration angle can range between 0 and very close to —, no simplifications can be 

made to the transmission coefficient. 

HULLS 

Since the specular point search and principal curvature calculations are independent of frequency, 
they should be clearly separated from the remaining calculations. 

SAILS AND CONTROL PLANES 

Since the specular point search and principal curvature calculations are independent of frequency, 
they should be clearly separated from the remaining calculations. 

EDGES AND WEDGES 

We will use cylindrical coordinates (p,<f>,z) . The wedge surfaces will be defined as ^ = 0 and 

<f> = In - ^Wedge.   Let v be defined as 

viz = 2n -1 ̂ Wedge 

Note that an edge has v = 2 . For plane wave scattering from a straight wedge, Pauli (1938) gives the 
monostatic solution: 

where 

>M: 
/— 

p 4 2  .   n 
sin— 
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2cos— 

TV W 
cos cos— 

V V 

eikpms¥FcomUkp{l + cosy/)\+- 

and 

Fcom(z)= [e-Tldr 

is the complementary Fresnel integral.  F0001^) = J—E^yz) of Abramowitz and Stegun (1965). 

For a straight wedge of length, h, and scattering of a spherical wave, the solution is 



.     sin2 y   Vp _ , <t> = —   —Pd) 
Ali    ■'f'^ Pauli» 

where y is the angle with respect to the edge and Pv was discussed in the Phase-Cancellation Factor 
section. 

HULL INTERNALS 

The problem here is in the determination of the transmission coefficients. Since the penetration 
angle calculations are independent of frequency, they should be clearly separated from the remaining 
calculations. 

SAIL INTERNALS 

The problem here is in the determination of the transmission coefficients. Since the penetration 
angle calculations are independent of frequency, they should be clearly separated from the remaining 
calculations. 

PROPELLERS 

The hydrofoil formulation of Lengua (1991) is used. Since the specular point search and principal 
curvature calculations are independent of frequency, they should be clearly separated from the 
remaining calculations. 

PROPELLER CAPS 

Consider a plane wave, of wavenumber, k, incident upon a finite cone with a flat base. Denote 
the half-angle of the cone by y and the radius of the base by a. The height is then h = acoty. 

Polar coordinates (r, ^) are used, with the origin at the tip of the cone. The values 0 = 0 and <f> = n 

represent axial incidence upon the tip and base, respectively. For the purposes of this discussion, the 
71 7T 

base is always shadowed. Thus, only the interval, 0 < ^ < —, will be considered. When <j) = / 

(broadside), there is specular reflection from the surface of the cone. 

It is useful to examine the problem from a geometrical theory of diffraction perspective. First 
note that, for 0 < (/> < y , two singly diffracted rays from the edge are returned to the source. Hence, 
the backscattered field is an oscillatory function of ka, due to interference between these rays. For 

7T 
y < <p < —, only one singly diffracted ray from the edge is returned to the source. Hence, the field 

does not oscillate as a function of ka . Also note that for <f> = 0, the edge diffracted rays have an 



axial caustic. 

For a unit amplitude incident field, the scattered field is 

where D is the diffraction coefficient. Kouyoumjian (1977) has determined uniform solutions through 
the axis and broadside. Let 
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where J0 is the zero-order Bessel function and the upper (lower) sign applies to the hard (soft) case. For 
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113 1 
For \z\ » 1, F(Z) « 1 + — / r-+- • • and, consequently, for be » 1, 11 w 2  z    4 z2 ' ' 

T(X) «1 e     4 «/ / —. This is typically a good approximation to within a few degrees of v ' 2 \x    2  x 
broadside. 

Note that there is a discontinuity at </> = /■ The transition about this region is extremely difficult 
to formulate. However, the scattering amplitude there is typically so small as to not be a concern. 

CORNERS 

Let us consider a dihedral corner, represented as a flange on a cylinder. It is useful to first discuss 
the special case of a plane wave, of wavenumber, k, and unit amplitude, incident upon a finite 
cylinder, of radius, a, and length, 2d, at whose center is a flange, of height, h, and at a right angle 
to the cylinder. Let 6 denote the angle of incidence with respect to the cylinder normal. The 
scattering amplitude depends on the extent of the wave reflected from the corner back to the source, 
or "aperture" of the corner. Now, monostatic reflection from the cylinder and flange is equivalent to 
bistatic reflection from the cylinder to the virtual image of the source. The flange acts as the plane of 
reflection. If the cylinder were of infinite length, the aperture would be L = 2htan0. For a finite 
cylinder, the aperture is limited to its length. Thus, 

L = 2 min[J,/z tan 6\. 

Bistatic reflection from a cylinder of length, L , has the amplitude, 

_   IkacosO 

assuming kacosO » 1. 

For a spherical wave, from a source at a range, r»2d, the backscattering amplitude is 

P = Basic 

r2 

71 
Let us now consider the general case. Let the corner have an angle — + <fi and an aperture 

covering the interval, x} <x<x2. Then, it can be shown (Sides, 1976) that the backscattering 
amplitude is multiplied by a correction factor, 

r2   N 

B = —YAne
ir", 



where 

_ -y/cos(y + ß„) sin[£Ax sin(^ + ßn)] 

r2sm(0 + ßn) 

T„=-2k(rn-r) 

ßn = arctan 

— cos^ 

1- 
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r2 = r2 +x2 +2rx„ sin^, 

X 1 
with xn = x, + «Ax and JV = — . A typical increment is Ax = —. 

Ax 2k 

In the continuum limit, 

B 

cos ^ + arctan 
xcos^ 

~T*. r2+x2 + 

r + xsin^y -2/& yr2+jc2+2n:sin^-r 

2rxsin^ 
c&, 

which cannot be evaluated analytically, the summation expression is more suited for numerical 
calculation. However, if r -> co, 

i sin(ÄZsin^)  -^üä^-SM 

kL sm<f> 

Note that this is the product of three terms. The first may be considered an obliquity factor. The second 
is the directivity of a line array. Hence, a non-right corner is analogous to non-normal incidence. The 
third term represents a shift of the phase center. 

When r »\x 1,2   > 

B* 
[TZTCOS^ 

2kL2 
F^ -(rsin^ + x2) -F, -(rsin^ + Xj) ikrsin2 $ 

This is usually a satisfactory approximation. 
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TANKS 

Tanks can be very complex physical structures and very difficult to model in detail. They do not 
wrap completely around the hull but are separated by longitudinal plates. They may be reinforced 
with ribs and/or stringers. Some may contain air flasks. They contain fluids of various types and 
may hold a combination of sea water and air. 

To allow analysis, a number of simplifying assumptions are made. The separator plates, stringers, 
and flasks are not modeled. Therefore, only dihedral corners are considered. Each tank is uniformly 
filled with a specified fluid. A tank is taken to be formed by concentric hulls bounded by deep 
frames. 

Multiple reflections (bounces) within a tank are designated by a pair of integers, [N, M], 

following the notation of Sides (1976). N refers to the number of times a ray is reflected from 
bulkheads.   M refers to the number of times a ray is reflected by hulls. 

For the case of plane-wave incidence and right-angle corners, the backscattering amplitude of an 
\N, M] bounce is 

^Basic  = ^Bl  lRB2ROH '^PHll 7 [TA + T2dl\   • 

This is composed of several factors. The square-root term is the amplitude of an ideal corner reflector, as 
discussed in the previous section. There is a reflection coefficient, R, for each wall of the tank. The 
factor in brackets consists of "transmission windows" of length, d} and d2, multiplied by the 

transmission factors, Tx and T2. Since rays must pass through either the leading bulkhead, outer hull, or 
both, the appropriate factors must be used. In terms of the transmission coefficients, the three 

possibilities are TBl, TQH, or TBiT0E. Therefore, d must be divided into regions of constant 

transmission factor. 

The general case includes a correction factor as discussed in the previous section on corners. 

One possible way to account for the effects of clutter is through a mean free path approach. This 
is obviously a stochastic analysis, so agreement is only expected in the aggregate and not for 
particular realizations. The mean free path, A , may be inferred from schematics or experimental 

-d/ data. The amplitude of a particular bounce is then reduced by a factor, e /A . 

It is readily apparent that because of the reflection and transmission coefficients, the frequency 
dependence is a complicated function. Experience shows that higher order bounce numbers do not 
make an appreciable contribution, so that the tank response may be simply taken as the [l,l] bounce. 

At this level of approximation, i?PH may be taken as unity. 

FRAMES 

The problem of scattering from hull stiffeners is very complex and has been the subject of 
considerable debate. We use the Hayek and Karali (1993) and Hayek (1997) formulation. Consider 

11 



a plane wave of amplitude, O0, incident at an angle, ß0, with respect to the normal, on an elastic 

plate of thickness, h . Let p, D, and G be the density, flexural rigidity, and shear modulus of the 

plate, respectively, and let K1
 = n /, ~ . Let 

D = 
Eh3 

12(l -v2) 

G = —. r, 
2(1 + v) 

with E and v the Young's modulus and Poisson's ratio of the plate. 

The reflection coefficient of an infinite plate without discontinuities and with fluid loading on one 
side only is given by 

where 

[o)-~a(0o) + ib(Ooy 

a(#0) = F5 + F3 sin2 0O 

b(&o) = l^4 ^0 ~" ^1 sm2 ^0 + F2 jcos#0. 
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Ft 
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The thin-plate speed, 

CP=. 
'p(l-v2) 

and Q = °y     , where the critical frequency is 

»„ 
12d 

/zc 

The result for the scattered field is, after a steepest descent approximation, 

7^ 

¥«<DO[1-K(0O)]- 

exp z'l £0
r 

kQr 
cos# 

C0+C,sinö+C2sin2ö 

F5 + F3 sin2 0 + z cos#[sin4 G-Fx sin2 6> + F2 ] 

±2m£ residues [between S and L], 

where 6 is the observation angle and the residues in this expression are from the poles enclosed between 
the steepest descent path and the original path of integration. The ± sign is due to the fact that the two 
paths cross one another. Hence, the sign depends on where the pole is located, that is, whether it is 
encircled clockwise or counterclockwise. The residues may be calculated as 

residue of a; = O0 [l - V(00)] exp[/Ä;0r cos(or - #)] cos a 
C0 + C, sin« + C2 sin2 a 

da 
g(sino:) 

where Q(sina; ] = 0, with 

Q(A) = F5+F3A
2 + ylA2-\[A* - F}A

2 + F2]; 

and 

ö(sina) = 2F3smQrcosa + z'sina - F2 + F,(sin2 a-2cos2 en-sin4 a + 4sin2 «cos2 a\. 
da 

The result is only valid for large kQr , and it fails near grazing because cos# -» 0. The coefficients, 
C„, are given by 

C0 = 
27riZfk

2F5 

2ma>p0 - Zfk0 F5I0 - Zfk0 F3I2 

-cos#n 
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^ImZ^ktF,       .   „ 
C] = —2 2L^i sin0 cos5>o 

Z*JLl-£-i /-Ä-n Jt   o ■'fn-0J- 3 

2ma>p0 — Zfk0 FSI0 — Zfk0 F^I2 

C2   = T~. ^    72^r ,,2P,    COS(90 • 

where 

Z^ and Zm are the line force and moment impedances, respectively, of the frame. 

It is obvious that this has an extremely complicated frequency dependence before even 
considering the dependencies of Zf and Zm. There is no satisfactory way to approximate these 

results over any appreciable frequency range. However, it is possible to achieve significant 
computational savings. 

APPROXIMATIONS TO INTEGRALS 

Calculation of the In via numerical integration involves considerable computation time. For high 

frequencies they may be approximated. The procedure is as follows. Write 

Q(A) = V/l2-l[^4 - 2,2 Jl4 - A2
2] + F5 + F,A2 

where 

V =\{^±iFj^AF^. 

Note that for Q » 1, the F3 and F5 terms are small. Also note that for most materials, F, » F2 (and 

F3 » F5). Hence, the integral is dominated by the regions about A2 = A2 . The approximation 

consists of using this value of A within the radical, so that 

J-QO 

A"dA 
f \ 

F+i     F" 2 A4 A2+F,-i-    F* 

Observe that for odd n, In = 0. Let A = -Jx , then for even n 

i   i 
—n— 

r      r°      x
2   2dx 

14 



where 

1 -^3 F \ i ~1,2         2 Vi-v 
±J|F1+/-    ^ 

Vi^V V^ 

Now, 

x^'ax ;r 
^^-'-r^Jcsc^) 

(x+ß)(x+r)   r-ß\ 

for |arg/?| < n, |arg/| < ;r, and 0 < Re// < 2 (Gradshteyn, 1980). Thus, 

n 

zx-z2 
(-*Kl)-(-**)* >-o CSC (n + l) 

;r 

Specifically, we have 

'o*" 
ITC 

zx-z2 

1 1 

yz2     Vzi 

and 

i2    « -yjZx *JZ2       . 

Let us consider a 5-cm-thick steel plate (coincidence frequency of 4.7 kHz). The "exact" and 
approximate results are compared in figures 1 and 2. As can be seen, the general behavior is 
followed, but not the oscillations. This is not as serious a problem as might first be expected, 
because their effect is mitigated by the manner in which they enter the C„. Figures 3 through 11 

compare the results for the non-angular parts of C0, C,, and C2 for three cases. Case 1 has 

N-s ~      .~<..T    „      ~,      r,      ,„„. and Z„ = 103z'N-s. Case 3 has Zf=Wi 3-- " "° and Z. = 103/N-s. Case 2 has Zf = 106z -^ 

Zf=l03i 

m 
N-s 

m2 

m 

and Zm = 106/N-s. Some general observations may be made, based on cases ran 

between the ones presented. C0 shows good agreement for Q > 1 in all cases. Cx shows the general 

behavior, but not the oscillations. Errors will be less than 3 dB for Q > 2 , except when \Zm\ > 105. 

C2 shows good agreement for Q > 6 in all cases. It shows good agreement for Q > 2 , except when 

\zf\>W. 
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REGIONS THAT MAY BE APPROXIMATED 

Note that the scattering amplitude is significant only in a small region about the coincidence 
angle, 9C, where 

sin#„ = 
1 

c   VQ' 

The width of this region decreases with increasing frequency. For most purposes, the amplitude can be 
treated as zero when more than 6 degrees from 0C. In any case, the integral approximations are more 
than sufficient. Thus, numerical integration is only required in the immediate vicinity of 6C. 

SUMMARY 

The frequency dependencies of target highlights have been examined. There are many areas 
where computational savings may be obtained, without loss of fidelity. Approximations, within 
tolerable errors, leading to further computational savings have been identified. These should allow a 
practical broadband simulation to be realized. 
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