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Program Objective 

To design and build coupled solid state lasers and arrays and develop models to understand and 
predict coherence and synchronization properties of the light emitted. Also the study of coupled 
waves in optical fibers, their nonlinear interactions, transport of polarized light 

Significant Results During Last Year 

I. Dynamics of Counted leasers 

Our experimental, numerical and analytic results on the dynamics of two coupled lasers were 
published in Physical Review E in April [1]. A novel result demonstrated was the possibility of 
phase synchronization of the lasers even though the amplitudes of the laser fields are unstable 
and chaotic. Stochastic fluctuations of the detuning between the lasers were accounted for in 
simulations to reproduce the characteristics of the intensity time traces measured. 

A new set of experiments on a linear array of three lasers was initiated. We find the remarkable 
result that the outer two lasers may be beautifully synchronized with each other though the 
middle laser is not. We are investigating this phenomenon in the light of recent work on 
generalized synchronization of nonlinear oscillators [2]. An illustration of the phenomenon is 
being sent by mail. 

Extensive simulations of the correlations of the intensity fluctuation of a nine laser array have 
been done this past year, and a paper is in preparation, to be submitted to Physical Review E [3]. 
The conclusion from experimental observations and numerical computations is that the spatial 
correlations of intensity correlations for the elements of the array can decay sharply or very 
slowly depending on the coupling strength of the lasers. 

II. Nonlinear Dynamics in Optical Fibers 

We are about to submit a paper to Physical Review E on an extensive study of nonlinear wave 
propagation in a single mode optical fiber [4]. It is shown that the evolution of new sidebands in 
the fiber due to four wave mixing can be significantly affected by phase fluctuations along the 
fiber length, as well as by fine spectral structure of the p :mp waves. 

Two papers were published in Physics Letters A [5,6], that developed a stochastic version of the 
Ikeda model. Two papers, one in Optics Letters [7] and one in Physical Review A [8], reported 
the results of extensive measurements of the polarization dynamics of the laser intensity on 
nanosecond time scales. A new laser model based on the Ikeda equations was developed and 
used to explain the formation of sharp pulses, irregular chaotic dynamics, as well as the 
formation of square waves in this system. These experiments and the corresponding models 
open a new regime for the investigation of fiber laser dynamics and future applications. 
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Chaos and coherence in coupled lasers 

K. S. Thornburg, Jr., M. Möller,* and Rajarshi Roy 
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 

T. W. Carr,* R.-D. Li,* and T. Emeux 
Universite Libre de Bruxelles, Optique Nonlineaire Theorique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium 

(Received 5 August 1996) 

A fundamental chaotic instability in a system of two coupled lasers is investigated both experimentally and 
theoretically. The amplitude instability and mutual coherence of the light emitted by the lasers is investigated 
as a function of the detuning and coupling parameters. A quantitative comparison of the intensity fluctuations 
is made with numerical simulations that include noise in the laser detuning. [S1063-65 lX(97)03904-4] 

PACS number^): 05.45.-l-b, 42.50.Lc, 42.55.Rz 

Haken's seminal analogy between fluid dynamics and la- 
ser instabilities initiated extensive studies of the Lorenz-like 
chaotic dynamics of the single mode far-infrared ammonia 
laser over the last two decades [1,2]. While this is conceptu- 
ally the simplest chaotic laser system, it is also of great fun- 
damental interest that two single-mode lasers that are stable 
individually can exhibit a chaotic instability when coupled 
[3,4]. Such a system provides a beautiful illustration of the 
rich and complex dynamical behavior of two coupled non- 
linear oscillators. Pairs of neurons [5], pacemaker cells [6], 
chemical oscillators [7], and Josephson junctions [8] provide 
other examples of coupled nonlinear oscillator systems. It 
has been theoretically recognized that the amplitudes of the 
coupled oscillators can display a rich variety of unstable be- 
haviors for certain regimes of coupling strength [9]. How- 
ever, there are no experiments on physical systems that have 
quantitatively probed the relationship between the chaotic 
amplitude instability and phase coherence of coupled nonlin- 
ear oscillators. In this paper we report the results of precise 
measurements of the amplitude dynamics and phase coher- 
ence of coupled lasers and make quantitative comparisons 
with numerical models. 

Many studies of coupled lasers have been motivated by 
the need for high power coherent sources. Coupled semicon- 
ductor, solid state, and C02 lasers have been studied [4,10- 
12], but it is the spatial properties of the output radiation that 
have received the most attention, rather than the dynamical 
characteristics of the emitted light [13]. Here, we study the 
chaotic dynamics and mutual coherence [14] of two coupled 
single-mode NdrYAG (neodymium doped yttrium aluminum 
garnet) lasers that are detuned from each other by a very 
small amount (roughly 1 part in 108 of the oscillator fre- 
quency) and for which we can vary the coupling strength 
over many orders of magnitude. 

•Permanent address: Westfälische Wilhelms-Universität, Institut 
für Angewandte Physik, Corrensstrasse 2/4, 48149 Münster, Ger- 
many. 

tPresent address: Naval Research Lab, Code 6700. 3, Special 
Project in Nonlinear Science, Washington, D.C. 20375-5000. 

* Present address: HGM Medical Lasers Inc., 3959 West 1820 
South. Salt Lake City, UT 84104. 

The following equations describe the time evolution of 
the complex, slowly varying electric field E and gain G of a 
pair of spatially coupled, single transverse and longitudinal 
mode class B lasers [15,16] 

It = T;l[(Gi-a)El-KE2] + i<o,El 

dGx 

~dt 
= r7,(/71-G1-G1|£1|

2), 

dE 

~di 
2-„-i T7  [(G2-a2)E2~KEi] + ICL»2£

-
2 , 

dG 2---i -jf = rJ\p2-G2-G2\E2\2). 

(la) 

(lb) 

(lc) 

(Id) 

In these equations, rc is the cavity round trip time 
(«»450 ps for a cavity of length of 6 cm), ry is the fluores- 
.: :e time of the upper lasing level of the Nd3+ ion 

; ps for the 1064 nm transition), p i and p2 are the pump 
*...-indents, a( and a2 are the cavity loss coefficients, and 
W[ and o)2 (angular frequencies) are the detunings of the 
lasers from a common cavity mode, respectively. The lasers 
are coupled linearly to each other with strength K, assumed 
to be small, and the sign of the coupling terms is chosen to 
account for the observed stale phase-locked state in which 
the lasers have a phase difference of 180°. For laser beams 
of Gaussian intensity profile and lie1 beam radius r the cou- 
pling strength, as determined from the overlap integral of the 
two fields, is defined as /t=exp(-d2/2r2). Control param- 
eters are the frequency detuning of the lasers (Aw 
= (ü2-o)\) and the coupling coefficient K. 

The dependence of the system dynamics on parameters 
can be numerically investigated by integrating Eqs. (1) using 
different values of K and Aw. Figure 1 displays the predicted 
amplitude instability of the two lasers and its relationship to 
the coherence of the laser light as a function of both the laser 
separation d and the detuning Aw. The height of the graph 
shows the largest intensity value of laser 1 recorded during 
the 5 ms integration time. The color coding shows the degree 
of mutual coherence between the two lasers, as measured by 
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FIG. 1. (Color). Numerically computed parameter space plot of the amplitude instability of two lasen as a function of both the separation 
d and detuning Aw. Here p, =0.053, p2 = 0.051, or, = a2=0.04, and r=225 /im. We use pump parameters that differ by a few percent in 
the simulation to account for the fact that the two lasers may be nonidentical in the experiment. The height of the graph indicates the largest 
intensity value recorded at a given value of separation and detuning, while the color of the graph denotes the degree of mutual coherence 
between the two lasers, as indicated by the fringe visibility. Blue colors indicate low visibilities, while red colors indicate visibilities 
approaching unity, as shown in the legend. 

the fringe visibility. The visibility V of the fringe pattern 
formed by the small angle interference of the laser beams is 
defined as V=UmUi-lmia)/(ItBÄX+Imin) where /„,„ and /, min -■—-■' ..— •       ■■■— r, luut' IHM IIUU 

are adjacent maxima and minima in the fringe profile. The 
fringe visibility is directly proportional to the absolute value 
of the complex degree of mutual coherence [14]. Low vis- 
ibilities, shown as blue colors in this figure, indicate states of 
low mutual coherence, while reds indicate visibilities ap- 
proaching one and therefore high degrees of mutual coher- 
ence. One can clearly see from Fig. 1 that the area where the 
intensity instabilities exist occurs just before the onset of 
phase locking and that significant intensity oscillations ap- 
pear only around a rather narrow band of detuning values 
between 105 and 106 s~'. A single positive Lyapunov ex- 
ponent was computed in this regime with a typical value of 

■» 104 s-1, demonstrating the chaotic nature of the instabil- 
ity. 

Insight into the amplitude instability can be obtained by 
considering the special case of identical laser parameters and 
by assuming that the two laser amplitudes and gains are 
identical. Equations (1) then reduce to 

d£ 
Tt -r = r~ '[G- a- #ecos(*)]£ 

dG      -> -^ = Tf
l(p-G-G£2), 

(2a) 

2b) 
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FIG. 2. Experimental system for generating two laterally 
coupled lasers in a Nd:YAG crystal and observing the amplitude 
instability. RP is a rectangular prism; translating this device 
changes the pump beam separation, and thus the infrared beam 
separation. The Nd:YAG crystal is coated for high reflectivity (HR) 
on one side and antireflection coated (AR) on the other. The output 
coupler (OC) is 2% transmissive; both mirrors at flat. FPI is a 
scanning Fabry-Perot interferometer, and as used to measure the 
mode spectrum of both lasers. 

Hi = 2rc 'KSin(<t>) + Ao> (2c) 

for the laser amplitudes |Ei| = |£2l = £ gains Gl = G2-G 
and phase difference $ = </>2-<£i, where 4>\ is the phase of 
the field "Ej. 

Equations (2a)-(2c) are the rate equations describing a 
single mode class B laser with variable losses. The phase 
equation can be integrated exactly, and <t>(/) is an un- 
bounded function of time if the detuning |Acu| exceeds a 
critical detuning Aü>C, where 

Awc=2/c7( 
-l (3) 

This is the critical condition for an amplitude instability 
[4]; we also note that the lasers are phase locked for detun- 
ings smaller than Auc [16]. If condition (3) is obeyed, then 
the laser equations (2a) and (2b) are periodically modulated 
by the cos[<t>(r)] term. The frequency of these modulations is 
given by 

0)M= \[KM^—KÖ}}. (4) 

On the other hand, it is known that the laser relaxation os- 
cillation frequency wR ( = 2irvR) for small Tc/rf and K = 0 

is given by 

wR= 
2{p-ct) 

TrT, cTf 

1/2 

(5) 

This implies the possibility of subharmonic resonance if 
the ratio of <i>M to wR is close to an integer. These resonances 
then produce branches of subharmonic solutions which ex- 
plain the destabilization of the laser system [17,18]. 

We have tested the prediction of the amplitude instability 
with the experimental system of Fig. 2, which consists of 
two parallel, laterally separated lasers created by pumping a 

single Nd:YAG rod of-5 mm length and diameter in a plane 
parallel cavity. The pump beams are generated from the ar- 
gon ion laser output (\ = 514.5 nm) by a system of beam 
splitters and prisms that ensure parallel propagation at an 
adjustable separation symmetric with respect to the YAG rod 
axis. The optical cavity consists of one high reflection coated 
end face of the rod and of an external planar output coupler 
with 2% transmittance. A Brewster plate and thick etalon 
within the cavity ensure linear polarization and single longi- 
tudinal mode operation. The lasers were operated at approxi- 
mately 33% above threshold pump power. For these param- 
eters, the relaxation oscillation frequency, vR, is of the order 
of 100 kHz. The frequency detuning between the two lasers 
can be adjusted by tilting the output coupler slightly, thereby 
introducing a minute difference in cavity lengths. 

Thermal lensing induced in the YAG crystal by the pump 
beams of waist radius "»20 yxm is responsible for generating 
two stable, separate cavities [16]. The TEMQQ infrared laser 
beams have radii (at lie1 of the maximum intensity of the 
Gaussian profile) of /••«•200 (im and their overlap may be 
continuously changed by varying the lateral separation J of 
the pump beams over a range of 0.5 mm-3 mm. The pump 
beam separation and profiles are measured directly by a ro- 
tating slit technique. In this range, there is no appreciable 
overlap of the pump beams and coupling is entirely due to 
the spatial overlap of the infrared laser fields. 

The individual output intensity time series are recorded 
with fast photodetectors and a two channel digital oscillo- 
scope. The optical frequency difference of the lasers is mea- 
sured with a radio frequency spectrum analyzer after com- 
bining the two beams on a photodetector. A scanning Fabry- 
Perot interferometer was used to ensure that both lasers 
oscillated only on a single longitudinal mode. 

The change of dynamical behavior of the detuned, 
cc sd system can be seen as the separation of the pump 
b- s is varied. For a large separation (d^l.20 mm) the 
las.rs were stable and incoherent. The visibility of the 
fringes was low (V^O), and the heterodyne single was mea- 
sured to be between 30 and 40 MHz. For a small separation 
(d«=0.8 mm), the lasers are stable and phase locked The 
fringe visibility was high (V—l), and the heterodyne Mgnal 
was absent since the lasers were frequency locked. Figure 
3(a) shows a typical intensity time trace characteristic of the 
unstable regime. Large bursts of the intensity occur, sepa- 
rated by quiescent periods. Here the lasers were separated by 
1.03 mm, which implies *— 2.0X 10"5. Using Eq. (3). we 
find that the condition for an amplitude instability requires 
lAoi^lO5 s~l, which is verified in our experiments 
(Aw* 1 MHz). The intermediate visibility of V=0.20 signi- 
fies the onset of phase locking. The experimentally measured 
visibilities are in excellent agreement we the numerically 
computed values represented in Fig. 1. 

In the experiment, a substantial amount of fluctuation in 
the detuning between the two lasers was observed; the beat 
signal frequency in the unstable regime fluctuated between 0 
and 10 MHz. In order to obtain quantitative comparison be- 
tween measured intensity time series and simulations, we 
numerically investigated the behavior of Eqs. (1) with a sto- 
chastic detuning term, such that A<i>(r) = ci>2-ci>,. where 
<Oi = w0j+8ü)j(t). Here <5w,(0 is a colored noise term of 
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FIG. 3. Intensity time traces of (a) experiment and (b) numerical 
simulation. The time trace in (a) was measured at a pump separation 
of d= 1.03 mm, and illustrates the bursting nature of the amplitude 
instability. The average interspace interval (ISI) is 1.9 ms, the nor- 
malized standard deviation tr///=0.10, and the standard deviation 
of the detuning (T±IU*' 106 s_l. (b) The numerically computed time 
trace of the intensity of laser 1 with an exponentially correlated, 
stochastic detuning term of strength D = 5X109 s"1 and correla- 
tion time X"' = 3 ms. The mean detuning Aw0 = 5xl05 s-1, and 
the standard deviation of the detuning o-Aa)= 1.4X IO6 s_1. The av- 
erage ISI was 1.7 ms, and 07//=0.12. The cavity losses were taken 
to be 4% and the lasers were pumped one-third above threshold, 
with a 0.5% asymmetry. 

strength D and correlation time X~', with the properties 
(8a)i(t)) = 0 and (<5üj/(r)5a)>(r + Ar))=50D\exp(-X|Ar|) 
[19]. 

We used three different statistical measures to compare 
the numerically simulated and experimental traces—the nor- 
malized standard deviation of the intensity cr, //, the average 
interspike interval (ISI), and the standard deviation of the 
detuning o-Aü). The average ISI is determined by measuring 

the average time between adjacent bursts whose intensities 
are greater than some threshold, here defined to be 1.2 times 
the average intensity. To avoid counting the same burst 
twice, a "quiescence time" rq of 0.8 ms was used such that 
a new spike would be detected no sooner than rq. The stan- 
dard deviation of the detuning in the experiments was mea- 
sured to be on the order of 10 MHz or less; numerically, 
<r&a>~ JD\. Using these statistical measures, the parameters 
D and X were adjusted to give quantitative agreement be- 
tween the observed experimental results and the numerical 
simulations. The range of parameters D and X that gave 
quantitative agreement with experiment is very limited; 
D~0(1O9 s_1) and X-,~O(10-3 s). Figure 3(b) shows a 
good match with the experimental data. 

In conclusion, we have demonstrated a fundamental am- 
plitude instability of two coupled lasers and its relationship 
to the mutual coherence of the total held. Theoretical and 
numerical predictions, using a dynamical model, of the range 
of coupling strengths where the instability is expected to 
occur agree very well with experimental observations. For 
large separations, both the model and experiment reveal 
stable intensities and no appreciable coherence. As the sepa- 
ration is decreased to just above the phase-locking point, 
large amplitude fluctuations are observed, in agreement with 
numerical predictions. The laser fields exhibit a low degree 
of mutual coherence for this range of coupling strength. It 
was necessary to include stochastic detuning fluctuations to 
achieve quantitative agreement between experimental and 
simulation in the unstable regime. Finally, for even smaller 
separations, phase locking is achieved. The lasers are now 
found to be stable, mutually coherent, and frequency locked. 
These studies are directly relevant to the design of laser ar- 
rays; they also reveal a rich and complex dynamical scenario 
which should be systematically explored in the future for a 
variety of different oscillator systems. 
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Fast polarization dynamics of an erbium-doped fiber ring laser 

Quinton L. Williams and Rajarshi Roy 

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430 

Received May 3, 1996 
The polarization dynamics of a unidirectional erbium-doped fiber ring laser has been observed for individual 
round trips in the cavity. A rich variety of dynamic states, including square-wave pulses and irregular 
temporal patterns, was observed as operating parameters were changed. A model with coupled delay and 
differential equations is used to interpret the dynamics.   © 1996 Optical Society of America 

Rare-earth-doped silica fiber lasers have recently re- 
ceived much attention in the context of long-time-scale 
polarization resolved dynamics. Phenomena such as 
antiphase dynamics in orthogonal polarization states,1 

self-pulsing,2 and polarization switching induced by 
optical feedback3 have been reported. Experimental 
evidence of the quasi-periodic route to chaos in an 
erbium-doped fiber laser has been published.4 The 
previous reports were done on the millisecond time 
scale, which corresponds to the relaxation oscillation 
frequency of the fiber laser. 

We present some measurements of the fast temporal 
(on the nanosecond time scale) dynamics of the Er3+- 
doped fiber ring laser (EDFRL). The fiber laser out- 
put beam contains two linearly polarized components. 
It is within the two groups of orthogonal polarization 
eigenmodes that the various dynamic states are ob- 
served and investigated. Computational results from 
a model based on coupled delay and differential equa- 
tions of the Ikeda type5 provide an explanation of the 
experimental observations. A similar model was de- 
veloped by Loh and Tang6 for polarization dynamics of 
an external-cavity semiconductor laser. 

The EDFRL presents a unique opportunity for the 
study of laser nonlinear dynamics. The small longi- 
tudinal mode spacing and large gain bandwidth make 
the EDFRL a practical experimental system in which 
the collective behavior of a large number of globally 
coupled nonlinear oscillators can be observed. Such 
models have been studied in the context of physical and 
biological systems by Strogatz and co-workers7 and by 
many others recently. 

A schematic of the experimental configuration is 
shown in Fig. 1. The coherent pump source was the 
514.5-nm-wavelength line from an argon-ion laser. A 
6-m length of erbium-doped fiber with an ion con- 
centration of -240 parts in 106 was taken as the 
gain medium. A Faraday optical isolator was included 
in the laser cavity to ensure unidirectional opera- 
tion. An output coupler removed 3% of the intra- 
cavity power. The polarization controller functioned 
as a discrete birefringence-inducing element. Overall, 
the laser cavity was 20 m long, 14 m being passive op- 
tical fiber. Free ends of the couplers were placed in 
index-matching fluid to suppress the small, but para- 
sitic, Fresnel reflections. The output at A = 1.561 fj.m 
was sent through a A/2 wave plate and a polariza- 
tion beam splitter cube, where the orthogonal polari- 

zation eigenmodes could be observed simultaneously 
with high-speed photodetectors. Data were recorded 
by a fast digital oscilloscope with a 1-GHz sample rate. 
The round-trip time for the cavity was —100 ns, and it 
was possible to store 100 data points per round trip. 

The EDFRL lases on a broad 3-dB optical gain 
bandwidth that is —1010 Hz. The longitudinal mode 
separation is 9.8 MHz; the number of active oscillating 
modes is well over 2000. An optical spectrum analyzer 
reveals that the modes oscillate within orthogonally 
polarized mode groups that have been modeled as two 
supermodes.1 

While the EDFRL was pumped well above thresh- 
old (the threshold pump power was —175 mW), self- 
pulsing was observed on the nanosecond time scale. 
Figures 2(a) and 2(b) are resolved polarization com- 
ponents of the total output intensity. In Fig. 2(a) the 
distinct sharp pulses are separated by the fundamental 
cavity round-trip time of—100 ns. Figure 2(b) shows 
a highly complex time series that is quasi-periodic or 
nearly perfectly repeating, with a period of —7 cavity 
round trips. Inspection of the irregular waveforms in 
Fig. 2( -hows that these patterns repeat for several 
hundn avity round trips before eventually evolving 
into on.cr irregular waveforms.   At the higher pump 

Dipol 

Fig. 1. Experimental arrangement: Ar*-ion laser, Ap = 
514.5 nm; 514.4-1550 nm wavelength division multiplexer 
optical coupler; Faraday optical isolator (not shown); 97/3 
coupling ratio output coupler, neutral density (ND) fil- 
ter with 10% transmission at 1.55 /im; A/2 wave plate 
at 1.55 fim; DETs, fast-response InGaAs/p-i-n photo- 
detectors. 
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Si(t) = &f (Si(t - TR) exp{2A1[W«)]}(l + cos 4>) 

+ S2{t - TR) exp{2A2[Wit)]}(l - cos <t>) 

- 2[Si(t - TR)S2it - TR)]V2 

x exp{Ai[Wit)] + A2[W(t)]} 

x sin{K[W(0]}sintf>), (1) 

200.0 400.0 600.0 1000.0 
Tnnt(ns) 

Fig. 2. Experimentally measured polarization resolved 
traces of (a) self-pulsing at the cavity round-trip time in 
the x-polarization direction from an EDFRL with 10% 
output coupling, (b) irregular trace in the y-polarization 
direction. The EDFRL was pumped four times threshold. 
(c), (d) Antiphase square pulses in the x- and y-polarization 
directions, respectively, from an EDFRL with 3% output 
coupling.   The EDFRL was pumped at 3.3 times threshold. 

levels (three to four times above threshold), antiphase 
square pulses were formed in the orthogonal polariza- 
tion intensities for a narrow range of adjustment of 
the polarization controller. Figure 2(c) shows 30-ns 
pulses. This corresponds to the 6-m length of the gain 
medium. Figure 2(d) shows 70-ns pulses that corre- 
spond to the 14-m length of the passive fiber within 
the laser cavity. Another detail to note is the highly 
structured intensity fluctuations that ride on top of the 
square pulses and repeat over many round trips. 

A laser model based on an Ikeda-type set of delay- 
differential equations was used to investigate the 
dynamical behavior of the EDFRL. Loh and Tang 
derived a set of difference-differential equations to 
study ultrahigh-frequency polarization self-modulation 
in semiconductor lasers.6 It is in the same spirit that 
we derive our set of equations from the Maxwell -Bloch 
equations; they take the form 

S2it) = 

dWjt) 
dt 

^- (Siit - TR) exp{2A1[W«)]}(l - cos <t>) 

+ S2it - TR) exp{2A2[W(*)]} (1 + cos 6) 

+ 2(Si(f - TR)S2it - TR)]V2 

x exp{Ai[Wit)] + A2[W(t)]} 

x sin{K[W(*)]}sin<£), (2 

P - n[WT + Wit)] - Siit - TR) 

x (exp{ai[Wit) - NQL]} - 1) 

- S2it - TR)(exp{a2[Wit) - N0L]} - 1), (3) 

where Wit) = ftNiz,t + z/ug)dz, K[Wit)] = 
QiiWit)] - q2[Wit)] - ß,Sh2it ~ TR) = \Elt2it ~ rR)\2/ 
hu>i,2, Ai,2[Wit)] = iau2/2)[W(t) - N0L], 9i,2[W(n] = 
ai.2(ai,2/2)[W(f) - Wit = 0)], and 4> is the relative 
phase difference between the polarized fields. The 
mode detuning factor is defined as am = -Am/y_, 
where Am = wm - «o and m = 1,2. Other parameters 
are defined in Table 1. 

In this model the gain is taken to be a 1inear function 
of the population inversion. Si and S2 are the photon 
number densities for the x- and y-polarization modes, 
respectively, and W represents the inversion. The 
differential equation was integrated with a fourth- 
order Runge-Kutta routine with a 1-ns integration 
time step, corresponding to the experimental sampling 
time for observation of laser dynamics in a single cavity 
round trip. 

In Eqs. (l)-(3) the lumped parameter ß is due to the 
phase shift associated with fiber birefringence over the 

Table 1.   Parameter Values Used in the Numerical Simulations 

Parameter Value Unit Definition 

fil.2 
Lj 
L 
NT 

N0 

TR 

y± 
y\\ 
Ao 
Ai 

<r* 
Ot.2 

Q\.2 

P 

0.97 
20 
6 

1025 

1020 

io-7 

4.75 x 10u 

102 

1.530 x 10"6 

1.561 x 10"s 

7.5 X IO"25 

2.03 X 10"23 

3.52 x 10"2 

1.44 x 1028 

m 
m 

m"a 

m"3 

s 
s ' 
s-1 

m 
m 
m2 

m2 

Return coefficient 
Total cavity length 
Length of active fiber 
Ion concentration 
Transparency inversion 
Cavity round-trip time 
Polarization decay rate 
Population decay rate 
Resonance wavelength 
Wavelength of mode 1 
Emission cross section 
Mode 1, 2 gain factor 
Mode 1, 2 detuning factor 
Pump term 
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Fig. 3. Numerical simulations of time traces showing 
self-pulsing at the cavity round-trip time in (a) the 
x-polarization direction, (b) the y-polarization direc- 
tion, (c), (d) Antiphase square-wave pulses in the x- 
and y-polarization directions corresponding to those of 
Figs. 2(c)-2(d). Parameters for (a) and (b): 4>A = 0.027, 
<(>P = ir - 0.175, ß = 1.5 x 10"3, and AA =■= 0.125 fm. 
Parameters for (c) and (d): <t>A =- 0.027, 4>p = ir - 0.015, 
ß = 10"2, and AA = 4.09 fin. The pump rate is 3.2 times 
threshold. 

entire cavity. By changing the polarization controller, 
one introduces a local birefringence by applying stress 
to the fiber, which appears as a discrete phase shift 
in the section of passive fiber. We take the phase 
term 4> to be <{>A in the active region and <t>p in the 
passive region that contains the polarization controller. 
The value of d>A was taken to be small but nonzero. 
The small phase shift in the active fiber could be a 
result of the active fiber's being wound onto a spool. 
This feature of separate phases in the active and 
passive fiber portions is necessary for reproducing 
the observed asymmetric nature of the square-wave 
pulsations. <j>p was taken to be approximately IT rad 
because the polarization controller functions roughly 
as a A/2 wave plate. The birefringence causes the two 
mode groups to travel at different speeds, ultimately 
resulting in a mode group detuning AA = (A2 - Ai). 

Typical results from the numerical model showing 
output intensities in orthogonal polarization directions 
are displayed in Fig. 3. Table 1 gives values for the 
physical parameters of the system. These parameters 
yield a good match between theory and experiment, 
as seen from Figs. 2 and 3. However, these computa- 
tions are merely representative of the large variety of 
waveforms that emerges for different parameter 
values; they are not meant to provide a detailed 
reproduction of the experimental waveforms. The 
sharp pulses are seen to be distinctly separated by 
the fundamental cavity round-trip time of 100 ns 
in Figs. 3(a) and 3(b). One sees that the irregular 
waveforms actually repeat over single cavity round 

trips for the parameters chosen. Figures 3(c) and 
3(d) show antiphase square-wave pulses that form 
when the parameter value settings of </>A, <t>p, ß, and 
A A are in the proper regime. 

Essential experimental features captured by the 
model are the following: (1) the dynamics occur on 
the nanosecond time scale, (2) self-pulsing at the 
cavity round-trip time or multiples with repeating 
irregular waveforms is present, (3) antiphase square- 
wave pulses form when parameter values are favorable, 
(4) the dynamics of the system take place with a 
dc background, (5) highly structured fluctuations are 
present on the tops of the square pulses, and (6) the 
time durations of the square pulses correspond to the 
lengths of active and passive fiber in the ring. 

In conclusion, measurements of the fast temporal 
dynamics during a single cavity round trip have been 
made for an erbium-doped fiber ring laser. Square- 
wave pulsing and irregular dynamics that repeat at 
round-trip times have been observed in the two or- 
thogonal polarization eigenstates. The experimen- 
tally observed properties were described by a unified 
model based on an Dteda-type delay-differential equa- 
tion model of the laser. We have shown that fiber 
birefringence, polarization controller adjustment, and 
the frequency difference between the orthogonal mode 
groups influence the nature of the dynamics. 
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Fast intracavity polarization dynamics of an erbium-doped fiber ring laser: 
Inclusion of stochastic effects 
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The dynamics of a unidirectional erbium-doped fiber laser is investigated on a time scale short enough to 
observe, with good resolution, its behavior for individual round-trips in the laser cavity. With an intracavity 
polarization controller, a rich variety of nonlinear phenomena, ranging from self-pulsing to square-wave 
antiphase patterns in two orthogonal states of polarization, are observed. These patterns evolve continuously in 
time. A stochastic delay-differential equation model is proposed to describe this system. Numerical simulations 
show that this model satisfactorily accounts for all types of qualitative behavior and reveal that the inclusion of 
spontaneous-emission noise is necessary to reproduce the observed continuous pattern evolution. Two differ- 
ent, typical types of nonlinear dynamical states are found both numerically and experimentally: a deterministic, 
low-dimensional regime and a noise-driven high-dimensional motion. [S 1050-2947(97)01403-0] 

PACS number(s): 42.65.Sf, 42.8l.-i 

I. INTRODUCTION 

The idea of doping glass to obtain amplifying optical fi- 
bers is very attractive from both a technological and a fun- 
damental point of view. Technologically, fiber amplifiers are 
very promising useful devices in all-optical telecommunica- 
tion schemes, through their use to replace repeaters in fiber- 
optic transmission lines, for instance. When these materials 
are complemented with a cavity resonator and a pumping 
scheme, laser emission can be obtained. Such systems are 
used for the generation of ultrashort pulses and solitons. 

Besides their evident practical applications, fiber lasers 
are very interesting from a basic physics perspective. The 
conjunction of the inherent nonlinear character of both the 
optical fiber and the light amplification process makes this 
type of laser specially suited for investigations of nonlinear 
dynamics in optical systems. Furthermore, because of the 
amorphous character of the glass host, fiber lasers are the 
ideal counterpart of the more extended and well-known 
doped-crystal solid-state lasers. 

Due to the optical-guiding characteristics of their ampli- 
fying medium, fiber lasers can have cavity lengths of the 
order of tens of meters, orders of magnitude higher than in 
most other lasers. This fact, along with the broad gain profile 
of doped fibers, ensures that a large number of longitudinal 
modes experience gain and coexist inside the cavity, coupled 
through gain sharing. Hence fiber lasers usually operate in a 
strongly multimode regime. The dynamics of multimode la- 
sers is very rich, including antiphase behavior and self- 
organized collective oscillations [1]. Previous experiments in 
fiber lasers [2,3] have shown this kind of phenomenon in the 
dynamics of two orthogonal states of polarization, which 
suggest a description of this system in terms of two super- 

*Permanent address: Departament de Fisica i Enginyeria Nuclear, 
Escola Tecnica Superior d'Enginyers Industrials de Terrassa, Uni- 
versität Politecnica de Catalunya. Colom 11, E-08222 Terrassa, 
Spain. 

modes associated with two different polarization eigenstatcs 
of the field. Another dynamical feature that is usual I > ob- 
served in experiments is self-pulsing [4], which has recent I > 
been related to an absorption effect due to interaction be- 
tween dopant ions [5]. All the previous experiments have 
been done in the millisecond to microsecond time scale. 
which corresponds to the relaxation-oscillation frequency of 
the laser. But this system, due to its large cavity length and 
thus long round-trip time, gives us a unique chance to ob- 
serve its dynamics for individual round-trips inside the cav- 
ity. This work aims at the characterization of this fast polar- 
ization dynamics in the regimes previously mentioned. 

We report experimental observations of the intracavity 
dynamics of an erbium-doped fiber laser. A polarization- 
controlling device has been included in the cavity and. as a 
result, a fast polarization-switching effect, on a time scale of 
the order of nanoseconds, has been observed. This kind of 
effect is known to occur in semiconductor lasers [6] when a 
wave plate is inserted in the laser cavity. Recently, optical 
feedback has been found to induce this effect also in NJ- 
doped fiber lasers [7], but on a much slower time scale um 
the order of microseconds). A model is proposed to explain 
the behavior observed. Most models used so far in doped- 
fiber lasers to account for antiphase [2], self-pulsing [3]. and 
polarization-switching [7] behavior are based on semiclassi- 
cal rate equations for each of the two polarization super- 
modes, which are coupled to one another through cross satu- 
ration and gain sharing. In some cases, the need of explicitly 
taking into account the dependence of the system variables 
on the propagation direction has been stressed [3]. This con- 
sideration, which is, in general, advisable in this system due 
to its long cavity, is in our case unavoidable given the time 
scale in which the observations are made. Following Loh and 
Tang [8,9] in their modeling of fast polarization belt- 
modulation in semiconductor lasers, we develop a delay- 
differential equation model that accounts for all kinds of fea- 
tures observed. The inclusion of spontaneous-emission noise 
is seen to be necessary to obtain a more complete agreement. 
Indeed, the importance of spontaneous emission in the dy- 
namics of guided lasers is a well-established fact [2]. Finally, 
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FIG. I. Experimental setup. 

in order to simplify the modeling of the system! a ring-cavity 
configuration is used. Preliminary results of this investiga- 
tion have been reported elsewhere [10]. 

The outline of the paper is the following. Section II con- 
tains a description of the experimental apparatus and a report 
of the behavior observed. Section III establishes a theoretical 
model that reproduces this behavior, as shown by numerical 
simulations. Finally, some conclusions and comments are 
made in Sec. IV. 

II. EXPERIMENTAL FEATURES 

A. Experimental setup 

Several wavelengths can be used to optically pump an 
erbium-doped fiber amplifier in order to obtain laser emis- 
sion. In our case the pump wavelength is fixed at 514.5 nm 
and is provided by an Ar * -ion laser. Under these conditions, 
the lasing frequency lies in the near infrared, at 1.561/xm. 
The experimental setup is shown in Fig. 1. The amplifying 
medium is a 6-m-long erbium-doped fiber, with an ion con- 
centration of approximately 240 ppm (corresponding to 
4.98x 1025 ions/mJ). The total cavity length is made to be 
20 m long with the addition of 14 m of passive optical fiber. 
The fiber is closed on itself in order to form a ring cavity. To 
ensure unidirectional operation, an optical isolator is placed 
inside the cavity. The optical isolator is based on the Faraday 
effect and is polarization insensitive. The pump light coming 
from the argon laser is launched into the ring fiber through a 
wavelength division multiplexer (WDM), while an output 
coupler removes part of the light that circulates inside the 
cavity. In both cases, fiber ends were placed in an index- 
matching fluid to prevent possible parasitic Fresnel reflec- 
tions, as shown in Fig. 1. Two different output couplers have 
been used, with coupling ratios 90/10 (10%) and 97/3 (3%), 
respectively. A 5 x microscope objective is used to optimize 
the coupling of the pump light into the input port of the 
WDM. The output emission is passed through a 10% trans- 
mission neutral density (ND) filter and a half-wave plate to a 
polarization beam splitter, which separates the light into its 
two orthogonal polarization components. These components 
are measured with two high-speed photodetectors connected 
to the two input channels of a fast digital oscilloscope with a 
1-GHz sampling rate. This setup allows us to measure the 
intensity with 100 data points per cavity round-trip. 

In order to modify the polarization state of the light trav- 
eling inside the fiber, a polarization controller is used. Polar- 
ization controllers produce a phase shift by introducing a 
local birefringence into a portion of the fiber. This is accom- 
plished by winding the fiber around mandrels of the proper 
diameter. It is very important to correctly choose both the 
diameter of the mandrels and the number of tums of the fiber 
around them: if the diameter is too small, the bending loss of 
the device becomes too high; too few tums would undesir- 
ably reduce the phase shift. We found that, for wavelengths 
of the circulating light, a diameter of 38 mm and three tums 
of fiber around each mandrel was a good choice to produce a 
small loss and a retardation effect similar to that of a half- 
wave plate. 

B. Characterization of the system 

A measurement of the total output power as a function of 
pumping is the first standard procedure used to characterize 
this laser system. Such a procedure shows that the lasing 
threshold is ~ 150 mW. When the the output light is sepa- 
rated into its two orthogonal polarization components, one 
can see that the two states have slightly different thresholds 
and very different output vs pump slopes in the lasing re- 
gime. This is a first indication of the well-known two-mode- 
like behavior of doped-fiber lasers [2.3]. By suitably modi- 
fying the state of the polarization controller, it is possible to 
separate the two main groups of modes that are amplified 
inside the cavity. The optical spectra in two orthogonal po- 
larization directions, as obtained from an optical spectrum 
analyzer, show that the two mode groups are indeed orthogo- 
nal and linearly polarized, with spectral peaks centered 
around —1.560 52 /xm and —1.561 05 /im, respectively. 

The behavior of output vs pump power in the lasing re- 
gime is observed to be linear, which is a characteristic of 
most lasers. Nevertheless, at high pump powers, an increase 
of output power fluctuations occurs while making the mea- 
surements. In order to quantify this effect, one can measure 
the standard deviation of these fluctuations as a function of 
the mean light intensity and pump power. The results are 
shown in Fig. 2 for the case of 10% output coupling. For the 
sake of clarity, we should remark at this point that the pump 
power that appears in this figure is just the recorded output of 
the pump laser, it does not correspond exactly to the actual 
power that is being injected into the fiber laser, due to the 
imperfect launching of pump light into the cavity through the 
WDM. In any case, an analysis of this figure reveals a steady 
increase of the fluctuations as both pump level and output 
power are raised. This phenomenon is rather unexpected: in 
most single mode lasers, fluctuations produced by spontane- 
ous emission are independent of pump level once lasing has 
been achieved. This is so because the spontaneous-emission 
rate is proportional to the population inversion in the ampli- 
fying medium, and this is constant beyond threshold, as can 
be seen from any rate-equation model [11]. In multimode 
lasers, these fluctuations may be deterministic and originate 
in the nonlinear dynamics of modes coupled through sharing 
of the population inversion. 

We can calculate the number of modes inside the cavity 
by measuring the optical spectrum of the output light. The 
ratio of its full width at half maximum to the free spectral 
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FIG. 2. Standard deviation of the output intensity fluctuations vs 
the mean output level and pump power. Two different sample times 
(shown in the legend) have been used. The pump power shown in 
the lower figure does not correspond to the power that is actually 
injected into the fiber. 

range of the cavity (longitudinal mode spacing) gives us an 
estimate of this quantity. We observe a pronounced spectral 
narrowing and a corresponding sharp decrease in the number 
of modes (from ~3X 105 to ~2X 103) as the lasing thresh- 
old is crossed. Note, however, that even in the lasing regime 
the number of amplified modes is very large. This fact shows 
the strongly multimode character of fiber lasers. 

C. Dynamical behavior 

/. Self-pulsing 

A characteristic time trace of the total output intensity 
extracted by the output coupler in the higher loss case 
(10% coupling) is shown in Fig. 3 for a pump rate well 
above threshold. Self-pulsing is observed with a periodicity 
of — 100 ns. This corresponds to the cavity round-trip time of 
our system, which is estimated as Llv, where L = 20 m is the 
cavity length and v = cln is the speed of light in the fiber. 
The index of refraction of erbium-doped fiber is n = 1.46. 
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FIG. 3. Total output intensity time trace showing self-pulsing 
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One can now resolve the output in terms of its orthogonal 
linear polarization components. These components, although 
coupled, may exhibit very different dynamics. Figure 4(a) 
shows quasiperiodic behavior in one polarization direction 
and random evolution in the other, also for 10% output cou- 
pling. In other experimental situations, one can observe dif- 
ferent quasiperiodic evolution in the two modes. Figure 4(b) 
corresponds to a case with period-1 behavior in one direction 
and period-7 in the other. The 3% output coupler has been 
used in this case. 

2. Influence of the polarization controller 

Another way of establishing the distinct character of the 
polarization-resolved intensity time traces compared to those 
of the total output intensity is through their power spectrum. 
In the latter case, a typical spectrum shows peaks separated 
by the fundamental cavity frequency of 9.8 MHz. However, 
when the signal used comes from a single polarization direc- 
tion, sideband peaks appear between the main ones. These 
sidebands can be tuned by manipulating the polarization con- 
troller and eventually can be made to overlap. When this 
happens and losses are small enough (i.e.. the light intensity 
inside the cavity is high enough), the pulsed behavior disap- 
pears and square pulses develop in the output intensity of the 
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FIG. 5. Antiphase square pulsing in the two orthogonal polar- 
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orthogonal polarization states. This behavior is antiphase in 
the two states and is periodic at the cavity round-trip time, as 
shown in Fig. 5. The requirement that losses have to be low 
for this effect to occur is reflected in the fact that square 
pulses are observed when the 3% output coupler is used, but 
not in the 10% case. It is also worth noting that the time 
durations of the plateaus correspond to the lengths of the 
active and passive part of the fiber. In other words, the 70-ns 
upper pan of the pulse in the y-polarization trace of Fig. 5 
corresponds to the 14 m of passive fiber, whereas the 30-ns 
IOW.T part is related to the 6 m of active erbium-doped fiber. 
A threshold pump power is typically observed for the onset 
of square pulsing. For the measurements shown, square 
pulses formed at a pump power ~2.2 times above threshold. 
In addition to square pulses, other antiphase pulse patterns 
have been observed. One of them is shown in Fig. 6. A final 
remark on this behavior is that the irregular intensity patterns 
superimposed on the plateaus of the square waves evolve 
continuously and slowly in time. 
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FIG. 6.  Another antiphase pattern observed. Here the pump 
power is here 700 mW. 

D. Nonlinear analysis 

We have observed so far that this system has a wide va- 
riety of nonlinear attractors: regular or irregular temporal 
patterns in which the dynamics are trapped. Which specific 
attractor occurs depends on many factors: the state of the 
polarization controller, the pump power, the output losses, 
etc. We are now interested in dynamical characteristics of 
these attractors. 

The state space of a dynamical system can be recon- 
structed from the information obtained through a scalar mea- 
surement (the intensity of one of the polarization eigenstates, 
for instance) by means of time-delay vectors [12]. If we de- 
note as x(n)=x(t0+n&) a scalar set of measurements 
sampled at equally spaced time intervals A, one can con- 
struct d-dimensional vectors 

y(n) = (x{n),x(n + T), • • • ,*(« + [<*-1]!)).       (1) 

The evolution of these time-delayed vectors in state space 
describes an attractor. There exists a minimum value of d for 
this attractor to properly represent the dynamical behavior of 
the system. This value is called the embedding dimension of 
the system. Both the embedding dimension and the time lag 
T have to be chosen carefully if one wants this state space 
reconstruction to be really useful. 

To obtain a reasonable value of the time delay 7", one has 
to reach a compromise between the high correlation between 
vector components that would arise if T is chosen too small 
[x(n + iT) and x(n + {i-l)T) would be nearly identical] 
and their statistical independence if T is too large. All these 
features are reflected in the so-called average mutual infor- 
mation function, which can be interpreted as a nonlinear cor- 
relation function between the time series x(n) and 
x(n + Ar) as a function of the time lag At. Its definition is 

Af(A/)=S P(s(n),s(n + bt)) 

Xlog2 

P(j(n)t*(n + Af)) 
P(s(n))P(s(n + b.t)) 

(2) 

where P(s(n)) is the probability density of the process 
s(n) and P(s(n),s(n + &t)) is the joint probability of the 
two time-shifted series. A high value of this function repre- 
sents a high correlation between the series and a low value 
corresponds to a high degree of independence. A suitable 
value of T will be intermediate between these two regimes. 
A reasonable prescription that is frequently used [13] is to 
choose T as the first minimum of M(Ar). 

We can compute the average mutual information function 
(2) for the time series measurements obtained from our ex- 
periment. A typical result is shown in Fig. 7, corresponding 
to the intensity for a single polarization direction. The behav- 
ior is roughly the same for the other polarization direction 
and for the total output and also for the other different dy- 
namical regimes investigated. The results suggest that an ad- 
equate value for the time delay is 7=3. 

Once the time delay has been chosen, one needs to deter- 
mine the embedding dimension. To do so, we use a method 
proposed in Ref. [14]. This procedure determines the mini- 
mum useful embedding dimension as that for which the per- 
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FIG. 7. Self-pulsing time series for the intensity output in one of 
the polarization directions and its corresponding average mutual 
information function. The pulse separation is 2TR and the pump 
power is 1000 mW. 

centage of false nearest neighbors (FNNs) in the attractor 
drops to zero. Two points of the attractor are said to be FNNs 
when they seem to be close only because the attractor is 
embedded in a dimension that is too low, but they are actu- 
ally separated from one another. They can be identified by 
measuring the distance between them in two consecutive di- 
mensions. When this distance is very small in the lowest- 
dimensional space and much larger in the highest- 
dimensional space, the two points are FNNs. The procedure 
consists of computing the percentage of FNNs for increasing 
dimensions. The embedding dimension is then determined as 
that dimension for which this percentage drops to a very 
small number. Figure 8 presents the result of this method for 
two different time series exhibiting very different dynamical 
behaviors. Figure 8(a) corresponds to a quasiperiodic low- 
dimensional regime with an embedding dimension dE=4. 
Figure 8(b), on the other hand, shows a nonperiodic time 
series whose percentage of FNNs does not go to zero as the 
embedding dimension increases. This indicates that the dy- 
namics in this case is high dimensional and hence noise 
driven. A similar coexistence of deterministic and stochastic 
behavior in the same dynamical system has recently been 
observed in a Nd:YAG laser (where YAG denotes yttrium 
aluminum garnet) exhibiting deterministic chaos [15]. 

III. MODELING 

A. A delay-differential equation model 

To develop a theoretical model that reproduces the obser- 
vations made so far. several important characteristics of this 
system have to be taken into account. 

(i) Even though many longitudinal modes are being am- 
plified inside the cavity, the dynamics of the system can be 
described in terms of two supermodes corresponding to two 
orthogonal polarization states of the emitted light [2.3.7]. 

(ii) A description in terms of two-level rate equations is 
not suitable because of the long cavity of fiber lasers [3]. 
Variations in the direction of propagation of laser light have 
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to be taken into account. This requirement is completely un 
avoidable in our case since we are observing the dynamics 
within individual cavity round-trips. 

(iii) The polarization controller is acting as an imperfect 
half-wave plate that almost completely switches polariza- 
tions once every cavity round-trip. 

(iv) Only part of the total cavity length is active medium 
Hence this system has two different characteristic lengths 
which are reflected in the experimental results (see Sec 
IIC 2) and must appear also in the theoretical model. 

(v) Spontaneous-emission noise is known to have an im- 
portant influence on the behavior of guided lasers such as the 
one we are dealing with in this experiment [2]. It thus seems 
necessary to include it in any realistic model of fiber lasers 

The first three points in the previous list have alreadv 
been faced by Loh and Tang [8,9] in their description of 
ultrafast polarization self-modulation in semiconductor la- 
sers. In this study, they developed a delay-differential equa- 
tion model similar in approach to that used by Ikeda and 
co-workers [16,17] to analyze instabilities in the absorption 
of light by a passive medium placed inside a ring cavity and 
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by Otsuka and Iwamura [18] to model the dynamics of semi- 
conductor laser amplifiers. We will follow the spirit of Loh 
and Tang's study to derive a model for our system. 

Let £|(/,c) and E2(t,z) be the complex field envelopes 
of the two polarization modes of the amplified radiation. The 
following set of equations can be derived for their time evo- 
lution after adiabatically eliminating the polarization of the 
medium from the corresponding Maxwell-Bloch equations 
[8]: 

aEt(t.z)     j_ dEt(t. 

dz vg 3t 
■ = y(l-ia,)[JV-tf0]£|('.z) 

+ Pi(t,z), (3) 

<?£,(f.c)      1    dE,(t,z)    a2 

dt 

+ K(t,z), (4) 

dN(t,z) \Ei 
—jr- = P-y\\[N(t,z) + N,]-a,[N{t,z)-N0]Y 

Wl 

■a2[N(t,z)-N0]j 
\E,\ 

U)2 

(5) 

It can be seen that the two modes are coupled through 
N(t,z), the population inversion of the medium. N0 is the 
population inversion necessary for transparency (i.e., for zero 
gain) and N, the density of erbium ions in the fiber. The 
quantity N,.has to be taken into account because erbium- 
doped fiber, when pumped at 514.5 nm, behaves as a three- 
level medium with incoherent pumping [11]. ax and a2 are 
gain coefficients, a, and a2 represertthe detuning between 
the corresponding mode frequency Wj and the resonance fre- 
quency of the cavity u)0 [ai = (cj0-wi)/y1, where yL is the 
decay rate of the polarization of the medium], vg is the ve- 
locity of light in the medium (assumed equal for the two 
modes), and P is the pump rate. These parameters have been 
defined in Ref. [10]. c is the direction of propagation of the 
light inside the cavity, fi^t.z) and p2(t,z) are spatiotempo- 

ral Gaussian and white stochastic processes that account for 
spontaneous emission. They have zero mean and correlation 
given by 

(ßi(t,z)ßf(t',z'))= IDAjXt-t'Wz-z').     (6) 

We are now going to map the spatial dependence of the 
system into time by making use of the boundary conditions 
that have to be fulfilled by the fields £, and E2 inside the 
cavity. These boundary conditions are 

£,(/.<>)« jÄ,*'*'1 h 
,/J («*•+!) 

+£2(r-^./A)fy>-i)«-*. 

E2(t,0)=l-R2e^L £,(,-!£,/„)(«•>-1) 

(7) 

+ E2\t-j-JA\(e«+l)e -iß 18) 

Here lA and lP are the lengths of the active and passive pans 
of the fiber, respectively, and L = lA + lP is the total fiber 
length. The reference frame is chosen in such a way that 
z=0 corresponds to one end of the active fiber. /?, and fl- 
are the return coefficients of the output coupler for each one 
of the modes. The parameter <p represents the phase shut 
caused by the polarization controller. In the perfect half- 
wave case (<p= tr) it can be seen that the previous boundary 
conditions merely represent an exchange of polarizations ev- 
ery round-trip. We shall consider <p near, but not equal to. its 
perfect half-wave value. Finally, the parameter ß represents 
the birefringence of the fiber, which causes different phase 
shifts in the two polarization modes. These different phase 
shifts are produced by the different velocities that the two 
modes actually have when traveling through the fiber, which 
can be modeled satisfactorily by including the parameter ß 
while keeping vg equal in both modes [9]. 

The previous boundary conditions can be used in combi- 
nation with an integration of Eqs. (3)-(5) with respect to ; to 
obtain the difference-differential model [9,19] 

*,(*)= Jä,A, <Mr- TÄ)exp[ y( 1 -»«,)[*(0- 1]) +Vi(t) (<?"+!) 

*2( 

t2{t)=-R2A2 

t-TR)expfy(1 -ia2)[<f>(t)- 1]) + V2(t) (e*-l)e-* 

(<?'*-1) 0,(»-Tj,)exp| yd -««,)[*0)-l]| + Vi(0 

<h(»-TÄ)exp{y(l-ia2)[*(r)-l]J + ifc(f) 110) 

^ = (?-^(/)-|(/,1(,-TÄ)|
2(exp{r1[^(r)-l]}-l)-Re[^1('-^)fi(')]-|^2('-TR)|

2(exp{r:[^(r)-l]}-l) 
dl 

■Re[ip2{t-TK)i2(t)], 111) 
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where new dimensionless variables have been defined. i/>{ 

and tj/2 are related to the electric field envelopes at z = 0. 

M0- 
Ej{t,0) 

\/Äw^y||//0 

(12) 

and <{> is the dimensionless total population inversion in the 
active fiber. 

*(')« 
W(t-TR,lA) 1      (iA 

= j-rr      N(t- 
'A'VQ JO 

rR,z)dz.    (13) 

Time is now measured in units of y^ '. rR is the cavity 
-l round-trip    time,    also    measured    in    units    of    yn 

(rR=Llvgy\\). We have defined a dimensionless gain pa 
rameter and an effective pump rate as 

r, = a,/A^0,    q= 
V\\No    M0' 

(14) 

A | and A-> are phase-shift coefficients that can be evaluated 
as [9] 

\ime
ik'L = 

\ 
exp ;a,-{^(0)-l] 

i       i 
(15) 

An inspection of the delay-differential model (9)-(l 1) shows 
that the original spontaneous emission noise sources 
fi,(t,z), i = {1.2}, have given rise to new noise terms 
Vi(t) and.£,-(r) in all three equations for the electric fields 
and the population inversion. The stochastic processes 
rji(t) come from the formal integration of the spontaneous- 
emission noise sources ß,{t,z) over the space variable c, 
whereas £,(/) appear through the introduction of the result of 
this integration into Eq. (5). It is worth noting that these new 
stochastic processes are no longer space dependent; this is 
true of all the other quantities of the model as well. Note also 
that in the population inversion equation the noise terms are 
multiplicative [19]. They are all Gaussian distributed with 
zero mean, and we will denote their variances by D/7 and 
Df. We will treat these noise strengths as adjustable param- 
eters for our studies; they can be related to the physical prop- 
erties of the system as [19] 

D?= 
hwjNo 

Dh4a;Wss-N0)
2l\ 

D, 
hüi,N0 

(16) 

where Nss is the steady-state value of the population inver- 
sion. 

In summary, we have obtained a delay-differential equa- 
tion model that translates the space dependence on the propa- 
gation direction z (and hence its infinite-dimensional charac- 
ter) into a dependence on time-delayed quantities. The model 
also includes the influence of intrinsic noise sources. We 
have performed extensive numerical computations with this 
model, and the results obtained will be described in the fol- 
lowing subsections. 

The simulations are performed as follows. Each cavity 
round-trip time is divided into equal-size time intervals (or, 
equivalently, the cavity is discretized in a number of equal 
cells). The evolution of the fields if/{ and ip2 depends on their 
values one round-trip earlier [Eqs. (9) and (10)] and the total 
inversion <f> evolves according to the differential equation 
(11), which is discretized in the equally spaced time intervals 
defined above (or in the one-dimensional spatial lattice in 
which the cavity has been divided). Since in our case the 
cavity round-trip time is much smaller than the population 
inversion decay time, the integration time steps resulting 
from a not very dense cavity subdivision are small enough to 
ensure numerical stability in the algorithm that integrates the 
differential equation. We will usually choose a subdivision 
of the cavity in 100 parts and use a Heun algorithm (a sto- 
chastic version of a second-order Runge-Kutta scheme) [20] 
to simulate that equation. The multiplicative noise terms are 
treated according to a Stratonovich interpretation. 

A distinction has to be made at this point between the 
active and the passive fiber. Since the polarization controller 
is located in the passive pan of the cavity and the delay 
differential model maps time into space, the value of the 
phase shift <p will be close to TT only in the time instants 
corresponding to the passive part of the fiber. The rest of the 
time <p will be near zero (not exactly zero because any small 
winding in the active fiber may also have a small phase- 
shifting effect). Hence we will take <p to be equal to <p4 

(small) in the active region and to ipP (close to TT) in the 
passive part. 

Several of the parameters of the model will be fixed by 
physical requirements of the active medium and the experi- 
mental setup, whereas others will be used as adjustable pa- 
rameters. Among the former, we have the gain coefficients 
a{ and a 2- which will be taken to be coincident and equal to 
2.03 i"23 m2. The detuning factors at and a2 will also 
be .. n to be the same and equal to 3.52X10"2. The 
popu. n decay rate y\\ is 102 s"1 and its inverse is the 
time unit we use throughout this section. The lengths of the 
active and passive fibers are the ones used in the experiment 
(6 m and 14 m, respectively), with a total cavity length 
of L = 20 m, which gives a round-trip time equal to 
rÄ = nL/cy||=10~5 dimensionless time units. The dopant 
ion concentration is W,=4.98x 1025 m~3 and the transpar- 
ency inversion is ^»lO20 m"3. The return coefficient of 
the output coupler will be taken to be, according to the ex- 
perimental setup, ä,=ä2=0.97, equal for both polarization 
modes. The noise strengths are chosen to be 
D^=D^=Df=D|=10~5. To put these noise source vari- 
ances in perspective, we should remark at this point that the 
magnitude of the light intensity in the lasing regime is. in our 
dimensionless units, of the order of 106. The pump rate will 
take several values for the different regimes. The phase shifts 
<PA 

and fp and the birefringence coefficient ß will be adjust- 
able parameters. A summary of the previous values is shown 
in Table I. 

B. Characterization of the model 

A first comparison between the numerical model that has 
just been derived and the experimental observations shown 
previously is made by computing how the laser output 
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TABLE I. Parameters used in the delay-differential model. 

Parameter Value Units Description 

a 1.2 2.03 x 10'23 m2 gain coefficients 

<*!.: 3.52X10-2 detuning factors 

ni 102 s"1 population decay rate 

/.A 6 m length of active fiber 
L 20 m total cavity length 

TR io-7 s cavity round-trip time 

No 1020 m-j transparency inversion 

N, 4.98 xlO25 m"J dopant ion concentration 

*l.2 0.97 output coupler return 

Dh 10"5 coefficients 
electric-field noise 

D\, IO'5 strength 
population inversion noise 

strength 

changes with increasing pump power. A sudden jump in 
photon number (over nine orders of magnitude) is observed 
and represents the transition from a spontaneous emission 
(no lasing) to a stimulated emission regime (lasing). Linear 
behavior is observed in the lasing regime. The estimated 
value of the lasing threshold (~5xi05 in dimensionless 
units) is in qualitative agreement with the experimental re- 
sult. 

It has also been found that this model reproduces the 
striking experimental observation of an increase in intensity 
fluctuations for higher pumping and output power. The re- 
sults are shown in Fig. 9 and should be compared with their 
experimental counterpart presented in Fig. 4. The fact that 
this behavior persists even in the absence of stochastic terms 
in the simulations indicates that these intensity fluctuations 
are of deterministic origin. They are related to spiking and 
pulsing phenomena occurring in the time evolution of the 
light intensity and may be caused by the coupling dynamics 
between the many modes that are undergoing amplification, 
as mentioned in Sec. Ill A. 

0.00000 0.00005 
t (dimensionless units) 

0.00010 

FIG. 10. Polarization-resolved quasiperiodic self-pulsing time 
traces. A periodicity equal to one cavity round-trip time is observed. 
The pump rate is q = 2X 106 dimensionless units, roughly 5 times 
above threshold. 

C. Dynamical behavior 

1. Self-pulsing 

Typical time traces of the output intensity Ii = \iJ/l\
2

< as 
obtained from our delay-differential model, are shown in 
Figs. 10 and 11. Self-pulsing behavior is clearly observed, 
with different overall characteristics depending on the values 
of the parameters. Figure 10 presents antiphase quasiperiodic 
self-pulses at a periodicity of one cavity round-trip time. Fig- 
ure 11 shows period-2 behavior. The difference between 
both cases lies only in the value of the birefringence factor, 
equal to 0.0015 in the first case and taken to be exactly zero 
in the second. The values chosen for the phase shifts are 
0.027 in the active fiber and tt- 0.175 in the passive fiber. 
All the other parameters are those of Table I. It is worth 
noting that in all cases we obtain antiphase motion for the 
two polarization modes. The structures immersed in this self- 
pulsing behavior are observed to drift slowly  as time 
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FIG. 9. Standard deviation of the total intensity output vs total 
output power /, -/; and pump rate q. 
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FIG. 11. Polarization-resolved quasiperiodic self-pulsing time 
traces with a period equal to 2r„. The pump rate is the same as in 
Fig. 10. 
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FIG. 12. Three snapshots of the self-pulsing behavior of one 
polarization mode, showing the slow drift of temporal patterns due 
to the effect of stochastic noise sources. These snapshots are sepa- 
rated in time by several hundred round-trips, (a) Numerical simula- 
tion (parameters are the same as in the previous figures) and (b) 
experimental behavior (in this case the cavity round-trip time is 
~ 130 ns). 

evolves, as observed in the experiments (see Fig. 12). This 
pattern evolution does not occur if the noise sources are ne- 
glected in the model, which indicates the importance of 
spontaneous emission in this system. 

2. Influence of the phase shifts 

The value of <pP used in the previous simulations corre- 
sponds to an imperfect half-wave plate. By taking a value of 
this phase shift closer to IT (which amounts to properly tun- 
ing the polarization-controller mandrels in the experiment), 
we can reproduce the square-wave behavior observed in the 
real system. Figure 13 is the result of making 
<PP= A—0.015 and /3=0.020. As in the experimental output, 
these square waves are antiphase in both polarization com- 
ponents, with a period equal to the cavity round-trip time. 
and a relation between the lengths of the upper and lower 
plateau equal to that between the lengths of the active and 
passive part of the cavity. Also, as in the experiment, the 
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FIG. 13. Antiphase square pulses generated by the delay- 
differential model by properly tuning the value of <pP. The pump 
rate is the same as in the previous figures. 

patterns on top of the square pulses change continuously and 
slowly with time, as shown in Fig. 14, where three series of 
ten cavity round-trip times occurring at different instants of 
the same dynamical evolution are compared. Again, this be- 
havior is not obtained if the spontaneous-emission noise is 
not taken into account. 

D. Nonlinear analysis 

To complete our comparison between the results given by 
the delay-differential model that has been derived in this sec- 
tion and the results obtained from the experimental system, 
we will analyze the numerical time traces from a nonlinear 
dy- nies point of view. We can compute the average mutual 
in: ation function of a polarization-resolved output time 
in: rigure 15 shows the typical behavior of this function 
[wn:ch in this case corresponds specifically to the time trace 
shown in Fig. 16(a)]. We conclude that a reasonable value 
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FIG. 14. Three snapshots of the numerically simulated behavior 
of one polarization mode, showing that the detailed structure of the 
square-wave patterns evolves slowly in time. The parameters are 
the same as in the previous figures. 
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FIG. 15. Typical example of the average mutual information 
function obtained numerically. The actual time trace from which 
this function has been derived is shown in Fig. 16(a). 

for the time lag to be used in phase-space reconstruction is 
Af=10~7 dimensionless units, which corresponds to one 
time interval in the cavity subdivision we have chosen 
throughout this work. We now compute the' percentage of 
false nearest neighbors for different dimensions in two dif- 
ferent regimes. Figure 16(a) shows a time trace exhibiting a 
high degree of periodicity and its corresponding false- 
nearest-neighbor percentage vs embedding dimension. This 
result shows that the behavior of the system in this regime is 
low-dimensional and deterministic, with an embedding di- 
mension dE=4. Figure 16(b), on the other hand, shows a 
nonperiodic time trace and a false-nearest-neighbor percent- 
age that does not go to zero for increasing dimension, imply- 
ing that the behavior in this case is high dimensional and 
noise driven. We remind the reader that these two different 
regimes have also been obtained experimentally (Fig. 8). We 
regard this agreement as a significant indication of the suc- 
cess of our model in capturing the dynamical behavior of the 
laser system. 

o.ooo 
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rv. CONCLUSION 

We have analyzed the fast, intracavity dynamics of an 
erbium-doped fiber laser in a ring cavity. Since it is well 
known that this kind of system presents interesting polariza- 
tion dynamics, we have introduced a polarization controller 
inside the laser cavity. Self-pulsing has been observed in a 
very broad range of system configurations, both in the total 
output intensity of the laser and in the polarization-resolved 
dynamics, in periods of the order of the cavity round-trip 
time. In this regime the two different polarization modes can 
behave independently, i.e., one may show quasiperiodic dy- 
namics and the other chaotic behavior, for instance. Due to 
the long cavity and fast detection devices, we have been able 
to sample the behavior inside a cavity round-trip. By care- 
fully tuning the polarization controller, the self-pulsing be- 
havior can be transformed into square-wave dynamics. In 
this case, the behavior of the two polarization modes is usu- 
ally antiphase, as predicted for lasers with a strong multi- 
mode character. All these features can be reproduced by a 
stochastic delay-differential equation model, which takes 
into account the fact that a mean-field approximation in the 
propagation direction is misleading in this kind of long- 
cavity laser. Spontaneous emission is introduced via a noise 
term in the original Maxwell-Bloch equations and leads to a 
nontrivial stochastic contribution to the delay-differential 
model. This model is able to reproduce both the self-pulsing 

FIG. 16. Quasiperiodic time trace and its percentage of false 
nearest neighbors vs dimension. Full circles represent the numerK.il 
result, which corresponds to a pump rate of <? = 6x 105 dimensn>n 
less units, —1.1 times above threshold. Empty cire'es are the e\ 
perimental result of Fig. 8(a). (b) Nonperiodic time trace und :i> 
percentage of false nearest neighbors vs dimension, which displ J\ >. 
a residual percentage of FNNs, implying random dynamics Fuil 
circles represent the numerical result, which corresponds to a pump 
rate of q= 1 X 106 dimensionless units. ~2 times above thresholJ 
In this case, the noise source strengths have been increased to J 

value of 1.2X 10"4 dimensionless units to obtain better agreement 
with the experiments, which are represented by empty circles [from 
Fig. 8(b)]. 

and the square-wave behavior. Spontaneous-emission noi^e 
is necessary to obtain the observed slow time drift of the 
patterns underlying the square-pulse structure. However. 
even though spontaneous emission (and hence the noise 
sources in the model) is always present in the laser operation. 
we observe, numerically and experimentally, both a deter- 
ministic and a noise-driven regime tor slightly different val- 
ues of the system parameters. The first situation corresponds 
to a quasiperiodic, low-dimensional motion and the second 
to a random, high-dimensional behavior. The coexistence of 
these two types of behavior in the same nonlinear dynamical 
system is a remarkable feature that deserves further study. 
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Abstract 

The effect of spontaneous emission noise on the light circulating in a ring cavity with a nonlinear absorbing medium is 
studied by means of a set of stochastic delay-differential equations based on the deterministic Ikeda model. Noise fluctuations 
are found to be amplified as the first bifurcation from the steady state of the system is approached. 

1. Introduction 

Delay-differential equations are frequently used to 
model nonlinear dynamical systems. Among them, the 
so-called Ikeda model is particularly well known in the 
analysis of the dynamical behavior of nonlinear opti- 
cal media. Since its introduction by Ikeda and cowork- 
ers [ 1.2] in the investigation of the light transmission 
process by a nonlinear absorber contained in a ring 
cavity, it has increasingly been applied to the stud 
of the interaction of light with either passive [3-: 
or active [6,7] media. Also, due to its highly com 
plex multistable behavior, the model eventually leads 
to chaos through a rich variety of routes [8]. Hence, 
its simplified map version has become a paradigm in 
the analysis of chaotic systems [9-12]. It is therefore 
of interest to investigate the influence of spontaneous 
emission noise on the dynamics of this system. It is 
particularly important to consider the physical origin 
of the noise source; here we begin with the Maxwell- 
Bloch equations and outline the inclusion of sponta- 

1 On leave from: Dept. de Ffsica i Enginyeria Nuclear. 
E.T.S. d'Enginyers Industrials de Terrassa. Univ. Politecnica de 
Catalunya, Colom 11. E-08222 Terrassa. Spain. 

neous emission noise in a physically meaningful way, 
leading to a stochastic version of the deterministic 
Ikeda model. 

2. Derivation of the stochastic Ikeda model 

Let us consider the simple situation, originally anal- 
ysed by Ikeda in his seminal paper [ 1 ], of a nonlin- 
ear absorbing medium placed in a ring cavity. This 
medium shall be assumed to be a set of homoge- 
neously broadened two-level atoms, whose interaction 
with an incident light beam can be described by the 
following equations, 

BE 
dz 

dN_ 

dr 

= (a + iß)(N-No)E + ß, 

= -yN - i1{N - No)\E[ 

(11 

(2) 

where £(r, z) is the complex envelope of the elec- 
tric field which propagates in the absorber, N(T,Z) 
is the population inversion {N < 0 for an absorber) 
and ßlr,z) is a Gaussian and spatio-temporal white 
stochastic process accounting for spontaneous emis- 

0375-9601/96/S12.00 Copyright C 1996 Published by Elsevier Science B.V. All rights reserved. 
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sion processes. This noise term is chosen to have zero 
mean and correlation equal to 

(MT,z)fi'(r',z'))=2DS(T-T')S(z-z').    (3) 

It should be noted that the white character of this noise 
source is a mathematical idealization of the sponta- 
neous emission process, which actually has correla- 
tions in time and space that are very small in compar- 
ison to all other time and length scales of the system. 

Eqs. (1), (2) can be obtained in a straightfor- 
ward way from the standard Maxwell-Bloch equa- 
tions which describe the propagation of the electric 
field inside the absorber by adiabatically eliminating 
the polarization of the medium, whose relaxation rate 
is much larger that those of N and E. The space vari- 
able : corresponds to the direction of light propaga- 
tion (transverse effects which might appear in the di- 
rections perpendicular to propagation [13,14] are not 
considered here). The time variable r is written in a 
reference frame which moves with the velocity vs of 
light in the medium, r = f - z/ug. a (> 0) is the ab- 
sorption coefficient of the medium, ß is a parameter 
depending on the detuning between the cavity and the 
transition resonance frequencies, and y is the popula- 
tion decay rate. The coefficient ß of the nonlinear term 
in (2) depends on the dipole moment of the transition. 
N0 is the value of N corresponding to transparency. 

Let L denote the length of the absorbing medium, 
£ that of the whole cavity and / = C - L. Then, the 
relation between the incident field E\ and the field 
propagating inside the cavity is given by the following 
boundary condition, 

E(t.O) = %/?£, + Rexp(\kC)E U--.LJ      (4) 

where T is the transmission coefficient of the input 
mirror Ml and R = 1 -T is the reflexion coefficient of 
both the input and output mirrors Ml andM2 (see Fig. 
1). Mirrors M3 and M4 are assumed to be perfectly 
reflecting, k is the light wavenumber. 

The space dependence of the previous equations can 
be removed by using this boundary condition. First, 
we formally integrate Eq. (1) with respect to z and 
introduce the result into Eq. (2). As a result, the origi- 
nally additive noise fi generates a multiplicative noise 
term in the equation for the population inversion. 

E.     i, 
z=0 z=L 

Ml 
absorber 

M3 M4 

\ 
Fig. 1. Scheme of the ring cavity containing the absorber. 

(r+i'z) 
= E(T,O)exp[(a + i0)(W-/Vo;)J + r(T.z) 

3W(T,Z) 

dr 
= -yW 

+ j-{exp[2a(W-N0z)] - l}!E(r.O)!2 

+ 2n(Ns-No)Rt(E(T,0)x(T.z)). ( 

where W(T,Z) is defined as 

Hr(T.z)-/d*'tf(r+C'). 
o 

To obtain the evolution equation for W(T.Z) 0 
(6)), the variations of the population inversion in ! 
(5) have been assumed to be negligible. Numeri 
simulations show that the variations in this quan' 
are a very small fraction of its average value Ns (• 
Fig. 2). Also, two new stochastic processes have bi 
defined, which are also Gaussian with zero mean . 
correlations, 

<r(T,Z)r*(T',z))=2D;5(r-T'). 

(x(T,z)x'('r'<z))=2Dzi8(T-T'), 

{x(T.z)r(T,,z))=2Dz18(T-T'). ( 

These noise sources arise from the application of 
tegral operators to the original spontaneous emis* 
noise. In order to obtain the simple expressions she 
above for the variances, the population inversion 
been assumed again to be constant. Notice also 
the cross-correlation between *(T. ;) and fir.z 



M2 

M4 

mg the absorber. 

:)]+r(T.z). 
(5) 

|£(r,0)| 

:)). (6) 

(7) 

fc W(T,Z) (Eq. 
>n inversion in Eq. 
igible. Numerical 
is in this quantity 
age value Ns (see 
-ocesses have been 
ith zero mean and 

). (8) 

(9) 

(10) 
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it. Notice also that 
-.;) and r(r,z) is 
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(16) 

900 

0.0 0.5 
t 

Fig. 2. Typical evolution of the total population inversion, com- 
ing from a simulation of Eqs. (II) and (12), with parameters: 
,r= ') 90. B = 0.60. </>» = 0.0. rR.= 0.01. and D, = D( = 0.0. 

non-zero. Nevertheless, the influence of this cross- 
correlation in the dynamics of the system was found 
negligible in numerical simulations, and it has not been 
considered in what follows. It should also be noted 
thai, in deriving Eq. (6), a contribution proportional 
to \r\l has been discarded, due to the small strength 
of this noise source. 

IntroductionofEq. (5) into boundary condition (4) 
and use of the population inversion Eq. (6) at point 
: = L leads to the following difference-differential 
equations, 

(MM = A + Bifr(t-TR)exp{\[(t>(t) + fo]}+v(t), 

(in 
d<A 

dr 
= -<t> + \<lr(t- TR)\

2
 + 2Re [</r(t - rR)£(t)} . 

(i: 

Time t is now measured in units of y  ' and the fol- 
lowing dimensionless variables have been defined. 

<MM = £(/,0)exp(aW0) 

Mt) = ßW(i-rR,L), 

(13) 

(14) 

where VV0 = N0L. 
The noise sources 17(f) and £(t) are dimensionless 

and space-independent versions of T and %■ It can 

easily be seen that its variances Dv and Df are related 
to the original physical parameters by 

Dv = DR2e2aW"ÜLß/2a, (15) 

A remark should be made at this point in relation to 
the difference equation (11). This equation makes no 
sense mathematically if the stochastic process 77(t) 
is taken to be white. This interpretation problem can 
be avoided by recalling that the original spontaneous 
emission noise has a very small, but non-negligible. 
correlation time. In this case the parameter D corre- 
sponds to the (finite) value of the correlation function 
of the noise at equal times. 

Besides these two noise strengths, this model has 
four other independent parameters: the dimensionless 
incident field A = s/TE\cxp(aW0) v'Qß lay. the 
dissipation B = Äexp(-aW0). the phase shift due to 
propagation 0rj = kC — ßN^L and the dimensionless 
cavity round-trip time TR = yC/ug. 

Eqs. (11) and (12) define the stochastic \ersion 
of the standard Ikeda model, which includes the exis- 
tence of spontaneous emission processes <>i ihe two- 
level atoms forming the absorber. It is worth noting 
that what is initially an additive noise in the original 
partial-differential equation scheme has become multi- 
plicative in the difference-differential equation model. 
This may be considered as an indication of the non- 
trivial influence of the spontaneous emission process. 

3. Influence of noise on dynamics 

As stated above, the dynamical properties of even 
the deterministic version of the Ikeda model lead to a 
highly complex behavior of the model. In particular, 
the steady state solution of the model, which can be 
seen to obey the following transcendental equation, 

\^\2 [l+B2- 2SCOS (l&l2 + <&,)] = A: .       .17) 

is a multivalued function of the input parameter \ (see 
Fig. 3). This means that even in the cases in Ahich 
the system evolves towards a fixed-point attractor, it 
faces a high degree of multistability. The effects of 
this fact can immediately be seen by looking at the 
bifurcation diagram of the light intensity extrcma tA|2 

versus the input parameter A (Fig. 4). The step-like 
appearance of this diagram is a clear indication of the 
multistable character of the attractor structure o\' the 
system, each step corresponding to a jump between 
two equally stable states. The position of the lumps 
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IVj  4 0 

12.0 

Fig. 3. Steady state solution of the deterministic Ikeda map. Pa- 
rameters are B = 0.60. <*o = 0.0 and rK = 0.01. 

400 

3O0 

lyl2,  zoo 

100 

o 

300 

W2«    200 

100 

0 10 
A 

11 12 '3 

Fig. 4. Bifurcation diagram of the deterministic (above) and the 
stochastic (below) Ikeda model. Parameters are those of Fig. 3. 
In the stochastic case Dr, - D( = I0-4. 

is slightly affected by the choice of initial conditions, 
suggesting that the role of spontaneous emission noise 
might be relevant as well. 

In order to analyse the influence of noise in the be- 
havior of the system, we will first compare how the 
transition to chaos is produced in the deterministic and 
the stochastic cases. The algorithm used to integrate 
the differential equation appearing in the stochastic 
model is a standard Heun algorithm [15], where the 
integration time step is the one imposed by the dis- 
crete equation for 4> and the number of subdivisions 
made within one cavity round-trip time (100 in our 
calculations). The Stratonovich interpretation is used 
to derive the integration algorithm including the influ- 
ence of noise sources. 

(a) 

PSD 

A=98 A=10.5 

0 250500750        0        250       500      750      100C 

Fig. 5. Power spectral density of iA for different values of A ir 
deterministic (a) and stochastic (b) cases. Parameters are t: 
of Fig. 4. The vertical scale is the same for all graphs, exce: 
the steady-state case (first graph in Fig. 5a). where the zero ; 
is explicitly shown. In this last case, an arrow in the \ertical 
indicates the existence of a Dirac delta function at w = 0. 

Fig. 5a shows the power spectral densin of the 
tensity time signal for increasing values of A in 
deterministic case (D, = Df = 0). A period-doub 
route to chaos is found. As can be seen b> compa 
this figure with the previous one, the smaller valu 
A {A = 9.8) corresponds to a steady-state situa 
(power spectrum is a Dirac delta function centere 
u)=0, whereas only non-zero frequencies are sh 
in the plot). For the largest value of A i A = 12 
the broadband spectrum of a chaotic trajectory is 
tained. 
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Fig. 6  Comparison of the time evolution of the intensity and its 
power spectrum short before and after the first bifurcation in •- 
deterministic (a) and stochastic (b) cases. Parameters are tb 
of Fig. 4. 

The existence of a smail noise source (Fig. 5b), 
does not substantially modify the period-doubling sce- 
nario after the first bifurcation has taken place (A > 
-4,-. Ac ~ 9.85 for the parameters chosen, correspond- 
ing to the last three plots in each of Figs. 5a and 
5b). A noisy background superimposed on the deter- 
ministic spectral density appears, as expected. On the 
other hand, the situation before the first bifurcation is 
reached (first plot in each of Figs. 5a and 5b) shows 
a radical change. A distinct peak in the power spec- 
trum can be observed for a non-zero finite frequency 
in the stochastic case, in contrast to the delta func- 
tion of the deterministic case. This frequency is seen 

0.06 

0.04 ; 

0.02 

0.00 ; 

9.0 

Fig. 7. Standard deviation of the intensity time series against con- 
trol parameter A. The final jump corresponds to the first bifur- 
cation in Fig. 3. A horizontal dashed line indicates the standard 
deviation of the noise source. Parameters are those of Fig. 5b. 

to be the same as that of the periodic attractor which 
appears after the bifurcation. Fig. 6 demonstrates this 
fact, by means of a comparison between the light in- 
tensity time series and its power spectrum for the de- 
terministic (Fig. 6a) and noisy (Fig. 6b) cases. The 
main peak in both spectra coincide, as seen in Fig. 6b. 
The oscillation amplitudes are however very different. 
The fact that the oscillations are much smaller in the 
first case (A = 9.80) than in the second (A = 9.90) 
proves that this is not a mere advance of the bifurca- 
tion caused by the noise. However, the amplitude in 
the pre-bifurcation case is much larger than the noise 
source variance would have us expect. We are hence 
observing an amplification of noise fluctuations, which 
takes place at the natural frequency selected by the 
dynamics of the system. We note that the fluctuation- 
enhanced peak observed here is of the same shape and 
occurs at the same frequency as that which appears af- 
ter the bifurcation; this behavior seems different from 
that of the "noisy precursors" studied by Wiesenfeld 
and others (see Ref. [ 16], and references therein). 

A clear picture of the amplification of noise fluc- 
tuations can be obtained by computing the standard 
deviation of the intensity time series as the first bifur- 
cation is approached. This is shown in Fig. 7. where a 
horizontal dashed line indicates the value that is to be 
expected from the real noise intensity which is being 
handled. The amplification effect is plainly revealed. 
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4. Conclusion 

The main objective of this paper was to system- 
atically derive the equations for the stochastic Ikeda 
model of a ring cavity with a nonlinear absorber. Spon- 
taneous emission noise has been found to significantly 
influence the dynamical behavior of the system. We 
observe substantial amplification of noise fluctuations 
before the steady state loses stability; this amplifica- 
tion occurs at a natural frequency of the system. 
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The intracavity dynamics of optically injected ring lasers is studied by means of an extended delay-differential Ikeda 
model. The behavior of this kind of lasers is, in some aspects, strikingly different from that of a nonlinear absorber placed in 
a ring cavity, for which the Ikeda model was originally derived. In particular, chaotic behavior in the laser case is seen to 
occur on much faster time scales than for the absorber. The scenario in which the transition to chaos occurs is also different 
© Elsevier Science B.V. 

Injection of coherent light into laser systems has 
been a common practice since the early years of the 
laser era. The reasons for using such a technique are 
diverse. At high injection levels, the laser locks its 
frequency and phase to those of the injected signal; 
this is called the injection-locking regime, and is 
very useful for obtaining a stable and narrow-band 
laser output at a desired frequency. On the other 
hand, if the injected signal is not strong enough, 
locking is not possible and a competition arises 
between the two coherent signals which coexist in- 
side the laser resonator, giving rise to a wide and 
interesting variety of dynamical behavior (see Ref. 
[1] for a general review on the subject). 

In the present work, we are interested in the 
chaotic regimes that frequently appear in a laser with 
an injected signal, and in the transitions and instabili- 

Present address: Dept. de Fisica i Enginyeria Nuclear. E.T.S. 
d'Enginyers Industrials de Terrassa. Univ. Politecnica de 
Catalunya. Colom II. E-08222 Terrassa. Spain. 

ties leading to them. Much attention has been paid to 
this problem in the past years [2-6], and evidence of 
chaos has been obtained from both an experimental 
and a theoretical point of view. Nevertheless, simi- 
larly r0 almost all investigations of laser dynamics. 
the«:., mdies were done on time scales longer than 
the ty round-trip time of the laser. For "typical" 
laser ,ystems, such as semiconductor, gas. or 
Nd: YAG solid-state lasers, this quantity usually takes 
values in the range - 10 ps-1 ns, which places the 
analysis of intracavity phenomena beyond the reach 
of standard measurement devices. The recent devel- 
opment of optical fiber lasers, mainly for communi- 
cation purposes [7], has changed this situation. In 
such lasers, the amplifying medium is an optical 
fiber that has been doped with rare-earth ions. 

The waveguiding properties of optical fibers en- 
able the construction of lasers with very large (even 
of the order of km) cavities, and hence with round-trip 
times long enough (of the order of /is) to be able to 
observe their behavior inside the cavity [8]. The 
question of analysing the intracavity dynamics of 

0375-9601/97/S 17.00 © 1997 Elsevier Science B.V. All rights reserved. 
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lasers with an injected signal when operating in a 
chaotic regime naturally arises. It is interesting to 
investigate, for instance, if chaos occurs in time 
scales faster than the cavity round-trip time, and if 
this is the case, whether these time scales can be fast 
enough to be interesting for encoding purposes [9,10] 
in all-optical communication systems. 

The intracavity dynamics of long-cavity erbium- 
doped fiber lasers has been recently analysed by 
means of a system of delay-differential equations of 
the Ikeda type [8,11]. This model was first intro- 
duced by Ikeda to study the absorption of light by a 
nonlinear medium placed in a ring cavity [12], and 
predicted the existence of chaotic behavior in this 
system. This prediction was first tested in a passive 
optical fiber ring [13], and became one of the first 
examples of optical chaos. The Ikeda model has also 
been occassionally used in a laser context by several 
authors. In the few years following its appearance, 
Otsuka and coworkers used it to describe the nonlin- 
ear dynamics of a semiconductor laser amplifier with 
delayed feedback [14,15]. Several years later, Loh 
and Tang derived a delay-differential model, follow- 
ing Ikeda, to analyse ultrafast polarization modula- 
tion in semiconductor lasers [16,17]. Again, these 
studies were done on time scales larger than the 
cavity round-trip time of the system. It is our aim 
here td compare the dynamical behavior of these two 
versions of the Ikeda model, namely that correspond- 
ing to a nonlinear absorber and the one used to 
analyse laser systems. As we will show in what 
follows, the time scales in which the second mode; 
evolves correspond to nontrivial intracavity dynarr 
ics. 

The Ikeda delay-differential model can be written 
in dimensionless form as follows. 

E(t) = fTE,+RE(t- TK) 

xexp[a(l +ia)(<f>- 1)], 

i<?-*-|E(/-TÄ)|
2 

X{exp[2a(*-1)1-1}. 

dr 

(1) 

(2) 

reference point inside the cavity. 4> is the total 
population inversion between the two energy levels 
of the nonlinear medium which interact with the 
propagating light. Time is measured in units of TJ\ 

where Tf is the decay time of the atomic transition. 
The delay TR is the dimensionless cavity round-trip 
time, i.e. the time the light takes to travel once 
around the cavity, in units of the inverse of the 
transition decay time rf. £, is the amplitude of the 
injected field, assumed constant. R is the return 
coefficient of the ring (fraction of light that remains 
in the cavity after one round-trip), and T - 1 - R. 
The parameter a is the dimensionless detuning be- 
tween the atomic transition frequency and the light 
frequency. The coefficient a represents either ab- 
sorption or gain, depending on whether we are study- 
ing a nonlinear absorber or a laser, respectively :. In 
this last case, the amplifying medium has to be 
pumped, which is represented by the dimensionless 
pump rate q. 

In the absorbing case (q = 0), this model has been 
extensively studied both numerically and analytically 
[18-21]. In particular, Kaiser and coworkers [19.21] 
numerically obtained the bifurcation structure of the 
system for several sets of parameters, displaying 
different routes to chaos for round-trip times of the 
order of the transition decay time (i.e. for TR of 
order 1). Otsuka used similar time scales in his study 
of semiconductor lasers with optical feedback [15]. 
We, on the other hand, are interested in another 
region of parameter space, where the round-trip time 
is several orders of magnitude smaller than the tran- 
sition decay time (in fiber lasers, the difference can 
be of 5 orders of magnitude [11]). Throughout this 
paper, we will consider TK = 0.01. 

We have numerically integrated Eqs. (1), (2) to 
obtain the bifurcation structure of the Ikeda model 
with and without pumping in the (a, a) space. The 
result is shown in Fig. 1, for Ä = 0.95, rft = 0.01 
and £, =» 5.0. The pump rate is q - 0 in Fig. 1 a and 
q = 5 in Fig. lb. The influence of pumping is evi- 
dent When q = 0, the situation is qualitatively simi- 
lar to that reported in Ref. [21], with islands of 

These equations describe the interaction between 
light and a nonlinear medium (absorbing or amplify- 
ing) placed in a ring cavity. E(t) is the complex 
envelope of the electric field, measured at a given 

" We choose a to be always positive, so that it is the sign of the 
population inversion $ what makes the medium absorbing or 
amplifying. 



364 J. Garcia-Ojalvo. R. Roy / Physics Utters A 229 (1997) 362-366 

periodic behavior embedded in a chaotic back- 
ground. When q # 0, on the other side, this scenario 
changes drastically. First, the fixed point loses stabil- 
ity at smaller values of the detuning (compare the 
jt-axis scales in Figs, la and lb). Second, the insta- 
bility threshold is virtually independent of the gain, 
and leads almost immediately to the chaotic regime, 
so that the transition to chaos is much sharper now. 
Third, there are no islands of periodic behavior in the 
chaotic regime. A comparison between typical routes 
to chaos in both cases is presented in Fig. 2. The 
system parameters are the same as in the previous 
figure. Fig. 2a corresponds to a slice of Fig. la at 
a = 3.5 for increasing values of a, starting shortly 
after the fixed point loses stability, and clearly shows 
a period-doubling sequence leading to a chaotic at- 
tractor of annular shape. The situation is again very 

(a) 10.0 

(a) 

a 5.0 

10.0 

(b) 10.0 

a 5.0 

0.0 

FP 

1.5 2.75 
a/rr 

4.0 

Fig. 1. Phase diagram of the delay-differential model presented in 
Eqs. (1). (2). The parameters are: £,-5.0, Ä-0.95 and T„ - 
0.01. (a) q - 0. (b) q - 5.0. White regions correspond to fixed- 
point dynamics, black regions to chaotic behavior, and the differ- 
ent grey areas represent periodic motions with different repetition 
rates. The period of the motion is represented by the numbers 
shown in the figure. Different superscripts correspond to qualita- 
tively different periodic orbits. 
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Fig. 2. Time series (left) and attractor in complex-f space (right) 
for different values of a as the system goes from a fixed-point to 
chaos without (a) and with (b) pumping. Parameters are those on 
the previous figure and a — 3.5. The values of a/n are. from lop 
to bottom: (a) 6.25, 7.00, 8.00. 8.05, and 8.60; (b) 2.29. 2.31. 
2.34, 3.00. and 6.00. 

different in the presence of pumping (Fig. 2b), with 
periodic behavior in a very narrow band of a values 
separating regions of fixed-point and chaotic behav- 
ior. In the periodic regime, the attractor is similar in 
shape to that of the absorbing case, whereas in the 
chaotic region, the attractor fills all the space inside 
its boundaries, and covers a much larger region of 
phase space. It should also be noted that the time 
scale for the chaotic dynamics is much faster in the 
laser case than it is in the absorber case. Taking into 
account that the round-trip time is 0.01 in both cases. 
it can be seen from Fig. 2 that the system exhibits 
intracavity chaos for q * 0, but not for q = 0, where 
variations in the intensity, although chaotic, occur in 
a time interval larger than TR. 
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Fig. 3. Two time series (top) and their corresponding power 
spectral densities (bottom) with and without pumping. Parameters 
are those of the previous figure, and a /it — 8.60. (a) q — 0.0; (b) 
q - 5.0. 

In order to further investigate and corroborate the 
existence of different time scales in the two different 
chaotic dynamics observed so far, it is also useful to 
analyze their respective power spectral densities 
(PSD). A comparison between these functions for 
typical time traces in the two chaotic regimes (with 
and without pumping) is shown in Fig. 3. The exis- 
tence of much higher frequencies in the laser case 
(Fig. 3b) as compared with the absorber case (Fig. 
3a). can be easily observed in the time-domain repre- 
sentations (upper plots), and is quantitatively de- 
scribed in the frequency domain (lower plots). The 
PSD is seen to be much broader for q*Q. This 

difference corresponds to several orders of magni- 
tude (cf. the scales of the frequency axis in both 
cases). 

Finally, we now address the question of whether 
the faster dynamics observed in the laser case corre- 
sponds to a higher dimensional motion. This seems 
to be suggested by the differences in the chaotic 
attractors shown in Fig. 2. We can estimate the 
dynamical dimension of the two systems by using a 
phase-space reconstruction method [22] and comput- 
ing the percentage of false nearest neighbors as we 
increase the dimension of the space in which the 
intensity time series is embedded. To perform this 
calculation we make use of a method developed in 
Ref. [23]. False nearest neighbors are points in phase 
space which seem to be nearby only because the 
dynamics has been embedded in a space of too low 
dimension. They can be revealed by increasing the 
dimension of the space in which the dynamics is 
trying to be reconstructed. In this way, when the 
percentage of false nearest neighbors (with respect to 
all points in the attractor) drops to zero beyond a 
given dimension, we can expect that the phase space 
has been correctly reconstructed. The minimum di- 
mension for which this happens constitutes a mea- 
sure of the dynamical dimension of the system. Fig. 
4 shows the percentage of false nearest neighbors vs. 
increasing dimension of the embedding space for the 
Ikeda model, both with and without pumping. As can 
be observed in the inset, the embedding dimension in 
the pumped case (circles) is equal to 4, and coincides 
with that of the "classical" Ikeda model for an 
absorber, i.e. for no pumping (diamonds). 

Fig. 4. Percentage of false nearest neighbors versus embedding 
dimension for the time traces shown in Fig. 3. 
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In summary, we have analysed and compared the 
dynamics of the delay-differential Ikeda model for 
an absorber and a laser with long cavity. The phase 
diagrams of the two systems display fixed-point, 
periodic and chaotic behaviors, and in the periodic 
regime the time scale seems to be similar in both 
systems. This is not the case in the chaotic regime; 
here, the time scale for intensity fluctuations is still 
long for the absorber, but much faster for the laser. 
In this last situation, the dynamics is chaotic within a 
single cavity round trip. In spite of the different 
frequencies involved in the two cases, both systems 
seem to have equal dimensionality, as shown by a 
false nearest neighbor analysis. The transition be- 
tween the regions of "slow" and "fast" dynamics 
can be seen not to be discontinuous at q = 0. On the 
contrary, the standard, "slow" behavior can be ob- 
served for a finite range of q values up to a given 
threshold, beyond which the fast regime appears. 
This bifurcation might correspond to a jump towards 
a higher branch of the multistable system. Further 
research, both numerical and analytical, is needed in 
order to clarify this point. The existence of intracav- 
ity chaotic dynamics for lasers with a long cavity, 
such as optical fiber lasers, might be important for 
chaotic encoding of information at frequencies in the 
GHz-THz range, in all-optical communication sys- 
tems. In this sense, it would be of interest to analyse 
how a time variation of the injected signal (the 
message to be encoded, for instance) would affect 
the scenario presented here. 
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The Nd:YAG laser with an intracavity second harmonic generating crystal is a versatile test bed for concepts 
of nonlinear time series analysis as well as for techniques that have been developed for control of chaotic 
systems. Quantitative comparisons of experimentally measured time series of the infrared light intensity are 
made with numerically computed time series from a model derived here from basic principles. These com- 
parisons utilize measures that help to distinguish between low and high dimensional dynamics and thus 
enhance our understanding of the influence of noise sources on the emitted laser light. 
[S1063-651X(97)10805-4] 

PACS numbeKs): 05.45.+b, 42.50.Lc. 42.65.Sf 

I. INTRODUCTION 

The Nd:YAG (neodymium doped yttrium aluminum gar- 
net) laser with an intracavity KTP (potassium titanyl phos- 
phate) crystal is a chaotic dynamical system for which it is 
possible to directly compare statistical aspects of measured 
time series with predictions from a numerical model that has 
been derived from basic theory. When operated with three or 
more longitudinal cavity modes, this laser is known to dis- 
play chaos, and attempts have previously been made to write 
dynamical equations that could capture certain aspects of ob- 
served behavior [1-3]. These models have successfully pre- 
dicted the existence of antiphase dynamical states, energy 
sharing of chaotic polarization modes of the laser, and also 
the possibility of obtaining stable operation through rota- 
tional orientation of the KTP and YAG crystals. The laser 
system has also served as an example of which algorithms 
for the control of chaotic lasers have been successfully ap- 
plied, both experimentally and in numerical simulations 
[4-7]. 

It was, however, the observation that simple control algo- 
rithms failed in certain operating regimes that motivated us 
in a previous paper to apply methods of nonlinear time series 
to experimentally recorded intensity time series with the goal 
of discovering qualitative and quantitative differences in the 
operating regimes. The laser was thus operated specifically 
in three longitudinal modes in two polarization configura- 
tions by careful adjustment of crystal orientations in the cav- 
ity. In the first configuration, all three longitudinal modes 
were polarized parallel to each other. In the second, one 
mode was polarized orthogonal to the other two. All other 
parameters of the laser system such as the cavity loss, pump 
level, etc. were maintained constant, and the instrumentation 
for the measurements was operated with exactly the same 
sampling times and other settings. 

The dynamics observed in these two polarization configu- 
rations were labeled type I and type II. Nonlinear time series 
analysis allowed us to determine the dimensionality of the 
chaotic attractors for the two cases and estimate the 
Lyapunov exponents in the two cases. A major conclusion of 

our previous study was that while the type I behavior was 
established to be low dimensional, there was clear evidence 
that the type II behavior was significantly influenced by 
noise, indicating the presence of high dimensional dynamics 
as well. At the end of that paper we sketched the outline of a 
theoretical approach to the derivation of a model that would 
allow us to simulate intensity time series and apply the non- 
linear analysis techniques to make a direct comparison with 
the experimental results. 

In this paper we present the derivation outlined in [8]. and 
obtain the equations that describe the dynamics of a three 
mode laser with an intracavity KTP crystal. Previous models 
[1-3] were found not to reproduce type I dynamical behavior 
after conducting extensive searches in parameter space. It is 
shown here that the inclusion of nondegenerate four wave 
mixing, which leads to a model that includes the phase dy- 
namics of the electric fields, overcomes this difficulty. Tvpe 
II behavior of the infrared light has very different character- 
istics, and is accompanied by emission of substantial 
amounts of green light, in contrast to type I dynamics De- 
generate four wave mixing is the dominant process in this 
case. A major purpose of the research reported here is to 
include noise sources appropriately in the numerical equa- 
tions and to explore their influence on type I and type II 
deterministic chaotic dynamics. 

The next section reviews the main aspects of type I and 
type II chaotic dynamics of the laser. The experimentally 
observed differences (time series behavior, controllability. 
mode structure, and green output power) are summan/ed. 
We describe a noise measurement method called false near- 
est neighbors, an algorithm normally used to find the embed- 
ding dimension of a chaotic time series. We demonstrate that 
the two types of dynamics differ significantly in the amount 
of high dimensional (noisy) dynamics of the laser. Section II 
provides the basis for comparison with numerical computa- 
tions that are the focus of this paper. 

Section III contains a derivation of the model equations of 
motion from a Hamiltonian. Three infrared cavity modes are 
modeled as harmonic oscillators coupled to heat baths. A 
mode that represents green light generated by the KTP crys- 
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tal is also included. It is nonlinearly coupled to the infrared 
modes so as to model the interaction in the KTP crystal. The 
cavity loss for the green light is very high compared to that 
for the infrared modes, hence it is sufficient to just consider 
a single mode of green light and to eliminate its dynamics 
from the final set of equations that describe the evolution of 
the field amplitudes of the infrared modes and of the popu- 
lation inversion of the two level atoms that drive them. 

In Sec. IV we describe the results from numerically inte- 
grating the equations of motion derived in Sec. III. There is 
a qualitative match between the wave forms of the model 
and experimental data in both chaos regimes. We also 
present the false neighbors results when noise is added to the 
system and find that the resulting noise in the output inten- 
sity differs in the two chaotic regimes for the same input 
noise, leading us to conclude that the susceptibility of the 
dynamics to noise differs for the two chaotic behaviors. 

Section V attempts to locate the source of noise that is 
seen in the laser time series. Four intrinsic quantum fluctua- 
tion sources (cavity loss of infrared light, cavity loss of green 
light, intrinsic conversion noise, and spontaneous emission) 
are analyzed for their expected noise levels. These noise 
sources are all too weak by many orders of magnitude to 
contribute the amount of noise evidenced in the laser dynam- 
ics. We also consider and eliminate extrinsic pumping fluc- 
tuations as the noise source. 

II. TYPE I AND TYPE II BEHAVIOR 

The basic elements of the laser system are a diode laser 
pumped Nd:YAG crystal and an intracavity KTP crystal with 
an output mirror that is highly reflecting at the 1.064 /zm line 
of the Nd:YAG crystal but highly transmitting for the green 
light [ 1 ]. It has been shown that this laser can be configured 
so that few modes («»3-10) are present in the cavity; each 
mode can have one of two polarizations. 

Using the methods of nonlinear time series analysis [8] 
we are able to distinguish between chaotic behavior where 
the noise level is very low and situations where the output is 
still chaotic but substantial noise is also present The former 
we call type I chaos; it is observed when all three modes all 
polarized parallel to each other. The latter we label type II 
chaos; it is observed when one of the three modes is polar- 
ized perpendicular to the other two. Very little green light is 
generated for type I behavior, which is demonstrably low 
dimensional chaos, and is controllable by the method of oc- 
casional proportional feedback (OPF) [4,5]. Type II chaos is 
accompanied by the generation of a substantial amount of 
green light and a clear signature of noise is evident in its 
chaotic dynamics. It is typically not controlled by OPF. 

The laser system displays chaotic intensity output when 
operated with three or more longitudinal modes. In the 
present experiments the system parameters were adjusted to 
obtain three mode operation in the two distinct polarization 
configurations. An appropriate orientation of the crystal axes 
allowed us to select these configurations. The pump level, set 
to about twice the threshold pump power, was similar for the 
two configurations. The total intensity (the sum of the inten- 
sities of each individual mode) was observed with a photo- 
diode having a rise time of less than 1 ns and was sampled 
using a 100 MHz eight bit digital oscilloscope capable of 

500 1000 1500 
Time (microseconds) 

2000 

500 1000 1500 
Time (microseconds) 

2000 

FIO (a) Fluctuations of the total infrared intensity for three 
mode Nd:YAG laser operation with all modes polarized parallel to 
each other. Relaxation oscillations of period "-16 ^is are evident 
with irregular modulations of the envelope, typical of type I dynam- 
ics, (b) Fluctuations of the total infrared intensity for three mode 
Nd:YAG laser operation with two modes polarized parallel to each 
other and one polarized perpendicular to the other two (type II). The 
relaxation oscillations are still visible. 

storing 106 samples. In Fig. 1(a) we show the total intensity 
when all three modes are polarized parallel to each other 
(type I chaos). In Fig. 1(b) we show the total intensity with 
one mode polarized perpendicular to the other two (type II 
chaos). 

In the time traces we can see the distinction between these 
two operating regimes. Type I consists of long "bursts" of 
relaxation oscillations, while type II appears far more irregu- 
lar. During type I operation very little green light, less than 1 
/AW, was observed, while more than 25 /iW of power in 
green light accompanied type II activity. 

We use the total laser intensity l{n) = l(t0 + nrs), with the 
sampling time r,= 100 ns, and its time delayed values to 
reconstruct the system phase space [9-12] by forming vec- 
tors 

y(n) = (l(n),l(n + T) l(n + (dE- 1 )T)), (1) 
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y(n+ 1 ) = (/(«+ 1)./(« + I + T) l(n + (dE- l)T+ 1)) 

(2) 

where dE is the integer embedding dimension of the recon- 
structed phase space and T is the integer time lag in units of 
Tj. Our ability to use this phase space reconstruction for 
extracting physical properties from the observations rests on 
a proper choice of the time delay T and the embedding di- 
mension dE. For T we use the first minimum of the average 
mutual information [9,10,13] between I{n) and I(n + T) 
evaluated as a function of T. 

dE is chosen by using the false nearest neighbors algo- 
rithm [14,9,10]. This relies on the property of autonomous 
dynamical systems that their trajectories in phase space do 
not cross each other unless the system is observed in a space 
with too low a dimension. To determine the dE necessary to 
unfold the trajectories using time delay coordinates we ob- 
serve each point along the trajectory y(«) and its nearest 
neighbor as the dimension of the space is increased from 
dE to dE+ 1. If the point and its nearest neighbor move suf- 
ficiently far from each other as the dimension is increased, 
we conclude they were falsely seen to be nearest neighbors 
because of projection from a higher dimensional object, the 
attractor. When the percentage of false nearest neighbors 
drops to zero, we have established the value of dE. Here, we 
use the property of the algorithm that in the presence of noise 
[9.10], a residual percentage of false nearest neighbors is 
observed. The amount of residual is a measure of the noise 
level. 

The original data sets of 106 points were oversampled. 
These were down sampled by a factor of 8, resulting in 
125 000 data points. Using the time delay suggested by the 
average mutual information, we evaluated the percentage of 
false nearest neighbors for types I and II chaos. This percent- 
age averaged over five type I data traces is shown in Fig. 2(a) 
(solid line) and enlarged in Fig. 2(b). We see that dE=5 
where the percentage of false nearest neighbors drops well 
below 0.5%. The dotted lines in Figs. 2(a) and 2(b) represent 
the corresponding average over four type II data sets. In 
these data it is clear that there is a residual number of false 
neighbors that is not eliminated by going to higher embed- 
ding dimensions. We have consistently observed this much 
larger fraction of residual false nearest neighbors for type II 
dynamics compared to type I dynamics in the many time 
series of total intensity from our laser system. In fact, the 
mean type II residual is »40 times the mean type I residual 
at dE = 6. 

Table I contains a summary of the differences between 
type I and type II chaos as found from experimental mea- 
surements and from the nonlinear analysis of the data. 

III. MODEL OF THE PROCESS 

The laser is modeled using three interacting components: 
the infrared cavity modes, a green cavity mode, and a two 
level active medium. We write the whole Hamiltonian as 
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. FIG. 2. (a) The percentage of false nearest neighbors (FNN) vs 
the embedding dimension dE averaged over five type I chaotic data 
sets (solid line) and four type II chaotic data sets (broken line), lb) 
An enlargement of (a) showing that the percentage of type I FNN 
drops to 0.1% and stays there as dE increases but the percentage of 
type II FNN does not drop below 4%. 

Hcoav models the conversion of IR to green and vice versa 
that occurs in the KTP crystal, and //^ving models the inter- 
action of the two level system with the infrared cavity 
modes. 

The longitudinal infrared normal modes in the laser are 
represented by the annihilation and creation operators a„ and 
an, respectively. These satisfy the usual equal time Bose 
commutation relations 

TABLE I. Type I and type II chaos summary. 

H-HiR + Hincn- "conv + "1 li>vfl+ H ' dnvinc • (3) 

Characteristic Type I T>pe 11 

Time series Bursting Irregular 
Green output <l MW &:5 ß\\ 
Mode configuration 3-0 2-1 
OPF controllable Yes No 
Embedding dimension = 5 = 5 
False neighbors residual <\<7c --5r; 
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[an ,al]= Smn,    n,m = 1,2 M. (4)      In addition, it can be shown that 

SM)S-(z') = j[l+S3(z)]S(z-z'). (14) 

For us, M = 3. 
Each mode is coupled to independent heat baths or reser- 

voirs which are represented by boson operators bik for the 
*th reservoir mode of infrared mode /. This harmonic oscil- 
lator has a frequency of £lik. We assume that all of the 
reservoir modes are independent of each other and the infra- 
red modes (except through the coupling), that is 

[bqn<bpm]-SmnS. PI 

and 

[*„„.0=o. 

(5) 

(6) 

The reservoir modes are bilinearly coupled to the infrared 
modes with real coupling constants Tik, which leads to 

i=l    k 
ffiR=2 ftw.ak+2 2 mikbibik i=l i = 1     k 

+ ihrik(bika
f

i-aib]k)). (7) 

There is a single green mode represented by annihilation and 
creation operators g and gf that satisfies 

and 

(8) 

(9) 

It is bilinearly coupleo (via real coupling constants Tgk) to a 
reservoir that is independent of the infrared mode reservoirs. 
The jfcth reservoir mode of the green mode is represented as 
bgk and has a frequency of £lgk. The green mode Hamil- 
tonian is 

"green^sVS  [hClgkblkbgk 

+ i*rgk(bgkg<-gblk)}. (10) 

In the KTP frequency conversion process, modeled by 
//conv, conversion occurs when two infrared photons are de- 
stroyed to create a green photon and when one green photon 
is destroyed to create two infrared photons. We assume the 
coupling tensor KXJ is real and symmetric: 

M 

(ID 

The laser driving system is represented by a distribution of 
spin-1/2 systems along the z axis over the length of the laser 
cavity. The Pauli spin operators S3(z,t) and S~(z,t) are 
used to represent the two level systems and satisfy 

and 

[S3(z),S:U')]=±2S±(z)<5(z-z') (12) 

[SM),S-(z')] = Si(z)S(z-z'). (13) 

The two level system is damped by a cavity mode reservoir 
represented by boson operators bik and b]k. The Hamil- 
tonian is 

«2.eve.= Jo    — S3(2) + 2  U^stU)SM)bsk 

-ihr:k(z)blkSM)] dz + Y, hüskb]kbsk. 

(15) 

The coupling between the medium and the cavity modes is 
bilinear and the driving efficiency o-, is assumed to be real: 

#dnving=     »ä2 cr,[S+(z)a,sin(A:iz) 
Jo     i-l 

-ats_(z)sin(K,z)]<fz. (16) 

A derivation of the equations of motion for this system 
can be found in the Appendix. Here we give an overview of 
the physics of the model and the approximations that are 
made in the derivation. 

First we use the Hamiltonian to determine the standard 
Heisenberg equations of motion for the system. The reservoir 
model allows us to apply the Wigner-Weisskopf approxima- 
tion (see Appendix and Chap. 19.2 of [15]) to write a Lange- 
vin equation for the green mode: 

M 

—-(r,+«ü>,)g-2 
tm=\ 

f*mOiam 

-2 Ttkbgk(0)e-int'', (17) 

where yg represents the damping rate and the last term is a 
fluctuation or noise term. Integrating this equation and taking 
advantage of the fact that the decay rate yg (~ 1010 Hz) is 
much faster than the characteristic rate at which g fluctuates 
(105 Hz), we can find an equation for the green mode: 

1 M 

*=-— 2   Klma,am+7)g, 

where 77, is a dimensionless fluctuation term 

r>?t(Q) 

(18) 

vg= -2 ? r»+''K-<V) e~,fV. (19) 

The green mode is seen here to be "slaved" to the infrared 
dynamics; namely, g(t) is determined solely in terms of the 
infrared modes and fluctuations associated with its coupling 
to the external world. The use of a single green mode opera- 
tor is justified as the green light escapes from the laser cavity 
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and its dynamics is not observed. In what follows, we shall 
see it acts as a damping factor, and the detailed mode struc- 
ture is not important. 

We do the same with the infrared reservoir and infrared 
equations of motion and substitute in the green evolution 
equation to get 

dA, M 

of-- ?A- — . 2    * ijKlmAfjA,An u* 7j j.l,m=\ 

M 

+ 2 2 A J Vee
iiü,<+-7>' + »,.*'«(' 

/: -     <rre"'>'SM)sm(Kiz)dz. 'o (20) 

The noise (77, and rjg) and damping (y, and yg) can be 
related through a fluctuation-dissipation relation, which we 
derive in a later section. 

Now we turn to the two level system equations of motion. 
Although the Nd:YAG laser is actually a four level system, 
this model works well for determining the equations of mo- 
tion. It fails when computing the spontaneous emission noise 
power, so we compute this power in another way. In the 
meanwhile we will ignore all noise contributions from the 
two level system. 

The equations of motion are found again, and we formally 
integrate the reservoir operators, substitute them into the 
S+(z) equation of motion, and make the Langevin approxi- 
mation to get 

dS+(z)    , 
—£— = (-yp+i<o,)S+(z)+ v,(z)S3(z) 

M 

"2 crfa-S^siniKiZ). 
i»i 

(21) 

At this point, we note that the Nd:YAG laser is a class 
B laser and its polarization decay rate is much higher than 
y, because the polarization of the active medium is affected 
by the surrounding crystal lattice. For Nd:YAG, y~' is ap- 
proximately 240 fis. The actual polarization decay time 
y~' is on the order of 10" " s. 

So we substitute the faster decay rate yp for ys and ignore 
the associated fluctuations. 

In the interaction frame moving at the driving frequency 
<od we find that the driving terms are slaved to the population 
inversion S3(z) due to the high polarization decay rate. In a 
way similar to the method used to determine the green mode 
equation of motion we determine the driving terms to be 

1 
M 

SM)-- — 2 <TiaU~iUd'™(KiZ)Si(z),      (22) 
Yp i=l 

Si(z) 
M 

S.(z)=~—— 2 cw^'sin^). (23) 
ip i»1 

We now take the 53(z) equation, substitute the reservoir 
solutions, and perform the Langevin approximations. 

dS3(z) 
—^- = 2A-2yJlI+Si(z)]-2[S+(z)vs(z) 

M 

-7,U)5_(z)] + 22 <ri[SM)a, 
i-l 

+ ö?S_(z)]sin(tf1z). (24) 

A constant population inversion 2A has been added to ac- 
count for optical pumping. Further manipulations and asso- 
ciating the operator SIU) with the population inversion 
n(z), we find and equation for the population inversion of 
the laser. 

dn(z) 1 M 
<7? 

■dJ~ = -—[n(z)-n]-n(z)'2l 4—AjA.snriK.c] 

(25) 

where rf is the fluorescence decay time of the Nd:YAG me- 
dium (240 pi) and nis the mean population inversion 

After substituting the driving terms into the field equation 
we get 

dA, 
M 

■77--ViAi-—   2    KijK,mAf
jA,Am 

"' Yg J.l.m" 1 

M 

+ 22 A) Vgei(a-+"V>' + Vie
,m>' 

+ 77—     si-* 
NypJo 

sin2(Kiz)n(z)dzAi. (26) 

We hs e identified n(z) here. At this point we recall that the 
numb f photons in the cavity is large (109) and treat the 
quan mechanical operators A, and AJ as if they are c 
numbers. 

Since we now have a partial differential equation tor 
n(z), we break this equation into the component normal 
modes as described in detail in [3]. To do this, we define a 
mode gain G, as 

G,= 
2k,|2rc [L 

Nyt 'P   Jo" 
(z)sin2(KiZ)dz, (2^) 

where TC is the round trip cavity time of the laser (0.2 nsi 
Assuming that n(z,t) separate into time and space compo- 
nents we can write down equations for the mode gains in- 
stead of the population inversion. After «scaling the equa- 
tions so that the electric field has measurable units we obtain 

dE, M 

df=T^X(G.-a.)£.-^2, Mi^TW-i 
" fr— 

+ 2*2 fy£;i7l«
,'(-'+"^'+ yJ—Vte'"' 

dG(     1 ' /       " 

(28) 

(29) 
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At this point we make use of an earlier model of the laser 
[3]: 

TABLE II. Model parameters. 

dEt 
2rc-^ = (G1-a1)£i-eg|£I|

2E,-2eS A»yl^l2^. at j*i 

Tfirr=Oi-G{l+%w 

(30) 

(31) 

where ßij = gc if the modes are parallel polarized and 
Ati; = ( 1 ~8c) 'f me modes are orthogonally polarized. These 
values of /i,, have been determined in [3] after consideration 
of the phase-matching conditions for the intracavity KTP 
crystal in the presence of the polarized modes of the laser 
field. Notice that Eq. (30) is a special case of Eq. (28) having 
the terms where i = k and j — l (or i = l and j — k). This is 
called degenerate four wave mixing. Matching coefficients in 
the degenerate case, we find that (u=y[gl when modes i and 
j are parallel polarized and £,-,-= Jl-gc when they are per- 
pendicularly polarized. 

We expect that the degenerate and nondegenerate four 
wave mixing rates differ in the different laser configurations. 
Type I chaos exhibits nondegenerate four wave mixing with 
little, if any, degenerate four wave mixing. This implies that 
the green photons never have a chance to leave the cavity 
before being downconverted to infrared again. The opposite 
is true for type II chaos where the green photons immedi- 
ately leave the cavity. In order to separate these two cases, it 
is necessary to define a four wave mixing tensor eiy*/ where 

-ijkl ^ 

Cdditki ifi' = *and; = / 

Cdtijtki if i = I and j = k 

Cntijtki     otherwise. 
(32) 

Here, ed is the degenerate four wave mixing rate and en is 
the nondegenerate four wave mixing rate. We see that Eq. 
(28) is a special case where the two rates are identical while 
Eq. (30) is the case when there is only degenerate four wave 
mixing and no nondegenerate four wave mixing. 

The equations we numerically integrate are 

dE{ 

~dt 

1 

2^V 

u 
Ej EkEt + V 

dGt _ 1 

dt      Tf 

M 

p,-G,,1 + 2 ßij\Ej 
;-i 

(33) 

(34) 

In these equations i = 1,2 M. We have lumped all of the 
noise terms into the single additive noise term r}\. This is 
possible because the multiplicative noise in Eq. (28) is much 
smaller than the additive noise (see below). 

We use the parameters shown in Table II. e^u is the four 
wave mixing efficiency in inverse watts and has a magnitude 
on the order of 10"5 W "'. It depends on the mode configu- 
ration and the relative orientations of the Nd:YAG and KTP 
crystals. ßtJ is the cross saturation parameter between modes 

Parameter Value Description 

a 
eijkl 

Pi 
ßij 

0.2 ns 

240 ps 

0.01 
See Tables m and Tables IV 

0.02 
See Tables m and IV 

Round trip 
cavity time 

Fluorescence decay time 
of Nd:YAG 

Cavity loss factor 
Four wave mixing 

efficiency 
Pumping power 
Cross saturation 

parameter 

i and j in units of inverse watts. These values are different 
for type I and type II chaos and are discussed below 

IV. NUMERICAL INTEGRATION RESULTS 

These model equations were numerically integrated using 
a standard stiff integrator from the Los Alamos CLAMS li- 
brary with a time step of 100 ns. The reservoir noise 7, was 
simulated by adding a complex Gaussian offset with 3 vari- 
ance of 10~4 W to the electric field of each mode between 
integration steps. 

Type I behavior is obtained in numerical integration when 
all modes are polarized in the same direction and no nonde- 
generate four wave mixing is present, as shown in Table III. 

The absence of degenerate four wave mixing is consistent 
with the experimental absence of measurable green output. 
Figure 3(a) shows a type I time trace obtained by numerical 
integration of the equations. The bursting behavior and the 
relaxation oscillation period echo the experimental type I 
data in Fig. 1(a). 

An approximation to type II behavior is obtained when 
degenerate four-wave mixing dominates over nondegenerate 
four-wave mixing as shown in Table IV. 

Note that the factors f jy- in. (32) are all equal regardless of 
whether mode 1 and mode j are parallel or perpendicular. 
The predominance of degenerate four wave mixing is con- 
sistent with experiment; with type II behavior we observe a 
high amount of green output. An example of a type II time 
trace obtained from numerical integration is shown in Fig. 
3(b). 

A. Data preparation 

In our previous paper [8] we discussed the digital signal 
processing methods we used to extract more resolution t'rom 

TABLE IE. Type I model parameters. 

Type I chaos 
Parameter Condition VaJue 

eijkl i=k and j — l 0 W"! 

i = l and j = k 0W"1 

Otherwise 2.1X10"6 W 

ßi) i=j LOW"1 

i+j 0.6 W *' 
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FIG. 3. (a) Numerically integrated type I intensity time series 
with all modes polarized parallel to each other and no degenerate 
four-wave mixing, (b) Numerically integrated type II intensity time 
series with two modes polarized parallel to each other and one 
polarized perpendicular to the other two and no nondegenerate four 
wave mixing. 

our data acquired using an eight bit sampling oscilloscope. 
The resolution affects the local false neighbors and the 
Lyapunov exponent calculations so in order to use these 
tools to compare the experimental data and the numerical 
model, it was necessary to perform the same manipulations. 
In summary, the numerical model was integrated for 106 

points with a time step of 100 ns, matching the maximum 

TABLE IV. Type II model parameters. 

Parameter 
Type n chaos 

Condition Value 

cijkl i = k and ;' = / 
i = / and j = k 

Otherwise 
>=j 

10"5 W"1 

10~5 W"1 

0W"1 

LOW"1 

0.85 W 

storage capacity and the sampling time of the oscilloscope. 
The data were then quantized to eight bits. For the false 
nearest neighbors test and the average mutual information 
calculation, the data were down sampled by a factor of eight, 
that is, seven out of every eight samples were thrown out. 
This leaves 125 000 points at a sampling rate of 1.25 MHz 
(T,=800 ns). The down sampling preserves the broadband 
noise level. 

For the local false nearest neighbors test and the 
Lyapunov exponents, the quantized data were interpolated 
using a digital linear filter. This filter is designed to remove 
frequencies from 500 kHz to the Nyquist frequency 
/,/2=5 MHz and pass all frequencies below 500 kHz. This 
was needed to get higher resolution from the experimental 
data traces. In order to match our results, we did this with the 
numerical traces as well. After performing the interpolation, 
the data were also down sampled by a factor of 8, leaving 
125 000 points at a sampling rate of 1.25 MHz (800 ns). 

B. Power spectrum 

When we compare the power spectra of the numerical 
results and the experimental data, we find similarities. Figure 
4 shows the power spectra for the experimental data [Fig. 
4(a)] and the numerical data [Fig. 4(b)] for type I chaos. The 
peaks and their structure are very similar. Figure 5 shows the 
same information for type II chaos. Here, it is not clear from 
the spectra whether the type II chaos is well modeled. 

C. Average mutual information 

The average mutual information of the model is strikingly 
similar to the experimental data. Figure 6(b) is the average 
mutu. nformation as a function of time lag for the numeri- 
call; ^grated model for type I chaos, and has essentially 
the ^„e shape as the average mutual information function 
of the experimental data [Fig. 6(a)]. Note that the relaxation 
oscillation time is slightly different between the model and 
the data, however, this can be adjusted with a small change 
in the pump power. 

The average mutual information function for type II chaos 
is also very similar between model and experiment as shown 
in Fig. 7. Again, the relaxation oscillation time can be refined 
by changing the pumping power. 

D. False nearest neighbors 

When we examine how the model dynamics respond to 
noise using the false nearest neighbors algorithm, we find 
that the type I dynamics tend to suppress noise while the type 
II dynamics do not. Figure 8 shows the false nearest neigh- 
bors results for the numerically integrated time traces 
(125 000 points) for both types of dynamics, with and with- 
out reservoir noise. It is clear, especially in Fig. 8(b) that 
when no noise is present, both type I and type II dynamics 
exhibit low-dimensional behavior with almost no residual. 

When Gaussian noise (o-=0.0l|£nommal|) is added to the 
electric field for every integration time step of 100 ns. we 
find that type I dynamics have no residual, or in other words, 
the reservoir noise has been suppressed by the dynamics. 
However, in the type II dynamics, the residual is around 5ac. 
which indicates that the dynamics have been significantly 
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FIG. 4. (a) The power spectrum of the type I experimental data 
shown in Fig. 1(a). (b) The power spectrum of the numerically 
integrated time series shown in Fig. 3(a) (type I chaos). 

affected by the reservoir noise. These findings are numeri- 
cally consistent with our observations. When we normalize 
the noise levels using the maximum amplitude of the type I 
and type II time series, we find that type II is three times 
more susceptible to noise than type I. 

E. Local false nearest neighbors 

We also performed a test called local false nearest neigh- 
bors on the numerical data [8]. This is used to find the local 
dimension, or number of equations of motion of the system 
that generated the data. The results for type I chaos are 
shown in Fig. 9. For the experimental data [Fig. 9(a)] the 
predictability of the data has become independent of the 
number of neighbors and the embedding dimension. We find 
that numerical results [Fig. 9(b)] match well; both sets have 
a local dimension */t*6 and the same fraction of poor pre- 
dictions. For type II chaos (Fig. 10) the match is not so 
good—the fraction of poor predictions is different by a factor 
of 2 and the local dimension appears substantially smaller for 
the model than for the experiment. 

-* 

0  500 1000 1500 2000 2500 3000 .«SvV «000 4500 50tt 
Frequency (Units of 7$ -iz) ™" 

O) o 
m 
d 

500   1000 1500 2000 2500 3000 5Srjr  4000 4500 5000 
Frequency (Units of "7S Hz) 

FIG. 5. (a) The power spectrum of the type r. .experimental data 
shown in Fig. 1(a). (b) The power spectrum .-»:' the numerically 
integrated time series shown in Fig. 3(b) (type  r chaos). 

F. Average local Lyapunov — ynwmti 

The average local Lyapunov exponents- snatched well be- 
tween the model and experimental type '. races. These are 
computed using the methods described it [8]. Figure 11 
shows the average local Lyapunov exponer.» for the experi- 
mental type I data [Fig. 11(a)] and numer«sal model type I 
data [Fig. 11(b)] using dE=l anddL=7. -^asure 12 shows a 
closeup of these graphs. Note that in bevrr .cases, there are 
two positive Lyapunov exponents and a ccrro exponent. The 
negative Lyapunov exponents are slisnu- larger for the 
model dynamics. It is likely that a small -aarameter change 
can improve the match. 

For the type II data, the match is not ^ jood. Figure 13 
shows the average local Lyapunov exponcras for the experi- 
mental type n data [Figure 13(a)] and tat -numerical model 
type II data [Fig. 13(b)] using dE=7 and _. = 7. Figure 14 is 
a closeup of these graphs. The experime£-_^. data have three 
positive Lyapunov exponents while the ~i_—nerical model has 
2. The largest Lyapunov exponent front tne experimental 
data exceeds that of the model by a fact.- of two. We con- 
clude that the model of type II dynamio -s not match the 
experiment well. 
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FIG. 6. (a) The average mutual information as a function of time 
lag for the experimental time series shown in Fig 1(a) (type I 
chaos). The time lag is given in units of 8/100 MHz or 800 ns. (b) 
The average mutual information as a function of time lag for the 
numerically integrated time series shown in Fig. 3(a) (type I chaos). 

Table V gives the average Lyapunov exponent values for 
L = 2048, which is a good approximation of the global 
Lyapunov exponents for the experimental data and the model 
data. From these numbers, it is clear that type I chaos is 
modeled well, while type II chaos is not. 

V. NOISE SOURCES 

In an attempt to determine the source of the noise in the 
equations, we discuss four sources of intrinsic quantum fluc- 
tuations: fluctuations due to cavity damping of the infrared, 
fluctuations due to the green light leaving the cavity, fluctua- 
tions due to spontaneous emission, and fluctuations inherent 
in the conversion process. We also examined the possibility 
of fluctuations in the pumping power, and concluded that 
these could not cause the noise in the output intensity. 

We choose to compute the noise levels in photons/s, so 
we abandon our current units and go back to using the c 
numbers associated with the creation and annihilation opera- 
tors A) and A,. A,'A, is simply the number of photons in 
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F 7. (a) The average mutual information as a function of time 
lag ur the experimental time series shown in Fig. 1(b) (type II 
chaos). The time lag is given in units of 8/100 MHz or 800 ns. (b) 
The average mutual information as a function of time lag for the 
numerically integrated time series shown in Fig. 3(b) (type II 
chaos). 

mode / and we call this quantity N^. We repeat the differ- 
ential equation governing A, using a generic source of noise 

dA' A     
2    V t r- 

where 77(f) satisfies 

W(t')v(t)) = S(t-t') 

and D is the noise variance or strength in units of s 

(36) 
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FIG. 8. (a) The percentage of false nearest neighbors (FNN) vs 
the embedding dimension dE for the numerically integrated model. 
The graphs depict type I with no noise (circles), type II with no 
noise (squares), type I with reservoir noise (0^= 10"*, diamonds) 
and type II with the same reservoir noise (triangle), (b) An enlarge- 
ment of (a) showing that the percentage of FNN drops to 0.1 % and 
stays there as dE increases for both types of dynamics with no noise 
added, and type I dynamics with noise. However, the percentage of 
type II FNN when noise is added is much higher, around 3% . 

The noise power in units of photons/s that is added to 
each mode can be computed using the number equation: 

—j-L = -2yiA)Ai-—   2    K,j*imAM;%A„ 
<•• If j.l.m* 1 

r- 2 M 

+A]siDr)-—   2    K,jKlmAjA]AlA, 
Tg j.l.m" 1 

+ yjDr/'Aj. (37) 

The amount of noise added to the numerical integration in 
these units can be determined by converting the noise term in 
the above equation to real units £ where |£|2 is in watts. 

3456789      10 
Local Dimension; dL 

2      3      4      5      6      7      8      9      10     11     12 
Local Dimension; dL 

FIG. 9. (a) Local false nearest neighbors for the experimental 
type I time series shown in Fig. 1(a). (b) Local false nearest neigh- 
bors for the numerically integrated type I time series. 

at ygnu)djj_m=i 

+ ^S, i.vS) 

The noise strength in the simulation is 103 W/s. Thus. 
D=1021 s-1. Using Eq. (37) we find that the noise in 
photons/s is 

Nn^ljNiJD-^m, ■ m 

where W, is the number of IR photons in mode i. The strange 
units in Eq. (39) occur because the units of 77 are the units of 
a square root of a S function in time. 

From the experiment we find that about 1 mW of infrared 
light is output from the laser. Given a transmission loss of 
«•0.1%, this means that there is approximately 1 W of infra- 
red power inside the cavity. Since each photon has an energy 
of hwd=2xi0~i9 J and the round trip cavity time is 
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FIG. 10. (a) Local false nearest neighbors for the experimental 
type II time series shown in Fig. Kb), (b) Local false nearest neigh- 
bors for the numerically inteerated type II time series shown in Fig. 
3(b). 

rc=2x 10"10 s, we find that JV,~ 109. This puts the numeri- 
cal integration noise at 2x 1015 photons/s. 

Similarly, the output green power of 100 /xW with a fully 
transmitting cavity implies that the number of green photons 
in the cavity Ng is about 105. 

A. Damping fluctuations 

First we wish to find the noise power due to damping of 
infrared light. We compute the noise strength D„. 

(v](t)Vi{t')) = DiiSU-t'). 

Based on Chap. 19-2 in [15] we find that 

(40) 

,IR = 
a 

Nir=yi(n{w,))=-(n(<ol)), (41) 
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FIG. 11. (a) The average local Lyapunov exponents for the ux- 
perii~?ntal type I time series shown in Fig. 1(a). (b) The average 
loc: apunov exponents for the numerically integrated type I time 
sen       .own in Fig. 3(a). 

Here, k is Boltzmann's constant and T is the temperature .»f 
the reservoir, which we take to be the cold cavity tempera- 
ture of 300 K. The energy of an infrared photon is 1.2 eV 
while kT at room temperature is about 0.026 eV. Thus 
(n(ci>)> is 10"20. The noise strength is 10"13 s"1. The noise 
added to each mode due to IR damping is approximate^ 

Wm~ 2 v^\/Ö~= 0.02 photons/s. 14 .> i 

Similarly, the green noise strength is 

(vl(t)77g{t')) = Dt5{t-t')={-^^-S(t-t').   .04, 

The noise power in infrared mode i due to green ca\it> 
damping fluctuations from Eq. (A47) is 

M M 

/Vrn=22 KjAlA)JFgr,+ 22 KjA'jAUDrf 
7=1 >-l 

where (n( a*,-)) is the mean occupation number of bosons and      which we approximate as 

<n(Wi))= ghuikT_l (42) Äff*"=4 «AT, ■ß (2cod)) 

1451 

(46) 
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Since we know the value of e. 

e= io~5 w -i (47) 

we find K=500 s"'. We assume that the decay time of the 
green is one cavity round trip time, or 1/TC , which leads to a 
noise power of 2x 10"12 photons/s, which is so tiny that it 
can be ignored. 

B. Spontaneous emission noise 

The spontaneous emission power can be determined in a 
similar way to the infrared and green contributions shown 
above. A simpler method following [16] is used instead. 

The Nd:YAG medium has a spontaneous emission spec- 
trum with a Lorentzian shape of width yp or 6 cm "' (180 
GHz). Knowing the density of photon modes in a cavity with 
volume V. 

dN _8TTV/
2 

If        c^"' (48) 

and assuming a cavity volume of 0.25 cm3 we find that the 
number of modes in the spontaneous emission width df is 
/> = 3X109. 

The total spontaneous emission power in photons/s into a 
single mode is simply 
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FIG. 13. (a) The average local Lyapunov exponents for the ex- 
perimental type II time series shown in Fig. 1(b). (b) The average 
local Lyapunov exponents for the numerically integrated type II 
time series shown in Fig. 3(b). 

^spom__l (49) 

where N2 is the population of the second level. We can de- 
termine this population at threshold especially easily for an 
Nd:YAG laser because it is a four level laser where 
N2>>Ni. According to [16], just below threshold, 

PTf 
(^2-^l)threShold=-—^2- (50) 

<P is the cavity decay time or, using our constants. where rp 

Tp-= Tc/a. What this says is that no net stimulated emission 
occurs, and the entire population inversion fluoresces at the 
same rate as the resulting photons leak away. In our laser the 
population inversion is about 3X 1015 at threshold. 

Substituting the expression for population inversion into 
the power equation, we find that at threshold, 

a 
A7°n,=- = 5 X 107 photons/s. 151 

This is still 7 orders of magnitude lower than the levels we 
expect from numerical integration. 
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FIG. 14. (a) A closeup of Fig. 13(a). (b) A closeup of Fig. 13(b). 

C. Conversion noise 

Quantum fluctuations also occur in the conversion of in- 
frared to green and vice versa. This noise must be deter- 
mined with a different method than used in the above deri- 
vation [17,18]. In this calculation, a differential equation is 
written for the evolution of the density matrix of the system 
(master equation), a coherent state basis is used to convert 
the master equation into a Fokker-Planck equation, and fi- 
nally, the Fokker-Planck equation is converted to a Langevin 

TABLE 
model. 

V. Lyapunov exponents of experimental data and 

Average Lyapunov exponents 

L = 2048; dE = 7;dL = 7 
Type 1 chaos Type 2 Chaos 

Experiment Model Experiment Model 

0.080 0.080 0.244 0.088 
0.041 0.038 0.172 0.034 
0.008 0.009 0.091 -0.019 

-0.033 -0.044 0.007 -0.091 
-0.102 -0.152 -0.104 -0.216 
-0.278 -0.338 -0.298 -0.518 
-1.017 -1.266 -0.788 -1.188 

equation much like Eq. (A47). In the process, a new noise 
appears, which is related to the diffusion of probability that 
occurs with nonlinear terms in the Hamiltonian. Since our 
derivation of this noise term follows [17] almost exactly, we 
will simply present the results. 

Starting with the perturbation related to the KTP conver- 
sion process, 

M 

V=ih 2   KijlalaU-g'ajai), (52) 

we find that the terms due to this perturbation in the differ- 
ential equations are 

A 
A 

d A2 

dt A 
A3 

[A] 

-22 *UAG 
3 

"22 «\jAj<? 

3 

-22 «uAG 
3 

"22 «ijAj<? 

3 

"22 «ids 
3 

"22 «3jAj? 
;-i 

+ B 

v\ 

t 
Vl 

73 

d 

Jt 

0 
= 2 K,j 

.AA. 
(54) 

Here, At is a c number similar to (and can be considered to 
be equivalent to) a, used earlier. The noise matrix B is de- 
fined by 

~«u0      0 
0         Ktltf 

«120         0 

0         Kn& 

«130      0    " 

0         «,30* 

BBr= 
«.20       0 

0        Kd? 

K-aQ      0 

0         Kjjtf 

«230         0 

0         «230* 

«13^ 

0 

0 

«13* 
-rt 

«230 
0 

0 

«230" 

«330         0 

0         «330* _ 

(55) 

and the 77 terms are zero-mean fluctuation terms satisfying 

(17J(r)7](r')> = 5,7<S(r-f'). (56) 

Other than the noise term, the four wave mixing perturba- 
tions are the same as what were derived earlier. The multi- 
plicative noise term is much larger than the one derived pre- 
viously. A rough estimate of the number of noise photons 
added to the IR mode every second is 
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TABLE VI. Noise power estimates. 

Name Expression Power Description 

Nf" 

N" 

VI 2X10"12/s     Cavity damping 

yf(e*"<'"-l> , ,. „ * of green light 

^ 
1 

2vV,\J— er,u,dnr_l 

2X 10vs     Cavity damping 

' c *- 

107/s 
of infrared light 

Nf" HN,KN, KTP frequency 
conversion 

^pom a 108/s Spontaneous 

Tc emission 
^«P. 2X1013/s Noise power 

from experiment 

//=onv»2v^v^ (57) 

or 107 photons/s. This answer can be arrived at by other 
means. According to Eq. (37) the green production rate is 
approximately AK2N]lyg, which is 2X 1014 photons/s. This 
is the mean value of a process whose standard deviation we 
would expect to be the noise added to the infrared mode. 
Since the green mode is a coherent state and therefore has a 
Poisson distribution in the number states, we would expect 
the standard deviation to be the square root of the mean. 
Thus, the noise added to the infrared mode should be around 
107 photons/s. Table VI summarizes the power estimates in 
photons/s for the noise sources described above. 

It appears that there must be another source of noise in 
our system that contributes much more than these quantum 
mechanical sources. Pumping fluctuations were considered. 
To determine if this were the noise source, we substituted 

p,<=p,[ 1+0-77(0] (58) 

into Eq. (34) where 77(f) is a zero mean unit variance ran- 
dom number. We found that in order to reproduce the noise 
levels of the integrated time series with the experimental 
time series using the false nearest neighbors algorithm, we 
had to set cr=0.05 or 5% fluctuation in p,. This level is 
unrealistically high for pumping fluctuations. In addition, the 
fluctuations seen in the experimental data have a character- 
istic frequency that is much higher than the relaxation oscil- 
lation rate, which is impossible to attain through pumping 
fluctuations because of the slow time constant in Eq. (34). 

VI. SUMMARY AND CONCLUSIONS 

In summary, we have developed a model that captures 
key features of the intensity dynamics of the three-mode 
Nd:YAG laser with an intracavity KTP crystal. This model 
consists of three equations for each infrared mode: two de- 
scribe the complex electric field and one describes the gain. 

% 
The inclu&Kxi of both degenerate and nondegenerate four' 
wave mixuvji» arc features not found in previous models of 
the laser. K^ qualitative and quantitative behaviors found 
in the exrvrtrrsmal system are captured by this model, which 
is especial^ saccessful in its description of the type I case 
The distiivtva between type I and type II chaos is seen as a 
difference u* scmcture of the four wave mixing tensor, which 
also leads v * difference in the noise susceptibility of the 
equations oc' taarion. 

Type I crhjos occurs when all modes are parallel polarized 
and is conctvüable by the OPF chaos control algorithm. The 
model oouörss the bursting behavior found in the time 
traces. Exrcc-Äty low levels of green light are measured in 
type I output, miiich is described by the model as a predomi- 
nance of lVtaösgenerate four wave mixing in the laser cavity. 
Low noise jr»«ls are measured in the intensity dynamics, 
which u$w«; with the suppression of noise in the type I 
model dvAjKEacs. The local false nearest neighbors test and 
the Lyaptuv-v exponents match between model and experi- 
ment. 

Type U c^haas occurs when one mode is polarized perpen- 
dicular to a» other two and is not controllable by the OPF 
scheme. '"^ spiking, highly irregular time series behavior is 
captured •.* *j- model. The large amount of green light pro- 
duced b\ ^ -^aser js due to a large amount of degenerate 
four wa\? tmxing in the laser cavity. The high noise levels 
found in cs«? intensity dynamics agree with the model's ten- 
dency to ivx suppress reservoir noise but to amplify it in- 
stead. Ho>*sp\"sr. the local false nearest neighbors test and the 
Lyapunox .rrcx)nents do not match well between the model 
and the cx^Krment, leading us to believe that type II chaos is 
not fulK Bwi-led. We have found that the parameter space 
of the nwfta: is quite complex, especially when degenerate 
four w»\t mating is present. It is possible that additional 
noise s».\avss remain to be identified and included in the 
model. 

Nonhac»jc ame series analysis has aided this investigation 
by reve-.«_nt5c jje link between the high noise levels in the 
data anc .nt- large green light output. A more sophisticated 
model A», reproduces type I behavior almost perfectly and 
approximates type II behavior is the major result of this pa- 
per. Tics- series analysis allows us to make a quantitative 
company.-«- ^f die model with the experiment. This is the 
first case «s? tnc-w of where chaotic time series analysis has 
signific^*u> aided the development of a more complete 
physical rtwisl of the dynamics. This system and model pro- 
vide a •J=v5ins to study the influence of noise on chaotic sys- 
tems. 
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We reiterate the Hamiltonian: 
M 

1-1 'J-\ 1=1     t ^ o     s     o a        » 

-8b]k)]+ Jo |-T
5

3(Z)+«äS [(T,5+(z)a,sin(/:,z)-(7*a,t5_(z)sin(^)]+2 lihrj.z)S+(z)bsk-ilirZ{z)bltS-(z)] 

+^hilskblkbsk. (Al) 

Using this Hamiltonian and the standard Heisenberg equa- 
tions of motion 

* A-[■•»]. 
(A2) 

we arrive at the equations of motion governing the system. 

M 

■jf = - io>fii + 22 Kija)g + 2 T,kbik 

Jo 
(A3) 

dg 
M 

— = -lW|?-   S     K/mfl/am+2   rÄi6gi, (A4) 
u* i,m = 1 k 

(A5) -^- = -r,ika,-in,ii7,it, 

Jr ■ = -rJJk£-;n^. (A6) 

The green reservoir equation (A6) is linear in bgk(t) so we 
can integrate it: 

bgk=-bgk(0)e-ia,*'-rgkj'og(t')e-'n,^-''W. 

Substituting this into (A4) we arrive at 

d M 

—=-iwgg- 2_ f/ma,a«+2 rgk ul l.m-\ k 

-rtJ'g(t')e-iai«'-,')dt' 
Jo 

(A7) 

-blk{0)e~ia^ 

(A8) 

The fourth term can be approximated by a damping term 
using the Wigner-Weisskopf approximation where the 
modes are assumed to form a continuous spectrum and the 
interference time of sum on g(i) is assumed to be much 
smaller than the characteristic time scale of the equation. 
This approximation is discussed in detail in Sec. 19-2 of [15] 
and will not be elaborated further here. This leads us to 

dg " 
— = -(yt+i(og)g- 2   "*mö/öm-2 rgkbgk(0)e-'"«•'. 
w * I m — l k 

iA9) 

where yg represents the damping rate. 
Since this equation is linear in g(t), we can integrate it to 

find 

g=-g(0)e-^+iai)' 

"      2   */«a/(r')a«(»')«-(r«+,'-«)<'-',»rfr' 
J0/,m-l 

-2      lgfgki0)
o   AeWr'W-i). 

k   yg + i(<og-Clgk)
K 

(A10) 

In the integral, we replace the rapidly varying infrared op- 
era; -•> ai(t) with the more slowly varying interaction repre- 
ser.     an forms At(t) in the rotating coordinate system 

ai(t) = e-i»>'Ai(t), (All 

then we perform the integrations by removing the slow I v 
varying operators from under the integral. This method as- 
sumes that the damping rate yg (~ 1010 Hz) is much higher 
than the characteristic time scale of the evolution ot the 
slowing varying interaction form of the green operator. We 
find through experimental observation that the green inten- 
sity varies at the same 100 kHz rate as the infrared operator 
For times large compared to y~' we can ignore the decaying 
transients. Thus we find 

» 
(t) = - y Ki>*aiam 

8        <.m-i y,+i( ft»,-»/-»„) 

k   yt + i{o>g-ngk) 
(All) 

This expression is further simplfied if we assume that in 
order for significant infrared-green conversion to occur. 
wg = o>l+(am. 

1     M 

"fg /.m=l 
(Al?) 
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where rjg is a dimensionless fluctuation term 

7S="2 
I>,t(0) 

'? 7g +i(ag-Clgk) 
e "'"»*'. (A 14) 

The green mode is seen here to be "slaved" to the infrared 
dynamics; namely, g(t) is determined solely in terms of the 
infrared modes and fluctuations associated with its coupling 
to the external world. The use of a single green mode opera- 
tor is justified as the green light escapes from the laser cavity 
and its dynamics is not observed. In what follows, we shall 
see it acts as a damping factor, and the detailed mode struc- 
ture is not important. 

Performing the same operations on the infrared equations 
(without the final integration) we arrive at the equations of 
motion for the M infrared modes. 

da, 

dt 

M 

= -(yi+iui)ai+ 17,— 2 2#rfyflJ$ 

Jo 

;-i 

(z)sm(KiZ)dz, 

where 

y^irir.-d»,.)!2^«,-) 

>7,-=-2 rrtM0)*-''n«'. 

(A 15) 

(A16) 

(A 17) 

M = 3 in our problem. 
Next we substitute g into this equation, move to a coor- 

dinate system rotating with frequency o>, by substituting 

A, = e">*ai, (A 18) 

and assume that in order for significant four wave mixing to 
occur, w, + (Dj = o)i + w„: 

dA 
M 

"' 1% y./.m~ 1 

M 

+ 22 Aj77ge'(ü,'+<u>)'+71e' 

■/: 

-     (rjV"''S_(z)sin(Ar,*)<fc. 
/o 

(A19) 

Now we turn to the two level system equations of motion. 
Although the NdrYAG laser is actually a four level system, 
this model works well for determining the equations of mo- 
tion. It fails when computing the spontaneous emission noise 
power, so we compute this power in another way. In the 
meanwhile we will ignore all noise contributions from the 
two level system. 

The pertinent equations of motion are 

dSxiz) 

dt = :2 "■[S-IOa.+öXdJisil«*,;) 

+ 22 [T,k(z)SM)b,k 

+ r:k(z)bl„S.(z)] + 2A, 

55 

(A20) 

dS.(z) 
dt -i«f5+(z)-2 TMb'Mz) 

M 

-2 vfi\S^i)%\n{KiZ), 
i-i 

(A21) 

dS-(z) ^ 
— -i<osSM)-Z Tsk(z)S3(z)bsk 

M 

2 
/»1 

-2 (riSi{z)afi\a.(KiZ), 

dbsk ft 
—=-icitkb,k- Jo r;k(z)SM)dz. 

-£-=inskblk-Jorsk(z)s+(z)dz. 

(A22) 

(A23) 

IA24) 

Note ^v*t we have added a constant 2A to the 53 equation to 
accoc-j; for the steady-state population inversion due to op- 
tical yxcniping. A is a pumping rate density and has units of 
lAlcrjpiixtime). 

Fvcrnally integrating the reservoir operators, substituting 
then». jTHo the S+(z) equation of motion, and making the 
Lanjs-x-a approximation we get 

dSM) 
— i-yp + iw,)S+(z)+V,(z)S3(z) 

M 

2 
1-1 

-2 (rfajS^siniKtz). (A25) 

At tics point, we need to note that the Nd:YAG laser is a 
class. <; laser and its polarization decay rate is much higher 
thac > because the polarization of the active medium is 
affeo;ev: by the surrounding crystal lattice. For Nd:YAG. 
7j s approximately 240 /ts. The actual polarization decay 
tinw > ~' is on the order of 10"" s. So we substitute the 
faster ,-t-cay rate yp for ys and ignore the associated fluctua- 
tions 

No» we transform the 5+(z) equation to a rotating frame 
with ,-TV driving term frequency a)d by substituting 

dSM) 
dt 

S+(z) = e-^'S+(z), 

= [-7P +'(<",-o>d)]S+(z) 

M 

(A26) 

"2 <rI-flfe-|'"-'53(z)sin(^).     (A27) 
1 = 1 

Sincv :he polarization decay rate is so high, the S.(z) equa- 
tion > v;aved to the population Sy(z) and the field a,e"*J'. So 
ue - • oatically eliminate this equation by ^ettin^ 



55 INFLUENCE OF NOISE ON CHAOTIC LASER DYNAMICS 6499 

dSAz) 
dt 

= 0. (A28) 

We also assume yp»ws-wä, which is equivalent to say- 
ing that the modes that läse are very near the peak of the 
Lorentzian line shape of the transition. The S_(z) equation 
is similar. 

Now we return to the field equation and substitute 
S-(z)e~iUd' for S-(z) and take advantage of the orthogo- 
nality condition of the normal modes 

f Lsin(KiZ)sin(KjZ)dz = Stj (A37) 
Jo 

to get 

1 
M 

SM) = - — 2 W-'^'sin(A:iZ)S3(z),   (A29) 
yP <=i It 

M 

= - y,A;- —   2    KjjK^jAiA, 
;',J,m = 1 

2_ 

Si(z) 
M 

S (2)»-r2i£i2 <w
i-*'siii(tf1*).        (A30) 

7p  i-1 

We now take the S3(z) equation, substitute the reservoir so- 
lutions, and perform the Langevin approximations: 

M 

+ 2yZA]Vge
i(u'+'"i),+ mei0'i' 

j'-i 

NypJo 
(z)dzAr (A38) 

dS3{z) 

dt 
= 2A-2ys[I + Si(z)]-2[S+(z)v]U) 

M 

-77j(z)5_(z)] + 22 o-,[S + (z)a, 
i=i 

+ afiS-(z)]sin(Kiz). (A31) 

For simplicity, we ignore the noise contribution term 
17,(2). Substituting 5i(z)e="""' for 5£(z), assuming S3(z) 
commutes with a,, and ignoring cross terms we have 

^^ = 2A-2y,[/+S3(T)]-^-S3(z) 
dt ip 

We have identified n(z) here. At this point we recall that the 
number of photons in the cavity is large (109) and treat the 
quantum mechanical operators A, and AJ as if they are c 
numbers. 

We break the population equation into the component 
normal modes as described in detail in [3]. To do this, we 
define a mode gain G, as 

C,= 
2\afrc(i 

Nyp Jo 
(z)sin2(K,z)dz, (A39) 

where rc is the round trip cavity time of the laser (0.2 ns). 
Then 

M 
x2 <r\a\a^{K,z). (A32) 

i = i 

2(T2TC ft 
= Nyp 

\y-w--n «1 

We substitute in A, and multiply the entire equation by N, 
the total number of atoms. 

d^M^L = 2N\-2ys[NI+NSi(z)]-^-NS3(z) 
dt rp 

M 

-n(z)2 ^HA;|
2sin2(^;z) sin2(K,z) dz. 

(A40) 

M 

x2 <r2A?A,sin2(K,z). 
i=i 

(A33) 

We integrate the first two terms on the right hand side and 
substitute the pumping power 

Associating .the operator NS3(z) with the population inver- 
sion n(z), we find that NI must be the density of two level 
systems in the medium NIL. We also define 

P.=- 
cr2nLTc 

Nyp  ' 
(A41) 

\NK _N_ 
n = 

(A34) 

(A35) 

dGi-L 
~d7~rf

{Pi   G,)     Nypfr" yp 

^i ÄjP 

to get 

X      n{z)sin2(Kiz)dz+1r— Z 2—\Aj 
Jo "7p •/=•     fp 

X     n(z)cos(2K;z) 
Jo 

Nyp ff\   yP 

l-cos(2KiZ) 
dz.   (A42) 

^!i2 = _i(„(,)_n-)-„(z)X4^M,sin2(^). 
dt        Tf .=i   yP 

(A36) 

where T, is the fluorescence decay time of the Nd:YAG me- 
dium (240 /is) and «"is the mean population inversion. 

We define the mode coupling constant f 0 : 

^n(z)cos(2K]z)[\-cos(2K,z)]dz 

*.;=■ /O1(Z)[1-COS(2A:,;)]J; 
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12=1. U*w- |£,l2=kl2-^ (A48) S^n(z)coa{2Kjz)[l-GOs(2Kiz)]dz 
- i ,      (A43) 

2G,(Nyp/2a-Tc) 

_ .        -- .             ,            .   . r  i   .\ e   ,~,c ;r.t« ,.„, since Ujl2 is simply the number of photons in mode /'. We This coefficient is truly a constant if n(z,t) factors into sepa- a\"^ '   •'.           v }                       r                     , 
""            '           j       j   .                .   .v.-   c „^koKi., , also substitute or. = 2y.r, and assume the K,. are real: rate time and space dependent components; this is probably a mau auua           ,      n c                           <j 
good assumption for a standing wave cavity. Thus ^       {   • 

~d7=2Tc 
■ = — (PJ-GJ-GJZ, ——\Aj\ 

dt      T, '7-1   yP 

AT*       
M 

^G'-a')Et-h^7,j^KuK,mErE'Em. 

7=1        /> 

(A44) 

1 p-cil+^ßljlAjl 

where 

2cr 
ßlr-r-TjU-f'j)- 

ip 

(A45) 

(A46) 

The field equation is simplified. 

dt     \2r, 

M 
dAi    [G,        \ 2     v t 

I Jg j,l.m= 1 

M 

+ 2]£ /c/;77^'(w' + <u;"+77lf"
u''. 

7=1 

(A47) 

We rescale the field equation so that it has measurable units. 
We define the electric field £ so that /=|£|2 has units of 
watts. That is. 

M 

+ 22 KUEfvteWi)'+>]—nie
u'>'.    (A49) 

jT\      J   J    * v    Tc 

Now we define K and dj so that *£;=*,; and £,7 is 
unitless and of order unity and define 

4rV 
€= ■ (A50) 

which has units of inverse watts. We also define 

hoij    2\<ri\
2h(i)dTf 

ßu-ß'u-^-     U     (1"C</) 

which has units of inverse watts. The resulting equations are 

dt     2TC j.k.l=\ 

M htod 

+ 2*2 £,£* T^''"'^'^ y-TVie1**. 
; = 1 "c 

M 

(A52) 

(A53) 
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Encoding and decoding messages with chaotic lasers 
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Wc investigate the structure of the strange retractor of a chaotic loss-modulated solid-state laser utilizing 
return maps based on a combination or intensity maxima and interspike intervals, as opposed to those utilizing 
Poincarc sections defined by the intensity maxima of the laser (/=0j<0) alone. We find both experimentally 
and numerically that a simple, intrinsic relationship exists between an intensity maximum and the pair of 
preceding and succeeding interspike intervals. In addition, we numerically investigate encoding messages on 
the outpm of a chaotic transmitter laser and its subsequent decoding by a similar receiver laser. By exploiting 
the relationship between the intensity maxima and the interspike intervals, we demonstrate that the method 
utilized to encode the messace is vital to the system's ability to hide the signal from unwanted deciphering. In 
this work alternative methods arc studied in order to encode messages by modulating the magnitude of 
pumping of the transmitter laser and also by driving its loss modulation with more than one frequency. 
[SI063-65!X(97)0I80S-4] 

PACS number(s): 05.40+j. 42.50.Lc 

I. INTRODUCTION 

There has been great interest in the use cf chaotic signals 
as the carriers of analog and digital information over the last 
few years, initiated by die work of Pccora and Carroll [1], 
who suggested that synchronized chaotic systems could be 
employed to encode and decode messages in real lime. Re- 
cent experiments have demonstrated that using chaos to 
communicate is practically feasible with electronic circuits 
[23]. The typical frequencies of die chaotic carrier wave 
forms in these circuits is of the order of 10 kHz, and even 
with the prospects of speeding up diese circuits by several 
orders of magnitude, it is still of interest to consider commu- 
nication with chaotic optical signals which have the potential 
for even higher information transmission and reception rates. 

Two groups have experimentally demonstrated that cha- 
otic lasers can be synchronized. Roy and Thomburg [4] 
showed that synchronization could be achieved in a pair of 
pump-modulated Nd:YAG (yttrium gallium garnet) lasers by 
altering the mutual evanescent coupling between the lasers. 
Sugawara et al. [5] demonstrated synchronization of two 
C02 lasers by injecting the output of a master laser into a 
receiver laser with a saturablc absorber. Colet and Roy [6] 
have suggested a scheme involving the synchronization of a 
chaotic Nd:YAG carrier laser to a receiving laser, and the 
subsequent decoding of the hidden message in real lime by 
subtraction of the receiver input from its output. The sharp 
pulses generated by loss modulation of the laser serve as a 

•Electronic address: alsing@arc.unm.edu 
tElectronic address: tom@photon.p!k.:'.f.mil 
'Electronic address: kovan:s@\nos.plk.r.f.p.r.l 

natural background for encoding and camouflaging digital 
information. The authors demonstrated the validity of their 
proposed scheme in numerical simulations. This idea has 
been extended to a model of synchronized chaotic semicon- 
ductor lasers by Mirasso et al„ who have included the effects 
of a liber optic channel on the information processing [7]. 

hi this paper we explore issues related to the communica- 
tion scheme as proposed in [6]. In Sec. II the loss-modulated 
Nd:YAG laser model is introduced along with techniques for 
encoding and decoding of messages. Next, in Sec. Ill we 
present an analysts of numerical and experimental time scries 
via return maps based upon interspike intervals. Wc find that 
a simple relationship exists between an intensity peak and 
interspike intervals that precede and follow the peak. The 
consequences of this relationship on the issue of deciphering 
the message encrypted in the chaotic carrier is explored in 
Sec. IV. Two schemes for encoding information are then 
introduced that make it more difficult to decipher the mes- 
sage. These consist of laser parameter modulation of the 
transmitter to encode the message and the use of quasiperi- 
ociic parameter modulation in both transmitter and receiver, 
so that the interspike interval return maps become ineffectual 
its deciphering tools, while the receiver's ability to decode 
the message is retained. The main results of the paper arc 
summarized in Sec. V, and conclusions are drawn. 

II. SCHEME FOR COMMUNICATING 
WITH SYNCHRONIZED CHAOTIC LASERS 

The scheme proposed by Colet and Roy [6] for commu- 
nicating signals via chaotic synchronized lasers is composed 
of a pair of loss-modulated Nd:YAG lasers operated in the 
chaotic regime. The hidden signal is decoded by subtraction 

1063-651X797/56(2)/1 (9VS 10.00 56 © 1997 The American Physical Society 
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FIG. I. (a) Numerical simulation of the loss-modulated 
Nd:YAG chaotic laser, Eqs. (2.1). aOT=otOK = 0.0\. or, =2.0 
X10-4. n-541.6 ms-1. PT=P „ = 0.02. eT= f*=8.33X 10-9 

s"'. «i^-w^SOOOO rad/s and *= 10"'; (b) Experimental data 
from a loss-modulated Nd:YAG chaotic laser operated o".e-third 
above threshold with parameters as in (a) except for 
T,= l/y,.=0.45 ns. 

of the receiver and transmitter intensities. 
The model for the transmitting laser is described by [6,9] 

clEr I— 
—— = yL(GT-a0T-alcosClt)Er-riu>TETJr\leTVT> 

(2.1a) 

^I = y;{Pr-Cr{l+!£rl2)]. (2.1b) 

such as Fig. 1(b), which are recorded at slightly dirrcrcnt 
parameter values. Although the numerical simulation and the 
experimental data appear similar with respect to the irregu- 
larity of the intensity maxima, the temporal sequence of in- 
tensity maxima appears more regularly spaced in the experi- 
mental data than in the numerical simulation. We will return 
to this point, and to a more detailed description of the output 
intensity, in Sec. III. 

The equations describing the receiving laser in which the 
encoded signal from the transmitter laser has been injected 
are given by 

where ET is the complex, slowly varying amplitude of the 
electric field. CT is the gain of the active medium. rt 
= |/y{3 450 ps is the cavity round-trip time, ^=\/y/ 
= 240 /is is the decay time of the upper lasing level, <aT is 

the detuning of the laser frequency from the nearest empty 
cavity mode, PT is the pump parameter, eT is the spontane- 
ous emission noise strength, and rjT is a complex Gaussian 
white noise term of zero mean and correlation 
(,7T({)77£(f')) = 2<5(r-O.The loss modulation is given by 
ar(il)»a(iT+axcos(D.t) where or, /or07«l. The modulation 
frequency fl is chosen to be close to a submultipic of the 
relaxation frequency wr= v2yl.'y;(/'r~aror)- 

The output intensity of the chaotic laser is a scries of 
irregularly spaced pulses having a spiky appearance, as evi- 
denced in the numerical simulation of a loss-rr.jdulated 
solid-state laser in Fig. 1(a) and in similar experimental data 

dE* 
dt = yc(GR-aor-«iCOsftOE/j + 'WREft 

+ ^itVR-xAbyc\ER--^ET}. (2.2a) 

^-YtPK-Gid+W)]. (2.2b; 

In the above equations all variables have the same mcumn; 
as for the transmitter. In addition, the modulated loss coeffi- 
cient of the receiver, arÄ(0"ffo* + ff|COs(fl/) is operated rt 
the condition for synchronization (i.e., EH-P,). 
aQR = a0T+K. The quantity K<a0T is the coupling coci'i- 
cient between the transmitting and receiving laser which .No 
accounts for any losses in the transmission process [9]. 

The transmission coefficients / in Eqs. (2.2) describe the 
encoding of the signal on the external output of the transmit- 
ting laser. The output intensity of the transmitting laser is 
slightly attenuated by an external filter by a fixed bias factor 
Al)t so that the intensity at the receiver is given by 
E', = KAbET. This implies that synchronization is achieved 
when no signal is encoded at a setting of a0R = a0T+ xAh. 
To encode a "1" bit, the transmission is increased a few 
percent to As>Ab, while to send a "-1" bit the transmis- 
sion is decreased a few percent to As<Ab. Thus the mes- 
sage is encoded as small amplitude modulations of the spiky, 
high intensity output of the transmitting laser. To avoid en- 
coding signals on the low intensity pulses, the pulses are 
monitored before attenuation and only those pulses whose 
intensity exceeds some predetermined, fixed threshold inten- 
sity are used for encoding. 

In Eq. (2.2a) the signal difference term can be written as 

+ K7c{As'Ab)ET.    (2.?) 

The first term -itAbyr(.ER-ET) is responsible for the syn- 
chronization of the transmitter laser to the receiver laser. For 
values of K above some threshold, the damping is sufficient 
to drive the signal difference to zero, thereby synchronizing 
the receiver to the chaotic transmitter carrier wave. If 
Kyc(As-Ab)ET is small, the transmitter carrier wave plus 
signal is then entrained by the receiver laser. The signal can 
be deciphered precisely because it is a small perturbation of 
the carrier signal. As long as the K is above some threshold 
value (which usually needs to be found empirically, sec Fit;. 
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FIG. 2. (a) Plot of intensity maxima return map /r(/i- I) vs 
/^M) with data from Fig. 1(a); (b) same data plotted as intensity 
maxima M") vs the interspikc internals A/7(n-*-1 ) = fr(-:+1) 
-fr(;r) and Af^/i)3^'1)-';<'•- ')• 

2 in [6]) and the signal amplitude is small relative to the 
carrier wave, the carrier wave plus die encoded signal re- 
mains entrained by the output of the receiving laser. 

The encoded signal can then be extracted as the Integrated 
intensity difference M [6], 

M 'I  ' 1 pulse 
(|A5£r|2-i/l6£«|2)^. (2.4) 

The quantity M will equal zero when no signal is sent, 
As=Ab, 

anu* wiI1 have a stronS positive (negative) value 
when a "l" ("-l") bit, As>Ab (As<Ab), is being sent. 
Figure 2(a) shows a first return map of the numerically gen- 
erated receiver intensity /«(«+ I) vs IR(n), evaluated at the 
intensity maxima, when a signal has been encoded on the 
transmitter. The carrier wave maxima, and the "1" and 
"-1" bit arc depicted by the diamonds, pluses, and squares, 
respectively. One sees that the encoded signal is seemingly 
inextricably mixed with the carrier wave. Higher dimen- 
sional intensity peak return maps, /(n+i) versus 
{/(;i),/(n-l),/(n-2) }, offer no additional help to- 
wards unraveling the signal from the carrier [S]. 

HI. ANALYSIS VIA INTF.KSHKK. INTF.UVAI.S 

A useful representation of the data occurs when one con- 
siders return maps based not solely on intensity maxima; but 

rather on a combination of the intensity maxima with the 
time intervals between intensity maxima, which we call the 
interspike intervals (ISI). In a recent paper, Sauer [10] pro- 
posed the use of interspace intervals as a means for attractor 
reconstruction from time series, in analogy with Takens' 
theorem [11]. In this work we use the interspike intervals to 
find a useful relationship between the ISI and the intensity 
maxima of a chaotic loss-modulated solid-state laser. 

Figure 2(b) is a plot of numerically generated transmitter 
laser intensity maxima /j-(n) of Fig. 1(a) occuring at time 
/(«) versus the pair of interspike intervals A/7<n + I) and 
A/r(n), where Ltrin + l^t^n+^-trin). Here 
A.rrCl+1) is *e l*me between the nth intensity maxima 
l-^n) at time t^n) and the occurrence of the next intensity 
maxima at time r^n + 1). Similarly, Ar^n) is the time be- 
tween the nth intensity maxima I^n) at time tf{n) and the 
previous intensity maxima at time r^n—1). A reconstruc- 
tion of the attractor solely using interspike intervals, i.e.. 
A/^n + l) versus A/^n) and A/^/i-l) reveals no added 
information over a reconstruction solely using intensity 
maxima, /(n + 1) versus /(n) and /(n-1). It is the combi- 
nation of intensity maxima and interspike intervals as shown 
in Fig. 2(b) which uncovers structure, and a relationship be- 
tween physical quantities. 

Figure 2(b) shows results of the numerical simulation 
with noise ("+") and without the inclusion of noise (dia- 
monds). The level of noise was chosen to be typical of that 
experienced in laboratory experiments (see Fig. 1 in [6]). 
Both the noise-free and noisy maxima fall on a nearly two- 
dimensional surface that is essentially planar. Figure 3(a) 
shows the intensity maxima of the noise-free simulation, 
while Fig. 3(b) shows die same plot from an edge-on view, 
that is /7-(/i) versus 

cos(^     -(/i + l) + sin(0)A/r(/j) 

«[A/Kn + D + AMn)]/^ 

= [rr(n+l)-rT(n-l)3/v/2. 

where the angle 0=ir/4 gave the optimal view. Here wc 
clearly see an almost one dimensional structure of the return 
map. Figure 3(c) shows the noisy simulation with the similar, 
nearly one-dimensional structure in the return map, viewed 
cdf.c on in Fi». 3(d). Note that the intensity maxima of the 
noisy simulation Fig. 3(c), fall on the same nearly two- 
dimensional surface of Fig. 3(a), but in that portion of die 
surface corresponding to lower intensity maxima. Wc return 
to this point shortly. 

Figure 3(e) is an edge-on plot of the experimental data 
(diamonds) of Fig. l(b). Because the experimental data was 
taken at parameter values slightly different from that of the 
numerical simulation, the temporal variation of the interspike 
intervals in Fig. l(b) is on a finer scale. In fact, the data in 
Fig. 3(e) corresponds to the upper right-hand, high intensity 
maxima comer of the data of the numerical simulation. Fig. 
3(c). However, even for this more uniform variation of the 
interspike intervals, a plot of the intensity maxima-ISI return 
map reveals structure and a relationship between physical 
variables. The experimental data is again essentially planar 
as evidenced by a global least squares lit of the experimental 
intensity maxima to the experimentally derived interspike 
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intervals A/j(fl + I) and Arr(n). The plane of this least 
square fit of intensity maxima to ISI is shown in an edge-on 
view as the overlaid heavy straight line (" + ") in the center 
of Fig. 3(e). One should note that it is not important in plot- 
ting These return maps to utilize the precise maxima of the 
intensity, which may be hard to resolve in an actual experi- 
ment. Any convenient threshold value on the intensity spike 
could be used to replace M"). and A/r(/i) would then be 
measured as the time between successive crossings of this 

threshold. 
If one were to plot a three-dimensional return map ot me 

interspace intervals alone, i.e.. A/TOI + 1) vs A/r(«) and 
kt-rin- 1), the result would be an unfolding of the attractor, 

topologically equivalent to an unfolding utilizing only the 
intensity maxima, /(n +1) vs /(/») and /(n-1). The signifi- 
cance of the nearly planar (linear) structure of the intensity- 
ISI return maps in Fig. 3(a) [Figs. 3(b) and 3(e)] is that it 
implies that there exists a nearly linear relationship between 
the intensity maxima Ij{n) and the interspike intervals 
Ar^n + 1) and AMn). 

Schwartz and Emeux [12] explored this loss-modulated 
laser system and found explicit representations for the Poin- 
care mapping between the (dimensionless) gain and the ISI 
applicable to the period 1 and 2 orbits. Though it is not the 
goal of this paper. Figs. 3 suggest that such a map might be 
found also in the chaotic regime. They analyzed the perioclt- 
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FIG. 4. Plot of scaled transmitter intensity y(t) 
-[M'W J/'« vs Ü1C normalized gain x{t) from Eq. (2.1): (a) no 
noise, (b) with noise. [/„ is the steady-state intensity of the conser- 
vative system, which to lowest order approximates the system of 
equations in Eq. (2.1)]. The large intensity maxima occur when the 
previous intensity minima reach very low values. 

cally driven laser system as a conservative system (to lowest 
order of approximation) plus small nonlinear terms. When 
dissipation is neglected, periodic orbits in the plane of the 
(dimensionlcss) gain x and intensity relative to the steady- 

arc state value of the conservative system ? = (/-/„)//„, 
rounded triangular closed orbits with a flat base parallel to 
the x axis at a value of y 1 corresponding to zero inten- 
sity (see Fig. 4 and Fig. 5 in [12]). High intensity maxima 
correspond to the previous intensity minima reaching very 
low values. Fig. 4(a) where wc plot the dimensionlcss inten- 
sity and gain MO vs Gj<0 to™ Eq. (11) as y(f) vs 
x{t). In the chaotic regime, the lowest order approximation 
of the laser system is still a conservative system, and this 
relationship between the height of the intensity maxima and 
period (and therefore IS« is retained. With the inclusion of 
noise. Fig. 4(b), a minimum base line intensity is maintained. 
which correspondingly limits the mx-umum height of the in- 
tensity peaks. We see this in Fig. 3(a) where the noisy inten- 
sity  maxima  are  restricted  to  the  portion  of the  two- 
dimensional surface corresponding to smaller intensity peak 
heights and therefore, small values of the 1SI. 
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FIG. 5. Decoding of the signal hidden in the chaotic earner f 
the transmitter laser by the return map of /rfn) ^ 
[,^,, + D- -<n-l)]/>/2. The transmitter laser has been modu- 
lated with - 1.0ZO.15A». with A»-0.85: Upper branch - " 1 ' 
bit, middle cranch — no signal, lower branch — "-1" bit. (a) no 
noise, (b) with noise. 

IV. CONSEQUENCES FOR CHAOTIC COMMUNICATION 

The regular structure of the intensity versus ISI return 
maps has important implications for communicating signal* 
via a chaotic transmitter laser. As proposed by Colet and Ro> 
[6], the transmitter laser encodes the signal by an amplitude 
modulation external to the laser. Since the transmitter is not 
intrinsically perturbed, Figs. 3 suggests that the intensity 
maxima-ISI return maps applied to the transmitter signal 
alone could be used to decode the signal. Figure 5(a) is a plot 
of the simulated transmitter intensity output maxima lji.<- > 
vs die ISI combination [tj{n+ l)-tj{n-1)]/>/2, when the 
laser has  been  modulated  with AS=1.0±0.15A6   wuh 
Afr=0.85, without the inclusion of noise. Signals were en- 
coded only on intensity maxima with values approximately 
greater than 10. The middle branch is the no-signal maxima 
Aj=A6, while the upper branch corresponds to a "l" bit 
Ax= !.15Ak, and the lower branch corresponds to a •'-[" 
bit A5=0.S5At. Figure 5(b) is the corresponding simulation 
when   noise   has   been   included   using   a   value    of 
f.r=eÄ=8.33Xl0~9  s"'.   typical   of  actual   experiment'; 
[6.9]. Even though the noise smears die branches out some- 
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FIG. 6. The return tnnp of the transmitter .laser, M«) vs 
r,-(n+D-f^n-l)]/^. when the transmitter laser pump has 
been modulated with P,- l.0±0.50Pr. (no noise). Compared with 
Fig. 5(a). the signal branches corresponding to the encoded bits 
{1.-1} have been merged with the no-signal branch. 

what, they arc still clearly distinguishable. Plots at 5% en- 
coding modulation for A,, = 0.9 show similar behavior of 
clearly distinguishable signal branches. 

The signals embedded in the chaotic output of the trans- 
mitting laser were decipherable because of the inherent rcla- 
tionshTp between intensity maxima and interspace intervals 
exhibited in the intensity-ISI return maps. This encoding 
scheme, in which die transmitter laser intensity was modu- 
lated outside of the laser cavity, did not dynamically alter the 
relationship between intensity maxima and intcrspikc inter- 
vals. Therefore, to encode and hide signals on die chaotic 
transmitter carrier we suggest that it would be more advan- 
tageous to have the encoding method fundamentally perturb 
the ISI. This can be achieved by modulating the transmitter 
pump across an intensity peak. The actual beginning and 
ending of the  modulation  could occur in the  intensity 
troughs, as long as the pump change persists over die inten- 
sity peak. In Figure 6 we have simulated the intensity output 
of the transmitting laser when its pump has been modulated 
with /»s= 1.0±0.50?r(0 w* willl0ut *c inclusion of noise. 
The resulting edge-on view of intensity-ISI return map for 
the transmitter shows that the attractor surfaces have been 
essentially merged together onto the no signal surface. Even 
if we were to look at the logarithmic signal differences, our 
success rate of distinguishing a "± 1" bit from no-signal via 
the transmitter return maps is greatly diminished due to the 
severe overlapping of the surfaces. For smaller modulations 
or with the inclusion of noise, tilings only become more dif- 
ficult. However, die signal con be decoded when die trans- 
mitting laser output is synchronized to the receiver and the 
integrated signal difference of Eq. (2.4) is utilized. 

We point out an interesting feature of this encoding 
scheme that differs from the original encoding scheme in 
which the laser intensity is externally modulated. Figure 7(a) 
shows the decoded message bits (solid line) when the exter- 
nal intensity is used to encode the signal. The dashed line in 
this figure is the value of the discrete bits "£ 1 .'* encoded on 

470    480    490    500    S10    520    530    540    550 

ttus] 

FIG. 7. The integrated signal difference MU)-\E'T\- 
-|Ak£/,|! vs time for the receiver laser (a) external modulation of 
peak intensity, (b) pump modulation by 50%. The broken line is the 
discrete bit values encoded on the transmitter laser. For the pump 
modulation scheme (b), the signal is encoded in the difference be- 
tween the positive and negative maxima of the integrated signal 
difference across the intensity maxima, (c) magnification of the 
region 525</<535 of part (b) showing the decoding of a "-1" bit 
(left) ar      1" bit (right). 

the transmitter laser. Although it is drawn as a continuous 
line, the value of the encoded bit only has meaning 
across   the   intensity   peak.   In   these   figures   we   plot 
M(/)-|£^l2-Mt£Ä|2 vs t, where l£^2 is the intensity of 
the modulated transmitter laser at the receiver laser. Positive 
values of M(t) can be associated with a transmitted "\" bit 
and negative values of M(t) can be associated with a " -1" 
bit. Figure 7(b) shows a decoded message bit when the pump 
is modulated by ±50% to encode the signal. The signal is 
again decoded by die integrated signal difference Af (/) and 
the dashed line in this figure is the value of the discrete bits 
"±1" encoded on the transmitter laser. The first two 
"blips" (f<490) in Fig. 7(b) represent no signal encoded. 
The encoding of signals consisting of random values of 
"± 1" beginning at f>490. Note that M(f) in Fig. 7(b) is 
neither all positive nor all negative as is essentially the case 
when the signal is encoded by modulating |£ri2 outside the 
laser, such as in Fig. 7(a). Figure 7(c) shows a magnified 
view of the region 525</<535 of Fig. 7(b) where a " -1"' 
(left pulse) and "1" bit were decoded from the signal. For 
the "l" bit the positive area is slightly larger than the nega- 
tive area leading to an overall positive integrated area, while 
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ihc reverse is true for ihc "-1" bit. Again, positive values 
of M(t) can be associated with a "l" bit encoded on the 
transmitter laser and negative values of M(t) can be associ- 
ated with a "-1" bit. Net magnitudes of M{t) clustered 
around zero can be interpreted as no signal sent. For the case 
of encoding the signal by pump modulation, the receiver is 
synchronized to the modulated transmitter laser in all regions 
outside of the area of the receiver intensity peak. Under the 
peak the transmitter and receiver intensities arc slightly out 
of synchronization, yet still mutually entrained, with die re- 
ceiver lagging the transmitter, leading to die double humped 
decoded signals in Figs. 7(b) and 7(c). 

We note that when this pump modulation scheme is used 
to encode the signal onto the transmitting laser, an intensity 
return map /7<«+ 1) vs Irin), is again useless in decipher- 
ing the hidden signal, having an appearance similar to that of 
Fig. 2(a). In addition, we also explored signal encoding with 
pump modulauons of 10% and 90%. For both these modu- 
lation values, the intensity vs ISI return maps arc similar in 
structure to Fig. 6, i.e., die encoded bit surfaces nearly coin- 
cide with the no-signal surface and they arc all intertwined. 
The signals again could be decoded by an integrated signal 
difference at the receiver. However, for weak modulations 
values (e.g., 10%) decoded bit values could occasionally be 
misinterpreted because the difference between die positive 
and negative areas in Fig. 7(b) was small enough that a sig- 
nal could be interpreted as a nonsignal. 

On the oüier hand, for stronger modulation values (e.g., 
90%) the decoding would occasionally fail, and decoded bits 
would be interpreted incorrectly. These instances would oc- 
cur when perturbations to die transmitter carrier were enough 
to make it sufficiently dissimilar to the receiver that cntrain- 
ment was momentarily lost for that signal pulse. As dicusscd 
in Sec. II, die first term of Eq. (2.3) - K,\byc(ER-ET) is 
responsible for die synchronization of the transmitter laser to 
the receiver laser. If die second term K7c{As-A,,)ET »S 
small with respect to die first term, die transmitter carrier 
wave plus signal can still be entrained by die receiver laser. 
However, for large pulse modulauons this second term may, 
on occasion, not be small, and across diis spiky peak entrap- 
ment is lost. In general, it appeared that intermediate values 
of the modulation (around 50%) produced the best results 
for reliably decoding the message at the receiver. 

In a final numerical experiment, we explored the conse- 
quences of quasiperiodically modulating the loss coefficient 
of both the transmitter and receiver laser. The form of the 
modulation was modified to 

o(/)"»oo + a,[cos(nr) + ß2cos(/2nr)+c3cos(/jnf)], 
(4.1) 

where the amplitudes {a2,aj} and frequencies multipliers 
{fzJi) are rixct1' but :irl3'lrari,y chosen constants. Again the 
receiver was operated at conditions for optimal synchroniza- 
tion a0K=a0T+KAb, and noise (typical for these lasers) 
was included in the calculations. 

When a single additional frequency was used. (az 

#0,aj = 0 and /j-W,«0). the branches of the two- 
dimensional intensity-ISI return maps [as in Fig. 5(b)] thick- 
ened and merged as die amplitude a2 approached unity, nus 
thickening and merging effect was pronounced when two 
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FIG. 8. Quasiperiodic driving of the loss coefficient of both the 
transmitter and receiver lasers*, (a) iniensity maxima vs ISI of the 
transmitter laser, (b) MOHEfP-K^I' vi time for the receiver 
laser. The broken line is the discrete value of the decoded bit. By 
adding more driving frequencies (a), the signal branches of Fig. 
5(b) are thickened and intermixed. However, the integrated signal 
difference at the receiver laser Fig. 8(b) can still decipher the hid- 
den message. 

additional frequencies were utilized. Figure 8(a) shows the 
intensity vs ISI return map for the transmitter laser for the 
case a2=ö3-»l. ««* * choice of incommensurate relative 
frequencies /2» 7? and /3- (S-1 )/2. Quasiperiodic driv- 
ing led to an increase in the dimensionality of the attractor. 
exhibited by the thickening and merging of the intensity vs 
ISI map in Fig. 8(a). This renders the intensity vs ISI map 
ineffectual for deciphering the hidden message from the 
transmitter laser alone. The effect was qualitatively the same 
when additional commensurate frequencies were added to 
the driving. However, when utilizing commensurate frequen- 
cies, the remnants of the separate attractor surfaces for the 
encoded bits [as in Fig. 5(b)] could be inferred, if barely. 
However, the surfaces were thickened and merged enough, 
as in Fig. 8(a), to render the intensity vs ISI map ineffectual 
as a deciphering tool. . 

With no signal encoded, the transmitter synchronized ef- 
fortlessly to the receiver laser. When the signal was encoded 
by amplitude modulation external to the transmitter laser (as 
in [6]). the signal could be decoded at the receiver laser by 
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means of an intcgrnted signal difference, as evidenced .Fg. 
8(b). Occasionally there were misinterpretations of the de- 
coded bits for reasons similar to those discussed above for 
the case of encoding with pump modulations We purposely 
increased the dimension of the attractor by adding more driv- 
ing frequencies of arbitrary amplitude. Therefore, when a 
signal is impressed upon the transmitter carrier wave, it is 
occasionally different enough from the receiver signal so that 
the second term on the right-hand side of Eq. (4.1   perturbs 
the system enough so that entrapment is lost for this signal 
neak The details of the modification of the local Lyspunov 
Lct'rum in the presence of multiple driving frequences was 
noi investigated, but would make for an interesting topic of 

exploration. 

V. SUMMARY AND CONCLUSIONS 

We have investigated the chaotic loss-modulated 
Nd-YAG laser and have found, both numerically and experi- 
mentally, that a return map utilizing intensity maxima ;and 
interspike intervals (ISI) reveals a regular, almost :planar 
structure. This observation indicates that a simple relation- 
ship exists between the intensity maxima and the interspike 
intervals      centered       about      that      maxima.       i.e.. 

MiO-FrA/Kfl+D.ArrC«)]. In faCt' by pl°lting ?° 
intensity maxima /(,,) versus the difference between the suc- 
ceeding     and     preceding     interspike     intervals,     i.e.. 

observe a nearly onc-dimcnsional. one to one relationship 
between these variables, even in the presence of noise. This 
relationship was observed in numerical simulations as well 
M in experimental data taken at slightly different parametc 
values, leading to a variation of the interspike intervals on a 
much finer scale. However, even in this latter case, a plot of 
the intensity maxima-ISI return map reveals an almost: plan« 
structure and therefore a relationship between physical vari- 
ables. Such a result would be useful, for example, m time 
series prediction of the future intensity maxima. In construct- 
in- the intcnsity-ISl return map it was not essential that the 
Jcak of the intensity be utilized. The ISI cou d have been 
defined relative to some arbitrary threshold value under the 
region of the peak and the return map then reconstructed 

The relationship between the the intensity maxima of he 
laser and the interspike intervals has consequences or the 
use of a transmitter-receiver pair of chaotic loss-modulated 
NdiYAG lasers as a system to transmit encoded messages 
privately. By plotting the intensity-ISI return map of the 
SmiLlLr alone, the message of »± 1" bits, encoded 

by means of external cavity modulation, appears on surfaces 
above and below the no-signal surface. Even .n the presence 
of moderate noise, the message can be deciphered. 

As an alternative encoding scheme, we suggest encod ng 
the signal by modulating the pump across the intensity 
maxirnfTnis intrinsically perturbs the ISI of the transmitter 
TaLr as opposed to the above externally modulated encoding 
scheme. The subsequent attempt to decode the embedded 
message by means of intensity-ISI return maps of the trans- 
mitter laser alone is unsuccessful because the signal attractor 
surfaces are merged onto the no-signal attractor surface. 
However, the message can still be decoded by means of clnv- 
inc the receiver laser with the output of the transmitter laser 
and extracting the message from an integrated intensity dif- 

CriSCaddiüon, quasiperiodic driving of the loss coefficient of 
both the transmitter and receiver laser produced an increase 
in the dimensionality of the system. This led to a thickening 
of die intensity-ISI return maps with the merging of the in- 
dividual surfaces corresponding to the {1,0,-1} encoded 
bits This rendered the intensity-ISI return maps ineffectual 
as means to decipher the signal from the transmitter laser 
alone However, the signal could once again be extracted by 
means of an integrated signal difference at a receiver laser 
synchronized to the transmitter earner wave. 

Finally, the lessons learned in this study are twofold. 
First, an intensity-ISI or purely ISI return map can be a use- 
rul tool in the study of a pair of loss-modulated Nd.YAG 
lasers because of the implicit relationship between (he inten- 
sity peak to the interspike intervals centered about that peak. 
Second as applied to chaotic communications, the intensity- 
ISI return maps can be used to decipher the hidden message 
from the transmitter carrier wave alone. Care must be taken 
to intrinsically perturb the system or to increase the d.mcn- 
sior.    v of the system (though not high enough to void syn- 
chrc   nation) so that the signal is safe from undesired deci- 
phering by means of mapping techniques. 

ACKNOWLEDGMENTS 

The authors would like to thank the Maui High Perfor- 
mance Computer Center and the Albquerque Research Cen- 
ter for the use of their parallel computing facilities during 
this work. R.R. would like to acknowledge support from the 
Division of Chemical Sciences. Office of Basic Energy Sci- 
ences. Office of Energy Research. U.S. Department of En- 
ergy, and the Office of Naval Research. 

[I] L. M. Pecora and T. L. Carroll. Phys. Rev. A 44. 2374 (1991): 
W. L. Ditto and L. M. Pecorn. Sei. Am. (Int Ed.) 269 62 
(1991)- N. Cershcnfeld and C. Crinstein. Phys. ^v- *■»«• **• 
5024('l995); E. Ott and M. Spane. Phys. Today.£34(1995); 
L. Kocarez and U. Parlitx. Phys. Rev. Lett. 74. 5028 (1995). T. 
C Newell. P. M. Alsing. A. Gavrielidcs. and V. Kovan.s. 
Phys. Rev. E 51. 296? (1995). 

[21 K. M. Cuomo and A. V. Oppenheim. Phys. Rev. Lett. 71. G5 

MOOT! 

m S Hayes. C. Grebogi. E. On. and A. Mark. Phys. Rev- Lett. 
73. 1781 (1994); S. Hayes. C. Grebogi, and E. Ott. ,b„l. 70. 
3031 (1993). „ 

[4] R. Roy and K. S. Thomburg Jr.. Phys. Rev. Uit. 7.. -009 

(1994). 
[51T. Sugawara c, n/.. Phys. Rev. Let«. 72. 3502 (1994V 
[6 P- Cole, «I R. Roy. Op«. Let«. 19. 2056 (.994 . 
[7] C. R. Mirasso. * «/.. IEEE Phoion.cs Technol. Lc.i. «. - J9 

(1996). 



Dynamical Evolution of Multiple Four-Wave-Mixing Processes 

in an Optical Fiber 

D. L. Hart, Arthur F. Judy, and Rajarshi Roy 

School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 

and 

James W. Beletic 

European Southern Observatory, Karl-Sch-Str 2, D85748 Garching, Germany 

Abstract 

We present unique results of detailed experimental and theoretical investigations of the 

dynamical evolution of four wave mixing spectra in an optical fiber. The experimental 

measuremen*s probe the evolution of sidebands generated through four wave mixing as they co- 

propagate with the pumps along the fiber. We find that standard theoretical models are 

inadequate to predict the experimental results and that it is necessary to modify the approach to 

modeling the dynamics in two ways. The first modification is to include a pump laser input with 

multiple longitudinal modes. This reflects the fact that the pump laser fields may actually have 

internal structure that is not resolved by the spectrometer used and which is very small compared 

to the spacing of the central frequencies of the pump fields. Yet the evolution of the fields is 

dramatically altered for the sidebands generated by nonlinear processes in the fiber medium. The 

second is the inclusion of phase noise added along the propagation length; this causes damping 

of the sideband oscillations. These two modifications lead to excellent agreement of the 

measurements with numerical predictions of the sideband evolution. 



I.       Introduction 

The study of wave propagation in a nonlinear dispersive medium, such as an optical fiber, is of 

interest in many areas of science and engineering. The past few decades have seen enormous 

growth in the use of optical fibers in communications systems. With this growth, engineers and 

researchers have been challenged with a wide range of physical phenomena associated with high 

intensity light waves propagating in optical fibers. Specifically, some of the interesting 

characteristics of silica glass/of which fibers are made, are low loss, dispersion, and especially 

nonlinearity. Since optical fibers have a relatively small cross section, a comparatively small 

amount of power is required to generate high intensities; thus, many nonlinear optical processes 

are easily observed in the medium [1]. 

Some of the earliest work in nonlinear fiber optics consisted of both experimental and theoretical 

investigations of such effects as stimulated Brillouin and Raman scattering [2]. This work 

stimulated the expansion of research to other nonlinear phenomena, such as four-wave-mixing 

[3], optically induced birefringence [4], self-phase modulation [5], and cross-phase modulation 

[6]. Advances in communications technology came when researchers realized that the 

nonlinearity in optical fibers could be exploited. In 1973, Hasegawa suggested that optical fibers 

would support soliton pulses in which the nonlinear effects balance the effects of dispersion [7]. 

Shortly thereafter, optical solitons were experimentally observed [8]. Technologies using 

solitons are promising for high bit rate optical communication systems [9]. Nonlinear fiber 

optics has found many uses beyond communications systems; for example, pulse compression 

[ 10] and sensor devices [11]. 

Until recently, communications systems using optical fibers supported one communication 

channel per fiber. To increase the information capacity of communications systems, engineers 



have turned to wavelength division multiplexed (WDM) systems in which each communication 

channel is represented by a unique wavelength. The dominant nonlinear process which limits the 

information capacity of a WDM system is four-wave-mixing. The parameters that set this limit 

are the power coupled in the fiber and the frequency spacing between adjacent channels. 

Nonlinear fiber optics is not only relevant to telecommunications; it is also of great interest in 

mathematics and physics. The equation which governs wave propagation in a single-mode 

optical fiber is a nonlinear second-order partial differential equation (the nonlinear Schrodinger 

equation). This particular equation has been studied extensively for its mathematical properties, 

for example, its analytic solutions give rise to the possibility of soliton propagation [12]. The 

nonlinear dynamics accessible in optical fibers is rich and varied and makes an excellent 

experimental system for the study of many nonlinear phenomena. 

In this paper, the nonlinear dynamics of four-wave-mixing processes resulting from two waves 

ccoropagating in an optical fiber is investigated. Multiple waves at different frequencies 

copropagating in an optical fiber can interact through the nonlinear susceptibility of the fiber 

medium to generate new frequencies, sidebands, through four-wave-mixing (FWM). Two pump 

waves at ©i and CÖ2 input to an optical fiber can generate first order sidebands at frequencies 

co3=2cor CO2 and (04=2u>2- coj. Second order sidebands are found at ©5= 2ü>3 - co4 and (ü6=2CO4 - 

0)3. The number of sidebands generated is determined by the input power and frequency 

separation between the pumps, e.g. higher order sidebands may easily be generated by either 

increasing the pump power or decreasing the pump detuning. 

We present detailed studies of the dynamical evolution of sidebands, generated from two input 

pump waves at <0| and 0)2, as they propagate along an optical fiber. Previous numerical studies 



have shown that two critical parameters, the pump power and the frequency separation 

(detuning) between the pump waves, determine the dynamical evolution of power in the 

sidebands and the number of sidebands generated in a particular length [13]. Previous theoretical 

studies have shown interesting and sometimes complex dynamical evolution of the sidebands 

with length in the fiber [ 14,15]. Section II reviews the nonlinear dynamical equations used to 

study the evolution of FWM processes in the optical fiber. There were two sets of equations 

used throughout this research to model the system; the nonlinear Schrodinger equation (NLSE) 

[ 1 ] and a set of coupled amplitude equations derived from the NLSE [13]. Numerical 

simulations based on these models that show the sensitivity of the sideband dynamics on the 

input pump power and frequency detuning are presented. These simulations motivated the initial 

choice of parameter regimes to investigate in this research. 

A unique set of experimental measurements of multiple FWM processes along an optical fiber 

were performed for this research. The experimental apparatus used to conduct the measurements 

is presented in action m. The key elements of the system were two tunable dye lasers which 

were pumped by a frequency doubled Nd:YAG (neodymium doped yittrium aluminum garnet) 

laser, polarization maintaining optical fiber supplied by AT&T Bell Labs, a spectrometer, and a 

high resolution, low noise CCD (charge coupled device) camera supplied by Georgia Tech 

Research Institute (GTRI). The GTRI CCD camera was a critical instrument in the experiments. 

Standard CCD cameras would have been inadequate to detect very weak sidebands; the regime 

most of the experiments probed. The experimental results presented here are unique in two 

ways; first, the GTRI CCD camera allowed for detection of weak (<1% of the pump waves) 

sidebands and second, these are the only detailed measurements tracing the dynamical evolution 

of the sidebands along a fiber in existence at this time. 



Section IV presents the experimental investigation of the dynamical evolution of multiple FWM 

processes in an optical fiber. Measurements tracing the power in the sidebands along a length of 

50 meters of fiber are presented. These measurements were done at two input pump powers 

which yield different sideband dynamics. The power in the sidebands was observed to evolve 

periodically with fiber length. However, the periodic evolution appears to damp to a constant 

value of power for each sideband. Furthermore, each of the sidebands evolves along the fiber 

with different dynamics. Other studies in which the pump power was varied for a fixed length of 

fiber are presented as well. The initial growth of the sidebands in the first 5 meters of fiber was 

found to be fairly well predicted by the standard theoretical models. However, for longer 

lengths, the inadequacy of the models to predict the experimental observations is apparent. 

Section V discusses the interpretations of the experimental results. To understand the 

measurements, the theoretical models are modified by including two effects previously not 

considered; a pump input with multiple longitudinal modes and phase fluctuations added to the 

waves as they propagate aloi g the fiber length. The impact of a multimode input is examined 

and found to dramatically alter the dynamical evolution of the individual sidebands when 

compared with the standard theory using a single mode pump input Weak stochastic phase 

perturbations, added to the copropagating waves are also included in the modeling and found to 

damp the periodic evolution of the power in the sidebands. Neither the relatively straightforward 

multimode input nor the phase fluctuations which were not so obvious have ever been considered 

when modeling multiple wave propagation in an optical fiber. Both effects are found critical to 

understanding and predicting the dynamics of the experimentally observed sideband evolution. 

This research has probed a very specific regime of a complex nonlinear system. The 

experimental research pointed to several inadequacies of the standard theoretical models to 

predict the experimental results. Section VI summarizes the conclusions of this research. 
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n.     Theoretical Considerations 

Propagation of optical pulses in single mode optical fibers is described by the well-known 

nonlinear Schrodinger equation [1]: 

3V   ß«'32U    . 
Jz+WS?"™1*" <» 

where U is the complex electric field envelope normalized to the absolute amplitude of the field 

-^P0, P0 is the total power in the fiber, x is time normalized to the pulse width and measured i 

reference frame moving with the group velocity of the pulse (T = (t-z/v,)/T0), T0 is the pulse 

width, ß(2) is the group velocity dispersion (GVD) and is given by the second order derivative of 

ß, the axial wavevector, with respect to the angular frequency (0^. The nonlinearity coefficient 

Y is given by the relationship, 

Y    ~cÄ~~ (2> 

where A«ff is the effective core area of the fiber determined by the size of the fundamental mode, 

n2 is the Kerr coefficient for the intensity dependent refractive index and (0,^ is the average 

angular frequency of the wave envelope [1]. 

In order to obtain the nonlinear Schrodinger equation (eqn. (1)), several assumptions are made. 

One assumption is an instantaneous nonlinear response of the medium. This is valid for pulses 

longer than 100 femtoseconds since the third order susceptibility of the medium, x(3). has 

electronic contributions on the I to 10 femtosecond timescale [1]. The experimental research 

used relatively long pulses -5 ns. The slowly varying envelope approximation is also used where 
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the second order derivative of the field with respect to the length is neglected. This assumes that 

the change in slope of the field envelope over a distance of one wavelength is small compared 

with the slope of the field envelope itself. The optical field is assumed to maintain its 

polarization along the fiber, thus the scalar form of the NLSE (eqn. (1)). This is justified for the 

experiments presented here, since linearly polarized light from the lasers was propagated with the 

polarization aligned along one of the principal axes of a polarization preserving fiber (Section 

ffl). The axial wavevector, ß(cD), is approximated by a Taylor series expansion. For wavelengths 

near the zero dispersion regime (X - 1.3 microns), where ß(2) approaches zero, higher order terms 

from the Taylor series need to be included. The experiments in this research were performed 

the visible regime (X - 633 nm) thus only terms up to ß(2) were retained. The linear fiber loss i 

also assumed negligible. This is justified for the wavelength regime and fiber lengths (L < 50 m) 

investigated, since the loss is approximately 6 dB/km at (X - 633 nm) which amounts to < 1% 

loss over 50 meters. 

There are two wavelength regimes of interest in optical fibers; the anomalous dispersion (X > X,) 

and the normal dispersion (X < X,) regimes where the cero dispersion wavelength X„ can range 

from 1.3um to 1.58UJTL The experiments presented here were performed in the normal dispersion 

regime. However, the integrability of the NLSE gives rise to interesting solutions in the form of 

solitons in both regimes. Soliton propagation occurs when the fiber nonlinearity balances the 

effect of dispersion and the pulse propagates without dispersive broadening. In the anomalous 

dispersion regime (ß(2> < 0) the fundamental soliton solution of the NLSE is in the form of 

hyperbolic secant pulses [1,12]. In the normal dispersion regime (ß(2) > 0) the fundamental 

soliton solution is in the form of a hyperbolic tangent, giving rise to dark solitons or dips in a 

continuous wave background [1,16]. In the context of the experiments presented, in the normal 



dispersion regime with finite width pulses, a carrier pulse of finite width may support relatively 

stable propagation of dark pulses for short distances [16]. These are not 'proper' dark solitons 

however; the distance of stable propagation decreases with decreasing carrier width. 

The split step Fourier method (SSFM), a pseudospectral technique, was used in this research 

[17]. Specifically, a symmetrized form of the SSFM was used [1], and the fast Fourier transform 

(FFT) routines were obtained from the IMSL mathematical libraries. An advantage of using the 

NLSE in the four wave mixing problem, is that integration is reduced to using the FFT. 

Modeling four wave mixing processes, for example, with a dual frequency input, the total 

complex field is represented by U, the field envelope, and all frequency components are 

propagated using the single NLSE. However, care must be taken under conditions where many 

orders of sidebands are generated. As the number of sidebands increases, the size of the FFT 

must necessarily be increased. 

For long pulses or continuous wave input, assuming monochromatic waves, the coupled 

amplitude equations for the pump waves and sidebands derived from the wave equation [13] are 

written below, normalizing all of the complex field amplitudes to the absolute value of the total 

amplitude of the pumps with average frequency eo^« (which has total power P0 at the input end 

of the fiber) 

^ = '*| Uj f -22l Uk ?Y ^d^U^Ule^ (3) 

where j Jcnm ■ 1,23.4... and k,m # n. Here l^m denotes the permutations of the indices k, m 

and n such that ©k + (On, - (o„ s ffl^, and me quantity Aßbn, * ßk + ßm - ß„ - ßj is the axial 

wavevector mismatch. The quantity &*„* is a degeneracy factor that is unity when k = m and 2 

when k * m. The nonlinearity coefficient y is given in equation (2). Comparing the coupled 



amplitude equations (eqn. 3) with the NLSE (eqn. 1), the contributions to the evolution of the 

Held Uj are now separated into three sets of terms. On the right side of eqn. (3), from right to 

left, the contributions are due to self-phase modulation (SPM), cross-phase modulation (XPM) 

and four-wave-mixing (FWM). 

The linear mismatches ^^ are simplified using the approximation that the material pan of the 

index difference dominates the mismatch and the waveguiding contribution can be neglected. 

This approximation is justified for the frequency separations in these experiments, since the v- 

number characterizing the single transverse mode changes by less than 1 percent over the entire 

range of frequencies considered. By using the frequency relationships between the peaks and 

expanding the propagation constants ßj in a Taylor series about average frequency, (0,^ all the 

mismatches are found to be integer multiples of the quantity AK * Q2ß(2) where fl is the 

frequency difference, or detuning, between the two pump waves and ß(2) is the group velocity 

dispersion [18]. These amplitude equations can be solved numerically, and the po ver in each 

frequency component obtained as a function of distancs along the fiber. 

Choosing the scaled powers of the waves to be pra = IUral2, then in reference [18] it was shown 

that the equations (3) display power conservation, as is expected. It was also shown that another 

conserved quantity 

C(z)^(pl(z)-p2(z)) + (p,(z)-pA(z)) + (pi(z)-p6(z)) (4) 

is obtained for the multiple four wave mixing processes that occur within the fiber, ft was shown 

in [ 18] that the conservation of power and equation (4) are the only two conservation relations 

that involve linear combinations of the powers in the different frequency components. This 
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relation holds at any distance, z, of propagation in the nonlinear medium, and connects the 

asymmetries of the pump waves and sidebands. A more generalized form of equation (4) has 

been derived from the NLSE and is presented in reference [19]. Equation (4) has been verified 

experimentally for relatively short fiber lengths of less than 2 meters (see ref. [19]). The 

conservation of asymmetry (eqn. (4)) was used in all of the experimental measurements as a 

sensitive test for other competing processes not included in the models, for example, stimulated 

Raman scattering. 

The initial parameter regime chosen for the experiments came from numerical simulations of the 

equations presented above. The dynamics of these equations for multiple waves copropagating 

in a fiber have been studied numerically for long fiber lengths [14,20]; however, experimental 

work has been limited to a few meters [13,15]. As the sidebands evolve along the fiber, there is 

exchange of power between the pumps and sidebands, the dynamics of which, are determined by 

the phase mismatch between the copropagating waves. The two key experimental parameters, 

for a given optical fiber* and wavelength regime, that determine the dynamics of the power 

exchange are the pump detuning and the total input power. This can be seen in eqns. (3) where 

all terms on the right side of the equations are multiplied by P0 and the FWM terms include 

oscillating terms with the argument proportional to Q . The FWM strength and dynamics are 

very sensitive to the pump detuning as well as y and ß(2). The values used for ß(2) and y are same 

throughout this research, ß(2)» 55 ps2/km and y=0.019 Wlm'\ and are consistent with the 

experimental regimes explored later in this paper. 

To investigate the dependence of the evolution of the power in the first order sidebands (P3(z) 

and p4(z)) on the pump power and detuning, the coupled amplitude equations are numerically 

solved using a fourth order Runge Kutta algorithm [21].  A comparison between the power in 
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the sidebands predicted by the NLSE and the coupled amplitude equations was made as a check 

on the numerical simulations. Simulations based on the NLSE with a continuous wave (CW) 

input and the coupled amplitude equations were performed and compared. The comparisons 

yielded the same predictions for the evolution of the power in the sidebands. However, 

comparison of the NLSE using a Gaussian pulse input with either the continuous wave input or 

the coupled amplitude equations showed a discrepancy between the models. The power 

generated in the first order sideband was found to be higher using the CW input than with the 

pulse input. It was found necessary to include a scale factor in the CW models, where yP0 -> £ 

TfPo with £ = 0.735. The value of £ was determined by comparing predictions from the NLSE for 

a Gaussian pulse input with a continuous wave input. Intuitively, as the pulse width approaches 

infinity, the CW and pulse inputs should agree. However, there is no analytic form for 

estimating this scale factor. Independent studies have also been performed comparing various 

pulse shapes input to the NLSE with the cw input, confirming the discrepancy between the two 

types of input. 

The sensitivity of the sideband dynamics on the pumr     wer is illustrated in Figure 1. The first 

order sideband evolution along 100 meters of fiber for a detuning of 300 GHz and different input 

pump powers is plotted in Figure 1, (a) 2 W, (b) 6 W and (c) 50 W. The coupled amplitude 

equations were truncated to six waves, including up to second order sidebands. In Figure 1 (a) 

the input power is low, generating relatively weak first order sidebands, and the pumps and 

sidebands exchange power periodically along the fiber. Using an undepleted pump 

approximation, eqns. (3) have an analytic solution which shows the power in the first order 

sidebands evolves as a sinusoid as a function of length [22]. In Figure 1 (b) and (c), as the pump 

input power is increased, higher order sidebands are generated and the power exchange between 

the pumps and sidebands becomes increasingly complex. In fact, the equations when truncated 

to include just a few orders of sidebands exhibit chaotic dynamics at high pump powers [13]. 
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However, the NLSE is integrable, and does not exhibit chaos. In the case of the coupled 

amplitude equations the apparent chaos is induced by truncating the equations to include only a 

few frequency components [14]. 

Doubling the pump detuning to Q = 600 GHz, the phase mismatch is increased by a factor of 

four. As the phase mismatch increases the efficiency of power conversion from the pumps to the 

sidebands decreases. The evolution of the first order sidebands with length in the fiber for a 

detuning of 600 GHz is shown in Figure 2 with pump input power levels of (a) 2 W, (b) 6 W and 

(c) 50 W. Comparing the evolution with a pump input of 2 W, by doubling the detuning the 

maximum power in the first order sidebands is decreased by a factor of 10 (Figure 1 (a) and 

Figure 2 (a)). The period of the power exchange between the sidebands and pumps has also 

increased. In Figure 2(b) and (c), it takes much higher powers to generate higher order sidebands 

that impact the dynamics of the first order sidebands. Thus, increasing the detuning decreases 

the efficiency of the four wave mixing power conversion. Increasing the pump power increases 

the number of sidebands generated, and thus the dynamics becomes more complex. 
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m.   Experimental Apparatus and Technique 

The entire experimental set up used to study multiple four wave mixing processes along a length 

of optical fiber is shown in Figure 3. The laser system consists of two Littman type tunable dye 

lasers, pumped by the second harmonic of a Q-switched frequency doubled Nd:YAG laser. 

Pulses that are -5 ns (FWHM) in length are generated. The outputs from the two dye lasers (X - 

633 nm) are amplified and then passed through the appropriate delays to ensure temporal overlap 

of the pulses at the input to the optical fiber. The telescope in the path of one laser controls the 

spot size and, thus, the coupling efficiency so that the relative power of the two lasers coupled 

into the fiber can be adjusted to the desired value. The two apertures ensure nearly colinear 

propagation of the two beams. The light is coupled into a single mode polarization maintaining 

optical fiber, after passage through a polarizer and half wave plate. The polarizer at the input to 

the fiber produces linearly polarized light while the half wave plate rotates the polarization of the 

4ight to coincide with a principal axis of the birefringent fiber. The fiber chosen for the 

experiments was developed by AT&T as an experimental fiber. The fiber is single mode at 633 

nm and polarization maintaining. The AT&T fiber ac - sves high birefringence by deforming a 

circular fiber preform so that it is rectangular in snaps, cne cladding is elliptical, and the core is 

circular [23], This fiber has a core diameter of 4 um with a birefringence of 2.7X10"4. 

A beamsplitter cube, at the fiber output, is used to direct half of the light to an optical power 

meter to monitor the power in the pulses while the other half is input to a grating spectrometer. 

A computer controlled video camera is mounted on an output port of the spectrometer with a 

variable neutral density filter (VNDF) placed at the input port to regulate the amount of light 

incident on the camera. Spectra for individual pulses are digitized and stored in the memory of a 

microcomputer and a video monitor is used to display each spectrum. 
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For the experiments presented in this paper, images of the fiber output spectra were captured 

using a system based on advanced high speed, low noise, and high resolution charge coupled 

device (CCD) technology. The system uses a scientific CCD device developed by MTT Lincoln 

Laboratories [24]. The CCD device is backside illuminated with 420 x 420 pixels/frame. To 

increase the readout rate, there is a separate frame storage region which allows one image to be 

read as the next one is integrated. Each pixel has a dimension of 27 um x 27 urn with a full well 

depth or charge holding capacity of 100,000 electrons. Pixel nonuniformity has been measured 

to be 6% peak to peak for similar backside illuminated devices made by MIT Lincoln 

Laboratories [25]. The advantage of illuminating the CCD from the backside is that the quantum 

efficiency (QE) is high, for this device the peak QE is 90% near 600 nnt The CCD chip 

incorporates an on-chip readout amplifier which is the dominant source of noise in the device. 

The camera system was built at Georgia Tech Research Institute (GTRI) for use in low light level 

astronomical imaging [26]. External to the CCD chip is a 14 bit A/D and controlling electronics 

for the CCD which run at a maximum rate of 1 Mpixel/sec. Using the full 420 x 420 array this 

translates to -5 frames/second. The external electronics incorporate low noise design techniques 

such that the system noise is limited by the readout noise from the amplifier on the CCD chip. 

The CCD is liquid nitrogen cooled to -50°C, reducing the dark current to 0.04 electrons per pixel 

(at room temperature the dark current -700 electrons per pixel). The nainimum readout noise 

from the on-chip amplifier is 7.2 electrons per pixel rms at -50°C [26]. 

The camera system is controlled using a Macintosh computer running Labview control software. 

This software controls a Pulse Instruments PI5800A data generator. The PI5800A generates 

signals on 16 parallel programmable lines which control the camera. From the camera there is a 

fiber optic data link which transmits up to 8.3 MBytes per second. The data is then stored in a 

high speed 32 MByte ram buffer. From the buffer the data may be either stored on a high speed 
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video recorder which runs as fast as 4 MBytes per second, or, for small files it may be stored to a 

hard disk which is limited by the I/O of the computer system. Programs in Labview were 

developed with the capability to select a subarray at any location on the chip. For example, 

the experiments presented here, a subarray of 10 x 256 pixels near the center of the chip 

chosen. This decreases the size of required data storage and increases the maximum number of 

frames per second. In these experiments the frame rate is limited to the 10 Hz repitition rate of 

the Nd:YAG laser system To achieve the slow rates the camera hardware is programmed to 

at 10 Hz and a clock signal is generated which is used to control the laser system through the 

oscillator sync input. The resolution of the camera-spectrometer system is approximately 43 GHz 

and is limited by the resolution of the CCD. 

The data acquisition method used in this research was to collect output spectra using the GTRI 

CCD. The pump lasers fluctuate from shot to shot. For statistical analysis, a total of many 

spectra for each data point are collected. Typically, 400 independent spectra are captured for 

each pump propagating alone in the fiber and the two pumps copropagating (FWM). The ^wer 

in the individual sidebands is measured as a fraction of the total power, normalized to unity, in 

the fiber, and the total input power is determined basea on measurements of each individual 

pump propagating alone in the fiber. Quantitative measurements are then made of the power in 

the pumps and sidebands, generated by FWM. Prior to data acquistion a set of "dark" frames (a 

set of frames with no light incident on the detector) is collected. An average "dark" frame is 

found and then subsequently used to remove the camera bias from the data frames using pixel by 

pixel subtraction. The power in each frequency component is distributed symmetrically about a 

central peak for that component To calculate the power in the pumps and sidebands, we 

developed software to find the locations of the peaks in the spectrum and the power in each 

frequency component in two ways. The first is to take a linear cross-section along one row and 

integrate the power in each frequency component. The second is to integrate the power in the full 
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distribution for each component. The second method is insensitive to horizontal misalignment of 

the CCD detector with respect to the spectrometer. Both methods were employed in this research 

and agreed closely throughout Quantitative values were obtained of the FWM pump and 

sideband power as well as the statistics. It will be seen later that the statistical information 

obtained played a crucial role in confirming the physical interpretation of the experiments. 

The 14 bit dynamic range of the camera system allows for weak FWM signals to be detected. A 

typical linear cross-section of a FWM spectrum is shown in Figure 4 (a) linear scale and (b) 

logarithmic scale. The spectrum is plotted first on a linear scale which is comparable to the type 

of spectrum that would be obtained from a standard 8 bit video camera. The uniqueness of the 

GTRI CCD camera is shown in Figure 4 (b) where the spectrum is plotted on a log scale, the 

highest peaks in the spectrum are approximately four orders of magnitude above the noise. This 

spectrum shows many orders of sidebands, the highest orders just above the noise with a power 

less than 1% of the total pump power. The two central peaks are the pump waves at ©i, higher 

frequency (blue-shifted), and a>2 lower frequency (red-shifted). The first order sidebands are 

located on either side of the pumps at 0)3=2 (Oj- 002 and 0)4= 2 002 - <0j. The detection of weak 

FWM sidebands at the fiber output presented here would not have been possible without the 

exceptional performance of this CCD camera system. 
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IV.    Experiments 

The measurements of the dynamical evolution of four-wave-mixing processes along a length of 

single mode polarization maintaining optical fiber were performed using two different values of 

the pump power, 2.1 W and 5.5 W. The frequency separation between the pumps was held 

constant throughout the measurements at Q = 366 GHz. The experiments began with 50.39 

meters of AT&T birefringent optical fiber [23]. Starting at this initial length, measurements of 

the FWM spectrum at the output of the fiber were made using the GTRICCD camera. From 

these measurements, conservation of total power and asymmetry (eqn. (4)) were tested for each 

data set. To check the conservation of these quantities, the total power and asymmetry in the 

single pumps propagating were calculated and compared with the power and asymmetry of the 

copropagating pumps. Data sets were accepted and kept if the conservation laws were preserved. 

In some cases, the presence of weak stimulated Raman scattering (SRS) was detected through the 

asymmetry relation. In the experiments tracing the evolution of the four wave mixing spectra 

along the fiber length no SRS was detected. After the initial measurements were made at the two 

input powers (2.1 W and 5.5 W), 1 to 1.5 meters of fir     vas cut and cleaved. The fiber was cut 

and cleaved at the output side of the fiber, to maintain approximately constant pump coupling to 

the fiber throughout the experiments. This process was repeated until the four-wave-mixing 

spectrum had been traced along the full 50.39 meters of fiber for the two input power levels. 

Figure 5 and Figure 6 show three dimensional plots of the average FWM output spectrum along 

the- length of single mode birefringent optical fiber. The vertical axis represents the intensity, 

normalized to the peak power in one of the pumps, plotted on a logarithmic scale. The pump 

frequencies are centered on ±Q/2, and the fiber length is increasing into the page. In Figure 5 the 

input power to the fiber is 2.1 W and first order sidebands are clearly seen. Plotted on a log scale 
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the evolution of the power in the sidebands appears to evolve periodically with increasing fiber 

length. Figure 6 shows the evolution of the FWM spectrum for a pump input of 5.5 W. First 

order sidebands are generated as well as 'weak' second order sidebands. The first order 

sidebands appear to evolve periodically initially, and, with increasing fiber length, evolve to a 

constant value. 

A clearer picture of the evolution of the first order sidebands is obtained by plotting the power in 

the sidebands as a function of length along the fiber. Figure 7 shows the evolution of the first 

order sidebands as a function of length. The two first order sidebands are plotted separately, 

where Figure 7 (a) shows the evolution of the blue sideband (blue-shifted from the pumps) and 

Figure 7 (b) shows the red sideband (red- shifted from the pumps). The solid line in the figure is 

generated by numerically solving the coupled amplitude equations truncated to six waves. The 

parameters ß(2) and y were determined by finding the best fit of the numerical simulations to the 

experimental data. The values obtained were ß(2) = 55 ps2/km and y m 0.019 m*1 W"1, both well 

within the regime expected for a central wavelength of 633 nm [1]. The measured sideband 

power, normalized to the total power in the fiber, is periodic with length, but it appears to be 

damping to a constant value. Also, the first minimum of the blue sideband trajectory occurs at a 

shorter distance than the first minimum for the red sideband. This contradicts the predictions of 

the coupled amplitude equations (ODE) and NLSE. The models predict essentially the same 

evolution for each sideband The other difference between the two sidebands is the magnitude of 

the first maximum. The blue sideband has a larger maximum than the red sideband. 

The apparent damping of the periodic sideband trajectory is seen more dramatically in Figure 8 

which shows the evolution of the first order sideband power along the fiber for an input power of 

5.5 W. Again the two first order sidebands (blue and red) evolve with different trajectories. 

Furthermore, they also appear to damp to a constant value at a faster rate than for the case with a 
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pump input power of 2.1 W. Both sets of experiments are compared with the numerical 

simulations in Figure 7 and Figure 8. The standard theoretical models do not account for either 

the damping of the sideband power or the different trajectories of the blue and red sidebands. 

The FWM spectrum in Figure 6 shows that first order sidebands as well as weak second order 

sidebands for a pump input power of 5.5 W. Figure 9 shows the evolution of the power in the 

second order sidebands with propagation length. The blue and red shifted sidebands are plotted 

separately and the power is normalized to the total input power. The measured sideband power 

has a maximum of 0.2% of the total input. The 14 bit A/D used in the camera system limits the 

resolution to 1/16384 = 0.07%. Figure 9 shows a complex evolution of the sidebands. The 

sidebands are weak and just above the limits of resolution imposed by the detection system. 

Comparison is made using simulations based on the nonlinear Schrodinger equation. The NLSE 

is used in these simulations because it was found necessary to include higher order sidebands 

(>second order) to model the dynamics. 

A first set of experiments was performed using 20 meters of the AT&T birefringent fiber. In 

these earlier measurements, the evolution of the sidebands was traced along the fiber using an 

input power of 2.1 W and a pump detuning of 366 GHz. A direct comparison between the 

sideband power along the length of 20 meters of fiber with the sideband evolution along the 

50.39 meters of fiber was made. The two sets of data were found to yield the same results. 

Thus, the observations of the damping of the sideband trajectory and the different evolutions of 

the individual sidebands are repeatable. 

Another perspective on the evolution of the sidebands is gained through investigation of the 

sideband power dependence on the pump power [13]. Measurements were made of the sideband 

power as a function of pump power at a length of 50.39 meters for two different values of the 
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pump detuning. Figure 10 shows the power in the first order sidebands as a function of input 

power using a pump detuning Q = 366 GHz. The blue and red sidebands are plotted separately, 

Figure 10 (a) and (b) respectively. The input power was varied from approximately 2 W to 15 

W, and the procedure outlined above was used for data collection. Pump depletion due to 

stimulated Raman scattering (SRS) was observed for pump powers greater than 10 W. For both 

the blue and red sideband, the measurement peaks around 12 W and then begins to decrease with 

increasing pump power. This decrease can be attributed to significant pump depletion associated 

with Raman scattering. The solid lines in Figure 10 were generated by numerically solving the 

coupled amplitude equations truncated to six waves using ß(2) = 55 ps2/km and y=0.019 ra"1 W1. 

The numerical solutions yielded quite different dynamics than those observed experimentally. 

The pump detuning was maintained at 366 GHz throughout the experiments probing the 

evolution along the fiber length. Prior to cutting the fiber, a series of measurements of the 

sideband power dependence on the pump power were performed with a detuning twice as large: 

ß = 722 GHz. Doubling the detuning resulted in a smaller conversion of power from the pumps 

to the sidebands. Figure 11 shows the results of these measurements. Only first order sidebands 

were detected for the range of pump powers explored. Consequently, essentially periodic 

dynamics were predicted by the theoretical models. As in the 366 GHz detuning case, the 

sideband power steadily increased with pump power until stimulated Raman scattering began to 

deplete the pumpe. The numerical simulations again showed oscillations in the sideband power 

with increasing pump power, in marked contrast to the dynamics seen in the experiments. 

To check some of the observed dynamics, a series of sideband power dependence measurements 

were performed at a length of 5.52 meters with a detuning of 366 GHz. Figure 12 shows the 

sideband power as a function of input power. Raman scattering was observed for pump powers 
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greater than 25 W. Comparison of the experimental measurements with numerical simulations 

shows very close agreement for pump powers less than 25 W. Thus, as the sidebands initially 

grow in the fiber, the numerical models can accurately predict the sideband dynamics. However, 

for longer fiber lengths the standard theory fails to predict the dynamical evolution of the pumps 

and sidebands as the pulses propagate through the fiber. 

So far, only the dynamical evolution of the power in the sidebands has been discussed. It is also 

worth discussing the experimental FWM spectral envelope, which, resembles a hyperbolic secant 

shape at the output of 50.39 meters of fiber. The hyperbolic secant is an ubiquitous shape in 

nonlinear fiber optics and arises in the context of soliton propagation in fibers. Soliton 

propagation in the form of a hyperbolic secant pulse shape is found in the anomalous dispersion 

regime (ß(2)<0) [12,27]. However, the experiments in this research were performed in the normal 

dispersion regime. In the normal dispersion regime, dark-pulse solitons of the form of a 

hyperbolic tangent are predicted and have been observed [16]. 

Figure 13 shows some of the experimental FWM outr     pectra at a fiber length of 50.39 meters, 

detuning Q = 366 GHz, with a range of input power levels (a) 2.1 W, (b) 5.5 W, (c) 8.3 W, and 

(d) 17.4 W. The solid line represents the experimental data and the dashed line is a curve fit to 

the spectral envelope. The curve is fit by y(ü»=Asech(Bö» where A and B are the fit parameters. 

The values used to generate the plots in Figure 13 are: (a) A=3.85, B=0.36, (b) A=2.26, B=0.27, 

(c) A=1.56, BaO.23, and (d) A=0.81, B=0.20. Figure 13 shows close agreement between the 

hyperbolic secant shape and the experimental spectral envelope. For the lower input powers, the 

peaks in the spectra are distinct. However, as the input power increases, the peaks broaden and 

the spectrum begins to fill in. 
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In Figure 13 (d) with an input power of 17.4 W, the pumps are depleted by Raman scattering. 

Furthermore, close examination of the spectrum shows an asymmetry even though the initial 

conditions on the pump waves were symmetric, i.e. p,(0)= p2(0). As the waves copropagate in 

the fiber, photons from the band of frequencies generated through four wave mixing will be 

down-shifted by spontaneous and stimulated Raman scattering. The Raman gain spectrum 

ranges from 0 to tens of terahertz frequency shift from the pumps. For silica glass, maximum 

Raman gain occurs at a down-shifted frequency of 13.2 THz (several orders of magnitude larger 

than the pump detuning) [1]. However, the Raman gain is nonzero near zero frequency shift. 

Thus, in Figure 13 (d), the observed asymmetry in the spectrum arises from strong stimulated 

Raman scattering. 

These experiments exposed several discrepancies in the comparison of experiment and theory 

and illustrated the inadequacy of the standard theoretical models to predict the observed 

dynamics over the full length of fiber investigated. The next section will present modifications to 

the theoretical models, to allow a quantitative comparison of experimental observations and 

numerical simulations. The key aspects of the experiments to be addressed are (1) the damping 

of the periodic sideband trajectories with length and (2) the difference between the red and blue 

sideband trajectories. 
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V.     Theory vs. Experiment 

This section develops a theoretical description which includes two effects which had not 

previously been considered. We consider the effect of a muitimode pump laser at the fiber input 

and investigate the resulting dynamical evolution of the sidebands. By modeling one of the 

pump lasers as two closely spaced longitudinal modes, the subsequent dynamical evolution of the 

sidebands is altered dramatically. By introducing this asymmetry in the mode structure of the 

pump input, the resultant dynamics for the blue and red sidebands begin to approach the sideband 

dynamics observed in the experiments. However, the damping of the periodic trajectories seen in 

the experiments is still not explained with the simple muitimode structure at the input. Building 

on the muitimode analysis, one then introduces weak phase fluctuations to the pump waves 

propagating along the fiber. The combination of both the muitimode pump input and weak phase 

perturbations along the fiber is found necessary to accurately predict the experimental 

observations. Excellent agreement is thus finally obtained on comparing predictions based on 

the stochastic muitimode model with «ixperiments. 

V.I      Muitimode Pump Input 

As mentioned previously, the dye laser systems used in the experiments were designed for 

narrowband operation. However, the resolution of our instrumentation limits the ability to 

measure the linewidth of the lasers and distinguish single versus multiple mode operation. Thus, 

either of the dye laser outputs may have consisted of several longitudinal modes. We examine 

the impact of muitimode operation on the dynamical evolution of the sidebands by introducing a 

muitimode pump input to the theoretical models. The sideband evolution predicted from 

numerical solutions of both the NLSE and the coupled amplitude equations with a muitimode 

input is found to exhibit similar dynamics, when compared with the experimental observations. 
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To model wave propagation in the fiber using a multimode pump input, both the nonlinear 

Schrodinger equation and the coupled amplitude equations discussed earlier can be used. The 

NSLE requires only a modification of the input pulses. The input spectrum can be set for one, 

two, three, etc., modes in each pump laser. Thus, a variety of initial pump conditions can be 

investigated. Starting with the simplest case, Figure 14 shows an example (a) Gaussian input 

pulse and (b) corresponding spectrum, to the NLSE, with two modes in the blue shifted pump 

and one mode in the red shifted pump. In Figure 14 (b) the spectrum is plotted with the pump 

detuning normalized to unity and the pumps centered about zero frequency shift. The input is a 

Gaussian pulse modulated by the pump detuning and the longitudinal mode spacing. The 

longitudinal mode spacing (Av) were chosen to be 0.5 GHz, consistent with the expected spacing 

from the experiments, and the pump detuning is 366 GHz. The initial conditions on the pumps 

were chosen so that the conservation relation for the asymmetry (eqn. 2.3) is zero, i.e. p,= p2. 

Figure 15 shows the FWM output spectrum generated from the multimode input. The sidebands 

and pumps now consist of many frequencies. To estimate the relative power in the pumps and 

sidebands, the power in the band of frequencies centered around the primary frequency is 

summed and then normalized to the total power in the spectrum, for example the blue pump 

power, Pi, is calculated from summing the power in the frequency components located between 

zero and one. For consistency the same notation used throughout this paper is retained to 

represent the power in the pumps and sidebands, e.g. p3 represents the relative power in the blue 

first order sideband even though now it consists of multiple frequency components. 

The split step Fourier method is used to propagate the pulses along the fiber [1]. Figure 15 

shows a schematic representation of the FWM output spectrum after propagation through a 

length of fiber with the multimode input. The evolution of the four wave mixing processes is 

now more complex, not only is there mixing between the distantly spaced pump frequencies but 
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there is mixing between the closely spaced longitudinal modes. A difficulty of using the NLSE 

model the rauMmode input is the size of the FFT which must be computed. Since the 

longitudinal mode spacing is several orders of magnitude smaller than the pump detuning the 

number of points necessary to represent the pulse spectrum is large >=215. The computation 

algorithm sets limits on the number of points used to represent the spectrum and the spectrum 

will necessarily be truncated. In general, the NLSE with single mode inputs yields the ability 

work with a broad spectrum consisting of many orders of sidebands, a definite advantage 

the coupled amplitude equations. 

to 

to 

over 

Extending the modeling of the multimode input to the coupled amplitude equations, the general 

form of the equations given in eqn. (3) is used to generate a new set of coupled amplitude 

equations. The frequencies in these equations now include the longitudinal mode spacing. Thus, 

the wavevector mismatch will now be proportional to (Q ± Av/2)2, (Q ± 3AW2)2, etc, whereas in 

the single mode model, the mismatch was proportional to Q2. The number of frequency 

components necessary to model the FWM dynamics, including up to second order sidebands, 

results in at least 100 terms in each equation. Using ec     on (3), a C program was written to 

find the allowed combinations of k, m and n. The multimode four waving mixing equations were 

then stored to a file in a subroutine format to be called from the integration programs. 

For simplicity; the case of two longitudinal modes in the blue pump and one in the red pump is 

considered. The blue pump was initially chosen to be multimode because the fluctuations in 

experimental measurements of the linewidth were larger than those in the red pump. The single 

mode input standard model consists of 6 complex coupled field equations which includes the 

pumps, first order sidebands, and second order sidebands. Terms up to second order sidebands 

were included since they were observed in the experiments for a pump input of 5.5 W. With the 
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exhibited by the blue and red sidebands with this model are significantly different. Within the 

first 10 meters, the model follows the evolution quite well, and yet the damping observed in the 

experimental measurements with increasing length makes comparison difficult. Overall, the 

multimode model yields promising results for predicting the dynamical evolution of the 

sidebands. The modeling of the damping of the sideband trajectories will be discussed in the 

next section. 

As another comparison of the multimode input model with experiment, Figure 18 shows the 

evolution of the second order sidebands with propagation distance. Terms including up to at 

least third order sidebands must be included in the model to properly predict the dynamics of the 

second order sidebands. The coupled amplitude equations including only up to second order 

were found inadequate. Thus, the nonlinear Schrodinger equation was used to easily include 

higher order sidebands. Comparison of the second order sideband and predictions based on the 

NLSE with a multimode input shows close agreement. The second order sidebands are weak and 

yet for fiber lengths less than 20 meters the simulations follow the experimental measurenvnts 

closely. However, beyond 20 meters the blue second order sideband (Figure 18 (a)) appears to 

be damping to a constant value. 

As mentioned earlier, the model can be extended to include various combinations of pump 

inputs, for example, three modes in one of the pumps and two or one in the other pump. No 

significant difference was found in the first order sideband evolution for the different 

combinations of asymmetric multimode input, for the parameter regimes investigated; L^,, = 

50.4 m, P < 6W, Q = 366 GHz. and Av a 0.5 GHz. As the fiber length increases beyond 50.4 

meters, differences in the trajectories arise between the various asymmetric combinations for the 

input. Referring to Figure 15, the spectrum broadens around the central frequency components 

due to FWM between the longitudinal modes. The longitudinal mode spacing used in these 
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simulations is small compared to the pump detuning. Furthermore, since the mode spacing is 

small, the FWM processes between adjacent modes will evolve with a period much longer than 

the fiber lengths considered in this research. Subtle differences in the sideband evolution will 

arise for different mode structures as the fiber length increases due to the different dynamics 

between adjacent modes. Only the simplest case of multimode input was considered for 

comparison with these experiments. 

V.n    Stochastic Phase Fluctuations 

The previous theoretical analyses presented have been limited to aeterministic models. We now 

turn to modeling of stochastic processes along the fiber length as well as including stochastic 

initial conditions on the pump inputs. The latter are included in the modeling to closely imitate 

the conditions present in the experiments. The former examines the impact on the dynamical 

evolution of the four wave mixing processes when weak fluctuations are added to the phase of 

each of the waves copropagating along the fiber. These phase fluctuations are found to damp the 

sideband periodic trajectories to a constant value. Comparison with the experimental 

observations is made and excellent agreement is found. 

Consider a physical process which acts to perturb the phase of the waves propagating along the 

fiber. The physics of this phase noise could arise from a number of sources, such as; fiber 

medium inhomogeneities [29,30], Brillouin scattering, or Raman scattering [1]. In the 

experiroents^tbere was no indication that these sources were present However, the existence of 

these processes could have been lost in the background noise of the instrumentation. 

Identification of the physical process generating the noise through both experiments and 

modeling is a promising area for future research. A strong candidate for the source of phase 

noise is stimulated Raman scattering that builds up from a spontaneous noise background. 

Recalling the experiments probing the sideband power dependence on the pump input power, for 
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a 50 meter length of fiber significant Raman scattering was detected for pump inputs greater than 

10 W. Thus, it is highly likely that very weak (< 4 orders of magnitude down from the pumps) 

Raman scattering was present in measurements. 

There are two theoretical models which may serve as the core set of equations to model the 

nonlinear wave propagation along with stochastic processes in the fiber. The multimode coupled 

amplitude equations, developed previously, were used for the stochastic modeling in this 

research. A model incorporating the phase noise into the nonlinear Schrodinger equation is 

desirable as well. However, algorithms to properly include the necessary stochastic terms in the 

NLSE are not available at this time. Thus, the remainder of the research will use the coupled 

amplitude equations. Integration of the amplitude equations proceeded as follows. After the 

initial conditions on the input were set, the multiple waves were propagated in the fiber using a 

fourth order Runge-Kutta integration [21] with a step size Az (typically 10"3 meters). After each 

integration step, the complex field amplitudes were converted to intensity and phase. The phase, 

<(ij, of each wave at frequency, C0j, was modified according to: 

«j(z + A2) = «()J(z) + 5<t>j (5) 

where the phase fluctuations are represented by 6>j. The intensity and phase were then 

converted back to the complex field amplitudes. The field was then propagated another step Az 

and the process repeated for each integration step. 

Since the exact source generating the noise is not known, the phase fluctuations are taken to be 

delta correlated along the fiber and are considered to be independent sources for each wave. The 

Box-Muller algorithm was used to generate Gaussian deviates from computer generated uniform 

deviates [21,31]. The fluctuations are given by: 

60j = J-2o#/Azln(r,) cos( 2*r2) (6) 
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and, 

<ty+. Ä V"2ö#/..Azln(r.)sin(2;zr2) (7) 

where ri and r2 are uniformly distributed random numbers on the interval (0,1) and o+ is the 

standard deviation of the phase fluctuations for a given frequency component. For simplicity in 

the numerical computations, the phase fluctuations were added to only the frequency components 

associated with the two pump waves. However, computations were also performed adding phase 

noise to all components; there was no detectable difference in the resulting sideband dynamics 

for the parameters investigated. This is reasonable in the regime of primary interest, since for 

pump powers less than 6 W, the pump intensities are much larger than the sidebands and thus 

make the strongest contribution to the FWM dynamics. Typically, the noise strengths O;, were 

chosen to be of the same order of magnitude for each pump. 

y.m    Stochastic Initial Conditions 

Previous studies showed that fluctuations in the initial conditions of the pumps could have a 

significant impact on the dynamics of the FWM processes in the fiber [13,18]. To model the 

initial conditions of the experiments, measurements of      pump fluctuations were included in 

the input to the integration of the equations. To measure the pump fluctuations, each pump was 

propagated alone in the fiber for each fiber length and pump power. The mean intensity, 

normalized to unity, and standard deviation were calculated from the output spectra. The 

intensity in the pumps was found to be Gaussian distributed. Figure 19 shows the measured 

standard deviation in the normalized pump power as a function of length along the fiber. The 

blue and red pump standard deviations are plotted separately. The blue laser has a higher mean 

intensity fluctuation than the red, this is probably associated with multiple longitudinal modes in 

the blue pump. The experimental measurements over the full length of optical fiber were 
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performed over a long period of time (approximately one year). As can be seen from Figure 19, 

the pump intensity standard deviation varied with time. 

The numerical simulations were performed with fluctuations in the input pump intensity as well 

as fluctuations in the detuning. The measured frequency fluctuations had a magnitude of less 

than 1 GHz, several orders of magnitude smaller than the pump detuning of 366 GHz. Including 

the frequency fluctuations in the simulations was found to have no measurable impact on the 

resulting dynamical evolution of the sidebands. However, the pump power fluctuations were 

large (-10%) and could not be neglected. The pump input was of the form: 

Uj(0) = v^(Ö)ei2"f' (8) 

where pj is the intensity and Tj is a uniformly distributed random number in the interval (0,1), 

which selects a nonzero initial phase. For completeness rj is included here. However, 

randomizing the initial phase had no measurable impact on the resulting evolution of the power 

in the waves. The pump intensity input to equation (8) for each component in the dual mode 

pump was set according to, 

Pu(0) = i/7JW+i«5A (9) 

where k represents each mode and for the single mode pump, 

A(0) = /?w+<5p2 (l0) 

where ptve is typically set to unity for both pumps and 5p are the fluctuations in the pumps and 

are generated using the Box-Muller algorithm [21]. The fluctuations are generated using the 

measured values of the standard deviation in the pump intensities (see Figure 19) and, are given 

by, for the blue pump, 

5p, = ^-2o* ln(r,)cos(2jtt,) (11) 

and for the red pump, 
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5p2 = V"~ 2<Ti lnC*l) sin(27ttj) (12) 

Computations with the multiraode model (for the dual mode pump) used the same noise strength 

for each longitudinal mode. The next section will discuss the specific values used in the 

numerical simulations and compare with the experiments. 

V.IV Numerical Simulations 

Thejiumerical simulations were performed using the raultimode coupled amplitude equations 

along with the stochastic conditions discussed above. A complication arose when adding the 

phase fluctuations to the waves which resulted in a "noise-induced" drift [32]. This is a feature 

of multiplicative noise sources in which the noise added causes the sidebands to grow with 

propagation. Even though the noise is additive to the phase, the equations are cubic in the 

complex field and, thus, the phase noise is multiplicative when coupled back into the field 

equations. Including phase noise in the FWM calculations resulted in trajectories for the 

sideband power with length which were damped periodic trajectories with an increasing slope. 

To remove this artifact of the computations, a linear ;: s term, -aUj, was added to each of the 

complex field equations. The loss coefficient, a, was then set by finding the value which 

removed this increasing slope. In theory, the mathematical form of a can be derived from the 

equations and is a function of the noise strength [32]. However, the size of the system of coupled 

propagation equations made the technique for estimation intractable, even for the simplest 

approximate form of the equations. 

The strength of the phase noise used in all of the following simulations was determined by fitting 

the simulations to the experimental data. The values found to give the best fits were o^. = 

0.0067 m' and <x^ = 0.005 m'1 and a » 0.0046 m"1. For comparison with the experiments 
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tracing the evolution of the sidebands along the fiber, the simulations were the result of two 

calculations, one from 0 to 20 meters and the other from 0 to 50.4 meters. The calculation from 

0 to 20 meters replaces the first 20 meters of the 0 to 50.4 meter simulations. This was necessary 

since the initial conditions on the pump fluctuations were larger (due to the laser adjustments for 

the measurements, which took several months) for lengths less than 20 meters (see Figure 19). 

The fluctuations in the pump intensities were set at cp,= 0.20 (blue) and an= 0.11 (red) to 

generate the curves from 0 to 20 meters and op,= 0.12 and aw= 0.05 to generate the curves from 

20 to 50.4 meters. The other parameters were set at ß(2) = 55 ps2/km, y=0.019 W'm*', Q = 366 

GHz, 8v = 0.5 GHz. The numerical simulations compute both an average and standard deviation 

from 50 trajectories. Simulations were done for 100 trajectories and it was determined that 

accurate statistics (the standard deviation was less than 5%) were obtained for as few as 50 

trajectories. Thus, to reduce computation time the statistics are calculated from 50 runs. 

Figure 20 (i) and Figure 21 (a) show the blue and red sideband trajectcries, respectively, for an 

input power of 2.1 W. The experimental data are plotted with the numerical solution of the 

multimode coupled amplitude equations including both phase noise at each integration step and 

fluctuating the pump inputs. The multimode model with the inclusion of stochastic initial 

conditions and, most importantly, phase fluctuations along the fiber length, results in predictions 

which are very close to the experimental observations of the dynamical evolution of the 

sidebands. Figure 20 (b) and Figure 21 (b) show the measured standard deviation in the sideband 

power along the fiber length for the blue and red sidebands, respectively. The standard deviation 

was also calculated from the numerical simulations. Excellent agreement is found between the 

model and experimental measurements. Throughout the course of this research, many stochastic 

models have been investigated and this model is the only one found that reproduces the evolution 

of both the average power and fluctuations in the sidebands. 
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For an input power of 5.5 W, Figure 22 and Figure 23 show comparison between the numerical 

simulations and experimental data for the blue and red sidebands, respectively. The red sideband 

trajectories in Figure 23 show excellent agreement between the numerical model and experiment. 

The power in the red sideband from numerical solutions is periodic and appears to be damping at 

the appropriate rate. However, the blue sideband power trajectory shown in Figure 22 (a) does 

not reproduce the experimental measurements as closely. The numerical simulations at this 

pump power result in a blue sideband power evolution which does not damp as quickly as the 

experimental observations. However, the fluctuations measured in the experiments are fairly 

well predicted by the numerical simulations as shown in Figure 22 (b) and Figure 23 (b) for both 

the blue and red sidebands, respectively. The discrepancy in the damping seen between the 

experiment and model of the blue sideband power evolution could arise from several effects. 

The strength of the phase noise was the same for both the 2 W and 5.5 W calculations. Many 

simulations have been performed to optimize the values used for the phase noise strengths. The 

values used in these simulations were optimized in the sense they gave the best fit to the 

experimental data. A be.ter approach would be, to identify the physical phenomena b-enerating 

the phase fluctuations and with this knowledge, the magritudes of o>, and o^ could be estimated 

from the physics. Another benefit of identifying the physics of the phase noise, the noise could 

be properly included in a model based on the nonlinear Schrodinger equation. 

As a confirmation of the multimode model with phase noise, numerical simulations were 

performed examining the sideband power dependence on the input power at a length of 50.4 

meters. Figure 24 and Figure 25 show the power in the sidebands as a function of input power 

for a pump detuning of 366 GHz and 722 GHz, respectively. The experimental measurements of 

the sideband powers are represented by closed circles in Figure 24 (a) and Figure 25 (a), blue 

sideband, and closed squares in Figure 24 (b) and Figure 25 (b) red sideband. The results of 

numerical simulations are represented by the open circles in Figure 24 (a) and Figure 25 (a) and 
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open squares in Figure 24 (b) and Figure 25 (b). The numerical simulations follow the general 

trend seen in the experiments. A large deviation occurs for pump powers >10 W where the 

pumps begin to be depleted by stimulated Raman scattering. Below 10 W, the experimental 

measurements of the red sidebands tend to be higher than the simulations, this increase arises 

from weak scattering of the blue photons to the red. With the smaller detuning (366 GHz), care 

must be taken to account for all orders of sidebands and for powers greater than 6 W probably 

third and fourth order sidebands are generated. However, with this model, including only up to 

second order sidebands, yields predictions in close agreement with experimental measurements 

especially when compared with the predictions based on the deterministic single mode input 

coupled amplitude equations. 

We have presented a new approach to modeling the dynamical evolution of four wave mixing 

processes along an optical fiber. This modeling was motivated by the standard theoretical 

models inability to predict the results of experimental measurements presented in Section m. 

The two critical features of the model were a multimode pump input along with phase 

fluctuations added along the fiber length. The multimode pump input was found to alter the 

resulting sideband dynamics significantly. Due to an asymmetry introduced in the input, the blue 

and red sidebands evolved with different trajectories along the fiber. Furthermore, by adding 

weak phase fluctuations to the copropagating waves, the periodic sideband trajectories were 

found to damp out Figure 20 through Figure 25 show comparisons between the experimental 

measurement! of the sideband dynamics and the stochastic multimode model. The experimental 

observations brought to light several questions regarding the dynamics of the four wave mixing 

processes in the fiber. 
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VI.    Conclusions 

The dynamical evolution of four wave mixing (FWM) processes in an optical fiber has been 

investigated. This research consisted of experimental, theoretical, and numerical computations. 

The focus of this work was to experimentally trace the evolution of the sidebands, generated 

through FWM, along a length of optical fiber. Previous theoretical work suggested that, in 

certain parameter regimes, the sidebands exchange energy with the pumps periodically [13,14]. 

Specifically, in the undepleted pump regime [28], the sideband power evolves as a sinusoid with 

fiber length. Previous experiments had probed the dynamics for short fiber lengths (< 2 m) [13], 

however, the periodic evolution had never been directly verified. 

The FWM spectral evolution along 50 meters of fiber for two input pump power regimes was 

investigated. The experimental work consisted of measuring the FWM mixing spectrum output 

from an optical fiber at different lengths in the fiber. Specifically, a low noise, high resolution 

CCD camera made at Georgia Tech Research Institi'te, was used [26] to detect weak (<1% of the 

power in the pumps) sidebands. With this resolution, - ^asurements of the power in the first 

order sidebands for input pump powers (2.1 W and 5.2   /) were made using a pump detuning of 

366 GHz. In the case of a pump input of 2.1 W, the sideband power evolution is expected to 

follow a sinusoid along the length of the fiber. Experiments showed that the power in the 

sideband evolved periodically, but that the evolution followed a damped sinusoid. The 

experiments also found that the two first order sidebands (blue and red shifted from the two 

pumps) had different evolutions along the fiber. Neither the damping nor the different evolutions 

were predicted by theory. Using a pump input power of 5.5 W the evolution of both first and 

second order sidebands was also measured. For a pump input of 5.5 W the damping in the first 

order sidebands appeared to occur faster than in the 2.1 W case. 
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Experiments probing the dependence of the sideband power on the input power for two different 

values of the detuning (366 GHz and 722 GHz) were also performed at the output of 50 meters of 

fiber. With a detuning of 366 GHz, the sideband power for pump inputs ranging from 2 W to 17 

W was measured. Comparison of theoretical predictions with the measurements showed a large 

discrepancy both quantitatively and qualitatively. The measurements of the sideband power as a 

function of pump input power with 722 GHz detuning showed the same discrepancies with the 

theoretical models as the 366 GHz detuning case. Another set of measurements were performed 

at a length of 5 meters with a pump detuning of 366 GHz. Comparisons of the measured 

sideband powers with theoretical predictions, for this case, showed excellent agreement up to a 

pump input power of 25 W. For higher powers, the deviation between experiment and theory 

was due to other competing processes (stimulated Raman scattering) not accounted for in the 

theoretical model. The results of the measurements show that the initial evolution of the FWM 

spectrum in the fiber is modeled well by the standard theory. However, beyond the initial growth 

of the spectrum the models do not predict, even qualitatively, the experimental observations. 

Three dimensional plots of the evolution of four wave mixing spectrum in the fiber, indicate that 

the spectrum was evolving to a stable profile. Since, in the anomalous dispersion regime, soliton 

propagation in the form of a hyperbolic secant shape is known to be supported in an optical fiber 

[ 12], the envelope shape of the experimental FWM spectrum was investigated. It was found that 

at the output of 50 meters of fiber the spectral envelope could be fit by a hyperbolic secant shape. 

However, these experiments were performed in the normal dispersion regime, where the 

fundamental soliton shape is predicted to be a hyperbolic tangent Furthermore, in the normal 

dispersion regime, true solitons are essentially dips in a continuous wave carrier. Theoretical and 

experimental research indicates that soliton-Iike pulses can be supported on carrier pulses where 

the length of stable propagation in the fiber is determined by the length of the carrier [16]. 

Further studies need to be done to determine if the FWM processes in the fiber evolved to a train 
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were 

was 

of stable soliton dips in the long pulse background for the fiber lengths investigated in the 

experiments [33]. 

The experimental results pointed to the need to modify the approach to the theoretical modeling 

of the four wave mixing processes. The experimental measurements tracing the sideband 

evolution along the fiber length, showed that the different first order sidebands evolved with 

different dynamics. This observation was not accounted for in the standard theoretical models. 

By imposing an asymmetry on the spectral structure of the pump inputs, the sidebands 

found to follow different dynamical evolutions. Specifically, one of the pump inputs 

modeled to consist of two closely spaced longitudinal modes. It is worth emphasizing that the 

inter-mode spacing is very small compared to the difference in wavelength of the two pump 

lasers, and is not resolvable with the spectrometer system used and had to be resolved with a 

higher resolution wavemeter. This multimode input was found to alter the sideband dynamics 

dramatically. 

The experimental measurements of the sideband power vith length along the fiber indicated that 

there was damping of the periodic evolution of sideba... power with increasing fiber length. 

Again, this was not accounted for by the standard theory. One interpretation that gives insight to 

the damping of the sidebands is that the exchange of power between the pumps and sidebands 

«propagating in the fiber can be thought of as a coherent process. The experimental 

measurement* showed the damping of sideband power, indicating that there was a mechanism 

along the fiber acting to remove the coherence of the power exchange between the pumps and 

sidebands. This mechanism was modeled by adding weak phase fluctuations to the waves as 

they propagated along the fiber, using the continuous wave model (coupled amplitude equations). 

These phase fluctuations were found to account for the damping of the sideband power evolution 

along the fiber. However, the physical source of these phase fluctuations has yet to be 
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determined and is an area for future research. Numerical simulations using the new approach, 

including a multimode input and phase fluctuations along the fiber length, were performed for 

the parameters of the experiments, and excellent quantitative and qualitative agreement was 

found. 
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Figure Captions 

Figure 1: Dynamical evolution of first order sidebands as a function of fiber length; Q = 300 

GHz, and input pump powers of (a) 2 W, (b) 6 W, and (c) 50 W. Note the different scales of each 

vertical axis. 

Figure 2: Dynamical evolution of first order sidebands as a function of fiber length; Q = 600 

GHz, and input pump powers of (a) 2 W, (b) 6 W, and (c) 50 W. Note the different scales of each 

vertical axis. 

Figure 3: Experimental setup used to investigate four-wave-mixing in an optical fiber. 

Figure 4: Experimental FWM output spectrum (a) plotted on a linear scale and (b) plotted on a 

logarithmic scale.} 

Figure 5: Evolution of the FWM spectrum along the fiber from experiments, P=2.1 W, Q = 366 

GHz. 

Figure 6: Evolution of the FWM spectrum along the ff   r from experiments, P * 5.5 W, fl = 366 

GHz. 

Figure 7: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the sideband evolution as a function of fiber length; P=2.1 W, 

Q = 366 GHt Dynamical evolution of the (a) blue shifted sideband and (b) red-shifted sideband. 

Figure 8: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the sideband evolution as a function of fiber length; P=5.5 W, 

Q = 366 GHz. Dynamical evolution of the (a) blue shifted sideband and (b) red-shifted sideband. 



41 

Figure 9: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the second order sideband evolution as a function of fiber 

length; P=5.5 W, Q = 366 GHz. Dynamical evolution of the (a) blue shifted sideband and (b) 

red-shifted sideband. 

Figure 10: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the sideband power versus pump input power, L=50.39 m, Q = 

366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband. 

Figure 11: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the sideband power versus pump input power, L=50.39 m, Q = 

722 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband. 

Figure 12: Comparison between the experimental measurements (symbols) and the standard 

theoretical models (solid line), of the sideband power with pump input power, L=5.52 m, Q = 

366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband. 

Figure 13: Experimental FWM output spectrum (solid line) and hyperbolic secant envelope fit 

(dashed line) for pump input powers of: (a) P=2.1 W, (b) 5.5 W, (c) 8.3 W, and (d) 17.4 W. 

Fiber length L=50.39 m and detuning Q =366 GHz. 

Figure 14: Muitimode pulse input to the NLSE, (a) input pulse in the time domain and (b) input 

spectrum. 

Figure 15: Muitimode output spectrum from the NLSE after propagation through several 

meters. 

Figure 16: Comparison between the experimental measurements (symbols) and the muitimode 

model (solid line), of the sideband evolution as a function of fiber length; P=2.1 W, n = 366 
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GHz, Av=O.S GHz. Y-O.OUW'm1, and ß(2) = 55Ps2/km. Dynamical evolution of the (a) blue 

shifted sideband and (b) red-shifted sideband. 

Figure 17: Comparison between the experimental measurements (symbols) and the multimode 

model (solid line), of the sideband evolution as a function of fiber length; P=5.5 W, ß = 366 

GHz, Av=0.5 GHz, Y-O.OlQW-'m-', and ß(2) = 55ps2/knt Dynamical evolution of the (a) blue 

shifted sideband and (b) red-shifted sideband. 

Figure 18: Comparison between the experimental measurements (symbols) and the multimode 

model (solid line), of the second order sideband evolution as a function of fiber length; P=5.5 W, 

O = 366 GHz. Av=0.5 GHz. Y=0.019WV, and ß(2) = 55ps2/km. Dynamical evolution of the 

(a) blue shifted sideband and (b) red-shifted sideband. 

Figure 19: Measured input pump power standard deviation as a function of fiber length, (closed 

circles) blue shifted pump and (open squares) red shifted pump. 

Figure 20: Comparison between the experimental measurements (symbols) and the stochastic 

multimode model (solid line), of the blue sideband ev     ion as a function of fiber length; P=2.1 

W, n = 366 GHz, Av=0.5 GHz, y =0.019W'ml, and ß(2) = 55ps2/km. Dynamical evolution of 

(a) the power in the blue shifted sideband and (b) the measured fluctuations. 

Figure 21: Comparison between the experimental measurements (symbols) and the stochastic 

multimode model (solid line), of the red sideband evolution as a function of fiber length; P=2.1 

W, Q = 366 GHz. Av=0.5 GHz. y =0.019^', and ß(2) = 55ps2/knt Dynamical evolution of 

(a) the power in the red shifted sideband and (b) the measured fluctuations. 

Figure 22: Comparison between the experimental measurements (symbols) and the stochastic 

multimode model (solid line), of the blue sideband evolution as a function of fiber length; P=5.5 
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W. Q = 366 GHz. Av=0.5 GHz, y =0.019W'ra', and ß* = 55ps2/km Dynamical evolution of 

(a) the power in the blue shifted sideband and (b) the measured fluctuations. 

Figure 23: Comparison between the experimental measurements (symbols) and the stochastic 

multimode model (solid line), of the red sideband evolution as a function of fiber length; P=5.5 

W, Q = 366 GHz. Av=0.5 GHz. T-0.019W'm'. and ß<2>= 55ps2/km. Dynamical evolution of 

(a) the power in the red shifted sideband and (b) the measured fluctuations. 

Figure 24: Comparison between the experimental measurements (closed symbols) and the 

stochastic multimode model (open symbols), of the sideband power versus pump input power; 

U50.39 m, Q = 366 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband. 

Figure 25: Comparison between the experimental measurements (closed symbols) and the 

stochastic multimode model (open symbols), of the sideband power versus pump input power. 

L=50.39 m, fl = 722 GHz. Power in the (a) blue shifted sideband and (b) red-shifted sideband. 
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Summary 

We have investigated the stability properties of two and three element laser arrays that 
are nearest neighbor coupled. A novel form of generalized synchronization has been 
discovered, where the outer elements of the three laser linear array are synchronized 
identically, but the middle one is not synchronized with the outer ones.  Experiments 
on fiber ring lasers have lead to a model that employs delay equations coupled to a 
differential equation to describe the fast (nanosecond) dynamics of the polarized light 
output from these lasers. Four wave mixing of light beams at detuned frequencies has 
been studied both experimentally and theoretically and a uniques set of measurments 
has been analyzed. Phase fluctuations of the light play an important role in the 
propagation of the sidebands through the fiber. The first experiments on optical 
communication with chaotic fiber lasers have been performed. 


