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Program Objective

To design and build coupled solid state lasers and arrays and develop models to understand and
predict coherence and synchronization properties of the light emitted. Also the study of coupled
waves in optical fibers, their nonlinear interactions, transport of polarized light.

Significant Results During Last Year
L. Dynamics of Coupled Lasers

Our experimental, numerical and analytic results on the dynamics of two coupled lasers were
published in Physical Review E in April [1]. A novel result demonstrated was the possibility of
phase synchronization of the lasers even though the amplitudes of the laser fields are unstable
and chaotic. Stochastic fluctuations of the detuning between the lasers were accounted for in
simulations to reproduce the characteristics of the intensity time traces measured.

A new set of experiments on a linear array of three lasers was initiated. We find the remarkable
result that the outer two lasers may be beautifully synchronized with each other though the
middle laser is not. We are investigating this phenomenon in the light of recent work on
generalized synchronization of nonlinear oscillators [2]. An illustration of the phenomenon is
being sent by mail.

Extensive simulations of the correlations of the intensity fluctuation of a nine laser array have
been done this past year, and a paper is in preparation, to be submitted to Physical Review E [3].
The conclusion from experimental observations and numerical computations is that the spatial
correlations of intensity correlations for the elements of the array can decay sharply or very
slowly depending on the coupling strength of the lasers.

II. I'I l . D . . Q . ] E.]

"We are about to submit a paper to Physical Review E on an extensive study of nonlinear wave
propagation in a single mode optical fiber [4]. It is shown that the evolution of new sidebands in
the fiber due to four wave mixing can be significantly affected by phase fluctuations along the
fiber length, as well as by fine spectral structure of the - 'mp waves.

Two papers were published in Physics Letters A [5,6], that developed a stochastic version of the
Ikeda model. Two papers, one in Optics Letters [7] and one in Physical Review A [8], reported
the results of extensive measurements of the polarization dynamics of the laser intensity on
nanosecond time scales. A new laser model based on the Ikeda equations was developed and
used to explain the formation of sharp pulses, irregular chaotic dynamics, as well as the
formation of square waves in this system. These experiments and the corresponding models
open a new regime for the investigation of fiber laser dynamics and future applications.
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Chaos and coherence in coupled lasers.

K. S. Thomburg, Jr., M. Méller,* and Rajarshi Roy
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

T. W. Carr,’! R.-D. Li,* and T. Emeux
Université Libre de Bruxelles, Optique Nonlinéaire Théorique, Campus Plaine, C.P. 231, 1050 Bruxelles, Belgium
(Received 5 August 1996)

A fundamental chaotic instability in a system of two coupled lasers is investigated both experimentally and
theoretically. The amplitude instability and mutual coherence of the light emitted by the lasers is investigated
as a function of the detuning and coupling parameters. A quantitative comparison of the intensity fluctuations
is made with numerical simulations that include noise in the laser detuning. [$1063-651X(97)03904-4]

PACS number(s): 05.45.+b, 42.50.Lc, 42.55.Rz

Haken's seminal analogy between fluid dynamics and la-
ser instabilities initiated extensive studies of the Lorenz-like
chaotic dynamics of the single mode far-infrared ammonia
laser over the last two decades [1,2]. While this is conceptu-
ally the simplest chaotic laser system, it is also of great fun-
damental interest that two single-mode lasers that are stable
individually can exhibit a chaotic instability when coupled
[3.4]. Such a system provides a beautiful illustration of the
rich and complex dynamical behavior of two coupled non-
linear oscillators. Pairs of neurons [5], pacemaker cells [6],
chemical oscillators [7], and Josephson junctions [8] provide
other examples of coupled nonlinear oscillator systems. It
has been theoretically recognized that the amplitudes of the
coupled oscillators can display a rich variety of unstable be-
haviors for certain regimes of coupling strength [9]. How-
ever, there are no experiments on physical systems that have
quantitatively probed the relationship between the chaotic
amplitude instability and phase coherence of coupled nonlin-
ear oscillators. In this paper we report the results of precise
measurements of the amplitude dynamics and phase coher-
ence of coupled lasers and make quantitative comparisons
with numerical models.

Many studies of coupled lasers have been motivated by
the need for high power coherent sources. Coupled semicon-
ductor, solid state, and CO, lasers have been studied [4,10-
12], but it is the spatial properties of the output radiation that
have received the most attention, rather than the dynamical
characteristics of the emitted light {13]. Here, we study the
chaotic dynamics and mutual coherence [14] of two coupled
single-mode Nd:YAG (neodymium doped yttrium aluminum
gamet) lasers that are detuned from each other by a very
small amount (roughly 1 part in 10® of the oscillator fre-
quency) and for which we can vary the coupling strength
over many orders of magnitude.

*Permanent address: Westfalische Wilhelms-Universitat, Institut
fiir Angewandte Physik, Corrensstrasse 2/4, 48149 Munster, Ger-
many.

*Present address: Naval Research Lab, Code 6700. 3, Special
Project in Nonlinear Science, Washington, D.C. 20375-5000.

*Present address: HGM Medical Lasers Inc., 3959 West 1820
South. Salt Lake City, UT 84104.
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The following equations describe the time evolution of
the complex, slowly varying electric field E and gain G of a
pair of spatially coupled, single transverse and longitudinal
mode class B lasers [15,16]

dEl -1 .

T=Tc [(Gl—Q)El‘KE2]+l(I)1E1y (la)
aG, _, 2

dE, _, .

_d_t.._—_»;-c [(Gy—ay)E;—kE | ]tiw,E;, (1c)
dG,  _
-Zt—=7f I(Pz‘Gz‘GZ|EZi2)' (1d)

In these equations, 7. is the cavity round trip time
(~450 ps for a cavity of length of 6 cm), 7, is the fluores-
o e time of the upper lasing level of the Nd** ion

i s for the 1064 nm transition), p, and p, are the pump
.. .:ficients, @, and a, are the cavity loss coefficients. and
w, and w, (angular frequencies) are the detunings of the
lasers from a common cavity- mode, respectively. The lasers
are coupled linearly to each other with strength «, assumed
to be small, and the sign of the coupling terms is chosen to
account for the observed stale phase-locked state in which
the lasers have a phase difference of 180°. For laser beams
of Gaussian intensity profile and 1/e2 beam radius r the cou-
pling strength, as determined from the overlap integral of the
two fields, is defined as x=exp(—d?/2r*). Control param-
eters are the frequency detuning of the lasers (Aw
'=w,— w;) and the coupling coefficient «.

The dependence of the system dynamics on parameters
can be numerically investigated by integrating Eqgs. (1) using
different values of x and A w. Figure 1 displays the predicted
amplitude instability of the two lasers and its relationship to
the coherence of the laser light as a function of both the laser
separation d and the detuning Aw. The height of the graph
shows the largest intensity value of laser 1 recorded during
the 5 ms integration time. The color coding shows the degree
of mutual coherence between the two lasers, as measured by

3865 " © 1997 The American Physical Society
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FIG. 1. (Color). Numerically computed parameter space plot of the amplitude instability of two lasers as a function of both the separation
d and detuning Aw. Here p; =0.053, p,=0.051, a;=a,=0.04, and r=225 um. We use pump parameters that differ by a few percent in
the simulation to account for the fact that the two lasers may be nonidentical in the experiment. The height of the graph indicates the largest
intensity value recorded at a given value of separation and detuning, while the color of the graph denotes the degree of mutual coherence
between the two lasers, as indicated by the fringe visibility. Blue colors indicate low visibilities, while red colors indicate isibilities

approaching unity, as shown in the legend.

the fringe visibility. The visibility V of the fringe pattern
formed by the small angle interference of the laser beams is
defined as V= (a0 Imin)/ (I max + I i) Where Iy, and [
are adjacent maxima and minima in the fringe profile. The
fringe visibility is directly proportional to the absolute value
of the complex degree of mutual coherence [14} Low vis-
ibilities, shown as blue colors in this figure, indicate states of
low mutual coherence, while reds indicate visibilities ap-
proaching one and therefore high degrees of mutual coher-
ence. One can clearly see from Fig. | that the area where the
intensity instabilities exist occurs just before the onset of
phase locking and that significant intensity oscillations ap-
pear only around a rather narrow band of detuning values
between 10° and 10° s™'. A single positive Lyapunov ex-
ponent was computed in this regime with a typical value of

~10* s~!, demonstrating the chaotic nature of the inxtabil-
ity.

Insight into the amplitude instability can be obtained by
considering the special case of identical laser parameters and
by assuming that the two laser amplitudes and gains are
identical. Equations (1) then reduce to

d€

Z:f:l[G—Q—KCOS(q))]gv
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FIG. 2. Experimental system for generating two laterally
coupled lasers in a Nd:YAG crystal and observing the amplitude
instability. RP is a rectangular prism; translating this device
changes the pump beam separation, and thus the infrared beam
separation. The Nd:YAG crystal is coated for high reflectivity (HR)
on one side and antireflection coated (AR) on the other. The output
coupler (OC) is 2% transmissive; both mirrors at flat. FPI is a
scanning Fabry-Pérot interferometer, and as used to measure the
mode spectrum of both lasers.

do

27=2r;‘xsin(cp)+Am (2¢)

for the laser amplitudes |E,|=|E,|=¢, gains G,=G,=G
and phase difference ® = ¢, — ¢,, where @, is the phase of
the field E;.

Equations (2a)-(2c) are the rate equations describing a
single mode class B laser with variable losses. The phase
equation can be integrated exactly, and ®(r) is an un-
bounded function of time if the detuning |Aw| exceeds a
critical detuning Aw,, where

Aw.=2x7]". 3

This is the critical condition for an amplitude instability
[4); we also note that the lasers are phase locked for detun-
ings smaller than Aw, [16]. If condition (3) is obeyed, then
the laser equations (2a) and (2b) are periodically modulated
by the cos[®(r)] term. The frequency of these modulations is
given by

Wy = \/sz—-AwZ. 4)

On the otlier hand, it is known that the laser relaxation os-
cillation frequency wg (=2wg) for small 7./7; and k=0
is given by

2(p— 2
=(_<Lﬁ) , )

Wp=
R TL.T!

This implies the possibility of subharmonic resonance if
the ratio of w,, to wp is close to an integer. These resonances
then produce branches of subharmonic solutions which ex-
plain the destabilization of the laser system [17,18].

We have tested the prediction of the amplitude instability
with the experimental system of Fig. 2, which consists of
two parallel. laterally separated lasers created by pumping a

single Nd:YAG rod of -5 mm length and diameter in a plane
parallel cavity. The pump beams are generated from the ar-
gon ion laser output (A=514.5 nm) by a system of beam
splitters and prisms that ensure parallel propagation at an
adjustable separation symmetric with respect to the YAG rod
axis. The optical cavity consists of one high reflection coated
end face of the rod and of an external planar output coupler
with 2% transmittance. A Brewster plate and thick etalon
within the cavity ensure linear polarization and single longi-
tudinal mode operation. The lasers were operated at approxi-
mately 33% above threshold pump power. For these param-
eters, the relaxation oscillation frequency, vy, is of the order
of 100 kHz. The frequency detuning between the two lasers
can be adjusted by tilting the output coupler slightly, thereby
introducing a minute difference in cavity lengths.

Thermal lensing induced in the YAG crystal by the pump
beams of waist radius ~20 um is responsible for generating
two stable, separate cavities [16]. The TEM ( infrared laser
beams have radii (at 1/e? of the maximum intensity of the
Gaussian profile) of r~200 um and their overlap may be
continuously changed by varying the lateral separation J of
the pump beams over a range of 0.5 mm-3 mm. The pump
beam separation and profiles are measured directly by a ro-
tating slit technique. In this range, there is no appreciable
overlap of the pump beams and coupling is entirely due to
the spatial overlap of the infrared laser fields.

The individual output intensity time series are recorded
with fast photodetectors and a two channel digital oscillo-
scope. The optical frequency difference of the lasers is mea-
sured with a radio frequency spectrum analyzer after com-
bining the two beams on a photodetector. A scanning Fabry-
Pérot interferometer was used to ensure that both lasers
oscillated only on a single longitudinal mode.

The change of dynamical behavior of the detuned,
cc - '=d system can be seen as the separation of the pump
b: s is varied. For a large separation (d=1.20 mmj the
las.rs were stable and incoherent. The visibility of the
fringes was low (V=0), and the heterodyne single was mea-
sured to be between 30 and 40 MHz. For a small sepuration
(d<0.8 mm), the lasers are stable and phase locked. The
fringe visibility was high (V~1), and the heterodyne vignal
was absent since the lasers were frequency locked. Figure
3(a) shows a typical intensity time trace characteristic of the
unstable regime. Large bursts of the intensity occur. sepa-
rated by quiescent periods. Here the lasers were separated by
1.03 mm, which implies x~2.0X 1073, Using Eq. (3). we
find that the condition for an amplitude instability requires
|Aw|>10° s~!, which is verified in our expenments
(Aw=~1 MHz). The intermediate visibility of V=0.20 .igni-
fies the onset of phase locking. The experimentally measured
visibilities are in excellent agreement we the numencally
computed values represented in Fig. 1.

In the experiment, a substantial amount of fluctuation in
the detuning between the two lasers was observed: the beat
signal frequency in the unstable regime fluctuated between 0
and 10 MHz. In order to obtain quantitative comparison be-
tween measured intensity time series and simulations. we
numerically investigated the behavior of Egs. (1) with a sto-
chastic detuning term, such that Aw(f)=w,—w;. where
w;= wg,;+ dw;(1). Here dw,(1) is a colored noise term of
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FIG. 3. Intensity time traces of (a) experiment and (b) numerical
simulation. The time trace in (a) was measured at a pump separation
of d=1.03 mm, and illustrates the bursting nature of the amplitude
instability. The average interspike interval (ISI) is 1.9 ms, the nor-
malized standard deviation o;/1=0.10, and the standard deviation
of the detuning oy, ~10% s~'. (b) The numerically computed time
trace of the intensity of laser 1 with an exponentially correlated,
stochastic detuning term of strength D=5X10° s~' and correla-
tion time A~'=3 ms. The mean detuning Aw,=5%10°s"!, and
the standard deviation of the detuning oy, =1.4X 10%s™". The av-
erage ISI was 1.7 ms, and o, /T=0.12. The cavity losses were taken
to be 4% and the lasers were pumped one-third above threshold,
with a 0.5% asymmetry.

strength D and correlation time A~!, with the properties
(Swi(1))=0 and {dw,(1)dw;(t+At))=&;;D\ exp(—\|At))
[19].

We used three different statistical measures to compare
the numerically simulated and experimental traces—the nor-
malized standard deviation of the intensity o; /1, the average
interspike interval (ISI), and the standard deviation of the
detuning o, . The average ISI is determined by measuring

-
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the average time between adjacent bursts whose intensities
are greater than some threshold, here defined to be 1.2 times
the average intensity. To avoid counting the same burst
twice, a *‘quiescence time’’ 7, of 0.8 ms was used such that
a new spike would be detected no sooner than 7,. The stan-
dard deviation of the detuning in the experiments was mea-
sured to _be on the order of 10 MHz or less; numerically.
Cru= VvDX. Using these statistical measures, the parameters
D and N were adjusted to give quantitative agreement be-
tween the observed experimental resuits and the numerical
simulations. The range of parameters D and A that gave
quantitative agreement with experiment is very limited:
D~0(10° s™!) and A~'~0(1073 5). Figure 3(b) shows a
good match with the experimental data.

In conclusion, we have demonstrated a fundamental am-
plitude instability of two coupled lasers and its relationship
to the mutual coherence of the total field. Theoretical and
numerical predictions, using a dynamical model, of the range
of coupling strengths where the instability is expected to
occur agree very well with experimental observations. For
large separations, both the model and experiment reveal
stable intensities and no appreciable coherence. As the sepa-
ration is decreased to just above the phase-locking point,
large amplitude fluctuations are observed, in agreement with
numerical predictions. The laser fields exhibit a low degree
of mutual coherence for this range of coupling strength. It
was necessary to include stochastic detuning fluctuations to
achieve quantitative agreement between experimental and
simulation in the unstable regime. Finally, for even smaller
separations, phase locking is achieved. The lasers are now
found to be stable, mutually coherent, and frequency locked.
These studies are directly relevant to the design of laser ar-
rays; they also reveal a rich and complex dynamical scenario
which skould be systematically explored in the future for a
variety of different oscillator systems.
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Fast polarization dynamics of an erbium-dope('l'ﬁber ring laser

Quinton L. Williams and Rajarshi Roy
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Received May 3, 1996

The polarization dynamics of a unidirectional erbium-doped fiber ring laser has been observed for individual
round trips in the cavity. A rich variety of dynamic states, including square-wave pulses and irregular
temporal patterns, was observed as operating parameters were changed. A model with coupled delay and

differential equations is used to interpret the dynamics.

Rare-earth-doped silica fiber lasers have recently re-
ceived much attention in the context of long-time-scale
polarization resolved dynamics. Phenomena such as
antiphase dynamics in orthogonal polarization states,'
self-pulsing,? and polarization switching induced by
optical feedback® have been reported. Experimental
evidence of the quasi-periodic route to chaos in an
erbium-doped fiber laser has been published.* The
previous reports were done on the millisecond time
scale, which corresponds to the relaxation oscillation
frequency of the fiber laser.

We present some measurements of the fast temporal
(on the nanosecond time scale) dynamics of the Er®*-
doped fiber ring laser (EDFRL). The fiber laser out-
put beam contains two linearly polarized components.
It is within the two groups of orthogonal polarization
eigenmodes that the various dynamic states are ob-
served and investigated. Computational results from
a model based on coupled delay and differential equa-
tions of the Ikeda type® provide an explanation of the
experimental observations. A similar model was de-
veloped by Loh and Tang® for polarization dynamics of
an external-cavity semiconductor laser.

The EDFRL presents a unique opportunity for the
study of laser nonlinear dynamics. The small longi-
tudinal mode spacing and large gain bandwidth make
the EDFRL a practical experimental system in which
the collective behavior of a large number of globally
coupled nonlinear oscillators can be observed. Such
models have been studied in the context of physical and
biological systems by Strogatz and co-workers’ and by
many others recently.

A schematic of the experimental configuration is
shown in Fig. 1. The coherent pump source was the
514.5-nm-wavelength line from an argon-ion laser. A
6-m length of erbium-doped fiber with an ion con-
centration of ~240 parts in 10° was taken as the
gain medium. A Faraday optical isolator was included
in the laser cavity to ensure unidirectional opera-
tion. An output coupler removed 3% of the intra-
cavity power. The polarization controller functioned
as a discrete birefringence-inducing element. Overall,
the laser cavity was 20 m long, 14 m being passive op-
tical fiber. Free ends of the couplers were placed in
index-matching fluid to suppress the small, but para-
sitic, Fresnel reflections. The output at A = 1.561 um
was sent through a A/2 wave plate and a polariza-
tion beam splitter cube, where the orthogonal polari-

0146-9592/96/181478-03$10.00/0
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zation eigenmodes could be observed simultaneously
with high-speed photodetectors. Data were recorded
by a fast digital oscilloscope with a 1-GHz sample rate.
The round-trip time for the cavity was ~100 ns, and it
was possible to store 100 data points per round trip.

The EDFRL lases on a broad 3-dB optical gain
bandwidth that is ~101° Hz. The longitudinal mode
separation is 9.8 MHz; the number of active oscillating
modes is well over 2000. An optical spectrum analyzer
reveals that the modes oscillate within orthogonaily
polarized mode groups that have been modeled as two
supermodes.!

While the EDFRL was pumped well above thresh-
old (the threshold pump power was ~175 mW), self-
pulsing was observed on the nanosecond time scale.
Figures 2(a) and 2(b) are resolved polarization com-
ponents of the total output intensity. In Fig. 2(a) the
distinct sharp pulses are separated by the fundamental
cavity round-trip time of ~100 ns. Figure 2(b) shows
a highly complex time serien that is quasi-periodic or
nearly perfectly repeating, with a period of ~7 cavity
round trips. Inspection of the irregular waveforms in
Fig. 2(- :hows that these patterns repeat for several
hundr: avity round trips before eventually evolving
into oti.cr irregular waveforms. At the higher pump

Fig. 1.

Experimental arrangement:
514.5 nm; 514.4—1550 nm wavelength division multiplexer
optical coupler; Faraday optical isolator (not shown), 97/3
coupling ratio output coupler; neutral density (ND) fil-
ter with 10% transmission at 1.55 um; A/2 wave plate
at 1.55 um; DETs, fast-response InGaAs/p-i-n photo-
detectors.

Ar*-ion laser, A, =

© 1996 Optical Society of America
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Fig. 2. Experimentally measured polarization resolved
traces of (a) self-pulsing at the cavity round-trip time in
the x-polarization direction from an EDFRL with 10%
output coupling, (b) irregular trace in the y-polarization
direction. The EDFRL was pumped four times threshold.
(c), (d) Antiphase square pulses in the x- and y-polarization
directions, respectively, from an EDFRL with 3% output
coupling. The EDFRL was pumped at 3.3 times threshold.

levels (three to four times above threshold), antiphase
square pulses were formed in the orthogonal polariza-
tion intensities for a narrow range of adjustment of
the polarization controller. Figure 2(¢c) shows 30-ns
pulses. This corresponds to the 6-m length of the gain
medium. Figure 2(d) shows 70-ns pulses that corre-
spond to the 14-m length of the passive fiber within
the laser cavity. Another detail to note is the highly
structured intensity fluctuations that ride on top of the
square pulses and repeat over many round trips.

A laser model based on an Ikeda-type set of delay-
differential equations was used to investigate the
dynamical behavior of the EDFRL. - Loh and Tang
derived a set of difference-differential equations to
study ultrahigh-frequency polarization self-modulation
in semiconductor lasers.® It is in the same spirit that
we derive our set of equations from the Maxwell-Bloch
equations; they take the form
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Sy(2) = %'Z‘(Sl(t = 7r) exp{2A,[W(£)]}(1 + cos &)
+ Sa(t — 7r) exp{2A2[W(t)]} (1 — cos ¢)
= 2[Si(t - TR)Sa(t — 78)]**
X exp{Ai[W(e)] + Ay[W(D)]}
X sin{«x[W(t)]} sin ¢), (D

52 = B (81t ~ ma) expl2A WO} 1 - cos o)
+ So(t = 7r) exp{2A[W ()]} (1 + cos &)
+ 2[S1(¢ - TR)S2(t — 7R)]V2
X exp{Ai[W(8)] + Ax[W()]}
X sin{«[W(¢)]} sin ¢), (2)

dW(t)
de¢

= P — y[Wr + W(t)] — Si(t — r)
X (exp{ai[W(t) — NoL]} - 1)
— Syt — 7r) (exp{a(W(¢) = NoL]} - 1), (3)

where W() = f(l,‘ N(z,t + z/vp)dz, «[W()] =
qi[W(t)] — q2[W()] — B, S1.2(t — 7r) = |Ey 2(t — TR)I?/
kw2, A1 2AW(t)] = (a1,2/2) [W(t) — NoL], q12[W(t)] =
ayo(ay,2/2)[W(t) — W(t = 0)], and ¢ is the relative
phase difference between the polarized fields. The
mode detuning factor is defined as a, = -\, y_,
where A, = wm — wgandm = 1,2. Other parameters
are defined in Table 1.

In this model the gain is taken to be a 'inear function
of the population inversion. S; and S; are the photon
number densities for the x- and y-polarization modes.
respectively, and W represents the inversion. The
differential equation was integrated with a fourth-
order Runge-Kutta routine with a 1-ns integration
time step, corresponding to the experimental sampling
time for observation of laser dynamics in a single cavity
round trip.

In Egs. (1)-(3) the lumped parameter g is due to the
phase shift associated with fiber birefringence over the

Table 1. Parameter Values Used in the Numerical Simulations
Parameter Value Unit Definition
Ry, 0.97 - Return coefficient
Ly - 20 m Total cavity length
L 6 m Length of active fiber
Nr 10% m~3 Ion concentration
No 102 m-3 Transparency inversion
TR 10-7 s Cavity round-trip time
Y. 4.75 x 10 s~! Polarization decay rate
7 102 s7! Population decay rate
Ao 1.530 x 10-¢ m Resonance wavelength
A 1.561 x 10-¢ m Wavelength of mode 1
o, 7.5 x 10-% m? Emission cross section
a2 2.03 x 102 m? Mode 1, 2 gain factor
ay 3.52 x 102 - Mode 1, 2 detuning factor
P 1.44 x 10?8 m2s! Pump term
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Numerical Results
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Fig. 3. Numerical simulations of time -traces showing
self-pulsing at the cavity round-trip time in (a) the
x-polarization direction, (b) the y-polarization direc-
tion. (c), (d) Antiphase square-wave pulses in the x-
and y-polarization directions corresponding to those of
Figs. 2(c}-2(d). Parameters for (a) and (b): ¢, = 0.027,
¢p = 7 - 0.175, B = 1.5 X 1073, and AA = 0.125 fm.
Parameters for (¢) and (d): ¢4 = 0.027, ¢p = = — 0.015,
B =10"2, and A\ = 4.09 fm. The pump rate is 3.2 times
threshold.

entire cavity. By changing the polarization controller,
one introduces a local birefringence by applying stress
to the fiber, which appears as a discrete phase shift
in the section of passive fiber. We take the phase
term ¢ to be ¢4 in the active region and ¢p in the
passive region that contains the polarization controller.
The value of ¢4 was taken to be small but nonzero.
The small phase shift in the active fiber could be a
result of the active fiber’s being wound onto a spool.
This feature of separate phases in the active and
passive fiber portions is necessary for reproducing
the observed asymmetric nature of the square-wave
pulsations. ¢p was taken to be approximately 7 rad
because the polarization controller functions roughly
as a A/2 wave plate. The birefringence causes the two
mode groups to travel at different speeds, ultimately
resulting in a mode group detuning AA = (A2 — Ay).
Typical results from the numerical model showing
output intensities in orthogonal polarization directions
are displayed in Fig. 3. Table 1 gives values for the
physical parameters of the system. These parameters
yield a good match between theory and experiment,
as seen from Figs. 2 and 3. However, these computa-
tions are merely representative of the large variety of
waveforms that emerges for different parameter
values; they are not meant to provide a detailed
reproduction of the experimental waveforms. The
sharp pulses are seen to be distinctly separated by
the fundamental cavity round-trip time of 100 ns
in Figs. 3(a) and 3(b). One sees that the irregular
waveforms actually repeat over single cavity round

OPTICS LETTERS / Vol. 21, No. 18 / September 15, 1996

trips for the parameters chosen. Figures 3(c) and
3(d) show antiphase square-wave pulses that form
when the parameter value settings of ¢4, ép, 8, and
A A are in the proper regime.

Essential experimental features captured by the
model are the following: (1) the dynamics occur on
the nanosecond time scale, (2) self-pulsing at the
cavity round-trip time or multiples with repeating
irregular waveforms is present, (3) antiphase square-
wave pulses form when parameter values are favorable,
(4) the dynamics of the system take place with a
dc background, (5) highly structured fluctuations are
present on the tops of the square pulses, and (6) the
time durations of the square pulses correspond to the
lengths of active and passive fiber in the ring.

In conclusion, measurements of the fast temporal
dynamics during a single cavity round trip have been
made for an erbium-doped fiber ring laser. Square-
wave pulsing and irregular dynamics that repeat at
round-trip times have been observed in the two or-
thogonal polarization eigenstates. The experimen-
tally observed properties were described by a unified
model based on an Ikeda-type delay-differential equa-
tion model of the laser. We have shown that fiber
birefringence, polarization controller adjustment. and
the frequency difference between the orthogonal mude
groups influence the nature of the dynamics.
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cal Sciences, Office of Basic Energy Sciences, Office
of Energy Research, U.S. Department of Energy, and
from the U.S. Office of Naval Research. It is a
pleasure to thank J. Garcia-Ojalvo, R. Hilborn.
K. McCoy, and C. Verber for many discussions and
help with the experiments. We also thank S. Strogatz
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Fast intracavity polarization dynamics of an erbium-doped fiber ring laser:
Inclusion of stochastic effects
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The dynamics of a unidirectional erbium-doped fiber laser is investigated on a time scale short enough to
observe. with good resolution, its behavior for individual round-trips in the laser cavity. With an intracavity
polarization controller, a rich variety of nonlinear phenomena, ranging from self-pulsing to square-wave
antiphase patterns in two orthogonal states of polarization. are observed. These patterns evolve continuously in
time. A stochastic delay-differential equation model is proposed to describe this system. Numerical simulations
show that this model satisfactorily accounts for all types of qualitative behavior and reveal that the inclusion of
spontaneous-emission noise is necessary to reproduce the observed continuous pattern evolution. Two differ-
ent. typical types of nonlinear dynamical states are found both numerically and experimentally: a deterministic,
low-dimensional regime and a noise-driven high-dimensional motion. [$1050-2947(97)01403-0]

PACS number(s): 42.65.5f, 42.81.—i

I. INTRODUCTION

The idea of doping glass to obtain amplifying optical fi-
bers is very attractive from both a technological and a fun-
damental point of view. Technologically, fiber amplifiers are
very promising useful devices in all-optical telecommunica-
tion schemes. through their use to replace repeaters in fiber-
optic transmission lines. for instance. When these materials
are complemented with a cavity resonator and a pumping
scheme. laser emission can be obtained. Such systems are
used for the generation of ultrashort puises and solitons.

Besides their evident practical applications. fiber lasers
are very interesting from a basic physics perspective. The
conjunction of the inherent nonlinear character of both the
optical fiber and the light amplification process makes this
type of laser specially suited for investigations of nonlinear
dynamics in optical systems. Furthermore, because of the
amorphous character of the glass host, fiber lasers are the
ideal counterpart of the more extended and well-known
doped-crystal solid-state lasers.

Due to the optical-guiding characteristics of their ampli-
fying medium, fiber lasers can have cavity lengths of the
order of tens of meters, orders of magnitude higher than in
most other lasers. This fact, along with the broad gain profile
of doped fibers, ensures that a large number of longitudinal
modes experience gain and coexist inside the cavity, coupled
through gain sharing. Hence fiber lasers usually operate in a
strongly multimode regime. The dynamics of multimode la-
sers is very rich, including antiphase behavior and self-
organized collective oscillations [1]. Previous experiments in
fiber lasers [2.3] have shown this kind of phenomenon in the
dynamics of two orthogonal states of polarization, which
suggest a description of this system in terms of two super-
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Escola Tecnica Superior d'Enginyers Industrials de Terrassa. Uni-
versitat Politécnica de Catalunya. Colom 11, E-08222 Terrassa,
Spain.
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modes associated with two different polarization eigenstates
of the field. Another dynamical feature that is usually ub-
served in experiments is self-pulsing [4], which has recently
been related to an absorption effect due to interaction be-
tween dopant ions [5]. All the previous experiments haie
been done in the millisecond to microsecond time scale.
which corresponds to the relaxation-oscillation frequency of
the laser. But this system, due to its large cavity length and
thus long round-trip time, gives us a unique chance to ob-
serve its dynamics for individual round-trips inside the cav-
ity. This work aims at the characterization of this fast polar-
ization dynamics in the regimes previously mentioned.

We report experimental observations of the intracavity
dynamics of an erbium-doped fiber laser. A polarization-
controlling device has been included in the cavity and. as a
result, a fast polarization-switching effect, on a time scale of
the order of nanoseconds, has been observed. This kind of
effect is known to occur in semiconductor lasers {6] when a
wave plate is inserted in the laser cavity. Recently, optical
feedback has been found to induce this effect also in Nd-
doped fiber lasers [7], but on a much slower time scale 'on
the order of microseconds). A model is proposed to expluin
the behavior observed. Most models used so far in doped-
fiber lasers to account for antiphase [2], self-pulsing [3]. and
polarization-switching [7] behavior are based on semiclassi-
cal rate equations for each of the two polarization super-
modes, which are coupled to one another through cross satu-
ration and gain sharing. In some cases, the need of explicitly
taking into account the dependence of the system variables
on the propagation direction has been stressed [3]. This con-
sideration, which is, in general, advisable in this system due
to its long cavity, is in our case unavoidable given the ume
scale in which the observations are made. Following Loh and
Tang [8,9] in their modeling of fast polarization selt-
modulation in semiconductor lasers, we develop a delay-
differential equation model that accounts for all kinds of fea-
tures observed. The inclusion of spontaneous-emission noise
is seen to be necessary to obtain a more complete agreement.
Indeed, the importance of spontaneous emission in the dy-
namics of guided lasers is a well-established fact [2}. Finally,

2376 © 1997 The American Physical Society
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FIG. 1. Experimental setup.

in order to simplify the modeling of the system, a ring-cavity
configuration is used. Preliminary results of this investiga-
tion have been reported elsewhere [10].

The outline of the paper is the following. Section II con-
tains a description of the experimental apparatus and a report
of the behavior observed. Section III establishes a theoretical
model that reproduces this behavior. as shown by numerical
simulations. Finally, some conclusions and comments are
made in Sec. IV.

II. EXPERIMENTAL FEATURES
A. Experimental setup

Several wavelengths can be used to optically pump an
erbium-doped fiber amplifier in order to obtain laser emis-
sion. In our case the pump wavelength is fixed at 514.5 nm
and is provided by an Ar " -ion laser. Under these conditions,
the lasing frequency lies in the near infrared, at 1.561um.
The experimental setup is shown in Fig. 1. The amplifying
medium is a 6-m-long erbium-doped fiber. with an ion con-
centration of approximately 240 ppm (corresponding to
4.98x 10* jons/m?). The total cavity length is made to be
20 m long with the addition of 14 m of passive optical fiber.
The fiber is closed on itself in order to form a ring cavity. To
ensure unidirectional operation, an optical isolator is placed
inside the cavity. The optical isolator is based on the Faraday
effect and is polarization insensitive. The pump light coming
from the argon laser is launched into the ring fiber through a
wavelength division multiplexer (WDM), while an output
coupler removes part of the light that circulates inside the
cavity. In both cases, fiber ends were placed in an index-
matching fluid to prevent possible parasitic Fresnel reflec-
tions, as shown in Fig. 1. Two different output couplers have
been used, with coupling ratios 90/10 (10%) and 97/3 (3%),
respectively. A 5 X microscope objective is used to optimize
the coupling of the pump light into the input port of the
WDM. The output emission is passed through a 10% trans-
mission neutral density (ND) filter and a half-wave plate to a
polarization beam splitter. which separates the light into its
two orthogonal polarization components. These components
are measured with two high-speed photodetectors connected
to the two input channels of a fast digital oscilloscope with a
1-GHz sampling rate. This setup allows us to measure the
intensity with 100 data points per cavity round-trip.

In order to modify the polarization state of the light trav-
eling inside the fiber, a polarization controller is used. Polar-
ization controllers produce a phase shift by introducing a
local birefringence into a portion of the fiber. This is accom-
plished by winding the fiber around mandrels of the proper
diameter. It is very important to correctly choose both the
diameter of the mandrels and the number of tums of the fiber
around them: if the diameter is too small. the bending loss of
the device becomes too high; too few turns would undesir-
ably reduce the phase shift. We found that, for wavelengths
of the circulating light, a diameter of 38 mm and three tumns
of fiber around each mandre! was a good choice to produce a
small loss and a retardation effect similar to that of a half-
wave plate. :

B. Characterization of the system

A measurement of the total output power as a function of
pumping is the first standard procedure used to characterize
this laser system. Such a procedure shows that the lasing
threshold is ~150 mW. When the the output light is sepa-
rated into its two orthogonal polarization components. one
can see that the two states have slightly different threshoids
and very different output vs pump slopes in the lasing re-
gime. This is a first indication of the well-known two-mode-
like behavior of doped-fiber lasers [2.3]. By suitably modi-
fying the state of the polarization controller, it is possible to
separate the two main groups of modes that are amplified
inside the cavity. The optical spectra in two orthogonal po-
larization directions, as obtained from an optical spectrum
analyzer, show that the two mode groups are indeed orthogo-
nal and linearly polarized, with spectral peaks centered
around ~1.560 52 um and ~1.561 05 um, respectively.

The behavior of output vs pump power in the lasing re-
gime is observed to be linear, which is a characteristic of
most lasers. Nevertheless, at high pump powers, an increase
of output power fluctuations occurs while making the mea-
surements. In order to quantify this effect, one can measure
the standard deviation of these fluctuations as a function of
the mean light intensity and pump power. The results are
shown in Fig. 2 for the case of 10% output coupling. For the
sake of clarity, we should remark at this point that the pump
power that appears in this figure is just the recorded output of

‘the pump laser; it does not correspond exactly to the actual

power that is being injected into the fiber laser. due to the
imperfect launching of pump light into the cavity through the
WDM. In any case, an analysis of this figure reveals a steady
increase of the fluctuations as both pump level and output
power are raised. This phenomenon is rather unexpected: in
most single mode lasers, fluctuations produced by spontane-
ous emission are independent of pump level once lasing has
been achieved. This is so because the spontaneous-emission
rate is proportional to the population inversion in the ampli-
fying medium, and this is constant beyond threshold. as can
be seen from any rate-equation model [11]. In multimode
lasers, these fluctuations may be deterministic and originate
in the nonlinear dynamics of modes coupled through shanng
of the population inversion.

We can calculate the number of modes inside the cavity
by measuring the optical spectrum of the output light. The
ratio of its full width at half maximum to the free spectral
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FIG. 2. Standard deviation of the output intensity fluctuations vs
the mean output level and pump power. Two different sample times
(shown in the legend) have been used. The pump power shown in
the lower figure does not correspond to the power that is actually
injected into the fiber.

range of the cavity (longitudinal mode spacing) gives us an
estimate of this quantity. We observe a pronounced spectral
narrowing and a corresponding sharp decrease in the number
of modes (from ~3X10% to ~2X 10%) as the lasing thresh-
old is crossed. Note, however, that even in the lasing regime
the number of amplified modes is very large. This fact shows
the strongly multimode character of fiber lasers.

C. Dynamical behavior
1. Self-pulsing

A characteristic time trace of the total output intensity
extracted by the output coupler in the higher loss case
(10% coupling) is shown in Fig. 3 for a pump rate well
above threshold. Self-pulsing is observed with a periodicity
of ~ 100 ns. This corresponds to the cavity round-trip time of
our system, which is estimated as L/v, where L=20 m is the
cavity length and v=c/n is the speed of light in the fiber.
The index of refraction of erbium-doped fiber is n=1.46.

5000 -
b

450.0

l !JMIA J'*l' l.l !'lp ma‘l', ua,,y, {

l‘ l'-i'l IW\“; fy 4% 'Hv'g‘l
3000&

'
2500 +
2000 :

photodetector vonago (mV)

150.0 :y
1000 :
500 -

00 ‘

00 1000 2000 3000 4000 5000 6000 700.0
ume (ns)

FIG. 3. Total output intensity time trace showing self-pulsing
with 10% output coupler. The pump power is 400 mW.
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One can now resolve the output in terms of its orthogonal
linear polarization components. These components, although
coupled. may exhibit very different dynamics. Figure 4(a)
shows quasiperiodic behavior in one polarization direction
and random evolution in the other, also for 10% output cou-
pling. In other experimental situations, one can observe dif-
ferent quasiperiodic evolution in the two modes. Figure 4(b)
corresponds to a case with period-1 behavior in one direction
and period-7 in the other. The 3% output coupler has been
used in this case.

2. Influence of the polarization controller

Another way of establishing the distinct character of the
polarization-resolved intensity time traces compared to those
of the total output intensity is through their power spectrum.
In the latter case, a typical spectrum shows peaks separated
by the fundamental cavity frequency of 9.8 MHz. However.
when the signal used comes from a single polarization direc-
tion. sideband peaks appear between the main ones. These
sidebands can be tuned by manipulating the polarization con-
troller and eventually can be made to overlap. When this
happens and losses are small enough (i.e.. the light intensity
inside the cavity is high enough), the pulsed behavior disap-
pears and square pulses develop in the output intensity of the
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orthogonal polarization states. This behavior is antiphase in
the two states and is periodic at the cavity round-trip time, as
shown in Fig. 5. The requirement that losses have to be low
for this effect to occur is reflected in the fact that square
pulses are observed when the 3% output coupler is used, but
not in the 10% case. It is also worth noting that the time
durations of the plateaus correspond to the lengths of the
active and passive part of the fiber. In other words, the 70-ns
upper part of the pulse in the y-polarization trace of Fig. 5
corresponds to the 14 m of passive fiber, whereas the 30-ns
low.r part is related to the 6 m of active erbium-doped fiber.
A threshold pump power is typically observed for the onset
of square pulsing. For the measurements shown, square
pulses formed at a pump power ~2.2 times above threshold.
In addition to square pulses, other antiphase pulse patterns
have been observed. One of them is shown in Fig. 6. A final
remark on this behavior is that the irregular intensity patterns
superimposed on the plateaus of the square waves evolve
continuously and slowly in time.
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FIG. 6. Another antiphase pattern observed. Here the pump
power is here 700 mW.
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D. Nonlinear analysis

We have observed so far that this system has a wide va-
riety of nonlinear attractors: regular or irregular temporal
patterns in which the dynamics are trapped. Which specific
attractor occurs depends on many factors: the state of the
polarization controller, the pump power, the output losses.
etc. We are now interested in dynamical characteristics of
these attractors.

The state space of a dynamical system can be recon-
structed from the information obtained through a scalar mea-
surement (the intensity of one of the polarization eigenstates,
for instance) by means of time-delay vectors {12]. If we de-
note as x(n)=x(to+nA) a scalar set of measurements
sampled at equally spaced time intervals A, one can con-
struct d-dimensional vectors N

y(n)=(x(n)x(n+T), ... x(n+[d—1]T)). ()
The evolution of these time-delayed vectors in state space
describes an attractor. There exists a minimum value of 4 for
this attractor to properly represent the dynamical behavior of
the system. This value is called the embedding dimension of
the system. Both the embedding dimension and the time lag
T have to be chosen carefully if one wants this state space
reconstruction to be really useful.

To obtain a reasonable value of the time delay T, one has
to reach a compromise between the high correlation between
vector components that would arise if T is chosen too small
[x(n+iT) and x(n+(i—1)T) would be nearly identical]
and their statistical independence if T is too large. All these
features are reflected in the so-called average mutual infor-
mation function, which can be interpreted as a nonlinear cor-
relation function between the time series x(n) and
x(n+ At) as a function of the time lag At. Its definition is

AHAO=2;PGMLﬂn+A0)

P(s(n),s(n+AD) |

X log; P(s(n))P(s(n+At))j!' 2)

where P(s(n)) is the probability density of the process
s(n) and P(s(n),s(n+Az)) is the joint probability of the
two time-shifted series. A high value of this function repre-
sents a high correlation between the series and a low value
corresponds to a high degree of independence. A suitable
value of T will be intermediate between these two regimes.
A reasonable prescription that is frequently used [13] is to
choose T as the first minimum of M(A¢).

We can compute the average mutual information function
(2) for the time series measurements obtained from our ex-
periment. A typical result is shown in Fig. 7, corresponding
to the intensity for a single polarization direction. The behav-
ior is roughly the same for the other polarization direction
and for the total output and also for the other different dy-
namical regimes investigated. The results suggest that an ad-
equate value for the time delay is 7=3.

Once the time delay has been chosen, one needs to deter-
mine the embedding dimension. To do so, we use a method
proposed in Ref. [14]. This procedure determines the mini-
mum useful embedding dimension as that for which the per-
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FIG. 7. Self-pulsing time series for the intensity output in one of
the polarization directions and its corresponding average mutual
information function. The pulse separation is 274 and the pump
power is 1000 mW.

centage of false nearest neighbors (FNNs) in the attractor
drops to zero. Two points of the attractor are said to be FNNs
when they seem to be close only because the attractor is
embedded in a dimension that is too low, but they are actu-
ally separated from one another. They can be identified by
measuring the distance between them in two consecutive di-
mensions. When this distance is very small in the lowest-
dimensional space and much larger in the highest-
dimensional space. the two points are FNNs. The procedure
consists of computing the percentage of FNNs for increasing
dimensions. The embedding dimension is then determined as
that dimension for which this percentage drops to a very
small number. Figure 8 presents the result of this method for
two different time series exhibiting very different dynamical
behaviors. Figure 8(a) corresponds to a quasiperiodic low-
dimensional regime with an embedding dimension dg=4.
Figure 8(b), on the other hand. shows a nonperiodic time
series whose percentage of FNNs does not go to zero as the
embedding dimension increases. This indicates that the dy-
namics in this case is high dimensional and hence noise
driven. A similar coexistence of deterministic and stochastic
behavior in the same dynamical system has recently been
observed in a Nd:YAG laser (where YAG denotes yttrium
aluminum gamnet) exhibiting deterministic chaos [15].

III. MODELING
A. A delay-differential equation model

To develop a theoretical model that reproduces the obser-
vations made so far, several important characteristics of this
system have to be taken into account.

(i) Even though many longitudinal modes are being am-
plified inside the cavity, the dynamics of the system can be
described in terms of two supermodes corresponding to two
orthogonal polarization states of the emitted light [2.3.7].

(i1) A description in terms of two-level rate equations is
not suitable because of the long cavity of fiber lasers [3].
Variations in the direction of propagation of laser light have
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to be taken into account. This requirement is completely un-
avoidable in our case since we are observing the dynamics
within individual cavity round-trips.

(iii) The polarization controller is acting as an impertect
half-wave plate that almost completely switches polanza-
tions once every cavity round-trip.

(iv) Only part of the total cavity length is active medium
Hence this system has two different characteristic lengths
which are reflected in the experimental results (see Sec
II C 2) and must appear also in the theoretical model.

(v) Spontaneous-emission noise is known to have an 1m-
portant influence on the behavior of guided lasers such as the
one we are dealing with in this experiment [2]. It thus seems
necessary to include it in any realistic model of fiber lasers.

The first three points in the previous list have alreadyv
been faced by Loh and Tang [8,9] in their description ot
ultrafast polarization self-modulation in semiconductor la-
sers. In this study, they developed a delay-differential equa-
tion model similar in approach to that used by Ikeda and
co-workers [16,17] to analyze instabilities in the absorption
of light by a passive medium placed inside a ring cavity and
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by Otsuka and Iwamura [18] to model the dynamics of semi-
conductor laser amplifiers. We will follow the spirit of Loh
and Tang's study to derive a model for our system.

Let E(t,z) and E;(¢,2) be the complex field envelopes
of the two polarization modes of the amplified radiation. The
following set of equations can be derived for their time evo-
lution after adiabatically eliminating the polarization of the
medium from the comresponding Maxwell-Bloch equations

[8]:

aE,(r.:)+l dE\(1.2) a =i
> o, A —?( —ia)[N-No]E\(t,2)
+[£|(1‘Z)' (3)
3E2(t.:)+ 1 853(1.:)_02 .
oz Z ) = ] ,(l—'laz)[N"'No]Ez(t;Z)
+[L2(f,1), . (4)
IN(1.2) |E,|?
P =P—")'”[N(I,Z)+N,]—0)[N(t,2)—NO]H
N N |E,|?
a,[N(1,2) o]'g:,‘z'- )

It can be seen that the two modes are coupled through
N(t.z), the population inversion of the medium. Ny is the
population inversion necessary for transparency (i.e., for zero
gain) and N, the density of erbium ions in the fiber. The
quantity N, has to be taken into account because erbium-
doped fiber, when pumped at 514.5 nm, behaves as a three-
level medium with incoherent pumping [11]. a, and a, are
gain coefficients, a, and a, represert the detuning between
the corresponding mode frequency w; and the resonance fre-
quency of the cavity wg [a;=(wo—w;)/y, , where y, is the
decay rate of the polarization of the medium], v, is the ve-
locity of light in the medium (assumed equal for the two
modes), and P is the pump rate. These parameters have been
defined in Ref. [10]. : is the direction of propagation of the
light inside the cavity. u(2.2) and u,(t,z) are spatiotempo-

J

1 r ‘
Y1) = ERIAIH‘,’IU-TR)CXP(?"(I_ial)[¢(t)— 1]) +m(0)

X

1 r
Un(1)= iRzAzt['l'l(f‘fn)exl’(‘il'(l‘ial)[d’(’)‘ 1]) +m (1)

X

Ed

- Re[ U (1— 1) E2(D)],

r
9"2(“7«)3"?(72'(1 "i“z)[d’(l)"l]) + 7(1)

r
Yo(t— fn)ew(yz(l —iay)[ (1) - 1]) +m(1)

ral Gaussian and white stochastic processes that account for
spontaneous emission. They have zero mean and correlation
given by

(ni(t.2)u}(t',2"))= 2D,6;;8(t—=1")6(z=2").  (6)

We are now going to map the spatial dependence of the
system into time by making use of the boundary conditions
that have to be fulfilled by the fields £, and E, inside the
cavity. These boundary conditions are

(e'+1)

1 lp
EI(I,O)=ERlelle[El(t—;;,lA
lp ) )
+E, 1= = 1, ](e"*—1)e A, N
Vg
lp .
E,(1,0)= =Ry E\| t—— 1, ](e*— 1)
2 Vg

l . .
+E2(t——’;,14)(e"’+l)e"ﬁ]. (8)
Vg .

Here !, and [ are the lengths of the active and passive parts
of the fiber, respectively, and L=1I,+1{p is the total fiber
length. The reference frame is chosen in such a way that
z=0 corresponds to one end of the active fiber. R, and K.
are the return coefficients of the output coupler for each une
of the modes. The parameter ¢ represents the phase shift
caused by the polarization controlier. In the perfect haif-
wave case (@ =) it can be seen that the previous boundary
conditions merely represent an exchange of polarizations ev-
ery round-trip. We shall consider ¢ near, but not equal to. its
perfect half-wave value. Finally, the parameter 3 represents
the birefringence of the fiber, which causes different phase
shifts in the two polarization modes. These different phase
shifts are produced by the different velocities that the two
modes actually have when traveling through the fiber, which
can be modeled satisfactorily by including the parameter 3
while keeping v, equal in both modes [9].

The previous boundary conditions can be used in combi-
nation with an integration of Eqs. (3)-(5) with respect to - 1o
obtain the difference-differential model [9,19]

(e'®+1)

(e”—l)e"ﬂ], 19}

(e'*=1)

(e“’+l)e"ﬁl, 110

¢ =g-&(1) = ¢y (1= 7R)|*(exp{T [ #(1) — 1]} = 1) = Re[ ¢, (1= TR) E:(1)] = [ Y22 = 7o) P (exp{T o[ (1) - 11} - 1)

(1
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where new dimensionless variables have been defined. ¢,
and ¢, are related to the electric field envelopes at z=0,

E(1,0)

(1= 12)
ol \/ﬁwIA'y”NO (

and ¢ is the dimensionless total population inversion in the
active fiber,

W(I_TR,[.‘) l

n
A _IANo fo N(t—1g,2)dz. (13)

o(1)=

Time is now measured in units of yﬁ'. Tg is the cavity
round-trip time. also measured in units of 7,]'
(tg=L/v,y)). We have defined a dimensionless gain pa-
rameter and an effective pump rate as

P N,
Ti=ail Ny, g=—r—-=. (14)
YiNo  No

A and A, are phase-shift coefficients that can be evaluated
as [9]

!\vEeilezex r _ri -_—
A, p[la,?[qb(O) 1]1. (15)
L

An inspection of the delay-differential model (9)-(11) shows
that the original spontaneous emission noise sources
mi(t,2), i={1.2}, have given rise to new noise terms
7;(t) and.£(¢) in all three equations for the electric fields
and the population inversion. The stochastic processes
7:(r) come from the formal integration of the spontaneous-
emission noise sources u,(f,z) over the space variable :,
whereas £,(t) appear through the introduction of the result of
this integration into Eq. (5). It is worth noting that these new
stochastic processes are no longer space dependent: this is
true of all the other quantities of the model as well. Note also
that in the population inversion equation the noise terms are
multiplicative [19]. They are all Gaussian distributed with
zero mean. and we will denote their variances by D] and
D¢. We will treat these noise strengths as adjustable param-
eters for our studies: they can be related to the physical prop-
erties of the system as [19)

pr=—2:
i_flw,-No'
’ 9 9,9 Di
D¥=4a;(Ngs—Ng)* 3 —— (16)

Aﬁw,-No ’

where N is the steady-state value of the population inver-
sion.

In summary, we have obtained a delay-differential equa-
tion model that translates the space dependence on the propa-
gation direction = (and hence its infinite-dimensional charac-
ter) into a dependence on time-delayed quantities. The model
also includes the influence of intrinsic noise sources. We
have performed extensive numerical computations with this
model. and the results obtained will be described in the fol-
iowing subsections.
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The simulations are’performed as follows. Each cavity
round-trip time is divided into equal-size time intervals (or,
equivalently, the cavity is discretized in a number of equal
cells). The evolution of the fields ¢, and ¢, depends on their
values one round-trip earlier [Egs. (9) and (10)] and the total
inversion ¢ evolves according to the differential equation
(11), which is discretized in the equally spaced time intervals
defined above (or in the one-dimensional spatial lattice in
which the cavity has been divided). Since in our case the
cavity round-trip time is much smaller than the population
inversion decay time, the integration time steps resulting
from a not very dense cavity subdivision are small enough to
ensure numerical stability in the algorithm that integrates the
differential equation. We will usually choose a subdivision
of the cavity in 100 parts and use a Heun algorithm (a sto-
chastic version of a second-order Runge-Kutta scheme) [20]
to simulate that equation. The multiplicative noise terms are
treated according to a Stratonovich interpretation.

A distinction has to be made at this point between the
active and the passive fiber. Since the polarization controller
is located in the passive part of the cavity and the delay
differential model maps time into space, the value of the
phase shift ¢ will be close to 7 only in the time instants
corresponding to the passive part of the fiber. The rest of the
time ¢ will be near zero (not exactly zero because any small
winding in the active fiber may also have a small phase-
shifting effect). Hence we will take ¢ to be equal to '
(small) in the active region and to ¢, (close to 7) in the
passive part.

Several of the parameters of the model will be fixed by
physical requirements of the active medium and the experi-
mental setup, whereas others will be used as adjustable pa-
rameters. Among the former, we have the gain coefficients
a, and a,, which will be taken to be coincident and equal to
203~ 7 m? The detuning factors a; and @, will also
be .. n to be the same and equal to 3.52X10"2. The
poru. .n decay rate y) is 10> s~ and its inverse is the
ume unit we use throughout this section. The lengths of the
active and passive fibers are the ones used in the experiment
(6 m and 14 m, respectively), with a total cavity length
of L=20 m, which gives a round-trip time equal to
7—R=nL/c-y”=10’5 dimensionless time units. The dopant
ion concentration is N,=4.98X 10® m ™3 and the transpar-
ency inversion is No=~10 m™3. The return coefficient of
the output coupler will be taken to be, according to the ex-
perimental setup, R, =R,=0.97, equal for both polarization
modes. The noise strengths are chosen to be
D7=D]=D§{=D§=10"". To put these noise source vari-
ances in perspective, we should remark at this point that the
magnitude of the light intensity in the lasing regime is. in our
dimensionless units, of the order of 10°. The pump rate will
take several values for the different regimes. The phase shifts
®4 and @p and the birefringence coefficient 8 will be adjust-
able parameters. A summary of the previous values is shown
in Table I

B. Characterization of the model

A first comparison between the numerical model that has
just been derived and the experimental observations shown
previously is made by computing how the laser vutput
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TABLE 1. Parameters used in the delay-differential model.

Parameter Value Units Description
a, 203x10°2  m?  gain coefficients
ap, 3.52x 1072 detuning factors
o 102 s~ population decay rate
A 6 m length of active fiber
L 20 m total cavity length
7 107’ s cavity round-trip time
Ng 10%° m~®  transparency inversion
N, 498x10® m~3 dopant ion concentration
R, 0.97 output coupler return
D/, 1073 coefficients
electric-field noise
D¢, 10°° strength
population inversion noise
strength

changes with increasing pump power. A sudden jump in
photon number (over nine orders of magnitude) is observed
and represents the transition from a spontaneous emission
(no lasing) to a stimulated emission regime (lasing). Linear
behavior is observed in the lasing regime. The estimated
value of the lasing threshold (~5X10° in dimensionless
units) is in qualitative agreement with the experimental re-
sult.

It has also been found that this model reproduces the
striking experimental observation of an increase in intensity
fluctuations ‘for higher pumping and output power. The re-
sults are shown in Fig. 9 and should be compared with their
experimental counterpart presented in Fig. 4. The fact that
this behavior persists even in the absence of stochastic terms
in the simulations indicates that these intensity fluctuations
are of deterministic origin. They are related to spiking and
pulsing phenomena occurring in the time evolution of the
light intensity and may be caused by the coupling dynamics
between the many modes that are undergoing amplification,
as mentioned in Sec. III A.
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FIG. 9. Standard deviation of the total intensity output vs total
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FIG. 10. Polarization-resolved quasiperiodic self-pulsing time
traces. A periodicity equal to one cavity round-trip time is observed.
The pump rate is ¢=2X 10° dimensionless units, roughly 5 times
above threshold.

C. Dynamical behavior
1. Self-pulsing

Typical time traces of the output intensity /;=|y;|*, as
obtained from our delay-differential model, are shown in
Figs. 10 and 11. Self-pulsing behavior is clearly observed.
with different overall characteristics depending on the values
of the parameters. Figure 10 presents antiphase quasiperiodic
self-pulses at a periodicity of one cavity round-trip time. Fig-
ure 11 shows period-2 behavior. The difference between
both cases lies only in the value of the birefringence factor,
equal to 0.0015 in the first case and taken to be exactly zero
in the second. The values chosen for the phase shifts are
0.027 in the active fiber and 7—0.175 in the passive fiber.
All the other parameters are those of Table I. It is worth
noting that in all cases we obtain antiphase motion for the
two polarization modes. The structures immersed in this self-
pulsing behavior are observed-to drift slowly as time
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FIG. 11. Polarization-resolved quasiperiodic self-pulsing time
traces with a period equal to 2 75 . The pump rate is the same as in
Fig. 10.
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FIG. 12. Three snapshots of the self-pulsing behavior of one
polarization mode. showing the slow drift of temporal patterns due
to the effect of stochastic noise sources. These snapshots are sepa-
rated in time by several hundred round-trips. (a) Numerical simula-
tion (parameters are the same as in the previous figures) and (b)
experimental behavior (in this case the cavity round-trip time is
~ 130 ns).

evolves, as observed in the experiments (see Fig. 12). This
pattern evolution does not occur if the noise sources are ne-
glected in the model, which indicates the importance of
spontaneous emission in this system.

2. Influence of the phase shifts

The value of ¢p used in the previous simulations corre-
sponds to an imperfect half-wave plate. By taking a value of
this phase shift closer to 7 (which amounts to properly tun-
ing the polarization-controller mandrels in the experiment),
we can reproduce the square-wave behavior observed in the
real system. Figure 13 is the result of making
¢p=m=0.015 and 8=0.020. As in the experimental output.
these square waves are antiphase in both polarization com-
ponents, with a period equal to the cavity round-trip time.
and a relation between the lengths of the upper and lower
plateau equal to that between the lengths of the active and
passive part of the cavity. Also. as in the experiment, the
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FIG. 13. Antiphase square pulses generated by the delay-
differential model by properly tuning the value of ¢p. The pump
rate is the same as in the previous figures.

patterns on top of the square pulses change continuously and
slowly with time, as shown in Fig. 14, where three series of
ten cavity round-trip times occurring at different instants of
the same dynamical evolution are compared. Again, this be-
havior is not obtained if the spontaneous-emission noise is
not taken into account.

D. Nonlinear analysis

To complete our comparison between the results given by
the delay-differential model that has been derived in this sec-
tion and the results obtained from the experimental system.
we will analyze the numerical time traces from a nonlinear
dy~ mics point of view. We can compute the average mutual
in:  ation function of a polarization-resolved output time
rz  -igure 15 shows the typical behavior of this function
[wnich in this case corresponds specifically to the time trace
shown in Fig. 16(a)]. We conclude that a reasonable value
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FIG. 14. Three snapshots of the numerically simulated behavior
of one polarization mode, showing that the detailed structure of the
square-wave patterns evolves slowly in time. The parameters are
the same as in the previous figures.
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FIG. 15. Typical example of the average mutual information
function obtained numerically. The actual time trace from which
this function has been derived is shown in Fig. 16(a).

for the time lag to be used in phase-space reconstruction is
At=10"" dimensionless units, which corresponds to one
time interval in the cavity subdivision we have chosen
throughout this work. We now compute the’ percentage of
false nearest neighbors for different dimensions in two dif-
ferent regimes. Figure 16(a) shows a time trace exhibiting a
high degree of periodicity and its corresponding false-
nearest-neighbor percentage vs embedding dimension. This
result shows that the behavior of the system in this regime is
low-dimensional and deterministic, with an embedding di-
mension dg=4. Figure 16(b), on the other hand, shows a
nonperiodic time trace and a false-nearest-neighbor percent-
age that does nor go to zero for increasing dimension. imply-
ing that the behavior in this case is high dimensional and
noise driven. We remind the reader that these two different
regimes have also been obtained experimentally (Fig. 8). We
regard this agreement as a significant indication of the suc-
cess of our model in capturing the dynamical behavior of the
laser system.

IV. CONCLUSION

We have analyzed the fast, intracavity dynamics of an
erbium-doped fiber laser in a ring cavity. Since it is well
known that this kind of system presents interesting polariza-
tion dynamics, we have introduced a polarization controller
inside the laser cavity. Self-pulsing has been observed in a
very broad range of system configurations, both in the total
output intensity of the laser and in the polarization-resolved
dynamics. in periods of the order of the cavity round-trip
time. In this regime the two different polarization modes can
behave independently, i.e., one may show quasiperiodic dy-
namics and the other chaotic behavior, for instance. Due to
the long cavity and fast detection devices, we have been able
to sample the behavior inside a cavity round-trip. By care-
fully tuning the polarization controller. the self-pulsing be-
havior can be transformed into square-wave dynamics. In
this case. the behavior of the two polarization modes is usu-
ally antiphase, as predicted for lasers with a strong multi-
mode character. All these features can be reproduced by a
stochastic delay-differential equation model, which takes
into account the fact that a mean-field approximation in the
propagation direction is misleading in this kind of long-
cavity laser. Spontaneous emission is introduced via a noise
term in the original Maxwell-Bloch equations and leads to a
nontrivial stochastic contribution to the delay-differential
model. This model is able to reproduce both the seif-pulsing
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FIG. 16. Quasiperiodic time trace and its percentage of false
nearest neighbors vs dimension. Full circles represent the numencal
result, which corresponds to a pump rate of g=6X 10° dimensin
less units, ~ 1.1 times above threshold. Empty circ'es are the ¢
perimental result of Fig. 8(a). (b) Nonperiodic time trace and
percentage of false nearest neighbors vs dimension, which displas
a residual percentage of FNNs, implying random dynamics. Fuil
circles represent the numerical result, which corresponds to a pump
rate of g=1X 10° dimensionless units. ~2 times above threshold

" In this case, the noise’ source strengths have been increased to u

value of 1.2X 10™* dimensionless units to obtain better agreement
with the experiments, which are represented by empty circles [from
Fig. 8(b)).

and the square-wave behavior. Spontaneous-emission noisc
is necessary to obtain the observed slow time drift of the
patterns underlying the square-pulse structure. However.
even though spontaneous emission (and hence the noise
sources in the model) is always present in the laser operation.
we observe, numerically and experimentally, both a deter-
ministic and a noise-driven regime for slightly different val-
ues of the system parameters. The first situation corresponds
to a quasiperiodic, low-dimensional motion and the second
to a random, high-dimensional behavior. The coexistence ot
these two types of behavior in the same nonlinear dynamical
system is a remarkable feature that deserves further study.
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Abstract

The effect of spontaneous emission noise on the light circulating in a ring cavity with a nonlinear absorbing medium is
studied by means of a set of stochastic delay-differential equations based on the deterministic lkeda model. Noise fluctuations
are found to be amplified as the first bifurcation from the steady state of the system is approached.

1. Introduction

Delay-differential equations are frequently used to
model nonlinear dynamical systems. Among them, the
so-called Tkeda model is particularly well known in the
analysis of the dynamical behavior of nonlinear opti-
cal media. Since its introduction by Ikeda and cowork-
ers [1.2] in the investigation of the light transmission
process by a nonlinear absorber contained in a ring
cavity, it has increasingly been applied to the stuc'
of the interaction of light with either passive [3-F
or active [6,7] media. Also, due to its highly com:
plex muitistable behavior, the model eventually leads
to chaos through a rich variety of routes {8]. Hence.
its simplified map version has become a paradigm in
the analysis of chaotic systems [9-12]. It is therefore
of interest to investigate the influence of spontaneous
emission noise on the dynamics of this system. It is
particularly important to consider the physical origin
of the noise source; here we begin with the Maxwell-
Bloch equations and outline the inclusion of sponta-

'On leave from: Dept. de Fisica i Enginyeria Nuclear.
ETS. d'Enginyers Industrials de Terrassa. Univ. Politécnica de
Catalunya, Colom 11, E-08222 Tefrassa. Spain.

neous emission noise in a physically meaningful way,
leading to a stochastic version of the deterministic
Ikeda model.

2. Derivation of the stochastic Ikeda model

Let us consider the simple situation, originally anal-
ysed by Ikeda in his seminal paper [1], of 2 nonlin-
ear absorbing medium placed in a ring cavity. This
medium shall be assumed to be a set of homoge-
neously broadened two-level atoms, whose interaction
with an incident light beam can be described by the
following equations,

OE .

E:(a+1ﬂ)(N—N0)E+#. (1)
3N__' _ _ 2

— = yN = (N — Np)|E)%, (2)

where E(7,z) is the complex envelope of the elec-
tric field which propagates in the absorber, N(7.2)
is the population inversion (N < O for an absorber)
and u(7,z) is a Gaussian and spatio-temporal white
stochastic process accounting for spontaneous emis-
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sion processes. This noise term is chosen to have zero
mean and correlation equal to

(w(r. )" (7, 2")) =2D8(r - 7)8(z = 2).  (3)

It should be noted that the white character of this noise
source is a mathematical idealization of the sponta-
neous emission process, which actually has correla-
tions in time and space that are very small in compar-
ison to all other time and length scales of the system.

Egs. (1), (2) can be obtained in a straightfor-
ward way from the standard Maxwell-Bloch equa-
tions which describe the propagation of the electric
field inside the absorber by adiabatically eliminating
the polarization of the medium, whose relaxation rate
is much larger that those of N and E. The space vari-
able z corresponds to the direction of light propaga-
tion (transverse effects which might appear in the di-
rections perpendicular to propagation [ 13,14] are not
considered here). The time variable 7 is written in a
reference frame which moves with the velocity vg of
light in the medium, 7=t — z/ug. @ (> 0) is the ab-
sorption coefficient of the medium, B is a parameter
depending on the detuning between the cavity and the
transition resonance frequencies, and ¥ is the popula-
tion decay rate. The coefficient {2 of the nonlinear term
in (2) depends on the dipole moment of the transition.
Ny is the value of N corresponding to transparency.

Let L denote the length of the absorbing medium,
L that of the whole cavity and [ = £ — L. Then, the
relation between the incident field E; and the field
propagating inside the cavity is given by the following
boundary condition,

E(1.0) = VT £+ Rexp(OIE (1 - L) @

Ug

where T is the transmission coefficient of the input
mirror M1 and R = | =T is the reflexion coefficient of
both the input and output mirrors M1 and M2 (see Fig.
1). Mirrors M3 and M4 are assumed to be perfectly
reflecting. k is the light wavenumber.

The space dependence of the previous equations can
be removed by using this boundary condition. First,
we formally integrate Eq. (1) with respect to z and
introduce the result into Eq. (2). As aresult, the origi-
nally additive noise u generates a multiplicative noise
term in the equation for the population inversion,

z=0) 2=L
E, A
!
M absorber M2
A '
!
M3’ M4

\ ) /
\ /

Fig. 1. Scheme of the ring cavity containing the absorber.

E (r +-Z—,z)
Ug

= E(r,0) exp [(a@+iB)(W - No2)| + (7.2}

(
W)
or
+2‘0;{exp [2a(W - Noz)] — 1} 1E(7.0) ¢
+ 202(Ns — No)Re (E(1,0) x(7.2)). (

where W(r, z) is defined as

z ,
W(‘r,z):/dz'N(r-é— z—.z'). {
Ug
0

To obtain the evolution equation for W(r.2) (}
(6)), the variations of the population inversion in !
(5) have been assumed to be negligible. Numeri
simulations show that the variations in this quan:
are a very small fraction of its average value Ns (:
Fig. 2). Also, two new stochastic processes have b
defined, which are also Gaussian with zero mean :
correlations,

(r(‘r'Z)r‘(‘T’,Z)) =2D;6(1-_ 1-’)'
(x(r.2)x"(7'.2)) =2D°8(r = 1), ‘
(x(r.2)F(7'.2)) =2D*8(r — 7'). ¢

These noise sources arise from the application of
tegral operators to the original spontaneous emiss
noise. In order to obtain the simple expressions shc
above for the variances, the population inversion
been assumed again to be constant. Notice also

the cross-correlation between y(7.2) and (7.2




M2
'
M4

ing the absorber.

)]+ r(n2).
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1200

o 00.0 05 1.0

t

Fig. 2. Typical cvolution of the total population inversion, com-
ing from a simulation of Eqs. (11) and (12), with parameters:
A1=990. 8 =060. ¢y =0.0. 7g = 0.01. and Dy = D¢ =0.0.

non-zcro. Nevertheless, the influence of this cross-
corrclation in the dynamics of the system was found
ncgligible in numerical simulations, and it has not been
considered in what follows. It should also be noted
that. in deriving Eq. (6), a contribution proportional
to iI"!* has been discarded, due to the small strength
of this noise source.

Introductionof Eq. (5) into boundary condition (4)
and use of the population inversion Eq. (6) at point
: = L leads to the following difference-differential
cquations.

Wty = A+By(r—rg)exp{i[d(1) + o]} +n(1),
(1

d -
d_‘f =—-¢ + !‘/’(I—TR)|2+2RC {dI(I—TR)f(H".
(1z

Time ¢ is now measured in units of y~' and the fol-
lowing dimensionless variables have been defined.

Yty = E(1,0) exp(aWo)W/%.

&(1) = BW(t—1g,L),

where Wy = NpL.

The noise sources n(t) and £(t) are dimensionless
and space-independent versions of I” and y. It can
easily be seen that its variances D,, and Dy are related
to the original physical parameters by

(13)

(14)

D, = DR**" QLB/2a, (15)

D¢ = De” ™ QL3 B2a (N, - Ny). (16)

A remark should be made at this point in relation to
the difference equation (11). This equation makes no
sense mathematically if the stochastic process n(¢)
is taken to be white. This interpretation problem can
be avoided by recalling that the original spontaneous
emission noise has a very small, but non-negligible,
correlation time. In this case the parameter D corre-
sponds to the (finite) value of the correlation function
of the noise at equal times.

Besides these two noise strengths. this mode! has
four other independent parameters: the dimensionless
incident field A = VTE exp(aW,) /128 2ay. the
dissipation B = Rexp(—aW;), the phase <hitt due to
propagation ¢ = kL — BNyL and the dimensionless
cavity round-trip time 7 = yL/v,.

Egs. (11) and. (12) define the stochastic version
of the standard Ikeda model, which includes the exis-
tence of spontaneous emission processes of the two-
level atoms forming the absorber. It is worth noting
that what is initially an additive noise in the orniginal
partial-differential equation scheme has become multi-
plicative in the difference-differential equation model.
This may be considered as an indication of the non-
trivial influence of the spontaneous emission process.

3. Influence of noise on dynamics

As stated above, the dynamical properties ot even
the deterministic version of the Ikeda model lead 10 a
highly complex behavior of the model. In particular,
the steady state solution of the model. which can be
seen to obey the following transcendental cquation,

a2 [1+ B* —2Bcos (jys | + o)) = A* . «17)

is amultivalued function of the input parameter 1 (see
Fig. 3). This means that even in the cases in which
the system evolves towards a fixed-point attractor, it
faces a high degree of multistability. The etfects of
this fact can immediately be seen by looking at the
bifurcation diagram of the light intensity extrema ¢|2
versus the input parameter A (Fig. 4). The ~tep-like
appearance of this diagram is a clear indication ot the
multistable character of the attractor structurc of the
system, each step corresponding to a jump hciween
two equally stable states. The position of the jumps
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Fig. 3. Steady state solution of the deterministic Ikeda map. Pa-
rameters are B = 0.60, ¢o = 0.0 and 75 = 0.01.

m-
W, 200 -

100 -

Fig. 4. Bifurcation diagram of the deterministic (above) and the
stochastic (below) Ikeda model. Parameters are those of Fig. 3.
In the stochastic case Dy = Dg = 10™%,

is slightly affected by the choice of initial conditions,
suggesting that the role of spontaneous emission noise
might be relevant as well.

In order to analyse the influence of noise in the be-
havior of the system, we will first compare how the
transition to chaos is produced in the deterministic and
the stochastic cases. The algorithm used to integrate
the differential equation appearing in the stochastic
model is a standard Heun algorithm [15], where the
integration time step is the one imposed by the dis-
crete equation for ¢ and the number of subdivisions
made within one cavity round-trip time (100 in our
calculations). The Stratonovich interpretation is used
to derive the integration algorithm including the influ-
ence of noise sources.

0 250 500 750 0
o

(b)

10" A=11S A=125

10" x M
10 l .
10* '

250 500 7%0 W0

Fig. 5. Power spectral density of ¢ for different values of A ir
deterministic (a) and stochastic (b) cases. Parameters are t
of Fig. 4. The vertical scale is the same for all graphs. exce;
the steady-state case (first graph in Fig. 5a). where the zero :
is explicitly shown. In this last case. an arrow the vertical
indicates the existence of a Dirac delta function at w =0.

Fig. 5a shows the power spectral density of the
tensity time signal for increasing values of A in
deterministic case (Dy = D =0). A period-doub
route to chaos is found. As can be seen by compa
this figure with the previous one, the smaller valu
A (A = 9.8) corresponds to a steady-state situa
(power spectrum is a Dirac delta function centere
w =0, whereas only non-zero frequencies are sh
in the plot). For the largest value of 4 (A = 1%
the broadband spectrum of a chaotic trajectory is
tained.
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Fig. 6. Comparison of the time evolution of the intensity and its
power spectrum short before and after the first bifurcation in '
deterministic (a) and stochastic (b) cases. Parameters are the
of Fig. 4.

The existence of a small noise source (Fig. 5b),
does not substantially modify the period-doubling sce-
nario after the first bifurcation has taken place (A >
Ac. Ac ~ 9.85 for the parameters chosen, correspond-
ing to the last three plots in each of Figs. 5a and
5b). A noisy background superimposed on the deter-
ministic spectral density appears. as expected. On the
other hand. the situation before the first bifurcation is
reached (first plot in each of Figs. 5a and 5b) shows
a radical change. A distinct peak in the power spec-
trum can be observed for a non-zero finite frequency
in the stochastic case, in contrast to the delta func-
tion of the deterministic case. This frequency is seen

0.06 -

|
o 004 - ..\

) .

0.02 -
; \ -
r—_—————— P ————— — - —— -~ ———

—

-

0.00 ¢

9.0 92 94 96 9.8

Fig. 7. Standard deviation of the intensity time series against con-
trol parameter A. The final jump corresponds to the first bifur-
cation in Fig. 3. A horizontal dashed line indicates the standard
deviation of the noise source. Parameters are those of Fig. Sb.

to be the same as that of the periodic attractor which
appears after the bifurcation. Fig. 6 demonstrates this
fact, by means of a comparison between the light in-
tensity time series and its power spectrum for the de-
terministic (Fig. 6a) and noisy (Fig. 6b) cases. The
main peak in both spectra coincide. as seen in Fig. 6b.
The oscillation amplitudes are however very different.
The fact that the oscillations are much smaller in the
first case (A = 9.80) than in the second (A = 9.90)
proves that this is not a mere advance of the bifurca-
tion caused by the noise. However. the amplitude in
the pre-bifurcation case is much larger than the noise
source variance would have us expect. We are hence
observing an amplification of noise fluctuations. which
takes place at the natural frequency selected by the
dynamics of the system. We note that the fluctuation-
enhanced peak observed here is of the same shape and
occurs at the same frequency as that which appears af-
ter the bifurcation; this behavior seems different from
that of the “noisy precursors” studied by Wiesenfeld
and others (see Ref. [16], and references therein).
A clear picture of the amplification of noise fluc-
tuations can be obtained by computing the standard
deviation of the intensity time series as the first bifur-
cation is approached. This is shown in Fig. 7. where a
horizontal dashed line indicates the value that is to be
expected from the real noise intensity which is being
handled. The amplification effect is plainly revealed.
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4. Conclusion

The main objective of this paper was to system-
atically derive the equations for the stochastic Ikeda
model of aring cavity with a nonlinear absorber. Spon-
taneous emission noise has been found to significantly
influence the dynamical behavior of the system. We
observe substantial amplification of noise fluctuations
before the steady state loses stability; this amplifica-
tion occurs at a natural frequency of the system.
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Abstract

The intracavity dynamics of optically injected ring lasers is studied by means of an extended delay-differential Ikeda
model. The behavior of this kind of lasers is, in some aspects, strikingly different from that of a nonlinear absorber placed in
a ring cavity. for which the Ikeda model was originally derived. In particular, chaotic behavior in the laser case is seen to
occur on much faster time scales than for the absorber. The scenario in which the transition to chaos occurs is also different.

© Elsevier Science B.V.

Injection of coherent light into laser systems has
been a common practice since the early years of the
laser era. The reasons for using such a technique are
diverse. At high injection levels. the laser locks its
frequency and phase to those of the injected signal;
this is called the injecrion-locking regime, and is
very useful for obtaining a stable and narrow-band
laser output at a desired frequency. On the other
hand. if the injected signal is not strong enough,
locking 1s not possible and a competition arises
between the two coherent signals which coexist in-
side the laser resonator, giving rise to a wide and
interesting variety of dynamical behavior (see Ref.
(1] for a general review on the subject).

In the present work, we are interested in the
chaotic regimes that frequently appear in a laser with
an injected signal, and in the transitions and instabili-
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ties leading to them. Much attention has been paid to
this problem in the past years [2-6), and evidence of
chaos has been obtained from both an experimental
and a theoretical point of view. Nevertheless, simi-
larly ro almost all investigations of laser dynamics,
thes: udies were done on time scales longer than
the ty round-trip time of the laser. For “‘typical”’
laser .ystems, such as semiconductor, gas. or
Nd:YAG solid-state lasers, this quantity usually takes
values in the range ~ 10 ps-1 ns, which places the
analysis of intracavity phenomena beyond the reach
o