
RL-TR-97-90
Final Technical Report
August 1997

RESEARCH ON COOPERATIVE
ACTIVE DATABASE SYSTEM

University of California, Los Angeles

Wesley W. Chu

19971022 054

APPROVED FORPUBUC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Rome, New York
[BTXG QUALEFY lEBFEU^m

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-90 has been reviewed and is approved for publication.

CA^K O ■ CUJ&>^
APPROVED:

CRAIG S. ANKEN
Project Engineer

FOR THE DIRECTOR:
uiuj^u^

JOHN A. GRANIERO, Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project I0704-018S), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

Aug97
3. REPORT TYPE AND DATES COVERED

FINAL Sep95-Sep96
4. TITLE AND SUBTITLE

RESEARCH ON COOPERATIVE ACTIVE DATABASE SYSTEM

6. AUTHOR(S)

Wesley W. Chu

5. FUNDING NUMBERS

C - F30602-95-1-0052
PE - 62232N
PR - R427
TA-00
WU-P2

7. PERFORMING ORGANIZATION NAWIE(S) AND ADDRESS(ES)

University of California, Los Angeles
Dept of Computer Science
405 Hilgard Ave.
Los Angeles. CA 90095

8. PERFORMING ORGANIZATION
REPORT NUMBER

A95-3061A-00

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3CA
525 Brooks Rd.
Rome, NY 13441

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-90

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Craig S. Anken/C3CA/4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Active database systems are receiving increasing interests from both research and commercial communities. However,
rules are often difficult to specify and the complexity increases as the database increases in its size. To remedy this
problem, we propose to use relaxation techniques for rule generation and relaxation. By using high-level concepts and
cooperative operators in active rules, we can not only simplify the rule specification process, we can also increase the
expressiveness of active rules. High-level concepts and cooperative operators used in rules are first relaxed into
low-level active rules by using a tree-type knowledge structure called Type Abstraction Hierarchy (TAH). The relaxed
rules are then classified into equivalent classes by domain experts. Rule generation and relaxation are accomplished by
relaxing the attributes in.the rule conditions and/or by relaxing the actions with cooperative operators. This report
presents a design concept of Cooperative Active Database Systems and their future research directions.

14. SUBJECT TERMS

Cooperative rules, cooperative operators, rule relaxation, active database systems,
cooperative active database systems

15. NUMBER OF PAGES
16

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

id. LIMITATION ÖP ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Cooperative Active Database Systems

1 Objective

Active database systems are receiving increasing interests from both research and commercial
communities. However, rules are often difficult to specify and the complexity increases as the
database increases in its size. To remedy this problem, we propose to use relaxation techniques
for rule generation and relaxation. By using high-level concepts and cooperative operators in
active rules, we can not only simplify the rule specification process, we can also increase the
expressiveness of active rules. High-level concepts and cooperative operators used in rules are first
relaxed into low-level active rules by using a tree-type knowledge structure called Type Abstraction
Hierarchy (TAH). The relaxed rules are then classified into equivalent classes by domain experts.
Rule generation and relaxation are accomplished by relaxing the attributes in the rule conditions
and/or by relaxing the actions with cooperative operators.

2 Motivation

Incorporating rules into database systems has been a major focus in the database research com-
munity for more than a decade, the initial focus on deductive rules and integrity constraints
has been augmented by recent research into active rules [WC95]. In active database systems
[WC95, Kim95, BM91, Cha89, Day88], rules are defined and stored in databases. A rule in active
databases usually includes three parts: an event, a condition and an action. When the triggering
event occurs, if the condition is met, then the corresponding rule is fired and certain actions are
executed. By incorporating rules into database systems, we can transform a passive database
system into an active one. The database itself can respond automatically to internal or external
events and take appropriate actions when those events occur. Because active databases can re-
spond to events automatically, many tasks which either could not be done in traditional database
systems, such as general integrity constraints maintenance and work-flow management, or have to
be done by special subsystems in traditional systems, such as simple integrity constraints checking
and view maintenance, can now be managed easily by active database systems. This is one of the
reasons why many researchers have turned their research attentions to active database area.

For a large active database, the process of designing active rules are quite difficult and time
consuming. What we would like to have is a facility through which a high level specification of
rules can be automatically generated into low level rules. Furthermore, a lot of database domain
knowledge is needed to clearly specify all the rules. For example, users have to know the details
of the schema definition and information about data stored inside database. Very often user does
not know how to exactly represent what they want, but they can specify their requirements with

! jmC QUALITY mSPSüTED S

regard to some other existing rules. For example, the cooperative operators "similar to", "close
to", "near to", and "approximate" can be included in users' specifications. Finally, without any
structure the low-level rules created by users themselves may be conflicting and are difficult for
optimization. If rules can be generated from high-level specification, the system can guarantee
that all the rules generated are consistent, and are easier for optimization.

Currently most research attentions have been focused in the area of event specification and
detection, rule execution semantics and implementation methods of active databases. Very little
attentions have been placed in the area of extending condition and action parts of the active rules.
Most systems assume the condition part of active rules is just ordinary database predicates and
action part is just database operations and user-defined applications. This proposal mainly focuses
on extending the condition and action parts of active rules, by introducing cooperative operators
and high-level concepts in these two parts. Furthermore, we also allow users to specify which
active rules are relaxable so that when the conditions of these rules are not met, alternative rules
can be applied.

We make use of a tree-type knowledge structure, Type Abstraction Hierarchy (TAH) [CCL90,
CMB93], which is generated from database. The database knowledge represented in the TAHs
is user and application contexts sensitive. Since the TAHs can be generated automatically from
database, it is also scalable.

3 Rule Enhancements

Traditional active rules are precise and they directly interact with low-level database attributes.
Hence, rule designers and application users have to have detailed knowledge about underlying
database in order to specify active rules. However, this is usually not the case in the real world.
Rule designers and application users either do not pertain such detailed knowledge of underly-
ing database, or even if they have the knowledge, the task of specifying active rules using that
knowledge is often difficult. What we propose here is to enhance active rules using relaxation
techniques. By using relaxation techniques, rule designers and application users can use high-
level, approximate rule constructs in their rule specifications, even though they might not have
the detailed knowledge about the underlying database. The underlying database knowledge can
be either automatically generated from database itself or supplied by domain experts.

3.1 High Level and Fuzzy Rules

As human being, we tend to use high level and fuzzy concepts in our daily life. For example,
instead of saying if the temperature is greater than 90F, we will go swimming, we say
if the temperature is high, we will go swimming. Here 'high' is a high level and fuzzy
concept. The exact meaning of high temperature depends on context. The current research on
active database often ignores this fact. For example, consider the following rule:

Rl: If wind_speed > 20 and wave_height > 5 then notify commanders.

Rl is a precise rule which uses exact number to represent the rule triggering condition. The
drawback of this is as follows. 1) The rule designers have to have detailed knowledge as to what
kind of weather condition is considered as a bad weather and hence need to notify commanders. 2)
This rule ignores the fact that wind_speed is not a precise concept (we could not possibly measure
the exact speed of wind). Hence, what about wind_speed of 19.9? Do we consider wind_speed
of 19.9 as an indicator of bad weather? To remedy this, we propose to use fuzzy and high level
concepts in active rules. For example, instead of Rl we could use:

Rl': If the weather is bad, then notify commanders.

In this rule, the bad weather is a high-level and fuzzy concept. Based on different user profile
and application context, we could build different knowledge structures of bad weather (in weather
TAHs). For example, for commanders involved in a plan segment, we could define bad weather as
high wind speed and high wave height (see Figure 1). For grade students, we define bad weather
as either high temperature, low temperature, snow, rain, wind, or any combinations of them. In
this way, the rule designer does not need to have the detailed knowledge about the underlying
database because all these knowledge can be either automatically generated from database, or
supplied by domain experts.

wind_speed:
>= 19.5

wave_height
>= 5

Figure 1: TAH for Weather Condition for Rll

Figure 2: TAH for Los Angeles Area for R2

By using high level active rules, we also limited the number of rules in the system. Instead
of specifying all low-level rules at the user level, the system can automatically generate low-level
rules from those high level rules supplied by users. For example, the following rule:

R2: Notify user if A flight from Los Angeles area to New York
is inserted into database.

can be rewritten into the following rules according to our knowledge about Los Angeles area (see
Figure 2):

R21: Notify user if there is flight from LAX to New York is inserted
into database.

R22: Notify user if there is flight from Burbank to New York is

\

inserted into database.

R23: Notify user if there is flight from Long Beach to New York is

inserted into database.

3.2 Rules with Cooperative Operators

In active databases, all rules are expressed in a precise and exact fashion. Often there is a need to
express rules in more general terms. Cooperative operators such as approximate, similar-to and
near-to [CCL90] can be used in the rules to enrich the expressive power. Consider the following j
examples,

R3: If the weather turns bad, notify all affected units in that region.

This rule says that if we have a severe weather in a region, we need to notify all units currently in
that region. However, this rule does not consider that fact that all neighboring units to that region
might also be affected by this bad weather. If we allow cooperative operators in active rules, we
could have,

R3': If the weather turns bad, notify all affected units in that region and all
those units that are near-to that region.

This rule uses cooperative operators near Jo in the action part to extend the action. Consider
another example,

R4: If find an airport similar-to Bizert airport based on runway length and runway
width, then notify commanders.

This rule uses the similar-to operator to incorporate a fuzzy concept.
From the above examples, we note that the expressiveness of our active rules is greatly enhanced

by introducing cooperative operators into active rules.

3.3 Rules with Relaxable Conditions

For traditional rules, if the condition does not hold, the rule will not be fired. However, by relaxing
the condition part of the rule, more intelligent behaviors can be provided. Consider the following
rule:

R5: If the there are 100 combat aircrafts in region 1, then notify commanders.

If we use ordinary active rule to represent R5, the commanders will not be notified until there
are 100 combat aircrafts in that region. However, by using database knowledge (TAHs) on the
geographical database of region 1, we could automatically relax the condition of this rule to the
following,

R5': If there are 100 combat aircrafts in region 1 and its nearby regions, then
notify commanders.

There are two approaches to rule relaxation. One is explicit relaxation while specifying the re-
laxation condition in the rules. Another approach is implicit relaxation in which the system will

!

provide such relaxation automatically even if the relaxation condition is not explicitly specified in
the rules. The explanation system will then inform the users (e.g., commanders) of such relaxation.

4 Processing Enhanced Rules Using Relaxation Technique

To enhance an active database with cooperative operators and high level concept, we propose the
following rule processing architecture (Figure 3).

Enhanced Active Rule

Rule Parser

Rule Generaror

Relaxation Control

Low-level Rules Repository

Condition Check

Rule Selection

Event Detector

Rule Execution

Figure 3: Processing enhanced rules with relaxation techniques

The enhanced active rules are parsed by the Rule Parser which recognizes the high-level con-
cepts and cooperative operators used in these rules. A Rule Generator will then apply the knowl-
edge from database (via TAHs) and generate ordinary active rules from those high level and
approximate rules. If the rule is relaxable (can be specified by users when defining these rules),
the conditions of the rule is then relaxed by using attribute TAHs from its condition part. The
generated rules will then go through the process of Relaxation Control. This relaxation control
process classifies rules into equivalent classes so that during rule processing an equivalent rule can
be applied if the condition part of the original rule does not hold. The purpose of this relaxation
control is to put a control on the rule generation/relaxation process. After the relaxation control
process, the low-level rules are stored in a rule repository.

Now when an event is detected by the Event Detector, the rules will be chosen for condition
evaluation. If the condition holds, the ordinary rule execution will process. Otherwise, a relaxed
rule is selected from the equivalent rule class and the relaxed rule is then sent back for rule
execution.

5 Rule Generator

The Rule Parser recognizes rules with cooperative operators such as similar-to, near-to, approx-
imate, and high level concepts. The parsed result is sent to Rule generator which uses the Type
Abstraction Hierarchy (TAH) to guide its rule generation. Rule generation can be done on condi-
tion part based on the attributes in the condition, using the corresponding TAH. A set of low-level
rules may be generated in this way. Rules can also be generated on action part of the rule by

•

• they are the result of generation of a high level rule/approximate rule with cooperative
operators.

After all equivalent rule sets have been generated, the domain experts/rule designer can classify
them into equivalent classes in the sense that all rules in a set can be relaxed between one and
another and generate equivalent (semantically equivalent) effects. The equivalent effects can also
be classified into different levels such as strongly, moderately and weakly equivalent, etc.

using cooperative operators such as near-to, similar-to and approximate, and thus generate a set
of low-level rules. The TAHs can be either generated automatically from database attributes or
supplied by domain experts. Note that the approximate operators and high level concepts can
appear both in condition part and action part of an active rule.

6 Rule Relaxation and Control

Similar to query relaxation, rule relaxation process also uses the TAHs from database when relaxing
condition part of an active rule. The relaxation process is only done when user explicitly indicates
this rule is relaxable (parser needs to recognize such indication). In this way, we only relax those
rules which are specified relaxable by users and hence avoid the unexpected consequences resulted
from excessive rule relaxation. During the relaxation process, an alternative rule is chosen from
the equivalent rule set to be executed. The set of rules will have relaxed condition/action part,
but will be considered as equivalent in that application context.

6.1 Equivalent Rule Classes

Rule processing in active databases is different from query processing in that rule processing does
not need user's interactions during the execution of the active rules. Control must be provided for
the rule generation/relaxation process, since the uncontrolled relaxation may produce unexpected
result.

An EC A rule consists an event, a condition and an action. When we consider rule genera-
tion/rule relaxation, we need also to consider which part of the rule to relax first and what impact
the relaxation on one part (e.g., condition) does on the relaxation on another part (e.g., action).
For example, suppose we have the following rule:

Event: On a

Condition: if b

Action: c

and condition b is semantically equivalent to bi, action c is semantically equivalent to cl, then is
the rule

Event: On a

Condition: if bl

Action: cl

still equivalent to the original rule?
In order to solve this problem, we propose to add relaxation controls into our rule genera-

tion/relaxation. First, after the rule generation process using the TAHs, an algorithm will be used
to classify rules into equivalent rule sets. We classify two rules as semantically equivalent if:

the attributes in the condition/action parts contain similar concepts as defined by their I
respective TAHs. I

i

6.2 User Profile and Application Context

Similar to query relaxation in CoBase [CMB93], user profile and application context play an
important role in the process of rule generation and relaxation. Different users or applications
generate/relax rules differently. For example, for the high level concept bad weather, one user
might mean high wind speed and high wave height, while another might mean rainy days. Hence,
TAHs must be generated according to user profiles and application contexts. Furthermore, users
can also specify relaxation control to indicate which part of the rule is relaxable or non-relaxable
to satisfy the user's requirements and to reduce ambiguities.

7 Future Research Directions

• Rule Generation

1. Develop methodology of generating basic rules from rules with high level concepts in
the condition and action parts

2. Develop techniques to generate basic rules during compile time

• Rule Relaxation and Control

1. Incorporate relaxation operator into CONDITION part of the rule

2. Incorporate relaxation operator into ACTION part of the rule

3. Incorporate relaxation operator into EVENT part of the rule

• Relaxation Control

1. Provide a rule language specifications with cooperative and relaxation control operators

2. Develop a technique to classify the generated rules into equivalent rule classes

3. Develop relaxation control via different levels of equivalent classes

• Implementation Plan

1. Generate a plan to implement a prototype with relaxation features into active database
system (e.g., OODB and Sentinel) to study the behavior of such enhanced active system.

References

[BM91] C. Beeri and T. Milo. A Model for Active Object Oriented Database. In Proceedings
of the 17th International Conference on Very Large Data Bases, Barcelona, September
1991.

[CCL90] Wesley W. Chu, Qiming Chen, and Rei chi Lee. Cooperative Qyery Answering via
Type Abstraction Hierarchy. In Proceedings of the International Working Conference
on Cooperative Knowledge Based Systems, October 1990.

[Cha89] S. Chakravarthy. Rule Management and Evaluation: an Active DBMS Perspective.
SIGMOD RECORD, 18(3), 1989.

[CMB93] Wesley W. Chu, M. A. Merzbacher, and L. Berkovich. The design and implementation
of cobase. In Proceedings of ACM SIGMOD, Washington D.C., May 1993.

[Day88] U. Dayal. Active Database Management Systems. In Proceedings of the 3rd International
Conference on Data and Knowledge Bases, Jerusalem, Israel, June 1988.

[Kim95] Won Kim, editor. Modern Database Systems, chapter 21. Addison-Wesley Publishing
Company, Inc., 1995.

[WC95] Jennifer Widom and Stefano Ceri. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, 1995.

1
i

«U.S. GOVERNMENT PRINTING OFFICE: 1996-509-127-61061

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a foil range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

