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1. Introduction 

Not only the computer hardware but the most frequently used programming language 

of quantum chemistry (FORTRAN) is also changing. The new features of Fortran 90 

allow a more efficient use of the highly developed hardware, make the coding more 

comfortable (reducing the possibilities of making errors) and also makes the code 

transferable between the different computer architectures. In the reported period we 

rewrote our ab initio Hartree-Fock and electron correlation (Quasi Particle (QP)) and 

2nd order Moeller-Plesset (MP2)) programs in this language. We have also introduced 

different cut off radii for different type of integrals and have used a multipole 

expansion for the long range part of the Coulomb interaction. 

Further we continued our earlier already reported calculations for quasi one- 

dimensional (ID) polymers using an ab initio method that takes the electron 

correlation also into account. We calculated the correlation corrected band structure of 

poly(para-phenylene vinylene) (PPV) which is probably the most widely investigated 

polymer nowadays, for the cytosine stack and some homopolypeptides. 

2. Concepts of the modification of the program package 

In this section we summarize the theoretical background of the modification that were 

carried out in our polymer program package. 



2.1. Treatment of long distance interactions 

As it is well known the Coulomb interaction of the particles has a very slow decay 

(long range interaction). From practical point of view it is impossible to calculate the 

interaction of the distant parts of a molecule or solid exactly. But as it turned out from 

earlier investigations it is enough at a certain distance to calculate it exactly and the 

remaining part can be treated approximately. In the present version of the program we 

implemented the method originaly proposed by the Namur group [1,2]. 

In the independent particle model of polymers [3,4] the total wave function is 

approximated by a single Slater determinant of one electron wave functions (v|/j). 

(f) = dQ\\l/x(k,rx),y/2(k,f2),...,y/n{k,fn) 

where ^,. (£,/}) is a linear combination of Block orbitals 

a 

and 

I 

where \%\f -Rj -Ra )}a=l 2 N is a set of basis functions, R} is the lattice vector, Ra is the 

vector pointing to the center of a-th basis function. To obtain the optimal one-electron 

orbitals we have to make a variation of the energy expectation value under the 

constraint of (u/i \ySj) = Si}. This way we obtain the Hartree-Fock (HF) equations. 

$)q(k)^k)q(k), 



where the Fock matrix F(/C) and the overlap matrix S[k) are the Fourier transforms of 

the matrices in direct space, which correspond to interactions between different 

neighbours. 

E(k)=I>(lßgE0I> 

i 

where 0 denotes the reference cell and I the I-th unit cell. 

^ab   = \Xa \Xa) 

is the overlap matrix. Fock matrix F IJab can be separated into three parts 

F0J =AJ(N) + B0}(N) + C°} 

The first term contains the kinetic energy part, the exactly treated part of nuclear 

electron interaction and the exactly treated part of Coulomb part of the two-electron 

term: 
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The second term gives the long range part of the Coulomb interaction: 
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The third term is the exchange part of the two-electron interaction: 

ro; _ y y y POL| 
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The convergence properties of the lattice summation in this formula is determined by 

the charge density-bond order matrix E (the two-electron integrals show slow decay). 

According to the detailed investigations for metallic systems E converges very slowly 

but for insulators it converges rather fast [5-7]. 

The long distance terms gathered in B  can be treated using a multipole expansion 

method. This was formulated for quasi ID polymers with helical symmetry by Piella et 

al [2]. According to their result: 

B;/(N)=ZE^/)(NV" (k+i+i) 

k=0 1=0 

Here d is the elementary translation of the quasi ID polymer and 

2(-l) 
M „ \Jz + \m\)\l + \m\)\ 

Af0/(*.-) and M(k'm) are the w-th components of the 2k-th-pole moment of the charge 

distribution associated to the orbital product x]x\> ^d me total (electron+nuclear) 

charges, respectively. 
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Here   Ra   are   the   components   of the   position   vector   of  the   ath   nucleus, 

r,0 ,0 determine the position vector of the electron in spherical coordinates. Further 

if k + I + t odd 

w{k + l + \) =\+i    if k + I + \ even and r.h.s. helix 

-/    if k + l + \ even and l.h.s. helix 

/ \      / \    ^ f{kma) 

4=1    * 

g(k + I+i,ma) = J^  ,u+/+o 
4=1    * 

The function/is cosine function if £ + /+1 odd and a sine function if k +1+1 even, a 

is the rotation angle, g reduces to Rieman zeta if a = 0 

For the calculation of the g function Mmtmire [8] suggested a series expansion. 

bl 24     2880 

With the aid of the relation gl (9) = (- l)V,_,(#), he was using this series expansion to 

40th order. Explicitly integrating each term to obtain g, for l>\ yields a relative 

precision of «1(T14 for 0 < 6 < n. 



2.2. Evaluation of two-electron integrals 

In polymer HFCO calculations the number of two-electron integrals 
0/ 

ypq 

HLJ 

r sj 
can be 

enormous even for polymers with small unit cells (in case of a large number of 

interacting cells). Therefore it is very important to reduce the number of calculated 

integrals as much as possible. For this purpose it is necessary to use the permutational 

symmetry of two-electron integrals 
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Kpq\sr ) 
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and to find a fast method that predicts the negligible integrals without calculating the 

whole list. We then calculate only the selected integrals and save storage place and 

CPU time. To reach this goal we applied the method that is also implemented in the 

CRYSTAL code [9]. 

In a contracted Gaussian basis set the basis functions are built up as a fixed linear 

combination of primitive Gaussians with different co exponents: 

We have select the primitive Gaussian with the smallest exponent (the most diffuse 

function) and have used it as a representative of this basis function (this is called 

adjoint Gaussian by Pisani). This means only one primitive Gaussian selected for 

every basis function. We shall use this function for selecting the two-electron integrals 



(OJ \HÜ 
to be calculated. A 

\pq\r sj 
can be neglected if the overlap integral S\\ = \g°p g[j or 

the overlap integral S^ = (g"\gl') are under a certain threshold (overlap threshold 

= 10"6 a.u.). 

The overlap of the functions g°p\ and ^are used to control the exactly treated zone of 

the Coulomb interaction. g°p{ is the product of the primitive Gaussians g°p and g\ and 

g^ is defined similarly. A Coulomb integral is in the exactly calculated zone if the 

overlap of g0J  and g^ is larger than a given threshold (the Coulomb threshold 

= 10"7a.u.). The highest H appearing among these integral gives the border of the 

exactly treated zone. 

The contribution of the remaining part is approximated using the method described in 

the previous section. 

The two-electron integrals are grouped according to the cell indices (OJHL). A 

complete group of integrals can be neglected if (using the above explained estimation 

procedure) all the members of the group are smaller than at least one of the two 

thresholds. From these integral groups only those are calculated which are not covered 

by the permutation symmetry. In a certain group only those integrals are calculated for 

which both S*p\ and S^ are larger than the overlap threshold. Those indices of pq 

pairs for which S0Jq are lager than the threshold are stored and used during the integral 

calculation. 



2.3. Quasi Particle Band Structure 

The procedure for the calculation of the quasi particle band structures of polymers has 

been developed over several years [10-12] as a generalization of the electron polaron 

model [13]. The introduction of the Green's function formalism allowed a more 

accurate determination of the quasi-particle energies by virtue of the Dyson equation: 

G(a>) = G0(co)+GQ(co)l{co)G((o). 

G(co) is the Green's matrix for the perturbed system, co is the quasi-particle energy and 

Z is the self energy matrix. Go(co) is the Green's matrix for the unperturbed system, 

which is given by 

G»^-!-^1. (2) 

Here § is a diagonal matrix containing the HF band energies. Using only the diagonal 

elements of the Moeller-Plesset [14] second order self energy matrix, the quasi-particle 

band energy of state I satisfies the inverse Dyson equation in its diagonal 

approximation [15] 

where coi is the quasi-particle band energy, ei the corresponding HF band energy and 

]T the diagonal second-order self energy term. (It should be noted that in the 

polymer case the above equations are written in the CO basis and thus the index I is a 

composite one and refers to both a band index and k-index, i.e. I = (/,£j), 

Hn W = lim 
;/->0 

y   VJJKL ' vr'  iJKL    "ULK ) |   y   "IJKL ' \r' "IJKL    * ULK ) 

j£fc   a>j+Sj-sK-sL+iri   Jiocc   6}j+£j-£K-eL-if] 
K.Ltocc K.Lcocc 

(4) 



Using equation (4) the self-energy can be calculated for the band and k-point of 

interest by setting the quasi-particle energy equal to the HF energy in the zero-th 

iteration. The result is then used in the inverse Dyson equation (3) to calculate the new 

quasi-particle energy and the process is repeated until convergence is reached. For the 

computational details see [16]. After the completion and testing of the HF and 

correlation corrected band structure program packages a copy will be send to the Air 

Force Office of Scientific Research and to Dr. Doug Dudis at the Wright-Patterson Air 

Force Base. 

3. Correlation Corrected Energy Band Calculations for Polymers 

with Large Unit Cells 

3.1. Energy bands of PPV 

The large interest of polymer scientists towards conjugated organic polymers is based 

on two important discoveries. In 1977 high conductivity was measured on doped 

polyacethylene [17]. In 1990 electroluminescence was observed from polymers [18] 

and light emitting diodes were created based on these materials [19]. After these basic 

discoveries a large variety of conjugated polymers were investigated. Poly(para- 

phenylene vinylene) (PPV) is probably the most widely studied material of this kind. 

The reasons of its popularity are the easy processing originating from the development 

of soluble precursors [20] and the large number of possible substitutions that gives the 

opportunity of tuning of its electronic and optical properties. Today not only 

experimental methods can be used to investigate physical and chemical properties of 

these materials. Several theoretical works were published in this field. The theoretical 

investigations start with a band structure calculation. Here we mention different band 

structure calculations of PPV. Beljonne et al published a theoretical investigation of 

the low lying exited states of PPV oligomers [21]. They used a semiempirical INDO 

Hamiltonian in combination with configuration interaction techniques. The oligomer 

geometries were optimized using the AMI method. They obtained a band gap value of 

9 



2.85 eV using an extrapolation method based on the oligomer calculations containing 

2-5 phenyl rings. Duke et al [22] carried out CNDO band structure calculations for 

several polymers with PPV among them. The valence effective Hamiltonian method 

was used by Bredas et al [23] to investigate PPV. Shuai et al used the SSH 

Hamiltonian to calculate the band structure and to investigate bipolaronic effects [24], 

Gomes et al calculated the 3D band structure of PPV [25] using the local density 

functional method and investigated the influence of the interaction of the chains on the 

band structure. 

In this section we present the results of correlation corrected band structure 

calculations of PPV. First a Hartree-Fock Crystal Orbital calculation (HF CO) was 

carried out. The band structure was corrected by a perrurbative method that is based on 

the iterative solution of inverse Dyson equation. The results are compared to the 

above-mentioned theoretical calculations and to the experimental values. 

0    H atom 

W   C atom 

Fig. 1 PPV geometry. The unit cell is denoted by a bracket. 
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Our calculation has been carried out using the HF CO and Quasi-particle program 

package developed in Erlangen [26]. dementi's double zeta basis [27] was used with 

one set of polarization functions. The electron-electron and nuclear-electron and 

nuclear-nuclear interaction up to 2nd neighbors were taken into account. 25 k-points 

were used in HF CO and 7 in the quasi particle calculation. The unit cell geometry 

was taken from paper of Gomes da Costa et al [25] and it is shown in Fig. 1. The 

intraring C-C bond distances are all the same a=1.39Ä. The interring single bond is 

b=1.44Ä and the double bond C-1.33Ä long. The C-H bond lengths are d=1.09Ä. The 

bond angles are 120° in the ring and therefore also the CCH angles on the ring. The 

angle between the single interring CC bond and CH bond is 116°. The minimum of the 

conduction band (CB) and maximum of the valence band (VB) is presented in Table 1 

together with the band widths and the gap. 

HF QP 

Conduction Width 3.19 2.81 

band Min 0.21 -1.69 

Valence Max -7.21 -6.56 

band Width 3.05 2.75 

GAP 7.42 4.87 

Table 1. PPV DZP calculation (The values are in eV). 

The calculated ionization potential (6.56 eV) is larger than the experimentally 

measured one 4.9-5.1 eV [28] (this value was also calculated using Valence Effective 

Hamiltonian method (VEH) by Bredas et al [23]). The width of highest occupied band 

is close to the value calculated with VEH method (2 eV) [23] and somewhat larger 

than the 2.4-2.5 eV coming from 3D DFT calculation [25]. The calculated band gap 

(4.87 eV) is double of the optical gap value of 2.4 eV measured by Voss et al [28]. 

The difference cannot be explained with the help of exciton bands because an 

excitonic binding energy of 0.2 eV was measured by Campbell et al [29] using internal 

11 



photoemission measurements of Schottky barriers. Their directly measured single 

particle energy gap is 2.45 eV which is again the half of our calculated gap. Though 

the measurement was performed on poly[2-methoxy, 5-(2'-ethyl-hexyloxyl) -1-4- 

phenylene vynilene] (MEH-PPV), the presence of the substituents decrease the exciton 

energy only by 0.2 eV (2.25 eV in MEH-PPV [24] and 2.45 eV in PPV[26]) The most 

probable explanation of the large discrepancy between the experimental and 

theoretical gap values is that the measurements were performed on a -50 nm thick 

polymer layer, while the calculations were executed on a single chain. Looking at the 

crystal structure of PPV one can observe that the chains are quite tightly packed with 

the smallest distance between two chains of only 2.5Ä [25]. In such a case at least 2D 

calculations have to be performed to obtain a more realistic band structure and gap. 

This view is supported by the failure of our attempt to surround our chain by a 3D 

Madelung potential with SCF charges. Namely the bands obtained in this way were 

shifted by about 5 eV upwards in the physically interesting region because of the non- 

applicability of a mutlipole expansion in the Madelung potential at the too short 

interchain distances. A further source of error can be caused by the not too realistic 

geometry of the unit cell (equal C-C distances in the ring) taken from [25]. 

For all these reasons we plan 2D calculations taking the different planes of the PPV 

crystal and applying a better geometry of the unit cell. 

3.2. Correlation Corrected Energy Band Structures of Periodic Nucleotide Base 

Stacks 

We have calculated the correlation corrected band structures of periodic nucleotide 

base stacks [30]. To refine the results obtained the dependence of the band structure of 

a cytosine (C) stack on the number of k-points were studied. It was found at the quasi 

particle level that if one uses 25 k-points at the Hartree-Fock (HF) level (in the 3r 

neighbors' interactions approximation applying a double^ basis) and uses only 7, 9 

and 13 k-values, respectively, at the correlation corrected level, the band structure and 

12 



the gap hardly changes. The same is true if one increases the number of k-points above 

25. 

The dependence of the HF band structure of a C stack on the number of neighbors 

explicitly taken into account was the next step. It was found that if one goes from the 

second neighbors to the third one the band structure and the gap changes again only 

very insignificantly (only by 0.01 eV in the gap). 

We have investigated also the basis set dependence of the correlated band structure of 

a C stack. We have found that by introducing a set of d-functions on every non-H atom 

of C, the change of the band structure was insignificant. On the other hand if we have 

put a "phantom" C molecule everywhere in the middle of the stacking distances (1.68 

Ä stacking distance and 18° rotation) and have put 2 sets of p-functions at the position 

of the non-H "nuclei" of this "phantom" molecule (but we have not taken into account 

either the nuclear charges or the electrons of these phantom molecules), the band 

structure and the gap of the cytosine stack has improved significantly. The resulting 

values are: conduction band upper and lower limits in the HF and correlation corrected 

cases, respectively, 3.56 eV (u), 3.22 eV (£) and 1.30 eV (u), 1.13 eV (£), respectively. 

From these follows that the HF and correlation corrected gaps are 11.20 eV and 6.60 

eV, respectively. Comparing the correlation corrected gap of 6.60 eV obtained in this 

way with the correlation corrected double^ gap of the C stack of 8.64 eV we obtain a 

factor of — = 0.7638. 
8.64 

Since the other base stacks (adenine (A) stack, thymine (T) stack, guanine (G) stack) 

contain the same kind of atoms and the relative geometries of the bases in the stack are 

the same as in the C stack, as first approximation one can use this scale factor to 

improve the band structures and gaps of the other base stacks. One can see that in this 

way one obtains gap values 9.50 0.7638 = 7.25 eV (A), 9.09-0.7638 = 6.94 eV(T) and 

8.13 0.7638 = 6.20 eV(G), respectively, which are not very much larger than the 

13 



experimental first singlet n^>n excitation energies of the single bases (4.5 eV for C, 

4.9 eV for A, 5.0 for T and 4.3 eV for G [26]). 

In the different base stacks of course the levels of the first singlet excited states 

broaden to exciton bands with lower limits of about 0.3-0.4 eV lower than the 

monomer excited states [31]. On the other hand the fundamental gap of the base stacks 

is larger, than the upper limit of their first exciton bands. In the case of a C stack the 

latter can be estimated on the basis of its exciton spectrum to be at -4.8 eV [31]. This 

means that the fundamental gap of a C stack can be assumed to lie at -5.5 eV [32] 

(directly it could be measured only with the help of its so-called inverse photoelectron 

spectrum which was not done for the base stacks). One can estimate the gaps of the 

other stacks in a similar way [32]. 

3.3. The Correlation Corrected Band Structures of Homopolypeptides 

The correlation corrected band structure of polyglycine and polyalanine has been 

calculated previously in the MP2 approximation using a double^ polarization 

function basis set [33] and their most stable helical conformation. The gap values 

obtained were 9.89 eV and 9.73 eV, respectively. 

To continue this line of investigations we have started to calculate the correlation 

corrected band structures of the other homopolypeptides. In these calculations again a 

doubled polarization functions basis, the most stable antiparallel ß pleated sheet 

conformation (in the cases when this is the most stable geometry) and generally 2n 

neighbors' interactions were taken into account with 25 k-points in the HF and 7 k- 

points in the correlation corrected calculations. 

In the case of polyserine (R=CH2-OH) besides 2nd neighbors we have taken into 

account also 3rd neighbors' interactions. The obtained gap values were 10.08 and 9.91 

eV,  respectively  [34]  (the  corresponding HF values  are   14.22  and   14.16  eV, 
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respectively). This indicates that though the results are not completely saturated for the 

number of neighbors taken into account, it cannot be expected that they would change 

significantly, if one would take still further neighbors (which is because of CPU time 

limitations impossible). Further the decrease of the HF gaps by good ~4 eV in the 

quasi particle case indicates that already with this medium size basis and in the MP2 

approximation one is able to cover the main correlation effects. The real gap values of 

serine could be estimated to be 7-8 eV (the upper edge of the first singlet exciton band 

of polyalanine is at ~6.4 eV [34]). 

In a subsequent calculation we have calculated polythreonine (R=CH-OH) with the 

same geometry and with the same basis as polyserine in the second neighbors 

interactions' approximation. We have found its correlation corrected gap to be 9.63 eV 

somewhat smaller, than in the polyserine case (9.91 eV). (This one would expect 

corresponding to its HF gap of 14.03 eV while in polyserine it was 14.16 eV) [34], 

The computations for polycysteine and polyvaline are in progress. After performing a 

number of calculations on helix making and helix breaking homopolypeptides we hope 

to find out some regularities about their electronic structure which most probably will 

be useful also in the case of aperiodic native proteins. 
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