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FOREWORD 

As naval operations address theater warfare, sensor resolution and unresolved 

targets will become more significant. In theater warfare, the effectiveness of combat 

identification will hinge on resolving and tracking closely-spaced targets. In Theater 

Ballistic Missile Defense (TBMD), resolving and tracking closely-spaced targets will 

be required to separate the debris from the threat. Furthermore, hostile targets may 

exploit sensor resolution to make the conditions under which they can be engaged 

successfully more difficult to achieve. In contrast to addressing these challenging 

problems of sensor resolution through adaptive digital beamforming, this report fo- 

cuses on the use of a standard monopulse radar with new detection and estimation 

algorithms to address the problem of sensor resolution and the tracking of unresolved 

targets. 

This report addresses such issues as target amplitude estimation, discrimination 

between targets with different amplitude distributions, tracking with a monopulse 

radar, angle-of-arrival estimation for a target in multipath or two unresolved targets, 

and detection of the presence of unresolved targets. This research has been accom- 

plished in part through funding from the Naval Surface Warfare Center, Dahlgren 

Division (NSWCDD) In-house Laboratory Independent Research (ILIR) Program 

sponsored by the Office of Naval Research. 

This report has been reviewed by M. A. Bailey, Combat Systems Branch, 

Dr. C. F. Fennemore, Technical Lead, Target Tracking and Signal Processing; and 

R. N. Cain, Head, Combat Systems Technology Group. 

Approved by: 

MARY E. LACEY, Bead 

Systems Research and Technology Department 
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Chapter 1 

INTRODUCTION 

Pulse compression techniques are often employed in radar systems to improve 

the accuracy of the range measurements, while monopulse techniques are employed 

to improve the accuracy of angle measurements. Monopulse is a simultaneous lobing 

technique for determining the angular location of a source of radiation or of a "target" 

that reflects part of the energy incident upon it [1]. Prior to the development of 

monopulse, angle measurements were improved with sequential lobing, which required 

two consecutive measurements to be taken of the target. The first measurement was 

taken with the boresight of the antenna pointing slightly below (or to the left) of the 

predicted target position, while the second measurement was taken with the boresight 

of the antenna pointing slightly above (or to the right) of the prediction position. 

Then the target was declared to be closer to the angle of the measurement with 

the larger amplitude, and the predicted angle of the target was corrected. However, 

sequential lobing is very susceptible to pulse-to-pulse amplitude fluctuations, which 

are common in radar measurements due to target scintillation. Furthermore, when 

tracking in azimuth and elevation, sequential lobing requires lobe switching between 

azimuth and elevation or conical scan, both of which are inefficient with respect to 

radar time and energy, and easily jammed or deceived by the target. 

In an amplitude comparison monopulse radar system, a pulse is transmitted di- 

rectly at the predicted position of the target, and the target echo is received with 

two squinted beams as illustrated in Figure 1.1. The Direction-Of-Arrival (DOA) 

of the target is typically estimated with the in-phase part (i.e., the real part) of the 

monopulse ratio, which is formed by dividing the difference of the two received signals 

by their sum. When tracking in azimuth and elevation, four beams are used to re- 

ceive, and two monopulse ratios are typically formed. Thus, the simultaneous lobing 

of monopulse allows the transmitted energy to be directed at the predicted position 

of the target and eliminates the errors due to amplitude fluctuations by forming a 

1 
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Figure 1.1 Illustration of Amplitude-Comparison Monopulse (ACM) 

refinement of the angular accuracy with a single pulse.1 Thus, since the lobing is 

simultaneous rather than sequential, monopulse is very efficient with respect to radar 

time and energy and difficult to jam or deceive, both of which are particularly im- 

portant to electronically steered radars that are required to maintain simultaneous 
tracks on many targets as illustrated in Figure 1.2. 

At a first glance, monopulse may appear as an array signal processing system 

as in [2] with two elements. While a phase comparison monopulse system is similar 

to an array with two elements, in that it receives with two spatially offset beams, 

monopulse systems tend to be directional, while the sensor array elements tend to 

be omnidirectional. The directional sensing of monopulse systems gives rise to larger 

antenna gains for detecting weaker signals and improved spatial resolution. Further- 

more, in amplitude comparison monopulse, the sensors are colocated, and the sum 

and difference signals are often formed in the waveguide prior to frequency conversion 

and signal detection. Amplitude comparison monopulse is commonly used for many 

practical reasons. Note also that amplitude comparison monopulse is used in phased 

array radars, where the two or four squinted receive beams are formed with the array. 

The term monopulse originated with this idea of a single pulse refinement of the angular ac- 

curacy. Some confusion exists concerning monopulse radars because most monopulse radars utilize 

multiple pulses to form an angular measurement. It is the monopulse ratios that can be formed with 

each pulse that distinguishes a radar as monopulse. 
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Figure 1.2 Illustration of Tracking Unresolved Targets 

1.1 Monopulse Processing and Unresolved Targets 

When two or more targets are closely spaced in range and angle with respect to 

the resolution of the radar as illustrated in Figure 1.2 with the two targets in the 

beam, and the target echoes interfere (i.e., the echoes are not resolved in the fre- 

quency or time domains), the DOA estimate indicated by the in-phase monopulse 

ratio can wander far beyond the angular separation of the targets [1]. Figure 1.3 

shows the trajectories of two point (fixed-amplitude and fixed-phase) targets and the 

in-phase monopulse measurements with no receiver noise. The measurements in Fig- 

ure 1.3 were generated by perfectly pointing the radar beam at the true positions of 

the targets. Since the tracking of the two targets begins when the targets are resolved 

spatially in angle, two measurement sequences are given as if the presence of the other 

target was ignored. Figure 1.4 shows the quadrature (i.e., imaginary part) monopulse 

ratios for one of the two targets shown in Figure 1.3. Note that in Figure 1.3 the 

targets are considered to be moving right to left, while the quadrature monopulse 

ratios are plotted versus time (i.e., left to right) in Figure 1.4. Also, note that the 

trajectories were generated to give a slowly varying relative phase between the two 

echoes to illustrate the wander of the measurements, while for two typical targets, the 

relative phase of the two echoes would be random between consecutive measurements. 

In order to illustrate the effects of random phase and target amplitude fluctuations, 
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Figure 1.3 In-Phase Monopulse Measurements of Two, Closely-Spaced Point Targets 

Figure 1.4 Quadrature Monopulse Measurements for One of the Two, Closely-Spaced 
Point Targets Shown in Figure 1.3 
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two Rayleigh targets were considered. The trajectories of the two targets are shown 

in Figure 1.5, where the targets are initially separated by 800 m and converge to a 

separation of about one-half of a beamwidth at t = 75 s or x = 40 km. An example 

of the measurement sequences are given in Figure 1.6, where the squares denote mea- 

surements taken by pointing at target 1, and the triangles denote measurements taken 

for target 2. The solid lines show the true bearing angles of the two targets, while the 

dashed lines denote one beamwidth of antenna pattern with the antenna boresight 

pointed directly at a bearing of zero. The measurements sequences were generated by 

perfectly pointing the antenna boresight at each target for its corresponding measure- 

ments. When the targets are separated by more than one beamwidth, measurements 

are easily associated with the correct target, and conventional DOA estimation and 

tracking works fine. At about one beamwidth separation of the two targets (i.e., 

t — 25 s), the presence of the other target adversely effects the monopulse measure- 

ments. Analysis of the time-correlated errors in the DOA measurements of Figure 

1.3 and the random errors in Figure 1.6 indicates that the failure to detect the pres- 

ence of the interference of a second target and address it in the DOA estimation can 

be catastrophic to the performance of the tracking algorithm, since its position and 

velocity estimates determine the association of any subsequent measurements to the 

target. 

In addition to closely-spaced targets, the problem of unresolved targets also occurs 

when the DOA of a target is measured in the presence of a jammer or sea-surface- 

induced multipath [1,3,4]. A jammer, as denoted by the helicopter in Figure 1.2, 

transmits unwanted signals toward the radar to corrupt the measurements of targets 

between it and the radar. Typically, the jammer signals are in the form of wide- 

band noise or a narrow-band tone. The wide-band noise is usually modeled as a 

complex Gaussian process, which gives rise to a measured amplitude of the jammer 

that is Rayleigh distributed. The narrow-band tone is a sinusoidal signal with a 

fixed-amplitude, which gives rise to a measured amplitude that is Rician distributed. 

However, unlike the case of two closely-spaced targets, the jammer energy enters into 

all of the range bins (i.e., outputs of the matched filter) that surround the target. 

Thus, the range bins that do not include the target can be used to estimate the DOA 

of the jammer. 

Sea-surface-induced multipath occurs when echoes received directly from the tar- 

get and via the sea surface are measured in the same range bin.   Typically, the 
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^<E IMAGE 

Figure 1.7 Illustration of Sea-Surface-Induced Multipath 

multipath is a problem when the target is sufficiently close to the sea surface that 

the DO As of the target and its image are in the main lobe of the antenna pattern as 

illustrated in Figure 1.7. The sea-surface reflection consists of a specular (coherent) 

component and a diffuse (noncoherent) component [1,5]. The specular reflection is 

caused by a smooth ("mirror-like") surface, and the diffuse reflection is caused by 

the surface irregularities. While the specular reflection coefficient is a deterministic 

number that depends on several unknown parameters, the diffuse reflection has a 

random nature that is often modeled as a complex Gaussian process. Generally, the 

sea surface is perturbed by small irregularities, and both reflection components are 

present. In contrast to the case of two closely-spaced targets, the DOA of the image 

can be expressed as a function of the DOA and range of the target. Thus, this geo- 

metric constraint between the DOAs of the target and image can be used to estimate 

the DOA of the target. 

Comparing Figures 1.3 and 1.4 suggests that the quadrature monopulse ratio 

contains information concerning the presence of the unresolved targets and the DOAs 

of both targets. However, the quadrature monopulse ratio was ignored until [4], 

where the complex monopulse ratio was considered for DOA estimation of unresolved 

targets. In [4], deterministic expressions for in-phase and quadrature monopulse 

ratios were used to solve for the DOAs of the two targets. However, the presence of 
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receiver noise and random target amplitudes and phases due to Radar Cross Section 

(RCS) fluctuations have severely limited the success of applications of the results in 

[1,4]. While numerous authors have considered multiple-beam (i.e., more than two 

beams per angular coordinate) monopulse [6,7] or array signal processing [8] for the 

DOA estimation of unresolved targets, almost no success has been achieved toward a 

solution of this problem. The following quote from [9, p. 230] summarizes the success 

achieved toward this problem. 

"The other multiple-target processes covered in this section and in the 

references, as well as the Cramer-Rao bounds computed by Sklar and 

Schweppe and by Pollon, are dependent on (1) a priori knowledge of 

the number of targets present (usually restricted to two), (2) discrete- 

ness of each target, (3) high SNR, (4) precise knowledge of antenna 

patterns, and (5) absence of irregular or diffuse reflections, at least to 

the level implied by the SNR (often 40 to 50 dB). The inability of the 

radar designer to ensure compliance with these conditions in the real 

world should explain the fact that none of the techniques has been de- 

signed into practical radar equipment, although several experimental 

installations have been made." 

While this quote is from 1975, it remains very much true in 1997. The lack of success 

of these previous approaches cited in [9] can be attributed to the fact that each is 

based on deterministic formulation and analysis of the problem with noise added in 

simulations. In contrast to the previous approach, a stochastic approach is taken 

in this dissertation. Detection and estimation algorithms are developed from prob- 

lem formulations that include the receiver errors and target amplitude fluctuations. 

Through this alternate approach, the restrictions cited above will be relaxed. The 

requirement for a priori knowledge of the number of targets will be relaxed to one or 

two targets, where the presence of unresolved targets is detected, not known a priori. 

While the assumptions concerning discreteness of the targets will be continued here 

to limit the scope of the work, addressing extended targets with the algorithms devel- 

oped here should be straightforward. The required Signal-to-Noise Ratio (SNR) will 

be relaxed from 40 dB to near 20 dB, which is achievable with conventional phased 

array radars. The requirement for precise knowledge of the antenna patterns should 

be relaxed to approximate knowledge of the antenna patterns, since no gradients of 

the antenna patterns are required. The required absence of irregular or diffuse reflec- 
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tions is relaxed through the inclusion of models for the target amplitude fluctuations 

in the problem formulations. In fact, the diffuse reflections from the sea surface will 

be included explicitly in the problem formulation. 

Some of the limitations of the multiple target estimators as cited in [9] have been 

relaxed through array processing techniques (a.k.a,., superresolution techniques), such 

as the signal subspace methods [2, p. 64]. However, the superresolution techniques 

require special instrumentation that is very expensive and not compatible with exist- 

ing phased array radars. Thus, the focus of this research is on the use of the standard 

monopulse processing that exists in phased arrays and dish-type radars to track unre- 

solved targets. Since superresolution techniques require significant amounts of radar 

time and energy, the results of this research can be used in future radar systems to 

detect the need for superresolution processing and provide initial estimates for the 

processing [2]. 

1.2 Objectives and Scope of the Research 

The overall objective of this research is the development of detection and esti- 

mation algorithms needed to support the tracking (i.e., kinematic state estimation) 

of unresolved targets. The tracking is typically accomplished with the Kaiman filter 

or Interacting Multiple Model (IMM) algorithm, both of which require a DOA esti- 

mate and corresponding error covariance [10, p. 209]. The error covariance, which is 

typically estimated also, characterizes the DOA estimate as a measurement of target 

location for the Kaiman filter or IMM algorithm. This overall objective gives rise to 

the following six objectives. 

• The first objective involves the estimation of the target amplitude parameters that 

define the amplitude fluctuations and SNR of a single target or two unresolved 

targets. These amplitude parameters are utilized in the estimation of the DOAs 

and the associated variances. 

• The second objective involves discrimination of targets according to various am- 

plitude distributions. Since the estimators of the amplitude parameters and the 

DOAs are dependent on the amplitude distribution, discrimination between am- 

plitude distributions is needed. 

• The third objective involves the development of the probability distribution and 
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statistics of the complex monopulse ratio for various cases of the amplitude dis- 

tribution for a single target and two unresolved targets. These distributions are 

needed to develop Cramer-Rao bounds [11, p. 66] and estimators of the DOAs 

and the associated variances. 

The fourth objective involves estimation of the DOA and the corresponding vari- 

ance for a single target with various amplitude distributions. For a single target, 

the in-phase monopulse ratio is typically taken as the DOA estimate, but the 

monopulse ratio is not, in many cases, superior to the Maximum Likelihood (ML) 

estimate [11, p. 65] nor the Method of Moments (MM) estimate [11, p. 151] of 

the DOA. 

The fifth objective involves estimation of the DOAs and the corresponding vari- 

ances for two unresolved targets with various amplitude distributions. 

• The sixth objective involves the detection of the presence of unresolved targets in 

order to relax the requirement of a priori knowledge of the number of targets. The 

detection of the presence of unresolved targets will be limited to two Rayleigh, 

since Rayleigh targets represent the worst case. 

The focus of this research is the development of detection and estimation algo- 

rithms that can be implemented in existing monopulse radars rather than techniques 

that will require a new radar system. Thus, the following assumptions will be made 

concerning the radar system. 

• The radar waveforms consist of narrow-band pulses that may include subpulses 

at slightly different frequencies. 

• Only two beams per angular coordinate will be used for monopulse processing. 

Since the focus of this research is the development of detection and estimation 

algorithms for unresolved targets and not modeling of target scattering or amplitude 

fluctuations, the following assumptions are made concerning the target echoes to limit 

the scope of the work. 

• Targets are assumed to be point targets with random phases and either fixed 

amplitudes or amplitudes that are Rayleigh or Rician distributed. 

10 
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• The energy received from a target echo is assumed to be completely contained in 

a single range resolution cell or bin. 

• The energy received from two unresolved targets is assumed to be completely 

contained in a single range bin. 

Note that these assumptions concerning the discreteness of the targets will be violated 

by most measurements of an actual radar system. However, the application of the 

results to extended targets should be straightforward. 

Since the focus of this research is the development of detection and estimation 

algorithms for unresolved targets and not modeling of the environment, the following 

assumptions are made concerning the modeling of the environment and noise sources. 

• The receiver errors are modeled as white Gaussian processes, with the errors in 

the in-phase and quadrature parts being independent. 

• The specular reflections at the sea surface are deterministic in amplitude and 

phase. 

• The diffuse reflections are a complex Gaussian process that gives rise to reflections 

with a uniformly distributed phase and a Rayleigh amplitude. 

1.3 Organization of the Report 

Background material on monopulse radar systems is given in Chapter 2. The sum 

and difference signals are formulated, and the popular Swerling models for RCS fluc- 

tuations are presented along with estimators for the amplitude parameters of Swerling 

targets. Rician targets are defined, and the sum and difference signals for M unre- 

solved Rician targets are formulated. The geometry and parameters associated with 

sea-surf ace-induced multipath are presented, and conventional monopulse processing 

for DOA estimation is summarized. 

In Chapter 3, estimation of the target amplitude parameters, which define the 

SNR of the target, and discrimination between various models for the target ampli- 

tude fluctuations are considered. The PDF of the measured amplitude of the sum 

signal is developed for M unresolved Rician targets, which are each composed of a 

fixed-amplitude part and a Rayleigh part. The PDF and associated statistics of the 

11 



NSWCDD/.TR-97/167 

measured amplitude are used to develop Cramer-Rao bounds, ML estimators and/or 

MM estimators for the amplitude parameters of Rayleigh, fixed-amplitude, and Ri- 

cian targets as well as a new dominant-plus-Rayleigh model, which is proposed as 

an alternative to the Erlang distribution of Swerling 3 and 4 targets. The wave- 

form requirements for reliable discrimination between Rayleigh, fixed-amplitude, and 

dominant-plus-Rayleigh targets are considered. The PDF of the measured amplitude 

of two unresolved Rician targets is studied, and an MM estimator is presented for the 

amplitudes of two unresolved, fixed-amplitude targets. The PDF of the measured am- 

plitude of a fixed-amplitude target in the presence of multipath is presented, and MM 

estimators of the target amplitude and relative phase of the target and sea-surface 

echoes are developed. The performances of the estimators are illustrated via Monte 

Carlo simulations, where the numbers of experiments were chosen to achieve stable 

results. 

In Chapter 4, the amplitude-conditioned joint PDF and the statistics of the in- 

phase and quadrature monopulse ratios are developed for M unresolved Rician tar- 

gets. The term "amplitude-conditioned" denotes conditioning the PDF on the mea- 

sured amplitude of the sum signal, which is known in the receiver. Conditioning the 

PDF of the monopulse measurements on the measured amplitude of the sum signal 

gives the in-phase and quadrature monopulse ratios that are approximately Gaussian 

random variables so that the PDF is approximately specified by the means and vari- 

ances. Since the SNR of radar targets is typically unknown, the measured amplitude 

of the sum signal provides no information concerning the DOA of the targets. Thus, 

the PDF of the monopulse measurements can be conditioned on the measurement 

amplitude to obtain a Gaussian distribution without any loss of information. The 

amplitude-conditioned PDF and the statistics are given for various cases of a single 

target, two unresolved targets, and a fixed-amplitude target in the presence of sea- 

surface-induced multipath. For a single pulse and a resolved target, the in-phase and 

quadrature monopulse ratios are shown to be uncorrelated, non-Gaussian random 

variables for a nonzero DOA, and the marginal PDF of the quadrature ratio is shown 

to have a mean of zero and be symmetric about zero for all DOAs. 

In Chapter 5, DOA estimation is considered for a single target and two unresolved 

targets. For a single target, the DOA estimation is considered for multiple pulses 

from a Rayleigh target. Single-pulse DOA estimation is also considered by using the 

results of Chapter 4 for a fixed-amplitude target.  For two unresolved targets, DOA 

12 
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estimation is considered for a Rayleigh target in the presence of a Gaussian noise 

jammer and two Rayleigh targets with known relative RCS. 

The detection of the presence of two unresolved Rayleigh targets is considered 

in Chapter 6. A Generalized Likelihood Ratio Test (GLRT) is used to develop a 

Neyman-Pearson algorithm for the detection of the presence of unresolved Rayleigh 

targets, and performance predictions of the new algorithm are shown to agree closely 

with the results from simulation studies. The detection performance of the new 

algorithm is shown via simulation studies to exceed the predicted performance when 

the two unresolved targets have fixed amplitudes. 

Conclusions are given in Chapter 7 along with suggestions for future research. The 

incorporation of the results of this research into the tracking of unresolved targets is 

specifically addressed. 

13 
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Chapter 2 

BACKGROUND ON MONOPULSE RADAR SYSTEMS 

In order to facilitate the presentation of the material in the following chapters, 

some background on monopulse radar systems is given in this chapter. The sum and 

difference signals of a monopulse radar system are formulated for a single target in 

Section 2.1, while the Swerling models for RCS fluctuations are presented in Sec- 

tion 2.2. Expressions are developed for the measured amplitude of the sum signal, 

and estimators for the target amplitude parameters are presented. Rician targets 

are formulated in Section 2.3, while the sum and difference signals for M unresolved 

Rician targets are formulated in Section 2.4. The geometry and parameters associ- 

ated with sea-surface-induced multipath are presented in Section 2.5. Conventional 

monopulse processing for DOA estimation is summarized in Section 2.6. 

2.1  Sum and Difference Channels 

In an amplitude comparison monopulse radar system, a pulse is transmitted di- 

rectly at the predicted position of the target, and the target echo is received with two 

squinted beams as illustrated in Figure 1.1. Figure 2.1 shows the shapes of the sum 

and difference voltage patterns for either transverse or elevation of an ACM system. 

The ratio of the difference pattern voltage to the sum pattern voltage defines a unique 

off-axis angle within the mainlobe for each ratio of the measured voltages. Note that 

the ratio can be approximated closely as linear for off-axis angles within one half 

of a beam width of antenna boresight. The slope of the ratio in the linear region is 

typically called the monopulse error slope and denoted as km. 

A typical monopulse receiver is shown in Figure 2.2, where the sum and difference 

signals are inputs that are formed in the waveguide prior to detection and signal 

processing. The analog-to-digital converters denoted by "A/D" include the match 

filtering associated with the radar waveforms. The measured amplitude of the sum 

15 
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signal denoted by |s|2 is typically tested for amplitude exceedence of a threshold before 

the in-phase monopulse ratio denoted by Re(d/s) or the quadrature monopulse ratio 

denoted by Im(d/s) is computed. For a single target the sum and difference signals 

can be expressed as 

s(t) = 2y/HA(j^(9)p(t) cos(uct -<f>) + ns(t) (2.1) 

d(t) = 2^AGz{$)GA{6)p{t)cos{ujct -</>) + nd(t) (2.2) 

where 

K = constant proportional to the transmitted power 

A = voltage amplitude of the target 

G%(0) = sum channel voltage gain at the angle 6 

G&(0) = difference channel voltage gain at the angle 0 

6 = off-boresight angle of the target 

p(t) = envelope of the transmitted pulse 

UJC = carrier frequency of the transmitted waveform 

<j> = phase of the target echo 
ns{t) = receiver noise in the sum channel 

n^(t) = receiver noise in the difference channel 

The output of the receiver is match filtered with gain po and sampled at time io, 

and the in-phase and quadrature components of the sum and difference channels are 

given by 

sj = ^AGl(0)po cos <f> + nSi (2.3) 

SQ = ^AGl(Ö)Po sin <j> + nSQ (2.4) 

dj = V*AGx(0)GA(0)po cos <j> + ndI (2.5) 

dQ = y/KAGx(0)GA(9)po sin <f> + ndQ (2.6) 

where 

nSJ~N(0,a2
s) (2.7) 

nSQ~N(0,4) (2.8) 

ndI~N(0,<rj) (2.9) 

ndQ~N(0,<rj) (2.10) 
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with N(/i,cr2) denoting the Gaussian distribution with mean // and variance a2. The 

receiver errors in (2.7) through (2.10) are assumed to be independent with the possible 

exception of real-valued correlation. Let 

p  _   ^Mf 1   _   E[SQdQ) 

where E[-] denotes the expected value. Then (2.3) through (2.6) can be rewritten as 

sj = a cos <f> + nSI (2.12) 

SQ = a sin <f> + nSq (2.13) 

dj = arj cos <j> + ndI (2.14) 

dQ = arj sin cf> + ndQ (2.15) 

where 

a = ^AGl(6)Po (2.16) 

Since the angle-of-arrival 6 is determined from 77, 77 is referred to as the DOA. Fig- 

ures 2.3 and 2.4 give typical voltage gains Gx(0) and GA(0) versus the off-boresight 

angle for multiple beamwidths, while Figure 2.5 gives 7? versus the off-boresight an- 

gle. The antenna patterns were generated for uniform illumination across the antenna 

aperture and a squint angle that is 40 percent of the beamwidth. Figure 2.5 shows 

that rj does not uniquely define 9 if targets outside the mainlobe of the antenna pat- 

tern are considered. Since the gain of the antenna outside the mainlobe is typically 

less than -10 dB relative to the peak gain of the mainlobe, targets in the sidelobes 

are often not a problem. However, jammer signals are often strong enough to enter 

through the sidelobes and interfere with target measurements. 

When a and <f> are given, sj and SQ are jointly Gaussian random variables, with 
PDF given by [12, p. 126] 

/(*7i sQ\a, <f>> °s) = 2^5- exP   _ ^2 (isI ~ a cos <t>? + (sQ-a sin (f>f)     (2.18) 

Let A and i\> denote the measured amplitude and phase of the sum-signal channel, 
respectively. Then 

sj = A cos ij) (2.19) 

SQ = A sin ij> (2.20) 
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Figure 2.5 DOA Parameter Versus the Off-Boresight Angle 
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Note that A = \s\ in Figure 2.2. Performing this transformation of random variables 

[12, p. 143] in the PDF of sj and SQ gives 

T/A   i\     i      \        A roA      .,      ,j        r     A2 + a2 \ 
/(A, il>\at <f>, as) = ^j exp ^—cos(^ - <£)J exp| - 2    j        (2.21) 

where A > 0, and -TT < xp < TT. The phase is uniformly distributed in the interval    " 

(-7r,7r]. Integrating (2.21) with respect to if) according to [13, No. 3.937.2] gives 

A 
lo[aAcrs*) exp<! - 

•s L     2as 

where J0(-) is the zero-order modified Bessel function of the first kind. 

f(A\a,as) = —I0{aA(Ts
2) exp{ - 7-J[A2 + a2}} (2.22) 

(Jc L        Z(7o J 

The "observed SNR" is defined as 

«• = ^ <2-23> 

Since §?0 is actually a signal-plus-noise to noise ratio, the SNR of a target will be 

defined as 

ft = E[^t0) - 1 (2.24) 

where E[-] denotes expected value. The SNR of a fixed-amplitude target is then given 

by 
a2 

®F = ^2 (2-25) 

Performing the transformation of a random variable [12, p. 90] of (2.23) in (2.22) and 

using (2.25) gives the PDF of the observed SNR as 

ffi0\a,<rs) = I0{2y/®otoF) exp{ - [3J0 + $tF}} (2.26) 

2.2 Swerling Models for RCS Fluctuations 

Since the amplitude fluctuations of the targets will be modeled for amplitude es- 

timation and target discrimination, the popular Swerling models for RCS fluctuations 

are reviewed in this section. The RCS of a target is the area intercepting that amount 

of power2 which, when scattered equally in all directions, produces an echo at the 

radar equal to that from the target [14, p. 33]. Variations in the echo signal may be 

RCS corresponds to power gain of the target, while the target amplitude of the previous section 

corresponds to voltage gain of the target. 
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caused by meteorological conditions, the lobe structure of the antenna pattern, equip- 

ment instabilities, or variations in the RCS. The RCS of typical radar targets is quite 

sensitive to the aspect angle, and fluctuates from pulse-to-pulse or scan-to-scan. The 

scan-to-scan fluctuations correspond to RCSs that are independent between scans 

(a.ic.a., sweeps or dwells) of the radar on the target. The pulse-to-pulse fluctuations 

correspond to RCSs that are independent between pulses within a single scan or dwell 

of the radar on the target. The pulse-to-pulse fluctuations are often the result of fre- 

quency diversity in the radar waveform that is achieved through discrete-frequency 

coding [15, p. 269]. Each frequency-coded segment of the waveform is often referred 

to as a subpulse. Thus, pulse-to-pulse fluctuations are often subpulse-to-subpulse 

fluctuations. 

Fixed-amplitude targets are often referred to as Swerling type 0. Both Swerling 

types 1 and 2 have RCSs that fluctuate according to the exponential distribution, 

where the Swerling 1 type has RCS fluctuations scan-to-scan, and the Swerling 2 has 

RCS fluctuations pulse-to-pulse. Note that since RCS is a power-based measure of 

target amplitude, the fluctuations of the voltage amplitude of the Swerling types 1 

and 2 are Rayleigh distributed. Thus, the Swerling types 1 and 2 are also Rayleigh 

targets as discussed below. Both Swerling types 3 and 4 have RCSs that fluctuate 

according to the Gamma (Erlang) distribution, where the Swerling 3 type has RCS 

fluctuations scan-to-scan and the Swerling 4 has RCS fluctuations pulse-to-pulse. 

The RCS fluctuations of Swerling 3 and 4 targets are also denoted in [14, p. 407] 

as one-dominant-plus-Rayleigh model. This section summarizes the results of [16], 

which includes the PDF of the observed SNR and ML estimators of the amplitude 

parameters for Swerling 2 and 4 types. 

Swerling Targets of Types 1 and 2 

The PDF of the RCS for Swerling types 1 and 2 is given by 

fsw2{?Wve) = exP >    ° > 0 ' (2.27) 

where crave = E[a] is referred to as the average RCS of the target. Figure 2.6 shows 

the PDF of the RCS for a Swerling 1 or 2 type target with crave = 10. Given that 

a = 0.5A2, where A is the amplitude of the voltage gain of the target, (2.27) gives 

rise to pulse amplitudes that are Rayleigh distributed according to 

A A2 

fsw2(A\Ao) = fR(A\A0) = j2 exp [ - 7^2  >    A ^ ° (2-28) 
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where E[A2] = 2A2
0 = 2aave. 

For Swerling 1 and 2 type targets, the target amplitude A is Rayleigh distributed 

with parameter AQ and, thus, a of (2.16) is also Rayleigh distributed, with PDF given 

by 

/Ä(ah) = ^exp(-^) (2.29) 

where a0 = y/KA0G
2

z(6)p0. Since a is Rayleigh distributed and the phase <j> is uni- 

formly distributed on (—7r,7r], SJ and SQ are independent, Gaussian random variables 

with means of zero and variances given by 

E[s2j\aQ, as] = E[s2
Q\a0, as] = a\ + a2

s 

Thus, the PDF of sj and SQ for a Rayleigh target is given by 

f(sj,sQ\a0,crs) 
1 r        SJ + SQ 

M«o + 4) 
2T exp 

2{<4 + <r2s)\ 

(2.30) 

(2.31) 

Applying the transformation of random variables of (2.19) and (2.20) in (2.31) gives 

fsw2(Mao,(Ts) = -Ö——9 exP 
^0 + ^5 

A2 

2(al + a|) 

Applying the transformation of variable of (2.23) in (2.32) gives 

fSw2(^o\^Sw2) = 
1 

^Sw2 + 1 
exp 

»„ 
^Sw2 + 1- 

where $Sw2 is the SNR of a Rayleigh target and given by 

vtSw2 = —Ö 4 

(2.32) 

(2.33) 

(2.34) 

Thus, the observed SNR of a Rayleigh target (i.e., Swerling 1 or 2 type) is exponen- 

tially distributed. The PDF of the observed SNR for a Swerling 1 or 2 type target is 

shown in Figure 2.7 for dtsW2 = 10. 

For N independent pulses (i.e., a Swerling 2 type target), the ML estimate [11, 

p. 65] of 3?5W2 is given by 

&Sw2 = YN-1 (2.35) 

where 

'     1 A 
YN

 
= Ar 22 ^ok (2.36) 

jfc=i 
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Figure 2.6 PDF of the RCS for Swerling Targets with aave = 10 
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and $lok is the observed SNR of pulse k. The ML estimator is unbiased and efficient 

in that it achieves the Cramer-Rao Lower Bound [11, p. 66]. The variance of the 

estimator is given by 

(*S„2 + l)2 

VAR[»5«2|»S»2] = N 
(2.37) 

Note that Swerling 2 targets are Rayleigh targets, and that Rayleigh will be used to 

denote these targets throughout the remainder of this report. 

Swerling Targets of Types 3 and 4 

The PDF of the RCS for Swerling types 3 and 4 is given by 

2a 
fswi(o-) = -j— exp 

a, ave a, aveJ 
a >0 (2.38) 

where aave = E[a] is referred to as the average RCS of the target. Figure 2.6 shows 

the PDF of the RCS for a Swerling 3 or 4 type target with aave = 10. Again, given 

that a = 0.5A2, where A is the amplitude of the voltage gain of the target, (2.38) 

gives rise to pulse amplitudes that are distributed according to 

2A3 A2 

Al 
A>0 (2.39) fsw4(A\A0) = -p- exp 

where E[A2} = 2A2 = 2aave. Note that (2.39) differs from the corresponding PDF 

given in [15, p. 407], where cr = 1.542 for Swerling 3 and 4. The definition of A was 

altered from that of [15] so that A0 is consistent between (2.28) and (2.39). 

If a target amplitude A is distributed according to (2.39) with parameter A0, the 
PDF of a in (2.16) is given by 

2a
3 

/su)4(a|a0) = —f-exp( 
Oil 

where a0 = T/KA0G
2
(6)PQ. Then using (2.22) and (2.40) gives 

roo 

fsw4(Mao,<?s) = /    /(A|o,<Ts)/s»4(a|ao) da 
Jo 

4Aor| ^A2 

+ 1 exp 
(<*o2 + 2<r2)2 l2a2(c*2 + 2<72) 

Applying the transformation of variable of (2.23) in (2.41) gives 

1 $0 2 

A2 

(«0 + 2*1) 
(2.41) 

fSwiffioffiSwi) = 
($Sw4 + 2)2      (^o + l)0RSw4 + 2)3 

r 2W 
x4(Sß0 + l)exp' 
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where $Sw4 denotes the SNR of a Swerling 3 or 4 target. The PDF of the observed 

SNR for a Swerling 3 or 4 type target is shown in Figure 2.7 for WlswA = 10. 

For N independent pulses (i.e., Swerling 4 type target), the approximate ML 

estimate of $i-Sw4 IS given by 

»s«,4«lfr-l,        YN>4 (2.43) 

Thus, for a given Y^ > 4, the approximate ML estimate of the SNR of a Swerling 4 

target is equal to the ML estimate of the SNR of a Swerling 2 target. The approximate 

ML estimator is unbiased, with variance given by 

VAR[few4|£sw4] = -^5«,4 + I)2 - %* (2-44) 

Comparing (2.37) with (2.44) indicates for a given N and $lsw2 = ^Sw4 that the 

variance of the SNR estimator for the Swerling 4 target will be slightly less than that 

for the Swerling 2. However, the stochastic distance between the two distributions 

of 9i0 is rather small, as suggested by Figure 2.7 and illustrated more specifically 

in Section 3.3, where an alternative model for the dominant-plus-Rayleigh target is 

given. 

2.3 Rician Targets 

Rician targets are composed of a fixed-amplitude part and a Rayleigh part [17]. 

Thus, the in-phase and quadrature portions for the sum signal of a Rician target can 

be expressed as 

sj = a cos <j> + ß cos <p + nsi (2.45) 

SQ = a sin <f> + ß sin ip + nsq (2.46) 

where 

a = amplitude from the fixed-amplitude part of the target 

ß = amplitude from the Rayleigh part of the target 

<j) = phase of the fixed-amplitude part of the target 

<p = phase of the Rayleigh part of the target 

The phase <p is independent of ß and is uniformly distributed on (—7r, IT]. The Rayleigh 

part of the target is distributed according to 

ß2 

fWo) = is exP ßi        L   2/9, 

25 
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Since ß is Rayleigh distributed, and ip is uniformly distributed on (—x, x], sj and SQ 

are jointly Gaussian, independent random variables, when a and <f> are given. Then 

E[si\a, <f>, ßo, as] = a cos <f> (2.48) 

E[sQ\a, (j>, ß0, as] = asin<f> (2.49) 

VAR[s7|a, <f>, ß0, as] = VAR[sQ\a, <f>, ß0] = ßl + a2
s (2.50) 

The PDF of si and SQ is then given by [12, p. 126] 

x exp 2(ß^ + a2)VSl ~~ a C0S^2 + (SQ ~ a sin ^0  (2"51) 
Performing the transformation of random variables [12, p. 143] of (2.19) and (2.20) 

in the PDF of sj and SQ gives 

/(A,V>M,/?„<rs) = Mßt+4) expgcos«.- «] exp{ - ~^} (2.52) 

where A > 0, and -TT <tp <x. The phase nß is uniformly distributed in the interval 

(-7r,7r]. Integrating (2.52) with respect to i\) according to [13, No. 3.937.2] gives 

/(A|Q
'"°'

CTS)
 - whAwhi) exp( - 2(ßf^f)^+^}   <2-53> 

Inserting as = 0 in (2.53) shows that the voltage amplitude of the target is Rician 

distributed [18] or [19, p. 94]. Performing the transformation of random variable 

[12, p. 90] of (2.23) in (2.53), and using (2.25) gives the PDF of the observed SNR as 

/(Sol»,,»*) = -L^^v/g^) exp| _ _2_Wo + xF]}      (2.54) 
where 

*' = ä (2-55) 

A> 
S 

2 

»Ä = ^ (2.56) 

Then using [13, No. 6.643.2] gives 

£[«o|»j,»Ä] = »f+ »Ä + 1 (2.57) 

Thus, (2.57) and (2.24) give the SNR of a Rician target as 

& = *tF + 9lR (2.58) 

Thus, $iF denotes the SNR associated with the fixed-amplitude part of the target, 

and 3?Ä denotes the SNR associated with the Rayleigh part of the target. 
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2.4 Unresolved Rician Targets 

In a typical monopulse radar system, the outputs of the receivers are match 

filtered, and the in-phase and quadrature portions of the sum and difference signals 

for the merged measurements from M Rician targets can be expressed as 

M 

SI = ^2 (ai cos fa + ßi cos Vi) + nSI (2.59) 
i=\ 
M 

SQ = ^2 (ai sin fa + ß* sin <Pi) + nSQ (2.60) 

M 

dl-^2, (a«fi cos fa + ßiVi cos Vi) + »<£I (2-61) 
t=l 

M 

dq = ^>2 (am sin fa + ßiVi sin ViJ + ndQ (2.62) 

where 

a, = amplitude from the fixed-amplitude part of target i 

ßi = amplitude from the Rayleigh part of target i 

<j>i = phase of the fixed-amplitude part of target i 

(fi = phase of the Rayleigh part of target i 

„ = £f>      DOA parameter of targeti 

&i =  off-boresight angle of target i 

The phases, y>,-, are independent and uniformly distributed on (—7r,7r]. The Rayleigh 

parts of the target amplitudes are also independent, and PDF of the Rayleigh part 

of target i is given by 

f(ßi\ßio) = -55- exp 
fit 

tf 
2 i 

m »0 
,    ft > 0 (2.63) 

Since ft are Rayleigh distributed, and the (fi are uniformly distributed on (—7r,7r]; 

sj, 3Q, dj, and C/Q are jointly Gaussian, independent random variables when the a{ 

and fa are given. Let 

M 
8j = E[si\W, $] = ]P ^ cos cf>i (2.64) 

*=1 
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M 
SQ = E[8Q\V, $] = £} ai Sin & (2-65) 

t=l 

M 

3j = £[d/|#,$] = £ aiVi cos & (2.66) 

M 

dQ = E[dQ\V, $} = J2aiVi sin fa (2.67) 
i=l 

where $ is the parameter set {ai:ßw,m^ ■ ■ ,^M,ßMo,VM,^S,^d}, and $ is the 
parameter set {fa,..., <f>M, }. Also, let 

AT 

p„ = VAR[S/|tf, $] = VAR[sQ|f, $] = £ /^ + <r| (2.68) 

M 

p22 = VAR[d/|*, *] = VAR[dg|tf, <D] = £ 7^0 + ffJ (2.69) 

M 

Pi2 = cov[57,rf7|^,$] = cov[SQ,dQ\m^} = Y,mßfo + WA    (2.70) 
t=i 

where VAR[-] denotes variance, and C0V[-, ■] denotes covariance. Note that 

COV[s7,sQ|tf,$] = CÖV[d/,dQ|*,$] = 0 (2.71) 

and 

COV[s7, dQ\V, $] = COV[d7,5Q|*, $] = 0 (2.72) 

2.5 Sea-Surface-Induced Multipath 

The signal received from a low elevation target in the presence of sea-surface- 

induced multipath includes four components [20, 21] as shown in Figure 1.5. The 

first part travels directly to the target and returns directly to the radar, while the 

second part travels to the target via the sea surface and returns directly to the radar. 

The third part travels directly to the target and returns to the radar via the sea 

surface, while the fourth part travels to the target via the sea surface and returns to 

the radar via the sea surface. In the presence of sea-surface-induced multipath, the 

in-phase and quadrature portions of the sum and difference signals are given by 

s7 = at cos<j) + 2atgps cos(<f> + Acf>) + at(gps)2 cos(<£ + 2A<f>) 

+ 2atgpd cos((j> + fa + A^) + at{gpdf cos(<£ + 2fa + 2/\fa) + nSI (2.73) 
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SQ = at sin(j) + 2atgps sin(<£ + A<£) + at(gps)2 sin(<^ + 2A<£) 

+ 2atgpd sin(<^ + <f>d + A<j>) + at(gpd)
2 sin(<£ + 2<j>d + 2A<f>) + nSQ (2.74) 

dl = af7/t cos^i» + at(r)t + ru)gps cos(<f> + A^) + cxtr}I(gps)2 cos(<f> + 2A^) 

+ at(rjt + m)9Pd cos(^ + fa + A<ß) + atru(gpd)2 cos(<f> + 2<f>d + 2A<£) + nd/(2.75) 

C?Q = atj/t siW> + at(7/t + »?j)#/!>5 sin(<£ + A<£) + cxtVligps)2 sin(<^> + 2A<£) 

+ ojf(7ft + T)i)gpd sin(<£ + ^ + A<£) + atiu(gpd)
2 sin(<£ + 2^d + 2A<?i) + ndQ(2.76) 

where 

a* = amplitude of the target echo in the absence of rnultipath 

(f> = phase of the directly returned signal echo 

6t = off-boresight angle of the target 

61 = off-boresight angle of the target's image 

rjt = ' =  DO A of the target 

C   (ß \ 
Vl — s-, tn \ —  DOA of the target's image 

OE(0J) 

9 " GM) 
A4> = phase difference between the direct and specular reflections 

<f)d = uniformly distributed phase of the diffuse reflections 

PS = specular reflection coefficient 

pd =  Rayleigh diffuse reflection coefficient with Rayleigh parameter pdo 

The first term on the right side of (2.73) and (2.74) corresponds to the echo received 

directly from the target, while the second and third terms correspond to the three 

echoes that are the result of the specular reflection at the sea surface. The fourth 

and fifth terms represent three echoes that result from the diffuse reflections at the 

sea surface. The phase information associated with <j> in the fourth and fifth terms is 

lost due to the presence of the random phase, (f>d. In the difference signals of (2.75) 

and (2.76), the second and fourth terms on the right side of (2.73) and (2.74) include 

echoes from two different DO As, r]t and T]J. The A^> includes the phase difference 

due to both the Path-Length Difference (PLD) and the specular reflection at the 

sea surface, which is approximately w. Both p$ and ^0 depend on the sea state, 

properties of the seawater, polarization of the transmitted waveform, grazing angle 

at the point of the sea-surface reflection, and wavelength A of the carrier. 
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Following the development in [21], the PLD is given by 

Ar = rtl + rn - rt (2.77) 

where 

rti =  distance from the radar to the sea-surface reflection point 

rt2 =  distance from the target to the sea-surface reflection point 

rt =  distance from the radar to the target 

In simulations, the rt is known, and rtl and rt2 are found by simultaneously solving 

rt2(2rehr + h2
r- r2

n) = rtl(2reht + h\ - r2
2) (2.78) 

r2e[(rn + rnf - r2} = {2rehr + h2
r - r2

n){2rtht + h\ - r2
t2) (2.79) 

where 
re =  radius of the earth 

hr = height of the radar above the sea surface 

ht = height of the target above the sea surface 

Then rn is used to compute the grazing angle as 

, /2rehr + hi — r?,\ 
*»-"''I 2r,r» ) t2'80' 

The elevation angle of the target's image is given as 

Ei = Ei- sin"1 (^ sin 2^B) (2.81) 

where Et is the elevation angle of the target from the radar. The off-boresight angles 

(i.e., angles of arrival) 0t and 0/ are related to the elevation angles by 

0t = Et- E0 (2.82) 

6I = EI- E0 (2.83) 

where Eo is the elevation angle of the antenna boresight. 

The specular reflection coefficient is computed as 

r exp(-87r2<70
2),    0 < g0 < 0.1 

PS= <      0.81254 (2.84) 
rIT8^f'      9o - °-1 
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Table 2.1 Numerical Values for Multipath Parameters 

IOC 20 C UNITS 

ts 72.2 69.1 - 

T 1.21 x HT11 9.21 x 10-12 s 

°i 3.6 x 1010 4.7 x 1010 s-1 

g0 = — sin f 
A ga 

IV,    vertical polarization 

Tjj,    horizontal polarization 

sin ipga - y/ec - COS2 lpga 

Sin tpga + yjtc - COS2 Ipga 

ec sin ipga - A/C7 - cos2Vv 

ec sin Ipga + y/tc-   COS2^ ga 

1+U>2r2 
(es - e0)ucT 

!& + w2r2 47T 

es 

eo 

T 

0"i 

RMS sea-surface elevation above the mean level 

static dielectric parameter of the seawater 

4.9 for seawater 

relaxation time of the seawater 

ionic conductivity of the seawater 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

(2.89) 

Table 2.1 gives numerical values for es,r, and <TJ at seawater temperatures of 10 C 

and 20 C. The Rayleigh parameter for the diffuse reflection coefficient is computed as 

y/2\T\ZMg0, 0<c?o<0.1 

Pdo = \ \/2|r|(0.454 - 0.858<?o),   0.1 < g0 < 0.5 (2.90) 

^|r|0.025, g0 > 0.5 
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2.6 Monopulse Processing for DOA Estimation 

In this section, conventional monopulse processing for DOA estimation is sum- 

marized. In a typical monopulse system, the angle of arrival 6 is approximated by 

Ö « -J-rj (2-91) «•TO 

where 1 < km < 2, and OBW is the 3-dB beamwidth of the antenna pattern (i.e., 

the angle between the two one-half power points of the antenna pattern). The linear 

approximation to the monopulse error function is usually appropriate for -0.758BW < 

0 < O.750BW' Denoting s = SJ + JSQ and d = dj+jdq, the in-phase and quadrature 
parts of the monopulse ratio are given by 

_,   .d        djSj + Sndn 
W = M-) =     LSQ (2-92) 

* SI + SQ 

Im$ = ^ ~ dl*Q VQ = Im(-) =   " 2  * (2.93) 

Typically, yj is taken as the estimate of the DOA, which gives the angle-of-arrival 
estimate as 

0 = -fZ-yi (2.94) 

The variance of yj is often reported in the literature [1, p. 309] as 

'» W 4 -j + V  -2p— 5? > 13 dB (2.95) 

where 3? is the SNR of the sum channel. Estimates of the variance of yj are often 

computed by setting TJ = yi in (2.95). An estimate of the variance of the angle of 
arrival is given by (2.94) and (2.95) as 

ai ™ lUrrfn    3? > 13 dB (2.96) Km 

Several authors [1,4-6] have shown that yj is a notably biased estimate of DOA at 

moderate and low SNR. The bias is often reported in the literature [1, p. 305] as 

E\yi] -i) = {pj- - v) exp[-SR] (2.97) 

Seifer showed in [4,5] that (2.97) is an optimistic assessment of the bias when the mea- 

sured amplitude of the sum signal is subjected to a threshold test prior to monopulse 
processing. 

This completes of the background material on monopulse radar systems. Estima- 

tion of the target amplitude parameters and discrimination between various amplitude 
distributions are considered in the next chapter. 
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Chapter 3 

TARGET AMPLITUDE ESTIMATION 

AND DISCRIMINATION 

The DOA estimation developed in Chapter 5 depends on the amplitude distri- 

bution and its parameters. Thus, this chapter addresses the estimation of the target 

amplitude parameters, which define the SNR, and discrimination between various 

models for the amplitude fluctuations. The interest in target amplitude or RCS and 

the distribution of its fluctuations has been motivated by the need to develop Re- 

ceiver Operating Characteristic (ROC) curves for radar system design [14, p. 46]. 

In the design process, the amplitude distribution of the targets of interest and the 

corresponding ROC curves are used to design the radar system, which includes the 

power of the transmitter, waveforms, detection threshold, etc. The inflexibility of this 

hardware has limited the dynamic optimization of the system for each target and, 

thus, real-time or on-line estimation of the target amplitude parameters and discrim- 

ination between amplitude distributions have received little attention. However, with 

the advent of new hardware and digital signal processing, dynamic optimization of 

the system for each target is now feasible. 

The Probability Density Function (PDF) of the measured amplitude of the sum 

signal is presented for M unresolved Rician targets, which are each composed of 

a fixed-amplitude part and a Rayleigh part. The PDF and associated statistics of 

the measured amplitude are used to develop Cramer-Rao Lower Bounds (CRLBs), 

ML estimators and/or MM estimators for the amplitude parameters of Rayleigh, 

fixed-amplitude, and Rician targets as well as a new dominant-plus-Rayleigh model, 

which is proposed as an alternative to the Erlang distribution of Swerling 3 and 4 

targets. The waveform requirements for reliable discrimination between Rayleigh, 

fixed-amplitude, and dominant-plus-Rayleigh targets are considered. The PDF of 

the measured amplitude of two unresolved Rician targets is studied, and an MM 

estimator is developed for the amplitudes of two unresolved, fixed-amplitude targets. 
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The PDF and statistics of the measured amplitude of a fixed-amplitude target in the 

presence of multipath is also presented, and MM estimators of the target amplitude 

and relative phase of the target and the sea-surface echoes are developed. 

In a typical monopulse radar system, the outputs of the receivers are match 

filtered, and the in-phase and quadrature components of the sum signal for the merged 

measurements from M Rician targets can be expressed as 
M 

sI = z2 [ai cos & + ßi c°s <fi) + nSi (3.1) 
*=1 
M 

SQ = Y1 (a« sin & + Ä sin V«) + nSQ (3.2) 

where 

ai =  amplitude from the fixed-amplitude part of target i 

ßi =  amplitude from the Rayleigh part of target i 

4>i = phase of the fixed-amplitude part of target i 

<Pi = phase of the Rayleigh part of target i 

nSI~N(0,a2
s) 

nSQ~N(0,a2
s) 

with N(x,aj) denoting a Gaussian distribution with mean x and variance a2.. Also, 
with E[-] denoting expected value, 

E[nSinSQ\ = 0 (3.3) 

The phases y>,- are independent and uniformly distributed on (-7r,7rj. The Rayleigh 

parts of the target amplitudes are also independent, and the PDF of the Rayleigh 
part of target i is given by 

ßi 
f(ßi\ßio) = -55- exp 

2ß2 
.0 

ßi > 0 (3.4) 
ßto 

where ßi0 is the Rayleigh parameter of target i. Since ß are Rayleigh distributed, 

and the <p{ are uniformly distributed on (-T,X], S7 and sQ are jointly Gaussian, 

independent random variables when the a; and fc are given. 

Since si and SQ are jointly Gaussian, independent random variables given the a; 

and fa, the PDF of Sl and sQ is fully defined the means and variances. Let 

M 

E 
»=1 

5/ = E[Sl\<d,§) = YJcq cos (f>i (3.5) 

34 



NSWCDD/TR-97/167 

M 

sQ = E[sQ\e, $] = £ <*i sin & (3-6) 
i=l 

where 0 denotes the parameter set {ai,ßio,... iCtMißMQi^s) and $ denotes the 

parameter set {fa,..., <J>M} Also, let 

M 

ftl=VAR[*/|e,*]= VAR[sQ\e,$} = y£ßi + 4 (3-7) 

where VAR[-] denotes variance. With COV[-, •] denoting covariance, note that 

COV[sI,sQ\e,<!>} = 0 (3.8) 

Letting A and tj> denote the measured amplitude and phase of the sum signal 

gives 

5/ = A cos ip (3-9) 

SQ = A sin ij> (3.10) 

where — 7r < ip < TT. Writing the measured amplitude of the sum signal in the form 

of SNR gives 

where 9?0 is referred to as the observed SNR. From Section 2.4, the SNR of Rician 

target i is given as 

sfti = $Fi + $Ri (3.12) 

where 

(3.13) 

(3.14) 

The di.fi denotes the SNR associated with the fixed-amplitude part of target i, and 

dtjli denotes the SNR associated with the Rayleigh part of target i. Also, let 

M 

$F = J2®Fi (3-15) 
»'=1 
M 

»Ä = 5>Ä (3.16) 
t=l 
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The following theorem gives the PDF, mean, and variance of 3?0, when sj and 

SQ are Gaussian. The development of the PDF of the observed SNR dl0 utilizes the 

PDF of the measured amplitude A, which is derived by applying the transformation 

of random variables of (3.9) and (3.10) in the PDF of 57 and SQ, and integration of 
the results with respect to iß. 

Theorem 3.1    Let the in-phase and quadrature signals sj and SQ be Gaussian sig- 
nals with 

sI = E[sJ\Q,$} (3.17) 

SQ = E[sQ\Q,<f>) (3.I8) 

P11 = E[(SI - 5j)2|0, $] = E[(sQ - 6Q)2|0, $] (3.19) 

and E[{sj - SJ)(SQ - sQ)\Q] = 0, where 0 denotes the set of given parameters. Then 

the PDF of the measured amplitude of the signal is given by 

/(A|e,*) = Aio(Ayir^T) exp[_ J_(A2 + ,? + 4)]        (3.20) 

where I0(-) is the zero-order modified Bessel function of the first kind. The PDF of 
the observed SNR of the signal is given by 

'<«•'«••> = STM'-CB^VA + S) exp[-5^Ti(S°+^+^)] 
and 

(3.21) 

= ^j(ä/ + 4) + »Ä + l (3.22) 
's 

VAR[*Ro|0, ft] = Pn (-L(sj + 4) + ftl) 

= (*Ä + l)(p-(5? + 5j) + »Ä + l) (3.23) 

Proof:    See Theorem A.l of Appendix A. 

The results of Theorem 3.1 are utilized in this chapter to develop the CRLBs, ML, 

and MM estimators for the amplitude parameters of various amplitude distributions, 

and discrimination algorithms for various amplitude distributions. In Section 3.1, M 

unresolved Rayleigh targets are considered.  A fixed-amplitude target is considered 
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in Section 3.2, while the new dominant-plus-Rayleigh target is considered in Sec- 

tion 3.3. The waveform requirements for reliable discrimination between Rayleigh, 

fixed-amplitude, and dominant-plus-Rayleigh targets are considered in Section 3.4, 

and an example of discrimination is given in Section 3.5. A single Rician target is 

considered in Section 3.6, while the PDF of the measured amplitude of two unresolved 

Rician targets is studied in Section 3.7. An MM estimator for the amplitudes of two 

unresolved, fixed-amplitude targets is developed in Section 3.8, while the PDF and 

statistics of the measured amplitude of a fixed-amplitude target in the presence of 

multipath are presented in Section 3.9. 

3.1 Rayleigh Targets 

The in-phase and quadrature components of the sum signal for M unresolved 

Rayleigh targets is given by (3.1) and (3.2) with ai = 0 for all i. Then sj = 0, 

SQ = 0 and (3.20) indicates that the measured amplitude of M unresolved Rayleigh 

targets in the presence of Gaussian receiver noise is also Rayleigh distributed. Setting 

si = SQ = 0 in (3.21) gives the PDF of the observed SNR for M unresolved Rayleigh 

targets as 

l r %>_ 
0JÄ + iexpl    MR + 

where ®R denotes the parameter set {ßio,ß20,&s}- Setting si = SQ = 0 in (3.22) and 

(3.23) gives 

E[&0|$] = MR + 1 (3.25) 

VAR[$0\<f>] = [$lR + l}2 (3.26) 

Since the PDF of U0 for M unresolved Rayleigh targets is equivalent to the PDF 

of a single Rayleigh target, the parameter estimation for a single Rayleigh target 

is equivalent to that for M Rayleigh targets. Thus, for N independent samples or 

pulses, the ML estimate of UR is given by 

N 

$R = arg max TT f{$ok\®R) (3.27) 

where 9?0fc denotes the observed SNR for pulse k. Let 

ewiW = n /(«-I») - (S^-P [ - S <3-28) 
1=1 ' 
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Y» = lvE®ok 
Jk=l 

d 

where 
d 

d^R CNWR) 

d$tR 

NYN 

(»Ä + 1) 

■CN(*R) 
MR=$R 

0 

JV 
1 

N 

exp 
A^ 

»Ä + 1 

(3.29) 

(3.30) 

(3.31) 

Thus, the ML estimate of 9?ß is given by 

^ 1    J* 

»ä = VAT-1 = -i + 7^X)8fe«*»      ^^ (3-32) 
Jfe=l 

The estimator is unbiased since 

1   N 1    N 

E[MR\eR} = -! + _£ £[9?ofc|0Ä] = -1 + - Y,(®R + 1) = »n     (3.33) 
*=i i=i 

and the variance of the estimator is given by 

vARfeie*] = i - sft - 2E[^,|eÄ] + VLJlE[UoklQR]2 + ^_£;[(^)2|0ä] 
i 

iv" 

= -(»* +1)2 + ^V^Ä +1)2 + A^* +^ 
(»* +1)2 

N (3.34) 

Since the variance of the estimate in (3.34) is also the CRLB for any unbiased estimate 
of 5ßß, 3?ß is an unbiased, efficient estimator of ${R. 

Since Y)v is the test statistic for the detection of Rayleigh targets with multiple 

subpulses at distinct frequencies, the PDF of YN is useful in characterizing the perfor- 

mance of the detector and selection of the optimal number of subpulses or frequencies 

for detection. The PDF of YN is found by first computing the characteristic function 

[12, p. 115], which is given by 

*YNW = E[exp(juYN) 
N 

= E\H exJj^ok 
k=i 

(»Ä + ̂
ftf exp^^ + l)-!)^)^ 

N N 

(l-jU(®R + l) 
N (3.35) 
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Figure 3.1    PDFs of the ML Estimates of 3JÄ for N = 2, 4, and 6 

Then the PDF of YN is given by 

f(YN\QR) = f    $YNW exp( " JUYN) du> 
J—oo 

NN     r 
Ä + W-c (®R + 
NN 

■ N 

&R + 1 

-N 

Y, N-l 
N exp 

ju )        exp( - juYN)du 

YN>0 
NYN 

&Ä + 1 
(3.36) 

(N-l)\(9tR + l)N 

which is the Erlang density. The PDF of (3.36) can be shown to be equivalent to the 

PDF of NYN given in [15, p. 404]. 

Assigning 3?# = 0 for Yjy < 1.0 gives the PDF of 9Jß as 

N 
f^R\QR) = 8[^R}{l-T(N,w-—)) 

\N-1 

+ ——rrr-7^—. ,MU-   exp -N &R + 1 
$R>0  (3.37) 

(JV-1)!  (8Ä + 1)* 

where T(-, •) denotes the Incomplete Gamma function [13, p. 949], and <$[•] is the Dirac 

delta function. While assigning 3?# = 0 for Y/y < 1-0 gives an ML estimator of 9£R, 

no claims are made concerning the efficiency of $lR when YJV < 1.0. 

PDFs of ÜR are illustrated in Figure 3.1 for N = 2, 4, and 6 and UR = 13 dB. 

Note that the PDFs of Y/y and $lR given in (3.36) and (3.37) correspond to the case 
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Table 3.1    $tth for Various Values of Pfa and N 

Pulses Probability of False Alarm (Pfa) 

N 1(T3 10-4 10~5 10-6 io-7 
10-8 

1 6.91 9.21 11.5 13.8 16.1 18.4 
2 4.63 5.89 7.13 8.36 9.57 10.8 
3 3.75 4.65 5.53 6.38 7.23 8.07 
4 3.27 3.98 4.67 5.34 6.00 6.65 
5 2.96 3.56 4.13 4.69 5.24 5.77 
6 2.75 3.27 3.76 4.24 4.70 5.17 
7 2.58 3.05 3.48 3.90 4.32 4.72 
8 2.46 2.86 3.27 3.65 4.02 4.38 
9 2.36 2.74 3.10 3.45 3.78 4.10 
10 2.27 2.62 2.96 3.27 3.59 3.89 

in which no detection threshold test other than the constraint of 3?^ > 0 has been 

applied to Y^ (or 3?#), while the tracking requires a threshold test of Y^ in order 

to prevent the processing of false alarms. For 3£R = 13 dB, N = 4, and a detection 

threshold of &Ä near 6 dB (or 4.0), Figure 3.1 shows that the PDF of ÜR will be 

changed very little by considering the detection threshold test. Letting 9lth be the 

detection threshold value for Y^ gives the probability of a false alarm as 

7«      , 

and the probability of detection is given by 

f(x\eR,$R = 0) dx = T(N,NRth) 

NKth 
rOO 

Pd = /    f(x\QR) dx = T(N, 

Then, the PDF of Yjy 1S given by 

f{YN\&R,YN>*lth) = 

$R + 1 ) 

N N VN-1 

(N-iy.Pi&n + ijN exp 

Thus, the corresponding PDF of ÜR for Uth > 1.0 is given by 

NYN 

/(»Ä|eÄ,»Ä>»tfc+i) 
TN N-l 

(N-l)\Pd  (XR + 1)» 
exp -N 

(3.38) 

(3.39) 

(3.40) 

KtA > 1.0 

(3.41) 

For a radar dwell providing total SNR, 3?T = NfÜR, let Nopt denote the number 

of subpulses (i.e., frequencies) that maximizes the probability of detection, Pd. Thus, 

the optimization problem can be stated as follows. Given ÜRT and Pfa, find 

Nopt = arg max  T(N, ————) 
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where 9?^ is specified by 

Pfa = T(N1NUth) (3.43) 

Table 3.1 gives SR^ for various values of Pfa and N, while Table 3.2 gives Pd for 

Pfa = 10~3 and various values of Sftj1 and N. The Nopt are denoted in Table 3.2 as 

bold. For a Pfa = 10"3, Table 3.2 shows that for 9£T = 10, Nopt = 2; for 3Jr = 20, 

/Vopt = 4; and for 3£T = 30, Nopt = 7. Note that for Pfa = 10~3 and ÄÄ > 40, 

N0Jrf > 10. Tables 3.3 through 3.7 give Pd for Pfa = 10-4, 10-5, 10"6, 10-7, 10-8, 

and various values of Sßy and N. Thus, the results of Tables 3.2 through 3.7 show 

Nopt for N < 10 and ÄÄ < 50. Note that for Pfa < 10-4 and 9£r < 10, Nopt = 1. 

3.2 Fixed-Amplitude Target 

The in-phase and quadrature components of the sum signal for a fixed-amplitude 

target is given by (3.1) and (3.2), with ai — 0 for all« > 1 and /?,■ = 0 for all i. Then 

si = E[si\Qp, 4>\] = ct\ cos <f>\ (3.44) 

SQ = E[SQ\&F,<f>i] = «i sin 4>i (3.45) 

pn = VAR[S7|6f ,^] = VAR[5Q|0,^ .= a| (3.46) 

where Qp denotes the parameter set {ai,cs}- Using (3.44) through (3.46) for sj, SQ, 

and pn, and ßi = 0 for all i in (3.21) gives the PDF of the observed SNR for fixed- 

amplitude target as 

mo\QF) = h(W®o®Fi) exp{-(ft0 + RFi)},    3?o>0 (3.47) 

which agrees with that given in (2.26). Note that the PDF of the observed SNR is a 

Rician PDF, where the "Rayleigh part" as is known. Using (3.44) through (3.46) in 

(3.22) and (3.23) gives 

E[to0\eF]=*lFi + l (3.48) 

VAR[$0\6F] = 2&F1 + 1 (3.49) 

For a single, fixed-amplitude target, the CRLB [11, p. 66] of 3?j? for N independent 

observations of $t,0 is given by 
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Table 3.2    Pd for Rayleigh Targets and Pfa = 10"3 

Pulses Total SNR (&T) 

N 10 20 30 
1 
2 
3 
4 
5 

0.533 
0.543 
0.519 
0.487 
0.451 

0.719 
0.794 
0.817 
0.823 
0.821 

0.800 
0.885 
0.915 
0.930 
0.936 

6 
7 
8 
9 

10 

0.417 
0.385 
0.355 
0.327 
0.303 

0.815 
0.806 
0.794 
0.781 
0.768 

0.939 
0.941 
0.940 
0.938 
0.936 

Table 3.3    Pd for Rayleigh Targets and Pfa = 10 ,-4 

Pulses Total SNR (3M 

N 20 30 40 
1 
2 
3 
4 
5 

0.645 
0.710 
0.725 
0.724 
0.714 

0.743 
0.831 
0.864 
0.879 
0.885 

0.799 
0.891 
0.924 
0.941 
0.949 

6 
7 
8 
9 
10 

0.699 
0.681 
0.662 
0.641 
0.620 

0.887 
0.886 
0.882 
0.878 
0.872 

0.954 
0.957 
0.958 
0.958 
0.958 

Table 3.4    Pd for Rayleigh Targets and Pfa = 10 -5 

Pulses Total SNR (»T) 

N 20 30 40 
1 
2 
3 
4 
5 

0.578 
0.628 
0.632 
0.622 
0.603 

0.690 
0.776 
0.807 
0.820 
0.823 

0.775 
0.851 
0.889 
0.907 
0.916 

6 
7 
8 
9 

10 

0.579 
0.555 
0.528 
0.503 
0.474 

0.821 
0.816 
0.808 
0.800 
0.788 

0.922 
0.924 
0.924 
0.924 
0.921 
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Table 3.5    Pd for Rayleigh Targets and Pfa = 10-6 

Pulses Total SNR (KT) 

N 20 30 40 
1 
2 
3 
4 
5 

0.518 
0.551 
0.544 
0.524 
0.497 

0.640 
0.719 
0.746 
0.755 
0.754 

0.714 
0.810 
0.849 
0.867 
0.877 

6 
7 
8 
9 
10 

0.466 
0.437 
0.405 
0.376 
0.348 

0.746 
0.737 
0.723 
0.708 
0.692 

0.881 
0.882 
0.880 
0.877 
0.872 

Table 3.6    Pd for Rayleigh Targets and Pfa = 10" 

Pulses Total SNR (»T) 

N 20 30 40 50 
1 0.464 0.594 0.675 0.729 
2 0.481 0.664 0.768 0.832 
3 0.463 0.684 0.806 0.874 
4 0.434 0.687 0.823 0.895 
5 0.400 0.680 0.830 0.907 
6 0.367 0.668 0.833 0.914 
7 0.334 0.652 0.831 0.917 
8 0.303 0.633 0.827 0.919 
9 0.273 0.613 0.820 0.919 
10 0.247 0.592 0.813 0.918 

Table 3.7   Pd for Rayleigh Targets and Pfa = 10 -8 

Pulses Total SNR (&T) 

N 20 30 40 50 
1 
2 
3 
4 
5 

0.416 
0.417 
0.389 
0.354 
0.317 

0.552 
0.610 
0.622 
0.6187 
0.605 

0.638 
0.726 
0.760 
0.775 
0.780 

0.697 
0.798 
0.840 
0.862 
0.874 

6 
7 
8 
9 
10 

0.281 
0.249 
0.219 
0.194 
0.169 

0.587 
0.566 
0.543 
0.520 
0.494 

0.778 
0.774 
0.766 
0.757 
0.745 

0.880 
0.883 
0.883 
0.883 
0.879 
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Figure 3.2    Graphical Definition of the CRLB for $lF and Efficiency of the MM 

Estimate UF 

where 

9l(®Fl) = -Hfl + xll\0[2y/x3tFi) exp( - x - $lFl) dx 
T-l 

(3.51) 

and ii|0(-) is the first-order modified Bessel function I\(-) divided by IQ(-). Figure 3.2 

shows that g($tF{) varies from 1.3 at $F = 1 dB to 1.0 for large values of RF1. Thus, 

for $Fl > 10 dB, J{UF1) « 2N~1fHF1. 

Using (3.48) gives the MM estimator of $lF 1 as 

1   N 

fltF1 = YN-l = -l + -^29t0 (3.52) 

Then 3i.Fi is an unbiased estimator with variance given by 

VARpfol» Fl N N 92(®Fl) (3.53) 

where g2(^Fi) is shown in Figure 3.2. Comparing g2($Fi) with gi(fftpi) shows that 
the variance of &Fl approaches the CRLB for $lFl > 16 dB. 

The ML estimator is considered next for cases where the efficiency of the MM 
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estimator is unacceptable. The ML estimate of 3ftpi satisfies [11, p. 65] 

1   N    I  /  
M»JI) = -%FI + jf £ V «ot^i Ji|o(2'V fci«.t) = 0 (3.54) 

fc=i 

Then Oftjri can be found using Newton's method with the nth iteration given by 

»fe+1) = »W - A(|Si (3.55) 

where 

£ 
fc=i 

Ä'(ig) = -$W - Ä(»W) + _L £ ^(i _ /2|o (2(^^)4))      (3.56) 

(3.57) ^(n0)   - 
1      ^ 2 i 

The initial value 3ft_pj is obtained by using the approximation 

/i|o(z) = 1 " 2P        * > 1.0 (3.58) 

in (3.54) and the quadratic formula to solve approximately for y3ft.Fi. Also, note that 

the square-root function of the quadratic formula was approximated by the first two 

terms of the binomial series expansion in [13, No. 1.114]. 

Monte Carlo simulations with 20,000 experiments were conducted to study the 

performances of the ML estimator, äftfi, and the approximate ML estimator, 9rpj. In 

the simulation studies, values of 3f?^i from 1 dB to 20 dB and N = 2, 4, and 8 were 

considered. Figure 3.3 shows the sample average of the errors in both estimators, 

while Figure 3.4 shows the sample standard deviation of the errors normalized with 

the square root of the CRLB in (3.50). Figure 3.3 shows that the approximate ML 

estimator is notably more biased than of the ML estimator for 3ftpi < 7 dB. However, 

the sample standard deviation of the error of the approximate ML estimator is less 

than the CRLB for 3ftfi < 7 dB. Figures 3.3 and 3.4 indicate, as expected [11, p. 71], 

that the bias in the ML estimator decreases, and the sample variance of the errors of 

the ML estimator approach the CRLB as N increases. However, for many applications 

and 3ftf i > 10 dB, 9ft_p-[ provides an acceptable estimate. 
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3.3 Dominant-Plus-Rayleigh Target 

The RCS fluctuations of Swerling 3 and 4 targets are referred to as one-dominant- 

plus-Ray leigh model in [14, p. 407]. However, discrimination between a Swerling 2 

(i.e., Ray leigh ) target and a Swerling 4 target using Generalized Maximum Likelihood 

(GML) detection and 20 subpulses or frequencies is shown via simulation results in 

[16] to result in error rates of 15 to 20 percent. The stochastic distance between the 

two distributions for the observed SNR was considered to better understand the poor 

discrimination. The J-Divergence distance [22, p. 341] between the observed SNR for 

a Swerling 4 target and the observed SNR of a Rayleigh target is shown in Figure 3.5 

for various values of SNR. The J-Divergence distance between the Swerling 4 and 

Rayleigh targets appears rather small when compared to the J-Divergence distance 

between the observed SNRs of fixed-amplitude and Rayleigh targets. Furthermore, 

the J-Divergence distance between the Swerling 4 and Rayleigh targets decreases as 

the SNR increases. Thus, an alternative to the Erlang distribution of the Swerling 3 

and 4 models for RCS fluctuations is proposed in this section. 

The new dominant-plus-Rayleigh target is a Rician target with the fixed- 

amplitude part contributing 90 percent of the SNR, while the Rayleigh part con- 

tributes 10 percent of the SNR. The in-phase and quadrature components of the sum 

signal for the new dominant-plus-Rayleigh target is given by (3.1) and (3.2), with 

cti = 0 and ß{ = 0 for all i > 1 as 

3 , 1 
*I = ct\ cos fa + —r=ßi cos </?! + nsi (3.59) 

'10 V20 
3 1 

SQ = -/=«!sin h + "/ff^1 sin ^i + nsi (3,6°) 

where E[ßj\QD] = 2a\. Then 
3 

5/ = E[3l\®D, fa] = 7f77al C0S & (3-61) 
3 

SQ = E[sQ\eD, fa] = -/fzai sin & (3-62) 

pii = VAR^iiez), fa] = VAR[sQ\6D, fa] = ^a\ + <r| (3.63) 

where Qj) denotes the parameter set {01,0-5}. Using (3.61) through (3.63) for sj, SQ, 

and pii, and ß{ = 0 for alii > 1 in (3.21) gives the PDF of the observed SNR for the 

new dominant-plus-Rayleigh target as 

m°]QD) = frT+löH  Kn + 10  ) eXpl ~    SRn + 10   I'    *° - ° (3-64) 
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Figure 3.5 J-Divergence of the Observed SNR for Fixed-Amplitude, Swerling 3 or 

4, and New Dominant-Plus-Rayleigh Targets from the Observed SNR for a Rayleigh 
Target 

where $D is the SNR of the dominant-plus-Rayleigh target and given by 

»z> = 24 (3.65) 

Note that the PDF of the observed SNR is a Rician PDF, where a constraint has been 

imposed on the relationship between fixed-amplitude parameter and the Rayleigh pa- 

rameter. The J-Divergence distance between the observed SNR of the new dominant- 

plus-Rayleigh target and a Rayleigh target is shown in Figure 3.5 for various val- 

ues of SNR. At an SNR of 7 dB (i.e., 5), the J-Divergence distance between the 

dominant-plus-Rayleigh and Rayleigh targets is about one-half the distance between 

the fixed-amplitude and Rayleigh targets. Using (3.61) through (3.63) in (3.22) and 
(3.23) gives 

E[*l0\QD] = XD + l (3.66) 

VAR[9t0\QD] = (o.mD +1) [imD + l] (3.67) 

Using (3.66) gives the MM estimator of $RD as 

&D = YN-l = -l + ±'£3tok 
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Then 3?£> is an unbiased estimator with variance given by 

VAR[SD|SI)] = (0.1% + 1K1.9«D + 1) (3 6g) 

The CRLB for any unbiased estimator of 9?£> and the ML estimator of 3£D can 

be developed in a manner that is similar to that for the fixed-amplitude target in 

Section 3.2. However, due the complexity of the ML estimator and the CRLB, neither 

are developed here. 

3.4 Discrimination Between Fixed-Amplitude, Rayleigh, and Dominant- 

Plus-Rayleigh Targets 

Since the estimators of the amplitude parameters developed in this chapter and 

the DO A estimators developed in Chapter 5 are dependent on the amplitude distribu- 

tion, discrimination of targets according to the amplitude distributions is needed. Fur- 

thermore, the radar waveform for optimal detection and parameter estimation varies 

with the target amplitude distribution. For example, the optimal waveform for detec- 

tion of a fixed-amplitude target includes one frequency, while the optimal waveform for 

a Rayleigh target may include one or multiple frequencies as illustrated in Section 3.1. 

Thus, the waveform requirements for reliable discrimination between Rayleigh, fixed- 

amplitude, and dominant-plus-Rayleigh targets are considered in this section. 

Let the hypotheses for the discrimination be defined as 

HQ = Rayleigh target with SNR 9£RI 

H\ = fixed-amplitude target with SNR SRpi 

Hi — dominant-plus-Rayleigh target with SNR 3?£> 

Since discrimination or detection involves three hypotheses, two Likelihood Ratios 

(LRs) are required for ML discrimination [11, p. 46]. Furthermore, since the target 

amplitude parameters 3£RI, 9R.FI, 
and ^D are assumed unknown, two Generalized 

Likelihood Ratios (GLRs) are required for GML discrimination. For N subpulses, 

the two GLRs are given by 

Ti({»o*}£-i) = IT /(^'ffl,^1 = ~fl) (3.70) 

T2{{Kk}k=i) - 11 fW  ,„ » A—: (3-71) 
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Note that the conditioning on the measured amplitude of the signal associated with 

target detection has been omitted from (3.70) and (3.71). Thus, the presence of a 

target is assumed here. Also, note that the MM estimate of $lD is used for the ML 

estimate, because ftp is much simpler and closely approximates the ML estimate. 

Using (3.24), (3.32), and (3.47) in (3.70) and taking the natural logarithm gives 

__ N .  

Tim0k}Li) = N\n(YN) - N(YN + 1) - N9tF + £> h(2y/fftokäF)   (3.72) 
Jb=l 

where ÜF is given by (3.54) or (3.57). Using (3.24), (3.32), and (3.64) in (3.71), and 

taking the natural logarithm gives 

10     \      Ä„  ,„ N     n»r     &D 
T2({*tok}Li) = Mn(g -) + Nln(YN) - 9N^ 

\ Jrr n -t- 111'' Si? ^D + IO^ »z> + 10 

+ 1 1 

KR + 1       $D + 10 k=l 3?D + 10 

where ftp is given by (3.68). Then the GML decision rule is given by 

*({8o*}£=i) = { 
' HV,  r1({«ot}£=1)>o,   Ti({^}f=i)>r2({^}f=1) 
#2;   r2({^}f=1) > o,   T2({»oifc}£sl)>5Ti({»o*}ti)  ^3-74) 

k i/o;    otherwise 

Note that the prior probabilities for the three hypotheses have been assumed to be 

equal in the development of the decision rule. 

Monte Carlo simulations were conducted to study the probabilities of error in 

the discrimination for various values of N and SNR. Let the probabilities of error be 
defined as 

Pel- = P{H1\H0} Type I Errors (3.75) 

Pe2- = P{H0\H1} Type II Errors (3.76) 

Pel- = P{H2\H0} Type III Errors (3.77) 

Pel - = P{H0\H2} Type IV Errors (3.78) 

Pe5 z = P{H2\H1} Type V Errors (3.79) 

Pe6 '- = P{H1\H2} Type VI Errors (3.80) 

where P{Hi\Hj} denotes the probability of event Hi, given that event Hj is true. 

The results of the Monte Carlo simulations with 25,000 experiments are summarized 

in Figures 3.6 through 3.8. The solid lines of Figure 3.6 give the percents of Type I 
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Figure 3.6 Percents of Types I and III Errors for Rayleigh Target 

errors for N = 4, 8, and 12, while the dash lines give the percents of Type III errors. 

The solid lines of Figure 3.7 give the percents of Type II errors, while the dash lines 

give the percents of Type V errors. The solid lines of Figure 3.8 give the percents of 

Type IV errors, while the dash lines give the percents of Type VI errors. Figures 3.6 

and 3.7 show that discrimination between Rayleigh and fixed-amplitude targets can 

be achieved rather reliably with eight or more subpulses. Figures 3.6 and 3.7 show 

that discrimination between the Rayleigh and dominant-plus-Rayleigh targets can be 

achieved reasonably well with 12 or more subpulses, while Figures 3.7 and 3.8 show 

that discrimination between the fixed-amplitude and dominant-plus-Rayleigh targets 

is very poor, with 12 subpulses or less. Thus, from a discrimination point of view, 

the dominant-plus-Rayleigh target appears to be closer to the fixed-amplitude target 

than to the Rayleigh target. 

3.5 Discrimination Example: Detection of Range Gate Pull Off 

Range Gate Pull Off (RGPO) is a deceptive Electronic Countermeasure (ECM) 

that targets perform to cause the radar to break its track on the target. For a 

radar utilizing aperiodic revisit times and single-pulse dwells (i.e., no pulse Doppler), 
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Figure 3.9    Illustration of RGPO 

targets performing RGPO utilize Digital Radio Frequency Memory (DRFM) [23] to 

store the radar pulse and repeat the pulse at the radar with a controlled delay so 

that the radar receives signals from the actual target and a false target at a longer 

range as illustrated by the dash target in Figure 3.9. The time delay of the repeated 

pulse is often controlled so that the false target is separated from the true target 

with either linear or quadratic motion, and the repeated pulse is typically amplified 

to produce a false target with an SNR higher than the actual target measurement  If 

the tracking algorithm uses the false target measurement instead of the actual target 

measurement, the track on the target will most likely be lost by the radar [24]   If the 

false target measurement is not associated with an existing track nor recognized as a 

RGPO echo, a new track is initiated on the RGPO, and radar resources are expended 

tracking the false target. Simple detection of RGPO by testing for a second target at 

a longer range can be problematic. For example, the target echo may not be detected 

or the second echo could be a real target that is cooperating with the first target. 

P™ 6 T °f freqUenCy diV6rSity t0 disCriminate be^een actual target echoes and 
RGPO echoes is considered. For N radar subpulses at distinct frequencies, the ampli- 

tudes of the target echoes are modeled as Rayleigh distributed, while the amplitudes 

of he RGPO echoes are modeled as fixed, since the amplitudes of the repeated sub- 

pulses are expected to be fixed across the frequencies. A GLRT and variance test are 
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proposed for discriminating between echoes from Rayleigh targets and echoes from 

RGPO or a fixed-amplitude target. Results of Monte Carlo simulations are used to 

study the performances of the discrimination algorithms. 

For discriminating between echoes from Rayleigh targets and echoes from RGPO 

or fixed-amplitude targets, let H0 denote the hypothesis that a given set of subpulses 

originated with a Rayleigh target, and H, denote the hypothesis that a given set of 

subpulses originated from an RGPO or a fixed-amplitude target. The GML detection 

using the GLRT with N subpulses is given by 

T({^}fc=1)-n/(^|//o^Äi=^i} 
(3.81) 

Note that the conditioning on the measured amplitude of the signal associated with 

target detection has been omitted from (3.81). Thus, the presence of a target is 

assumed here. Using (3.24), (3.32), and (3.47) in (3.81); the first term of the series 

expansion of I0(-)\ and taking the natural logarithm gives 

T({«ot}JbLi) = HYN) ~ YN + 1 - $Ji + Jj I> Jo(2\A*oAi) 
fc=i 

« ln(YN) - l-H2v) + 1X) (2V ®oAl) -YN + l-$Fi 

^X>(2\/^M (3.82) 

where »n is given by (3.54) or (3.57). Then the GML decision rule is given by 

mokh=i)-{Hu   T({^}f=1)>Ai 

Comparing (3.26) with (3.49) suggests that the discrimination might be accom- 

plished more simply by a variance test, which is defined by 

N 
*({»oJb}£U) = 

Ho,   r({8„jb}£Li) > A2 

Hu   T({$ok}%=1) < A2 

(3.84) 

where 

N   ^_ 
r({9U}Li) 

l 

2&F1 + 1 
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where 3£pi is given by (3.54) or (3.57). 

The results of Monte Carlo simulations with 100,000 experiments are summa- 

rized in Figures 3.10 through 3.15, where the solid lines correspond to the GML 

discrimination of (3.83), and the dash lines correspond to the discrimination with the 

variance test of (3.84). Figures 3.10, 3.12, and 3.14 show the detection thresholds Ai 

and A2 versus the probability of false detection of RGPO or a fixed-amplitude target, 

PFDFA- Figures 3.11, 3.13, and 3.15 show the probability of detection of RGPO or a 

fixed-amplitude target PDFA versus PFDFA- Figures 3.11, 3.13, and 3.15 show that 

the more complex GML provides a PDF A that is approximately 0.1 to 0.2 greater 

than that of the variance test. Figure 3.11 shows that eight independent subpulses at 

7 dB are required to achieve reasonable discrimination, while Figures 3.13 and 3.15 

show that four subpulses at 10 or 13 dB provide rather reasonable discrimination. 

Using GML detection with four subpulses at SNRs greater than 10 dB provides 

reliable discrimination between echoes from Rayleigh targets and echoes from an 

RGPO or a fixed-amplitude target. For example, four subpulses at 10 dB provide a 

probability of correctly discriminating a target as a fixed-amplitude of PDFA — 0-58 

with a false alarm rate of PFDFA — 0-05, while four subpulses at 13 dB provides 
a PDFA 

= 0.82 with PFDFA = 0.05. If more reliable discrimination is needed or 

fewer frequencies are available for independent subpulses, the discrimination can be 

accomplished over multiple radar dwells by incorporating the target amplitude into 

the IMM algorithm [10, p. 209] as a feature by using (3.24) and (3.32) for a generalized 

likelihood for the Rayleigh target, and (3.47) and (3.57) for RGPO or fixed-amplitude 

target. 

3.6 Rician Target 

Considering target amplitude estimation for the Rician target, the in-phase and 

quadrature components of the sum signal for a Rician target is given by (3.1) and 

(3.2), with ai = 0 and ß = 0 for all t > 1. Then 

sj = E[si\Qm, <f>i] = ai cos </>! (3.86) 
5Q = E[sQ\eRi, <£i] = «i sin fa (3.87) 

Pn = VAR[s7|0j«, &] = VAR[SQ|0Än &] = ß2
10 + a\ (3.88) 

where 0^, denotes the parameter set {ati,ß\o,os}- Using (3.86) through (3.88) for 

55 



NSWCDD/TR-97/167 

10" 

o 
_i o 
I 
CO 
Ul 
cc 
I 
I- 

|io"1 

Ü 
UJ 

in 
Q 

10 

~" 7 T 

N=12 

N=4 

SOLID: GML DETECTION 

DASH: VARIANCE TEST 

10- 10"Z 10~1 

PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.10    Detection Thresholds for UR1 = fftFl = 7 dB 

10" 

in 
a 

=io.9 a. 

a 
m 
X0.8f 
u. 
LL 
O 

ü 
UJ 
H 
LU 
a 

o"0-6 

m 
<0.5 
O 
DC 

SOLID: GML DETECTION 

DASH: VARIANCE TEST 

0.4L 

10" 10"- 10" 
PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.11    ROC Curves for ftja = $F1 = 7 dB 

10" 

56 



NSWCDD/TR-97/167 

10" 

o 
X 
CO 
w 
X 

111 

tu 

10" 

| , , , , ,     ,    ,   ,   | , , . .    i,   .    ..   | . .—7-1 1 I    ■    i   1 

_-  ■"                              '                                   f 

,   -   '                                -  "                                            ' 
^  -   '                                       - "                                                    ' 

N=iz-"-               --"                     • '                       : 
•—"""""                        *"""~~"~~*'~~   ** ""'                                                         ^ 

^ ■— ~"                                                  .-* *^    ——^«^^                                      / 
'                                                                          ^   —*                                     ^^""^*—»«^^                              s 

"   ~~~~~~~^~—-**-** *"                                            ^""^"^"^     ' 
■       -•-               N^8^^                           >\N=4 

••*    ""   "~"^""——«^„^                                                                               ^**SV                                                             S                                             Xi 

"""                                 ^^*"^^-^                                                   ^^^--^                    S                                          \ 
^""""""*"---^                                                 \.     S                                                     X. 

N=12       ^\                    /N.                           \ 
^"X.                             *'*                           X.                                                                       \ 
^\         S                                X.                                                    \ >^                                                      \                                                                   \ 

S \                                                        \                                                                 \ 
S                   X                                                      \                                                               \ 

X                            \                                                     \                                                              \ 
•*                                          \                                                   \                                                            \ 

*                                                   X                                          \                                                  \ -                                                                 s                                                \                                  \                                        \ 
•                                               \                             \                                 \                                       ■ 

X"                                                           \                               \                                    1 
X                                                            \                            \                                1 

•*"                                                                               \                                 \                                       1 s                                                                                                             \                                         \                                               \ 
s                                                                                                         \                                    \                                          \ 

s                                                                                                      \                                 \ . 
s-                                                                                                             \                                 \ 

s                                                                                                \                           \ 
s                                                                                                      \                           I 

■**                                                                                                          I                           1 

SOLID: GML DETECTION                   \                \ 

DASH: VARIANCE TEST                      I                1 

 "             ■       ■     • ' ii 

10 10 10 
PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.12    Detection Thresholds for &Ä1 = ffcpi = 10 dB 

10" 

1  ■ , , , 1     1    1    .   | 1 r—T—■ j   . . , , j _ _ -  .       .     i    .   i  . 
_  •"       .                S-                                  s 

'      ^—      ^                  / 
^•^                                   S                ^                     S                                  , 

UJ y                                      ** /       '           /   ' Q yT                                           / s           '             /   ' 3 

^0.9 
                        •         / /              /     / 

_ 
Q. /                         /      / '            /     1 
5 /          N=12   /     / '         /    1 < /                         '      / '         /    1 /                              '        / 1                 1 a 
m 
XO.8 

/                        /     / 
/                      '    /              ' 

1         1 _ 
u. /                      '    /              1 

/           1 

u. /                   '    /             1 /          1 

O /                    '    /             1 /         1 
z /                 '   /           1 1          1 

g0.7 /                 '   /           1 1         1 
/          1 

- 
Ü /                   '    /            1 1               I 
UJ /                          1      / 
1- /                      /     /               ' /           1 
LU 1               1 1               j 
a 

■ / 
1          1 _ 

O '      /    N=8       / 1                     / 

t ''     / 
/N=4    ' 
/            / 

_i '       /                   '                    / / 
m '       /                    '                     / / 
go.5 i                               i                     / / " 
O /        /                    i                      1 / 
X 
a. 

//                    i 
i        /                     i p"ASH: VARIANCE TEST 

r\ A 

i        /                    i                       1 ÄOLID: GML DETECTION 
J ...,i i i , , ^_i 

10"° 10 10 
PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.13    ROC Curves for ftÄ1 = ftFl = 10 dB 

10" 

57 



NSWCDD/TR-97/167 

--—:——^L_^_ .   -   .  . ,                   ' ^ ""  i       > T— ■   /   ■  ■ ■ 

~                                         -*~ • / 
•  —                                                  ^ "*                           ~~—— 

"■—-^.       y i 

10° "        ~~—ZP~*-~^~~*~^_ i 

i . -"                                                         "--»^^ S                                          ^s. i 

^-^L     N=8                                       ^^ "CN=4                       \ <! N=2 
^—^                                                     y ><                       / 

\*.                                         S 

o ^N.                                          X \^                 / 
_i ^V             s \              / o A. \          / 
I •*        \ 
CO S                        \ \       / 
LU •                                     >i \    / 
cr \ / 
i •*                                                                    \ 
h- ^-                                                                             \ 
z /                                                                                               \ / \ 
O „„-1 s                                                                                    \ /   \ 
F10 /      \ 
ü s                                                                                                         \ /        1 
Hi s                                                                                                                \ /          1 
I- 
UJ 

.s                                                                                                        \ /            1 
Q 

SOLID: GML DETECTION 

DASH: VARIANCE TEST 

/              | 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

in"2  1 >—.—.—■ ■ ■ 11 . . A               1 ,       .... 
10"° 1CT 10"1 

PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.14    Detection Thresholds for &Ä1 = &F1 = 13 dB 

10U 

LU 
O 
z> 
D0.9 
0- 

SOLID: GML DETECTIOI 

DASH: VARIANCE TEST 

10"- 1<T 
PROBABILITY OF FALSE DETECTION OF FIXED-AMPLITUDE 

Figure 3.15    ROC Curves for 8fcÄ1 = &Fl = 13 dB 

10u 

58 



NSWCDD/TR-97/167 

57, SQ, and pii in (3.21) gives the PDF of the observed SNR for a Rican target as 

fMe*) = ^A*^i^£) 
x expf-ft   ^(fto + ftfi)}»    ®o>0 (3.89) 

which agrees with that given in (2.61).   Using (3.86) through (3.88) in (3.22) and 

(3.23) gives 

E[U0\QRi\ = $F1 + $R1 + l (3.90) 

VAR[U0\eRi\ = [fftR1 + l] [2^! + »Äi + l] (3.91) 

MM and ML estimators for the parameters of a Rician distribution were de- 

veloped in [25], where the development of the ML estimator involved the use of a 

nondimensional PDF in order to reduce the optimization to a scalar problem. The 

nondimensional PDF was created by normalizing the random variables by the sam- 

ple estimate of the second moment. The CRLB in [25] was also developed with the 

nondimensional PDF. However, in this section, the parameters of interest, $lpi and 

9£RI, differ from the parameters in a standard Rician distribution. Setting (3.90) and 

(3.91) equal to their corresponding sample moments gives the MM estimators for 3£j?i 

and §?ßi as 

27V -1. 
N-l 

»a = YN - 1 - \/^r-.rY* - VN (3.92) 

2JV-1 
®Fi = \Hr~-rYN~vN (3.93) N-l 

where 
1       N 

^ = Änr£^ (3-94) 

Monte Carlo simulations with 20,000 experiments were conducted to study the 

performances of the MM estimators of (3.92) and (3.93). The simulations are given 

in Figures 3.16 through 3.19 versus the SNR of the target for N = 12. In Figures 3.16 

and 3.17, 3£pj = 3i.Ri and N = 12 and 24. Figures 3.18 and 3.19 show the simulation 

results for &F1 = 2$F2 and TV = 12 and 24. Figures 3.16 and 3.18 show that the 

MM estimators are essentially unbiased for N > 12. Figures 3.16 and 3.17 show, for 

a target with 3?#i = äftfi, that the estimation error in 3J#i is slightly less than the 

error in fäpi. Figures 3.18 and 3.19 show that the estimation errors in 9?#i and $1? 1 
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are reduced when the percentage of the SNR that results from the Rayleigh part is 

reduced. 

3.7 Two Rician Targets 

The in-phase and quadrature components of the sum signal for two unresolved 

Rician targets are given by (3.1) and (3.2), with a; = 0 and ß = 0 for all i > 2. Then 

5/ = E[si\Q2m, fa, <f>2] = ai cos</>i + a2 cos</>2       (3.95) 

SQ = E[sQ\Q2Ri, <f>i, fa] = «i sin^i + a2 smcj)2       (3.96) 

VAR[S/|02A, fa, fa] = VAR[sQ\Q2Ri, fa, fa] = ß2
10 -f $0 + a\ (3.97) 

where Q2Ri denotes the parameter set {ai,a2,ßi0,ß20,(7s}. Then 

e2 -L- e2 ~2 2 

—:r~ - ^2" + ^T + 2Trx cos m - n) 2<ri 2cr|     2o-| 2<r 

where 

= »f 1 + Sfo + 2v^fiKi?2 cos A<£ 

= $lF(l + sin2C cosA(^) 

A<f> = fa- fa 

(=  tan"1 (^2^) 

3?f = 3?fi + 3?j?2 

(3.98) 

(3.99) 

(3.100) 

(3.101) 

Using (3.97) and (3.98) in (3.21) gives the PDF of the observed SNR for two Rician 

targets with fixed relative phase A(f> as 

1 /2V^1F 
m0\eRi,Afa = är+TJ°(a + I" 

v/1 + sin2C cosA<^) 
x  exp< — 

8?0 + »f (1 + sin2( cosA^) 
},    3f?0 > 0    (3.102) 

where RR = »Ä1 + 5RÄ2. Then for a fixed A<j>, the PDF of the observed SNR of two 

Rician targets is equivalent to the PDF of a single Rician target. Using (3.97) and 

(3.98) in (3.22) and (3.23) gives 

E[&0\e2Ri, A<f>] = &F(1 + sin 2C cosA^) + $R + 1 

^[^O|02ä-,A^] = 2[ftf(l + sin 2( cosA<^) + UR + 1 

2 

T2 

(3.103) 

(3.104) -   3Jp(l + sin 2C cosA^) 

VAR[sfto|02Ai, A<£] = [gJÄ + l] [23^(1 + sin 2( cosA<£) + fftR + 1     (3.105) 
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When the relative phase of two Rician targets A(j) is constant, only the composite 

quantities of 3^(1 + sin 2( cosA<^) and $.R can be estimated, and the estimation 

problem is equivalent to that of a single Rician target as treated in Section 3.6. If A<f> 

is uniformly distributed between pulses, the PDF of the observed SNR of two Ricians 

is not available in a simple form for an arbitrary ©2Ri- K A(f> is treated as a random 

variable uniformly distributed on (—7r,7r], then the PDF of 3?0 is given by 

/(*oie2Ä) = ^nexpj - -w-^) [Hi^rr Msz+r H-w+r) 
„V,   lV»r   /2v^85T\r   /2yqSgm     /^sin2CNl + 2^(-l)   /m^-?-Trjjm^-?-n-J/m^15-n-j   (3.106) 

m=l 

where 9?0 > 0, and /m(-) denotes the ra-order modified Bessel function of the first 

kind. This PDF of 3ft0 is the result of using [13, 8.531.1] to express the Bessel function 

of (3.102) as an infinite series of Bessel functions and evaluating the integral of each 

term with respect to A(f>. 

Simplification of the PDF in (3.106) was considered, but none could be found at 

this time. However, the moments of 9ft0 can be obtained by taking the expected value 

of (3.103) and (3.104) with respect to A<f>, which gives 

E[$0\Q2Ri} = $F + $lR + l (3.107) 

E[$2o\®2Ri) = 8$(l + 0.5 sin22c) + 2(»Ä + l)(2»f + 8Ä + 1) (3.108) 

= &F + 2ftfi»f2 + 2(»Ä + l)(2Kf + $R + 1) 

VAR[&o\e2Ri] = \&F sin22C + («R + l) [SKj- + K* + l] (3.109) 

= 2»f-1»f.2 + (»Ä + l) [2»f + »A + 1 

Since -E[3?0|Ö2Äi] ls independent of the ( (i.e., the ratio of the values associated 

with the fixed-amplitude parts of the two targets), and the variance given in (3.109) 

is maximized when, fäpi = 3^2 (J-e-> C = 1); the probability of detection for the 

signal echoed from the two targets for a given false-alarm rate will be minimized 

when 3?FI = K.F2- This assertion agrees with the conclusions drawn in [17]. However, 

Figure 2 of [17] is in error in that the PDF for r = oo has a singularity that does not 

allow the integral of the PDF to equal one. Thus, for various values of Sftp, £, and 

9Jß, (3.102) was integrated numerically with respect to A(f> form — -K to 7r to produce 

/(&o|©2£i)- Tnese PDFs of ^o are shown in Figures 3.20 and 3.21. Figure 3.20 
corresponds to two fixed-amplitude targets (i.e., 9£R = 0), with Up = 16 dB, and 

^Fi^F2 = 1'4' 16, and oo. For the case of ^F-I^F2 
= ■*■' ^e PDF achieves a maximum 
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of 0.1 at 9£0 = 0. Thus, Figure 3.20 indicates that for two fixed-amplitude targets with 

equal amplitudes, the most likely value of 5J0 is 0. Figure 3.21 corresponds to two 

Rician targets with $tF + RR = 16 dB, 5RÄ = O.WF, and Ufl^ = 1,4,16, and 

oo. Figure 3.21 shows that the presence of the Rayleigh component of the target 

amplitude results in unimodal PDFs, while the PDFs of Figure 3.20 are bimodal. 

However, when the fixed-amplitude parts of the two targets are equal, Figure 3.21 

also indicates that the most likely value of 3?0 is 0. 

The PDFs presented in Figure 3.20 disagree with those presented in Figures 2 and 

3 of [17] in that the maximum of PDFs in [17] occur at K0 > UF, while in Figure 3.20 

the maximums occur at K0 < jRj. The PDFs in Figure 3.20 were confirmed via Monte 

Carlo simulations. The observed SNRs were generated using (3.1) and (3.2), and the 

histograms of the observed SNRs closely agreed with the PDFs of Figure 3.20. 

3.8 Two Fixed-Amplitude Targets 

The in-phase and quadrature components of the sum signal for two unresolved 

fixed-amplitude targets is given by (3.1) and (3.2), with a; = 0 for i > 2, and /?; = 0 
for i > 0. Then 

S[ = E[si\®F,<f>i,<f>2) = aj cos^+o^ cos<£2        (3.110) 

SQ = E[SQ\QF,<f>i,<j>2] = ax smfa + a2 sin^2        (3.111) 

VAR[57|0f ,^^2] = VAR[aQ|0f ,^2] = a\ (3.112) 

where QF denotes the parameter set {ai,a2,as}- Then 

2a2     = &F(1 + sin2C cosAcf>) (3.113) 

where 

A<f> = fa - <f>2 (3.114) 

C=  tan"1 (y/stF2#j\) (3.115) 

$F = $F1+$F2 (3.116) 

Using (3.112) and (3.113) in (3.21) gives the PDF of the observed SNR for two 

fixed-amplitude targets with fixed relative phase A</> as 

f(®o\eF, Acf>) = I0(2y/VtotoF(l + sin 2( cosA<^)) 

x expj - ($0 + $F(1 + sin 2( cosA<£)) },    3£0 > 0    (3.117) 
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Thus, if the relative phase A<f> between the two targets is fixed, 3?0 is distributed the 

same as a single fixed-amplitude target that is treated in Section 3.2. Using (3.112) 

and (3.113) in (3.22) and (3.23) gives 

E[&0\GF,A<f>] = »f(l + sin 2( cosA(£) + 1 

E[U2
0\eF,A(f>] = 2fef (1 + sin2C cosA<£) + 1 

VAR[&0\eF,A<l>] = [2£F(1 + sin 2( cosA<£) + 1 

(3.118) 
-,2 

»j-(l + sin2CcosA^)   (3.119) 

(3.120) 

If the relative phase is random, the measured amplitude is not Rician. If A<f> is 

treated as a random variable uniformly distributed on (—7r,7r], then 

E[&0\QF] = ?ftF + l 

ftjYl + 0.5 sin22() + 2(29?F + 1) 

3^ + 2^1^2 + 2(2^ + 1) 

E[$2
0\Q F = 

VAR[$t0\QF] = -$2
F sin22C +   2RF + 1 

2$Z.pi$t,F2 + 23^ + 1 

(3.121) 

(3.122) 

(3.123) 

When the relative phase A(f> of two fixed-amplitude targets is constant, only the 

composite quantity of UF(\ + sin 2( cosA^) can be estimated, and the estimation 

problem is equivalent to that of a single fixed-amplitude target, as treated in Sec- 

tion 3.2. However, if the relative phase is random, MM techniques can be used to 

develop estimators of ^tFX and UF2 from (3.121) and (3.123). Setting (3.121) and 

(3.123) equal to their corresponding sample moments gives the MM estimators for 

3?fi and 3?F2 as 

1 
2{ 

5N-1 
®Fi = -7i(YN -l) + ^l-^-^Y* + -YN - j-VN 

3 
4 

1 5JV-1 ^ = 5mv-D v —M + 5y"" vN 

where 

Jt=l 

(3.124) 

(3.125) 

(3.126) 

Note these MM estimators have been developed by assigning 3ftFl to the stronger 

target and 3£p2 to the weaker target. 
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Monte Carlo simulations with 10,000 experiments were conducted to study the 

performances of the MM estimators of (3.124) and (3.125). The simulation results 

are given in Figures 3.22 through 3.25 versus the SNR of target 1 for TV = 12 and 24. 

In Figures 3.22 and 3.23, $FI = fRj2, and N = 12 and 24. The large biases in the 

estimates, as shown by Figure 3.22, are the result of assigning the larger estimate to 

9£pI and the smaller estimate to $i.F2- Figure 3.23 shows that the standard deviations 

of the estimates are rather large compared to the size of the parameters. Figures 3.24 

and 3.25 show the simulation results for fäpi = 5ftp2 
and $Fi = ^F2 with N = 12. 

Figures 3.24 and 3.25 show that the biases in the estimates and the sample standard 

deviations of the estimation errors are reduced significantly when the SNR of one of 

the two targets is larger than that of other target. The reduction in the biases of the 

estimates can be attributed to the better assignment of estimates to targets that is 

implicit in (3.124) and (3.125). However, the reductions in the estimation error are 

consistent with the PDFs of the observed SNRs for two, fixed-amplitude targets, as 

shown in Figure 3.20. 

3.9 Fixed-Amplitude Target in the Presence of Multipath 

The signal received from a low elevation target in the presence of sea-surface- 

induced multipath includes four components [20, 21]. The first part travels directly 

to the target and returns directly to the radar, while the second part travels to the 

target via the sea surface and returns directly to the radar. The third part travels 

directly to the target and returns to the radar via the sea surface, while the fourth 

part travels to the target via the sea surface and returns to the radar via the sea 

surface. The in-phase and quadrature components of the sum signals for a fixed- 

amplitude target in the presence of sea-surface-induced multipath are given by (3.1) 

and (3.2), with 

ai - at (3.127) 

«2 = gps<*t (3.128) 

<*3 = 9Ps<*t (3.129) 

«4 = (gps)2at (3.130) 

fa = <t>t (3-131) 

fa = fo = <f>t + A<!> (3.132) 

<j>4 = <f>t + 2A<f> (3.133) 

ft = 0 (3.134) 

67 



NSWCDD/TR-97/167 

15 20 25 30 35 40 45 
SIGNAL-TO-NOISE RATIO (SNR) OF TARGET 1 

Figure 3.22    Sample Average of the Errors in the MM Estimates of $lF1 and $Z.F2 

for &F1 = $F2 

30 

en 
cc 
§ 25 
DC 

SOLID: N= 12 

DASH: N = 24 

TARGET 2 

0l 

10 15 20 25 30 35 40 
SIGNAL-TO-NOISE RATIO (SNR) OF TARGET 1 

45 50 

Figure 3.23    Sample Standard Deviation of the Errors in the MM Estimates of fftFl 

and 3tF2 for UFi = 3?^2 

68 



NSWCDD/TR-97/167 

15 

10 

0Z 

cc o 
cc 
cc 
HI 
UJ 

DC 
LU 

LU 

Q- 

CO 

-10 

-15 

 r 

SOLID 

i 

TARGET 1 

—i  i                    i                    i ■ 

- 
DASH: 

N= 12 

TARGET 2 - 

- 

RF1 = RF2 

RF1 = 2 RF2 

- 

- 

""---. 
" - ~ - 

" "~ - 

i 

-"--.. RF1 = RF2 

i i 1— 

- 

10 15 20 25 30 35 40 45 
SIGNAL-TO-NOISE RATIO (SNR) FOR TARGET 1 

50 

Figure 3.24   Sample Average of the Errors in the MM Estimates of SJiVi an(i ^F2 

for N = 12 

30 

CO 
CC OK 

cc 
cc 
LU 
LL. 

2 20 
o 

§15 
Q 
DC < 

10- 
co 

s§ 5 

SOLID. 

i 

TARGET 1 

i  1 1                    i           i 

- DASH: TARGET 2 ^s^ 

N= 12 

- RF1 = RF2 

^^--^RF1 = 2 RF2 

- 

_ ^ ^ — ~~ 

^. 
RF1 =BE2~ ' _ -- - ~ ~ ~ 

^ 
«- — *■"      ___ ^ 

- - " RF1 = 2 RF2 - 

' — 
• i ■ i                    i                    i i 

10 15 20 25 30 35 40 45 
SIGNAL-TO-NOISE RATIO (SNR) FOR TARGET 1 

50 

Figure 3.25    Sample Standard Deviation of the Errors in the MM Estimates of 9?j?\ 

and ftj?2 for N = 12 

69 



NSWCDD/TR-97/167 

fa = ßi = gPdcet (3.135) 

ßi = {gPdfott (3.136) 

V2 = ^3 = fa + fa + A<j) (3.137) 

>p4 = fa + 2fa + 2A(j> (3.138) 

where at is the voltage amplitude of the target, and the remaining variables are 

defined in Section 2.6. The in-phase and quadrature portions of the sum signals can 

be rewritten as 

si = one cos(f>t - ats sm<f>t + aic cos(<f>t + Afa - ajs sm((f>t + Afa 

2atgPd cos(fa + fa + Afa + at(gpd)2 cos(<f>t + 2fa + 2Afa + nSi     (3.139) 
SQ = <*tc s'm<f>t + octs cos<fo + ajc sin(<fo + Afa + a/5 cos(<^ + Afa 

+ 2atgpd sm(<f>t + fa + A<f>) + at(gpd)2 sm((f>t + 2fa + 2A<f>) + nSQ (3.140) 

where 

atc = at(l + gps cosA<^) (3.141) 

&ts = Oitgps sinA(/> (3.142) 

a/c = cttgpsO- + 9PS cosA</>) = gps<*tc (3.143) 

a/5 = ut{gps)2 sinA(j) = gpsats (3.144) 

Let QMP denote the parameter set {at,ps,Pdo,crs,^d}, and §MP denote the 
parameter set {fa, A<f>}. Then 

h = one cosfa - ats sm<t>t + aic cos(& + A^) - aIS sin(<^ + Afa      (3.145) 

SQ = <*tc sinfa + ats coscf>t + aIC sin(& + A^) + aIS cos(<^ + Afa      (3.146) 

and 

pn = 4a?p20flr2[l + ^0fir2] + <r| (3.147) 

While pd is Rayleigh distributed, ^d is uniformly distributed on (-7r,7r], and the 

receiver errors are Gaussian, the sum signal of (3.145) and (3.146) is not a Gaussian 

signal because p2
d is exponentially distributed rather than Rayleigh. However, since 

typically pd < 0.5 and g < 1, the effects of (pdg)2 should be small compared to that 

of pdg. Thus, the sum signal will be approximated as Gaussian for the development 

of the PDFs of the measured amplitude of the sum signal and the observed SNR. 
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Approximating the sum signal of (3.139) and (3.140) as Gaussian and using 

(3.145) through (3.147) in (3.20) of Theorem 3.1 gives the PDF of the measured 

amplitude of the sum signal for low-elevation targets as 

f(A\eMp,$Mp) = —Io(—(l + 2Psg cosA<t>+ p2
sg

2)) 
Pi i     v Pi i / 

1 
Pn    \pn 

x exp 
2pi: 

-(A" + ai(l + 2psg cosA<£ + p'sg*y)    (3.148) 

where pn is given by (3.150). Using (3.145) through (3.147) in (3.21) of Theorem 3.1 

gives the PDF of the observed SNR for low-elevation targets as 

'2V5P?F(1 + 2Psg cosA<£ + p2
sg

2)\ 4 

x exp 

%P2
dü9

2[l + P%92]®F + l        J 

U0 + toF(l + 2pSg cosA<£ + p2
sg

2p 

Wll + Pio92WF + l 

where 

$tF = 
2a2 

(3.149) 

(3.150) 

Using (3.145) through (3.148) in (3.22) and (3.23) gives 

E[$o\®MP,§MP] = [(1 + 2psg cosA^ + p2
sg

2)2 + Sp2
d0g

2(l + p2
d0g

2)]UF + 1 

(3.151) 

VAR[^|0Mp, $Mp] = [8^0/(l + p2
d0g

2)KF + l" 

x [[2(1 + 2Psg cosAcj> + p\g2)2 + 8p%g2(l + p2
d0g

2)WF + I 

(3.152) 

Given g, p$, and pdo, MM estimators of 9£p and cosA^ can be developed. Setting 

(3.151) and (3.152) equal to the corresponding sample moments gives MM estimates 

of UF and  cosA</!> as 

21V-1 
$F = 

1 

16*02(l + A*a)     8^2(1 +^2) V N-lY»     VN 

2N-1. 

„2 „2 
1 + P's9z  ,     1 c= (- 

IYN-1 
Spi09

2(l+P2
do9

2) 2  „2> 
2ps9     ' 2psg'\]    $F 

where Vjy is given by (3.126), and c denotes the MM estimate of cosA</>. 

(3.153) 

(3.154) 

Monte Carlo simulations with 10,000 experiments were conducted to study the 

performances of the MM estimators of (3.153) and (3.154). The results of the simula- 

tions are given in Figures 3.26 through 3.29 versus the SNR of the target for N = 20 
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and 40, and p2
sg

2 = 0.7. Figure 3.26 shows the sample averages of the errors in Upi 

for pdog =0.1 and 0.01, while Figure 3.28 shows the sample standard deviations 

of the errors. Figure 3.26 shows that the average errors in $t.pi are more sensitive 

to the change in the diffuse parameter than the change in the number of samples, 

while Figure 3.28 shows that the sample deviations of the errors are more sensitive 

to the change in the number of samples than the change in the diffuse parameter. 

Figure 3.27 shows the sample averages of the errors in c, while Figure 3.29 shows 

the sample standard deviations of the errors. Figures 3.27 and 3.29 show that the 

performance of c is rather sensitive to the parameters of the diffuse refection, Pj0g
2. 

If the diffuse reflections are sufficiently weak (e.g., p\Qg
2 < 0.05) relative to the spec- 

ular reflections, c will not give acceptable estimates of cosA^. Additional simulation 

studies also showed that c gives unacceptable estimates of cosA^i» if the specular re- 

flections are rather weak (e.g., p2
sg

2 < 0.6). Therefore, since the MM estimators of 

(3.153) and (3.154) were found to require about 40 pulses (i.e., independent samples) 

to achieve acceptable performances for a very restricted set of reflection parameters, 

the MM estimators are not recommended for the simultaneous estimation of the 9ftpi 

and cosA(j> in real-time tracking applications. However, ML estimators may provide 

better estimates of the parameters. 
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Chapter 4 

PROBABILITY DISTRIBUTION OF 

COMPLEX MONOPULSE RATIO 

The probability distribution of the in-phase part (i.e., real part)of the complex 

monopulse ratio has been studied rather extensively since 1960, while the probabil- 

ity distribution of the quadrature part (i.e., imaginary part) of the monopulse ratio 

has been considered in only a couple of studies. However, as noted by Sherman in 

[1,4] and discussed in Chapter 1, the quadrature part of the monopulse ratio includes 

additional information when the measurements include unresolved targets. The prob- 

ability distribution of the in-phase and quadrature parts of the monopulse ratio for 

M unresolved Rician targets is considered in this chapter. The PDF of the complex 

monopulse ratio is conditioned on the measured amplitude of the sum signal, and 

the conditional PDF is used to develop the first- and second-order statistics of the 

in-phase and quadrature monopulse ratios. Since the measured amplitude of the sum 

signal provides no information concerning the DOA of a target of unknown amplitude, 

the PDF of the monopulse ratios can be conditioned on the measured amplitude of 

the sum signal without any loss of information concerning the target DOA. However, 

conditioning the PDF on the measured amplitude gives the in-phase and quadrature 

monopulse ratios as Gaussian or approximately Gaussian random variables with first- 

and second-order statistics that are a function of the measured amplitude. Thus, the 

statistics of the monopulse ratios can be computed for each pulse. 

After a survey of the literature concerned with probability distribution of the 

monopulse ratios, monopulse measurements of M unresolved Rician targets will be 

formulated, and the amplitude-conditioned PDF and statistics of the monopulse ratios 

will be presented in Theorem 4.1. In the remainder of this chapter, Theorem 4.1 

will be used to develop the amplitude-conditioned PDF and statistics of the various 

special cases. In Section 4.1, a single Rayleigh target is considered for a monopulse 

system with real correlation in the receiver errors on the sum and difference channels. 

The case of two unresolved Rayleigh targets is considered in Section 4.2, while a 
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single fixed-amplitude target is considered in Section 4.3. Unresolved measurements 

of a fixed-amplitude target and Rayleigh target are considered in Section 4.4, and 

a single Rician target is considered in Section 4.5. Two unresolved targets with 

fixed-amplitudes are considered in Section 4.6, while a fixed-amplitude target in the 

presence of sea-surface-induced multipath is considered in Section 4.7. 

Survey of the Literature 

One of the first articles that considered the probability distribution of monopulse 

measurements was conducted in 1960 by Manasse [26]. Manasse considered the effects 

of thermal noise on the accuracy of an ACM system tracking a radio star with a priori 

known power, where the star is maintained near the antenna boresight. However, the 

results of Manasse are not applicable in typical radar tracking problems because 

the amplitude of the target is unknown. In 1962, Sharenson [27] considered the 

accuracy of an off-axis, single-return measurement for a monopulse radar. In his 

investigations, the monopulse system used the sum signal as a reference to detect 

the phase (i.e., positive or negative) and estimate the corresponding amplitude of 

the difference signal, and the monopulse ratio was written as the ratio of two real 

Gaussian variables. Sharenson linearized the ratio about the sum-signal amplitude 

and indicated, under the assumption of SNR exceeding 12 dB, that the variance of 

the monopulse ratio of the two real numbers is inversely proposal to the SNR and 

increases as the off-axis angle increases. The results derived by Sharenson for the 

variance of this monopulse ratio of two real numbers are often reported in textbooks 

and courses for the variance of the in-phase part of the monopulse ratio. His results are 

particularly important in electronically steered radars that both search for new targets 

and maintain tracks on multiple targets because targets are detected at various off- 

axis angles. However, the variance of the monopulse ratio as developed by Sharenson 

is only approximately correct at high SNRs, and he concluded that the monopulse 

ratio is an unbiased estimate of the target DOA, which is known from later work to 

be inaccurate. 

From 1977 through 1981, Kanter [28-32] developed the PDF and statistics of the 

in-phase monopulse ratio for various cases of unresolved targets. In [28], he derived 

the PDF of the monopulse ratio formed with N independent samples of the sum 

and difference signals, where each sample received a weight proportional to the sum- 

signal amplitude squared. Kanter's formulation included any combination of fixed- 

amplitude and Rayleigh targets. Since the PDF that Kanter developed represented an 

"average" distribution of the monopulse ratio over all possible sum-signal amplitudes, 
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he found the monopulse ratio to be a biased observation of the DO A for a fixed- 

amplitude target as given by (2.51) and to have an infinite variance when only a 

single observation is considered. Kanter showed in [29] for N independent samples 

of the monopulse ratio for Rayleigh targets that the central moments less than or 

equal to 2./V — 1 are finite. Thus, a monopulse ratio formed with two independent 

samples has a finite variance. Kanter also showed in [29] for Rayleigh targets that 

the bias in the monopulse ratio as an observation of the target DOA is independent 

of the number of samples N. In [30], Kanter derived the mean and first absolute 

central moment of the monopulse ratio without explicitly deriving the PDF of the 

monopulse ratio. He also showed that the single-pulse monopulse ratio has a finite 

variance if and only if the correlation coefficient of the sum and difference channels 

is ±1. In [31], Kanter derived the PDF of the in-phase monopulse ratio for a fixed- 

amplitude target in the presence of a jammer (i.e., a Rayleigh target) and numerically 

calculated the mean of the monopulse ratio for various signal-to-jamming ratios. In 

[32], Kanter developed the average monopulse response to two jammers or Rayleigh 

targets, two fixed-amplitude targets, and a fixed-amplitude target in the presence of 

a jammer. While Kanter has made numerous contributions to our understanding of 

the probability distribution of the in-phase monopulse ratio, his contributions were to 

"average" distribution of the monopulse ratio over all possible measured amplitudes 

of the sum signal. Thus, his results are applicable only to cases where the statistics 

of measured amplitude of the sum signal is ignored. 

In 1981, Asseo [33] developed the PDF of the quadrature part of the monopulse 

ratio for one and two targets with either fixed or Rayleigh amplitudes. However, 

the PDFs that Asseo developed also represented the "average" distribution of the 

quadrature part of the monopulse ratio over all possible measured amplitudes of the 

sum signal. In 1991, Tullsson [34] considered the PDF for monopulse measurements 

of multiple unresolved Rayleigh targets and showed that conditioning the PDF on the 

measured amplitude of the sum signal gives the in-phase and quadrature monopulse 

ratios as Gaussian random variables, with the quadrature part having a mean of 

zero. Tullsson stated correctly without proof that the in-phase and quadrature parts 

of the monopulse ratio are independent. Tullsson also considered in [34] the effects 

of applying a threshold test to the sum-signal amplitude prior to computing the 

monopulse ratio. He showed for Rayleigh targets that the mean of the monopulse 

ratio is unaffected by thresholding, while the variance is inversely proportional to the 

SNR threshold. 

In [35], Seifer noted the fact that every monopulse measurement that is considered 
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for processing has a sum-signal amplitude that exceeds a positive threshold. He 

showed that the variance of a monopulse ratio formed with a single pulse of the sum 

and difference signals is then finite when the thresholding of the amplitude of the sum 

signal is considered. Seifer also showed that amplitude thresholding of the sum signal 

increases the bias in the monopulse observations of the target DOA. Thus, the bias in 

the monopulse ratio as developed by Kanter and given by (2.51) is significantly less 

than the bias that will be seen in a system with a reasonable amplitude threshold. In 

[36] Seifer extended the results of [35] to targets that are offset from the null of the 

monopulse ratio. The focus of [35,36] is the average distribution of the monopulse 

ratio given that the measured amplitude of the sum signal exceeds a threshold. While 

Seifer's results are appropriate for the analysis and design of servo systems with filter 

designs based on stationary statistics, further analysis is needed to support filtering 

for nonstationary processes and decisions for control of modern sensor systems. 

Groves, Blair, and Chow [37] developed the joint PDF of the in-phase and quadra- 

ture parts of the monopulse ratio for arbitrarily-correlated Gaussian errors and non- 

zero means in the sum and difference signals. The general result was used to consider 

the effects of amplitude thresholding of the sum signal for the special case of real 

correlation between the receiver errors in the sum and difference channels. However, 

the general result for the PDF represented the "average" distribution of the complex 

monopulse ratio over all possible measured amplitudes of the sum signal. In contrast 

to this average distribution, this chapter presents the amplitude-conditioned PDF 

and statistics for the in-phase and quadrature parts of the monopulse ratio. 

Formulation of the Problem and General Result 

In a typical monopulse radar system, the outputs of the receivers are match 

filtered, and the in-phase and quadrature portions of the sum and difference signals 

for the merged measurements from M Rician targets can be expressed as 

M 

si = ^2 (a* cos fa + ßi cos V») + nSI (4.1) 
i=l 
M 

SQ = J2 \ai sin fa + ß* sin V«) + nSQ (4-2) 
i=l 
M 

dI = Y2 \a^i cos fa + ßiVi cos ¥>i) + ndl (4.3) 
i=\ 
M 

dQ = Yl \aiT,i sin fa + ßw sin V») + ndQ (4-4) 
i=i 
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amplitude from the fixed-amplitude part of target i 

ßi = amplitude from the Rayleigh part of target i 

4>i =  phase of the fixed-amplitude part of target i 

<Pi =  phase of the Rayleigh part of target i 

t]i = DOA parameter of target i 

nsi~N{0,(T2
s) 

ndI~N(0,aj) 

ndQ ~ N(0,4) 

with N(x,a2) denoting a Gaussian distribution with mean x and variance a2. Also, 

with E[-] denoting expected value, 

E[nsinSQ\ = 0 (4.5) 

E[ndIndQ] = 0 (4.6) 

E[nSindI] = pasod (4.7) 

E[nSQndQ] = pasad (4.8) 

where p ^ 0 represents a monopulse system with real correlation between the re- 

ceiver errors in sum and difference channels. The phases, <£>;, are independent and 

uniformly distributed on (—TT, TT]. The Rayleigh parts of the target amplitudes are 

also independent. 

Since ßi are Rayleigh distributed, and the (pi are uniformly distributed on (—ir, 7r], 

SJ, SQ, dj, and dg are jointly Gaussian, independent random variables when the aj 

and (f>i are given. Let 

M 

3j = E[sj|*,$] = ^a,-cos& (4.9) 
i=l 

M 

SQ = E[sQ\q, $] = ]T ai sin 4>i (4-10) 
*=i 
M 

d7 = E[d/|«, *] = Y^ aiVi cos fa (4.11) 

M 

dQ = E[dQ\$!,<!>] = YJ<XiVis™<t>l (4-12) 
t=i 
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where $ is the parameter set {ai,ß10, J/i,..., ajjf, ßjao, »?M, 0\S5 ^}, $ is the param- 

eter set {<^1?..., (j>M}, and /%0 denotes the Rayleigh parameter of target i. Let 

M 
fti = VAR[s7|*,*] = VABfaQ|¥,*] = £/& + *! (4.13) 

8=1 

P22 = VAR[d,|¥, *] = VARfal«, $] = £ rf/3?0 + a2, (4.14) 

M 

Pia = COVfod/l*,*] = COV[sQ,dQ\V,$] = YJVißl + P*SVd       (4.15) 
t=i 

where VAR[-] denotes variance, and COV[-, •] denotes covariance. Note that 

COV[sj, 5Q|«, $] = COV[d7, rf0|*, $] = 0 (4.16) 

and 

COV[shdQ\V,$] = COV[d7,sQ|$,$] = 0 (4.17) 

Denoting s = sj + jsq and d = dj + JG?Q, the in-phase and quadrature parts of 

the monopulse ratio are given by 

= Ref i.) = d>" + °fQ 
" = HP =  4+4 <4-18> 
«=**$=%%* <"») 

The joint PDF of ?/7 and J/Q is obtained by applying the one-to-one transforma- 

tion of random variables defined by (3.9), (3.10), (4.18), and (4.19) into the PDF 

f(sI,sQ,dl,dQ\ty,$), integrating the result with respect to iß, and conditioning the 

density on A, the measured amplitude of the sum signal. The following theorem gives 

the result in a general form. 

Theorem 4.1    Let the in-phase and quadrature parts of the sum and difference 

signals be Gaussian signals with 

sI = E[aI\V,$] (4.20) 

*Q = E[SQ\V,$] (4.21) 

d7 = £[d7|tf,$] (4.22) 

dQ = E[dQ\V,$} (4.23) 

Pu = E[(SI - 5/)2|tf, *] = E[(sQ - sQ)2\q, $] (4.24) 

p22 = £[(d7 - 37)
2|#,$] = E[(dQ - dQ)2\y,$] (4.25) 

P12 = E[(3I - <i7)(d7 - 3/)|tf, $] = E[(sQ - sQ)(dQ - 3Q)|tf, $] (4.26) 
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and E[(si - *I)(SQ - 5g)|tf,$] = E[{dj - dj){dq - dg)|*,$] = 0, where # and $ 

denote the sets of given parameters. Then the PDF of t/j and yq conditioned on the 

measured amplitude of the sum signal, A, is given by 

A2pn 
/(y7,yQ|A,*,$) = 

27r(piiP22 -p\2)h{—yJs) + s2
Q^ 

x J, 
Apn 

0 \ 2 
PllP22 - Pi2 

V^i + A2 + A3 + A4) 

x exp 

x exp 

Pll \(j        -  Pl2\2   ,   /S _    Pl2\2l 
~Tr 2~T [dl-sI—)   +{dQ-SQ — 

2(pnP22 ~P12)LV P"'       V Pii^ J. 

A2pii 

2(pilP22-Pi2) 

IY    
pi2\21 2 

where 

A2 = 

P22     P12 

P11     P11 

,   J>12n A2   ,   Pl2   2I/-2   ,  -2\ 

(4.27) 

(4.28) 

(4.29) 

(P22       Pl2   ,   Pl2n x\/ Pl2\       Pl2   2]f-j    ,   -    J   \ fAQtW 
( 2" + —0--yi))[yi ) VQ [sidi + SQdQ) (4.30 
\Pii       Di,       P11 /\ 011/      Pn   ^J V v  ^/ ^Pll    Pll    Pll 

P22 P12/!     , N     ,    Pl2 
 ri1 + VQ) + —VQ 

•■Pll       P11 V        Pll 
^S/C/Q - SQ^/J (4.31) 

The first- and second-order moments of yj and yq are given by 

A 

"5/5/ + 5Q5Q       p12 

A^H     Pi 
i2-   /? + 5 Q 

COV[y/,yQ|A,*,$]: 

S/JQ - sqdi 

A ̂  + 5; Q 

(4.32) 

(4.33) 

VAR[j//|A,tf,$] 

didQ(s2j - s2
Q) - sIsQ{d] -d2

Q)       Pl2 _ 

 A2(s} + sQ) A^[SI^ ~ SC*dl\ 

XJi|o(^V/5?+ii) (4-34) 

P11P22 - P12 

A2Pn 

, [sidi + sQdQ - Pl2Pn (sj + s2
Q)}2 ^ ( A    /_2    _2 \ 

+ Ä^ifTiJ) 1|0W vs^+ SQJ 
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+ (di 
-  Pl2\2   , 

PnJ 
h      - Pn 

Pn' 

Pn 

VAR[yQ|A,*,$] P11P22 

(^ 

Vs A3j5? + «2 
Q 

+ s (4.35) 

(5/"5/sr)a+(a<?-5«S7) 

A2(; 

+ Pll 

V J A3, /ä? + 5 
Q 

where 

A*|o(*) = l--A|o(a)-fl|o(«) 

(4.36) 

(4.37) 

(4.38) 

and Ii(-) is the first-order modified Bessel function of the first kind. 

Proof:    See Theorem A.2 of Appendix A. 

In the remainder of this chapter, the results of Theorem 4.1 will be used to develop 

the amplitude-conditioned PDF and statistics of the various special cases. First, a 

single Rayleigh target is considered for a monopulse system with real correlation in 

the receiver errors on the sum and difference channels. 

4.1 Rayleigh Target and Real-Correlated Receiver Errors 

The in-phase and quadrature components of the sum and difference signals for a 

Rayleigh target and real-correlated receiver errors are given by (4.1) through (4.4), 

with a; = 0 for all i, and ß{ = 0 for all t > 1. Then 5/ = SQ = ~dj = dq = 0, and 
(4.13) through (4.15) gives 

P11 = VAR[s/|tfÄ] = VAR[sQ|tf Ä] = ß\Q + 4 (4.39) 

P22 = VAR[d7|ttÄ] = VAR[dQ\VR] = rftßlt + a\ (4.40) 

Pn = COV[5/,dj|*Ä] = COV[sQ,dQ\yR] = mß2
10 (4.41) 

where $Ä is the parameter set {ßw,Vl^S^d}- Using these results in (4.27) through 

(4.31) gives the PDF of the in-phase and quadrature parts of the monopulse ratio for 
a Rayleigh target as 

f(yi,yg\K^R) 
A2Pn 

exp 
A2 

P11 

2T(PHP22 -P12) 

= /(V/|8O,*A)/(W?I*O,*ä) 
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where 

-l 

/(wM^(WÄ,_|_) ,,43) 

f(yQ\Xo,yR) = N(0,^-) (4.44) 

4V1 - x^Ti)+ i£ + i J       (4-45) 
'S 

with 9£ßi given by (3.14), and N(x,a2) denoting the Gaussian distribution with 

mean x and variance a2. Thus, yj and ?/Q are conditionally Gaussian, independent 

random variables. Note that (4.43) shows that even for p = 0, yj is a notably biased 

observation3 of the DO A 77 for values of fäjn less than about 13 dB. While the results 

of (4.43) through (4.45) can be shown to be equivalent to that developed by Tullsson 

in [34], Tullsson did not explicitly show the independence of yj and yq given by (4.42). 

For N independent samples or pulses, the ML estimate of yj, which is the mean 

of yj given A, is given by 

N _j   N 1       N 

W = [ E %*>]     E SlokVlk = jjy- E StokVlk (4.46) 
i=i jfc=i N *=i 

where di.0k and yjk denote the observed SNR and in-phase monopulse ratio for pulse 

k and 
1   N 

y" = ivE^ (4-47) 
Thus, the estimate yj is a "power" or "energy" weighted sum of the N monopulse 

ratios [28]. Since the j//^ are Gaussian random variables, yj is the minimum variance 

estimate of yj and a Gaussian random variable with variance given by 

it=i 

However, note that yj being the minimum variance estimate of yj does not imply 

that yi is the minimum variance estimate of r\. 

4.2 Two Rayleigh Targets 

The in-phase and quadrature components of the sum and difference signals for 

two unresolved Rayleigh targets and independent receiver errors are given by (4.1) 

through (4.4), with a; = 0 for all«, ßi = 0 for all i > 2, and p — 0. The p = 0 is made 

3 
Notably biased estimate is used here to denote a biased estimate with bias greater than 5% of the true value. 
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to simplify the following analysis. Then sj = SQ = di = 2Q = 0, and (4.13) through 

(4.15) gives 

Pii = VAR[S/|*2jR] = VAR[5c?|tf2Ä] = ßl + ßlü + al (4.49) 

p22 = VAR[d,|<P2Ä] = VAR[dQ|tf 2Ä] = nfflo + rißiv + a\ (4.50) 

Pi2= COV[57,d7|$2/l]= COV[5Q,dQ|*2Ä] = 7?liÖ1
2
0 + 7/2^0 (4.51) 

where #2Ä is the parameter set {ßio,m,ß20,'>)2,<7s,(7d}- Using these results in (4.27) 

through (4.31) gives the PDF of the in-phase and quadrature parts of the monopulse 

ratio for two unresolved Rayleigh targets as 

f{Vh yq\ A, *2ä) = 
A

2
PII 

27r(piip22-Pi2) 
exp A2pn 

2(pii7J22-Pi2) 

( Pl2\2   ,     2 

/(y/l»o,*2Ä)/(yQl»o,*2Ä) 

where 

/(wl»o,*2Ä)=tf( 

/(!/QI»O,*2ä) = JV(0,«T?) 

»Ä1 + ^i?2 + 1 : "? 

^r2   - 

25R0 

L<T2c ^Ä1+^Ä2 + 1 

%)S 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

(4.56) 

with Sftja and 3£Ä2 given by (3.14). Note that (4.53) through (4.56) can be shown 

to agree with the results of Tullsson in [34]. Thus, yj and yq are conditionally 

Gaussian, independent random variables. The variance expression of (4.55) also shows 

that the DOA estimation for two unresolved targets is not directly improved by 

increasing the expected value of $t0 through the transmitted energy because increasing 

the transmitted energy also increases URI and $IR2, The larger errors in the monopulse 

measurements occur when the two target echoes interfere to produce a value for 3£0 

that is small relative to $RI$R2($IRI + $R2 + l)"1. These larger errors also occur 

when tracking a single, extended target, and the errors are referred to as glint [38]. 

For N independent samples or pulses, the ML estimate of j/j, which is the mean 

of yi given A, is given by (4.46). Since the yIk are Gaussian random variables, yj is 

the minimum variance estimate of yj and a Gaussian random variable with variance 
given by 

AT 

k=\ 

-i 

2NY, N 
(4.57) 
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However, note that yj being the minimum variance estimate of yj does not imply 

that yj is the minimum variance estimate of either r/i or ??2- 

4.3 Fixed-Amplitude Target 

The in-phase and quadrature components of the sum and difference signals for 

a fixed-amplitude target and independent receiver errors are given by (4.1) through 

(4.4), with a,- = 0 for all i > 1, ßi = 0 for all i > 0, and p = 0. Then 

si = E[SI\$F,$F] = <*i cos (j>i (4.58) 

SQ = E[SQ\$F, $F] = «l sin <h (4-59) 

5/ = E[di\VF> ®F] = <*im cos fa (4.60) 

SQ = E[dq\^F,^F] = airji sin ^ (4-61) 

and (4.13) through (4.15) gives 

Pii = VARla/l^,^] = VAR[S<?|* *■,$*■] = 4 (4.62) 

p22 = VARid^p, $F] = VARIJQI^, $F] = o\ (4.63) 

Pl2 = COV[s,,<M^,<M = COV[sQ,dQ\*F,<l>F] = 0 (4.64) 

where $F is the parameter set {ai,r}i,asia'd}i and $F is the parameter set {<^i}. 

Using these results in (4.28) through (4.31) gives 

M = 4«? (4-65) 
A2 = [y2i+y2

Q)aWi (4-66) 
2 

A3 = 2y^a\m (4.67) 

A4 = 0 (4.68) 

Using (4.58) through (4.68) in (4.27) gives the PDF of the in-phase and quadrature 

parts of the monopulse ratio for a fixed-amplitude target as 

A2 T (h.a\T}i 

's ' 

f(yi,yQ\^F) = ^— h(^?ry/(vi + -K V)2 + vh) 

x  exp 
A2    r „2 „2 

2*3 »f+*+T (4.69) 

Using (4.32) and (4.33) gives the first-order moments or expected values of yj and 

yq as 

^[»/|A,^] = ^/i|o(^)i7i (4.70) 

£%Q|A,^] = 0 (4.71) 
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Using (4.34) through (4.35) gives the second central moments of yj and yq as 

VAR[y7|A,^] = ^ + ^ 1     T2  (^ A. 
OJIA 

r   faiA 
(4.72) 

VAR[yq\A,^F] 
Td   ,  «1^5 ,    faiA\  2 
- + -TT-/I|O(-^-> (4.73) 

(4.74) 

A2  '    A3 

COV[yi,yQ\A,mF} = 0 

While yj and J/Q are not independent, (4.74) indicates the random variables are 

conditionally uncorrelated. Thus, any statistical processing of yi and yg that is 

based on the first two moments can be accomplished independently. 

The third and fourth central moments of yj and yq were derived using (A.99) 

and (A.100) of Appendix A. The third central moments of yj and yq are equal to the 

third marginal cumulants [12, p. 158] A30 and A03 as defined (A.88) in Appendix A. 

Thus, the third central moments are then given by 

^30 = A30 

(axA\      3cr2 

T
S 

off 

A3 
A 
«lA ^-^Mt)-^m)-Mt) S r2   falA" 

<*W    ,«iA 

.2 
s 

(4.75) 

while the third central moment of yq was found to be zero or /x03 = A03 = 0. The 

function £f1(25RJp1) is shown for various ^.pi in Figure 4.1, where UFl is given by (3.13). 

Note that while the plot of gi(2$lF1) in Figure 4.1 corresponds to K0 = $lFl, the 

effects of $R0 being larger or smaller than dtF 1 can also be assessed by considering the 

function in the neighborhood of dlF1. Since gi(-) is positive, the PDF of yj is skewed 

toward zero, while the PDF of yq is symmetric about its mean of zero. Figure 4.1 

also indicates the skewness of the PDF of yj decreases as the SNR increases. 

The forth marginal cumulants of yj and yq are given by 

3at       2al / .      3cr| \ _    /aiA- 
MO 

4   4 a\r] 

+ (s 

-2 + 

114 
a2A2 

+ 

4 4 

-^-g2{aiAas ) 

afA2   '  a\k 
a\A 

J s 
2 

T2   falA\ 

«1 A^V 6'i4|o 
«iA 

(4.76) 
4^,4 

^04 1 
3af?7 

4 4 
—^4-^3(aiA(75 ) 

24 
OJIA 

/Ö1A 
7i|o(  

*iA\ 

a2J 
T2    (alA\ 

(4.77) 
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where the scaling functions <72(23?FI) and <73(23JFI) are shown in Figure 4.1. The 

scaling functions suggest that PDFs of yj and yq approach a Gaussian PDF as the 

SNR increases. The fourth central moments of yj and yq are then given by 

^40 = A40 + 3A|o (4.78) 

M04 = A04 + 3AÜ2 (4.79) 

The kurtosis [39] will be used as a "measure" of the closeness of a PDF to a 

corresponding Gaussian PDF. The kurtosis for yi is given by 

K = ^_3==^> (480) 

^20 ^20 

The kurtosis for yq is given similarly. Since the fourth cumulant for a Gaussian 

random variable is zero, K = 0 for a Gaussian random variable. Figure 4.2 gives the 

maximum acceptable DOA versus SNR for a Gaussian approximation, with \K\ < 

0.03 and \K\ < 0.003 as criteria for approximation. The solid lines correspond to yj, 

while the dash lines correspond to yq. Since the kurtosis of yj is positive by (4.76) 

and (4.80), the PDF of yj is more peaked near the mean than the Gaussian PDF, 

while the PDF of yq is more flat near the mean than the Gaussian PDF, since the 

kurtosis is negative by (4.77) and (4.80). Also note that cr^ = 0-5 in Figure 4.2, 

and the SNR actually corresponds to v^Fl^ö- Thus, the appropriateness of using 

a Gaussian PDF for yj and yq depends on the SNR and the observed SNR. For 

example, if y/Wp\W^ > 13 dB, a Gaussian PDF for yj satisfies the 0.003 criterion 

for J7/| < 1.0. Figure 4.2 also indicates that, for a given $i.F 1 and »7, a Gaussian PDF 

provides a better approximation to the peak of the PDF of yj than for the PDF of 

VQ- 

4.4 Fixed-Amplitude Target and Rayleigh Target 

The in-phase and quadrature components of the sum and difference signals for 

unresolved measurements of a fixed-amplitude target and a Rayleigh target and in- 

dependent receiver errors are given by (4.1) through (4.4), with aj = 0 for all i > 1, 

ßi = 0 for all i / 2, and p = 0. Then 

sj = Eisern, $F] = «i cos fa (4.81) 

sQ = E[SQ\VFR,$F] = «i sin fa (4.82) 

di = E[di\^!pji, $f] = a\r)i cos fa (4.83) 

dQ = E[dq\q>FR, $F] = <*!»/! sin fa (4.84) 
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and (4.13) through (4.15) gives 

pii = WAR[SI\^FR, $F] = VAR[sQ\VF R, $F] = /9|0 + 4 (4,85) 

P22 = VAR[d/|tfFÄ, $f ] = VAR[d0|*f ü, $f ] = T/2
2
/52

2
O + ^ (4.86) 

Pia = COV[5/, d/I^Ä, $f ] =  COV[sQ, <*Q|*™, $f ] = T/2^0        (4.87) 

where-\I/J\R is the parameter set {cni,'Oi,ß2o,o'Si<rd}i and $.F *s the parameter set 

{<^i}. Using these results in (4.28) through (4.31) gives 

-<( + mßfa, + mß: 
ßh + 4   (ßio + 4?   ßio + 4 U{1~yi))' + n\ß\ 2«2

4o 

($0 + 4)2 VQ 

mßl A    ^22!"/       Wo V 1 
VQ 

(4.88) 

(4.89) 

A* = 2aH(whi + mßi^s   ,   ^ß 
/%> + 4 ' (ßio + 4f   ßio + 4 +fe<1->)(- 

mßh \ 
ßl + ap 

nlß2 

ßio + v. 
20   2 

2-2/Q 

AA = 0 

(4.90) 

(4.91) 

Using (4.81) through (4.91) in (4.27) gives the PDF of the in-phase and quadrature 

parts of the monopulse ratio for unresolved measurements of a fixed-amplitude target 

and a Rayleigh as 

/(y/,yolA,*FÄ) = 
AV*2 

2*(1 + \<T%        ßl0 + 
hal_\ T ( Aai A 
+ al) °\ßl + ol) 

ßiort 

x  exp 

Ac*! 

/?20 + "S" 

^Mo + 4) 

-h 

z(4Wo + 4) + nißl*4) 
mßl* ^2 

4(ßio + 4) + nMo4 

A2 ßto + 4 
, / 2     mP2Q_\   ,  * (4.92) 

where 

C = 
0J + tfßWs mß mß: 

A2o + 4    (ßh + 4)2    $0 + 4 

+    7?1 

.jmhof-,       ^ .     ( V2P20   \ 

VQ 
ßh + 4- 

Using (4.32) and (4.33) gives the first-order moments of yj and yq as 

E[yi\A,yFR} ßh 
ßlo + 4 A 

m + — h\o[ 
QiA    \ / #2 

^22o + 4^7/1     ^0 + ^5 

'20 
2-^2 

E[yQ\A,$FR}=0 

(4.93) 

(4.94) 

(4.95) 
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Using (4.34) through (4.35) gives the second central moments of yj and yq as 

VAR[y7|A,*fÄl = 
Uc 

AH4 + ß: 20 

$0 + 4 
2    /     ttlA 

J1|0U2    ,2 VP20 + <75 

+ A2 

) 
#>o + 4 

aiA 

ß: 20 
i2 

020 + ^5 
2"7?2 

ajA 
'llo Uo + 4 (4.96) 

VAR[yQ|A,^Ä]=:-|-f+-2 
A     L(7c Po, 

# 20 

20 + aS 
2    ,   _2 

+ <*mo + *s) 
A3 j/i- 

/* 20 

COV[y/,yQ|A,tfFÄ] = 0 
ßio + ^s 

m h\a 
G^A 

<T\) 
(4.97) 

(4.98) 

While yj and ?/Q are not independent, (4.98) indicates the random variables are 

conditionally uncorrelated. Thus, any statistical processing of yj and yq that is 

based on the first two moments can be accomplished independently. 

4.5 Rician Target 

The in-phase and quadrature components of the sum and difference signals for a 

Rician target and independent receiver errors are given by (4.1) through (4.4), with 

on = 0 for all i > 1, ßi = 0 for all i > 1, and p = 0. Then 

si = E[si\mRi, $Ri] = ai cos fa 

SQ = E[sQ\yRi, $Ri] = <*! sin fa 

dj = E[dj\^Ri, $Ri] = atf! cos fa 

dQ = E[dQ\yRi,§Ri] = a^! sin fa 

and (4.13) through (4.15) gives 

Pll = VAR[a7|ttÄ, $Ä(-] = VAR[SQ|*Äi, $ÄI-] = ^ + «,2 

p22 = VAR[d/|*Ä, SÄ] = VAR[dQ\VRi, *Ä] = r,2Ä2
o + ^2 

P12= COV[57,dj|$ÄI-,*ÄI-]=  COV[sQ,dg|*Äi,$Äi]=^/92
0 

(4.99) 

(4.100) 

(4.101) 

(4.102) 

(4.103) 

(4.104) 

(4.105) 

where ^Ri is the parameter set {ai,rn, ßlo,^S,^d}, and $Ri is the parameter set 
{^i}. Using these results in (4.28) through (4.31) gives 

M =a\ 

A2 = a2
lVj 

*2 ,2 «4 

tfo + 4 + («o + 4)2 + K^l(1 ~ Vl))   + W^WVQ\ (4-106) 

VI 
mß2 

10 

ßlo + 4 +4] (4.107) 
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A3=2aMGra+ vlßWs   ,   viß2 

fto+oi ' (ßio + 4)2     ß2io + «2s &<i-">)(* ■ 
r?i/?i2o 

ßIo + 4 
rÜß2 

ß2io + *S 

10 -vl (4.108) 

and A4 = 0. Using (4.99) through (4.108) in (4.27) gives the PDF of the in-phase and 

quadrature parts of the monopulse ratio for a Rician target as 

/(<//, </Q| A, #Äi) = AV 
2jd + ^2 V f AQ

I  ^" ^J(«o + 4) + f/iAVi 
W2      /?2

0 + <T|/ °\ßlo + (r2
s' 

^(ßlo + 4) x  exp 

+ 

vM 
2(*Mo + 4) + rtßlA)L^2 Wo + 4)2 

where 

C 
&A + 

L/32o + 4   Wo + 4)3 

ßlo + 4 

ßlo + 

+ y2Q (4.109) 

Viß 

+ »71 
>7i# 10 

ßl* + 4 
S/Q (4.110) 

Using (4.32) and (4.33) gives the first-order moments of yj and yq as 

E[yi\A,VRi\ = 

E[yQ\A,<aRi\=0 

ßw       .        Qio-g      T    /    QiA    N 

#0 + 4     A(Ao + 4) 1|0^i2o + 4' 
fi (4.111) 

(4.112) 

Using (4.34) through (4.35) gives the second central moments of yj and yq as 

VAR[y/|A,*Ä] 
A2 

2 rJ2 a2 
PlO 

<72  + 
#0+*S 

X 

2+4 
c*iA 

10 

+ 
2   2   4 

A2(/52
0 + 4)2 

#0 + 4 QiA 1     r2 (    QiA    A     fro + ^s 7    f_^_^ 

ß? 
QlA 

(4.113) 

2~4 -    QlA 
VAHW*,^ -m+Ä]+sS&^(a^f) («"> 

COV[j/7,j/Q|A,*Äi] = 0 (4.115) 

While yj and J/Q are not independent, (4.115) indicates the random variables are 

conditionally uncorrelated. Thus, any statistical processing of yj and yq that is 

based on the first two moments can be accomplished independently. 

91 



NSWCDD/TR-97/167 

4.6 Two Fixed-Amplitude Targets 

The in-phase and quadrature components of the sum and difference signals for 

two unresolved fixed-amplitude targets and independent receiver errors are given by 

(4.1) through (4.4), with a,- = 0 for all i > 2, /?,- = 0 for all i > 0, and p = 0. Then 

si = E[sj\li$2F^ $2F] = <*i cos <f>i -f a2 sin (j>2 

SQ = E[SQ\$2F, ®2F] = oil sin fa + a2 sin <j>2 

di = E[di\y2F, $2F] = oi*7i cos <I>1 + OL2r]2 sin (j>2 

dq = E[dq\^2F, $2F] = ai»?i sin 4>\ + a2r}2 sin <f>2 

(4.116) 

(4.117) 

(4.118) 

(4.119) 

and (4.13) through (4.15) gives 

Pn = VAR[s7|*2f, $2F] = VAR[sQ|$2f, ®2F] = <r2s (4.120) 

P22 = VAR[d7|$2F, $2F] = VAR[dQ\V2F, $2JF ] = ^ (4.121) 

p12= COV[sj,dj|tt2J,*2f] = COV[5Q,JQ|$2f,$2i,] = 0 (4.122) 

where $2F is the parameter set {oti,r}i,a2,i]2,crs,<Td}, and $27r is the parameter set 

{<j>i,<j>2}. Using these results in (4.28) through (4.31) gives 

A-, — -£- 
&S 

.4 r 
9 9 

oil + a2 + 2aia2 cos A(J> 

ai»?i + "i7?! + 2o!ia27/i7/2 cos A^ 
2   ,     2 

_2 . 

ac L 
A3 = 22//— a^i + a27/2 + aia2(77i + TJ2) cos A^ 

*d A4 = — 2a1Q!2(??1 — 772)—2" sin A<?i> 

(4.123) 

(4.124) 

(4.125) 

(4.126) 

where A<£ = <£2 - fa. Using (4.116) through (4.126) in (4.27) gives the PDF of the in- 

phase and quadrature parts of the monopulse ratio for two unresolved fixed-amplitude 
targets as 

f(yi,yQ\A,^2FA4) 

A2/o(^\A4i + A2 + A3 + A4) 
 Kad J 

^^(-ryoi + oi\ -f 2aio;2 cos A(j> 

x exp 

A 
12 JS 

A2 r 1 
2^2 [y2l + ^Q + X2 \a*v* + "^l + 2Q

1«2»?1??2 cos A^) 

(4.127) 
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Using (4.32) and (4.33) gives the first-order moments of yj and yq as 

E[yi\A,y2F,A<f>] = /i|o(^2"Vai + a2 + 2aia2 cos A^) 

X °^Vl + a2^2 + Q!1Q!2(??1 + m) COS A^ 
A-^/af + <x\ + 2aia2 cos A<j) 

E[yQ\A,y2F, A^] = -Jjio^^/af +a^ + 2aia2 cos A<^) 

x       "i^i-^)1»11^ (4 129) 

A-y/oij +0:2 + 2o!1a2 cosA^) 

Using (4.34) through (4.35) gives the second central moments of yi and yq as 

m\   ,    2*,    vj     A2 -r A2[a2+a2 + 2aiö2 cos A<^] 

x /i|o(—Yöi + «2 + 2020:2 cos A<£j 

^("lli + QJ7/! + 2ai0=2*7192 cos A<^ 
A3i/o;j + «2 + 2ofia2 cos A</> 

x h\o(-j\/<4 + «| + 2öia2 cos A<^)       (4.130) 
\<7S v / 

VARf     ,.  lTf      An      gj   ,       Qfo:i(7?i-7/2)
2sin2A^ 

VAR[yQ|A, *2F, A^] = F + A2[a2 + ^ + ^ „* Afl 

x Ii\0(—yai + al + 2öia2 cos A<£J 

^(«l7?2 + a2V2 + 2aia2»/i»72 cos A<^) 
-| ; ^ L 

A3y/a>l + «2 4- 2o;ia2 cos A<f> 
A 

x /ijo(—2"Y«1 + a2 + 2OJIO!2 cos A^J       (4.131) 

mur ,A   lTf        A  n [aiQ2(»yi ~ »72) Sin A<ft] 
COV yj,yQ A,*2f, A^ = - A2r 2 ■    2,0 Ä7T Az[ojf + a| + 2aia2 cos A<pj 

X /i|o(—\A*1 + a2 + 2o:iO;2 COS AM 

X [af?/i + a2r/2 + öIO;2(7/I + r/2) cos A$    (4.132) 

Then (4.132) shows that yj and yq are not independent nor uncorrelated for a fixed 

relative phase A<f> =£ 0 or ±7r. Since ?/Q has a nonzero mean for a fixed relative phase 

A(j> ^ 0 or ±7r, the sample mean of T/Q may prove useful in the detection of a fixed 

relative phase. 
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4.7 Fixed-Amplitude Target in Presence of Multipath 

The in-phase and quadrature components of the sum and difference signals for a 

fixed-amplitude target in the presence of sea-surface-induced multipath are given by 

(4.1) through (4.4), with 

<*2 = gpsoct 

<*3 = gps<*t 

"4 = (gps)2at 

^i = 4> 

fa = (f> + A(j> 

(f>3 = (f> + A(j) 

<j>4 = <j) + 2A<j) 

ßi = 0 

ß2 = 9Pd<*t 

ßi = gpiOit 

& = {g Pdf at 

V2 = <f> + 4>d + A<f> 

C£>3 = <f> + <j>d + A<f> 

<p± = cf> + 2<j>d + 2A<j> 

(4.133) 

(4.134) 

(4.135) 

(4.136) 

(4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

(4.142) 

(4.143) 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

where at is the voltage amplitude of the target, and the remaining variables are 

defined in Section 2.6. Also, a,- = 0, and ßt = 0 for all i > 4. The resulting equations 

correspond to (2.80) through (2.83). Note that A<f> includes the phase difference due 

to both the PLD and the specular reflection at the sea surface, which is approximately 

7T. The errors nSi,nsQ,ndi, and ndq are assumed independent so that p = 0. 

Then (2.80) through (2.83) can be rewritten as 

(4.148) 

si = &tc cos(f> - ats sincf) + aIC cos(<^ + A<^>) - aIS sm(<j) + A<f>) 

+ latgpd cos(<^ + A<f>) + at(gpd)
2 cos(2(f>d + 2A<f>) + nSj 

Q = Oitc s'm<f> + ats cos(^ + aIC sm{<f> + A<f>) + aIS cos(<f> + Acj>) 

+ 2atgpd sin(^ + A(f>) + at(gpd)2 sin(2<^ + 2A<£) + nSq (4.149) 

7 = atcVt c°s<f> - Oitsrjt sincf) + ajcVl cos((f> + A<f>) - aisrjj sm((j> + A<f>) 

+ at(Vt + Vl)gpd cos((j)d + A<f>) + atru(gpd)2 cos(2(f>d + 2A<f>) + ndI (4.150) 

sn = 

dr = 
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dq = atcm sin^ + atcrjt cos<£ + oticm sin(<^ + A^) + 0:757/7 cos(<^ + A<f>) 

+ at(rn + vi)gpd sin(<j)d + A(f>) + atr)i(gpd)
2 sin(2<^ + 2A<f>) + ndq (4.151) 

where 

ate = at(l + gps cosA<£) (4.152) 

ats = cttgps smA(j) (4.153) 

aw = atgps{l + 9PS cosA<£) = gpsoctc (4.154) 

ais = at(gps)2 sinA(f> = gpsuts (4.155) 

Let ^MP denote the parameter set {at,r)i,r)j,ps,Pdo>(TS->a'd}i and ®MP denote 
the parameter set {</>, Ac/), }. With E[-] denoting the expected value, let 

s/ = EISII^MP, ®MP] = cttc cos(f> - ats sin<f> + aw cos(<j> + A<f>) 

-ais sm(<f> + A<f>) (4.156) 

SQ = E[SQ\^MP, $MP] = cttc sin<?i> + ats cos<f> + aIC sin(<£ + A<f>) 

+ aIS cos(<f> + A<j>) (4.157) 

di = E\di\^Mp, $MP] = atcm cos<f> - atSr]t sin<j> + aICVl cos(<£ + A<£) 

- ocisVl sm(<£ + &<l>) (4.158) 

dq = E[dq\^MP, §MP] = cttcm sin?5, + atCr)t cos^ + aIcr)i sin(<£ + A<j>) 

+ ctism cos((f) + A<f>) (4.159) 

Also, 

P11 = E[(si ~ 5/)
2
|*MP, ®MP] = E[{SQ - Sq)2\VMP, $MP] 

= 4a?^2[l + ^2] + (7l (4.160) 

P22 = E[(dj - hf^MP^Mp] = £[(<*Q - ^Q)
2
|*MP, $MP] 

= «I Pdog2i(Vt + m? + 4/4AJ] + a\ (4.161) 

P12 = E\[di - di){sj - 5/)|*MP, ®MP] = E[{dQ - dQ){sQ - sQ)\tyMP, §Mp) 

= 2a2p2
d0g

2[m + (1 + 2p2
d0g

2)m} (4.162) 

While pd is Rayleigh distributed, 4>d IS uniformly distributed on (—7r,7r], and the 

receiver errors are Gaussian, the sum and difference signals of (4.148) through (4.151) 

are not Gaussian signals because p\ is exponentially distributed rather than Rayleigh. 

However, since typically pd < 0.5 and g < 1, the effects of (pdg)2 should be small 

compared to that of pdg. Thus, the sum and difference signals will be approximated 
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as Gaussian for the development of the statistics of monopulse measurements of low- 
elevation targets.  ' 

Using (4.156) through (4.162) in (4.27) gives the PDF of the in-phase and quadra- 

ture parts of the monopulse ratio for a fixed-amplitude target in multipath, where 

5/ + 4 = "I(1 + 2Psg cosA^ + pig2)2 (4.163) 

dj + d\ = a2(l + 2psg cosA<£ + p2
sg

2){tf + 2psgmVl cosA<£ + p^g2^) (4.164) 

MJ + sQdq = a2{\ + 2psg cosA^ + p2
sg

2) 

x (vt + psg(vt + m)cosA^ + p%g2m) (4.165) 
sfdq - sQdj = -psga2

t(l + 2psg cosA^ + p2
sg

2){vt - 77/)) sinA<£ (4.166) 

Using (4.32) and (4.33) gives approximately the expected values of yj and yQ as 

/Am 
E[yi\A, ftfP,A<^] = ^ + /1|0(-^(1 + 2PSg cosA«£ + p2

sg
2)^^ (4.167) 

.v       P11' v       Pii'     \ P11/ 

E[yQ\K *MP, M] = /1)0 (^(1 + 2Psg cosA^ + p2
s9

2)} 

x —jp- (w - %J sinA<^ (4.168) 

(4.169) 

where 
P12 = ZatPWiVt + (1 + 2^0^

2)?7J] 
P" ^tPdo92[l + P2

dog
2) + 4 

Using (4.34) gives approximately the covariance of the in-phase and quadrature 
monopulse ratios as 

COV[y7,yg|A, VMP, A<f>] = [(vi - Vt)^1 sinA^ 

x A*|o (^(1 + tPsg cosA^ + p2
sg

2)) 

Using (4.35) gives approximately the variance of yj as 

x 

VAR[W|A, *WP, A*] = ai^ÜB + 55»i/1|0 (^i(l + 2,s9 cosA^ + fa) 

X »ft -^)'+(«»)'(w-^y P11/ V 011/ P11 

+ 2Psg(vt - —) (77/ - —) cosA(^ v      Pnyv      Pn/ 
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(m - —) + (psg)2(m - —) + (m + w- z—)psg cosA</> V        pnJ \        pnJ      \ pnJ 

/Aaf 

A2" 
(—{l + 2PsgcoSA(f> + p2

sg
2)) 

\pn / 
(4.171) 

where 

P11P22 -P12 

A2P; 11 2», 0 L 
3 + 4 

2  „2r „2  „2„2n 163^0<76[% - */]' + 2$Fpj0g
2[(rh + m)2 + 4/4^ 

S^o^l + ^ + l 

$F = ± 
2a\ 

(4.172) 

(4.173) 

Using (4.36) gives approximately the variance of yq as 

/Aa 
VARMA, fMP, A*] = Wl^fta + ^/i,o (^(1 + 2ps9 cos A^ + ^)) 

(% " |f)2 + (^)2(^7 - ffi + 2psg(vt ~ ^) (m ~ jg) ™sA<f> 

)) (4.174) 
r- ~,2 „2 „2 

V7"m)   I    A2     Sm     ^ 
/ Aa< o    2 

ijiJ (1 + 2psg cosA(f> + psg 1 ^Pn 

Using the K0 = -E[^o |öjlf P>$Afp] of (3.151) and the sea-surface reflection model 

given in Section 2.6, trajectories of E[yi\A, $MPi A<^>], E[yq\K^ MP^^]-, 
and the 

variances were generated for low-elevation targets, with the antenna boresight point- 

ing directly at the target. Trajectories were generated for radars operating at 4 GHz 

in S band, 10 GHz in X band, and 16 GHz in Ku band. For all cases, the sea sur- 

face was assumed to have a RMS wave height of 0.25 m, and the radar is vertically 

polarized and 20 m above the sea surface. 

For the S band case, the radar was modeled to have a one-way beamwidth of 

2.5° and a squint angle of 1.05°. The target travels from a range of 20 km to a range 

of 5 km at an altitude 80 m. The means of yj and yq and the associated standard 

deviations are shown in Figures 4.3 and 4.4 for a 16-dB target (i.e., 16 dB in the 

absence of multipath), and Figure 4.5 gives the covariance of yj and yq. Again, note 

that 3J0 = E[$0\eMp,$Mp] of (3.151) has been used in (4.167) through (4.174). 

Figure 4.6 compares the expected standard deviations for the in-phase monopulse 

ratios for a 16-dB target with that for a 13 dB target. Note that the standard 

deviation for the monopulse ratios in the absence of multipath is about 0.11 for a 

16-dB target and 0.14 for a 13-dB target. Thus, the presence of multipath severely 

corrupts the means and variances of the in-phase and quadrature monopulse ratios. 
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Figure 4.3 Means of Monopulse Ratios for 16-dB Target at an Altitude of 80 m and 

S Band Radar 
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Figure 4.4 Standard Deviations of Monopulse Ratios for 16-dB Target at an Altitude 

of 80 m and S Band Radar 
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However, Figure 4.4 shows that the standard deviation of the in-phase monopulse 

ratio is reduced significantly when the target is out of the multipath nulls (i.e., peaks 

in the expected value of the in-phase monopulse ratios) and at longer ranges, where 

the specular reflections are relatively strong, and the angles between the target and 

the image are rather small. Figure 4.6 shows that the larger amplitudes of the target 

reduce the measurement errors at longer ranges where the specular reflections are 

relatively strong and increases the measurement errors at the shorter ranges where 

the diffuse reflections are relatively strong. The results of Figure 4.3 are given in 

the complex plane in Figure 4.7 along with the same results for pjo = 0. Note that 

Figure 4.7 gives only the results for the target ranges of 15 km to 8 km. The dash 

lines in Figure 4.7 give the means of yi and yg for specular-only reflections at the sea 

surface. Figure 4.7 shows that ignoring the effects of the diffuse reflections will result 

in significant errors in the DOA estimation for a target in the presence of sea-surface- 

induced multipath. The expected values of the in-phase monopulse ratios for a target 

at an altitude of 40 m are shown in Figure 4.8 for specular and diffuse reflections 

and specular-only reflections. Figure 4.8 indicates that the presence of the diffuse 

reflections reduces the effects of the multipath nulls. Note that fewer multipath nulls 

occur when tracking a target at altitude of 40 m than when tracking a target at an 

altitude of 80 m. 

For the X band case, the radar was modeled to have a one-way beamwidth of 

1.5° and a squint angle of 0.63°. The target travels from a range of 20 km to a range 

5 km at an altitude 30 m. The expected values of yj are shown in Figures 4.9 and 

4.10 for a 16-dB target at altitudes of 40 m and 25 m, respectively. The dash lines 

of Figures 4.9 and 4.10 give the means of yj for specular-only reflections at the sea 

surface. Note that ignoring the effects of the diffuse reflections in X band will result 

in larger errors in the DOA estimation than ignoring the diffuse reflections at S band. 

Figure 4.11 gives the expected values of yj and yq plotted in the complex plane for 

specular and diffuse reflections, and specular-only reflections at the sea surface. 

For the Ku band case, the radar was modeled to have a one-way beamwidth of 1.0° 

and a squint angle of 0.42°. Two 16-dB targets are considered. Both targets travel 

from a range of 20 km to range 5 km, while the first target travels at an altitude of 

25 m, and the second target travels at an altitude of 10 m. The expected values of 

yj for both targets are plotted in Figures 4.12 and 4.13. The dash lines in Figures 

4.12 and 4.13 give the expected values of yj for specular-only reflections at the sea 

surface. Note that effects of ignoring the diffuse reflections are even greater in Ku 

band than in X band or S band. 
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Figure 4.5 Covariance of the In-Phase and Quadrature Monopulse Ratios for 16-dB 

Target at an Altitude of 80 m and S Band Radar 
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Figure 4.6 Standard Deviations of the In-Phase Monopulse Ratios for 13-dB and 

16-dB Targets at an Altitude of 80 m and S Band Radar 
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Figure 4.7 Means of the Complex Monopulse Ratios for 16-dB Target at an Altitude 

of 80 m and S Band Radar 
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Figure 4.8 Means of the In-Phase Monopulse Ratios for 16-dB Target at an Altitude 

of 40 m and S Band Radar 
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Figure 4.9 Means of the In-Phase Monopulse Ratios for 16-dB Target at an Altitude 
of 40 m and X Band Radar 
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Figure 4.10 Means of the In-Phase Monopulse Ratios for 16-dB Target at an Altitude 
of 25 m and X Band Radar 
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Figure 4.12 Means of the In-Phase Monopulse Ratios for 16-dB Target at an Altitude 

of 25 m and Ku Band Radar 
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Figure 4.13 Means of the In-Phase Monopulse Ratios for 16-dB Target at an Altitude 
of 10 m and Ku Band Radar 

104 



NSWCDD/TR-97/167 

Chapter 5 

DIRECTION-OF-ARRIVAL (DOA) ESTIMATION 

As discussed in Section 2.3, the monopulse ratio is typically used as the DOA 

estimate. However, the results of Chapter 4 show that the monopulse ratio is not 

the ML estimate [11, p. 65] nor MM estimate [ll,p. 151] of the DOA for a single, 

resolved target. The use of the monopulse ratio is the result of physical insight into 

the problem and the work of Mosca in [40,41]. In [40], Mosca showed that the ML 

estimate of the DOA for a single pulse and unknown target amplitude and phase is 

given approximately by the in-phase monopulse ratio for a high SNR and a small 

DOA (i.e., a target very near the antenna boresight). In [41], Mosca derived the ML 

estimator for the DOA for N pulse returns from a pulse-to-pulse Rayleigh fluctuating 

target. Mosca concluded that the estimator was too complicated and showed that 

for a high SNR and a small DOA, the ML estimate is closely approximated by the 

in-phase part of the monopulse ratio. When the target amplitude and/or phase 

are jointly estimated, Mosca showed in [40,41] that at moderate and low SNRs, the 

monopulse ratio is a biased estimate of the DOA as given by (2.51). A slightly different 

approach to the DOA estimation for a single target is taken in this chapter to relax 

the restrictions of a high SNR and small DOA. The amplitude-conditioned4 PDFs 

and statistics developed in Chapter 4 are used to develop ML estimators and/or MM 

estimators of the DOA for a single resolved target with a known target amplitude. The 

amplitude-conditioned PDFs are also used to develop the CRLBs for any unbiased 

estimator of the DOA. When the target amplitude is unknown, the ML estimate of the 

target amplitude, as developed in Chapter 3, is used in the ML estimators and MM 

estimators to form GML estimators and Generalized Method of Moments (GMM) 

4 Since the conditional PDF corresponds to a PDF that is defined on a restricted probability space that is specified 

by the measured amplitude of the sum signal, statistical quantities developed on the restricted probability space have 

the same properties as their unconditional counterparts.   Since all of the estimators and CRLBs developed in the 

chapter are conditional estimators and CRLBs, the term "conditional" will not be used explicitly to denote the 

estimators and CRLBs developed in this chapter. 
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estimators, respectively. The DOA estimates and the target amplitude estimates are 

also used to develop estimates of the variance of the DOA estimates that are required 

to support Kaiman filter tracking of the targets. 

When target echoes are not resolved in the frequency or time domains, the results 

of Chapter 4 clearly show that the in-phase monopulse ratio is not an appropriate 

estimate of the DOA of either target. While the problem of DOA estimation of unre- 

solved targets has been addressed in several studies involving array signal processing 

[8] and multiple-beam monopulse (i.e., more than two beams per angular coordinate) 

[6,7], the work of Sherman in [1,4,42] is the only technique that utilizes a standard 

monopulse system in the DOA estimation of two unresolved targets. Sherman pro- 

posed the use of complex monopulse ratios from two pulses separated sufficiently in 

time so that the relative phase of the two targets changes, but sufficiently close in 

time so that the amplitudes of the two targets remain fixed. Sherman then used 

the five measured quantities, the two complex monopulse ratios and the ratio of the 

measured amplitudes of the sum signal, to compute the DOAs of the two targets, the 

two relative phases, and the ratio of the target amplitudes. In [43], Daum studied the 

angular estimation accuracies of a standard monopulse radar system for two unre- 

solved targets and showed that the estimation accuracies decline significantly as the 

variance of the target amplitude fluctuations increases. Sherman also showed in [44] 

under similar assumptions that the in-phase monopulse ratios from the two angular 

coordinates and the ratio of the measured amplitudes from two pulses can be used 

to estimate the centroid of the two targets and the slope of the line connecting them. 

However, achieving two pulses with echoes that satisfy the requirements of Sherman's 

technique is not very likely. Furthermore, Sherman utilized a deterministic formula- 

tion of the problem to develop his approach. Thus, to date, the results of Sherman 

have not been further developed and reported in the literature. 

In this chapter, a stochastic approach is taken to the DOA estimation for two un- 

resolved targets. The Fisher Information Matrix (FIM) and CRLBs are developed for 

the DOA estimation of two unresolved Rayleigh targets using a standard monopulse 

radar. The FIM and CRLBs are used to study the effects of beam pointing on the 

DOA estimation. For two unresolved Rayleigh targets as considered in Section 4.2, 

the mean of the in-phase monopulse ratio is used to estimate the DOA of the centroid 

of the two targets, while the variance of the in-phase and quadrature monopulse ratios 

is used to estimate the difference of the DOAs of the two targets. The DOAs of both 

targets can be computed from the DOA of the centroid and the difference of the two 

DOAs. Expressions for estimating the variances of both DOA estimates are developed. 
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While Sherman's approach to DOA estimation for two unresolved targets has re- 

ceived very little attention since its publication, his approach to the DOA estimation 

for a target in the presence of multipath [1,4,42] has received considerable attention 

[5,45-47]. Sherman proposed the use of the complex monopulse ratio from a single 

pulse and the geometric constraint imposed by the sea surface to estimate the DOA of 

the target. Peeblez and Goldman [45] compared the performance of Sherman's tech- 

nique with that of conventional tracking and concluded that it provides significant 

reductions in the errors, even when knowledge of the surface-reflection coefficient is 

imperfect. Symonds and Smith [46] extended Sherman's technique to multiple fre- 

quencies and conducted some simulation studies to assess the performance of the 

DOA estimation. The results of their simulation studies indicated that Sherman's 

technique provides significant improvement in conventional tracking over smooth sur- 

faces (i.e., no diffuse reflections) but only marginal improvement over rough surfaces. 

These conclusions of Symonds and Smith also agree with the conclusions of the exper- 

iment conducted by Howard [47] and the analysis of Barton in [5]. Again, Sherman 

utilized a deterministic formulation of the problem to develop his DOA estimation 

for a target in the presence of multipath. A stochastic approach could taken to the 

DOA estimation for a target in the presence of sea-surface-induced multipath. The 

diffuse reflections are included explicitly in the model of the sum and difference chan- 

nel voltages as discussed in Section 2.6. The complex monopulse ratios from multiple 

pulses, target amplitude estimate, and the geometric constraint imposed by the sea 

surface could be used to estimate the DOA of the target and A(j>. The variances of 

the monopulse ratios in Section 4.7 could also be utilized to develop an estimator for 

the variances of the DOA estimates. 

DOA estimation for a single Rayleigh target and real-correlation in the receiver 

errors is considered in Section 5.1, while single-pulse DOA estimation is considered 

in Section 5.2. DOA estimation of a Rayleigh target in the presence of a Gaussian 

jammer is considered in Section 5.3. Since the jammer signals enter into all the 

range bins, the DOA estimate of the jammer, which is estimated with the monopulse 

measurements that do not include the target, is utilized with the results of Section 4.2 

to estimate the DOA of the Rayleigh target. DOA estimation of two unresolved 

Rayleigh targets with known relative RCS is developed in Section 5.4, along with a 

strategy for pointing the antenna boresight when two targets are unresolved. 
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5.1 Rayleigh Target 

CRLBs for any unbiased estimator of the DOA for Rayleigh targets are developed 

using the amplitude-conditioned PDF of the complex monopulse ratio developed in 

Section 4.1. While only the in-phase part of the monopulse ratio is typically used 

to estimate the DOA, CRLBs are developed for DOA estimators that utilize the in- 

phase and/or quadrature parts of the monopulse ratio in order to illustrate the value 

of the quadrature part in the estimation of the DOA. Using the amplitude-conditioned 

PDF of the complex monopulse ratio, ML and MM estimators are developed for the 

target DOA, and the estimates are used to form estimates of the variance of the DOA 

estimate. For an unknown target amplitude parameter, ML and MM estimates of the 

DOA are computed using the ML estimate of the target amplitude parameter that is 

computed from the measured amplitudes of the sum signal as discussed in Section 3.1. 

The performances of these estimators are compared to that of the monopulse ratio 

for DOA estimation, which does not require knowledge of the target amplitude. The 

MM estimate of the DOA and the ML estimate of the target amplitude are used to 

form an estimate of the variance of the DOA estimate. Using simulation results, the 

performances of the ML and MM estimators are compared with that of the monopulse 

ratio, and the performances of the variance estimators are studied. 

Cramer-Rao Lower Bounds (CRLBs) for DOA Estimates 

Since the CRLB gives the lower bound for the variance of any unbiased estimate, 

the performances of the ML and MM estimators of the DOA will be compared to the 

CRLB to assess the potential for alternate estimators that are better. Furthermore, 

the value of the quadrature monopulse ratio to the DOA estimation is assessed by 

comparing the CRLBs for estimators that utilize either the in-phase or quadrature 

monopulse ratio or both ratios. 

The CRLB [11, p. 66] associated with fji based on TV observations of yj and yQ 

is given by 

N J
yi,yQ(m\NA^ok}k=l^R) = 

N 

fc=i 

d2M(yik,yQk\^ok^R) 
-.-i 

H $ok, ®R 

(5.1) 

where $lok is the observed SNR of (2.23) for pulse k, and yIk and yQk are the in-phase 

and quadrature monopulse ratios for pulse k, respectively. Using (4.42) in (5.1) gives 

Jyj,yQ(m\N,{Kk}tl^R) 
P 

2NY, N 
1 + 

»Ä1 

-1\2 
1       2(qi -P(Td(Js

l) 
1 -1 

pYN 

(5.2) 
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where p is given by (4.45). Using the marginal PDF of yjk from (4.43) in (5.1) gives 

the CRLB associated with fj\ based on N observations of yj only as 

7„töi|tf,{».*}fcLi,*Ä)—- 2NYN 
1 + 

^Äi 

2 
1       (Vl-PWs  ) 

pYN 

-U2--1 

(5.3) 

Comparing (5.2) and (5.3) shows that the use of yj and yq gives a smaller CRLB for 

7)1 than the use of only T/J, when 771 ^ pGd^S- Therefore, yq provides some information 

concerning the value of 771. Using the marginal PDF of J/QJ. from (4.44) in (5.1) gives 

the CRLB associated with 771 based on N observations of yq only as 

JVQ(m\N, {*.*}{Li. VDä) =        p2 [1 + J_ 
v 2N(rii - (HTd<rsy L      ™Ri 

2 

(5.4) 

Comparing (5.2) with (5.3) and examining (5.4) indicates that yq provides essentially 

no information concerning the value of 771 when 7/1 « pa^crg . Therefore, for p = 0 

and a target near the center of the beam (i.e., 771 « 0), the observations of yq provide 

essentially no information toward the estimation of 771. Thus, the typical practice of 

ignoring the observations of yq makes perfect sense when the antenna boresight is 

maintained near the target. However, the observations of yq should be considered 

when off-boresight (i.e., 771 96 p<J&<r&) measurements occur rather often, as in phased 

array radar tracking many targets or off-boresight tracking. 

Unconditional CRLBs that were developed from f(yi,yq\^B.) are given in Ap- 

pendix B. Unconditional CRLBs were also developed from /(A, yj, T/Q|$ä), and those 

unconditional CRLBs are given by setting Y/y = .EfYjy |\P_R] = 9£RI + 1 in (5.2) through 

(5.4). The conditional CRLBs are shown in Appendix B to be less than the uncondi- 

tional CRLBs for 3?#i > 3 dB. Thus, DOA estimators utilizing monopulse processing 

should be developed from the conditional PDF or the conditional statistics. 

Estimation of DOA and Variances 

The development of the ML estimator will be followed by the development of the 

MM estimator and the estimators of the variances. The ML estimator of a parameter 

maximizes the likelihood function for a given set of observations of random variables. 

Any estimate that satisfies the CRLB with equality is called an efficient estimate, 

and if an efficient estimate exists, it is given by the unique solution to the likelihood 

function [11, p. 65]. 

The ML estimate of 771 is given by 

N 

Vmi = arg max TT f(yik,yQk\^ok,^R) (5.5) 
Vl    k=l 
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Taking the derivative of (5.5), the extrema and reflection points are given by fj satis- 

fying 

tfml + aA\ + aiVml + a0 = 0 (5.6) 

where 

<Ts\ J 

«1 = 

a0 

1 + 
1 

»Ä1 

1- 

+ 2/ +   1 

1 + 

»Ä1 + iK 
OA 

&Ä1  J I&Ä1 + ! a5 
YN - XN - P— 

1 + 

+ 

1 

«Ä1 

1 + 

ZN 

(5.7) 

(5.8) 

& ■Äi 
/»—ZN(5.9) 

°d 

XN 

YN 

ZN 
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1   * 

*E** 

kVlk 

N 

1 

N 

ib=i 

E«-* (: 
ifc=i 

yik 
P °d\2   ,     2 

(5.10) 

(5.11) 

(5.12) 

Since (5.6) does not have a unique solution, an efficient estimator of TJI does not exist 

for finite values of N. One of the fj that satisfies (5.6) is the ML estimate fjmi, which 

can be computed using Newton's method with yj of (4.46) as the initial value, or 

using a root-finding algorithm and selecting the root closest to yj. As an alternative 

to solving the cubic expression in (5.6), (5.5) can be maximized numerically. Also, if 

fj is sufficiently small so that fjz and a2fj2 can be ignored, then f}m] « -CLQü^
1
 , which 

corresponds to the monopulse ratio if the SNR is sufficiently high so that 1 + 9^ « 1. 

When the target amplitude parameter fäju is not known, as is the case in most 

radar tracking problems, 3^ in (5.5) can be replaced by its ML estimate SRRI, given 

by (3.32), to form a generalized likelihood function. Then, ijml that satisfies (5.5) with 

&Ä1 = ®m in (5.7), (5.8), and (5.12) will be referred to as ijgml, the GML estimate 

of 7/!. However, the use of small values for Um for small N may not be realistic since 

target detection will be required before monopulse processing is used. Thus, the GML 

estimate is given by 

Vgml = fjml    for     jRjü = Sftßl > 
N 

(5.13) 

where &tfc is the SNR detection threshold. Thus, if NURl < $tth, a monopulse ratio 

is not formed and used for DOA estimation.  Note that the use of SRÄ1 = ÜR1 will 
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increase the RMS error in the DOA estimate, and later in this section, simulation 

results show that for certain DOAs and SNRs the monopulse ratio should be used 

as the DOA estimate rather than the GML estimate. Since no analytical expression 

is available for T/TOJ, the computation of variance of the f}m\ is not considered in this 

section. 

MM estimation is accomplished for K parameters by setting the first K sample 

moments to the actual moments, which are functions of the parameters of interest, 

and solving for the parameter estimates. Noting that the observations yik are not 

stationary and that by using yj, the ML estimate of the conditional mean of yj, of 

(4.46) to estimate rji gives 

Vmm — 1 + 
KäI 

VI 
P   °d 

$R1 &S 
(5.14) 

which is an unbiased estimate of the DOA when SRRI is known. When the target 

amplitude parameter 9£RI is not known, 9£RI in (5.14) can be replaced by its ML 

estimate ;RRI- However, the use of small values for SRRI in (5.14) can introduce large 

errors. Thus, the GMM estimate, as it will be referred to in this report, is given by 

Vgmm 1 + 
1 

3RRI 
VI 

p <?d 
for   URI = URI > 

&, th 

N 
(5.15) 

where SR^ is the SNR detection threshold as discussed above. The use of an estimate 

for 9£RI will increase the RMS error in the DOA estimate, and later in this section, 

simulation results show, for certain DOAs and SNRs, that the monopulse ratio or the 

GML estimate should be used as the DOA estimate rather than the GMM estimate. 

Using (4.43), (4.48), and (5.14) gives the variance of the MM estimate as 

N 

A 1 + 
1 

3£RI- 

rr2     — 
1 

KäI 

1 + d X>°< 
jk=i 

-i 

p i + 
i 

$R1 

P 
2NYN 

(5.16) 

When using the DOA estimates developed above or the monopulse ratio for track- 

ing targets with a monopulse radar, an estimate of the variance of each DOA estimate 

is required for the Kaiman filter. Using an estimate of the conditional mean of yj 

in (4.45) to reduce the dependency of p on $IRI and form an estimate of p gives an 

estimate of the variance of the in-phase monopulse ratio as 

*!, = [£2*-*] * = 
p 

jt=i 
2NYN 

(5.17) 

where 

P 

o   —1 
P°daS [%(i-*zTih(*>-w*kY*-**?> (5.18) 
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When the target amplitude is known, the variance of the monopulse ratios can be 

estimated by using the ML or MM estimate for fn in (5.18). When the target am- 

plitude is unknown, the variance of the monopulse ratios can be estimated by using 

the monopulse ratio, the GML estimate, or the GMM estimate for r/i. Using the re- 

sulting p, an estimate of a$n, the variance of the monopulse ratios of pulse k, can be 

computed using the N pulses according to 

.2        »2 P a;IT, = a      — 

Using (5.16) and (5.18) gives an estimate of the variance of fjmm as 

N 

(5.19) 

H = i + 
1    12 

»Ä1 
b\l i+s^ng^rHi+^r^ <«•») 

where r\\ = fjmm in p. When the target amplitude is unknown, the variance of f}gmm 

can be estimated by using fa = f}gmm and UR = $R in p and setting a minimum 

value for the estimated SNR as in (5.15). 

Since no analytical expression is available for f)mi, no estimator is developed for 

the variance of the estimate. However, considering the CRLB of (5.2) indicates that 

(5.20) may provide a good estimate of the variance associated with fjmi by using 

fa = Vml in p when the target amplitude is known or fa = ?}gml in p when the target 

amplitude is unknown. The performance of the variance estimators developed in this 

section will be considered next through simulation studies. 

Simulation Results 

The results of Monte Carlo simulation studies are presented to give insight into 

the relative performances of the estimators. Each result is the average from 20,000 

experiments with averaging over the conditioning random variable A (i.e., A is random 

between experiments). When a threshold test is applied to the estimated SNR, as in 

the GML and GMM estimators, the results are the average from 20,000 experiments 

with the estimated SNR exceeding the threshold. Since A is random, the DOA 

estimation errors were normalized by the corresponding conditional CRLB prior to 

computing the sample standard deviations. Similarly, the variance estimators were 

studied by normalizing each error in the DOA estimate by the standard deviation 

estimate for that pulse and then computing the sample statistics. The performances 

of the monopulse ratio, ML estimator, and MM estimator of the DOA are compared 

for the cases of known and unknown target amplitude, and the performances of the 

variance estimators are then compared. 
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Figure 5.3 RMS Error for Known Target Amplitude with N = 2 and 4, p = 0, and 

3Jiji = 10 dB 

Monte Carlo simulations with 20,000 experiments were conducted for N = 2 

and 4, URI = 10 dB, and p = 0 to compare the performances of the ML and MM 

estimators and the monopulse ratio. Figure 5.1 shows the sample average errors in 

the DOA estimates, while Figure 5.2 shows the sample standard deviations of the 

errors normalized by the CRLBs of (5.2). Figure 5.1 shows that, as expected, the 

monopulse ratio and ML estimate are biased estimators of rji, while the MM estimate 

is unbiased. Furthermore, the bias of the monopulse ratio is independent of N, as 

indicated by (4.43), while the bias in the ML estimate decreases with increases in N, 

as expected due to the consistency of ML estimates. However, Figure 5.2 shows that 

the monopulse ratio provides a smaller variance relative to the CRLB than either 

the ML estimator or MM estimator for \rji\ < 1.0 and 3?RI = 10. Note that since 

the monopulse ratio and ML estimators are biased, the variance of the estimates 

can be less than the CRLB as shown in Figure 5.2. Figure 5.2 also indicates that the 

variance of the ML estimate approaches the CRLB with increases in N as required by 

the asymptotically efficient property of ML estimates. Figure 5.3 shows that the RMS 

error for the ML estimator is about 10 percent less than that for the MM estimator. 

Figure 5.3 also shows for the cases considered that the rjm\ is superior to using the 
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p = 0, and $Rl = 10 dB 

monopulse ratio, except for N = 4 and l^l < 0.5. The interval of r?x for which the 

monopulse ratio is superior to r)mi decreases as N increases, because the bias in the 

monopulse ratio becomes a larger percent of the RMS error as N increases. 

Another simulation was conducted for p = 0.3, and the results are shown in 

Figures 5.4 and 5.5. The results in Figure 5.4 are similar to those of Figure 5.2 with 

two notable differences. The minimum of the sample standard deviations are shifted 

from r\ = 0 in Figure 5.2 to rj = 0.3 in Figure 5.4, and the DOA estimates for p = 0.3 

are slightly less efficient than the DOA estimates for p = 0. However, Figure 5.5 shows 

that the RMS errors in the DOA estimates for p = 0.3 do achieve an overall lower 

value than the RMS errors in the DOA estimates for p = 0. Figure 5.4 also shows 

that the RMS errors in the DOA estimates are equal for p = 0 and 0.3 at 77 = 0. 

Figure 5.6 shows the sample average error in the DOA estimates for an unknown 

target amplitude, while Figure 5.7 shows the RMS error for N = 2 and 4, 8ftÄ1 = 

10 dB, 9£tÄ = 13 dB in (5.13) and (5.15), and p = 0. Figure 5.6 shows that the 

monopulse ratio, GML estimates, and GMM estimates are biased estimators of 771 

when the target amplitude is unknown. Furthermore, the bias of the monopulse ratio 

is independent of N as indicated by (4.43), while the biases in the GML estimates and 
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GMM estimates decrease as N increases. Figure 5.7 shows that the RMS error for 

the monopulse ratio is less than the RMS error of the GML estimator for |?7i| < 0.5 

and the RMS error of the GMM estimator for |^i| < 0.7. However, for |?7i| > 1 the 

RMS error in the monopulse ratio is much larger than that of the GML estimates or 

GMM estimates. Note that Figure 5.7 indicates that the bias in the monopulse ratio 

estimate is about 50 percent of the total RMS error for a 10-dB target. Also, note 

that the restrictions placed on 9J by (5.13) and (5.15) resulted in the RMS errors for 

N = 2 in Figure 5.7 being similar to the RMS errors for N = 4 in Figure 5.3. Since 

the threshold test of 3? in (5.13) and (5.15) removed less informative measurements 

(i.e., measurements with the large variances) from consideration, the RMS errors in 

Figure 5.7 are less than those in Figure 5.3. In an actual scenario, the threshold test 

reduces the number of usable pulses (or sets of pulses) which, in effect, increases the 

variance of the estimator. 

DOA estimation was also considered for a 7-dB Gaussian noise jammer, and 

the results are shown in Figure 5.8. The monopulse measurements of the jammer 

are made with a track gate containing 16 range bins. Each range bin provides a 

monopulse measurement, and the amplitude of the jammer is Rayleigh. Figure 5.8 

shows that for a 7-dB jammer, the monopulse ratio provides less RMS error than the 

GML estimate or GMM estimate for \rji\ < 0.4. Thus, as 9£RI decreases, the range of 

7/i for which the monopulse ratio provides better estimates than the GML estimator 

or GMM estimator also decreases. Therefore, the GML estimator or GMM estimator 

should be considered for DOA estimation of low SNR targets when many pulses are 

available for processing. 

Simulation studies were conducted for various values of N and 3£RI to identify 

the DOAs at which the RMS error in the monopulse ratio estimate exceeds that of 

the GML estimate, and these critical DOAs (i.e., for DOAs greater than the critical 

DOA, the GML estimate should be used rather than the monopulse ratio) are shown 

graphically in Figure 5.9. For example, Figure 5.9 shows that for $tth — 13 dB, 

^Äi = 10 dB, N = 4, and \rji\ > 0.6, the GML estimator should be used rather than 

the monopulse ratio. Due to the low probability of processing for 3?^ = 13 dB, no 

results were compiled for N = 2 and $tjn < 10 dB. Also, for TV = 8 and \TJI\ > 0.5, 

the GML estimate should be used rather than the monopulse ratio, and for N = 16 

and |»711 > 0.3, the GML estimate should be used rather than the monopulse ratio. 

Similar results were obtained for the GMM estimator, and the critical DOAs for the 

GMM estimator were found to be 0.1 to 0.2 greater than that for the GML estimator 

for N — 2, 4, and 8. For N = 16, the critical DOA for the GMM estimator was also 
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0.3. The effects of decreasing With to 10 dB were to increase the critical DOAs by 0.1 

to 0.2 for N = 2 and 4, while leaving the critical DOAs for N = 8 and 16 unchanged. 

The performance of the estimators for the variance for the monopulse ratios was 

analyzed through simulation studies. Estimates of the variance of the monopulse 

ratios were generated with (5.17) by using yj, r)gmi, and rjgmm for i)i in (5.18) along 

with $ft#i = äftßi and p = 0. The sample standard deviation of each estimate of the 

mean of the monopulse ratio normalized by the estimate of its standard deviation 

was computed using each DOA estimate, and the results are given in Figure 5.10 for 

3?äI = 10 dB and p = 0. The variance estimates are notably low for \i]i\ > 1.0 as 

shown by Figure 5.10. The variance estimators that used fji = i)grni or fjgmm provided 

slightly better results for \r]\\ > 0.5 than the variance estimator that used f\\ = yj. 

For I771I < 1.0, all of the estimators provide standard deviations that are in error by 

less than 10 percent. 

The performance of the estimators for the variance for the DOA estimates was 

also analyzed through simulation studies. Estimates of the variance were generated 

with (5.20) for the GML estimates and GMM estimates by using f}gm] and fjgmm, 

respectively, for f}i in (5.18) along with fäjn = SRRI and p = 0. Estimates of the 
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variance for the monopulse ratio as the DOA estimate were generated with (5.17) 

by using yj for fj in (5.18) along with $m = &Ä1 and p — 0. The error in each 

DOA estimate was normalized by the estimate of its standard deviation, and the 

RMS values of these normalized errors are given in Figure 5.11 for 9£ßi = 10 dB and 

p = 0. Figure 5.11 shows that the variance estimates are notably small for l^l > 1.0. 

The variance estimators that used J/J = f)gml or f)gmm provided significantly better 

estimates for |r/i | > 0.5 than the variance estimator that used fji = yj. Figure 5.11 also 

indicates that the use of the monopulse ratio as the DOA estimate and the variance 

of the monopulse ratio as the variance of the DOA estimate will result in significant 

error (i.e., standard deviations of the DOA estimate that are in error by more than 

20 percent ) for \rji\ > 1. 

Concluding Remarks 

CRLBs were computed for unbiased estimators of the DOA that utilize either the 

in-phase monopulse ratio, the quadrature monopulse ratio, or both, and the results 

showed that the quadrature ratio provides information for estimating the DOA when 

the DOA is not equal to zero for independent receiver errors (i.e., p — 0). ML 

estimator and MM estimator of the DOA were developed for a single Rayleigh target, 

and the performances of these estimators were compared through simulation results to 

that of the in-phase monopulse ratio as the DOA estimate. For a target with a known 

amplitude parameter, the ML estimates were shown to be the solution of a cubic 

equation, while the MM estimates were shown to be a bias-compensated version of 

the in-phase monopulse ratio. While the MM estimate provides an unbiased estimate 

of the DOA, the ML estimator was found to provide estimates with smaller RMS error 

than those of the MM estimator. For four or more independent samples or pulses and 

small DOAs, the monopulse ratio was found to provide the DOA estimate with the 

smallest RMS error. For targets with an unknown amplitude, the ML estimate of the 

amplitude parameter was used in the ML estimator and MM estimator to form the 

GML and GMM estimators, respectively. While the GMM estimators provide DOA 

estimates with less bias than the GML estimator, the GML estimator was found to 

provide estimates with a smaller RMS errors than the GMM estimator. However, 

for small DOAs, the monopulse ratio was found to provide DOA estimates with the 

smallest RMS error. Simulation studies for various sample sizes and SNRs identified 

the DOAs at which the RMS errors in the monopulse ratio estimates exceed that of 

the GML estimates. For example, the GML estimate should be used as the DOA 

estimate rather than monopulse ratio for N = 8 and l^l > 0.5, and for N = 16 and 
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Figure 5.11 RMS of the DOA Estimation Errors Normalized with the Variance Esti- 

mate and 7/i = yj, f}gm\, or r}gmm in p with 31 R\ = 10 dB and p = 0 
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|J/I| > 0.3, the GML estimate should be used rather than the monopulse ratio. 

Estimators of the variances of the monopulse ratio and the DOA estimates were 

also developed, and the results of simulation studies of the performance of the estima- 

tors were given. While the results show that variance estimators for the monopulse 

ratio using rjgmi and rjgmm provide slightly better estimates of the variance at DOAs 

greater than 0.5, all of the variance estimators for the monopulse ratio were in error 

by more than 5 percent for DOAs greater than 1.0. The results also showed that 

the variance estimators for the DOA estimate using r]gmi and rjgmm provided signifi- 

cantly better estimates of the variance at DOAs greater than 0.5, and the use of the 

monopulse ratio as the DOA estimate and the variance of the monopulse ratio as the 

variance of the DOA estimate could be problematic for \r)i\ > 1. 

5.2 Single-Pulse DOA Estimation 

Since the RCS of targets and propagation factors can change between scans or 

revisits to a target, the target amplitude is usually treated as an unknown between 

revisits, while it may be treated as fixed during the dwell period as for a fixed- 

amplitude target. In this section, the cases of both known and unknown target 

amplitudes are considered. Since small displacements of the target generate ambiguity 

in the phase, the phase is assumed unknown and uniformly distributed on (—7r,7r]. 

Using the results of Section 4.3, the PDF of the in-phase and quadrature parts of 

the monopulse ratio for a fixed-amplitude target are given prior to integration with 

respect to the measured phase if> as 

A2 

f{yi,VQM^F,$F) =  TT—— exp 
A   !\ a^r/i 

2*3 
(y/--£-cos(0-^!))5 

'S 

+ (VQ - ^psin(0 - fa)f (5.21) 

Since (4.71) indicates that the location of the PDF of yq is independent of J/I, a single 

observation of yq provides essentially no information concerning the value of r)X. Note 

that while the variance of yq depends on ^, single sample estimation of the variance 

is not considered viable. Noting that the ML value of yq is zero and using yq = 0 

in (5.21) gives i\> - fa = 0. Thus, under this assumption,the ML estimate of j^ for a 
known target amplitude a\ is given by 

(5.22) 
y  "v-f i 
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where $ßfi is given by (3.13), and 3?0 is the observed SNR given by (3.11). Note 

that (5.22) is similar to the results for known amplitude and phase in [40], where the 

case of known amplitude and unknown phase is not considered. Then (4.70) indicates 

that (5.22) gives a biased estimate of r\\. While an unbiased estimate of rj\ can be 

computed with (4.70), the estimate will not be ML. Using T/I of (5.22) in (4.72) and 

(4.73) gives an estimate of the variance of yj and yq as 

<Tj -2 ud   ,     2 
ffVl = Ä2 + yI 1 - I^Aaf) - as-Ill0(aiAas2) 

aiA 

= wM+2Ä I1 - ^P^*' - OTT7»»*2^*' 'S 

.2 4 ,-2\ "yq = Ä2 + y/^Ä7i|o(aiAa5 ) = 
1 

2&0 

-d
2 

+ 2V^WoIl]o{2y^^~o) 

Using (5.22) and (5.23) gives an estimate of the variance of 7/1 as 

$0 .2 
;y«i — ^—c 

0!i 

A2 
A  2 _     _A2 _       . 

(5.23) 

(5.24) 

(5.25) 

When the target amplitude is unknown to the signal processor, an ML estimate 

of the target amplitude will be used along with the monopulse ratios to estimate the 

DOA. Since the target amplitude is observed through the sum signal, the estimation 

of the target amplitude will be decoupled from the monopulse processing. Given an 

observation of the sum-signal amplitude A and (3.54), the ML estimate &i of the 

target amplitude satisfies 

^ = AloC&iAflrJ2) (5.26) 

Note that A is a biased estimate or observation of a.\ for low and moderate observed 

SNRs 3£0. An approximation of the ML estimate is given by 

&i       A r    A2     1 
— « — —0 T for     SR0 > 3 dB (5.27) 
as      crs LA2 +<T|J 

where the maximum percent of error in the approximation was found numerically to 

be 5 percent at 9ß0 = 3 dB. Note that as is included on both sides of the equation to 

emphasize that the approximation is about scaled values of a\ and A. The limitation 

of 3?0 > 3 dB is not a particular problem since the detection threshold is often greater 

than 3 dB, and a single observation with a smaller amplitude provides essentially no 

error reduction relative to the beamwidth of the sum pattern. Thus, using 6t\ for ct\ 

in (5.22) gives an approximately ML estimate of rji for a monopulse measurement of 

target with amplitude unknown as 

»7l = 1 + 
A2 yi 1 + 

1 

W0 
yi     for     &0 > 3 dB (5.28) 
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This estimate differs from the results of [40], where the monopulse ratio is given as 

the ML estimate for a high SNR. While (5.28) provides a biased estimate of ft, the 

bias will be less than that provided by the standard monopulse ratio. An estimate 

with less bias can be computed by using (5.26) and (5.27) in (4.70), but the estimate 

will not be ML. Under the ML conditions of (5.26) 

A 
2A4 

_-2\ 

Using (5.29) in (5.23) and (5.26) in (5.24) with ax 

variance of yj and yq as 

1 - Ifo(aiA<rs') - _/1|0(aiA<7ja) (5.29) 

&i gives an estimate of the 

A2 d+yM 
A2 + 8A4 

*2    _ 4   ,   vWs 
ayg ~ A

2
       A2 

2»„ 

2»„ 

<T
2

S 
+ m0 

ad    ,     2 

for     sß0 > 3 dB (5.30) 

for     3?0 > 3 dB (5.31) 

While (5.31) is similar to (2.49), (5.30) differs significantly from (2.49), which is 

commonly reported in the literature as the variance of monopulse ratio. 

A Monte Carlo simulation of 5,000 experiments was conducted for various values 

of 3fc.Fi and ft to assess the validity of (5.30) and (5.31) for estimating the variances 

of the corresponding monopulse ratios. For each experiment, the measured amplitude 

was restricted so that 3£0 > 3 dB and o\ = <r|, and yj and yq were normalized by 

the corresponding standard deviation of (5.30) or (5.31) before computing the sample 

standard deviation. The results of the simulation study for yj are summarized in 

Figure 5.12, where the dash lines correspond to (5.30), and the solid line corresponds 

to the variance calculation of (2.49) with 3? = sft0 and rj = yj. Thus, the variance 

estimates of (5.30) appear valid for 3 < $Fl < 12 dB and ^l < 2, while the variance 

estimates for UF1 > 15 dB are valid for \rn\ < 3. Note that the variance estimates 

produced with (2.49) are valid for ?RF1 > 12 dB and Ift | < 0.25. The results for yQ 

are given in Figure 5.13 and indicate that (5.31) is valid for 3 < &Fl < 9 dB and 

foil < 1, and $lFl > 12 dB and |ft| < 3. 

Using (5.28) and (5.30) gives an estimate of the variance of ft as 

A2  - 
% - 1 + 

1 

25R0 

2i2 

A2 

1 + 

A2 + 2A4 

1 

23?0 

2 r~2 

-T + 4»„ 
for     5R„ > 3 dB (5.32) 
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Single-pulse ML estimators for the DO A were presented for the cases of known 

and unknown target amplitudes. The single-pulse DOA estimator for a target with 

unknown amplitude is important because it characterizes any given monopulse mea- 

surement without assumptions regarding the distribution of the target amplitude. 

While the approximate ML estimators are biased for low to moderate SNRs, the bias 

of the DOA estimate is less than that provided by the monopulse ratio alone. An 

unbiased DOA estimator could be developed with (4.70), (5.26), and (5.27). Simu- 

lation results indicate that the variance estimator developed in this section for the 

in-phase part of the monopulse measurement of a target with unknown amplitude 

is much closer to being consistent than (2.49), which is commonly presented in the 

literature. 

5.3 Rayleigh Target in the Presence of a Gaussian Jammer 

Since jammer signals enter into all the range bins, the DOA estimate of the jam- 

mer and the amplitude of the jammer signal can be estimated with the monopulse 

measurements that do not include the target. The DOA of the jammer can be esti- 

mated as discussed in Section 5.1 for a Rayleigh target. The variance of the DOA 

estimate for the jammer is also estimated as discussed in Section 5.1. These estimates 

of the DOA and the amplitude of the jammer are used in conjunction with the results 

of Section 4.2 to develop an MM approach to the DOA estimation for the target. 

Let 3£j and f/j be estimates of the amplitude and DOA of the jammer, and let 

otj be the estimated variance of fjj. Also, let p = 0. Using (3.16) and (3.32) gives an 

estimate of fäjn for N subpulses that include both the target and jammer echoes as 

&m=YN-l- $j (5.33) 

Setting the estimate of the conditional mean yj in (4.46) equal to the mean of (4.53) 

and using (5.33) in the result gives an estimate of TJI as 

Vi 
YN 

[YN-l- ®j 
VI 

Uj 

YN-l-$j 
VJ (5.34) 

Assuming that the errors in yj and fjj are uncorrelated, ignoring the variance of Rj, 

and using (4.55) and (4.56) gives an estimate of the variance of fji as 

a. 

where 

cr: 
q=-T + 

Vl 

1- 

Y, N 
T2 

YN-l 

&J + 1 

YN 

».; 

Vi + 

2NYN 
+ ®j 

$R2 

YN 
« + 

YN-1- », 

ftj + 1 
YN 

4 VJ (5.35) 

YN 
Wi-^)2(5.36) 

126 



NSWCDD/TR-97/167 

Thus, when tracking a Rayleigh target in the presence of a Gaussian noise jammer, 

(5.33) gives an estimate of the target amplitude in the presence of the jammer, and 

(5.34) gives an estimate of the DOA of the target that is "compensated" for the bias 

in the monopulse ratios that results from the jammer. 

5.4 Two Unresolved Rayleigh Targets with Known Relative RCS 

The FIM and CRLBs are developed for the DOA estimation of two unresolved 

Rayleigh targets using a standard monopulse radar. The FIM and CRLBs are used 

to study the effects of beam pointing on the DOA estimation. Using the results of 

Section 4.2 for two unresolved Rayleigh targets, an MM approach is taken to the DOA 

estimation for two unresolved Rayleigh targets. The mean of the in-phase monopulse 

ratio is used to estimate the DOA of the centroid of the two targets, while the variance 

of the in-phase and quadrature monopulse ratios is used to estimate the difference of 

the DO As of the two targets. Simulation results that illustrate the performance of the 

DOA estimators are given along with some simulation results for a simple tracking 

example. 

Fisher Information and CRLBs 

The FIM and CRLBs associated with r}\ and 7/2 are developed. The FIM will be 

used to study the effects of antenna pointing on the DOA estimation, while the CRLBs 

will be used later in this section to assess the performance of the DOA estimators. 

The FIM [11, p. 79] associated with i)i and 7)2, based on N observations of yj and 

t/Q, is found by using (4.53) and (4.54). The FIM is given by 

WII,%W{3U}*=I,*2ä) = g(Rja + Rja + 1)2 (5.37) 

SiJi f,  ,    2   .        „    A  .2i 2     (7/1 + KÄ2Ar/) 

x 

1 + —fa + KJBAJ/) 
&Ä2L      qYN -1 QYN fa - &RIATI) 

1 + \-i 

2     O/i + KjfcAi/) $R2 1 + -J^(V2 ~ 9tmArj)2 

where Ar/ = r\\ — 7/2 > 0. 

The FIM of (5.37) was used to study the effects of sensor pointing on the DOA 

estimation. The dependence of Iyj,yQ(fli,?l2\N, {9£0fc}jfcLi> ®2R) 
on YN was removed 

by setting YN = E[YN\^2R] = &äI + $R2 + 1 in (5.37). The effects of the antenna 

gain pattern are not assumed to be included in A, the relative RCS of the two targets. 

The effects of the antenna gain pattern were included in the analysis of the FIM by 

using 

*" = *"<°*(i£;)       5« = B««-4(©       (5-38> 
127 



NSWCDD/TR-97/167 

in (5.37) for SRRI and 3£Ä2, respectively. The r)bw denotes the DOA value at the 

one-way, half-power point on the antenna gain pattern of the sum channel. Thus, at 

li = Vbw, $Ri = 3£ffi - 6 dB. For a monopulse error slope, km, in units of beamwidth, 

2J?6W « km. For all of the examples in this section, rn,w = 0.8. 

Figure 5.14 shows the FIM for two 13-dB targets (i.e., UR1 = $R2 = 13 dB) sep- 

arated by one-half beamwidth (i.e., AT? = T)bw = 0.8) versus the DOA of target 1, m, 

for N = 4, 8, and 12 subpulses. The DOA for target 2 is given by j/2,= Vi ~ A77. 

Thus, 77! = 0 in Figure 5.14 corresponds to target 1 on the antenna boresight, while 

»/i = 0.8 corresponds to target 2 on the antenna boresight. The trace of the FIM 

in Figure 5.14 shows that pointing the antenna boresight exactly between the two 

targets (i.e., rji = 0.4) is the least informative angle for sensor pointing. Consider- 

ing the Fisher information for the two targets separately shows that one radar dwell 

with eight subpulses between the two targets (i.e., 771 = 0.4) gives Fisher informa- 

tion for the individual targets of 55 each for a total of 110, while two consecutive 

radar dwells with four subpulses each at the individual targets (i.e., 771 = 0 and 0.8) 

gives a total Fisher information of about 125. Thus, when two Rayleigh targets with 

equal RCSs are separated by about one-half beamwidth, the most informative beam- 

pointing strategy involves pointing directly at the two targets on consecutive dwells. 

The DOAs and target amplitudes would then be estimated jointly with approximate 

knowledge of the antenna patterns. 

Figure 5.15 shows the FIM for two 13-dB targets separated by one-fourth beam- 

width (i.e., Ar) = 0.5?/to = 0.4) versus T/I for N = 4, 8, and 12 subpulses. Thus, rn = 0 

in Figure 5.15 corresponds to target 1 on the antenna boresight, while r/j = 0.4 cor- 

responds to target 2 on the antenna boresight. The trace of the FIM in Figure 5.15 

shows that pointing the antenna boresight between the two targets (i.e., 0 < r/i < 0.4) 

maximizes the information. Considering the Fisher information for the two targets 

separately shows that one radar dwell with eight subpulses between the two targets 

(i.e., 77! = 0.2) gives Fisher information of about 250, while two consecutive radar 

dwells with four subpulses each at the individual targets gives Fisher information of 

about 240. Thus, when two Rayleigh targets with equal RCS are separated by less 

than one-fourth beamwidth, pointing between the two targets maximizes the informa- 

tion. The DOAs and target amplitudes are then estimated jointly, with approximate 

knowledge of the antenna patterns and the relative RCS of the targets as discussed 

later in this section. Note that reducing the separation of the two targets from one-half 

beamwidth to one-fourth beamwidth increases the Fisher information from 125 to 250. 

Figure 5.16 shows the FIM for a 16-dB target and a 10-dB target (i.e., &Ä1 = 
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49£ß2 = 16 dB) separated by one-fourth beamwidth versus r)i for N = 4, 8, and 

12 subpulses. Thus, r/i = 0 in Figure 5.16 corresponds to target 1 on the antenna 

boresight, while T}\ = 0.4 corresponds to target 2 on the antenna boresight. The trace 

of the FIM in Figure 5.16 shows that pointing the antenna boresight at target 2 (i.e., 

r)i « 0.4) gives the maximum Fisher information for target 2. Considering the Fisher 

information for the two targets separately shows that one radar dwell with eight 

subpulses between the two targets (i.e., T/J = 0.2) gives Fisher information of about 

350, while two consecutive radar dwells with four subpulses each at the individual 

targets gives Fisher information of about 275. However, the difference in the Fisher 

information is an information gain on the larger target. Thus, when two Rayleigh tar- 

gets with significantly different RCSs are separated by about one-fourth beamwidth, 

the most informative beam-pointing strategy appears to be pointing directly at the 

stronger target and using the results for the stronger target to estimate the DOA of 

the weaker target. While joint estimation of the DOAs and targets amplitudes would 

be appropriate, the DOAs and target amplitudes could be estimated for the stronger 

target first and the weaker target second. 

A bound on the covariance of the error of any unbiased estimator of [771    772 ] [11, 

p. 79] is given by 

cov 

where 

»71 
m 

\N 
> Jyi,yQ(m,r)2\N,{®ok}k=l,V2R) =   Iyi,yQ(fa,fa\N, {&«,*}*=!, *2ä) 

1-1 

(5.39) 

^/,»gWl»%|^,{»ofc}Ll,*2Ä) = 

$R2 

q2(®Ri + ®R2 + If 

X 
«Ä1 

-1 

1 + ^r(Vi ~ »ÄiA?)2' 

2     (m + ^R2Arj) 

~ (lYN(m-UR1Arj)-1 

8N$R1$R2[{m + Kä2AT/)
2
 + (r/2 - fftR1Ari)2 

2     (//I + ^AT/) 
-1 

SR Äi 

^R2 

-1 qYN (m - fftR1Arj) 

l + -^(V2+^R2^V)2 

(5.40) 

The diagonal elements of JVl,yQ(fa,fa\N, {U0k}k=i, $2R) give the CRLBs for fa and 

fa. These CRLBs will be used to assess the efficiency [11, p. 71] of the DOA estimators 

later in this section. 
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DO A Estimation 

An MM approach is taken to the DOA estimation for two unresolved Rayleigh 

targets. Since two DOAs are to be estimated, two expressions are needed for the MM 

estimation. Since the observations yik of yj are not stationary, yj, the ML estimate 

of the amplitude-conditioned mean of t/j, and (4.53) provide the first expression as 

$R1 + $R2 + 1 

Let A?7 = T]i — T]2 > 0, so that T/I > T/2- Also, since the relative RCS of the two targets 

is assumed known, let $IR2 — X^RI , where A > 0. Then 

»7i « vi + YTxAv ^'^ 

Since the yj). are nonstationary, Gaussian random variables, the second expression 

for DOA estimation will be obtained by forming a Chi-squared random variable with 

2N — 1 degrees of freedom from yik, 3?0jt, and yj, and setting the random variable 

equal to its mean5. Thus, for N > 1, let 

XN = [yn-yi    •••    VIN -VI    VQ1    ■••    VQN] (5.44) 

RN = 2diag[$ol    ...    $oN    9Jol    ...    %oN] (5.45) 

Since for N = 1, iji = yn, let X\ — yq\ and R\ — 25R0i. Also let 

vjf = XNR^X^q-1 (5.46) 

where q is given by (4.56). Since the amplitude-conditioned PDF of the in-phase and 

quadrature monopulse ratios are Gaussian, as given by (4.53) through (4.56), uj\r is 

a Chi-squared random variable with 2N — 1 degrees of freedom, where one degree of 

freedom has been lost due to the estimation of the conditional mean of yj [48, p. 320]. 

Then 

E[vN] = 2N-l (5.47) 

VAR[vN] = 2(2N-l) (5.48) 

Setting VN equal to its mean gives 

XNRNXN 

2N-1    ' 
N > 1 (5.49) 

5 The use of the ML value of the Chi-squared random variable, which is 2N-3, was found to give a significantly 

larger bias in the DOA estimates than the mean. 
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Since for a typical monopulse radar AT/ > 1.5 would allow the targets to be resolved by 

placing one target at a time in the null of the antenna pattern, assume that AT? < 1.5. 

Thus, pointing the antenna boresight between the targets allows the approximation 
of q by 

CTj + XRR1 
AT/

2 
(5.50) us     1 + A 

Inserting q in (5.49) for q and using the result in (5.42) and (5.43) gives the DOA 
estimates as 

m = yi + 

m = vi 

(5.51) 

(5.52) 

where 

r o, 

?=\ Hwx 
M 

q<ajas
2 

^2.A 

(1 + A): t 

9-°dffs' 

R, 
2 „-2 

otherwise 

1    N 

$R = YN-1     for     YN = -J2$ok 

(5.53) 

(5.54) 
*=i 

with 7]bw denoting the DOA value at the one-way, half-power point on the antenna gain 

pattern of the sum channel. For a monopulse error slope, km, in units of beamwidth, 

2rjbw fa km. The first case of (5.53) is introduced to ensure that the DOA estimates 

are real numbers, while the second case is introduced to prevent the difference of the 

two DOA estimates from being unreasonably large. Limiting the difference of the two 

DOA estimates was found to be critical when correcting the known relative RCS A 

for the effects of the antenna gain pattern of the sum channel as discussed below. 

Note that q can be expressed as a function of vN and that for a twice differentiable 
function g(x), 

E[g(x)}fag(x)+g"(x)ar2
x (5.55) 

where x = E[x], a\ = VAR[z], and g"(x) is the second derivative of g(x) with respect 

to x evaluated at x = x. Using (5.55) with (5.51) and (5.52) gives approximations of 

the variances of the DOA estimates for q > crja^2 as 

1 Xq 
VAR[jh|tf2Ä]»9 

VAR[r/2|*2jR] » q 
2NY, N      \®R(2N-l)(q-ajas2) 
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where 9£R = 9£RI + 9£R2- Setting q = q in (5.56) and (5.57), and by analysis of sim- 

ulation results, q(q — <?%<?£ )~1 = 1.5 was found to provide relatively good estimates 

of the variances for the DOA estimates, which are given by 

(5.58) 

(5.59) 

Simulation Results 

Monte Carlo simulations with 40,000 experiments were conducted to study the 

performances of the DOA estimators for various values of N, AT/, and A. While the 

relative RCS of the two targets is assumed to be known, the effect of the antenna gain 

pattern is not assumed to be included in A. The effects of the antenna gain pattern 

were included in the simulation of (4.1) through (4.4) by using 

ßl = ft COS 

MID 
(5.60) 

(5.61) 

for ßi and ßi, respectively. The effects of the antenna gain pattern were addressed 

in the DOA estimation by using a modified A in (5.51) and (5.52), which is given by 

cos 

A = A- 
\4m„,/ 

\(WL\ 
(5.62) 

cos 
\4ribw/ 

where r}\ and T/2 are the DOA estimates that result from ignoring the effects of the 

antenna gain pattern. The multiplier modification to A was restricted to greater than 

0.25 and less than 4. During the simulations, only measurements with NYN > 17 dB 

were utilized in the DOA estimation, and r?jw = 0.8. 

The effect of N on the DOA estimation was studied using Ar; = 0.4 and setting 

N$m = N$R2 = 26 dB (i.e., without the effects of the antenna pattern). The av- 

erages and standard deviations of the errors in the DOA estimates for target 1 are 

shown versus the DOA of target 1 in Figures 5.17 and 5.18. The DOA for target 2 is 

given by r\i = r/i - AT/. Thus, T/J = 0 in Figures 5.17 and 5.18 corresponds to target 

1 on the antenna boresight, while T?J = 0.4 corresponds to target 2 on the antenna 

boresight. For each case of N, the average error and standard deviation decreases as 
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N increases. Figure 5.19 shows the sample standard deviations of the CRLB normal- 

ized errors in the estimates of r/j. Since A is random, the DOA estimation errors were 

normalized by the corresponding CRLB prior to computing the sample standard de- 

viations. For N = 12, the simulated performance of the DOA estimators approaches 

the performance predicted with the CRLB, while for N = 4 or 8 the simulated per- 

formance of the DOA estimators differs significantly from the performance predicted 

with the CRLB. Figure 5.19 also shows that a radar pulse with a specific energy 

provides better DOA estimation with more subpulses at distinct frequencies. 

The effect of A?7 on the DOA estimation was studied using N = 8 and setting 

$Ri = $R2 = 17 dB. The averages and standard deviations of the errors in the DOA 

estimates for target 1 are shown in Figures 5.20 and 5.21 for various DOAs of target 1 

and AT? = 0.2, 0.4, 0.6, and 0.8. The DOA estimation for Ar/ = 0.8 is significantly 

degraded when compared to that for A77 = 0.2 or 0.4. Thus, when two targets are 

separated by about one-half of the one-way beamwidth, DOA estimation with two 

consecutive dwells at the individual targets may be better than a single dwell between 

them. This observation agrees with those made earlier in this chapter. 

The effect of A on the DOA estimation was studied using N = 8, Ar/ = 0.4, 

and URI = 17 dB. The averages and standard deviations of the errors in the DOA 

estimates for targets 1 and 2 are shown in Figures 5.22 and 5.23 for the positive DOAs 

of target 1; the corresponding negative DOAs of target 2; and A = 1, 0.5, and 0.25 

(i.e., SRR2 = 17, 14, and 11 dB). The r/j = 0 in Figures 5.22 and 5.23 corresponds to 

target 1 on the antenna boresight and r/2 = -0.4, while <qx = 0.4 corresponds to r/2 = 0, 

target 2 on the antenna boresight. The DOA estimation for target 1 improves as $tR2 

decreases, while DOA estimation for target 2 degrades as ^tR2 decreases as expected. 

The errors were also normalized by the standard deviation estimates of (5.58) and 

(5.59), and the sample standard deviations of those errors are given in Figure 5.24, 

which indicates that the variance estimates of (5.58) and (5.59) are reasonably good. 

Results of 20 experiments for a simple tracking example are given to illustrate the 

concept of tracking unresolved targets with monopulse measurements. The computer 

simulation program of [24] was modified to include multiple targets and processing 

measurements of unresolved targets. The target trajectories, as shown in Figure 5.25, 

are constant speed and height, and are initially separated by 1.4 km. The targets 

converge to a separation of about one beamwidth at x = 50 km. The solid lines show 

the true bearing of the two targets, while the dashed lines denote one beamwidth with 

the antenna boresight pointed directly at a bearing of zero. When the targets are 

separated by more than one beamwidth, measurements are easily associated with the 
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correct target, and conventional DOA estimation and tracking works fine. At about 

one beamwidth separation of the two targets (i.e., x = 50 km), the presence of the 

other target adversely effects the monopulse measurements, and when the presence 

of the second target was not taken into consideration in the DOA estimation and 

tracking, most tracks were lost at this point in the trajectories. A target track was 

declared lost after four consecutive measurements failed to statistically associate with 

the target or when the relative positions of the two targets inverted. At this point 

in the tracking, the DOA and amplitude estimates of the other track filter were used 

in the DOA and variance estimation in a manner similar to that in Section 5.3 for 

a Rayleigh target in the presence of a Gaussian jammer. As the targets continued 

to converge, most tracks were declared lost by about x = 70 km if the processing 

of unresolved measurements as developed in this section was not employed. For the 

processing of unresolved targets, the antenna boresight was pointed at the estimated 

centroid of the two equal RCS targets, and two dwells of six subpulses were used. 

The average tracking errors of the two-target scenario are shown in Figure 5.25, and 

the RMS errors are shown in Figure 5.26. In Figure 5.25, the dashed lines denote 

one beamwidth with the antenna boresight pointed directly at a bearing of zero. The 
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large bias in the estimates is the result of the upper limit of half a beamwidth imposed 

on f\i — fa through q. 

The initial results of the simple tracking example demonstrate the potential of 

tracking two unresolved Rayleigh targets, since the track estimates were maintained 

and did not coalesce. The use of conventional measurement processing and tracking 

resulted in the loss of both targets in every experiment. Further investigations are 

needed to reduce the bias in the estimates and improve the transition between tracking 

resolved targets and tracking unresolved targets. 
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Chapter 6 

DETECTION OF THE PRESENCE OF TWO 

UNRESOLVED RAYLEIGH TARGETS 

When target echoes interfere (i.e., the echoes are not resolved in the frequency 

or time domains), the DO A estimate indicated by the in-phase monopulse ratio can 

wander far beyond the angular separation of the targets [1,4,42]. The failure to 

detect the presence of this interference can be catastrophic to the performance of the 

tracking algorithm, since its position and velocity estimates determine the association 

of any subsequent measurements to the target. This chapter addresses the detection 

of the presence of two unresolved Rayleigh targets. The detection of the presence 

of two unresolved, fixed-amplitude targets is not considered in this research due the 

intractable statistics. However, this chapter includes results of simulation studies 

of performance of the detection algorithm for unresolved Rayleigh targets when two 

fixed-amplitude targets are present. 

In order to reduce the catastrophic effects of this target multiplicity, a thresh- 

old test of either the measured amplitude of the sum signal or the magnitude of the 

quadrature part of the monopulse ratio was considered in [49]. In the amplitude 

threshold test, a DO A estimate was considered unreliable when the measured ampli- 

tude of the sum signal failed to exceed a threshold value, and the DO A estimate was 

not used for tracking. In the quadrature monopulse test, a DO A estimate was not 

used for tracking when the magnitude of the quadrature ratio exceeded a threshold 

value. Using either of these tests will tend to make the tracking more stable and 

follow the stronger target if the amplitudes are fixed and the amplitude of one target 

is 3 to 5 dB stronger than that of the other target. However, both of these tests 

require knowledge of the amplitude of at least one of the two targets in the absence 

of the other target. While in some cases the amplitudes could be estimated prior to 

the occurrence of the target multiplicity, the reliability of the amplitude estimates 

may be a problem since the RCS of typical targets can be very sensitive to the aspect 

angle of the radar. Furthermore, target multiplicity can occur with targets of approx- 
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imately the same amplitude. In [50], a maximum-likelihood detection algorithm was 

developed for detecting target multiplicity or interference using the complex voltage 

outputs of the antenna lobes. However, the algorithm in [50] was developed for sig- 

nals with a high postdetection SNR and targets with fixed amplitudes that differ by 

more than 3 dB. Furthermore, in many monopulse systems, the sum and difference of 

the two antenna lobes are formed in the waveguide prior to the receivers. Thus, only 

the sum and difference signals are available for signal processing. This is particularly 

true in array antennas with constrained feeds [1, p. 288]. 

The detection of the presence of unresolved targets was considered in [33] with an 

M out of N threshold test of the magnitude of the quadrature monopulse measure- 

ments. The threshold value for each quadrature monopulse measurement was derived 

to be a function of the SNR and DOA with the marginal PDF for the quadrature 

monopulse measurements. The detection of unresolved Rayleigh targets was further 

considered in [51], where the power centroid and angular extent of a set of measure- 

ments were estimated from the sum and difference signals, and target multiplicity was 

declared when the estimated angular extent exceeded that expected from a single tar- 

get. The algorithm of [51] was shown to give significantly improved detection over 

the algorithm of [33] for two or more (independent) observations (i.e., N > 1) and 

to be equivalent to the algorithm of [33] for one observation (i.e., N — 1). While an 

improvement in the detection of unresolved Rayleigh targets was realized in [51], the 

detection threshold value remained a function of the SNR and DOA. In this chapter, 

amplitude-conditioned PDFs of Sections 4.1 and 4.2 are used to develop a GLRT 

for detection of the presence of unresolved Rayleigh targets with a Neyman-Pearson 

algorithm. Conditioning the PDF of the monopulse measurements on the measured 

amplitude of the sum signal gives the in-phase and quadrature monopulse ratios as 

conditionally independent, Gaussian random variables so that the PDF is fully spec- 

ified by the means and variances. Since the SNR of neither target is assumed known, 

the measured amplitude of the sum signal provide no information concerning the DOA 

of either target or the presence of two targets. Thus, the PDF of the monopulse mea- 

surements can be conditioned on the measurement amplitude to obtain a Gaussian 

distribution without any loss of information. 

A Neyman-Pearson algorithm for GML detection of target multiplicity is devel- 

oped in this chapter. The algorithm is developed for a single radar dwell that includes 

multiple noncoherent pulses at slightly different frequencies so that independence of 

the target amplitudes is achieved. When utilizing the conditional PDF in the de- 

tection of target multiplicity, the test statistic is shown to be a chi-square random 
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variable with 2N — 1 degrees of freedom for N pulses. The test utilizes the observed 

SNRs and estimates of the SNR and DOA. Thus, the test requires no specification 

of the SNR or DOA of either target. Of course, the probability of detecting target 

multiplicity is dependent on the relative amplitudes and locations of the two targets. 

ROC curves are given to illustrate the performance of the new detection algorithm, 

and specific comparisons are made between the predicted performances of the new 

algorithm and the algorithm developed in [51]. Simulation results that confirm the 

performance predictions of the ROC curves are given along with concluding remarks. 

Detection of Target Multiplicity 

Let HQ denote the hypothesis of no unresolved targets (i.e., Target 1 only), and 

Hi denote the hypothesis of two unresolved targets (i.e., Targets 1 and 2). Then, 

Section 4.2 gives the PDFs of yj and yq for two unresolved Rayleigh targets as 

f(yQ\Hu®0,y2R) = N(o,at) (6.2) 

where 

,2 

q = (6.4) 

with q being introduced for later reference. The 9£RI and 9£#2 are *ne SNRs of target 

1 and target 2, respectively, while T/I and r)2 are the DOAs for target 1 and target 2, 

respectively. The variance expression of (6.3) also shows that the DOA estimation 

for two unresolved targets is not directly improved by increasing the expected value 

of 3£0 through the transmitted energy because increasing the transmitted energy also 

increases fäju and 3?#2- The larger errors in the monopulse measurements occur when 

the two target echoes interfere to produce a value for 5J0 that is small relative to 

KäIK^SäI+ÄJB + I)-
1
- 

Using the results of Section 4.1, the PDFs of yj and yq for a single target are 

given by 

/(y/|ffo,*o,*Ä) = ^(ä^TT^o) (6-5) 

f(yq\H0,®o,yR) = N(0,4) (6.6) 
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where 

4 = 

p 

p 

Lai 
$R1 

»Ä1 + 1 
4 

(6.7) 

(6.8) 

Since the receiver errors are assumed to be independent, p of (6.8) was obtained by 

setting p = 0 in (4.45). 

Since yj is a conditional Gaussian random variable under H0 or Hi, the ML 

estimate [11, p. 65] of yj, which is the conditional mean of yj under H0 or Hi, is 

given for N independent pulses by 

N 
lOJ 

-1 N r        i-i N 

£ «o*w* = [NYN\    £ ***W* 
Jb=l 

(6.9) 
ifc=i 

where the y^. denotes the in-phase monopulse ratio for pulse k, and $ok denotes the 

observed SNR given by (3.11) for pulse k. Thus, the estimate yj is a "power" weighted 

sum of the TV monopulse ratios. Since the yn, are Gaussian random variables, yj is also 

the minimum variance estimate of yj and a Gaussian random variable with variance 

given by 

4, f[XX< 
*=i 

-l P 
2NYN 

Using 

VI 
*Äi 

-Vi 

(6.10) 

(6.11) 
»Äi + 1 

from (6.5) and 3£Ä1 = 3£Ä1 in (6.8) gives an estimate of <r^, which is the variance the 

monopulse ratio of pulse k under hypothesis H0, as 

^   -    P 

.2 

H|+(-it>' 

(6.12) 

(6.13) 

where 9£Ä1 is the ML estimate of KÄ1 under H0 (i.e., 3?Ä2 = 0). Then &Rl is given 

by (3.32) with SR^ = üftß. An estimate of the variance of the y/ can be achieved by 

using p in (6.10). 

Comparing (6.1) through (6.4) with (6.5) through (6.8) suggests that the presence 

of unresolved Rayleigh targets can be detected using the GLRT [11, p. 92], where the 

ML estimate of yj, the conditional mean of yj under H0 and Hi, is used for the 
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means since 771 nor 772 is known a priori Since the monopulse measurements are 

conditionally Gaussian distributed under H$ and H\, (6.9) gives the ML estimate 

of the conditional mean yj under both hypotheses. Thus, using (6.1) through (6.8) 

and generalizing directly over the conditional mean under each hypothesis gives the 

generalized likelihood ratio [11, p. 92] for N independent pulses as 

N 

Vl 

L({yik}LiAyQk}Limok}Li,*2R) = ^ 

max J| f(yIk, yQk\Hu $ok, ^2R) 

N 

max TT /(y/fc, yqk\H0, Kofc, ®R) 

N 

Y[f(yik,yQk\Hi,yi = m, $ok, *2E) 
k=i  

N 

Y[f(yik, yQk\Ho,yi = yi, K0jfc, <&Ä) 
k=l 

N 

j ,    exp ^(g-l-p-l)XlRNXN\(6.U) 

where for N > 1, 

XN = [yn-yi   ...   yiN -yi   yq\   •■■   yqN] (6.15) 

JRAr=2diag[5ftol    ...   MoN   sßol    ...   $oN] (6.16) 

and for N = 1, X\ = t/gx and R\ = 23ft0i. The t/jjt and yqk are the in-phase and 

quadrature monopulse ratios for pulse k, while 9£0fc is the observed SNR of (3.11) for 

pulse k. Taking the logarithm of (6.14) gives the test statistic for the GLRT as 

TN = XNR^XN (6-17) 

This TN is related to the test statistic C   of [51] according to 

TN = YNC2 (6.18) 

where Ypj is the sample mean of the observed SNRs as given by (3.29). The use of the 

amplitude-conditioned PDFs of the yn and yq\ in the GLRT gives the test statistic 

TJV, which is proportional to a chi-square distributed random variable, while the test 

statistic C used in [51] is F-distributed [52, p. 946]. The performance predictions of 

this section and the simulation results of the next section indicate that the use of T/v 

gives better detection of target multiplicity than the use of C . 
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Since the conditional densities for the in-phase and quadrature monopulse ratios 

are Gaussian for H0 with variance given by (6.7), Tjvp-1 is a chi-square random 

variable with 2N - 1 degrees of freedom under H0, where one degree of freedom has 

been lost due to the estimation of the conditional mean of yi [48, p. 320]. Taking a 

Neyman-Pearson approach to the detection problem, the probability of false detection 

of multiple targets (i.e., the probability of detecting the presence of unresolved targets 

when only one target is present) for a detection threshold A^ is given by 

1 r+oo 
PFDMT = P{TNP~l > Ad|#o, {^}f=i, **} = -ir-1  /      tN~h-idt 

2N~2T(N - i) Jxd 

(6.19) 
where P{-} denotes probability of an event, and T(-) is the gamma function [52, 

p. 253]. Figure 6.1 shows the normalized detection threshold A<? versus PFDMT f°r 

N = 2,3,4, and 5. Note that the PFDMT 
can also be determined with a table for the 

chi-square distribution that can be found in various books (e.g., [52, p. 984]). 

Since no assumptions are made regarding the DO As or SNRs of the targets, a 

Neyman-Pearson approach will be taken to the detection problem so that an estimate 

of only p is required. Thus, for a specified PFDMT and corresponding A<j, the decision 
rule 8 is given by 

-#0,    TN < p\d 
Hi,   TAT > p\d { (6.20) 

where 

4 i + 
»ja 

«2       4   ■ 1 + 
YN-1 

N 
i2 

NY» *=! 
52®okVlk (6.21) 

with YN given by (4.47), and the MM estimate of ^ has been used in p of (6.8) to 

form p. Note that predictions of detection performance given in this section are only 

approximations, since p is used for p. However, the predictions of performance are 

shown to agree rather well with the results of simulation studies. 

Since the conditional densities for the in-phase and quadrature monopulse ratios 

are Gaussian for Hi with variance given by (6.3), T^q~l is a chi-squared random 

variable with 2N - 1 degrees of freedom under Hi. The probability of detection of 

multiple targets (i.e., the probability of detecting the presence of unresolved targets 

when two unresolved targets are present) is given by 

POMT = P{TNq~l > Xdpq~1\Hi,{^ok}ti^2R} 
1 f+°° 3 t 

=    N   i   , r / tN-2e~2dt (6.22) 
2N"T(N - i) J\dPq-i 

V       ' 
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Figure 6.1 Detection Thresholds Versus Probability of False Alarm for N = 2,3,4, 

and 5 Pulses 

Figure 6.2 shows approximate ROC curves for the detection algorithm for tar- 

get 1 and target 2 situated symmetrically about the boresight of the antenna (i.e., 

rji = —7/2), 9£RI = 3?R2 = 13 dB, and o\ = Og. The solid lines denote cases where 

r)\ = —7/2 = 0.4, while the dashed lines denote cases where r?i = —7/2 = 0.2. Thus, for 

Figure 6.2 and monopulse error slope km — 1.6 (see (2.45)), the solid lines correspond 

to two targets situated about one-fourth of a beamwidth from the antenna bore- 

sight, while the dashed lines correspond to two targets situated about one-eighth of 

a beamwidth from the antenna boresight. The PFDMT were generated for a 2JV — 1 

degree-of-freedom chi-square random variable for various values of A<j. The PDMT 

were generated by using 

" = ««+»« + ! (6'23) 

and the true values of ^2R m P and ?• F°r the solid lines, p = 1.0 and q = 7.4, 

and for the dashed lines, p = 1.0 and q = 2.6. Figure 6.2 indicates that a PDMT — 

0.92 with PFDMT = 0.01 can be achieved with four pulses at 13 dB when the two 

targets are separated symmetrically about the antenna boresight by one-half of a 

beamwidth. Four 13-dB pulses correspond to a total SNR of about 19 dB, which is not 

an unreasonable SNR for tracking. The detection performance drops to PDMT = 0.4 
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with PFDMT = 0.01 when the two targets are separated by one-fourth of a beamwidth. 

Comparing the solid and dash lines of Figure 6.2 indicates that the difficulty of the 

detection problem increases as the angle of separation decreases. 

Figure 6.3 shows the ROC curves for the detection algorithm for target 1 at the 

boresight of the antenna (i.e., r/i = 0) and target 2 off the boresight by one-half of the 

beamwidth (i.e., T?2 = 0.8). The solid lines denote cases where 3?Ä1 = $R2 = 13 dB, 

while the dashed lines denote cases where fäm = 49?#2 = 13 dB. Thus, for Figure 6.3, 

the solid lines correspond to p = 1.1 and q = 7.6, and the dashed lines correspond 

to p = 1.0 and q = 3.6. Comparing the solid lines from Figures 6.2 and 6.3 indicates 

that pointing between two targets provides slightly better detection of the target 

multiplicity than pointing directly at one of the two targets. Comparing Figures 6.2 

and 6.3 also suggests that the probability of detection is more sensitive to the angular 

separation of the targets than to the relative amplitudes. 

Simulation Results 

Since p is used for p in the decision rule of (6.19), the decision rule was applied to 

simulated measurements to confirm the performance predictions given in the previous 

section. Radar dwells with four pulses (N = 4) were considered, and A<f = 18.4 

was chosen in order to achieve a false alarm rate of 0.01. Table 6.1 provides the 

percents of false alarms for various DO As and SNRs that occurred during Monte 

Carlo simulations with 25,000 experiments for each entry. The measurements were 

simulated with (4.1) through (4.2) by setting a; = 0 for all i, and ft = 0 for all 

i > 1. For rji = ±0.75 and km = 1.6, the target is about one-half a beamwidth off the 

antenna boresight (i.e., 9 = ±0A76Bw)- Note that with the exception of r^ = ±0.75 

and ±1.0, and fäm - 7 dB, the false alarm rates found with the simulation studies 

agree well with the design value of 1.0 percent. This poor performance for 3?fil and 

7/! = ±1.0 is the result of using an estimated value for p at a low SNR with only a 

few pulses. Note that the total expected SNR of four pulses at 7 dB is 13 dB (i.e., 

4:E[$0) = 20). 

The probabilities of detection that occurred during 25,000 experiments for each 

entry are shown in Figure 6.4. The measurements included four independent pulses 

that were simulated using (4.1) through (4.4) for one target at the boresight and 

the second target at various off-axis angles. The decision rule was implemented with 

Xd = 18.5 to achieve a PFDMT - 0.01. The solid lines correspond to simulation 

results with 5RÄ1 = $R2 = 13 dB, &Ä1 = 3?A2 = 10, and ®R1 = 4$R2 = 13 dB, while 

the dotted lines correspond to the predicted performance based on the results of the 
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Table 6.1 Percents of False Alarms for Detection of Target Multiplicity 

Percent of False Alarms (%) 

m %Ri = 7 dB $R1 = 10 dB 5RÄ1 = 13 dB 

-1.00 2.1 1.6 1.3 

-0.75 1.8 1.3 1.2 

-0.50 1.4 1.2 1.1 

-0.25 1.1 1.0 1.0 

0.00 1.0 0.9 0.9 

0.25 1.1 1.0 1.0 

0.50 1.4 1.2 1.1 

0.75 1.8 1.3 1.2 

1.00 2.1 1.6 1.3 

previous section. Figure 6.4 shows that the simulated performance of the detection 

algorithm agrees very well with the performance predictions based on (6.19) and 

(6.22). For two 13-dB targets and four pulses, Figure 6.3 predicts PDMT = 0.92 

for PFDMT = 0.01, while the simulations results give PDMT = 0.89. Figure 6.4 

suggests that the probability of detection depends on the total SNR (i.e., URl +$R2). 

Figure 6.4 also indicates that the probability of detection depends strongly on the 

angle of separation. 

Figure 6.5 shows the probabilities of detection that occurred during 25,000 exper- 

iments for each entry. The measurements included four independent pulses that were 

simulated using (4.1) through (4.4) for two targets symmetrically located about the 

antenna boresight at various off-axis angles. The decision rule was implemented with 

\d = 18.5 to achieve a PFDMT = 0.01. The solid lines correspond to simulation results 

with $Rl = $R2 = 10 dB, $Rl = $m = 13 dB, and »Ä1 = 0JÄ2 = 16 dB, while the 

dot lines correspond to the predicted performance based on the results of the previous 

section. Figure 6.5 shows that the simulated performance of the detection algorithm 

agrees well with the performance predictions. 
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The simulation studies that were conducted for Figure 6.5 were also conducted 

for two fixed-amplitude targets to assess the performance of the algorithm when the 

targets are fixed-amplitude rather than Rayleigh. The results of that simulation 

study are given in Figure 6.6. Thus, for two fixed-amplitude targets, the simulated 

performance of the detection algorithm exceeds the performance predictions for two 

unresolved Rayleigh targets. Note that the GML detection algorithm in this chapter 

was developed for Rayleigh targets, and a better algorithm may exist for the detection 

of the presence of unresolved targets with fixed-amplitudes. In fact, if the targets are 

known to have only amplitudes that are fixed and with random relative phases, the 

results of Section 3.8 indicate clearly that the measured amplitude of the sum signal 

can be used to detect the presence of unresolved targets with fixed-amplitudes. 

The predicted performance of the detection algorithm in [51] with five pulses is 

cited for two 15-dB Rayleigh targets (i.e., SNR = 18 dB) situated symmetrically 

about the boresight as PDMT = 0.77 and PFDMT — 0-05. Note that the performance 

predictions in [51] are based on the use of the true SNR and DOA in the selection 

of the detection threshold, while the detection threshold for the GML algorithm 

developed in this chapter does not require this knowledge. The case6 considered in 

[51] corresponds to r}\ = —772 = 0.25 and 3?RI = fä^ = 15 dB, which gives p = 1.0 and 

q = 4.94. For this case, the predicted performance of the GML detection algorithm 

with five pulses is PFDMT — 0.05 and PDMT = 0.94. A Monte Carlo simulation 

with 25,000 experiments was conducted to confirm the performance improvement. 

The decision rule was implemented with A<j = 16.9 to achieve a PFDMT — 0.05. 

The percent of detections in the Monte Carlo simulations was 94 percent. Thus, the 

predicted performance agrees with that of the simulations as shown in Figure 6.5. 

Also, for this case, the predicted performance of the GML detection algorithm with 

three pulses is PFDMT = 0.05 and PDMT = 0.81. The decision rule was implemented 

with A = 11.1 to achieve a PFDMT = 0.05, and the percent of detections in the Monte 

Carlo simulations was 81 percent. Thus, the simulation results confirm the superior 

performance of the GML algorithm. Furthermore, the GML algorithm without a 

priori knowledge of SNR and DOA provides better detection than the algorithm in [51] 

with knowledge of the SNR and DOA. This improvement in detection performance 

can be attributed to the use of the amplitude-conditioned PDF of the monopulse 

ratios and the use of the likelihood ratio for the detection [22, p. 64]. 

Since -j was omitted from the trigonometric functions in [51], this case does not correspond to two targets 

separated by one-half beamwidth as stated in [51]. 
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Figure 6.5 Simulation Results for Two Targets Symmetric About the Boresight 
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Figure 6.6 Simulation Results for Two Fixed-Amplitude Targets Symmetric About 

the Boresight 

Concluding Remarks 

The Neyman-Pearson algorithm for GML detection of the presence of multiple 

unresolved Rayleigh targets requires no a priori specifications of the SNR or DOA 

of the target of interest. However, the design value of the false-alarm rate is not 

necessarily achieved with four pulses when the SNR is 7 dB and below, and the DOA 

is near one-half of a beamwidth off the antenna boresight. Also, the probability 

of detecting target multiplicity with fewer than six pulses and targets of moderate 

SNRs (i.e., 13 dB or less) is shown by Figure 6.2 to be very low when the targets are 

separated by less than one-fourth of a beamwidth. The performance predictions that 

were found agree very well with the results of Monte Carlo simulations. 

The GML detection algorithm without knowledge of the SNR and DOA was 

shown via simulations to be superior to the detection algorithm developed in [51] 

that requires knowledge of the SNR and DOA to set the detection threshold. For two 

unresolved Rayleigh targets separated by one-half of a beamwidth, the new algorithm 

with five pulses provides PDMT = 0.94 for a PFDMT = 0.05, while the algorithm of 

[51] provides PDMT = 0.77 for a PFDMT = 0.05. Also, for this case from [51], the 

performance of the GML detection algorithm with three pulses was PFDMT — 0.05 
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and PDMT = 0.81. Thus, the GML detection algorithm with three pulses provides 

better detection than the algorithm of [51] with five pulses. Also, the design of the 

GML detection algorithm is easier than the design of the algorithm in [51] in that the 

design of the GML algorithm involves the chi-square distribution, while the design of 

the algorithm in [51] involves the F-distribution [52, p. 946]. 

The statistics associated with detection of the presence of two unresolved, fixed- 

amplitude targets is intractable. However, the simulations results showed that the 

GML detection algorithm provides detection of the presence of unresolved targets 

with fixed amplitudes that exceeds the predicted performance for two unresolved 

Rayleigh targets. 
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Chapter 7 

CONCLUSIONS AND FUTURE RESEARCH 

When target echoes interfere in a monopulse radar system, the DOA estimate 

indicated by the in-phase monopulse ratio can wander far beyond the angular sepa- 

ration of the targets. In addition to closely-spaced targets, the problem of unresolved 

or merged measurements also occurs when targets are observed in the presence of 

jammer signals or sea-surface-induced multipath. The failure to detect the presence 

of this interference and address it in the DOA estimation can be catastrophic to the 

performance of the tracking algorithm, since its position and velocity estimates de- 

termine the association of any subsequent measurements to the target. Monopulse 

processing for tracking unresolved targets was addressed through amplitude estima- 

tion and discrimination, probability distribution of the complex monopulse ratio, 

DOA estimation, and detection of the presence of unresolved targets. 

Estimation of the target amplitude parameters and discrimination between vari- 

ous models for the target amplitude fluctuations were considered in Chapter 3. The 

PDF of the measured amplitude of the sum signal was developed for M unresolved 

Rician targets. CRLBs, ML estimators, and MM estimators were developed for 

the amplitude parameters of Rayleigh, fixed-amplitude, new dominant-plus-Rayleigh, 

and Rician targets. The waveform requirements for reliable discrimination between 

Rayleigh, fixed-amplitude, and dominant-plus-Rayleigh targets were also be consid- 

ered. The PDF of the measured amplitude of two unresolved Rician targets was 

studied and shown to conflict with the results of [17]. MM estimators were developed 

for the target amplitudes of two unresolved, fixed-amplitude targets, and the target 

amplitude and the cosine of the phase difference between the target and specular 

reflections from the sea surface. Future research includes the development of ROC 

curves for the detection of the new dominant-plus-Rayleigh target and the extension 

of the results for a fixed-amplitude target in multipath to a Rayleigh target in multi- 

path. Other research opportunities include the extension of the technique for target 
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amplitude discrimination to multiple radar dwells and optimal allocation of radar 

resources for discrimination. 

The amplitude-conditioned PDF and the statistics of the complex monopulse ra- 

tio are developed in Chapter 4 for M unresolved Rician targets. Conditioning the 

PDF of the monopulse ratio on the measured amplitude of the sum signal gives 

in-phase and quadrature monopulse ratios that are approximately Gaussian random 

variables so that the PDF is specified approximately by the means and variances. The 

amplitude-conditioned PDF and the statistics were developed for various cases of a 

single target and two unresolved targets, and a fixed-amplitude target in the presence 

of sea-surface-induced multipath. For a single pulse and a resolved target, the in-phase 

and quadrature monopulse ratios were shown to be uncorrelated, non-Gaussian ran- 

dom variables for a nonzero DOA, and the marginal PDF of the quadrature ratio 

was shown to have a mean of zero and be symmetric about zero for all DOAs. For 

M unresolved Rayleigh targets, the in-phase and quadrature monopulse ratios were 

shown to be conditionally independent, Gaussian random variables with equal vari- 

ances, and the quadrature monopulse ratio was shown to have a mean of zero. The 

PDF and statistics of the monopulse ratios were also developed for the case of two 

unresolved, fixed-amplitude targets with a given relative phase. Future research will 

involve the development of the statistics of the monopulse ratios for a random relative 

phase and two fixed-amplitude targets. These statistics for a random phase could be 

used to detect the presence of two unresolved, fixed-amplitude targets and estimate 

the DOAs. The PDF and statistics of the monopulse ratios were also developed for 

a fixed-amplitude target in the presence of sea-surface-induced multipath. Further 

research will involve the extension of the statistics for a fixed-amplitude target to a 

Rayleigh target in the presence of sea-surface-induced multipath. 

DOA estimation was considered in Chapter 5 for single resolved targets and two 

unresolved targets. For a single target, the DOA estimation with multiple pulses 

from a Rayleigh target was considered along with single-pulse DOA estimation. DOA 

estimation was also considered for a Rayleigh target in the presence of a Gaussian 

noise jammer and two unresolved Rayleigh targets with known relative RCS. Further 

research is needed to relax this requirement for a known relative RCS. One potential 

approach to relaxing this requirement involves the use of two spatially-offset radar 

dwells. However, development of the DOA estimation algorithm is not considered 

in this report, because the estimation algorithm and the associated analysis will 
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be quite cumbersome. Further research is needed to develop a technique for DOA 

estimation for two unresolved, fixed-amplitude targets and a fixed-amplitude target 

in the presence of multipath. Further research is also needed to identify the system- 

level benefits of array signal processing [2] versus monopulse processing for DOA 

estimation of unresolved targets. 

The detection of the presence of two unresolved Rayleigh targets was considered 

in Chapter 6. A GLRT was used to develop a Neyman-Pearson algorithm for the 

detection of the presence of unresolved Rayleigh targets, and performance predictions 

of the new algorithm were shown to agree closely with the results of simulation studies. 

Further research is needed to develop a technique for detecting the presence of two 

unresolved, fixed-amplitude targets. This effort will again require the development 

of the PDF and statistics for two unresolved, fixed-amplitude targets with random 

relative phase as discussed above. However, simulations results showed that the 

GML detection algorithm developed in Chapter 6 provides detection of the presence 

of unresolved targets with fixed amplitudes that exceeds the predicted performance 

for two unresolved Rayleigh targets. 

While additional research is needed to develop the algorithms for supporting the 

tracking of unresolved targets with fixed amplitudes, the basic algorithms needed to 

support the tracking of two unresolved Rayleigh targets has been completed in this 

report. These basic algorithms involve the detection of the presence of unresolved 

Rayleigh targets and DOA estimation for two unresolved Rayleigh targets. Previous 

approaches to DOA estimation of unresolved targets require a priori knowledge of 

the number of targets present (usually restricted to two), a very high SNR (often 40 

to 50 dB), and the absence of irregular or diffuse reflections. Through a stochastic 

approach to the tracking of unresolved targets, these restrictions have been relaxed 

for Rayleigh targets. The requirement for a priori knowledge of the number of targets 

has been relaxed to one or two targets, where the presence of unresolved targets is 

detected, not known a priori. The required SNR is relaxed from 40 dB to near 20 

dB, which is achievable with conventional monopulse radars. The required absence of 

irregular or diffuse reflections has been relaxed through the inclusion of models for the 

target amplitude fluctuations in the problem formulations (e.g., a Rayleigh target). 

However, to fully utilize the results of this report, the results must be incorporated 

into the tracking (i.e., state estimation) and data association algorithms [53]. One 

approach to the state estimation and data association involves the Nearest-Neighbor 
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Probabilistic Data Association (NNPDA) algorithm [54]. The NNPDA algorithm 

assigns measurements to tracks under the hypotheses of one target or two targets. 

The addition of a hypothesis of unresolved targets will allow the NNPDA algorithm 

to address the tracking of closely-spaced or unresolved targets. This NNPDA Merged 

Measurements (NNPDAMM) algorithm would utilize the PDFs used in Chapter 6 as 

measures of the likelihood of a merged measurement (i.e., unresolved targets) for the 

data association. 
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Appendix A 

DERIVATION OF THE PDF AND STATISTICS 

OF THE COMPLEX MONOPULSE RATIO FOR 

UNRESOLVED RICIAN TARGETS 

In a typical monopulse radar system, the outputs of the receivers are match 

filtered, and the in-phase and quadrature portions of the sum and difference signals 

for the merged measurements from M Rician targets can be expressed as 

M 
si = ^2 {ai cos &+ß*cos w)+nsi (A-1) 

M 

SQ = ^2 (ai sin & + ßi sin Vi) + nSQ (A.2) 
t=l 

M 

dl = ^2 (<XiVi cos <f>i + ßiVi cos <Pi) + ndl (A.3) 
i-1 
M 

dQ = Y^ [am sin <l>i + ßiVi sin Vi) + ndQ {AA) 

where 

t'=i 

a,- = amplitude from the fixed-amplitude part of target i 

ßi =  amplitude from the Rayleigh part of target i 

(j>i = phase of the fixed-amplitude part of target i 

ipi = phase of the Rayleigh part of target i 

t)i = Direction-Of-Arrival (DOA) parameter of target i 

nsi~N(Q,oi) 

nSQ ~7V(0,<4) 

ndI~N{0,aj) 

ndQ ~ N(0,<rj) 

A-l 
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with N(x,a2) denoting a Gaussian distribution with mean x and variance a2. Also, 

with E[-] denoting expected value, 

E[nsinsQ] = 0 (A5) 

E[ndIndQ] = 0 (A6) 

E[nSindI] = paS(jd (A7) 

E[nSqndq] = paS(Td (A8) 

The phases, ipi, are independent and uniformly distributed on (-ir,ic]. The Rayleigh 

parts of the target amplitudes are also independent, and the PDF of the Rayleigh 

part of target i is given by 

ßi 
f(ßi\ßio) = -55- exp 

Pio 

ß; 2 

2ß2 ,    Ä>0 (A9) 
Jio L   ^ibJ 

Since ßi are Rayleigh distributed and the tpi are uniformly distributed on (-7r, 7r], 
sh SQ, dl, and dq are jointly Gaussian, independent random variables, when the a,- 
and (f>i are given. Let 

M 

-SI = E[Sl\e] = Y^ai cos & (A10) 
i=l 

M 
SQ = E[sQ\e] = ^2aii sin fa 

i=l 

(All) 

M 

di = E[dj\e] = Y^aiVi cos fa (A12)                   , 

M 

dq = E[dQ\Q] = J^ a,-»/,- sin & (A13) 

where 0 is the parameter set {au <f>u ß10, r)U ..., aM, <j>M,ßMo- VM,^S,^d}- Also, let 

ld 

Pn = VAR[5/|0] = VAR[5Q|0] = JTß% + a2
s 

i=l 

(A14) 

M 

P22 = VAR[rf7|6] = VAR[^|0] = £ ,?/& + ffJ (A15) 

Pia = C0V[8Itdj\Q] = COV[sq,dQ\Q] = ^Vißl 
V—1 

+ pvs<r<t (A16) 

where VAR[-] denotes variance and COV[-, •] denotes covariance. Note that 

COV[5/,5Q|0] = COV[<Z7,<fQ|0] = 0 (A17) 
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and 

COV[aj,dQ|e] = COV[rf7,5Q|0] = 0 (A.18) 

Letting A and ip denote the measured amplitude and phase of the sum signal 

gives 

sj = A cos tf> (A. 19) 

SQ = A sin V> (A20) 

where — 7r < ip < w. Writing the measured amplitude of the sum signal in terms of 

SNR gives 

where dt0 is referred to as the observed SNR. 

The SNR of Rician target i is given by 

$i = E[U0\e] = fftFi + $Ri (A.22) 

where 

®Fi = ^2 (A.23) 

»A- = % (A.24) 

Thus, Sftp, denotes the SNR associated with the fixed-amplitude part of target i, and 

fäRi denotes the SNR associated with the Rayleigh part of target i. Also, let 

M 

nF = Y^ ®Fi (A25) 
i=l 
M 

®R = Y,®Ri (A26) 

The development of the PDF of the observed SNR U0 utilizes the PDF of the 

measured amplitude A, which is derived by applying the transformation of random 

variables in (A.19) and (A.20) to the PDF of sj and SQ and integrating the results 

with respect to ij>. The following theorem gives the results in a general form. 
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Theorem A.l    Let the in-phase and quadrature signals sj and SQ be Gaussian 

signals with 

-SI = E[sj\e] (A.27) 

3Q = E[sQ\e] (A.28) 

Pu = E[(SI - -SI)
2\Q] = E[(sQ - sQf\e} (A.29) 

and E[(sj - SJ)(SQ - SQ)\Q] = 0, where 0 denotes the set of given parameters. Then 

the PDF of the measured amplitude of the signal is given by 

Pll     \Pll 
/(A|0) = f-/o(—y^f + 3 

« 
exp ^2 

2pn 
(A2+sf + s (A.30) 

where J0(-) is the zero-order modified Bessel function of the first kind. The PDF of 

the observed SNR of the signal is given by 

/We) l 2y/W0 si 

&R + 1
IO
UR + 1V 24 + 2?J 6XP 

4- »Ä 

(A31) 
and 

m0\Q} = ^2(sj+s2
Q)+^R+i 

VAR[5RO|0] = (»Ä + l) (^.(3} + 4) + »Ä + l) 

(A.32) 

(A.33) 

Proof: 

The PDF of sj and SQ is given by 

/(•S/,SQ|0) = 0__   exp 
2TTJP '11 ~2^((5/~i/)2 + (^-*?)2)] (A34) 

2TTPH 

A 

2-Kpn 
•exp 

Applying the transformation of random variables [A-l, p. 143] in (A.19) and (A.20) 
in (A.34) gives 

/(A, V|0) = 7^—exp [ - -— ((A cos 4> - 5/)2 + (A sin tfi - SQ)
2
)" 

" 2717 (A2 + ^ + 5«)+ ^ (*7 cos ^ + 5«sin ^)] (A-35) 
Using [A-2, No.  3.937.2] for integration of (A.35) with respect to ip from -TT to TT 

gives the PDF of A as 

/(A|9)=  f/(A,</>|0)<fy> 
J—1T 

_  A     /A 
- —Jo. 

P11    Vpi (A\/ 
3? + 5^j exp 

2p 11 
"(A2 + 3? + 4) (A.36) 
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Using the transformation of the random variable [A-l, p. 95] of (A.26) in (A.36) and 

expressing p\\ in terms of 3?# gives (A.31). Then (A.32) is given by 

poo 
E[$0\e] = /   u0 /(»o|0) dst0 

Jo 

»Ä + 1 
exp 24 & + *l 

x    /     &0 J0 
Jo 

1    ^2   ,  -2 

ö2 

+ 
SQ 

$R + 1\2<T
2

S     2<r|, 
exp 

»o 

+ 1 
d9?0 

= 2^(3/ + 56) + *Ä + l (A37) 

where [A-2, No. 6.643.2] provides the definite integral. Also, (A.33) is given by 

pOO 

E[ti*\Q] = /    3f£/(*.|0) <*»« 

1 

Kä + 1 
exp 

1 

23« + *> 

jf«ä/.( 
'S 

VW0 + 
«2 5o exp &0 

»Ä + 1 y 2<T
2

S     24 

=K4(5S+5«)+Kfi+1)2-(i(s?+4)) 
where [A-2, No. 6.643.2] provides the definite integral. Using 

VAR[3?O|0] = E[U2
0\Q] - (E[U0\Q]f 

2 

d$t0 

(A38) 

(A.39) 

with (A.37) and (A.38) gives (A.33). Q.E.D. 

The PDF and statistics of the complex monopulse ratio are developed next. De- 

noting s = sj + JSQ and d = dj + jd*Q, the in-phase and quadrature parts of the 

monopulse ratio are given by 

yj- Re 
d\     djsj + SQdq 

+ «; Q 

VQ ■KS- 

(A.40) 

(A41) 

The joint PDF of yj and yq is obtained by applying the one-to-one transformation of 

random variables of (A.19), (A.20), (A.40), and (A.41) in the PDF/(S/^Q^J^QIG), 

integrating the result with respect to ij), and conditioning the density on A. The 

following theorem gives the result in a general form. 
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Theorem A.2 Let the in-phase and quadrature parts of the sum and difference 

signals be Gaussian signals with 

SI = E[sI\e] (A.42) 

SQ = E[sQ\6] (A.43) 

~d! = E\ij\Q\ (A.44) 

dQ = E[dq\Q] (A.45) 

pn = E[(SI - S7)2|0] = £[(5Q - sQ)2\e) (AM) 

P22 = E[(dj - 5/)2|e] = E[(4g - dQ)2\e] (A.47) 

Pi2 = £[(*/ - äj)(d7 - 3/)|e] = E[{sQ - sQ)(dQ - ~dQ)\Q] (A.48) 

and £[(5/ - 5/)(SQ - 5Q)|0] = £[(d7 - d^dg - 3Q)|0] = 0, where 0 denotes the 

set of given parameters. Then the PDF of yj and yq conditioned on the measured 

amplitude of the sum signal is given by 

A2Pn 
/(w,y<?|A,0) = 

MPnP22 ~Pl2)h{—\Js] + 4) 

*hy 
(     Apn 

P11P22 - Pi2 — PTo / 

x exp 

x exp 

P11 IYJ      - P^2  .  /S       _   Pl2\2] 
2(PnP22-p2

2) K* " "^   + \dQ ~ SQ
PTJ J 

A
2
PU 

2(P11P22 - P12) 
/ Pl2\2   ,     2 

(A.49) 

where 

A2 = 

A3 = 2 

A4 = 2 

/P22     P12  , P12-        x>i2 , P12  2I/-2 , -2\ , , tM 

(w-Sf)a + ^](?/ + 4) (A.51) 
YP12    P22    P12,,       ^/Pi2       \    P12 jir j   , _ -. \,..„, 
K^ " ^ - PTT(1 - »^ W - *') - PTT^J ("*+3QdQ) (A52) 

P22      Pnn   .       v   .  P12      " 
(S75Q - 5QC?/J 

LPll      Hi ""      P11 

The first- and second-order moments of yj and yq are given by 

(A.53) 

P11 ^Pn v w' 

sidi + sgdg      p12 

A^TTl P11A vw +4 (A.54) 
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E[yQ\A,e] = h\o(~yJsj + s2
Q) 

GOV{yj,yQ\A,e} = 

sjdg - SQdj 

ü2 

didqjs} - S2
Q) - siSQ(d2j - dQ)      Pl2 

A2(4 + s2
Q) 

x/i|o(—V^/ + 4) 

A2p 11 
[sidq - sqdj) 

VAR[W|A,6] = ^^ 
»11 

■ [hdi + sqdg - pnPuJsj + sQ)f r,  /A    / 2    _2 \ 

P11 

P11 

A2(^f + s2
Q) 

,   \(-,       - Pl2\2   .   (-, _   Pl2\2l  PV. 
+ \[dj-SI )    +[dn-SQ—)       = 

|> PuJ       \v      WPii'\A*Jii 

xJiio(—v^l + 4) 

+4 

f A VARlw|A.e] = e!^^ + if|,(A^4)^ S/^Q ~ SQ<fy]' 

+ 4) 
+ Pll 

ft^jAysj+sj 

XAIO(—v^+4) 

where 

h\o(x) = 77-7 

ri\o(x) = l--h\o(x)-I2\o(x) X 

and 7i(-) is the first-order modified Bessel function of the first kind. 

Proof: 

Let 

X = [si   dj    SQ   dq\ 

(A.55) 

(A56) 

(A57) 

(A.58) 

(A.59) 

(A60) 

(A61) 

Since the sum and difference signals are Gaussian distributed given the parameter set 

0, the joint PDF of the signals is defined by the mean X = E[X\B] and covariance 
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P = E[(X - X)(X - X)T\e]. Then 

si 

X = 

P = 

di 

SQ 

dq 

Pn Pu 0 0 
Pl2 P22 0 0 

0       0     pn   p12 

(A62) 

0 0      pi2     P22 

The inverse and determinant of P are given by 

(A.63) 

P~l = 
(P11P22-P12) 

P\ = (PUP22 -Pu)2 

P22 -Pl2 
-Pl2 Pll 

0 0 
0 0 

0 
0 

0 
0 

P22       -Pl2 
-P12    Pn 

(AM) 

(A.65) 

Then 

f(x\e) = 1 
exp { 

Pn P22 

47T2 {pUp22 - P12 ) ^ I       2(puP22 - Pl2 ) LPll 

+ ((di - dj)2 + (dQ - dQ)2) - ^-((s! - sj^dj - dj) 
\ / Oil    \ 

((SI ~ ST)2 + (SQ - 5Q)2) 

+ (SQ - SQ)(dQ - dQ)^ 

Using (A.19), (A.20), (A.40), and (A.41) gives 

dj = sjyj - sqyq = yjA cos^ - yQA sin^> 

dq = sjyq + sqyj = yqA cos^ + yjA sin^ 

Let 

Y = 

A 

VI 

Then 

(AM) 

(A67) 

(A.68) 

(A69) 

(A70) X = h(Y) 

where h(-) is a one-to-one transformation of random variables defined by (A.19), 

(A.20), (A.67), and (A.68). Then 

dh(Y) 
dx = AJ 

04.71) 
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Using the transformation of random variables [A-l, p. 173] of (A.70) in (A.66) gives 

/(y|6) = 4*2(^22-^) GXP I " 2(PnP22-pl2) 

x   — (A2
 + s] + S2

Q - 2A(sj cos %!> + SQ sin ip)) 

+ (A2(yf + yQ) - 2yIA(dI cos V + dQ sin V) 

- 2yqA(dq cos V> - di sin ip) + dj + dq) 

- 2— (At// — Ayi(sj cos ip + sq sin V>) — AJ/Q(SQ cos ip — sj sin ^>) 

- A(5/ cos tp + dq sin VO + 5/5/ + SQJQJ   ^ (A.72) 

where A > 0, —oo < yj < +oo, —oo <yQ < +oo, and —7r < ip < T. Completing the 

squares with respect to yj and yq in (A.72) gives 

/me) = 
47T2(PllP22-Pl2) 

r     A2
P11 

exp< f A + Sj + SQ — 2A(s/ cos ip + sq sin ■0)) \ 

x exp 

x 

2(pnP22-Pi2) 

^/        , , dq   . 
yj — 2yj ( — cos ^ + -jr sin ^ J — 2yj— (1 —— cos ip —-p- sin ^ 

+ ( 2/Q - 22/Q("^ cos tp-j- sin V>J + 2yQ—[-Q- cos ^ - ~rj sin ^J 

+ I T7 + T7 - 2—(^- + ::^ - ^ cos V - ~- sin ^) 
^A2 + A2      Pll I A2  +   A2       A A 

} 
A3 

2~TeXP 
47T2(piiP22 - Pi2) 

A2Pii 

< - -— ( A2 + 57 + sq - 2A(sj cos ip + sq sin V>) j f 

>{- ^       2(piiP22-Pi2) 

/        (di         .     dq   .           p12/       a/               SQ   .      N 
I 2// — ( "T cos ^ + "7~ sin V H (1 —T- cos V ^- smip 

'dj . (      . fdi   .    ,     dq              Pnfsi   . sQ > 
+ I J/Q + (-T- sm ip + -7- cos V ( -T- sin 0 —r~ cos ip } (A.73) 
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Using (A.30) to condition the PDF of (A.73) on A gives 

W,W,y*|A,8) = fPn,        . exp{ - o(    
A2p»   2 ^ 

^2{pnP22-p\2)h(^s2 + s%)        I     2(PnP22-pi2) 

+ (j/Q + (ysin V - ^cos V - ^ (jsin V - ^cos V<)) 

x exp< —(sj cos ^ + SQ sin Vj f (^-74) 

The amplitude-conditioned, joint PDF of yj and yg is given by 

/to.W|A,e) A2p" , V A2p"  CA^A   — ^—r 

((«-£),+*^-^)'+ß-*£)')} 
f+T ^ cx? [ A2Pll [(P11P22 ~ Pl2 - /£7P12 _ ^/\ 

V-pi I     (P11P22 ~PI2)L\      Apfi      S/    WVApu      A; 

+»(^4)-g(?-^-^-a**]i 
(A75) 

Evaluating the integral with [A-2, No. 3.937.2] gives the amplitude-conditioned, joint 

PDF of yi and yQ in (A.49). 

If s/ = SQ = dj = dQ = 0 in (A.75), 

/(«.„lA.e, |Pf|| = 0) = A'""    ,     exp{ - ^"'f + fa-^f'»2'} 
27T(P11P22 -_pfa) L ^_(?11P22-P?2) J 

= /(y/|A, 0, ||X|| = 0)/(yQ|A, B\\X\\ = 0) (A.76) 

where 

/fa|A,e,||X|| = 0) = Jv(^/"^-P?2) (A.77) vpii       A^pii     / v       y 

/(yQ|A,0,||X|| = 0) = ^(O/11^^2) (A.78) 
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Thus, if si = SQ = dj = dq = 0, as in the case of a Rayleigh target, yj and yq 

are conditionally independent, Gaussian random variables with variance inversely 

proportional to A2 and the observed SNR U0 of (A.26). 

Since f(yi,yq\k,Q) has a difficult form for computing the moments directly, the 

joint characteristic function [A-l, p. 158] of yj and yq is used and given by 
/OO       TOO      pT 

/     /   expb'wiyj + jv2yq}f(i>,yi,yq\k,©) dif> dyi yq 
-OO J —OO J —T 

= A^Pii  

47r2(piiP22 - Pi2)h (—y/*2+*q) 

x       dtp exp< —(sj cos iß + sq sin </> J > 

x ZTC* *»expbijiw+**wi exp{ - wo 
x [ (y/" (T COS ^ + "A sin ^ + ^ C1 ~ Xcos ^ " ^A sin ^))) 
+ {VQ + ("if Sin * " "A  COS * ~ ftf (X S™ ^ " X^ °°S *)) J     } 

dq    Pi2fQ\\ 
x L ** exp[ w+^ä" ^ +^ä~ - -^ä)) COS * 
X \(- 

A /^Q       Pl2«Q\        .      (dj       Pl2Sl\\     . exp[[m'SQ + JU}^t - 'JÜA) ~JW2^ " SSJJ sin * 
Thus, the joint characteristic function is given by 

(A.79) 

$(wi,u>2) = 
;°(^v^+4) 

exp {- (pnP22 -P12)/ 2 
2PllA

2 (wj +w2) + i 
P12   \ 

P11   ) 

x Jo (J—(s2i + *q) - (wi + w2)Ci + 2MC2 + 2iu;2C3 j     (A.80) 

where 

C2 = 

1 
F (^-^)2 + (5(5-^)2. 

(A.81) 

1 

P11 
S/d/ + 5Q^Q (5/ + SQ) 

L                                 Pll                     -1 
(A.82) 

1 

P11 
MQ - sqd^ (A.83) 

A-11 



NSWCDD/TR-97/167 

The marginal characteristic functions of yj and yQ are then given by 

^/(Wl) = ^(wi,0)=—-jr- 

\Pn V J + s 
PYn ,    (P11P22-P12)   2 ,   .P12 
eXp < -2 of + _; —wi 

^2 \ I 2PHA-8 P11 
Q 

■{■ 

x /o (v 7"(^+5^ ~ ^ + 2C2JUi) (AM) 

*»Q(W2) = ^(0,W2) = 

/„fA2 
(PHP22-P12) 

2pnA2 -a>2 

(A85) 

Thus, (A.84) and (A.85) show that neither yj nor yQ are not in general Gaussian 

random variables. Also, since for |pf || ^ 0 

$(wi,W2)^$w(wi)$tfQ(w2) (A86) 

2/7 and yQ are not in general independent random variables.  Setting sj = ju^ and 
52 = 3^2 hi (A.80) gives the joint moment-generating function as 

M(sus2) = exp { 
(PllP22 -P12), 2  ,    2\  ,  P12 /  2   ,     2\   ,   Pl2      \ 

Pll   J <^T"1 2y"A2 
x
 ^(J-2-(5| + 4) + d(Sf + s|) + 2C2Sl + 2C3S2\        (A.87) 

The form of (A.87) suggests the use of joint cumulants for the computation of 

moments of yj and yQ. The joint cumulants [A-l, p. 158] are given by 

1 dkQr      T/ 

si=0,s2=0 
(A88) 

where 

tf(si,s2) =  In M(si,s2) 

/ A 
= -ln /o(^V^+4) + (PllP22-^2)/  2   ,     2x   ,   Pl2 

■(«l + «2) +  sl 2A2pn P11 

+ln 7o (y ^-(5? + 4) + d(«? + «D + 2c25l + 2c3s2\ (A89) 
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Taking the first partial derivatives of \P(si,S2) gives 

d#(si,s2)      (P11P22-P12)      , P12 
dsi A2pn 

-5i+ — 
P11 

+ /■ i|o| 
A2 ' 
-ritf + 4) + ^l^l + 52) + 2C25! + 2C3S2 
Pn J 

clSl + c2 

'A2 
(A.90) 

2   (57 + 4) + Cl(5l + S2) + 2C25! + 2C3S2 

ö*(ai,B2)      (P11P22-P12) 
dsn A2pn 

-S2 

+ h\o(J—(s2i + s2
Q) + Cx{a\ + s\) + 2C2Sl + 2C3s2j 

ClSl + C3 

/A2 
f—(äj + 4) + ai(5i + **) + 2C25! + 2C3s2 
Pu 

(AM) 

where 

(A.92) 

with Ii(-) denoting the first-order modified Bessel function of the first kind. Then 

(A.90) and (A.91) give first-order moments or expected values of yj and yq [A-l, 

p. 158] as 

/ A    /_„ . _„ \      C2P11 

P11       '"\pii v   '       "/ A  £2" 

A    n, ;r\    C3pn 
+ 4 

+ s 

(A.93) 

(A94) 

Q 

Inserting C2 and C3 of (A.82) and (A.83) in (A.93) and (A.94) gives (A.54) and 

(A.55), respectively. 

Taking the first partial derivative of (A.90) with respect to s2 gives 

&T"= I>1]0 (V PTS
3
"

1
 
+ *

2Q)
 
+ Cl w+ * + 2si°2 + 2s2Ci) 

d^Hsus2) 
ds 

X T 
(ClSl + C2f(ClS2 + C3) 

A2 

—(5/ + 4) + CM + 5i) + 25lC2 + 2s2C3 
P11 
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+ h\o(J^r(sj + 4) + C^sl + 82
2) + 2C2sx + 2C352) 

x 

where 

(clSl + c2y(clS2 + c3) 
A2 

—(*/ + 4) + Ci(5i + si) + 2C25l + 2C3s2 
IPn 

j -I 

Jiiofa) = ^Ji|o(«) = 1 - -h\o(x) - /fio^) 

(A95) 

Thus, (A.95) gives the covariance of yj and yg as 

where 

jriio(:c) = X ~ -Ji|o(x) - Ii\o(x) 

(A.%) 

(A.97) 

(A98) 

Inserting C2 and C3 in (A.97) gives the covariance of (A.56). 

Taking the second partial derivatives of (A.90) and (A.91) with respect to si and 
«2» respectively, gives 

**£;''2) = iPUPll~fu) + % (^(sj + 4) + CM + 4) + zc2Sl + 2C3S2 

x 
(clSl + c2y 

A2 

Pn 
-IK*/ + 4) + Ci(si + sl) + 2C,2^i + 2C3s2 

+ A|o (y-fatä + 5o) + Ci(si + 52) + 2C25l -f 2<73s2) 

X Ci 

'A2 

' — (*j + 4) + Ci (5i + si) + 2C25l + 2C3s2 Pn 

(A99) 

ö2$(s!,52)      (P11P22-P12) 
dsl §~ + T|o (\j^2l + 4) + Ci W + 4) + 2C2Sl + 2C3,2) 

x (Cm + c3)' 
A2 

.A 5"(5? + 4) + °M + 5i) + 2C25l + 2C3s2 

+ Jiio (y jr(5? + 4) + CM + s2
2) + 2C2Sl + 2C3s2) 
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'^■(Sj + 4) + dial + si) + 2C2Sl + 2C3s2 
Pn 

(A.100) 

Then (A.99) and (A.100) give the variances of yj and yq as 

'^I1110^^ (A101) 

VAR[TOlA, 0]. ,02=^+_|J_7.,0(±^T1 

Inserting Ci, C2, and C3 of (A.81) through (A.83) in (A.101) and (A.102) gives (A.57) 

and (A.58), respectively. 

Q.E.D. 
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Appendix B 

DERIVATION OF THE UNCONDITIONAL PDF AND 

STATISTICS OF THE COMPLEX MONOPULSE RATIO 

FOR A RAYLEIGH TARGET 

The unconditional PDFs of the monopulse ratios and the unconditional CRLBs 

are developed in this appendix. The unconditional PDFs of the monopulse ratios for 

a single Rayleigh target are given by 

where 

/•OO 

f{vi,VQ\*R) =      f{vi,VQM*R)<Bto 
Jo 

/•CO 

= /   f(yi,yQ\®o,yR)mo\yR)dK 
Jo 

p 

*(KJU +1) [(yi - mf + y% + f^fqru 
/OO        /-OO 

/     f(yi,yQ^o\^R)d^0dyQ 
-oo JO 
/oo     /-oo 

/   f(yi,yQ\®o,yR)mo\vR)d®0dyQ 
-co Jo 

p 

*(»JU +1) (vi - vi)2 + 
p 

KäI + U 
/oo      /-CO 

/   f(yi,yQM^R)d^0dyi 
-oo JO 

/OO        /-OO 

/   f(yi, VQ\XO,*ä)/(KO|*ä) dSft0 dyi 
-oo Jo 

P 

*($R1 + 1) 
2    , P 

VQ + »fil + 1 

2/7 
KäI + 1 

(5.1) 

(5.2) 

(5.3) 

(5.4) 
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p=   _^ +    ......      .^;,     .     „^ (R5) 

*£=.{Q:o»>7>*«l>ffS,/>} (5.6) 

Note that the definitions of yj, p, and $# are consistent with their definitions in the 

main body of this paper. Also, (B.l) through (B.3) show that yj and yq are not 

independent. However, yj and yq are uncorrelated. The unconditional mean of yi is 

yj, the unconditional mean of yq is zero, and the variance of yj and yq are infinite. 

The joint PDF of (B.l) can be shown to agree with (26) of [B-l]. 

The unconditional CRIB associated with »7, based on N observations of yj and 

yQ, is given by 

N      \dHnf{yil,yQi\yR) 
Jyi,yQ(v\N,*R) = -S> 

i=l 
dr)< ®R 

-1 

{B.l) 

where yu and J/Q,- are the in-phase and quadrature monopulse ratios for pulse i, 

respectively, and f(yii, yqi\^R) is the joint PDF of yn and yQi. Using (B.l) in (B.5) 

gives 

3p 

W*M**)TviE 1 + 
1 T2 

^m 

1\2 
1 + 

1     ,   (*}-p°dVS ) 

»Ä] 
■ + 

$R1 P 

-1 

(B.8) 

Using (B.2) gives the unconditional CRLB associated with 77 based on JV observations 

of yj only as 

J9I(W,*R) 
5p 

W$R1 

T2 

1 + 
& R\ 

-1\2 
1 + 

1        2(ri-padas
1) 

n -1 

»Ä 
+ 

33?Ä1p 
(B.9) 

Using (B.3) gives the unconditional CRLB associated with 77 based on N observations 

of yq only as 

5p2 

1 + (5.10) 
4JV(jy - pad(Tsy L &Ä1 

Comparing (B.10) with (5.4) shows that the conditional CRLB associated with 

7? and based on N observations of yq is less than the corresponding unconditional 

CRLB. For an average observation represented by Yjf = E[Yjy] = 3?Ä1 + 1, the 

conditional CRLB based on N observations of yj and yq in (5.2) is less than the 

corresponding unconditional CRLB for 3?Ä1 > 2. Also, for an average observation 

represented by YN = E[YN] = Sftja+1, the conditional CRLB based on TV observations 

of yj in (5.3) is less than the corresponding unconditional CRLB for $tR1 > 2. Since 

the conditional CRLBs are less than the unconditional CRLBs for fftm > 3 dB, DOA 

estimators utilizing monopulse processing should be developed from the conditional 

PDF or the conditional statistics. 
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