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Part I 

Introduction 
In this document we describe work that is being performed under the support of the grant 
ONR-N00014-97-1-0509, from the Mathematical, Computer, and Information Sciences Divi- 
sion, Office of Naval Research. 

We first describe results on shape-base image contrast enhancement. This work shows 
how to perform local contrast enhancement while preserving the shapes in the image. We 
have transfered this software to Dr. Hewer and more recently to Dr. Szymczak from Physical 
Acoustics at the Naval Research Laboratory for testing on underwater laser images (LIDAR). 
We expect further collaborations with ONR in this area. 

We then show a novel approach to anisotropic diffusion. This approach is based on 
robust statistics, and in particular, in the theory of influence functions. This technique is, 
for example, of particular significance for image denoising prior to segmentation. 

We conclude the technical part of this document with a description of a novel tech- 
nique of incorporating prior information in anisotropic diffusion. The idea is to use Bayes 
rule to compute posterior distributions, and then, regularize those distributions via partial 
differential equations before the MAP is computed. 

Although a number of results have already been obtained in these areas, see Part V, the 
work described in this document is still in progress. As was mentioned above, we want to 
extend the work on shape-preserving contrast enhancement to include additional definitions 
of shape and adapt it to specific applications. We are also planing to extend the robust 
framework for anisotropic diffusion to vector-valued data, and investigate fast implementa- 
tions, inspired by the work of Chan and colleagues [8]. We plan to further investigate the 
underlying theory of the posterior diffusion work, and to apply it to additional problems. 
The work described in this document opens a number of theoretical questions that we plan 
to address as well. 

We should also note that being this the first period of this grant, and my first months at 
the University of Minnesota, part of the ONR support was used to buy equipment that is 
being used to build an image processing and computer vision laboratory. 

Part II 

Shape Preserving Local Contrast 
Enhancement 

1    Introduction 

Images are captured at low contrast in a number of different scenarios. The main reason for 
this problem is poor lighting conditions (e.g., pictures taken at night or against the sun rays). 



As a result, the image is too dark or too bright, and is inappropriate for visual inspection or 
simple observation. The most common way to improve the contrast of an image is to modify 
its pixel value distribution, or histogram. A schematic example of the contrast enhancement 
problem and its solution via histogram modification is given in Figure 1. On the left, we see 
a low contrast image with two different squares, one inside the other, and its corresponding 
histogram. We can observe that the image has low contrast, and the different objects can 
not be identified, since the two regions have almost identical grey values. On the right 
we see what happens when we modify the histogram in such a way that the grey values 
corresponding to the two regions are separated. The contrast is improved immediately. 

Figure 1:   Schematic explanation of the use of histogram modification to improve image 
contrast. 

Histogram modification, and in particular histogram equalization (uniform distributions), 
is one of the basic and most useful operations in image processing, and its description can be 
found in any book on image processing. This operation is a particular cases of homomorphic 
transformations: Let O C JR2 be the image domain and u : Cl —>■ [a, b] the given (low 
contrast) image. Let h : [a, b] —>■ [c, d] be a given function which we assume to be increasing. 
The image v := h(u) is called an homomorphic transformation of u. The particular case of 
histogram equalization corresponds to selecting h to be the distribution function H of u: 

H(X) :- 
Area{x G Q : u(x) < A} 

Area(Q) 

If we assume that H is strictly increasing, then the change of variables 

v(x) = (b — a)H(u(x)) + a, 

(1) 

(2) 

gives a new image whose distribution function is uniform in the interval [a,b], a,b G M, 
a < b. This useful and basic operation has an important property which, in spite of being 
obvious, we would like to acknowledge: neither it creates or destroys image information. 

As argued by the Mathematical Morphology school [1, 27], the basic operations on images 
should be invariant with respect to contrast changes, i.e., homomorphic transformations. As 



a consequence, it follows that the basic information of an image is contained in the family 
of its binary shadows or level-sets, that is, in the family of sets 

Xxu := {x ett: u(x) > A}, (3) 

for all values of A in the range of u. Observe that, under fairly general conditions, an image 
can be reconstructed from its level-sets by the formula u(x) = sup{\ : x G X\u}. If h is 
a strictly increasing function, the transformation v = h(u) does not modify the family of 
level-sets of it, it only changes its index in the sense that Xh^v — X\u for all A. 

Although one can argue if all operations in image processing must hold this principle, 
for the purposes of the present work we shall stick here to this basic principle. There are a 
number of reasons for this. First of all, a considerable large amount of the research in im- 
age processing is based on assuming that regions with (almost) equal grey-values, which are 
topologically connected (see below), belong to the same physical object in the 3D world. Fol- 
lowing this, it is natural to assume then that the "shapes" in an given image are represented 
by its level-sets (we will later see how we deal with noise that produces deviations from the 
level-sets). Furthermore, this commonly assumed image processing principle will permit to 
develop a theoretical and practical framework for shape preserving contrast enhancement. 
This can be extended to other definitions of shape, different from the level-sets morphological 
approach here assumed. We should note that level-set theory is also applicable to a large 
number of problems beyond image processing [21, 30]. We plan in the future to investigate 
other definitions of shape for contrast enhancement. 

In this work, we want to design local histogram modification operations which preserve 
the family of level-sets of the image, that is, following the morphology school, preserve shape 
(see [6] for details). Local contrast enhancement is mainly used to further improve the 
image contrast and facilitate the visual inspection of the data. As we will see later, global 
histogram modification not always produces good contrast, and specially small regions, are 
hardly visible after such a global operation. On the other hand, local histogram modification 
improves the contrast of small regions as well, but since the level-sets are not preserved, 
artificial objects are created. The theory developed will enjoy the best of both words: The 
shape-preservation property of global techniques and the contrast improvement quality of 
local ones. 

It is not the goal of this document to review the extensive research done in contrast 
enhancement in the past. We should only note that basically, histogram modification tech- 
niques are divided in the two groups mentioned above, local and global, and their most 
popular representatives can be found in any basic book in image processing and computer 
vision. An early attempt to introduce shape criteria in contrast enhancement was done 
in [10]. To the best of our knowledge, non of the variations to histogram modification re- 
ported in the literature have formally approached the problem of shape preserving contrast 
enhancement as done in our work. 

2    A variational formulation 

We call representatives of u all images of the form v = h(u), where h is a strictly increasing 
function. The question is which representative of u is the best for our purposes. That will 



depend, of course, in what our purposes are. We have seen above which is the function h 
we have to take if we want to normalize the contrast making the distribution function of u 
uniform. In addition, it was shown in [28] that when equalizing an image u : Vt —>■ [a, b] on 
the range [a, b] we are minimizing the functional 

2 IOI / A \ 1 
E(v) =—jz r      \v(x) —]  dx — - I   I \v(x) — v(z)\dxdz. w      2(6-a) Jn \     '        2   ) 4 Jn Ja' w       Wl 

The second term of the integral can be understood as a measure of the contrast of the 
whole image. Thus when minimizing E(v) we are distributing the values of u so that we 
maximize the contrast. The first term tries to keep the values of u as near as possible to the 
mean (b — a)/2. When minimizing E on the class of functions with the same family of binary 
shadows as u we get the equalization of u. We will see below how to modify this energy to 
obtain shape preserving local contrast enhancement. 

3    Connected components 

To be able to extend the global approach to a local setting we have to insist in our main 
constraint: We have to keep the same topographic map, that is, we have to keep the same 
family of level-sets of u but we have the freedom to assign them a "convenient" grey level. 
To make this statement more precise, let us give some definitions (see [31]). 

Definition 1 Let X be a topological space. We say that X is connected if it cannot be 
written as the union of two nonempty closed (open) disjoint sets. A subset C of X is called 
a connected component if C is a maximal connected subset of X, i.e., C is connected and 
for any connected subset C\ of X such that C C C\, then C\ = C. 

This definition will be applied to subsets X of M2 which are topological spaces with the 
topology induced from JE?, i.e., an open set of X is the intersection of an open set of M2 

with X. We shall need the following observation which follows from the definition above: 
Two connected components of a topological space are either disjoint or they coincide; thus 
the topological space can be considered as the disjoint union of its connected components. 

There are several notions of connectivity for a topological space. One of the most intuitive 
ones is the notion of arcwise connected (also called connected by arcs). A topological space 
X is said to be connected by arcs if any two points x,y of X can be joined by an arc, 
i.e., there exists a continuous function 7 : [0,1] —>• X such that 7(0) = x,7(1) = y. In a 
similar way as above we define the connected components (with respect to this notion of 
connectivity) as the maximal connected set. These notions could be used below instead of 
the one given in Definition 1. 

Definition 2 Let u : 0 —>■ [a, b] be a given image. A section of the topographic map of u is 
a set of the form 

•^Ai,A2 = UAe[Ai,A2]CA, (4) 



where C\ is a connected component of [u = A] such that for each A', A" G [Ai, A2], A' < A", 
the set 

-^A',A" = UA(=[A',A"]CA (5) 

is also connected. 

Definition 3 Let u : Q —> [a, b] be a given image and let {X\ : A G [a, b]} be the family of 
its level-sets. We shall say that the mapping h : fix M —>■ Ft is a local contrast change if the 
following properties hold: 

PI: h is continuous in the following sense: h(z,X') —> h(x,X) when z —>• x, A' —»• A, z G 
X\i,x G C\, C\ being a connected component of [u = A]. 

P2: h(x, •) is an increasing function of A for all i£fl. 

P3: h(x, A) = h(y, A) /or a// x, y are in the same connected component of [u = \] , \ £ JR. 

P4: Let T be a connected set with u(T) not reduced to a point. Let v(x) = h(x,u(x)).  Then 
v(T) is not reduced to a point. 

P5: Let X\u\2 = UA6[AI,A2]CA be a section of the topographic map of u and let x G C\1}y G 
C\2.  Then h(x,Xi) < /i(y,A2). 

Definition 4 Let u : O —> [a, b] be a given image. We shall say that v is a local representative 
of u if there exists some local contrast change h such that v(x) = h(x,u(x)), x G fi. 

We collect in the next proposition some properties which follow immediately from the defi- 
nitions above. 

Proposition 1 ([6]) Let u : 0 ->• [a,b] and let v(x) = h(x,u(x)), x G Q,, be a local repre- 
sentative of u.  Then 

1. v(x) = sup{h(x,X) : x G X\u,x G fi}.    We have that x G X\u if and only if x G 
Xh(x,\)V, x G Q, X G M. 

2. v is a continuous function. 

3. Let r (T1) be a connected component of [v = //] (resp.   [u = X]) containing x, \i = 
h(x,X). ThenT = T'. 

4- Let X\lt\2 be a section of the topographic map of u.   Then X\u\2 is also a section of 
the topographic map of v. 



The previous proposition can be phrased as saying that the set of "objects" contained in 
u is the same as the set of "objects" contained in v, if we understand the "objects" of u as 
the connected connected components of the level-sets [X < u < /i], X < /i, and respectively 
for v. 
Remark: Our definition of local representative is contained in the notion of dilation as given 
in [27], Theorem 9.3. Let Un be a lattice of functions / : Mn —> Mn. A mapping T : Un —>■ Un 

is called a dilation of Un if and only if it can be written as 

F(f){x) = sup{g(x;y,t) :yeRn,t< f{y)},    x E Mn, 

where g(x; y, t) is a function assigned to each point (y, t) e Mn x JR and is possibly different 
from point to point. Thus, let h be a local contrast change and let v(x) = h(x,u(x)). 
Let us denote by Xt(f,x) the connected component of Xtf which contains x if x G Xtf, 
otherwise, let Xt{f,x) = 0. Let g{x;y,t) := h(x,t) if Xt(f,x) n Xt(f,y) ^ 0; and := 0 if 
Xt(f,x)nXt(f,y) = <b. Thenv = F(u). 

4    Shape preserving enhancement 

We can now state precisely the main question we want to address: what is the best local 
representative v of u, when the goal is to perform local contrast enhancement while preserving 
the connected components (and level-sets). For that we shall use the energy formulation given 
above. Let A be a connected component of the set [A < u < //], A, [i G M, X < /J,. Write 

E^ = w^L ("<*> - *-irjdx- \LL^ -«wn**- (6) 

We then look for a local representative v of u which minimizes E(v, A) for all connected 
components A of all sets of the form [A < u < /J], A, \i e M, X < //, or, in other words, the 
distribution function of v in all connected components of [A < v < fj] is uniform in the range 
[A, fj], for all A, JJL E M, X < //. We now show how to solve this problem. 

Let us introduce some notation that will make our discussion easier. Without loss of 
generality we assume that u : 0 -> [0,1]. Let Xkj := j/2k, k = 0,1, 2,..., j = 0,..., 2k. We 
need to assume that H, the distribution function of u, is continuous and strictly increasing. 
For that we assume that u is continuous and 

Area{x e fi : u(x) = A} = 0,    for all X e R. (7) 

We shall construct a sequence of functions converging to the solution of the problem. 
Let WQ = H(u) be the histogram equalization of u. Suppose that we already constructed 
iuo, ■••, Wi-i- Let us construct Wi. For each j = 0,1,..., 2l — 1, let 

°ij := ihj < Wi~l < ^«J+l]> (8) 



and let Oitj;r be the connected components of Oitj, r = 1,..., mj (nitj can be eventually oo). 
Define 

^tJirW —  175 j  1A*J+1 - Ay) + Ajj . (9) 

By our assumption (7), hid-r is a continuous strictly increasing function and we can 
equalize the histogram of Wi-i in Oy;r. Thus, we define 

Wi,j;r ••= hijriWi-ijXOijr, (10) 

j = 0,1,..., 2* - l,r = 1,..., md, and 

2*-l «i,j 
Wi'-=  Y,Y,Wi,r,rXOid[r- (11) 

j'=l r=l 

We then have the following results: 

Theorem 1 ([6]) Under the assumption (7) the functions Wi have a uniform histogram for 
all connected components of all "dyadic" sets of the form [A < w^ < ß] where A, // G {Ajj : 
j = 0,..., 21}, A < ß. Moreover, as i —>■ oo, tOj converges to a function w which has a uniform 
histogram for all connected components of all sets [A < w < /J], for all A, /i e [0,1], A < //. 

Theorem 2 ([6]) Let w be the function constructed in Theorem 1. Then w is a local rep- 
resentative ofu. 

5    The algorithm and examples 

The algorithm has been described in the previous section.  Let us summarize it here.  Let 
u : Q ->■ [0, M] be an image whose values have been normalized in [0, M]. Let \k j := jM/2k, 
k = 0,l,2,..,N,j = 0,...,2k 

Step 1: Construct w0 = H(u) be the histogram equalization of u. 
Step 2: Construction of tüj, i = 1,...,N. 
Suppose that we already constructed w0,...,Wi-i.    Let us construct u>i.    For each j  = 
0,1, ...,2« — 1, let 

Oid := [Xij < Wi-i < Xid+1], (12) 

and let Oij;r be the connected components of Oid, r = 1,..., nid. Let hitj]r be the distribution 
function of Wi^iXoiJ]r with values in the range [Ajj, Aij+i]. 

Then we define 

2'-l n»,j 

^^EE^FK-IK,. (13) 
j=l r=l 



Then we equalize Wo in all connected components of 0\<a in the range [0,7710,1 — 1], 
respectively in all connected components of Oi;i in the range [m0)i,M]. In this way we 
construct w\. Then we compute the mean values of w\ in Oiß, Oit\. Denote them by m^i, 
mi,3 (mi,2 = mo,i)- Now we use these values to subdivide again w\ into four pieces and 
proceed to equalize the histogram of w\ in all connected components of all these pieces. We 
may continue iteratively in this way until desired. 

Figure 2 illustrates the importance of performing shape preserving local contrast enhance- 
ment. Fig. 2b shows the global histogram equalization of Fig. 2a. Fig. 2c shows the result 
of classical local histogram equalization [15]. Fig. 2d presents the result of our algorithm 
applied to Fig. 2a. The level-lines off all the figures are given in Fig. 2e-2h respectively. 
We see how different connected components do not interact in the proposed scheme, and the 
contrast is improved while preserving the objects in the scene. 

[[ ]] [cf| 

g 

Figure 2: Example of the level-sets preservation. The first row show the original image, 
global histogram modification, classical local modification, and the proposed shape preserving 
local histogram modification.  The second row shows the corresponding level-sets. 

Results for a real image are presented in Figure 3. Fig. 3b show the global equalization 
of Fig. 3a. Fig. 3c shows an intermediate step of the proposed algorithm, while Fig. 3d is 
the steady state solution. Note how objects that are not visible in the global modification, 
like those trough the window, are now visible with the new local scheme. 

Experiments with a color image are given in Figure 4, working on the YIQ color space. 
In Fig. 4a we present the original image. In Fig. 4b, we apply the proposed local histogram 
modification to the Y channel only, re-scaling the chrominance vector to maintain the same 
color point on the Maxwell triangle. 



Figure 3: Example of shape preserving local histogram modification for real data. Th,e first 
row shows the original image (a) and the result of global histogram modification (b). An 
intermediate state (c), together with the steady state of the proposed algorithm (d) are shown 
in the second row. 

Figure 4: Example of local histogram modification of a color image, (a) Original image, (b) 
The proposed algorithm is applied only to the Y channel, re-scaling the chrominance vector 
to maintain the same color point on the Maxwell triangle. (This is a color figure.) 

10 



Part III 

Influence-based anisotropic diffusion 

6 Introduction 

Since the elegant formulation of anisotropic diffusion introduced by Perona and Malik [22], 
a considerable amount of research has been devoted to the theoretical and practical under- 
standing of this and related methods for image enhancement. See [2, 4, 23] and references 
therein. We develop a statistical interpretation of anisotropic diffusion, specifically, from 
the point of view of robust statistics. We show that the Perona-Malik [22] diffusion equa- 
tion is equivalent to a robust procedure that estimates a piecewise constant image from a 
noisy input image. The "edge-stopping" function in the anisotropic diffusion equation is 
closely related to the error norm and influence function in the robust estimation framework. 
We exploit this robust statistical interpretation of anisotropic diffusion to choose alterna- 
tive robust error norms, and hence, alternative "edge-stopping" functions. In particular, 
we propose a new "edge-stopping" function based on Tukey's biweight robust error norm, 
which preserves sharper boundaries than previous formulations and improves the automatic 
stopping of the diffusion. The robust statistical interpretation also provides a means for de- 
tecting the boundaries (edges) between the piecewise constant regions. These boundaries are 
considered to be "outliers" in the robust estimation framework. Edges in a smoothed image 
are, therefore, very simply detected as those points that are treated as outliers. Details, 
examples, and extensions, including connections to line processing and techniques as those 
described in [9, 13], can be found in [4]. We also propose, following [29], possible extensions 
of this method to color images and vector data in general, which will be further investigated, 
and describe the use of the theory here presented for image sharpening. 

7 Anisotropic diffusion 

Diffusion algorithms remove noise from an image by modifying the image via a partial 
differential equation (PDE). For example, consider applying the isotropic diffusion equation 
(the heat equation) given by gf = div(VJ), using the original (degraded/noisy) image 
l(x,y,0) as the initial condition, where l(x,y,0) : JB? —> M+ is an image in the continuous 
domain, (x, y) specifies spatial position, t is an artificial time parameter, and where VJ is 
the image gradient. 

Perona and Malik [22] replaced the classical isotropic diffusion equation with 

dI{x
dt
y,t) = divGKH VJ ||)vi), (14) 

where || VI || is the gradient magnitude, and g(|| VI ||) is an "edge-stopping" function. This 
function is chosen to satisfy g(x) —»• 0 when x —> oo so that the diffusion is "stopped" across 
edges. 

11 



Perona and Malik discretized their anisotropic diffusion equation as follows: 

f = ^ + nE#sÄ. (15) 
lw pens 

where /* is a discretely-sampled image, s denotes the pixel position in a discrete, two- 
dimensional grid, and t now denotes discrete time steps (iterations). The constant A e M+ 

is a scalar that determines the rate of diffusion, r]s represents the spatial neighborhood of 
pixel s, and \r]s\ is the number of neighbors. They linearly approximated the image gradient 
(magnitude) in a particular direction as VIS,P = Ip — Ps,  p G r]s 

Qualitatively, the effect of anisotropic diffusion is to smooth the original image while 
preserving brightness discontinuities. As we will see, the choice of g(-) can greatly affect the 
extent to which discontinuities are preserved. 

8    Robust estimation 

Our goal is to develop a statistical interpretation of the Perona-Malik anisotropic diffusion 
equation. Toward that end, we adopt an oversimplified statistical model of an image. In 
particular, we assume that a given input image is a piecewise constant function that has 
been corrupted by zero-mean Gaussian noise with small variance. 

Consider the image intensity differences, Ip — Is, between pixel s and its neighboring 
pixels p. Within one of the piecewise constant image regions, these neighbor differences will 
be small, zero-mean, and normally distributed. Hence, an optimal estimator for the "true" 
value of the image intensity Is at pixel s minimizes the square of the neighbor differences. 
This is equivalent to choosing Is to be the mean of the neighboring intensity values. 

The neighbor differences will not be normally distributed, however, for an image region 
that includes a boundary (intensity discontinuity). The intensity values of the neighbors of an 
edge pixel s are drawn from two different populations, and in estimating the "true" intensity 
value at s we want to include only those neighbors that belong to the same population. With 
respect to our assumption of Gaussian noise within each constant region, if p and s belong 
to two different sides of the edge, the neighbor difference Ip — Is can be viewed as an outlier 
because it does not conform to the statistical assumptions. 

The field of robust statistics [16, 17] is concerned precisely with estimation problems in 
which the data contains gross errors, or outliers. See for example [4] for references to the 
applications of robust statistics to image processing and computer vision. 

Motivated then by robust statistics, we wish to find an image I that satisfies the following 
optimization criterion: 

mm 53 53 p(Ip - I3, a), (16) 
sei p€r]s 

where p(-) is a robust error norm and a is a "scale" parameter that will be discussed further 
below. To minimize (16), the intensity at each pixel must be "close" to those of its neighbors. 
As we shall see, an appropriate choice of the p-function allows us to minimize the effect of 
the outliers at the boundaries between piecewise constant image regions. 

12 



Equation (16) can be solved by gradient descent: 

/*+1 = ^ + AE^-/», (17) 

where ip(-) = p'(-), and t again denotes the iteration. The update is carried out simultane- 
ously at every pixel s. 

The specific choice of the robust error norm or p-function in (16) is critical. To analyze 
the behavior of a given p-function, we consider its derivative ip, which is proportional to the 
influence function [16]. This function characterizes the bias that a particular measurement 
has on the solution. For example, the quadratic p-function has a linear ^-function. 

If the distribution of values (Ip — /*) in every neighborhood is a zero-mean Gaussian, 
then p(x, a) = x2/a2 provides an optimal local estimate of J*. This least-squares estimate 
of /* is, however, very sensitive to outliers because the influence function increases linearly 
and without bound. For a quadratic p, 7*+1 is assigned to be the mean of the neighboring 
intensity values Ip. When these values come from different populations (across a boundary) 
the mean is not representative of either population, and the image is blurred too much. 
Hence, the quadratic gives outliers (large values of |V/S!P|) too much influence. 

To increase robustness and reject outliers, the p-function must be more forgiving about 
outliers; that is, it should increase less rapidly than x2. For example, consider the Lorentzian 
error norm (see Figure 5): 

/       1 / x\2\ 2x 
p(x,a) =log   1 + -   -       ,      1>(x,a) = n , ,    ,. (18) 

2a2 + x 

Examination of the ^-function reveals that, when the absolute value of the gradient mag- 
nitude increases beyond a fixed point determined by the scale parameter a, its influence is 
reduced. We refer to this as a redescending influence function [16]. 

9    Robust statistics and anisotropic diffusion 

We now explore the relationship between robust statistics and anisotropic diffusion by 
showing how to convert back and forth between the formulations. Recall the continuous 
anisotropic diffusion equation (14). The continuous form of the robust estimation problem 
in (16) can be posed as: 

lin / p(|| VI \\)dn, (19) 
i   Jn 

where Q is the domain of the image and where we have omitted a for notational convenience. 
One way to minimize (19) is via gradient descent using the calculus of variations: 

^M = div(p'(||V/||)!|f!). (20) 

By defining g(x) = 2-i^i, we obtain the straightforward relation between image reconstruction 
via robust estimation (19) and image reconstruction via anisotropic diffusion (14). (See for 
example [22, 34] for previous uses of this relation.) 

13 
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The same relationship holds for the discrete formulation; compare (15) and (17) with 
ip(x) = p'(x) = g(x)x. Note that additional terms will appear in the gradient descent 
equation if the magnitude of the image gradient is discretized in a nonlinear fashion. In the 
remainder of this part of the document we proceed with the discrete formulation as given in 
previous section. The basic results we present hold for the continuous domain as well. 

Perona and Malik suggested two different edge stopping functions (#(■)) in their anisotropic 
diffusion equation. Each of these can be viewed in the robust statistical framework by con- 
verting the g(-) functions into the related p-functions.   They first suggested g(x) 

for a positive constant K. It is easy to see, [4, 19, 34], that this edge stopping function 
corresponds to the Lorentzian norm of robust statistics. The other ^-function proposed by 
Perona and Malik is related to the robust error norm proposed by Leclerc. 

10    Exploiting the relationship 

The above derivations demonstrate that anisotropic diffusion is the gradient descent of an 
estimation problem with a familiar robust error norm. What's the advantage of knowing 
this connection? We answer this question now. 

While the Lorentzian is more robust than the quadratic norm, its influence does not 
descend all the way to zero. We can choose a more "robust" norm from the robust statistics 
literature which does descend to zero, as the Tukey's biweight, whose influence function is 
plotted in Figure 5: 

,      v / x(l- {x/a)2)2   \x\ < a, (    . 
^X^   =   \0 otherwise (22) 

Another error norm from the robust statistics literature, is Huber's minimax norm [17] 
(see also [26, 34]), whose influence function is also plotted in Figure 5: 

(23) 

(24) 

We would like to compare the influence (^-function) of these three norms, but a di- 
rect comparison requires that we dilate and scale the functions to make them as similar as 
possible. 

First, we need to determine how large the image gradient can be before we consider it 
to be an outlier. We appeal to tools from robust statistics to automatically estimate the 
"robust variance," <re, of the image as the MAD [25]: 

tfe = 1.4826 median7(|| VI - median7(|| VI ||) ||) (25) 
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x2/2a + a/2   \x\ <<?, 
\x\                    \x\ ><7, 

x/a,        \x\ < a, 
sign(a;)    \x\ > a. 



where the constant is derived from the fact that the MAD of a zero-mean normal distribution 
with unit variance is 0.6745 = 1/1.4826. For a discrete image, the robust variance, ae, is 
computed using the gradient magnitude approximation introduced before. 

Second, we choose values for the scale parameters a to dilate each of the three influence 
functions so that they begin rejecting outliers at the same value: ae. The point where the 
influence of outliers first begins to decrease occurs when the derivative of the -(/'-function is 

zero. For the modified L\ or Huber's norm this occurs at ae = a. For the Lorentzian norm 
it occurs at o~e = \f2o~ and for the Tukey norm it occurs at oe = ojyfh. Defining a with 
respect to ae in this way we plot the influence functions for a range of values of x in Figure 
5 a. Note how each function now begins reducing the influence of measurements at the same 
point. 

Third, we^cale the three influence functions so that they return values in the same range. 
To do this we take A in (15) to be one over the value of ip(cre, a). The scaled -^-functions are 
plotted in Figure 5b. 

Now we can compare the three error norms directly. The modified L\ norm gives all 
outliers a constant weight of one while the Tukey norm gives zero weight to outliers whose 
magnitude is above a certain value. The Lorentzian (or Perona-Malik) norm is in between 
the other two. Based on the shape of ift(-) we would predict that diffusing with the Tukey 
norm produces sharper boundaries than diffusing with the Lorentzian (standard Perona- 
Malik) norm, and that both produce sharper boundaries than the modified L\ norm. We 
can also see how the choice of function affects the "stopping" behavior of the diffusion; 
given a piecewise constant image where all discontinuities are above a threshold, the Tukey 
function will leave the image unchanged whereas the other two functions will not. 

Huhcr Minimax 

Figure 5: Lorentzian, Tukey, and Huber ip-functions. Left: Values of a chosen as a function 
of ae so that outlier "rejection" begins at the same value for each function. Right: The 
functions aligned and scaled. (This is a color figure.) 

These predictions are born out experimentally, as can be seen in Figure 6. The figure 
compares the results of diffusing with the Lorentzian and the Tukey functions. The value 
of ae = 10.278 was estimated automatically using (25) and the values of a and A for each 
function were defined with respect to ae as described above. The figure shows the diffused 
image after 500 iterations of each method. Observe how the Tukey function results in 
sharper discontinuities. Note that we can detect edges in the smoothed images very simply 
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by detecting those points that are treated as outliers by the given p-function. Figure 6 shows 
the outliers (edge points) in each of the images, that is, pixels where \VIaj>\ > ae. 

It is interesting to note that common robust error norms have frequently been proposed 
in the literature without mentioning the motivation from robust statistics. For example, 
Rudin et al. [26] proposed a formulation that is equivalent to using the Lx norm. You et al. 
[34] explored a variety of anisotropic diffusion equations and reported better results for some 
than for others. In addition to their own explanation for this, their results are predicted, 
following the development presented here, by the robustness of the various error norms they 
use. 

11 Robust anisotropic sharpening 

The basic idea behind image sharpening is to add high frequencies to an image. That is, 
the sharpened image I is obtained from the blurred image / via I = I + H(I), where H(-) 
represents some kind of high-pass filter operation, e.g., the Laplacian. The problem with this 
approach, denoted as unsharp masking, is that it also enhances noise, and not only edges. 
To solve this problem, in [7] the author proposes to mask H(I) with an edge detector. Since 
the framework here described is natural to detect edges, it is natural as well to accomplish 
this task. The basic idea is then to perform anisotropic diffusion on the Image I, robustly 
detect edges based on outliers, and then mask H(I) using these edges. Examples are given 
in our reports. 

12 Vector-valued images 

The extension of the results presented above for vector-valued images follows the framework 
introduced in [29]. The basic idea is that the gradient direction ^ and the gradient 
magnitude || VI \\ are replaced by concepts derived from the first fundamental form of the 
vector image. The direction of maximal change 9+ ("the gradient direction") of the vector 
data is given by the eigenvector of this fundamental form corresponding to the maximal 
eigenvalue A+, and the value of the maximal change ("the gradient magnitude") is given by 
a function of both eigenvalues, that is, /(A+, A_). Note that 9+, A+, and A_ depend on all 
the components of the vector-valued image. 

To extend the robust anisotropic diffusion approach to vector data, we have basically two 
possibilities. One, [29], if to formulate the problem as the minimization of 

|p(A+,A_)dfi, 

selecting p to be the Tukey's robust function. The gradient descent of this variational problem 
will give a system of coupled anisotropic diffusion equations. The second option if to derive 
directly the anisotropic equation from (20), and evolve each one of the image components U 
according to 
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where tp is the Tukey's influence function.  This topic is currently under investigation (see 
also [5]). 

1* If. flit-, ^.   i   :     W" ' rij I 

Figure 6: Comparison of the Perona-Malik (Lorentzian) function (left) and the Tukey func- 
tion (right) after 500 iterations. The first row shows the original image. The last row shows 
the edges obtained from the outliers. 
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Part IV 

Anisotropie Smoothing of Posterior 
Probabilities 

13 Introduction 

In [32], we proposed a new segmentation technique that was applied to segmenting MRI 
volumes of human cortex. The technique comprise three steps. First, the posterior prob- 
ability of each pixel is computed from its likelihood and a homogeneous prior; i.e., a prior 
that reflects the relative frequency of each class but is the same across all pixels. Next, the 
posterior probabilities for each class are anisotropically smoothed (using a 3D-extension of 
the algorithm suggested by Perona and Malik [22]). Finally, each pixel is classified indepen- 
dently using the MAP rule. Fig. 7 compares the classification of cortical white matter with 
and without the anisotropic smoothing step. The anisotropic smoothing produces classifi- 
cations that are qualitatively smoother within regions while preserving detail along region 
boundaries. The intuition behind the method is straightforward. Anisotropic smoothing 
of the posterior probabilities results in piecewise constant posterior probabilities which, in 
turn, yield piecewise "constant" MAP classifications. 

We explore the mathematical theory underlying the technique. We demonstrate that 
prior anisotropic smoothing of the posterior probabilities yields the MAP solution of a dis- 
crete MRF with a non-interacting, analog discontinuity field. In contrast, isotropic smooth- 
ing of the posterior probabilities is equivalent to computing the MAP solution of a single, 
discrete MRF using continuous relaxation labeling. Combining a discontinuity field with a 
discrete MRF is important as it allows the disabling of clique potentials across discontinu- 
ities. Furthermore, explicit representation of the discontinuity field suggests new algorithms 
that incorporate hysteresis and non-maximal suppression. This will be the subject of further 
investigation. 

14 Isotropic smoothing 

In this section, we describe the relationship between maximum aposterior probability (MAP) 
estimation of discrete Markov random fields (MRF) and continuous relaxation labeling 
(CRL) [24]. This connection was originally made by Li et. al. [20]. We review this relation- 
ship to introduce the notation that will be used and to point out the similarities between 
this technique and isotropic smoothing of posterior probabilities. These relationships are 
depicted in Fig. 8. 

We specialize our notation to MRF's defined on image grids. Let S = {1,... , n} be a 
set of sites where each s £ S corresponds to a single pixel in the image. For simplicity, we 
assume that each site can take on labels from a common set C = {1,..., k). Adjacency 
relationships between sites are encoded by M = {Mi\i E S} where Mi is the set of sites 
neighboring site i. Cliques are then defined as subsets of sites so that any pair of sites in a 
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Figure 7: (Top row) Left: Intensity image of MRI data. Middle: Image of posterior probabil- 
ities corresponding to white matter class. Right: Image of corresponding MAP classification. 
Brighter regions in the posterior image correspond to areas with higher probability. White re- 
gions in the classification image correspond to areas classified as white matter; black regions 
correspond to areas classified as CSF. (Bottom row) Left: Image of white matter posterior 
probabilities after being anisotropically smoothed. Right: Image of MAP classification com- 
puted using smoothed posteriors. 

clique are neighbors. We will only consider 4-neighbor adjacency for images (and 8-neighbor 
adjacency for volumes) and cliques of sizes no greater than two. By considering each site as 
a discrete random variable /j with a probability mass function over £, a discrete MRF f can 
be defined over the sites with a Gibbs probability distribution. 

If data di € d is observed at each site i, and is dependent only on its label /j, then the 
posterior probability is itself a Gibbs distribution and by the Hammersley-Clifford theorem, 
also a MRF, albeit a different one [12]: P(f |d) = Z'1 x exp{-£(f |d)} where 

f?(f|d) = 2>1(/i|di)+   E   V2(fi,fj) (26) 
ieCi (i,j)ec2 

and Vi(fi\di) is a combination of the single site clique potential and the independent likeli- 
hood. The notation (i, j) refers to a pair of sites; thus, the sum is actually a double sum. 
Maximizing the posterior probability P(f |d) is equivalent to minimizing the energy E{i|d). 
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Isotropie Smoothing 
of Posterior Probabilities 

/        \ 

Markov Random Field 
with 2nd order cliques 

Continuous 
Relaxation Labeling 

Figure 8: Equivalence between isotropic smoothing of posterior probabilities, Markov random 
fields with 2nd order cliques, and continuous relaxation labeling. 

Continuous Relaxation Labeling. The continuous relaxation labeling approach to solv- 
ing this problem was introduced by Li et. al. [20]. In CRL, the class (label) of each site i is 
represented by a vector pi = \pi(fi)\fi £ £\ subject to the constraints: (1) Pi(fi) > 0 for all 
fi G C, and (2) Y,fiecPi{fi) = 1- Within this framework, the energy E(f\d) to be minimized 
is rewritten as 

£(p|d) = E E WMM/*) + 
ieCi free 

E    E  v2Uufi)PiUi)PiUi) 
(i,j)ec2 (/i,/,-)e£2 

(27) 

Note that when Pi(fi) is restricted to {0,1}, E(p\d) reverts to its original counterpart E(f\d). 
Hence, CRL embeds the actual combinatorial problem into a larger, continuous, constrained 
minimization problem. 

The constrained minimization problem is typically solved by iterating two steps: (1) gra- 
dient computation, and (2) normalization and update. The first step decides the direction 
that decreases the objective function while the second updates the current estimate while 
ensuring compliance with the constraints. A review of the normalization techniques that 
have been proposed are summarized in [20]. Ignoring the need for normalization, continuous 
relaxation labeling is similar to traditional gradient descent: pl+1(fi) <— p\{fi) — d ql.s where 

^T = W*I*) + 2  E   £Wi,/i)p$(/i). 
uPiv*) j-(i,j)ec2fjec 

(28) 

and the superscripts t, t + 1 denote iteration numbers. The notation j : (i,j) refers to 
a single sum over j such that (i,j) are pairs of sites belonging to a clique. Barring the 
different normalization techniques could be employed, Eqn. (28) is found in the update 
equations of various CRL algorithms [24, 11, 18]. There are, however, two differences. First, 
in most CRL problems, the first term of Eqn. (28) is absent and thus proper initialization 
of p is important. We will also omit this term from now on to emphasize the similarity 
with continuous relaxation labeling. Second, CRL problems typically involve maximization; 
thus, V2(fi, fj) would represent consistency as opposed to potential, and the update equation 
would add instead of subtract the gradient. 
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Anisotropie Smoothing 
of Posterior Probabilities 

/        \ 

Markov Random Field 
with discontinuity field 

Robust Continuous 
Relaxation Labeling 

Figure 9: Equivalence between anisotropic smoothing of posterior probabilities, Markov ran- 
dom fields with discontinuity fields, and robust continuous relaxation labeling. 

Isotropie Smoothing. A convenient way of visualizing the above operation is as isotropic 
smoothing. Since the sites represent pixels in an image, for each class /j, Pi(fi) can be 
represented by an image (of posterior probabilities) such that k classes imply k such image 
planes. Together, these k planes form a volume of posterior probabilities. Each step of 
Eqn. (28) then essentially replaces the current estimate p\{fi) with a weighted average of 
the neighboring assignment probabilities Pj(fj). In other words, the volume of posterior 
probabilities is linearly filtered. If the potential functions V^/j, fj) favor similar labels, then 
the weighted average is essentially low-pass among sites with common labels and hi-pass 
among sites with differing labels. 

15    Anisotropic smoothing 

Isotropie smoothing causes significant blurring especially across region boundaries. A solu- 
tion to this problem is to smooth adaptively such that smoothing is suspended across region 
boundaries and takes place only within region interiors. Anisotropic smoothing is often im- 
plemented by simulating nonlinear partial differential equations with the image as the initial 
condition [2, 22]. In this section, we show that while isotropic smoothing of posterior prob- 
abilities is the same as continuous relaxation labeling of a MRF, anisotropic smoothing of 
posterior probabilities is equivalent to continuous relaxation labeling of a MRF supplemented 
with a (hidden) analog discontinuity field. We also demonstrate that this method could also 
be understood as incorporating a robust consensus-taking scheme within the framework of 
continuous relaxation labeling. These relationships are depicted in Fig. 9. 

We extend the original MRF problem to include a non-interacting, analog discontinuity 
field on a displaced lattice. Thus, the new energy to be minimized is: 

(jj)ec2 
2a2 V2[fi, fj) ■ h,j + (h,j - 1 - log/ij) (29) 

where Vi(fi) has been dropped for simplicity since the discontinuity field does not interact 
with it. The individual sites in the discontinuity field 1 are denoted by kj which represent 
either the horizontal or vertical separation between sites i and j in S. When litj is small, 
indicating the presence of a discontinuity, the effect of the potential V2(fi, fj) is suspended; 
meanwhile, the energy is penalized by the second term in Eqn. (29). There are a variety of 
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penalty functions that could be derived from the robust estimation framework (see Black [3]). 
The penalty function in Eqn. (29) was derived from the Lorentzian robust estimator. 

The minimization of E(f, 1) is now over both f and 1. Since the discontinuity field is non- 
interacting, 1 can be minimized analytically by computing the partial derivatives of E(f, 1) 
with respect to /y and setting that to zero. Doing so and inserting the result back into 
E{£, 1) gives us 

E(f) E los 
(i,i)ec2 

1 + ^/Ji) (30) 

Rewriting this equation in a form suitable for CRL, we get 

E(P)= Y: log 
(i,j)ec2 

1 + 
2a2 E   ViUijjMfMfj) 

(/i,/,-)6£2 

(31) 

Note that when Pi(fi) is restricted to {0,1}, these two equations are equivalent. 

Anisotropie Smoothing. To compute the update equation for CRL, we take the derivative 
of -E(p) with respect to Pi(fi): 

dE(p) ^     _ 

dPi(fi)     j:(i,j)ec2 

w. 1,3 T,V2(fi,fi)pi(fi) (32) 

where 

w. hj 2a2/ 2a2 
E       V2(/*,/i)Pi(/i)Pi(/i) 

(fiJj)£C2 

(33) 

The term witj encodes the presence of a discontinuity. If witj is constant, then the above 
equation reverts to the isotropic case. Otherwise, Wij either enables or disables the penalty 
function ^(/j,/j). This equation is similar to the anisotropic diffusion equation proposed 
by Perona and Malik [22]. 

Robust Continuous Relaxation Labeling. Each iteration of continuous relaxation la- 
beling can be viewed as a consensus-taking process [33]. Neighboring pixels vote on the 
classification of a central pixel based on their current assignment probabilities Pj(fj), and 
their votes are tallied using a weighted sum. The weights used are the same throughout 
the image; thus, pixels on one side of a region boundary may erroneously vote for pixels 
on the other side. Anisotropic smoothing of the posterior probabilities can be regarded as 
implementing a robust voting scheme since votes are tempered by Wij which estimates the 
presence of a discontinuity. The connection between anisotropic diffusion on continuous- 
valued images and robust estimation was recently demonstrated by Black et. al. [4]. We 
plan to further investigate the use of results in [4] for posterior diffusion. 
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16    Results and discussion 

The anisotropic smoothing scheme was used to segment white matter from MRI data of 
human cortex. Pixels at a given distance from the boundaries of the white matter classifi- 
cation were then automatically classified as gray matter. Thus, gray matter segmentation 
relied heavily on the white matter segmentation being accurate. Fig. 10 shows comparisons 
between gray matter segmentations produced automatically by the proposed method and 
those obtained manually. More examples can be found in [32]. 

Figure 10: Left images show manual gray matter segmentation results; right images show the 
automatically computed gray matter segmentation. 

The technique being proposed bears some superficial resemblance to schemes that anisotrop- 
ically smooth the raw image before classification [14]. Besides the connection between our 
technique and MAP estimation of Markov random fields, which is absent in schemes that 
smooth the image directly, there are two other important differences. First, anisotropic 
smoothing of the raw image does not take into consideration the discrete number of classes 
that are actually present. Second, anisotropic smoothing of the raw image is only applicable 
when the noise corrupting the image is additive and class independent. For example, if the 
class means were identical and the classes differed only in their variances, then anisotropic 
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smoothing of the raw image is ineffective. On the other hand, applying anisotropic smooth- 
ing on the posterior probabilities is still feasible even when the class likelihoods are described 
by general probability mass functions. 

The equivalence between anisotropic smoothing of posterior probabilities and MRF's with 
discontinuity fields also offers a solution to the problems of edge handling and missing data. 
These two issues can be treated in the same manner as in traditional regularization. Solving 
of the latter implies that MAP classification can be obtained even at locations where the 
pixel values are not provided. 
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