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Abstract 

We derive and examine the general expression for the scattering asymme- 
try parameter g. For aggregate particles, the asymmetry parameter is made 
up of two terms. One term accounts for interference effects of the electro- 
magnetic fields radiating from the individual subsystems. The other term 
accounts for interaction effects of the electromagnetic fields between these 
subsystems. Enhanced backscatter is one phenomenon resulting from these 
interactions. Numerical results demonstrate that interference effects play a 
dominant role when the separation distance between aggregates is smaller 
than half the incident wavelength. As the separation distance becomes large, 
both interference and interaction effects drop off, and the asymmetry param- 
eter approaches that of the individual particle constituents. 
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1.    Introduction 

The asymmetry parameter g has a long history dating back to the beginning 
of this century, when it was used to calculate radiation pressure exerted on 
particles [1]. It is currently an essential input in many radiative transfer and 
climate models [2]. Until recently, these models have used asymmetry pa- 
rameters calculated from spherical particles, simulating water droplets and 
aerosol particles. Unfortunately, atmospheric particles, including ice crys- 
tals and water and aerosol particles containing contaminants, are not gener- 
ally symmetric spheres. The scattering properties, including the asymmetry 
parameter, of these particles can vary significantly from those of spheres; 
e.g., both theoretical and observational work has shown that the values of 
the asymmetry parameter for ice crystals in cirrus clouds are significantly 
smaller than those given by Mie theory [3-5]. Since cirrus clouds cover about 
20 to 30 percent of the earth, they influence the climate through their ef- 
fects on the radiation budget [6]. A great deal of uncertainty still exists in 
the specification of the asymmetry parameter for cirrus clouds because of 
the extremely complicated shapes of ice crystals. Francis et al. [7] found 
that the deduced values of g from field experiments varied between 0.7 and 
0.85. For other important radiative transfer parameters (like the extinction, 
scattering, and absorption efficiencies and the single scattering albedo), the 
anomalous diffraction approximation can provide some insight into their 
physical processes [8-12]. However as yet, no simple approximation can be 
used to calculate the asymmetry parameter. 

In this report we take a closer examination of the asymmetry parameter and 
provide some physical insight, with the aim of stimulating further interest. 
We first derive the general expression for the asymmetry parameter for an 
arbitrary particle. Since theories have recently been developed to calculate 
the scatter from ensembles of particles, we consider this special case in more 
detail, examining specifically terms that contribute to interference and en- 
hanced backscatter. Such theories can be used to model smoke, aerosols, and 
droplets containing contaminants. 



2.    Relevant Equations 

We start by writing the general expression of the asymmetry parameter in 
three dimensions. We consider an arbitrarily shaped particle illuminated by 
a plane wave traveling in the positive z direction. For many scattering sys- 
tems, such as bispheres [13-28] and spheres containing an inclusion [29-36], 
derivations of the scattered fields take advantage of system symmetries and 
the incident plane wave travels in an arbitrary direction. The appendix pro- 
vides relations by which the scattering coefficients for a system illuminated 
by an arbitrarily incident plane wave may be converted to those for an equiv- 
alent system in which the plane wave is traveling in the positive z direction. 

The scattered electric field can be expressed in terms of a vector spherical 
harmonic expansion as 

(1) 
n=0 m=—n 

where the index j on the scattering field coefficients anm and bnm corresponds 
to what is acquired with incident plane-wave illumination polarized in the x 
(j = 1) and y (j = 2) directions. The vector spherical harmonics are defined 

by 
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,(D, and the wavelength of the incident plane wave is A = 2n/k, hn (kr) are 
the spherical Hankel functions of the first kind, and a time dependence of 
exp(-iut) is implicit. The normalized associated Legendre polynomials are 
given by 

*M-Ä=»fW. (4) 



The scattering amplitudes in the far field can be expressed by the matrix 
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where Eipfij and Eftß correspond to transverse electric and transverse mag- 
netic incident plane wave illumination, respectively; and E|ca and E^°- cor- 

respond to scattered electric fields polarized in the 9 and <f> directions. In 
general, the elements of the scattering amplitude matrix can be written as 
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The asymmetry parameter is the integral of the cosine-weighted intensity 
phase function and is a measure of the amount of forward scatter from the 
particle: 
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where the scattering cross section is defined as 
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For an arbitrarily shaped particle, there may be coupling between the modes, 
and the scattering amplitude matrix elements S3 and 54 are not zero. After 
a fair amount of algebraic manipulations, the asymmetry parameter may be 

expressed as 
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Equation (15) contains a great deal of information. If, for instance, there is 
no correlation between the coefficients, 

/(j)   U>   \ _ /bU) 6(J>   \ = (aU) bU)*\ = o. (16) 

then there is no preferential scattering hemisphere. This condition is neces- 
sary for a scatterer to be Lambertian. 

Equation (15) also shows that there is no preferential scattering hemisphere 
for any individual mode Mnm or Nnm. However, when more than one mode 
is considered, there can be preferential scattering. A preferential scattering 
hemisphere is the result of interference between the modes. In general, con- 
structive interference tends to be in the forward-scatter region, leading to 
positive g. This phase information (and resulting scattering directionality) 
is contained within the incident plane wave coefficients. 

For reference, we show in figure 1 the calculated asymmetry parameter as 
a function of radius for carbon and water spheres. For radii that are small 
compared to the wavelength, the asymmetry parameter is zero, since no 
preferential scattering hemisphere exists for isolated Rayleigh-size scatter- 
ed. As the sphere radius approaches the wavelength, the asymmetry pa- 
rameter rises rapidly, corresponding to the increase in scatter in the forward 
direction. For the highly absorbing carbon spheres, the asymmetry parame- 
ter levels off around 0.9. As the transparent, water-sphere radius increases, 
the internal fields selectively intensify specific modes in the sphere through 
morphology-dependent resonances. Selective enhancement of specific modes 
tends to decrease the asymmetry parameter, since (from eq (16)) a specific 
mode does not have a preferential scattering hemisphere, and the normaliz- 
ing scattering cross section is increased. 
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Figure 1. Asymmetry parameter of water (n = 1.33) and carbon (n = 1.75 + 0.44i) spheres 
as a function of sphere radius. 



3.    Aggregates 

Other researchers [13-28] have recently derived solutions for the scatter from 
aggregate particles by considering the entire system to be composed of mul- 
tiple subsystems, and by including an interaction term as part of the field 
incident on each subsystem. This interaction term is due to the scattered 
field from all other subsystems striking the subsystem of interest. The scat- 
tering coefficients for the jth subsystem, ft& and /^, can be expressed as 
a set of coupled linear equations, 

f^ = a& + £ £ £ Ä^'m' + ft*'- (17) 
fe/j  n'   m' 

ftt = tiL + £££Ä«W + ÄÄW.       (is) 
k^j   n'    m' 

where <%& is a function of the incident field and A^'m', B^'m', C££'m\ 
and D£™ w are system-dependent parameters that include translation coef- 
ficients that can be used to express the vector spherical harmonics in subsys- 
tem k in terms of vector spherical harmonics in subsystem j. Once solutions 
for the scattering coefficients /*£ and f%& are found, the total scattered field 
is found as the superposition of the scattered fields from all the subsystems. 
We can find the asymmetry parameter using equation (15) by expressing 
the total scattered field in terms of a single coordinate system, which is 
a straightforward process using the addition theorem for vector spherical 
harmonics and the linearity of the system. 

Aggregation can affect the scatter in two ways: through interference and 
interaction. We can isolate the effect of interference by expressing the total 
scattered fields in terms of the individual scattering components. Since the 
total scattered electric field can be expressed as the sum of the contributions 
from each aggregate (Esca = EjEf"), the asymmetry parameter can be 
expressed as 
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3.1    Interaction 

The first term of equation (19) accounts for the interference between the 
fields scattered by the jth and fcth subsystems. The second term of equation 
(19) is the sum of the individual asymmetry parameters calculated from 
each individual subsystem. In sections 3.1 and 3.2, we consider these terms 
individually. When the subsystems are far enough apart that any particle- 
particle interaction or interference becomes negligible, equation (19) must 
reduce to 

go = -^ , (20) 

where gj and Cscaj are the asymmetry parameter and scattering cross sec- 
tion for the isolated jth subsystem. The effects of the interaction are con- 
tained within the scattering coefficients themselves; thus, we can isolate the 
interaction effect by subtracting g0 from the second term of equation (19). 

Interaction between subsystems is difficult to characterize because there is 
mode mixing between the subsystems. One effect of the interaction is en- 
hanced backscatter, which is due to constructive interference of rays reflect- 
ing off multiple interfaces. In the backscatter direction, the path difference of 
light rays striking multiple interfaces is the same when the order of the inter- 
faces is reversed. These two rays (forward and backward traversing) interfere 
constructively, and the resulting intensity is enhanced. When backscattered 
light is enhanced, the asymmetry parameter must decrease. 

Figure 2 shows the individual components of the asymmetry parameter given 
by equation (19) as a function of separation distance d. In this figure, the 
asymmetry parameter is averaged over all orientations of a scattering system 
composed of two r = A/2 carbon spheres (fig. 2a) and two r = A/10 car- 
bon spheres (fig. 2b). The effect of enhanced backscatter is contained within 
the second term of equation (19) (after g0 is subtracted out). Note that the 
interference term is always positive, and the interaction term is always nega- 
tive. For both particle systems, the interaction component is approximately 
proportional to d~2, which is proportional to the scattered flux of one sub- 
system, intercepted by the other subsystem. This is to be expected, since 
the interaction between particles must decrease with the magnitude of the 
interaction field. 
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Figure 2. Asymmetry parameter as a function of separation distance d for two carbon 
spheres, (a) r = A/2 and (b) r = A/10, averaged over all orientations. Note interference 
term is always positive and interaction term is always negative. 



3.2    Interference 

Interference produces a high-frequency structure on the scattering phase 
function. This is illustrated in figure 3, which shows the scatter from a pair 
of r = A/4 carbon spheres illuminated at broadside incidence. For compar- 
ison, the scatter from a single sphere having the same parameters is also 
shown. The major effect of interference is a high-frequency modulation on 
the scattered signals. The positions of the high-frequency maxima and min- 
ima are dependent on the positions of the aggregate subsystems. Since the 
scattered waves from each subsystem acquire the same phase difference in 
the forward direction, there is always constructive interference in this di- 
rection, and therefore, a maximum. Hence, interference tends to increase 
the asymmetry parameter. This is illustrated in figure 2a, which shows the 
individual components of the asymmetry parameter (eq (19)) as a function 
of separation distance d. Note that as the separation distance d increases, 
the interference component of the asymmetry parameter for the two-sphere 
aggregate is positive and asymptotically approaches 0. This is because the 
spatial frequency of the interference structure increases with separation dis- 
tance, and a high-frequency modulation has little effect on the integration of 
the scattering intensities given by equation (19). In figure 2b (for r = A/10 
carbon spheres), there is much more structure in the interference compo- 
nent. The large maximum occurring near d = A/4 is due to destructive 
interference of scattered light in the backward direction, which increases the 
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Figure 3. Intensity as a function of scattering angle for r = A/4 carbon spheres (n = 
1.75 + 0.44z) showing interference structure. 



value of g. Subsequent maxima in the interference term occur at intervals 
of approximately A/2 and are similar to the interference structure of thin 
films. The particulate components of a simple aggregate tend to be in con- 
tact. Figure 4a shows the asymmetry parameter as a function of radius r 
for two carbon spheres in contact, averaged over all orientations. The curves 
of this figure are significantly different from the curves of figure 2, owing to 
the spheres being in contact. All that remains of the interference structure 
is the large maximum occurring near r = A/8 (d = A/4), which dominates 
the asymmetry parameter for small sphere radii. The interference term of 
equation (19) remains a significant component for much larger separation 
distances when the spheres are in contact. The shape of the total asym- 
metry parameter is similar to that of the single carbon sphere (shown for 

comparison in fig. 1). 

Figure 4b shows the percentage errors resulting in asymmetry parameter 
calculations when the two-sphere aggregate is assumed to be a sphere. Al- 
though equivalent-volume spheres approximate the asymmetry parameter 
better than equivalent-area spheres and an isolated sphere having the same 
radius of one of the components, the errors are still significant, especially 
when the aggregate components are smaller than the wavelength. As shown 
in figure 4a, at these small radii, the interference between the individual 
particles (which cannot be included in any equivalent-sphere system) plays 
a dominant role in the determination of the asymmetry parameter. 
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Conclusion 

In this report, we provide an expression for the asymmetry parameter of an 
arbitrarily shaped particle for which the scattering solution can be expressed 
in a multipole solution. We have considered the special case of an aggregate 
and have isolated the two mechanisms—interference and interaction—that 
affect the value of the asymmetry parameter. Interference tends to increase 
the asymmetry parameter by preferentially scattering light in the forward 
direction. Counteracting this effect is the interaction component, which ac- 
counts for enhanced backscatter. 

For the two-sphere aggregates we examined, the interference effects outweigh 
the interaction effects. Equivalent-sphere systems do not have a mechanism 
to reproduce either of these effects and, consequently, provide poor approx- 
imations when these effects are significant. Although interference plays a 
greater role than interaction for the bisphere system, we cannot assume 
that it does so for other aggregate or irregular systems. As the number of 
surface irregularities increases (for instance, in a multifaceted ice crystal), 
the interaction would be expected to play a dominant role and the asym- 
metry parameter would be reduced. By isolating the factors that affect the 
asymmetry parameter, we can proceed in the parameterization of these fac- 
tors as a function of the number of subparticles contained in a system and 
the number of surface irregularities. Such a parameterization is immediately 
applicable to nonspherical ice crystals in cirrus clouds. 
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Appendix. Relations for Scattering Coefficients of Two Rotated 
Coordinate Systems 

The relations for the scattering coefficients of two rotated coordinate systems 
have been derived by Stein.1 The vector spherical harmonics in the original 
(primed) coordinate system are related to the vector spherical harmonics in 
a rotated system (in which the plane wave travels in the positive z direction): 

M& = £*m)Mi1i'. (A-l) 
m' 

NSl, = E*m)NS, (A-2) 

where the rotation coefficients DiJ,      are given by 

D„,'m     =   exp [i (m'a + mj)} 
(n + m')\ (n - m')\ 
(n + m)\ (n — m)\ 

1/2 

x J2(n-t™-*)[nVl{~1)n+m~a[cos{ß/2)]i 

■\2n — 2a—m'—m x[sm(ß/2)}2n-2a-m-m (A-3) 

and a, ß. and 7 are Euler angles following the convention of Edmonds.2 The 
coefficients in the rotated coordinate system, anm and bnm, can be expressed 
in the unrotated coordinate system. Cnm and dnm,   as 

anm = Yl Dm'm) °n™'' (A"4) 
m' 

bnm = Y2D%m)dnm'. (A-5) 

JS. Stein, "Addition theorems for spherical wave functions," Q. Appl. Math. 19 (1961), 
15-24. 

2A. R. Edmonds, Angular Momentum in Quantum Mechanics. Princeton University 
Press, Princeton, NJ (1957). 
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