ENERGY ENGINEERING ANALYSIS PROGRAM 100TH ASG GRAFENWÖHR AND VILSECK, GERMANY

ENERGY AUDIT OF DINING FACILITIES

FINAL REPORT AUGUST 1993

19971017 095

APPENDICES

VOLUME III

DTIC QUALITY INSPECTED 2

U.S. ARMY ENGINEER DISTRICT, EUROPE CONTRACT NO. DACA-90-D-0065 DELIVERY ORDER #0006

DISTRIBUTION STATISTICS

Approved for public selection Describeration (Selection)

PREPARED BY:

GEHRMANN CONSULT GMBH ABRAHAM-LINCOLN STRASSE 34 D6200 WIESBADEN, GERMANY BAKER AND ASSOCIATES 420 ROUSER ROAD CORAOPOLIS, PA 15108, U.S.A. DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

ATTENTION OF: TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

· []

Marie Wakeffeld, Librarian Engineering

Appendices

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

ŝ

INDEX OF VOLUMES

Volume I	-	Executive Summary
Tab 1	-	Introduction
Tab 2	-	Site and Building Data
Tab 3	-	Present Energy Consumption
Tab 4	-	Historical Energy Consumption
Tab 5	-	Energy Conservation Analysis
Tab 6	-	Energy and Cost Savings
Tab 7	-	Analysis of Site Utilities
Volume II	-	Narrative
Tab 1	-	Introduction
Tab 2	-	Present Conditions
Tab 3	-	ECOs Considered
Tab 4	-	Results
Tab 5	-	Conclusions and Recommendations
Tab 6	-	Summary
Tab 7	-	Site Utility Analysis

Volume III - Appendices

Tab 1	-	Appendix A - Scope of Work
Tab 2	-	Appendix B - Field Survey Notes
Tab 3	-	Appendix C - Energy Conservation Opportunity (ECO) Checklist
Tab 4	-	Appendix D - ECOs Eliminated
Tab 5	-	Appendix E - Annual Energy Consumption Data
Tab 6	-	Appendix F - Supporting Data and Documentation for Developed Projects
Tab 7	-	Appendix G - Site Utility Analysis Data
Tab 8	-	Appendix H - Bibliography

Appendix A

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

!

APPENDIX A

SCOPE OF WORK

8 May 1992 Revised 9 Jun 1992

CETAE-PM-ME

.

GENERAL SCOPE OF WORK

FOR AN

ENERGY SURVEY OF ARMY DINING FACILITIES

100th ASG

GRAFENWOEHR, GERMANY

Performed as part of the ENERGY ENGINEERING ANALYSIS PROGRAM

SCOPE OF WORK FOR AN ENERGY SURVEY OF ARMY DINING FACILITIES

TABLE OF CONTENTS

- BRIEF DESCRIPTION OF WORK 1.
- GENERAL 2.
- PROJECT MANAGEMENT 3.
- SERVICES AND MATERIALS 4.
- PROJECT DOCUMENTATION 5.
 - 5.1 ECIP Projects
 - Non-ECIP Projects 5.2
 - Nonfeasible ECOs 5.3
- DETAILED SCOPE OF WORK 6.
- WORK TO BE ACCOMPLISHED 7.
 - Audit and Analysis 7.1
 - Identify ECOs 7.2
 - Prepare Programming Documentation for ECIP Projects 7.3
 - 7.4 Prepare Implementation Documentation
 - List and Prioritize All Projects 7.5
 - Submittals, Presentations, and Reviews 7.6

ANNEXES

- ENERGY CONSERVATION OPPORTUNITIES Α
- DETAILED SCOPE OF WORK В ----
- C EXECUTIVE SUMMARY GUIDELINE

1. BRIEF DESCRIPTION OF WORK: The Architect-Engineer (AE) shall:

1.1 Perform a complete energy audit and analysis of the dining facilities at Grafenwoehr (Bldg 101) and Vilseck (Bldg 603).

1.2 List and priortize all recommended Energy Conservation Opportunities (ECOs) identifying individual equipment for energy conservation. This list must include low cost/no cost ECOs and perform complete evaluations of $\frac{1}{1000}$ ECO's per dimning facility selected by the representatives of 100th ASG.

1.3 Prepare implementation documentation for energy conservation opportunities selected by the representatives of 100th ASG.

1.4 Prepare a comprehensive report which will document the work accomplished identifying individual equipment, the results and the recommendations on energy savings.

2. GENERAL

2.1 An energy study, including a detailed energy survey, shall be accomplished for the dining facilities listed in Annex B. The study shall integrate the results of, and any available data from, prior or ongoing energy conservation studies, projects, designs, or plans with work done under this contract. This Scope of Work is not intended to prescribe the details in which the studies are to be conducted or limit the AE in the exercise of his professional engineering expertise, applying the state of the art techniques, good judgment or investigative ingenuity. However, the information and analysis outlined herein are considered to be minimum essentials for adequate performance of this study. The study shall include a comprehensive energy report documenting study methods and results.

2.2 All recommended ECOs, including maintenance, operational and low cost/no cost opportunities as well as Energy Conservation Investment Program (ECIP)/ Quick Return Investment Program (QRIP) projects shall be ranked in order of highest to lowest Savings to Investment Ratio (SIR). The installed equipment and meters shall be utilized in discussing the results.

2.3 Other studies performed under the Energy Engineering Analysis Program(EEAP) have been accomplished for the installation at which the dining facilities are located. The portions of the studies applicable to the dining facilities, if any, shall be incorporated into this study.

2.4 The AE shall ensure that all methods of energy

conservation pertaining to dining facilities, which will reduce the energy consumption of the installation in compliance with the Energy Resources Management Plan, have been considered and documented. All methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures as well as the physical facilities. All new and updated energy conservation opportunities which produce energy or dollar savings shall be documented in this report. Any energy conservation opportunities considered infeasible shall be documented in the report with reasons for elimination. A list of general energy conservation opportunities is included as Annex A to this scope.

2.5 The study shall consider the use of all energy sources. The energy sources to be considered are electrical energy, material gas, biquefied patroleum gas, and existing district heat.

2.6 The "Energy Conservation Investment Program (ECIP) Guidance," described in a letter from CEHSC-FU-M, dated 28 June 1991, establishes criteria for ECIP projects and shall be used for performing the economic analyses of all ECOs and projects. The Tri-Service MCP Index, when updated, is contained in the latest applicable edition of the Engineer Improvement Recommendation System (EIRS) bulletin. (Revised Guidance)

2.7 Energy conservation opportunities determined to be technically and economically feasible shall be developed into projects acceptable to installation personnel. This may involve combining similar ECOs into larger packages which will qualify for ECIP/QRIP or OMA funding, and determining, in coordination with installation personnel, the appropriate packaging and implementation approach for all feasible ECOs.

3. PROJECT MANAGEMENT

3.1 <u>Project Managers</u>. The AE shall designate a project manager to serve as a point of contact and liaison for work required under this project. Upon award of this project, the individual shall be immediately designated in writing. The AE's designated project manager shall be approved by the Contracting Officer prior to commencement of work. This designated individual shall be responsible for coordination of work required under this project. The EUD project manager is Mr. <u>Bhujufidwamin</u> Gargai. (320-7318) who will serve as a point of contact and liaison for all work required under this project.

3.2 Installation Assistance. Ms. Angle Graf (475-6134/7170) at 100th ASG (Bldg 433) in Grafenwoehr will serve as the point of contact for obtaining information and assisting in establishing contacts with the proper individuals and organizations as necessary in the accomplishment of the work required under this project.

3.3 <u>Public Disclosures</u>. The AE shall make no public announcements or disclosures relative to information contained or developed in this project, except as authorized by the Contracting Officer.

3.4 Meetings. One meeting will be scheduled whenever requested by the AE or the EUD project manager for the resolution of questions or problems encountered in the performance of the work. The AE and/or the designated representative(s) shall be required to attend and participate in this meeting pertinent to the work required under this project as directed by the Contracting Officer. This meeting is in addition to the presentation and review conferences.

3.5 <u>Site Visits, Inspections, and Investigations</u>. The AE shall visit and inspect/investigate the site of the project as necessary and required during the preparation and accomplishment of the work.

3.6 Records

3.6.1 The AE shall provide a record of all significant conferences, meetings, discussions, verbal directions, telephone conversations, etc., with Government representative(s) relative to this contract in which the AE and/or designated representative(s) thereof participated. These records shall be dated and shall identify the contract number, and modification number if applicable, participating personnel, subject discussed and conclusions reached. The AE shall forward to the EUD project manager within ten calendar days, a reproducible copy of the records.

3.6.2 The AE shall provide a record of requests for and/or receipt of Government-furnished material, data, documents, information, etc., which if not furnished in a timely manner, would significantly impair the normal progression of the work under this contract. The records shall be dated and shall identify the contract number and modification number, if applicable. The AE shall forward to the Contracting Officer within ten calendar days, a reproducible copy of the record of request or receipt of material.

3.7 Interviews. The AE and the EUD project manager shall conduct entry and exit interviews with the representative of 100th ASG before starting work at the installation and after completion of the field work. The EUD project manager shall schedule the interviews at least two weeks in advance.

3.7.1 Entry. The entry interview shall thoroughly describe the intended procedures for the survey and shall be conducted

prior to commencing work at the facility. As a minimum, the interview shall cover the following points:

- a. Schedules.
- b. Names of energy analysts who will be conducting the site survey.
- c. Proposed working hours.
- d. Support requirements from the representative of 100th ASG.

3.7.2 Exit. The exit interview shall include a thorough briefing describing the items surveyed and probable areas of energy conservation. The interview shall also solicit input and advice from the Dining Facility Manager.

4. <u>SERVICES AND MATERIALS</u>. All services, materials (except those specifically enumerated to be furnished by the Government), equipment, labor, superintendence and travel necessary to perform the work and render the data required under this project are included in the lump sum price of the proposed contract. Installed meters should be utilized to gather data.

5. PROJECT DOCUMENTATION. All energy conservation opportunities shall be included in one of the following categories and presented in the report as such:

Non-ECIP Projects. Projects which do not meet ECIP 5.1 criteria, but which have an overall SIR greater than one shall be documented. Each project shall be analyzed to determine if it is feasible even if it does not meet ECIP criteria. These ECOs or projects may not meet the nonenergy (75%) qualification test. For projects or ECOs in this category, the life cycle cost analysis summary sheet (LCCID software), completely filled out, with all the necessary backup data to verify the numbers presented, a complete description of the project and the simple payback period shall be included in the report. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effects of the individual ECOs. In addition, these projects may need the necessary documentation prepared, in accordance with the requirements of the Government's representative, for one of the following categories:

a. Low Cost/No Cost (Self Help) Projects. These are projects which the Director of Engineering and Housing can perform with his own resources, and Self Help Program, or through the DEH Self Help Program.

b. Quick Return on Investment Program (QRIP). This program is for projects which have a total cost not over \$100,000 and a

simple payback period of two years or less.

c. Productivity Enhancing Capital Investment Program (PECIP). This program is for projects which have a total cost of \$100,000 or more and a simple payback period of four years or less.

The above programs are all described in detail in USAREUR \int Pam. 5-5, Jan. 1989. (See also Annex B Item (E))

5.2 ECIP Projects. To qualify as an ECIP project, an ECO, or several ECOs which have been combined, must have a construction cost estimate greater than \$300,000, a Savings to Investment Ratio greater than one and a simple payback period of less than eight years. The overall project, and each discrete part of the project, shall have a SIR greater than one. For all projects meeting the above criteria, complete programming documentation will be required. A life cycle cost analysis summary sheet shall be developed for each ECO using LCCID software and for the overall project when more than one ECO is combined. The energy savings for projects consisting of multiple ECOs must take into account the synergistic effect of the individual ECOs. For projects and ECOs developed from previous studies, the backup data shall consist of copies of the original calculations and analysis, with new pages updating and revising the original calculations and analysis. In addition, the backup data shall include as much of the following as is available: the increment of work the project or ECO was developed under in the previous study, title(s) of the project(s), the savings to investment ratio (SIR), the energy to cost (E/C) ratio, the benefit to cost (B/C) ratio, the current working estimate (CWE), and the payback period. This information shall be included as part of the backup data. The purpose of this information is to provide a means to prevent duplication of projects in any future we Eur reports. In the interest of the limited resources available, only one ECIP project for each dining facility will be proposed. EA Furthermore the A/E may consider consolidating two QRIP projects FAILITY to constitute one ECIP project.

5.3 <u>Nonfeasible ECOs.</u> All ECOs which the AE has considered but which are not feasible, shall be documented in the report with reasons and justifications showing why they were rejected.

6. <u>DETAILED</u> <u>SCOPE</u> <u>Of</u> <u>WORK</u>. The detailed Scope of Work is contained in Annex B.

7. WORK TO BE ACCOMPLISHED

7

7.1 Audit and Analysis

The audit consists of gathering data and in-7.1.1 Audit. specting the dining facilities in the field. These activities shall be closely coordinated with the EUD project manager, the representative of 100th ASG (DEH) and Dining Facility Manager. The AE shall become familiar with each dining facility and undertake all necessary field trips to obtain required data. The AE shall document his field surveys on forms developed for the survey, or standard forms, and submit the completed forms as part of the report. Data sources shall be identified and assumptions clearly stated and justified. Data collected during the audit shall be in sufficient detail to identify all the major energy using equipment and processes. The AE shall measure and record the voltage and amperage of all motors one horsepower and larger. The information gathered shall be compared to the name plate data to determine whether the motor is being properly utilized. Data should be gathered when the motor is loaded. Air handling system supply, return and exhaust air quantities, temperatures, relative humidities, lighting levels, number and type of light fixtures, differential pressure readings and similar data required for the analysis shall be based on measurements made during the audit and not on "as-built" drawings. All test and/or measurement equipment shall be properly calibrated prior to its use. Operating sequences for equipment, control schedules, facility operating hours, methods of operation, and past performance records should also be obtained during the audit.

7.1.2 Analysis. The energy analysis is a comprehensive study of the dining facilities energy usage. It includes a detailed investigation of the facilities operation, its environment and its equipment. The energy analysis shall provide the following types of information: (a) a baseline of energy usage of the existing dining facility, (b) peak heating and cooling loads, (c) energy usage by systems (lighting, heating, cooling, domestic hot water, etc.), (d) a basis for evaluating ECOs, and (e) a baseline of energy usage of the dining facility after incorporation of all recommended ECOs. The AE shall develop graphic presentations in consultation with the representatives from 100th ASG and EUD representatives , i.e., selected graphs and charts, which depict a complete energy consumption picture for the dining facilities as they are now and after implementation of the recommended energy conservation opportunities and include these in the report.

7.2 Identify ECOs. All methods of energy conservation which are reasonable and practical shall be considered, including improvements of operational methods and procedures and maintenance practices as well as the physical facilities. A list of energy conservation opportunities is included as Annex A to this scope. This list is not intended to be restrictive but only to assure

8

that at least these opportunities are considered, discussed and Those items on the list which are not documented in the report. practical, have been previously accomplished, are inappropriate or can be eliminated from detailed analysis based on preliminary analysis shall be listed in the report along with the reason for elimination from further analysis. All potential ECOs which are not eliminated by preliminary considerations shall be thoroughly documented and evaluated as to technical and economic feasibility. The AE shall provide all data and calculations needed to support the recommended ECO. All assumptions shall be clearly stated. Calculations shall be prepared showing how all numbers in the ECO were figured. Calculations shall be an orderly step-by-step progression from the first assumption to the final number. Descriptions of the products, manufacturers catalog cuts, pertinent drawings and sketches shall also be included. Α life cycle cost analysis summary sheet shall be prepared for each ECO and included as part of the supporting data. For ECOS which would replace the existing heating, ventilating, and air conditioning (HVAC) system or significantly change it (such as converting a multizone system to a variable air volume (VAV system) the AE is required to run a computer simulation to analyze the system and to determine the energy sayings. This requirement to use computer modeling applies only to heated and air conditioned or air conditioned only buildings which exceed 8,000 square feet or heated only buildings in excess of 20,000 square feet. Modeling will be done using a professionally recognized and proven computer program or programs that integrate architectural features with air-conditioning, heating, lighting and other energy-producing or consuming systems. These programs will be capable of simulating the features, systems, and thermal loads of the building under study. The program will use established weather data files and may perform calculations on a true hour-by-hour basis or may condense the weather files and the number of calculations into several "typical" days per month. The Detailed Scope of Work, Annex B, lists programs that are acceptable to the EUD project manager. If the AE desires to use a different program, it must be submitted for approval with a sample run, an explanation of all input and output data, and a summary of program methodology and energy evaluation papabilities.

7.3 Prepare Implementation Documentation. For feasible projects or ECOs which do not meet ECIP criteria, implementation documentation shall be prepared. Each feasible project or ECO shall be individually packaged and fully documented and included as a separate section in the volume containing the programming documentation. Each project or ECO shall have a complete description of the changes required, economic justifications, sketches, and other backup data included as a section in the report. The documentation required will be as determined by the Government's representative. Documentation required will be in the categories listed in paragraph 5.2. For the QRIP, and PECIP

projects, documentation shall be prepared in accordance with the requirements of UP 5-5, A sample implementation document, consisting of a DA Form 5108-R, sketches and manufacturers data and a life cycle cost analysis summary sheet shall be submitted for review and approval with the interim submittal. This sample shall be submitted and approved prior to the preparation of any other implementation documentation. To the degree possible, the project selected for the sample submission shall be typical of the majority of subsequent projects to be submitted. The sample shall consist of complete implementation documentation with primary emphasis on format and manner of presentation rather than precise accuracy of cost estimates and energy saving data. This can be deleted if not needed).

a. Brief description of the project.

b. Brief description of the reasons for the modification.

c. Specific instructions for performing the modification.

d. Estimated Deutsche Mark (Dollar) and energy savings per year.

e. Estimated manhours and labor and materials costs. Costs shall be calculated for the current calendar year and so marked. Manhours shall be listed by trade. For projects that would repair an existing system so that it will function properly, also include the estimated manhours by trade and labor and material costs necessary to maintain the system in that condition. Some of the simple practical modifications may be developed on a per unit basis. An example of this type of modification would be the repair or replacement of steam traps on an as needed basis. As a rule, however, the AE should develop complete projects, if at all possible, rather than per unit modifications.

Separate sheets for each project showing the above information shall be prepared and included in the report.

7.4 List and Prioritize All Projects.

7.4.1 The AE shall list and prioritize all energy conservation opportunities by savings to investment ratios.

7.4.2 The AE shall list and prioritize all projects by types of projects and savings to investment ratios.

7.5 <u>Submittals, Presentations and Reviews</u>. The work accomplished shall be fully documented by a comprehensive report. The report shall have a table of contents and be indexed. Tabs and dividers shall clearly and distinctly divide sections, subsections, and appendices. All pages shall be numbered. The AE shall give a formal presentation of all but the final report to 100th ASG, and other Government personnel. The AE shall prepare

slides or view graphs showing the results of the study to date for his presentation. During the presentation, the personnel in attendance shall be given ample opportunity to ask questions and discuss any changes deemed necessary to the study. A review conference will be conducted the same day, following the Each comment presented at the review conference presentation. will be discussed and resolved or action items assigned. The AE shall provide the comments from all reviewers and written notification of the action taken on each comment to all reviewing agencies within three weeks after the review meeting. It is anticipated that each presentation and review conference will require a minimum of one working day. The presentation and review conferences will be at the installation on the date(s) agreeable to the Director of Engineering and Housing, the AE and the Government's representative. The Contracting Officer may require a resubmittal of any document(s), if such document(s) are not approved because they are determined by the Contracting Officer to be inadequate for the intended purpose.

Interim Submittal (35%). An interim report shall be 7.5.1 submitted within 90 calendar days after Notice To Proceed for review after the field survey has been completed and an analysis has been performed on all of the ECOs. The report shall indicate the work which has been accomplished to date, illustrate the methods and justifications of the approaches taken and contain a plan of the work remaining to complete the study. Calculations showing energy and dollar savings and SIRs of all the ECOs shall be included. The simple payback period of all ECOs shall be calculated and shown in the report. The AE shall submit the Scope of Work and any modifications to the Scope of Work as an appendix to the report. A narrative summary describing the work and results to date shall be a part of this submittal. During the review period, the Government's representative shall coordinate with the Director of Engineering and Housing and provide the AE with direction for packaging or combining ECOs for programming purposes and also indicate the fiscal year for which the programming or implementation documentation shall be prepared. A sample implementation document (DA Form 5108-R, sketches and manufacturers data, life cycle cost analysis summary sheet and supporting data) for one project shall be submitted with this submittal for review and approval. The survey forms completed during this audit shall be submitted with this report. The survey forms only may be submitted in final form with this submittal. They should be clearly marked at the time of submission that they are to be retained. They shall be bound in a standard three-ring binder which will allow repeated disassembly and reassembly of the material contained within.

7.5.2 Prefinal Submittal (95%). The AE shall prepare and submit the prefinal report complete with all work under this project within 60 calendar days after receipt of Government comments on Interim submittal. The AE shall submit the Scope of Work for the installation studied and any modifications to the

11

* 95% incons complete report in every deril.

100% mercin incorp. goots commonts w/s clade allowance.

Scope of Work as an appendix to the submittal. The report shall contain a narrative summary of conclusions and recommendations, together with all raw and supporting data, methods used, and The report shall integrate all aspects sources of information. of the study. The report shall include an order of priority by SIR in which the recommended ECOs should be accomplished. The energy savings presented shall take into account the synergistic effects of multiple ECOs within a project and the effects of one project upon another. Completed programming and implementation documents for all recommended projects shall be included. The programming and implementation documents shall be ready for review and signature by the installation commander. The prefinal report, separately bound Executive Summary and all appendices shall be bound in standard three-ring binders which will allow repeated disassembly and reassembly. The prefinal submittal shall be arranged to include (a) a separately bound Executive Summary to give a brief overview of what was accomplished and the results of this study using graphs, tables and charts as much as possible (See Annex C for minimum requirements), (b) the narrative report containing a copy of the Executive Summary at the beginning of the volume and describing in detail what was accomplished and the results of this study, (c) appendices to include the detailed calculations and all backup material and (d) the programming and implementation documentation. A list of all projects and ECOs developed during this study shall be included in the Executive Summary and shall include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR, the simple payback period and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost.

Final Report (100%). The final report will be 7.6.3 delivered within 30 calendar days after the A/E has been provided in writing the acceptance of prefinal. Any revisions or corrections resulting from comments made during the review of the prefinal report or during the presentation and review conference shall be incorporated into the final report. These revisions or corrections may be in the form of replacement pages, which may be inserted in the prefinal report, or complete new volumes. Pen and ink changes or errata sheets will not be acceptable. Ιf replacement pages are to be issued, it shall be clearly stated with the prefinal submittal that the submitted documents will be changed only to comply with the comments made during the prefinal conference and that the volumes issued at the time of the prefinal submittal should be retained. Failure to do so will require resubmission of complete volumes. If new volumes are submitted, they shall be in standard three-ring binders and shall contain all the information presented in the prefinal report with any necessary changes made. Detailed instructions of what to do with the replacement pages should be securely attached to the replacement pages.

7.6.3 Distribution of Final Report:

Commander M 100th ASG, ATTN: AETT-DEH-OUU Unit 28130 (Ms. Graf) APO AE 09114

Commander HQ USAREUR, ATTN: AEAEN-EH-U Unit 29351 (Ms. Jenicek) APO AE 09014

Commander U.S.Army Troop Support Agency ATTN: LOTA-EM-E (Mr. Kuney) Fort Lee, VA 23801-6020

Commander US Army Corps of Engineers ATTN: CEMP-ET (Mr. Gentil) 20 Massachusetts Avenue NW Washington, DC 20314-1000

Commander USAED, Transatlantic Division ATTN: CETAD-EC-MD (Mr. Farrand) P.O. Box 2250 Winchester, VA 22601-1450

Commander US Army Engineer District, Europe ATTN: CETAE-PM-ME (Eldwarri) Unit 25727 (**Gangas**) APO AE 09242

Commander US Army Engineer District, Mobile ATTN: CESAM-EN-CC (Mr. Battaglia) PO Box 2288 Mobile, AL 36628-0001

Commander US Army Logistics Evaluation Agency ATTN: LOEA-PL (Mr. Keath) New Cumberland Army Depot New Cumberland, PA 17070-5007

Original Field Notes with 3 copies - Interim Submittal 3 copies - Prefinal Submittal 2 copies - Final Report and 1 Set of WP 5.1 disks 1 Interim Submittal 1 Exec. summ. Prefinal & Final 1 Prefinal & Final Report 1 Executive summary 1 Final report 1 Executive summary-Prefinal and Final 1 Prefinal 1 Final Report 1 Correspondence 1 Interim Submittal with field notes 1 Prefinal submittal 1 Final Report 1 Executive summary Prefinal & Final 1 Final Report 1 Executive summary-Prefinal & Final

Commander U.S. Army Engineer Division, Huntsville ATTN: CEHND-ED-ME-CP (Mr. Holland) PO Box 1600, Huntsville, AL, 35807-4301 EMCS review only.

ANNEX A

ENERGY CONSERVATION OPPORTUNITIES

ο	Insulation (wall, roof, pipe, duct, etc.)
о	Insulated glass or double glazed windows
о	Weather stripping and caulking
ο	Insulated panels
ο	Solar films
о	Vestibules
0	Reduction of glass area
0	Shutdown energy to hot water heaters or modify controls
0	Energy conserving fluorescent lamps and ballasts
ο	Reduce lighting levels
0	Replace incandescent lighting
0	Night setback/setup thermostats
ο	Infrared heaters
ο	Economizer cycles (dry bulb)
0	Heat reclaim from kitchen exhaust
ο	Heat recovery from dishwasher hot water
0	Booster heaters at major hot water users
0	Lower domestic hot water temperatures
0	Upgrade HVAC controls
0	Make HVAC operations more efficient
o .	Optimize dining facilities operation

o Balance HVAC systems

0	Change to Variable Air Volume (VAV) system
0	Use air curtains/plastic strips at personnel entrances
	o Install make-up air supply for kitchen area
0 0	Shut off range hood exhaust whenever possible Use of heat pump to heat domestic hot water and cool dining area
0	Waste heat recovery
o	Thermal storage
o	Steam trap inspection
0	Instantaneous hot water heaters
0	Destratification
ο	Convert to energy efficient/smaller motors
0	Reflectors for fluorescent fixtures
ο	Occupancy sensors (lighting and HVAC)
ο	Replace kitchen exhaust hoods with energy efficient models
ο	Photocells for lighting
ο	Timers for lighting
0	Low emissivity windows

o Separate switches to control lighting arrangements

15

ANNEX B

DETAILED SCOPE OF WORK

Dining Facility Data

Vilseck Bldg 606 Grafenwoehr Bldg 101 350 per meal 500 per meal People (Average) 17 298 sq.ft=1557 sq.m 9806 sq.ft= 883 sq.m Space 1 Walk-in 1 Walk-in Freezers 2 Walk-in Refrigerators 3 Walk-in Other Refrige.Eqpt. Other Refrigerating Eqpt. EMCS being installed EMCS installed District Heat Flourescent,660-75 W Flourescent & Incandesc Lighting Per As built drawing Per As built drawing Floor Plan

Note: Use of the International System of Units (SI)the Modernized Metric System per ASTM E-380 will be made in this study along with other units. 9-ECOs per facility will be defined during the prenegotiation site wirit.

The following items will be furnished to the AE by the Government:

(1) Final reports of previously completed studies performed under the Energy Engineering Analysis Program (EEAP). Only portions pertaining to dining facilities, if any, need to be made available.

(2) Latest copies of other energy studies performed As4 since the previous EEAP study. Only portions pertaining to dining facilities, if any, need to be made available.

USAREUR (3) Energy Resources Management Plan.

(4) ETL 1110-3-282, Energy Conservation.

A26

Eun

ECN

2

(5) Architectural and Engineering Instructions.

(6) Energy Conservation Investment Program (ECIP) Guidance, dated 28 June 1991 or latest guidance available from the U.S. Engineering and Housing Support Center, Fort Belvoir, VA.

Asác (7) TM 5-785, Engineering Weather Data; TM 5-800-2, General Criteria Preparation of Cost Estimates; and TM 5-800-3, Project Development Brochure.

(8) AR 415-17, Cost Estimating for Military Programming; AR 415-20, Construction, Project Development and Design Approval; AR 415-28, Department of the Army Facility Classes and Construction Categories; AR 415-35, Construction, Minor Construction; AR 420-10, General Provisions, Organization, Functions, and Personnel; AR 11-27, Army Energy Program, and USAREUR Pamphlet 5-5.

The latest Tri-Service MCP Index.

2

(9)

document for a project.

LS 6 | US L C 5 JA

(11) Draft Manual TM5-815-2/NAVFAC DM-4.09/AFM 88-36 VIARENT dated Feb.1988, Energy Monitoring And Control Systems.

(12) USAREUR Regulation 420-43, Electrical Services, para 15.b, lists references required for EMCS in USAREUR.

The simulation programs acceptable for use in this study are listed below. Any substitutes must be submitted and approved as outlined in the basic scope of work.

(10) An example of a correctly completed implementation

a. Building Loads and System Thermodynamics (BLAST) b. DOE 2.1Bc. Carrier E20 or Hourly Analysis Program (HAP)

d Trane Air Conditioning Economics (TRACE)"

Energy Monitoring and Control System (EMCS) shall be surveyed at both the dining facilities and the state- of- the- art recommendations provided.

USAREUR

A computer program titled Life Cycle Costing in Design (LCCID) is available from the BLAST Support Office in Urbana, Illinois for a nominal fee. This computer program can be used for performing the economic calculations for ECIP and non-ECIP ECOS. The AE is encouraged to obtain and use this computer program. The BLAST Support Office can be contacted at 144 Mechanical Engineering Building, 1206 West Green Street, Urbana, Illinois 61801. The telephone number is (217) 333-3977 or (800) 842-5278.

l

ANNEX C

EXECUTIVE SUMMARY GUIDELINE

- 1. Introduction.
- 2. Building Data (types, similar facilities, sizes, etc.).
- 3. Present Energy Consumption.
 - o Total Annual Energy Used.
 - o Source Energy Consumption.

Electricity - kWh(Megajoule), DM, BTU(Joule) District Heat- kwh(Megajoule), DM, BTU(Joule) Natural Gas - THERMS(cubic metres), DM, BTU(Joule) Propane - GALS(Litres), DM, BTU(Joule) Other - QTY, DM, BTU(Joule)

- o Energy Consumption by Systems.
- 4. Historical Energy Consumption.
- 5. Energy Conservation Analysis.
 - o ECOs Investigated.
 - o ECOs Recommended.

۰.

- o ECOs Rejected. (Provide economics or reasons)
- o ECIP Projects Developed. (Provide list)*
- o Non-ECIP Projects Developed. (Provide list)*
- o Operational or Policy Change Recommendations.

* Include the following data from the life cycle cost analysis summary sheet: the cost (construction plus SIOH), the annual energy savings (type and amount), the annual dollar savings, the SIR and the analysis date. For all programmed projects also include the year in which it is programmed and the programmed year cost. Show the simple payback period for all ECOS.

- 6. Energy and Cost Savings.
 - o Total Potential Energy and Cost Savings.

- o Percentage of Energy Conserved.
- Energy Use and Cost Before and After the Energy Conservation Opportunities are Implemented.
- 7. Energy Plan.
 - o Project Breakouts with Total Cost and SIR.
 - o Schedule of Energy Conservation Project Implementation.

8. Required DD Form 1391 Data.

o To facilitate ECIP project approval, the A/E will provide ECIP data for completion of DD Form 1391 to be prepared by 100th ASG .

Appendix B

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

APPENDIX B

FIELD SURVEY NOTES

MEMORANDUM OF MEETING

ŧ

Projecti	Gehrmann Energy Study	8. O. No.: 20098-BRM
Dates	November 28, 1992	Time: 9:00 A.M.
Place	Grafenwohr Bldg. 433	Memo By: Ted Marstiller

Subject: Kick-Off Meeting

Attending:

Name	Company	Telephone
I indy Wolner	CETAE - PM - ME	069151-7677
Roland Repper	DEH 409th BSB	475-7144
Rifriede Rieger	DEH 281st BSB	476-2944
Angie Graf	DEH 100th ASG	475-6143
Jurgen Hever	UC Umwelt	0611-700003
Heinz Lehnii	Gehrmann Consult	0611-717331
Rainer Solbach	Gehrmann Consult	0611-7170
Walt Lerian	Baker and Associates	(412) 269-6277
Ted Marstiller	Baker and Associates	(412) 269-6246

Discussion

- 1.0 Walt Lerian introduced the members of the Gehrmann/Baker Survey Team to the Army and explained each member's specialty and role in the survey.
- 2.0 Walt Lerian then explained what the survey team hoped to achieve during the week. The time table agreed upon is as follows:

Monday Tuesday Wednesday	 Kick-Off Meeting; Survey of Grafenwohr Building 101 Survey of Vilsek Building No. 603 Final survey of either/both buildings, as necessary
Thursday	- Bxit interview scheduled for 9:00 A.M., Building 433, Grafenwohr.
Friday	- Exit interview with Mr. Lindy Wolner at EUD offices in Frankfort

3.0 Lindy Wolner then explained what the Army hoped to achieve through this survey.

Ì

1

- 4.0 Angle Graf explained that she would be the official point-of-contact for the Grafenwohr site, and that Roland Repper would be assisting her as a technical point of contact. Herr Repper would be in charge of providing drawings as well as any technicians required to assist the survey team.
- 5.0 Elfriede Rieger explained that she would be the point-of-contact for the Vilsek site.
- 6.0 The survey team was given the following documents:
 - a. Utility plans for Grafenwohr Building 101 and Vilsek Building 603.
 - b. An ECIP Guidance Memorandum from CEHSC-FU-M outlining the latest Army policy concerning ECIP development.
 - c. Energy Audits (Executive Summaries, only) for dining facilities at Ft. Carson, The Presidio, and Ft. Campbell.
- 7.0 Major Graf stated that she was interested, primarily, in no-or-low cost ECO's since money for implementing ECO's is limited.

CEM/tas

فرار

MEMORANDUM OF MEETING

Project:	Grafenwöhr/Vilseck Energy Audit	8. O. No.: 20098-25-BRM
Date:	November 30, 1992	Time: 11:00 A.M.
Place:	Grafenwöhr, Germany	Memo By: C. E. Marstiller

Subject: Site Survey of Building 101 - Dining Hall

١

Attending:

Name	Company	Phone
Jürgen Hever	UC Umwelt	0611-70000 3
Heinz Lehnii	Gehrmann Consult	0611-717331
Poiner Solhach	Gehrmann Consult	0611-7170
Walt Lorian	Baker and Associates	(412) 269-6277
Ted Marstiller	Baker and Associates	(412) 269-6246

Discussion:

- Building is relatively new (± 10 years old), red brick, single story structure 1.0 with a flat roof.
- All windows contain insulating, double pane glass set in wood frames. 2.0
- Vestibules are present at the front door (main public entrance) and at the 3.0 rear door (main entrance to kitchen). No vestibules are present at the emergency exit doors in the dining areas. Outer vestibule doors at kitchen entrance were open during entire survey period. Inner doors have screen windows. These doors are obviously open year-round to help cool and dehumidify the cooking area.
- Kitchen equipment is maintained by an outside contractor (GEBE)-4.0 preventative maintenance was being performed on refrigeration equipment during both visits.
- Numerous self-contained refrigeration units ice machines, salad bars, cold 5.0 drink dispensers,. etc. - are located throughout the kitchen and dining areas.
- Dishwater was maintained in the ready state prior to lunch with the booster 6.0 heater on. There is no supply air into the dishwasher area. Exhaust from dishwashing area is via an enameled, perforated "pan" ceiling. There is no specific exhaust connection to or hood directly over the dishwasher.

Grafenwöhr/Vilseck Energy Audit ctd. November 30, 1992

- 7.0 Make-up air type hoods are used over the serving line but not over the cooking area.
- 8.0 Cooking equipment was maintained in a "hot" state prior to lunch. Equipment should be turned on and off, as required, so that it is ready for use when needed but not operating unnecessarily.
- 9.0 Almost all of the equipment in the mechanical room is well insulated. However, some pipe insulation has been cut off well clear of pumps, valves, strainers, unions, etc. Insulation should be run as close as possible to pumps and removable covers should be provided at other devices. Duct insulation has sustained minor damage in some places.
- 10.0 Domestic hot water temperature is 97° F (36.1° C). Heating hot water is reset, automatically, by an O.A. temperature sensor.
- 11.0 Only one of the three HVAC units was running. The kitchen ventilation unit was running. The serving line ventilation unit and the dining room ventilation unit were not running. Only the dining room unit has return air ductwork connected to it. The kitchen and serving line ventilation units are 100% outside air units. All units are heating only (no air conditioning) with secondary loop pumps and 3-way control valves on the hot water piping to the unit coil.
- 12.0 Bag filters are provided on each air handler. Bags on dining room and serving line units were clean. Manometer on kitchen unit (operating) indicated that the pressure drop across the filters was negligible and that filters were clean.
- 13.0 Make-up air units located on the building's roof are matched to exhaust fans and to make-up type hoods. The make-up air units do not have a heating coll in them.
- 14.0 The exterior lights at loading dock were turned on at noon.
- 15.0 Night set-back of space temperature is handled through the central control system. The local control panel is located in the mechanical room. It is connected to a computer-based, campus-wide energy management system.
- 16.0 Outdoor design temperature (winter) for Grafenwöhr is 0° F (-17.8° C).
- 17.0 Lighting fixtures in the dining area are recessed, three lamp type fluorescent fixtures. Fluorescent cove light is provided around the perimeter of the dining areas. All lighting in the food preparation and serving areas is fluorescent.
- 18.0 The Dining Hall serves 400-500 meals for lunch and dinner, breakfast is said to be a much smaller meal, but exact number of meals served was not indicated.

Grafenwöhr/Vilseck Energy Audit ctd. November 30, 1992

19.0 Dining Hall operating hours are as follows:

	Mon, Tue, Wed, Fri	Thur	<u>Sat, Sun</u>
Breakfast	0530-0745	0530-0700	0700-08 30
Lunch	1115-1300	1115-1300	1200-1330
Dinner	1630-1800	1630-1800	1600-1730
•			

20.0 Clean-up after each meal takes 1-1/2 hours. Cooking and food prep prior to each meal takes 2 hours. Baking occurs between 1600-2400 each evening.

CEM/tas

Baker

MEMORANDUM OF MEETING

Page 1 of 3

Project:	Grafenwöhr/Vilseck Energy Audit	S. O. No.: 20098-25-BRM
Date:	December 1, 1992	Time: 9:30 A.M.
Place:	Vilseck, Germany	Memo By: C. E. Marstiller

Subject: Site Survey of Building 603 - Dining Hall

Attending:

Name	Company	<u>Phone</u>
?	DEH 281st BSB (Kick-Off	?
•	Meeting Only)	
Elfriede Rieger	DEH 281st BSB	476-2944
?	DEH 281st BSB	?
Jürgen Hever	Gehrmann Consult	0611-700003
Heinz Lehnii	Gehrmann Consult	0611-717331
Rainer Solbach	Gehrmann Consult	0611-7170
Walt Lerian	Baker and Associates	(412) 269-6277
Ted Marstiller	Baker and Associates	(412) 269-6246

Discussion:

- 1.0 A brief Kick-Off Meeting was held prior to the survey of Building 603. At this meeting, the survey team presented a brief description of what it was attempting to achieve and the methodology by which the work was to be preformed.
- 2.0 Several operational procedures were outlined by Herr <u>?</u> in response to questions posed by the survey team. These are as follows:
 - a. Night-time temperature set-back is presently used to conserve heating energy at all dining facilities. Set-back function is presently being performed by timers. However, a site-wide, computer-based Energy Management System is currently being installed.
 - b. The temperature of the heating hot water is re-set (at the heat exchanger) by an outdoor air temperature sensor.
 - c. It was not clear if there were electrical interlocks between the exhaust hoods and the make-up air units.

Grafenwöhr/Vilseck Energy Audit ctd. December 1, 1992

- d. District hot water is supplied to the dining hall by the same vendor supplying Grafenwöhr. A copy of the contract will be provided for the survey team's use.
- e. Approximately 650-700 meals are served at the lunch and dinner meals. Capacity of the facility is 1000 meals per sitting.
- 3.0 The survey team, accompanied by E. Rieger and ______ then traveled to Building 603 to conduct the site survey. The building is a single story, orange brick building with three peaked roofs running the entire width of the building. These attic areas house the air handling equipment.
- 4.0 There are no vestibules at front entry doors. A corridor running the entire width of the building (between the two, main double-door entries) acts as a vestibule. One leaf of one of the entry doors was left open the entire day due to a broken door closer. Air curtains (no heat, indoor air recirculating type) were provided at both doors. However, the air curtain over the open door never turned on.
- 5.0 Incandescent chandeliers were used to light the dining areas. The user has already cut electrical consumption in half by eliminating half of the bulbs (upward facing bulbs were removed, downward facing bulbs remain). Incandescent wall washers and down lights as well as cove-mounted fluorescent perimeter lights are also used in the dining areas.
- 6.0 Equipment hoods, grilles, convection ovens, warming ovens, etc. were all turned on without any cooking being done. Lights were turned on in areas not being used for cooking or serving. A printed directive mandating a maximum warm-up period of 15 minutes for equipment is posted on the wall. However, this directive is not being followed.
- 7.0 Energy conserving make-up air type hoods are being utilized. However, the permanent, cleanable type air filters being used are not properly sized for the hoods. In many areas there are 1ⁿ-2ⁿ gaps between the filters. This will allow grease to condense in the ductwork and on the exhaust fan.
- 8.0 A vestibule is provided at the rear entrance (to the kitchen). The inner doors have been blocked open.
- 9.0 Adhesive type insulation pins were used to hold the duct insulation (wrap) to the ductwork. The insulation has fallen on ducts greater than (18"-24") in width. Evidently the adhesive is not strong enough to support the insulation at the pin spacing used for this insulation.
- 10.0 A large central control panel located in the center (of three) mechanical rooms controls all of the mechanical equipment.
- 11.0 A large hole $(\pm 36^{"}$ square) has been cut in the plastic vapor barrier and batt insulation hung from the bottom of the roof joists. This opening is allowing large quantities of raw outside air to be drawn into the attic mechanical space.

Page 2 of 3

Grafenwöhr/Vilseck Energy Audit ctd. December 1, 1992

- 12.0 Primary-secondary pumping with 3-way modulating valves is used on all heating/ventilating units. Pipe insulation is generally in good condition, but is incomplete at many locations. Apparently the insulation covers manufactured for strainers, valves, etc. have been removed from some locations and never replaced. The duct insulation in the rear mechanical space (over the kitchen) has been crushed by miscellaneous kitchen equipment which is stored on top of it. The entire mechanical room is stuffed with dishes, trays, spare parts, seasonal display materials, old boxes, etc.
- 13.0 The mechanical room in which the hot water heat exchangers are located is uncomfortably hot. Heat exchangers appear identical to those used at Grafenwöhr. They are rated for 3000 liters at 95° C (203 °F) and are insulated. Domestic water temperature is maintained at 60° C (140° F). The caps on the primary (high temp) heat exchanger bodies are not insulated. Some insulation on water piping is missing.
- 14.0 The only units with return air connections are the three units serving the dining areas. These units are equipped with return air fans. Outside air is drawn in through wall mounted louvers and relief air is rejected through a ventilator on the roof. The dining area units were shut down after lunch was served.
- 15.0 The exhaust fan serving the dishwasher was still operating after the dishwasher was turned off. No one was in the dishwashing area after the lunch dishes were finished. Lights and exhaust should have been turned off.
- 16.0 Dining Hall hours are as follows:

	Mon, Tue, Wed, Fri	<u>Thur</u>	<u>Sat, Sun</u>
Breakfast	- 0700-0845	0500-0630	0800-0930
Lunch	1130-1300	1200-1330	1130-1300
Dinner	1700-1830	1600-1730	1600-1730

17.0 Cooking and food prep starts two hours before each meal. Clean-up takes two hours after each meal. Baking is done between 2200 and 0400 each night.

CEM/tas

•

INSPECTION REPORT - ELECTRICAL

j,

÷

		Page
Table of Cor	ntents	1
1.	Grafenwöhr Dining Facility Building 101	3
1.1	Electrical Power Consumption	3
1.2	Description of the Electrical Systems	4
1.2.1	Electrical Power	4
1.2.1.1	Main Power Supply/Main Distribution Panel	4
1.2.1.2	Subdistribution Panels/Electrical Systems	4
1.2.2	Lighting Systems	5
1.2.2.1	Dining Area	5
1.2.2.2	Kitchen and Service Rooms	6
1.2.2.3	Exterior Lighting	7
1.3	Electrical Kitchen Equipment	8
1.4	Mechanical Systems	11
1.5	Energy Saving Opportunities	13
1.5.1	Main Power Supply	13
1.5.2	Lighting Systems	13
1.5.3	Electrical Equipment	14
1.5.4	Mechanical Systems	14

US ARMY			
Grafenwöhr/Vilseck	Dining	Facilities	
GC Project No.: 424	16		

.

Energy Study December 1992 Page 2

		Page
2	Vilseck Dining Facility Building 603	15
2.1	Electrical Power Consumption	15
2.2	Description of the Electrical Systems	16
2.2.1	Electrical Power	16
2.2.1.1	Main Power Supply/Main Distribution Panel	16
2.2.1.2	Subdistribution Panels/Electrical Systems	16
2.2.2	Lighting Systems	17
2.2.2.1	Dining Area	17
2.2.2.2	Kitchen and Service Rooms	18
2.2.2.3	Exterior Lighting	19
2.3	Electrical Kitchen Equipment	20
2.4	Mechanical Systems	23
2.5	Energy Saving Opportunities	27
2.5.1	Main Power Supply and Distribution	27
2.5.2	Lighting Systems	27
2.5.3	Electrical Equipment	· 28
2.5.4	Mechanical Systems	29

.

.

1. <u>Grafenwöhr Dining Facility Building 101</u> 42258.^M

1.1

Electrical Power Consumption

The electrical power consumption has been metered in 1992 for the months of May - November, as follows:

Month	Reading	Factor	Power Consumption in kWh
	466 0	120	55920
Tune	351 4	120	42168
	434.7	120	52164
August	457.9	120	54948
September	392.5	120	47100
Oktober	397.5	120	47700

The average consumption for the applicable period amounts to

50,000 kWh per month.

The percentage share of the Dining Facility 101 of the total power consumption of the Grafenwöhr site amounts to

2.13 %.

US ARMY Grafenwöhr/Vilseck Dining Facilities GC Project No.: 4246

1.2 Description of the Electrical Systems	į

1.2.1 <u>Electrical Power</u>

1.2.1.1 Main Power Supply/Main Distribution Panel

Main power supply is provided from the transformer station by means of a duplex cable 2 x NYCWY 3 x 150/70 (approx. 70 m) with 380 V phase conductor voltage, 50 Hz frequency. The main distribution panel is located in a separate room and includes the

- main circuit breaker	630 A
 circuit breaker for SDP 1 	400 A
- circuit breaker for SDP 2	400 A

The busbar has a capacity of 800 A. The power consumption is metered by means of a transducer meter.

1.2.1.2 <u>Subdistribution Panels/Electrical Systems</u>

The subdistribution panel SDP 1 is also located in the main distribution room. Large kitchen appliances, refrigerators, the HVAC control panel, and the lighting/receptacles circuits are served from this panel. The busbar is designed for 630 A.

Subdistribution panel SDP 2 is located in the kitchen corridor. Small kitchen appliances, lighting/receptacle circuits, and the dishwasher are served from this panel. The busbar is designed for 400 A.

Fault current protection has been applied to some power circuits only.

L type miniature circuit breakers are used for lighting/receptacle circuits, and G type miniature circuit breakers for kitchen equipment.
.

Energy Study December 1992 Page 5

1.2.2	Lighting Systems				
1.2.2.1	Dining Area				
	The dining area and the passages are mainly illuminated by means of fluorescent light fixtures with 40 W and/or 36 W fluorescent (acc. to as-built plan).	y lamps			
	The following light fixture types are used	:			
	 Recessed large grid, mirror light fixtur Surface mounted light fixture, open type Recessed incandescent ceiling reflector Recessed opal glass light fixture 	e			
	The light intensities are as follows:				
	Dining room over 150 l Entrance area and corridor 150 lx Serving area 250 lx	x			
	The light efficiencies are relatively low, the fact that light fixtures without or wi reflectors have been used.	due to th poor			
	All light fixtures are equipped with conve type ballasts.	entional			
	The installed electrical lighting capacity designed as follows:	/ is			
	Dining room $72 \times 36 W = 47 \times 36 W =$	2593 W 1692 W			
	Entrance hall $19 \times 36 W =$ Serving area $50 \times 36 W =$ Power loss of ballasts $188 \times 13 W =$ Incandescent lamps $7 \times 100 W =$	684 W 1800 W 2444 W <u>700 W</u>			
	Connected electric load =	9912 W ======			
	The lights are manually controlled by gro	ups.			

1.2.2.2 Kitchen and Service Rooms

The kitchen and service rooms are illuminated by means of fluorescent light fixtures with 40 W and/or 36 W fluorescent lamps (acc. to as-built plan).

The following light fixture types are used:

- Recessed, large grid, mirror light fixtures
- Surface mounted light fixture with opal or prism diffuser
- Moisture protected light fixtures for the ventilating ceiling

The light intensities are as follows:

Kitchen area	450 -	700	lx
Service rooms	150 -	200	lx
Dishwashing area		50	lx
Office		400	lx

The light efficiencies are relatively low, due to the fact that light fixtures without or with poor reflectors have been used.

All light fixtures are equipped with conventional type ballasts.

The installed electrical lighting capacity is designed as follows:

Kitchen area	90 x	c 36	W	=	3240	W
Service rooms	38 x	c 36	W	=	1368	W
Dishwashing area	24 x	c 36	W	=	864	W
Corridor/office	18 x	c 36	W	=	648	W
Power loss of ballasts	170 x	c 13	W	=	2210	<u>W</u>
Connected electric load	=				8330	W
					=====	= =

The lights are manually controlled by groups.

1.2.2.3 Exterior Lighting

The exterior areas, such as receiving ramp and garbage can washing area are illuminated by means of recessed fluorescent light fixtures with prism diffuser.

Ramp	16	x	36 W	= =	576 W
Garbage can washing area	4	x	36 W		144 W
Power loss of ballasts	20	x	13 W		<u>260 W</u>
Connected electric load	=				980 W

The lights are manually controlled.

The exterior areas, such as parking areas and access ways are illuminated by means of pole mounted light fixtures with high pressure mercury vapor lamps.

Lighting poles	15 x 125 W =	1875 W
Power loss of ballasts	15 x 20 W =	<u>300 W</u>
Connected electric load	=	2175 W

The lights are controlled by means of a twilight switch.

.

İ

. .

•

......

ł

. . .

ł

1.3	<u>Electrical K</u> The followin	ng electrical kitchen equipment is
	installed in	the kitchen area:
	- Subdistrik	oution panel SDP 1
	Item Circuit <u>No. No.</u>	t Description Rating Voltage
	171 1.01	Baking oven
	171 1.02	Baking oven
	171 1.03	Baking oven
	182 1.04	Electric range
	175 1.05	Frying pan
	155 1.06	Deep fat fryer
	155 1.07	Deep fat fryer
	163 1.08	Steam kettle
	146 1.09	Steam cooker
	165 1.10	Steam kettle
	166 1.11	Steam kettle
	198 1.14	Booster
	- 1.20	Dough proofing cabinet
	- 1.21	Dough proofing cabinet
	- 1.22	Dough proofing cabinet
	168 1.23	Mixing machine
	148 1.24	Vegetable cutting machine
	196 1.25	Vegetable peeling machine
	150 1.26	Cooking grease filter

•

- Subdistribution panel SDP 2

.

Item No.	Circuit No.	Description	Rating in kW	Current in V
80	2.31	Milk dispenser		
60	2.32	Ice cream cabine	t	
72	2.33	Beverage dispense	er	
72	2.34	Beverage dispense	er	
79	2.35	Tea dispenser		
70	2.36	Beverage dispens	er	
63	2.37	Water chiller		
77	2.39	Ice dispenser		
76	2.42	Hot chocolate di	spenser	
63	2.43	Water chiller		
70	2.44	Beverage dispens	er	
79	2.45	Tea dispenser		
72	2.46	Beverage dispens	er	
72	2.47	Beverage dispens	er	-
77	2.49	Ice dispenser		
95	2.51	Ice cream maker		
96	2.52	Ice cream maker		
80	2.54	Milk dispenser		
69	2.55	Cold food counte	er	
69	2.56	Cold food counte	er	
67	2.55	Cold food counte	er .	
42	2.58	Sandwich unit		
9	2.59	Cold food counte	er	
9	2.60	Cold food counte	er	

Energy Study December 1992 Page 10

-	-	-	+	٠	A
С	O	11	ι		u

1

- Subdistribution SDP 2

Item <u>No.</u>	Circuit No.	Description	Rating in kW	Current in V
101	2.61	Refrigerator		
37	2.62	Refrigerator		
33	2.63	Refrigerator		
90	2.64	Ice cube machine		
113	2.80	Coffee machine		
22	2.82	Griddle		
46	2.83	Food warming cabi	inet	
58	2.84	Infrared food war	rmer	
50	2.85	Hot food table		
51	2.88	Hot food table		
22	2.89	Griddle		
22	2.90	Griddle		
23	2.93	Roller grill		
58	2.94	Infrared food wa	rmer	
155	2.95	Fryer		
55	2.98	Toaster		
2	2.99	Food warming cab	inet	

The above list has been taken from the as-built drawing 36-09-162 sheet E1 and E2.

1.4

Mechanical Systems

HVAC d	rivers are listed below:		
Cable <u>No.</u>	Description	Rating in kW	Current in A
15	Circ. pump 2 (boiler)	0.34	1.1
16	Circ. pump 1	0.12	0.58
17	Circ. pump 2	0.12	0.58
18	Circ. pump, mix water	0.12	0.50
20	Circ. pump, dom. water	0.025	0.14
25/26	Pump 1	0.54	1.3
27/28	Pump 2	0.54	1.3
31	Sec. pump, kitchen ventil.	0.138	0.55
38-40	Supply air fan, kitchen	6.6/2.6	/0.6
41	Exh. air fan, roof, kitchen	2.2	5.8
44	Exh. air fan, pers. room	0.55	1.63
45	Exh. air fan, pot washing	0.55	1.63
47	Exh. air fan, smoke exh.	1.1	2.8
50/51	Supply air fan, exh. hood 1	3.7/0.5	
52/53	Exh. air fan, exh. hood 1	3.7/0.5	
55/56	Supply air fan, exh. hood 2	1.66/0.3	33
58/59	Exh. air fan, exh. hood 2	1.66/0.3	33
65	Sec. pump, serving counter	0.138	0.55
70-72	Supply air fan, serv. count	.9.5/3.7,	/0.9
73	Exh. air fan, serv. area	0.55	1.63
76	Exh. air fan, self service	2.2	5.8
77	Exh. air fan, dishwashing	2.2	5.2

Energy Study December 1992 Page 12

Cable No.	Description	Rating in kW	Current in A
82/83	Supply air, exh. hood 1, serving counter	1.72/0.	45
85/86	Exhaust air, exh. hood 1, serving counter	1.72/0.	45
89/90	Supply air, exh. hood 2, serving counter	1.72/0.	45
92/93	Exhaust air, exh. hood 2, serving counter	1.72/0.	45
96/97	Supply air, exh. hood 3, serving counter	0.83/0.	13
99/100	Exhaust air, exh. hood 3, serving counter	0.83/0.	13
106	Exhaust air, latrine	0.55	1.63
107	Sec. pump, ventil.	0.149	0.44
113	Supply air fan, dining area	3.0/0.9	7.1/3.4
114	Exh. air fan, dining area	2.1/0.75	4.8/2.2
115	Exh. air fan, dining area	2.2	5.2
124	Exh. air fan, compressor	0.55	1.63

.

.

) \

.

:

1.5	Energy	Saving	<u>Opportunities</u>

1.5.1 Main Power Supply

The existing duplex cable system 2 x NYCWY 3 x 150/70 (70 m) has a capacity of max. 696 A. The present average load current amounts to approx. 300 A.

With the load current of 300 A the power loss to the transformer station amounts to max. 1.44 kW.

The voltage loss amounts to 2.76 V. This corresponds to 0.7 %.

The existing main power supply system is adequately dimensioned. An extension for power saving purposes is not required.

1.5.2 Lighting System

With the same light intensity, the number of 36 W lamps can be reduced from presently 380 ea to 334 ea by installation of electronic ballasts.

Following is a sample cost estimate:

	conventional ballasts	electronic ballasts
Number of 36 W lamps	380	334
Connected load	18.62 kW	12.02 kW
Power cost per year (0.30 DM/kWh; 2800 h/y)	15,640.80 DM	10,096.80 DM
Rel. power cost	100 %	64.56 %

A further reduction of the number of light fixtures can be obtained by the use of improved efficiency light fixtures.

í

ł

1.5.3 <u>Electrical Equipment</u>

Energy saving on electrical kitchen appliances is feasible when attention will be paid to the fact that any newly purchased equipment has control features to prevent overheating, stepless power control devices, timers, etc., and has adequate heat insulation. An other opportunity consists in switching to energy saving cooking, baking, and proofing methods.

1.5.4 Mechanical Systems

Fifteen drivers of over 1 kW capacity are installed in the HVAC system.

The required capacities can be better adjusted to suit the requirements by means of stepless speed control systems.

The operation can be optimized by connection to centralized building control systems. The facilities are designed for this purpose.

2. Vilseck Dining Facility Building 603

2.1 Electrical Power Consumption

The electrical power consumption has been metered in 1992 for the months of May - September, as follows:

Month	Reading	Factor	Power Consumption in kWh
Mav	224.0	250	56000
June	250.0	250	62500
Julv	259.0	250	64750
August	259.0	250	64750
September	220.0	250	55000

The average consumption for the applicable period amounts to

60,600 kWh per month.

No statement can be made on the percentage share of the Dining Facility 603 of the total power consumption of the Vilseck site.

The specified consumption does not include the power consumption of:

- HVAC distribution panels
- Ventilating system control panels
- Dishwasher SDP 5
- Lighting/receptacles SDP 2/3
- Emergency lighting SDP 4

all in field 6 - 9

On the inspection day the load current of the dining facility amounted to approx. 200 A per phase conductor. The max. current reading was 260 A per phase conductor.

) (

1

2.2	Description of the Electrical Systems
2.2.1	Electrical Power
2.2.1.1	Main Power Supply/Main Distribution Panel
	Main power supply is provided from the transformer station by means of a duplex cable 2 x NYCWY 3 x 185/95 with 380 V phase conductor voltage, 50 Hz frequency.
	The main distribution panel is located in a separate room and includes the following fields:
	Field 1 - mains feed - main circuit breaker 800 A (kitchen field 2-5)
	busbar 1000 A transducer meter - circuit breaker 500 A (special field 7)
	busbar 760 A
	Field 2-5 - Outgoing lines for kitchen equipment
	Field 6 - Emergency lighting
	Field 7 - Outgoing lines for HVAC, hot water generator, subdistribution panels 2-5 (field 8. 9) refrigerating equipment
	Field 8 - Lighting
	Field 9 Lighting/receptacles
2.2.1.2	Subdistribution Panels/Electrical Systems
	The subdistribution panels are located in the main distribution panel room and are composed of the fields 6-9.
	In addition, there is a heating control panel and a ventilating system control panel.
	The electrical wiring system is in good condition.
	Fault current protection is available with 30 mA.
	L type miniature circuit breakers are used for lighting/receptacle circuits, and G type miniature circuit breakers for electrical equipment.

Energy Study December 1992 Page 17

2.2.2	Lighting Systems
2.2.2.1	Dining Area
	The dining rooms and the passages are mainly illuminated by means of incandescent light fixtures as follows:
	Dining room R12 - inc. lamps 360 x 40 W = 14400 W 5 x 130 W = <u>750 W</u> 15150 W
	Dining room R16 - inc. lamps 360 x 40 W = 14400 W 5 x 130 W = <u>750 W</u> 15150 W
	Passage R11 - fl. lamps 23 x 36 W = 828 W
	Passage R17 - fl. lamps 23 x 36 W = 828 W
	Passage R10 - inc. lamps 17 x 150 W = 2550 W
	Passage R13 - inc. lamps 14 x 150 W = 2100 W
	Passage R15 - inc. lamps 14 x 150 W = 2100 W
	Entrance area – inc. lamps 11 x 150 W = 1650 W
	Toilet R1-4 - fl. lamps 10 x 36 W = <u>360 W</u>
	Connected electric load = 40716 W
	The incandescent lamp lighting has already been

The incandescent lamp lighting has already been reduced by 50 % by personnel, so that only max. 180 ea 40 W incandescent lamps per dining room are operated.

The light intensity in the dining area was approx. 50 lx, and 150 lx in the lateral areas and in the passages.

The lights are manually controlled by groups.

2.2.2.2 Kitchen and Service Rooms

The kitchen and service rooms are illuminated by means of fluorescent light fixtures with 36 W fluorescent lamps.

The following light fixture types are used:

- Recessed, large grid light fixtures
- Moisture protected light fixtures, open type
- Surface mounted light fixtures for the cold storage room
- Recessed light fixtures with mirror reflector
- Light fixtures in the exhaust hoods

The light intensities are as follows:

Kitchen area	450	-	700	lx
Serving areas	200		350	1 X
Dishwashing area			50	lx

The light efficiencies are relatively low, due to the fact that light fixtures without or with poor reflectors have been used.

All light fixtures are equipped with conventional type ballasts.

The installed electrical lighting capacity is designed as follows:

Kitchen area Serving areas Disbwashing area	102 x 132 x 40 x	36 36 36	W W W		3672 4752 1440	W W W
Service rooms	88 x	36	W	=	<u>3168</u>	W
					13032	W
Power loss of ballasts	362 x	13	W	=	<u>4706</u>	<u>W</u>
Connected electric load	=				17738 =====	W ==

The lights are manually controlled by groups.

2.2.2.3 Exterior Lighting

The exterior areas, such as receiving ramp and entrance/exit doors are illuminated by means of open type, single lamp, fluorescent light fixtures.

Ramp		4 x	36 W =	144 W
Entrance/exit doors		3 x	36 W =	108 W
Power loss of ballasts		7 x	13 W =	<u>91 W</u>
Connected electric load	=			343 W ======

The lights are manually controlled.

į

.

2.3

Electrical Kitchen Equipment

The following electrical kitchen equipment with the following ratings is installed in the dining facility:

Item <u>No.</u>	Description	Qty.	Rating in kW	Voltage
2	Food warming cabinet	2	4.0	380
3	Food warming cabinet	2	1.0	220
6	Fryer	2	12.5	380
22	Griddle w/ base cabinet	8	14.0	380
33	Refriger., reach-through	2	0.35	220
35	Refrigerator	2	0.4	220
42	Refr. sandwich unit	2	0.2	220
46	Warming cabinet W/ drawer	s 2	1.0	220
51	Hot food counter, mobile	4	7.0	380
55	Toaster	2	4.0	220
56	Toaster, autom.	2	2.6	220
62	Ice cream cabinet	1	0.6	220
68	Cold food counter	2	0.2	220
69	Cold food counter	3	0.2	220
70	Carbon. beverage dispsens	s. 2		5x220
72	Juice dispenser	2x3	0.15	5 3x220
7 7	Ice cube dispenser, mobil	le 4	0.25	5 220
80	Cold milk dispenser	3	0.7	220
90	Ice cube machine	2	0.74	4 220
92	Cold stand, milk	3	0.7	220
96	Ice cream machine	2	3.8	220

Energy Study December 1992 Page 21

Item <u>No.</u>	Description	Qty.	Rating Vo <u>in kW</u>	ltage
101	Refrigerator	1	0.4	220
105	Vacuum cleaner	1	1.25	220
113	Coffee mach. w/ hot water	2	12.0	380
114	Belt conveyor	2	0.37	220
120	Dishwasher	1	2/2/9/24	380
143	High pressure cleaner, mobile	1	1.1	220
143A	High pressure cleaner, wall mounted	1	1.5	220
146	Steam unit w/ 1x163 each	2	24	380
148	Vegetable cutting machine	1	0.75	380
150	Cooking grease filter, mobile	1	0.75	380
155	Fryer	3	22	380
158	Exhaust hood with fire extinguishing system	2		220
161	Exhaust hood with fire extinguishing system	1		220
163	Kettle, electric., 40 ltr	: 1	24	380
164	Kettle, 80 ltr	1	18.6	380
165	Kettle, 150 ltr	1	18/12=30.6	2x 380
167	Food mixing machine	1	0.75	220
168	Stirrer/beater, 60 ltr	1	1.5	380
170	Can opener	2	0.75	220
171	Hot air unit	3	1.5/27/27	2x38 0
172	Refrigerator	1	0.25	220
175	Frying pan	2	16.8	380

:

•

-

Í

Energy Study December 1992 Page 22

Item <u>No.</u>	Description	Qty.	Rating <u>in kW</u>	Voltage
181	El. range with oven	1	11.5/6	2x380
182	El. range with oven	1	11.5/6	2x380
183 1	Refrigerator	1	0.5	220
186	Meat slicing machine	2	0.25	220
194	Dough proofing cabinet with humidifying system	2	1.0	220
196	Potato peeler with starch separator	1	0.55	380
198	Hot water gen.for 80°C	1	15.0	380
200	Exhaust hood	1		220
222	Walk-in deep freezer	1	1.5	380
223	Walk-in refrigerator	1	1.2	380
224	Walk-in refrigerator	1	1.2	380
228 A	A Ice cube machine	1	0.9	220
233	Storage cabinet for hot hamburgers	1	0.9	220
234	Carbon. beverage dispense	er 1		5x220
235	Ice dispenser, mobile	1	0.6	220
236	Fryer	1	12.5	380
237	Exhaust hood with fire extinguishing system	1		220
238	Griddle w/ base cabinet	1	14.	0 380
239	Refrigerator	1	0.4	220
242	Toaster	2	0.2	220

The above list has been taken from the as-built drawing 30-09-06 94.

.

Energy Study December 1992 Page 23

2.4 Mechanical Systems

2.4.1 Freezers and Refrigerators

Approx. 21 freezing and refrigerating units are installed, with an average connected load of 1.32 kVA.

Total connected load: 27.7 kVA

2.4.2 Hot Water

Hot water is heated for domestic use by means of a heat exchange located within the hot water storage tank. The heat source is the District hot water system.

Hot water for the dishwasher is boosted from $60^{\circ}C$ (140°F) to $80^{\circ}C$ (176°F) by a 15kW booster heater located near the dishwasher.

2.4.3 Heating and Ventilating Drives

HVAC drivers are listed below:

Cable No.	Description	Rating in kW	Current in A
14	Fan	6.6/2.6/0.6	13.2/6.2/2.7
15	Fan	4.4/1.85/0.4	11/5.8/2.45
19	Supply air fan	2.2	5.1
20	Exhaust air fan	2.2	5.2
24	Supply air fan	3	7.3
25	Exhaust air fan	3	7.6
29	Supply air fan	3	7.3
30	Exhaust air fan	3	7.6
34	Supply air fan	3	7.3
35	Exhaust air fan	3	7.6

- Ventilating Control Panel II

US ARMY	Energy Study	
Grafenwöhr/Vil	December 1992	
GC Project No.	Page 24	
cont'd	- Ventilating Control Panel II	

.

Cable <u>No.</u>	Description	Rating in kW	Current in A
44	Exhaust air fan	0.37	1.12
16	Motorized thermocor	ntact	0.65
52	Fan	0.37/0.12	1.3/0.5
54	Vertical el. room	3	7.6
50	Motorized thermocor	ntact	0.36

US	ARMY				
Gra	fenwöhr	/Vilse	ck	Dining	Facilities
GC	Project	No.:	424	6	

Cable No.	Description	Rating in kW	Current in A
118	Fan	3.0/0.9	7.4/2.4
119	Fan	3.0/0.9	7.4/2.4
120	Pump	0.7	0.18
137	Fan	3.0/0.9	7.4/2.4
138	Fan	3.0/0.9	7.4/2.4
139	Pump	0.7	0.18
153	Fan	3.7/0.9	9.7/3.8
154	Fan	2.5/0.55	6.1/2.1
155	Motorized thermoc	ont. 0.2	0.7
158	Motorized thermod	ont. 0.13	0.35
160	Fan, electrical r	room 1.1	2.8
161	Fan, electrical r		2.8
162	Fan	0.37/0.12	1.3/0.5

- Ventilating Control Panel IV

.

;

i

1

t 1

2.5	Energy Saving Opportunities					
2.5.1	Main Power Supply					
	The existing duplex cable system 2 x NYCWY 3 x 185/95 (150 m) has a capacity of max. 786 A. present average load current amounts to approx 240 A.					
	With the load current of 240 A the power loss to the transformer station amounts to max. 1.6 kW.					
	The voltage loss amounts to 3.87 V. This corresponds to 0.96 %.					
	The existing main power supply system is adequately dimensioned. An extension for pow saving purposes is not required.					
2.5.2	Lighting System					
2.5.2.1	Fluorescent Lights in Kit	chen and Servi	ce Rooms			
	With the same light inten lamps can be reduced from ea by installation of ele	sity, the numb presently 370 ctronic ballas	per of 36 W) ea to 326 sts.			
	Following is a sample cos	st estimate:				
		conventional ballasts	electronic ballasts			
	Number of 36 W lamps	370	326			
	Connected load	18.62 kW	11.73 kW			
	Power cost per year (0.30 DM/kWh; 2800 h/y)	15,640.80 DM	9,853.20 DM			
•	Rel. power cost	100 %	63 %			
	A further reduction of the number of light fixtures can be obtained by the use of improve fficiency light fixtures.					

2.5.2.2 Dining Area Lighting

The energy cost can be considerably reduced by the use of energy saving lamps.

With the same light intensity, one 15 W large bulb energy saving lamp can be installed in lieu of two 40 W incandescent lamps. A 150 W incandescent lamp can be replaced by a 20 W lamp.

	incand. lamps	energy saving lamps
Number of lamps	720 ea 40 W	360 ea 15 W
Connected load	38.7 kW	6.72 kW
Power cost per yea (0.30 DM/kWh; 250	r 0 h/y) 29,025.00 I	DM 5,040.00 DM
Rel. power cost	100 %	17.36 %

2.5.2.3 Exterior Lighting

All exterior light fixtures should be controlled means of twilight switches to save energy.

2.5.3 Electrical Equipment

Energy saving on electrical kitchen appliances is feasible when attention will be paid to the fact that any newly purchased equipment has control features to prevent overheating, stepless power control devices, timers, etc., and has adequate heat insulation. An other opportunity consists in switching to energy saving cooking, baking, and proofing methods. •

2.5.4 <u>Mechanical Systems</u>

Thirtythree drivers of over 1 kW capacity are installed in the HVAC system.

The required capacities can be better adjusted to suit the requirements by means of stepless speed control systems.

The operation can be optimized by connection to centralized building control systems. The facilities are designed for this purpose. INSPECTION REPORT - MECHANICAL

On site inspections on 30 Nov 92 and 1 Dec 92

- 1.0.0 Grafenwöhr/Vilseck Dining Facilities (30 Nov 92) Attendants as per separate list
- 1.1.0 Recommendations for reduction of energy consumption and costs.
- 1.1.1 Monitoring and control of the mechanical systems by means of a centralized building control system; presently, the systems (HVAC) are still controlled by means of decentral timers and/or individually based on personnel decisions.

According to information received from technical personnel the installation of a building control system is provided and presently in progress.

1.1.2 Installation of peak load programs to monitor the actual total connected loads with load drop connections for large consumers and/or time delayed connections over the building control system of para. 1.1.1.

The peak load program prevents peak loads beyond a maximum consumption limit (by building) and, thus, improvements of the rate discount factors of the energy supply company.

Despite substantially unchanged energy supply quantities per year, this may lead to considerable energy cost savings from the cost settlements with the energy supply company.

1.1.3 Investigation of the control connections of the unit heaters within the regulating systems

Based on the arrangement of the regulating valves, any not required heating energy will be returned to the return system. Result: The return temperature will be approached to the temperature level of the supply system (heat and/or energy losses through piping surfaces).

1.1.4 Based on the operating mode of the HVAC systems with 100 % fresh air, heat recovery exchangers are recommended to reduce the heating energy demand. However, due to the separate arrangement of the supply and exhaust air equipment components (supply air in the ground floor mechanical room, exhaust air on the flat roof of the building), these can be provided only as heat exchangers with piping system between fresh air and exhaust air exchangers.

Heat recovery as described above is possible for the HVAC systems:

Kitchen: 8000 cbm/h; approx. 115 kW
Serving area: 16500 cbm/h; approx. 240 kW
Dining area: 12000 cbm/h; approx. 176 kW

However, an economic effectiveness is possible only with more than 5 to 7 operating hours per day, due to the relatively low heat recovery efficiency.

- 1.1.5 Miscellaneous
 - Operating hours meters for fan and pump motors shall be installed to determine the operating periods of these units over extended periods.
 - Dishwasher to be equipped with direct exhaust air duct to reduce heat and humidity output into the room (possible subsequent costs due to structural damages).
 - Improve maintenance of the systems.
 - Temperature measurements on the remote heating system (secondary side, burried piping system) between metering point of the heating energy consumption and connection points of the individual buildings to find out the heat losses to the ground.

2.0.0 Vilseck Dining Facility (1 Dec 92)

Attendants:

DEH:	Mrs. Rieger
	Mr. Alex
	Mr. Bater
Baker:	Mr. Walt Lerian
	Mr. Ted Marstiller
UC:	Mr. Heyer
GC:	Mr. Lehnig
	Mr. Solbach

- 2.1.0 Recommendations for reduction of energy consumption and costs.
- 2.1.1 Centralized building control system as per para. 1.1.1.
- 2.1.2 Peak load program with load drop connection as per para. 1.1.2.
- 2.1.3 Investigation of regulating system for unit heaters within the HVAC systems.

Generally, as described in para. 1.1.3, however, the supply lines between the heating room (transfer station) and the unit heater locations are very long, so that the heat losses are considerably higher than in para. 1.1.3 (Grafenwöhr).

2.1.4 Heat recovery exchangers

Generally, as described in para. 1.1.4, however, supply and exhaust air equipment located together in the attic over the dining facility. Installation of heat recovery exchangers with up to 70% efficiency (regulated heating pipe) and/or up to 80% (rotary exchanger) also possible, if required, by modification of the equipment and duct systems; HVAC systems:

- Kitchen:	22000 cbm/h;	approx. 270 kW
- Serving area:	22400 cbm/h;	approx. 295 kW
- Dishwashing area:	10000 cbm/h;	? (no info available)

The HVAC systems of the dining facility operate with mixed air.

2.1.5 Miscellaneous

1

- Operating hours meters as described in para. 1.1.5.

- Maintenance

Although the systems are operating since 1986 only, they give a generally neglected impression; the duct insulation is partly removed or hangs down from the ducts (high heat losses in supply air ducts), the valves are not maintained and partly corroded. Improvement urgently required.

- The temperature in the heat transfer room is very high. Inspection and improvement, if required, of the heat insulation - also here, the heat insulation of valves has been partly removed and not replaced!
- HVAC system rooms on the roof: The rooms are used as storage rooms and "lumber room", so that maintenance work (ref. to above) is additionally complicated. The inadequate use causes also an increased fire risk.
- Temperature measurements in the remote heat distribution system (secondary side, burried pipes). Also refer to para. 1.1.5. Temperature of building connection on the day of inspection: supply 100 °C, return 82 °C.

GEHRMANN GMBH + PARTNER L-Lincoin-Str. 34	CONSULT RKG * ARCHITEKTEN UND INGENIEURE 6200 Wiesbaden * Tel.; 06 11 - 7 17.0	5.0 t 2000 ec. : WBL EFE LFC	18-45-BRIA /PF /LEM	
GC-FX-NO. :	Datum/Date:	2.04.93	Zeit/Time:	
AN/TO :	BAKER & ASSOCIATES 12. TED MARSTILLER		FAX-NO.: 00 22	141 696047

: WOLFGANG RIEFKE

Projekt/Project: GRAFEN WOHR / VILSECK

Betrett/Subject: ENERGY SURVEY

Von / From

ł

FAX-NO.: (0)611 - 7 40 88

Proj.-No.:

Page 1 of

Selte 1 VOI

4246

1

Pages

Seiten

Wenn Sie nicht alle angegebenen Schen erhalten haben, so tellen Sie uns dies bitte umgehend mit. If you did not receive the number of pages indicated, please contact us as soon as possible. 13:03

active and the second

R

GEHRMANN CONSULT

GMBH + PARTNER KG · ARCHITEKTEN UND INGENIEURE · WIESBADEN

A UNCOUNSTRASSE M HAUFTSITZ WESBADEN GEHEMANN CONSULT GMEH + MATINEE KG - POSTTACH 2660 - 6200 WIESBADEN W-4300 WESEADEN TEL 04 8-70.8 MI 06 3-740 88 BOLING ALLE SA BORO DOSSELDORF Baker and Associates 78. 001-36013 Michael Baker Jr., Inc., MI CON . JO IO M Facility Planning and Design EARNEST LASSE 10 D-7152 NOHLITZ-CHERNIGENS BORO Attn. Mr. Ted Marstiller TEL 03-41-451 22 34 Airport Office Park, Bldg. # 3 MX 0341-4512254 420 Rouser Road Coraopolis, PA 15108 DATUM MOEKT-NR. NEDENSTELLE UNSER ZEICHEN HRE NACHRICHT HE ZEICHEN 02.04.93 4246 .400 Ri/Ra

Energy Survey Dining Facility Grafenwöhr/Vilseck

Dear Mr. Marstiller,

attached please find the minutes of meeting from 25.03.93 in Grafenwöhr, the lists of energy charges and consumptions for Grafenwöhr and Vilseck and the monthly meter reading for Grafenwöhr, Building and Vilseck, Building 603.

Sincerely,

GEHRMANN CONSULT GMBH + PARTNER KG

Vister

Distribution: GC/GL GC/H. Malmberg GC/H. Lehnig GC/TI GC/TAB

	-				1	<u> </u>
JEHRM	IANN CC	NSULI				
SMBH + PAR	TNER KG · ARCH	ITEKTEN UND II	NGENIEURE	IESBADEN		L
					■ GEWI D 4-1865% ·	TELEP/
EHRWANIN CONSUL	IT GMBH + PARTNER KG - DI	5200 WESBADEN · A-UN	COLN-STIL 34 · 250 2660 ·			
					VERTERER	
AKTEN	/ERMERK					
GESPRACHS	BESTATIGUNG			L L	JC/H. Heyer	
				(GC/GL GC/EL	
DATUM	PROJEKTNUMMER	DIKTATZEICHER Ri/Ra	NI AKTENZEK		GC/MA GC/TI	
25.U3.95				~	GC/TAB	
Energy Surv	vey Dining Facility	Grafenwöhr/Vi	lseck			
BESPRECHUNG	Grafenwöhr DE	H.Geb. 433				
VERFASSER						
H. Riefke TERNEHMERI						
H. Riefke TERNEHMERI						
H. Riefke TERNEHMER, siche Teilne	chmerliste					
H. Riefke TERNEHMER, siche Teilne	ehmerliste					
H. Riefke TERNEHMER, siche Teilne	ehmerliste					
<u>H. Riefke</u> TERNEHMER, siche Teilne	ehmerliste			÷±		
H. Riefke TERNEHMER siche Teilne GEGENSTAN	ND DER BESMECHUNG %-Vorlage - Prese	entation and Re	view Conference	÷		
H. Riefke TERNEHMER siche Teilne GEGENSTAT 35	ehmerliste ND DER BESMECHUNG. <u>%-Vorlage - Press</u> Marstiller stellt d	entation and Re as Projekt vor u	view Conference nd erläutert, wie	die Energy	Conservation beitet werden	
H. Riefke TERNEHMER siche Teilne GEGENSTAN 35 Mr Op	chmerliste ND DER SESMECHUNG. <u>%-Vorlage - Press</u> Marstiller stellt d portunities (ECO) d mit welchem For	entation and Re as Projekt vor u - Energiceinspar mular die Bearb	nd erläutert, wie ungsmöglichkeite eitung sinnvoll is	die Energy en - ausgear t.	Conservation beitet werden	
H. Riefke TERNEHMER siche Teilne GEGENSTAN 35 Mr Op une	chmerliste ND DER MESMECHUNG, %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr.	entation and Re as Projekt vor u - Energiceinspar mular die Bearb Marstiller nach	nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat	die Energy en - ausgear t. tionen bezü	Conservation beitet werden glich dem	m
H. Riefke TERNEHMER siche Teilne GEGENSTAN 35 Mr Op und Au Ge	chmerliste ND DER BESMECHUNG, %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For ißerdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z	entation and Re as Projekt vor u - Energiceinspar mular die Bearb Marstiller nach Küche. Er bittet , B. Spülmaschi	nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat die Ingenieure von ne, pro Tag.	die Energy en - ausgear t. tionen bezü om DEH un	Conservation beitet werden glich dem n Angaben zur	m
H. Riefke TERNEHMER siche Teilne GEGENSTAT 35 Mr Op und Au Ge	chmerliste ND DER BESMECHUNG, %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern 1	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Kuche. Er bittet . B. Spulmaschi liegen noch kein	wiew Conference nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat die Ingenieure von ne, pro Tag. e Kommentare vo	die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit je einen Satz	ty
H. Riefke TERNEHMER siche Teilne GEGENSTAN 35 Mr Op und Au Ge Ei Vo	chmerliste ND DER BESMECHUNG. %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern I istehend aus drei O	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Küche. Er bittet . B. Spülmaschi liegen noch kein pekommen habe rdnern.	view Conference nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informad die Ingenieure von ne, pro Tag. e Kommentare von n und nicht, wie v	die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo vorgesehen,	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit , je einen Satz	ty
H. Riefke TERNEHMER siche Teilne GEGENSTAT 35 Mr Op und Au Ge Ei Vo nu be	ehmerliste ND DER SESTRECHUNGA %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern H is tehend aus drei O achdem ihnen nun is Mitte April abges	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Küche. Er bittet . B. Spülmaschi liegen noch kein bekommen habe rdnern. diese Unterlage schlossen haben	view Conference nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat die Ingenieure von ne, pro Tag. e Kommentare von n und nicht, wie n komplett vorlieg und über EDE B	die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo vorgesehen, gen, werder aker und G	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit , je einen Satz n sie die Prüfu ehrmann zuste	ty ing
H. Riefke TERNEHMER siche Teilne GEGENSTAT 35 Mr Op und Au Ge Ei Vo nu be N	ehmerliste ND DER SESTRECHUNG %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern H Ir je einen Ordner H stehend aus drei O achdem ihnen nun is Mitte April abge babisher den Plane	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Kuche. Er bittet . B. Spulmaschi liegen noch kein bekommen habe rdnern. diese Unterlage schlossen haben rn die Verbrauc	view Conference nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informad die Ingenieure von ne, pro Tag. e Kommentare von n und nicht, wie n komplett vorlieg und über EDE B hswerte der Kanti	die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo vorgesehen, gen, werder aker und Ge	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit , je einen Satz n sie die Prüfu chrmann zuste die	ty , en
H. Riefke TERNEHMER siche Teilna GEGENSTAN 35 Mr Op und Au Ge Ei Va Nb ba S d	ehmerliste ND DER MESTRECHUNG, %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For Berdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern h r je einen Ordner h stehend aus drei O lachdem ihnen nun is Mitte April abge)a bisher den Plane ommermonate zur lirekt in den Zentra 'orgenommen, so d	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Kuche. Er bittet . B. Spulmaschi liegen noch kein bekommen habe rdnern. diese Unterlage schlossen haben rn die Verbrauc Verfügung stand len von GC mit aß eine detailier	eview Conference nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat die Ingenieure von ne, pro Tag. e Kommentare von n und nicht, wie n komplett vorlieg und über EDE B hswerte der Kanti ien, wurden für (Stand 25.03.93 f tere Überprüfung	die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo vorgesehen, gen, werden aker und G inen nur für Grafenwöhr ür Elektro u möglich is GC zugesch	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit , je einen Satz n sie die Prüfu chrmann zuste die Ablesung t. Für Vilseck ickt.	m ty Jung en
H. Riefke TERNEHMER siche Teilna GEGENSTAN 35 Mr Op und Au Ge Ei Va ba N ba S d Va	ehmerliste ND DER MESMECHUNG, %-Vorlage - Press Marstiller stellt d portunities (ECO) d mit welchem For ißerdem fragt Mr. räteeinsatz in der H nsatz der Geräte, z on den Reviewern H ir je einen Ordner h stehend aus drei O lachdem ihnen nun is Mitte April abge ba bisher den Plane ommermonate zur lirekt in den Zentra vorgenommen, so d werden diese Inform	entation and Re as Projekt vor u - Energieeinspar mular die Bearb Marstiller nach Küche. Er bittet . B. Spülmaschi liegen noch kein bekommen habe rdnern. diese Unterlage schlossen haben rn die Verbrauc Verfügung stand len von GC mit aß eine detailier nationen von Fra	nd erläutert, wie ungsmöglichkeite eitung sinnvoll is weiteren Informat die Ingenieure von ne, pro Tag. e Kommentare von n und nicht, wie n komplett vorlie und über EDE B hswerte der Kanti ien, wurden für (Stand 25.03.93 f tere Überprüfung au Rieger direkt (die Energy en - ausgear t. tionen bezü om DEH un or, da sie vo vorgeschen, gen, werden aker und G inen nur für Grafenwöhr ür Elektro u möglich is GC zugesch	Conservation beitet werden glich dem n Angaben zur on Chief-Utilit , je einen Satz n sie die Prüfu chrmann zuste die Ablesung t. Für Vilseck ickt.	m ty ing ellen en

ļ

•

......

:

				2.1	
AKTENVERMERK.	DATUM	25.03.93	SEITE	2 .	
	PROJ. NR.	4240			
GESPRACHSDESTANOUNO					BRLEDIGUNG DURCH/BIS
•					
Vom DEH erhielt GC	die Verbrauchsko	sten für Heizung un d Vilseck.	d Strom fur die		
gesamten Liegenscha		vochen die Entschei	idung crhalten, o	0	
Von Mr. Wolner wir gemäß GC-Schreiber	vom Dezember 19	92 statt der Messur	igen (im Vertrag Jeizung und Elek	mit 110) für	
ÉDE enthalten) die L Grafenwöhr und Vils	seck auf ihre Wirts	haflichkeit bin unt	ersucht werden s n die Verträge G	ollen. C	
Nach Aussage von H bereits übergeben. F	alls dies nicht der H	all scin sollte, muß	Herr Repper un	for GC	
nochmalige Übersen	dung gebeten werde	en. Die vertrage in	f vilseek wurden		
nochinais kopiasi	oll his Mitte Mai E	DE von Baker über	geben werden, so	daß	
Anfang Juni die abs	chließende Präsenta	tion stattfinden kan	<u>6</u> .		
	••				
			•		
VUL/V	<i>.</i>)				
(Kicike)					
: :			-1.		
	•				
•					
		•			
1					

DEPTO HEAT WANDL.

··· 1:			•
	Confe	rence Sign-In Sl	neet
	Project Ti	tio: <u>Energy Aupit finit</u>	TTAL . I'S VIEW
U.S. Army Corps of Engineers Europe District		nce Initiator: <u>ECD</u> Mar 13 Time: <u>120</u> Locati	On:
7 Hel	aleway to the	cellence in Engineering	Office Phone
L	Position/	Organization	
Name: Filsi Lusi	Title	and Address	Fax Phone
WOLNER, LINDY	PROJECT	CETME . PM . ME UNIT 25727	069-151-738
	MANAGER	APO NE 09242.	069-596-4729
LERINN, WALTER	Wardora	BALLE & ADWG 420 EDVEST RAMIN AD ISIDE	<u>A12 · 26 9 · 6711</u>
	C. B. cuida	Times & Lesoc.	412-269-6246
MARTINIAR , 165	PECIFET	GEHEMANN CONJULT	0611 717400
RIEFKE, WOLFGANG	Elehter Elehter	Gehrmann Consult	06 777337
Punici Tient	THEREY ILLA	150	475-6134
STEVE NUNHAM	CHIEF	1 DOT DEH	475-7170 FAK 7391
Daland Person	Ene 14 Const. 4084	DEH 40gm BS3 Srifterweich	475-7144
Elsviele Lieger	Energy Coord	DEH, 28151 BEB	476-2944
•			

\$

	•				, I
			·		
	Neveticolog	- Schowdo 1	+101 .		
-	(Cons. Diain	Fac. Graf	5		
Data	Stromzähler	Wirm Comenze	Narmanage		
	(KWG)	(m²)	(MWH)		
10-4-92	18.376,3	418070	01837,6		1
1 = - 92	10,842,3	437,212	01928,2		
"corand (May 92)	466,-	1.9.142	90,6		
29-6-92	19,193,7	450.753	01964,0		
rebrand (Jus 12)	351,4	13.741	35,8		
31,07,92	19.628,4	465.758	02002,4		
branoe Jul 92	434,7	14.805	38,4		
31.08.92	20.086,3	478,982	02047,6		
Terbranch (Any 7.	457,9	.13.224	45,2		
3 - ,09.92	20,478,8	491.836	02105,2	• .	
Vabrand (Sep	12 392,5	12. 8 54	57,6		· .
30,10.92	20.876,3	505.823	02205,8	•	
Verbrand (Oc	t72) 397,5°.	13.787	100,6		•
30.11,92	21.314,9	521.912	02321,9		
Valiand (N	~9L) 438,6	-76.083	776.7		
25.03.33	22 883.8	577.760	02773,2		
	1502.9:	<u>4</u>			. ~ ·
	,				
		·	•		•

•

ł

•

, 01/04 ' 93	13:36	03. 04. 93 13: 05 19 9862 832657	DEH VIIseck	} € 002
MONTHLY METER READING	BUILDING 603	COMPLETED BY	-25-27 -25-27	
		HEATING METER KUH 486-245-206.5-	492-206 7763- 8084 8142 8187	8337 8497 9171 1992
		ELECTRICITY METER KWH 16 af (x 250)	16 310 (x 250) 16 560 (x 250) 13, 078 (x 252)	17.298 (x.250) 18.83 (x.250) 18.00Y
		DATE DATE	01 JUN 92 30 JUN 92 31 JUL 92	31 AUM 32 30 SEP 92 30 NOV 92 31 HA? 93 PURPOSE USAR

ALCONTRACTOR AND ADDR

ORMO	et. 0.6 6 6300 KH	ALL II.4 PP/KM	HEXY & S. 2 PP/XCH	. هذه به چند بو و خاند برای استان ا		
and the second second large	MICA TERSION N DAJAON-96-D-0030	10 BEO 11.7 PE/KW NEXL	6 MIO 9.4 PT/RNMI MEKE			
	De) (very i ZAST- CARD			9.477/KWM		D-10 ALL. FURTHER 8000
	Card No. 1 0001-1987 Card No. 1 0001-1987 Carden Locations Carlinicolik Carden Locations 5000 KH	Main Trans Cepi	Ing Chrs NT1 15T NIO 11.	Ene Chris IIT: 1570.6 NIO	Act Chrgi. ALL 0.037 B	NANTAL-INOTIAT-KINI

03.04.93

13:00

-42,00 - 244622.45 0.449--42.00--282022.9L--0-147-229929.08-----0.00------43.00--326021-05---0-143-310 -11-0-11-0699126-00-74--22.00-12.121212-00.54-187376-38... -0.00.-----42.00- -283418.38 --0-148--11-1205256 00.405 ACT, COST...... Nr. COST... , PB18..... .TOT . COST. 96000.00 ... 348360.45 ... 0.00 162709.21---0.00 228657,15-..-0.00-256150.54. - 0.00 . • 96000.00.00 96000.00 96000.00 96000.00 96000.00 96000,00. -474 -161290- 0.995 96000.00 1 0.991. 96000.00 96000-00 96000.00 96000.00 **D2:01** --0.966 525-0--0-525C---525 ..0.967.. -------086.0---092212---612.-0.985 100.0.0.94605--- 0.994 . ž **INTOLINE** .404290.. -- 35 톃 ... ON-FEAK . OEF-PRAK... TOTAL KIM..... UTIL -0698161 ... - Step011 .. Se0218 -- Of Elst 2516650--2392250----209/212-001990-5112211 07-6117-1112 00 119205 697265 - - 1616990 -0621661--0795611-065106-02-9225 112310 1404340. 1112310 ą 4

0.998 1152000.00 2402511.21 ... 0.00

2601985.... 2810---

g
2. 160° 1/100° 5 DH. 70 2 = 296 BHM	ice Mjuscent Clause	ST AVENCE COST / MULT	40°09 40°09 40°00	693.06 74.15		.937.66 78.76	937.86 90.44	es.cat 99.7ce,		,765.86 209.82	, 765.86 294.91	,765.86 348.03		67.1/1 16.000,	1,700.45 09.30	2,780.45 83.44		5,841.98 204.46	
asei lachaft Piessotht/Hindikoffun Balk 128 kitelle osk rea bart - 75 bra	66 Nork Price of the "Pr	NATE THE TOTAL OF	760.00 408.	760.00 408.		760.00 416.	760.00 416	760.00 416		760.00	760.00 408	760:00		760.00 317	760.00	760.00 40	•	9,120.00 4,82	ł
1 9 2 1 Kiacho Gastieferunges Pacfanto, 30 84 Datis 60 x = 32,400 Datis 60 x = 32,400	per 1948 - Denied Charges and E 8 3 of the contract.	PREAT OF INTESTEET	142,750-00	142.750.00	142,750.00	100.000	140.00	142, 790.00		West	142, /790.00	142,790.00		142,790.00	142,790.00	142-750.00		. 1,713,000.00	
<u>Surfilian</u> riko Surfilian Soneraet Ann KD	1 191 152,21 191 192 194 194 195 195 195 195 195 195 195 195 195 195	EXERCT CONCI	182.024.00	182.024,00	182.024:00		190,268.00	190,268.00	190, 491		182,096.00	182,096.00	182,096.00		121.12 1	m.nza '6/1	173,420.00	98-111 tay -	X
1 10 10 10 10 10 10 10 10 10 10 10 10 10 1	a are depending	DENUE CENECE	0,159.06	63,159,66	83,159.86		83,159.86	63, 159.06	80,159.06		83,199.86	63, 159.66	69,159.86		65, 650. 45	65,050.45	69,650.45		1,005,990.07
Verthern Heizer	YEART 142.750.00	BARRACY USE BAR		6,807.80	5,512.00		5,294.41	. 72.010,4	2,271.62		1.410.43	1,386.09	1,174.52		1.814.66	4,510.20	4,826.80		107.40
rdcacted & React a. Di Ruese locativ	LEVEL OF LAVES			ANUARY			LI KA	any			×	ADCOST	SETEREZA		ocrotes	NOVINGER	DISCRATZ		

13:00 63.64.73

1 ł L

:

. 1 1

алан С. 10°-е С. 10°-е	62.98 62.98 59.90 71.97 71.97 71.97 11.22 123.10 123.10
	680735.39 680735.39 680735.39 680735.39 680825.39 680825.39 680825.39 1574501.50 753615.72 753615.72 753615.72 753615.72
AND TANK AND	1749.00 1749.00 1749.00 1749.00 1749.00 1749.00 1749.00 1749.00 1749.00 0
	310576.58 310576.58 310576.58 310576.58 310576.58 310576.58 310576.58 310576.58 310576.58 310576.58
 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	257530.00 257530.00 257530.00 257620.00 2575200.00 2575200.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 257520.00 2575200.00 2575200 2575200.00 25752000 257520000 257520000 257520000000000
PATA TAT CAN PATA TAT CAN PATA TAT CAN STOLES TAT DATA ANT A	Zk: 9824251 k9:285021 k9:285021 k9:285021 k9:285021 k9:285021 k9:285021 k9:285021 k9:285021 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428011 k9:428021 k9:4280011 k9:428021 k9:428021 k9:4280011 k9:428021 k9:428011 k9
TINESTHENT 210	10809.27 10809.27 11365.46 9439.06 9439.06 6601.80 5601.80 2879.48 1942.79 1942.79 1942.79 7593.48 1944.65 75648.03
THE ALL THE AL	JAMA. ARY JAMA. ARY FERST. ARKIT ARRIT JUK JUK BERTEMBER CECENSER

03, 04, 93

13:07

DELIKI HIYI WANDU

4500 KM	TLLO BL BLLO BL BL BLLO BL BL BLLO BL
MIO 8.7 - F/MAN NEXT	31.1 1
News : Contract 42: 42: 42: 42: 42: 42: 42: 42: 42: 42:	ALL FLITTHER 40000
ard NO. 1 ard NO. 1 CETVICE LOCALIOFI VILSEN SOLUTH CA CETVICE LOCALIOFI VILSEN SOLUTH CETVICE LOCALOFI VILSEN SOLOD DI CETTACT CETTACT DI CETTACT LOCALOFI VILSEN SOLOD DI CETTACT LOCALOFI VILSEN SOLOD DI CETTACT CETTACT CETTACT VILSEN SOLOD DI CETTACT CT VILSEN SOLOD DI CETTACT VILSEN SOLOD DI	Remarket Market Market Market Dermond 3 Klu Col-PEGK 0:: 5: - 5: 0K 3 Klu Col-PEGK 0:: 5: - 5: 0K 3 5372,00 14592800 1361040 3 5372,00 1451560 1080430 3 5372,00 1451560 1080430 3 5122,00 1541560 1312400 3 5248,00 912440 1312400 3 5224,00 912440 1312400 3 5224,00 912440 1312400 3 92244,00 912440 1312400 3 9224,00 1312900 1312900 3 9244,00 912450 1312400 3 9244,00 912450 13100 3 9244,00 912450 13100 4 924,00 912322 13100 3 924,00 912322 13100 4 924,00 912322 13100 4 924,00 92160 13100 4 924,00 92160 13100 4 924,00 1432720 124602 4 924,00 1432720 124602

WETTO'HAN LUNDL

03.04.93 13:05

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

APPENDIX C

ENERGY CONSERVATION

OPPORTUNITY (ECO) CHECKLIST

ENERGY CONSERVATION OPPORTUNITY (ECO) CHECKLIST

ARCHITECTURAL ECO's

Architectural Energy Conservation Opportunities (ECO's) consist, mainly of those ECO's which will improve the thermal efficiency of the building envelope. The following twelve architectural ECO's were investigated at both the Grafenwöhr and the Vilseck sites.

- A1. Conserve energy by increasing the insulation in exterior walls.
- A2. Conserve energy by adding roof or ceiling insulation to the building to achieve a thermal resistance (R) rating of at least R-30 for the combined ceiling elements.
- A3. Conserve energy by reducing the amount of window glass in exterior walls.
- A4. Conserve energy by installing insulated panels over exterior windows.
- A5. Conserve energy by replacing single pane window glass with double or triple pane window glass.
- A6. Conserve energy by installing storm windows over exterior windows.
- A7. Conserve energy by installing solar film on exterior windows.
- A8. Conserve energy by installing shades, screens, curtains or blinds on exterior windows.
- A9. Conserve energy by reducing infiltration by means of new or improved weatherstripping and/or caulking.

- A10. Conserve energy by installing vestibules at troop entrances.
- A11. Conserve energy by installing air curtains or plastic strips at all service entrances.
- A12. Conserve lighting energy by improving the reflectivity of room surfaces.

HVAC SYSTEM ECO's

Heating, Ventilating, and Air Conditioning (HVAC) system ECO's consist of changes which will improve the efficiency of the HVAC System (i.e. - air handling units, exhaust fans, piping, ductwork, etc.) and the HVAC system controls. The following twenty-five HVAC system ECO's were investigated at both the Grafenwöhr and the Vilseck sites.

- H1. Conserve energy by installing energy efficient exhaust hoods with integral make-up air ducts.
- H2. Conserve energy by recovering waste heat from exhaust air streams.
- H3. Conserve energy by changing constant volume air handling units to variable air volume (VAV) operation.
- H4. Conserve energy by balancing the HVAC system.
- H5. Conserve energy by reducing the amount of air supplied to or exhausted from the building (or space).
- H6. Conserve energy by reducing the amount of ventilation air drawn into the building by the HVAC system.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- H7. Conserve energy by installing tight-closing, low-leakage dampers on all outside air intake and exhaust openings (except at kitchen exhaust fans since damper blades could collect grease and become a fire hazard).
- H8. Conserve energy by reducing static pressure in HVAC systems.
- H9. Conserve energy by reducing supply air leakage at air handling units and supply air ductwork.
- H10. Conserve energy by insulating and/or repairing damaged insulation on HVAC system ductwork.
- H11. Conserve energy by installing ceiling-mounted circulating fans to reduce stratification within occupied spaces.
- H12. Conserve energy by recovering waste heat from refrigeration systems.
- H13. Conserve energy by ventilating the refrigeration system compressor room.
- H14. Conserve energy by replacing reciprocating type refrigeration compressors with higher efficiency scroll or rotary (screw) type compressors.
- H15. Conserve energy by re-setting heating hot water temperature according to outside air temperature and occupancy schedules.
- H16. Conserve energy by reducing pump flow rates.
- H17. Conserve energy by installing new insulation, adding additional insulation, or repairing existing insulation on heating hot water piping.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- H18. Conserve energy by repairing or eliminating all HVAC system control deficiencies.
- H19. Conserve energy by using the Energy Monitoring and Control System (EMCS) to optimize the start-up and shut-down schedules for HVAC system fans, pumps, compressors, and other motorized devices.
- H20. Conserve energy by using the EMCS to set-back space temperatures at night during the heating season.
- H21. Conserve energy by installing occupancy sensors to cycle the ventilation system "on" and "off" according to occupancy.
- H22. Conserve energy by interlocking the kitchen exhaust hoods with the cooking equipment served by each hood.
- H23. Conserve energy by installing economizer cycle controls and dampers on all ventilation systems.
- H24. Conserve energy by shutting off or reducing the amount of heating in vestibules.
- H25. Conserve energy by installing a thermal storage system.
- H26. Conserve energy by using infrared heaters in lieu of conventional (convection) heaters.

PLUMBING SYSTEM ECO's

Plumbing System ECO's consist of changes which will improve the efficiency and/or reduce the energy consumption of the plumbing systems (i.e. - Domestic cold water, hot

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

£

water and waste water systems). The following ten plumbing ECO's were investigated at both the Grafenwöhr and Vilseck sites.

- P1. Conserve energy by lowering the domestic hot water supply temperature.
- P2. Conserve energy by installing controls on the domestic hot water system to lower the heater's set-point temperature or to shut-off the heat source to the heater during non-peak periods.
- P3. Conserve energy by installing booster heaters at major hot water users and at high temperature hot water users.
- P4. Conserve energy by installing instantaneous hot water heaters in lieu of storage tank type heaters.
- P5. Conserve energy by installing additional insulation on the domestic hot water storage tanks.
- P6. Conserve energy by installing additional insulation and/or repairing existing insulation on domestic hot water piping.
- P7. Conserve energy by installing flow restrictors at domestic hot and cold water end users.
- P8. Conserve energy by installing automatic shut-off type faucets in lavatories.
- P9. Conserve energy by reclaiming waste heat from dishwasher wastewater.
- P10. Conserve energy by installing solar collectors to pre-heat domestic hot water.

ELECTRICAL SYSTEM ECO's

Electrical System ECO's consist of changes which will improve the efficiency and/or reduce the energy consumption of the electrical system (i.e. - power distribution and lighting systems). The following twenty electrical ECO's were investigated at both the Grafenwöhr and the Vilseck sites.

- E1. Conserve energy by reducing lighting levels to minimum levels described in the Army Design Guidelines.
- E2. Conserve lighting energy by eliminating excess fixtures. Where fixtures are close enough to each other, it may be possible to eliminate excess fixtures without creating dark spots.
- E3. Conserve energy by delamping selected lighting fixtures.
- E4. Conserve energy by converting existing lighting fixtures to high efficiency fluorescent or HID fixtures.
- E5. Conserve energy by replacing the incandescent lamps in exit lights with lower wattage fluorescent lamps.
- E6. Conserve energy by installing improved reflectors on lighting fixtures and reducing the fixtures lamp wattage.
- E7. Conserve energy by replacing existing core coil ballasts with electronic ballasts in existing fluorescent lighting fixtures.
- E8. Conserve energy by replacing existing lamps with energy efficient U-tube fluorescent lamps.
- E9. Conserve energy by replacing existing incandescent bulbs with compact fluorescent bulbs.

C-6

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- E10. Conserve energy by installing dimming hardware on exterior HID lighting.
- E11. Conserve energy by turning exterior lighting "on" and "off" by means of photocells.
- E12. Conserve energy by turning exterior lighting "on" and "off" by means of timers.
- E13. Conserve energy by providing task level switching for interior lights. Task level switching will allow the lighting level to be varied to match the activity within the space.
- E14. Conserve lighting energy by using photocells to turn "off" or dim interior lights (especially lights near windows) when natural daylight provides adequate illumination.
- E15. Conserve energy by turning interior lighting "on" and "off" by means of timers.
- E16. Conserve energy by turning interior lighting "on" and "off" by means of space occupancy sensors.
- E17. Conserve energy by replacing existing motors with energy efficient motors.
- E18. Conserve energy by replacing oversized/undersized motors with motors which have their peak efficiency at the actual system load.
- E19. Conserve energy by adding power factor correcting capacitors to existing motors.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

E20. Conserve energy by equipping motors which experience highly variable loads with variable frequency drives.

OPERATIONS AND MAINTENANCE ECO's

Operations and Maintenance (O & M) ECO's consist of changes to the procedures which govern the use and maintenance of the dining facility and the equipment therein. Most O & M ECO's can be classified as Low/No Cost ECO's and are, therefore, of special interest to the facility managers and users. Many O & M ECO's may be put into effect by installing time clock controls at some later date, however, all of the proposed O & M ECO's can be put into effect immediately, through the efforts of the kitchen and maintenance staffs. The following twenty-one O & M ECO's have been investigated at both the Grafenwöhr and Vilseck sites.

- OM1. Conserve energy by optimizing HVAC system start-stop times and set-back temperatures with respect to dining facility operations.
- OM2. Conserve energy by maintaining thermostat set-points at authorized temperatures.
- OM3. Conserve energy by turning "off" kitchen hot water heaters (specifically booster heaters on dishwashing equipment) when not required.
- OM4. Conserve energy by shedding or cycling electrical loads to reduce peak demand.
- OM5. Conserve energy by running the emergency generator to reduce peak demand.
- OM6. Conserve energy by maintaining all HVAC system controls in good working order.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- OM7. Conserve energy by keeping the coils (both evaporator and condenser) on all refrigeration equipment clean and unobstructed.
- OM8. Conserve energy by keeping the heat exchanger tubes in the domestic hot water heater clean. Provide water treatment if required to prevent fouling of tube surfaces.
- OM9. Conserve energy by keeping all light fixture lenses and reflectors clean.
- OM10. Conserve energy by keeping all HVAC system filters (including exhaust hood grease filters) clean.
- OM11. Conserve energy by turning "off" all miscellaneous electrical equipment (such as vending machines) whenever it is not required.
- OM12. Conserve energy by consolidating refrigerated foodstuffs into fewer refrigerators, coolers, or freezers and turning "off" those freezers that are not required.
- OM13. Conserve energy by thawing frozen foods in refrigerated compartments.
- OM14. Conserve energy by preheating only that equipment which will be required for the meal being served.
- OM15. Conserve energy by preheating equipment immediately prior to use.
- OM16. Conserve energy by steaming (rather than boiling) vegetables whenever possible.
- OM17. Conserve energy by matching pots to burner size so that pots completely cover burners.

- OM18. Conserve energy by cooking with lids in place.
- OM19. Conserve energy by using microwave cooking equipment in lieu of conventional cooking equipment whenever possible.
- OM20. Conserve energy by avoiding the use of hot water for dish scraping.
- OM21. Conserve energy by operating dishwashers only when continuous usage can be sustained.
- OM22. Conserve energy by reducing the building's operating hours.
- OM23. Conserve energy by conducting regular steam trap inspections.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

APPENDIX D

ECO's ELIMINATED

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

1.0 ECO's Rejected for Grafenwöhr Building 101

1.1 In some instances ECO's were rejected without a formal, cost vs. benefits analysis. Engineering experience and/or the particular situation or installation at Grafenwöhr Building 101 indicated that these ECO's were either impractical or impossible to install at this site. All of the ECO's rejected on this basis are listed below. An explanation of the basis for rejection follows the ECO description.

A1 Conserve energy by increasing the insulation in exterior walls.

Building 101 was designed with 6 centimeters of fiberglass batt insulation in the wall cavity between the outer brick wythe and the inner concrete block wythe of the exterior wall. This exceeds the 5cm of insulation required by the "Standard Design Guidelines for Modifying Interior and Exterior Energy Systems" published by the Utilities and Energy Branch HQ, USAREUS. See Table 1-1. Additional insulation would have only a marginal effect on the thermal characteristics of the exterior walls and would be enormously expensive since it would have to be installed on either the exterior of the building (using a system similar to the Dryvit system) or on the interior surface of the existing plaster wall. The new interior insulation would, then, have to be covered with new wood paneling and/or a new gypsum board interior wall.

A2 Conserve energy by adding roof or ceiling insulation to the building to achieve a thermal resistance (R) rating of at least R-30 for the combined ceiling elements.

Building 101 was designed with 12cm of rigid board roof insulation. Assuming that the insulation is a typical, expanded polystyrene board (R=5.0/inch), the R-value of the roof assembly is estimated to be 25.18 °F-ft²-hr/BTU. Increasing the R-value of the roof from the present R-25 to R-30 would have only marginal impact on the roof's thermal characteristics. Because the roof is only ten years

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

old, the cost of re-roofing would more than offset any thermal improvement. However, when re-roofing is required, the roof insulation should be increased to achieve a rating of R-30 for the roof assembly.

A3 Conserve energy by reducing the amount of window glass in exterior walls

As presently configured, Building 101 has a glass-to-wall ratio of only 7.0 percent. There is little reason to reduce this ratio even further. The only significant amount of glazing in the building is in the dining area. Reducing this glass area further would reduce the architectural attractiveness of the dining space and the amount of daylight which enters the building. See ECO E14.

A4 Conserve energy by installing insulated panels over exterior windows

See commentary on ECO A3.

A5 Conserve energy by replacing single pane window glass with double or triple pane window glass.

The existing windows are already glazed with double pane, insulating window glass. Increasing the thermal efficiency of the windows by installing triple pane glass would only have a marginal effect on the thermal efficiency of the building.

A6 Conserve energy by installing storm windows over exterior windows.

See commentary on ECO A5.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

A7 Conserve energy by installing solar film on exterior windows.

During the summer months, solar film does an excellent job of limiting solar heat gain and reducing the air conditioning load. However, since Building 101 is not air conditioned, solar film would have little energy conserving benefit. During the winter months, the lack of solar film (existing condition) allows solar energy to enter the dining area. This tends to reduce the amount of heating required to keep the dining area comfortable. In this case, the lack of solar film is a benefit.

A8 Conserve energy by installing shades, screens, curtains, or blinds on exterior windows.

The windows at Grafenwöhr Building 101 are already outfitted with interior curtains. See, also, commentary on ECO A7.

A9 Conserve energy by reducing infiltration by means of new or improved weatherstripping and/or caulking.

The weatherstripping and caulking on Building 101 was found to be in good condition.

A10 Conserve energy by installing vestibules at troop entrances.

Building 101 is already equipped with an entry vestibule at the troop entrance. Exterior doors not equipped with vestibules are all marked with "Emergency Exit Only" signs.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

A11 Conserve energy by installing air curtains or plastic strips at all service entrances.

Current practice at Building 101 is to leave the kitchen make-up air unit "off" even when the kitchen hood exhaust fans are turned "on". This is done in all but the coldest weather. Since the units supplying make-up air to the kitchen and the dining area are not turned on, the make-up air for the exhaust hoods is drawn into the building through the screened rear (service entrance) doors. Since this practice seems to work satisfactorily, it is likely to be continued. Therefore, an air curtain or plastic door strips, which would reduce the amount of air infiltrating into the building would be undesirable. Since the amount of outside air drawn into the building is the same, whether it is infiltration or ventilation air supplied by the make-up air units, the building's energy consumption remains constant. During extremely cold weather, the kitchen ventilation unit is turned "on" and the rear entry doors are kept closed. So air curtains or door strips would be of little use under this condition, also.

A12 Conserve lighting energy by improving the reflectivity of room surfaces.

Wall and ceiling surfaces at Grafenwöhr Building 101 were found to be of a light color and kept clean. Therefore, there is little opportunity for conserving energy by improving surface reflectivity.

H1 Conserve energy by installing energy efficient exhaust hoods with integral make-up air ducts.

Energy saving exhaust hoods are already installed in Building 101.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H2 Conserve energy by recovering waste heat from exhaust air streams.

The energy-saving exhaust hoods installed in Building 101 (See commentary on ECO H1) have exhaust air streams with a very low heat content since most of the air being exhausted is outdoor air. For this reason, there is very little potential for exhaust air heat recovery. The toilet room exhaust has a somewhat higher heat content (higher temperature) but it has a very low flow rate and a low number of operating hours. Therefore, the potential for heat recovery from toilet room exhaust is, also, very low.

H3 Conserve energy by changing constant volume air handling units to variable air volume (VAV) operation.

Because two of the air handling units (kitchen and serving line units) are rarely turned on and because the building is not air conditioned, there is little or no potential energy savings expected from converting to VAV operation. VAV operation is particularly effective in reducing energy consumption when the HVAC system is operating in the air conditioning mode. However, it is not particularly effective in reducing energy consumption during the heating season. This is due to the fact that building heating is accomplished, primarily, through the perimeter radiation system.

H4 Conserve energy by balancing the HVAC system.

There were no unexpected or extreme temperature variations within the dining areas of Building 101. This indicates that the air supplied to the area is well suited to the requirements of that space. (Note that under normal operating conditions, only the air handling unit supplying the dining area is used). Therefore, it appears that the HVAC system does not require re-balancing.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H5 Conserve energy by reducing the amount of air supplied or exhausted from the building (or space).

An investigation of the existing drawings suggests that the present air flow rates are at or below the DIN requirements and the VDI guidelines. However, since the supply and exhaust air quantities of the existing HVAC system appear to be satisfactory for both comfort and odor control, there is little reason to re-balance the system.

H6 Conserve energy by reducing the amount of ventilation air drawn into the building by the HVAC system.

As noted previously, the air handling units serving the kitchen and the serving area are rarely used. Therefore, no energy savings can be derived from reducing the ventilation air flow rate of these units. The outdoor air damper on the dining area air handling unit appears to be operating properly to control the amount of ventilation air being supplied to the space and to minimize energy consumption.

H7 Conserve energy by installing tight-closing, low-leakage dampers on all outside air intake and exhaust openings (except at kitchen exhaust fans since damper blades could collect grease and become a fire hazard).

Low-leakage dampers are already present on the air handling equipment installed in Building 101.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H8 Conserve energy by reducing static pressure in HVAC systems.

The air handling unit serving the dining area appears to be operating satisfactorily. (See commentary on ECO H4). Since the system is a constant volume system, there are no VAV boxes which require some additional minimum static pressure at the box inlet. Therefore, the system static pressure is already at or near its optimum setting.

H9 Conserve energy by reducing supply air leakage at air handling units and supply air ductwork.

There were no large or obvious leaks in the visible portions of the supply air ductwork or at the air handling unit casings at Building 101.

H10 Conserve energy by insulating and/or repairing damaged insulation on HVAC system ductwork.

The insulation on the visible portions of the HVAC system ductwork in Grafenwöhr Building 101 appeared to be intact and in good repair. Only minor repairs are required where the vapor barrier (external skin) of the insulation has been punctured or where seam tape has come unglued.

H11 Conserve energy by installing ceiling-mounted circulating fans to reduce stratification within occupied spaces.

The ceilings in Building 101 are between 2.99m. and 3.25m. high. These ceilings are too low for the interior spaces to have serious stratification problems. They are also somewhat low to have surface mounted recirculation fans installed below them.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H12 Conserve energy by recovering waste heat from refrigeration systems.

The most effective way to capture waste heat from refrigeration systems is to use a heat exchanger to preheat domestic hot water with the refrigerant hot gas. However, because the domestic hot water storage tank temperature (60° C) is greater than the hot gas temperature (\pm 43°C) of the refrigerator/freezer refrigeration systems, an additional hot water storage tank would have to be installed to allow heat to be recovered from the food storage refrigeration equipment. This tank would be used to pre-heat domestic water before it entered the existing hot water storage tank. However, there is not enough space in either the mechanical room or the refrigeration compressor room for such a storage tank.

H13 Conserve energy by ventilating the refrigeration system compressor room.

The compressor room in Building 101 is already equipped with a ventilation system. This consists of an intake louver in the east wall of the room and a roofmounted exhaust fan.

H14 Conserve energy by replacing reciprocating type refrigeration compressors with higher efficiency scroll or rotary (screw) type compressors.

Given the age of Building 101 and the installed equipment, replacement of the refrigeration compressors would be impractical for two reasons. One, the equipment is less than half way through its useful life; and, two, the installed equipment should have a relatively high coefficient-of-performance (COP).

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H15 Conserve energy by re-setting heating hot water temperature according to outside air temperature and occupancy schedules.

The building automation system installed in Building 101 is already programmed to perform these functions.

H16 Conserve energy by reducing pump flow rates.

The building automation system installed in Building 101 is already programmed to adjust hot water flow rates - using the installed variable speed Wilo pumps to suit the building's loads.

H18 Conserve energy by repairing or eliminating all HVAC control deficiencies.

According to building operating personnel, the installed building controls are operating properly.

H19 Conserve energy by using an Energy Monitoring and Control System (EMCS) to optimize the start-up and shut-down schedules for HVAC system fans, pumps, compressors, and other motorized devices.

According to building operating personnel, the installed EMCS is presently used to optimize equipment performance and building comfort.

H20 Conserve energy by using an EMCS to set-back space temperatures at night during the heating season.

See commentary on ECO H19.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H21 Conserve energy by installing occupancy sensors to cycle the ventilation system "on" and "off" according to occupancy.

The occupancy schedule for this building is well defined. Therefore, the ventilation system can be controlled effectively by the EMCS and the addition of space occupancy sensors is unnecessary.

H22 Conserve energy by interlocking the kitchen exhaust hoods with the cooking equipment served by each hood.

It has been determined that re-wiring the existing cooking equipment to turn the associated exhaust hoods "on" and "off" is impractical. However, training the kitchen staff to operate cooking hoods only while cooking is a viable low/no cost ECO, and will be dealt with as an O&M ECO.

H23 Conserve energy by installing economizer cycle controls and dampers on all ventilation systems.

The air handling units in Building 101 are not equipped for air conditioning. Therefore, economizer cycle controls are not necessary.

H24 Conserve energy by shutting off or reducing the amount of heating in vestibules.

The only vestibule in Building 101 (at the troop entrance to the building) is not equipped with any heating devices.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H25 Conserve energy by installing a thermal storage system.

Thermal storage systems are only practical for buildings equipped with air conditioning. Even then they are only viable when there are significant time-ofday incentives (from the power supplier) for consuming more power during offpeak periods and less power during peak demand periods. Since neither of these criteria are met at Grafenwöhr, there is little reason to install a thermal storage system.

H26 Conserve energy by using infrared heaters in lieu of conventional (convection) heaters.

Infrared heaters are best suited for exterior area heating (such as loading docks) or for areas with extremely large volumes (such as warehouses). Since neither of these types of spaces are present in Building 101 there is little reason to pursue the use of infrared heating.

P1 Conserve energy by lowering the domestic hot water supply temperature.

The hot water storage temperature of 60°C is required by Army regulations.

P2 Conserve energy by installing controls on the domestic hot water system to lower the heater's set-point temperature or to shut-off the heat source to the heater during non-peak hours.

The required controls are already present on the Building 101 domestic hot water system.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

P3 Conserve energy by installing booster heaters at major hot water users and at high temperature hot water users.

The largest, single hot water consumer is the dishwasher, which is already equipped with an electric booster heater.

P4 Conserve energy by installing instantaneous hot water heaters in lieu of storage tank type heaters.

Given the relatively recent construction of Building 101, the replacement of the existing water heating equipment with instantaneous water heaters is highly impractical. In addition, heating domestic water with electricity is more expensive (in both cost and energy terms) than heating with district hot water -as is presently done.

P6 Conserve energy by installing additional insulation and/or repairing existing insulation on domestic hot water piping.

The insulation for the domestic hot water system requiring repair is located in the central mechanical space. This insulation has been evaluated as part of ECO H17.

P9 Conserve energy by reclaiming waste heat from dishwasher wastewater.

The present dishwasher installation would make it extremely difficult to connect a water-to-water heat exchanger to the sanitary sewer connection on the dishwasher. Also, there is little space in the mechanical room for installing the additional pumps and secondary loop heat exchanger required to recover heat from the dishwasher wastewater.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

P10 Conserve energy by installing solar collectors to pre-heat domestic hot water.

The total insolation (time and intensity of sunshine) in Grafenwöhr makes solar heating technically impractical.

E2 Conserve lighting energy by eliminating excess fixtures. Where fixtures are close enough to each other, it may be possible to eliminate excess fixtures without creating dark spots.

The lighting fixtures in Building 101 are spaced in such a manner that no fixtures can be eliminated without causing undesirable variations in the lighting levels within individual spaces.

E3 Conserve energy by de-lamping selected fixtures.

See ECO E1. In some areas, selective de-lamping, rather than re-lamping with lower wattage lamps, may be the most cost effective method for reducing lighting levels to the required minimum.

E4 Conserve energy by converting existing lighting fixtures to high efficiency fluorescent or HID fixtures.

Fixtures, both interior and exterior, at Grafenwöhr Building 101 are already either fluorescent (interior) or HID (exterior) type. Incandescent lighting is not used in this building.

E5 Conserve energy by replacing the incandescent lamps in exit lights with lower wattage fluorescent lamps.

This has already been done in Building 101.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

E6 Conserve energy by installing improved reflectors on lighting fixtures and reducing the fixtures lamp wattage.

The lighting fixtures in Grafenwöhr Building 101 are relatively new fixtures which are already equipped with efficient reflectors and low wattage lamps.

E8 Conserve energy by replacing existing lamps with energy efficient U-tube fluorescent lamps.

For architectural reasons, the fixtures in Building 101 are not suitable for relamping with U-tube fluorescent lamps.

E9 Conserve energy by replacing existing incandescent bulbs with compact fluorescent bulbs.

See commentary on ECO E8.

E11 Conserve energy by turning exterior lighting "on" and "off" by means of photocells.

ECO E10 has been developed to minimize the energy used for exterior lighting. Photo cells have been included in the development of ECO E10.

E12 Conserve energy by turning exterior lighting "on" and "off" by means of timers.

ECO E10 has been developed to turn the exterior lighting "on" and "off" by means of a photocell. Therefore, this ECO will not be pursued. See, also, ECO E11.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

E13 Conserve energy by providing task level switching for interior lights. Task level switching will allow the lighting level to be varied to match the activity within the space.

Because the Dining Facility is not a multiple use facility (i.e., the spaces are all designed for a single specific activity) task level switching is not appropriate for this building.

E15 Conserve energy by turning interior lighting "on" and "off" by means of timers.

ECO E14 has been developed to minimize energy usage within the Dining areas. Therefore, this ECO will not be pursued.

E16 Conserve energy by turning interior lighting "on" and "off" by means of space occupancy sensors.

ECO E14 has been developed to turn the interior lighting "on" and "off" by means of a timer. Therefore, this ECO will not be pursued. See, also, ECO E15.

E17 Conserve energy by replacing existing motors with energy efficient motors.

Given the relatively short period of time that the existing motors have been in service, it would be both expensive and wasteful to replace them with newer motors. In addition, the efficiency of newer motors is only marginally better than that of motors built less than ten years ago.

E18 Conserve energy by replacing oversized/undersized motors with motors which have their peak efficiency at the actual system load.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

On inspection, the large (greater than 1/2 HP) motors at Grafenwöhr Building 101 were found to be well matched to their service loads.

E19 Conserve energy by adding power factor correcting capacitors to existing motors.

The motors on equipment installed in Building 101 are well suited for their service and do not require power factor correction.

E20 Conserve energy by equipping motors which experience highly variable loads with variable frequency drives.

The only motors which are subjected to this type of loading are the hot water pumps. These pumps are already equipped with variable frequency drives.

1.2 The following ECO was rejected after a rigorous investigation of its merits. Rejection was based on the ECO having a Savings-to-Investment Ratio (SIR) of less than 1.0. That is, the savings (in DM) generated by the ECO's would not even pay for the ECO's installation.

ECO NO.	ENERGY SAVINGS (MBTU/YR)*	FUEL **	COST SAVINGS (DM/YEAR)	COST (DM)	SIR	PAYBACK (YEARS)
E7	78.8	Е	3,280	243,152	0.16	74.1

TABLE D-1 ECO's REJECTED - GRAFENWÖHR BUILDING 101

* $MBTU = 10^{\circ}BTU'S$

** Fuel types are: Electricity (E) and District Hot Water (DHW)

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

2.0 ECO's Rejected for Vilseck Building 603

2.1 The following ECO's were rejected for implementation at Vilseck Building 603 without the benefit of a formal cost vs. benefit analysis. The reason for the rejection follows the ECO description.

A1 Conserve energy by increasing insulation in exterior walls.

Building 603 was designed with 6 centimeters of fiberglass batt insulation in the wall cavity between the outer brick wythe and the inner concrete block wythe of the exterior wall. This exceeds the 5cm of insulation required by the "Standard Design Guidelines for Interior and Exterior Energy Systems" published by the Utilities and Energy Branch, HQ, USAREUS. See Table 1-1. Additional insulation would have only a marginal effect on the thermal characteristics of the exterior walls and would be enormously expensive since it would have to be installed on either the exterior of the building (using a system similar to the Dryvit system) or on the interior surface of the existing plaster wall. The new interior insulation would, then, have to be covered with new wood paneling and/or a new gypsum board interior wall.

A2 Conserve energy by adding roof or ceiling insulation to the building to achieve a thermal resistance (R) rating of at least R-30 for the combined ceiling elements.

Building 603 was designed with 12cm of fiberglass batt roof insulation. The R-value of the roof assembly is estimated to be 20.93 °F-ft²-hr/BTU. Increasing the R-value of the roof from the present R-21 to R-30 would improve the roof's thermal characteristics, but would be very expensive. Because the roof is less than ten years old, the cost of re-roofing would more than offset any thermal improvement. However, when re-roofing is required, the roof insulation should be increased to achieve a rating of R-30 for the roof assembly.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

A3 Conserve energy by reducing the amount of window glass in exterior walls

As presently configured, Building 603 has a low ratio of glass-to-wall. There is little reason to reduce this ratio even further. The only significant amount of glazing in the building is in the dining area. Reducing this glass area further would reduce the architectural attractiveness of the dining space.

A4 Conserve energy by installing insulated panels over exterior windows

See commentary on ECO A3.

A5 Conserve energy by replacing single pane window glass with double or triple pane window glass.

The existing windows are already glazed with double pane, insulating window glass. Increasing the thermal efficiency of the existing windows by installing triple pane glass would only have a marginal effect on the overall thermal efficiency of the building envelope.

A6 Conserve energy by installing storm windows over exterior windows.

See commentary on ECO A5.

A7 Conserve energy by installing solar film on exterior windows.

During the summer months, solar film does an excellent job of limiting solar heat gain and reducing the air conditioning load. However, since Building 603 is not air conditioned, solar film would have little energy conserving benefit. During the winter months, the lack of solar film (existing condition) allows solar energy to enter the dining area. This tends to reduce the amount of heating required to keep the dining area comfortable. In this case, the lack of solar film is a benefit.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

A8 Conserve energy by installing shades, screens, curtains, or blinds on exterior windows.

The windows at Vilseck Building 603 are already equipped with interior curtains. See, also, commentary on ECO A7.

A9 Conserve energy by reducing infiltration by means of new or improved weatherstripping and/or caulking.

The weatherstripping and caulking on Building 603 was found to be in good condition.

A10 Conserve energy by installing vestibules at troop entrances.

Building 603 is already equipped with an entry vestibule at the troop entrance. Exterior doors not equipped with vestibules are all marked with "Emergency Exit Only" signs.

A11 Conserve energy by installing air curtains or plastic door strips at all service entrances.

Current practice at Building 603 is to have make-up air for the kitchen exhaust hoods brought into the building through the ventilation system. This keeps the building at a neutral pressure with the respect to the outdoors. Therefore, an air curtain or plastic door strips would do little to reduce the building's energy consumption.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

A12 Conserve lighting energy by improving the reflectivity of room surfaces.

Wall and ceiling surfaces at Vilseck Building 603 were found to be of a light color and kept clean. Therefore, there is little opportunity for conserving energy by improving surface reflectivity.

H1 Conserve energy by installing energy efficient exhaust hoods with integral make-up air ducts.

Energy saving exhaust hoods are already installed in Building 603.

H2 Conserve energy by recovering waste heat from exhaust air streams.

The energy-saving exhaust hoods installed in Building 603 (See commentary on ECO H1) have exhaust air streams with a very low heat content since most of the air being exhausted is outdoor air. For this reason, there is very little potential for exhaust air heat recovery. The toilet room exhaust has a somewhat higher heat content (higher temperature) but it has a very low flow rate and a low number of operating hours. The dishwasher exhaust has an even greater total heat content, but an even lower number of operating hours. Therefore, the potential for heat recovery from the toilet room exhaust and the dishwasher exhaust is, also, very low.

H3 Conserve energy by changing constant volume air handling units to variable air volume (VAV) operation.

Because Building 603 is not air conditioned, there is little or no potential energy savings expected from converting to VAV operation. VAV operation is particularly effective in reducing energy consumption when the HVAC system is operating in the air conditioning mode. However, it is not particularly

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

effective in reducing energy consumption during the heating season. This is due to the fact that building heating is accomplished, primarily, through the perimeter radiation system.

H4 Conserve energy by balancing the HVAC system.

There were no unexpected or extreme temperature variations from area to area (or space to space) within Building 603. This indicates that the air supplied to each area (or space) is well suited to the requirements of that space. Therefore, it appears that the HVAC system does not require re-balancing.

H5 Conserve energy by reducing the amount of air supplied to or exhausted from the building (or space).

An investigation of the existing drawings suggests that the present air flow rates are at or below the DIN requirements and the VDI Guidelines. However, since the supply and exhaust air quantities of the existing HVAC system appear to be satisfactory for both comfort and odor control, there is little reason to re-balance the system.

H6 Conserve energy by reducing the amount of ventilation air drawn into the building by the HVAC system.

The outdoor air dampers on the air handling units in Building 603 appear to be operating properly to control the amount of ventilation air being supplied to the building interior. The HVAC system appears to be providing only the minimum amount of ventilation air required to make-up exhausted air and to ensure good air quality within the building.
Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H7 Conserve energy by installing tight-closing, low-leakage dampers on all outside air intake and exhaust openings (except at kitchen exhaust fans since damper blades could collect grease and become a fire hazard).

Low-leakage dampers are already present on the air handling equipment installed in Building 603.

H8 Conserve energy by reducing static pressure in HVAC systems.

The air handling units serving Building 603 appear to be operating satisfactorily. Since the HVAC system is a constant volume system, there are no VAV boxes which require some additional minimum static pressure at the box inlet. Therefore, the various HVAC systems are already operating at or near their optimum static pressure settings.

H9 Conserve energy by reducing supply air leakage at air handling units and supply air ductwork.

There were no large or obvious leaks in the visible portions of the supply air ductwork or in the air handling unit casings at Building 603.

H11 Conserve energy by installing ceiling-mounted circulating fans to reduce stratification within occupied spaces.

The ceilings in Building 603 are too low for the interior spaces to have serious stratification problems. They are also somewhat low to have surface mounted recirculation fans installed below them.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H12 Conserve energy by recovering waste heat from refrigeration systems.

The most effective way to capture waste heat from refrigeration systems is to use a heat exchanger to preheat domestic hot water with the refrigerant hot gas. However, because the domestic hot water storage tank temperature (60° C) is greater than the hot gas temperature ($\pm 43^{\circ}$ C) of the refrigerator/freezer refrigeration systems, an additional hot water storage tank would have to be installed to allow heat to be recovered from the food storage refrigeration equipment. This tank would be used to pre-heat domestic water before it entered the existing hot water storage tank. However, there is not enough space in either the mechanical room or the refrigeration compressor room for such a storage tank.

H13 Conserve energy by ventilating the refrigeration system compressor room.

The compressor room in Building 603 is already equipped with a ventilation system. This consists of an intake louver in the south wall of the room and a roof-mounted exhaust fan.

H14 Conserve energy by replacing reciprocating type refrigeration compressors with higher efficiency scroll or rotary (screw) type compressors.

Given the age of Building 603 and the installed equipment, replacement of the refrigeration compressors would be impractical for two reasons. One, the equipment is less than half way through its useful life; and, two, the installed equipment should have a relatively high coefficient-of-performance (COP).

H15 Conserve energy by re-setting heating hot water temperature according to outside air temperature and occupancy schedules.

The building automation system installed in Building 603 is already programmed to perform these functions.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H16 Conserve energy by reducing pump flow rates.

The building automation system installed in Building 603 is already programmed to adjust hot water flow rates - using the installed variable speed Grundfos pumps - to suit the building's loads.

H18 Conserve energy by repairing or eliminating all HVAC control deficiencies.

According to building operating personnel, the installed building controls are operating properly.

H19 Conserve energy by using an Energy Monitoring and Control System (EMCS) to optimize the start-up and shut-down schedules for HVAC system fans, pumps, compressors, and other motorized devices.

According to building operating personnel, the installed building control system is presently used to optimize equipment performance and building comfort. The building control system will be connected, shortly, to the site-wide EMCS.

H20 Conserve energy by using an EMCS to set-back space temperatures at night during the heating season.

See commentary on ECO H19.

H21 Conserve energy by installing occupancy sensors to cycle the ventilation system "on" and "off" according to occupancy.

The occupancy schedule for this building is well defined. Therefore, the ventilation system can be controlled effectively by the existing building control system. The addition of space occupancy sensors is unnecessary.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H22 Conserve energy by interlocking the kitchen exhaust hoods with the cooking equipment served by each hood.

It has been determined that re-wiring the existing cooking equipment to turn the associated exhaust hoods "on" and "off" is impractical. However, training the kitchen staff to operate cooking hoods only while cooking is a viable low/no cost ECO, and will be dealt with as an O&M ECO.

H23 Conserve energy by installing economizer cycle controls and dampers on all ventilation systems.

The air handling units in Building 603 are not equipped for air conditioning. Therefore, economizer cycle controls are not necessary.

H25 Conserve energy by installing a thermal storage system.

Thermal storage systems are only practical for buildings equipped with air conditioning. Even then they are only viable when there are significant time-ofday incentives (from the power supplier) for consuming more power during offpeak periods and less power during peak demand periods. Since neither of these criteria are met at Vilseck, there is little reason to install a thermal storage system.

H26 Conserve energy by using infrared heaters in lieu of conventional (convection) heaters.

Infrared heaters are best suited for exterior area heating (such as loading docks) or for areas with extremely large volumes (such as warehouses). Since neither of these types of spaces are present in Building 603, there is little reason to pursue the use of infrared heating.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

P1 Conserve energy by lowering the domestic hot water supply temperature.

The hot water storage temperature of 60°C is required by Army regulations.

P2 Conserve energy by installing controls on the domestic hot water system to lower the heater's set-point temperature or to shut-off the heat source to the heater during non-peak hours.

The required controls are already present on the Building 603 domestic hot water system.

P3 Conserve energy by installing booster heaters at major hot water users and at high temperature hot water users.

The largest, single hot water consumer is the dishwasher, which is already equipped with an electric booster heater.

P4 Conserve energy by installing instantaneous hot water heaters in lieu of storage tank type heaters.

Given the relatively recent construction of Building 603, the replacement of the existing water heating equipment with instantaneous water heaters is highly impractical. In addition, heating domestic water with electricity is more expensive (in both cost and energy terms) than heating with district hot water -as is presently done.

P6 Conserve energy by installing additional insulation and/or repairing existing insulation on domestic hot water piping.

The insulation for the domestic hot water system requiring repair is located in the central mechanical space. This insulation has been evaluated as part of ECO

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

H17.

P9 Conserve energy by reclaiming waste heat from dishwasher wastewater.

The present dishwasher installation would make it extremely difficult to connect a water-to-water heat exchanger to the sanitary sewer connection on the dishwasher. Also, there is little space in the mechanical room for installing the additional pumps and secondary loop heat exchanger required to recover heat from the dishwasher wastewater.

P10 Conserve energy by installing solar collectors to pre-heat domestic hot water.

The total insolation (time and intensity of sunshine) in Vilseck makes solar heating technically impractical.

E2 Conserve lighting energy by eliminating excess fixtures. Where fixtures are close enough to each other, it may be possible to eliminate excess fixtures without creating dark spots.

The lighting fixtures in Building 603 are spaced in such a manner that no fixtures can be eliminated without causing undesirable variations in the lighting levels within individual spaces.

E3 Conserve energy by delamping selected fixtures.

See ECO E1. In some areas, selective de-lamping, rather than re-lamping with lower wattage lamps, may be the most cost effective method for reducing lighting levels to the required minimum.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

E5 Conserve energy by replacing the incandescent lamps in exit lights with lower wattage fluorescent lamps.

This has already been done in Vilseck Building 603.

E6 Conserve energy by installing improved reflectors or lighting fixtures and reducing the fixtures lamp wattage.

The lighting fixtures in Vilseck Building 603 are relatively new fixtures which are already equipped with efficient reflectors and low wattage lamps.

E8 Conserve energy by replacing existing lamps with energy efficient U-tube fluorescent lamps.

For architectural reasons, the fixtures in Building 603 are not suitable for relamping with U-tube fluorescent lamps.

E9 Conserve energy by replacing existing incandescent bulbs with compact fluorescent bulbs.

See commentary on ECO E8.

E11 Conserve energy by turning exterior lighting "on" and "off" by means of photocells.

ECO E10 has been developed to minimize the energy used for exterior lighting. Photocells have been included in the development of ECO E10.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

E12 Conserve energy by turning exterior lighting "on" and "off" by means of timers.

ECO E10 has been developed to turn the exterior lighting "on" and "off" by means of a photocell. Therefore, this ECO will not be pursued. See, also, ECO E11.

E13 Conserve energy by providing task level switching for interior lights. Task level switching will allow the lighting level to be varied to match the activity within the space.

Because the Dining Facility is not a multiple use facility (i.e., the spaces are all designed for a single, specific activity) task level switching is not appropriate for this building.

E15 Conserve energy by turning interior lighting "on" and "off" by means of timers.

ECO E14 has been developed to minimize energy usage within the Dining areas. Therefore, this ECO will not be pursued.

E16 Conserve energy by turning interior lighting "on" and "off" by means of space occupancy sensors.

ECO E14 has been developed to control interior lighting by means of a photocell. Therefore, this ECO will not be pursued. See, also, ECO E15.

E17 Conserve energy by replacing existing motors with energy efficient motors.

Given the relatively short period of time that the existing motors have been in service, it would be both expensive and wasteful to replace them with newer motors. In addition, the efficiency of newer motors is only marginally better

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

than that of motors built less than ten years ago.

E18 Conserve energy by replacing oversized/undersized motors with motors which have their peak efficiency at the actual system load.

On inspection, the large (greater than 1/2HP) motors at Vilseck Building 603 were found to be well matched to their service loads.

E19 Conserve energy by adding power factor correcting capacitors to existing motors.

The motors on equipment installed in Building 603 are well suited for their service and do not require power factor correction.

E20 Conserve energy by equipping motors which experience highly variable loads with variable frequency drives.

The only motors which are subjected to this type of loading are the hot water pumps. These pumps are already equipped with variable frequency drives.

2.2 The following ECO's were rejected after a rigorous investigation of their merits. Rejection was based on the ECO's having a Savings-to-Investment Ratio (SIR) of less than 1.0 or a payback of greater than 10 years.

ECO NO.	ENERGY SAVINGS (MBTU/YR)	FUEL **	COST SAVINGS (DM/YEAR)	COST (DM)	SIR	PAYBACK (YEARS)
P8	6.8	DHW	245	2,822	1.50	11.5
H10	1.4	DHW	50	2,436	0.36	48.2
E10	1.1	Е	43.5	1,546	0.33	35.5
E7	79.4	Е	3,257	237,328	0.16	72.9

TABLE D-2 ECO'S REJECTED - VILSECK BUILDING 603

* $MBTU = 10^{\circ}BTU's$

** Fuel types are: Electricity (E) and District Hot Water (DHW)

Appendix E

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

APPENDIX E

ANNUAL ENERGY CONSUMPTION DATA

S.O. No. 20098-45-B2M

.

VIDER VIDER AUDIT	
Sheet No of _4	
Computed by CEN Other Construction Drawing No.	
Criecked By Date 7 199	3

÷

<u>GRESNWE</u>	HZ ZUILZIN	G 101	
DATE MET	R CONSUMI	MONTH-TO-MONTH DIFFERENTY	
ATEL 30, 192 18 JUNE 1, 192 18 JUNE 29, 1922 19, JUNE 29, 1922 19, JUNE 31, 1922 19, ATE 31, 1922 20,4 DUT 30, 1992 20,4 DUT 30, 1992 20,4 DUT 30, 1992 20,4 DUT 30, 1992 21,3 EE 31, 1992	,376.3 ,842.3 193.7 628.4 28.3 78.8 76.3 14.9 	$[8,342.3] \cdot [8,376.3] = 467.0$ 19,193.7 - 18,842.3 = 351.4 19,628.4 - 19,193.7 = 434.7 20,086.3 - 19,628.4 = 457.9 20,478.8 - 20,086.3 = 392.5 20,876.3 - 20,478.8 = 397.5 21,314.9 - 20,876.3 = 438.6 22,883.8 - 21,314.9)/4 = 392.2	$\frac{467.0 \times 120 = 56,040 \text{ KwH}}{351.4 \times 120 = 42,170 \text{ KwH}}$ $\frac{434.7 \times 120 = 52,160 \text{ KwH}}{434.7 \times 120 = 52,160 \text{ KwH}}$ $\frac{457.9 \times 120 = 54,950 \text{ KwH}}{397.5 \times 120 = 47,100 \text{ KwH}}$ $\frac{397.5 \times 120 = 47,700 \text{ KwH}}{438.6 \times 120 = 52,630 \text{ KwH}}$ $\frac{47,070 \text{ KwH}}{4392.2 \times 120} = 47,070 \text{ KwH}}$
PRIL 30, 1993	(467.0 +392.2 /2 = 429.6	= 47,070 KWH 429.6×120 = 51,550 KWH
i I		AVG OF MAY'S? & APRIL '0,7	ANNUAL TOT. 1 = 59,2,580 KWH

		S.O. No	2009 5 - 45 - 32M
Subject:	FENNISHE / YIL	ECL ENERGY	KUSIT
	/		_ Sheet No Z of _ 4
ANNOS	- ENERAY CO	NEL M	_ Drawing No
Computed by	Entry Checked E	Зу	Date Are lin th

CTEN	FENNICHE BUILD	NUC- 101	
Dis	TEKT HOT WIJE	e Carsumition	
	METER RE-DING	Mouth こで、Kouth Ditte にといった	(JUSAN) . ON (DIFFERENTVL X FLECT)
APE_ 30, 1972	1837.6		
Love 1, 158.2	1928,2	1928.2 - 1827.6 = 90.6	90.6 x 1000 = 90,600 KWN
20. 29, 1972	1962.0	1964.0-1928.2= 32.2	35.8 x 1000 = 35,800 Km-
LULY 31, 1992	2001.4	2002.4-19.(4,0= 38.4	38,4 x 1000 = 38,400 KWH
Ave 31, 1992	2047.6	2047.6 - 2002.4 = -5.2	45,2 × 1000 = 45,200 KWM
5.5- 7.5, 1992	2105.2	2105.2-2047.6= 5.4	57.6 × 1000 = 57,600 Kww
00 30 1992	2205.8	2205,8.2105,2: 100%	100,6×1000 :100,600 Kwn
No. 7.0,194:2	2321.9	2321.9-2205.8:116.1	116,1×1000 = 116,100 kwn
Dec 31, 1992		:	112.9 × 1000 = 112,900 KWL
1 m 31, 1993		(2773.2 - 2321.9)/4 = 112.8	112.8×1000 = 112,300 KWL
FER TE, 1973			112.8×1000 = 112,800 KWH
MAE 25, 198.3	2.2		112.8 × 1000 = 112,800 KWH
Are 30 1993	· · · · · · · · · · · · · · · · · · ·	(1016+112.8)/2 = 101.7	10.7 × 1000 = 101,700 KWK
		· · · · · · · · · · · · · · · · · · ·	ANNULL TOTAL = 1,037,300 KWM

Electricit		2	59,2,580
DISTRICT NOT	WATER	۲ ۲	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Baker Engineers

TOTAL ENERCY CONSULTE 1,629,880 KWH

	S.O. No. 20098 - 45 - 72M
	Subject: GRAFEAW SHAR/ VILSECA ENERGY AUDIT
E	Sheet No. <u>5</u> of <u>4</u>
	ANNULL ENERGY CONTEMPTION Drawing No.
	Computed by <u>CEM</u> Checked By Date <u>Azic 17, 1993</u>

Baker Engineer

\checkmark	SECK BUILDING	- 603	
ELE	KTRICAL CUIS	MPTION	
		.	
DATE	METER REALDINGS	VIENTIN, TO MONTH CHUNGE	(ONSUMPTION (DIFFERENTIAL × FLLTOR)
Nux 4, 1992	16,086		
LAE 1, 1992	16,310	16310 - 16,086 = 224	224 × 250 = 56,000 KwH
JUNE 30, 1942	16,560	16,560 - 16,310= 250	250 x 250 = 62,500 KWH
Lox 31, 1992		(17078-16560)/Z = 25°	259 x 250 = 64,750 KWL
AUG 31, 1992	17,578		259 x 250 = 64,750 KWH
527 30, 1992	17,298	17,298 . 17,078 = 220	220 × 250 = 55,000 KWH
Og 71,1992			264.2×250=66,050KWH
har 30,1993			264.2 × 250= 66 050 KWH
DEC 31, 199,2			264.2 × 250 = 66,050 KWL
JAH 31, 1993			264.2×250 = 66,050 KWH
FER 28, 1993		i	264.2×250 = (10,050 KWA
Mac 31, 1993	18,883	(18,883-17,29,3)/6=764,2	264.2×250 - 66,050 Kwy
LAR 30, 1993		(224+264,2)/2 = 244.1	244.1 × 250 = 61,020 Kmil
			ANNULL TOTAL = 760,320

	S.O. No. 20098 - 45 - 32M
Subject: GRAFENWORR / VILSER E	HEZGY LUDIT
	Sheet No. <u>4</u> of <u>4</u>
ANNULL ENERGY CONSUME ON	Drawing No.
Computed by Checked By	Date APRIL 17,1993

VILSECK BUILDING 603

DISTRICT HOT WASEL CONSUMPTION

DATE	METER RELDING	MONTL. TO - MONTH CHUNGE	GASUMPTION (CHUNGE × FLCCL)
MLY 4, 10:07	7106.5		
June 1, 1992	7763,0	7763,0 - 7106,5 = 656,5	656.5 × 1000= 656,500 KWU
LUNE 30, 1992	8084.0	8084.2-7763.2 = 321.2	321,0 × 1000 = 321,000 KWA
July 31, 002	8142.0	8142,0 - 8084.0 = 58,0	58.0 × 1000 = 58,000 Kwill
Aux 31, 1992	8187.3	8187.0-8142.0= 45.0	45.0×1000 = 45,000 KWA
SET 30, 19,2	8337,0	8337,0 - 8187,0 = 150,0	150,0 × 1000 = 150,000 kml
0031,1092	·	(2497 0 - 8337 0)/2 - 30 0	80.0×1000 = 80,000 KWL
No. 30, 197:2	8497,0		30,0 × 1000 = 80,000 KWL
DEC 31 151,2			112,33 × 1000 = 112,330 KWK
JAN 31, 1003			112,33 × 1000 = 112,330 KWH
FE3 28, 19.1.73		(9171.0-8497.0)/4=112.33	112.33 × 1000 = 112,330 KWH
Mr.2 31, 17,5,3	9171.0		112.33 × 1000 = 112,330 KWL
APRIL 30, 1953		(656,5+112.33)/2:384.4	334.4 × 1000 = 384,400 KWL
			ANNUL TOTAL = 2,224,220 KWH

TOTAL KNOWL EVERGY CONSUMPTION -

ELECTRICIL = 760, 320 KWH DISTRICT NOT WATER = 2,224,220 KWH 2,984,540 KWH

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

APPENDIX F

SUPPORTING DATA AND DOCUMENTATION FOR DEVELOPED PROJECTS

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

1.0 Units

The following pages contain the energy/cost savings calculations for all of the developed ECO's. Note that all energy savings are calculated in units of MBTU's. This is the standard unit in the Life-Cycle Cost Analysis Summary Sheet currently adopted for use by the U.S. Army. Note, however, that on that form, MBTU equals one million (1,000,000) BTUs (British Thermal Units), not one thousand (1,000) BTUs, which is the normal value associated with the abbreviation MBTU. The reader should be aware of this variation in the use of this abbreviation.

1.1 Energy Costs

The energy costs used in this report were based on the average annual energy costs incurred at Grafenwöhr and Vilseck during the calendar year 1991. Copies of the billing summary sheets received from the two bases are presented at the end of this discussion.

Grafenwöhr

Electricity Costs = DM 0.142/kWh

$$\frac{DM\ 0.142}{kWH} \ x \ \frac{kWH}{3413BTU} \ x \ \frac{1,000,000\ BTU}{MBTU} = DM\ 41.60/MBTU$$

District Hot Water Costs = DM 104.46/MWH

$$\frac{DM \ 104.46}{MWH} \ x \ \frac{MWH}{1,000 \ KWH} \ x \ \frac{KWH}{3,413 \ BTU} x \frac{1,000,000 \ BTU}{MBTU} = DM \ 30.61/MBTU$$

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

<u>Vilseck</u>

Electricity Costs = DM 0.140/kWh

$$\frac{DM\ 0.140}{kWH} \times \frac{kWH}{3413\ BTU} \times \frac{1,000,000\ BTU}{MBTU} = DM\ 41.02/MBTU$$

District Hot Water Costs = DM 123.10/MWH

$$\frac{DM\ 123.10}{MWH} \times \frac{MWH}{1,000\ KWH} \times \frac{KWH}{3,413\ BTU} \times \frac{1,000,000\ BTU}{MBTU} = DM\ 36.07/MBTU$$

1.2 Adjusted Internal Rate of Return (AIRR)

The last line on the Life Cycle Cost Analysis Summary Sheet (Line 7) is the Adjusted Internal Rate of Return (AIRR). This rate has been calculated in accordance with the formula presented in the "Energy Conservation Investment Program (ECIP) Guidance memorandum issued on 14 November 1992 by CEHS-FU-M. This formula is:

$$AIRR = [(1 + d) (SIR^{1/N}) - 1]$$
 (100)

Where:

SIR	=	Savings to Investment Ratio (Line 6)
d	=	Discount rate (currently = 4%)
N	=	Economic Life (20 years for ECIP Projects)

New Constraint Nation 11, 7 Nation 11, 7 Nation 11, 7 New Constraint Nation 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint 10, 00, 11, 7 Nation 11, 7 Nation 11, 7 New Constraint Nation 11, 7 Nation 11, 7 Nation 11, 7 New Constraint Nation 11, 7 Nation 11, 7 Nation 11, 7 New Constraint Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7 Nation 11, 7<	1 lette 1 tetesde PF- 0.0 Personde 6500 KM 1 ALL 11.6 PF/KM	HDV/14 2.9 LLA	Nr-cost - 7886 - 501.0067 - 48 Nr-cost - 12.00 - 592192.54 0. - 0.00 - 42.00 - 292439.13 0. - 0.00 - 42.00 - 292429.13 0. - 0.00 - 42.00 - 292429.13 0. - 0.00 - 42.00 - 292429.13 0. - 0.00 - 42.00 - 292429.13 0. 0.100 - 42.00 - 292429.13 0. 0.100 - 42.00 - 292429.14 0. 0.100 - 42.00 - 292421.05 0. 0.100 - 42.00 - 292421.05 0. 0.100 - 42.00 - 292421.05 0. 0.100 - 42.00 - 292421.05 0. 0.100 - 42.00 - 292421.05 0. 0.100 - 42.00 - 292421.05 0. 0.11 - 0.00 - 292421.05 0. 1.1 - 0.00 - 292421.05 0.
Image: Solution of the soluti	иса трином и вчи вчи вчи вчи вчи вчи вчи вчи вчи в	6 NO 9-4 P7/704 BEN	FL PER. CR ACT.0067- 256190. 9 0.961- 9600.00 256190. 9 0.962- 96000.00 21857.1 0.961- 96000.00 201387.2 0.961- 96000.00 201387.2 0.961- 96000.00 201387.4 0.991- 96000.00 161709.1 0.991- 96000.00 161709.1 0.991- 96000.00 161709.1 0.991- 96000.00 18030.1 0.993- 96000.00 18030.1 0.993- 96000.00 18030.1 0.993- 96000.00 18030.1 0.993- 96000.00 18030.1 0.993- 96000.00 148980.1 0.993- 96000.00 148980.1 0.993- 96000.00 148980.1 0.993- 96000.00 240380.1 0.993- 96000.00 240380.1 0.993- 96000.00 240380.1 0.993- 96000.00 240380.1 0.993- 9600
	De l (very i Contraje No Bin Demandi Neter fag 7eet-	Heatta Neatta Heatta	VUTTHER #000

c.

			8. E.		
160° 4/100° 5 1. /0 % = 294 Bf	Avenuer 3.66 62.1 3.66 60.0	77.86 46. 97.86 205. 65.86 209.	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	780.45 83 780.45 83 841.98 10	
Appendix Appendix	108.17 408.69 408.69	416.9	408-7 1,904 3117,0	402, 402, 4,825,	
o isch frachafte - pieckschute - usk 'reat bi - usk 'reat bi 	Nartar Pits 760.00 760.00	766.00	760.00	760.00 760.00	•
a 9 9 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	142,750.00 142,750.00 142,750.00	142,730.00 142,790.00 142,790.00 142,730.00	142,730.00 142,730.00 142,730.00	142,790.00 142,750.00 1.713,000.00	
Surfitmi, Prikki outract Arm MUND of 15, 15, 25, 16, 10 11, 15, 25, 16, 10 11, 15, 10, 10 11, 10, 10 11, 10, 10 11, 10, 10 11, 10, 10 11, 10, 10 11, 10,	182,024,00 182,024,00 182,024,00	190,266.00 190,266.00 190,266.00 162,096.00	182,096.00 182,096.00	00.053, ETI 00.053, ETI 00.053, ETI	10.12.10.12.NO
to Para 3.7. of o By per south but	DEHUID CEURCE 81,159.66 81,159.66 83,159.66	81,159.06 81,199.06 81,199.06	69,129.06 69,129.09	85,850.45 85,850.45 85,850.45	1,000,000
614.4. 14.6.24.5 104-87-0-0013 105-87-0-0013 105-1-0-0013 105-1-142.7.90.00 105-11-142.7.90.00 105-11-142.7.90.00	6, 578.30 6, 578.30 6, 807.80 5, 512.00	5,294.41 4,610.37 2,271.82	2.912.1 2.916.02	1,814.66 4,510.20 4,826.80	44,197.40
rorade de Carlos	ANUALY SAUGARY MAGE	APALEL Your	JOLY Ancrest Signatura	OCTOBER NOVEDERA Dacebera	

03.04.93

13:06

BEHATHIN WHOLLI

007 ø

i

1

4500 KGY ALL 31.05 PF/KNY	THE STATE OF THE CONTENT OF AN ANTON
MILIN BR LE VILLE 1 1 144 24 24 20 10 1 1 25 25 14 25 14 10 1 1 05 PE/AM NAXE	
SO COMPANY COMPANY SO COMPAN SO COMPANY SO C	1 ALL FLETHIER 40000 1 ALL FLETHIER 40000 10 30 11 ALL FLETHIER 40000 12 31 12 32 12 32 12 31 12 32 12 32 12 32 12 32 13 32 14 32 15 32 14 32 15 32 14 32 15 32 14 32 15 32 14
2010 1 200 1	Refer Refer Constr. Dermo 72 Ku Coulerand 0.55-55 72 Ku Coulerand 0.55-55 72 S197.00 1659300 13630 74 S197.00 1659300 13630 75 S197.00 1659300 13630 74 S197.00 1610440 10803 75 S192.00 1610440 10803 74 4728.00 94940 1312 74 4728.00 949490 1312 74 4728.00 949490 1312 70 5304.00 952720 1316 71 4728.00 1632720 128 71 4728.00 1632720 128 71 5374.00 1632720 128 71 5374.00 153720 128 72 5374.00 153720 128 70 5374.00 153720 128 71 5374.00 153720 128 72 5374.00 153720 128 70 5374.00 153720 128 71 5374.00 153720 128 70 5374.00 15372

03.04.93 1

13:08 05

BENKMANN WINSULI

611

a

•			
			62.98 59.90 71.97 71.11 104.6/ 104.6/ 104.6/ 261.73 270.44 270.42 261.73 270.44 273 2730.44 273 2730.44 2730.42 273.73 2730.42 273.73 2730.42 273.73 2730.42 273.73 2730.42 273.73 2730.42 273.73 2730.42 273.73.
sukere underer fran versionen Suker	265 - 265 -		680735.39 691040.39 691040.39 691040.39 691040.39 680825.39 153615.72 753615.72 753615.72 9312326.78
and the contracts	in av na fan fan de fan		76.56 1749.00 576.56 1749.00 576.56 1749.00 576.56 1749.00 576.56 1749.00 576.59 1749.00 0576.59 1749.00 0576.59 1749.00 0556.59 1749.00
			7530.00 310 5730.00 310 57350.00 310 67855.00 310 67855.00 310 67855.00 310 10 257620.00 31 257620.00 31 2576
	HH CAN AN CAN Dara Tuta et santra Stat Tuta de santra	1975	110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 110879.01 120482.02 120482.05 120482
	ATION VILSEOK 601 ATION VILSEOK 601 - CURSTEB: 41501 0 - CURSTEB: 41501 0 - CURSTEB: 41501 0 - 250.41 25 0		10809.27 10809.27 9458.00 6449.06 6501.80 3721.30 3721.30 1942.78 1942.78 1664.65 2879.57 2979.58 8576.87 7593.68 25
	21:138 X3134 21:138 X3134 21:138 X3134		JAMLARY JAMLARY RESERVENT

03.04.93 13:07

GEHRMANN CONSULT

•

.....

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

;

ECO H17 GRAFENWÖHR PIPE INSULATION

S.O. No. 20098-45-30	Aurit	Baker	
ECO HIT - PIPE INSULATION	Sheet No of		
	Drawing No		
Computed by <u>CEM</u> Checked By	Date MARCH 19, 1998		r T

Assumptions : • • • • • • 1. SUERVICE WATER TEMPERATURE : 57.5°C (BUSED ON A HOT WIJEZ RESET SCHEDULE OF OSC SIPPLY TEMPERATURE AT EIGO OUTDOOL AIR TEMPERATURE AND 40°C SUPPLY TEMPERATURE AT 16°C OUTDOOR AIR TEMPERATURE; AND A WATER TEMPETATURE DROP OF 10°C ACROSS THE FINNED TUBE RADILTION of LE. AVG. SUPPLY TELIPERSTRE · (85°C+40°C)/2 = 62.5°C; AVG, RETURN TEMPERATURE -: [[85.10]+ (40.10)]/2 = 52.5°C ; .: LNG. WRIEL TEMPERATURE (62.5°C+52.5°C)/2 = 57.5°C)-2. INDOOL AMBIENT TEMPENJUZE = 22°F 3. Insulation is Freezewass fire insulation w/ a shaket of WHITE KRAFT PAPER BONDED TO ALLOMINUM FOIL AND REINFORCED WITH GLASS FIBERS 4. INSULSTION THICKNESS IS AS FOLLOWS PIPE SIZES UP TO 32 mm - 13 mm INSULVATION PIPE SIZES FROM 38mm TO SIMM - 25mm INSULSTION Pipe sizes oner 51mm - 38 mm Insultion ENERGY SAVINGS ELERGY INSULATED RAPE PIPE PIPE -INSULATION S-MACS PIPE HEAT HENT LOSS SIZE THKENESS W/METER LOSS/FOOT REZ FOOT PER LINEAR FOR (mon) 24.7 BUH/FT 23.1 W/M B.2 BTUH/FT. 32.9ENW/FT 13 min 15mm 30,8 W/M 32.0 BTUH/FT B.Z BULL/FT 40.2 TTUH/FT Rmm 20mm 36.8 W/M. 38.3 BTUN/FT 11,057UH/FT 49.3 BTUR/FT 13 mm 75mm 44.5W/M 46.6 BTUR/FT 61,2 BTUN/FT 14.65TUH/FI 32 mm 13 mm STATTUH/FT 57.1W/M 9.1 5TUN/PT 68,58TUR/FT 25 mm 40mm 73,0 BTUH/FT 70.2W/M 11.0 BWH/FT 84.0BTUL/FT 25mm Somm 88.6WM 92.2 BTVH/FT 8.2 ENH/FT 100,4 5TUH/FT 38mm . 65mm 104.4.W/M 108.6BTUNYFT 11,0 BTUH/FT 119.6 BTUL/FT 80mm 38 mm 119.3 W/M 11.0 STUN/FT 124 .1 15TUA/FT 135.1 15UH/FT 365m 100mm HERE LOSS VALUES IN CLASE ARE BASED ON TABLES PUBLICIED BY OWENS -

HEVE LOSS VALUES IN CLUET ARE BASED ON TABLES FUBLISHED BY OWENS CORNING FIBERGLASS (PUB, NO. 3-IN-6496-E, OCT. 1986), VALUES WERE ADJUSTED FOR 35.5°C (63.9°F) TEMPERATURE DIFFERENTIAL. SEE PAGES 2-4 OF CALCULATIONS.

S.O. No. 20098 + 45 + 72m Subject: Gazzandez / Vilaca Entras / was		Baker
ELO H. Pizz Insulation	Sheet No. 2 of 5	
	Drawing No.	
Computed by <u>CEN</u> Checked By	Date Mizen 22, 1993	

FIBERGLAS® PIPE INSULATION WITH ASJ OR NO-WRAP HORIZONTAL CYLINDER BO.F AMBIENT TEMPERATURE 0.0 WIND VELOCITY, MPH 1/2 IRON PIPE SIZE HEAT LOSS BTU HOUR PER FOOT LENGTH 0.85 BARE SURFACE EMITTANCE

THICK	154 NEAT LOSS	D.F SURF TEMP	20 NEAT LOSS	D.F SURF TEMP	30 HEAT LOSS	D.F SURF TEMP	40 HEAT LOSS	D.F SURF TEMP	50 HEAT LOSS	D.F SURF TEMP	600 HEAT LOSS	D.F SURF TEMP	65 HEAT LOSS	D.F SURF TEMP	70 HEAT LOSS), F SURF TEMP	750 HEAT LOSS	D.F SURF TEMP	800 NEAT LOSS), F SURF TENP	850 NEAT LOSS), F SURF TEMP
BARE 0.5 1.0 1.5 2.0	36 9 6 5	91 85 83 82	71 16 12 9	98 90 86 84	159 34 24 20 17	115 99 92 89	275 57 40 32 29	134 109 98 94	422 85 60 48 43	155 121 106 99	606 120 85 68 60	179 135 115 106	715 141 99 80 71	192 142 120 110	836 164 115 93 82	207 151 126 114	970 190 133 107 95	221 159 132 119	1119 218 153 123 109	237 169 138 124	1283 250 176 141 125	254 179 145 129
2.5 3.0 3.5 4.0	4 3 3	81 81 81 81	7 7 6 6	83 82 82 82	15 14 13 13	86 85 84 83	25 23 22 21	89 88 87 86	37 35 33 32	93 91 90 88	52 49 47 45	98 95 93 92	61 58 55 52	101 98 95 93	71 67 64 61	104 100 98 95	82 77 73 70	108 103 100 97	95 89 84 81	111 106 103 100	109 102 97 92	115 110 106 102
4.5 5.0 5.5 6.0	3 3 3	80 80 80 80	6 5 5 5	81 81 81 81	12 12 11	83 83 82 82	20 20 19 18	85 84 84 83	30 29 28 28	87 86 86 85	43 41 40 39	90 89 88 87	50 48 47 45	92 90 89 88	58 56 55 53	93 92 91 90	67 65 63 61	95 94 92 91	77 75 73 70	97 96 94 93	89 86 83 80	100 98 96 94

FIBERGLAS® PIPE INSULATION WITH ASJ OR NO-WRAP HORIZONTAL CYLINDER 80.F AMBIENT TEMPERATURE 0.0 WIND VELOCITY, MPH 0.85 BARE SURFACE EMITTANCE 0.90 SURFACE EMITTANCE

															_		_	_		_		
	150 HEAT LOSS	.F SURF TEMP	200 HEAT LOSS	. F SURF TEMP	30 HEAT LOSS	D. F SURF TEMP	NEAT LOSS	SURF	500 HEAT LOSS	, F SURF TENP	600 HEAT LOSS), F SURF TEMP	650 HEAT LOSS	.F SURF TEMP	700 HEAT LOSS), F SURF TEMP	750 NEAT LOSS	SURF	800 HEAT LOSS), F Surf Temp	850 HEAT LOSS), F SURF TEMP
BARE 0.5 1.0 1.5 2.0	44 9 7 6 5	89 86 84 83	87 17 14 11 9	96 91 87 85	195 35 29 23 20	110 102 93 90	337 58 49 38 33	126 114 101 95	518 87 73 56 49	145 128 110 102	745 123 102 79 69	166 184 120 110	880 144 120 93 80	177 153 126 114	1030 167 139 108 93	190 162 132 119	1196 193 161 125 108	203 173 139 124	1380 222 185 143 124	217 184 146 129	1584 255 212 164 142	232 195 154 135
2.5 3.0 3.5 4.0	1 1 3	82 81 81 81	7777	82 82 82	16 15 14	85 84 84	26 25 23	89 87 86	39 37 35	92 91 89	55 52 49	97 95 93	5487	100 97 95	74 70 67	102 99 97	86 81 77	106 102 99	99 93 89	109 105 102	113 107 102	113 108 104
4.5 5.0 5.5 6.0	3 3 3 3	81 80 80 80	6 6 6	81 81 81 81	13 13 12 12	83 83 83 82	22 21 21 20	85 85 84 84	33 32 31 30	88 87 86 86	47 45 44 42	91 90 89 88	55 53 51 49	93 91 90 89	64 62 60 57	95 93 92 90	74 71 69 66	97 95 93 92	85 82 79 76	99 97 95	97 94 91 87	101 99 97 97

FIBERGLAS[®] PIPE INSULATION WITH ASJ OR NO-WRAP HORIZONTAL CYLINDER 80.F AMBIENT TEMPERATURE 0.0 WIND VELOCITY, MPH 0.85 BARE SURFACE EMITTANCE 1 IRON PIPE SIZE HEAT LOSS BTU HOUR PER FOOT LENGTH 0.85 BARE SURFACE EMITTANCE

0.0	्र स्वा		A C C C		••••								_									
THICK	150 HEAT	D.F SURF TEMP	200 HEAT	SURT	300 HEAT LOSS	D.F SURF TEMP	400 HEAT LOSS), F SURF TEMP	500 HEAT LOSS	D.F SURF TEMP	600 HEAT LOSS), F SURF TEMP	650 MEAT LOSS), F SURF TEMP	700 HEAT LOSS	D.F SURF TEMP	750 HEAT LOSS	SURF TEMP	800 HEAT LOSS	.F SURF TEMP	850 HEAT LOSS	SURF TEMP
BARE 0.5 1.0 1.5	54 12 8 6	92 86 84	106 22 15 12	100 90 87	239 47 31 25 21	119 99 93 89	413 78 51 41 35	139 110 100 95	637 116 75 61 53	162 123 109 101	919 164 106 86 74	188 137 119 109	1085 192 125 101 87	202 145 125 113	1271 224 145 117 101	217 153 131 118	1477 259 167 136 117	234 163 138 123	1706 298 192 156 134	251 172 145 128	1959 342 220 179 154	269 183 152 134
2.5 3.0 3.5 4.0	5444	82 81 81	9 8 8 7	84 83 82 62	19 18 17 16	87 86 85 84	32 29 27 26	92 90 88 87	47 44 41 39	97 94 92 90	67 62 58 55	103 99 96 94	78 72 68 64	106 102 99 96	91 84 79 74	110 105 101 98	105 97 91 86	114 108 104 101	121 111 104 99	118 112 107 104	138 128 120 113	123 116 111 107
N.5 5.0 5.5 6.0	44 3 3 3	81 81 80	7 7 6 6	82 81 81 81	15 14 14	84 83 83 82	25 24 23 22	86 85 85 84	37 35 34 33	89 88 87 86	52 50 48 46	92 91 90 89	61 58 56 54	94 92 91 90	71 68 65 63	96 94 93 91	82 78 76 73	98 96 95 93	94 90 87 84	101 99 97 95	107 103 100 90	103 101 99 97

S.O. No20098 3 - BZM1	
Subject: Current Ville Energy	1007
ELO ALT PIRE THEOLOGY	Sheet No. 3 of 5
	Drawing No.
Computed by CEM Checked By	Date Marc. 22, 1903

FIBE	RGLA	S ^e P	IPE	115		ATIO	N W	/1 TH	AS.	OR	NO	-WR	AP	н	IEAT	. F0	SS	BTU	1 HC	1/4)UR	I IR PER	ION F	P P)T	E S Lenh	IZE GTH	
HORI2 80.	ZONI FAM WI	AL IBIE ND	NT VEL	TEM	PER/ FY,	ATUR MPH	IE I		0.90 0.85) SU 5 BA	RFA RE	CE SUR	EMI	TTA E E	NCE MIT	TAN	ICE									_
	150 NEAT	SURF	20 HEAT	O.F	HE 10	300.F	RF 3	NOO. NEAT S	F URF EHP	500 HEAT LOSS	.F SURF TEMP	HEA LOS	DO.F T SUR S TEM	F Н Р L	650 EAT 5	, F SURF TEMP	70 HEAT LOSS	O.F SURI TEMI	F HE	750.1 AT SL ISS TE	F URF I Emp 1	800.1 HEAT SI LOSS T	F URF ENP	85 HEAT LOSS	O.F SURI TEM	F P
BARE 0.5 1.0 1.5	67 18 10 7	97 87 84	13	10 ⁻ 9 9 3 8	2937	95 72 1 39 1 28 25	35 04 93 91	511 119 65 46 42	164 118 101 98	789 179 97 68 63	195 133 109 105	114 25 13 9	1 3 23 7 15 6 12 8 11	1 10 10	349 297 161 113 103	250 160 125 119	1581 345 187 131 120	27 17 13 12		39 100 16 151 139	291 181 138 130	2126 861 248 178 160	313 193 145 136	2443 529 285 199 183	33 20 15 14	7 6 3 3
2.5 3.0 3.5	655	82 82 81	1	1 8 0 8 9 8	4 3 3 2	22 20 19 18	88 87 86 85	37 34 31 29	93 91 89 88	55 50 47 44	99 96 93 91	1 7 6	8 10 1 10 6 9)1)1)8)6	91 83 77 72	110 105 101 98	100 91 84	11 7 10 9 10 4 10	4 1 8 4 1	22 111 103 97	119 112 107 103	141 128 119 112	124 116 111 107	161 147 136 128	12	9 1 5 0
4.5 5.0 5.5 6.0	- 4 4	81 81 81 80		8 8 8 8 7 8 7 8	2	17 16 15 15	84 84 83 83	28 27 25 24	87 86 85 85	41 40 38 36	90 89 88 87	555	8 6 1	93 92 91 89	68 65 63 60	96 94 92 91	יך זיק דיק דיק	9 9 6 9 3 9 0 9	8	92 88 84 81	100 98 96 94	105 101 97 93	103 100 98 96	121	10 5 10 1 10 5 9	6 3 11 8
FIB HOR 80	ERGL IZON .F A	AS [®] TAL MBI	PIP CY ENT VE	E II LINI TEI LOC	ISUL DER MPEI	AT I RATU	ON RE H	WITH	A AS	5J 0 20 5 35 8	UR N	ACE	IRAF		HEA TANC	AT L CE ITT/	LOSS	5 BT	1 U H	1 1/ 10UF	/2 R PE	RON R F(PI DOT	PE LE	S1Z NGT	E H
	1 NEA K 1.05	50.F		200. I	RF 1	300 . HEAT S	F URF TEMP	400 NEAT LOSS	.F SURF TEMP	SC HEAT	DO.F T SUR S TEM	F N	600. EAT S	F URF EHP	65 HEAT	ID, F SUR TEM	F HE	700.F AT SU SS TE	irf Jip	750 HEAT LOSS	SURF	BO HEAT LOSS	D.F SURI TEM	HE LO	850.1 AT SL SS T	: JRT [HP
BARE 0.5 1.0 1.5	1	5 7 9	1 13 16 14	48 31 19 15 12	103 91 87 85	334 66 40 32 25	124 102 95 89	579 109 66 52 41	147 114 103 95	89 16 97 7	2 17 8 12 8 11 1 10	1: 3 3 3	294 229 139 109 86	202 344 124 109	1530 269 162 120	212 15	17 8 3 3 1 0 1 3 1	95 13 89 49 17	235	2089 362 218 172 135	253 173 145 122	2415 417 251 197 155	27: 18 15 12	27 2 4 2 2 2 2 8 1	77 78 87 26 78	292 195 161 134
2.5 3.0 3.5 4.0		6 5 5 5 4	52 51 51	11 10 9 9	84 83 82 82	22 21 19 18	87 86 85 84	37 34 32 30	92 90 86 87	5	5 9	7 94 92 90	78 72 67 63	103 100 97 94	91 81 71 71	1 10 4 10 8 9 4 9	7 1 3 9	06 97 91 85	111 106 102 99	122 113 105 99	115 109 105 102	140 129 121 114	11 11 10	9 1 3 1 8 1 5 1	61 48 39 30	124 117 112 108
4.9 5.0 5.1	5 5 0	24 24 24 24	81 81 80 80	8 7 7	82 81 81 81	17 16 16 16	84 83 83 83	29 27 26 26	86 86 85	3	3 (19 (19 (89 88 87 87	60 57 55 55	93 91 90 90	7 6 6	0 9	5	81 78 74 74	97 95 93 93	94 90 86 86	99 97 95 95	106 104 95 95		0 7 7	19	102 100 100
F I E HOF 81	BERG RIZO D.F	LAS	PII L CI IEN		NSU		I ON URE	WIT	н А О.	SJ 90	OR SUR BAR	NO-	WRA E E	P	HE			S B	TU	HOU	2 IR P	I RON ER I	1 P 700	I PE T LI	S I. ENG	ZE TH
	. О н	150.1	RF 1	200	F	3UC HEAT), F SURF	40 HEAT	O.F	r HE	500.F	RF	600	, F SURF	HEA	50.F	RF H	700. (AT 9	F	75 HEAT	SO.F	B HEA LOS	00.F 1 SU 5 TE	RF H MP L	850 EAT	. F SURF TEMP
TH1 BAR 0. 1. 1.	CL LO	92 18 12 9	92 87 84	055 181 34 22 17	101 92 88	409 71 46 36	121	710	0 14 7 11 9 10	10 2 1 5 1 4	99 76 1 14 1 88 1 74 1	66 30 114	1593 249 161 124 104	193 146 125 114	180 29 11 11	86 91 2 88 1 45 1	2 08 56 32 19	214 339 219 169 142	224 165 139 124	2578 392 251 199	B 2 24 3 17 5 14 4 13	298 1 45 6 29 6 22 0 18	4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 87 54 36	433 517 334 257 216	271 199 161 141
2.	.0 .5 .5	7665	82 82 81 81	13 12 11 10	84 83 83 82	27 24 22 21	89	9 4 7 4 6 3 5 3	49057948	4 1 10 18	66 60 55 51	97 94 92	92 84 78 72	107 103 99 96	1	08 1 98 1 91 1 84	11 06 02 99	126 114 105 98	116 110 105 102	14 13 12 11	5 12 2 11 2 10 3 10	0 16 4 19 19 14 15 13	7 1 1 1 10 1	25 18 12 08	191 173 160 149	13 12 11 11
4. 5. 5	.5	5544	81 81 81 80	9 9 8 8	82 82 81 81	20 19 18	8 8 8	4 3 4 3 3 2	2 8	17 16 15	48 46 44 82	90 89 88 87	68 65 62 59	94 93 91 90		80 76 72 69	97 95 93 92	93 86 84 81	99 97 95 94	10 10 9	7 10 12 9 17 9 13 5	12 12 19 1 17 1 15 10	23 17 11 07	99 98	141 134 127 123	101 10 10

Baker

S.O. No 2005 . 45 . 32M	/ •
Subject: <u>Continuer</u> <u>Visiter</u>	Sheet No4 of _5
	Drawing No.
Computed by Checked By	Date Muer 22, 1993

FIBERGLAS [®] PIPE INSULATION WITH ASJ OR NO-WRAP 2 1/2 IRON PIPE SIZE																						
HORIZ	CONTA			NDER	RATI	JRE		0.90	່ວິ	RFAC	E E	MITI	HEA		DSS I	BTU	HOUR	PER	(10	01 1	LENG	1
0.0	WI		/ELO	CIT	r, M	PH		0.8	5 BA	RE	SURF	ACE	EM1	TTA	ICE 700	.1	750.	F	800.	r I	850.	F
THICK	150. HEAT S	F URF IDMP	200 NEAT LOSS	.F SURF TEMP	300 HEAT LOSS	SURF TEMP	HEAT S	SURF	NEAT S	SURF	HEAT	SURF	HEAT LOSS	SURF	LOSS	SURF	LOSS	ENP I	LOSS T	ENP	LOSS T	EMP
BARE 0.5 1.0 1.5 2.0	110 21 14 9	93 87 84 83	215 60 26 18 15	102 92 87 85	487 83 54 37 32	122 104 93 90	846 138 88 61 52	144 117 101 96	1312 206 132 90 78	169 132 110 103	1904 290 185 127 110	196 149 120 112	2256 340 217 149 129	212 158 126 116	2650 396 252 173 149	228 169 132 121	3089 458 292 200 173	245 179 139 127	3576 528 335 230 198	263 191 146 133	605 384 263 227	282 204 154 139
2.5 3.0 3.5	7 7 6 6	82 82 81	14 12 11	84 83 83 82	28 26 24 22	88 87 86 85	47 43 39 37	93 91 89 88	70 64 59 55	99 96 93 92	98 90 82 77	106 102 98 96	115 105 96 91	110 105 101 99	133 122 112 105	114 109 104 101	154 141 129 121	118 113 108 104	162 149 140	123 117 111 107	185 170 160	121 115 111
4.5 5.0 5.5 6.0	5 5 5 5	81 81 81 81	10 9 9	82 82 82 81	21 20 20 19	84 84 83	35 33 32	87 86 86 86	52 49 47	90 89 89 88	73 69 66	94 92 92 91	86 81 81 77	96 94 93	100 94 94 90	99 97 97 95	115 108 108 104	102 99 99 97	132 725 125 120	104 101 101 99	151 143 143 137	108 104 104 102
FIBE HORI 80.	RGLA ZONT	S ^e P AL IB I E	IPE CYLI	INS NDE EMP		ION	WITI	H AS	U 01	R NO URFA ARE	-WRA	AP EMIT FACE	HEA TANG		OSS NCE	BTU	HOU	3 I R PE	RON R FC	PIP OT	E SI LENG	ZE TH
0.0	3 W1 150 HEAT	D. F SURF	20 HEAT	O.F SURF	30 HEAT	O.F SURF	HEAT	D. F SURF TEMP	501 HEAT LOSS	D.F SURT TEMP	600 HEAT LOSS	D.F SURF TEMP	65 HEAT	O, F SURF	TO NEAT	O.F SURF TEMP	754 HEAT LOSS	D.F SURF TEMP	BOC HEAT LOSS	SURF TEMP	850 HEAT LOSS	.F SURF TEMP
BARE 0.5 1.0 1.5	131 28 17 12	94 87 85	258 51 30	105	583 107 64	127 105 97	1015 177 105 79 65	152 119 106 100	1575 264 156 117 97	179 135 117 108	2290 374 220 165 137	210 153 130 118	2715 438 258 193	227	3190 510 300 220) 245) 174 4 185 5 130	3721 590 346 259 215	263 185 153 136	4311 679 399 297 247	283 198 162 143	4966 779 457 341 283	304 211 172 151
2.0 2.5 3.0 3.5	.0 9 8 7 7	83 82 83	1	5 85 5 84 3 85 2 8	34 3 3 2 1 3 2	90 88 8 87 5 86	57 51 46 43	96 93 91 89	85 76 69 64	103 99 96 93	119 107 97 90	111 105 101 98	12	9 11 5 10 3 10 5 10	5 16 9 14 1 13 1 12	2 120 5 113 1 108 2 104	187 168 152 141	125 118 112 108	215 193 174 162	131 123 116 111	246 221 200 185	137 128 120 115
4.5 5.0 5.5 6.0	6	8 8 8	1 1; 1 1 1 1; 1 1;	2 8 1 8 0 8 0 8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a 85 3 84 2 84 1 83	40 38 30 30	88 87 86 86 86	60 50 51	92 90 89 88	84 79 72	96 94 93 92	9 9 8 8	9 9 2 9 8 9 4 9	9 11 6 10 5 10 3 9	5 101 7 95 2 91 8 92	132	104 101 99 97	152 142 136 130	108 104 102 100	163 155 149	107 105 102
F I E HOF 80	SERGL	AS [®]	PIPE CYL ENT	E IN IND TEN	SULA ER IPER/	TIO	N WI	TH 4	.90 .85	OR N SURF	IO-WI	RAP EMI RFAC	HI ITTAI CE EI	EAT NCE HITI		S BT	3 U HO	1/2 UR 1	IRO	N PI	PE S	IZE
	не	50, F	RF HE	200.F	RF HE	300.F AT SUF	AF HEA	OO.F	F HEA	SOO.F	F HEA	SOD.F AT SUP	(RF HEA RP LOS	SSO.F	RF HE	700.F AT SUR SS TEM	7 F HEA P LOS	SO.F	F HEA P LOS	00 F T SUR S TEM	F HEA	IO.F I SURF S TEMP
BAR 0. 1.	E 11	15 12	2 95 86 84	91 57 1 29 23 19	6 05 1 91 88 86	58 20 1: 59 1: 47 40	111 28 19 95 92	48 98 15 98 11 78 10 66 5	17(3 2) 12 1) 3 1	83 97 18 86 12 16 11 99 10	25 1 4 5 2 13 1 16 1	95 19 2 06 1 64 1 39 1	30 12 4 41 2 25 1 15 1	78 92 2 41 1 92 1 63 1	36 29 5 19 2 31 2 20 1	19 72 24 80 15 23 13 89 12	422 7 60 8 32 8 25 16 25	23 22 23 16 7 14 18 13	489 6 76 8 37 6 29 2 25	5 3 28 2 17 6 15 1 13	564 6 87 8 42 4 33 18 28	1 5 307 6 189 9 162 7 145
2. 3. 3. 4.	5	9 8 7 7	82 82 82 81	17 15 14 13	85 84 63 83	36 32 29 27	89 88 86 86	59 5 52 5 48 6 45 6	95 92 99	87 10 78 9 72 9 67 9	01 1 97 1 95 1 93	23 1 09 1 01 1 94	09 1 04 1 00 1 98 1	43 1 28 3 18 1 10 1	13 1 07 1 04 1 01 1	67 1 49 1 37 1 28 1	18 19 11 11 07 11 04 10	92 12 72 11 58 11 67 10	3 22 5 19 11 10 07 10	21 12 97 12 82 11 69 11	25 25 20 22 15 20 10 19	3 134 6 125 8 119 4 114
4 5 5	.5 .0 .5	6 6 6	81 81 81 81	12 12 11 11	82 82 82 82	25 25 24 23	85 85 84 84	42 42 39 38	88 85 87 86	62 62 59 56	91 91 90 89	67 87 83 79	95 1 95 1 94 93	02 97 92	98 98 96 95	18 1 18 1 12 107	00 1 00 1 98 1 97 1	37 10 37 10 30 10 24 9	03 1 03 1 01 1 99 1	57 10 49 10 42 10	06 18 04 17 02 16	10 110 11 107 53 104

Baker

S.O. No Subject:	Giverena - / Villing - Energy	/	Baker
Eco 1	H17 - PIRE INSULATION	Sheet No of	
<u></u>		Drawing No.	
Computed t	by <u></u> Checked By	Date MARCA La La	
	For a the Northan DED.	A CE MENT RECY LENGT	
	A DE DE CDU		4m
	16 FITTINGS & D.Z.S.M.		4 m
			Br
	· LUG HELT LOSS (DH IS . DH	100) FOR 7.71NCT	
	(23)+308+368+44.8+51+76	0.2+88.6+104.4+119.7 / 9 = 0	AOW/M
	· Exercise subjects : Smoleth	12MONTS	MEED & CLOW EN
	= 1,869 K	$W^{2}/Y^{2} = 6,378,214573$	= 6.38 Mistu
		TH BO DO /M	· DM 32000
	• 18501.000 (cs) • 4 m -	Less X DM 160,000/FITTING	= DM 7560,00
			DM 2880.00
I			

APPENDIX F

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION: Grafenwöhr, Germ		enwöhr, Germany		REGION N	0. 5	PROJECT	NO ECO H17	
PROJECT TITLE: Pipe Insulation Repl		ement			FISCA	_ YR <u>93</u>		
DISCE	RETE POR	TION NAM	E:					
ANAL	YSIS DA	ΓE: <u>23 Μ</u>	lar 93 EC	ONOMIC LIFE:	20	PRE	PARER Marstiller	
	1	INVESTM	ENT COSTS:					
	л. А.	CONSTRU	CTION COST		DM	2,880		
	В.	SIOH			DM	173		
	C.	DESIGN C	COST		DM	173		
	D.	TOTAL CO	OST $(1A+1B+1)$	C)	DM	3,226		
	E.	SALVAGE	VALUE OF EX	ISTING EQUIP	MENT		DM 0	
	F.	PUBLIC U	TILITY COMPA	NY REBATE			DM 0	
	G.	TOTAL IN	VESTMENT (11	D-1E-1F)				DM <u>3,226</u>
	2.	ENERGY	SAVINGS (+) /	<u>COST (-):</u>				
		DATE OF	NISTIR 85-3273	-X USED FOR I	DISCOUNT F	ACTORS	10/	92
ļ	ENER SOUR	GY CE	COST DM/MBTU(1)	SAVINO MBTU/YI	GS* ANNUA R(2) SAVINO	L DM SS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS (5)
	Α.	ELEC	DM		DM			DM
	B.	DIST	DM		DM			DM
	C.	RESID	DM		DM			DM
	D.	NG	DM		DM			DM
	E.	PPG	DM		DM			DM
	F.	COAL	DM		DM			DM
	G.	SOLAR	DM		DM			DM
	H.	GEOTH	DM		DM		• • • • • • • • • • • • • • • • • • •	DM
	I.	BIOMA	DM		DM			DM
	J.	REFUS	DM		DM		. <u> </u>	DM
	К.	WIND	DM		DM			DM
	L.**	OTHER	DM 30.61	6.4	DM_1	95.9	17.21***	DM 3,372
	М.	DEMANI	D SAVINGS		DM_			DM
	N.	TOTAL		6.4	DM_1	195.9	-	DM_3,372
	3.	<u>NON EN</u>	ERGY SAVINGS	(+) OR COST	<u>(-):</u>			
	Α.	ANNUA	L RECURRING ([+/ -)	DM ()	-	
		(1) DISC	COUNT FACTOR	R (TABLE A)			0	
	*	(2) DISC	COUNTED SAVI FORM MBTU =	NGS/COST (3A 10 ⁶ BTU'S	X 3A1)			DM_0
	**	OTHER F	UEL IS DISTRIC	T HOT WATER	Ł			

*** DISCOUNT FACTOR FOR NATURAL GAS (SOURCE ENERGY); REGION 5; 20 YEARS

APPENDIX F

B .	NON RECU	URRING SAVINGS (+)) OR COST (-)		
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4)
a .		DM			DM 0
b.		DM			DM 0
c.		DM			DM 0
d.	TOTAL	DM			DM 0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE P</u>	ON ENERGY DISCOU	NTED SAVINGS (3 3A + (3Bd1/ECON	A2 + 3Bd4): OMIC LIFE)):	DM_0 16.5_YEARS
5.	TOTAL NE	ET DISCOUNTED SAV	<u>/INGS (2N5 + 3C)</u>	1	DM_3,372
6.	<u>SAVINGS '</u>	<u>TO INVESTMENT RA</u>	<u>.TIO (SIR) 5/1G:</u>		1.04
7.	ADJUSTEI	D INTERNAL RATE C	F RETURN (AIRR	<u>):</u>	4.23 %

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

.

ECO P5

GRAFENWÖHR

STORAGE TANK INSULATION

	Sheet No. 1	of
	Drawing No	
Computed by Ct.M. Checked	d By Date Masca	22,013
_		
· AUL WEER		$40 \pm j$
· MECHANICA	- ROOM CONPENSION SET 7 0	
	39 mm Filt	ETG-155 BOLES INSULATION (2+2.86 F. 14+ 1/2/37) .
	STEEL TA	we while
	WTE2	
/ i		
- 00	ISON AL FILM (LILL AND)	
c	NUTSIDE AR FILM (STILL	A2) Z= 1.46
I		F = 4.39
5	7884	2:000
		$2_{\overline{1}} = 5.82$
	\cup : \downarrow	/RT= 0.171 370, "== = 0.571 W/ec-m"
	kmeding of insult on	to be applied to the
5 Proceed.	WINCE - TIME × DET.	W. x (686-22°C) = 184.5 W
	°C·n	
· ASTOMANT	THE STOCKED WATER	LIC MADILIAN AT GOC TREAMERT
THE ENTIR	e quiz - since domen Nothai	The model entrements where the second
	<u>184.5</u> <u>42</u> <u>74</u> <u>74</u>	W KW I GG ZKW / YENZ
	5m² × DM 93.00	
COST		

APPENDIX F

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Grafe	enwöhr, German	у	REGION NO. 5		PROJECT NO ECO P5	
PROJECT TITLE: Storage Tank Insulation		on			FISCA	L YR <u>93</u>	
DISCRETE POR	TION NAM	Е:			· · · · · · · · · · · · · · · · ·		
ANALYSIS DA	re: <u>19 A</u>	pr 93 EC	ONOMIC LIFE:	20 P	REPARER	Marstille	
1	INVESTM	ENT COSTS:					
1. A	CONSTRU	CTION COST		DM 490.0			
R.	SIOH			DM 29.4	•		
D. C	DESIGN C	OST		DM 29.4	-		
C: D	TOTAL CO	OST (1A + 1B + 1)	C	DM 548.8	-		
р. Е		VALUE OF E	KISTING EOUIPM	(ENT	DM	0	
<u>р</u> .		TUITY COMP	ANY REBATE		DM -	0	
г.	TOTAL IN	IVESTMENT (1	D-1E-1F)				DM 548.8
0.	IOTAL		2 12 11)				
2.	ENERGY	SAVINGS (+)	<u>COST (-):</u>				
	DATE OF	NISTIR 85-327	3-X USED FOR DI	SCOUNT FACTO	RS	10/	/92
ENER	3Y	COST	SAVINGS	S* ANNUAL DM	DIS	COUNT	DISCOUNTED
SOUR	CE	DM/MBTU(1) MBTU/YR(2) SAVINGS(3)	FA	CTOR(4)	SAVINGS (5)
А.	ELEC	DM		DM			DM
В.	DIST	DM		DM			DM
С.	RESID	DM		DM			DM
D.	NG	DM		DM			DM
Е.	PPG	DM		DM			DM
F.	COAL	DM	······································	DM			DM
G.	SOLAR	DM	<u> </u>	DM			DM
н.	GEOTH	DM	<u></u>	DM			DM
I.	BIOMA	DM		DM			DM
J.	REFUS	DM		DM			DM
К.	WIND	DM		DM			DM
L.**	OTHER	DM 30.61	5.5	DM 169.0	17	.21***	DM 2907.9
М.	DEMANI	SAVINGS		DM			DM
N.	TOTAL		5.5	DM 169.0			DM 2907.9
3.	NON EN	ERGY SAVING	<u>s (+) or cost (-</u>	<u>):</u>			
А.	ANNUAI	. RECURRING	(+/-)	DM 0			
	(1) DISC	OUNT FACTO	r (table a)	<u></u>	0		
	(2) DISC	OUNTED SAV	NGS/COST (3A X	3A1)			DM 0
* ** ***	ON THIS I OTHER FI DISCOUN	FORM MBTU = UEL IS DISTRIC T FACTOR FO	= 1,000,000 BTU'S CT HOT WATER R NATURAL GAS	(SOURCE ENERG	iY); REGIO	ON 5; 20 1	/EARS

APPENDIX F

В.	NON RECU	TRRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
8.		DM		0	DM	0
Ь.	_	DM		0	DM	0
c.	*	DM		0	DM	0
d.	TOTAL	DM		0	DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	N ENERGY DISCOUN	NTED SAVINGS (3 A + (3Bd1/ECON	BA2 + 3Bd4): OMIC LIFE)):	DM	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>INGS (2N5 + 3C)</u>	•	DM	2908
6.	<u>SAVINGS 1</u>	O INVESTMENT RA	<u>TIO (SIR) 5/1G:</u>		5.30	
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR	<u>):</u>	13.04	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO P7

GRAFENWÖHR

FLOW RESTRICTORS

<u>= co 27 -</u>	They Restricted Sheet No of
Computed by <u>ここそれ</u>	Drawing No Checked By Date <u>هم المعامية المحمد</u>
· Are	
١.	Averia white terrezione = 63C (143F)
2.	FLOW RESTLICTING ARRITOL (WHICH ALE FUELY SCIEWED INTO FUCET OUTLETS) RELIXE LLWITCH FLOW FLOW FROM 3 GPM TO OBGPM
રુ.	APPLIVINGELY 1000-1800 MEALS ARE REEVED ELLE DOY, ASSUME THAT 1/7 OF THE DINER WITHER HANDS FOR A 20 SECOND (AVERAGE DURATION
	1200 Division × 1/2 × 20 SECONDS × 1 MINUTE/60 SELENDE = 133 MINUTE
	AND THE KITCHEN/CLEADING/BAKING SEFF OF APPROXIMATELY 60 (20/MELL) MUST WICH THEIR HANDS FOR A AVERICEE DURITION OF I MINDLE SUCH
	600 STREF & MINDUTE SLOK = 60 MINUTES
	TOTAL LANZORY USAGE = TO MILLITES
	193 MINUTES THE ZOE MINUTES/DAY
	BEE MALITER/DAY × 350 DLYS/TELL = 70,000 MANUTES , LANDALLY
	IF LANTON WHEL USE IN REPUBLICED FRAME BROOM TO OB GPHI, The Data of the ZIS GROW.
	To $\frac{1}{2}$ where $\frac{1}{2}$ is a $\frac{1}{2}$ of $\frac{1}{2}$ where $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$
4.	with that $2/3$ of the water with for those watering to not water,
	$1/2 + 17E_{POD} CLUDENS = 116700 GLUDENS OF WREEL WILLNOT HAVE TO BE REFEL FROM 10°C (SUFF) TO 60°C (140°F)$
	$\frac{116}{100} + \frac{8.3^{\ddagger}}{6.1} \times \frac{1.610}{1^{\ddagger} \cdot 9} \times \frac{1.610}{1^{\ddagger} \cdot 9} \times \frac{1.60}{1^{\ddagger} \cdot$
5.	LEDATOL AREELES COST # DM 4,80
1	

APPENDIX F

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

.

LOCATION:	Graf	enwöhr, Germany		REGION NO. 5 PROJECT NO ECO I		
PROJECT TITLE: Flow Restrictors				FIS	CAL YR <u>93</u>	
DISCRETE POF	RTION NAM	(E:				
ANALYSIS DA	ANALYSIS DATE: 21 Apr 93		NOMIC LIFE:	20 1	PREPARER Marst	iller
1	INVESTM	ENT COSTS:				
л. А	CONSTRU	ICTION COST		DM 28.80		
R.	SIOH			DM 1.80	_	
2. C.	DESIGN (COST		DM 1.80		
С. D	TOTAL C	OST (1A+1B+1C))	DM 32.40		
E.	SALVAGE	VALUE OF EXI	, STING EOUIPN	(ENT	DM 0	
E. F	DIRI IC I	TTILITY COMPAN	NY REBATE		DM 0	-
G.	TOTAL IN	VESTMENT (1D	-1E-1F)		<u>+</u> +_+	- DM 32.40
2.	<u>ENERGY</u>	<u>SAVINGS (+) / C</u>	<u>:OST (-):</u>			
	DATE OF	NISTIR 85-3273-2	X USED FOR D	ISCOUNT FACTO	DRS	10/92
ENTED	GV	COST	SAVING	S* ANNUAL DM	DISCOUN	T DISCOUNTED
SOUR	CE	DM/MBTU(1)	MBTU/YR(2) SAVINGS(3)	FACTOR(4) SAVINGS (5)
А.	ELEC	DM		DM		DM
B.	DIST	DM		DM		DM
С.	RESID	DM		DM		DM
D.	NG	DM		DM		DM
Е.	PPG	DM		DM		DM
F.	COAL	DM	********************************	DM		DM
G.	SOLAR	DM		DM	·	DM
H.	GEOTH	DM		DM		DM
I.	BIOMA	DM		DM		DM
J.	REFUS	DM	·····	DM		DM
К.	WIND	DM		DM		DM
L.**	OTHER	DM 30.61	87.2	DM 2669.2	17.21***	DM 45,936.8
М.	DEMANI	SAVINGS		DM		DM
N.	TOTAL		87.2	DM 2669		DM 45,937
3.	<u>NON EN</u>	ERGY SAVINGS ((+) OR COST (-	<u>):</u>		
А.	ANNUAI	L RECURRING (+	·/-)	DM_0		
	(1) DISC	COUNT FACTOR	(TABLE A)		0	
	(2) DISC	COUNTED SAVIN	GS/COST (3A X	3A1)		DM_0
*	ON THIS	FORM MBTU = 1	U BTU'S			
***	DISCOUN	T FACTOR FOR	NATURAL GAS	(SOURCE ENER	GY); REGION 5; 2	20 YEARS
B.	NON RECU					
----------	-------------------------------------	-----------------------------	--	-----------------------------	---------------------	--------------------------------
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
8.		DM			DM	0
b.		DM			DM	0
c.	···	DM	······································		DM	0
đ.	TOTAL	DM	<u></u>		DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	DN ENERGY DISCOUT	NTED SAVINGS (3 A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM 0.01	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>'INGS (2N5 + 3C):</u>		DM.	45,937
6.	SAVINGS 7	<u>FO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		1417.8	
7.	ADJUSTEE	<u>INTERNAL RATE O</u>	F RETURN (AIRR)	<u>):</u>	49.5	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

.

ECO P8

GRAFENÖHR

AUTOMATIC SHUT-OFF FAUCETS

	S.O. N	0. 20098-45-32M
Baker	Subject: GUZENWOHR / VILSECK ENERGY	Audit
Engineers	ELO PS	Sheet No of
	AUTOMETIC SLUT-OFF FLUCETS	Drawing No
	Computed by <u> くさハ</u> Checked By	Date 29 /17212 1995

*	
mare m L	ANEULE WATER TEMPERIURE = 60°C (437)
2.	LUTOMETIC SHUT-OFF FLUCETS WILL SHUT-OFF FLOW AFTER 4 SECONDS
	(MOST LE LADIUSTIJE FROM 2-15 SECONDE)
3.	AVERICE NOTID WASHING WILL REQUIRE 3 PUSHES OF FLOW LEVEL FOR A TOTAL OF 12 SECONDS FLOW DURITION VS. 20 SECONDS DURITION ESTIMATED UNDER ECO P7. SO THE 70,000 MINUTED PER YEAR (OF LANATORY USE) ESTIMATED IN ECO P7 WILL PE REDUCED BY
	2052L, - 1252L, x 70,000 MIN = 28,000 MINUTES
4.	Assuming THAT THE FLOW RESTRICTORS DISCUSSED IN BLD PY HAVE BEEN INSTLUCED, THE ANNUAL WATER SAVINGS WILL BE
	28,000 MINUTES × 0.5 GAL = 14,000 GALLONS MINUTE
чV.	ASSUMING THAT BOTH THE HOT & COLD WATER ARE USED FOR HANDWASHING, SCIL OF THE WATER USED WILL BE HOT
	Not write $i = 0.50 \times 14000$ G/L = 7,000 G/Lass, Annually
6.	FOLLOWING ELO PT, THE ANNUAL ENERGY SLVINGS WILL RE
	7,000 GAL × 8,3# 11370 90°F = 5,229,000 BTU PER 722
	ESTIMUSTED COST = GUNISTORIES × DM 180/LAN = DM 1080

.

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Graf	Grafenwöhr, Germany		REGION NO.	5	PROJECT NO ECO P8		
PROJECT TITL	E: Auto	omatic Shut-off Fa	ucets			FISCAL	YR <u>93</u>	
DISCRETE PO	RTION NAM	Æ:						
ANALYSIS DA	TE:	Apr 93 EC	ONOMIC LIFE:	20	PREPARER	Marstiller		
1	INVESTM	ENT COSTS.						
1.	CONSTRI	ICTION COST		DM 1.	080			
A. P	SIOH			DM	65			
B.	DESIGN (TOST		DM	65			
C.	TOTAL	OST (1A+1B+1)	C)	DM 1.	210			
D. Е	SALVAG	E VALUE OF FX	USTING EOUIP	MENT	DM	0		
E. F	DIDIICI	TTUTY COMPA	NY REBATE		DM -	0		
г. G.	TOTAL I	NVESTMENT (1)	D-1E-1F)			I	DM 1,210	
2.	<u>ENERGY</u>	SAVINGS (+) /	COST (-):				-	
	DATE OF	7 NISTIR 85-3273	-X USED FOR D	DISCOUNT FAC	CTORS		<u></u>	
ENER SOUR	GY	COST DM/MBTU(1)	SAVINO MBTU/YR	S* ANNUAL (2) SAVINGS(DM DIS (3) FA	SCOUNT CTOR(4)	DISCOUNTED SAVINGS (5)	
А.	ELEC	DM		DM			DM	
В.	DIST	DM		DM			DM	
C.	RESID	DM		DM			DM	
D.	NG	DM		DM	<u></u>		DM	
Е.	PPG	DM		DM			DM	
F.	COAL	DM		DM			DM	
G.	SOLAR	DM		DM			DM	
H.	GEOTH	DM		DM			DM	
I.	BIOMA	DM		DM			DM	
J.	REFUS	DM		DM			DM	
K.	WIND	DM		DM			DM	
L.**	OTHER	DM 30.61	5.2	DM 159	.2 17	7.21***	DM 2739.4	
 M.	DEMAN	D SAVINGS		DM			DM	
N.	TOTAL		5.2	DM 159	0.2		DM 2739.4	
•	NOVEN	TROV SAVINCS		·				
3.	NON EN	EKGI SAVINGS	(+) OK COST (<u></u> DM 0				
А.	ANNUA (1) DIG	COLDIT EACTOR	(TAREA)					
	(I) DISC	COUNT FACTOR	NGS/COST (2 A 3	¥ 3A1)			DM 0	
*	(2) DISC ON THIS	FORM MBTU =	10° BTU'S	, JAIJ				
** ***	OTHER F DISCOUN	UEL IS DISTRIC	T HOT WATER NATURAL GA	S (SOURCE EN	NERGY); REGI	ON 5; 20 Y	EARS	

 B. NON RECURRING SAVINGS (+) OR COST (-) ITEM SAVINGS (+) YEAR OF DISCOUNT COST (-) (1) OCCUR. (2) FACTOR (3)
 a. DM ______

b.	DM	DM 0
c.	DM	DM 0
d.	TOTAL DM	DM 0
C.	TOTAL NON ENERGY DISCOUNTED SAVINGS (3A2 + 3Bd4):	DM_0
4.	<u>SIMPLE PAYBACK 1G/(2N3 + 3A + (3Bd1/ECONOMIC LIFE)):</u>	7.6 YEARS
5.	TOTAL NET DISCOUNTED SAVINGS (2N5 + 3C):	DM 2739.4
6.	SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:	2.26
7.	ADJUSTED INTERNAL RATE OF RETURN (AIRR):	8.34 %

DISCOUNTED

SAVINGS (+) COST (-) (4)

DM 0

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

1

- -----

:

ECO E1

GRAFENWÖHR

LIGHTING LEVEL REDUCTION

5.00 51	Sheet N	Noof	
DEDICE LANGUE	Drawin	g No	
pmputed by <u>CEM</u> Checke	ed By Date	201 LPZIL 1993	
GRAFENTWOHR			
From G.	EHZMAN CLEWINTIONT	:	
L. P	SYTICH IN ILLUMINA	CON INTENSITY (-153)) IN THE KITCHEN
	IN THE ADJACENT	ROOME IS ROSSIE B	P DE-LANDING
52	/ *	RESENT LIG-TING	PROPOSED LIMETING
		LEVEL	LEVEL
K.	CHEN	4=20-700 Lux	330-600 Lux
AD		150-200 Lux	12-2 · 170 Lux
		1	(
SPL	a the second sec	PRESENT INSTALLES	HZOPOSED INSTALLED WITTLIDE
		LAMPS & WATTS / LAMP = WATTAGE	
K-	「ことから	90x36W:3240W	76×36W = 2736W
<u>ح</u> 4	JLENT 59 LES	38×36W=1368W	32×36W= 1152W
34	UAST	123×13W=1664W	108×13w = 1404 w
	Tothe WATASI	6272w	5297 w
- To	The Housing Sharings	= 6272 w = 529; 2 w =	9 8 0 w
R	7410* 10	NR DE DREZATION THE	TOTAL ANNOLL
E Di	NERGY SANINGS IS	(7410H25 × 5,80 W) / 1000 W/KW
		7261.8KWH	

- ·
- COST OF DE-LUNPING = COST OF DISCONNECTING THE POWER TO 10 TWO-LAMP FIXTURES.

10 FINTURES X DM 72,18 = DM 722-

BUSED ON MERSING COST FOR INISTALLATION, OF SUME FIXTURE

S.O. No. 2009 E . 25 . 32M		
Subject: GRAFENWEINE / VISECE ENERGY A	• «پ	Baker
Grassing ECO El	Sheet No2 of	
PERUCA LIGHTING LEVELS	Drawing No.	
Computed by Checked By	Date 20, 122, 1003	

* Hours of OPERATION (KITCHEN SPLEES) M.T.W.F OTTO - 2400 = 2012 HBS) IF IT REPORE BREAKFAST TO END OF TH 0370 - 2400 = 2012 HBS) TH 0370 - 2400 = 2012 HBS) S.S 0400 - 2400 = 2010 HBS) ANIMORE TOTAL = 52WEE × $[(= \times 20.5) + (2 \times 20)]$ = 7410 HZS

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Graf	Grafenwöhr, Germany			REGION NO. 5			PROJECT NO ECO E1		
PROJECT TITLE:		nce Lighting Levels					FISCA	L YR <u>93</u>		
DISCRETE PC	ORTION NAM	IE:								
ANALYSIS DA	ATE: 29 A	Apr 93 ECON	IOMIC LIFE:	20	PR	EPARER	Marstiller			
1	INVESTM	ENT COSTS:								
1. A	CONSTRU	ICTION COST		DM	722					
R	SIOH			DM —	43					
2. C	DESIGN (COST		DM -	43					
D	TOTAL C	OST (1A + 1B + 1C)		DM	808					
E.	SALVAGE	E VALUE OF EXIS	TING EQUIP	MENT -		DM	0			
F.	PUBLIC L	TILITY COMPAN	Y REBATE			DM	0			
G.	TOTAL D	VESTMENT (1D-1	E-1F)					DM 808		
2	ENERGY	SAVINGS (+) / CO	DST (-):							
<i>L</i> .	DATE OF	NISTIR 85-3273-X	USED FOR I	DISCOUNT F	ACTOR	S	10/	92		
ENE SOU	RGY RCE	COST DM/MBTU(1)	SAVINO MBTU/YF	GS* ANNUA R(2) SAVING	L DM S(3)	DIS FA	COUNT CTOR(4)	DISCOUNTED SAVINGS (5)		
А.	ELEC	DM 41.6	24.78	DM 1,	030.8	11	.59**	DM 11,947.5		
B.	DIST	DM	• • • • • • • • • • • • • • • • • • •	DM				DM		
С.	RESID	DM		DM				DM		
D.	NG	DM	• •	DM				DM		
Е.	PPG	DM	-	DM				DM		
F.	COAL	DM		DM				DM		
G.	SOLAR	DM	-	DM				DM		
H.	GEOTH	DM		DM				DM		
I.	BIOMA	DM		DM				DM		
J.	REFUS	DM		DM				DM		
К.	WIND	DM		DM				DM		
L.	OTHER	DM		DM				DM		
М.	DEMANI	SAVINGS		DM				DM		
N.	TOTAL		24.8	DM 1	031			DM 11,948		
3.	NON EN	ERGY SAVINGS (-) OR COST	<u>(-):</u>						
А.	ANNUAI	RECURRING (+/	-)	DM_0						
	(1) DISC	OUNT FACTOR (TABLE A)			0				
	(2) DISC	COUNTED SAVING	S/COST (3A	X 3A1)				DM_0		
*	ON THIS DISCOUN	FORM MBTU = 10 T FACTOR FOR E	° BTU'S LECTRICITY:	; REGION 5;	20 YEA	RS				

В.	NON RECURRING SAVINGS (+) OR COST (-)									
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)				
a .		DM			DM	0				
b.		DM			DM	0				
c.		DM			DM	0				
d.	TOTAL	DM	•	<u></u>	DM	0				
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	N ENERGY DISCOUT	NTED SAVINGS (3 A + (3Bd1/ECON(A2 + 3Bd4): DMIC LIFE)):	DM 1.28	0 YEARS				
5.	TOTAL NE	T DISCOUNTED SAV	<u>'INGS (2N5 + 3C):</u>		DM	11,948				
6.	<u>SAVINGS 1</u>	<u>TO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		14.79					
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	18.99	%				

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E7

GRAFENWÖHR

LIGHTING FIXTURE CONVERSION

S.O.	No. 20093-4-, -B2M
Subject: GELTENWORZ / VILSEL ENERGY	1-00:
ECO ET	Sheet No of
LIGHTING FIXTURE CONVERTON	Drawing No
Computed by CEM Checked By	Date 20 47212 1993

FROM GEHEMIANN CONSULT FLX OF 2 MARCH, 1993:

WITHOUT REDUCING THE LIGHTING LEVEL WITHIN BUILDING 101, THE NUMBER OF 36W LUMPS IN THE LIGHTING SYSTEM CAN BE RELUCED FROM 380 LUMPS TO 334 LUMPS THY REPLACENCE THE EXISTING PLORESCENT LUMP TO/LLASTS WITH ELECTRONIC THELEFTS.

- WITH CONVENTIONAL BALLASTS, THE CONNECTED LOW IS: $380 \text{LAMPERT} \times 0.049 \text{kW}/\text{LAMPE} = 18,62 \text{kW}$
- WITH ELECTRONIC BALLATS, THE CONNECTED LOD WILL BE: 334 LAMPS X 0.036 KW/LSMD = 12.02 KW

50 THE SAMINGE WILL BE 18.62 - 12.02 = 6.6KW

- BLEED ON 3500 HER OF OPELLENDS, MINISLUY, THE SAVINGE WILL BE :

3500 HRS × 6.6KW = 23,100 KWH.

OR 23,100 KWK × 3413 BTU × MMBTU = 78,84 MMBTU KWH 100 BTU

- ESTIMATED GOT OF INSTALLING ELECTRONIC BALLASTS IS: 334 LAMPS & GEODMY/LAMP = 217,100DM

* SEE CALLT, ECO E14 FOR CALCULATION OF OPENSING HOURS SZWKS/9R × 67,25H25/WK = 3497 HES, SAY 350014RS

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Graf	Grafenwöhr, Germany			REGION NO. 5			10 ECO E7
PROJECT TITLE: Lighti		ting Fixture	Conversion	-			FISCAL Y	(R 93
DISCRETE POP	RTION NAM	(E:					'	
ANALYSIS DA'	TE: <u>29 A</u>	Apr 93	ECONOMIC LIFE:	20	P	REPARER	Marstiller	
1.	INVESTM	ENT COSTS	:					
Α.	CONSTRU	UCTION COS	- ST	DM	217,10	0		
В.	SIOH			DM	13,02	6		
C.	DESIGN C	COST		DM	13,02	6		
D.	TOTAL C	OST (1A+1I	3+1C)	DM	243,15	2		
E.	SALVAGE	E VALUE OI	EXISTING EQUIP	MENT		DM	0	
F.	PUBLIC U	TILITY CO	MPANY REBATE			DM	0	
G.	TOTAL IN	VESTMEN	Г (1D-1E-1F)			-	Ľ	OM 243,152
2.	<u>ENERGY</u> DATE OF	<u>SAVINGS (-</u> NISTIR 85-	+) / COST (-): 3273-X USED FOR I	DISCOUNT	FACTO	RS	10/92	_
ENER SOUR	GY CE	COST DM/MBT	SAVINO U(1) MBTU/YI	GS* ANNU R(2) SAVIN	JAL DM IGS(3)	DIS FAC	COUNT I CTOR(4))ISCOUNTED SAVINGS (5)
А.	ELEC	DM 41.6	0 78.84	DM	3279.7	11.	59**	DM_38,012
В.	DIST	DM		DM				DM
С.	RESID	DM		DM				DM
D.	NG	DM		DM				DM
E.	PPG	DM		DM				DM
F.	COAL	DM		DM_				DM
G.	SOLAR	DM		DM				DM
H.	GEOTH	DM		DM		<u> </u>		DM
I.	BIOMA	DM		DM				DM
J.	REFUS	DM		DM				DM
K .	WIND	DM		DM				DM
L.	OTHER	DM		DM				DM
М.	DEMANI) SAVINGS		DM				DM
N.	TOTAL		78.8	DM	3280			DM_38,012
3.	NON EN	ERGY SAVI	NGS (+) OR COST	(-):				
Α.	ANNUAL	. RECURRIN	IG (+/-)	DM_	0			
	(1) DISC	OUNT FAC	FOR (TABLE A)			0		
*	(2) DISC ON THIS I	OUNTED SA	AVINGS/COST (3A 2 U = 10 ⁶ BTU'S	X 3A1)				DM_0

** DISCOUNT FACTOR FOR ELECTRICITY; REGION 5; 20 YEARS

B.	NON RECU						
	ITEM	SAVINGS (+) COST (-) (1)	2	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
a .		DM				DM	0
Ь.		DM				DM	0
c.		DM		<u></u>		DM	0
d.	TOTAL	DM				DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	N ENERGY DISCO	<u>DUNT</u> + 3A	ED SAVINGS (3 + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM74.1	0 YEARS
5.	TOTAL NE	T DISCOUNTED S	AVIN	IGS (2N5 + 3C):	<u>.</u>	DM	38,012
6.	SAVINGS 1	O INVESTMENT	RATI	<u>0 (SIR) 5/1G:</u>		0.16	
7.	ADJUSTED	INTERNAL RATE	OF	RETURN (AIRR)	<u>):</u>	- 5.22	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E10

GRAFENWÖHR

DIMMING HARDWARE FOR

LIGHTING FIXTURES

S.O. No 8.25 . 32M.	
Subject: CTUTENNOLZ / VILTELL ENERGY	1.021-
ELO ELO	Sheet No of _Z
DIMMER/TIMER CONTING - EXTENCE LIGES	Drawing No
Computed by Checked By	Date

GRUFENWERE

- FROM GOMENTAL CALCULTION: "EXTERICE LIGHTING WILL BE CONTROLLED BY INSTALLATION OF DAWLYDUSK CONTROLLED (PREVIDEN) AND TIMEZ-CONTROLLERS." THE FORE, THIS ECO IS ACCOUNTED A COMBINATION OF ECO'S END, EN AND END. THE SUGGESTED CONTROL SCHEME IS TAKED FROM USACEZL TECHNICAL DOOD - E-90/07, DIGO MAY MY, O. QUOTING FROM PLASS ZOES: "ONE SIMMING SCENALIO FOR A ZMY INSTALLATION IS TO HAVE EXTENDED LIGHTING OF FOLL POWER FROM PLASS UNTIL 2300 AND AT SS PERCENT POWER (45 PERCENT LIGHT COTPOT) THERE AFTER."
- Existing Lighting Exterior Building Lighting 980 W Exterior ARE - Marting = 2175 W
- EXELIC BUILD & MANTING IS MANUALLY CONTROLED. THE LIGHTING When TORREL" ON "DORING THE LUMMENT ADDR. WHEN THE SURVEY TELM WAS CONDUCTING THE ENERGY AUDIT. IT IS ASSUMED THAT THIS IS NOT THE NORM. FOR THE ENERGY AUDIT. IT IS ASSUMED THAT THIS IS NOT THE NORM. FOR THE FACILITY. HOWEVER, A DAWN/DUSK CONTROLLER CONVECTED TO A TIMEL COULD PREVENT THIS ENTREMY. THE DAWN/DUSK CONTROLLER COULD LIMIT THE OPERATION OF THESE EVERING LIGHTS TO HOURS OF DARW. AND THE TIMER WOULD LIMIT THE LIGHTS TO POSSE OF DARW. AND THE TIMER WOULD THAT THE LIGHTS TO POSSE A RELICTION IN USE OF THE LIGHT, OF APPROXIMATELY 2 HOURS FER DAY.

TOTAL ENERGY SAVINGS = 365 DAYS * 240/241 × 980W = 715,4 KWH

	co = 10 Sheet No. 2 of 2
DIMMER TIM	1312 CONTERLA - EXTERIOR LIGITS Drawing No.
Computed by	Checked By Date
_	EXTERIOR AREA LIGHTING CLN BE REDUCED BY 45% FROM 2300 HOURS TO
	DILLIN. THIS WILL REDUCE POWER CONSUMPTION FOR , ON AVERAGE 51/2 HOU
	PER NICHT.
	TOTAL ENERGY SUVINGES = 365 DAYS × 5.5 HRS/DLY × (45% × 2175 W)
	1000 w/ KW
	= 1964.8Kwit
	So The Annald Exercice Exercises Exe
-	SS THE ANNUAL ENERGY SAVINGES FOR THIS I WILL TO
	BUILDING LIGHTING - 115,4 KUN
	LEEN LIGHTING - 1964.8 KWH
	2680.2 KWH
	·
-	ESTIMUTED CONSTRUCTION COST:
-	DAWN/DUSK CONTROLLER = DM 246.0
	TIMEZ-CONTROLLERS (ZEDM 272.00EG) = DM 544.0
	DIMMER DM 40,0
	INSTALLE, ON BSO.C
	Total Cost : DM 1330,0
ł	

.

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

		, 101, 0101010000,		REGION			INCILC	
PROJECT TITI	LE: Dim	mer/Timer Control	s For Exterior L	ighting			FISCA	L YR <u>93</u>
DISCRETE PO	RTION NAM	ſE:						
ANALYSIS DA	ATE: <u>3 M</u>	ar 93 ECO	NOMIC LIFE:	20	PR	EPARER	Marstille	٢
• 1.	INVESTM	ENT COSTS:						
A.	CONSTRU	ICTION COST		DM	1,380			
В.	SIOH			DM .	83			
C.	DESIGN (COST		DM	83			
D.	TOTAL C	OST $(1A+1B+1C)$)	DM	1,546			
Е.	SALVAGI	E VALUE OF EXIS	STING EQUIP	MENT	·····	DM	0	
F.	PUBLIC U	JTILITY COMPAN	Y REBATE			DM	0	
G.	TOTAL I	VESTMENT (1D-	1E-1F)					DM <u>1,546</u>
2.	ENERGY	<u>SAVINGS (+) / C</u>	<u>OST (-):</u>					
	DATE OF	NISTIR 85-3273-3	USED FOR D	ISCOUNT	FACTOR	5	10	/92
ENER SOUF	RGY RCE	COST DM/MBTU(1)	SAVING MBTU/YR	S* ANNU (2) SAVIN	AL DM IGS(3)	DIS FAC	COUNT TOR(4)	DISCOUNTED SAVINGS (5)
А.	ELEC	DM 41.6	9.15	DM	380.6	11.	59**	DM 4,411.6
В.	DIST	DM		DM				DM
С.	RESID	DM		DM				DM
D.	NG	DM		DM				DM
E.	PPG	DM		DM				DM
F.	COAL	DM		DM				DM
G.	SOLAR	DM		DM				DM
H.	GEOTH	DM		DM				DM
I.	BIOMA	DM		DM		_		DM
J.	REFUS	DM		DM		_		DM
K.	WIND	DM		DM				DM
L.	OTHER	DM		DM				DM
М.	DEMANI	SAVINGS		DM				DM
N.	TOTAL		9.15	DM	380.6	_		DM 4,412
3.	<u>NON EN</u>	ERGY SAVINGS (+) OR COST (-	<u>.):</u>				
А.	ANNUAI	. RECURRING (+	/-)	DM	0			
	(1) DISC	OUNT FACTOR (TABLE A)	-		0		
	(2) DISC	OUNTED SAVING	GS/COST (3A X	(3A1)				DM 0

** DISCOUNT FACTOR FOR ELECTRICITY; 20 YEARS; REGION 5

B .	NON RECU	JRRING SAVINGS (+)) or cost (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
a .		DM			DM	0
Ь.		DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NC</u> <u>SIMPLE P/</u>	ON ENERGY DISCOU	NTED SAVINGS (3 3A + (3Bd1/ECON	A2 + 3Bd4): OMIC LIFE)):	DM 4.06	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>/INGS (2N5 + 3C)</u>	<u>.</u>	DM	4,412
6.	<u>SAVINGS '</u>	<u>TO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		2.85	
7.	ADJUSTEI	D INTERNAL RATE O	F RETURN (AIRR	<u>):</u>	9.60	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E14

GRAFENÖHR

PHOTOELECTRIC CONTROLS FOR

INTERIOR LIGHTING FIXTURES

	S.O. No. 2005 - 4= - 32M
	Subject:
is in the second se	Gruppen ECO E14 Sheet No of
	PLOTOFILE CONTINUE TITLE LIGHT MA Drawing No.
	Computed by CEL Checked By Date 30 APL 1993

- FROM ROBERT & FUNDOUST'S ADTICLE "Diversities CONTRACT OF AVAC DEDICH" IN THE NOVEMBEL MIT ADDRESS. "A WINDOW LETTING IN IN THE AMOUNT OF DEVELOPTING (WITHING & DIMMING - TO - 30%-70WED LIGHTING CONTROL, ONE MIGHT FIRE & 40% ANNUAL LIGHTING SAVINGS." THE BEST FOR ME RUNDOUST'S ANALYTICS IS A TYPEL- OFFICE DUDING WITH THE PROTOEDECTIC CONTROLS MODULETING THE LIGHTING IN A 151 WIDE ST29 AREDING THE BUILDING PERINSTER.
- . THE DINING AREA OF BUILDING ICH OPERATO WITH THE LIGHTS ON FOR THE FOLLOWING HOURS:

	WED, FR.	Thurs	Sr Sun
225.45205	0500 - 03 45	ిస్తాని - రిక్రి	5-74 - 5735
Lunc-	1045 - 1600	1045-1400	1170 - 1430
Dinai -	1600 - 1633	1600 - 15:00	15.30 . 187.5
TOTAL HEL LIGETS ARE TURNEL ON	io hes	<u>0.1/4</u>	<u>Энг.</u>

- CALLE ASSOMED THAT LOGET AN TOLEN ON ALLE PRODETS MEANS AND TOLNEL OFF 1 AL AFTER MEANS

TOTAL NO. WAS PUDG ISI LIGHT, NOT TURKED ON ? (4×10)+(1×9/4)+(2×9) = 67/4 Has/ WEEK

		S.O. No.	20018-45-3:M	
Baker ngineers	Subject: <u>Guidennene Romannen</u> <u>Guidennene Romannene</u> <u>Romannene Romannene</u> <u>Romannene Romannen</u> Computed by <u>CEM</u> Chec	14 <u>14</u> <u>Extension</u> <u>Enerting</u> cked By	Sheet No. 2 of Drawing No Date <u>50 /_22</u> C	c 3
· Lichthur- Dhùince Li	WITHIN A 15 W DE STRP 34 5 : 9 - 3×36 FIXTURES 14 - 1×36 FIXTURES 23 - 1×13 B/STS	5212-02-114 THE = 972 WATTS = 504 WATTS = 25,4; WATTS	WINDOWS IN THE	
· ASSUMING	THUT THE 40°L CLARKER 72 USE & 35°L ETTIMUTE & 25480/WEEK × 52 WEEKS F	THIS WATT WERTED IN THE OF SUUMOS FO RADY SUY 3500	> Renguist Altanta C. That Renderation Lets/92	15 Actor
SAVINGS	, = 35% * 1775.w.crs * <u>356</u> y	22 - WILT *	<u>ΜΜΒΓυ</u> - 7.42 Μ 10° ΤΤυ	MBTU /Y
. Est MATH 7 1 1	Cot Lotosiscitus cen continui Simmite Lectronic Brownests *	22 DM 22 DM 32C DM 4ckts@DM	246 = 492 40 = 80 75 = 2400 52 = <u>200</u>	-
-			DM 3172	
× 2BAL	USST/ BTURE FIXTUR ; 1	TS/22-Arst / 1 - 03	is fixtore	

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Grafe	nwöhr, Germany	1	REGION	NO. <u>5</u>	PROJEC	CT NO ECO E14
PROJECT TITI	E: Photo	electric Controls fo	r Interior Lightin	ng Fixture	s	FISC	AL YR <u>93</u>
DISCRETE PO	RTION NAM	E:					
ANALYSIS DA	ATE: 30 A	pr 92 ECON	IOMIC LIFE: 2	0	PR	EPARER Marstill	er
1.	INVESTME	ENT COSTS:		DM	3 172		
Α.	CONSTRU	CHON COST		DM	100		
В.	SIOH			DM	190		
С.	DESIGN C	OST		DM	2 552		
D.	TOTAL CO	OST (1A+1B+1C)		DM			
E.	SALVAGE	VALUE OF EXIS	TING EQUIPM	IENT			
F.	PUBLIC U	TILITY COMPAN	Y REBATE			DM	DM 2 552
G.	TOTAL IN	VESTMENT (1D-	1E-1F)				DM <u>3,552</u>
2.	ENERGY	SAVINGS (+) / C	<u>OST (-):</u>				
	DATE OF	NISTIR 85-3273-X	USED FOR DI	SCOUNT	FACTOR	s <u>1</u>	0/92
ENE	RGY	COST	SAVING:	S* ANNU	JAL DM	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS (5)
SOU	RCE		7 42		308.7	11.59**	DM 3,577.5
A.	ELEC	DM 41.0		- <u>-</u>			 DM
В.	DIST	DM	_				 DM
С.	KESID	DM					 DM
D.	NG	DM		 			 DM
E.	PPG	DM		DM			 DM
F.	COAL	DM					
G.	SOLAR	DM			<u></u>		
Н.	GEOTH	DM					
1.	BIOMA	DM		DM			
J.	REFUS	DM		DM			- DM
К.	WIND	DM		DM			- DM
L.	OTHER	DM		DM			- DM
М.	DEMAN	D SAVINGS		DM			DM
N.	TOTAL		7.42	DM	308.7		DM 3,578
3.	<u>NON EN</u>	<u>ERGY SAVINGS (</u>	(+) OR COST (·	<u>.):</u>			
А.	ANNUA	L RECURRING (+	·/-)	DM	0_1		
	(1) DISC	COUNT FACTOR	(TABLE A)		-	0	
	(2) DISC	COUNTED SAVIN	GS/COST (3A X	(3A1)			DM_0
*	ON THIS	FORM $MBTU = 2$	10° BTU'S				
**	DISCOUN	T FACTOR FOR	ELECTRICITY;	REGION	5; 20 YE	AKS	

B.	NON RECU	JRRING SAVINGS (+)) OR COST (-)		
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4)
a.		DM			DM 0
b.	<u></u>	DM			DM 0
с.		DM			DM 0
d.	TOTAL	DM			DM 0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE P</u>	ON ENERGY DISCOU AYBACK 1G/(2N3 + :	NTED SAVINGS (3 3A + (3Bd1/ECON	00000000000000000000000000000000000000	DM_0
5.	<u>TOTAL NI</u>	ET DISCOUNTED SAV	<u>VINGS (2N5 + 3C)</u>	<u>i</u>	DM_3,578
6.	SAVINGS	TO INVESTMENT RA	<u>ATIO (SIR) 5/1G:</u>		1.01
7.	ADJUSTE	<u>D INTERNAL RATE (</u>	OF RETURN (AIRR	<u>):</u>	4.04 %

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO H10

VILSECK

DUCT INSULATION REPAIR

S.O. No	
Subject: <u>GUJECUOLU</u> VILLE SALATI	Lust
ECO HIC . VILLER	Sheet No of
DUCE INSUL FUN REPUIL	Drawing No.
Computed by <u>C=V</u> Checked By	Date 16 Mills COB

· DUCT INSULTION AT GREENWER BUILDING IOI IS FOIL-SKRIM-KREFT (FER) BLOKED FREIGHT, EXTERNAL DUCT WRD TYPE INSULTION. INSULTION APPELLE TO BE 5CM (2") THICK. AESUMING AN INSULTION DENTITY OF 16 Kg/m³ (1=/fr), THE INSTALLED R-VALUE (25% COM-PRETION) IS 5.3 °F.42.44 /314

:ମହା

- Since $U = \frac{1}{R}$, THE U-VALUE FOR THE ASSUMED DUCT INSULATION WILL RE: $\frac{1}{R} = 0.180740/hr.100.07$
- · ASSUMING & 1107 SUPPLY ALL TEMPELATURE (KENTING TELSON) AND A TO'F AMPLIENT AIR TEMPERATURE IN THE MECHANICAL ROOM AND/OR THE CELLUR PLENUM, ONE SQUARE FOOT OF INSULATION WILL PERMIT THE FOLLOWING HEAT TRANSFER

Q = UA xt = (0.139840/hr. G2. 37)(192)(110-70) = 7.50 Btu/hr

AN UNINFULLED DUCT WILL HAVE AN Z-VALUE OF INSIDE LIC FILM (MOVING DIR) RE 0.17 DUCTWORK CUTSIDE LIR FILM (STILL DIR) (LVERLIE OF FOUR ORIENTIZIONS) RE 1.62 (LVERLIE OF FOUR ORIENTIZIONS)

· AND IN U-VILLE OF /1.70 = 0.559 Btu/hr.ft2. of

· TREZEFORE, THE HEAT TRANSFEZ THROUGH ONE SQUARE FOUT OF UNINSULATED DUCTUDRIE WILL BE :

S.O. No. 2008 . 25 . 72M	
Subject: CIR FENNIONE / VILSECIE ENERGY	Aust: Baker
ECO HID - VILSELK	Sheet No of
DUCT INSULTING REPLI	Drawing No
Computed by <u>CEM</u> Checked By	Date 16 Muzzie 1953

THE DIFFERENCE (SAVINGE) IN LEUT TRANSFER FOR ONE SUDARE FOOT OF DUCTWORK WILL BE : 22.76 Btu/hr - <u>7.50</u> 14.86 Btu/hr

· ASSUMING THAT THE HELTING SYSTEMA OPENDE FROM MID-SEPEMBER TO MID-MAY (SO WEEKS); AND THAT THEY OPERATE 2/3 OF THE TIME BETWEEN TO NOURS (ANG BREAKFAST START - 24RS) AND 1930 HRS (ANG DINNER CLOSING THE + 11/2 HES CLEAN-UP TIME); AND THAT THE SYSTEMS OPERATE 1/3 OF THE TIME FOR THE REMAINDER OF THE DAY - THE AVERAGE RUNNING TIME FOR THE REMAINDER OF THE DAY - THE

30 WEEKS x 7 DAYS x 91/2 KRS @ 1/3 OPERITING TIME = 665 HT.

2695 K23 SAY 2700 K25/42

· ANNOLL ENERGY SLINGE = 2700 HZS × 14.86370/HR : 40,12230/4 OF HEROJETON, IN TI UNITS, THE AND DUE ENERGY FAVILLES PER EQUILIE METER OF DUCT INFOLLIAND IS:

$$\frac{40,122 \text{ BTU}}{\text{ft}^2} = \frac{0.0929 \text{ ft}^2}{1 \text{ kW}} = \frac{1 \text{ kW}}{12.72 \text{ kW}} = 12.72 \text{ kW}$$

THE ESTIMATED AREA OF DUCTWORK INSULATION IN NEED OF REPAIR IS 32 M2 THIS DOES NOT INCLUDE THE LAZGE AMOUNT OF INSULATION WHICH HAS FALLEN DOWN AND IS ALREADY SCHEDULED TO BE RE-INSTALLED WITH WELDED (NOT ADHESIVE TYPE) INSULATION PINS.

Fra Ilis	• \/\	Sheet No. 3 of	
Dure Tue	REAL REPAIR		
Computed by		Date 16 Msecs 1995_	
	BASED ON 32m2 OF REPLA	CENTENT INJULATION, THE ANNUAL EHERC	<u>z</u> y S/
	WILL BE 32m2 × 12.7	$2 \text{ kW} / \text{m}^2 = 407 \text{ kW}$	
	INSULATION COSTS WILL T	3≟	
	32m² × DM	68 = DM 2,176.00	
•	ENERGY COST SULVINGS W	IL BE:	
	4076W × 1	m 0.05/kw = DM 20.55	

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Vilseck, Germany	y	REGION NO.	5	PROJECT NO	ECO H10
PROJECT TITLE:	Duct Insulation R	Replacement/Repair			FISCAL YF	93
DISCRETE PORTION	NAME:					
ANALYSIS DATE:	17 Mar 93	ECONOMIC LIFE:	20	PREPARER	Marstiller	
1. INVE	STMENT COSTS	<u>}:</u>				
A. CON	STRUCTION CO	ST	DM 2,	176		
B. SIOH	[DM	130		
C. DESI	GN COST		DM	130		
D. TOTA	AL COST (1A+1	B+1C)	DM 2,4	436		
E. SAL	VAGE VALUE O	F EXISTING EQUIP	MENT	DM	0	
F. PUB	LIC UTILITY CO	MPANY REBATE		DM	0	
G. TOT.	AL INVESTMEN	T (1D-1E-1F)			DM	2,436
2. ENE	RGY SAVINGS (+) / COST (-):				
DAT	E OF NISTIR 85-	3273-X USED FOR D	DISCOUNT FAC	CTORS	10/92	
ENERGY SOURCE	COST DM/MBT	SAVING U(1) MBTU/YR	S* ANNUAL I (2) SAVINGS(:	DM DIS 3) FAG	COUNT DI CTOR(4) SA	SCOUNTED AVINGS (5)
A. ELE	C DM		DM		D	м
B. DIST	DM		DM		D	м
C. RES	D DM		DM		D	М
D. NG	DM		DM		D	М
E. PPG	DM		DM		D	M
F. COA	L DM		DM		D	M
G. SOL	AR DM		DM		D	M
H. GEO	TH DM		DM		D	M
I. BIO	MA DM		DM		D	M
J. REF	US DM		DM		D	M
K. WIN	D DM		DM	<u></u>	D	M
L.** OTH	IER DM 36.	07 1.4	DM 50.5	<u> </u>	.21*** D	M 869.1
M. DEN	AND SAVINGS		DM	<u> </u>	D	•M
N. TOT	AL	1.4	DM 50.5	5	D	0M_869.1
3. <u>NO</u>	<u>N ENERGY SAVI</u>	<u>NGS (+) OR COST (</u>	-):			
A. ANI	NUAL RECURRI	NG (+/-)	DM_0			
(1)	DISCOUNT FAC	TOR (TABLE A)		0		
(2)	DISCOUNTED S	AVINGS/COST (3A)	(3A1)		ľ	0
* ON T	HIS FORM MBT	$U = 10^6 BTU'S$				
** OTH *** DISC	ER FUEL IS REG	FOR NATURAL GAS	S (SOURCE EN	ERGY); REGIO	ON 5; 20 YEAF	RS .

B.	NON RECU	RRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
2 .		DM			DM	0
b.	_	DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u> SIMPLE PA	N ENERGY DISCOU	NTED SAVINGS (3 DA + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM 48.2	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>/INGS (2N5 + 3C):</u>		DM	869.1
6.	SAVINGS 7	<u>IO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		0.36	
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	- 1.22	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO H17

VILSECK

PIPE INSULATION

3.0. No	<u> </u>				akor
Subject: <u>Galation >h2 / VI</u>	LIELL THELE	4 1.02.5		- 📲	
ECO HIT - PIPE INFOLD	<u></u>	Sheet No	of _5	-	
		Drawing No.		-	
Computed by <u>CEM</u> Cher	cked By	Date	<u>Y 3 (03</u>	-	
· Assumations	,:				
1. Leve	ULLE WISEL T	EMPE41022 .	57.5°C		
(35	SED ON A A	OT WITER RESE	T SCHEWLE	07 85°C 50	TEMPERITOR
AT	-18°C DUTDO	DZ AIR TEMPET	21.TUZE AND	40°C 50724	TEMPERATURE K
16°	C OUTLOOK A	2 TE HERATUR	E; AND A	WILTER TELIPER	LATURE DROP OF
00	'C Access Th	E FINNED TO	BE RADIVET, OU	(i.e. suc	SUPPLY TEMPERAT
-	(85°C+40°C)	12: 62.30 ;	AVG. RETURN	TEMPERATURE	: (85.10) + (40.10)
.	52.52 :	ANC. WITCH TE	merature (6	252+52.0 -1/2	. + 57.5°C)
	LANDIENT	- TEL-PEUSAUS	= 22°F		
3 -	<	FRE & P	マモー 秋子 リッチン		cket of
	AITE KRAE >		To ALIM	NUM FOIL LN	2 REINFORCES
W)	TH GLASS F	RE LE		····	
	ruition the	lichett is a	r follows i		
	PIPE SIER U	> - 5 32 mm	- 13mm IN	SOL/JINN	
	PIRE SIZES F.	WM: 38mm TO	51mm - 2	5mm INECUST	NC
	Pipe sizes o	ve, 1 51mm -	38 mm INS.	したら	
				•	
P.PE	THSULATION	BLE PIPE	INCULATES	ENERGY	ENEIGY Werner
SIZE	THKKHES	HEUT LOUS	PIPE LEVE	S-VINC-	W/METER
(NOM)		PET LINE FOR	LOS-/ FCC.	R2 F00.	
: ISmm	13 mm	3295UL/FT	82 BTON/FT	34.7 BU-/FT	23.7 W/M
20mm	Bmm	40.2 37 JH/FT	E.2 BUL/FT	320370-/FT	30,8 W/M
2= 4-10	13 mm	493 BTUL/FT	11. OFTUL/FT	383 BTU-/FT	36.8 W/M
1 6 2 6 7 6 8	13 mm	61,2 BTUK/FT	14.6570-/Fi	46.6 BTUL/FT	44.8W/M
32 mm	1 / / / / / /	•		1	STILL/M
32 mm Zomm	25mm	BISTUL/FT	9,1 ETUR/PT		3.11 ~/11
32 mm 20mm Schim	25mm	BIJETUL/FT SAIJTJUL/FT	9.1 570K/FT	73.0 BTUL ==	70.2W/M
32 mm 20mm Schim 65mm	25 mm 25 mm	68,58702/FT 84,078702/FT 100,48702/FT	9.1 570K/FT 11.0 870K/FT 8.2 870K/FT	53,48,3-/F1 73,0870-/F7 9222070-/F7	70.2W/M 38.6W/M
32 mm 20mm Schim 65mm 80mm	25 mm 25 mm 38 mm	68:35702/87 84.073702/87 100.48702/87 119.68702/87	9,1 5702/FT 11,0 8704/FT 8.2 8704/FT 11,0 8704/FT	53,4 8,5-77,7 73,0 370-, 27 92 2 370-, 27 108,6876,777	70.2W/M 88.6W/M 104.4 W/M
32 mm 20mm Schim 65mm 80mm 100mm	25 mm 25 mm 38 mm 38 mm	68:38702/PT 84.08702/FT 100.48702/FT 119.68702/FT 135.18702/FT	9.1 ETDL/FT 11.0 BTUL/FT 8.2 BTUL/FT 11.0 BTUL/FT 11.0 STUL/FT	-5,4 0,5-77 73,0 BTU-1 FT 92 2 DTV-7 FT 108,6 BTU-7 FT 124,1 BTU-7 FT	70.2W/M 38.6W/M 104.4 W/M 119.3 W/M
32 mm 20mm Schim 65mm 80mm 100mm	25 mm 25 mm 38 mm 38 mm 38 mm	68:35702/PT 84.073702/PT 100.4 BTU2/FT 119.6 BTU2/FT 135.1 BTU2/FT	9.1 ETOL/FT 11.0 BTUL/FT 8.2 BTUL/FT 11.0 BTUL/FT 11.0 STUL/FT	53,4 8,3-777 73,0 BTU-1 FT 92 2 DTU-7 FT 108,6 BTU-7 FT 124,1 BTU-7FT	70.2W/M 88.6W/M 104.4 W/M 119.3 W/M
32 mm 20mm Schim 65mm 80mm 100mm	25 mm 25 mm 38 mm 38 mm 38 mm	(BISTIUL/FT 34.03JUL/FT 100.43JUL/FT 119.63JUL/FT 135.13JUL/FT 14 CLUET 673	9,1 5702/27 11.0 8702/27 8.2 8702/27 11.0 8702/27 11.0 8702/27 84520 00	73,0 810-, FT 73,0 870-, FT 92 2 870-, FT 108,6870-, FT 124,1 870-, FT 124,1 870-, FT	70.2W/M 88.6W/M 104.4 W/M 119.3 W/M HED BY DWENS -
32 mm 20mm Schim 65mm 80mm 100mm Heist Coris	25 mm 25 mm 38 mm 38 mm 38 mm 38 mm 28 mm 28 mm	(BISTIUL/FT 34.073JUL/FT 100.4 BJUL/FT 119.6 BJUL/FT 135.1 BJUL/FT 14 CLAST 475 14 CLAST 475	9.1 5704/97 11.0 8704/97 11.0 8704/97 11.0 8704/97 11.0 8704/97 B 45,20 CN 3-1N-6496	50,40,3777 73.0370-1=7 9222770-777 108.6870-777 124.18704/FT 124.18704/FT TABLES PUBLES E , OCT 1986	70.2W/M 88.6W/M 104.4 W/M 119.3 W/M HED BY OWENS -). VALUES WERE

S.O. No200 8 . 45 . 72m	
Subject: Gaute and Viller SNE 200 / whi	۲
50 H. P.N. INSULVENCE	Sheet No2 of _5
	Drawing No.
Computed by CER Checked By	Date Mizer 22, 1993

FIBERGLAS[®] PIPE INSULATION WITH ASJ OR NO-WRAP HORIZONTAL CYLINDER BO.F AMBIENT TEMPERATURE 0.0 WIND VELOCITY, NPH 1/2 IRON PIPE SIZE HEAT LOSS BTU HOUR PER FOOT LENGTH 0.85 BARE SURFACE EMITTANCE

Baker

					• • •																	_
THICK	150 HEAT LOSS	D.F SURF TEMP	200 HEAT LOSS	SURF	300 HEAT LOSS	D. F SURF TEMP	400 HEAT LOSS	D.F SURF TEMP	500 MEAT LOSS	D. F SURF TEMP	600 HEAT LOSS	D. F SURF TEMP	650 NEAT LOSS	D.F SURF TEMP	700 HEAT LOSS	D.F SURF TEMP	75 HEAT LOSS	D.F SURF TEMP	800 HEAT LOSS	D.F SURF TEMP	850 NEAT LOSS), F SURF TEMP
BARE 0.5 1.0 1.5 2.0	36 9 6 5	91 85 83 82	71 16 12 9	98 90 86 84	159 34 24 20 17	115 99 92 89	275 57 60 32 29	134 109 98 94	422 85 60 48 43	155 121 106 99	606 120 85 68 60	179 135 115 106	715 141 99 80 71	192 142 120 110	836 164 115 93 82	207 151 126 114	970 190 133 107 95	221 159 132 119	1119 218 153 123 109	237 169 138 124	1283 250 176 141 125	254 179 145 129
2.5 3.0 3.5 4.0	4 3 3 3	81 81 81 81	7 7 6	83 82 82 82	15 14 13	86 85 84 83	25 23 22 21	89 88 87 86	37 35 33 32	93 91 90 88	52 49 47 45	98 95 93 92	61 58 55 52	101 98 95 93	71 67 64 61	104 100 98 95	82 71 73 70	108 103 100 97	95 89 84 81	111 106 103 100	109 102 97 92	115 110 106 102
4.5 5.0 5.5 6.0	333	80 80 80 80	6 5 5 5	81 81 81 81	12 12 11	83 83 82 82	20 20 19 18	85 84 84 83	30 29 28 28	87 86 86 85	43 41 40 39	90 89 88 87	50 48 47 45	92 90 89 88	58 56 55 53	93 92 91 90	67 65 63	95 94 92 91	77 75 73 70	97 96 94 93	89 86 83 80	100 98 96 94

FIBER HORIZ 80. 0.0	RGLA ZONT F AM	S [®] P AL IBIE ND	IPE CYLI NT T VELO	INSUNDED EMP CIT	ULAT R ERAT Y, M	ION URE	WIT	H AS	ij of 10 si 15 bi	R NO URFA ARE	-WRA CE E SURF	AP EMIT FACE	HEA TANC EMI	T LO E TTA	OSS NCE	BTU	3, HOUI	/4 R PI	IRON ER FC	PIP XOT	LENG	ZE ;TH
	150 HEAT).F SURF	200 HEAT	D.F SURF	30 HEAT	D.F SURF	400 HEAT), F SURF TEMP	500 MEAT LOSS	D.F SURF TEMP	600 HEAT LOSS).F SURF TEMP	650 HEAT LOSS	SURF	700 HEAT LOSS	D.F SURF TEMP	750 HEAT LOSS	, F SURF TEHP	800 HEAT LOSS	F SURF TEMP	850 HEAT LOSS	SURF
BARE 0.5 1.0 1.5 2.0	1033 144 9 7 6 5	89 86 84 83	87 17 14 11	96 91 87 85	195 15 29 23 20	110 102 93 90	337 58 49 38 33	126 114 101 95	518 87 73 56 89	145 128 110 102	745 123 102 79 69	166 144 120 110	880 144 120 93 80	177 153 126 114	1030 167 139 108 93	190 162 132 119	1196 193 161 125 108	203 173 139 124	1380 222 185 143 124	217 184 186 129	1584 255 212 164 142	232 195 154 135
	-	-	_					-		05	59	100	60	103	80	107	92	110	106	114	122	119

4.5 5.0 5.5 6.0	3 3 3	81 80 80 80	6 6 6	81 81 81 81	13 13 12 12	83 83 83 82	22 21 21 20	85 85 84 84	33 32 31 30	88 87 86 86	47 45 44 42	91 90 89 88	55 53 51 49	93 91 90 89	64 62 60 57	95 93 92 90	74 71 69 66	97 95 93 92	85 82 79 76	99 97 95 94	97 94 91 87	101 99 97 95
2.5 3.0 3.5 4.0	4 4 9	82 81 81 81	8 7 7 7	83 82 82 82	17 16 15 14	86 85 84 84	28 26 25 23	90 89 87 86	42 39 37 35	95 92 91 89	59 55 52 49	100 97 95 93	69 64 60 58	103 100 97 95	80 74 70 67	107 102 99 97	92 86 81 77	110 106 102 99	106 99 93 89	114 109 105 102	122 113 107 102	119 113 108 104
2.0	5	83	9	85	20	90	33	95	49	105	67	110		1.14	,,	,						

1 IRON PIPE SIZE FIBERGLAS[®] PIPE INSULATION WITH ASJ OR NO-WRAP HEAT LOSS BTU HOUR PER FOOT LENGTH HORIZONTAL CYLINDER 80. F AMBIENT TEMPERATURE 0.90 SURFACE ENITTANCE 0.85 BARE SURFACE EMITTANCE 0.0 WIND VELOCITY, MPH 800.F HEAT SURF LOSS TEMP 850.F HEAT SURF LOSS TEMP 750.F HEAT SURF LOSS TEMP 200.F 300.F NOO.F 500.F NEAT SURF NEAT SURF NEAT SURF LOSS TEMP LOSS TEMP LOSS TEMP 650.F 700.F HEAT SURF HEAT SURF LOSS TEMP LOSS TEMP 600.F HEAT SURF LOSS TEMP 150.F HEAT SURF LOSS TEMP 342 220 179 154 THICK 298 192 156 134 192 124 101 87 224 145 117 101 259 167 136 117 78 51 41 35 22 15 12 10 47 31 25 21 164 106 86 74 BARE 0.5 1.0 1.5 2.0 116 75 61 53 163 138 123 183 152 134 172 145 128 153 131 118 12 86 5 145 125 113 137 119 109 99 93 89 110 100 95 123 109 101 90 87 85 86 82 116 111 107 111 104 99 128 120 113 99 96 94 72 68 64 102 99 96 84 79 74 105 101 98 97 91 86 112 107 104 94 92 90 62 58 55 29 27 26 90 88 87 44 41 39 2.5 3.0 3.5 4.0 18 17 16 86 85 84 104 101 8 8 7 83 82 82 81 81 99 97 95 101 99 97 103 100 96 78-76 73 96 95 93 90 87 84 68 65 63 94 93 91 91 90 89 58 56 54 92 91 90 35 34 33 50 48 46 24 23 22 85 85 84 88 87 86 14 14 13 83 83 82 81 80 80 81 81 81 N.5 5.0 5.5 6.0 6

S.O. No. 20098 BZNI	Baker
Drawing No.	
Computed by <u>Cerr</u> Checked By <u>Date March 22, 1923</u>	

FIBER HORIZ 80.F	ONTA MB		FE I YLIN T TE FI OM	IDEF EMPI	ERAT	URE	~ • • •	0.9	0 SI	JRFA NRE	CE	ENI	H TTA E E	HEAT	LO TAN	SS	BTI	1 H	DUR	PE	K FC			
	15/3.1 HEAT SI	r URT I	200	F	300 HEAT). F SURF	HEAT	SURF	SUC HEAT	SURF	64 HEA	00.F 1 SUR S TEM	lf P	650. (EAT S	F URF EMP	70 HEA1 LOSS	O.F SUR	F HI P LI	750. EAT S DSS T	F URF EMP	800 HEAT LOSS	.F SURF TEMP	HEAT	D.F SUR TEP
THICK BARE 0.5 1.0 1.5	67 18 10 7	97 87 84	131 34 19 13	109 93 87	295 72 39 28	135 104 93	511 119 65 46	164 118 101	789 179 97 68	195 133 109	114 25 13 9	1 3 23 7 15 6 12 8 11	11 50 20	1349 297 161 113 103	250 160 125 119	158 34 18 13 12	5 27 7 17 1 13	1 0 1	839 400 216 151 139	291 181 138 130	2126 461 248 174 160	313 193 145 136	2443 529 285 195 183	3
2.0 2.5 3.0 3.5	6 5 5	83 82 82 81	12 11 10 9	86 84 83 83 82	25 22 20 19 18	88 87 86 85	37 34 31 29	93 91 89 88	55 50 47	99 96 93 91	7 7 6	8 10 1 10 6 9	06 01 98 96	91 83 77 72	110 105 101 98	10 9 9	5 11 7 10 0 11 6 10	4)8)4)1	122 111 103 97	119 112 107 103	141 128 119 112	124 116 111 107	16 14 13 12	1
4.5 5.0 5.5 6.0	444	81 81 81 80	8 8 7 7	82 82 81 81	17 16 15	84 84 83 83	28 27 25 24	87 86 85 85	61 40 38 36	90 89 88 87		6 54 51	93 92 91 89	68 65 63 60	96 94 92 91	ז ר ז ז	9 6 3 0	98 96 94 93	92 88 84 81	100 98 96 94	105 101 97 93	103 100 98 96	12 11 11 10	
FIBE HORI 80	RGLA ZONT	S [®] P AL IB I E ND	I PE CYL NT VEL	INS INDI TEM	SULA ER PERA	T I ON T URI MPH		ГН А 0. 0.	SJ (90 :	DR N SURF	IO-H	VRAF E EN URF/	P NIT ACE	HEA TANC EM I	T L E TTA	.055	5 B'	TU	1 1 HOU	/2 R P	I RON ER	1 P F001	I PE T LE	S I NG
	150 HEAT), F SURF TEMP	20 HEA1	DO.F T SUR	J F NEA P LOS	OO.F T SUR	F MEA P LOS	00.F T SUR S TEM	5 F HEA P LOS	OO. F IT SUR	RF H AP L	600. EAT S OSS T	F IURF TEMP	65 HEAT LOSS	I), F SURI TENI	r HE P LO	700. AT S SS T	F URF EMP	754 HEAT LOSS	D.F SURF TEMP	HEA LOS	00.F T Sui S Tei	RF HE HP LO	850 AT SS
BARE 0.5 1.0 1.5	75 17 10 8	93 86 84	148	3 1 10 9 9 5 8	33 3 6 1 4 7 1	4 6 12 10 10 12 9	57 4 10 2 6 5 5	9 19 14 6 11 2 10	8 5 7 10 4 9 5 0	Ha 12 17 18 12 18 17 18 17	1 73 28 13 01	294 229 139 109 86	202 144 124 109	1530 269 162 128 101	21 15 13 11	17 8 3 3 1 0 1 3 1	95 13 89 49	235 163 137 117	2089 362 218 172 135	251 171 141 121	241 3 41 3 25 5 15 2 15	5 7 2 1 1 17 1 15 1	72 4 84 2 52 2 26 1	778 87 26 78
2.0 3.0 3.5 4.0	6 5 5	82 81 81 81	1	1 8 0 8 9 8	4 3 3	22 8 21 8 19 8	7 16 15	17 9 14 9 12 8 10 8	12 10 18	55 18 15	97 94 92 90	78 72 67 63	103 100 97 94	91 84 78 74	10 10 9	7 3 9 7	97 91 85	111 106 102 99	122 113 105 99	11 10 10	5 11 9 12 5 12	40 1 29 1 21 1 14 1	19 13 08 05	61 48 39 30
4.5 5.0 5.5 6.0	4 4 4	81 81 80 80)	8 8 8 8 7 0 7 0	12 51 51 51	17 1 16 1 16 1 16 1	34 33 33 33	29 8 27 8 26 8 26 8	36 36 35 35	41 39 39	89 88 87 87	60 57 55 55	93 91 90 90	7(6) 6)	9	15 13 12 12	81 78 74 74	97 95 93 93	94 90 80	4 9 9 5 9 5 9	9 1 7 1 5	08 1 04 1 99 99	97 97	113
F I B HOR 80 0.	ERGL	AS ^e TAL MB1	PIPE CYL ENT VEI	INC INC TEN LOC	ISUL) DER IPER	AT I C AT UF MPI	N WI	TH O O	ASJ .90 .85	OR SUF BAF	NO-	WRA	AP EM I T	HE TTAN E EM	AT CE		SS I	вти	но	2 UR	I RC PER	DN I FOG	PIPE DT L	SEN
	HEA	50.F T SUR S TEM	5 HE/ P LOS	POD.F AT SU SS IE	RF HE MP LO	300.F	RF HE MP LO	NOO.F AT SU SS TE	RT H MP LI	500.1 AT SU DSS T	F URF Emp	600 HEAT LOSS	D.F SURF TEMP	HEA LOS	50.F 1 SU 1 SU	RF I MP I	700 (EAT .055	.F SURF TEMP	7 HEA LOS	SO F	RF HE	800. AT \$ SSS T	F URF 1 EMP 1	IEA OS
8AR 0.1 1.1	5,1 10,1	2 8 9 2 8 9 8	11 2 7 4	B1 34 1 22 17 14	01 92 88 86	09 71 1 46 1 36 30	21 1 103 95 91	10 18 77 1 59 50	104 98	993 176 114 88 74	166 130 114 105	1593 249 161 124 104	193 146 129		16 11 2 18 1 15 1 22 1	08 56 32 19	2214 339 219 169 142	224 165 139 124	257 39 25 19	8 2 2 3 1 5 1 54 1	21 76 46 30	784 151 291 224 186	258 187 154 136	43 51 33 25 21
2. 3. 3.	5050	78 68 58	12	13 12 11 10	84 83 83 82	27 24 22 21	89 87 86 85	44 40 37 34	94 91 90 88	66 60 55 51	100 97 94 92	92 84 78 72	10 10 9	7 10 3 0 9 1	08 1 98 1 91 1 84	111 106 102 99	126 114 105 98	116 110 105 102	11 11 11	45 1 32 1 22 1 13 1	20 14 09 05	167 151 140 130	125 118 112 108	19
4. 5. 5.	5	5 1	81 81	9 9 8	82 82 81	20 19 18	84 84 83 83	32 31 29 28	87 86 85 85	48 46 44 42	90 89 88 87	68 65 62 59	9 9 9 9 9 9	3	80 76 72 69	97 95 93 92	93 88 84 81	99 97 95		07 1 02 97 93	99 99 97 95	123 117 111 107	105 102 99 98	14 13 12 12

S.O. No 200' 8 .45 .72M	
Subject: Contenword Vister Entery	
Ele har Par Inguest	Sheet No4 of
	Drawing No.
Computed by Checked By	Date March 22, 1553

OR12 80.1	CONT/ F AMI	SE C BIEN ND N	YLIN YLIN IT TI /ELOO	IDER Empe	RATU	JRE PH		0.9	0 SU 5 BA	RFA	CE E SURF	MITI ACE	HEAT FANCI EMIT	T LO E TTAN	ISS E	BTU	HOU	R [™] PÉ	R F	TOC	LENG	STH
HICK	150. HEAT S	FURF	200 HEAT	F SURF TEMP	300 HEAT	F SURF TEMP	400 HEAT LOSS	.F SURF TEMP	500 HEAT LOSS	. F SURF TEMP	600 HEAT LOSS	F SURF TEMP	650. HEAT S	T SURF TEMP	700 HEAT S LOSS	F SURF TEMP	750 H[A1 LOSS	.F SURF TEMP	800 HEAT LOSS	.F SURF TEMP	850 HEAT LOSS	SURF SURF TEMI
ARE 0.5 1.0 1.5 2.0	110 21 1k 9	93 87 84 83	215 40 26 18 15	102 92 87 85	487 83 54 37 32	122 104 93 90	846 138 88 61 52	144 117 101 96	1312 206 132 90 78	169 132 110 103	1904 290 185 127 110	196 149 120 112	2256 340 217 149 129	212 158 126 116	2650 396 252 173 149	228 169 132 121	3089 458 292 200 173	245 179 139 127	3576 528 335 230 198	263 191 146 133	N117 605 384 263 227	28) 204 154 134
2.5 3.0 3.5 4.0	7 7 6	82 82 81 81	14 12 11 11	84 83 83 82	28 26 24 22	88 87 86 85	47 43 39 37	93 91 89 88	70 64 59 55	99 96 93 92	98 90 82 77	106 102 98 96	115 105 96 91	110 105 101 99	133 122 112 105	114 109 104 101	154 141 129 121	118 113 108 104	177 162 149 140	123 117 111 107	203 185 170 160	12 12 11 11
4.5 5.0	5	81 81	10	82 82 82	21 20 20	84 84 84	35 33 33	87 86 86	52 49 49	90 89 89	73 69 69	94 92 92	86 81 81 77	96 94 94 93	100 94 94 90	99 97 97 95	115 108 108 104	102 99 99 97	132 125 125 120	104 101 101 99	151 143 143 137	10 10 10
5.5 6.0 FIBE IORI 80.	RGLA ZONT F AM	S [®] P AL (BIE	9 I PE CYLII NT T	81 I NSU NDEI EMPI	IS ULAT ERAT	i on URE	32 WITI	66 H AS	J OF	NO NO	-WRA	P	HEA			BTU	HOU	3 R PE	RON ER F	PII DOT	PE S	I Z E GTH
5.5 6.0 FIBE IOR1 80. 0.0	RGLA ZONT F AM WI	S [®] P AL (BIE ND (9 I PE CYLI NT T VELO 2000	81 INSU NDEI EMPI CIT	JLAT R ERAT Y, M 3000 HEAT	I ON URE PH	32 WITI HOC HEAT	66 H AS 0.9 0.8	47 5.J OF 10 SU 15 BA	88 R NO JRFA ARE	-WRA CE E SURF	P MIT ACE SURF	HEA TANC EMI	T LC E TTAI	DSS 1 NCE	BTU	HOU	3 I R PE	RON R F	PII OOT	PE S LEN	IZE GTH
5.5 6.0 FIBE HORI 80. 0.0 THICK BARE 0.5 1.0	3 RGLA ZONT F AM W1 150 MEAT LOSS 131 28 131	S [®] P AL (BIE ND F SURF TEMP 94 87	9 I PE CYLI NT T VELO 2000 HEAT LOSS 258 51 30 233	81 INSI NDEI EMPI CIT SURF TEMP 105 93 89	19 JLAT ERAT Y, M 300 HEAT LOSS 563 107 64 468	63 1 ON URE PH 5.F 5.URF TEMP 127 105 97	400 400 405 1015 177 105 799	86 H AS 0.9 0.8 50.7 50.7 50.7 50.7 50.7 152 152 119	47 5 J OF 10 SU 15 BA 1575 264 1575 117	88 R NO URFA ARE 1.F SURF TEMP 179 137	-WRA CE E SURF 600 HEAT LOSS 2290 374 2290 165	P MIT ACE 50.F 50.RF 7EMP 210 153 130	HEA TANC EM1 655 HEAT LOSS 2715 & 38 2715 & 38 2715 & 193	T L(E TTAI	DSS 1 NCE 700 HEAT LOSS 3190 510 300 224	BTU SURF TENP 245 174 145	HOU HEAT LOSS 3721 590 346 259	3 R PE SURF TEMP 263 185 153	80 HEAT LOSS 4311 679 399 297	PII OOT 0.f SURF TEMP 283 198 162	2E S LEN HEAT LOSS 4966 779 457 341	IZE GTH O.F SUR TEH 30 21
5.5 6.0 FIBE 10R1 80.0 0.0 THICK BARE 0.5 1.5 2.0 2.5 3.5	5 RGLA ZONT F AM WI 150 MEAT LOST 131 28 17 12 10 9 9 7 7	81 S [®] P AL BIE ND - - - - - - - - - - - - -	9 IPE CYLI NT T VELO 200 HEAT LOSS 258 258 258 258 19 16 15 13	INSU NDEI EMPI SURF TEMP 105 93 89 86 86 84 83 83	19 JLAT ERAT Y, M 3000 HEAT LOSS 563 107 64 48 40 40 31 28 26	В3 I ON URE PH 127 105 97 93 90 88 87 86	32 WITI HEAT LOSS 1015 177 105 57 51 65 57 51 46	86 H AS 0.9 0.8 0.8 0.8 0.8 0.5 50.8 105 105 106 106 106 106 93 93 93	47 5 J OF 10 SU 15 BA 1575 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177 975 2646 1177	88 NO URFA RE 1.F SURF TEMP 135 117 108 103 99 96 93	CE E SURF 600 HEAT LOSS 2290 374 220 165 137 119 97 97	P MIT ACE 50.F 50.F 153 153 153 153 153 153 153 153 153 153	HEA TANC EM1 655 HEAT 1055 2715 2715 2715 2715 2715 2715 2715 193 193 193 105	T LC E TTAI SURF TEMP 227 163 157 124 115 109 101	DSS 1 NCE 100 1190 3190 3190 300 222 145 131 122	BTU SURF 1EMP 245 176 185 130 120 113 104	HOU HEAT LOSS 3721 346 2590 346 215 187 168 152 141	3 R PE 5. F 5. URF TEMP 263 185 136 125 136 125 138 138	BON HEAT LOSS 4311 679 399 297 297 297 297 297 297 193 193 193	PII OOT 5.00T 283 198 162 143 162 143 131 111	PE S LEN HEAT LOSS 4966 779 457 341 283 246 221 246 221 246 231 246 245 246 246 246 246 246 246 246 246 246 246	IZE GTH 0. F SUR TEM 300 21 11 11 11 11 11 11 11 11 11 11 11 11

FIBE HORI2 80. 0.0	RGLA ZONT F AP WI	IS [®] P IAL IBIE IND	IPE CYLI NT T VELC	INSI NDEI EMPI ICIT	JLAT R ERAT Y, M	URE IPH	WIT	H AS 0.9 0.8	ij of 10 Si 15 B/	R NO JRFA Are	-WRA	AP EMIT FACE	HEA TANC EM	AT L E ITTA	OSS NCE	вти	HOU	/ Z R PI	ER F	00T	LENG	JTH
THICK	150 HEAT	D.F SURF	200 HEAT	D.F SURF TEMP	30 HEAT LOSS	D.F SURF TEMP	400 HEAT LOSS), F SURF TEMP	500 HEAT LOSS), F SURF TEMP	600 HEAT LOSS	D.F SURF TEMP	650 HEAT LOSS	D.F SURF TEMP	700 HEAT LOSS), F SURF TEMP	750 HEAT LOSS), F SURF TEMP	800 HEAT LOSS	SURF	850 HEAT LOSS	SURF
BARE 0.5 1.0 1.5 2.0	148 31 15 12	95 86 84	291 57 29 23 19	105 91 88 86	658 120 59 47 40	128 101 95 92	1148 198 98 78 66	153 112 103 98	1783 297 146 116 99	181 125 113 106	2595 419 206 164 139	212 141 125 115	3078 492 241 192 163	229 149 131 120	3619 572 280 223 189	247 158 138 126	4223 662 323 257 218	266 168 146 132	4895 763 372 296 251	286 178 154 138	5641 875 426 339 287	307 189 162 145
2.5 3.0 3.5 4.0	9 8 7 7	82 82 82 81	17 15 14 13	85 84 83 83	36 32 29 27	89 88 86 86	59 52 48 45	95 92 90 89	87 78 72 67	101 97 95 93	123 109 101 94	109 104 100 98	143 128 118 110	113 107 104 101	167 149 137 128	118 111 107 104	192 172 158 147	123 115 111 107	221 197 182 169	128 120 115 110	253 226 208 194	134 125 119 114
4.5 5.0 5.5 6.0	6 6 6	81 81 81	12 12 11	82 82 82 82	25 25 24 23	85 85 84 84	42 42 39 38	88 88 87 86	62 62 59 56	91 91 90 89	87 87 83 79	95 95 94 93	102 102 97 92	98 98 96 95	118 118 112 107	100 100 98 97	137 137 130 124	103 103 101 99	157 157 149 142	106 106 104 102	180 180 171 163	110 110 107 104

	S.O. No. 20098 - 43-B2M
Subject: GRIFENWOHR / VISECK ENERO	AUDIT
VILGELLE ECO HIT	Sheet No of
PIRE INSUL, JUN	Drawing No
Computed by <u>CEM</u> Checked By	Date <u>3 MV-y 1993</u>

Estimated Ins	WATCH REPLACEMENT REQUIREM	FUTS:
43 n 32	M OF PIPE INSULTION (DN 15-DN 100 FITTINGS & 0.25M EL.) = 43 m = <u>8</u> m 51 m
ANG HELT LOSS (237+30.8+36	, FOZ (DN 15 - DN 100) PIPING 6.8+44.8+57.1+70.2+58.6+104.4	= + 119.3)/9 = 64w/M

· ANNUAL ENERGY SLAINER =

- = SMONTHS + 14EAR + B760 HES + SIMETERS + 64 W + 3.413 BTU MMRTU 12 MONTS 14EAR METER WEHR WHR - 12 BOB BTU
- = 40.66 MMBTU

· ESTIMATED CONSTRUCTION COST

43M × DM 80/M	*	DM	3440				
32 FITTINGS & DM 160/FITTING	=	DM	5120				
		DM	8560				
LOCATION:	Vilse	ck, Germany	RE	GION NO. 5	5	PROJECT	NO ECO H17
--------------	-----------	-------------------	--------------------------------	------------	------------	------------	----------------
PROJECT TITL	E: HVA	C Pipe Insulation				FISCA	L YR <u>93</u>
DISCRETE POP	RTION NAM		<u></u>			-	
ANALYSIS DA	TE: 3 Ma	ay 93 ECO	NOMIC LIFE: 20		PREPARER	Marstiller	
	DRECTA	ENT COSTS.					
1.	CONSTRU	CTION COST		DM 8.56	50		
A.	SION			DM 51	4		
в.	210H	10eT		DM 51	4		
C.	DESIGN C	$\frac{1}{100}$	N	DM 959	38		
D.	TOTAL C		TING EQUIDME	NT	 DM	0	
E.	SALVAGE	VALUE OF EXI	SIING EQUIPME	1 1			
F.	PUBLIC L		NI KEBAIE				DM 9 588
G.	TOTAL IN	VESTMENT (ID	-1E-1F)				DM
2	ENERGY	SAVINGS (+) / C	COST (-):				
۷.	DATE OF	NISTIR 85-3273-	X USED FOR DISC	COUNT FACT	TORS	10/	/92
	DATE OF						
ENER	GY	COST	SAVINGS*	ANNUAL D	M DIS	SCOUNT	DISCOUNTED
SOUR	CE	DM/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FA	CTOR(4)	SAVINGS (5)
А.	ELEC	DM		DM			DM
В.	DIST	DM		DM			DM
С.	RESID	DM		DM			DM
D.	NG	DM		DM			DM
E.	PPG	DM		DM			DM
F.	COAL	DM		DM			DM
G.	SOLAR	DM		DM			DM
H.	GEOTH	DM		DM			DM
I.	BIOMA	DM		DM			DM
J.	REFUS	DM		DM			DM
К.	WIND	DM		DM			DM
L.**	OTHER	DM 36.07	40.7	DM 1468.	0 17	.21***	DM 25,265.1
М.	DEMANI	SAVINGS		DM			DM
N.	TOTAL		40.7	DM 1468			DM 25,265
2	NON EN	EDGY SAVINGS	(+) OR COST (-).				
3.	ANINITIAT	RECURRING (+/-)	DM 0			
А.			(TARIE A)		0		
	(1) DISC	JUINI FACIUK	(IADLE A)	A 1)	_		DM 0
*	(2) DISC	CUNTED SAVIN	105/0031 (3A X 3. 106 BTU'S	ni)			
**	OTHER F	UEL IS DISTRIC	HOT WATER				
***	DISCOUN	T FACTOR FOR	NATURAL GAS (S	OURCE ENE	RGY); REGI	ON 5; 20 Y	YEARS

B.	NON RECU	IRRING SAVINGS (+) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
a .		DM			DM	0
Ь.	<u> </u>	DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE P</u>	N ENERGY DISCOU	NTED SAVINGS (3 3A + (3Bd1/ECON(A2 + 3Bd4):	DM 6.5	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	/INGS (2N5 + 3C):	<u>.</u>	DM	25,265
6.	<u>SAVINGS '</u>	<u>TO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		2.64	
7.	ADJUSTEL	D INTERNAL RATE C	F RETURN (AIRR	<u>):</u>	9.16	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO H24

VILSECK

VESTIBULE HEATING

S.C	0. No. 20098 .45 . 32M
Subject:	AUDIT
VILSE CL ECO H24	Sheet No of
DISCONNECT VESTIBULE LEATER	Drawing No
Computed by Checked By	Date 4 Mrs FIG3

- THERE ARE TWO AIR WRITIAIN TYPE HEATERS LOCATED IN THE MAIN TROOP ENTRY CORRIDOR OF BUILDING 603. ONE AIR WRITAIN IS LOCATED OVER EACH ENTRY DOOR. THESE DEVICES ARE PROBABLY NOT ORIGINAL TO THE BUILDING AS THEY ARE NOT SHOWN ON THE DESIGN DRAWINGS
- · TYPICLUY, 60" WIDE (DODELÉ DOOR WIDTH) AIR CURTAINS HAVE TWO VISHP BLOWER MOTORS AND ARE REED FOR APPROXIMATELY 65000 BTUH
- ASSUMING THAT THE AIR WITCHING OPERATE FOR 33% OF THE MEAL-TIME HOURS (DUE TO HEAVY FOOT TRAFFIC THROUGH THE ENTRY DOORS AND COTURIDON) DURING THE FOUR COLDEST MONTHS; AND HALF AS MANY HOURS DURING THE TWO MONTHS ON EITHER SIDE OF THE COLDEST MONTHS (GMOS. TOTAL OPERATION, ANNUALY)

17 WEEKS × 32.5 H25/WEEK × 33% = 184.2 9 WEEKS × 32.5 HRS/WEEX × 16.7% = $\frac{48.3}{233.0}$

- ENERGY USE:
 2 UNITS × 233 HRS × 65,000 BTU × MMBTU
 2 UNITS × 233 HRS × 65,000 BTU × 106 BTU = 30,3MMTDU
 2 UNITS × 233 HRS × 2MOTORS × 106 BTU = 30,3MMTDU
 2 UNITS × 233 HRS × 2MOTORS × 106 BTU = 30,3MMTDU
 2 UNITS × 233 HRS × 2MOTORS × 106 BTU = 30,3MMTDU
 2 UNITS × 233 HRS × 2MOTORS × 106 BTU = 30,3MMTDU
- CONSTRUCTION COST ESTIMATE
 DEMOLITION OF MECHL & ELECTRICAL DEVICES = 20485 × 50/42 = DM 1000
 REPLICEMENT OF TRIM @ DOORS
 DM 200
 DM 1200

LOCATION:	Vilse	ck, Germany		REGION NO.	5		PROJEC	T NO	ECO H24
PROJECT TITLE	E: Disc	onnect Vestibule I	Heaters				FISCA	LYR	93
DISCRETE POR	TION NAM	(E:					•		
ANALYSIS DAT	TE: 4 Ma	ay 93 ECO	DNOMIC LIFE:	20	PREP	ARER	Marstille	ৰ	
1.	INVESTM	ENT COSTS:							
A .	CONSTRU	ICTION COST		DM 1,	200				
В.	SIOH			DM	72				
С.	DESIGN C	COST		DM	72				
D.	TOTAL C	OST (1A+1B+10	C)	DM 1,	,344				
E.	SALVAGE	E VALUE OF EX	ISTING EQUIPM	IENT]	DM	0		
F.	PUBLIC U	TILITY COMPA	NY REBATE		1	DM _	0		
G.	TOTAL IN	IVESTMENT (1I	D-1E-1F)					DM _	1,344
2.	<u>ENERGY</u> DATE OF	<u>SAVINGS (+) /</u> NISTIR 85-3273	<u>COST (-):</u> -X USED FOR DI	SCOUNT FA	CTORS		10	/92	
ENERC SOURC	GY CE	COST DM/MBTU(1)	SAVINGS MBTU/YR(S* ANNUAL 2) SAVINGS(DM (3)	DIS FA	COUNT CTOR(4)	DISC SAV	COUNTED VINGS (5)
А.	ELEC	DM 41.02	1.0	DM 41.0)	11	.59**	DM	475.4
В.	DIST	DM		DM				DM	[
С.	RESID	DM		DM				DM	[
D.	NG	DM	<u></u>	DM				DM	[
E.	PPG	DM		DM				DM	[
F.	COAL	DM		DM				DM	[
G.	SOLAR	DM		DM				DM	[
Н.	GEOTH	DM		DM				DM	1
I.	BIOMA	DM		DM				DM	ſ
J.	REFUS	DM		DM				DM	11
К.	WIND	DM		DM				DM	1
L.***	OTHER	DM 36.07	30.3	DM 1,0	92.9	17	.21****	DM	18,809.2
М.	DEMANI	SAVINGS		DM				DM	1
N.	TOTAL		31.3	DM 1,1	34			DN	19,284.6
3.	<u>NON EN</u>	ERGY SAVINGS	(+) OR COST (-):					
А.	ANNUAI	RECURRING (+/-)	DM 0					
	(1) DISC	OUNT FACTOR	(TABLE A)	·····		0			
	(2) DISC	COUNTED SAVI	NGS/COST (3A X	3A1)				DN	A
* ** ***	ON THIS I DISCOUN OTHER FI DISCOUN	FORM MBTU = T FACTOR FOR UEL IS DISTRIC T FACTOR FOR	10° BTU'S ELECTRICITY; T HOT WATER NATURAL GAS	REGION 5; 20 (SOURCE EN	0 YEARS NERGY);	REGI	on 5; 20 ⁻	YEARS	

B .	NON RECU	RRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
a .		DM			DM	0
Ь.		DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u>	N ENERGY DISCOUN	NTED SAVINGS (3 A + (3Bd1/ECON(<u>A2 + 3Bd4):</u> DMIC LIFE)):	DM 1.2	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u> INGS (2N5 + 3C):</u>		DM	19,285
6.	SAVINGS 1	TO INVESTMENT RA	<u>TIO (SIR) 5/1G:</u>		14.35	
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR)	<u>:</u>	18.82	%

-

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO P5

VILSECK

STORAGE TANK INSULATION

		S.O.	No. 20078 - 43 - 32M
Baker	Subject: <u>Grapenwork</u>	/ILSECK ENEIGY	
Iginee 5	VILLER 200 PD		Sheet No or
	STORAGE TANK INSS		Drawing No
- TANK WI:	ter temperature = 60°C	(140°F)	
· MECHANIC	-L ROOM TEMPERATURE = 2	.2°C (72°F)	
	3) MM FIBERGLOSS STEEL TONK WAL	BOAZIS INSULATIO L	N (R= 2.86°F-FT2-H2/BTU-1
- a map	= AIR FILM		
• • • • •	IDE AIR FILM (STILL AIR)	R = 1.46	
Theol		R: 4.39	
STERL	- ,	R: 0.00	
-	-	R- : 5.85	
		U=1/2. = 0.1717	570/°F -F7 ² -H2
		= 0,071	$w/ec \cdot M^2$
· Estimated	AMOUNT OF INSULATION TO	BE REPLACED	$= 8m^2$
· ENERGY	Durinas = Bm2 × 0.971W 2.m2	, (boc. 22c) .	295.2 W
- Assuminia	THAT DOMESTIC ACT WATE	2 15 570222	AT 60°C THRUGIANT
THE YEAR	2: 365. D.L.YS 24 L2S 295 YELSE D.L.Y	5:2W , 3.413 BT. KWH	2 . MMIBIU = 8.83 MMIBIU
· Estimute	E CONSTRUCTION COST :	8m² × DM98	5.00, TOM 784

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

.

LOCATION:	Vilse	ck, Germany		REGION N	05		PROJEC	r no <u>eco p5</u>
PROJECT TITLE: Storage Tank		ge Tank Insulation				<u></u>	FISCA	L YR <u>93</u>
DISCRETE POR	RTION NAM	(E:						
ANALYSIS DA'	TE: <u>4 Ma</u>	ay 93 ECO	NOMIC LIFE:	20	PRE	PARER	Marstiller	ſ
1. A. B. C. D. E. F.	INVESTM CONSTRU SIOH DESIGN C TOTAL CO SALVAGE PUBLIC U	ENT COSTS: UCTION COST COST OST (1A+1B+1C) E VALUE OF EXIS	STING EQUIP	DM DM DM DM MENT	784 47 47 878	DM	0	DM 979
G. 2.	ENERGY DATE OF	SAVINGS (+) / C NISTIR 85-3273-J	OST (-): (USED FOR I	DISCOUNT F	ACTORS		10/	<u>92</u>
ENER	GY CE	COST DM/MBTU(1)	SAVINO MBTU/YR	GS* ANNUA R(2) SAVING	L DM S(3)	DIS FAC	COUNT CTOR(4)	DISCOUNTE SAVINGS (5
A.	ELEC	DM		DM				DM
В.	DIST	DM		DM				DM
С.	RESID	DM	<u></u>	DM			<u>, , , , , , , , , , , , , , , , , , , </u>	DM
D.	NG	DM	_	DM		•		DM
E.	PPG	DM		DM		•		DM
F.	COAL	DM	<u></u>	DM		• •		DM
G.	SOLAR	DM		DM		•		DM
Н.	GEOTH	DM		DM		•	<u></u>	DM
I.	BIOMA	DM		DM				DM
J.	REFUS	DM		DM				DM
К.	WIND	DM		DM				DM
L.**	OTHER	DM 36.07	8.83	DM 3	18.5	17	.21***	DM 5,481.4
М.	DEMANI	SAVINGS		DM				DM
N.	TOTAL		8.83	DM 3	18.5	-		DM 5,481
3. A.	<u>NON ENI</u> ANNUAI (1) DISC (2) DISC	ERGY SAVINGS (, RECURRING (+ OUNT FACTOR (OUNTED SAVING	<u>+) or cost (</u> /-) TABLE A) GS/COST (3A 2	<u>-):</u> DM_0 K 3A1)		0		DM 0
* ** ***	ON THIS I OTHER FU DISCOUN	FORM MBTU = 1 JEL IS DISTRICT T FACTOR FOR N	0° BTU'S HOT WATER IATURAL GAS	S (SOURCE I	ENERGY); REGIC)n 5; 20 Y	'EARS

B .	NON RECU	JRRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCO SA (+) CO	OUNTED VINGS OST (-) (4)
a .		DM			DM	0
b.		DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	ON ENERGY DISCOUN	NTED SAVINGS (3 A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM	0 YEARS
5.	<u>TOTAL NE</u>	T DISCOUNTED SAV	<u>'INGS (2N5 + 3C):</u>		DM	5,481
6.	SAVINGS 7	<u>FO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		6.24	
7.	ADJUSTEL	D INTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	13.97	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO P7

VILSECK

FLOW RESTRICTORS

		S.O. No. 2000 - 45 - BRM
Baker	Subject: GRATENWORL / VILLECK SHERC	ar hubit
ineers	VILSECK ECO P7	Sheet No of
	FLOW RESTZICTORS	Drawing No
	Computed by Checked By	Date 4 MAY 1993

- · DOMESTIC HOT WRITER TEMPERATUR = 60°C (140°F)
- · FLOW RESTRICTING AERASOR FITTINGS REDUCE LANATORY FLOW FROM 3GPM
- · APPROXIMATELY 1600 MELLS ARE SERVED EACH DAY. ASSUMING THAT VS OF ALL DINERS WASH THEIR HANDS AND THAT ON THE AVERAGE FLOW IS MAILTAINED FOR 20 SELONS/ HANDWISHING

1600 DINERS / DAY X /3 x 20 SECONDS X IMIN/ 60 SECOND : 177.8 MINUTES/ JAY

ALSO, ASSUME THAT THE KITCHEN STREF (80 PEOPLE) WASHES THEIR KANDS AT LEVET ONCE EACH DAY FOR 60 SECONDS/ HANDWASHING

80 STREFF MEMBERS X | MINUTE EA. = 80 MINUTS

Total Davidory use = 178 Minutes + 80 Minutes = 258 Sig 260 Minutes - 268 Sig 260 Minutes / 260 Minu

IF LANDORY FLOW IS REDUCED FROM BOOM TO OBGOM THE ANNUAL WALTER SLAVINGE WILL BE

91,000 MIN x (3-0,5 GAL/MIN) = 227,500 GALLONS

Assuming THAT 2/3 OF THE WIJER USED FOR HANDWARKING IS HOT WIJTER WHICH MUST BE HEATED FROM 10°C (50°F) TO 60°C (140°F)

2/3 × 227,500 GALLONS × 8.3# × 1810 (1407.50°F) × MMETU = 113,3 MMBTU/YEAL

CONSTRUCTION COST ESTIMINTE:

14 LAVATOLIES × DM 4, BOEL + DM 67.2

LOCATION:	Vilse	Vilseck, Germany		REGION N	REGION NO. 5			PROJECT NO ECO P7	
PROJECT TITLE: Flow		Restrictors					FISCA	L YR <u>9</u> 3	3
DISCRETE POR	TION NAM	Е:							
ANALYSIS DA	ΓE: <u>4 M</u> a	ey 93 ECO	NOMIC LIFE:	20	PRE	EPARER	Marstille	r	
1.	INVESTM	ENT COSTS:							
A.	CONSTRU	CTION COST		DM	67.2				
В.	SIOH			DM -	4.0				
С.	DESIGN C	OST		DM	4.0				
D.	TOTAL CO	OST (1A+1B+1C)	DM	75.2				
E.	SALVAGE	VALUE OF EXI	STING EQUIP	MENT		DM	0		
F.	PUBLIC U	TILITY COMPAN	Y REBATE			DM	0		
G.	TOTAL IN	VESTMENT (1D	-1E-1F)					DM	75.2
2.	<u>ENERGY</u> DATE OF	<u>SAVINGS (+) / C</u> NISTIR 85-3273-2	COST (-): X USED FOR 1	DISCOUNT I	FACTORS	ł	10/	/92	
ENER	GY CE	COST DM/MBTU(1)	SAVIN MBTU/YI	GS* ANNUA R(2) SAVINO	AL DM GS(3)	DIS FAC	COUNT CTOR(4)	DISCO SAVI)UNTED NGS (5)
А.	ELEC	DM		DM				DM_	
В.	DIST	DM		DM_				DM_	
С.	RESID	DM		DM				DM_	
D.	NG	DM		DM				DM_	
Ε.	PPG	DM		DM_				DM_	
F.	COAL	DM		DM				DM_	
G.	SOLAR	DM		DM				DM_	
H.	GEOTH	DM		DM				DM_	
I.	BIOMA	DM		DM				DM_	
J.	REFUS	DM		DM				DM_	
К.	WIND	DM		DM			<u> </u>	DM_	
L.**	OTHER	DM_36.07	113.3	DM_4	1,086.7	17	.21***	DM_	70,332.6
М.	DEMANI) SAVINGS		DM				DM	
N.	TOTAL		113.3	DM	4,087	_		DM_	70,333
3.	<u>NON ENI</u>	ERGY SAVINGS	(+) OR COST	<u>(-):</u>					
А.	ANNUAL	. RECURRING (+	-/ -)	DM_	D	_			
	(1) DISC	OUNT FACTOR	(TABLE A)			0			
<u>.</u>	(2) DISC	OUNTED SAVIN	GS/COST (3A	X 3A1)				DM_	0
* ** **	ON THIS I OTHER FU DISCOUN	JEL IS DISTRICT	HOT WATER	S (SOURCE	ENERGY); REGIO	on 5; 20 y	YEARS	

B. NON RECURRING SAVINGS (+) OR COST (-)

	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
8.		DM			DM	0
b .		DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u> SIMPLE PA	ON ENERGY DISCOU	NTED SAVINGS (3 3A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM 0.02	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>/INGS (2N5 + 3C):</u>	-	DM	70,333
6.	SAVINGS 7	<u>FO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		935.3	
7.	ADJUSTED	DINTERNAL RATE O	<u>F RETURN (AIRR)</u>	<u>):</u>	46.41	%

,

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO P8

VILSECK

AUTOMATIC SHUT-OFF FAUCETS

	s	3.0. No. 20098 - 45-BEM
Baker	Subject: CTR-FENWOINE VISECK ENE	ERGY AUDIT
Engineers		Sheet No of
	AUTOMATIC Shut-OFF FLOCATS	Drawing No
4	Computed by <u>CEM</u> Checked By	Date <u>4 MAY 1993</u>

•	DOMESTIC NOT WATER TEMPERATURE : 60°C (140°F)
•	AUTOMATIC FLOW FLIXETS WILL SHUT OFF WATER FLOW AFTER 4 SECONDS
	(MOST AZE ALLUSTABLE FROM Z-15 SECONDS)
•	AVERAGE HANDWASHING WILL REQUIRE 3 PUSHES OF FLOW LEVERS
	FOR A TOTAL OF 12 SECONDS OF FLOW (VS. 20 SECONDS OF FLOW
	ESTIMATED FOR ELLO P7). So THE TOTAL FLOW DURATION WILL
	BE REDUCED FROM THE GLOOOMIN/YE ESTIMATED FOR ECO PT TO
	1252C = 91,000 MIN/YR = 54,600 MIN 2092C
	FOR L SUMINTS OF 91,000 - 54,600 = 36,400 MINUTES /4R
•	AT OSGPM (FLOW RESTRICTOR INSTALLED)
	36400 MIN X D.5GPM = 18,200 GILL/42 SUNNAS
•	WITH AUTOMATIC SHUT OFF FRUCETS, 50% OF THE SAVED FLOW WILL
	BE HOT WREE, WHICH WILL NOT HAVE TO BE HERED FROM 10°C TO
	GO'C. THEREFORE, THE ENERGY SLVINGS WILL BE:
	$0.50 \times 18.200 \text{ GAL} \times 8.3^{\pm}$, <u>IBTU</u> , 90°F , <u>MMBTU</u> = 6.8 MMBTU GAL $\pm \cdot \cdot \text{F}$ 10° BTU = 6.8 MMBTU
•	CONSTRUCTION COST ESTIMATE:
	14 LANS × DM 180/LAN = DM 2520

LOCATION:	Vils	Vilseck, Germany		REGION NO.	5		PROJEC	T NO	ECO P8
PROJECT TITLE	E: Auto	omatic Shut-off Fai	ucets				FISCA	LYR	93
DISCRETE POR	TION NAM	ИЕ:							
ANALYSIS DAT	TE: <u>4 M</u>	ay 93 ECC	NOMIC LIFE:		PRE	PARER	Marstille	ſ	
1.	INVESTM	ENT COSTS:							
А.	CONSTRU	JCTION COST		DM 2,	520				
В.	SIOH			DM	151				
C.	DESIGN (COST		DM	151				
D.	TOTAL C	OST (1A+1B+1C	C)	DM 2,	822				
Е.	SALVAG	E VALUE OF EX	ISTING EQUIP	MENT		DM	0		
F.	PUBLIC U	JTILITY COMPA	NY REBATE			DM	0		
G.	TOTAL I	NVESTMENT (1D	-1E-1F)					DM _	2,822
2	ENERGY	SAVINGS (+) / (COST (-):						
L.	DATE OF	7 NISTIR 85-3273-	X USED FOR I	DISCOUNT FA	CTORS		10	/92	
ENERC SOURC	GY CE	COST DM/MBTU(1)	SAVINO MBTU/YR	GS* ANNUAL (2) SAVINGS(DM 3)	DIS FAC	COUNT TOR(4)	DISC SAV	COUNTED /INGS (5)
А.	ELEC	DM		DM				DM	[
В.	DIST	DM		DM				DM	[
С.	RESID	DM		DM				DM	[
D.	NG	DM		DM				DM	[
E.	PPG	DM		DM				DM	[
F.	COAL	DM		DM				DM	[
G.	SOLAR	DM	an ditte	DM				DM	[
H.	GEOTH	DM		DM DM		-		DM	[
I.	BIOMA	DM		DM				DM	[
J.	REFUS	DM		DM				DM	[
К.	WIND	DM	<u></u>	DM				DM	[
L.**	OTHER	DM 36.07	6.8	DM 245	.3	17	.21***	DM	4,221.2
М.	DEMAN	D SAVINGS		DM				DM	[
N.	TOTAL		6.8	DM 245	.3	-		DM	1 4,221
3.	NON EN	ERGY SAVINGS	(+) OR COST (-):					
A.	ANNUA	L RECURRING (⊦/-)	DM 0					
2	(1) DISC	COUNT FACTOR	(TABLE A)			- 0			
•	(2) DISC	COUNTED SAVIN	IGS/COST (3A)	K 3A1)		<u></u>		DN	1_0
- ** ***	OTHER F	UEL IS DISTRICT T FACTOR FOR	HOT WATER	S (SOURCE EN	ERGY)	; REGIC)n 5; 20 y	ÆARS	

В.	NON RECU	TRRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
a .		DM			DM	0
Ъ.		DM	<u> </u>		DM	0
c.		DM	<u></u> •		DM	0
d.	TOTAL	DM			DM	0
C. 4.	TOTAL NO	<u>ON ENERGY DISCOU</u>	NTED SAVINGS (3 3A + (3Bd1/ECON(<u>A2 + 3Bd4):</u> DMIC LIFE)):	DM 11.5	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>/INGS (2N5 + 3C):</u>		DM	4,221
6.	<u>SAVINGS</u>	<u>FO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		1.50	
7.	ADJUSTEL	DINTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	6.11	%

-

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E1

VILSECK

LIGHTING LEVEL REDUCTION

S.O. No. 20058 - 25-32M		
Subject: CAREANUGER / VISSON FUELOW	Aubi- Bak	(
VISECK ECO F.1	Sheet No of	
REDUCE LICENTER LEVELS	Drawing No.	
Computed by <u> くきい</u> Checked By	Date 4 May 1993	

VISELIK

FROM GENEMINN COLLECTIONS:

A REDUCTION IN ILLUMINATION INTENSITY (-15%) IN THE KITCHEN LAND FOOL SEZVICE AREA IS POSSIBLE BY SELECTIVE DE - LAMPING

Space	PRESSUR LIGHTING	Robert Wenturg Level
KITCHEN	450 - 700 Lux	330 - 600 LUX
FOOD SETENIKE LEEL	200-350 Lux	170 - 300 LUX

Spile	PRESENT INSTALLED WATTAKE	PROPOSEL INSTALLED WILTTAGE
KITCLE	102 × 36W = 3672W	87 x36w = 3132w
FOOD SELVICE AREA	132 × 36W=4752W	112 ×36W = 4032W
BILLUSTE	234 × 13W:3042w	199×13W = 2587 W
15742 WATTAG	11,466w	9751 w

- TOTEL HOURLY SLIVINGS = 11,460W 9751W = 1715 W
- BLEEL ON 7600 KOURS OF OPERATION, THE TOTAL ANNUAL

EVERY SAVINGS 15:

- BASED ON THE MEANS ESTIMATING GUIDE PRICE FOR INSTALLING A FIXTURE, THE ESTIMATED COST OF DE-LAMPING 25-2 HAMP FIXTURES WILL TE:

25 FIXTURES X DM 72.18 = DM 1804,5

< **-**

S.O. No	
Subject: GREFERNIGHE / VILLEL ENERAL	· /
VILISER END EI	Sheet No of
REDUCT LIGHTING LEVES	Drawing No.
Computed by <u>CEM</u> Checked By	Date 4 MV- 1993

Baker

* OPERFING HOUSE (KICHEN/FOOD SERVICE ARE.)

	MON, TUE, WED, FRI	THORE	SAT, SON
BEELLFRET	0500-1045	0300 - 9830	0600 • 1130
LUNCH	0930-1500	1005 - 1536	0930-1500
DINNEL	1500-2030	1400 - 19,70	1400-19.70
BAKING	2200-0420	2200 -0400	2200-0400
TOTAL NO. KRS LIGHTS KRS ON ELDY	0500-70707 15.7 2100-040- 6.9 21,5 NRS	2162-0320+55 1900-1930-95 2200-000560 2100-200560 214RS	19,5425

CHART BUSUMES LIGHTS ARE TURNED ON 2425 PRIOR TO MEALS AND TURNED OFF 24PS AFTER MEALS.

52 WKS × [(4×21.5) - (21) + (2×19.5)] = 7592 KCS/45 5.49 7600 525/92

LOCATION:		Vils	Vilseck, Germany		REGION N	0. 5	PROJECT	NO ECO E1
PROJECT TITLE: Reduce Lightin		uce Lighting Le	evels	-		FISCAL	L YR <u>93</u>	
DISCR	ete po	RTION NAM	ME:					
ANAL	YSIS DA	ATE: <u>4 M</u>	ay 1993 E	CONOMIC LIFE:	20	PREPA	RER Marstiller	•
	1. <u>INVESTMENT COST</u>							
	A.	CONSTRU	UCTION COST		DM	1,804		
	B.	SIOH			DM -	108		
	C.	DESIGN	COST		DM	108		
	D.	TOTAL C	COST (1A+1B+	+1C)	DM	2,020		
	E.	SALVAG	E VALUE OF	EXISTING EQUIP	MENT	D	м 0	
	F.	PUBLIC V	UTILITY COM	PANY REBATE		D	M 0	
	G.	TOTAL I	NVESTMENT	(1D-1E-1F)				DM
	2.	ENERGY	SAVINGS (+)	/ COST (-):				
		DATE OF	F NISTIR 85-32	73-X USED FOR I	DISCOUNT F	ACTORS	10/	92
	ENER SOUR	RGY RCE	COST DM/MBTU	SAVING (1) MBTU/YF	GS* ANNUA R(2) SAVINO	L DM S(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS (5)
	Α.	ELEC	DM 41.02	44.5	DM 1,	,825.4	11.59**	DM 21,156.3
	В.	DIST	DM		DM			DM
	C.	RESID	DM		DM			DM
	D.	NG	DM		DM			DM
	E.	PPG	DM		DM			DM
	F.	COAL	DM		DM			DM
	G.	SOLAR	DM		DM_			DM
	H.	GEOTH	DM		DM_			DM
	I.	BIOMA	DM		DM			DM
	J.	REFUS	DM		DM_			DM
	K.	WIND	DM		DM		<u> </u>	DM
	L.	OTHER	DM		DM			DM
	М.	DEMAN	D SAVINGS		DM_			DM
	N.	TOTAL		44.5	DM 1	,825		DM 21,156
	3.	<u>NON EN</u>	ERGY SAVING	GS (+) OR COST ((-):			
	А.	ANNUA	L RECURRING	3 (+/-)	DM 0)		
		(1) DISC	COUNT FACTO	OR (TABLE A)			0	
		(2) DISC	COUNTED SAV	VINGS/COST (3A 2	X 3A1)			DM 0
	* **	ON THIS DISCOUN	FORM MBTU	$= 10^{\circ} BTU'S$ OR ELECTRICITY;	; REGION 5;	20 YEARS		

B.	NON RECU	RRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4)	
8.		DM			DM 0	
b .		DM			DM 0	
c.		DM	······································		DM 0	
d.	TOTAL	DM	<u> </u>		DM 0	
C. 4.	<u>TOTAL NC</u> <u>SIMPLE PA</u>	ON ENERGY DISCOU	NTED SAVINGS (3 0A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM_0 1.11 YEARS	
5.	TOTAL NE	T DISCOUNTED SAV	<u>/INGS (2N5 + 3C)</u> :	1	DM_21,156	•
6.	SAVINGS 7	<u>TO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		10.47	
7.	ADJUSTEL	D INTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	16.96 %	

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

.

ECO E4

VILSECK

CONVERT TO FLUORESCENT LIGHTING

S.O. N	10. <u>20098-45-32M</u>
Subject:	TI 9
VILLECK ECO F.AA	Sheet No of
CONVERT TO FLOORESKENT LIGHTING	Drawing No
Computed by Checked By	Date M/_Y 1993

 THE EXISTING DIMING ROOM LIGHTING FIXTURES HAVE INCLADESCENT LAMPS WITH /L TOTAL CONNECTED WATTAGE OF:
 18 FIXTURES × 12 LAMP:/FIXTURE × dow/LAMP = 8640 W
 18 FIXTURES × 8 LAMPS/FIXTURE × 40W/LAMP = 5760 W
 24 FIXTURES × 1 LAMP/FIXTURE × 150W/LAMP = 3600 W

• BY REPLACING THE EXISTING LIGHTING FIXTURES WITH 94 NEW, SURFACE MOUNTED, FLUORESCENT FIXTURES, THE REQUIRED ILLUMINIATION OF OFC CHI BE MAINTAINED WITH & REDUCED POWER CONSUMPTION OF 94 FIXTURES & ZUMPS/FIXTURE & 9W/UMP = 1692 W 94 FIXTURES & IBALLASS/FIXTURE & 6.5W/BALLAST = 611 W

· BASE ON 3640 HES OF DERITION, ANNULLY, THE ENERCY SAVINGS WILL BE:

3640 H25 (18,000 - 2303 W) × 3413 TSTU MMTTU = 195 MMTTU/42

* SEE ELO ET

· ESTIMATED CONSTRUCTION COST

1. DEMOLITION OF EXISTING 2 H2S/FIXTURE × GOFIXTURES × DM SO/HR = DM 6000 2 INSTILLIATION OF NEW FIXTURES (FROM MEANS ELECTROLL ESTIMATING GUIDE) 94 FIXTURES × DM 650 /FIXTURE = 61,100

DM 67,100

LOCATION:	Vilse	Vilseck, Germany			REGION NO. 5			PROJECT NO ECO E4-A		
PROJECT TITLE	3: Conv	vert to Fluorescent I	ighting				FISCA	L YR <u>93</u>		
DISCRETE POR	TION NAM	E:								
ANALYSIS DAT	TE: <u>6 Ma</u>	iy 93 ECON	IOMIC LIFE:	20	F	REPARER	Marstiller	[
1.	INVESTM	ENT COSTS:								
A .	CONSTRU	CTION COST		DM	67,100)				
В.	SIOH			DM	3,660	5				
C.	DESIGN C	OST		DM	3,660	5				
D.	TOTAL CO	OST (1A+1B+1C)		DM	68,432	2				
Е.	SALVAGE	VALUE OF EXIS	TING EQUIP	MENT		DM _	0			
F.	PUBLIC U	TILITY COMPAN	Y REBATE			DM _	0			
G.	TOTAL IN	VESTMENT (1D-1	E-1F)			_		DM 74,432		
2. <u>ENERGY SAVINGS (+) / COST (-):</u> DATE OF NISTIR 85-3273-X USED FO			<u>DST (-):</u> USED FOR I	DISCOUNT	FACTO	DRS	10/	/92		
ENERGY SOURCE		COST DM/MBTU(1)	SAVIN MBTU/YI	GS* ANNUAL DM R(2) SAVINGS(3)		DIS FAC	COUNT CTOR(4)	DISCOUNTED SAVINGS (5)		
А.	ELEC	DM 41.02	195.0	DM	7,998.9	11.	59**	DM 92,707.2		
В.	DIST	DM		DM	_			DM		
С.	RESID	DM		DM				DM		
D.	NG	DM		DM				DM		
E.	PPG	DM		DM				DM		
F.	COAL	DM		DM				DM		
G.	SOLAR	DM		DM				DM		
Н.	GEOTH	DM		DM				DM		
I.	BIOMA	DM		DM				DM		
J.	REFUS	DM		DM				DM		
К.	WIND	DM		DM				DM		
L.	OTHER	DM		DM				DM		
М.	DEMANI	SAVINGS		DM				DM		
N.	TOTAL		195.0	DM	7,999			DM 92,707		
3.	<u>NON ENI</u>	ERGY SAVINGS (-) OR COST	(-):						
А.	ANNUAL	, RECURRING (+/	-)	DM	0					
	(1) DISC	OUNT FACTOR (TABLE A)			0				
* **	(2) DISC ON THIS I DISCOUN	OUNTED SAVING FORM MBTU = 10 T FACTOR FOR E	S/COST (3A) & BTU'S LECTRICITY	X 3A1) ; REGION :	5; 20 YH	EARS		DM_0		

B.	NON RECU	NON RECURRING SAVINGS (+) OR COST (-)						
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)		
a .		DM			DM	0		
b.		DM			DM	0		
c.		DM			DM	0		
d.	TOTAL	DM			DM	0		
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	N ENERGY DISCOUR	NTED SAVINGS (3 A + (3Bd1/ECON(A2 + 3Bd4): DMIC LIFE)):	DM 9.3	0 YEARS		
5.	TOTAL NE	T DISCOUNTED SAV	<u> TNGS (2N5 + 3C):</u>		DM	92,707		
6.	SAVINGS 1	<u>IO INVESTMENT RA</u>	<u>TIO (SIR) 5/1G:</u>		1.24			
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR)	<u>1:</u>	5.15	%		

S.O. No	20098-45-32M
Subject: GULFERMOIL / VILSECK ENERGY	AUNIT
VISSELL ECO EATS	. Sheet No of
CONVERT TO FLUGRERENT LIGHTING	Drawing No
Computed by Checked By	Date 6 Mar 1993

- THERE ARE "S'TYPE FIXTURES IN THE EXISTING, NON-KITCHEN SPACES OF BUILDING 603. THIS DOES NOT INCLUDE THOSE "S" TYPE EXTREMIN THE DINING BOOKS, WHICH WOULD BE REPLACED BY THE RECOMMENDATIONS OF ECO E44. THE BULBS IN THESE FIXTURED THOUS BE REPLACED WITH SCREW-IN TYPE FLUORESCENT REPLACEMENT BULBS.
- · EXISTING WITTIGE: 28 F.XTURES X ISO W/ FIXTURE = 4200 WATTS
- REPUSED WILTAGE 28 FIXTURE: x 36 W/ FIXTURE = 1008 WATTS
- · BUSED ON 3640 HER OF OPERATION, LANNUALLY THE ESTIMATED ENERGY SAVINGS WILL BE:

3640 H25 (4200W -1003W), 3.413370, MMIBTU = 39.6 MMIBTU

· ESTIMATEL COST

28 LAMPS × DM 40/LANP = DM 1120

LOCATION:		Vilseck, Germany		REGION NO. 5		PROJECT NO ECO E4-B		
PROJECT TITLE: C		onvert to Fluore	scent Lighting				FISCA	L YR 93
DISCRETE POR	TION N/	AME:						
ANALYSIS DAT	TE: <u>6</u>	May 93	ECONOMIC LIFE:	20	PRI	EPARER	Marstille	r
1.	INVEST	MENT COSTS	:					
A.	CONST	RUCTION COS	- 5T	DM	1,120			
В.	SIOH			DM -	67			
C.	DESIGN	I COST		DM	67			
D.	TOTAL	COST (1A+1H	3+1C)	DM -	1,254			
Е.	SALVA	GE VALUE OF	FEXISTING EQUI	PMENT		DM	0	
F.	PUBLIC	UTILITY CO	MPANY REBATE			DM	0	
G.	TOTAL	INVESTMENT	Ր (1D-1E-1F)					DM <u>1,254</u>
2.	<u>ENERG</u>	<u>Y SAVINGS (-</u>	+) / COST (-):					
	DATE (OF NISTIR 85-:	3273-X USED FOR	DISCOUNT I	FACTORS	1	10/	/92
ENERG	SY CE	COST DM/MBT	SAVIN U(1) MBTU/YI	GS* ANNUA R(2) SAVINO	L DM GS(3)	DIS FAC	COUNT CTOR(4)	DISCOUNTED SAVINGS (5)
А.	ELEC	DM 41.0	2 39.6	DM 1	,624.4	11.	59**	DM 18,826.7
В.	DIST	DM		DM				DM
С.	RESID	DM		DM				DM
D.	NG	DM		DM_				DM
Е.	PPG	DM		DM				DM
F.	COAL	DM		DM				DM
G.	SOLAR	DM		DM_		<u> </u>		DM
Н.	GEOTH	I DM		DM				DM
I.	BIOMA	DM		DM_			<u></u>	DM
J.	REFUS	DM		DM				DM
К.	WIND	DM		DM				DM
L.	OTHER	DM		DM				DM
М.	DEMA	ND SAVINGS		DM				DM
N.	TOTAL		39.6	DM_1	,624	_		DM 18,827
3.	NON E	NERGY SAVI	NGS (+) OR COST	<u>(-):</u>				
Α.	ANNU	AL RECURRIN	IG (+/-)	DM ()			
	(1) DI	SCOUNT FAC	for (table a)			- 0		
i	(2) DI	SCOUNTED SA	AVINGS/COST (3A	X 3A1)				DM_0
* **	ON THIS DISCOU	S FORM MBTU INT FACTOR I	$D = 10^{\circ} \text{ BTU'S}$ FOR ELECTRICITY	; REGION 5;	20 YEAF	RS		

B. NON RECURRING SAVINGS (+) OR COST (-)

	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISC SA (+) C	OUNTED VINGS OST (-) (4)
8.		DM			DM	0
Ь.		DM			DM	0
c.		DM			DM	0
d.	TOTAL	DM			DM	0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE PA</u>	N ENERGY DISCOUL	NTED SAVINGS (3 A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM0.77	0 YEARS
5.	TOTAL NE	T DISCOUNTED SAV	<u>'INGS (2N5 + 3C):</u>	i -	DM	18,827
6.	<u>SAVINGS 7</u>	TO INVESTMENT RA	<u>TIO (SIR) 5/1G:</u>		15.01	
7.	ADJUSTED	INTERNAL RATE O	F RETURN (AIRR)	<u>):</u>	19.08	%

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E7

VILSECK

LIGHTING FIXTURE CONVERSION

S.O. No	S.O. No. 20098 - 45 - 32M		
Subject: GREENWORK / VILLELK ENERGY AU	b 1 T		
VILSECK FLO ET	Sheet No of		
LIGHTING FIXTURE CONVERSION	Drawing No		
Computed by <u>CEM</u> Checked By	Date _ 4 Max 1997		

FROM GENEMANN CONSULT FAX OF 2 MARCH, 1993

• WITHOUT REDUCING THE LIGHTING LEVEL WITHIN BUILDING 603, THE NUMBER OF 36W LAMPS IN THE LIGHTING SYSTEM CAN BE REDUCED FROM 370 LAWPS TO 326 LAMPS BY REPLACING THE EXISTING FLUORESCENT LAMP BALLASTS WITH ELECTRONIC BALLASTS.

· WITH CONVENTIONAL TALLASTS, THE CONNECTED LOAD IS; 370 LLMPS × 0.049 KW/LAMP = 18.13 KW

WITH ELECTRONIC BALLASTS, THE CONNECTED LOW WILL BE: 326 LAMPS × 0.036KW/LAMP : 11.74 KW

3. THE SLYINGS WILL BE 18,13-11.74 = 6,39 KW

· BLEED ON 3640" HES OF OPERATION, &NNUKLY, THE ENERGY SAVINGS WILL BE :

· ESTIMATED CONSTRUCTION COST: 326 LAMPS × DM 650/LAMP = DM 211,900

LOCATION:	Vilseck, Germany		REGION NO. 5	PROJEC	T NO ECO E7
PROJECT TITLE:	Lighting Fixture Conver	sion		FISCA	AL YR <u>93</u>
DISCRETE PORTION	NAME:	······································			
ANALYSIS DATE:	4 May 93 ECON	IOMIC LIFE:	20 PRE	PARER Marstille	er
1. <u>INV</u>	ESTMENT COSTS:				
A. CON	ISTRUCTION COST		DM 211,900		
B. SIOF	H		DM 12,714		
C. DES	IGN COST		DM 12,714		
D. TOT	AL COST (1A+1B+1C)		DM 237,328		
E. SAL	VAGE VALUE OF EXIS	TING EQUIPM	IENT	DM0	
F. PUB	LIC UTILITY COMPAN	Y REBATE		DM0	
G. TOT	AL INVESTMENT (1D-1	E-1F)			DM 237,328
2. <u>ENE</u> DAT	ERGY SAVINGS (+) / CO TE OF NISTIR 85-3273-X	DST (-): USED FOR D	SCOUNT FACTORS	10	0/92
ENERGY SOURCE	COST DM/MBTU(1)	SAVING: MBTU/YR(S* ANNUAL DM 2) SAVINGS(3)	DISCOUNT FACTOR(4)	DISCOUNTED SAVINGS (5)
A. ELE	C DM 41.02	79.4	DM 3,257	11.59**	DM 37,748.5
B. DIS	T DM	<u> </u>	DM		DM
C. RES	D DM		DM		DM
D. NG	DM		DM		DM
E. PPG	DM		DM		DM
F. CO/	AL DM		DM		DM
G. SOL	AR DM		DM		DM
H. GEO	OTH DM		DM		DM
I. BIO	MA DM		DM		DM
J. REF	TUS DM		DM		DM
K. WI	ND DM		DM		DM
L. OTI	HER DM		DM		DM
M. DEI	MAND SAVINGS		DM		DM
N. TO	TAL	79.4	DM 3,257	-	DM 37,748
3 NO	N ENERGY SAVINGS (4	+) OR COST (-)):		
A. AN	NUAL RECURRING (+/	-)	DM 0		
(1)	DISCOUNT FACTOR	(ABLE A)		- 0	
(1)	DISCOUNTED SAVING	S/COST (3A X	3A1)		DM 0
* ON 7	THIS FORM MBTU = 10	BTU'S	PECION 5: 20 YEAR	S	

.

B.	NON RECURRING SAVINGS (+) OR COST (-)						
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4)		
a .		DM			DM_0		
Ъ.	<u></u>	DM			DM_0		
c.		DM			DM 0		
d.	TOTAL	DM	······		DM 0		
C.	<u>TOTAL NO</u>	ON ENERGY DISCOUL	NTED SAVINGS (3	A2 + 3Bd4): OMIC LIFE)):	DM_0 72.9 YEARS		
4 . 5	TOTAL NE	T DISCOUNTED SAV	/INGS (2N5 + 3C):		DM 37,748		
6.	SAVINGS '	TO INVESTMENT RA	TIO (SIR) 5/1G:	-	0.16		
7.	ADJUSTEL	D INTERNAL RATE O	F RETURN (AIRR)):	-5.13 %		

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E10

VILSECK

DIMMING HARDWARE FOR LIGHTING FIXTURES

	S.O. No. 2008-45-32M		
Subject: GREELWOLL/VILSEL E.	EZCO AUDIT		
VILSELL ELD ED	Sheet No of		
DIMMEL HARDWAR FOR LIGING	FIRTUES Drawing No.		
Computed by <u>CEM</u> Checked By	Date 4 MAY 1992		

- FROM GEREMAN CONSULTS CALCULATIONS: "EXTEROL LIGHTING WILL BE CONTRIBLED BY INSTALLATION OF DAWN/DUSK CONTROLLERS (PHOTOCELLS) AND TIMES - CONTROLLERS." THERE FORE, THIS ECO R. ACTURLY A COMPLINATION OF ECO'S EID, EID AND EIZ. THE SUGGESTED CONTROL SCHEME IS TAKEN FROM USACERL TECHNICH REPORT E. 90/07, DITEL MAY 1990. FUDTING FROM PLOE 205, "ONE DIMMING SCENCED FOR ARMY INSTALLATIONS IS TO ACCE ENTERIOR LIGHTING AT FUL POWER FROM DARK UNTIL ZIOD AND AT SETS POWER (45% LIGHT OUTPUT) THERE/FTER."
- · EXISTING LIGHTING = 343 WATTS
- · EXTERIOR LIGHTING WILL BE REDUCED BY 45% FROM 2300 LOD TO DOWN: THIS WILL REDUCE POWER CONSUMPTION, ON ANEZAGE, 5/2475/464. 30 TOTAL ENERGY SLAINGS WILL BE:

365 BLY & SISHES (45%) (343 WITS) & 3.413 BTU & MMDU = 1.06443742

- ESTIMITEL CONSTRUCTION COST:
 - DAWN/DUSK CONTROLLER = DM 246 TIMER - CONTROLLER = DM 272 DIMMER = DM 40 INSTALLATION = <u>DM 550</u> DM 1108
APPENDIX F

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATION:	Vi	iseck, Germany	/	REGION NO.	5	PROJECT NO	ECO E10
PROJECT TIT	LE: Di	mmer Hardwar	e for Lighting Fixtur	es		FISCAL YR	93
DISCRETE PO	ORTION NA	ME:				•	
ANALYSIS D	ATE: 4	Мау 93	ECONOMIC LIFE:	20	PREPARER	Marstiller	
	NIVEST	MENT COSTS					
1.	CONST	RUCTION COS	<u></u> T	DM 1	,108		
R.	SIOH			DM	66		
<u>р</u> . С	DESIGN	I COST		DM	66		
D.	TOTAL	COST (1A+1)	B+1C)	DM 1	,240		
E.	SALVA	GE VALUE O	F EXISTING EQUI	PMENT	DM	0	
£.	PUBLIC	UTILITY CO	MPANY REBATE		DM	0	
G.	TOTAL	INVESTMEN	T (1D-1E-1F)			DM .	1,240
2	ENERG	Y SAVINGS (+) / COST <u>(-):</u>				
٤.	DATE (OF NISTIR 85-	3273-X USED FOR	DISCOUNT FA	CTORS	10/92	
							COUNTED
ENE	RGY	COST	SAVIN TI(1) MBTU/Y	GS* ANNUAL R(2) SAVINGS	(3) FA	CTOR(4) SA	VINGS (5)
S00 	FLEC	DM/MD1	1.06 n. 1.06	DM 43.	5 11	.59** DN	1 503.9
R.	DIST	DM		DM	<u></u>	DN	1
2. C.	RESID	DM		DM	<u></u>	DN	1
D.	NG	DM		DM	<u></u> <u></u>	DN	1
E.	PPG	DM		DM		DM	А
F.	COAL	DM		DM		DN	A
G.	SOLAR	DM		DM		DM	м
H.	GEOTH	H DM	<u> </u>	DM		DM	И
I.	BIOMA	A DM		DM		DN	NN
J.	REFUS	S DM		DM		DM	M
К.	WIND	DM		DM		DI	MN
L.	OTHE	r DM		DM		DI	MN
М.	DEMA	ND SAVINGS		DM		DI	M
N.	TOTA	L	1.06	DM 43	.5	DI	M 509.3
3.							
	<u>NON I</u>	ENERGY SAV	INGS (+) OR COST	<u>(-):</u>			
Α.	ANNU	AL RECURRI	NG(+/-)	DM_0			
	(1) D	ISCOUNT FAC	TUK (TABLE A)	V 2A1)		n	мо
*	(2) D ON TH	ISCOUNTED S	$TU = 10^{\circ} BTU'S$	A 3A1)		D.	

** DISCOUNT FACTOR FOR ELECTRICITY; REGION 5; 20 YEARS

APPENDIX F

B.	NON RECU	RRING SAVINGS (+)) OR COST (-)		
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4)
8.		DM		_	DM_0
ь.		DM			DM 0
с.		DM			DM 0
d.	TOTAL	DM			DM 0
C. 4.	<u>TOTAL NO</u> <u>SIMPLE P</u>	ON ENERGY DISCOU	NTED SAVINGS (3 3A + (3Bd1/ECON	A2 + 3Bd4): OMIC LIFE)):	DM_0 28.2_YEARS
5.	TOTAL NI	ET DISCOUNTED SAV	<u>VINGS (2N5 + 3C)</u>	<u>.</u>	DM_509
6.	<u>SAVINGS</u>	TO INVESTMENT RA	<u>ATIO (SIR) 5/1G:</u>		0.41
7.	ADJUSTE	D INTERNAL RATE C	OF RETURN (AIRR	<u>):</u>	-0.53 %

Appendix F

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ECO E14

VILSECK

PHOTOELECTRIC CONTROLS FOR

INTERIOR LIGHTING FIXTURES

S.O. No	-0098-45-32M
Subject: Gaussing / VILSER ENERGY /	-U>(⁻
Vinter FCO E14	_ Sheet No of
PLOTE STELL CONTRACT FOR INTELOS LIGHT	Drawing No.
Computed by Checked By	Date 5 11-4 1993

- FROM ROBERT A. RUNDQUISTS ARTICLE "DAYLIGLTING CONTROLS: ORDERN OF HVAC DESIGN" IN THE NOVEMBER 1991 ASHRAE JOURNAL, "A WINDOW LETTING IN A FAIR AMOUNT OF DAYLIGHT.... (WITH)..... A DIMMING. TO. 30% - POWER LIGHTING CONTROL, ONE MIGHT FIND & 40% ANNUAL LIGHTING SLAVINGS." THE BASIS FOR MR. RUNDQUISTS ANALYSIS IS A TYPOLL OFFICE TUILLING WITH PROTOELECTRIC CONTROLES DIMMERT MODULATING THE LIGHTING IN A 15 WIDE STEP AROUND THE BUILDING PERIMETER.
 - THE DINING AZERS OF BUILING 603 OPERIES WITH THE LIGHTS ON FOR THE FOLLOWING HOURS

	MON, TUES, WED, FRI	THURS	SAT, SUN
BEERKEAST	0610-045	0430.0730	0730-1030
LUNCH	1100-1400	1130 - 1430	1100 - 1400
D11415	1630-1930	1530 - 1830	1535 - 1835
TOTAL HTT LIGHTS ALE TURNED ON	9.25 HRS	SHE	9, H25,

THIS CHART ASSUMED THAT LICART , ARE TORNED ON V2 HOUR REFORE MEALS AND TURNED OFF I AT AFEL MELLS

· ANNULL HES OF OPERATION = 52 WKS [(4×9.25) + (1×9)+(2×9)] = 3640425/42

S.	0. No. 2000 8 - 43 - 82M
Subject: <u>Graze , which / Vietan Enterny</u>	LUDIT
AFRICE FOD F.G	Sheet No. 2 of
Photosicia (Chatter pe Interio	Drawing No
Computed by Checked By	Date 5 MAY 603

· ASSOME THAT THE COVE LIGHTING IN THE TWO DINING AREAS IS PUT UNDER PROTOCELL/DIMMEL CONTROL. THERE ARE 23 - "J" FINTURES IN ELACH DINING AREA. LIGHT COVE

> 46 FIXTURES × 36 WATTS/FIXTURE = 1656 WATTS 46 BALLATTS × 13 WATTS/TRALAST = 50.8 WATTS TOTAL = 2254 WATTS

- · ASSIV LA THE ABL SLUMAS PROJECTED IN THE RUNDOUST LETICE IS LISEDLL, USE & BED ESTIMATE OF SLUMAN FOR THE PROJECT.
- · ETTIMICTEL ENERGY SLIVINGE: <u>160175</u> (35% × 2214 WATE) × <u>3.413 BTU</u> × <u>MMETU</u> = 9.80 MMETU/12 YE WATELE 10°BTU = 9.80 MMETU/12

· ESTIMATED CONTROL (DET:

Plotofic call	Controlle.	i = 200 DM	246	2	DM 492
DIMMEL		20 DM	40	:	පීය
ELECTIZONIC BALL	4575	46° JM	75	:	34 50
INSTALLATION	BCKTS	e DN 50	فدديد	•	400
					4422

APPENDIX F

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONVERSATION INVESTMENT PROGRAM (ECIP)

LOCATI	ION:	Vilseo	ck, Germany		REGION N	10. 5	PR	OJECT N	NO ECO E14
PROJECT TITLE: Photoelectric Controls for Interior I		or Interior Ligh	its]	FISCAL	YR 93		
DISCRE	ETE POR	TION NAM	E:						
ANALY	SIS DA	TE: 5 Ma	v 93 ECO	NOMIC LIFE:	20	PR	EPARER M	arstiller	
	1.	INVESTME	ENT COSTS:		- • •				
	Α.	CONSTRU	CTION COST		DM -	4,422			
	B .	SIOH			DM -	265			
	C.	DESIGN C	OST		DM -	265			
	D.	TOTAL CO	OST (1A+1B+1C))	DM .	4,952		•	
	E.	SALVAGE	VALUE OF EXI	STING EQUIP	MENT		DM		
	F.	PUBLIC U	TILITY COMPAN	NY REBATE			DM	0	
	G.	TOTAL IN	VESTMENT (1D	-1E-1F)				D	M <u>4,952</u>
	2.	<u>ENERGY S</u> DATE OF	<u>SAVINGS (+) / C</u> NISTIR 85-3273-	COST (-): X USED FOR I	DISCOUNT	FACTOR	S	10/92	2
	ENER SOUR	.GY CE	COST DM/MBTU(1)	SAVIN MBTU/YI	GS* ANNU R(2) SAVIN	AL DM IGS(3)	DISCO FACTO	OUNT OR(4)	DISCOUNTED SAVINGS (5)
	A.	ELEC	DM 41.02	9.80	DM	402.0	11.59	**	DM 4,659.1
	В.	DIST	DM	<u> </u>	DM				DM
	C.	RESID	DM		DM				DM
	D.	NG	DM		DM				DM
	E.	PPG	DM		DM	<u>.</u>			DM
	F.	COAL	DM		DM				DM
	G.	SOLAR	DM		DM				DM
	Н.	GEOTH	DM		DM				DM
	I.	BIOMA	DM		DM				DM
	J.	REFUS	DM		DM				DM
	K.	WIND	DM		DM				DM
	I.	OTHER	DM		DM				DM
	<u>.</u>	DEMANI	SAVINGS		DM				DM
	N	TOTAL		9.8	DM	402			DM 4,659
	3			<u> </u>	·		-		
	5.	<u>NON EN</u>	ERGY SAVINGS	(+) OR COST	<u>(-):</u>				
	Α.	ANNUA	L RECURRING (+/-)	DM	0			
		(1) DISC	COUNT FACTOR	(TABLE A)			0		
į		(2) DISC	COUNTED SAVE	IGS/COST (3A	X 3A1)				DM 0
	*	ON THIS	FORM MBTU =	10 ⁶ BTU'S		6 00 MT			
	**	DISCOUN	T FACTOR FOR	ELECTRICITY	; REGION	5; 20 YE/	1122		

APPENDIX F

B.	NON RECU	RRING SAVINGS (+)) OR COST (-)			
	ITEM	SAVINGS (+) COST (-) (1)	YEAR OF OCCUR. (2)	DISCOUNT FACTOR (3)	DISCOUNTED SAVINGS (+) COST (-) (4	l)
а.		DM			DM_0	
Ь.		DM			DM 0	
c.		DM	<u></u>		DM 0	
d.	TOTAL	DM			DM 0	
C. 4.	<u>TOTAL NO</u> <u>SIMPLE P</u>	ON ENERGY DISCOUT	NTED SAVINGS (3 3A + (3Bd1/ECON(A2 + 3Bd4): OMIC LIFE)):	DM_0 12.32 YEARS	
5.	TOTAL NE	ET DISCOUNTED SAV	/INGS (2N5 + 3C):	<u>.</u>	DM 4,659	
6.	<u>SAVINGS '</u>	<u>TO INVESTMENT RA</u>	TIO (SIR) 5/1G:		0.94	
7.	ADJUSTEI	D INTERNAL RATE C	F RETURN (AIRR	<u>):</u>	3.68 %	

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

APPENDIX G

SITE UTILITY ANALYSIS REPORT

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

Translation of Gehrmann's Report faxed 28 MAY 93

U.S. Army	Energy Study
Grafenwöhr	May 1992
GC - Project No. 4246	Page 1

Review of Electricity Supply Contract for the Locations Grafenwöhr and Vilseck

1. Supplier:

Energieversorgung Ostbayern AG Regensburg (OBAG)

2. Type and Amounts of Electricity Supply

Nominal Voltage: 20,000V Nominal Frequency: 50 HZ Services:

	Connected	Effective
	Service	Demand
Grafenwöhr	6300 KVA	5000 KW
Vilseck	6300 KVA	5500 KW

Powerfactor = 0.9

3. Connection Facility

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

3.1 Grafenwöhr

20 KV Switching Station at Grafenwöhr Transformer Facility

3.2 Vilseck

20 KV Switching Station - Vilseck

4. Provisions for Metering

4.1 Grafenwöhr

Metering is done on the 20,000 volt side at the Grafenwöhr Switching Station.

The following OBAG-owned metering equipment is used:

- 2 single rate 4-conductor Real Use Contact Meters
- 2 single rate 4-conductor Reactive Use Contact Meters
- 1 Two-Rate Real Use Totalizer
- 1 Average Value Code Printer
- 1 Schwitching Clock for 15 Minute Release
- 1 "Ripple" Control Receiver
- 6 Current Transformers
- 6 Voltage Transformers
- 4.2 Vilseck

Metering is done on the 20,000 volt side at the Vilseck switching Station (formerly at the Sorghof 4 Transformer Station, Heringnahe 2).

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

The following OBAG-owned metering equipment is used.

- 2 single rate 4-conductor Real Use Contact Meters
- 2 single rate 4-conductor Reactive Use Contact Meters
- 1 Two-Rate Real Use Totalizer
- 1 Two-Rate Reactive use Totalizer
- 1 Average Value Code Printer
- 1 Schwitching Clock for 15 Minute Release
- 1 "Ripple" Control Receiver
- 6 Current Transformers
- 6 Voltage Transformers

5. Electricity Price

Electricity-Price for energy is composed of:

- 5.1 Annual service price for electrical demand in KVA
- 5.2 Energy prices for:
 - 5.2.1 Effective power during HT periods in KWh
 - 5.2.2 Effective power during NT periods in KWh
 - 5.2.3 Excess Reactive Power in Kvarh
- 5.3 Charges for the above listed metering equipment:

As of 1-1-90 the following rates are in effect:

For 5.1	Annual Service Rate	<u>Contract</u>	<u>Base</u>	
	The annual demand rates	DM/KVA	230.40	130.00

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

For 5.2 Energy Rates

5.2.1	The HT effective power rates	s for HT power	supplied
	during the calendar year in Dl	Pf/kwh	
	for the first 1,000,000 kwh	11.35	6.85
	for the next 10,000,000 kwh	11.05	6.50
	for each additional kwh	11.05	5.70

5.2.2	The NT effective power rate	es for NT power	supplied	
	during the calendar year in DPf/kwh			
	for the first 600,000 kwh	8.90	4.65	
	for the next 6,000,000 kwh	7.70	4.40	
	for each additional kwh	8.70	4.10	

5.2.3 The reactive power rates for excess reactive powerin DPf/Kvarh3.602.00

For 5.3	Equipment Charges			
	The monthly charge for	metering equipr	nent without special	
	equipment	DM 15.	.00 10.00	

6.0 Billing

Electrical power is billed in monthly installments. At the end of each calendar year, a final billing for the services used is rendered as follows:

1. The annual demand rate is applied to that demand which results from the average of the two highest monthly real power demands divided by the average annual power factor.

The highest monthly service demand is the highest power in one month that is used by the customer during any 15 minute period.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

The average annual power factor is calculated from the annual real and reactive power totals delivered by OBAG to the customer.

- 2. To determine demand billings, each of the two highest monthly real power demands is applied as at least 70% of the respective monthly demand service.
- 3. If the highest monthly real power service exceeds the associated [monthly] demand service, then the excess real power used over and above the demand service divided by the annual average power factor is billed <u>additionally</u> at 5% of the annual service rate.

HT = High demand period is defined as Mo. - Fri. (incl.)April through September6 a.m. - 9 p.m.October through March6 a.m. - 10 p.m.Saturday's all year6 a.m. - 1 p.m.

LT = Low demand period is all of the remainder including legal holidays in the OBAG service region.

The above contract prices are predicted on drawing power at no less than 0.9 power factor.

7.0 Possible Cost Reductions

7.1 Service Cost

Substantial savings can be attained since the level of service cost is largely determined by the highest real (or effective) power used during any 15 minute period, for example:

If the service peak is lowered by 100 KVA, the annual cost savings would be 100 kva x 230.40 DM/kva = DM 23,040

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

The installation of energy optimization equipment particularly for resistance-type users in Canteens would lower service peaks and therefore reduce service costs. Energy optimization equipment for use in Canteens costs about DM 50,000.00.

7.2 Power Costs

Power costs consist of:

HT - High Demand Power Price LT - Low Demand Power Price Reactive Power Price

Shifting the power use into the low demand period (according to Item 6) would result in savings of 2.40 D. Pfennig/kwh

Annual total usage	Grafenwöhr	24,987,465 kwh
	Vilseck	31,518,960 kwh

If only 5% of this use would be shifted into the low demand period, annual savings of about DM 70,000 would be realized.

7.3 Power Factor

Drawing service at less than 0.9 PF is billed [extra] at 3.60 D. Pfennig/kvarh. Further, the power factor influences the service cost. However, since the mean power factor in 1992 for Grafenwöhr was 0.998 and for Vilseck 0.991, any additional [power factor] correction will be of no significant use.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

Translation of Gehrmann's Report faxed 1 JUN 93

U.S. Army	Energy Study
Grafenwöhr	May 1992
GC - Project No. 4246	Page 1

The thermal (heating) supply contracts between the users of the Grafenwöhr Ostlager (East Camp) and Vilseck Südlager (South Camp) on the one hand, and the heating supply contractor Fränkische Gas Liefergesellschaft Bayreuth on the other, have been reviewed based upon the following documents made available to us:

Grafenwöhr East Camp

Final Billings for the Year 1992 Special Long-Distance Thermal Heating Contract Valid as of 1 JAN 68 (change in Contract Administrator)

and

South Camp Vilseck

Final Billings for the Year 1992 Billing for Heating Delivery of 5 NOV 92

Based on the calculations done, there is a difference of the thermal price rates between the [above] recipients of about 18%, with Vilseck being more expensive than Grafenwöhr by that difference.

Then, under Item 1.4 of the Grafenwöhr Contract we were struck by the statement that the <u>anticipated</u> daily demand is 420 MWh.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

This [anticipated] daily demand is in no way even approached by any of the highest loads in January/February 1992. According to billings on hand the daily demand for January was 212 MWh and for February 234 MWh.

It is unlikely that peak demands of 420 MWh occur, and even if they did, then that figure should not be used as a <u>daily average</u>.

Further, the stated annual volume of 54,000 MWh is also an <u>anticipated</u> assumption, while actual volume according to the billing of 46,197.40 MWh is in fact substantially lower.

One may assume that the amounts stated in the contract were developed to arrive at basic annual rates, prior to the start of actual deliveries, with the result of having substantially overstated the 10-year cost determinations.

For Grafenwöhr, this difference between originally anticipated and actually delivered annual volume is approximately +15%. For Vilseck it is only +3%.

With respect to labor costs, it is noted that, based on the Price Adjustment Clause (Attachment 1), the basic rates differ by DM 6.00/MWh between the two contracts. [However], one may assume that the conditions underlying the labor cost calculations should be the same for both users, thus requiring a justification for the 6.0 DM/MWh difference charged. With an annual volume of about 76,000 MWh this results in an additional cost of DM 450,000.00/year for Vilseck. A similar situation also exists concerning the annual demand charge.

[Thus] it is absolutely essential to re-negotiate the heating supply contracts, particularly with respect to base loads and charges according actually experienced deliveries.

It is also important to watch that short-term peak demands are not applied as long-term loads when setting the basis for rate calculations.

The above determinations are based on the reference documents that were made available (see

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

preceding page). The 11/5/92 billing for Vilseck includes 1/12 each of the annual demand charge, labor charge, and basic charge. It could not be determined, in what way the variable service and labor pricing reflect actually delivered quantities. Based on the listing (Attachment 2a and b) we may assume that there is a flat (or lump sum billing every 3 months without regard to actually delivered quantities, with adjustments in October (for Grafenwöhr) and in September (for Vilseck).

In general, [it is recommended to] rework the contracts between supplier and customer, [particularly] with respect to the bases used to calculate base amounts such as for annual base price and quantity KWh-based rates for the annual demand as well as the quantity MWH-based rates for labor.

Dining Facility Energy Audit Grafenwöhr/Vilseck Germany DACA-90-D-0065

ł

APPENDIX H

BIBLIOGRAPHY

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- "Cost Estimates, Military Construction," U.S. Army Technical Manual TM 5-800-2; Headquarters, Department of the Army, Washington, D.C., 12 June 1985; U.S. Government Printing Office: 1986 491-885/41056.
- "Energy Resources Management Plan, FY 86-FY 95"; Department of the Army; Office of the Deputy Chief of Staff for Logistics; Army Energy Office; Washington, D.C. 20310-0561.
- 3. "Engineering Weather Data;" U.S. Army Technical Manual TM 5-785; Headquarters, Department of the Army, Washington, D.C.
- *Evaluation of Electrical Energy Consumption and Reduction Potential at the 7th Army Training Company (ATC), U.S. Army, Europe"; U.S. Army Corps of Engineers Construction Engineering Research Laboratory (USACERL) Technical Report E-90/07, May 1990, Electrical Energy Consumption; Department of the Army, Construction Engineering Research Laboratory, P.O. Box 4005, Champaign, Illinois 61824-4005.
- "General Scope of Work for an Energy Survey of Army Dining Facilities, 100th ASG, Grafenwöhr, Germany" issued by CETAE-PM-ME, dated 8 May 1992 and revised on 9 June 1992.
- 6. "Information for Participants in the FY 93 EEAP" letter issued by CESAM-EN-CM, dated 30 October 1992.
- Konen, Thomas P.; "Life Cycle Plumbing Cost Analysis"; The Construction Specifier, February 1984.
- Lippiatt, Barbara C. "Energy Prices and Discount Factors for Life-Cycle Cost Analysis 1993, Annual Supplement to NIST Handbook 135 and NBS Special Publication 709" U.S. Department of Commerce Technology Administration National Institute of Standards and Technology (NISTIR) Publication 85-3273-7 (Rev. 10/92).

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

- Productivity Capital Investments Handbook"; United States Army, Europe (USAREUR) Pamphlet 5-5, 12 January 1989; Headquarters, United States Army, Europe and Seventh Army, APO New York 09403.
- "Project Development Brochure", U.S. Army Technical Manual TM 5-800-3; Headquarters, Department of the Army, Washington, D.C., 16 May 1983; U.S. Government Printing Office: 1984 0-421-302 (11250).
- 11. Rundquist, Robert A., P.E.; "Daylighting Controls: Orphan of HVAC Design"; ASHRAE Journal, November 1991.
- 12. Sharpe, William E.; "The Future is Water Efficient Plumbing"; The Construction Specifier, June 1982.
- 13. "Standard Design Guidelines for Modifying Interior and Exterior Energy Systems"; Utilities and Energy Branch, Headquarters, United States Army, Europe.
- 14. Thumann, Albert, P.E., C.E.M.; <u>Handbook of Energy Audits</u>, Third Edition; The Fairmount Press, Inc.; 700 Indian Trail, Liburn, GA 30247.
- 15. <u>1989 ASHRAE Handbook Fundamentals</u>; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. 1791 Tullie Circle, N.E., Atlanta, GA 30329.
- 16. <u>1990 ASHRAE Handbook Refrigeration</u>; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. 1791 Tullie Circle, N.E., Atlanta, GA 30329.
- <u>1991 ASHRAE Handbook HVAC Application</u>; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. 1791 Tullie Circle, N.E., Atlanta, GA 30329.

Dining Facility Energy Audit Grafenwöhr/Vilseck, Germany DACA-90-D-0065

 <u>1992 ASHRAE Handbook - HVAC Systems and Equipment</u>; American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. 1791 Tullie Circle, N.E., Atlanta, GA 30329.