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APPROXIMATIONS TO DIRECTIVITY FOR LINEAR, PLANAR, 

AND VOLUMETRIC APERTURES AND ARRAYS 

1. INTRODUCTION 

BACKGROUND 

Even after decades of sonar design, approximations to the directivity factor or index of an 

array are sometimes used inappropriately. Many of the approximations commonly used provide 

accurate directivity approximations only for the simplest of array geometries. As the array's size, 

shape, weighting, and complexity increases, there is a renewed need for better directivity 

approximations. 

Directivity is defined as the ratio of the output signal-to-noise power ratio (SNR) of an 

array to the input SNR at an omnidirectional element in a spherically isotropic noise field. 

Calculation of directivity requires integrating the magnitude-squared response of the array over all 

angles of incidence. In spherical coordinates, these arrival angles are denoted by an azimuthal 

angle 6 and a polar angle <p. Hence, calculation of the directivity requires a two-fold integration 

over the angular space defined by the azimuthal and polar angles. For complex large-size arrays 

consisting of thousands of elements, directivity calculations using numerical integration procedures 

can be time consuming, even on state-of-the-art computing systems. This report provides a 

number of approximations for estimating the directivity of linear, planar, and volumetric arrays, 

which are allowed to have arbitrary real amplitude shading coefficients and element locations. The 

linear and planar arrays are allowed to have directional element responses as well. 

A practical discussion of some of the well-known formulas for approximating directivity is 

given by Bobber, where the directivity factors (DFs) of three standard transducers are measured 

and compared to five theoretical methods used to calculate directivity. Two of the methods are 
based on approximations by Molloy , which use the simple formulas of DF - ILjXior a line 

array with an effective aperture length of Le, and DF = ATüAJX
2
 for a baffled planar array with an 

effective acoustic aperture area of Ae. For both cases, the effective aperture includes the physical 

array size plus half the array's interelement spacing at each end. In the free field, the planar array's 

directivity factor would be reduced by one-half. 

These earlier approximations assumed an ideal model for the array response, where the 

mainlobe was relatively narrow (the length of the aperture exceeding several wavelengths) and the 
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peak sidelobe levels were much less than the mainlobe level. Furthermore, it was assumed that flat 

amplitude shading weights were applied to the individual array elements. Bobber does provide a 

short discussion on shading-weight correction factors that can be used, in some cases, to adjust the 

directivity factors. However, with current array configurations and signal processing, these earlier 

approximations are, in general, too limited. 

GENERAL MODEL FOR ARRAY RESPONSE 

For an array with arbitrary geometry and element locations, the beamformed array single- 

frequency amplitude response may be written as 

A(ö,0) = Xa
Al1w^(ö,0)exp(/(fc-^)-FJ, (1) 

where A(0,(p) is the array's angular response to an arrival from azimuthal angle 0 and polar angle 
0; N is the total number of array elements; wn and gn(0, <p) are, respectively, the amplitude 

shading and element amplitude angular sensitivity of the n -th array element; k is the wavevector 
corresponding to an arriving acoustic planewave from (6,<f>); and ks is the wavevector to which 

the array is steered. The corresponding steering angles are ds,(f>s. The n-th array element position 

is defined by the coordinate vector rn =(xn,yn,z„). 

The linear, planar, and volumetric array coordinates are given in figure 1, along with the 

definition of spherical angles 6,0. 



yy 

(a) Linear (b) Planar 

(c) Volumetric 

Figure 1.    Coordinate Systems for the Linear, Planar, and 

Volumetric  Arrays 
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2. APPROXIMATIONS TO DIRECTIVITY 

The directivity index (DI) is defined as a decibel measure of the improvement in the SNR 

that a beamformed array provides in an ideal Isotropie noise field with a perfectly correlated signal, 

relative to an omnidirectional array element in the free field, i.e., 

DI = 10 log DF = 10 Log   {SNR)°™y°»«»"    , (2) 

where DF is the directivity factor. 

With the aid of equations (1) and (2), the components that comprise the calculation of the 

directivity index can be written as 

5ff        . = S, (3) 
jj—omni 

s     = s array S'T 5' 
A(0 ,0J   , (4) 

In K 

Nff_amKi = \\Nlsuimtde, (5) 
0   0 

and 
2KK 

AUv = Jj>|A(0,0)|2sin(0)<tyrfe, (6) 
0 0 

where S is defined as the received signal power level and iV; is defined as the isotropic noise power 

level. 

Noting that equation (5) is simply A7tNj and canceling the signal and isotropic noise power 

levels, the DF in equation (2) becomes 

JJ|A(0,0)|2sin(0)d<rW0 
o o 



where U(0s,0s)|"is the array power response at steering angle #S,0S • 

Equations (6) and (7) indicate an integral with limits that account for all acoustic arrival 

angles. Hence, the directivity expression (equation (7)) assumes an unbaffled, or free-field, array 

configuration. In a baffled configuration, Narray would be reduced, resulting in an increased 

directivity. 

The array amplitude response A(d,<p), given by equation (1), is for the most general three- 

dimensional array with arbitrary element locations, weights, and element responses. For this most 

general case, the sum of N terms can be evaluated only by calculating every individual complex 

term and summing up those N quantities. This is a particularly time-consuming task, especially 

when the number of elements N is large. When coupled with the fact that the DF requires 

computation of a double integral, namely equation (7), which must be repeated for each different 

frequency and/or steering angle, the computational burden often becomes excessive. Furthermore, 

as the number N of elements increases, the array power response | A(0,0)|  becomes even sharper 

in angles 6,<p, thereby requiring still finer evaluation of the integrand in equation (7) in order to 

retain accuracy in the final DF calculation. Hence, the need for accurate directivity approximations 

is obvious. 

For the most general array configurations and processing, accurate directivity predictions 

can only be obtained by numerically integrating" the double integral given in equation (7). Also, 

for certain arrays, the maximum array power response U(0m, 0m )|  must be calculated and cannot 

be estimated. The maximum array response may not occur precisely at the steering angle (9S <ps) 

because of array curvature, unequal array element spacing, variable element sensitivities, and 

shading weights. This report, however, considers a broad set of array geometries and 

configurations which may be approximated, thereby avoiding the need for numerical integration. 



DIRECTIVITY FACTORS FOR UNIFORM LINEAR ARRAYS 

Approximating directivity plainly requires approximating the double integral in equation 

(7); the numerator typically can be determined directly from equation (1). In fact, for a line array 

with constant interelement spacing, the double integral in equation (7) may be evaluated exactly at 

the frequency for which spacing dz = A/2, regardless of the steering direction. This leads to 

DI = 101ogj(Xlw„)2/Xlvv„2 j independent of ds,^s, 

and for the special case of flat weighting, to the result 

DI = 101og{/V} = 101og{2Le/A} 

for d, = A/2, as mentioned in section 1. Although this is an exact result for the uniform linear 

array, it is limited. For example, figure 2 illustrates the exact DF, obtained by numerical 

integration and normalized by the number of array elements, for an equispaced uniformly-weighted 
line array with nondirectional elements (uniform). For the frequency at which f = f0, where 

/0(= c/2dz ) is the design frequency, the DF is independent of array steering and equals N. This 

is valid only at the design frequency f0; as the line array's operating frequency changes, the DF 

becomes a function of frequency and steering angle. When / < f0, a flare in the DF occurs near 

endfire, cos(^) —> ±1, and results in a doubling of the DF precisely at endfire steering. This 

doubling results from the elimination of all grating lobes within the array response region. 

Equivalently, at these frequencies, the array response may be considered oversampled or 

overpopulated, dJX < l/2. Conversely, a droop in the DF occurs near'endfire steering 
when f > f0 because of the presence of grating lobes within the array response region. As the 

operating frequency increases above the design frequency, the droop occurs further from endfire; 

in fact, the breakpoint is approximately where cos(05) = Ifjf -1 - l/iV. 

Derivations for the DF of more general linear arrays are presented in detail in the following 

pages. Subsequent approximations (for planar and volumetric arrays) follow the methodology 

outlined here and are less elaborate in their presentations. 
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Normalized Directivity Factors for a  Uniformly  Weighted 

Equispaced Line Array 

DISCRETE LINEAR ARRAYS 

The line array is oriented along the z-axis, as shown in figure 1, and each array element is 

allowed to be directional. For example, the elements can have a common cosine angular 

dependence. The maximum angular response, or boresight, of these elements is chosen to be 

collinear to the y-axis. Therefore, the amplitude angular sensitivity becomes 

£„(0>0) = |cos(0)|  = |sin(0)sin(0)| , where 0 = (0, <p) is the conical angle between the element's 

boresight and the planewave arrival angle, and v is an arbitrary power to which the cosine is 

raised. For omnidirectional elements, v= 0. Figure 3 illustrates some typical element 

directionality patterns. 
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Figure 3.    Element Angular Sensitivity   cos(0)    for Powers v = 0, 0.5, 1 

For the line array geometry, each element has the same angular dependence; that is, 
gn(6,(j)) is independent of n. Hence, from equation (1), the double integral in equation (7) 

becomes 

2K    K 

0     0 

1 = J J Sliw„|sin(ö)sin(0)f exp{/Äz„(cos(0) - cos(<^))} sm{<p)d<pdd. (8) 

Setting u - cos(0) and us = cos(^) yields 

2K 1 

/ = J{sin2(0)}V^J{l - u2}V Xl,^exp{/fe> - «,)} 
0 -1 

<i«. (9) 

For integer v, the integral over 9 is straightforward; in fact, noninteger vcan be evaluated 

using gamma functions.   Thus, there follows 



/ = Ä(v)J(l - u-y £*=]w„exp{ikz„(u - us)} du, (10) 

where 

,( ^   2(2v+1)r2(v+i/2)     ^r(v+i/2) 
«(v) = = 2-4K  /in 

r(2v+i) r(v+i) • uu 

The simplification is obtained by the use of the duplication formula for gamma functions. If it is 

assumed that the elements have a cosine angular dependence, then v = 1 and h(\) = K, whereas 

for omnidirectional elements, v= 0 and /z(0) = 2K. 

The focus here is on the behavior of the sum in equation (10) for large N. Using 

Lagrange's trigonometric identity, it is easily shown that for uniform weighting and equidistant 

element spacing dT, the absolute value of the series sums to 

[V _ expliknd,(u - us)\ = \sm(Nkd.(u ~ us)/2)/sin(kd.(u - us)/2)\. (12) 

The square of this sum, normalized by its maximum value N, is plotted in figure 4 along with the 

slowly varying u -function 1 - u~ over the integration limits given in equation (10), for the case 

where d, = A/2 and us = 0. 

It is apparent that the major contribution to the integral (10) occurs at u = us and, provided 

that us = cos((ps) is not close to ± 1 and that dz < A/2, the contribution of the integrand function 

1 - u~ may be approximated at u = us. The integration in equation (10) then simplifies (for real 

weights) to 

i 

I = h(v)(l - us
2)v j"Xn=iXm=i wnwm exp{/cwn> - m)(u - us)]du, (13) 

-i 

where a is a number proportional to half-wavelength spacing, i.e., dz - a A/2. By interchanging 

the order of the u -integration with the summations, the integral can be evaluated exactly as 



7 = 2Ä(v)(sin(0J)) 2v 

x< 
E/V      ^—( M 

<L, + 0 - O^f^O - w)cos(0j) 
sin(öOT(« - m) 

an(n - m) (14) 

The Kronecker delta is denoted 8nm. For half-wavelength element spacing, a = 1 and equation 

(14) simplifies to 

/ = 2Ä(v)(sin(05))2vXa
AlIw,2. (15) 

The maximum array response, in the direction the line array is steered, can be evaluated 

directly from equation (1) as 

|A(0J,^)|2=sin2l'(o5)sin2v(0J)X^^ (16) 
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Figure 4.    Comparison of the Slowly Varying Function 1- u2 to the Function 
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Therefore, substitution of equations (14) and (16) into equation (7) yields the approximation for 

the DF of a linear array of equispaced directional elements having real, but arbitrary, shading 

weights, namely, 

£>F = 
27rsin-v(flJ 

h{v) 

x- 
rfn=l 

W (17) 

rfm=l     "     m 
8nm +(l-önm)cos(an(n-m)cos(<psj) 

sm\an(n - m)j 

Ct7i(n - m) 

The above expression could be written in terms of frequency using the substitution a = 2dzf/c, 

with / the operating frequency in Hertz and c the sound speed, provided that / < c/(2dz) = f0. 

For cosine element sensitivity (v = 1) and half-wavelength element spacing, the DF in 

equation (17) simplifies to 

DF = 
2sin2(dJ^=wn 

^2sm2{e)Ne, (18) 
w„ 

where Ne is the effective number of weights. For the array element's maximum response, at 

0s-± KJ2 (in the y-axis direction), the cosine element sensitivity provides a doubling of the DF 

compared to that of an omnidirectional element. Thus, cosine element directivity can provide, at 

broadside, a 3-dB increase in the line array's DI. 

Approximations for discrete linear arrays with nonperiodic element spacing (provided no 

interstitial array spacing is greater than half an acoustic wavelength) are derived in the following 

section as a special case of a weighted continuous linear aperture. 

12 



CONTINUOUS LINEAR APERTURES 

For a continuously weighted linear aperture, the amplitude response for steering angle <j>s 

can be written as 

A(9,(j))= Jw(z)g(z,0,0)exp{fc(cos(0)-cos(0!))}Jz, (19) 

where the real weighting w(z) automatically terminates the integral at finite limits. This expression 

corresponds to the discrete array response shown in a general form by equation (1). Assuming, as 

in the discrete case, that this aperture has an amplitude angular sensitivity g(6, (p) (independent of 

z), which is proportional to a power of the cosine of the angle between the aperture's maximum 

response axis and the planewave arrival angle, then 

A(6,0) = |sin(0)sin(0)|  Jw(z)exp{ikz(cos((f))-cos((j)s))}dz. (20) 

For uniform angular response, the power is set to zero, v = 0. 

Substituting equation (20) into the double integral in equation (7) and letting u = cos(0) as 

before, yields, after some simplification, 

I = h(v)\ (\-u2)v\\   w(z)exp{ikz(u-us)}dz 
J — \ J—oo 

2 

du, (21) 

where h(v) is defined by equation (11). Three steps are necessary to approximate this integral. 

First, as done in the discrete linear case, it is argued that (1 - u2)v varies slowly with «and that its 

contribution is well approximated by its value at u = us. Thus, for \us\ = cos(^) < 1, 

/ = A(v)(l - uj J1 |£w(z)e'ß<fe du, (22) 

where r = k{u -us). The second step for the integral approximation considers the Fourier 

transform of the weighting function w(z), which, by definition, is 
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W(r)= \w(z)eitzdz. (23) 

If it is presumed that the weighting w(z) is even in z, then a Gaussian approximation for W(r), 

which can be applied for all T, is* 

W(t) = W(0)exp 
f 7              \ 

T     i 
— m 

V 2      ) 

(24) 

where the mean-square length of weighting w(z) is defined as 

m2 = 
z w(z)dz 

I   w(z)dz 
(24a) 

This choice matches the moments of w(z) through second order. Therefore, recognizing that the 

u -integration limits may now be extended to ± °°, equation (22) becomes 

/ = /2(v){sin2(<^)}V2(0) jexp{-k2(u- usfm2}du. (25) 

Finally, the integral in equation (25) may be evaluated exactly, yielding 

/ = /i(v){sin2(</g}V2(0) 
km 

(26) 

Thus, the approximation for the DF of a continuous line aperture, which is allowed to have 

nonuniform even weighting and a directional angular response, is 

DF = 
S7tillsmIV(8)m m 

Hv) 
V^r(v + l)sin2v(gT)' 

r\v +1/2) 
(27) 

*An alternative approach for a linear aperture is given in appendix A. 
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The quantity m = IJ  z2w(z)dz\      \\   w{z)dz\    in equation (27) may be interpreted as the root- 

mean-square (RMS) length of weighting w(z). 

For maximum directivity, the best value for steering angle 6S is Q = ±K/2 (along the y- 

axis). It is illustrative to consider the v-dependence of the bracketed term (shading factor) in 

equation (27) on directivity. Recall that as v increases, the aperture's angular response becomes 

narrower. Figure 5 plots the bracketed term in equation (27) for various fixed values of steering 
angle Gs. Notice that for the steering angle 0S = TT/2, the function starts at unity for v = 0 and 

increases monotonically with v. Given this choice of steering angle, it is seen that the DF 

increases with element directivity. However, any other choice of steering angle leads to an 

eventual decay of the DF with v. This implies that in general, highly directional elements will 

result in a gain in directivity along the element's boresight, but with the cost of a significant 

decrease in directivity for other steering angles. 

3 
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Figure 5.    Shading Factor for Line Aperture with   cos(©)    Element Directionality 

It should be noted that the DF in equation (27) is independent of polar steering angle (j)s 
and, hence, of sin(0J. More generally, it may be shown that if the element amplitude response 
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g(z,6,<p) in equation (19) varies slowly with angle and is independent of position z, then equation 

(27) is replaced by 

DF = HK ,   & v "YsJ (27a) 
1 \-Kg\9,<Ps)dd 

The latter factor is obviously unity for a flat angular response g(d,(f>). If the angular response is 

separable, that is, g(0,0) = gl(0)g2((p), the approximate DF simplifies to 

1      flic     - ' v / 

11 gf(e)d9 

which is independent of the polar angular dependence g2(<f>). This independence of the DF on the 

element directivity will also appear in the derivations for the planar and volumetric apertures. The 
special result in equation (27) corresponds to g,(0) =| sin(ö) |v and any slowly varying g2(<f>). 

For a uniform angular aperture response, v = 0, equation (27) simplifies to 

DF = 4^t-. (28) 
X 

From equation (27) or equation (28), it is straightforward to obtain an approximation for 
the directivity of a discrete line array having arbitrary element locations {zn}, provided that no 

interstitial element spacing is greater than a half-wavelength and the origin of coordinates is located 

so that V     w z = 0. For example, a discrete line array of N elements has an impulsive 

weighting function 

w(z) = fJwnSU-zn). (29) 
n = l 

Substituting this weighting function into equations (24a) and (28) gives 
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DIRECTIVITY FACTORS FOR PLANAR APERTURES 

The approximation A7tAe/X2 for the DF of an equispaced baffled planar array, where Ae is 

the effective array area, is only applicable for an array having ideal half-omnidirectional elements, 

flat weighting, and broadside steering. These restrictions can be eliminated by using the Gaussian 

approximation technique described above for the continuous linear aperture. 

The amplitude response for a continuous planar aperture with arbitrary real weighting 

(which need not be separable) and lying in the xy-plane is 

cos(0)   I    I   w(x,y)exp{iksin(<j))[xcos(d) +ysin(6)] 
(31) 

- z£sin(0s)[xcos(0s) + ysin(6s)]}dxdy, 

where it is presumed that the aperture's amplitude directionality is proportional to a cosine to a 

power, with the maximum response or boresight aligned along the z-axis, 0=0, namely, 

broadside to the aperture. The geometry is illustrated in figure lb. A uniform or omnidirectional 

aperture angular response corresponds to v = 0. Again, the weighting function w(x, y) terminates 

the integral and defines an effective finite aperture. Equation (31) may be written more compactly 

by introducing the multidimensional Fourier transform 

W(u,v)=\   J    w(x,y)exp{iux + ivy}dxdy. (32) 

Now let u = sin(0)cos(0) and v = sin(0)sin(0). Then, the planar aperture amplitude 

response becomes 

A(9,$) = |cos(0)| VW(ku - kus,kv - kvs). 

Evaluation of the double integral in equation (7) requires a one-to-one mapping of the 00-plane into 

the Mv-plane. The Jacobian of the transformation is 

!^ = cos(0)sin(</>). (33) 
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To prevent a two-to-one mapping, the upper limit on the <p -integral in equation (7) must be 

decreased to <p2 = x/2. This change in the limit is possible because the planar aperture response is 

symmetric about the xy-plane (see equation (31)). This observation allows for the change in the 

upper limit, and the 0-integral is simply doubled; if the integral over (0,TT/2) is not multiplied by 

two, the resultant DF will be for an ideally baffled planar array. With this change, the integration 

region in the dtp -plane maps to the interior of a unit circle Cx in the u^-plane. Thus, from 

equations (31) to (33), the denominator of equation (7) becomes 

1 = 2JJ(1 - u2 - v2y-]/2 \W(ku - kus,kv - kvx)fdudv. (34) 

The peak of the integrand in the uv-plane occurs at (us,vs), namely at radius 

u2: + v~ = sin(^) • If sin(^) < 1 , that is, <ps < nJ2 or steered to the upper hemisphere, then 

cos(<ps) > 0 and the integral may be approximated in the manner described earlier, namely, 

.    2(cos2(05)r
I/2 r f- b/,      ,p ,   , j^_v \YJ_U  W(u,v)\ dudv. (35) 

The Gaussian approximation for the double Fourier transform of the (even) weighting 

function w(x,y) (as in equation (24) for the continuous line aperture) is* 

W(u,v) = W(0,0)exp 
2    x     2    y (36) 

where mean square lengths 

[   j   x2w(x,y)dxdy \   J   y2w(x,y)dxdy 
m. = 

w(x,y)dxdy 
m2 =■ > 

J   J   w(x,y)dxdy 

(36a) 

Substituting the Gaussian approximation into equation (35) and performing the uv-integration 

yields 

'An alternative approach for a planar aperture is given in appendix A. 
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/::(cos2(^)r'/2PF2(0,0)A2 (3?) 

270nmv x      y 

for the denominator of equation (7), where it has been assumed that mx » X and m » X . 

Hence, the DF for an unbaffled planar aperture is 

jfl YYi 

DFs87r2cos(0s)-^ (38) 
A 

for (f>s < n/2, which is independent of power v. The quantity mxmY may be interpreted as the 

RMS aperture area in the xy-plane. 

More generally, if the factor | cos((p) \v in equation (31) is replaced with a slow angular 

dependence g{Q, <f>), as in equation (19), it may be shown that exactly the same result for the DF 

(equation (38)) is obtained. The approximate planar DF is independent of a general slowly varying 
angular response g{0, <p). The cos(0i) dependency in equation (38) results from the 

foreshortening of the planar aperture in the xy-plane when seen from the polar angle (ps; it has 

nothing to do with the aperture's angular sensitivity. The reason for the independence on angular 

sensitivity, g(6,(p), or on parameter v, for a planar aperture is due to its ability to resolve in both 

6 and 0. The narrow resolution of the planar aperture response A( 0,0) quickly overcomes that 

of the relatively broad and slowly varying angular response g(0,0); this assumes, of course, that 
I iv 

v is of moderate order for dependency cos(0)  . 

As an example of approximating the directivity, consider the simple case of a 
nondirectional, uniformly weighted rectangular aperture steered to broadside ((ps = 0). Letting Lx 

and Lv be the physical lengths of the aperture in the x- and y-directions, respectively, then 

mx = LJC/(2-v/3) and mY - LV/(2V3). Thus, the DF becomes 

DF = 2K
2
^ = -2K^. (39) 

3A2     3       A2 

The well-known approximation for an unbaffled planar array steered to broadside and having 

uniform weights is DF = 2KAJA
2
 , where Ae = LxLy (see appendix A). Therefore, the above 

Gaussian approximation is 5 percent larger, giving roughly 0.2-dB greater DI. 
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Extending the Gaussian approximation for directivity (equation (38)), to discrete 

equispaced planar arrays presents no complications, provided that the array spacings are not greater 

than half an acoustic wavelength (dx,dy) < A/2. For instance, the weighting function for an 

equispaced rectangular planar array may be expressed as 

N    M 

w(x,y) = ^^wnm8\x-dx 
n-] m = \ 

N + \ 
n — - 

JJ 

M + i 
m —- (40) 

where wnm need not be separable in n and m. From equations (36a) and (38), the directivity 

factor for the discrete equispaced unbaffled planar array follows immediately as 

DF. 
&x dxdxcos($s)   ; 

N    M 

II w 

=1 m = \ 

N + \ 
-.2 1 V2 N    M 

II 
I n = l m=\ 

W. 
M+i 

m- 

1/2 

X2 N    M 

II 
n~\ m=\ 

WK 

(41) 

for <ps < K/2. 

For flat weights, expression (41) simplifies to the compact form 

dd 1/2/ 
DF^2Kco^)^-{N2-\)'-{M2-l) 

vV2 

k 

\>/2 If dx (N
2
 -1)   /121/2 is interpreted as the RMS length mx of the array in the x direction (with a 

similar interpretation in the v direction), this expression for DF simplifies to 8rc2cos(<ps)mxmy/Ä2, 

which is identical to the DF given for the unbaffled planar aperture in equation (38). The quantity 

JV2 - lV 2 behaves as N - l/(2N) for large N, leading to mx ~ dx N/\2i/2. 

More generally, for arbitrary element locations, the weighting function is given by 
T 

(x,y) = 'S\wl8(x-x1)8(y-yt), where T is the total number of elements and locations [xt, yt} 
:=1 

are arbitrary, except that no interstitial array spacings can exceed a half-wavelength. 
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DIRECTIVITY FACTORS FOR VOLUMETRIC APERTURES 

Exact expressions for the directivity of a solid spherical volumetric aperture and a spherical 

shell are given by Anderson. For values of D/X »1, where D is the diameter of the sphere, the 

expressions for the DFs yield the approximations 

D^2 

DFra/,,=8.7|-| (42) 

and 

DF. .. = 12.61 
.A 

D,u 
DFshell = \2.6\-\   ■ (43) 

These expressions are for continuously distributed elements that are uniformly weighted and 

nondirectional. The exact DF for a thick shell of inner and outer radii of r, and r2, respectively, 

follows readily from the procedure in reference (6), although not done there. Here, the authors' 

approximation procedure (to be derived) yields the form 

DF = l67t2 r2+r2^ + r2r
2+r2r*+r]

A ^ 
5A2 r2 +r2rx + r2 

For a solid spherical aperture, r, = 0, and for a shell, r, = r2. Thus, the authors' Gaussian 

approximations are 

DF     ,^^,7 9^1 (45) 

and 

^»^ff = .3.16f. (46) 

These approximations compare reasonably well with equations (42) and (43), respectively. 

The approximate DF derived below allows for arbitrary volumetric shapes, element 

positions, and shading weights; however, the elements must remain nondirectional. For certain 

volumetric geometries, such as a cylinder or sphere, it may be possible to allow element 
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directionality, although the derivations are likely to be extremely difficult. Furthermore, a baffle 

may be introduced in the volumetric aperture so that steerings and planewave arrival directions are 

restricted to the upper hemisphere (see figure lc); the volumetric aperture does not, in general, 

have a symmetric response about the xy-plane. 

The derivation of the approximate DF here follows closely the Gaussian approximation for 

the continuous planar aperture. The amplitude response of a general continuous volumetric 

aperture is 

A(6,<p)= J   J   J"   w (x, y, z) exp {ik[x cos(6) sin((p) + ysin(d)sm(<p) + zcos(<p)] 

(47) 
- ik[xcos(ds)sin(<j)s) + ysm(6s)sm(<f>s) + zcos(<ps)]}dxdydz, 

where w(x,y,z) is a general three-dimensional continuous real weighting function. Notice that 

the angular response of the aperture itself is assumed omnidirectional. Defining the triple Fourier 

transform 

  p*=      poo      poo 

W(u,v,w) =      J    J    w(x,y,z)exp{iux + ivy + iwz}dxdydz (48) 

for all u, v, and w, allows the amplitude response to be recast in the form 

A{0,0) = W(k sin(0) cos(0) - kus, k sin(0) sin(0) -kvs,k cos(<p) - kws) (49) 

for 0 < 9 < 2n, 0<<t><K, where us = sin(0s)cos(ÖJ, vs = sin(<^)sin(05), and ws = cos(<ps). 

Note that the amplitude response in the steered direction (9s,<ps) is simply 

A(8s,<t>s) = W( 0,0,0) = \2,\2\1 w{x,y,z)dxdydz. (50) 

Substituting equation (49) into the double integral in equation (7) and employing the same 

variable transform and arguments used to develop equations (32) to (34) gives, for the 

denominator of equation (7), 
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Hl -J 
dudv 

1 2 2 1 - u - V 
W\ku-kus,kv — kvs,k"4\- u2 -v2 - k^jl- u] -v] (51) 

Note that equation (51), unlike equation (34), is not multiplied by 2 and thus corresponds to a 

baffled volumetric aperture, which responds only in the upper hemisphere, </> < 7iJ2. 

A new obstacle for the volumetric aperture is the quantity Vl - u2 - v2, which appears 

in W ■ This quantity would become imaginary for u2 + v2 > 1; hence, a small-order expansion 

about us and v is introduced. That is, let u-us + £ and v = v +5- Equation (51) then becomes 

'-11 dedd 
JcJJ\-(us + e)2-(vs + ö) 

7\W(ke,kö,kQ(e,8)j(, (52) 

where Q(e, S) = ^l-(us + ef - (vs + ö)2 - -y 1 - u~ - v~ and Cs is a unit circle centered at 

(s,S) = (-us,-vs) ■ The term Q(e,5) can be linearly approximated by invoking a binomial 

expansion and neglecting terms of second order in e and «5. Thus, Q(e,S) = —(us£ + vs8)/ws 

for small e,5. 

For symmetric and real weighting function W(JC,y,z), the Gaussian approximation of 

W(u,v,w) for all u, v, and w (as in equation (36) for a planar aperture) is written as 

W(u,v,w) = W(0,0,0)exp 
f 2 

U w ..2 > 

— mr my. m, 
K    2    x     2    y     2    ~j 

where 

and 

mr 

[[I   x2w(x,y,z)dxdydz III   y2w(x,y,z)dxdydz 
J —OO J —OO J —OO 2.     ^^     J —OO J —OO J —DO 

m. 

\   \   \   w(x,y,z)dxdydz 

»OO        »OO        »OO   

J   J    I   z w(x,y,z)dxdydz 

[[I   w(x,y,z)dxdydz 

mr — ■ 
'       y »OO        »OO        »OO        , 

JJJ   w{x,y,z)dxdydz 

(53) 

(53a) 
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Using this Gaussian approximation, it follows that 

\W (k£,kö,kO(£,Ö))\~ =W2(0,0,0)exp -k'e■ m~ - k'8'mi - k~ -—-—,   s   m, x y 

V w„ 
(54) 

J 

for all £,8. Substituting equation (54) into equation (52), and recognizing that the limits of 

integration may now be extended to ±°°, yields 

/ = —f [V2(0,0,0)exp 
2 2 

d£dö, (55) 

where a = 2k2(m2+m2
zu

2/w2), ß = 2k2(m) + m]v2Jw2^, and y = -2k2(m2usvJw2y The 

integrals in equation (55) may be evaluated exactly4, provided that a > 0, ß > 0, and aß>j2\ 

thus, the denominator of equation (7) is 

TT^2 (0,0,0) 

k2 Jrn'm'yv2 + mzmlv2 + rnmlu2 

PF2(0,0,0) A2 (56) 

4^       JOT2OT2cos2(0i) + OT2m2sin2(0J)sin2(öJ) + OT2m2sin2(^)cos2(öJ) 

Then, from equation (7), the DF for a baffled volumetric aperture is approximated as 

DF = 
167T2 

A2 
m2m2 cos2(0J+ m2m2 sin2(0J)sin,(öi) + m2mz

2 sin2(0J)cos2(0J), (57) 

where it is assumed that m    m   and mT are all significantly greater than a wavelength. 
X ' ^ 

The product mxmx above may be considered the RMS effective area of the collapsed 

weighting in the xy-plane, that is, 

mY m,. = x   y 

L x2 w-c(x)Ä JLy2 ™>(y)dy (58) 
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where wJ(x) = J     j    w\x,y,zjdydz and wy(y)= \     j     w(x,y,z^dxdz. Notice that the term 

cos(^), which is multiplied by the product mxmv in equation (57), is the cosine of the angle 

between the steering direction and the normal to the xy-plane (consider a unit steering vector 
e =excos(6s)sm((f)s) + ey sm(6s)sm(<j>s) + ezcos(<j)s); then e-ez =cos(0J). Thus, the RMS area 

of the collapsed weighting in the xy-plane, as seen from the steering direction, is 

K=m
X
my\C0<<!>s)[ (59) 

In a similar manner, the RMS areas of the collapsed weightings in the other planes are 

Axz=mxmz\sm(0s)s.m{(j)s)l (60) 

Avz = mymz\cos(0s)sm((j)s)\. (61) 

Hence, the baffled volumetric directivity approximation, equation (57), returns to the 

familiar form 

DFÄ = ifl(4 + 4 + 4f. (62) 

where Ae is the RMS effective aperture area for the given steering direction 9s,<ps. 

As an example, consider a continuous flat weighting function, w(x, y, z) = constant, for a 
cubic volumetric aperture |x| <Lxj2, \y\ < Ly/2, and |z| < Lz/2. Then, from equation (53a), 

4 4 L. 
mr=—T=,        m  =     r-,        m, = 

2V3 "    2V3 
(63) 

The effective RMS area is given as &' 

4=^(44.cos2(0J) + 44sin2(ÖJ)sin2(05) + 44cos2(0J)sin2(05))V2, (64) 
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and the approximate directivity of the baffled cubic aperture with flat weighting becomes 

DF = ^(L;4cos2(^) + 4^sin2(ös)sin2(0i) + ^X;cos2(Ö5)sin2(0i))1/2. (65) 

As expected, for L, = 0 and <ps = 0, equation (65) reduces immediately to twice the value of 

equation (39), the approximate directivity of a uniformly weighted nondirectional planar aperture in 

the free field (not baffled). 

Equation (57) can be extended to include discrete, rather than continuous, array elements 

using an impulsive weighting function; that is, 

w(x,y,z) = J^v/,8(x - x,) 6(y - yt) 6(z- z,) (66) 

The general case is found directly by substituting equation (66) into the integrals in equation (53a) 

and evaluating the Gaussian approximation for the volumetric DF given by equation (57). 

The approximation for the DF of a volumetric aperture was derived by using a Gaussian 

approximation for the magnitude-squared response. The result, equation (57), uses the RMS 

lengths of the collapsed weightings in the various dimensions. As shown in appendix A, 

alternative approaches for linear and planar apertures, which used the Parseval relation, yielded 

approximations to the DF that depended on effective lengths or areas, respectively, of the 

weightings. The analogous derivation for a volumetric aperture or array has not been discovered. 

Nevertheless, by extension, the following conjectured form for the directivity of a volumetric array 

with equal element spacing d in all three dimensions, based upon the earlier results for the linear 

and planar arrays, is offered (see appendix B). 

If {w^.in,m,k)} are the three-dimensional weights applied to the equispaced volumetric 

array, the three collapsed (or projected) two-dimensional weight structures are defined as 

wxy(n,m) = ^w^(n,m,k),   wx:[n,k) = ^wx^(n,m,k),    wy:(m,k) = ^wxy:{n,m,k)-(67) 
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The three effective numbers of weights are then defined according to 

N 
Ew4"'m) 

nk 

*y Xwi("'w) 
N   = ^ ±-        jy mk 

nk mk 

(68) 

The conjectured directivity at operating frequency/for a volumetric array is then given by 

DF = 4x^Ne = 7t^[Nlyw] + N]y) + N2
yzu]\A 

f J o 

(69) 

Here,/0 = c I (2d) is the design frequency, where the common element spacing J is a half- 
wavelength. The steering parameters are us =sin((ps)cos(6s), v5 = sin(0Jsin(0J, and 

Ws=COS((f)s). 
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3.   COMPARISON WITH EXACT RESULTS 

In this section, comparisons are made between the exact DF (computed by numerical 

integration) and an approximate DF, for a variety of weighted linear, planar, and volumetric arrays. 

In most cases, Hanning weighting is employed, and the array elements are nondirectional. 

Section 2 gave Gaussian approximations for the DFs of various arrays. However, the 

Gaussian approach only matches the mainlobe region of the array power response and takes no 

account of the sidelobes, which may be very significant. An alternative approach, specifically for 

arrays, that does take into account both the mainlobe and the sidelobes is presented in appendix B. 

This latter approximate procedure has been found to be more accurate and is used for all the 

numerical examples in this section. As will be seen, the approximations are quite accurate, even 

for arrays with relatively few elements and steered near endfire. With increasing array size, the 

approximations become more accurate, which is just when approximations are most beneficial; that 

is, numerical integration can become time consuming and burdensome for large arrays. 

LINEAR ARRAY 

Figure 6 shows that for the equispaced line array with spacing d and steering parameter 

us = cos <j)s = 0.2, the approximation for the DF is valid beyond/=/o; in fact, the fit is good up to 

/= 1.6/0. This result corresponds to element spacing d = 1.6 A/2, that is, greater then half- 

wavelength spacing. This behavior occurs because smaller values of IwJ keep the closest grating 

lobe of the array response at greater distances from the visible region, thereby allowing the 

approximation to have wider applicability. In fact, the approximation is valid for d < A/(l + \us\), 

which corresponds to///0 < 2/(1 +\u5\). For us = 0.2, the latter bound is f/fg < 1.67, which is in 

good agreement with figure 6. For the equispaced line array with us - 0.8, the bound is 

f/f0 < 1.1, which agrees well with figure 7, especially for the larger values of TV. 
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f/f„ 

Figure 6.    DF for an Equispaced Line Array with Hanning Weighting,  us = 0.2 

DF     15 

Figure 7.    DF for an Equispaced Line Array with Hanning Weighting, us = 0.8 
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An example of a 40-element line array with directional amplitude response | sin(ö)sin(0) |, 

that is, power v = 1, is given in figure 8. Because both the exact result and the approximation for 

the DF involve steering angle 0S only through the multiplicative term sin2(0J, this common 

quantity is factored off; this leads to a plot of DF/shrföJ, which depends only on the remaining 

polar steering angle (f>s. 

For polar steering angle </>s near 0 or K (endfire steering), the parameter us - cos(j)s is near 

±1. The approximate DF is not as accurate in this case for two reasons. The function (1 - u2)v 

varies fastest at the edges of the integration range (-1, 1) on u, thereby making its extraction from 

the integral as (1 - u])v less accurate. Also, the sidelobes of \W(ku- Jcus)\  can extend 

significantly beyond u = 1 if us is near +1 (beyond u = -1 if us is near -1); these sidelobes would 

not be encountered in the exact integral for Vover (-1, 1). However, the aproximating integral for 

V extends over all the sidelobes on both sides of the mainlobe, halfway up to the next grating lobe. 

This lack of accuracy for (j)s near 0 and n is illustrated in figures 8 and 9, where the 

discrepancy of the exact DF from the approximate DF is significant even when f/f0 < 1, that is, 

d < A/2. The errors are less for Hanning weighting than for flat weighting because Hanning 

sidelobes decay to low levels faster, tending to minimize the two effects discussed above. Of 

course, for both weightings, the approximate DF only applies for f/f0 < 2/(1+1 us |) or 

dlX < l/(l+1 us\) = l/(l+1 cos((ps) \), at which point grating lobes begin to manifest themselves. 
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Figure 8.    DF for an Equispaced Line Array with Hanning Weighting, 
N = 40, v = 1 
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Figure 9.    DF for an Equispaced Line Array with Flat Weighting, 
N = 40, v = 1 
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The next example consists of a curved line array, specifically an equispaced semicircular 

array centered at the origin in the xy-plane with its middle element located on the z-axis; that is, the 

angular locations of the N elements are 'e1- 

. K        n-l 
d=-- + K- 

2       N-l 

for 1 < n < N. The elements are all located at radius r and employ flat weighting. Although this 

case might be considered a (sparse) planar array, its DF behaves like that of a line array, being 

linearly proportional to the effective curved line length, namely, 

X e    X     N-l N-l X 

(The factor N/(N - 1) represents the effective extension of the edge elements, when the weighting 

is flat.) The approximate DF is plotted as a dashed line in figure 10 and agrees very well with the 

exact results for several polar steering angles. The tic mark labeled "H" indicates where the 

distance between adjacent elements is a half-wavelength; the approximate DF is excellent for 

smaller spacings, despite the fact that the sidelobes of this particular unweighted array are rather 

poor (~ -8 dB). The breakpoint between the approximation and exact results is located 
approximately where the spacing/wavelength ratio is 2/(1+1 us\) = 2/(1 + sin(j>s) for this example 

where azimuth steering angle 6S = 0. 

The only difference in figure 11 is that azimuthal steering angle 0S is changed to it/2, that 

is, along the y-axis. Again, the approximate DF above is excellent when the spacing/wavelength 
ratio is less than 2/fl + max{| us \,\vs |}) = 2/(l + sin<^) for 0S =7i/2. 
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Figure 10.    DF for an Equispaced Semicircle Array with Flat Weighting, 
N = 48, 6= 0 
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Figure 11.    DF for an Equispaced Semicircle Atray with Flat Weighting, 
N = 48, 6= K 12 
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PLANAR ARRAY 

For a baffled planar array with elements spaced at distance d in both the x and y 

dimensions, the upper bound on operating frequency/, for which the DF approximation is valid, is 

< 
/o     (\-a2f2+b 

where a = min(| us |,| vs |), b = max(| us |,| vs |). This result agrees well with the baffled planar array 

results in figures 12 and 13. A more accurate bound is given in appendix B. 

DF 
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Figure 12.    DF for an Equispaced Baffled Planar Array with Multiplicative 
Hanning   Weighting,   dx = dy, us = 0.5, vs = 0.6 
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Figure 13.    DF for an Equispaced Baffled Planar Array with Multiplicative 
Manning   Weighting,   dx = dy, us = 0.2, vs = 0.3 

VOLUMETRIC ARRAY 

An example of the application of the DF approximation (equation (69)) is given in figure 

14 for an equispaced volumetric array with multiplicative Harming weighting wxyz in the three 

dimensions. The numbers of elements are Nx 

us = 0, vs = 0,w5= 1; that is, toward the North Pole. 

10, Ny = 12, AC = 15, and the steering direction is 

Results for an unbaffled, as well as a baffled, volumetric array are presented in figure 14 

(solid curves), along with the directivity approximation (dashed curve). The agreement between 

the exact baffled DF and the conjectured DF is excellent up to approximately f/f0 = 1.8, whereas 

the exact unbaffled DF differs significantly in the neighborhood off/f0 = 1 and for f/f0 > 1.7. 
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Figure 14. DFfor an Equispaced Volumetric Array with Multiplicative 
Harming Weighting, us - 0, vs = 0,ws = 1 

These differences occur because of the locations of the aliasing lobes of the unbaffled 

volumetric array. For the present equispaced array with common separation distance d in three 

dimensions and separable weighting, the array function is given by the product of three functions 

of the form 

^ wxn txAinkd[u - u^j 
n=I 

kd = K f_ 
fo 

(70) 

The y and z functions are similar, with replacements v-vs and w - ws, respectively, inside the 

exponential. This function ofu has period 2KI (kd) = 2f0lf, with the desired mainlobe at u = us. 

The remaining aliasing lobes atu = us± m2f0/fcan become major grating lobe contributors under 

conditions to be developed below. 

If the double integral on 6,0 in equation (7) is interpreted as a triple integral in u, v, w 

space, the integration takes place only on the unit sphere. Therefore, significant contributions to 



he integral can take place only when the three array functions have combinations of mainlobes 

and at least one aliasing lobe that intersect on the sphere. For example, one such case is 

u~ + v~ + 
*       f 

= 1;      that is,    4 = rV (71> 
Jo V s\ 

More generally, the frequencies at which a significant contribution occurs to the double integral in 

equation (7), and only one aliasing lobe is involved, are 

^- = 7^7   or   yi   or   ~ (72) 
fo  hi     hi     K| 

When two aliasing lobes are involved, the interfering frequencies are 

/_      2   _   „   _^_   n,   _^___. (73) —i—j—r    or   |—j—j—r    or   1—;—;— 

Us\ + YA + Ws 

fo 

Finally, when three aliasing lobes are involved (no mainlobes), the interfering frequencies are 

J-= 
3 (74) 

/. 

In general, the lowest frequency at which grating lobes contribute, for an unbaffled equispaced 

volumetric array, is 

^=       n  I, I,   n- ^ J0      maxll^l^^lw^j 

For example, in figure 14, with us, vs, w5 = 0, 0, 1, the problematical frequencies for an 

unbaffled array axef/f0 = 1 / ws = 1 and 2 / (us+ws) = 2, at least for 0 <flf0 < 2. The lower 

frequency corresponds to a lower-hemisphere response at w = ws - 2f0/f = 1 - 2 = -1. Because 

the baffled array cannot respond in the lower hemisphere, it has no major response atf/f0 - 1, 

thereby maintaining the larger value of directivity, in agreement with the approximate DF (which 

ignores grating lobes). 
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The width of the discrepancy between exact and approximate DFs is related to the 

beamwidth of the array in the angular dimensions. Larger numbers of elements will lead to 

narrower beamwidths and therefore, narrower regions of discrepancy between the unbaffled array 

DF and the approximate DF. 

The top example in figure 15 uses an unbaffled volumetric array with A^, Ny, A^ = 20, 24, 

30 elements, respectively, and steering direction us, vs, ws - 0.6, 0.4, 0.693. The lowest 

interfering frequency occurs alf/f0 = 1 / ws = 1.44, due to the aliasing lobe atw = ws-2f0 //= 

-0.693. This is a lower-hemisphere response. 

The next lowest frequency is f/f0 = 2/(us + ws) = 1.55. The contributing lobes are at 

u = us - 2fjf = -0.693, v=vs = 0.4, and w = ws - 2fjf = -0.6. Notice that the sum of 

squares of these three locations is 1, meaning on the unit sphere. This is also a lower-hemisphere 

response. 

The next frequency is f/f0 = \/us = 1.67. The contributing lobes are at 

u = us- 2f0/f = -0.6, v- vs = 0.4, and w = ws - 0.693. This is an upper-hemisphere response. 

(For a baffled array, this would be the lowest frequency leading to an aliased response.) 

Finally, there are two other responses that blend together, namely flf0 = 3 I (us+ vs+ ws) 

= 1.77 and 2/ (vs + ws) = 1.83. The aliasing lobe locations are at u = us - 2f0 If- -0.53, 

v = vs - 2f0 lf= -0.73, w = ws-2f0 //= -0.437 for the first case, and at u = us = 0.6, v = vs - 2f0 If 

= -0.693, w = ws - 2f01 f= -0.4 for the second case. Both of these cases are lower-hemisphere 

responses. 

The bottom unbaffled example in figure 15 uses eight times fewer elements, namely 1800 
elements instead of 14,400. The decreased resolution capability causes several of the aliased 
responses to overlap, making it impossible to identify individual aliased contributions. 
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Harming   Weighting,   us = 0.6, vs = 0.4, ws = 0.693 

APPLICABILITY TO VOLUMETRIC ARRAYS, BAFFLED AND UNBAFFLED 

Although there is only one form for the approximate DF of a volumetric array, this form 

has different ranges of applicability, depending on whether baffling is used. The approximate DF 

takes no account of grating lobes, whereas actual arrays are always subject to the effects of grating 

lobes. This is evident in figure 14, where the agreement of the approximate DF with the exact 

baffled DF is excellent up to f/f0 =1.8, whereas the agreement with the exact unbaffled DF 

holds only up to f/f0 = 0.9. Baffling suppresses all the lower-hemisphere grating lobes; the dip 

in the unbaffled DF near f/f0 - 1 is due to a lower-hemisphere grating lobe which is responding 

to undesired noise arrivals. However, it should be noted that for frequencies 1.1 < f/f0 < 1.7, 

the approximate DF again agrees with the exact unbaffled DF; this occurs because the particular 

grating lobe in figure 14 only contributes in the neighborhood of f / f0 = 1. 
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The general frequencies at which an equispaced unbaffled volumetric array is subject to a 

grating lobe are 

/ 

fo 

I2 + J2 + K2 

\uj + vsJ + wsK\ 
(76) 

where /, J, and K are positive and negative integers, not all equal to zero. The lowest frequency 

was given earlier in equation (75). 

For an equispaced baffled volumetric array, not all the frequencies in equation (76) lead to 

grating lobes. To determine which frequencies are relevant, a search over all the small integer 

values for /, J, and K, such as 0, ±1, ±2, must first be conducted. Then, those cases 
corresponding to negative values of ws + K2fv/f must be discarded, because they correspond to 

lower-hemisphere grating lobes, which will not be active in a baffled application. The remaining 

cases constitute valid grating lobes; the lowest remaining frequency will be the upper bound on 

applicability of the approximate DF to an equispaced baffled volumetric array. 
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4.   SUMMARY 

Estimating the directivity of an array remains a fundamental and important aspect of array 

design. These estimates are used in many applications: to determine frequency regions in which 

an array will be ambient or self-noise limited, to determine detection ranges, and as a comparison 

baseline for various changes in array parameters (such as geometry, element shading coefficients, 

and noise distribution). It is necessary, particularly when one is trying to examine the merits of a 

given set of conditions over another, to have accurate estimates for directivity. The approximations 

presented in this report for the DFs of linear, planar, and volumetric apertures and arrays provide 

quick and reasonably accurate directivity estimates without having to resort to numerical 

integration and time-consuming computer calculations. 

In figure 2, it was shown that a commonly used approximation for the directivity of a line 

array is valid only with omnidirectional elements and at the design frequency f0, that is, at a single 

frequency. At other frequencies, the DF becomes a function of steering angle, and the standard 

approximation is inaccurate. The DF approximations derived here are more general and allow for 

variable steering angles and frequencies of operation. 

Another useful result of this study is illustrated in figures 3 and 5, which show that highly 

directional array elements, such as elements having an angular response proportional to | cos(0) |v, 

can lead to significant decreases in array directivity at moderate steering angles from broadside. 

Therefore, it may be surmised that element directivity, for most steering angles, reduces directivity, 

although one must bear in mind that these calculations assume a spherically isotropic noise field. 

Directional elements, in general, improve array gain for steering angles near broadside. 

The directivity factor of a linear aperture or array depends on the first power of the effective 

length of the line. This results from the inability of a (vertical) line to resolve in the azimuthal 

direction; that is, it has a conical response region, centered on the line, within which all arrivals are 

treated alike. This inherent ambiguity of a line keeps the DF at moderate values. However, this 

lack of resolution can be partially remedied by using directional elements in the line aperture or 

array, leading to a modest increase in the DF. 

For a planar or volumetric aperture or array, the situation is markedly improved, because 

simultaneous resolution in both the azimuthal and polar angles is possible. In fact, when the 

effective area is large compared to the squared wavelength, rather good resolution can be achieved; 
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this fine resolution overrides any modest directivity that individual elements may have, making the 

overall DF virtually independent of the individual element properties. 

Baffling a planar aperture or array doubles the DF by virtue of eliminating any arrivals in 

the undesired hemisphere. On the other hand, a volumetric aperture or array has the inherent 

capability of being able to reject arrivals in an undesired hemisphere, and therefore need not 

employ baffling. The DF in the volumetric case is given by the same formula as for a baffled 

planar array, but where the effective area must be interpreted as that seen from the steering 

direction. In addition to steering direction, the effective area will incorporate the three-dimensional 

physical extent and detailed weighting of the volumetric aperture or array. 

The DF approximations for linear, planar, and volumetric apertures and arrays are 

summarized in appendix C. Results obtained by the use of the Gaussian approximation, as well as 

Parseval's relation and a modification for arrays, are listed. 
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APPENDIX A 

ALTERNATIVE INTEGRAL APPROXIMATIONS 

LINEAR APERTURE 

From equation (20), the amplitude response of a continuously weighted directional line 

aperture is given as 

A(6,<j>) = |sin(0)sin(0)f J w(z)exp|z'fe(cos(0) - cos(05))j<iz. (A-l) 

The value v = 0 corresponds to an omnidirectional element angular response. The directivity 

factor is again expressed as 

DF 
4TT|A(6>5,0J|

2 

licit (A-2) 

JJ|A(0,0)|2sin(0)J0JO 
0 0 

Then the integral which must be approximated is, as in equation (21), 

2K K 

I = j"{sin2(0)}V J0[{sin2(0)}V sin(0)J0 \ w(z)explikz(cos(<p) - cos((j)s))\dz (A-3) 

Expressing the magnitude-squared as a double integral on z and C, and letting u = cos(0)and 

s = z - C> where £ is a dummy variable of integration, equation (A-3) becomes 

/ = h(v) J jw(z)w(z- s)exp\-iksu\\ (1 - u2)v expliksu^dudzds, (A-4) 

where /j(v) is defined by equation (11). The inner integral over u in equation (A-4) may be 

evaluated exactlyf6' p-321] yielding 

/ = h(v) \ \w(z)w(z - s)zxp{-iksus}v7rr(v + \)y,      2 Jv+y2(ks)dzds. (A-5) 
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By using the relation h(v) = 24K T(V + l/2)/r(v +1) in equation (11) and the weighting 

autocorrelation function defined as 

^M)= jw(z)w(z - s)dz (A-6) 

equation (A-5) can be expressed as 

r   / iv+~ 
/ = 2TTT(V + 1/2) J<I>w(j)exp{-zfocos(&)} y^    2 Jv+]/2(ks)ds. (A-7) 

However, because <!>w(s)varies slowly with 5relative to the remaining functions in equation 

(A-7), the following approximation obtains: 

I = 2
V+5/2

KT(V + 1/2)^W(0)\ 
cos(kscos((ps))Jv+l/2(ks) 

(ks) v+l/2 
■ds. (A-8) 

using the even character of entire function JM (z)/z11 in z. Finally, use of Erdelyi7 yields the result 

/5 4^2 I^±^sin-(0JOW(O). 
kT{v +1) 

(A-9) 

The approximate DF follows from equation (A-2) according to 

A   T(v + l/2) 
(A-10) 

where L is the effective length of the weighting, 

n2 

L = 

\w(z)dz 

\w2(z)dz 

(A-ll) 
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In the special case of a nondirectional aperture, v = 0, equation (A-10) simplifies to the standard 

result 

DF = ^-, (A-12) 

which is independent of the steering direction. 

More generally, for arbitrary element directional response g(6, <p) in equation (A-l) instead 

of | sin(o)sin(0) \v, the approximate DF in equation (A-10) is replaced by 

DF~J-h   *■»'(«-♦■> (A.13) 

A more direct derivation of the result in equation (A-9) may be obtained by use of 

Parseval's relation: from equations (22) and (23), the integral on u is, for | us |=| cos(05) |< 1, 

1 2 2 

y^V{k{u-us)) du=y^v(k{u-us)) du = l\w\z)dz = A«Dw(0). (A-14) 

Then, equation (22) yields 

/s^(v)sin2v(^)AOw(0), (A-15) 

which is identical to equation (A-9). The same approximation for the DF, as given by equations 

(A-10) and (A-l 1), results. 
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PLANAR APERTURE 

An alternative to expression (38) for the DF of an unbaffled planar aperture is possible 

through the use of Parseval's relation in two dimensions. Namely, from equations (32) and (35), 

there follows immediately 

I = 2(cos(<ps))2v~]X-\\ w\x,y)dxdy (A-16) 

for the denominator of equation (7). The approximate DF then readily follows as 

DF = 27t^fcos(<ps), (A-17) 

where the effective area of weighting w(x,y) is defined as 

Jj w(x,y)dxdy 
A = 

jj w2(x,y)dxdy (A-18) 

(For uniform weighting over physical lengths Lx and Lv, this definition reduces to Ae = LxLy, as 

noted under equation (39)). 
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APPENDIX B 

ALTERNATIVE APPROXIMATE DIRECTIVITY FACTOR 

FOR EQUISPACED ARRAYS 

In the main text, an approximate DF was derived for linear and planar apertures by 

matching the mainlobe region of the beam pattern power response with a Gaussian function. This 

approximate result was then extended to discrete linear and planar arrays by replacing the 

continuous weighting functions by sets of weighted impulses. The end results employed RMS 

measures of the extent of the aperture or array. 

The major limitation of the Gaussian approximation is that it takes no account of the actual 

sidelobe levels of the beam pattern; that is, the Gaussian approximation matches only the three 

lowest-order derivatives of the response in the mainlobe region. This procedure could be extended 

to higher derivatives by using a more general fit, such as exp(-üx2)(^4 +Bx4); however, this 

modification would still not take account of the distant sidelobes. 

This appendix presents an alternative approximation for the DF of equispaced linear and 

planar arrays that does account for the sidelobes. (It does not, however, account for the grating 

lobes.) Then, the result is extended to equispaced volumetric arrays by means of a conjectured 

form. This new procedure can be thought of as an extension of Parseval's relation (which is 

applicable to apertures with continuous weighting) to discrete arrays with impulsive weighting. 

The end results will employ effective measures of the array extent. 

EQUIPSACED LINEAR ARRAY 

In equation (22), the double integral over angles (j),0 ,for the noise output power of a linear 

aperture, was simplified to 

1 2 

V = 2njfV(ku-kus) du,        W(v) = jw(z)exp(ivz)dz, (B-l) 
-i 

for continuous weighting w(z) and v = 0, where steering parameter us = cos05.  For an 

equispaced weighted line array on the z-axis, the weighting takes the special form 

w {z) = ^wnS(z-nd), (B-2) 
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leading to window function 

W(v) = 2jWn exp(indv) (B-3) 

for all v, which has period 2nfd in v. 

The integral in equation (B-l) now takes the form 

V = 2n\ 
X(. 2nd, 

wnexTp\in—(u-us du. (B-4) 

The integrand has a desired peak at u~us, along with undesired periodic grating lobes separated 

from us by multiples of X/d. If element spacing d is less than a half-wavelength, then the period 

P = X\d > 2 , and all the grating lobes of \w(ku - kus]   lie outside of the (-1,1) interval in u. 

Therefore, if the array length is much greater than a wavelength, and if the sidelobes are low level, 

the integration interval in equation (B-4) can be modified, leading to approximation 

pp. 

V^2n\ 
-P/2 

v^ f. 2nd 
2_lwn expl m—— « du = 2n — / w~ 

d^   n (B-5) 

(This last quantity is the discrete analogue to Parseval's relation for apertures, which yields the 

integral of the squared weighting.) Use of relations (B-3) and (B-5) now yields the DF 

approximation for a linear equispaced array in the form 

( 

5X 
v       A   -       -     YV 

(B-6) 

The quantity N. is the effective number of weights in real set \wn } (For flat weights, Nz is 

simply the number of elements.) If quantity dNz is interpreted as the effective length Le of the 

discrete array, relation (B-6) for the approximate DF takes the same form as for a linear aperture, 

namely, 2 Le \X. 

B-2 



For elements with amplitude directionality sinO sin 0, relation (B-6) is somewhat 

modified, to the extent that the factor of 2 in the DF is replaced by 4 sin 6S. The factor Nz is 

unchanged. 

Although the derivation above presumed dIX < 1 / 2, result (B-6) is actually valid for the 
broader region djX < 1/(1+1 us I). This is due to the fact that the nearest grating lobe does not yet 

affect the noise integral for this region of values of djX. 

EQUISPACED PLANAR ARRAY 

In equation (34), the double integral over angles (f>,9, for the noise output power of a 

baffled planar aperture in the xy-plane, was simplified (for v = 0) to 

V = — \\\W(ku - kuH, kv - kvYdudv , (B-7) 

where Q is a unit circle centered at the origin, steering parameter ws = cos$»5 > 0, and window 

W(u, v) = JJ w(x,y)exp(iux + ivy)dxdy (B-8) 

for all u,V, which depends on continuous two-dimensional weighting w(x, y). For an equispaced 

weighted planar array, the weighting takes the special form 

w(x,y) = £w„m 8{x - ndx) d(y - mdy) , (B-9) 
nm 

leading to window function 

W(u,v) = ^wnm exp[indxu + imdyv) (B-10) 
nm 

for all u,v, which has period 2n/dx in u and period 2nldy in v. 

Substitution of equation (B-10) in equation (B-7) yields 
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v = - 
w. \\ Xw™exP 

2Kd IKd 
in—-^(u-us) + im—-r^iv-v^ 

X X 
dudv. (B-ll) 

The integrand has a desired peak at u = us, v - vs, along with undesired periodic grating lobes 

separated from u5 ,vs by multiples of Xl% ,XJdy  in u,v, respectively. If element spacings 

dx and d   are both less than a half-wavelength, then the periods X/dy. and Xjdy are both greater 

than 2, and all the grating lobes of \w(ku - kus , kv - kvs jj   lie outside of the unit circle Q in the 

av-plane. Therefore, if the array lengths in the x- and y-directions are both much greater than a 

wavelength, and if the sidelobes are low level, the integration region in equation (B-ll) can be 

modified, leading to approximation 

1 w«meXP 
2jzd^ 

in- 
X 

-u+ im- 
Ind 

y 
X 

dudv 

—JJZXw«mw)fcyexP 
"g   R nm kj 

f 
i(n -k)- 

2Kd. 

v X 
x 

2ridy   A 

—u + i(m — j) —:—v 
X 

dudv 
) 

(B-12) 

™sdxdy nm 
Vw2 

where R is a rectangle of size ±X /(2dx) by ± X /(2dy), centered at the origin of the MV-plane. 

(The last quantity in equation (B-12) is the discrete analogue to Parseval's two-dimensional relation 

for apertures, which yields the integral of the squared weighting w(x, y).) Use of relations (B-8) 

and (B-12) now yields the DF approximation for an equispaced baffled planar array as 

nr    4TTW
2
(0,0)    ,      A|4^X 

Df = ^ = cos0^—-r— Nr 

w. 

V X2 
N^ 

nm 
nm J (B-13) 

w_ 

The quantity Nxy is the effective number of weights in two-dimensional real set \wnm\. (For flat 

weights, N^ is simply the total number of elements employed in the xy-plane.) If the quantity 

dxdyNxy is interpreted as the effective area A^ of the discrete planar array, relation (B-13) for the 
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approximate DF of a baffled planar array takes the same form as for a baffled planar aperture, 

namely pos (ps hn Axy /X  . An alternative expression for the DF of a baffled planar aperture is 

Ae DF =4n-f, (B-14) 
A 

where Ae - cos<^ U    is the effective area of the planar aperture, as seen from the steering 

direction 0s,(j)s. 

For elements with moderate amplitude directionality, relation (B-13) for the approximate 

DF is unchanged because a two-dimensional array can have simultaneous fine resolution ability in 

both the azimuthal and polar angles. This fine resolution dominates the relative slowly varying 

selectivity of the individual element directionality, effectively factoring it out of the double integral 
on 0,(f>, with the element directionality value taken at the steering angle 6S, (j)s. 

Although the derivation above presumed dx< A /2 and dy < A/ 2, result (B-13) is 

actually valid for the broader region where 

>1 (B-15) 

for all integers / and J equal to -1, 0, +1, except that /, J = 0, 0 is disallowed. Restriction (B-15) 
guarantees that none of the grating lobes in equation (B-l 1) lie inside the unit circle Q; this is 

consistent with the rectangular replacement used in approximation (B-l2), which guaranteed the 

exclusion of all grating lobes from the rectangular integration region. 

T*] 
2 f    ,A u, +1 — + v. + J  5      d s       d ux J \           y) 
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EQUISPACED VOLUMETRIC ARRAY 

The authors have been unable to discover how to extend the arguments above to a 

volumetric aperture or equispaced array; accordingly, conjectured forms for the DF of volumetric 

apertures and arrays are constructed based on the earlier forms in this appendix for the approximate 

DFs in the planar case. 

Whereas a planar aperture or array occupies only the xy-plane, a volumetric aperture or 

array occupies the third dimension, namely z. This gives the steered volumetric amplitude 

response the capability to reject responses in an undesired hemisphere, whether it is baffled or not. 

Therefore, the baffled planar DF result in equation (B-14) should furnish the model form for the 

three-dimensional cases (whether baffled or not), namely 

DF=4n^r, (B-16) 
A2 

where Ae is now the effective area of the volumetric aperture or array, as seen from the steering 

direction 9s(ps. 

In particular, guided by the Gaussian form in equations (59) through (62), there follows, 

for a volumetric aperture, 

Ae ^Al + tAl + uU^T > (B"17) 

where the projected effective areas are defined in terms of the three-dimensional aperture weighting 

w(x, y, z) according to 

(\\wx,.(x,y)dxdy) 
A^.^^— '-,       wx%.(x,y)=\w(x,y,z)dz,     etc. (B-18) 

}}w'X}.(x,y)dxdy 

For an equispaced volumetric array with discrete three-dimensional weighting w(n,m,k) 
and spacings dx,dy,d7, aproximate DF (B-16) is still appropriate, but where the effective area is 

now represented as 
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Ae = (^N2
xyd

2d2
y + v2N2

zd
2

xd
2 + «JN2

y4
2

yd
2

z )'
2 , (B-19) 

The projected effective numbers of elements here are given in terms of the three-dimensional 
weighting {w(n,m, k)} as 

AL 

f Y 
V ran J__ 

£w*.(/i,m) 
wX}.(n,m) = ^w(n,m,k),       etc. (B-20) 

Although there is only one form, namely equation (B-16) with definitions (B-19) and 

(B-20), for the approximate DF of an equispaced volumetric array, this form has different ranges 

of applicability, depending on whether baffling is used. The approximate DF takes no account of 

grating lobes, whereas actual arrays are always subject to the effects of grating lobes. This is 

evident in figure 14 where the agreement of the approximate DF with the exact baffled DF is 
excellent up to f jf0 = 1.8, whereas the agreement with the exact unbaffled DF holds only up to 

f/f0 = 0.9.  This is due to the fact that baffling suppresses all the lower-hemisphere grating lobes; 

the dip in the unbaffled DF neaxf/f0 = 1 is due to a lower-hemisphere grating lobe that is 

responding to undesired noise arrivals. However, it should be noted that for frequencies 
1 • 1 < f/fo < 1 -7, the approximate DF again agrees with the exact unbaffled DF; this occurs 

because this particular grating lobe in figure 14 only contributes in the neighborhood of f/f0 = 1. 

The general frequencies at which an equispaced unbaffled volumetric array is subject to a 

grating lobe are 

/        I2 + J2 + K2 

fo        \uj+ Vc J + W,K\ 
(B-21) 

where /, J, K are positive and negative integers, not all equal to zero. The lowest problematical 

frequency was given earlier in equation (75). 

For an equispaced baffled volumetric array, not all the frequencies in equation (B-21) lead 

to grating lobes. To determine which frequencies are relevant, a search over all the small integer 
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values for /, J, K, such as 0, ±1, ±2, must first be conducted. Then, those cases corresponding to 

negative values of ws + K 2f0/f must be discarded, because they correspond to lower- 

hemisphere grating lobes, which will not be active in a baffled application. The remaining cases 

constitute valid grating lobes; the lowest remaining frequency furnishes the upper bound on 

applicability of the approximate DF to an equispaced baffled volumetric array. 
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APPENDIX C 

SUMMARY OF FORMULAS FOR APPROXIMATE DIRECTIVITY FACTOR 

The approximate relations for the DF are listed below. In each case, the Gaussian results 

are presented first; then, the results of the alternative method employing Parseval's relation, or a 

modification for equispaced arrays, are summarized. 

LINEAR APERTURE 

DF = 4^- 2Kg2{6M 

X lKg\d^s)dd' 
(C-l) 

m = 
z w(z)dz 

J   w(z)dz 
(C-2) 

DF- 
24  2Kg\es,<t>s) 
1 fJg\0A)de' 

(C-3) 

L„ 

J w(z)dz 

\w2(z)dz 

(C-4) 

LINEAR ARRAY 

DF = ^iWA. 
(C-5) 

2d 
DF = —N,. (C-6) 

C-l 



N.= 

f \ 

V   n J (C-7) 

PLANAR APERTURE (UNBAFFLED) 

DF = S7t2cos(<ps)-
J-T

± 

A 
(C-8) 

m  — 
x"w(x,_y)iix£/>' 

w(x,;y)dx<iy 

V/2 

(C-9) 

DF = 27T-f cos(0v). 
A2 

(C-10) 

n2 

jf w(x,^)<ir(iy 

A = k 

j j w2(x,y)dxdy (C-ll) 

PLANAR ARRAY (UNBAFFLED) 

DF ■ 
SK2dxdycos((ps) 

1/2 
A1    M 

11 
n=\ m=\ 

W„ 
#+1 N    M 

11 
n=\ m=l 

M + \ 
w. m 

x- N    M 

11 
n=\ m=\ 

W„ 

(C-12) 

DF = \cos<t>s\—-^Nx 1        '    AT 
(C-13) 

1 
nrn 

2^1 
AJ     = V™ )_ 

xy 
(C-14) 

C-2 



VOLUMETRIC APERTURE 

\6K~ r~-> ;    7, ~i  ■> ■ ■>, 

DF = ——Jm;mycosr((j)s) + m~xm: sin'((ps)sm~(ds) + mym~ sirr(0s)cos (ds) 
A 

(C-15) 

m, — 

»oo       »DO       »OO ^  

x~w(x,y,z)dxdydz 

[   I    I   w(x,y,z)dxdydz 

v'/2 

(C-16) 

DF = An 4 
A2 

(C-17) 

A = (w2A2
xy + v2A + u2A2J2. (C-18) 

A   = w. f(x,;y) = J w(x,)>,z>fe,     etc. (C-19) 

VOLUMETRIC ARRAY 

167T2 

£>F = —— Jmz
xm-y cos1 (<ps) + mÄ

xm
l sin2 (</>5)sin'(05) + mym\ sinz(<t>s)cosz(ds) 

A 
(C-20) 

m, = 

/'v — 2V/: 

i  

V    ' J 

; see equation (66). (C-21) 

DF = 4TT 4 
A2 

(C-22) 

Ae = (w2N2
xyd

2d2 + v2N2
zd

2
xd

2 + u2N2
yzd

2d2J2. (C-23) 

Jw„.(n,m) 

£w*.(#i,/ra) 
w. ((n,m) = y w(R,m,^:),       etc. (C-24) 
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OTHER ARRAY GEOMETRIES 

Directivity approximations for many additional array geometries have been derived in the 

past.8 DFs for some other common types are 

DK 
2izdX 

ring array 

1 + . 4> K a 
sm 

f2nd    n^ 

X 

(C-25) 

where d is the diameter of the continuous ring aperture. For d/X » 1, the directivity factor 
approaches DFrin arrax -» IndjX, which increases linearly with d. Compare this behavior with 

figures 10 and 11 for a semicircular array. 

For a flat circular plate of diameter d, 

DK 
(nd/Xf 

circular plate 
,     X      X    . 
1 J—T— sm 

nd \K d 

'' lizd    n^ 
X 

(C-26) 

When d/X » 1, this equation leads to the well-known approximation for a piston in a rigid baffle, 

namely, DFplslon = (nd/xf = A% AJX
2
 . 
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