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1.     Objectives 

Our original goals were the following. 

1. Lay the mathematical foundations and formulate efficient numerical methods for life 
prediction for high temperature materials containing bridged cracks. 

2. Map out possible classes of solutions, modes of fracture, asymptotic limits, and 
characterizing scales for crack propagation in the presence of rate dependent bridging 
phenomena. 

3. Determine rate dependent constitutive laws based on micromechanics for rate dependent 
process zones in brittle composites at high temperature. 

4. Advance optimal composite design by linking bridging constitutive laws to the microscopic 
properties of bridging ligaments via micromechanics. 

5. Develop a practical methodology for predicting crack growth rates in high temperature 
materials by finding the simplest, physically justifiable material parameters required to 
characterize fracture in the presence of rate dependent cohesive zones. 

These goals were reached before the end of our program. We were then led in a new direction by 
the advent of integrally woven ceramic matrix composite structures, which show outstanding 
promise in hot engine parts, including rocket motors and turbine engines. Delamination and other 
matrix cracks are still very likely to form in such 3D reinforced structures, but they will be 
bridged by fiber tows and therefore not fatal in a correct design. The key research question 
becomes understanding the bridging process for the delamination crack, including rate effects 
(creep and fatigue) at high temperatures. This was a natural extension of the work we had already 
completed on this contract. We therefore included in the scope of our research the following 
goal: 

6. Lay out basic mechanics issues for rate dependent cohesive zones in textile composites, 
especially delamination cracks in 3D reinforced layered structures. 

2. Status of Effort 

This report covers the entire period of performance in our contract, from August, 1994, through 
September, 1997, with emphasis on work conducted in the final 20 months, which includes a 6 
month no-cost extension. All work is now concluded. 
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At all stages, our research was highly leveraged by collaborations. The principal of these were 
with faculty, postdoctoral fellows, and students at the University of California, Santa Barbara. 
Other collaborations extended across the U.S. and to Australia. These collaborations continue. 

3.     Accomplishments and New Findings 

A summary of our major accomplishments is as follows. 

1.   Subcritical Cracking in Ceramic Matrix Composites (CMCs). 

We developed successful models to describe subcritical growth of matrix cracks in CMCs at high 
temperatures when the reinforcing fibers creep.  Such crack growth is now recognized to be the 
primary mode of failure in many CMCs at high temperature.    Experiments show that it. 
dominates in SiC/SiC systems; and it is also likely to be important in oxide-oxide composites. 

In work under another contract, we had studied the initiation of mode I tensile cracks (not 
delamination cracks) that tunnel down individual plies in brittle matrix laminates or woven 
textiles and then turn into plane cracks spreading across many plies en route to part failure.1 

Under this contract, we unified this modeling with our models of cracks bridged by creeping 
fibers.2,3 In the absence of fiber creep, the plane strain phase of crack propagation often (and 
desirably) ends in crack arrest, because the plane strain crack grows into a lengthening bridging 
zone as the crack traverses plies. However, fiber creep relaxes the bridging and allows crack 
growth to resume, which leads to failure at undesirably low stresses. We developed 
comprehensive solutions to this mode of crack growth. Our predicted crack growth rates are in 
excellent agreement with trends seen in our own experiments (conducted under DoE funding) 
and experiments conducted at Pacific Northwest National Laboratory (Henager and Jones). We 
are very confident that we have the mechanics essentially right. 

We have shown that the subcritical cracking is controlled by three parameters: the steady-state 
(ACK) matrix cracking stress for rate-independent (fast) cracking, <rACK; the characteristic 
bridging length scale, am; and a rate constant for the creep process in the fibers, ß. The process of 
initiating cracks in cross-plied laminates involves as an additional parameter the ratio, rj, of the 
fracture energies in the 0° and 90° plies. These parameters and the nontraditional fracture 

1 B. N. Cox and D. B. Marshall, "Crack Initiation in Fiber Reinforced Brittle Laminates" J. Amer. Ceram. Soc. 
79[5], 1181-8(1996). 
2 B. N. Cox, D. B. Marshall, R. M. McMeeking, and M. R. Begley, "Matrix Cracking in Ceramic Matrix Composites 
with Creeping Fibers," in IUTAM Symposium on Nonlinear Analysis of Fracture, ed. J. R. Willis, Kluwer Series on 
Solid Mechanics and its Applications, series ed. G. M. Gladwell (Kluwer Academic, Dordrecht) in press. 
3 M. R. Begley, B. N. Cox, and R. M. McMeeking, "Time Dependent Crack Initiation and Growth in Ceramic 
Matrix Composites," in Proc. International Gas Turbine Institute Conference, ed. S. Cunningham, ASME, 1997. 
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concepts they represent are the basis for generating the simplest possible, physically correct 
model for predicting lifetime, conceptually separating the engineering problem of life prediction 
for a given material from the intricacies of the micromechanics of the underlying processes. We 
have developed comprehensive failure maps for the subcritical cracking, showing domains of 
stable and unstable cracking and transitions from cracking before fiber rupture to fiber rupture 
following crack initiation. 

As part of our goal of finding simple representations of bridged crack phenomena, we developed 
complete analytical solutions for cracks bridged by creeping fibers in the small scale bridging 
limit.4 This limiting case, which occupies one corner of the general failure map, can be expected 
to apply later in component life in the case that crack growth is accompanied by fiber creep 
rupture. It is also a common situation in experimental studies of crack growth, e.g., in notched 
specimens where the presence a large enough notch brings about small scale bridging conditions. . 

The fracture concepts represented by our four parameters and the failure maps will have general 
applicability to a wide range of subcritical growth problems in CMCs. For example, our model 
of the creeping fiber problem in the small-scale bridging limit is formally equivalent to the 
problem of fatigue crack growth in in-situ reinforced Si3N4. Likewise, our formulations for large- 
scale bridging will be pertinent to MMCs in which fatigue effects acting on fiber interfaces 
introduce rate dependent bridging.5 And the fundamental concepts we have introduced will be 
applicable to diverse classes of CMCs in high temperature service, including laminates and 
textiles. 

To conclude this part of our work, we have now developed a model for the two dimensional 
problem of how stress is transferred from fibers to matrix in the vicinity of a matrix crack, 
leading to a generalized constitutive model for the bridging effect of the fibers. The constitutive 
laws take account of loss of contact between the fibers and the matrix due to creep elongation of 
the fibers.6 The modeling is an extension of the work presented by Hutchinson and Jensen.7 We 
consider the case where the fiber is orthotropic and an arbitrary residual stress exists in both 
radial and axial directions. The friction between fiber and matrix is assumed to be uniform along 
a friction zone whose length varies with the residual radial stress and creep shrinkage. In 
contrast to earlier constitutive models we used to study single cracks, the mechanics in our new 

4 M. R. Begley, B. N. Cox, and R. M. McMeeking, "Creep Crack Growth with Small-Scale Bridging in Ceramic 
Matrix Composites," Acta Mater., in press. 
5 B. N. Cox and L. R. F. Rose, "A Self-Consistent Approximation for Crack Bridging by Elastic/Perfectly Plastic 
Ligaments," Mechanics of Materials 22, 249-63 (1996). 
6C.  Argento,  "Mechanics of Creeping  Fiber Debonding  and  Pullout  in  Bridged  Cracks  in  Unidirectional 
Composites," to be submitted to Acta Mater. 
7 J.W. Hutchinson and S. Jensen, "Models of Fiber Debonding and Pullout in Brittle Composites with Friction", 
Mech. Mat., 9, 139-163 (1990). 
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solution are general enough to allow us to study crack-crack interactions, which are strongly 
influenced by the spreading zone of lost contact due to fiber creep. 

One of the most interesting aspects of subcritical cracking in CMCs at high temperature is that 
multiple cracks give way in time to a single dominant crack. (Multiple cracking always persists 
to failure at room temperature.) Final experiments are being completed which illustrate better 
the transition temperature and the possible effect of applied stress intensity factor.8 Our new 
constitutive model will allow us to understand the details of this transition (we already 
understand the essential mechanism - the overlap of non-contact zones caused by fiber creep), 
which we regard as central to determining life and predicting notch effects and ultimate strength. 

2.   Bridged Cracks in Textile Composites. 

Some of the most interesting cohesive zones in all materials exist in textile composites. The 
length scales are extraordinary - characteristic zone lengths are often many cm. This implies 
exceptional notch insensitivity and fracture toughness. One particularly pertinent class of bridged 
cracks for high temperature applications is delamination cracks in layered structures for thermal 
barrier or load bearing applications. Such materials made from brittle matrix composites are 
especially vulnerable to delamination, which will inevitably be one of the primary failure modes. 
Many textile processes have been developed for suppressing delamination in polymer composites 
by introducing through-thickness reinforcement. The processes include weaving, braiding, 
stitching, or inserting short rods. The same methods are now being applied to CMCs. 

Mode I, mode II, and mixed mode loading conditions can arise for bridged delamination cracks. 
Delamination that is primarily mode I can be driven, for instance, by opening bending moments 
applied to curved structures or thermal gradients in flat structures. Both of these conditions can 
be expected in hot structure applications, e.g. combustor liners, actively cooled rocket nozzle 
surfaces, hot structures in turbine engines, etc. Mode II or mixed mode delamination can be 
initiated where a layered structure terminates at an edge or cut-out. 

We have now laid out most of the fundamental aspects of these delamination problems. We have 
put together some elementary models for mode II cracking9 with experimental data and 
observations for End Notch Flexure (ENF) specimens to demonstrate how delamination cracks 
can be modeled successfully as bridged cracks. We have defined processes for evaluating 

8 D. R. Mumm, K. L. Rugg, and B. N. Cox, "High Temperature Transition to a Single Dominant Matrix Crack in 
Brittle Matrix Composites with Creeping Fibers," to be submitted to Ada Mater or J. Am. Ceram. Soc. 
9 R. Massabö and B. N. Cox, "Concepts for Bridged Mode II Delamination Cracks," submitted to Mechanics of 
Materials. 
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bridging parameters at room temperature, using data for stitched polymer composites.'" Once 
again, there are fundamental length scales and material stresses associated with steady state 
cracking whose identification is very useful for understanding the scope of the problem. 
Significant differences exist in these length scales and stresses for polymer and ceramic 
composites, as one might expect: since the intrinsic (unbridged) delamination toughness of a 
CMC is 3 orders of magnitude less than that of a polymer composite, bridging must be much 
suffer in the CMC to be effective. 

We have also completed detailed models of the bridging of mode I cracks in curved panels" and 
for mode II cracks in shear loading,12 showing how the details of the bridging law, which leads 
among other things to the critical stress for delamination, depends on the characteristics of the 
through-thickness reinforcement. Salient mechanisms include the flexural rigidity of the 
through-thickness reinforcement, debonding and sliding of the stitch, and rotation and ploughing. 
of the stitch through the surrounding composite. Stitch failure generally occurs by rupture at 
some critical strain. We have completed a model of all these mechanisms which provides a 
micromechanical estimate of the bridging effect for general crack displacements." It can treat 
small and large deflections of the through-thickness reinforcement appropriate to damage 
initiation and ultimate failure. The critical shear traction and the maximum angular rotation 
allowed before the pull-out of reinforcement can be determined analytically. 

Our initial work now completed on bridged delamination cracks puts us in an ideal position to 
analyze the rate dependent mechanics of textile structures at high temperature. In one follow-on, 
we are now using our understanding of mechanisms and length scales to design CMC 
delamination fracture specimens. (This is non-trivial and could easily be done wrong, which 
would result in the waste of very expensive specimens and testing time.) We plan to test our 
specimens at high temperature in an internally funded program. We will look for creep and cyclic 
fatigue effects in the bridging zone, which we will model in this program by combining our new 
models for delaminations in textile laminates9,10 with our models for rate depending bridging.2'3'4,7 

This represents a significant, new thrust in our research, yet is a natural outgrowth of our work to 
date. 

M. He and B. N. Cox, "Crack Bridging by Through-Thickness Reinforcement in Delaminating Curved 
Structures," submitted to Composites, 1996. 
11 B. N. Cox, R. Massabö, D. R. Mumm, A. Turrettini, and K. Kedward, "Delamination Fracture in the Presence of 
Through-Thickness Reinforcement," plenary paper in Proc. if Int. Conf. Composite Materials, Gold Coast, 1997, 
Australia, ed. M. Scott and I. Herszberg. 
12 B. N. Cox and M. He, "Constitutive Models for a Fiber Tow Bridging a Delamination Crack," to be submitted to 
Composites. 
13 C.-H. Kuo and B. N. Cox, "A Model for Through-Thickness Reinforcement in Laminates under General Crack 
Displacements," to be submitted to Acta Mater. 
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3.   Current Status of CMC Science Reviewed. 

Frank Zok and Brian Cox wrote an invited review article on developments in CMC science in the 
last two years, drawing on about 100 recent contributions to the literature.14 We made the 
following summary remarks. 

Ceramic matrix composites reinforced with continuous fibers are on the verge of insertion into 
hot engineering structures. Yet current research is only beginning to attack some of the most 
critical problems. Key developments in the last 24 months include the formulation of constitutive 
laws for continuum mechanics analyses; the discovery of stable, weak oxide-oxide interface 
systems; the analysis of how fiber creep limits life at high temperatures; confrontation of the 
problem of oxidation pesting at intermediate temperatures in SiC based systems; re-examination 
of the maxim that interfaces must be weak; and the advent of textile reinforcement as the solution. 
to delamination problems. 

Apart from the fact that making such a concerted effort to catch up with what is going on is 
marvelously instructive, the exercise left us very optimistic because of the number of 
significantly new ideas being pursued in processing and materials design; and also reassured that 
our own programs on CMC micromechanics and design and reliability issues are on the right 
track. 

4.  Personnel Supported 

The following were directly supported: 

Dr. Brian N. Cox, Manager, Design and Reliability Department, Rockwell Science Center. 
Dr. David B. Marshall, Manager, Structural Ceramics Department, Rockwell Science 

Center. 
Dr. Claudio Argento, Member of Technical Staff, Design and Reliability Department, 

Rockwell Science Center. 
Dr. Daniel Mumm, Post-Doctoral Fellow, Structural Ceramics Department, Rockwell 

Science Center (left Rockwell before the end of the program). 
Dr. Kevin Rugg, Post-Doctoral Fellow, Design and Reliability Department, Rockwell 

Science Center. 
Dr. C.H. Kuo, Post-Doctoral Fellow, Design and Reliability Department, Rockwell Science 

Center 

14 B. N. Cox and F. Zok, "Advances in Ceramic Composites Reinforced by Continuous Fibers," Current Opinion in 
Solid State and Materials Science, 1, 666-673 (1996). 
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The following students have worked or are still working towards Ph.D. degrees partly under the 
supervision of Brian Cox: 

Matt Begley, Department of Mechanical and Environmental Engineering, UC Santa Barbara 
(Ph.D. granted; now on the faculty at the University of Connecticut). 

Keith Yi, Materials Department, Stanford University. 
Chad Landis, Departmental of Mechanical and Environmental Engineering, UC Santa 

Barbara. 

The following researchers have joined in active collaborations: 

Dr. L.R.F. Rose, AMRL, Melbourne, Australia. 
Professor R.M. McMeeking, Department of Mechanical and Environmental Engineering, UC . 

Santa Barbara. 
Professor R.H. Dauskardt, Materials Department, Stanford University. 
Professor Frank Zok, Materials Department, UC Santa Barbara. 
Prof. Roberto Ballarini, Case Western Reserve University. 
Dr. Haian Luo, Shanghai Jiao Tong University. 

5.   Publications under this contract 

The following is a list of papers published or to be published under this contract. Preprints of 
papers 1 through 9 were mailed to Dr. Brian Sanders on June 17, 1997. A preprint of paper 10 
and drafts of papers 13 and 16 are included as appendices to this report. Preprints of the 
remaining papers, 11, 12, 14, 15, and 17, will be forwarded as they are completed over the next 
few months. 

1. B. N. Cox and L. R. F. Rose, "A Self-Consistent Approximation for Crack Bridging by Elastic/Perfectly 

Plastic Ligaments," Mechanics of Materials 22, 249-63 (1996). 

2. B. N. Cox, D. B. Marshall, R. M. McMeeking, and M. R. Begley, "Matrix Cracking in Ceramic Matrix 

Composites with Creeping Fibers," in IUTAM Symposium on Nonlinear Analysis of Fracture, ed. J. R. Willis, 

Kluwer Series on Solid Mechanics and its Applications, series ed. G. M. L. Gladwell (Kluwer Academic, 

Dordrecht, 1997) pp 353-65. 

3. M. R. Begley, B. N. Cox, and R. M. McMeeking, "Creep Crack Growth with Small-Scale Bridging in Ceramic 

Matrix Composites," Ada Mater. 45[7], 2897-2909 (1997). 

4. M. He and B. N. Cox, "Crack Bridging by Through-Thickness Reinforcement in Delaminating Curved 

Structures," Composites, in press. 
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5. R. Massabö and B. N. Cox, "Concepts for Bridged Mode II Delamination Cracks," submitted to Mechanics of 

Materials. 

6. B. N. Cox and F. Zok, "Advances in Ceramic Composites Reinforced by Continuous Fibers," Current Opinion 

in Solid State and Materials Science, 1, 666-673 (1996). 

7. M. R. Begley, B. N. Cox, and R. M. McMeeking, "Time Dependent Crack Initiation and Growth in Ceramic 

Matrix Composites," in Proc. International Gas Turbine Institute Conference, ed. S. Cunningham, ASME, 

1997. 

8. M. Y. He, B. N. Cox, and K. T. Kedward, "Modeling of Discrete Radial Reinforcement in Curved Polymer 

Matrix Composite Laminates," in Proc. 11'" Int. Conf. Composite Materials, Gold Coast, Australia, 1997, ed. 

M. Scott (Woodhead Publishing, Melbourne, 1997). 

9. B. N. Cox, R. Massabö, D. R. Mumm, A. Turrettini, and K. Kedward, "Delamination Fracture in the Presence 

of Through-Thickness Reinforcement," plenary paper in Proc. II'" Int. Conf. Composite Materials, Gold 

Coast, 1997, Australia, ed. M. Scott (Woodhead Publishing, Melbourne, 1997). 

10. B. N. Cox and F. W. Zok, "Recent Advances in Fibrous Ceramic Composites," plenary paper in Brittle Matrix 

Composites V, Warsaw, October, 1997, ed. A. M. Brandt, V. C. Li, and I. H. Marshall. 

11. C. Argento, "Mechanics of Creeping Fiber Debonding and Pullout in Bridged Cracks in Unidirectional 

Composites," to be submitted to Ada Mater. 

12. P. Vandeurzen, C. Argento, and B. N. Cox, "Thermal conductivity of Textile Composites with through- 

Thickness Reinforcement," to be submitted to J. Composite Sei. and Engng. 

13. B. N. Cox and M. He, "Constitutive Models for a Fiber Tow Bridging a Delamination Crack," to be submitted 

to Composites. 

14. C.-H. Kuo and B. N. Cox, "A Model for Through-Thickness Reinforcement in Laminates under General Crack 

Displacements," to be submitted to Acta Mater. 

15. D. R. Mumm, K. L. Rugg, and B. N. Cox, "High Temperature Transition to a Single Dominant Matrix Crack 
in Brittle Matrix Composites with Creeping Fibers," to be submitted to Acta Mater or J. Am. Ceram. Soc. 

16. R. Massabö, D. R. Mumm, and B. N. Cox, "Characterizing Mode II Delamination Cracks in Stitched 

Composites," to be submitted to Mechanics of Materials. 

17. H. Luo. R. Ballarini, and B. N. Cox, Fracture Stability in Structures Containing Bridged Cracks, paper in 

preparation (delayed by Dr. Luo's illness). 



'1* Rockwell 
Science Center 

SC71100.FR 

6. Interactions/Transitions 

Presentations and other conference services by Brian Cox, including significant work funded 
by this contract: 

Invited speaker in symposium on High Temperature Fracture, ASME Int. Mechanical Engineering 

Conference and Exposition, San Francisco, November, 1995. 

Invited speaker, URI Workshop, Santa Barbara, January, 1996. 

Session chair and invited speaker at the Annual Meeting of the American Ceramic Society, Indianapolis, 

April, 1996. 

Plenary speaker at the Third International Conference on Composites Engineering, New Orleans, July, 

1996. 

Invited speaker for symposium on ceramic matrix composites, SES meeting, Phoenix, October, 1996. 

Invited speaker in two symposia at ASME IMEC&E, Atlanta, November, 1996. 

Departmental seminar, MAE Dept., UCLA, January, 1997. 

Invited speaker, Symp. On Fatigue and Creep of Composite Materials (organized by Jim Larsen), TMS Fall 

Meeting, Indianapolis, September, 1997. 

Invited speaker and session chair, 9"" Int. Conf. on Fracture, Sydney, Australia, April, 1997. 

Program Chair, Materials Division, ASME Summer Meeting, Northwestern University, July, 1997. 

Plenary speaker, ICCM-11, Gold Coast, Australia, July, 1997. 

Invited speaker, 5* Intl. Symp. on Brittle Matrix Composites, Warsaw, Poland, October, 1997. 

Program Chair, Materials Division, ASME Int. Mech. Engng Cong. And Exhib., Dallas, November, 1997. 

Keynote lecturer, Engineering Found. Conf. on Small Fatigue Cracks, Snowbird Resort, Utah, June, 1998. 

Claudio Argen to will deliver the following presentation: 

Invited speaker, Fall Basic Sciences Meeting of the Amer. Ceram. Soc, San Francisco, October, 1997. 

Throughout our contract, we interacted with Jim Larsen's group at WPAFB (including Dr. 
Reji John) on predicting fatigue crack growth rates in intermetallic matrix composites. Mr. 
Brian Rigling, a Ph.D. student, is developing models of fatigue cracks in metal matrix 
composites based on our bridged crack models. 

We set up a contract using Rockwell IR&D funds to support Professor Frank Zok and a 
postdoctoral fellow, Dr. Xiao-Yan Gong, to transition models of CMC life into Boeing North 
American's Rocketdyne Division. We have encoded the simplified models we have 
developed in this program as well as simple versions of extensive models for room 
temperature behavior developed in the ARPA URI program on CMCs at UCSB into FEM 
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calculations for design engineers at Rocketdyne. The project has been a direct and successful 
test of the utility of our models. The first application has been to carbon/SiC turbopump 
rotors for rocket motors. 

7. Inventions or patent disclosures 

None. 

8. Honours and awards 

Brian Cox's status as an adjunct professor in the Department of Mechanical and Environmental 
Engineering, University of California, Santa Barbara, was extended through June, 1998. 

Brian Cox was appointed to the editorial board of the journal Fatigue and Fracture of 
Engineering Materials and Structures. 

In his service on the Executive Committee of the Materials Division of the American Society of 
Mechanical Engineers, Brian Cox was appointed program chair for the division at the summer 
and winter annual meetings. 

Our paper "Time Dependent Crack Initiation and Growth in Ceramic Matrix Composites," by M. 
R. Begley, B. N. Cox, and R. M. McMeeking, was nominated for an award at the ASME 
International Gas Turbine Institute Conference, 1997. 

10 
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Appendix - Preprints of Recent Papers 

This appendix includes preprints of the following papers: 

B. N. Cox and F. W. Zok, "Recent Advances in Fibrous Ceramic Composites," plenary paper in Brittle Matrix 

Composites V, Warsaw, October, 1997, ed. A. M. Brandt, V. C. Li, and I. H. Marshall. 

B. N. Cox and M. He, "Constitutive Models for a Fiber Tow Bridging a Delamination Crack," to be submitted 

to Composites. 

R. Massabö, D. R. Mumm, and B. N. Cox, "Characterizing Mode II Delamination Cracks in Stitched 

Composites," to be submitted to Mechanics of Materials. 

11 
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and 
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Materials Department 
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ABSTRACT 

Recent developments in the science and engineering of ceramic matrix composites (CMCs) 
are reviewed. Important advances include the formulation of constitutive laws for continuum 
mechanics analyses; the discovery of stable weak oxide-oxide interface systems; the analysis 
of how fiber creep limits life at high temperatures; confrontation of the problem of oxidation 
pesting at intermediate temperatures in SiC based systems; re-examination of the maxim that 
interfaces must be weak; and the advent of textile reinforcement as the solution to 
delamination problems. These accomplishments are on the critical path to incorporating 
CMCs in hot engineering structures. 

INTRODUCTION 

From the early 1980's, when CMC research first enjoyed large scale funding and the attention 
of significant groups all over the world, work has concentrated on a simple paradigm of the 
ideal CMC. It must have a weak fiber/matrix interface to allow energy absorption during 
fracture by the deflection of cracks, in the complete absence of any dislocation based 
toughening. Freed of stress concentration when the matrix cracked, strong fibers would 
continue to bear high loads. This approach to protecting CMCs from intrinsic flaws, notches, 
and damage was pursued almost entirely in the context of unidirectionally reinforced CMCs, 
with aligned loads; and mostly in terms of room temperature phenomena. It is now very well 
understood [1,2]. 



However, structural applications almost never involve uniaxial stresses; and the long 
sought pay-off for CMCs will certainly come at high temperatures. But at last constitutive 
laws are being developed that are suitable for use in finite element calculations of non- 
unidirectional CMCs under complex loads. The serious difficulties of ensuring durability at 
high temperatures are being confronted; oxidation pesting of SiC fibers at intermediate 
temperatures, fiber creep at higher temperatures, and the chemical stability of interfaces are all 
hot topics. Textile reinforcement, especially with 3D architecture, has appeared as the 
solution to the unavoidable vulnerability of brittle matrix composites to delamination. And 
even the central axiom that CMCs cannot be tough unless the fiber/matrix interfaces are weak 
is being challenged. 

CONSTITUTIVE LAWS FOR CONTINUUM CALCULATIONS 

Major progress has been made in the last year or two in developing design and reliability 
codes suitable for field use from the wealth of micromechanical models in the CMC literature. 
Effort has focused on generating constitutive laws for insertion into finite element models, 
with the goal of reducing the treatment of nonlinearity in CMCs to standard continuum 
mechanics. 

Nonlinearity in CMCs at room temperature involves matrix cracking, stochastic fiber 
fracture, damage localization, and fiber pullout. Two groups have presented exhaustive 
studies for unidirectional composites of the relation between micromechanical properties 
(including the interfacial friction stress, residual stresses, constituent elastic moduli, fiber 
radius, and fiber volume fraction) and the macroscopic stress-strain response under aligned 
loads prior to damage localization and ultimate failure [3-6]. Prior and well established 
models of matrix cracks bridged by sliding fibers are used as the physical basis for modeling. 
Micromechanical properties are deduced directly from experimental hysteresis loops, 
obviating any detailed tests of interface conditions, e.g., fiber pullout or pushout tests. One 
group couches its work in the language of micromechanics more familiar to the CMC 
community [3,4]; the other in the language of continuum damage mechanics, but with a 
thermodynamic potential function derived from the same micromechanics [5,6]. They offer 
equivalent treatments of nonlinearity up to localization, with some variations in point of view 
and in the level of micromechanical detail used in fitting data. Both sets of work are essential 
reading. More empirical (probably unnecessarily so) treatments of nonlinearity in 
unidirectional CMCs have also appeared [7]. 

Recent extensions of the continuum damage approach also deal with predicting the onset 
of damage localization, which is required to model ultimate failure and the notch sensitivity of 
strength [8]. Localization and subsequent fiber pullout involve distributions of flaw strengths 
and stress redistribution effects which are complex and not generally well known in a 
particular material. There is a commensurate increase in the number of material parameters to 
be determined by calibrating experiments. Applications to circumferentially reinforced rotors 
have been presented, but proof of the predictive power of localization models is not yet 
convincing. 

Empirical approaches are most credible for multiaxial or off-axis loading, even in 
unidirectional CMCs, or for more complex fiber architectures [9,10]. 



This area of work represents the culmination of efforts to qualify CMCs as structural 
materials. Current activity focuses on dealing with rate dependent behaviour at high 
temperature, fatigue effects, and weakest link fracture statistics (volume effects). 

TOUGHESS RELATED PROPERTIES 

Tensile tests performed on specimens containing holes or notches have demonstrated that 
many CMCs are relatively notch-insensitive [11-15]. The net-section stress at fracture is 
typically 80-100% of the unnotched strength: considerably higher than the value calculated on 
the basis of the elastic stress concentration factor. Measurements of in-plane strains (using 
moire interferometry [13]) and stresses (using SPATE [11,12]) have shown that strain 
concentrations are essentially unchanged by the inelastic deformation but stress 
concentrations are reduced dramatically. However, even in the most notch-insensitive 
materials, stress concentrations are not eliminated altogether, yet the net section strength is 
essentially equal to the unnotched strength. This suggests strength depends on volume, since 
the stressed volume ahead of a notch is small. 

The degree of notch sensitivity is also influenced by the nature of the inelastic deformation 
occurring ahead of the notches (Figure 1). In some materials (e.g. Nicalon™/CAS), a damage 
zone of multiple matrix cracks forms ahead of the notch, which has an analogous effect to the 
plastic zone in metals (designated Class II behavior by Evans [16]). In others (e.g. C/C), 
nonlinearity arises from shear bands oriented parallel to the tensile direction (Class III 
behavior [16]). In more brittle CMCs, fracture occurs by the propagation of a dominant mode 
I crack, with fiber failure and pullout in the crack wake, but with minimal inelastic 
deformation elsewhere (Class I behavior [16]). Models of strength for Classes I and DI have 
been developed, based on line-spring representations of the inelastic processes [17]. Models 
that take into account large scale sliding [18] indicate that the maximum fiber stress in the 
bridging zone is somewhat lower than that predicted from the line-spring models; the latter 
are thus expected to provide conservative predictions for the stresses at the onset of fiber 
failure. 

Some censure is due to several authors over loose claims that a given material has been found 
to be "notch insensitive." This generally fallacious conclusion has been based on tests 
performed with relatively small notches: typically 1 - 5 mm. Moreover, there has been 
almost no discussion of the effects of notch shape (circular holes vs. sharp slits). For a 
sufficiently large, sharp notch, the strength must follow the Griffith relation and the material 
must be notch-sensitive. Researchers should identify the length scales associated with the 
bridging processes and hence the notch sizes and shapes for which notch sensitivity will 
occur. 

FAILURE IN COMPRESSION 

Some evidence exists that compressive strengths [19] fall below tensile strengths [20]. In 
CMCs with weak or porous matrices, observations show that compressive failure involves 
kink band formation within fiber bundles (plies or tows), similar to the prevalent failure 



mechanisms in polymer matrix composites (laminates and textiles). In this case, compressive 
strength will be governed by the initial misalignment of segments of fiber bundles and the 
shear strength of the matrix. Compressive failure also involves interply and intraply 
delamination, which will probably be the principal mechanisms of failure in CMCs with 
nonporous, relatively strong matrices. 

FATIGUE 

Fatigue failure occurs in most CMCs. In CMCs based on oxide or SiC fibers, cyclic loading 
causes wear of fiber coatings, leading to a reduction in the interface sliding stress and a 
corresponding reduction in the fiber bundle strength [21,22] and possible loss of dimensional 
stability. Typically, fatigue thresholds remain > 75% of the ultimate tensile strength (UTS) 
and the retained strengths following fatigue loading are almost equal to the UTS. But the 
fatigue threshold can be reduced by notches and negative stress ratios [23]. 

While fatigue effects in CMCs with SiC or oxide fibers appear mainly related to 
interfacial degradation, with minimal fiber damage, carbon fibers can be entirely worn away 
by fatigue. Thus generally severe fatigue effects are found in CMCs based on carbon fibers. 

Class I Class II 
Matrix Cracking + Fiber Failure   Matrix Cracking: No Fiber Failure 

Class III 
Shear Damage By Matrix Cracking 

1 
1 

Figure 1. Schematics of three classes of cracking found in unidirectional or 
cross-plied CMCs. (Additional stress redistribution mechanisms exist in 
textile CMCs.) 



DELAMINATION PROBLEMS 

Whether toughness is achieved in a CMC by incorporating weak fiber/matrix interfaces or a 
porous or otherwise weak matrix around fiber bundles, strength under loads acting normal to 
the fiber direction will be seriously impaired. Thus while laminated CMCs exhibit 
encouraging in-plane toughness, they remain vulnerable to delamination. The delamination 
problem is one of the main reasons CMCs are not yet preferred for load bearing components 
in high performance applications such as turbine engines. The interaction of thermal gradients 
and delaminations imposes quite stringent design limits for realistic parameter values [24]. 

Delamination can be suppressed by through-thickness reinforcement, e.g., stitching, 
3D weaving, or short rods. Very encouraging precedents exist in polymer composites [25,26]. 
The minimum volume fraction of through-thickness reinforcement required to suppress 
delamination is usually only a few percent or less [27,28]. Through-thickness reinforcement 
also transports heat across a delamination crack, reducing crack-induced thermal stresses [24]. 

FAILURE BY CREEP 

In glass matrix composites, creep occurs predominantly in the matrix. In unidirectional glass 
matrix composites, high creep rates in the matrix under transverse loads cause considerable 
creep anisotropy. In asymmetrically laid-up laminates or in the presence of stress gradients, 
creep anisotropy within plies will compromise dimensional stability [29]. In CMCs designed 
for higher temperatures, which have non-glass matrices, the situation is often reversed. 
Polycrystalline fibers are fabricated with fine grains for strength, usually smaller than the 
grains in the matrix. It is therefore the fibers that creep first. Considerable progress has now 
been made towards understanding the important consequences. Under sustained loads, matrix 
cracks, which would be arrested and remain stable at room temperature, exhibit stable, time 
dependent growth as fiber creep degrades the shielding effects of bridging fibers [30-32]. 
Constitutive laws have been derived for bridging fibers that creep [33,34], the incubation of 
crack growth from prior matrix flaws has been modeled [35,36], and crack growth trends have 
been detailed [36], and failure modes mapped [37]. 

The creep properties of the fibers are obviously critical in setting design limits and for 
determining lifetime. Much is yet to be understood. For example, some early experiments 
have shown challengingly complex relationships between morphological changes and creep 
rates in Nicalon™ fibers [38-40]. Developing creep resistant fibers and establishing 
confidence in their performance remain central problems in the CMC field. 

ENVIRONMENTAL VULNERABILITY 

The problem of oxidation embrittlement continues to plague SiC-based CMCs. The 
embrittlement involves oxygen ingress through matrix cracks and the subsequent reaction of 
oxygen with both the fiber coatings and the fibers [41]. It occurs as a so-called pest 
phenomenon, being worst at temperatures (600 - 800°C) lower than those of intended service 
(1000°C). At higher temperatures, oxidation products near the external surfaces tend to seal 
cracks and inhibit further oxygen ingress. 



NEW MATERIALS 

One recent eye-catching advance in ceramic chemistry has been the advent of monazites and 
closely related structures, e.g. xenotimes, as interface coatings and matrices in all-oxide 
composites (Fig. 2). When prototypical LaP04 is deposited on AI2O3 fibers (with care to 
maintain accurate 1:1 La:P stoichiometry), a weak interface is formed which is extremely 
stable up to at least 1600°C [42,43]. 

Tough oxide-oxide CMCs with strong fiber/matrix interfaces have now also been 
demonstrated. Crack deflection characteristics likened to those seen in wood have been 
achieved without fiber/matrix debonding by bundling fibers in a porous matrix that offers easy 
splitting paths [44]. Weak matrices and fiber entanglement within fiber bundles must also 
favour splitting [20]. Precedents in polymer and carbon-carbon composites suggest that 
especially effective toughening mechanisms for strong interface CMCs exist in textile 
composites [45]: fiber bundles fail as units, but neighbouring bundles are protected from 
stress concentration by easy splitting between bundles; and 3D architectures bind failed fiber 
bundles together to large strains, giving exceptional values of work of fracture. Model 
brittle/brittle composites have been devised to demonstrate the benefits of interlocking 3D 
architectures [46]. 

Figure 2. Fibrous energy tensile fracture in an oxide-oxide CMC made from 
woven fiber tows with no fiber coating (strong interfaces). (Courtesy B. D. 
Dalgleish, U. Ramamurty, and C. G. Levi.) 

INTERFACE SCIENCE 

The mechanics of fiber/matrix interfaces and their relation to bridged cracks and thence the 
constitutive properties of CMCs are mature areas of research (e.g.,[47]). One substantial and 
still fairly original recent effort has addressed the role of interface roughness. Roughness has 
been measured on several typical systems [48] and its effect on fiber pullout relations has been 
measured and modeled [49-51]. Quantitative predictions of roughness effects remain 
difficult, because the roughness is geometrically complex. In some cases, roughness appears 



to cancel the effect of Poisson's contraction of a loaded fiber, validating the assumption of 
uniform interfacial friction stresses, which has been popular because of its simplicity [49]. 
But generally, determining the relation between interfacial conditions and fracture behaviour 
probably always requires calibrating fracture experiments [52]. It has been proposed that 
roughness effects can be controlled by incorporating a compliant fiber coating to 
accommodate mismatch strains caused by unseated asperities [53]. 

In SiC/glass composites, substantial rate effects in stress-strain curves have been measured 
[54]. The material is stronger and exhibits lower cracking densities at higher strain rates. 
These effects have been assigned tentatively to environmentally assisted matrix cracking 
(effective at low strain rates) and an increase in the interfacial friction stress with strain rate. 
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ABSTRACT 

This paper deals with characterizing the bridging mechanisms developed across 
delamination cracks by through-thickness reinforcement, using stitched carbon/epoxy 
laminates under mode II loading as a prime example. End Notched Flexure (ENF) tests 
are performed which show that stitching can provide stable crack growth. The bridging 
law, which characterizes the bridging action of the stitches, is deduced from both crack 
profile measurements and load-deflection curves. Consistent results are obtained from 
the two methods. The inferred laws imply that delamination cracks will commonly grow 
in conditions that are neither accurately nor properly described by linear elastic fracture 
mechanics. Large scale bridging calculations are required, in which the essential material 
property is the bridging traction law. The level of detail in which the law must be 
determined can be inferred from the sensitivity of predicted crack growth to variations in 
the law. This reveals that only a few parameters suffice for reliability predictions of the 
fracture behavior in many applications. It is recommended that the required parametric 
traction law be deduced in engineering practice from load-deflection data from the 
standard ENF (or similar) test, with due regard to selecting the notch size and other 
specimen dimensions to ensure that crack growth is stable in the test. 

1. INTRODUCTION 

Bridging mechanisms contribute substantially to fracture toughness in many 

composites and self-reinforced materials. Continuous or discontinuous fibers, bars, 

particles, or aggregates bridge microcracks and macrocracks in ceramic, polymer, or 

cementitious matrix composites, and thus control their coalescence and growth (Cox and 

Marshall, 1994, Bao and Suo, 1992). 

This paper deals with the bridging mechanisms developed by through-thickness 

reinforcement on delamination cracks in fiber-reinforced laminated composites. Through- 
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thickness reinforcement is a recent technology developed to improve damage resistance. 

It is applied by various techniques, including stitching or weaving continuous fiber tows 

or implanting discontinuous fibrous or nonfibrous rods (Horton and McCarty, 1987; 

Smith and Wilson, 1985; Dow and Smith, 1989; Dransfield et al., 1994; Darbyshire, 

1970; Bradshaw et al., 1973; Krasnov et al., 1987; Freitas et al., 1996; Cox et al., 1994). 

Conventional fiber-reinforced laminates are highly sensitive to the presence of 

delamination flaws, which might be created by impact, stress concentrations near free 

edges or holes, or manufacturing errors. The growth of these flaws is controlled by the 

interlaminar fracture toughness, which is usually similar in magnitude to the matrix 

fracture toughness, as the flaws originate and propagate in the matrix rich regions 

between the plies (interply layers)1. Under loading conditions creating interlaminar 

stresses, the delamination flaws can propagate easily in the member and separate it into 

two unconnected halves, so leading the structural component to failure or substantially 

reducing its stiffness. This process is usually unstable. 

Through-thickness reinforcement moderates the delamination process by shielding 

the tip of the delamination from the applied stress and reducing the crack driving force. 

Crack propagation can be rendered stable, which is critical to damage tolerant design; 

while ultimate strength can be increased and notch and impact sensitivity reduced. 

To realize these benefits in structural design, the shielding or bridging effect must be 

quantified. It is the aim of this paper to provide a simple engineering approach to 

quantifying bridging in laminates containing through-thickness reinforcement, with 

stitching taken as the prime example. 

The quantification must extend beyond the ideas of Linear Elastic Fracture 

Mechanics (LEFM), which does not in general describe crack growth in stitched 

laminates correctly. Crack growth in stitched laminates cannot be characterized by a 

single fracture parameter, such as fracture toughness; the toughness increment supplied by 

the through-thickness reinforcement is not a material constant, but depends on crack 

length, geometrical ratios, and loading conditions. In other words, cracks bridged by 

stitches grow under large scale bridging conditions (defined here as the absence of the 

LEFM relation between the applied load and the net crack tip stress intensity factor), for 

which a bridged crack model is required. 

In a bridged crack model, the bridging action of the reinforcement is represented as a 

distribution of tractions acting along the fracture surfaces and opposing their relative 

In fiber reinforced laminates, the interlaminar fracture toughness can be improved by in-plane fibers 
crossing the crack at shallow angles if the delamination meanders from the interply layer into the plies 
themselves. However, this effect is modest in polymer matrix laminates and sensitive to processing details. 



displacement. The tractions are related to the crack displacement by a bridging law which 

embodies the mechanism of load transfer from the reinforcement to the surrounding 

material. To know the bridging law is to be able to predict delamination cracking. The 

essential questions are therefore: in what detail must the bridging law be known; and 

what experiments suffice to determine it to the required level of detail? 

The answer depends on what needs to be predicted. Certain characteristics of the 

bridging law will determine delamination crack propagation in a structure in the absence 

of stitch failure, while other characteristics will determine ultimate strength. Both crack 

propagation, which can result in significant loss of stiffness, and ultimate strength may be 

of engineering interest, separately or together. 

This paper examines methods for determining bridging laws for mode II 

delamination cracks in stitched polymer laminates. Fracture experiments using End 

Notched Flexure specimens are analyzed via a formulation of the bridged crack problem 

proposed by Massabö and Cox (1996). The bridging traction law is deduced from crack 

profile measurements and load-versus-deflection data, emphasizing the question of how 

well the experiments can determine the traction law and conversely the extent to which 

variations in the law bear on crack propagation and structural behavior. By this analysis, 

strong conclusions can be inferred about how many (or few!) characteristics of the 

bridging law are relevant to fracture and what constitutes a sufficient test or set of tests 

for quantifying the delamination resistance of a given stitched laminate in general 

applications. 

The paper does not deal with the details of damage mechanisms associated with the 

bridging stitches, nor with micromechanical models of the resulting tractions. Such 

information is superfluous in the prediction of delamination in a given composite; it is 

only necessary to know the traction law itself, as determined by a standard and simple 

test, and not how the law relates to the properties and geometry of the constituents of the 

stitches and laminate and details of the fiber architecture. Indeed, micromechanical 

models can be severely misleading if they are used to predict service behaviour, because 

they inevitably involve simplifications and idealizations which may be inappropriate in a 

particular laminate, no matter how consistently they appear in prior cases. However, 

micromechanical models of mechanisms are essential to the development of optimal 

reinforcement, i.e., to the materials design problem. Observations and models of stitches 

in shear appropriate to materials design will be presented elsewhere. 

On the other hand, insight into mechanisms and micromechanics can be helpful in 

deducing the maximum information about a bridging law from fracture data. Optimal 

interpretation of data is a balance between taking advantage of insight by specifying the 



general form of the bridging law a priori and erring by overconstraining the law. 

Deciding the right degree of constraint is a subjective matter, not amenable to algorithm 

but rather depending on the judgment of the decision maker. The quality of his judgment 

rises with his understanding of mechanisms. 

All of these considerations are addressed below for the mode II delamination 

problem. Section 2 is devoted to the theoretical analysis of delamination crack growth in 

ENF specimens reinforced through the thickness. The materials investigated and the 

experimental tests performed are described in Section 3. The inverse problems for the 

determination of the bridging law from fracture data is are presented in Section 4. 

Implications for engineering reliability methods are discussed in Section 5. 

2. THEORETICAL MODELING OF THE END NOTCHED FLEXURE 

SPECIMEN (ENF) 

The End Notched Flexure (ENF) specimen is a long and thin three-point bending 

beam with a mid-surface delamination starting from one end. The specimen typically 

consists of laminated plies laid up symmetrically about the mid-plane. Figure 1 shows an 

ENF specimen of length 2L, depth 2h, and width d, with a delamination of length a, 

subject to a concentrated load P. The specimen is reinforced in the through-thickness 

direction along its entire length apart from a region of length a0 which represents a 

machined notch or an insert placed at the specimen mid-surface before processing the 

material. The bridged portion of the delamination, of length a-ao, represents a sharp pre- 

crack which is usually introduced to give the delamination tip the natural crack tip 

morphology. The same schematic describes an unstitched laminate if the reinforcement is 

absent, in which case a = a0 since a sharp notch and an unbridged segment of crack are 

mathematically equivalent. 

If the ENF specimen is long and thin, i.e. a»h and L»a, and the upper and lower 

arms of the specimen in the delaminated region are free to bend with the same curvature 

(i.e., free sliding is ensured along the surfaces of the notch), the ENF test represents a 

mode II fracture problem. Then, if the ENF specimen is wide, i.e. d »h, and the lay-up of 

the laminate is such that a plane of elastic symmetry normal to the axis y exists, plane 

strain conditions can be assumed parallel to the plane x-z. The specimen can be modeled 

as a two-dimensional, anisotropic plate in cylindrical bending. 

The schematic of the plate is shown in Fig. 2.a. The bridging action developed by the 

through-thickness reinforcement is represented by a continuous distribution of shear 

tractions, xb, which oppose the crack sliding displacement.   They depend on the crack 



sliding through a bridging law, Tb(w), (the parameter w is defined so that the total crack 

sliding displacement is 2vv). No other mechanisms, other than those described by the 

bridging tractions, are assumed to oppose the relative sliding between the crack faces. The 

validity of the proposed approach and its range of applicability are discussed in Appendix 

A. 

The problem of Fig. 2.a is studied as the superposition of the two problems shown in 

Fig. 2.b and 2.c, which can be analyzed by adapting the first-order shear deformation 

theory proposed for an anisotropic bending plate by Whitney and Pagano (1970). Figure 

2.b describes an intact three-point bending plate subject to the applied load, P. For a 

homogeneous, specially orthotropic laminate (i.e., a laminate in which the axes of 

orthotropy coincide with the specimen axes), the mid-span deflection, 8(b), for this 

uncracked plate is 

h. 
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where Gxz is the shear modulus in the plane x-z and E=Ex/(l-vX),vyx), with Ex the axial 

Young's modulus, v^ and vyx Poisson's ratios in the plane x-y. 

The problem of Fig.2.c describes the fracture process in the ENF specimen. The 

uniform shear tractions applied along the faces of the delamination, r, are equal in 

magnitude but opposite in sign to the shear stresses generated by the external load P at the 

mid-plane of the intact plate of Fig. 2.b. For an orthotropic homogeneous laminate 

3 P 
x = . (2) 
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(Chatterjiee, 1991). Two dominant toughening mechanisms control the growth of the 

delamination in Fig. 2.c. The first is the toughness peculiar to the unreinforced laminate, 

which is assumed to be brittle and characterized by the mode El interlaminar fracture 

energy, £nC (a material property). The second is the toughness due to the through- 

thickness reinforcements, which shield the crack tip stress field, so reducing the driving 

force for crack propagation. The latter contribution is not a material property, since it 

depends on crack length and geometrical ratios, but it can be calculated once the bridging 

law, Tb(w), is known. Two different approaches for determining ^rc and xb(w) from ENF 

tests will be proposed in Section 4. 

Two limiting crack configurations characterize the various possible fracture histories 

in the schematic of Fig. 2.c (or in the ENF specimen). The first is referred to as the ACK 

limit, in reference to the seminal work of Aveston, Cooper, and Kelly (1971) on mode I 

matrix cracks in fibrous composites. The second is the small scale bridging limit, where 



Linear Elastic Fracture Mechanics (LEFM) prevails. The analytical definition of the two 

limits has been given by Massabö and Cox (1996). 

The essential concepts introduced by the two limiting configurations will be 

summarized in the following. Moreover, the basic relationships which govern the 

problem in large scale bridging conditions will be recalled in order to be used in the 

inverse formulation proposed in Section 4. 

2.1 The Mode IIACK Limit 

The mode II ACK limit is a stable configuration characterized by a long delamination 

crack which is entirely bridged by intact ligaments. The limit will be reached in a long 

enough specimen if the through-thickness reinforcements do not fail in the crack wake 

during crack growth and the bridging law, ib(w), is an increasing function of the crack 

sliding, at least over an interval of w. 

In the ACK limit the applied shear tractions, T, are equilibrated along most of the 

crack wake by equal and opposing bridging tractions, Xb- The critical applied shear stress 

for crack propagation approaches a constant value, TACK> which is independent of crack 

length and specimen dimensions. It is defined through Griffith's energy criterion by 

equating the intrinsic interlaminar fracture energy, Qnc, and the strain energy release rate 

of the member, Q\\, 

mc 
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^ACK^ACK-    J-Cb(w)dw (3) 

where WACK is such that TACK=Tb(wACK) (see Fig. 16). If the bridging law has the form 

Tb(w)= Xb(0)+ßwa (which will prove especially pertinent for stitched laminates), the ACK 

shear stress reduces to 

'ACK T(0) + 
^IIcH    2a 

a 
1+a 

(4) 

(Massabö and Cox, 1996). The ACK limit configuration is approached when the crack 

has propagated beyond any notch a distance which is typically several times the length, 

/ACK, a material-structure parameter given by 

^ACK = vfln *IIm' 

Mlm 

1 + q 
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where «n™ is a material constant and A is an elastic constant depending on the lay-up of 

the laminate (Massabö and Cox, 1996). For the special case of a homogeneous, specially 

orthotropic laminate, A=4/E. If the bridging law is linear (a=l), anm becomes 

E_ 
4ß 

2.2 The Small Scale Bridging Limit 

flIIm = "77T ' (5-C) 

If the bridging ligaments fail during crack propagation, as the sliding displacement at 

the root of the notch reaches the critical value, WQ, the unbridged segment of the crack 

will start to extend. In a long enough specimen, the size of the bridged zone will 

eventually assume a constant value, /SSB, and become much smaller than the crack length, 

a. In this small scale bridging configuration the composite fracture energy is a material 

constant and the sum of two contributions: the intrinsic interlaminar fracture energy, g\iC, 

and the energy supplied by the bridging mechanisms, §>. The latter is just twice the area 

under the bridging curve (Rose, 1987; Budiansky et al. 1986). 

The critical shear stress for crack propagation in this limit, TSSB(ö), is defined through 

LEFM by neglecting the actual dimensions of the bridged zone. Griffith's energy 

criterion, which equates the strain energy release rate of the member, Q\\, and the 

composite fracture energy, 
Wo 

Sii = £iic+Sb=Siic+2jTb(w)dw, (6) 
o 

and solutions from plate theory, lead to 

Wa)=iK+ä> (7) 
a V        A 

(Massabö and Cox, 1996). If either xb(0)?O or £iic»£b (e.g., ^ic>1.5^, for a linear 

bridging law), the constant length of the bridged zone in this limit, /SSB, is approximated 

by 

/SSB ~ Vails^ (8-a) 

nr-\2 
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Xb0^ 
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with tbo the maximum value of the bridging tractions (Fig. 16). When rb(0) = 0 and 

Qne/Qb -> 0. ^SSB will become much larger than (aush)Y\ rising in proportion to ^,/^ic, 
but still scaling with hv\ 



In the limit g^c -* 0 and for a homogeneous specially orthotropic laminate, the 

material length scale a\\s reduces to 

Urn alls = ^2_ (9) 
Sue"*0 tb0 

which is an upper bound estimate for ans and, in the particular case of a linear bridging 

law, zb(w)=Xbo(]-w/wo), defines the mode II characteristic length 

U=^ (10) 
Tb0 

analogous to the well known mode I characteristic length noticed by Cottrell (1963) and 

Hillerborg (1983) for the description of material brittleness. 

It will be shown in Section 2.3 that in laminates characterized by ^iC=0 the material- 

structure parameter (luchh)V2 controls the dependence of the ultimate shear strength on the 

length of flaws. 

2.3 Crack Propagation in Large Scale Bridging Conditions 

Crack growth in large-scale bridging conditions is studied through the bridged crack 

model formulated by Massabö and Cox (1996). The model substantially differs from 

another previously proposed model (Jain and Mai, 1994) as it does not put any restriction 

on the shape of the bridging law and permits analysis of crack growth in general bridging 

conditions (e.g., when the unbridged crack is propagating in the specimen). 

The model examines two different regions of the laminate (Fig. 2.c). In the 

delaminated region, 0 ^ x ^ a, the plate is represented as the assemblage of two 

disbonded sublaminates, placed above and below the mid-plane. Due to the antisymmetry 

of the problem, constitutive and equilibrium equations are derived and solved explicitly 

for only one of them, solutions for the other following immediately by a simple symmetry 

operation. In the bonded region, a ^ x ^ 2L, the entire thickness of the laminate plate is 

examined. The solution for the whole plate is then assembled by imposing continuity 

between the bonded region and the two sublaminates of the delaminated region at x = a. 

All of the assumption of the first order shear deformation theory for bending plates in 

small deformations (Whitney and Pagano, 1970) hold in the present model. The in-plane 

displacements (x component) vary linearly through the thickness, u(z)=u°+(pz, with u° the 

displacement on the mid-plane of the laminate or sublaminate under consideration and cp 

the bending rotation. The transverse displacements, v, (z component) are constant through 

the thickness. The stress field is described by the stress resultants over a unit width: 



normal  force, N, bending moment, M, and  shear force,  Q. The through-thickness 

interlaminar stress, cz, is neglected. 

With partial differentiation denoted by a comma and the subscripts d and / indicating 

variables in the delaminated and bonded regions, respectively, the constitutive equations 

for the two regions are 

^d=AdMd
0
x+5d(pdiX 

Md=Bäul+Dd(pd]i   if 0<x<a 

Qä=Kd(v^+(pä) 

M{=D{(p-x   if a<x<2L (11) 

and the equilibrium equations 

Wd,x=T-Tb(w)x 

Md,x =-0.5h(x-xb(w)x) + Qd    if 0<x<a 

[ßd,x=0 

where w is the crack sliding displacement, 

w= u^-(pdh/2, 

# i.x = 0 

M 1,X ßi    if a<x<2L    (12) 

ßi,x = 0 

(13) 

and % is zero for x ^ a0 and unity for x ^ ao; Ad, Ai, and Kd are the axial, bending, and 

shear stiffnesses of the upper sublaminate, calculated over a unit width, and Bd is the 

axial-bending coupling stiffness; A[, Du and K\ are the stiffness components of the 

laminate in the bonded region (see Massabö and Cox, 1996, for general expressions). In 

the case of a homogeneous specially orthotropic laminate, the stiffness terms for the 

delaminated region are Ad=Eh, Dd=Eh3A2, Kd=5Gxzh/6, and Bd=0. The stiffness terms 

for the bonded region are obtained from these by substituting 2h for h. 

Equations (11) and (12) and the related boundary and continuity conditions for stress 

resultants and generalized displacements define a nonlinear boundary-value problem in 

terms of the displacement variables. The boundary conditions consist of: (Nd, Ma, Vd)=0 at 

x=0; (Mj, Uj0, vO=0 at x=2L; (Nd, Md, ßd) and («", (pd, vd) at x=a0 equal to (A^d, Md, Qd) 

and («°, (pd, vd) at X=öQ; (vd, 9d)=(vi, cpO, w? =«° -cpd/z/2=0, A^i=0, ßi=2ßd and 

Mi=2Md+Ndh at x=a. The last equalities follow from the antisymmetry of the problem and 

equilibrium conditions at x=a. 

Stress resultants and generalized displacements are calculated for fixed delamination 

and notch lengths, a and a0, and applied shear stress, x, through the numerical procedure 

proposed in (Massabö and Cox, 1996). The evolutionary process of crack growth in the 

ENF specimen is then studied by calculating the critical shear stress for crack 

propagation, xcr(a), corresponding to a known length of the delamination. 



When the crack is at the onset of propagation the energy balance, Qu= Qwc, must hold. 

The strain energy release rate, Qn, is defined through application of the J-Integral (Rice, 

1968): 
H'nolch 

£n=+2Twcmsd-2 \xb(w)dw (14) 
0 

where wcmsd is the crack mouth sliding displacement (at JC=0) and wnotCh is the sliding 

displacement at the root of the notch (at x=ao) (Massabö and Cox, 1996). 

During crack growth the failure of the reinforcements can take place at the root of the 

notch (x=flo) when the sliding displacement equals the critical value, w(ao)=wo- With 

further crack growth, the unbridged crack starts to propagate and the new length at each 

step of loading, ar, is found by maintaining the condition w(ar)=wo. After the first failure 

of the reinforcement, the length of the bridged zone will progressively decrease during 

crack growth approaching the minimum, /SSB, of Eq. (8.a) when the small scale bridging 

configuration is reached. 

Figure 3 shows the critical load for crack propagation, xcr, as a function of crack 

length for a laminate whose through-thickness reinforcements never fail and for three 

different bridging laws, viz., linear, quadratic, and square root. The shear stress is 

normalized by XACK of Eq. (4) and the crack length by the characteristic length 

/ACK=(fliim^)l/2 of Eq. (5.a). Laminates with different notch lengths, ao, are examined. The 

lower curves refer to unreinforced laminates. 

All of the curves share the asymptote Tcr=iACK and the ACK limit is well 

approximated after the crack has propagated over a distance of approximately 6-8 times 

the characteristic length /ACK- Crack growth is always stable for large notches, i.e. all 

those for which xcr(ao)< TACK- The minimum notch length for stability follows from Eqs. 

(4) and (7), and is given in the particular case of a linear bridging law, xb(w)=Xb(0)+ßw, by 

-A_ = i-*fia. (15) 

Figure 4 shows histories of the critical stress for one of the cases from Fig. 3, namely 

a linear bridging law with a normalized notch of length a^l^allmh =1.0, when the 

through-thickness reinforcements have various finite ultimate strengths, xb0. If the 

ultimate strength is high enough, i.e. xb0/xAcK^2 for the notch size under consideration, 

the ACK limit is reached without failure of the reinforcement. For lower strengths, a 

period of stable growth is succeeded by failure of the reinforcements and unstable, 

catastrophic cracking. The ultimate strength of the reinforcements required for 

noncatastrophic cracking (towards the ACK limit) rises linearly with increasing notch 

10 



size, ao, for large notches in a laminate of fixed depth (not as üQ\ as it would in an 

infinite or very thick specimen). For small notches, whether cracking is noncatastrophic 

or catastrophic depends on the relative magnitudes of TACK and ibo; or, equivalently, of the 

length scales aus and a\\m (Massabö and Cox, 1996). 

The role of the length scale, {l\\c\Ji)v\ in notch sensitivity is illustrated in Fig. 5, which 

shows how the ultimate shear strength of the laminate, ruit, depends on notch size for 

several bridging laws when the intrinsic delamination toughness, Qnc, is zero. This will 

be a useful approximation in discussing the failure of stitches whenever g^c « Qb, which 

is often the case in stitched polymer matrix laminates. The ultimate shear strength has 

been evaluated for a specimen of effectively infinite length. The notch size is normalized 

by (h<±h)Vl. When aolilw^hf1 > 1, all curves converge, approaching the curve obtained for 

a Griffith crack in a material with toughness equal to that supplied by the bridging 

ligaments, G^ (dashed curve). Only when ao/(hichh)V2 < 1 is there significant dispersion 

among the curves and even then it is modest. For vanishing notch size, the composite 

strength is limited by tbo, the ligament strength. Thus (lnchh)l/2 and xbo alone are sufficient 

to define the ultimate notched strength to a fair approximation (Cottrell, 1963, Bao and 

Suo, 1992). 

When £iic * 0 and ^ic~^b or £iic»$b, which may be the case in a composite with a 

tough matrix, solutions from Fig. 5 are not applicable and the ultimate notched strength 

will also depend quite strongly on ^nc/^b and on the size of any initial bridged 

delamination crack (or matrix flaw). See Massabö and Cox (1996) for details. 

The concepts outlined in this section are of course not peculiar to mode II cracks or 

to delamination specimens. Length scales and nondimensional parameters similar to those 

defined here control mode I fracture and apply to infinite specimens (Bao and Suo, 1992, 

Cox and Marshall, 1994). However, one important distinction of thin plates is that the 

lengths /ACK and /SSB are not material constants, as they are in infinite specimens, but 

material-structure parameters, involving the plate thickness, h. 

3. ENF TESTS OF STITCHED AND UNSTITCHED LAMINATES 

3.1. Materials 

The materials investigated were stitched carbon/epoxy laminates.2 Individual 

laminae consisted of so-called "uniweave" carbon fabric,3   which is a plain woven ply 

These materials were fabricated under NASA's Advanced Composite Technology program for the 
investigation reported by Dickinson (1993). 
3 Textile Technologies Inc., Hatboro, Pennsylvania. 
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containing a preponderance of AS4 carbon fibers in warp yarns woven together with a 

small weight percent (2%) of E-glass fibers in weft yarns. Thus each uniweave ply is 

close in mechanical properties to a unidirectional ply of carbon fibers, the glass fibers 

serving mainly to hold the carbon fibers in place during processing. The uniweave layers 

were stacked in a repeating [45707-45790°] pattern to form symmetric 48-ply fiber 

preforms with quasi-isotropic in-plane properties. 

The composites were fabricated by first stitching dry preforms. The stitches were 

inserted in parallel rows using a modified lock stitch,4 shown schematically in Fig. 6. 

Different stitching patterns were used with 0.32-0.64 rows of stitching per mm (4-8 rows 

per inch) and 0.32-0.64 stitches per mm in each row. The bobbin thread was a 3640 

denier S2-glass fiber tow (nominally 1250 yard/lb), the needle thread a 200 denier two- 

end-twisted Kevlar fiber tow. The through-thickness part of the reinforcement consisted 

of doubled 3640 denier glass tows, which may be represented effectively as a single 7280 

denier tow, since they were always observed to act in unison in experiments. The stitch 

(doubled tow) is approximately cylindrical in the composite, with an internal fiber 

volume fraction of 0.51 and a cross-sectional area of 0.64 mm2 (Turrettini, 1996). 

After stitching, the composites were consolidated by resin transfer moulding using 

E905L epoxy resin.5 The panel thickness was controlled to approximately 6.9 mm by a 

shim plate in the RTM mould, which resulted in a nominal in-plane fiber volume fraction 

of 0.60. Actual panel thickness ranged from 6.7 - 7.2 mm. Further details of the 

processing, which are not germane to the bridging problem, can be found in (Dickinson, 

1993). 

The specimens used in this work were remnants from Dickinson's earlier work. The 

remnants were machined into long rectangular strips, typically 24 mm wide and 120 - 200 

mm long. In the tests reported here, the rows of stitches were oriented along the length of 

the specimen. In each specimen, a notch of length 10-40 mm and height typically 1 mm 

was cut along the mid-plane from one end using a diamond saw. A pre-crack of length ~ 

10 mm was then created by pressing a razor blade into the notch root. 

3.2 Experiments 

Delamination cracks were grown in both stitched and unstitched composites using 

the End Notched Flexure (ENF) test configuration (Fig. 1). Testing was conducted under 

displacement control on a screw-driven mechanical test frame,6 with a displacement rate 

4 Stitching done by Ketema, Textile Products Division. 
5 British Petroleum. 
6 Instron 1125 Mechanical Testing System, Instron Inc., XX, Massachusetts. 
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of 0.05 mm/min. The center point displacement was determined using a linear variable 

differential transformer (LVDT). This displacement and the load were recorded 

continuously by a LabVIEW-based data acquisition system.7 

Representative load-displacement curves for unstitched and stitched composites are 

shown in Figs. 7.a and 7.b. For the unstitched composite, the load increases almost 

linearly to its peak value, at which point unstable crack growth fractures the specimen to 

the center loading point. For the stitched composite, the load increases linearly to the 

point at which stable crack growth initiates, beyond which it continues to increase 

monotonically but with a lower slope because the specimen compliance increases with 

delamination crack growth. A fall of about 35% in the flexural stiffness of the specimen 

is observed during the growth of the crack. In the case shown in Fig. 7.b, all stitches 

remained intact in the wake of the crack. 

In general, the character of delamination crack growth in stitched specimens will 

depend on the stitching specifications, the interlaminar fracture energy and the 

specimen geometry (Massabö and Cox, 1996). The case of stable crack growth shown in 

Figure 7.b is just one possibility for this or any other stitched laminate. Its special virtue 

for this paper is that it permits detailed observations of the effect of the bridging stitches 

on delamination propagation. 

3.3 Differential Image Analysis 

To determine the bridging law, rh{w), from crack displacement profiles, the crack 

displacements must be measured to within a few percent of the maximum displacement at 

the notch root or crack mouth (Cox and Marshall, 1991.a), i.e., in the present problem to 

within a small fraction of 1 um. This challenging requirement may be satisfied by 

differential image analysis of micrographs of quite modest magnification (X30). The 

same technique provides excellent detail of the extent of crack propagation and crack 

morphology. In particular, it permits accurate identification of the location of the crack 

tip, which is essential to fracture mechanics analyses. In prior work, various methods 

including photomicrography, x-radiography, and ultrasonic C-scanning failed to measure 

the crack length accurately (Sharma and Sankar, 1995). 

Differential image analysis requires quality images of the specimen surface contrast 

taken during various stages of a test procedure, for instance before and after an increment 

in specimen loading. Displacements are measured by determining the relative change in 

position of surface contrast features. The useful contrast features included fiber bundles, 

matrix pockets, scratches, and other naturally occurring features, as well as lines scribed 

7 Lab VIEW Graphical Programming Software, National Instruments, Austin, Texas. 
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onto the specimen surface. The image analysis was performed by manual stereoscopy, 

rather than by an automated system. Manual stereoscopy is just as accurate as computer 

based systems; and the operator can detect many qualitative characteristics an automated 

system would overlook. In manual stereoscopy, in-plane displacements are perceived as 

changes in height and a crack appears as a sharp ledge viewed from above. Manual 

stereoscopy takes advantage of the exceptional sensitivity of the human visual system to 

changes in apparent depth. Quantitative measurements are obtained through comparison 

of the perceived surface profile with a calibrated traveling spot (Williams et al., 1980; 

Cox et al., 1986; James et al. 1990). 

In this work, the area of interest often spanned more than 40 mm, the length of a 

delamination crack. At a magnification of X30, the field of view is much less than this 

and the area of interest had therefore to be recorded as a collage of three images. Further, 

as the crack grew, the specimen deflected significantly, complicating the capture of high 

quality images for differential analysis. It was quite critical to maintain uniform focus 

conditions between images taken before and after loading. In spite of these experimental 

challenges, stereoscopic analysis worked very well. Crack opening and sliding 

displacements were measured with an error of at most 0.3 p.m. 

Stereoscopy reveals many details about the delamination process. Near the notch 

root, the damage consists of a band of small cracks and plastic shear deformation 

approximately equal in width to the height of the notch. Away from the notch root, the 

width of the band diminishes, until over a domain of 5 - 10 mm behind the crack tip, it 

consists of a single crack. At other locations (between the tip zone and the notch zone), 

up to four parallel cracks may be discerned over brief intervals. However, even where 

four cracks are observed other than in the notch damage zone, they are confined to a 

single [45707-45790°] four-ply stack at the center of the beam (total width ~ 0.5 mm or 

half the notch height). 

Both crack sliding and opening displacements are evident. Pursuing the view that the 

entire damage band can be modeled as a single fracture event, the displacements were 

summed, where multiple cracks existed, to yield the net displacement, sliding or opening, 

over the whole damage band. These summed displacements are analyzed in detail below. 

Thus the analysis of the bridging traction law refers to the constitutive behavior of the 

entire delamination band, whether it consists of single or multiple cracks. 

Figure 8 shows the total crack opening and sliding displacements measured along the 

delamination crack in the specimen of Fig. 7.b at one point in its growth. The zone of 

detectable sliding displacement extends some 20 mm from the notch. Its extremity 

indicates the position of the crack tip.  The opening displacement becomes undetectable 
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by stereoscopy at a point about 2.5 mm behind the crack tip, where the sliding 

displacement is still - 5 \im. Since the measurement error is - 0.3 j^m, the sliding 

displacement therefore ranges from zero to at least 15 times the opening displacement 

over this tip zone. Thus the crack tip conditions are purely mode II. 

At a much finer scale, perhaps ~ 1 fim, one might expect to find that the furthest 

advance of damage consists of arrays of ogive microcracks, whose shapes and orientation 

are just such as to create pure mode I conditions at each of their tips when the far field 

stress is pure shear. Such microcracks have been seen in shear-loaded, constrained layers 

of various brittle materials, including ceramics and epoxy resins (Fleck, 1991; Xia and 

Hutchinson, 1994; Cox et al., 1994). In the ENF specimens, they are likely to be confined 

to a domain of -10 \xm at the furthest advance of damage. Beyond this zone, the 

magnitude of the sliding displacement will be so great that the putative microcracks must 

give way to more severe states of damage, in which the microcracked resin will form a 

fine layer of rubble within the observed single dominant crack. The relevant scale for 

modeling the crack tip in Fig. 8 is ~ 1 mm, two orders of magnitude greater than the zone 

of ogive micro cracking. At this greater scale, the stress fields must be almost entirely 

shear (where macroscopic opening displacements are not observable) and the 

delamination can be modeled as a mode II crack. 

In the further crack wake, the opening displacement rises to an approximately 

constant value. This behavior is reminiscent of crack opening due to surface roughness in 

mixed mode fatigue crack tests in alloys. The plateau in the opening displacement 

corresponds in alloys to the size of mismatched asperities. In the stitched laminates, the 

opening is due to the propping effect of the bridging stitches when they bend plastically 

within the crack. Propping may be represented as opening tractions acting on the fracture 

surfaces, which will generate a mode I crack tip stress field. However, since the opening 

tractions act some distance behind the crack tip in a thin specimen, their effect on the 

crack tip stress fields will be relatively small. This is confirmed by the observation that 

the opening displacement vanishes near the crack tip. The opening tractions can therefore 

be neglected in analyzing the fracture behaviour of this specimen. 

The measurement error in the data of Fig. 8 is considerably less than the fluctuations 

they exhibit, which reflect material inhomogeneity. The opening displacement shows 

minima at intervals of approximately 3 mm, which is similar to the stitch spacing, 

suggesting that the crack opening is reduced locally by discrete stitches. However, it is 

not possible to be certain by examining the images of the specimen surfaces that the 

minima coincide with the locations of stitches, which are some distance below the 

observed surface. The sliding displacements are smoother over most of the crack length. 
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Since the stitches are much stiffer normal to the delamination plane (i.e., in the stitch 

fiber direction), they should indeed cause smaller local effects in the sliding 

displacements than in the opening displacements. Fluctuations in the sliding 

displacements, such as they are, tend to occur where the delamination damage band 

contains multiple cracks. 

Further crack sliding displacement profiles were determined at several loads for the 

stitched composites tested. Profiles for the specimen of Fig. 7.b, in which the crack grew 

stably to the specimen midpoint, are shown in Fig. 9. 

4. THE BRIDGING LAW FROM FRACTURE TESTS 

The crack sliding displacement profiles and the load-deflection curve shown in Figs. 

9 and 7.b, which were obtained from an ENF test on a stitched laminate, can be used to 

define the bridging law characterizing the mechanism developed by the stitches within a 

bridged-crack model. 

The specimen being analyzed had dimensions 2L=120 mm, 2h=7.2 mm and J=24.07 

mm, with a notch length, ao=20 mm, and a starter matrix crack length, a-ao=lO mm. It 

was stitched by glass fiber tows on a square array of side 3.2 mm. The total stitch area 

fraction was cs=0.062. The specimen satisfies to a good approximation all of the 

restrictions necessary for the application of bending theory for laminated plates and the 

superposition scheme of Fig. 2 (see Appendix A and Section 2). Application of 

homogenization rules (Hashin, 1979) and lamination theory (Christensen, 1979), for the 

definition of the homogenized elastic constants of each fiber-reinforced lamina and the 

stiffness properties of the laminate, respectively, shows that the material can be 

approximated as being homogeneous and specially orthotropic, with a shear modulus Gxz 

« 1/17£, E=EJ(l-vxy) and vxy=0.3. The shear stress, x, applied along the faces of the 

delamination in the problem of Fig. 2.c, is then given by Eq. (2). 

4.1 The Bridging Law from Crack Profile Measurements 

In the forward boundary value problem posed by Eqs. (11) and (12) and related 

boundary conditions, the bridging law, Xb(vv), is known and the crack sliding 

displacement, w(x), given by Eq. (13), is to be calculated for fixed delamination and notch 

lengths, a and ao, and applied shear stress, x. In the inverse problem proposed here, the 

crack sliding displacement is known at a set of m points along the delamination for a 

given value of the applied shear stress, x, and the bridging law, Xb(w), is sought. A 

numerical solution of the inverse problem, based on a discretization, is detailed in 

Appendix B. 
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The first studies dealing with the problem of determining the bridging law from 

measurements of the entire crack profile were performed by Rodel et al. (1990) and Du et 

al. (1989) on an alumina ceramic and a concrete, respectively. Later studies are due to 

Cox and Marshall (1991a), Fett et al. (1994) and Guo et al. (1993). In all cases the 

bridging tractions represented bridging mechanisms acting along mode I cracks and 

supplied either by aggregates, coarse grains, or fibers. The inverse model proposed here is 

inspired by the formulation of Cox and Marshall (1991a). They developed a numerical 

procedure based on the fracture mechanics integral equation relating bridging tractions 

and crack opening displacement for a mode I fracture process in large scale bridging 

conditions. 

Two different formulations of the inverse problem are proposed in Appendix B.l and 

B.2. In the formulation of Appendix B.l, the bridging tractions are sought as a function, 

(j)b(x), of position along the crack, x. The bridging law, ib(vv), can then be defined by 

interpolating the deduced §\>(x) over the crack sliding displacements, w(x). In the 

formulation of Appendix B.2, the bridging law, ib(w), is sought directly without the 

intermediate step of deducing §b(x)- 

The inverse problem is solved through a linear least square fit, according to which 

the norm of the residuals between the experimental data, which are the crack sliding 

displacements at m points along the crack, and the theoretical predictions must be 

minimized. This straightforward procedure is complicated by the inevitable presence of 

noise, including not only experimental error in the measurements, but also computer 

round-off errors and errors inherent to the model, e.g., the approximation of describing 

the localized actions of discrete stitches by a continuous distribution of tractions. Further, 

the minimization problem is ill-conditioned and highly degenerate. The instability of the 

solution is evident in large oscillations in the calculated bridging tractions. 

Analysis of synthetic crack sliding displacement profiles, i.e., profiles calculated 

theoretically for some known bridging laws with Gaussian noise added to simulate typical 

experimental errors, was used to define two different procedures that treat instability 

effectively. 

The first procedure is based on a Linear Regularization Method (Twomey, 1977, 

Tikhonov, 1963), which combines the problem of minimization with a constraint on the 

degree of smoothness required in the solution. The method can be applied when either 

(j)b(x) or Tb(u>) is sought (Appendixes B.l and B.2). The constraint function for 

smoothness is weighted by a Lagrange multiplier, A., whose value defines a progressive 

transition from the solution giving the best agreement between the data and the prediction 

(k=0) and that giving the smoothest bridging tractions (X-»oo). If a good model exists for 
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noise in the data and the goodness-of-fit has been assessed, then the optimal choice for X 

is that for which the root mean square deviation of the model from the data equals the a 

priori assigned deviance in the measurements (see Eq. (B.9)). 

The second procedure, which can be coupled or not to the previous one, is based on 

the utilization of more than one profile in the minimization problem. Crack profiles 

acquired during the same test at different values of the applied load and corresponding to 

different crack lengths can be analyzed together as shown in Appendix B.2.2. This 

method has two advantages. First, it increases the number of data points near the tip of 

the crack, a region which is very sensitive to errors in the data. Second, it includes in the 

same analysis a much greater range of crack sliding displacements. The noise tolerance of 

the model is thus substantially improved (see Cox and Marshall (1991a) for examples). 

Simultaneous analysis of several data sets is applicable only when the bridging tractions 

are sought as a function of the crack sliding, tb(w), since the function <J)b(x) in not unique 

for different crack lengths or for different applied loads. 

All of the above approaches were assessed in treating the noise in the experimental 

data of Fig. 9. In the fitting procedures, the axial Young's modulus of the laminate was 

taken to be E = Exl{\-\\y) = 49 GPa, a value deduced from the linear elastic branch of the 

load deflection curve for the same specimen (Fig. 7.b), whence the axial and bending 

stiffnesses of the laminate are A, = 2Eh = 353 KN/mm and A = 2/3£/z3 = 1530 KNmm. 

In the first calculations the bridging tractions were sought as a function of position 

along the crack, by applying the constrained minimization problem, Eq. (B.12), separately 

to each of the three crack profiles of Fig. 9. The results of the investigation are not 

reported here. In fact, even if they gave some insight into the bridging mechanisms acting 

along the crack, the noise in the data was such to prevent a reliable definition of the 

bridging law. 

The problems found in the first calculations were overcome by seeking the bridging 

tractions directly as a function of w, using the three crack profiles of Fig. 9 

simultaneously through Eq. (B.23). In accordance with Eq. (B.14) the unknown 

continuous distribution Xb(vv) was expanded in Legendre polynomials to order 8. Using 

such a high order of polynomials avoids any a priori constraint on the shape of the 

bridging law. The sum of the squares of the second derivatives of the bridging tractions at 

the m experimental points was used in Eq. (B.23) as a measure of deviation from 

smoothness. Figures lO.a and lO.b depict the calculated bridging tractions, xb(w), found 

on varying the Lagrange multiplier, X. The curve for X=0 defines the unconstrained 

solution which is highly unstable. On increasing the value of X the oscillations in the 

solution are reduced' and for X higher than HO"15 small oscillations localize at the 
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smallest and highest values of w (Fig. lO.b). As already shown by Cox and Marshall 

(1991a), the estimate of xb(w) at small w could be improved only if a very high density of 

data points were present near the tip of the crack and the data were almost noiseless. The 

oscillations at the highest w arise from the presence of the notch, which increases the 

noise in that region. Values of X higher than X=M0"12 define the smoothest solution, 

which is linear (solid line in Fig. 10b) because of the assignment k=2 Eq. (B.22). 

All of the bridging traction curves of Fig. 10 give very good predictions of the crack 

sliding displacements for the three applied loads examined, the residuals between the data 

and the predictions being of the same order of magnitude. They define the estimated 

error in the data, Eq. (B.9). This result indicates that the information content of the 

experimental crack profiles is limited by noise to the extent that the data contain only 

enough information to reveal the general shape of the function being sought but not its 

details. In fact, a perfectly smooth solution exists which satisfies the fundamental 

equation (B.23) within the estimated error: the bridging law can therefore be considered 

as linear to within the sensitivity of the experiment, with its slope given by the average 

slope of the various curves in Fig. lO.b. 

Since no detailed information regarding the shape of the bridging law can be 

obtained from the inversion, a different and expeditious technique has been tried based on 

the use of lower order basis functions for the traction law in the unconstrained problem 

(A,=0). The curves shown in Fig. 11 depict the bridging tractions deduced from the 

simultaneous analysis of the three crack profiles of Fig. 9, by assuming polynomials of 

different orders as basis functions and setting A.=0 in Eq. (B.23). It can be seen that 

reducing the order of the function has the same influence on the solution as increasing the 

value of the Lagrange multiplier in the constrained problem. In both cases the stability of 

the solution is improved and the curve in Fig. 10 for X=M0~12 coincides with the solid 

curve corresponding to a first order polynomial of Fig. 11. Again, all of the curves give 

similar residuals between the data and the predictions. 

The bridging tractions shown in Fig. 12 have been obtained by expanding the 

bridging law in low order polynomials with the added constraint that they pass through 

the origin (i.e., xb(0)=0). These predictions give obviously inferior agreement with the 

data and the solutions prove to be more unstable. Figures 11 and 12 together show that 

the offset from the origin of the traction law, xb(w), is necessary if the law is represented 

by a single straight line or low order polynomial. Further remarks on the possible 

behaviour of xb(w) at small w appear in Section 4.4. From the above calculations, the 

linear bridging law, xb(w)= 12.7+102w MPa, is deduced to be representative of the 

bridging mechanisms developed by intact stitches in this particular composite over the 
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range of w examined (0.<vv<0.15 mm).  The sliding displacement profiles computed for 

this law are compared with the experimental data in Fig. 13. 

Mode II interlaminar fracture energy 

Once the bridging law has been determined, an approximate evaluation of the mode 

II interlaminar fracture energy, £jIC, can be obtained from the critical load measured 

experimentally for a particular crack length, Pcr, or equivalently xcr (Eq. 2), through the 

condition £n=$nc> with Q\\ the strain energy release rate given by Eq. (14). Analysis of 

the two longer cracks of Fig. 9, of lengths a=39.8 mm and a=53.6 mm, with critical shear 

stresses, Tcr=10.4 MPa and Tcr=13.8 MPa, leads to £hc=0.25 KJ/m2 and £hc=0.37 KJ/m2, 

respectively. These values are approximately 1/15th of the energy dissipated by the 

bridging mechanism for the same loads, which is defined by the second term on the right 

hand side of Eq. (14). The variance in the values found for <^IC will be discussed in the 

next section. 

Structural behavior 

In order to validate the results of the inverse problem, the deduced linear bridging 

law and intrinsic fracture energies were used in the forward problem to calculate the load- 

deflection curve of the ENF specimen. The evolution of crack growth was computed up 

to a maximum crack length, a=53.6 mm, corresponding to the measured crack length at 

P=3.2KN (see Fig. 9). The shear modulus was assumed equal to Gxz=l/17£=2.88 GPa, 

the ratio 1/17 resulting from standard laminate analysis for the lay-up in question. 

In Fig. 14 the experimental load vs. mid-span deflection curve (thin lines) is 

compared with the theoretical curves (solid lines). The elastic response expected of an 

uncracked specimen and given by 8(b) of Eq. (1) has been subtracted from the actual mid- 

span deflection to highlight the nonlinear behavior. The three curves of Fig. 14 describe 

the response of the specimen shown in Fig. 2.c. 

The knees in the curves indicate the onset of stable crack propagation. Their position 

is controlled primarily by £nC. The flexural stiffness of the specimen when the crack is 

growing is controlled mainly by the bridging law (which amounts for the linear law to 

control by the intercept and slope, xb(0) and ß). The slope of the curve is satisfactorily 
reproduced by the model for both values found for ^IC. On the other hand, ^,c affects the 

values of the critical load and the deflection corresponding to a given crack length, which 
both decrease on decreasing ^IC. The theoretically predicted response of the specimen 

proves to be slightly stiffer than the actual response and the theoretical deflection at the 

maximum  crack  length   is   somewhat  lower  than   the   experimental   value.      The 

20 



discrepancies are small - for example that in the secant stiffness, including the 

component computed for the uncracked specimen in the superposition problem, is never 

greater than ??% - but they are beyond the errors expected. They could be explained by 

the existence of nonlinear phenomena which the crack profile data will not incorporate 

(and which would therefore not be represented in the law deduced from profile data), 

such as diffuse damage in the bulk of the laminate or viscous behavior of the resin. 

Further experiments are needed to resolve these questions. 

4.2 The Bridging Law from the Load-Deflection Curve 

The macrostructural response of composite members depends on how the bridging 

mechanisms control the fracture process. Conversely, the bridging law can be inferred 

from the structural response, e.g. by a parametric fit of experimental load vs. load-point 

displacement data. This approach requires only the execution of experimental tests which 

are easy to perform in any laboratory, such as three point bending tests or compact tension 

tests. It has been applied to concrete and fiber-reinforced concrete by Wittmann et al. 

(1987, 1988), Guinea et al. (1994), Uchida et al. (1995), and Nanakorn et al. (1996), and 

to coarse-grained alumina by Fett (1995). 

The measured set of load vs. mid-span deflection data shown in Fig. 7.b contain 

information about all of the parameters which control the flexural behavior of the 

laminate: the elastic constants of the material, the interlaminar fracture energy, and the 

bridging law of the reinforcement. A nonlinear minimization problem can be defined and 

the best fitting parameters, ^IC, E, and ib(w), evaluated by seeking the minimum of the 

norm of the residuals between the data points and the theoretical predictions. The 

stiffness modulus E characterizes the elastic behavior of the homogeneous orthotropic 

laminate by itself, since it defines the axial, bending, and shear stiffnesses (the ratio Gxz/E 

being assumed known for the given lay-up from laminate theory). 

The analysis of load-deflection data was restricted to linear bridging laws, 

Tb(w)=Tb(0)+ßw. The load-deflection curve, in fact, cannot give any detailed information 

about the shape of the bridging law, since it arises from the combination of many local 

phenomena. The same macrostructural response, for instance, can be computed for 

different combinations of %(w) and QnC, and the latter can be set equal to zero if the 

bridging tractions are chosen in order to represent all the toughening mechanisms of the 

whole composite (Carpinteri and Massabö, 1996). This observation along with the results 

of the local analysis of Section 5.1, suggest the above bound to the range of ib(vv) 

examined. 
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The estimation of the parameters of best fit, ib(0), ß, ^IC and E was performed 

through an algorithm based on the Levenberg-Marquardt Method (Marquardt, 1963) and 

the uncertainties in the fitted parameters were calculated by a Monte Carlo simulation of 

synthetic data sets. The synthetic data sets were generated by adding Gaussian noise to 

the load-deflection curve of best fit. The standard deviation of the noise was set equal to 

the estimated error in the data, given by the root mean square deviation of the model from 

the data. The values of the fitted parameters and their uncertainties are ib(0)=l 1±0.6 MPa, 

P=110±ll MPa/mm, £IC=0.2±0.03 KJ/m2, and £=49+0.1 GPa. These values are quite 

close to those deduced from crack sliding displacement profiles (Section 4.1). 

Figure 15 compares the load-deflection curve of best fit (solid line) with the 

experimental curve (thin line). Again, the elastic response expected of an uncracked 

specimen has been subtracted from the actual mid-span deflection. As expected, the 

model faithfully reproduces the experimental results. However, the fitted parameters do 

not lead to accurate predictions of the crack lengths corresponding to the data points. 

Over the dashed part of the theoretical curve shown in Fig. 15, the predicted crack length 

exceeds a=53.6 mm, the maximum value measured experimentally. The relative 

indeterminacy of the crack length and the modest effect this has on the parameters 

deduced for the bridging law in analyzing load-deflection data is discussed further in 

Section 4.4. 

4.3 Bridging Law from Other Measurements 

Bridging traction laws can also be measured by direct methods. In prior work, small, 

notched cuboidal specimens containing just one stitch were cut out of a panel of the same 

stitched laminate analyzed here (Turrettini, 1996). The small specimens were loaded in 

large, stiff grips and tested in shear under displacement control. The bridging law 

expected of the stitches in a laminate can be deduced from the load-displacement curve of 

such tests when allowance is made for the stitching area density. The resulting laws show 

an approximately linear increase with much the same slope as the bridging laws deduced 

here (Cox et al., 1997). Some differences are found for small values of w, but the direct 

tests are vitiated in that regime by compliance in the test jig and the specimen, the 

displacements having been measured in the far field rather than across the fracture plane. 

For values of w near ultimate failure, which are two or three times the maximum crack 

sliding displacement reached in the present ENF tests, the direct tests also reveal 

mechanisms of further damage, including debonding and pulling down of the stitch from 

the outer surface of the laminate toward the fracture plane, which lead to softening in the 

traction law. 
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The maximum bridging traction deduced from the ultimate load at failure of the 

stitch is approximately ibo « 55 MPa and the corresponding critical sliding displacement, 

wo, is in the range 0.4 < WQ> < 0.6 mm, the limits indicating variance from specimen to 

specimen. The fracture energy supplied by the stitches, §,, which represents twice the 

area beneath the bridging curve, xb(w), was deduced from the tests to be <^ « 30 KJ/m2. 

These three parameters could also be inferred from ENF tests on the stitched laminate, 

provided the stitches fail during crack growth. 

4.4      Sensitivity of the Fracture Process and Limits to Information 

The value of ^c and the traction law rb(w) deduced from the fracture tests, using 

either crack profiles or load-deflection data, incorporate the effects of all delamination 

toughening mechanisms and are therefore in principle sufficient information to predict the 

fracture behaviour of the stitched laminate. However, in practice one must further 

consider how perfectly ^tc and rb(w) have been determined and the implied margins for 

error in subsequent predictions. 

In many applications, shear stresses comparable to the ultimate stress required for 

stitch failure will not be expected, but delamination crack propagation in the presence of 

intact stitches will still be a concern. For through-thickness shear loads of ~ 10-20 MPa, 

which are typical of design limits near cut-outs in airframes, for example, the relevant 

domain of the traction law, Zb(vv), is covered by the data of the ENF tests of Figs 7 and 8. 

The quality of the information about ^IC and %(w) is therefore to be understood by 

analyzing the accuracy of the procedures presented here for deducing them from crack 

profiles and load-deflection data. 

In fact, Qi\c is not precisely determined and correspondingly rb(vv) is indeterminate at 

low values of w (w < 25 urn, Figs. 10 and 11). This indeterminacy is rooted in the nature 

of the bridged crack problem. Consider, in particular, the hypothetical bridging laws 

sketched in Fig. 16, one defined by the path ABC and the other by the path OBC. The 

difference in both the complementary energy of the ligament (the term in square brackets 

in Eq. (3)) and the contribution to the work of fracture due to the ligament (the term ^ in 

Eq. (6)) for these two laws is just twice the shaded area A(OAB). The ACK limit stress, 

rAcK, is determined by the condition of Eq. (3), that the complementary energy must equal 

half the intrinsic critical strain energy release rate, ^IC. Thus ZACK will be the same for 

the two laws provided the law ABC is coupled with some £jIC while the law OBC is 

coupled with the greater quantity, £jIC + 2 A(OAB). Similarly the critical stress in small 

scale bridging, TSSB, will be the same for these two pairings. 
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Fracture energy associated with the traction law, zb(vv), at small w and with §nC is 

always interchangeable provided the fracture phenomena in question involve crack 

displacements that are substantially larger over the preponderance of the crack than the 

displacements over which rb(w) is being modified (see also Cox and Marshall, 1994, and 

Carpinteri and Massabö, 1996). Therefore, indeterminacy of ^IC and rb(w) for w < 10 

pirn is to be expected when analyzing the load-displacement data of Fig. 7, since 

displacements are -100 urn over most of the crack (Figs. 8 and 9). Further, only the most 

precise measurements at small w, very near the crack tip, will be able to resolve <^IC and 

rb(w) for small w in analyzing crack sliding profile data. In Fig. 9, few data exist near the 

crack tip; most lie in the further crack wake, where they are determined mainly by the 

balance between far-field stresses and bridging tractions at larger w. 

This indeterminacy is of little consequence for predicting delamination in stitched 

laminates. Just as ^IC and Tb(vv) for small w cannot be determined from fracture data, so 

conversely the fracture process and predictions of fracture are insensitive to the 

interchange of energy assigned to ^IC and rb(w) for small w. It is sufficient that £hc and 

Tb(w) for small w be determined consistently from a single analysis. 

For this very reason, a fracture test such as the ENF test probably provides the best 

data for determining the bridging parameters of stitching. As far as the test is 

representative of the loading conditions expected in a structure in service, the degree to 

which it is sensitive or insensitive to details of the bridging model will be a faithful 

reflection of the influence of the stitches as bridging entities in the structure. 

Indeterminacy between ^IC and rb(vf) for small w might in principle be removed by 

measuring g^c independently in an unstitched laminate. However, ^IC in a stitched 

laminate might not be the same as the fracture toughness of an equivalent unstitched 

laminate. The stitching process introduces damage into the laminate, especially the 

distortion of in-plane fibers; and the stitches must interfere with the mechanics of 

propagation at the delamination crack tip, even before they pass into the crack wake 

where they might supply bridging tractions. Distorted in-plane fibers and stitches deflect 

the delamination, introduce local residual stress fields, and create resin pockets, among 

other effects. The net effect on the apparent intrinsic toughness, i.e., that toughness not 

ascribed to bridging, is very difficult to quantify. 

A second characteristic of the fracture that may not be well determined without direct 

measurement is the length of the delamination crack. When the bridging parameters, ^IC 

and rb(w), are inferred from load-deflection data, the crack length predicted at applied 

loads for which it had been measured turned out to be in significant error (see previous 

section). The reason for this lies once again in the mechanics of bridged cracks in large 
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scale bridging. When the crack length is large compared to the ACK limit length scale, 

IACK, the applied load becomes independent of the crack length. Further, the specimen 

compliance (or the load-point displacement) in this limit varies much more weakly than it 

would for a crack in an unstitched specimen. While the cracks in the load-deflection 

fracture experiments of Fig. 7 were not yet in the ACK limit, they were nevertheless 

somewhat larger than /ACK and the indeterminacy of the ACK limit will have begun to be 

felt. Thus, the information contained in load-deflection data about the crack length is 

imprecise; in other words, if the crack length is specified ad hoc at different values during 

the fitting procedure, the inferred bridging parameters will not change very much. 

Conversely, when fracture predictions are made using the inferred parameters, the crack 

length may not be accurately predicted. Once again, this may be of little consequence for 

failure prediction. In many applications, it is enough to assure that the structural 

compliance will remain within design limits and it is not necessary to know or desirable 

to need to know the exact length of a delamination crack. 

5. PREDICTIONS FOR ONE STITCHED LAMINATE 

The bridging parameters ^IC and rb(w) having been determined, instructive 

calculations can be made of the range of delamination behaviour expected for such a 

stitched laminate. In the calculations in this section, the bridging law is assumed to be a 

linear extrapolation of that inferred from the crack profile data up to the failure of the 

stitches at rt,o. Thus the laminate was assigned the characteristics £=49 GPa, Gxz=2.88 

GPa, & = 30 KJ/m2, xb0 = 55 MPa, £iC=0.37 KJ/m2, and Tb(w)= 12.7+102w MPa. The 

qualitative behaviour illustrated would be much the same for bridging laws that were 

nonlinear at high values of w. 

5.1 Stitched and Unstitched Specimens in Flexure 

The influence of stitching on the flexural behavior of the laminate can be highlighted 

by comparing the theoretical response of the stitched ENF specimen with the response the 

same specimen would show in the absence of bridging tractions, i.e., xb(w) = 0. The load- 

deflection curves are shown in Fig. 17 (solid curves) along with the experimental curve 

obtained for the stitched specimen and already shown in Fig. 7.b (thin curve). The 

specimen without stitching shows linear elastic behavior up to the ultimate load at which 

the crack starts to propagate (P « 1 KN). A snap-back instability indicates that the ensuing 

crack propagation is unstable. The unstable branch of the curve can be revealed in an 

experiment only if the loading process is controlled by a monotonically increasing 
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function of the time, such as the crack length. This branch will be virtual in a test 

performed under deflection control (see for instance Fig. 7.a). 

This curve does not necessarily describe the response of the laminate used in this 

investigation in the absence of stitching, whose interlaminar fracture energy may not be 

equal to ^=0.37 KJ/m2 (see Section 4), and the data for the unstitched laminate indeed 

indicate otherwise. Assuming that the unstitched laminate is perfectly brittle, plate theory 

analysis of the load-deflection curve of Fig. 7a yields ^IC « 1.3 KJ/m2 (Eq. A.l). The 

elastic constant E for the unstitched laminate can also be deduced from Fig. 7.a and is 

found to be E « 53 GPa. As expected E is higher than for the stitched specimen (£=49 

GPa), whose in-plane properties are degraded by the stitching process (e.g., Dickinson, 

1993). The dashed curve of Fig. 17 depicts the behavior of an unstitched laminate with 

this higher fracture toughness. Even though the loading capacity of the specimen is 

increased, the fracture process remains unstable. 

Figure 17 highlights the beneficial effects provided by the stitching, which not only 

increases the loading capacity of the specimen, but also changes the failure from an 

unstable and catastrophic process to a stable one. 

5.2      Crack Propagation and Failure for More General Flexure Cases 

The breadth of possibilities for fracture and failure during flexure can be understood more 

generally by reference to the material/structure parameters which characterize the two 

limiting solutions of the fracture problem: the ACK limit and the small scale bridging 

limit (Section 2). 

The bridging law satisfies one condition for existence of the ACK limit, since it is an 

increasing function of the crack sliding displacement. For the given bridging law, the 

ACK limit has the following characteristics: the ACK shear stress, TACK= 18.8 MPa (Eq. 

(4)); the material length scale, anm = 120 mm (Eq. (5.b)); and the noncatastrophic length 

scale, ZACK = {a\\Ji)A = 20 mm. 

The small scale bridging limit has the characteristics: ultimate strength of the 

ligaments, xbo = 55 MPa; ratio between the energy supplied by the stitches and the 

intrinsic interlaminar fracture energy, gjg^c = 30/0.37 = 80; and mode U characteristic 

length scale, Znch = 485 mm (Eq. (10)). Since &/£nCis so large, the length of the bridging 

zone in small scale bridging, ZSSB, can be approximated within a factor near unity by ZSSB = 

(luchhf2 = 40 mm (Section 2). Moreover, Figure 5, obtained for §jIC = 0, can be used to 

describe the notch sensitivity of ultimate shear strength. 

The various length scales controlling the fracture process in the stitched laminate are 

much higher than the stitch spacing (« 3 mm). This confirms the validity of the modeling 
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step of replacing discrete stitches by a continuous distribution of shear tractions.   The 

delamination must span many stitches before the effects of bridging are significant. 

Unnotched laminates 

The ACK shear stress is about one third of the ultimate shear strength of the 

ligaments (TACK/tbo=0.34). Therefore the ACK limit will be approached in an unnotched 

ENF specimen, provided the length of the crack, and therefore the half length of the 

specimen, is greater than 40 mm (i.e., L > 2-(anmÄ)V4, Fig. 3). Once the applied load 

reaches TACK, a delamination crack fully bridged by intact stitches will propagate right 

across the member. A higher applied load will then be necessary to fail the stitches. For 

an unnotched laminate, the ACK shear stress represents a design limit, because it defines 

a conservative bound for the applied shear stress required for noncatastrophic 

delamination cracking (Fig. 3). The delamination cracking stress is not reduced by the 

pre-existence of a delamination crack provided it remains fully bridged by undamaged 

stitches. The ACK shear stress can then be used to tailor the minimum stitch density 

required to avoid delamination. 

Notched laminates 

The presence of a notch or a region of the laminate where the stitches have failed can 

substantially modify delamination behavior. The stress concentration at the tip of the 

notch can be high enough to fail the stitches, initiating catastrophic delamination failure 

(i.e. the first crack will separate the specimen in two). The limit length of the notch 

dividing the regimes of noncatastrophic and catastrophic failure can be obtained from Fig. 

5 by identifying the ordinate with XACK^bo- Thus for the subject case, where TACK/T^O 
= 

0.34 and the traction law is intermediate between the linear and rectangular cases of Fig. 

5, the limit notch length is given by ao/(h\Chh)Vl « 1.0 or aQ « 40 mm. The shape of the 

bridging law affects the limit value by less than 10%. 

Another limit length of the notch is that which defines the stability of the initial 

propagation of the crack. Initial crack growth will be stable if xCT(ao) < TACK or, from Eq. 

(15), <3o > 7 mm. 

Thus stable crack growth can be observed in a specimen of the subject material if and 

only if 7 < «o < 40 mm. The ENF specimens that exhibited stable crack growth in this 

investigation fall in this range (e.g., Fig. 7.b). On the other hand, the ACK limit will be 

reached only if L-a0> 100 mm (see Fig. 3). For typical laminate depths this length would 

be too large to avoid the flexural failure of the laminate. Delamination cracks in ENF 

specimens of typical size, e.g., L ~ 60 mm (Fig. 7.b), will propagate stably in large scale 
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bridging conditions at critical stresses still 10% below the ACK limit (although 3-4 times 

the critical stress for an unbridged crack). Accurate analysis of the fracture process thus 

requires full solution of the bridged crack problem and asymptotic solutions will be 

inadequate. 

If the notch length is higher than the limit value defined for noncatastrophic failure, 

the stitches will start to fail at the root of the notch during crack growth. The crack will 

then propagate unstably toward the small scale bridging limit. However, the critical stress 

will be within 20% of TSSB only when the crack length is greater than 2-/SSB, or 80 mm 

(see Section 2 and Fig. 5). The length of the bridging zone will progressively decrease 

during the unstable propagation, tending to the lower bound given by /SSB when the small 

scale bridging limit is achieved. 

Thus a specimen of half length greater than 160 mm would be required to 

approximate small scale bridging conditions. This will not be the case in specimens of 

common dimensions and full solution of the bridged crack problem rather than 

asymptotic solutions (i.e., in this regime, linear elastic fracture mechanics) is again 

required. 

Large Scale Bridging Solutions for Crack Growth 

Figure 18 compares accurate solutions of the large scale bridging problem with the 

ACK and small scale bridging limits for a laminate characterized by a general linear 

bridging law, T\,(w) = Xb(0) + ßw, that is consistent with the specific values listed at the 

beginning of this section (xb(0) = 2(£hc ß)'/2 and &/(nic = 80). The different solid curves 

refer to different notch lengths. The diagram also demonstrates the transition from 

noncatastrophic to catastrophic failure on varying the length of the notch. Three different 

regimes of fracture are recognized: a) unstable delamination crack growth with intact 

stitches in the crack wake for notch lengths lower than 0.33-iaiunh)^ (or 7 mm for the case 

study); b) stable delamination crack growth in laminates whose notch lengths are in the 

range 0.33 < aoKfl^hf1 < 2.3 (or 7 <a0< 46 mm), with the ACK limit approached in long 

enough specimens; and c) stable delamination crack growth followed by stitch failure 

beginning at the notch root and further unstable crack growth to ultimate failure in 

laminates whose notch lengths satisfy a0 > 2.3-(aumh)'/2 (or 46 mm). The small scale 

bridging solution of the problem, obtained through application of linear elastic fracture 

mechanics and represented in Fig. 18 by the dotted curve, will be reached in the last case 

(to within 10% in the critical stress) only after the crack has propagated over a length 
Äi0-(aiim/i)'/2 (or 200 mm). For the subject case, the length of the bridged zone in this 

limit is /SSB=38 mm. 
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7. CONCLUSIONS 

Mode II delamination cracks in typical stitched laminates propagate under large scale 

bridging conditions to lengths greater than those likely to be considered admissible in an 

engineering structure. Therefore, engineering structural behavior cannot be analyzed in 

terms of small scale bridging concepts, including the critical mode II strain energy release 

rate, £ssB=£nc+£b- It must instead be computed via a bridged crack calculation, in which 

the essential material characteristic is the bridging traction law, ib(vv). 

A viable approach to determining %(w) sufficiently well to make engineering 

reliability predictions appears to be the analysis of load-deflection data in ENF tests. The 

traction law deduced from load-deflection data is confirmed by the analysis of crack 

sliding displacement profiles and by direct measurements on miniature specimens. The 

virtue of using load-deflection data is that they directly represent the performance of the 

laminate as an engineering structure in mode II applications. Moreover, these data can be 

obtained through tests, such as the End Notched Flexure test, which are already standard 

engineering procedures. The notch size and other specimen dimensions should be 

selected to ensure that crack growth is stable in, the test and that crack sliding 

displacements comparable to those expected in service are achieved. 

Mode II delamination propagation, when the through-thickness reinforcement does 

not fail, is sensitive to at most three parameters, which can be chosen conveniently to be: 

the value of the traction law at zero displacement, ib(0), the slope of the traction law, and 

the intrinsic delamination resistance, Qi\c- 
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APPENDIX A. SIZING OF THE ENF SPECIMEN 

In this Appendix it will be shown that, provided the geometrical ratios of the ENF 

specimen and the stacking sequence of the plies satisfy certain restrictions, the ENF test 

can be depicted as a mode II delamination problem and the bridged crack model recalled 

in Section 2, based on a first order shear deformation theory for bending plates, is 

applicable. 

Failure by delamination and minimum depth of the specimen 

Many experimental ENF tests, including those of the present research, have shown 

that both stitched and non-stitched laminates in the ENF configuration fail by 

delamination provided the depth, h, exceeds a minimum value which corresponds to 

simultaneous failure by delamination and flexure (Sharma and Sankar, 1995). Flexural 

failure (caused by in-plane tension or compression) occurs at the attainment of the 

ultimate strength on the inner or outer surfaces of the beam. The minimum depth is easily 

defined for unstitched laminates as a function of material and geometrical properties 

(Carlsson and Gillespie, 1989). In stitched laminates it is to be calculated by a bridged 

crack model. It will be higher, since the maximum load the specimen can sustain during 

delamination is increased by the bridging mechanisms. For the plate model used in this 
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paper to be valid, the depth of the ENF specimen must also be large enough to satisfy the 

small-deformation requirement (Carlsson and Gillespie, 1989). 

Influence of the concentrated loads 

Finite element calculations on unstitched ENF specimens have shown that 

compressive stresses normal to the delamination surfaces act only in the vicinity of the 

beam support in a region centered about the load line. The region's length depends on the 

orthotropy of the material in the plane x-z and is typically less than Ah. The region under 

compression will be thus avoided by choosing a > 2h. At the specimen mid-span the 

applied load, P, creates a compressive stress field which covers a region whose length is 

again less than Ah. These compressive stresses can arrest the propagation of the crack. 

Therefore meaningful results will be obtained by limiting the delamination length to a < 

L-2h (He and Evans, 1992, Carlsson and Gillespie, 1989). 

In the region of the crack which is under compression, some frictional forces may 

arise which oppose the relative crack displacement unless free sliding of the crack 

surfaces is ensured by proper measures. The energy dissipated in this mechanism adds to 

the energy absorbed in creating new fracture surfaces and to the energy dissipated by the 

bridging mechanism of the through-thickness reinforcement. Nevertheless, finite element 

and beam theory calculations (He and Evans, 1992, Carlsson and Gillespie, 1989) have 

shown that the reduction in strain energy release rate of unstitched ENF specimens due to 

this mechanism (modeled as Coulomb friction) is very small for typical ENF geometries, 

being linearly proportional to the coefficient of friction, u, and to the ratio h/a (e.g., 

£h(|i)/£ii(|i=0)« 93 - 99% for ji * 0.25 - 0.5 and h/a = 0.1). The fractional reduction will 

be much lower in stitched laminates. 

Mode II delamination crack growth 

The ENF test represents a mode II crack problem provided the lengths of the beam, 

L, and the crack, a, are much longer than the depth, h, and the upper and lower arms of 

the beam in the delaminated region are free to bend with the same curvature. This result 

has been proved by means of finite element analyses on unstitched laminates by Carlsson 

and Gillespie (1989) and He and Evans (1992). They verified the absence of interlaminar 

normal stresses along the centerline ahead of the crack tip and the absence of mode I 

crack openings. 

The actual conditions of delamination cracks in stitched ENF specimens have been 

investigated in Section 3 by means of experimental observations of crack profiles in 

polymer matrix laminates. The results of the investigation show that delamination cracks 
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in stitched ENF specimens can be considered as being mode II cracks. Moreover, the 

basic bridging mechanism supplied by the stitches proves to be that of opposing the 

relative sliding between the crack faces. This mechanism can then be represented as a 

distribution of shear tractions, ib(w), directly applied along the faces of the delamination. 

Theoretical analysis based on plate theory 

The validity of plate theory for analysis of typical polymer matrix laminates in the 

ENF configuration can be studied by comparing the results of the approach proposed in 

Section 2 to those of rigorous elasticity methods. He and Evans (1992) carried out finite 

element analyses of specially orthotropic laminates in the ENF configuration (non- 

stitched), and proposed a fitting formula for the strain energy release rate in the case of 

plane-stress in the plane x-z. The formula can be extended to problems in a state of plane 

strain (Bao et al, 1992). It summarizes the strain energy release rate computed by the 

finite element method, ^I(FE)> as a function of that of plate theory, 

_ 9   P2a2 

QmL)~'l6~EiSdT' (AA) 

and of two parameters, p and A,, which characterize the orthotropy of the laminate in the 

plane x-z. It is worth noting that ^I(PL) is independent of the in-plane orthotropy of the 

laminate. 

Figure A.l.a shows the normalized strain energy release rate, ^KFE/^IKPD^ as a 

function of the ratio a/h for a specially orthotropic material with the same properties of 

the carbon-epoxy laminate described in Section 3, namely p=3 and X= 0.14. The strain 

energy release rate of an isotropic material, p=A,=l, is also shown in Fig. A.l.a. Figure 

A.l.b shows a comparison between the critical loads for crack propagation, Pcr, obtained 

by assuming £h=£nc from Plate tneory and finite element calculations. Figure A.l 
highlights the influence of the material orthotropy on the behavior of the ENF specimen. 

The range of applicability of the bending theory in a typical non-stitched polymer matrix 

laminate is substantially reduced with respect to that of an isotropic material, and it is 

only for high values of the ratio a/h that the bending theory and the finite element 

solutions show a good agreement. For example, a discrepancy lower than 5% in the 

critical load for crack propagation is ensured only for a/h>l0. However, this condition is 

commonly satisfied in ENF tests, since the notch alone usually exceeds lOh. Inferences 

from calculations for unstitched laminates are extended here to stitched laminates. 

APPENDIX B. THE INVERSE PROBLEM 
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B.l. Determination of the Bridging Stresses ^(x) from Crack Profile Measurements 

Data of the problem are: the vector of the sliding displacements, w={vv,,...,wm}T, 

measured at m points along the delamination in the ENF specimen of Fig. 1, 

x={jc,,...,3cm}T; the lengths of delamination and notch, a and ao; the value of the applied 

load, P (or equivalently the shear stress, x); and the elastic constants of the laminate. 

Unknown quantities are the bridging stresses, §b(x), defined as a function of the variable 

for position along the crack, x, which represent the bridging mechanisms supplied by the 

stitches. 

The problem is solved through discretization. The continuous bridging stresses, 

§b(x), are represented by a set of n-\ cubic splines, {(j)k(x), k=\,n-\} 
3 

<M*) = Xa»c/ik(x)        xk<x<xM (B.l) 
1=0 

where x={xi , xn}T is a grid of n points along the bridged crack, with X\=üQ and xn=a, 

and f\k(x)=(x-Xk). The bridging stresses at x, (j>={^i, , fa} , take on the form 

|=Qa (B.2) 

with a the 4(n-l) vector of the parameters ctik, and Q a nx4(n-l) matrix whose 

coefficients are known once the discrete grid is fixed (Cox and Marshall, 1991b). The 

vector, w, of the theoretical crack sliding displacements at the m experimental points, x , 

is calculated through the following equation 

w=Da + wL= A(|)+ wL (B.3) 

with 

A = DQ'. (B.4) 

representing the (mxn) design matrix of the inverse problem. The vector wL in Eq. (B.3) 

defines the theoretical crack sliding displacement in x due to the applied shear stresses, 

x, and D is a mx4(n-l) matrix whose generic coefficient D;J represents the crack sliding 

displacement at xt due to the bridging stresses/ik(x)=(x-Xk)1 acting in the range jck<jt<Xk+i, 

with lc=j/4+l and l=j-4k+3. The matrix D and the vector WL are calculated through Eq. 

(13) and solutions of the boundary value problem represented by Eqs. (11) and (12). By 

assuming the bridging stresses as a function of x and substituting Eq. (B.l), the problem 

becomes linear and the superposition principle can be applied. The equilibrium Eqs. (12) 

modify in 
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n-1   3 

7Vd,x=^-XZ0Clk(X-j:k)1Xk 
k=l 1=0 

n-1   3 

Md,x=-0.5/i(T-2Zaik^-^)1Xk) + ßd> if 0 < x < a 

ßd,x = 0 

tfi.*=0 

(B.5) 

if a < x < 2L 

[ß.,x=0 

where %k=l if *k ^ * <Jtk+i and %k=0 everywhere else. The boundary conditions are those 

defined in Section 2, along with continuity conditions for stress resultants and 

displacements atx = x^ (k=\,...,ri). 

If n=m and the grid of points x coincides with the experimental points x, the 

bridging stresses (j) are obtained by imposing the condition w= w, through direct inversion 

ofEq. (B.3) 

£=   A"'(w-wL)   ,      if n=m. (B.6) 

If m>n or x^x, a general linear least square fit can be performed through the 

minimization of a functional S over the n unknown parameters fy, j=l,...,n. S is chosen as 

the norm of the residuals between the data points and the theoretical predictions: 

5 = £(>vj-wj)
2 

(B.7) 

This yields to the normal equation 

^=(ATA)_IAT(w-wL)   ,    if  m>n (B.8) 

which reduces to (B.6) for n=m (for the validity of this statement in the presence of errors 

see Twomey, 1977). 

Equation (B.8) defines the maximum likelihood estimation of the fitted parameters in 

the case of measurement errors on w which are statistically independent, normally 

distributed, and with constant standard deviation, am. If the uncertainties in the data are 

not known a priori but the model can be assumed to be correct, am can be defined as the 

root mean square deviation of the model from the data 

1 
< = 

m — n 
X(^j-Wj)2 (B.9) 
j=i 
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where the terms on the right hand side are calculated making use of the fitted bridging 

stresses, <J>, through Eq. (B.3). This quantity gives an indication of the measurement error. 

Equations (B.6) and (B.8) prove to be extremely sensitive to computer roundoff 

errors and to errors in the measurements. The solution is unstable, and the fitted bridging 

stresses, <j), tend to have very large magnitudes that cancel out almost precisely when the 

fitted crack sliding displacement is evaluated. This is explained by the near-singularity of 

the matrices A and ATA, which have very small eigenvalues and, after the inversion, can 

greatly magnify small errors in the data. 

To treat this difficulty a Linear Regularization Method is used (Twomey, 1977, 

Tikhonov, 1963). The basic idea is that the data points, w, are actually defined within 

error bars or error zones, so that a set of <j)b(*), probably infinite, can be calculated which 

can generate crack sliding displacements, w, falling within the error bars. To select one of 

the possible (j>b(x) an additional and arbitrary constraint is imposed, e.g., that of a smooth 

solution. The norm of the k'h derivatives of the bridging tractions at a set of r points along 

the crack is assumed as a measure of the deviation from smoothness. In this case the 

problem requires the minimization of the functional 5" 

s'=I 
i=l 

dkHxi)
2 

dxk (B.10) 

where x={xi,...,xr} defines the grid of r points along the bridged portion of the crack. 

Taking advantage of the method of Lagrange undetermined multipliers, the solution is 

then obtained by finding an unconstrained extremum of a new functional S" given by 

j=i        i=i 

;k d*m) 
dxk (B.ll) 

where k is the Lagrange multiplier (A.>0). The normal equation of the least square fit, Eq. 
(B.8), becomes 

<j) = (ATA + mr'AT(w-wL) (B.12) 

where 

H=BTB (B.13) 

is a nxn matrix depending on the rxn matrix B which defines the kth derivatives of the 

unknown bridging stresses with respect to x calculated at x, §K (x) = B (j). 

Once the vector ^ has been found, the coefficients a^ of the spline functions are 

calculated through Eq. (B.2) and the bridging stresses, <j)b(x), are defined as a function of 

position along the crack according to Eq. (B.l). On varying k a progressive transition 

between two limiting solutions is found. For k=0, Eq. (B.12) = Eq. (B.8) provides the best 
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agreement between the data and the prediction, but the bridging stresses §b(x) can be 

wildly oscillating. On increasing A. the solution becomes smoother and the shape of §b(x) 

is controlled by the degree k of the derivatives in Eq. (B.ll), e.g. linear for k=2. If the 

experimental errors in the measured displacements are known a priori, the optimal choice 

for X is that which yields am of Eq. (B.9) equal to au, the experimental error. Otherwise, 

the preferred degree of smoothness must be determined subjectively, based on insight into 

the expected form of the result and with care not to admit as physically significant 

fluctuations which may be an artefact of noise (underconstraint). 

The bridging law, Xb(w), is then defined by interpolating the calculated §b(x) over the 

fitted crack sliding displacements. 

B.2.1 Determination of the Bridging Stresses Xy,(w) from Measurements of a Single 

Crack Profile 

The data of the problem are the same of the previous case, but now the bridging 

stresses are sought as a function of the crack sliding displacement, Tb(vv). The continuous 

bridging stresses are represented by a convenient set of basis functions 
o 

Tb(w) = 2Yk£k(w) (B.14) 
k=l 

where a viable choice for the gk(w) is orthogonal polynomials, e.g. Legendre polynomials. 

The bridging stresses, jb={rbi, , rbm}T, at the m experimental points, x , are given by 

Jb = Gy (B.15) 

where y_ is the vector of the coefficients y^, k=l,....o, and G is a mxo matrix which 

depends on the crack sliding displacements in x . The generic component of the vector rb 

takes the form 
o 

tbj=^y-k8k(M.Xj)),      j=\,....,m. (B.16) 
k=l 

From Eq. (B.3) and the assumptions n=m and x=x , the vector of the theoretical crack 
sliding displacements at the m points x , w={vvi , wm }T, is given by 

w= AGy + wL (B.17) 

where A has been previously defined in Eq. (B.4). 

To define the vector y. and consequently the bridging tractions, ib(w), the procedure 

shown in Appendix B.l is applied. Three different cases are outlined: 

1) if o=m a direct inversion of Eq. (B.17) under the condition w=w leads to 

1=   (AG)-'(w-wL) (B.18) 
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2) if m>o a least square fitting of the data points gives 

X =[(AG)T(AG)]-'(AG)T(w-wL) (B.19) 

3) if m>o and the data are noisy a linear regularization method gives 

X = [(AG)T(AG) + mr'(AG)T(w - wL) (B.20) 

where 

H = RTR (B.21) 

is a oxo matrix and R is a mxo matrix which defines the kth derivatives of the bridging 

stresses, Xb(w), with respect to w calculated at w, t£ (w)=Ry_. 

All of the Eqs. (B.18), (B.19) and (B.20) contain the matrix G which depends on the 

crack opening displacement w(x) (see Eqs. B.14 and B.15). The problem is thus nonlinear 

and must be solved iteratively. A tentative definition of G is obtained at the first iteration, 

/=1, by assuming the vector of the theoretical crack sliding displacements, w'=1, equal to 

the noisy data, w. Eqs. (B.20) and (B.17) lead to the new profile of best fit, w,=2. The 

calculation is repeated until convergence is reached in the w1 and w1+1. Finally, the 

bridging law is defined by Eq. (B.14). 

B.2.2  Determination of the Bridging Stresses xb(>v) from Measurements of Several 

Crack Profiles 

The formulation shown in Appendix B.2.1 can be generalized to analyze data acquired 

at different values of the applied shear stress, x. The different crack profiles, w(1), with 

1=1,...,nL, nL being the number of profiles examined, correspond to different and known 

crack lengths, am. In this case the problem is solved by minimizing the functional 5"' 

'dkx(w) "L   m (  iV„i_..\\} 

1=1 j=i V   aw     J 
dw. (B.22) 

This leads to the final system of equations 

X(A(,)G(,))T(A(1)Gffl) + ^H( 
"'n, 

£(A(1)G(1))T(w(1)-w«) (B.23) 
1=1 .1=1 1=1 

where A(1), G(1) and H(1) relate to the /th profile (from Eqs. (B.4), (B.15) and (B.21)). If the 

parameter A. is set equal to zero, Eq. (B.23) defines the unconstrained minimization 

problem for the simultaneous analysis of several crack profiles (from Eq. (B.19)). 
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FIGURE CAPTIONS 

Figure 1:    The End Notched Flexure (ENF) test and coordinate system. 

Figure 2:    (a) Schematic of the delaminated plate loaded in shear. The superposition 

of problems (a) and (b), which represents an intact plate, creates the ENF 

test of (c). 

Figure 3:    Normalized shear cracking stress as a function of the normalized crack 

length for a laminate with intact through-thickness reinforcement: power 

law bridging (from Massabö and Cox, 1996). 

Figure 4:    Transition from stable to unstable crack growth for decreasing values of the 

ligament strength in a laminate plate with a normalized notch of length 

ao/(anmh)Vl =1.0. Linear bridging law (from Massabö and Cox, 1996). 

Figure 5:    Ultimate notched strength for bridging laws of different shapes in a 

material with a vanishing intrinsic interlaminar fracture toughness (from 

Massabö and Cox, 1996). 

Figure 6:    Schematic of modified lock stitching. 

Figure 7:    (a) Load versus mid-span deflection curve for an ENF specimen with no 

stitches, (b) Load versus mid-span deflection curve for a stitched ENF 

specimen. 

Figure 8:    Total opening and sliding displacements for a delamination crack in the 

ENF specimen of Fig. 7.b. 

Figure 9:    Total sliding displacements for three different values of the applied load in 

the ENF specimen of Fig. 7.b. 

Figure 10: Bridging laws obtained from crack profile data on varying the Lagrange 

multiplier in the constrained minimization problem (Legendre polynomials 

to order 8). 

Figure 11: Bridging    laws    obtained   from   crack   profile    data.    Unconstrained 

minimization problem (Legendre polynomials to order 4). 

Figure 12: Bridging    laws    obtained   from   crack   profile    data.    Unconstrained 

minimization problem (Legendre polynomials to order 4 and rt,(0)=0). 

Figure 13: Theoretical and experimental crack sliding profiles for the specimen of Fig. 

7.b. 

Figure 14: Theoretical and experimental load-deflection curves for the specimen of 

Fig. 7.b. The elastic response expected of an uncracked specimen has been 

subtracted from the actual mid-span deflection (bridging law from crack 

profile data). 

41 



Figure 15: Theoretical and experimental load-deflection curves for the specimen of 

Fig. 7.b. The elastic response expected of an uncracked specimen has been 

subtracted from the actual mid-span deflection (bridging law from fitting of 

the load-deflection curve). 

Figure 16: Two hypothetical traction laws defined by paths ABC and OBC, 

distinguished by the presence or absence of the triangle OAB at small vv. 

Figure 17:  Influence of stitching on the fracture response of ENF specimens. 

Figure 18. Transition from noncatastrophic (ACK limit approached) to catastrophic 

(small scale bridging limit approached) in a stitched laminate with the same 

fracture characteristic of the laminate of Fig. 7.b. 

Figure A. 1: (a) Strain energy release rate in ENF specimens as a function of the 

normalized crack length (finite element calculations), (b) Critical load in 

ENF specimens from finite element calculations and plate theory. 
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ABSTRACT 

A class of simple models is introduced for a fibrous tow, stitch, or rod that bridges a 

delamination crack in a laminate. The models are introduced for mode II delamination cracks but 

are intended for general mixed mode cracks. Modeling is guided by prior observations and 

measurements on laminates reinforced through the thickness by stitches and short rods. Salient 

phenomena include shear deformation of the bridging tow, its debonding from and sliding 

relative to the surrounding laminate, and its sideways displacement through the laminate. The 

tow is represented as a beam that can bend, shear, and extend axially. Its axial displacement 

relative to the laminate is resisted over its debonded periphery by friction. The forces associated 

with its sideways displacement are estimated by regarding it as a cylindrical punch being driven 

through a plastic medium (the laminate). Thus the mechanics of the whole problem are reduced 

to a set of one dimensional equations. With realistic values assigned to undetermined 

parameters, experimental data are reproduced over the whole range of displacements up to 

ultimate failure of the bridging tow. The effects of tow orientation and length (whether a short 

rod or continuous stitch) can be assessed. The model allows optimal design of through-thickness 

reinforcement in a wide variety of structures. 
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1.        INTRODUCTION 

Delamination cracks in laminates can be arrested effectively by though-thickness 

reinforcement, which can take the form of stitches, short rods, or woven interlock tows [1-11]. 

The through-thickness reinforcement acts by bridging the delamination crack, opposing its 

opening or sliding displacement. Many structures are now being fabricated and tested with 

partial reliance on this bridging effect, including skins designed to resist delamination failure, 

particularly after impact, joints reinforced to safeguard against pull-off, and laminates reinforced 

selectively around holes and cutouts (Fig. 1). 

While many significant successes have been chronicled in developing through-thickness 

reinforcement, progress has been almost entirely empirical. Through-thickness reinforcement 

cannot yet be designed by analysis to meet specified requirements; designs are arrived at by a 

combination of guesswork and extrapolation from test data from previous attempts. 

In the case of crack bridging effects, the material information required for intelligent design can 

be summarized quite simply. It is the relationship between the tractions acting in the bridging 

tow where it crosses the fracture plane and the opening and sliding displacements of the bridged 

crack (Fig. 2). Some attempts have already been made to estimate this relationship for stitches, 

short rods, and interlock tows in weaves, but without proper attention to the damage mechanisms 

occurring within and around the bridging tow [12-17]. For mode I delaminations and bridging 

tows that are normal to the delamination plane, simple micromechanical arguments give credible 

(although as yet unverified) estimates or bounds [15,16]. But whenever mode II crack 

displacements arise or when the bridging tow is not oriented in its undamaged state normal to the 

delamination plane, the damage mechanisms are known to be complex and poorly described by 

existing models [18-22]. 

Detailed observations of damage events in bridging tows have now been reported for both 

stitches and short rods in shear [18-22]. They will be summarized here. With these observations 

providing guidance, new models will be proposed for the bridging characteristics of a generic 
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bridging tow (stitch, short fibrous rod, or woven interlock tow). The response at small 

displacements is modeled by finite element calculations. For larger displacements, up to and 

beyond failure of the bridging tow, a very simple representation of the deforming bridging tow is 

formulated with reference to experiment for justification, leading to an analytical equation for its 

mechanical equilibrium which requires minimal numerical work for solution. Trends in behavior 

are thus highlighted. The model is formulated for stitches or short rods that are initially 

perpendicular to the delamination fracture plane. Straightforward generalization to the 

technologically important case of initially inclined stitches or rods will be presented elsewhere. 

2.        OBSERVED DAMAGE MECHANISMS 

Observations of damage during shear delamination cracking of end notch flexure, 

cantilever beam, and lap joint specimens have been reported in [18-21] and during tests of small 

cuboidal specimens containing a single stitch under controlled shear displacement in [22]. 

Different mechanisms operate at different values of the sliding displacement discontinuity or 

total crack sliding displacement, 2u, defined by Fig. 2. From [18-22], the salient mechanisms in 

the deformation of bridging stitches or short rods under shear loading are as follows. 

Ahead of the delamination crack tip in a typical stitched laminate, stitches are not visibly 

deformed or damaged [19]. No microcracking or debonding is observed. The stitch debonds 

from the surrounding laminate when the delamination crack reaches it, in some cases before [21] 

and in others after [22] the stitch has been circumscribed by the delamination crack. The debond 

cracks involve no fiber/matrix separation, but consist of matrix cracks that separate the stitch as a 

whole from the surrounding composite. Debond cracks are most pronounced on the side of the 

stitch where local tensile stress would be expected. In stitches in the immediate wake of the 

delamination crack tip, where 2w ~ 10 urn, polarized light microscopy reveals a well demarked 

zone of crazing [21]. The crazing is confined mainly within the stitch, extending over its whole 

diameter and approximately two stitch diameters away from the delamination plane on either 

side. Thus the stitch accommodates the crack sliding displacement by internal plastic shear, 

presumed to be mediated by arrays of microcracks and crazing similar to those seen in other 
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shear tests of polymer composites [9]. Stitches subject to greater crack sliding displacement (2« - 

100 um) are debonded around their entire circumference from the laminate over slip zones that 

eventually extend to the surface of the laminate. Beginning at displacements 2w ~ 100 \im, 

significant plasticity is seen in the laminate; and eventually (2M > 0.6 mm), splitting cracks and 

spalling are seen. At these higher sliding displacements, the stitch itself is also split by numerous 

axial matrix cracks, separating it into strands which slide along one another to accommodate 

bending (Fig. 3). 

An overview of typical strain and stress levels and associated mechanisms during loading of a 

stitch in shear up to and beyond ultimate failure is shown in Fig. 4 (eclectic idealization of data 

from [19], [22], and [23]). At crack sliding displacements 2w < 0.2 mm, the shear stress in the 

stitch at the fracture plane (left ordinate) is just a few hundred MPa. For similar polymer 

composite plies under pure deviatoric shear, matrix microcracking leads to large strains at 

stresses above approximately 75 MPa, with hardening to ~ 100 MPa as the shear strain 

approaches 10% [9,24]. Thus, for the stitch to support loads much above 100 MPa, it must bend 

near the fracture plane so that significant load is carried by the fibers in tension. But the degree 

of bending need not be very great to achieve equivalent shear stresses on the fracture plane of ~ 

200 MPa, since the fibers have very high axial stiffness. Thus plasticity and some stitch 

realignment will account for the total loads found below displacements 2M < 0.2 mm. For 2w > 

0.2 mm, sliding displacements and total load increase to ultimate failure when the shear traction 

in the stitch on the fracture plane is ~ 1 GPa. Such a high load can only be sustained if the fibers 

in the stitch have rotated on the fracture plane through quite large angles. Post-mortem failure 

shows that such rotations have occurred but only near the fracture plane, where the stitch has 

dragged through the laminate and assumed a locus approximating a hyperbolic tangent. But the 

total crack sliding displacement at peak load is much larger than could be expected if the stitch 

stretched only in this region. Much of the crack displacement is evidently permitted by axial 

sliding of the stitch: in specimens tested to stitch failure, pronounced dimples are left on the outer 

laminate surfaces where the stitch has been pulled down towards the fracture plane. After peak 

load, there is a dramatic drop in load followed by some relatively small but enduring pullout 

forces. 
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Because stitch debonding and plasticity within the stitch occur very close to the delamination 

crack tip, there is no appreciable interval of crack sliding displacement where deformation is 

purely elastic. The stiffness of the bridging system expected for an elastic, undamaged stitch and 

laminate in the presence of a delamination crack is relatively high - of the same order as the shear 

modulus of the composite. On the scale of Fig. 4, the line representing such an elastic response 

will be almost coincident with the ordinate. The first significant departure from the ordinate 

should herald the onset of stitch debonding and stitch plasticity, as shown in Fig. 4. 

3. MODEL FORMULATION 

3.1 Model for Small Displacements 

The transition of the response of the stitch and laminate to shear loading from elastic to 

plastic is examined by finite element calculations. The calculations ignore the effect of rotation 

of the stitch near the fracture plane and are therefore only pertinent to small crack sliding 

displacements. The small displacement model deals with the regime where the bridging tractions 

are determined predominantly by the properties of the matrix rather than those of the stitching 

fibers, since the stitching fibers are orthogonal to the shear tractions resolved on the fracture 

plane. 

3.2 Model for Large Displacements 

The problem of the deflecting stitch for large displacements will be idealized by the 

following assumptions, with reference to the nomenclature shown in Fig. 5. 

1. Most of the bridging shear tractions in the stitch on the fracture plane at large displacements 

arise from axial tension in the fibers in the stitch, which must therefore rotate out of its 

initially perpendicular alignment to the fracture plane. Thus this model is applicable to loads 

that are much larger than those that can be borne by the strength of the stitch in shear (~ 70 
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MPa). The condition of the stitch in this stage of loading is marked, as recalled above, by 

severe internal matrix damage, especially near the fracture plane. Matrix plasticity and 

axially oriented matrix cracks within the stitch prevent large axial shear stresses developing, 

even under shear strains ~ 1. 

2. The stitch debonds from the laminate over a zone that propagates a distance /s from the 

fracture plane that is large compared to the stitch diameter. Axial sliding of the stitch relative 

to the laminate is opposed by friction, which is assumed to be characterized by a uniform 

shear traction, r. 

3. Deformation of the laminate in the z-direction is assumed to have a negligible effect on the 

mechanics of the stitch. 

4. All deformation in the stitch is assumed to be either axial extension or axial shear, i.e., planes 

initially normal to the z-axis remain so. Bending effects are ignored. This approximation is 

justified by the presence of axial splitting cracks in the stitch, which separate it into thin 

segments which slide over one another without accumulating significant bending moments 

(Fig. 3). 

5. Lateral ploughing of the stitch through the laminate (in the x-direction of Fig. 5) is assumed 

to follow the mechanics of a punch being pushed into a rigid/perfectly plastic medium in 

plane strain (Fig. 6). Thus the stitch is opposed by hydrostatic compression, crh, acting on its 

diameter D. The magnitude of crh is assumed to be independent of the lateral displacement of 

the stitch and uniform along that interval of the length of the stitch where nonzero lateral 

displacement has occurred. 

The state of the stitch will be described in terms of only two independent variables, the 

displacements u(z) and w(z) of a slice of the stitch lying between z and z+dz. The axial strain, s, 

and the rotation of its axis, 6, are given by 

(du\ 
\dz) 

(      dw 
+ 1+* 

2 

-1 (la) 
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0 = 
_tdu 

tan   —/ 
dz 

f dwX] 
1 +   

V dz)\ 
(lb) 

The axial stress in the stitch, crs, i.e., the stress component in the local fiber direction, is 

<rs = sEs 

« sVi E{ 

(2a) 

(2b) 

where £s is the axial Young's modulus of the stitch, E{ that of the stitching fibers, and Vf the 

volume fraction of fibers within the stitch. The approximation of Eq. (2b) expresses the 

negligible contribution to Es made by the matrix in advanced stages of damage. 

Force equilibrium between the axial stress, as, and the friction stress, T, acting along the stitch 

leads in the shear lag approximation to the familiar result1 

dos 

dz 
= T/R (3a) 

whence (7, = a„ - T 

/s = ROQI2T 

R 
(z</s) (3b) 

(3c) 

where a0 is the value of as on the fracture plane (z = 0), /s is the slip length over which 

frictionally constrained sliding occurs, and 

R = 2A,ls (4) 

In deriving the force balance equation, a term of second order in 6, which arises because the boundary of the stitch 
stretches as it rotates, has been ignored for simplicity. This is consistent with our ignorance of the details of the 
friction process, which might involve other equally large but unknown variations with z. 
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with s the circumference of the stitch and As its cross-sectional area. For a stitch of circular 

cross-section, R is its radius. 

The other equation of equilibrium for the stitch balances the lateral force generated by the axial 

stress in the stitch in concert with its curvature against the resistance of the laminate. Denoting 

by F(z) the axial force resultant in the stitch (IF I = as As; F oriented along the stitch) and by P 

the force of resistance of the laminate per unit length of the stitch: 

\P\ =2Ro-h (5a) 

force balance for a slice of the stitch between z and z + dz requires 

F(z + dz)-F(z)+Pdz = 0 (5b) 

Here for simplicity the component Px of P in the jt-direction is assumed to be its only nonzero 

component and only leading order terms in #are retained. Substituting (3b) into (5) yields 

(d„-2rz/R)— = -Px 
dz 

(6) 

Equation (6) is to be solved for 0(z) and a0 subject to boundary conditions yet to be specified. 

Given 6{z) and cr0 (and thence <js(z) via Eq. (3b)), the displacement fields u(z) and w(z) follow 

fromEq. (1): 

"(z)=r J7< 

<T,(z)sin0 
+ sin0 dz (7a) 

J<r0R/2r 

(7s(z)cos6 
+ COS0-1 dz (7b) 
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The lower limit of Eq. (7a) will be defined below. The lower limit of integration in Eq. (7b) 

corresponds to the end of the debond/slip zone, z = /s, where the displacements are zero. 

The problem of interest here, i.e., predicting the mode II bridging traction law, requires 

calculation of the displacement, u(0), for a specified magnitude, T, of the stress in the stitch 

resolved on the fracture plane, z = 0. Since only the axial stress, <rs, in the fibers is treated as 

significant in the large displacement model, specifying T provides a boundary condition for cr0 = 

o-s(O):2 

r=o-0sin6' . (8) 

The system of model equations is closed by specifying the crack opening displacement, w(0), for 

given axial stress, cr0, in the stitch in a second boundary condition. Under general loading 

conditions, the relation between w(0) and 00 depends on the far-field stress-displacement 

conditions for the delaminating structure, i.e., how the far-field stress, o\f\ depends on the 

crack sliding and opening displacements (Fig. 2). Such general conditions will be dealt with in 

subsequent work. For delamination cracks observed in End Notch Flexure (ENF) specimens, the 

opening displacement is always much smaller than the crack sliding displacement; the 

delamination cracks propagate in mode II [23]. For mode II conditions, the appropriate boundary 

condition is 

w(0) = 0 (9) 

for all values of OQ. This boundary condition is adopted here. However, there is not necessarily a 

solution to the problem which satisfies this condition. In fact, if the shear traction, T, is large 

enough, solutions can only be found with w(0) < 0; i.e., some mode I opening must be present. 

The critical value, To, of T marking this transition can be estimated quite well by solving the 

equations of state in the limit that PJsris large (the most common case in a polymer composite). 

Since w(0) is a monotonically decreasing function of crQ for fixed T and OQ must satisfy OQ > T, T0 
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is given by the value of T for which w(0) = 0 when T = cr0- In the limit that PJsr » 1, one finds 

(Appendix A) 

y 
T0«(K-2)fp^ . (10) 

ST 

Solutions for Infinitely Thick Laminates 

Equations (3) and (7) with the boundary conditions (8) and (9) are a nonlinear system and 

must be solved by iteration. From Eqs. (3b) and (6) 

0 = siir,[77<ro] + -£-ln 
ST a R 

(10) 

Following the sign convention chosen for #in Fig. 5, 6 is positive at the fracture plane (z = 0). It 

diminishes with increasing z and vanishes at z = z0 given by 

2zQ IR = C70 / r{l - e'
sin",[nff«lsI,p'} . (11) 

For z > Zo, #is set identically to zero. There is no lateral deflection for z > z0, i.e., u(z>z0) = 0; 

and the lateral pressure, Px, exerted on the stitch by the laminate is therefore also set to zero for z 

> Zo- Thus z0 appears as the lower limit in Equation (7a). Since z0 < R<yjr* (from Eq. (11)), one 

has Zo < ^s always; slip always extends beyond the zone of stitch curvature. 

The nonlinear system can be solved conveniently and with very modest computation as follows. 

For specified T, a value is guessed for <j0 and substituted into Eq. (10) to define 6(z). Then w(0) 

The shear stress in the stitch resolved on the fracture plane is a0 sinöcosö, while the sectional area of the stitch on 
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is evaluated from Eq. (7a) and iteration in a0 leads easily to the boundary condition Eq. (9). 

Once the correct value of <x0 is determined, z0 follows from Eq. (11) and w(0) from Eq. (7a). 

Representative results for all cases can be plotted succinctly by recognizing that the quantities 

77 r, PJST, EJT, and R form a complete set of independent variables. 

Solutions for Laminates of Finite Thickness 

Let 2/z denote the thickness of the laminate. If the laminate is sufficiently thin, the slip 

zone length will exceed the laminate half-thickness, i.e., ls > h. In this case an important 

distinction arises between the cases of short rods and continuous stitches. For short rods, the 

condition ls = h marks the peak bridging traction. When the sliding displacement, w(0), increases 

beyond the point where /s = h, the condition os(h) = 0 must be maintained, the rod will pull out of 

the laminate, and cr0 and therefore the bridging traction must decrease. During this last phase of 

failure it is no longer appropriate to set w(0) = 0. More general solutions linked to the far-field 

conditions are required. These are deferred to a subsequent article. 

For continuous stitches, w(0) remains close to zero in ENF tests when /s > h, but the problem 

must be modified to account for transfer of load from the through-thickness segment of the stitch 

to the segments lying along the laminate's outer surface (Fig. 7). Experiments show (as recalled 

in Section 2) that for high enough loads the surface segments of the stitch are pulled down into 

the laminate. Here this process will be modeled as an analogue of the response of the through- 

thickness segment of the stitch to shear tractions at the fracture plane. Each surface segment of 

the stitch will plough down into the laminate under the action of shear tractions, rh (Fig. 7). 

Equilibrium for the transition segment of the stitch (shaded in Fig. 7) implies that the shear 

tractions must have the average magnitude 

Th = oM) (12) 

the same plane is As/cosft 
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since the cross-sectional area of each surface segment is half that of the through-thickness 

segment. The mechanics of the deflecting surface segment of the stitch are assumed to be exactly 

the same as those of the through-thickness segment where the latter deflects at the fracture plane. 

Thus the surface segments of the stitch are assumed to debond from the laminate and slide 

relative to the laminate against the same friction stress, r; and the ploughing displacement into 

the laminate is assumed to be opposed by the same hydrostatic pressure, crh. Results for the 

traction relation, u[T], found for the through-thickness segment at the fracture plane can therefore 

be used as a boundary condition at z = h. Since the surface segment of the stitch has half the 

cross-sectional area of the through-thickness segment, its diameter, R, will be lower by the factor 

1/V2 if it has a similar shape. Since the deflection scales as R, the boundary condition for the 

axial displacement, w(h), of the through-thickness stitch at z = h becomes3 

w(/0 = t4cr,(/0]/V2 (13) 

Here the subscript in ux signifies that the relation w[7] to be used in the boundary condition is the 

one computed for an infinitely thick laminate. In other words, the debond/slip zone on the 

surface segment of the stitch is assumed to propagate as far as necessary without encountering 

any other features in the stitched laminate. 

With the boundary condition Eq. (12) enforced, Eq. (7b) is replaced by 

w(z) = 

u_[o,(hj\/j2+\l <7s(z)cos8 

(Jx(z) cosd 
+ COS0-1 dz 

cosö-1 dz 
I       2T ) 

{       2T ) 

(14a) 

(14b) 

3 While Px and s also scale as VAS, they appear in the equations of state only in the ratio, PJST, and therefore 
contribute no further rescaling to the boundary condition. 
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Provided z0 < h, which is generally true for common cases, the other equations and boundary 

conditions remain unaltered. 

4. ILLUSTRATIVE CALCULATIONS 

Here some calculations are reported for a particular stitched laminate for which 

significant experimental data have already been published. This laminate consists of a quasi- 

isotropic lay-up (48 plies [45/0/-45/90]ns), with an in-plane Young's modulus, E\ = 44.6 GPa, 

transverse shear modulus, G\-$ = 2.6 GPa, and in-plane Poisson's ratios vi2= v2i = 0.3; stitches of 

doubled 3650 denier S-2 glass fiber tows on a square array of side 3.2 mm; individual stitch area 

As= 0.636 mm2 and radius R = 0.45 mm; total stitch area fraction cs = 0.062; and laminate half- 

thickness h = 3.6 mm [22,25]. Solutions will be discussed for a single stitch in a semi-infinite 

laminate of the same elastic properties and a single stitch in a laminate of finite thickness. 

Figure 10 reproduces Turrettini's data for shear tests on single stitch specimens from [22]. The 

total shear load measured in [22] has been converted to an equivalent shear traction in the stitch 

on the fracture plane (the stitch providing the only mechanical connection across the fracture 

plane for all but very small loads). The measured sliding displacement has been taken as 

equivalent to 2u, under the assumption that the global shear strain in the laminate remains 

relatively small, since the laminate is constrained by the gripping arrangement [22]. The 

maximum values of T in the data are just under 1 GPa, which loads are achieved when u = 0.5- 

0.6 p.m. The curves are irregular but on average over the complete range of sliding 

displacements they indicate some softening. 

Turrettini's data show pullout loads of ~ 70 MPa for the stitch following its rupture, which 

usually occurs some distance into the laminate. Taking h/2 as a typical distance of the site of tow 

rupture from the fracture plane in his experiments, shear lag analysis implies that the average 

friction stress must be r= lOAjnRh « 10 MPa. This same value for r is found for fiber tows in 

angle interlock weaves with similar resin matrices during pullout measurements [26]. Therefore 

T= 10 MPa will be taken as a representative value in the following illustrations. 
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4.1 Finite Element Calculations for Small Displacements 

4.2 Analytical Calculations for Large Displacements 

Semi-Infinite Laminate. Calculations are reported first for a stitch in a semi-infinite laminate (h 

-» oo), so that w(z) is given by Eq. (14b). Computed bridging traction laws are shown in Fig. 9 

for four values of PJsr that are representative of polymer composites. The lower and left 

abscissa and ordinate labels show the sliding displacement and shear traction resolved on the 

fracture plane in normalized units. The upper and right axis labels show numerical examples 

when r= 10 MPa and R = 0.45 mm. The calculations were performed with EJr= 5 x 103, which 

would be representative of a glass stitch (Es « 50 GPa) when t = 10 MPa; and Es/r= 104, which 

would be representative of a Kevlar fiber stitch (Es « 100 GPa) for the same r. 

A solid circle symbol terminating a curve in Fig. 9 indicates the end of the regime where 

solutions exist for which the boundary condition Eq. (9) can be satisfied. (All the curves 

terminate in this way, but some beyond the range of the plot.) For higher values of T, solutions 

exist only for w(0) < 0; i.e., some mode I opening must develop. 

In all cases (and for widely varying PJsr and EJx beyond the cases shown), T(u) is a softening 

function. For the exemplary case, shear tractions ~ 1 GPa are achieved when the crack sliding 

displacement is u ~ 0.5 p.m when 20 < PJsr < 60 (Kevlar stitch) or 40 < PJST< 80 (glass stitch). 

This implies hydrostatic compression crh « PJ2R in the range 600 MPa < crh < 1.8 GPa (Kevlar 

stitch) or 1.2 GPA < crh < 2.4 GPa (glass stitch). Since the hydrostatic compression in the punch 

problem should be ~ three times the crush strength of the laminate, the latter is implied to be in 

the intervals (200 MPa, 600 MPa) for the Kevlar stitch and (400 MPa, 800 MPa) for the glass 

stitch, which are indeed typical of measured values for carbon/epoxy laminates. 

Figure 10 shows the axial stress in the stitch at the fracture plane, cr0, as a function of the shear 

traction, T. All curves are bounded above by the line T = <70, which represents the condition 0 = 
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nil, i.e., the stitch lying parallel to the laminate at the fracture plane. At low T, a0 is 

considerably less than T, the stitch still lying nearly normal to the laminate. Termination of a 

curve at the bound T = CTQ coincides with the end of the domain of T for which the boundary 

condition, w(0) = 0, can be satisfied. From Eq. (3c), the abscissa in Fig. 10 also indicates the 

sliding distance, /s. For the exemplary set of material properties (scale at the top of Fig. 10), /s 

rises to values that will easily exceed typical laminate thicknesses when T -20- 100 MPa. 

Figure 11 shows the depth into the laminate over which the stitch develops nonzero curvature as 

a function of the shear traction, T. The depth diminishes with increasing PX/ST. The right hand 

scale shows numerical values for the exemplary case. It remains quite small, ~ 1 mm, even for T 

~ 1 GPa. This is consistent with experimental observations [22]. 

Laminate of Finite Thickness. Solutions of the traction law, T(u), calculated with the boundary 

condition of Eq. (14) for a laminate thickness, h = 3.6 mm = SR, are shown in Fig. 12. The 

solutions are superimposed over the equivalent family of curves for a semi-infinite laminate, 

copied from Fig. 9. Consideration of Fig. 10 shows that the slip zone along the stitch should 

reach the laminate surface very early in Fig. 12 (77r~ 10 MPa). 

When the slip zone has reached the laminate surface, the traction law may show either hardening 

or softening relative to the law for the semi-infinite laminate. A competition arises between 

hardening due to the cessation of extension of the slip zone; and softening as the surface segment 

of the stitch is drawn down into the laminate. If the surface segment and surrounding laminate 

were infinitely rigid, hardening would occur, because the only change would be the loss of axial 

displacement of the stitch due to slip in the region z> h. If the surface segment and surrounding 

laminate were very compliant, softening would occur, because the stitch would then be less 

constrained at z = h than in the semi-infinite case. 

Figure 12 shows both hardening and softening, depending on the case and the load level. For 

low loads, curves for all values of PxAsrshow softening relative to the semi-infinite case. As the 

load increases, hardening takes over. The curves for the finite laminate cross back over those for 
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the semi-infinite laminate at some critical load that increases with PJsr. For the exemplary 

laminate, hardening is not pronounced until T > 1 GPa in any case; and hardening is indeed 

absent from Turrettini's data (Fig. 10 and [22]). 

The softening of the traction laws for the finite laminate imply that somewhat higher values of 

PJsr would be required to match Turrettini's data than inferred in the preceding section: PJsr- 

60 - 80 for the glass stitch. This leads to inferred values of the crush strength of the laminate that 

are ~ 600 - 800 MPa, still close to experimental values. 

4.3      Ultimate Failure of the Stitch 

No prediction of ultimate failure of the stitch is attempted here, but some inferences for possible 

sites of stitch failure can be drawn. Since the slip distance, /s, equals the laminate half-thickness 

quite early in the load history, at high loads the through-thickness segment of the stitch will 

experience axial stresses that are not far from uniform along its entire length. Therefore, failure 

of the stitch at locations far from the fracture plane must be possible. The failure location will be 

more strongly influenced by local degradation of the strength of the stitch, e.g., at the point near 

the laminate surface where it turns through a right angle, than by variations in the local stress 

state. Failures have been observed at variations locations [22]. 

5.0      CONCLUSIONS 

The finite element calculations show that the response of the stitch and laminate to shear loading 

on the fracture plane is matrix dominated only for shear sliding displacements u < 0.1 mm, when 

the shear traction in the stitch is ~ 100 MPa. Larger loads observed at larger displacements can 

only be accounted for by considering the rotation of the fibers in the stitch near the fracture 

plane. 

Instead of computationally intensive 3D finite element calculations in which the axes of 

symmetry for the constitutive properties of the stitch rotate during deformation, a simple one- 
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dimensional analytical model has been presented which incorporates the essential mechanisms 

observed in experiments. The model makes the following testable predictions. 

The stiffness of the bridging traction law for a stitch in shear should rise with the axial modulus 

of the stitching fibers and with the crush strength of the reinforced laminate (which is correlated 

with the model parameter, Px. The law will have decreasing slope for common values of 

laminate thickness in laminates reinforced by glass or Kevlar stitches. 

If the stitch radius, R, is varied while the stitch area fraction on the fracture plane is held 

constant, there will be no change in the shear traction, T, in the stitch on the fracture plane for a 

fixed remote load. Furthermore, since Px and the stitch circumference, s, both scale as R, the 

ratio PJST will be invariant under changes in R. Therefore, as illustrated in Fig. 9, the only 

change in the traction law will be that the sliding displacement, u, will scale directly as R. (This 

scaling arises from the fact that, as R rises, the slip length, /s, rises, so that curvature must 

develop over a longer interval of the stitch.) Thus the stiffness of the law will rise if the stitch 

radius is decreased while the stitch area fraction is held constant. 

For any stitch material and radius, pure shear displacement is possible up to some limiting 

traction, beyond which solutions exist only for non-zero opening displacements. In the 

exemplary laminate studied here, the limiting traction is not far below the ultimate strength of the 

stitch, so delamination crack growth under pure or near mode II conditions should be readily 

observed, as is indeed the case [23]. 

In common laminates of common thickness, the stitch will slip relative to the laminate all the 

way to the outer laminate surface when the shear traction in the stitch at the fracture plane is ~ 

100 MPa or less. At loads above a few hundred MPa, the fibers in the stitch at the fracture plane 

will have rotated through large angles, gradually approaching the condition of being parallel to 

the fracture plane as the shear traction approaches 1 GPa. On the other hand, curvature in the 

stitch will be confined even at these highest loads to within ~ 1 mm of the fracture plane. 
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APPENDIX A - Approximate Solutions to Analytical Model for Large PJs r 

When PJSTis large and T/a0 is not small (which is always the case for large T, where cr0 -» T), 

Eq. ( 10) yields 

6 -» sin" 
SX <70  R 

(A.l) 

a linear function of z.   Substituting according to (A.l) for 8, the integral in Eq. (7b) can be 

performed analytically; and in the limit T -» CTQ, there results 

H<0): 

8-7zr2 + (47T-8)1^1-41-^ 
si)     \sx ^mm 

1 - T J\ST 

(A.2) 

With only the leading terms in PJSTretained, the condition w(0) = 0 leads to Eq. (10). 
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Figures 

(a) (b) 

mm 
(c) (d) 

1. Typical applications of through-thickness reinforcement. Skins reinforced to improve 

post-impact delamination resistance: (a) short rods and (b) stitching shown. Reinforced joints: (c) 

lap and (d) flange joints shown. 
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2.        Bridging tractions and crack displacements. 
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3.        Schematic of splitting cracks in a stitch or short fibrous rod.   The short line segments 

trace the separation of a single line in the undeformed stitch. 
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4.        Summary of mechanisms and load levels in a single stitch loaded to failure in shear (from 

[18] and [22]). 
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Delamination 
fracture surface 

5.        Nomenclature for the model for large displacements. 

D —*-    Stitch 
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6.        Lateral ploughing of a stitch through the laminate idealized as a punch problem in plane 

strain. 
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7.        Force balance between the axial stress in a deformed stitch at the fracture plane and the 

boundary tractions acting on a representative element. 
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8. Shear traction-sliding displacement data from Turrettini [22] for carbon/epoxy laminate 

specimens containing a single stitch. 
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9. Shear traction-sliding displacement relation calculated for the two marked values of EJr 
and for PJsr= 20, 40, 60, and 80. The lower and left axes show normalized variables (general 
cases); the right and upper axes, numbers for the particular material system defined in the text. 
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10. The shear traction on the fracture plane vs. the axial stress in the stitch at the fracture 
plane. The lower and left axes show normalized variables (general cases); the right and upper 
axes, numbers for the particular material system defined in the text. The upper axis has also been 
narked with the slip length, /s, which is related to the axial stress by Eq. (3c). 
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11. The maximum distance from the fracture plane over which curvature develops in the 
stitch as a function of the shear traction at the fracture plane. The lower and left axes show 
normalized variables (general cases); the right and upper axes, numbers for the particular 
material system defined in the text. 

12. Traction law predicted for a laminate of finite thickness, h = AR (solid curves) 

superimposed over solutions for a semi-infinite laminate (dashed curves); for PJsr= 20, 40, 60, 

and80;and£s/r= 104. 
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