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Numerical Manifold Method 

Gen-hua Shi 

Geotechnical Lab, US Army Engineer Waterways Experiment Station 

Vicksburg, MS 39180-6199 

Abstract 

Aiming at global analysis, the well known mathematical manifold is perhaps the 

most important subject of modern mathematics. Based upon mathematical manifold, this 

numerical manifold method is a newly developed general numerical method. This method 

computes the movements and deformations of structures or materials. The meshes of the 

numerical manifold method are finite covers. As the material domains, the finite covers 

overlapped each other and covered the entire material volume. On each cover, the manifold 

method defines an independent cover displacement function. The cover displacement func- 

tions on individual covers are connected together to form a global displacement function on 

the entire material volume. 

The global displacement function are the weighted averages of local independent 

cover functions on the common part of several covers. Using the finite cover systems, con- 

tinuous, jointed or blocky materials can be computed in a mathematically consistent manner. 

For a manifold computation, the mathematical mesh and physical mesh are independent. 

Therefore, the mathematical mesh is free to define and free to change. As the mathematical 

mesh, the covers can be moved, can be split and can be easily removed and added. Mov- 

ing the covers, the large deformations and moving boundaries can be computed by steps. 

By dividing a cover to two or more independent covers with their displacement functions, 

jointed and blocky materials can be modeled. 

Both the finite element method (FEM) for continua and the discontinuous deforma- 

tion analysis (DDA) for block systems are special cases of this numerical manifold method. 

In the current development stage of numerical manifold method, by using finite cover ap- 

proach, the extended finite element method can compute more flexible and visible deforma- 

tions and movements of joints and blocks. 





Chapter 1 

General Finite Covers of Manifold Method 

1.1 Finite Covers Formed by Mathematical Mesh and Physical Mesh 

Based on finite cover systems, the newly developed "manifold method" has the po- 

tential to meet more engineering requirements. The term "manifold" here is a generalization 

of the differential manifold, which is the main subject of differential geometry, topology, 

differential topology and modern algebra of mathematics. The difference of the "manifold" 

here and the traditional differential manifold is the following: the global functions of the 

differential manifold are highly differentiable and entirely defined irrelevant with the cov- 

ers; the global functions of manifold here defined are based on covers and only piecewise 

differentiable, mostly discontinuous on the contact interfaces. 

Physically, material objects often have different shapes. When the material volumes 

have fractures, blocks or different zones, the shapes and boundaries become more complex. 

Under conditions of large deformation and moving boundaries, more difficulty occurs be- 

cause the conventional analytical approximations are feasible and useful only in a local con- 

tinuous domain which represents only a small part of whole material volume. 

Manifolds connect many individual folded domains together to cover the entire ma- 

terial volume. Then, the global behavior can be computed by functions defined in local cov- 

ers. The new method has separated and independent mathematical mesh and physical mesh: 

the mathematical mesh defines only the fine or rough approximations; as the real material 

boundary, the physical mesh defines the integration fields. 

The mathematical mesh is chosen by user, consists of finite overlapping covers 

which occupy the whole material volume. Conventional meshes and regions, such as reg- 

ular grids, finite element meshes or convergency regions of series, can be transferred to fi- 

nite covers of the mathematical mesh. Based on finite covers, manifold method is flexi- 

ble enough to contain and combine well developed analytical method, widely used FEM 

method and joint or block oriented DDA method in a unified form. 



Vi 

11 

V2 

Ny      21 

1221 

1l22   / 

/l22l32\ 2i32 

1i223i       I 2231 

1i3i     i 31 

V3 
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FIGURE 1.2 General covers with two joints 



The physical mesh includes the boundaries of the material volume, joints, blocks 

and the interfaces of different material zones. The constantly changing water surfaces are 

also part of the physical meshes. The physical mesh represents material conditions which 

can not be chosen artificially. 

The physical cover system is formed by both mathematical and physical meshes. 

If the joints or block boundaries divide a mathematical cover to two or more completely 

disconnected domains, those domains are defined as physical covers. Therefore, the physi- 

cal covers are the subdivision of the mathematical covers by discontinuities. The manifold 

method is more suitable to compute large deformations, moving boundaries of both contin- 

uums and jointed materials. 

In Figure 1.1 and 1.2, two circles and one rectangle (indicated by thin lines) delimit 

three mathematical covers 

Vu V2, V3 

to form the mathematical mesh. The thick lines indicate the material boundary and inner 

curved joints. In Figure 1.1, Vi is divided by the physical mesh into two physical covers 

li, 12, V2 has two physical covers 2i, 22 and V3 has two physical covers 3i, 32. 

Figure 1.2 shows a more complex mesh. Mathematical cover V2 contains three 

curved lines, but only two totally disconnected physical covers 2i, 22 are formed. The up- 

per curve (inside cover 2i) can't cut through rectangle V2 to form more physical covers, 

therefore cover 2i is a single physical cover. Similarly since mathematical cover V3 just 

intersects the end of the upper curves, physical covers 3i, 32 are formed. In both Figure 

1.1 and 1.2, the common part of two or more physical covers are defined as "elements" and 

marked by its cover numbers. 

Figure 1.3 shows a simple but often useful chain cover system. This cover system 

is specially convenient for long and narrow material shapes. 

Figure 1.4 shows a DDA block system, here each block is a mathematical cover and 

a physical cover. There are no overlaps between any two covers in DDA case. 

1.2 Cover Functions and Weight Functions on Finite Covers 

The normal analytical method or series method work only on very simple domains 

such as spheres, rectangles and the functions are limited to be highly differentiable. For the 
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manifold method, the cover displacement functions are independently defined on individual 

physical covers. Local displacement functions can be connected together to form a global 

displacement function on the whole material volume. Since the joints can cut one cover to 

more covers as shown in Figure 1.1 and Figure 1.2, the functions are disconnected on the 

two sides of these joints. The global displacement function is general and flexible enough to 

represent the wide variety of continuous or discontinuous materials located within moving 

boundaries. 

The cover functions u,(x, y) defined on physical cover Ui 

Ui(x,y)   (x,y) G Ui (1.1) 

can be constant, linear, high order polynomials or locally defined series. These cover 

functions are connected together by the weight functions wi(x, y) 

Wi(x,y)>0    (x,y)eUi 

Wi(x,y)=0    {x,y)#Ui (1.2) 

with 

£   t»;(*,y) = i- (1-3) 

The meaning of the weight functions Wi(x, y) is weighted average, which is to take 

a percentage from each cover function ui(x, y) for all physical covers Ui containing (x, y) 

Using the weight functions Wi (x, y) a global function F(x, y) on the whole physical 

cover system is defined from the cover functions 

F(x,y) =^Wi(x,y)ui{x,y). (1.4) 

Figure 1.5 is a one dimensional example, there are three physical covers 

Ui=AxA2,   U2 = BXB2,   Ui = CxC2 
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FIGURE 1.5 1-d general covers 



ui(x)  = A3A4 , x eUi 

u2{x) = B3B4 , x<EU2 

u3(x)  = C3C4 , x e U3 

iui(x)ui(x)  = A3A5A2, xeUi 

w2{x)u2{x)  = BxBhB^B2, xeU2 

wz(x)u3{x) =   c2c5d, xeu3 

The global function F(x) is 

n 

F(x) = ^2Wl{x)Ul{x) = A3A5B5B6C5C4. 

1.3 Global Functions on Continuous and Discontinuous Materials 

For material analysis, four basically different methods are often used. In the order of 

their development, analytical solutions are the earliest, then came finite difference, the finite 

element method, and most recently the distinct element method and the discontinuous de- 

formation analysis. The analytic approach has simple material boundary such as rectangles 

or circles and has no meshes. The finite difference uses grid meshes with equal spaces and 

as such, is more general than the analytic solution method. The finite element method was a 

revolution, it shifts from differential equations to integral equations, from the smooth func- 

tions to the piece wise smooth functions. The meshes of finite element method can give 

results of generally shaped continuous materials. The latest distinct element method and 

discontinuous deformation analysis method are for block systems which are totally discon- 

tinuous. The displacement functions of distinct element method and discontinuous defor- 

mation analysis are defined for individual blocks of general shape which are completely 

disconnected from block to block. 

As a one dimensional example, Figure 1.6 shows the accuracy of different methods 

when approaching a natural function (thin curves) which is discontinuous at a point. The 

thick smooth curve of Figure 1.6 a) is the approximation from the analytical and finite differ- 

ence methods. The thick piecewise smooth segments of Figure 1.6 b) are the approximation 

from FEM. The one dimensional elements are 

X0X1,X1X2,.T2X3,X3X4,.T4X5. 
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FIGURE 1.6 Accuracy of different methods 
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The disconnected segments of Figure 1.6 c) are the approximations from DEM and 

DDA methods. The one dimensional blocks are 

VoXi, 2/1 X2, 2/2^3, 2/3^4, Z/4^5 • 

which have more unknowns than the previous methods. 

Figure 1.6 d) and Figure 1.7 show the approximation of the manifold method. There 

are seven one dimensional physical covers 

U\ = x0xu    U2 = x0x2,    U3 = xix3,    U4 - x2x3, 

U5 = 2/3-^4,   U6 = 2/3x5,   U7 = X4X5 

Since the natural function has a jump at the point x3 =2/3, the mathematical cover 

x2x4 was split to two physical covers £/4 = x2x3 and U5 = 2/324- 

wi(x)ui(x)  =    AQX\, x G U\ 

W2(x)u2(x)   =     X0AiX2, X e u2 

Iü3(X)U3(X)  =    xiA2x3, x e U5 

W4(x)Ui(x)    =      X2A3, X G  t/4 

tu5(x)u5(x) =   -B324, x e u5 

w6(x)u6{x)   =    2/3^4^5, x e Ue 

WT{X)UT(X)  —    x4A5, x e U7 

The global function 

7 
F(x) = ^2wi(x)ui(x) = A0A1A2A3-B3A4A5 (1.5) 

i=i 

is very close to the original natural curve. The global displacement functions of the 

manifold method are capable of representing large deformations of fractured or blocky ma- 

terials until the ultimate damage stage in a unified mathematical form. 

For the discontinuous deformation analysis, the material body is simply individual 

blocks. Each block is a mathematical cover, and each mathematical cover is a physical 

cover. The mathematical mesh and physical mesh are the same where all covers are not 

overlapped. Therefore the discontinuous deformation analysis is the totally discontinuous 

case of manifold method. 

11 



FIGURE 1.7 Accuracy of manifold method 
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1.4 Elements As The Common Part of Overlapped Covers 

For two dimensional manifold computation, the cover displacement functions 

Ui(x,y) and Vi(x, y) are defined on cover [/,-. The global displacement functions u(x, y) 

and v(x, y) on the whole material body are two global functions: 

The cover displacement functions u,-(x, y) and Vi(x, y) defined on physical cover 

Ui 

ui(x,y)   (x,y) e Ui 

Vi(x,y)   (x,y) e Ui 

can be constant, linear, high order polynomials or locally defined series. These cover 

displacement functions are connected together by the weight functions w,(x, y) 

Wi{x,y) >0    (x,y) € Ui 

wt(x,y)=0    (x,y)?Ui (1.6) 

with 

(x,y)eUj 

Using the weight functions Wi(x,y) a global displacement function u(x,y) and 

v(x, y) on the whole physical cover system is defined from the cover displacement func- 

tions 

u(x,y) = ^Tiui(x,y)ui{x,y) 
i-\ 

n 

v{x,y) = Y^w*(xiy)vi(xiy) 
t=i 

Each common domain of physical covers is defined as a element e, From formula 

(1.6), in each element, weight function wt(x,y) has a analytical representation, which is 

13 



either constant 0 or a differentiable elementary function. Therefore, global displacement 

function (u,v) has analytical representation in each element. 

The cover displacement functions can be given in the following form: 

u(x,y) 

= [Ti(x,y)][Di] 

tu(x,y)    ti2{x,y)    tlz(x,y) 

t2i(x,y)    t22{x,y)    t23(x,y) 

tlm-l(x,y)       tlm(x,y) 

hm-i{x,y)    t2m(x,y) 

(   dix    \ 
di2 

di3 

da 

"im —1 

\    "im    / 

:i-7) 

where the subscript "i" represents the i-th cover. 

If a element e is not in cover U,, Ti(x, y) = 0. 

Tt{x,y)^0    eeUt 

Ti{x,y)=0    e$Ut 

1.5 Possible Displacement Functions for General Covers 

On cover Ui, (ui(x, y), vt(x, y)) is the displacements of point (x, y) on x any y di- 

rection respectively, The cover displacement functions (u,-(x, y), u,- (x, y)) often take one of 

the following forms: 

the constant function on cover U{ 

Ui(x,y) = da 

Vi(x,y) = dl2 (1.8) 

the complete first order approximation on cover Ut 

Ui(x,y) = du + dl3x + di5y 

V{(x,y) = di2 + dl4x + dl6y (1.9) 

14 



the complete second order approximation on cover U{ 

ui(x, y) = dn + di3x + di5y + di7x
2 + di9xy + dmy2 

Vi(x, y) = dt2 + di4x + di6y + di8x
2 + dil0xy + dil2y2 (1.10) 

or the general series form Ui(x, y) and Vi(x, y) on cover Ui 

Ui(x,y) 

Vi(x,y) 

Mx,y) 0 f2(x,y) 0 
0 fi(x,y) 0 f2(x,y)     ... 

fm(x,y) 0 
0 fm(x,y) 

(    du    \ 
dii 
diz 
du 

di2m-l 

\    di2m    / 

(1.11) 

1.6 Coefficient Matrix of Equilibrium Equations for General Covers 

Assume the number of physical covers is n, and there are 2m unknowns in each 

physical cover, 

/    du    \ 
di2 

di3 

Di = d^ 

"i2m-l 

V    di2m    I 

i = 1,2,... ,n 

the total potential energy has the form 

15 



n=UDl  Dl DJ D T 

/ Kn K12 Ki3 
K2i K22 K23 

K31 Ä'32 A'33 

V Knl Kn2 KnZ 

Km \ 
K2n 

K3„ 
D2 

D3 

KnnJ    \DnJ 

+ (Df Dl DJ Dl) 
F2 

F3 

\Fj 

+ C ;i.i2) 

Because each cover has 2m degrees of freedom, each submatrix Kij in the coefficient matrix 

given by equation (1.12) is a 2m x 2m matrix. D2 and Fi are 2m x 1 submatrices, where 

Dt represents the displacement variables (du di2 d{3 du ... di2m)T of physical cover i. 

From the formulation of II, the formula (1.12) can be written as a symmetric representation, 

The equilibrium equations are derived from minimizing the total potential energy 

IT. The i-th row of following equation (1.13) consists of 2m linear equations 

an 
ddir 

0,   r = 1,2,3,4,...,2m, 

where dir is the displacement variable of cover i. The matrix of obtained simultaneous equi- 

librium equations is same as the matrix of quadratic form (1.12): 

/Ku Kl2 K13 ... Km\ /Dx\        / Fx\ 
A'21 K22 K23 • • • K2n D2              F2 

K3\ ÜL32 A'33 ... /v3n D3 _       F3 

\Kni Kn2 Kn3 ... KnnJ \Dn/        \Fn/ 

;i.l3) 

For material analysis, Fi is the loading on cover i distributed to the 2m displacement vari- 

ables. Submatrices [Ku] depend on the material properties of cover i and [Kij], where i / j 

is defined by the overlapping or contact between cover i and cover j. 
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Chapter 2 

Element Matrices of General Finite Covers 

2.1 Stiffness Matrix for General Covers 

For the manifold method with general covers, the elements are the common domains 

intersected by the physical covers. The integration domains of the stiffness matrices are the 

whole elements which are the intersection of several physical covers. 

Same as FEM method, the relationship between stress and strain, is given by 

E V.T. 

l-I/2 
1 xy 

= [E] 

. 7*21 

where 

[E] = 
E 

1-Z/2 

1       V 

V      1 

0 
0 

0    0    I=* 

and E, v are Young's modulus and Poisson's ratio respectively. And 

(2.1) 

u(x,y) 
v(x,y) 

. 7zy 

EPWA} 

m 

i 

& 

du{x,y) 
dx 

dv(x,y) 
dy 

[Tn]) 

du(x,y)    .    dv(x,y) 
dy dx 

/{D1}\ 

\{Dn}/ 
(2.2) 

[Ti(x,y)] = 

Ui(x,y)    t12(x,y)    tn(x,y) 
Ui{x,y)    t22(x,y)    t23(x,y) 

<im-i(i,J/)    tlm(x,y) 
t2m-l{x,y)      t2m{x,y) 
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Then 

Txy , 

(2.3) 

For cover i, denote 

[ft] == 

atu 9*12 9*13 dtlm 

9x 9x dx dx 
S<21 9*22 9*23 9*2m 
dy 9j/ 9j/ dy 

9<n    ,    9t2i 
9j/           9ar 

9*12     1     9<22 
dy           dx 

9*13     1     9<23 
dy           dx 

9*lm   J,  9*2m 
9y             9x 

(2.4) 

Then 

i xy 
([^i] [ft] [ft] : [ft]) 

{ft} 
{ft} 

V{ft>y 

=[BIP] (2.5) 

where 

[B) = ( [B,]    [ft]    [ft]    :'    [ft] 

[D] 

/{ft}\ 
{ft} 
{ft} 

\{Dn}J 

The strain energy II e done by the elastic stresses of element e is 

ne=   //   -(exax + eyay + jxyTxy)dxdy, 

where the integration is over the entire material area A in that element. Then 

(2.6) 

n. = //>. dx dy 

18 



l-jJA{D}T[B}T[E}{B}{D}dxdy 

= \{DY ff[B}T[E}[B}dxdy 

= 1-{D}T(S'[B]T[E][B]){D}, 

where Se is the area of that element. 

Therefore, 

Se[B]T[E}[B] = Se 

([Bi\T\ 

[BAT [E]([B!]    [B2]    [B: 

\[Bn}T) 

is the element stiffness matri X. 

{D} 

(2.7) 

••    [B„]), (2.8) 

Then 

Se[Bry[E][Ba [Kra],        r,s = 1,2,3,..., n. 

2.2 Initial Stress Matrix for General Covers 

Following the time sequence, the manifold method computes step by step. The com- 

puted stresses of previous time step will be the initial stresses of the next time step. There- 

fore the initial stresses are essential for manifold computation. 

For the element e, the potential energy of the initial constant stresses {a°}   = 

{ °x     Gy      Txy ) IS 

nCT =   ff {exa°x + eya°y + lxyT°xy) dx dy 

v: 
( ex    ey    Ixy ) I   or«   I  dx dy 

xy. 

IJjD}T[Bf{a°e}dxdy 

(2.9) 
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where Se is the area of that element. Therefore, 

is the load matrix. 

Se[Be}T{a°e} = -Se 

' [B2]T X 

\{Bn]T) 

a 
c? 
xy . 

(2.10) 

Then 

'2 

Ta:y 

{Fr},        r = l,2,3,...,n. 

2.3 Point Loading Matrix for General Covers 

Different from ordinary FEM method, a load point can be any point in its element. 
rp 

The point loading force (Fx    Fy)   acts on point (x, y) of element e. And the displace- 

ments on force point (x, y) is 

u(x,y) 
v(x,y) 

The potential energy due to the point loading is 

Ilp = -(Fxu(x, y) + Fyv(x, y)) 

= -(u(x,y)    v(x,y))(F
x 

■{DY[T{x,y)]T(F£ (2.11) 

Therefore, 

[T] T 
Fv 

[T2]T 
/[ri]T\ 
1 [T*r 

\[Tn}TJ 

F, (2.12) 

20 



is the load matrix. 

Then 

[Trf {Fr}, r = 1,2,3, , ra. 

2.4 Body Loading Matrix for General Covers 

,T • Assuming that (fx    fy)   is the constant body force loading acting on the material 

area of element e. 

The potential energy due to the body loading is 

Hw = - // (fxii(x,y) + fyv(x,y))dxdy 

//   (u(x,y)    v(x,y))[ J
f
x ) dxdy 

= -{D? JJ[Tfdxdy 

fx 
fy 

U 
fy 

(2.13) 

Therefore, 

JL [T]Tdxdy fx 
fy JL 

/[Ti(x,y)]T\ 
' [T2(*,y)]r 

[T3{x,y)]T     dxdy 

\[Tn(x,y)}TJ 
fJL[T1(x,y)}Tdxdy\ 

In[T2(x,y)]T dxdy 
fA[Tz{x,y)}Tdxdy fx 

fy 

fx 
fy 

(2.14) 

and 
fJlAT,(x,y)}Tdxdy\ 

IlAT^(x^y)]Tdxdy 
$fA\Tz{x,y))T dxdv 

VlCJ^Ky)]7^ dxdy ) 
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is the body loading matrix. And 

Then 

[Tr(x,y)]T dxdy lb fA -► {Fr},        r= 1,2,3,. ..,n. 

2.5 Inertia Force Matrix for General Covers 

Inertia force matrix is equivalent to mass matrix of FEM. This matrix is the most 

important matrix of manifold method. Giving a small time steps, inertia force matrix will 

control the movements and the stability of all points of the whole material volume. In each 

time step, the displacements should be small enough to have the final result independent 

from the choosing of the specific time steps. 

Considering the current time step, denote (u(x, y, t) v(x, y, t)) as the time de- 
pendent displacements of any point (x, y) of element e and M as the mass per unit area. 

The force of inertia per unit area is 

fx{x,y,t)\_ d*  (u(x,y,t)\_    MlT]d
2{D(t)} (2 15] 

fy(x,y,t)J ~ ~MW {v(x,y,t)J ~ ~M]?]—d^-- (2-15) 

The potential energy of the inertia force of element e is 

nt = -JJ (u(x,y,t) v^y^)){f
f%^t)) dxdv 

= JJ M(u(x,y,t)    v(x,y,t))[T]d {^f)} dxdy. (2.16) 

Assume {D(0)} = {0} as the element displacements at the beginning of the time 
step, {D( A)} = {D} as the displacements at the end of the time step, A as the time interval 
of this time step. Then 

Ad{D(0)}     A2<92{£(0)} 
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9!M5» = ±{D] _ laJ£ML    * {D] - l{vm,     (2.i8) 
dt2 A2*   *     A      öf A21   J     A1   v "' v       ' 

where 
{1/(0)} = 3{fl(0)} 

dt 
(2.19) 

is the velocity at the beginning of the time step. Then the potential energy becomes 

TLi=M{D(A)}' JJ [T(x,y)}T[T(x,y)]dxdy   (J;{D(A)} - |{V(0)} 

(2.20) 

Therefore, 

[j[T(x,y)}T[T(x,y)}dxdy ^{D(A)}-^{V(0)}). (2.21) 

is the load matrix. Thus, 

2A4 
A2 

2M 
: A2 

f[{T(x,y)}T[T(x,y)}dxdy 

IL 
/[Ti]T\ 

[T2]
T 

[T3]
r 

\[Tn\TJ 

([Ti]    [T2]    [T3]    ...    [T„])dxdy [Al, 

(2.22) 

and 

2M 

2A4 
'' A 

JJ [T(x,y)]T[T(x,y)}dxdy {Ve(0)} 

IL 
[T2]

T 

[Ts]T 

MT«]7/ 

([Ti]    [T2]    [T3]    ...    [Tn])dxdy {y(0)}     _>     {F}. 

(2.23) 
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Then 

IM ff [Tr(x,y)}T[T3(x,y)]dxdy ->■ [K„], 

r,s = 1, 2,3,... ,n. 

(2.24) 

where 

2M Jj[Tr(x,y)}T[Ts(x,y)]dxdy   {Vs(0)} -> {Fr} 

r,s = 1,2,3,... ,n. 

ww-IÖS' 

(2.25) 

2.6 Fixed Point Matrix for General Covers 

As a boundary condition, some of the elements are fixed at specific points. The con- 

straint can be applied by using two very stiff springs. Assume the fixed point is (x, y) at 

element e with the displacements 

u(x,y) 
v(x,y) 

There are two springs which are along the x and y directions respectively. The stiff- 

ness of the springs is p. The spring forces are 

fy 

-pu(x,y) 
-pv(x,y) I ' 

The strain energy of the spring is 11/, then 

Hf = ^(u(x,y)2+v(x,y)2) 

=f(«(*,y) ^y)){uX:yy] 
= ^{D}T[T(x,y)]T[T(x,y)}{D}. (2.26) 
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Then 

=P 

p[T(x,y)]T[T(x,y)] 

/{Ti(x,y)]T\ 
[T2(x,y)]T 

[T*(x,y)}T 
mix^y)}    [T2(x,y)}    [T3(x,y))    ...    [Tn(x,y)}). 

\{Tn(x,y)}TJ 
(2.27) 

is the [K] matrix. Therefore, 

p{Tr{x,y)Y[Ts(x,y)] -+ [Kr8], r,s = 1,2,3,...,n. 
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Chapter 3 

Entrance Theory on Contacts for General Covers 

3.1 Definition of Contacts for General Covers 

Thus far, only individual covers and elements were considered. It is necessary to 

connect the individual discontinuous boundaries into a system. For the movements of dis- 

continuous boundaries, no tension and no penetration must be satisfied between two contact 

sides. The following theory of kinematics for material is based on contacts. Finding the con- 

tacts in each time step, allying stiff springs on contacts, the discontinuous displacements can 

be computed. 

The time steps can be chosen small enough so that the displacements of all points 

in the whole material body are less than a pre-defined limit p. Therefore, the displacements 

can be small enough so that the displacements (u(x, y), v(x, y)), the rotations r(x, y), the 

deformations (ex ey ^xy) can be accurately represented as linear functions of the cover un- 

knowns [£>,•] 

(u(x,y),v(x,y)) = ^[Tt-(x,y)]{D,-} 
i=l 

n 

r(z,j/) = £[#,■(*, y)]{A-} 
i=\ 

ey       =E[5!(x,y)]{A} (3.1) 
Ixy ) «=1 

Based on the small step displacements, the contacts are defined in the beginning of 

each time step. Each contacts are formed with two sides. All of the pair of two sides that are 

possible to contact, penetrate or entrance from one to another at the end of the time step are 

defined as contacts. Since practically there are no penetrations on the two sides that allowed 

on the contacts, so the contacts are merely the entrance positions. 
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There are two kinds of contacts: angle to edge and angle to angle. The edge to edge 

contacts can be transferred to angle to edge contact. (See Figure 3.1) Assume the maximum 

step edge rotation is S, there are the criteria for the contacts: 

[1] for angle to edge contact, the minimum distance of the angle vertex to the edge of 

the contacts is less than 2p; 

[2] for angle to angle contact, the minimum distance of two angle vertices of the contacts 

is less than 2/>; (See Figure 3.1) 

[3] for angle to edge contact, when the angle vertex translates to the edge without rota- 

tion, the maximum overlapping angle of the angle and the edge is less than 26; 

[4] for angle to angle contact, when the angle vertex translates to the vertex of other 

angle without rotation, the maximum overlapping angle of the two angles is less than 

28; (See Figure 3.2) 

The computer program sets the maximum step edge rotation 8 = 1.5 degrees. 

Figure 3.2 shows two complex blocks with many edges and angles, under this con- 

tact criteria, there are only two contacts even if the distance limit 2p is lager than block 

diameters. 

The common sense requirements of no penetration and no tension indeed are in- 

equalities. Coloumb's friction law and limited tension are also inequalities. From formula 

(3.1), the inequalities can be simplified to linear inequalities of [Di\. There are three kinds 

of linear inequalities: 

[1] no penetrations in contacts, 

[2] tension force less than tension strength in contacts, 

[3] Coloumb's friction law in contacts. 

In the computation, an angle to angle contact will be transferred to one or two angle 

to edge contacts. Based on the orientation, the following formula is used to judge the angle 

to edge contact penetration. 
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FIGURE 3.2 contacts between two blocks 
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Assume Pi is a point before deformation which moves to point P{ after deforma- 

tion; P2-P3 is the entrance line and (x;, y,-) and (ut-, i>;) are the coordinates and displacement 

increments of P,-, t = 1,2,3 respectively. If points Pi, P2 and P3 rotate in the same sense 

as the rotation of ox to oy (see Figure 3.3 and Figure 3.4), then P[ has passed line P2P3 and 

is stated by the inequality: 

A 
1 xi + ui yi + vi 
1 x2 + u2 J/2 + v2 

1    x3 +u3    y3 + v3 

<0. (3.2) 

This simple formula is still correct even when these three points move simultane- 

ously. 

3.2 Entrance Lines of Contacts for General Covers 

The kinematics can be imposed on the global equations by adding stiff springs to 

lock the movement in one or two directions. The theory of block and joint kinematics will 

decide where and when to put the stiff springs so that the movements of blocks and joints 

are basically the same as in the real space. For the kinematics, the formulae of penetration 

judge and penetration lock have to be consistent to ensue the convergency of open-close 

iterations. 

For the contacts, the "entrance" lines can be defined. A contact between two convex 

angles is shown by Figure 3.5, where the two thick lines are the entrance lines. Penetration 

will occur if the two entrance lines are passed by the vertices of the other angles simultane- 
ously. 

[1] For the angle to angle contact, if both angles are less than 180°, the two entrance 

lines are defined according to the following table: 

two entrance lines 

ß < 180° OE3 OE2 

ß > 180° OE3 OE4 

ß < 180° OEx OE2 

ß > 180° OEl OE4 

a < 180° 

a < 180° 

a > 180° 

a > 180° 

[2] For the angle to angle contact, if a angle is larger than 180°, the two entrance lines 

are the two edges of the angle greater than 180°. 
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FIGURE 3.5a Entrance lines of different contacts 
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FIGURE 3.5b Entrance line finding 
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36 
FIGURE 3.6 Entrance lines of parallel edges 



[3] For the angle to edge contact, the only entrance line is the edge. 

[4] For the edge to edge contact, the two edges are parallel, there is only one entrance 

line in this case, the entrance line can be any of the two edges. 

As showing by Figure 3.6, the definition of entrance line is still correct even if edges 

of two sides of the contact are parallel or slightly penetrated. 

The penetration judgment in different contacts are as following: 

[ 1 ] For an angle to angle contact, if both angles are less than 180°, the two entrance line 

have to be passed simultaneously by the vertex of another angle. 

[2] For an angle to angle contact, if a angle is larger than 180°, one of the two entrance 

lines has to be passed by the vertex of another angle. 

[3] For an angle to edge contact, the only entrance line bas to be passed by the angle 

vertex. 

For an angle to angle contact, penetration happens when there are no vertex entering 

the opposite angle as shown in Figure 3.7. Therefore the fact that if a vertex is in other angle 

is not a criteria of penetration. The penetration is related to the entrance lines. 

FIGURE 3.7 Using of entrance lines 
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In order to prevent the penetration of the two sides of the contacts, stiff springs are 

applied to some entrance lines: 

[1] For angle to angle contact, if both angles are less than 180°, a stiff spring is attached 

between the vertex and its entrance line which has been passed first or has smaller 

passing distance d. For this type of contact, only one stiff spring is applied. 

[2] For angle to angle contact, with a angle larger than 180°, if any one of the two en- 

trance lines has been passed by the corresponding vertex of another angle, a stiff 

spring is applied along the normal to this edge. If two entrance lines have been 

passed, two stiff springs are applied to the two entrance edges. 

[3] For angle to edge contact, one stiff spring is applied to the entrance edge. 

The entrance distance d from Pi to P2 P3 can be computed by the following formula, 

d :A 
1    xi+ui    yi+ vi 
1    x2 + u2    2/2 + v2 

1      X3 + "3      2/3 + V3 

<0. (3.3) 

/ =  \/{x2 + «2 - X3 - U3)
2 + (l/2 + V2 ~ 2/3  - VsY 

If a contact is open in the beginning of a time step and is closed in the end of the 

same time step, the entrance time and position in this time step can be computed. Assume 

t = 0 in the beginning of the time step, and t = 1 in the end of the time step, and 

A(i) 
1      Xi +tUi      t/1 + tvi 
1    x2 + tu2    2/2 + tv2 

1      X3 + tUz      2/3 + tV3 

then 

A(0)>0      A(1)<0 

The entrance time t0 satisfies equation 

A(*o) 
1    x\ + t0ui    2/! + io^i 
1    x2 +t0u2    2/2 + ^0^2 
1      £3 + t0U3      2/3 + t0^3 

(3.4) 
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Neglecting the second order infinite small, t0 can be computed by simpler formula: 

<o = 1   x2   y2 

1    x3    y3 

The contact position (xo,yo) is 

1 U\ V\ 
1 U2 2/2 + 
1 U3 ya 

1 Xi Vl 

1 X2 V2 

1 X3 V3 

(3.5) 

X0\  _ ( Xi +u1t0 

yo)     Km+vrfo 
(3.6) 

These formulae are still correct even when the three points move simultaneously. 

3.3 Contact Transfer to Next Time Step for General Covers 

The computation of manifold method follows time steps. The closed contact points 

should go to next time step and find new representing contacts. The closed contacts of the 

previous time step will be transferred to the next time step, if the contacts are found in the 

same contact position. The entrance lines will be transferred in case it is possible. The angle 

to angle contacts and angle to edge contacts have different contact parameters and different 

stiff springs. The same contact may also has different contact parameters in different contact 

state. 

The springs of closed angle to angle contacts: 

[1] normal stiff spring, 

The springs of closed angle to edge contacts in the sliding mode: 

[1] normal stiff spring, 

[2] pair of shear sliding forces, 

The springs of the closed angle to edge contacts locked in both normal and shear 

directions 

[1] normal stiff spring, 

[2] shear stiff spring, 
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The closed angle to angle contacts have the following contact, parameters: 

[1] normal forces, 

[2] normal displacements. 

The closed angle to edge contacts in the sliding mode have the following contact 

parameters: 

[1] normal forces, 

[2] normal displacements, 

[3] one of the two possible sliding directions, 

[4] contact positions on the edges, 

The closed angle to edge contacts locked in both normal and shear directions have 

the following contact parameters: 

[1] normal forces, 

[2] normal displacements, 

[3] shear forces, 

[4] shear displacements, 

[5] contact positions on the edges. 

Transferring the contacts to next step, an angle to angle contact may transferred to 

an angle to edge contact. Also an angle to edge contact may transferred to angle to angle 

contact. As transferring to different kind of contacts, some contact parameters may not be 

needed. 

3.4 Normal Contact Matrices for General Covers 

Assume Pi is a vertex, P2P3 is the entrance line and (a-t, t/jt) and (uk,vk) are the 

coordinates and displacement of P&, k = 1,2,3 respectively. If points Pi, P2 and P3 rotate 

in the same sense as the rotation of ox to oy (see Figure 3.3), then the distance d from Pi to 
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line P2P3 is 

d = 
1    xi+ui    yi +vi 
1    x2 +u2    y2 + v2 

1      X3 + U3      J/3 + V3 

(3.7) 

* =  A/(.T2 + "2 - X3 - U3)
2 + (j/2 + V2 ~ y3  - ^)2 

d should be negative if Pi passed edge P2 P3 

The step displacements 

(ui,Vi) i = 1,2,3 

is small as the results of small time step. The contact distance y is small from the definition 

of the contacts. Then 

So = 

1 .Tl y\ 
1 x2 Vi ) 
1 xz 2/3 

1 U\ y\ 
1 u2 V2 •> 
1 «3 ys 

l Xl Vl 

l x2 v2 

l xz vz 

are the first order infinite small, and 

1 Ul V\ 

1 u2 v2 

1 uz vz 

is the second order infinite small. 

1 X\ + Ui y\ +vi 
1 x2 + U2     J/2 + v2 

1 xz +uz    yz + v3 

1 xi    2/i 1       U\ y\ 1 Xi V\ 1 Ul Vl 

1 X2    y2 + 1    u2 2/2 + 1 x2 v2 + 1 U2 v2 
1 X3       VZ 1    u3 ys 1 xz vz 1 Uz vz 

Neglecting the second order infinite small, there is 

(3.8) 

A^50 + 
1 UX yi 
1 u2 y2 + 
1 uz y3 

l Xl Vl 

l x2 v2 

l xz vz 
(3.9) 

41 



As 

is first order infinite small, 

d = 

1     Xi + Ul     j/i + t>i 

1      X2 + U2      2/2 + f 2 
1      X3 + U3      J/3 + t>3 

y/(x2 +U2-X3- U3)
2 + (?/2 + "2 - 2/3 - Us)' 

1    xi + «1    2/1 + vi 

1      X2 + U2      2/2 + ^2 

1    x3 + u3    2/3 + v3 

1 

v
/(x2 -X3)2 + (2/2 -2/3)2 

1 Xi + Ul J/1+ Ul 

1 X2 + U2 t/2 + U2 

1     x3 + U3     t/3 + u3 

(3.10) 

Therefore the formula of / can be simplified as 

/ = V(x2 -X3)2 + (y2 -2/3)2 (3.11) 

Considering only the first order small, 

And 

A = S0 + {(y2 -2/3)    (Z3-Z2)) f "M 

+ ((y3-yi)   (3:1-3:3)) 
"2 

^2 

+ ((yi-y2)   (^-^i))("3
3) 

ui 

U2 
V2 

«3 
U3 

= [T(x1)y1)]{D}) 

= [T(x2,y2)]{D}, 

= [r(x3>y3)]p}, 

(3.12) 
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then 

Denote 

and 

so 

A = So + ((2/2 - y3)    (*3 - ^)) [T(xuyi)]{D}, 

+ ((y3-yi)    (^i-^))[T(a;2,y2)]{£>}, 

+ ((yi-y2)   (s2-si))[T(s3,y3)]{0}. 

(3.13) 

{ff} = y[T(x1>yi; 
IT / m - ys 

X3 - x2 

{0} = )[T(x,y2)f(llZ
y

x\ 

(3.14) 

(3.15) 

{Hl} = ][Tl(Xl,y1^ 2 

{Gi} = -l[Ti(x2,y2) 

T ( V2 - Vi 
\X3 - X2 

T ( 2/3 - 2/1 
Xi  — 23 

\T (   Vl ~ 2/2 
x2 — Xi 

w = 
/F1\ 

#2 

#3 {G} = 

/Gi\ 
G2 

G3 

\GJ 

d={H}T{D} + {G}T{D}+
Sl. 

The potential energy of the normal spring is 

(3.16) 
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n, = Id2 

= Pt({H}T{D} + {Gf{D} + ^2 

{D}T{H}{H}T{D} + {D}T{G}{G}T{D} + 2{D}T{H}{G}T{D} 

+ 2(^){Df{H} + 2(^){D}T{G}+(^ 

Thus, 

p{H}{H}T 

P{H}{G}T 

P{G}{H}T 

P{G}{G}T 

are the normal spring matrices of [K] 

(3.17) 

are the load matrices of [F]. 

Then 

-p 

-P 

p{Hr}{Hs}
T 

p{Hr}{Gs}
T 

p{Gr}{H3}
T 

p{Gr}{Gs}
T 

So' 
I 

So' 
I 

{Hr} 

{Gr} 

-(T)W 

[Krs], 

[Kra], 

[Krs], 

{Fr}, 

{Fr}, 

V, S :=  1, £J^ ö5 . . . 

V', S zzz  1 ? z!j O, . . . 

r*j .s == i, z? o5... 

r,s = 1,2,3,... 

r = l,2,3,. 

n 

n 

n 

n 

.,n 

. ,n (3.18) 
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3.5 Shear Contact Matrix for General Covers 

In Figure 3.8, point (x0,yo) is on the edge P2P3. Point (x0,y0) is also the assumed 

contact point of vertex Pj. The shear spring on the direction P2 P3 connects vertices Pi and 

Po. 

Let 

I = V(x2 + u2- x3- u3)
2 + (y2 + v2 - y3 - v3)

2, 

the shear displacement of Po and Pi along line P2P3 is 

1^> 
d=-PQP1.p2P3 (3.19) 

= j ((X1+U1 > - (*.+«.) (yi+„, - <*+„„)) (<*+::>: [-+-)). 

The step displacements 

(v,i,Vi) i = 1,2,3 

is small as the results of small time step. The contact distance j is small from the definition 

of the contacts. Then the projection of the displacements (u0,v0) and («i, ui) of points Po 

and Pi on vector P2 P3 

( x3 + u3 - x2 - u2    y3 + v3 - y2 - v2 ) 

( x3 + u3 - x2 - u2    y3 + v3 - y2 - v2 ) (    ° 

are small. And 

(u3 -u2    v3-v2)[ 

is second order small. 

The contact distance is small from the definition of the contacts. Then P0Pi is small, 

and 

C        / \ 1 x3 — x2 So = [xi - x0    j/i - j/o) 
ys - yi 
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is small. 

, ,fu3-u2\ 

is second order small. 

y/{x2 +U2-X3 -w3)
2 + (j/2 + V2 - Vz - u3)

2 

( OJ + ui) - (xo + «0)    (2/! +v1)-{y0+ vo)) ^ (y3 + V3) _ (y2 + ü2) 

d 

^(x2 - x3)
2 + (y2 - ys)2 

N     / x    /      ,      \     /      ,      ^ f {x3 + ua) - (x2 + u2) 
((Xl + Ul) - (x0 + «0)   (yi + Wl) - (yo + wo)) \jy3 + U3) _ (y2 + V2) 

Therefore the formula of / can be simplified as 

/ = v/(x2-.T3)
2 + (y2-y3)

2 (3-20) 

Denote 

, So 1  , ,   fu! -Uo 
d«- + 7(x3-x2 y3-y2)^i_Uo 

d ~ -7- + T ( X3 - X2 J/3 - J/2 )  I 1 

+ )(x2-x3 y2-y3)(^°). (3.21) 

m=7^^T (;;:::)'        (3-22) 
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and 

so 

{G>} = \[T^y«rh-_ii 

{H} = 

\HnJ 

{G} 
G2 
G, 

KGJ 

Then (3.21) becomes 

T| d = {HY {D} + {G}1 {D} + So 
I ' 

(3.24) 

The potential energy of the shear spring is 

n, = V-d2 

({H}T{D} + {G}T{D} + ^J 

{D}T{H}{H}T{D} + {D}T{G}{G}T{D} + 2{D}T{H}{G}T{D} 

+ 2\^){D}T{H} + 2(Sf){D}T{G}+(^ (3.25) 

Thus, 

p{H}{H}T 

p{H}{G}T 

P{G}{H}T 

P{G}{G}T 
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are the shear spring matrices of [K] 

-p(f)w 

are the load matrices of [F] from shear spring. 

p{Hr}{Ha}
T -»• [Krs], r,s = l,2,3,...,n 

p{iyr}{G,}T ->• [ÜTr.], r,s = l,2,3,...,n 

p{Gr}{Hs}
T -J- [A'„], r,5 = l,2,3,...,n 

p{Gr}{GJT ~» [#«], r,s = l,2,3,...,n 

-p(y){ffr} -+ W,                  r = l,2,3,...,n 

_p^M{GV} -> {Fr},                r = 1,2,3,...,«           (3.26) 

3.6 Friction Force Matrix for General Covers 

Friction forces are treated as loading forces in forward analysis, therefore the coef- 

ficient matrix of the equations will still be symmetric. 

When Coulomb's law allows sliding between two sides of boundary contacts, there 

exist friction forces in two sliding sides if the friction angle <f> is not zero. 

As shown in Figure 3.8, Pi is on one side of a contact and P2, Pz, Po are on the other 

side of the same contact. The friction force is calculated from the normal contact compres- 

sive force and the direction of the friction force is depending on the movement of Pi relative 

to Po in the direction from P2 to P3. Let p be the stiffness of normal contact spring, then 

the friction force 

.F = p-d-5-tan(0), (3.27) 
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and 

FIGURE 3.8 Position of shear spring 

where 

d is the normal penetration distance, 

tan(</>) is the friction coefficient, 

s — sgn (movement of Px relative to P0 in the direction from P2 to P3), and 
( 1,       ifx>0, 

sgn(x) = < 0,       if x = 0, 
l-l,   ifx<0. 

The friction force T is along the direction 

y((x3-x2)    (y3-y2)j, 

I = V(x2 -x3)
2 + (V2 -yz)2 
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is the length of line P2-P3- 

Then the potential energy of friction force T at P\ side is 

rr F ( ^fx3-x2 
J / V 2/3 — 2/2 

^{2?}r[r(x1>yi)] 

^p}T{#}, 

r ^(x3 -x2)/l 
(V3 -V2)/l 

(3.28) 

Denote 

W = j[T(x1)yi)]r(^_ T I  x3 ~ x2 

V2 
(3.29) 

and 

so 

m = )iT^rhz;i 

{H} 

H2 

\HHJ 

Then 

-f{H) = -T {Hz} 

\{Hn}) 

is the loading matrix for point Pi; and 

(3.30) 
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-T{Hr} -+ {Fr}, r = l,2,3,...,n 

Similarly, the potential energy of friction force T at P0 side is 

Denote 

n,= 7   «o    «o { 
I V (2/3 —3/2) 

-^{D,}r{G}, 

■\T ( {** -X2)/l 

(ys -1/2)// 

(3.31) 

{G} = I[T('T^^   vy3-y2 

T      X3 - X2 
(3.32) 

and 

so 

{^} = y[^o,yo)F ;;:- 

{G} = 

G2 

G3 

Then 

+T{G} = +T 

/{Gi}\ 
{G2} 
{G3} 

V{G„}7 

(3.33) 
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is the loading matrix for point Po; and 

+F{Gr} -)• {Fr}}        r = l,2,3,...,n 
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Chapter 4 

Finite Element Covers of Manifold Method 

4.1 Finite Covers Formed by Finite Element Nodes 
and Physical Boundaries 

The manifold method can perform the computations of finite element method for 

continuous material. After transferring the finite element mesh to finite covers of manifold 

method, the joint lines can be input as new physical mesh, then the same finite element mesh 

can compute joints in the same material volume. 

The finite element meshes can be used to define finite covers for manifold method. 

Considering any node, all elements having this node form a mathematical cover (called 

"star" in algebraic topology). 

In Figure 4.1 and 4.2, the mathematical cover V$ of node 5 has three elements 2 4 5, 

2 5 3 and 3 5 6. The mathematical cover Vi of node 1 has only one element 12 3 which is 

the only element having node 1. 

mathematical covers of Figure 4.1 and Figure 4.2 

element       element       element node element element elem 

1 1,2,3 

2 1,2,3 2,4,5 2,5,3 

3 1,2,3 2,5,3 3,5,6 

4 2,4,5 

5 2,4,5 2,5,3 3,5,6 

6 3,5,6 

Figure 4.3 shows the mathematical covers of nodes 1,2,4,5, mathematical covers 

of all nodes are listed in the table. 
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4 5 

FIGURE 4.1 FEM covers on two blocks 
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4 5 

FIGURE 4.2 FEM covers with a joint 
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mathematical covers of Figure 4.3 

node element element element element element elem 
1 1,2,5 1,5,4 

2 2,3,6 2,6,5 2,5,1 

3 2,3,6 3,7,6 
4 1,5,4 4,5,8 

5 1,5,4 1,2,3 2,6,5 5,6,9 5,9,8 4,5,8 
6 2,6,5 2,3,6 3,7,6 6,7,10 6,10,9 6,9,5 
7 3,7,6 6,7,10 

8 4,5,8 5,9,8 

9 5,9,8 5,6,9 6,10,9 

10 6,7,10 6,10,9 

Any original finite element is the common area of the mathematical cover of its 

nodes. In Figure 4.1 and Figure 4.2, mathematical cover V5 of node 5 is the area defined 

by the polygon 2 4 5 6 3; mathematical cover V2 of node 2 is the area defined by the poly- 

gon 12 4 5 3; mathematical cover V3 of node 3 is the area defined by the polygon 12563. 

The common part of mathematical covers V5, V2 and V3 are original finite element 5 2 3. 

The physical mesh of Figure 4.1 and 4.2 are the thick lines, which are the bound- 

aries and the fractures of the material volume. The physical covers or covers are defined as 
following: 

[1] The region of physical cover is the materials contained in the mathematical cover, or 

mathematically speaking the intersection of the mathematical cover and the material 

field. 

[2] If the material boundaries, block boundaries or fractures divided the mathematical 

cover to totally isolated regions, each region is a physical cover. Therefore the phys- 

ical covers are the subdivision of the mathematical covers. 

The mathematical covers and divided physical covers of Figure 4.1,4.2 and 4.3 are 
listed by the tables. 

the mathematical covers and physical covers of Figure 4.1 

math cover physical cover     physical cover     physical cover     physical cover 
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v2 2i 22 

Vz 3i 32 

v4 4i 42 

v5 5i 52 

V6 61 62 

the mathematical covers and physical covers of Figure 4.2 

math cover physical cover physical cover     physical cover physical cover 

V, u 
v2 2i 22 

V3 3i 

v4 4i 42 

v5 5i 

V6 61 

the mathematical covers and physical covers of Figure 4.3 

math cover physical cover physical cover     physical cover physical cover 

vx li 12 

v2 2i 22 

Vs 3i 

v, 4i 42 

v5 5i 52                         53 

v6 61 62                         63 

Ve 7i 

v6 81 82 

V6 9i 92                         93 

V6 10i 

4.2 Elements as The Common Part of Node Covers 

The elements of the manifold are the common regions or the intersections of the 

physical covers. Each point inside the material boundary lies in a "element" which is a com- 

mon part of exactly three physical covers in the triangle finite element case. The relations 

of the original finite element terminology and its manifold generalization are 

dimensions finite element method manifold method 

0-d to 2-d node physical cover 
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1-d to 1-d edge two cover intersection 

2-d to 0-d element intersection of covers 

Under manifold method, the "elements" and "nodes" here are the extensions of their 

FEM counterparts. Using the new nodes and elements, the joints can open and slide, the 

blocks can move away and the continuous area of the material body can still be connected. 

The proof of these important conclusions come directly from the definition of the 

finite cover systems and the cover functions and global displacement functions of the man- 

ifold method. 

A original finite element can be divided to several elements of manifold method by 

the block boundaries, joints or fractures. Before the deformation, the nodes share the same 

position. It can be understood as many layers divided by discontinuities on the original sim- 

ple finite element mesh. 

The manifold elements of Figure 4.1, Figure 4.2 and Figure 4.3 are listed bellow. 

Physical covers or nodes of elements of Figure 4.1 

element number  physical cover     physical cover     physical cover 

1,2,3 li,2i,3i 

2.4.5 22,41,5i 21,42,52 

2,5,3                    2i,Ö2,3i             22,5i,32 

3.5.6 3i,52,62 32,5i,6i 

Physical covers or nodes of elements of Figure 4.2 

element number  physical cover     physical cover     physical cover 

1,2,3 li,2i,3i 

2.4.5 22,4i,5i 2i,42,5i 

2.5.3 2i,5i,3i 22,5i,3i 

3.5.6 3i,5i,6i 

Physical covers or nodes of elements of Figure 4.3 

original element physical cover     physical cover     physical cover 

1.5.4 li,5i,4i 

1>2,5 li,2i,5i 12,22,52 

2.6.5 21,6i,51 22,62,52 2^63,5i 

2.3.6 2i,3i,6i 

59 



3,7,6 3i,7i,6i 

4,5,8 4i,5i,82 42,53,8! 

5,9,8 5i,92,82 53,9i,8i 

5,6,9 Ö3,6i,9i 5i,63,92 

5,6,9 5i,6i,94 

6,10,9 6i,10i,94 6i,10i,9 

6,7,10 6i,7l510i 

52,62,93 

In Figure 4.1, the only joint inside the material divided completely the material to 

two disconnected parts, any manifold element divided by this joint have completely differ- 

ent nodes or physical cover numbers. Therefore the two manifold elements are free to move 

independently. 

element separation along joint in Figure 4.1 

original element manifold element manifold element 

2.4.5 22,4i,5i 2i,42,52 

2,5,3                                        2i,52,3i 22,5i,32 

3.5.6 3i,52,62 32,5i,6i 

In Figure 4.2, the only joint inside the material divided partly the material, any man- 

ifold element divided by this joint have partly different nodes or physical cover numbers. 

Therefore the two manifold elements can have different movements. 

element separation along joint in Figure 4.2 

original element manifold element manifold element 

2.4.5 22,4i,5i 21,42,5i 

2,5,3                                        21,5i,31 22,5i,3i 

3.5.6 3i,5i,6i 

If two manifold elements share a edge of original finite element mesh, as this edge 

is not a joint, the two manifold elements have the same nodes on the edge: 

element connection along edges in Figure 4.1 

nodes of edge manifold element manifold element 

2,3 li,2i,3i 2i,52,3i 

2,5 2i,42,52 2i,52,3i 

2,5 22,4i,5i 22,5i,32 
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3,5                                           2i,Ö2,3i 3i,52,62 

3,5                                         22,5i,32 32,5i,6i 

element connection along edges in Figure 4.2 

nodes of edge                       manifold element manifold element 

2,3                                         li,2i,3i 2i,5i,3i 

2,5                                           2!,42,5i 2i,5i,3i 

2,5                                         22,41,5i 22,5i,3i 

3,5                                           2i,5i,3i 3i,5i,6i 

3,5                                         22,5i,3i 3i,5i,6i 

Using the manifold definition of nodes and elements, the following important con- 

clusions can be proved and also can be seen directly from Figure 4.1, 4.2 and 4.3: 

[1] the elements are irregularly shaped; 

[2] each element has three physical cover numbers; 

[3] these three covers have one element as their common area; 

[4] the three covers can be seen as three "nodes" of the element; 

[5] the adjacent elements have the same nodes along the common edge; 

[6] two elements divided by fractures or boundaries have different nodes. 

4.3 Cover Functions and Weight Functions of Finite Element Mesh 

The displacement functions are independent from the material boundary. If the ma- 

terial occupies only part of the element, the displacement functions are still the same. For a 

triangular element, there are three covers containing this element corresponding three nodes. 

Therefore each element is the common region of three covers of its three nodes. 

For a element, the weight functions are computed, denote z,- : (x,, y{) the coordi- 

nates of nodes z = 1,2,3, and the related nodal displacements as follows: 
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coordinates -> displacements 

»l :  (*i,yi) -> («i,«i), 

*2 :  (a^ij/a) -> («2,^2), 

*3 :  (23,3/3) ->■ («3,^3). 

The displacement field can be described as: 

u = ai + b^x + ciy, 

v = a2 +b2x + c2y, 
(4.1) 

The nodal displacements are 

ui = ai +61X1 +C1J/1, 

u2 = ax +bix2 +ciy2, 

«3 = ai + hx3 +ciy3, 

v\ = a2 +foxi +c2yi, 

U2 = 02 +hx2 + c2y2, 

v3 — a2 +b2x3 + C2I/3, 

(4.2) 

and by matrix notation equation (4.2) becomes 

and 

(4.3) 

(4.4) 

Then 
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and 

thus, 

and 

Denote 

and 

1    x\    y\ 
=     1 X2    y2 

1   xz   yz 

u =(1    x    y) 

U — ( 1      X 

1    Xi     yx 

(1    x    y) (  1    x2    y2 

1    x3 

(h    /2    /3) = (1    x    y) 

hi fl2 flZ 
hi /22 /23 

hi fz2 /33 

1      Xi 

= I  1    x2 

1    x3 

and the determinant 

A 
1 X2 yi 
1 X2 y2 
1 X3 yz 

is two times the area of the element. 

-l 

(4.5) 

(4.6) 

then 

/ll /l2 /l3 

/21 /22 /23 

,/31  /32  /33 

u X2    y2 

X3   yz 
— x\   yi 

xz   yz 
+ xi   y\ 

X2    y2 

\ 

1 
— 1   y2 

1   y3 
+ 1   yi 

1   y3 
— 1   yi 

1   y2 

[ + 
1    x2 

1    x3 
— 

1      X\ 
1     x3 

+ 1      X\ 
1    x2 / 

X2yz - x3y2    x3yx - xxy3    xxy2 - x2yi 

y2 -yz yz - yi yi - y2 

X3  — X2 Xi   — X3 X2  — XX 

(4.7) 
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/ll       /l2      /l3 

( /l       h      h )  = ( 1       X      y)\   h\       /22       /23 

/31      /32      /33 

and 

'/11 + /21Z + /3iy 

/12 + /22x + /32y ) • (4.8) 

/l3 + /23X + /33y 

In the finite element, the cover functions are the constant function U{,vi over the 

whole cover. The cover functions (u,-(x, y), vt (x, y)) defined on physical cover £/,■ 

The weight function i(;,-(x, y) is the shape function of finite element method. 

Wi(x,y) = fi{x,y)   i = 1,2,..., n 

The meaning of the weight functions Wi (x, y) is weighted average, which is to take a 

percentage from each node displacements u,-, u,. For each element, the summation of three 

weight function of three nodes are 1. 

Y,    ^-(a:,y) = l. (4.11) 

Equation (4.11) can be derived from equation (4.7), 

/ll+/l2 + /13=l 

/21 + /22 + /23 = 0 

/31 + /32 + /33 = 0 
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wv(x,y) + w2(x,y) + w3(x,ij) 

--fi{x,y) + f2{x,y) + h{x,y) = 1 

4.4 Finite Element Global Functions for 
Continuous and Discontinuous Materials 

Using the weight functions Wi(x, y) a global function on the whole physical cover 

system is defined from the cover functions 

u(x,y) 
v(x,y) 

YJi=\wi{x,y)ui 
Y!!=iwi{x,y)vi 

(4.12) 

u(x,y) 
v(x,y) 

Y,"=ifi(x,y)ui 
Y,ni=ifi{x,y)vi 

(4.13) 

Then 

where 

and 

u(x,y) 
v(x,y) 

h   o   h   o   h   o 
o   h    o   h   0   h 

= [Te}{De}, 

m = 

V\ 

U2 

V2 

[Te] = ([T1]    [T2]    [T3]),        {De} = 

fi(x,y)       0    \        m\- (Ui 

o       Mx,y) h      1M'_U 

(4.14) 

i = 1,2,3. 

' h(x,y)\     ( h\ + h\* + hiy 
f2(x,y)    =    fi2 + f22X + fi2y 

Jz{x,y) \/i3 + f2zx + /33y 
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The cover functions of the triangular finite element method are constants, the global 

functions are linear functions of the coordinates (x, y). 

For manifold method, the cover function can be normal two dimensional series, 

where the unknowns are the coefficients of the series. 

/«'(*.»)} = f^.««'i(*.» A (4.16) 
i Vi{x, y) J       V £ .  j VijSj(x, y) ) 

The global displacement function is the combination of locally defined series. 

u(x,y) 
v(x,y) 

f 12^=1 wi(x^y)ui(x^y) 

/Er=iE^=iu«Jai(a:.yK(x'S/)>\ (4.16) 
V E"=i T,?=i VijSj(x,y)wi(x,y) J 

The submatrix form of the global displacement function is 

\<x>y\) = [Te]{Dt}, (4.17) 

where 

({DiY 
[Te] = (pi]    [T2]    [T3]),        {De}=     {D2} |, 

and 

m = 
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7.-i   o   Ui   o   fi3   o 
o   fa    o   /,-2    o   /i3 

/nm U 

U Jnm 

( Uil \ 

Vil 

Ui2 

Vi2 

Ui3 

Vi3 

Uim 

\vimJ 
i = 1,2,3. 

fij(x,y) = Sj(x,y)wi(x,y)        i = 1,2,3, j = 1,2, 3,... ,m. 

4.5 Finite Element Equilibrium Equations Based on Manifold Method 

The total potential energy II is the summation over all the potential energy sources: 

individual stresses and forces. In the following, the potential energy of each force or stress 

and their differentiations are computed separately. 

[1] the strain potential energy II£ produces the stiffness matrix, 

[2] the potential energy II^ of initial stresses produces the initial stress matrix, 

[3] the potential energy Up of point load produces the point load matrix, 

[4] the potential energy 11«, of body load produces the body load matrix, 

[5] the potential energy 11, of inertia produces mass matrix, 

[6] the strain potential energy II s of contact springs produces contact matrices, 

[7] the potential energy 11/ of friction forces. 

There are n physical covers or n nodes. For the two dimensional triangle elements 

j, there are three physical covers or nodes per element ji,J2,J3- Each physical cover or 

node i has two unknowns (t^, Uj) 
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[Di] = 
Vi 

du 
di2 

Therefore the unknown [Di] of cover i is a 2 x 1 submatrix. The coefficient matrix 

should formed by the 2 x 2 submatrices [Kij] in the equation (4.18). The force term i*1,- on 

cover i is also a 2 x 1 submatrix due to the dimension of Di 

Adding all potential energy together, the total potential energy has the form 

n = \(D?   D\   D Dl 

f Kn Kl2 fti3 
K2\ K22 I<23 
/131 K32 K33 

\Knl An2 An3 

+ (D{    D'i'    D Di 

fFl\ 

\FJ 

c 

Kln\    /D!\ 

K2n D2 

I<3n D3 

(4.18) 

From the formulation of II, the formula (1.12) can be written as a symmetric repre- 

sentation, 

For cover i, equations 

OUi 

dU 

dvi 
0 (4.19) 

represent the equilibrium of all the loads and contact forces acting on cover i or node i along 

x and y directions respectively. 

The differentiations 
d2U 

-,   r,s = 1,2, (4.20) 
ddirddj 

axe the coefficients of unknowns dJS of the equilibrium equation (4.18) for variable dt>. 

The differentiations (4.20) of the total potential energy II, produces n equations of 

submatrices as there are n physical covers or nodes in the manifold. The simultaneous equi- 

librium equations have the same coefficient matrix as the quadratic form of II in (4.18): 
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f K\\ Ki2 K\z 

Ä21 A22 -ft-23 

Kz\ K32 K33 

\Knl Kn2 Kn3 

Kin \ 
K2n 

K3n 

K, 

D2 

D3 F3 (4.21) 

I   \DnJ       \FnJ 
Because each node or cover has two degrees of freedom in 2-d FEM manifold, each element 

[Kij] in the coefficient matrix given by equation (4.21) is a 2 x 2 submatrix. {DJ and {Fi} 

are the 2 x 1 submatrices. 

In case the cover functions are series with m unknown coefficients, the displacement 

function (ui(x,y),vi(x,y)) have 2m unknowns. Therefore each submatrices Kij in the 

coefficient matrix given by equation (4.21) is then a 2m x 2m submatrix. D; and Fi are 

2m x 1 submatrices, where £>,- represents the displacement variables of physical cover i. 

{Di} = 

(    du \ / un \ 
dZ2 Vi\ 

dij, Ui2 

du Vi2 

di5 UiJ, 

die ViZ 

di2m- 1 ^im 

\    «i2m 
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Chapter 5 

Element Matrices of Finite Element Covers 

5.1 Stiffness Matrix for Finite Element Covers 

For FEM, the integration domains of the stiffness matrices are whole elements with 

standard boundaries. For manifold method, the integration domains of the stiffness matrices 

are the manifold elements, which can be part of the elements. 

Same as FEM method, the relationship between stress and strain, is given by 

E      l v\      0    |  |   X   I = [E\ I   ey   I , (5.1) a 

where 

TXy J \0      0       ~Y~ )    \lxy / \lxy 

F      I1    V      ° 
l'v   * o   o   ^ 

and E, v are the Young's modulus and Poisson's ratio respectively. And 

[TeK^e} 

f{DiY 
([Ti]    [T2]    [T3])[ {D2} 

_[   s 
~~   I dy 

\   du    ,    dv_ 
\ dy   +   dx 

where 

i*i=d ;,)• w=ft 
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and 

Then 

7i\       / fn + f21X + fay' 
h I =    /12 + /22a; + Uiy 
fz I      \ /13 + /23a; + fzzy 

Then 

ex \ (   dx 0 dx 0 djs 
dx 

ev   \ '- 
21x 
dy 0 äh. 

9y 0 
rxy / \ 2A 

\ dy dx 
2& 
dy it ox dy 

/21 0 /22 0 /23 0 
0 /31 0 /32 0 /33 

/31 /21 /32 /22 /S3 /23 

(5.2) 

Let 

[Be] = ([Bl]    [B2]    [B3]), (5.3) 

where 

[Bi] i = 1,2,3. (5.4) 

1 xy, 

[Be}{De] = ([Bi]    [B2]    [B3})\ {D2} (5.5) 

The strain energy IIe done by the elastic stresses of element e is 

IIe =   //   ~{exax + tyay +-yXyTxy)dxdy, 

where the integration is over the entire material area A in that element. Then 

(5.6) 
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ne =  / /   - ( ex    ey    fxy) \   <ry   ) dx dy 
JJA2 VW 

= ±JJ {De}
T[Be]T[E)[Be]{De}dxdy 

ff [Be]T[E][Be]dxdy \{*.r 

2 

where Se is the area of that element 

Therefore, 

= \{De}
T(s*[Be}T[E}[Be})[De}, (5.7) 

W1" n 
S'[Be]T[E][Bt] = S< \{B2}T \[E)([Bl)    [B2]    [B3]), (5.8) 

is the element stiffness matrix. 

Then 

Se[Brf[E}[Bs]        -> [Ki(r)i(s)},        r,s = 1,2,3, 

and 

where 

'hi     0 
[Bi]= (   0     f3i],        » = 1,2,3, 

hi   hi 

ix,   £ = 1,        first node of the element 
i[i) = ^ i2,   1 = 2,        second node of the element 

%z,   ^ = 3,        third node of the element 

5.2 Initial Stress Matrix for Finite Element Covers 

Following the time sequence, the manifold method computes step by step. The com- 

puted stresses of previous time step will be the initial stresses of the next time step. There- 

fore the initial stresses are essential for manifold computation. 
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For the element e, the potential energy of the initial constant stresses 

is 

n<r =  / / (exa°x -f ey(Ty + 7xyr°y) cfe dy 

=  //   (e*    ey    Ixy)      v°v   )  ^dy 

\ Txy I 

= JJ {De}
T[Be]T{a°e}dxdy 

= S*{De}
T[Be}T{a°e}, 

where Se is the area of that element. Therefore, 

se[Bey {*"} =-se 
[B2V 

X 

$ 

is the load matrix. 

Then 

<7, 

S'lBrY    I    <7° {Fi(r)},        r = 1,2,3. 

(5.9) 

(5.10) 

xy . 

where 

i(£) = 
ii, £ — 1, 

12, ^ = 2, 
i3,    £ = 3, 

first node of the element 
second node of the element 
third node of the element 

5.3 Point Loading Matrix for Finite Element Covers 

Different from ordinary FEM method, a load point can be any point in its element. 

The point loading force 
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(FX Fyf 

acts on point (x, y) of element e. And 

u\ _ fu(x,y) 
v)      \v(x,y) 

The potential energy due to the point loading is 

Up = -{Fxu + Fyv) 

Therefore, 

-{De}
T[T,(x,y)]T (£*). (5.11) 

MT(^H[i ){F,) ^ 
is the load matrix. 

Then 

[Tr]T(pX) -> {Fi{r)h        r = 1,2,3, 
y 

where 

iu   £ = I,        first node of the element 
i[Z) = { i2,   1 = 2,        second node of the element 

i3}   ^ = 3,        third node of the element 

5.4 Body Loading Matrix for Finite Element Covers 

Assuming that 

(/*     fyf 
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is the constant body force acting on the material area of element e. 

The potential energy due to the body loading is 

n,„ = - // {fxu + fyv)dxdy 

— / /   ( u    v ) I   J° i dx dy 

-{De}
T   Jf[Te}

Tdxdy (5.13) 

Therefore, 

// [Te]
Tdxdy 

(';,)- 

\rt   [Tl]\ //       [T2}
T     dxdy 

JjA\{n}TJ 
is the body loading matrix. And 

Jx 

Jy 
(5.14) 

[Ti]Tdxdy=   / /   (   Q
!
     A  j dxdy 

JL 

fi    o 
0    fi 

fn + h%x + foiy 
0 

fnSe + hiS% + fziS, 
0 

0 
fu + hix + fuy 

0 
hiSe + hiS% + fziSy 

dx dy 

Then 

// 
[Te]

Tdxdy = I  Q     s.i, 

and 

Si — fnSe + hiSe
x + fziSy, 

where 

Se = 

Se = 

ne 

dx dy, 
A 

x dx dy, 

y dx dy. 

(5.15) 

(5.16) 

(5.17) 
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Then 

where 

o   l){ffl)      -*     {F'"}'     , = W- 

ii,   £ = 1,        first node of the element 
i(£) = \i2,   £ = 2,        second node of the element 

i3,   £ = 3,        third node of the element 

5.5 Inertia Force Matrix for Finite Element Covers 

The inertia force matrix is equivalent to the mass matrix of FEM. This matrix is the 

most important matrix of manifold method. Giving a small time steps, the inertia force ma- 

trix will control the movements of all points of the whole material volume. Choosing small 

time steps, the discontinuous contact computation will be stable. 

Considering the current time step, denote 

(«(*)    v(t)f 

as the time dependent displacements of any point (x, y) of element e and M as the 

mass per unit area. The force of inertia per unit area is 

£)--<Ö!D--^jiü^      (5-18) 
The potential energy of the inertia force of element e is 

IT = -  ff (u    v)(ff
x) dxdy 

= jJM{u    v)[Tef
{D

df
)} dxdy. (5.19) 

Assume {De(0)} = {0} as the element displacements at the beginning of the time 

step, {De(A)} = {De} as the displacements at the end of the time step, A as time interval 

of this time step. Then 

77 



{D.} - {ß«(A)} = iD.m + A^5» + *' *{l>.(0)> 
at 2     at2 

_Aa{i>e(o)} | A2a2{pe(o)} 
at 2     at2 (5.20) 

* WO» = ^pJ _ 2«f =   2 _ 2{VMh (U1) 
at2       A

2 A    at A 

where 

WO)} = 
a{De(o)} 

at    ' 
is the velocity at the beginning of the time step. Then the potential energy becomes 

(5.22) 

n,- = M{Dey JJ[Te]
T[Te)dxdy   ^A{Pe}-|{Fe(0)}). (5.23) 

Therefore, 

JJjrfFe] dxdy *v}_?*v.(„)} A2 A 

is the load matrix. Thus, 

(5.24) 

IM 
A2 

2M 
' A2 

JJ[Te)
T[Te]dxdy 

(\T ]T\ 

[T2]T)m]    [T2]    [Wdxdy [üfe],    (5.25) 

and 

2M 
A 

2M 
' A 

IL[Te]T[Te dxdy WO)} 

If  l[T2]
T }([Ti]    [T2]    [T3])dxdy 

JJA \ [n]T 
{K(0)}     -+     {Fe}.(5.26) 
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Then 
IM 
A2 IL[Tr]T[Ts] 

dxdy {Ki(r)i(s)},        r,s= 1,2,3. (5.27) 

2M 
A IL [Tr]

T[Ts)dxdy {Vs(0)} -> iFi(r)}, 
r   =1,2,3, 
s   = 1,2,3, 

(5.28) 

where 

{Vs{ün     dt \v3(0) 

The matrix integration can be computed as 

[Tr)
T[Ts)dxdy 

where 

frfs        0 
0 frfs 

fa dx dy 

dxdy tra     0 

=   / /  (fir + f2rX + hry){fls + f23X + h»v) dx dy, 

and 

where 

-flrflsS 

+ (flrf2s + flsf2r)Se
x 

+ (flrhs + flsf3r)Se
y 

+ f2rf2sSxx 

+ fzrfzaSyy 

+ [f2rhs + f2sfir)Sly 

Sxy=  //  xydxdy, 

SU = jj x'dxdy, 

Sly^ //  y2dxdy. 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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As this element of the manifold method is a generally shaped polygon, 

PlP2   ...  Pm-l Pm Pi,     Pl= Pm+U     Pi = (xl,yl) 

are its ordered vertices rotating from axis x to axis y. Denote P0 = (x0, i/o) as the arbitrary 

chosen point, The analytical solutions of these integrations are the following: 

-      in 

2^ 

1 x0 yo 
1 X% Vi 
1 Xi+l Vi+l 

s* = T S(x° + Xi + Xi+1)» 
»=i 

sy = T /C(yo + ^ + 2/i+1)' 
2=1 

m 

'S'xx = -£" 2_/(X0 + xi  + XH-1 + X»'X0 + «i+l-To + XiXi+i), 
i=l 
rn 

Syy = T 51(^0 + 2/t2 + y?+i + y^yo + y,-+iyo + ytyi+i), 

Ce 
r-e     _  £_ 

rj/ ~  12 

2=1 

m 

2_^(2x0yo + 2xiyi + 2xl+iyt+1 

i=l 

+ xty0 + x!+1yo + x0yt + x0yt+1 + xtyl+1 + xl+1yt] 

Then the final formula is 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

IM   ftra        0 
A2   V  0     t, [Ki(r)i(.)l        r,s = 1,2,3, (5.39) 

2M ftrs     0 
A   V  0     trs 

{v.m iFi(r)}, 
r    =1,2,3, 
s   =1,2,3. 

(5.40) 

where 

ii,    £=1,        first node of the element 
z(^) = ^ i2,    ^ = 2,        second node of the element 

i3,    ^ = 3, third node of the element 
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5.6 Fixed Point Matrix for Finite Element Covers 

As a boundary condition, some of the elements are fixed at specific points. The con- 

straint can be applied by using two very stiff springs. Assume the fixed point is (x, y) at 

element e with the displacements 

u(x,y)\ _ fO 
v(x,y))     V° 

The computed displacements are 

(u    v) 

There are two springs which are along the x and y directions respectively. The stiff- 

ness of the springs is p. The spring forces are 

fx\ = f-pu 
fy ) V -PV 

The strain energy of the spring is 11/, then 

P * ,(u 
= - I U      V ) 

2 v ' \ v 

= P-{De}
T[Te]

T{Te]{De}. (5.41) 
2 

Then 
[WT 

U 
T p[TeY [Te] = p \ [T2y   ]([T1]    [T2]    [T3]). (5.42) 

[Ts}T 

is the [Ke] matrix. Therefore, 

Pfrfs (o    1/ ~* [Ki(r)i(s)],        r,s= 1,2,3. 

81 



where 

first node of the element 
second node of the element 
third node of the element 

82 



Chapter 6 

Entrance Theory on Contacts of 
Finite Element Covers 

6.1 Contacts and kinematics for Finite Element Covers 

As the physical covers are formed by the triangle element meshes and physical 

boundaries, the contact surfaces are edges from 

[1] block boundaries, 

[2] one of two sides of joints in the material field. 

The vertices of the edges can be 

[1] the vertices of physical boundaries or joints, 

[2] the intersection points of triangular with block boundaries or joints. 

The simple penetration inequality in Chapter 3 

1 xx+ui yi+vi 
1 x2 +u2 J/2 + v2 

1    xz + u3    J/3 + v3 

< 0. (6.1) 

is fundamental for contacts. 

[1] the inequality (6.1) always correct when three points Pi ,P2,P3 moves simultane- 

ously, 

[2] the inequality (6.1) is still accurate when rotation takes place, 

[3] the assumption of small displacements (ui, V{) is not needed, 

[4] no second order infinite small is omitted. 

It seems, the judgment of three point penetration is a simple matter. One can find 

several formulae for the same judgment. From mathematics the inequality (6.1) is the only 
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complete accurate formula. Neglecting second order small of (t^, i>,-), other formulae are 

also correct and accurate if the movements are small enough. 

The formula of contact distance (3.3) of Chapter 3 is also an accurate formula. 

d 
1 x\ + u1 t/1 + v1 

1 x2 +u2 t/2 + v2 

1      X3 + U3      2/3 + f 3 
(6.2) 

/ = y/{x2 +u2 - x3 -u3)
2 + (2/2 + V2 - y3 - V3) 

However, in (6.2), formula of / is complex and should be simplified. Under assump- 

tion of small pre-existing distance 

d = 
y/(x2 -xz)

2 + (y2 -y3)
2 

Distance formula can be simplified as 

1 Xi yi 
1 X2 y2 

1 X3 V3 

\/(x2 -x3)
2 + (y2 -y3y 

1 Xi + ui yi +Vi 
1 x2 + u2 2/2 + v2 

1    x3 + u3    2/3 + v3 

(6.3) 

In formula (6.3), the denominator does not include unknown variables (u,,ut). 

Therefore, formula (6.3) is a simple function with respect to unknown variable (ul,vl). 

The inequalities (6.1) will be a equation having "=" sign instead of "<" sign if its 

contact becomes a close contact. A stiff spring will be added on the contact to fulfill the 

equation (6.1). 

The friction law or Coloumb's law is also inequalities. 

T < Artan(</>) + C (6.4) 

The solution of this inequality is 
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(apply a shear stiff spring ifjF < A/"tan(<^) +C 
\ apply a pair of friction forces   ifT = A/"tan(<^) + C 

In this way, the inequality of friction law is also transferred to equations. 

The kinematics of the triangle elements is the same as the general kinematics in 

Chapter 3: 

[1] distance criteria of contacts, 

[2] angle criteria of contacts, 

[3] definition of entrance lines, 

[4] penetration judgments, 

[5] penetration prevention, 

[6] entrance position. 

6.2 Normal Contact Matrix for Finite Element Covers 

Assume P\ is a vertex, P2P3 is the entrance line and {xk,yk) and (u*, u*) are the 

coordinates and displacement of Pk, k = 1,2,3 respectively. If points Pi, P2 and P3 rotate 

in the same sense as the rotation of ox to oy (see Figure 3.3 and 3.4), then the distance d 

from Pi to entrance line P2P3 is 

d = 
A 1 Xi+Ui yl +vi 

1 x2+u2 2/2 + v2 

1    x3 + u3    y3 + v3 

(6.5) 

I = y/(x2 -x3)
2 + (y2 -y3)

2- 

d should be zero if Px passed edge P2 P3 

Let 

So = 
1 Xl J/l 
1 X2 V2 
1 X3 yz 
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A« SQ + 

1 «1 yi 1 Xi Vi 

1 u2 V2 + 1 X2 V2 

1 u3 V3 1 Xz t>3 

Then 

A = SQ + ((y2 -yz) (2:3-2:2)) 

+ {{y3-yi) (xi-x3)) 

+ {(yi-y2)   (2:2-2:1)) 

U\ 

Vi 

u2 

V2 

vz 

And 
U\ 

V\ 

U2 

V2 

Uz 

VZ 

= [Ti(xi,yi)]{Di}, 

= [Ti(x2,y2)]{Dj}, 

= [Tj(x3,y3)]{Dj}, 

then 
A = So + ((y2 - yz) (xz - x2)) [Tt(xj, yi)]{A}, 

+ ((2/3 -yi) (xi - 2:3 ))[Tj(x2,y2 )}{Dj}, 

+ ((yi -y2)    (2:2 -xi))[Tj(x3,y3)]{!>>}. 

Denote 

{fT} = y[Ti(x1,y1)] 

+ 

[Tj(x2,y2)Y 

[Tj(xz,yz)V 

T I V2 - yz 
\xz - x2 

T (' j/3 - yi 
Xl - Xz 

T ( y\ - V2 
X2  - Xl 

then 

m = {H2} 
{Hz}, 

1 /[ri]T(xi,yi)" 
= 7 I lT2]T(xi,yi) 

[T3]
T(xi,yi) 

y2 -1/3 

X3 - X2 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 
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where 

and 

{G} = 

T 

1 
+ 7 

(z2,J/2) 

[T2]T(x2,y2) 
mT{x2,y2) 

[Ti]T(xz,yz] 
[T2]

T(z3,2/3) 
[r3]

r(x3,y3) 

ys 

yi 
X2 

■yi 
■ x3 

y2 
X\ 

m = T 

{GA = ) ( 

1 (fr{xu yi)        o 
0 fr{x\,  J/1) 

1   f fr{x2,  V2) 0 
0 

+ 
1   f Ufa,  ys) 
I 0 

fr(x2,   V2) 

0 
fr{x3, y3) 

fr(xi, 2/l) = /lr + /Sr^l + /irS/l 

fr(x<2, y2) = fir + f2rX2 + /3r2/2 

fr(x3,  1/3) = /ir + /2r^3 + /3rJ/3 

y2 -j/3 

^3 - X2 

2/3 -J/1 
."El  - £3 

yi -y2 

£2 — X\ 

at element i, 

at element j, 

at element j. 

Then (6.5) becomes 

d = {H}T{Dt} + {G}T{D}} + So 

The potential energy of the normal spring is 

(6.11) 

IL ^ 

= ^{{H}T{Dl} + {G}T{DJ} + ^2 

{DiFiHHHFiDi} + {^}T{G}{G}T{^} + 2{A}T{F}{G}T{^} 

(6.12) + 2[^){Di}
T{H} + 2(^){Di}

T{G}+(^ 
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Thus, 

P{H}{H}T=[{H2}\({H1}
T {H2}

T    {H3}
T), (6.13) 

({HiY 
p{H}{G}T= \{H2})({Gl}

T {G2}
T   {G3}

T), (6.14) 

({GiY 
p{G}{H}T=     {G2} ) ({H^ {H2}

T    {H3}
T), (6.15) 

p{G}{G}T=     {G2}    ({G1}
T {G2}

T   {G3}
T), (6.16) m. 

are the [Ke] matrices; and 

-*(T)W = -HTJI#>)' ^ 
So 
I {G} = -p[-r)\ iG*} h (6-18) 

are the load matrices. 

Then 

where 

p{Hr}{Hs}
T -)■ [üCi(r)t-(.)], r,5= 1,2,3, 

p{Hr}{G3}
T -)• [J^(r)i(s)], r,5 = 1,2,3, 

p{Gr}{tf,}T -+ [%r)i(.)], r,s = 1,2,3, 

p{Gr}{GJr ->• [A">(r)i(s)], r,s= 1,2,3, 

-p0^{tfr} -> {F!(r)}, r= 1,2,3, 

-^(yJiGr} -» {Fi(r)}, r = 1,2,3, 

z'(l) = z'j, 
for element z ^ z'(2) = i2, 

z'(3) = i3, 



and 
i(i) = ii, 

for dementi { j(2) = 32, 
i(3)=is. 

6.3 Shear Contact Matrix for Finite Element Covers 

In Figure 3.8, (x0, 2/0) is on the edge P2 Pz and is the assumed contact point of vertex 
P\. The shear spring is on the direction P2P3, and connects vertices Pa and P0. Let 

' = \/(x2 -X3)2 + (2/2 -yz)2, 

the shear displacement of P0 and P2 along line P2P3 is 

d=1P0P1-P2P3 (619) 

= y((*i+«i)-(*o+«o)    (yi+-i)-(yo + .o))f(f3+U3J-|:C2+^V z V (2/3 + u3)-(y2 + ^2) / 

Denote 

' x3 — x2 
"o — \ ^1 — j-o    yi — yo) \ 

since P0Pi is small, 

So = (xl-x0    y1-yo)[ , (6.20) 

Ul  - VQ 

Denote 

a ~ — + y (*3 - x2   yz-y2)[ 

d « y + y ( 3^3 - x2    t/3 - y2 ) ( "a J 

+ y(z2-*3    y2 - 2/3 ) f ^° J • (6.21) 

w= (I!) = i[r,(ll,rf (;;:-),        (,22) 

{G}^!!)^^^)]^-:-),       (6.23) 
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where 

|iir}~/V ° fr(xuyi))   \y3-y2j 

{Uri~ 1 \      0 /r(xo, yo)y \y2-y3J 

and 
/r(xi, V\) = fir + hrxx + firVi        at elemenü, 

/r(x0, yo) = /ir + f2rx0 + hr02       at element?', 

Then (6.21) becomes 

_ sjT\Tin.\ ±tn\Ttr)A + ' d = {H}T{Dl} + {G}T{DJ}+
S?. (6.24) 

The potential energy of the shear spring is 

n, = U2 

{Dt}
T{H }{H}T{Dt} + {^}T{G}{G}T{^} + 2{Dl}

T{H}{G}T{DJ} 

+ 2 (?f) {Dt}
T{H} + 2 (?f) {Dj}

T{G} + 
V* (6.25) 

Thus, 

/{Hi}\ 
p{H}{H}T=     {H2}     ({H^    {H2}

T    {H3}
T), (6.26) 

p{H}{G}T=     {H2} ) ({d}r    {G2}
T    {G3}

T), (6.27) 

/{Gi}\ 
p{G}{H}T=     {G2} \ ({H^    {H2}

T    {H3}
T), (6.28) 

\{G*}. 

({Gi}\ 
p{G}{G}T=     {G2} ) ({G,}T    {G2}

T    (G3}
T), (6.29) 
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are the [Ke] matrices, and 

are the load matrices. Then 

(6.30) 

(6.31) 

where 

and 

p{Hr}{Hs}
T -> 

p{Hr}{Ga}
T -+ 

P{Gr}{Hs}
T H. 

p{Gr}{Gs}
T -> 

'•V 
-p 

/ 
{Gr} 

for element i 

for element j 

[^i(r)t(*)], 

[■K"j(r)i(a)]' 

[A0(r)i(^)]> 

{^(r)}, 

{■^'(r)}, 

r,s = 1,2,3, 

r,s = 1,2,3, 

r,a = 1,2,3, 

r,s= 1,2,3, 

r = 1,2,3, 

r = 1,2,3, 

k»(3)=»3, 

fi(i) = ii, 
i(2)=j2, 

,i(3) = i3- 

6.4 Friction Force Matrix for Finite Element Covers 

When the Coulomb's law allows sliding between two sides of the boundary contacts, 

there exists the friction forces in the two sliding sides if the friction angle 4> is not zero. 

Pi is on element i and P2, P3, Po are on element j. The friction force is calculated 

from the normal contact compressive force and the direction of the friction force is depend- 

ing on the movement of Pi relative to P0 in the direction from P2 to P3. Let p be the stiffness 

of the normal contact spring, then the friction force 
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f = p-d-s-tim{<j>), (6.32) 

where 

d is the normal penetration distance, 

tan(^) is the friction coefficient, 

s - sgn (movement of Pi relative to P0 in the direction from P2 to P3), and 

(1,      ifx>0, 
sgn(x) = < 0,       if x = 0, 

l-l,   ifx<0. 

The friction force T is along the direction 

-((X3-X2)        (y3-I/2)J, 

and 

/ = \/(x2 -x3)
2 + (y2 -ya)2 

is the length of line p2p3- 

Then the potential energy of friction force T at Pi on element i is 

;     i v        ; \y3-y2 J 

=^»,}TK(^.)f(((;;:ä') 
= f{Dt}

T{H}, (6.33) 

where 
/{#i}\      1 / 

{H}=     {H2}     =T[T,i(x1)y1)]Tf 
T ( x3 - X2 

V3 -V2 

Then 
{Hi} 

-T{H] = -^ I {#2} ] (6.34) 
TO 
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is the loading matrix for element i; and 

-f{Hr}        -+        {Fl(r)},        r = 1,2,3, 

where 
(H 1 = I f fr(xi yi) 0        Ws3-X2 
1   r'     /V      0 /r(*iyiWU-i& 

and 

/r(a:i J/l) = fir + f2rXi + fzrVl- 

Similarly, the potential energy of friction force T at P0 on element j is 

=-^»rK(-*«T((,;::;:,,//
i' 

= -^{Z),}T{G}, (6.35) 

where 
{Gi}\      , , 

{<?} =     {G2}     =y[Ti(xo,yb)]T( 
.{Gs} ya -3/2 

Then 

+jT{G} = +jr | {(?2} I (6 36) 

{Ga}. 

is the loading matrix for element j; and 

+T{Gr}        -» {F>(r)},        r = 1,2,3, 

where 
rri_l f /r(a-'o yo) 0        \fXz- x2 \ 
1   r*     l\      0 /r(xoyo)A2/3-y2;' 
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and 

fr(xo t/0) = fir + f2rX0 + fsrVO- 

6.5 Spring stiffness 

The stiffiiess p of the contact springs is important. If p is too small the penetration 

distances become too large so that 

[ 1 ] the closed contact can not be transferred to next step; 

[2] the stresses in materials can be reduced; 

[3] deformation along joints and boundaries can be wrong. 

If spring stiffiiess p is too large, the simultaneous equation can be nearly linear de- 

pendent or ill conditioning so that 

[1] the solution errors can be unacceptable; 

[2] the iteration method may not converge; 

[3] contact displacement may not be correct. 

To estimate p, the relationship of spring stiffiiess p and material Young's modulus 

E is computed. Consider a rectangular block supported by two springs as shown by Figure 

6.1, 
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the block stress is 

2F 
a = — 

a 
a       2F 

~a~E 
2bF 

E      aE 

db =be = 
aE 

.     F ds =— 
P 

db =d3—— (6.36) 
aE 

where 

a is the length of the rectangle 

b is the height of the rectangle 

F is the value of two vertical point loads 

a is the vertical stress of the rectangle 

e is the vertical strain of the rectangle 

db is the vertical displacement on the top of rectangle 

ds is the vertical penetration of the spring 

Assuming a = b, from (6.36), 

db = ds^ (6.37) 

It would be reasonable if 

p = 20E    to    p = 100E 

is chosen. From equation (6.37), the block displacement db is 40 times to 200 times of spring 

displacement ds. Therefore the spring displacements are neglected. 

In the current program, p = AOE is chosen. There are several ways of choosing p 

95 



[ 1 ] directly enter the p value; 

[2] define p in terms of E, such as let p — 40E; 

[3] define p by the maximum spring displacement. 

6.6 Non-penetration Physical Springs 

The options of non-penetration springs are available only for the latest discontinuous 

deformation analysis code. The algorithm of non-penetration spring is still in testing stage. 

This algorithm hopefully will be transferred to the manifold method. 

For the real materials, the contact stiffness is not as large as the program had set, 

but the penetration still keeps small. The algorithm of the low stiffness springs with small 

penetrations will make the contact more real or more physical. 

The previous springs are mathematical; while the new springs are physical. The ad- 

vantages of the physical springs are in the following: 

[1] the spring penetrations are small so that the contact can be transferred to next step 

without missing; 

[2] the springs can have the physical contact stiffness; 

[3] contact springs with low stiffness will form better-conditioned simultaneous equa- 

tions; 

[4] low spring stiffness leads faster converge of iterative solution; 

[5] no extra unknowns are added; 

[6] submatrix structure of the equations are reserved. 
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Chapter 7 

Two Dimensional Simplex Integrations 

7.1 Simplex Integration on a Simplex 

For the manifold method, the manifold elements are the integration zones which 

have general shapes, therefore the integrations are more difficult than the integrations of 
FEM. However analytical solutions were found for many cases of manifold method. The 
finite element method computes the integrations of complex functions in simple domains; 
the manifold method computes the integrations of simple functions in complex domains. 
The integrations on complex domain can be reduced to the integration on the simplex. The 

simplex is the oriented simplest domain. 

The simplex has the most simple shape in 1,2,3,..., n dimensional space. Differ- 

ent from the ordinary integration, the simplex integration has only the simplex as the integral 
domain. The simplex also has positive or negative orientations. Positive or negative orien- 
tations define positive or negative volumes respectively. Figure 7.1 shows the 0, 1, 2, 3 

dimensional simplex. 

• 

P2 

Po Po Pi       Po Pi       Po Pi 

Figure 7.1. 0,1,2,3 dimensional implex 
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The 0 dimensional simplex is a point P0, its volume is 

1 

Ö! 
11 = 1 (7.1) 

The 0-d simplex integration can be considered as a normal real number. 

The one dimensional simplex P0P\ is an oriented segment, its volume is 

1! 
1      Zio 
1    in 

= Zll  - 2?10 (7.2) 

The volume of the simplex PiP0 is the negative volume of the simplex P0Pi. The 

ordinary 1-d integrations are the simplex integrations: 

j     f(x)dx = - /     f(x)da 
JPo JPi 

Therefore, for any co-line point P2, 

•Pi •Pi P2 ^2 /■/-! t-n ?r2 rfi rfi 

f(x)dx + /     f(x)dx = /     f(x)dx+ /     f(x)dx+ /     f(x)dx = /     f(x)d 
'o JP2 JPo JPi JP2 JPo 

The 1-d integration addition is the same as vector addition. The integrations on neg- 

ative vectors and positive vectors can be nullified. 

Two dimensional simplex P0P1P2 is an oriented triangle, its volume is 

1 
2! 

1 SlO X20 

1 Xu «21 

1 Z12 ^22 

(7.3) 

The volume of simplex PiP0P2 is the negative volume of simplex P0PiP2. 

7.2 Simplex Integration on a General Polygon 

Unfortunately, the two dimensional ordinary integrations are volume integration, 

where the volume is always positive. For the 2 dimensional ordinary integration, the inte- 

gration domains have no orientations, therefore the integrations have no algebraic addition 
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on oriented domains. It is then necessary to introduce simplex integration on a simplex, 
which is a simple oriented domain. 

The simplex integration is not intended to do integrations on a simplex only. Obvi- 
ously a complex shape always can be subdivided into simplex, so simplex integration can be 
computed in each simplex, the summation of simplex integrations is the ordinary integration 
over the complex shape. However this is also not the way of using simplex integration. 

Giving a polygon P1P2P2P4P5P6 with P6 = Pi, such that Pi rotates at the same 
direction as from ox to oy. For any point P0, the algebraic addition of the 2-d simplex vol- 

ume (area) P0PiP2, P0P2P3, P0P3P4, POPAPB and P0P5P1 is the area A of the polygon. 
LetPo = (0,0), 

*- 2 
t=i 

1        0 0 
1      xn        x2 i 
1     Xi j+1     x2 ,+1 

1  5 

1=1 

£1 ,- X2 i 

Xi I + 1       X2 t+l 
(7.4) 

Figure 7.2 shows the addition of plus and minus areas of simplex. In Figure 7.2, the 

area of simplex P0P2P3, P0P3P1, P0P4P5 and P0P5P1 are positive; the area of simplex 
P0P1P2 is negative. The algebraic sum is exactly the area of polygon P1P2P2P4P5P&. The 
area A is then represented by the coordinates of boundary vertices. 

P5 

P2 

Figure 7.2. Addition of plus or minus area of simplex 99 



In general, the simplex integration can compute ordinary integrations without subdi- 

viding 2-d domains to triangles. FEM mesh is unnecessary for simplex integration. Using 

simplex integration, the integration of any polynomials can be represented by the coordi- 

nates of boundary vertices of generally shaped polyhedron. 

7.3 Two Dimensional Simplex Integrations 

The two dimensional integrations here in this section are used for two dimensional 

manifold method algorithm. Since the displacement function is linear function of coordi- 

nates (x, y), the integrands are of degree 0, 1,2. 

A 2 dimensional simplex has 3 vertices 

PQ , Pi 5 Pi ■ 

Po 
Pi 
Pi 

(xio, X20) 

(zn, Z21) 

(x12,    X22) 

(7.5) 

The 2 dimensional coordinate simplex has 3 vertices 

Uo,UuU2. 

Uo 

U2 

( 0, 0) 
( 1, 0) 
(   0,   1) 

(7.6) 

The following coordinate transformation 

(u1,u2) -)• (xi,x2) 

transfers coordinate simplex 

VQUiU2 
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to normal simplex 

P0P1P2 

xl      =      X\0      (1-Elui)+      Xl\      «1      +      £12      U2 

X2      =      X20      (l-ElU0+      ^21 

The Jacobi determinant is 

Ui      +      £22      U2 

J = 
D(xi, x2) 
D(ui, u2) 

dui 
dx^ 
du2 

in — x 10    a; 12 - x10 

x2\ — X2Q     x22 - X20 

1      X10 ^20 

1     xu ^21 

1     x12 ^22 

(7.7) 

(7.8) 

Since P0PiP2 is a 2-dimensional simplex with non-zero volume, J is non-zero. 
Translation can be rewritten as 

(u0,ui,u2) ->■ (l,Xi,X2) 

1        = ^0      + «1+ «2 
£l       =      Zio      U0      +      Xu      Ui      +      £12      u2 

£2       =      ^20      ^0      +      ^21       U\       +      £22       U2 

Two dimensional simplex integration 

Sp0p1p2(mi,m2) 

on a 2 dimensional simplex 

PoP^ 

is defined as normal integration times the sign of determinant J. 

(7.9) 
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Sp0P1P2(mi,m2) 

= sign(J) /   / x™xx™2 dx\dx2 
J JP0P1P2 

= sign(J) /   / x™1x™2\J\duid,U2 
J   JU0U1U2 

= jff x^1xpdu1du2 (7.10) 

Here 
Tt%l 

xTl = (YlxlkUk^ 
then the two dimensional simplex integration can be represented by the following basic 

forms of simplex integration: 

Si = I   I utQu\1ut2duidu2 
J Ju0ulu2 

= 11 u1Qu[1u2
7duidu2 

J     >/Uo,tJl,U2>0 

=   /       / U2
2Ut

1
1UQ°duidu2 

Jo   JO 

= I   u2
2 (j       * u\l(l-U2-ui)iodu1jdu2 (7.11) 

After ii times of integration by parts, the inner integration can be computed. 

yl-u2 

/ U1} (I — U2 — ui)l°dui 
Jo 

=   /      U2 d(-±—U? + 1)(l - U2 - U^0 

Jo »1 + 1 

»1+1/1 \«0   |1—"2 
—TTui     (l-«2-«i)° |0 ll T 1 

• 1-u 

/ U2-^—uY+id((i-u2-u1r) 
Jo *i ~r J- 

.A) «1+1 
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1—Uo 
10 ..«-1+1 io-1 

■/ 

0 »1 + 1 
1— «2 

(1 — U2 — ui)'°    du 

1—Uo 

\ — u-. 

(l-«2 

•1—u2 

i 1 —U2 

1—Us 

U2 — t*l) °      rfui 
»o(io-l)        ,-1+2n _ 

i1+l)(ti+2)Ml     [ 

lojio - l)(io - 2)        i+3 io_3 

■    iiw    i ow    . Q^I     (I-M2-M1)       dMj ;i + l)Ui +2)(»i +3 ii +l)(»i +2)(»!+3) 

»o(t'o-l)(t'o-2)...2 ,»i + »o-l 

i+l)(ti+2)(t1+3)...(i1+i0-l)   1 

— lii)  c/uj 

«o(io - l)(«o -2)... 1 

ii + l)(ii+2)(i1+3)...(zi+»0) 
«;i+,od«i 

H +«o)! 

iO^l! 

1 +io + l)! 
4«ii+io+i) 

z0!zi! 
rti Jo -H'i + 1  |l-«2 

'(io+ii + 1)!   x 

(l-«2) 
?o!«l! „ xn+io + l 

(ii + i0 + 1)! 
(7.12) 

■1 pi— «2 

Si = I   u2
2du2 I u^(1 — U2 — ui)l°dui 

0 0 

/   u*2(l-«2)
io+,'1+1 

./O 
<fti 

?0!«i! 
27-7 

(io + t'i + 1)! 

ioiii!^! 

(«o + t'i + »2 + 2)! 
(7.13) 

Based on the previous formula of Si, the two dimensional integration of polynomi- 

als of degree 0, 1, 2 can be computed. 

Spop1p2(0,0) = sign(J)  /   / dxidx^ 
J  JP0P1P2 

du\du2 

Spop1p2(0,0) = sign(J)  /   / dxidx2 
J     JPoPiP-2 

J 
U0UiU2 
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•/(ÖT2)! " \J <7'14) 

J     JPoPl* 
Sp0p1p2(liO) = sign(J)  /   / X\dx\dx2 

1P2 

J (x10u0 + xnui + xi2u2)duidu2 
J   JUo^Ui 

T 1! , 

(l + 2)'^10 + Xn + Xl2' 

SPOP1P2(1,0) = sign(J) l   \ x\dx\dxi 
J      J PQ ■* 1 *2 

1 
-J(xio + Xn +X12) 

Spop1pa(0,l) = sign(J) I   / X2otei<ix2 
*/    J Po P\ P2 

= gJ(x2o+x2i+x22) (7.15) 

-SPoPi^t2!0) = sign(J) /   / Xi<ixidx2 
V     JP0PlP2 

= J (xiouo + xnui + xi2U2)2duidu2 

2! 
=    (2 + 2V     ° "*"Xl1 ^" X 

+ J 
1! ' (2 + 2)! 

(0         +X10X11 +X10X12 
+X11X10        +0 +X11X12 
+X12X10    +X12X11 -t-0) 

Sp0p1p2(2, 0) = sign(J) /   / x\dx\dx2 

J  JP0P1P2 

-'s 
(2xiox10     +X10X11 +xiox12 

+xnxio    +2xiixn +X11X12 
+x12xio     +xi2xn +2x12X12) 

Spop1p2(0,2) = sign(J) I   / x|dxidx2 

-'s 
(2x20X20 +X20X21 +X20X22 
+X21X20 +2x2ix2i      +X21X22 (7-16) 
+X22X20 +X22X21 +2x22X22) 
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5P0P1P2(1,1) = sign(J)       / x1x2dx1dx2 

J  JP0P1P2 

— J {x10U0 + XuUi + X12U2) 
J  Ju0u1u2 

(x20U0 + X21U1 + X22U2)duidu2 

2! 
= J f()     's, (^10^20 + £11321 + 312322) 

(Z + Z). 

(2 + 2)! 
(0 +3io32l      +3io322 

+ 311320 +0 +311X22 
+312320      +312321 +0) 

Sp0PiP2(M) -sign(J)      / Xix2d3idx2 
J JP0PIP2 

- —J(2x10x2o + 2xiix2i + 2xi2322 
24 

+ Xio32l + 3io322 + Ill^O + ^11^2 + Xi2320 + 3i232l) 

-4 
(2xioX20       +310321 +3io322 
+ X11X20      +2xnX2l        +3iiX22 (7-17) 

+ 3l2320        +312321        +2xi2X22) 

7.4 Simplex Integration for Two Dimensional Manifold Method 

Since simplex integrations always have the Jacobian J as factor and J is an oriented 

area, the integrations on positive area and negative area can be neutralized. Denote 

P1P2P3---Pn Pn+l=Pl 

with 

Pi = (Xli,X2i) 

as a polygon, the integrations (7.14)-(7.17) on 

PlP2P3---Pn 
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are computed by summations. (7.18)-(7.21) are the integrations of manifold method. 

Here PQ can be any point, PQ = (0,0) are chosen in order to have simpler formulae. Com- 

puted by simplex integrations, integrals (7.18)-(7.21) are represented by the coordinates of 

the boundary vertices only. 

1 Y^n 

~ 2 2^k=i 

/   /     x1dxldx2=^2k=iSpoPkpk+1{l,0) 

x\ k        x2 k 

X\ fc+1       X2 fc+1 
(7.18) 

X\dx\dx2 = 

x2dx\dx2 

1 Y^" 

1 Y^" 

6 <^fc=i 

x\ k x2 fc 

x\ fc+i x2 fc+i 

X\ fc x2 fc 

Xl k+1 X2 fc+1 

(Xl fc +Si fc+i) 

(x2 fc + X2 k+l) (7.19) 

/   /     x\dx1dx2 = ^2k=1Spopkpk+1(2,0) 

1  Y^" 

~ 12 ^fc=i 

(x? fc +X^ fc+1 +Xi fcXi jfc+i) 

idxidx2 — —: / 1       24 ^fc=i 

Xl k x2 k 

Xl  fc+1  X2 fc+1 

(A) 

Xl k X2  fc 

Xl fc+1  X2 fc+1 

(2xi fcXi fc +xi fcXi t+i 

+-X1 fc-flX! fc       +2X1 fc+lXi  k+l) 

/   /     xidxidx-i = — > 
J ]{A)   

2 24 ^*=i 

// J   J(A) 

Xl k X2 fc 

Xl fc+1       X2 fc + 1 

(2x2 fcx2 fc +x2 fcx2 fc+i 
+X2 fc+lX2 fc      +2x2 fc+lX2 k+l) 

xix2dx1dx2 = \ SpoPkpk+1(1,1) 

(7.20) 

1    V--vn 

~ 24 ^*=i 

Xl  fc X2 fc- 

Xi fc+1       X2 fc+i 

(2xi fcx2 fc + 2xi fc+ix2 fc+i + xi fc-x2 fc+i + xi fc+ix2 fc) 

1 

(A) 

i   v—v 
Xix2dxidx2 = — > 

24 ^fc=i 

Xl  fc X2 fc- 

Xi fc+1       X2 fc+i 

(2xi fcx2 fc +xi fcx2 fc+i 
+xi fc+ix2 fc    +2xi fc+ix2 fc+i 

(7.2i; 
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Chapter 8 

Equation Solver and Open-Close Iterations 
for Inertia Dominant Equilibrium Equations 

8.1 Time Step Based Large Displacement Analysis 

The manifold method computations follow the time steps. The time steps are small 

enough that the second order displacements are neglected. All the geometric and physical 

parameters have to be transferred from the end of the previous time step to the beginning of 

the next time step. The following items are to be transferred: 

[1] stresses of each element, 

[2] strains of each element, 

[3] velocities of each element, 

[4] geometry of the joint boundaries and elements, 

[5] all closed contacts 

The position and state parameters of the closed contacts have to go to the next step. 

The geometric parameters and physical parameters of contacts will be transferred: 

[1] the contact vertex and edge, 

[2] the position of contact point, 

[3] the normal displacement and normal force, 

[4] the shear displacement and shear force, 

[5] locking or sliding as contact state. 

The manifold method computes both statics and dynamics by time steps. For large 

displacements and deformations, the statics is the ultimate stabilized state of dynamics af- 
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ter sufficient long times. Such a stabilized state can be reach only if some kind of energy 

reduction is counted in the computation. 

The previously customized one-step static computation is correct only if the second 

order displacements can be omitted. In such a case, physically one infinite large time step A 

is chosen under the small ultimate displacements. The inertia force would be proportional 

with 

The value of (8.1) is zero if time step A is very large, then the inertia force is zero. 

This is the reason why the one step statics do not consider the inertia force or mass matrices. 

The current version of the manifold code is a simple version. In the beginning of a 

time step, the dynamic computations inherit the velocity of the end of the last step. For static 

computation it is assumed that, the initial velocity of each time step is zero. The current 

static computation is obviously incomplete, the way of energy reduction has to be studied 

in the future. 

8.2 Open-Close Iterations 

Within each time step, the global equations have to be solved repeatedly while se- 

lecting the lock positions. The procedure of adding and removing stiff springs is open-close 

iteration. 

If a contact has a tensile contact force from the normal spring, the two sides will 

separate after the removal of this stiff spring. If the vertex penetrated the edge in other side 

of the contact, a stiff spring is applied. 

For each contact, there are three modes: open, sliding and lock. The criteria of the 

mode changing is in the following, 

mode change condition 

open - open N > 0 

open - slide N < 0 and \T\ > tancf>\N\ 

open - lock TV < 0 and \T\ < tan(f>\N\ 

slide - open N > 0 
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slide - slide N < 0 and f|| - / 

slide-lock iV < Oandf ||/ 

lock - open N > 0 

lock - slide JV < 0 and \T\ > tan<f>\N\ 

lock - lock N < 0 and \T\ < tan<t>\N\ 

where p is spring stiffiiess 

n is normal displacement vector pointing vertex 

N is normal displacement, N > 0 is open 

t is shear displacement vector pointing P2 P3 

T is shear displacement, T > 0 if Hn same direction as P2-P3 

|| means two vectors point the same direction 

t is friction force vector pointing P2P3 

4> friction angle 

Finding the mode changing, the following operations will be done: 

mode change operation 

open - open no changing 

open - slide apply pair of friction forces 

open - lock apply normal and shear springs 

slide - open delete friction forces 

slide - slide no changing 

slide - lock delete friction forces and apply shear spring 

lock - open delete normal and shear springs 

lock - slide delete shear spring and apply friction forces 

lock - lock no changing 

The open-close iterations to ensue 

[1] no-penetrations in the open contacts, 

[2] no-tensions in the contacts with normal springs. 
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The two conditions have to be fulfilled in all contacts. If the two conditions are not 

fulfilled after five times of open-close iterations, the time step will be reduced to one third, 

and the open-close iteration continues. 

8.3 SOR Iteration Method 

The abbreviation "SOR" stands for successive over relaxation method. This method 

is for solving linear equations, 

[A][X] = [F] (8.2) 

Equation (8.2) has submatrix structure 

/An A12 A13 Au 

A21 A22 A23 A24 

A31 A32 A33 A34 

A41 A42 A43 A44 

\Ani    An2    An2 Ln4 

■ •■    Aln\ 

Ä2n 
...    A3n 

A4n 

■ ■ ■     Ann / 

fXl\ x2 
X3 

X4 

\xn) 

= 

fF1\ 
F2 

F3 

F4 

^FnJ 

(8.3) 

where 

[1] [A] is a n x n coefficient matrix, 

[2] [X] isanx 1 unknown matrix , 

[3] [F] is a n x 1 matrix of free terms. The elements of these matrices are still subma- 

trices. 

[1] The elements Aij of matrix [A] are q x q matrices, 

[2] The matrix [A] is symmetric, [Aij]T = [Aji] 

[3] The elements Xi of matrix [X] are q x 1 matrices, 

[4] The elements Fi of matrix [F] are q x 1 matrices. 
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Denote the diagonal matrix [D] as 

[D] 

/An 
o 
0 
0 

V o 

0 
A22 

0 
0 

0 
0 

A33 

0 

0 
0 
0 

A44 

0        0 

0 \ 
0 
0 
0 

Then there are 

(([A}-[D}) + [D})[X} = [F] 

[D][X] = [F] - ([A] - [D])[X] 

[X] = [D]-1[F\-[D)-1([A]-[D])[X] 

[X] = [G\-[B][X] (8.4) 

where 

[G} = [D}-i[F]) 

[B] = [D]-\[A] - [D]) 

[1] [B] is a n x n coefrieient matrix, 

[2] [G] is a n x 1 force matrix, 

[3] [X] is a n x 1 unknown matrix, The elements of these matrices are still submatrices. 

[1] The elements Da of matrix [D] are q x q matrices, 

[2] The elements BtJ of matrix [B] are q x q matrices, 

[3] The elements Gi of matrix [G] are q x 1 matrices. 

( [Dti] = [An], 
[Dij] = [0], ifi + j 
[Gij] = [Dii)-

1[Fij], 
[Bij] = [Dii]-1[Aij],        ifi ±3 

I [Bu] = [0]. 
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For SOR method the factor of over relaxation is u>, 

1 < u < 2 

Denote [X,]^m^ is the solution after m iterations, then the solution [X^m+1) of the 

next iteration is 

i-l 

[X,-]<m+1> = [Xi]^+u([Gi] - Y^[BikUk]lm+1) ~  £ iBik][Xk]{m) - [^](m)) 
fc=l fc=t+l 

i-l 

[*]<m+1> = (1 -u>)[Xi]\m) +u([Gi] - 5>,-*][X*](m+1) -  E [^*][^l(m)) 
k = i+l fc=l 

The matrix form of the SOR method is 

(8.5) 

/x[m+1)\ 
X. 
x. 

>+l) 

(m+1) 
;i-w) 

Vx(m+1)y \xim)J 

+ OJ 

— LV 

/   0 0 0 
#21 0 0 

Bzi -B32 0 

-#41 -B42 -043 

/Gi\ 
G2 

G3 

VG„7 

0 
0 
0 

—u 

\Bni       Bn2      Bnz      Bn4 

/0      B\2      Bl3      B14 

0 0 B23 B24 

0 0 0 B3i 

0      0        0        0 

Vo     0       0       0 

0 
0 
0 

v(m+l) 
A2 

X. (m+1) 

o/ Vxi-+1)7 
■Sln\ 

S2„ 
Bj,n 

B^n 

(X\m)\ 

X (m) 

0 / VximV 

(8.6) 
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8.4 Simple Iteration Method 

The simple iteration method of equation 

[A}[X] = [F] 

has a simpler algorithm. Generally speaking, the simple iteration method is mush more 

slower than SOR iteration method. The formula of simple iteration method is mathemat- 

ically clear and clean. However, practically this method never became a major equation 

solver, because of its low efficiency comparing with the other iteration methods. It seems 

this method will stay in textbook forever to give the beginners a fresh idea about what is 

iteration method. 

It is often, that things can change in an unexpected manner. Two thing happened 

recently: 

[1] parallel computation, 

[2] inertia dominant computation in discontinuous deformation analysis. 

Now, simple iteration method is the equation solver which is most suitable to the 

parallel computation. In the mean time, the diagonal dominant matrices of DDA and mani- 

fold method are good enough to use the simple iteration method. Choosing small time steps, 

the coefficient matrices can be almost diagonal matrices, then, there will be almost no dif- 

ference between simple iteration method and SOR iteration method. 

As before, the equation is 

f Au A12 An Au 

A21 A22 A23 A24 

An    A32    A33    A34 

A41       ^.42       ^4.43       ^-44 

\An\    An2    An3    An4 

• • •       A2n 

••■    A3„ 
■A-4n 

A     ) 

x2 
X3 
x4 

\xn) 

= 

fF1\ 
F2 

F3 

F± 

\Fj 

The algorithm of the simple iteration method is 

/x[m+1)\ 
v(m+l) 
A2 
v(m+l) 
A3 

\xir+1)J 
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0 /Au 
0 
0 0 
0 0 

A'1 
^22 

0 
0 

0 
0 

An       0 
0      Aj 

V o 
/ o 

-421 

-431 
An 

0 

A12 

0 
-432 

A42 

0 

An 
A2z 

0 
A43 

0 

An 
A24 

A34 
0 

+ 

\Ani An2 Anz      Ani 
/A"1      0        0        0 

0 A^      0 
0        0 A3-1 

0        0        0      A 

V   0        0        0 

0 
0 
-1 
44 

0 
0 

A~l) •rinn   ' 

Al"\  /xfm)\ 
A2n 
A$n 
Ain 

0  / 
0 \ 
0 
0 
0 

A-jJ 

X. 

(m) 
2 
(m) 

\xim)/ 

F3 

VF„7 

(8.7) 

8.5 Time Step Algorithm and Iteration Convergence 

The principles of choosing time steps A are 

[1] A is small enough, so that the second order displacements are neglected; 

[2] A is small enough, so that the SOR iteration will converge in less than 30 iterations; 

[3] A is small enough, so that the open-close iterations will converge in less than 6 it- 

erations, 

[4] A is large enough, so that the computation will represent larger time span and the 

displacements are stabilized if possible. 

There are three options to define time step: 

[1] directly enter the time step, 

[2] enter the allowable maximum step displacement, then define time step from the max- 

imum allowable step displacement, 
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[3] compute the maximum allowable step displacement, then define time step from the 

maximum allowable step displacement. 

Denote 

V as the maximum allowed step displacement, 

U as the mass of the average elements, 

T as the maximum load on the average elements, 

V as the maximum velocity of elements, 

The equation of time step A is 

£A2 + VA-2> = 0 

let 

'-£ 

2y 
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Chapter 9 

Applications of Numerical Manifold Method 

9.1 Joint Computations 

Figure 9.1 shows the ability of the manifold method to compute a joint or fracture. 

Figure 9.2 shows the deformations of a domain with a self intersected curved joint 

9.2 Block Computations 

Figure 9.3 shows the failure of an arch under the point load on the center block and 

self weight. 

Figure 9.4 shows the failure of a gravity dam with rock foundation. The loads are 

the upstream water pressure and the self weight of the dam. 

9.3 Slope Sliding 

Figure 9.5 is the result of slope sliding of rock blocks. It can be noticed that, the 

center block separated two adjacent blocks during the sliding. The result is consistent with 

the lab test. 

Figure 9.6 is a soil slope which slides along a circular surface. The circle sliding 

computation satisfies all equilibrium conditions. 

9.4 Failure of Structures 

Figure 9.7 shows the deformation of the joints, blocks and the continuous materials 

of double simply supported beams 

Figure 9.8 shows the deformation of the joints, blocks and the continuous materials 

of jointed double cantilever beams 
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FIGURE 9.3 The failure of a deformable arch 
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9.5 Conclusions 

This new theory, entitled the Manifold Method of Material Analysis, combines 

physical meshes and mathematical meshes. These physical meshes provide the means to 

consider both jointed and continuous materials, and even different material phases (i. e. 

solid, gas or liquid). At present, a theory for the manifold method has been accomplished, 

as has a first generation 2-D dynamic computer code. The preliminary results are encour- 

aging (for example, the convergence of the solutions has been established). Finite element 

and DDA formulations are special cases of this developing theory. A brief listing of a few 

of the advantages of the manifold method follows: 

[1] free surface and flexible boundaries 

[2] analysis not hindered by boundary conditions 

[3] free form elements (any shape) 

[4] conservation of energy 

[5] obeys Coulomb's law 

[6] very small to very large deformation 

[7] statics and dynamics possible 

[8] analytically correct 

[9] continuous and discontinuous analysis 
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Appendix: The mathematical manifold 

The " Manifold " is a main subject of differential geometry and topology in modern 

mathematics. The basic structure of the manifolds is a finite cover system and the connec- 

tion functions among the covers. Different from the mesh, the covers can be overlapped or 

folded to present a combinatorial space. Therefore the manifold method is to pursue global 

solutions on global spaces. There were no direct connections before between manifolds and 

engineering analysis. The essential difficulty is the complicated boundaries and discontin- 

uous interfaces of the real engineering cases. 

Under the generalized definition of manifold, there are two independent mesh sys- 

tems now: mathematical mesh and physical mesh. The mathematical mesh consists of the 

folded covers. Independent cover functions are defined on each cover. The weight functions 

connect all locally defined functions to a combinatorial global function. 
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Simplex Integration for Manifold Method 
and Discontinuous Deformation Analysis 

Gen-hua Shi 

Geotechnical Lab, US Army Engineer Waterways Experiment Station 
Vicksburg, MS 39180-6199 

Abstract 

At least every engineer has to compute the volume of generally shaped blocks. Is 
there a formula where the volume is precisely represented by the coordinates of boundary 
vertices? If block movements are considered, the center of gravity has to be computed? Is 
there a formula where the center of gravity is also represented by the coordinates of bound- 
ary vertices? The simplex integration developed for DDA computation can also solve these 
questions. The convergency and accuracy of DDA algorithms depend upon mainly the an- 

alytical integrations on complex shapes. Simplex integrations are accurate solution on n- 

dimensional generally shaped domains. The integrand could be any n-dimensional polyno- 

mials. The DDA computations of three rock failure cases are presented. 

Simplex Integration on a Simplex 

Simplex has the most simple shape in 1,2,3,..., n dimensional space. Different 
from the ordinary integration, simplex integration has only simplex as integral domain. 
Simplex also has positive or negative orientations. Positive or negative orientations define 

positive or negative volumes respectively. 
P3 

P2 

Po Po Pi        Po Pi        P° P1 

Figure 1. 0,1,2,3 dimensional implex 
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The 0 dimensional simplex is a point Po, its volume is 

1 
0! 

1=1 

The 0-d simplex integration can be considered as a normal real number. 

One dimensional simplex PQP\ is an oriented segment, its volume is 

1      Xio 
1    xn 

= zn - zio 

The volume of the simplex Pi P0 is the negative volume of the simplex P0Pi. Ordinary 1-d 

integrations are simplex integrations: 

•Po 

f(x)dx 
Po 'Pi 

f(x)dx 

Therefore, for any co-line point P2, 

rPi fPi fPi fP2 fPi fPi 
/     f(x)dx+ /     f(x)dx = /     f(x)dx+ /     f(x)dx+ /     f(x)dx = /     f(x)dx 

JPo JP2 JPQ JPX JP? JPo 

The 1-d integration addition is the same as vector addition. The integrations on negative 

vectors and positive vectors can be nullified. 

Two dimensional simplex P0P1P2 is a oriented triangle, its volume is 

1 
2! 

The volume of simplex P1P0P2 is the negative volume of simplex P0PiP2. 

Three dimensional simplex P0P1P2P3 is a oriented tetrahedron, its volume is 

1 a-'io £20 

1 xn a-'2i 

1 X\2 £22 

1 
3! 

1 X\Q £20 x30 

1 XU X21 X31 

1 X12 X22 X32 

1 X13 X23 X33 

The volume of simplex P1P0P2P3 is the negative volume of simplex P0P1P2P3. 

Unfortunately, two dimensional and three dimensional ordinary integrations are vol- 

ume integration, where the volume is always positive. For the 2 or 3 dimensional ordinary 
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integration, the integration domain has no orientation, therefore the integration has no alge- 

braic addition of oriented domain. It is then necessary to introduce simplex integration on 

a simplex, which is a simple oriented domain. 

The simplex integration is not intended to do integrations on simplex only. Obvi- 

ously a complex shape always can be subdivided into simplex, so simplex integration can 

be computed in each simplex, the summation of simplex integrations is the ordinary integra- 

tion over the complex shape. However this is also not the way of using simplex integration. 

Giving a polygon P1P2P2P4P5P6 with P6 = Pi, such that Pi rotate at the same 

direction as from ox to oy. For any point PQ, the algebraic addition of the 2-d simplex vol- 

ume (area) P0P1P2, P0P2P3, P0P3P4, PoPiPs and P0P5P1 is the area A of the polygon. 

Let P0 = (0,0), 

1   5 

5E 
t=i 

1       0 
1 Zi { 

1    zi .'+1 

0 
X2 i 

%2 i+1 

1     5 

t=i 

Xi { X2 i 

X\ i+1       X2 i+1 

In Figure 2, the area of simplex P0 P2 P3, Po Pz Pi. PQ PA P5 and P0 P5 Pi are positive; 

the area of simplex P0P1P2 is negative. The algebraic sum is exactly the area of polygon 

PIP2P2P4PSPG- The area A is then represented by the coordinates of boundary vertices. 

P5 P3 

P2 

Figure 2. Addition of plus or minus area of simplex 131 



In general, simplex integration can compute ordinary integrations without subdivid- 

ing 2-d domains to triangles and 3-d volumes to tetrahedrons. FEM mesh is unnecessary 

for simplex integration. Using simplex integration, the integration of any n-dimensional 

polynomials can be represented by the coordinates of boundary vertices of generally shaped 

polyhedron. 

Two Dimensional Simplex Integrations 

The two dimensional integrations here in this section are used for two dimensional 

DDA algorithm. Since the displacement function is linear function of coordinates (x,y), 

the integrands are of degree 0, 1,2. 

A 2 dimensional simplex has 3 vertices 

Po 
Pi 
P2 

Po, -Pi, Pi ■ 

(>10, 2?20) 

(Zll, Z2l) 

(Zl2,      X22) 

The 2 dimensional coordinate simplex has 3 vertices 

Uo,UuU2. 

U0: (  0, 0) 
Ui: (    1, 0) 
U2: (  0, 1) 

The following coordinate transformation 

{ui,u2) -> (xi,x2) 

s coordinate simplex 

to normal simplex 

Xl      = 

x2    = 

UoU!U2 

PoPiP2 

xw    (1 - Ei ui)+    xn    u\    +    xi2    u2 

X2Q       (1 - Yyl ui)+      x21       Ui       +      222       U2 
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The Jacobi determinant is 

J = 
D(xu x2) 

D(uu U2) 
dx\ 

dX2 

dx\ 
dU2 
9X2 
dU2 

x\\ - -zio xn - - x10 

%2\ - -x2o Z22 - - £20 

1    £10    x20 

1   111   £21 
1    x12    x22 

Since P0P1P2 is a 2-dimensional simplex with non-zero volume, J is non-zero. 

Translation can be rewritten as 

(«0,«1,^2) ->■ (1,^1,^2) 

1       = U0     + Ui      + u2 

x\    —    xio    UQ    +    xu    «1    +    ^12    u2 

x2     =    2:20    ^o    +    £21     Ui     +    x22    u2 

Two dimensional simplex integration 

Sp0P1P2(
ml,m2) 

on a two dimensional simplex 

P0P1P2 

is defined as normal integration times the sign of determinant J. 

Sp0plp3{m1,m2) 

= sign(J) f I x^x™2 dXldx2 

J  JP0P1P2 

= sign{J) [ [ x^1x^\J\duldu2 
J   Ju0U1U2 

x^1x^2du1du2 = J 
u0u1u2 

Here mi 

E 
k=0 

XlkUk, 
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then the two dimensional simplex integration can be represented by the following basic 

forms of simplex integration: 

Si — I   I u^u^u^duidui 
J Ju0u1u2 

= /   / ul
0°u\1u2

2duidu2 
l2>0 

»1     /•!— «2 

=  /     / u2
2u\1u0

0duidu2 
Jo  Jo 

—       u%2  I   / Uj1 (1 - u2 - ui)l°dui ) du2 

After i-L times of integration by parts, the inner integration can be computed. 

/•1-U2 

/ uY (1 — U2 — ill)*0 dui 
Jo 

= f ttad(-^4r«i1+1)(i-«2-«i),'° 
Jo »1+1 

«1+1/1 \'0   |l_u2 = ^—T«l        (I-U2-U1) 
»1+1 

-/'    "'-^-^^^((l-^-Ul)20) 
7o       *i +1 

= - f U2-^—uY+1d((i-u2-Uly°) 
Jo »1 + 1 

= /       T-^TUJ
1+1

(1 - u2 - «i)1'0-1^! 
Jo »1 + 1 

f       "2 »o(»0 — 1) ii + 2/i \«o-2 j 

Vo Oi + l)(?i +2J 

Z"1-"2       »o(»o - l)(»'o -2) i+3 \t'o-3. 
=    / ^—-:         .  . -U, (1 — Uo— Ui) (IMl 

J0 (f1 + l)(n+2)(i1+3)   1      ^ 2        ^ 

=  /1_U2 »o(:0-l)(io-2)...2 ^1+io_x 

7o (ii + l)(ii+2)(ti+3)...(»i+z'o-l)   * 

(1 — li2 — Ml)   <^1 
1—u2 i0(t0 - l)(»o - 2)... 1 !i+io 

) 
ull+l°dui 

0 (*'i + l)(»i+2)(»! +3)...(»i +»o)   * 
<• 1—«2      • 1 • 1 
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J0        (ii+io + l)!  V * 
ip]-h! io+n + i |1_U2 

(z7+n+TJ!Ul lo 

*°!*i!       (1_U2)-I+*O+I 

'(»i+io + 1)! 

5!=/   i42du2 / ui1(l-u2-ui)°dui 
Jo Jo 

=/>i-«'>*+i'+,*><d£b 
i0\i\\i2\ 

(io + M+^2+2)! 

Based on the previous formula of Sx, the two dimensional integration of polynomi- 

als of degree 0, 1, 2 can be computed. 

SPOPIP2(0,0) = sign(J) I   I dXldx2 
J    J Po Pi Pi 

= J I   / duidu2 

SPoPlP2(0,0) = sign(J) I   I dXldx2 
J   JP0P1P2 

j     0'      _lj 
(0 + 2)!      2 

5PoPlP2(l,0) =sign{J) I   I xldx1dx2 
J    J PQP\ P2 

= J (xioU0 + XnUi+XuU2)duidu2 
J   JVoUiUi 

1' \ 
= J(1 + 2)!^10 + :ril+a:i2) 

5POPIP2(1,0) = siflrn(J) /   / xKfxxdxa 
J   JP0P1P2 

= 7«/(xio +X11 +X12) 
6 

5PoPlP2(0,1) = 5iflfn(J) /   / x2dxxdx2 
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-J(X20 + X2l +^22) 

SpoPiPi&Q) = si9n(J)       / x\dxidx2 
J  JP0PIP2 

= J (xiouo + xuui + x12u2)
2du1du2 

J Ju0u1u2 

2! 
=    (2 4- 2V        "^ Xn ~^~ X 

r I' 
(2 + 2)! 

(0 +x\Qxn    +Z10Z12 

+xnXio        +0        +X11X12 

+^12^10    +xnxn        +0) 

5pop1p2(2,0) = sign(J)       / xjdxidx2 

J  JP0P1P2 

24 
(2x10X10 +X10X11 +X10X12 
+X11X10 +2xnXii +X11X12 

+X12X10 +x12xn +2x12X12) 

Spop1p2(0,2) = sign(J)       / x\dxidx2 

J     JPoPiPl 

24 
(2x2ox2o +X20X21 +X20X22 
+X21X20 +2x2ix2i +X21X22 

+X22X20 +X22X21 +2x22X22) 

Sp0p1p2(l, 1) = sign(J)  /   / xxx2dxidx2 

J  JP0P1P2 

= J   /    / (xio^O +X11U1 + Xi2ti2) 
J   JUoUxU-2 

(x20U0 + X21U1 + X22^2)^Wl^«2 

2! 
= ^/0   1   oM^10120 + xllx21 +X12X22) 

+ J 

(2 + 2)! 
1! 

(2 + 2)! 
(0         +X10X21 +X10X22 

+X11X20        +0 +X11X22 

+X12X20    +X12X21 +0) 

5'p0p1p2(l, 1) = sign(J)  /   / x\x2dx\dx2 

J   JP0PlP2 
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= — J(2x10X2o + 2xnx2i + 2x12x22 
24 

+ ^10^21 + ^10^22 + ^HX20 + XUX22 + Xi2X20 + Xi2X2i) 

-'s 
(2x10x2o     +X10X21       +zi0x22 

+ X11X20      +2xnX2i +XnX22 

+X12X20     +£12^21     +2^12X22) 

Three Dimensional Simplex Integrations 

The three dimensional integrations here in this section are used for three dimensional 

DDA algorithm. Since the displacement function is linear function of coordinates (x, y, z), 

the integrands are of degree 0,1,2. 

A 3 dimensional simplex has 4 vertices 

Pa : (zio, X20, x3o) 
Pi : (xn, X21, X31) 

P2 ■    (zi2,    ^22,    3:32) 
Pi ■      («13,      X23,      X33) 

The 3 dimensional coordinate simplex has 4 vertices 

Uo,UuU2,U3. 

U0: ( 0, 0, 0) 
tfi: ( 1, 0, 0) 
U2: ( 0, 1, 0) 
fa: ( 0, 0, 1) 

The following coordinate transformation 

s coordinate simplex 

to normal simplex 

(ui,U2,U3) -> (X!,X2,X3) 

UoUMUz 

PQPIP2P3- 
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^3 
XI       =      I10 

«2       =      «20       (1 — X^l ^1)+      «21 
«3       =      «30       (1 - J2l ui) +      «31 

The Jacobi determinant is 

«1 

+ 
+ 
+ 

«12 

«22 

«32 

U2 

«2 

U2 

+ 
+ 
+ 

X13U3 

X23U3 

X33U3 

J = 
D(xu x2, X3) 

D(u\, u2, u3) 
9ri 

9ui 

9«2 
<3l2 
9U2 

9«2 

Xu  - X10 

«21 - 2:20 

«31 - £30 

1 
1 
1 

6>ii 
9«3 
83:2 
Su3 
9l3 
9«3 

«12 - «10 

«22 - «20 

«32 - «30 

«13 - -«10 

£23 - -«20 

£33 - ~«30 

«10 

«11 

«12 

«20 «30 

«21 «31 

«22 «32 

«23 «33 1      «13 

Since P0P-1P2P3 is a 3-dimensional simplex with non-zero volume, J is non-zero. 

Translation can be rewritten as 

(u0,Ui,U2,U3) -> (1,X1,X2,X3) 

1 = U0 + Ui + U2 + «3 

Xi = X10 «0 + «11 ul + «12 "2 + «13 UZ 

«2 = «20 «0 + «21 «1 + «22 "2 + «23 «3 

«3 = «30 «0 + «31 «1 + «32 U2 + «33 ^3 

Three dimensional simplex integration 

Sp0 plp2pi(ml,m2,m3) 

on a n dimensional simplex 

P0P1P2P3 

is defined as normal integration times the sign of determinant J. 

Sp0p, p2p3 (mi ,m2,m3) 

= sign(J) /   /   / xj"1x2"2x^3 dxidx2dx3 

= sign(J) fll x™lx™2x™z\J\duidu2du3 

J 
'UoUtUiUz 

x™1 X2 2«3 '3du\du2du3 
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Here 
1 m/ 

x™< = (j2x'kuk) 
k=0 

then the three dimensional simplex integration can be represented by the following basic 

forms of simplex integration: 

Si —       /   / ulQUlyU%2Ul^du\du2duj, 
J   J   Ju0UxU2U3 

f      f       l>U0 + U1 + U2 + U3=l 

= utQu\1ut2ulsduidu2du3 
J    J    Juo,ui,u2,us>0 

/•l     rl—u3     rl—u3 — U2 

= / ul3u2
2u\1u'Qduidu2du3 

Jo  Jo        Jo 
/l      /-1-U3 /    rl-u3-u2 \ 

/ ul
3
3u2

2 (   / u^(l - u3 - u2 - ui)todui j du2du3 

After ii times of integration by parts, the inner integration can be computed. 

/>1—«3 —U2 

/ u%i (I - u?, - u2 - ui)l°dui 
Jo 

/•1-U3-U2 1 

- /        d(—^-uii+1)(i - 1X3 - u2 - Uly° 
Jo »1 + 1 

= - -TU1        (1 - «3 - «2 - "lj      In Zl + 1 
/■I-U3-U2        1 

-   / —^u[i + ld((l - «3 - «2 - Ul)'°) 
Jo zi + ! 

/•1-U3—«2      I 

= -   / ——U\* + 1 d((l - U3 - «2 " «l)'0) 
Jo *i + 1 '0 

»1—«3 —«2 /•±-U3-"2 • 

=   / -^-ixi1 + 1(l - 1X3 - U2 - Uj)10-1^! 
Jo »1 + 1 

/-1-"3-"2      to(tp - 1)        ,.1+2 io_2 

Jo (*i + l)(*i+2) 

Z"1   tt3   "2       io(»o-l)*o-2)        il+3n Vo-3, 

Jo (*i+ l)(*i+2)(ii+3) 

Z1-"3-"2 to(to-l)(io-2)...2 _fil+i0_1 

Jo (ii + l)(ii+2)(i1+3)...(ii+i0-l)   * 

(1 — U3 — 1x2 — ui) du 1 

rus~u2    zofa-i)fa-2)...i   M<l+i0Ju 
Jo (ii + l)(ii+2)(i1+3)...(»i+t0)   1 1 
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io     (ii+«o)!Ui    i 

1-U3-U2   • 1.1 

(ii+io + l)!   l  * 

io^i! i0-Li,4-i 1I-U3-U2 

(»o+ii + 1)!   l lo 

i0!,'l! (1-U3-U2)
81 + -+1 

0 

ii +»'o + l)! 

/•1   fi— «3 /-l—«3—«2 

S1 =        / u3
3u2

2du2du3 u%^{I - u^ - u2 - ui)%°dui 
Jo  Jo Jo 

=  /    u 
1 />1—U3 ,     1,     1 

ui2(l - u3 - u2) °    '     du2du3- 
0     

370        "
2Vi     ~J     ^ '    °(^o + ti + l)! 

Jo 

l0+ll+t2+2^, iphM 

to + i\ + «2 + 2)! 

ioUi!^!^! 

(io + h + 12 + h + 3)! 

Based on the previous formula of Si, the three dimensional integration of polyno- 

mials of degree 0, 1, 2 can be computed. 

Spoplp2p3(0,0,0) = sign(J)  /   /   / dxidx2dxs 
J    J    JPnP,P2P3 

(0 + 3)! ~6 

Sp0p1p2p3(l,0,0) = sign(J)  /   /   / xidxidx2dx3 
J   J   JPoPiP^Pa 

= J {XloUo + XnUi + X12U2 + Xi3U3) 
J   J   JUoUiU^Us 

duidu2du3 

1! 
= J ,■>    ,   OM(

X
10 + XH  + X12 + ^13) (1 + 3)! 

5pop1p2p3(l,0,0) = sign(J)  /   /   / xidxidx2dx3 
J  J  JP0P1P2P3 

J— (xio + xn + X12 + x13; 
z4 

5pop1p2p3(0,1,0) = sign(J) /   /   / x2dxidx2dx3 
J   J   JP0P1P2P3 
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= J— (x20 + X2\ + £22 + X23) 

5,pop1p2p3(0,0,1) = sign(J)       /   / x3dx1dx2dx3 

J  J  JP0P1P2P3 

= ^7T7(X30 + £31 + £32 + £33) 
24 

5,PoPiP2P3(
2>0)0) = sign(J) /   /   / x\dxxdx2dx->, 

J J  JP0P1P2P3 

= J /   /   / (x10u0 + xnii! + xi2u2 + xi3u3y 
J   J   JU0UiU2Us 

du\du2duz 

2! 

T 1! +  J (2 + 3)! 
(0         +Z10Z11 +£io£i2 +£io£i3 

+X11X10         +0 +£11X12 +£n£i3 

+£12^10     +£12^11          +0 +£12^13 
+£13^10     +£13^11 +£13^12 +0) 

5p0p1p2p3(2,0,0) = sign(J) /   /   / x\dxldx2dxi 

J   J   JP0P1P2P3 

120 
(2xi0£io +£io£n +£io£i2 +£io£i3 
+X11X10 +2xnxn +X11X12 +£ll£l3 

+X12X10 +X12X11 +2x12Xi2 +£l2£l3 

+£l3£io +£l3£ll +£l3£l2 +2x13X13) 

SPoP^PslO^O) = sign(J) /   /   / x\dxxdx2dx3 

J  J  JP0P1P2P3 

120 
(2x2o£20 +£20£21 +£20£22 +£20£23 

+ X2l£20 +2£2l£21 +£2l£22 +£2l£23 

+ X22£20 +£22£21 +2£22£22 +£22£23 

+£23£20 +£23£21 +£23£22 +2£23£23) 

5POP1P2P3(0,0,2) = sign(J) /   /   / xjdx1dx2dx3 

J  J  JP0P1P2P3 

= j_L 
120 
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(2X30^30 +230^31 +^30^32 +^30^33 

+3^31^30 +2x3lX3l +Z31232 +X31X33 

+^32^30 +^32^31 +2X32^32 +^32^33 

+£33£30 +^33^31 +3^33^32 +2X33X33) 

5pop1p2p3(l,l,0) = sign(J) /   /   / xix2dx1dx2dx3 
J  J  JP0P1P2P3 

= J (xioUo +X11U1 +X12U2 +X13U3) 
J J Ju0u1u2us 

(X20U0 + X21U1 + x22«2 + x23u3)duidu2du3 

2! 
= J ,„     '   ^(zioX20 + XnX2i + ^12^22 + Z13X23) 

r        1! 

(2 + 3)! 

(0        +X10X21 

+X11X20        +0 

+X12X20    +X12X21 

+ ^13^20      +^13^21 

5POP1P2P3(1,1,0) = sign(J) /   /   / 
J     J     JPoPl 

120 
(2xi0x2o +X10X21 

+X11X20 +2xnX2i 

+X12X20 +^12^21 

+ 2^13^20        +X13X21 

J     J     JPoPl 
SpoP1P2P3(l,0, 1) = sign(J) 

= j-L 
120 

(2xiox30     +X10X31 

+X11X30    +2xnx3i 

+2^12^30        +^12^31 

+ £l3£30        +^13^31 

SpoP1P2P3(0,l,l) = sign(J) /   /   / 
J    J    JPoPr 

120 
(2x2oX30 +X20^31 

+X21X30 +2x2lX3i 

+ ^22^30 + £22£'31 

+ X233-'30 +^23^31 

+£io£22 +£102:23 

+£n£22 + £ll£23 

+0 + £l2£23 

+^13^22 + 0) 

X\x2dx\dx2dxz 
1P2P3 

+£io£22 +£l0£23 

+£11*22 + £ll£23 

+2xi2x22 +X12X23 

+£132:22 +2X13X23) 

X1X3^X1^X2^X3 
P2Ps 

+£10*32 +X10X33 

+ £11X32 +£ll£33 

+ 2xi2X32 + £12£33 

+£132:32 +2X13X33) 

x2x3dx\dx2dx3 

P2P3 

+2:202:32 +£20£33 

+2:212:32 + £2l£33 

+2x22X32 + £22£33 

+£232:32 + 2X23X33) 
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Three Dimensional Simplex Integrations 
to the Coordinate Simplex 

A n dimensional simplex has n+1 vertices 

Po 
Pi 
P2 

Po,P\,P2,- •• ,Pn- 

(»10,       »20,       X30,       ..., Xn0) 

(ill,       »21,       »31,       ..-, »nl) 

(Xi2,      X22,      »32,      • .., Xn2) 

■*n •      (»In,      »2n>      »3n,      • • • ,      XnnJ 

The n dimensional coordinate simplex has n+1 vertices 

Uo 

U2 

U0,UuU2,...,Un. 

(   0,   0,   0,    ..., 0 ) 
(    1,   0,   0,    ..., 0 ) 
(    0,    1,    0,    ..., 0 ) 

Un:      (     0,     0,     0, 

The following coordinate transformation 

,    1    ) 

(1) 

(ui,U2, U3, ••-,"«) -» (x1,X2,X3,.. . ,Xn) 

transfers coordinate simplex 

to normal simplex 

U0U1U2...Un 

PQP\P2 ...Pn. 

x\    -    xio    (1-E"U«)+ »n ui + »12 u2 + ... + xlnun 

X2       =      X20      (l-J2lUi)+ »21 Ui + X22 U2 + ... + X2nUn 

X3       =      »30       (1-£"U«)+ »31 Ul + »32 U2 + ... + X3nUn 

Xn      =      Xn0      (l-J2lUi)+ »nl «1 + Xn2 U2 + . . . + XnnUn 

The Jacobi determinant is 

(2) 

J = 
D(xi,  I2,  X3,   ...,  Xn) 

D(ui, u2, u3, ..., u„) 
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dx\ 
du i 
8X2 
du\ 
8x3 
du\ 

dxn 

dui 

dxi 
dU2 
8x2 
dU2 
8x3 
8u2 

8xn 

ÖU2 

dxi 
8u3 

8x2 
9«3 
8x3 
9«3 

8xn 

8u3 

Xu - X10 

^21 - ^20 

£31 - ^30 

£l2 - £10 

£22 - x2o 

£32 - £30 

dxi 
8u„ 
8x2 
8un 
8x3 
8u„ 

8xn 

8u„ 

£23 - x2o 

£33 - 3:30 

£«1 — xnO Xn2 — XnQ £„3 — XnQ 

X\\  - X10 X21 - £20 X31 - £30 

£i2 - £10 ^22 - £20 £32 
- £30 

£13 - £10 x23 - £20 ^33 - X30 

£ln — X\Q      X2n ~ ^20      x3n _ ^30 

1 £10 £20 £30 • • ■ ^nO 

1 £11 £21 £31 • • • Znl 

1      £12       £22       X32      ...      £n2 

1      X\n     £2n      £3n      •••      Xnn 

£ln - £10 

£2n - £20 

£3n - £30 

Xnn XnQ 

Xnl XnQ 

Xn2 XnQ 

£n3 XnQ 

Xnn       Xn0 

(3) 

Since P0PiP2 ... Pn is a n-dimensional simplex with non-zero volume, J is non-zero. 

Translation (2) can be rewritten as 

(U0,U1,U2,U3,. . . ,Un)  ->■  (l,£l,£2,£3, ■ • • ,£«) 

1 = UQ + «1 + u2 + ■■ + U 

£l = £10 UQ + £11 «1 + £12 U2 + •• + X\n U 

£2 = £20 UQ + £21 U\ + £22 U2 + •• + x2n u 

£3 = £30 U0 + £31 «1 + £32 U2 + .. + £3n u 

=      Xn0      UQ       +      £„i       U\       +      £„2       «2       +•••       +      Xnn      Un 

£l 
/ 

£2 

£3 
= 

\£n/ 
\ 

1 1 1 
£10 £11 £12 

£20 £21 £22 

£30 £31 X32 

\xno 

1     \      /«o\ 
X\n 

X2n 

£3n 

U2 

«3 

Xnl       xn2 nn '      \Un / 

(4) 
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The determinant is 

1        1 

^20      ^21 

^30       Z3i 

1 
£12 

^22 

^32 

1 
X\n 

X2n 

XZn 

1       Zio       X20 

1    xn     x2i 
1    a;i2     ^22 

a--30 

£31 

£32 

1       X13       X23       X33 

XnO      Xn\      Xn2      ■ ■ ■      Xnn I      X\n      X2n      X^n 

From formula (4) (UQ,UI,U2,U3, ... ,un) can be computed 

xnO 

Xnl 

Xn2 

XnZ 

Xn/n 

J       (5) 

/u0\ 

U2 

U3 

(    1 1 1 
ZlO X\i X12 

X20 ^21 ^22 

^30      £31       ^32 

\Un) \X„o      Xnl       X„2 

1     \_1    /X\ 

X2n 

XZn 

Xi 

^2 

^3 

n / \ XJJ / 

Definition of N Dimensional Simplex Integration 

Simplex integration 

Sp0p1p2...pn(mi,m2,m3,...,m„) 

on a n dimensional simplex 

P0PiP2...Pn 

is defined as normal integration times the sign of determinant J. 

Sp0p1p2...pn{mi,m2,m3,... ,mn) 

= sign{J)  f [ f ■■■  f x^x^x™3--^™"    dx1dx2dx-i .. .dxn 
J      J      J J PQ P1 P2 ■ ■ ■ Pn 

= sign(J) 

J 

x™1 x^x™3 • • • x™" I J\dUldu2du3 ...du, 
UoU^-Ur, 

«M™2    ™3 mn Xj    x2 x™3---x™n duidu2du3...dun        (6) 

In order to compute the integration, coefficients of invariants u\ in 

mi 
n mi 

[y~]xikUk) 
k=0 
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of formula (6), the following formula (7) is useful. 

The formula 

(X^ „  \ y^°+ii+i2+-+J"=m (jo +.71 +J2 + .-.+Jny.   jo j,  j2 in      m 
{}     ak)      =/,... .   ^„     III T~i Q0  al  a2 an {') 
fc=0 

can be found in algebra books, however a brief derivation are given here for convenience. 
In case of n=0, formula (7) is correct: 

Jo _ „m 

jo>0   j0\U 
a0 

fc=0 

In case of n=l, formula (7) is correct: 

-, m 

Assuming fonnula (7) is correct for n: 

(Yak)" = Y30+n+32+~ 

then the following computation shows formula (7) is correct for n+1 

n+l m 

fc=0 
n m 

=(C^2ak)+an+l) 

Jn io+ii+ia + ...+i» = m (jo + jl + J2 + • ■ • + jn)! _JQ _h j2 

•  I •  I ■   I        F~j aO al  a2   ' ' ' an 

fc=0 

fc=0 

_ Y^i"+>" + i = m  (in + jn+l)! 
^-'•n>Jn+l>0 Zn!jn+1! 

^0+Jl+j2 + - + in = in   (JO  + Jl   + j2  +  • • ■  + jn)! ^ ^ ^ V,,     in + 1 
/  v • ^n  •   t ■   I ■   I        FH 0 «1  a2    " ' an Gn+1 
^^Jo,Ji,j2,...,Jn>0 Johl-j2l- ■ ■ -]-Jn- 

EIr.+iti + l="l  T—^J0+jl+J2 + --- + jn=in 

(*n + jn+l)! (JO + jl + J2 + • ■ • + jn)! Jo j^ j2 in > + i 
■—r~p j III       Fi 0 al  a2   " ' "n "n+l 

?n!jn+l! jo!ji!j2!---!jn! 
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«n+in + l = m ^~\jo+jl +h + ■ ■ -+jn=in 

»n,in + l>0       ^~^J0,jl,J2,---,jn>0 

(,tn,+ J?+1,).!—;«oh ■ ■ ■ «''»> + * 

J0+jl+J2+---+jn+jn + l = ™. 

,   I •  | ■  |        I •   I • ,a0 al  a2   '"an an+l 

JO ,jl,J2,---,jn,jn + l>0 

(JO + 31 + k + • • • + jn + jn+1)!    j0   j,    ,-3 _i„_J» + i 

J0-J1-J2 Jn-Jn+1- 

Denote 
n 

1 

from the previous algebraic formula, 

XT' = C£2ukxik) 

,...... 

fc=o 

«lo + «li + «'l2+-+«ln = mi (i/0 + in + i/2 + ... + iin)\ 

'iio,'n,ii2,---,iin>0 izo^/l^/2! • • -!*/n! 

U0   Uj   U2    • ' • Un
nXlQ Xn X[2   ---Xin (8) 

Substituting (8) into (6), integral (9) is obtained. 

5,p0p1p2...pn(mi,m2,m3,...,mn) = J /   /   /•••/ 
J   J   J JUoUi 

E 
u2...un 

«io+»ii + »'ia + ...+iin = m1    (i10 -f z'n + i12 + . . . + «In)! 

'»io,»il,!i2,--.,»ln>0 ilo!Ul!*12! • • -«In! 

,210, .»11, ,»12  ... „»In       ™»10„»11„»12 i0    u1    u2 un       x1Q xn x12 

Y^'20+,'2i + *22+-+,'2" = m2    («20 + «21 + «22 + • • • + «2n)! 

■^-^»2O,»2i,»22,-M«2n>0 «2o'«2l!«22! • • -«2n! 

E 
„»20,   «21,.»22 . . .      »2n       „»20     »21 „»22  . . .      »2n \ 
"0    "l    u2 un       x20 x21 x22 x2n / 

t'30 + »'31+»'32+-..+ »'3n = m3     (l30  + ?31   + Z32   +  . . .  + l3n)\ 

»30,»3i,»32,.-,»3n>0 «3o!«3l!«32! • • -!«3JJ 

„»30     «31„«32  . . . ,,»3n »30     »31 „»32  . . .      »3n \ 
"0    Ul    u2 "n        x30 ^l x32 -^n / 

E «n0 + inl+«'n2 + ... + »nn = m„   (j„0  -f inJ   + ?'n2  +  • • •  + i'ntl)! 

»n0,»nl,»n2,...,»nn>0 »nO^nl ^712 ' • • "«Tin' 

,.,n0,,'nl,,'n2  . . .„»nn   ™'n0™«nl™»n2  . ™»nn \ 
«0     ul     "2 "n      ^nO ^nl xn2 xnn / 

duidii2du3 ... dun (9) 
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Sp0p1p2...pn(m1,m2,m3,... ,mn) 
EilO + 'll+«12+---+,U=ml >-—\«20 + «21+«22+"-+«2n = n*2 

«10,«ll,«12i-".»ln>0 *—-'«20I»21I «22,--->«2n>0 

^-^ 130 + 131 + «32+ •••+J3n = TO3 ^—vtn0 + *nl"'"*n2"^'""'~tnn=Tn" 

^-"*'i30,i31i«32i-"i»3n>0 ^—'inOt'nl ,*n2 , ■■■ ,inn >0 

m2! mj! 

*io!in!«'i2! • 
m3\ 

■•'In- 

»30^31^32! ■ ly-     1 

»20^21 Ü22! ■ ..!»2n! 

mr 

^nO-^nl ^n2 'nil' 

«'lO     «'ll„»12      .     T'l>i _»20_«21 „»22  . . . _*3n 
x10 x11 x12 J-ln J-20 ^21 ^22 ^271 

_«30,_«31 ™»32 ~»3n r »n0 „'n 1 _*r>2  . . , ™«nn 
•^30 ^31 J'32   ' '    x3n ^nO xnl u'n2 ^nn 

/   /   / ••• / UQ
0
?'!

1
«^

2
 ''" u%^du\du2du3 ... dun (10) 

J    J    J JunU,U-,...U„ 

where 

ii = in + iii + «3/ H + «n/,     I = 0,1,2, 

Formula of N Dimensional Simplex Integration 

The coordinate simplex integration in (10) is another form of well known Dirichlet 

integration in classical analysis. The direct computation of the integration is given below. 

Si —  I   /   / ••• / uo°uilu22 ''' u*n du i du 2 du 3 ... dun 
J   J   J Ju0U1U2...Un 

r    r    r /•u0+u1+u2+...+un = l 

—  I   j   I ■• UQU^U^ ■ ■ ■ ul^duidu2du3 ... dun 
J     J     J J u0,Ui,U2,...,Un>0 

e\      fl-Un       rl-Un-Un^! />1-Un-Un_i «2 

Jo   Jo Jo Jo 

u%nU^_lu™_2 ■ ■ ■ Uj1 U1
Q duidu2du3 ... dun 

•1      /•!—«„      /•! —u„ —u„_i pi— u„ — u„_! u3 

Jo   Jo Jo 
ln      «n — 1      «n —2 12 

Un Un-1 Un-2  ' ' 'U2 
•1— Un— Un_l «2 

(   / Ui'll-^ _   Uk)   du i j du2du3 ... dun (11) 

After i\ times of integration by parts, the inner integration of (11) can be computed. 

/■1-Un-U„_l «2 .        . „ yQ 
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-5rii«?+'(i-EL1«ofei;"----- 

7o (*i + l)(»i + 2) a    v     ^*=1 v 

= f
1""'""-'--"2 »o(»o ~ l)(«o - 2) ■■■ 2 ^i1+tn_l 

Jo (»i + l)(*i+2)(»i+3)...(ii+io-l)   * 

(I - J2n
k=1 «*) ^i 

= /
1-"" — ""-3 *O(*O-1)(*Q-2)...1 ^ 

Jo (t'i + l)(*i+2)(ii+3)...(ti+»o)   * 

Jo (*i+*o)!   * 

7o (n+io + l)! lUl        j 

_ tp.Zi. ,-0+j1 + 1   |l-u„-un_! u2 

"(io + ij+1)!"1 lo 

ioliil        (      v-^n        y'i+«o+i 
= (i1+io + l)!l1~^=2WV 

/•l      />1-U„      fl-U„-tt„_l /.l-u„-un_i u3 

51 = / /    /        •••/ «s«-i<-2a---«ia 

JO    JO JO JO 

/ Uj11 1 — > u/t)   du\du2duz ... dun 

= / /      / •■•/ <"<n-Mn3-<* 
JO    JO JO JO 

duoduzduA ... dun- — 
(*o+ *i + l)! 

(12) 
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»1       r\— U„       f\— U„— Un_i /.l—U„-U„_l U4 

un un-l"n-2 U4 u3 

/•l       /-l—U„       yl—U„—Un_i pi 

Jo   Jo Jo Jo 
En t'0+n+i2+2 io!n!i2! 

Ufc) duzdmdu?, .. . dun———————rr: 
k=3        ' [IQ + %\ + 12 + *■)• 

•1       f\—Un       /-1-Un-Un-l /-l-Un—"n-1 "5 
in.,1"-1.,'"-2 „'4 

Jo   Jo Jo Jo 

I 
«n"n-lWn-2  ' ' ' U* 

duzduidu*, ... dunj: 

'*=3 

*o!*i!*2! 

(*'o + »i+i2+2)! 

"X-il1"11»-1"11") dun-idun II Jo   Jo 
iQ\ii\i2\. . Mn-2* 

(»0 + *1 + *2 + ■ • • + t'n-2 + n - 2)! 

:   Z1 <"(l - U„)t0 + il+J2 + -+8n-1 + n_1^n 
Jo 

i0\i1\i2\.. Mn-i]- 
(to + »1 + Z2 + • ■ • + in-i + n - 1)! 

i0U'i!i2!--"in! Q3^ 

(z'o + i'i +i2 + ■■■ + in + n)! 

Substituting equation (13) into (11), the integrals of a n dimensional simplex 

Sp0PiP2...Pn ("ii, m2, m3,..., mn) 

is obtained. 

Sp0p1p2...pn(m1,m2,m3,... ,mn) 
^-^«10 + »ll + »12+-"+»lr> = «»l ^-^J20 + t21+«22 + ...+ t2n = m2 

^--'«10.«llI«12i"-,«ln>0 Z-—'»20,«21.«22,-".*2n>0 

r—v»30 + «31+»32+"-+«3n = »n3 ^—\t„o + »r»l + »n2 + ---+»nn = "l„ 

^-'«30,^31,»32,•••>«3n>0 ^ «'„0 ,«n 1 ,«n2 , • • • ,«nn >0 

mi! ^2! 

iio!in!ii2!---!»in! «20^21^22!.. M2n
]- 

m3! mn! 

i3o!i31^32! • • -]-hn- in0*inl]-in2]- ■ ■ -^nJ 
-.«10 ™*11 ~»12  . . . „«In „»20 „»21 „«22  . . .      «2n x10 Xll X12          Xln X20 x21 x22          x2n 

„»30 „«31 „»32   .  . . ™«3n           ... »nO      «n 1      «n2   .  . .  „ «nn x30 X31 X32          x3n xnO xnl xn2          ''nn 

i0!zi!?2! • • .ÜJ 

(JO + *1  +^2 + • • ■ + *n +n)! 
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where 

U = in + hi + izi H (- ini,     / = 0,1, 2,..., n. 

Examples of Simplex Integrations on Simplex 

A general n dimensional simplex has n+1 ordered vertices P0PiP2.. .Pn, its Jaco- 

bian is 

J 

1 Xio «20 «30 ... Xn0 

1 Xn «21 «31 ••• Xnl 

1      «12       «22       x32       •••      Xn2 

1      «In      «2n      «3n      •••      ^nn 

Formula (14) directly gives many integrations on a simplex. 

•S'pop1pa...pn(0,...,0,m/,0, 

J   J   J JPQPU 

,0) 

«J"'    du\du2duz ... dun 
LP2-..Pn 

«IO+«a+«12+... + iln = "li m/! 

x/0 x/l xf2 

«lOi'il i«12|...|*'ln>0 

«in 

*/0!*Jl!*/2!-.-!*/n! 

« 
i'oÜi!^!...!^! 

= '£ 
(io +«i +«2 + ••• + in + n)\ 

ilo+in + ii2 + ---+iin = mi      ■        .        . . 777,,' 
xtlOx'll XH2  . . . ^«In  ""'• 

*IO>«ll!«I2)."i*In>0 

„«(0™«il ™«i2 xlQ xn xl2 
'ln (mt+n)\ 

As special case, the normal one dimensional integral formula (16) can be derived. 

/ \—\«io+«ii=="« 777,! 
SPoPl{m)=sign(J) «™d«i=J\        . x\l°x\\- —— 

Jp0p1 ^«io,«n>o (m + 1)! 
1 

-(«ii - «io) 
(m + 1) 

^ll^lO   '   xll     x10   i   xll      ^lO + ■ • •   "   xllx10        '   xnxioJ 
1 

m + 1 
(rm+1  — <rm+1\ 
^xll ^lO      ) 

(15) 

(16) 

5'POP1P2(0,0) = sign(J)       / dxidx-, 
J   JPoPiP? 
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du\du2 

Lt/2 -JJJ J   JUQUXI 

E«IO+»II+U2=O      o! 

iio,üi,üa>0      (0 + 2)! 

Spop1p2(0,0)^sign{J) /  / dxidx2 
J   JP0P1P2 

-\> 

SpoP1P2(^,0) = sign(J)       / x1dx1dx2 
J  Jp0PiP2 

^•10+Ü1 + Ü2 = 1 l! i10     in      112 
= J 2^      •    •   sn    TTXoYi   10   n    12 

^—'«io,»u.«i2>0     [L + Z)l 

SPoPlP2{l,0) = sign{J) x1dx1dx2 
J     JPoPlPl 

= -J{xio + a; ii + £12) 

SPOPIP2{0,1) = sign(J)       / x2dxxdx2 
J   JP0P1P2 

= ^J{x2o + £21 + £22) 

SPoPlP2(2,0) = sign{J) x\dxldx2 
J  JP0P1P2 

Etio+«n+«i2='2      2!       i 

■      ■      ■    ^n      (O J-0\\Xl° a'n "t12 
«io,»iii»i2>0      (Z + ZJ! 

5POPIP2(2,0) = siyn(J) /   / x\dXldx2 
J  JP0P1P2 

(17) 

(18) 

=   J{X\Q + x\x + x\2 + XioXn + X10X12 + XHX12) 

= J 
24 

(2xi0xio +X10X11 +£10X12 
+X11X10 +2xiiXn +X11X12 
+X12X10     +£i2xii     +2x12X12) 

Spop1P2(0,2) = sign{J) /  / x\dxldx2 
J  JP0P1P2 

=  J(X20 + X21 + £22 + X20X2I + X20X22 + X21X22) 

4 
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(2X20220       +220221 +X2QX22 

+ ^21^20      +2x21X21        +X21X22 (19) 

+«22^20        +222221        +2X22^22) 

Sp0p1p2(l,l) = sign(J)  I   I x1x2dx1dx2 

J  JP0P1P2 

T ^—\»10 + »11+«12 = 1  ^-^,20+*21+«22=l 

^-"/»10,«11,»12>0        ^-—'«20,«21,«22>0 

iTiioT«'u_tia ^«aoj'ji- iaa (*10+*20)!(«11 + *2l)!(*12 +»22).' 
j-MO xll x12  jX20 X21 X22     

•S,PoPiP2(
1)l) = sign(J)  /   / X!X2c/xidx2 

./   JP0P1P2 

= ^7^(2x10^20 + 2a?iiZ2i + 2xi2x22 

+ 2i022l + 210x22 + ^11^20 + #11222 + 2i2220 + x12x21) 

24 
(2x10x2o +210X21 +X10X22 

+xnx2o +2xnx2i +211X22 (20) 

+X12X20 +212X21 +2x12X22) 

SP0PiP2P3(QiQ,Q) = sign(J)       /   / dxldx2dxi 

J  J  JP0P1P2P3 2^3 

T 0! l   T J(K7w=äJ (21) (0 + 3)!      6 

■SpoPiP2P3(l>0>0) = sign(J) /   /   / xxdxxdx2dx 
J   J  JP0P1P2P3 

«10 + «'ll+»12 + »13=l      ,•          ,■           • II 
»10 „«11 „!12„I13  _ 

^—\»io-r»n-i-»i2-i-»i 

5>0       w-11 ~u~is (1 + 3)| 

•S'PoPiPaPa(1,0,0) =sign(J)  /   /   / xirfx1c?x2rfx3 

V   J   JPoPiP-zPa 

= J 2~4^10 + xn + 212 + 213) 

Spop1p2p3(0,l,0) =sign(J)       /   / x2dx!dx2dx3 
J  J  JP0P1P2P3 

r  !   / 
= ^^(^ZO + 221 + 222 + 223) 

•SPoPiP2P3(0>0,1) = sign(J)  I   I   I x^dxxdx2dxz 

J  J  JP0P1P2P3 

= </^r(230 + 231 + X32 + 233) (22) 
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5POPIP2P3(2,0,0) = stgn(J)  I  I I x2
1dx1dx2dx3 

J      J      J PQ P\ P"2. P3 

^^«10 + tii + ti2+tia-2    h     n      {l     iia 2!  
=  J>>. .        .        .      ._ X10 Xll   X12  X13    Icy    ,     o>| I 

^—'»10,»11,«12,«13>0 ^Z i- OJ. 

= •/—(zio + xn + xi2 + xi3 + xioxn + *ioZi2 + ^10X13 
60 

+ Z11X12 + X11X13 + ^12^13) 

5POPIP2P3(2,0,0) = «(/n(J) / / / xjdxj^dxa 
1/     ./     •/ PQ "1 "2 "3 

J120 
(2xioXio +X10XH +X10X12 +3^10^13 

+ X11X10 +2xnXn +I11I12 +^11^13 

+ X12X10 +X12X11 +2xi2Xi2 +X12X13 

+xi3x10 +X13X11 +X13X12 +2x13x13) 

^PoP.P.Pa(0,2,0) = sign(J)j J Jp ^ ^ ^ x2
2dx1dx2dx3 

"120 
(2x20X20        +X20X21 +X20X22 +X20X23 
+ X2lX20 +2X2lX2l +X21X22 +X21X23 

+ X22X20        +X22X21 +2x22X22 +X22X23 

+ X23X20        +X23^21 +X23X22 +2X23X23) 

Spop1P3Ps(0,0,'2)=sign(J)JJJ x2
3dx1dx2dx3 

J120 
(2x30X30 +X30X31 +X30X32 +X30X33 

+X31X30 +2x31x31 +X31X32 +X31X33                        ^3) 

+ X32X30 +X32^31 +2X32^32 +X32X33 

+X33X30 +X33^31 +^33^32 +2X33X33) 

SpoPlPaPa{hl,0)=sign{J)       /   / xlx2dx1dx2dx3 
J      J      J PQ P\ P-2 PZ 

^-^U0 + «ll+»12 + «13=l  ^-^i20+«21+»22 + «23=l 

~~ ^ilO,ill,il2,'13>0 -^—'»20,«21 ,«22,«: 23>0 

^*10««ll™«12™«13T«20T»21T*223.t23 
x10 xn x12 x13 x20 x21 x22 x23 

(z'lO + ?20)!(?11 + *2l)!(»12 + *22)!(*13 + »23 ) 

' (2 + 3)1 

SpoPlPaPa(l,l,0)=sign(J) III Xlx2dXldx2dx3 

J  J  J P0P1P2 P3 
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120 
(2xi0x2o +xio2;2i +xwx22       +xi0x23 
+^11^20 +2X11X21 +XHX22           +^11^23 
+ X12X20 +^12^21 + 2xi2X22         +^12^23 
+^13^20 +£13^21 +^13^22 +2xi3X23) 

5'P0P1P2P3( 1,0,1) = sign(J)  /   /   / x1x3dx1dx2dx3 

J   J   JPoP1P2Pa 

120 
(2£ioX30 +£10^31 +^10^32 +^10^33 
+Z11X30 +2xnx3i +X11X32       +a;nx33 

+£12^30 +Z12Z3I +2xi2X32        +X12X33 

+^13^30 +^13^31 +Z13Z32 +2X13X33) 

Sp0PiP2Ps(^^A) = sign(J) j   I   j x2x3dxidx2dx3 
J  J  JP0P1P2P3 

120 
(2x20X30 +X20^31 +^20^32 + ^20^33 

+^21^30 +2X21X31 +X21X32 +^21^33 

+^22^30 +^22^31 +2X22^32 +Z22Z33 
+ ^23^30 +^23^31 +^23^32 +2x23X33) 

(24) 

One dimensional simplex integration (16) is same as conventional integration. Formulae 

(17)-(20) are 2-d simplex integrations over triangles. Formulae (21)-(24) are 3-d simplex 

integrations over tetrahedrons. 

Simplex Integration on General Two-dimensional Blocks 

Since simplex integrations always have the Jacobian J as factor and J is an oriented 

area, the integrations on positive area and negative area can be neutralized. Denote 

P\P2P3 • • ■ Pn Pn+l = Pi 

with 

Pi = (xu,X2i) 

as a polygon, the integrations (17)-(20) on 

PiP2P,---Pn 
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are computed by summations. (25)-(28) are the integrations of DDA method. Here P0 can 

be any point, PQ = (0,0) are chosen in order to have simpler formulae. 

/   /    dx1dx2   =J2k=1
Sp°p*p*+i(°>°} 

En 

k=l 

X\ fc X2 k 

X\ fc+l      X2 fc+l 
(25) 

(A) 

En 
,   , SpoPkp    (1,0) 
k—1 T 

/lA)
XldzidX2 = HH-I 

X\ k X2 fc 

X\ jfc+l X2 fc+l 

zi fc x2 k 

X\ k+l X2 fc+l 

(iCl Jt + Xl fc+l) 

(x2 k + X2 fc + l) (26) 

/  /     xjdx1dx2 = 5^t=1 
5

>OP*PJ,+I(2,0) 

1    V-^™ 
= 12 ^k=i 

X\ k X2 k 

X\ fc+l       X2 k+l 

"\k +X2ik+1 +X1 fcXj fc+j) 

y y(A) 24 ^fc=1 

/   /     x0dx\dxo = — > 
y y(A) 

2        24 ^-fc=i 

X\ k x2 k 

X\ fc+l       X2 fc+l 

(2xi fcXi fc +£a jfcXl fc+l 

+xx fc+i^i k    +2xi fc+ixi fc+i 

Xl fc x2 k 

Xl fc+l       X2 fc+l 

(2x2 fcX2 fc +X2 fcX2 fc+l 

+x2 fc+ix2 fc    +2x2 fc+ix2 jt+i) 
(27) 

/   /     x1x2dxidx2 = 2_jk=1 Sp0pkpk+l(l,l) 

1  Y^" 

~~ 24 ^fc=i 

Xl k x2 k 

Xl fc+l       X2 fc+i 

// J    J(A) 

(2xi fc^2 fc + 2xi fc+ix2 fc+i + xi fc-x2 fc+x + xi fc+ix2 

^2dxidx2 = -£" 
<k=\ 

Xl k X2 k 

Xl fc+l       X2 fc+l 

(2xi fc-x2 fc +xi fcx2 fc+i 

+ Xl fc+lX2 fc       +2X1 k+1%2 fc + l) 
(28) 
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Figure 3. shows equal-lateral 2-dimensional polygons. The equal-lateral triangle, 

square, pentagon and hexagon are in the unit circle. The distance from each node to the 

circle center is 1. The edge length and area of each equal-lateral polygon are listed in the 

following table. The centers of gravity of the equal-lateral triangle, square, pentagon and 

hexagon are the center of the unit circle. 

Figure 3. Equal-lateral of 2-dimensional polygons 

The coordinates (x,, m) of vertices of equal-lateral polygon can be computed by the 

following formulae: 

Xi = sm(360/n * i) 

yi = cos(360/n * i) 

i = 1,2,- • • ,n 

here n is the edge number of the polygons. 

Using the simplex integrations, the same area and center of gravity are obtained for 

each equal-lateral polygon. 
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polygon 

equal-lateral triangle 

equal-lateral square 

equal-lateral pentagon 

equal-lateral hexagon 

edge length 

1 

area 

j3\/3 = 1.299038 

2.000000 

f\/l0 + 2^ = 2.377641 

±3\/3 = 2.598076 

Simplex Integrations on General Three-dimensional Blocks 

Integrations (21)-(24) are the integrations of tetrahedrons. By summations of sim- 

plex integrations (21)-(24), the volume or integrations of any 3-d block can be computed. 

Assume 
p[«l pi'} pi'}... pi*} r\   r2   ri rn{i) 

pi'}        _ pi'} : — i  o 3 s 

are all outward rotated polygons of a block, 

PW _ /_[*] J'} J'}\ 

and P0 = (0,0,0). The volume of this block is given by (29). Computed by simplex in- 

tegrations, integrals (29)-(32) are represented by the coordinates of the boundary vertices 

only. 

/   /   /     dxidx2dx3 = y^       >   ,     Sp p[i]p[i]pii]  (0,0,0) 
J J J(v) ^i=1 ^k=1   r°^    *    h+l 

n(0 1   r-\J        ^—\'HV 
— 6 Z-^i=\ Z-Jk=\ 

US, 
III 

'1 1 

'1 fc 

X 2 1 

"2 k 

'3 1 

'3 k 

Xl Jfc+1      X2 fc+1      X3 Jfc+1 

vn(t) 
/        'S'p pWpWpW (1)0,0) 

j=l ^—'fc=l     ^O^!   ^fc   ^fc + i 

1  Y^
S
     v-^n^ 

'I 1 

-1 fc 

'2 1 

'2 k 

l3 1 

'3 fc 

xl fc+1      X2 fc+1      X3 fc + 1 

(29) 
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J   J   J(V) 
x2dx\dx2dxj, 

(Xi  i + Xi k + Xi k+l) 

1  Y^
S
    v-^n(0 

94 2-Ji=i 2-jk=\ 

-l it 

'i fc+i 

2 1 
[i] 
2 fc 

x3 1 
fil X 3 A: 

^2 fc+1      X3 fc+1 

7  J J(v) 

(x2 1 +X2 fc +x2 k+l) 

1    v-^'8       V-^"^ x3dx1dx2dxz = — > > 
24 ^—'i=i ^—'fc=i 

-l l 

-l * 

yi fc+i 

^2 1 
M J2 k 

u3 1 
„[t] 
5 3 fc 

X 2 fc+1 "3 fc+1 

/// 

/// 

X3 1 +X3 fc +X3 fc+l) 

x\dx\dx2dxz = / 

1 

(30) 
Vn(0 ^ 

Z_,t=1 A^k=i "^P^Pr^+i 
to  (2,0,0) 

x\dx\dx2dxj, = Y^T; / 
120 

T[»l xi l 

xi fc 
[•] vi fc+i 

"(0 
^fc=l 

x2 1 

"('2 k 

X 2 fc+1 

^3 1 
„[t] 
'3 fc 

"3 fc+1 

y y ^(v) 
x2dx\dx2dxz = 

(2xi ixi i         +xi ixi k +xi ixi jfc+i 
+xi feXi i        +2xj fcXi fc +xi fcXi fc+i 

+ Xi Jfc + lXi i       +Xi k+lXi k +2Xi  fc+lXj k+l) 

1=1 ^—-^fc=l 120 <^i 

'i i 

'l fc 

■-2 1 
[«] 

S2* 

^3 1 
[»] 

C3 k 

Xl k+l      X2 fc+1       X3 fc+1 

(2x2 lX2 1 +X2lX2Jt 

+ X2 fcX2 i +2X2 fc^2 fc 

+ X2 lX2 fc+1 

+ X2 fcX2 fc+1 

J   J   J(V) 
x3dx\dx2dxs 

+ X2 fc+lX2 i       +X2fc+1X2fc       +2x2 fc+lX2 k+l] 

120 

'\ i 
J«] 
'i fc 

'i fc+i 

m 
x2 1 

[•] 
X2 k 
[«] 

^2 fc + 1 

'3 1 

'3 fc 

'3 fc + 1 
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ill 
Hl 

(2.T31X31 

+£3 kX3 1 
+ X3 fc + lX3 1 

+£31X3 fc 

+ 2x3 fcX3 fc 
+ X3 fc + lX3 fc 

x1x2dx1dx2dx3 = y y ippiiipi.-]; 
i.—/J=l z—'fc=l     ■ro^1   ^fc   J 

j ■       ^ 3 ii       ^ it I t J 

x1x2dx1dx2dx3 = — 2^.=i 2^fc=i 

+X31X3 fc+1 

+X3 fcX3 fc+i 

+2x3 t+ix3 fc+i^ 

,[•■] (1,1,0) 
k+1 

120 

x1 x 

['1 
1 Jfc X 

x2 1 
ftl 

X 2 fc 

3 1 
[«1 
3 fc 

'1 fc+1 X2 fc+1      X3 fc+1 

(2xi ix2 1 

+ £l fc^'2 1 

+ Xi fc+iX2 1 

x\Xzdx\dx2dxz 
(V) 

1      Y^
S

        V-rn(0 
120 ^i=l 2-sk=\ 

+ Xl lX2 fc 

+2X! fcX2 k 

fXi fc+lX2 fc 

"(0 

1 1 
[i] 
1 fc 

^2 1 

^2 fc 

u3 1 

'3 fc 

'1 fc+1 •r2 fc+1       X3 fc+1 

(2xi 1X3 1 +Xi 1x3 k 

+xi fcx3 1        +2xi fex3 fc 

fXi fc+lX3 1       +Xi fc+lX3 k 

/ / lv)X2X3dxidx2dx3 = 12Ö K=i SUi 
I'J 
1 1 
w 
1 fc 

-2 1 

-2 k 

3 1 

M 
3 fc 

Xl fc+1      X2 fc+1      X3 fc+1 

(2X2 1X3 1 +X2 1X3 fc 

+ X2 fcX3 1 +2x2 fc^3 k 

+X2 fc+lX3 1       +X2 fc+lX3 fc 

+ Xi iX2 fc+1 

+ Xl kX2 fc+1 

+2xi fc+ix2 k+i, 

+ Xl 1X3 fc+1 

+ Xl fcX3 fc+i 

-2xi fc+ix3 k+i 

+ X2 1X3 k+1 

+ X2 fcX3 fc+1 

-2x2 fc+ix3 jt+i. 

(31) 

(32) 

Figure 4. shows 3 different blocks. Each block is shown from two different view 

angles. For each block, the geometric formulae of boundary plan angle, edge length, dis- 

tance of boundary polygon node to the polygon center, distance of polygon plane to the unit 

sphere center, and the theoretical volume of the block are listed in the following tables. 

The first block is a tetrahedron with four equal-lateral triangles as its boundary faces. 

The block is in the unit sphere. The distance from each vertex to the sphere center is 1. 
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Figure 4. 3-dimensional blocks with equal-lateral boundary polygon 
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First block of 4 face polygons 

boundary polygon number 4 

edge number of polygons 3 

angle of two adjacent polygon planes arctan(2\/2) 

edge length of polygons 2 w f 

distance from polygon to sphere center | 

distance of node to its polygon center | \/2 

distance from vertex to sphere center 1 

volume of block ^V^ = 0.51320 

The second block is a cube with six equal-lateral squares as its boundary faces. The 

block is in the unit sphere. The distance from each vertex to the sphere center is 1. 

Second block of 6 face polygons 

boundary polygon number 6 

edge number of polygons 4 

angle of two adjacent polygon planes 90 

edge length of polygons A= 

distance from polygon to sphere center 4= 

distance of node to its polygon center J| 

distance from vertex to sphere center 1 

volume of block -^ = 1.53960 
3 \/3 

The third block has twelve faces, each face is a equal-lateral pentagon. The block is 

in the unit sphere. The distance from each vertex to the sphere center is 1. 

Third block of 12 face polygons 

boundary polygon number 12 

edge number of polygons 5 

angle of two adjacent polygon planes 180 — arctan{2) 

edge length of polygons -4= (\/h — 1) 

distance from polygon to sphere center -4=- v 5 + 2\/5 

distance of node to its polygon center -4— v/2(5 — \/5) 

distance from vertex to sphere center 1 

volume of block f^y 10(3 + \/5) = 2.78516 

In order to use the simplex integration, the node coordinates (x, y) in each boundary 
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polygon have to be computed. Based on the angles of boundary planes and distances of these 

planes to the sphere center, the polygons, the edges and the vertices can be computed. 

The three dimensional simplex integrations give the same volume as computed di- 

rectly from the geometric formulae listed in the tables. 

Rock Failure Examples by DDA 

The equilibrium of the DDA method is reached by minimizing the total potential 

energy. As the energy is computed by integrations, most of the DDA formulae are formed 

by the polynomial integrations over the generally shaped blocks. The simplex integration is 

developed and applied to DDA formulation. This new integration gives analytical solutions. 

The integrand can be multi-dimensional polynomials. 

In the two dimensional case, the integration domain can be any convex or concave 

polygons. In the three dimensional case, the integration domain can be any complex body 

with plane polygon boundary. The integration results are simply represented by the coordi- 

nates of boundary vertices. Based on the simplex integration, DDA algorithms are simple, 

efficient yet accurate. Most important, the accurate integral solution of mass matrix ensured 

the convergence of "open-close" iterations. 

Three rock failure examples are presented. The failure process is a transition from 

continuous to discontinuous states. The discontinuous deformation analysis (DDA) has to 

fulfill physical laws of both continuous and discontinuous materials. When the computed 

displacements and deformations are large enough to be visible, the mechanism of the failure 

and the final damage can be shown, and the ultimate strength of materials or structures can 

be intuitively estimated. The visible sliding and joint opening from the computation can 

demonstrate that the physical laws are satisfied. 

The computations require equilibrium in both the discontinuous contacts and the 

continuous zones throughout the entire dynamic process. Following a real time sequence, 

the DDA uses a step by step approach. The displacements of each time step are so small that 

normal linear equations for small displacements can be adopted. At the end of each time 

step, the equilibrium in both discontinuous interfaces and continuous zones are reached. 

As the step displacements are small, the kinematic relation and friction law are ex- 

pressed as linear inequalities. Based on natural contact phenomena, an "entrance theory" 
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was developed. The entrance lines are used to form linear inequality equations. The same 

linear inequalities are used to define the entrance distances, entrance points, entrance con- 

straints and entrance criteria. The "open-close" iterations ensure that no tension and no pen- 

etration occur at all entrance positions. There are three entrance modes: open, sliding and 

locking. Coloumb's Law is also fulfilled at all entrance modes and all entrance positions. 

There are 1500 to 2000 rock blocks in each example. The dimensions of computed 

regions are about 40 to 80 meters. The numbers of time steps are from 300 to 600. The total 

elapsed times are from 0.2 to 2.0 second. The maximum total displacements are more than 

ten times the average block diameter. 

Figure 5 shows the collapse process of a tunnel caused by high initial stresses. 

Figure 6 shows the penetration of a missile at a velocity of 300 meters per second 

into a blocky rock mass with two tunnels. 

Figure 7 shows the damage state as a strong stress wave passing through three tun- 

nels excavated in a blocky rock mass. 

Figure 8 shows a rock toppling failure caused by slope excavation. 
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