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Numerical Manifold Method

Gen-hua Shi

Geotechnical Lab, US Army Engineer Waterways Experiment Station
Vicksburg, MS 39180-6199

Abstract

Aiming at global analysis, the well known mathematical manifold is perhaps the
most important subject of modern mathematics. Based upon mathematical manifold, this
numerical manifold method is a newly developed general numerical method. This method
computes the movements and deformations of structures or materials. The meshes of the
numerical manifold method are finite covers. As the material domains, the finite covers
overlapped each other and covered the entire material volume. On each cover, the manifold
method defines an independent cover displacement function. The cover displacement func-
tions on individual covers are connected together to form a global displacement function on

the entire material volume.

The global displacement function are the weighted averages of local independent
cover functions on the common part of several covers. Using the finite cover systems, con-
tinuous, jointed or blocky materials can be computed in a mathematically consistent manner.
For a manifold computation, the mathematical mesh and physical mesh are independent.
Therefore, the mathematical mesh is free to define and free to change. As the mathematical
mesh, the covers can be moved, can be split and can be easily removed and added. Mov-
ing the covers, the large deformations and moving boundaries can be computed by steps.
By dividing a cover to two or more independent covers with their displacement functions,
jointed and blocky materials can be modeled.

Both the finite element method (FEM) for continua and the discontinuous deforma-
tion analysis (DDA) for block systems are special cases of this numerical manifold method.
In the current development stage of numerical manifold method, by using finite cover ap-
proach, the extended finite element method can compute more flexible and visible deforma-
tions and movements of joints and blocks.







Chapter 1

General Finite Covers of Manifold Method

1.1 Finite Covers Formed by Mathematical Mesh and Physical Mesh

Based on finite cover systems, the newly developed “manifold method™ has the po-
tential to meet more engineering requirements. The term “manifold” here is a generalization
of the differential manifold, which is the main subject of differential geometry, topology,
differential topology and modern algebra of mathematics. The difference of the “manifold”
here and the traditional differential manifold is the following: the global functions of the
differential manifold are highly differentiable and entirely defined irrelevant with the cov-
ers; the global functions of manifold here defined are based on covers and only piecewise
differentiable, mostly discontinuous on the contact interfaces.

Physically, material objects often have different shapes. When the material volumes
have fractures, blocks or different zones, the shapes and boundaries become more complex.
Under conditions of large deformation and moving boundaries, more difficulty occurs be-
cause the conventional analytical approximations are feasible and useful only in a local con-

tinuous domain which represents only a small part of whole material volume.

Manifolds connect many individual folded domains together to cover the entire ma-
terial volume. Then, the global behavior can be computed by functions defined in local cov-
ers. The new method has separated and independent mathematical mesh and physical mesh:
the mathematical mesh defines only the fine or rough approximations; as the real material
boundary, the physical mesh defines the integration fields.

The mathematical mesh is chosen by user, consists of finite overlapping covers
which occupy the whole material volume. Conventional meshes and regions, such as reg-
ular grids, finite element meshes or convergency regions of series, can be transferred to fi-
nite covers of the mathematical mesh. Based on finite covers, manifold method is flexi-
ble enough to contain and combine well developed analytical method, widely used FEM
method and joint or block oriented DDA method in a unified form.




FIGURE 1.1 General covers with one joint
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FIGURE 1.2 General covers with two joints




The physical mesh includes the boundaries of the material volume, joints, blocks
and the interfaces of different material zones. The constantly changing water surfaces are
also part of the physical meshes. The physical mesh represents material conditions which

can not be chosen artificially.

The physical cover system is formed by both mathematical and physical meshes.
If the joints or block boundaries divide a mathematical cover to two or more completely
disconnected domains, those domains are defined as physical covers. Therefore, the physi-
cal covers are the subdivision of the mathematical covers by discontinuities. The manifold
method is more suitable to compute large deformations, moving boundaries of both contin-
uums and jointed materials.

In Figure 1.1 and 1.2, two circles and one rectangle (indicated by thin lines) delimit
three mathematical covers
Vi, V2, Vs

to form the mathematical mesh. The thick lines indicate the material boundary and inner
curved joints. In Figure 1.1, V; is divided by the physical mesh into two physical covers
13, 1q, V3 has two physical covers 21, 2, and V3 has two physical covers 34, 32.

Figure 1.2 shows a more complex mesh. Mathematical cover V, contains three
curved lines, but only two totally disconnected physical covers 2;, 2, are formed. The up-
per curve (inside cover 2;) can’t cut through rectangle V; to form more physical covers,
therefore cover 2; is a single physical cover. Similarly since mathematical cover V3 just
intersects the end of the upper curves, physical covers 3;, 3, are formed. In both Figure
1.1 and 1.2, the common part of two or more physical covers are defined as *“elements’” and

marked by its cover numbers.

Figure 1.3 shows a simple but often useful chain cover system. This cover system

is specially convenient for long and narrow material shapes.

Figure 1.4 shows a DDA block system, here each block is a mathematical cover and
a physical cover. There are no overlaps between any two covers in DDA case.
1.2 Cover Functions and Weight Functions on Finite Covers

The normal analytical method or series method work only on very simple domains

such as spheres, rectangles and the functions are limited to be highly differentiable. For the
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FIGURE 1.3 Chain cover system

FIGURE 1.4 General covers formed by DDA blocks




manifold method, the cover displacement functions are independently defined on individual
physical covers. Local displacement functions can be connected together to form a global
displacement function on the whole material volume. Since the joints can cut one cover to
more covers as shown in Figure 1.1 and Figure 1.2, the functions are disconnected on the
two sides of these joints. The global displacement function is general and flexible enough to
represent the wide variety of continuous or discontinuous materials located within moving
boundaries.

The cover functions u;(z, y) defined on physical cover U;

ui(x)y) (il?,y) € Ui (11)

can be constant, linear, high order polynomials or locally defined series. These cover
functions are connected together by the weight functions w;(z, y)

wi(z,y) =0 (z,y i (1.2)
with
> wj(z,y) =1 (1.3)
(x,y)EU,'

The meaning of the weight functions w;(z,y) is weighted average, which is to take
a percentage from each cover function u;(z, y) for all physical covers U; containing (z, y)

Using the weight functions w;(z, y) a global function F(z,y) on the whole physical
cover system is defined from the cover functions

F(z,y) = Zwi(w,y)ui(z,y)- (1.4)

Figure 1.5 is a one dimensional example, there are three physical covers

Uy = A14,, U, =B1B,;, Us =CiC
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cover U, cover U,
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FIGURE 1.5 1-d general covers
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ul(x) — A3A4, :EEU;[
us(z) = B3By, z €U,
U3(:E) = C304 , xz € Us
wi(z)ui(z) = AszAsA,, zel;
wg(I)UQ(.T) = BlB5B6B2, TE U2
wz(z)uz(z) = C205C4, z € Us;
The global function F(z) is
F((E) = ’U),‘(:E)U,‘(IE) = A3A5B5B(56'5C4.

1.3 Global Functions on Continuous and Discontinuous Materials

For material analysis, four basically different methods are often used. In the order of
their development, analytical solutions are the earliest, then came finite difference, the finite
element method, and most recently the distinct element method and the discontinuous de-
formation analysis. The analytic approach has simple material boundary such as rectangles
or circles and has no meshes. The finite difference uses grid meshes with equal spaces and
as such, is more general than the analytic solution method. The finite element method was a
revolution, it shifts from differential equations to integral equations, from the smooth func-
tions to the piece wise smooth functions. The meshes of finite element method can give
results of generally shaped continuous materials. The latest distinct element method and
discontinuous deformation analysis method are for block systems which are totally discon-
tinuous. The displacement functions of distinct element method and discontinuous defor-
mation analysis are defined for individual blocks of general shape which are completely
disconnected from block to block.

As a one dimensional example, Figure 1.6 shows the accuracy of different methods
when approaching a natural function (thin curves) which is discontinuous at a point. The
thick smooth curve of Figure 1.6 a) is the approximation from the analytical and finite differ-
ence methods. The thick piecewise smooth segments of Figure 1.6 b) are the approximation

from FEM. The one dimensional elements are

ToT1,T1L2,T2X3,T3T4,T4Ts5.




Yo X X2Y2 X33 XgYs  Xs Xo Xy X2 X33 X4 Xs

FIGURE 1.6 Accuracy of different methods
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The disconnected segments of Figure 1.6 ¢) are the approximations from DEM and

DDA methods. The one dimensional blocks are

YoT1,Y122,Y2%3,Y3%4,Y4T5.

which have more unknowns than the previous methods.

Figure 1.6 d) and Figure 1.7 show the approximation of the manifold method. There

are seven one dimensional physical covers

Uy =291, U = 2072,

Us = ys324,

Us = I173,

Us = y3s,

U7 = T4T5

Uy = r2Z3,

Since the natural function has a jump at the point 3 = y3, the mathematical cover

zox4 was split to two physical covers Uy = zp23 and Us = y324.

wy(@)uy(z) =

The global function

7
F(:Z?) = Z w,-(:z:)ui(a:) = AOA1A2A3B3A4A5
1=1

Aoy,
roAiz2,
r1Agas,
z9 Az,
Bjzy,
y3A4$5,
z4As,

zelh
z €U,
z € Us
z e Uy
z € Us
z € Us
z € Ur

(1.5)

is very close to the original natural curve. The global displacement functions of the

manifold method are capable of representing large deformations of fractured or blocky ma-

terials until the ultimate damage stage in a unified mathematical form.

For the discontinuous deformation analysis, the material body is simply individual

blocks. Each block is a mathematical cover, and each mathematical cover is a physical

cover. The mathematical mesh and physical mesh are the same where all covers are not

overlapped. Therefore the discontinuous deformation analysis is the totally discontinuous

case of manifold method.

11
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FIGURE 1.7 Accuracy of manifold method
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1.4 Elements As The Common Part of Overlapped Covers

For two dimensional manifold computation, the cover displacement functions
ui(z,y) and v;(z,y) are defined on cover U;. The global displacement functions u(z, y)
and v(z,y) on the whole material body are two global functions:

The cover displacement functions u;(z,y) and v;(z,y) defined on physical cover
U;

ui(:cay) (:v,y) el

Ui(:E,y) (xay) el

can be constant, linear, high order polynomials or locally defined series. These cover
displacement functions are connected together by the weight functions w;(z, y)

with

Y wj(zy) =1

(z,y)€U;

Using the weight functions w;(z,y) a global displacement function u(z,y) and
v(z,y) on the whole physical cover system is defined from the cover displacement func-

tions

n

’lé((L‘, y) = Z u)i(x? y)u,‘(l', y)

1=1

v(z,y) = Z wi(z,y)vi(z,y)

Each common domain of physical covers is defined as a element e, From formula

(1.6), in each element, weight function w;(z,y) has a analytical representation, which is

13




either constant 0 or a differentiable elementary function. Therefore, global displacement
function (u, v) has analytical representation in each element.

The cover displacement functions can be given in the following form:

)
= [Ti(z,y)] [Di]

di1
diz

:<t11(l‘,y) tiz(z,y) tis(zy) ... tim-1(z,y) tlm(xay)) dis
tar(z,y) taa(z,y) tas(zy) .o tamoa(zy) tem(z,y)

dim—l

(1.7)

X321

where the subscript “1” represents the i-th cover.

If a element e is not in cover U;, T;(z,y) = 0.

T,'(x,y) #O e € U;
Ti(may) =0 e é Ui

1.5 Possible Displacement Functions for General Covers

On cover U;, (ui(z,y), vi(x,y)) is the displacements of point (z,y) on z any y di-
rection respectively, The cover displacement functions (u;(z, y),v:(z, y)) often take one of
the following forms:

the constant function on cover U;

vi(z,y) = dis (1.8)

the complete first order approximation on cover U;

ui(,y) = diy + disz + disy
vi(2,y) = diz + digz + digy (1.9)




the complete second order approximation on cover U;

ui(z,y) = din + dizz + disy + dizz® + digzy + dig1y?
vi(2,y) = dig + digz + disy + digz® + divozy + dizay? (1.10)

or the general series form u;(z,y) and v;(z,y) on cover U;

[

di2
di3
(fl(x,y) 0 flew) 0 e e fu(y) 0) s

0 fi(z,y) 0 folz,y) oo ... 0 fm(z,y) :

di21;z—1
\ di2m )
(1.11)

1.6 Coefficient Matrix of Equilibrium Equations for General Covers

Assume the number of physical covers is n, and there are 2m unknowns in each
physical cover,

di2m—-l
di?m

the total potential energy has the form

15




-

K1 Ko K3 ... K, Dy

1 I(Ql Kip ]’-&’23 Y ¢ 2n .D2
I = 5 ( D? D;T DBT o D?; ) K3 I&’.32 Kiz ... I\,gn D
Ko Kpn Kps ... Kpp D,
F
F,
+(DT pI DT ... DIH)| F | +C. (1.12)
F,

Because each cover has 2m degrees of freedom, each submatrix K;; in the coefficient matrix
given by equation (1.12) is a 2m x 2m matrix. D; and F; are 2m x 1 submatrices, where
D, represents the displacement variables (d;1 diz diz dia ... dizm)T of physical cover 1.
From the formulation of II, the formula (1.12) can be written as a symmetric representation,

- 1T
I\i]' = Iin

The equilibrium equations are derived from minimizing the total potential energy
I1. The i-th row of following equation (1.13) consists of 2m linear equations

oIl
adir

—0, r=1,2,3,4,...,2m,

where d,,. is the displacement variable of cover i. The matrix of obtained simultaneous equi-

librium equations is same as the matrix of quadratic form (1.12):

Ky I Ky ... Kin D, F
Koy K99 Koy ... Ky, D, F
]&’31 I&";;Q I(gg A I&’gn D3 — F3 . (113)
Ko Kny Kps ... Kan D, F,

For material analysis, F; is the loading on cover i distributed to the 2m displacement vari-
ables. Submatrices [[;;] depend on the material properties of coveriand [K;;], where: # j

is defined by the overlapping or contact between cover i and cover j.

16




Chapter 2

Element Matrices of General Finite Covers

2.1 Stiffness Matrix for General Covers

For the manifold method with general covers, the elements are the common domains
intersected by the physical covers. The integration domains of the stiffness matrices are the
whole elements which are the intersection of several physical covers.

Same as FEM method, the relationship between stress and strain, is given by

UI E ]. 14 0 61‘ 61‘
oy | =1 |V 1 1911 ey | =[El| & |,
Try 0 0 5 Yoy Yoy
where
1 v 0
FE
Ej]=—= v 1 0 |, (2.1)
l1—v 1—v
0 O 5

and E, v are Young’s modulus and Poisson’s ratio respectively. And

(Z& ) ) ey

=1

&
2
=([Ty] [T2] ... [Ty . ,
(@ i mn| -
{Dn}
Ou(z,y)
€4 or
(6 >= Ov(z,y)
y oy
Yoy au((;;,y) _*_Bv(az,y)
[Tz(a'ay)]:
:(tn(l',y) tio(z,y) tis(z,y) ... tim-1(z,y) tlm(“’»!/))
ta(2,y) toz,y) teal(z,y) ... tem-a(z,¥) tam(z,y)

17




Then

€ n m %l
( €y ) = EZ _%t‘z;l | {dij} (2.3)

Try i=1 j=1 Q{%l + %J_
For cover 1, denote
oty Ot12 <153 Oty
Sz i o o3z
[Bi] == at '551(% ot _ajzat At —a—fat ot _gfat 24)
By T o e T ar oy T ar oy T o
Then
{D1}
€ {DZ}
e | = (18 (B2 (B @ (Ba) | D} |=1BID]  (29)
T:r:y :
{Dx}
where
Bl = ([8,] (B [B:] © [Ba])
{D1}
{D:}
(D] = | {Ds}
{Dn}
The strain energy II, done by the elastic stresses of element e is
1
I, = A —2-(510,1 + €40y + Yoy Tzy) dz dy, (2.6)

where the integration is over the entire material area A4 in that element. Then

18




~ 5 [[ (DY BT EB)D) dady
= 5oy | [[ e s 0)
- %{D}T(SC[B]T[E][B]){D},‘ (2.7)

where 5°¢ is the area of that element.

Therefore,
[B1])*
[32];

srEBl = s | BT | (B8] (B2) (] .. [B.]),  (29)
(BT

is the element stiffness matrix.
Then

S¢[B,)T[E](B;) — (K], rs=123,...,n

2.2 Initial Stress Matrix for General Covers

Following the time sequence, the manifold method computes step by step. The com-
puted stresses of previous time step will be the initial stresses of the next time step. There-
fore the initial stresses are essential for manifold computation.

For the element e, the potential energy of the initial constant stresses {c0} =

T.
(02 o 7oy ) is

I, = // (ez02 + eyag + 'yxyrgy)dx dy
A

=//A(ex &y m)(goy) dz dy

o8 O

Ta:y

- [ 1DyBI" (o2 e dy
— 5{D}TBI"{"}, (2.9)




where S°¢ is the area of that element. Therefore,

[B1]T
[BQ]i 0'2
—S¢[B.]T{c%} = —5° | (B4l o0 (2.10)
: T
. zy
[Ba]"
is the load matrix.
Then
a2
~-S¢[B,]T [ o9 - {F.}, r=1,203,...,n.
Txy

2.3 Point Loading Matrix for General Covers

Different from ordinary FEM method, a load point can be any point in its element.
The point loading force ( F, F, )T acts on point (z,y) of element e. And the displace-

ments on force point (z,y) is

— -y rew” (5 (2.11)
Therefore,
[T
[T2)" .
. T )
[ <1€y> = | 1] <F;) (2.12)
(7]

20




1s the load matrix.

Then

{Tr]T<?> — {(F}, r=123,...,n
Yy

2.4 Body Loading Matrix for General Covers

Assuming that ( fz  fy )T is the constant body force loading acting on the material

area of element e.

The potential energy due to the body loading is

_// feu(z,y) + fyo(z,y)) de dy
// we,y) v(@,y) (}[;)dmdy
= [//A (11" ds dy] (fz) ‘ (2.13)

Therefore,

el ()= | F5F | 1)

9 [ngm,%]’f dz dy
| AT (;) (2.14)

and
7T dx dy

fF[ ledy

[T3(z,y)) dr dy

ATz, y)]T dz dy

21




is the body loading matrix. And

Then
[/L[Tr(iﬂay)]Tdmdy] (;;) ~  {F}, r=1,23,...,n

2.5 Inertia Force Matrix for General Covers

Inertia force matrix is equivalent to mass matrix of FEM. This matrix is the most
important matrix of manifold method. Giving a small time steps, inertia force matrix will
control the movements and the stability of all points of the whole material volume. In each
time step, the displacements should be small enough to have the final result independent

from the choosing of the specific time steps.

Considering the current time step, denote (u(z,y,t) v(z,y,t) )T as the time de-
pendent displacements of any point (z,y) of element e and M as the mass per unit area.

The force of inertia per unit area is

fo(z,y,t) ot2 \ v(z,y,t) ot?

The potential energy of the inertia force of element e is

_//A(u(x,y,t) v(x,y,t))(frg$’z: ;) dz dy

://AM(u(m,y,t) oy, ML 4y gy (2.16)

(fx(:v,y,t)> __mZ (“("”y’t)) _ _mm P8} (2.15)

ot?

Assume {D(0)} = {0} as the element displacements at the beginning of the time
step, { D(A)} = {D} as the displacements at the end of the time step, A as the time interval
of this time step. Then

_ _ o{D(0)} = A?3*{D(0)}
{D} ={D(A)} = {D(0)} + A_—b—t— L v

_ a0} | & 2{D0), o)

22




6*{D(0)} 2 3{D(0)} 2 9
e —{D}— T =D - {vO)  (218)
where
{V(0)} = a{D( )}, (2.19)

is the velocity at the beginning of the time step. Then the potential energy becomes

;= m(p) | [[ i ] (200 - Tvo).
| (2.20)

Therefore,

N reorrenaa) (2o - 22voy). @
A

is the load matrix. Thus,

2 [ renrine s o]
T /@y
[T5)T
=2TX\; // [TB]T ([Tl] [TZ] [TS] [Tn])dxdy - [I{]’
L
(2.22)
and
= // "7, v)) de dy | (V.(0)
[Tl]T
2M [T2]T
=il E ) () ) () (@) el (YO} o (P
L T,]7

(2.23)

23




Then
2 mermees)  + w) e

r,s=1,2,3,...,n.

2 el menas) voy )
r,s=1,2,3,...,n. (2.25)

where

2.6 Fixed Point Matrix for General Covers

As a boundary condition, some of the elements are fixed at specific points. The con-
straint can be applied by using two very stiff springs. Assume the fixed point is (z,y) at

element e with the displacements

There are two springs which are along the z and y directions respectively. The stiff-

ness of the springs is p. The spring forces are
(fz:) _ (—pu(fﬂ,y)> _
fy —pU(SL‘, y)
The strain energy of the spring is I, then

Iy = (u(z,y)* +v(z,y)?)

(u(z,y) v(:c,y))<“(x»y)>

v(z,y)
= L (DY (0(2,9))" [T, 9)}{D}. (2.26)

e NI




Then

(2.27)

is the [ K] matrix. Therefore,

p[Tr(z, )T [Ts (2, y)] — (K], r,s=1,2,3,...,n.
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Chapter 3

Entrance Theory on Contacts for General Covers

3.1 Definition of Contacts for General Covers

Thus far, only individual covers and elements were considered. It is necessary to
connect the individual discontinuous boundaries into a system. For the movements of dis-
continuous boundaries, no tension and no penetration must be satisfied between two contact
sides. The following theory of kinematics for material is based on contacts. Finding the con-
tacts in each time step, allying stiff springs on contacts, the discontinuous displacements can

be computed.

The time steps can be chosen small enough so that the displacements of all points
in the whole material body are less than a pre-defined limit p. Therefore, the displacements
can be small enough so that the displacements (u(z,y), v(z,y)), the rotations r(z, y), the
deformations (e, €, v5y) can be accurately represented as linear functions of the cover un-

knowns [D;)

(u(z,y),v(z,y)) = Z[Ti(w,y)]{Di}
r(z,y) = Y [Ri(z,y)|{D:}

=1

& | = S 1Bilz, D} (3.1)
7zy =1

Based on the small step displacements, the contacts are defined in the beginning of
each time step. Each contacts are formed with two sides. All of the pair of two sides that are
possible to contact, penetrate or entrance from one to another at the end of the time step are
defined as contacts. Since practically there are no penetrations on the two sides that allowed

on the contacts, so the contacts are merely the entrance positions.
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There are two kinds of contacts: angle to edge and angle to angle. The edge to edge
contacts can be transferred to angle to edge contact. (See Figure 3.1) Assume the maximum

step edge rotation is &, there are the criteria for the contacts:

[1] for angle to edge contact, the minimum distance of the angle vertex to the edge of

the contacts is less than 2p;

[2] forangle to angle contact, the minimumdistance of two angle vertices of the contacts

is less than 2p; (See Figure 3.1)

[3] for angle to edge contact, when the angle vertex translates to the edge without rota-
tion, the maximum overlapping angle of the angle and the edge is less than 24;

[4] for angle to angle contact, when the angle vertex translates to the vertex of other
angle without rotation, the maximum overlapping angle of the two angles is less than
26; (See Figure 3.2)

The computer program sets the maximum step edge rotation § = 1.5 degrees.

Figure 3.2 shows two complex blocks with many edges and angles, under this con-
tact criteria, there are only two contacts even if the distance limit 2p is lager than block

diameters.

The common sense requirements of no penetration and no tension indeed are in-
equalities. Coloumb’s friction law and limited tension are also inequalities. From formula
(3.1), the inequalities can be simplified to linear inequalities of [D;]. There are three kinds

of linear inequalities:
[11 no penetrations in contacts,
[2] tension force less than tension strength in contacts,
[3] Coloumb’s friction law in contacts.

In the computation, an angle to angle contact will be transferred to one or two angle
to edge contacts. Based on the orientation, the following formula is used to judge the angle

to edge contact penetration.
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FIGURE 3.1 Two kinds of contacts
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FIGURE 3.2 contacts between two blocks

30




P2

FIGURE 3.3 Judge penetration by rotation
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Assume P is a point before deformation which moves to point P} after deforma-
tion; P P; is the entrance line and (z;, y;) and (u;, v;) are the coordinates and displacement
increments of P;,1 = 1,2, 3 respectively. If points Py, P, and P; rotate in the same sense
as the rotation of ox to oy (see Figure 3.3 and Figure 3.4), then P} has passed line P, P; and
is stated by the inequality:

1 1 + U1 Y1 -+ 1
A=|1 z9+ Uz Yz +wve| <O0. (32)
1 T3 + Uz Ys + V3

This simple formula is still correct even when these three points move simultane-
ously.

3.2 Entrance Lines of Contacts for General Covers

The kinematics can be imposed on the global equations by adding stiff springs to
lock the movement in one or two directions. The theory of block and joint kinematics will
decide where and when to put the stiff springs so that the movements of blocks and joints
are basically the same as in the real space. For the kinematics, the formulae of penetration
judge and penetration lock have to be consistent to ensue the convergency of open-close
iterations.

For the contacts, the “entrance” lines can be defined. A contact between two convex
angles is shown by Figure 3.5, where the two thick lines are the entrance lines. Penetration
will occur if the two entrance lines are passed by the vertices of the other angles simultane-
ously.

[1] For the angle to angle contact, if both angles are less than 180°, the two entrance
lines are defined according to the following table:
two entrance lines

a < 180° B <180° OFE; OFE,
o < 180° g > 180° OE; OFE,
o > 180° B < 180° OE, OE,
a > 180° g8 > 180° OE; OE,

[2] For the angle to angle contact, if a angle is larger than 180°, the two entrance lines
are the two edges of the angle greater than 180°.
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FIGURE 3.5a Entrance lines of different contacts
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[3] For the angle to edge contact, the only entrance line is the edge.

[4] For the edge to edge contact, the two edges are parallel, there is only one entrance

line in this case, the entrance line can be any of the two edges.

As showing by Figure 3.6, the definition of entrance line is still correct even if edges
of two sides of the contact are parallel or slightly penetrated.

The penetration judgment in different contacts are as following:

[1] For an angle to angle contact, if both angles are less than 180°, the two entrance line
have to be passed simultaneously by the vertex of another angle.

[2] For an angle to angle contact, if a angle is larger than 180°, one of the two entrance
lines has to be passed by the vertex of another angle.

[3] For an angle to edge contact, the only entrance line bas to be passed by the angle

vertex.

For an angle to angle contact, penetration happens when there are no vertex entering
the opposite angle as shown in Figure 3.7. Therefore the fact that if a vertex is in other angle

is not a criteria of penetration. The penetration is related to the entrance lines.

FIGURE 3.7 Using of entrance lines
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In order to prevent the penetration of the two sides of the contacts, stiff springs are

applied to some entrance lines:

[1] For angle to angle contact, if both angles are less than 180°, a stiff spring is attached
between the vertex and its entrance line which has been passed first or has smaller
passing distance d. For this type of contact, only one stiff spring is applied.

[2] For angle to angle contact, with a angle larger than 180°, if any one of the two en-
trance lines has been passed by the corresponding vertex of another angle, a stiff
spring is applied along the normal to this edge. If two entrance lines have been
passed, two stiff springs are applied to the two entrance edges.

[3] For angle to edge contact, one stiff spring is applied to the entrance edge.

The entrance distance d from P; to P, P3 can be computed by the following formula,

1 1 I +U1 y1+U1
d= —[AZ 1 zo4+us y2 + v < 0. (33)
1 $3+U3 y3+v3

l=\/(x2+u2—x3—u3)2+(y2 + vy —y3 — v3)?

If a contact is open in the beginning of a time step and is closed in the end of the
same time step, the entrance time and position in this time step can be computed. Assume
¢ = 0 in the beginning of the time step, and ¢ = 1 in the end of the time step, and

1 zy4+tur y1 +tuy
A(t) =11 T2 + t'LLQ Y2 + t"l)z
1 z3+tuz ys+tus

then
A(0)>0 A(1)<0
The entrance time to satisfies equation
1z +tour 1+ tovy
A(to) =11 a9 +touy y2+iove| = 0 (34)

1 z3+tous y3 +tovs
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Neglecting the second order infinite small, ¢y can be computed by simpler formula:

1 = I i n 1z v
to==|1 zo o 1 we yo|+|1 z2 v (3.5)
I z3 ys I uz ys 1 z3 w3

The contact position (o, yo) is

Zo z1 + uito
= 3.6
<y0> <y1+vlt0> (3:6)

These formulae are still correct even when the three points move simultaneously.

3.3 Contact Transfer to Next Time Step for General Covers

The computation of manifold method follows time steps. The closed contact points
should go to next time step and find new representing contacts. The closed contacts of the
previous time step will be transferred to the next time step, if the contacts are found in the
same contact position. The entrance lines will be transferred in case it is possible. The angle
to angle contacts and angle to edge contacts have different contact parameters and different
stiff springs. The same contact may also has different contact parameters in different contact
state.

The springs of closed angle to angle contacts:
[1] normal stiff spring,

The springs of closed angle to edge contacts in the sliding mode:
[1] normal stiff spring,
[2] pair of shear sliding forces,

The springs of the closed angle to edge contacts locked in both normal and shear
directions

[1] normal stiff spring,
[2] shear stiff spring,
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The closed angle to angle contacts have the following contact, parameters:
[1] normal forces,
[2] normal displacements.

The closed angle to edge contacts in the sliding mode have the following contact

parameters:
[1] normal forces,
[2] normal displacements,
[3] one of the two possible sliding directions,

[4] contact positions on the edges,

The closed angle to edge contacts locked in both normal and shear directions have

the following contact parameters:
[1] normal forces,
[2] normal displacements,
[3] shear forces,
[4] shear displacements,
[5] contact positions on the edges.

Transferring the contacts to next step, an angle to angle contact may transferred to
an angle to edge contact. Also an angle to edge contact may transferred to angle to angle
contact. As transferring to different kind of contacts, some contact parameters may not be

needed.

3.4 Normal Contact Matrices for General Covers

Assume P, is a vertex, P, P is the entrance line and (2, yx) and (ug, vi) are the
coordinates and displacement of Px,k = 1,2, 3 respectively. If points Py, P, and P; rotate
in the same sense as the rotation of ox to oy (see Figure 3.3), then the distance d from P; to
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line P, Py is
1 T + U1 Y1 + (%]

A 1

—Z—ZT 1 Z9 +u2 Y2 -‘I—'UQ ’ (37)
1 z3+wuz y3+us

d=

l:\/($2+u2—x3—u3)2+(y2+v2—yg—v3)2

d should be negative if Py passed edge P, P;

The step displacements
(uiyv;) 1=1,2,3

is small as the results of small time step. The contact distance —?— is small from the definition
of the contacts. Then

1 T Y1 1 U1 W 1 ry v
So=1|1 2 wa|, |1 us wof, |1 z2 w2
1 z3 ys3 1 uz ys3 1 z3 w3

are the first order infinite small, and

1 Uy M
1 Ug V2
1 us w3
is the second order infinite small.
I zi4+ur yi1+v
1 a3+ wuy yg+vs
1 z3+us y3+w3
1 =z yy 1 u; 1 21 v 1 wup v
=1 zo yo|+|1 wuzs yo|+|1 x93 vo|+|1 wuy vy (3.8)
1 23 wys 1 us s 1 z3 w3 1 wug w3

Neglecting the second order infinite small, there is

1 Ui Y1 1 Ty V1
A~ So +11 U Y2 + 1 Ty V2|, (39)
1 uz wys3 I 23 w3
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As
1 z74+u; y1+v1

1 zo+4+uy y2+v2
1 z3+us ys+vs

is first order infinite small,

d =
1
V(za +ug — 23 —u3)? + (y2 +v2 — y3 — v3)?
1 zy4+u; y1+wv
1 zo4uz y2+ v
1 z3+us y3+us

d =~

1
V(w2 —3)* 4 (y2 — y3)?

1 z1+w y1+ur
1 9 + U2 Y2 + vo (310)
1 z3+4+us ys+us

Therefore the formula of [ can be simplified as

L= /(22 —23)" + (2 — ¥3)° (3.11)
Considering only the first order small,

Uy
U1

A=Sot((n-w) (an-22)(
+ ((ys — 1) (:cl—:vg))<“2> (3.12)
(

V2

us
(%} ’

+((y1 —y2) (22 —71))

(1) = (T o),
(4) = Tewlio),
(1) = Mswlp).
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then

A= S0+ ((y2—ys) (a3 —$2))[T($1>yl)]{D}’
+((ys —y1) (z1 —23)) [T(z2,92){ D}, (3.13)
+((y1 —y2) (22 —21)) [T(2s,y3){D}-

Denoe
() = 10w (22 ), (3.14)
(©) = T (224
b Tl (42, (5,15
and
() = B (2228,
(G = jirem)” (421

S

T2 — I

SO

H1 Gl

H, G-

{H}=| Hs {Gy=|Cs
d={H}T{D} + {G}T{D} + % (3.16)

The potential energy of the normal spring is
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I, = gdz
L (17 (0) + 6y (D) + )

=L [{D}T{H}{H}T{D} +{DY{GHG}Y'{D} + 2{D}Y {HH{G} {D}

+2 (S°> {D}T{H}+2( ){D}T{G}+ (Sl") ] (3.17)
Thus,
p{HHH}T
p{HHG}"
p{GHH}T
p{GHG}"

are the normal spring matrices of [K]

—p <%> {H}
()@

are the load matrices of [F).

Then
p{H.HHYT = [Kn), 1s=1,23,...,n
P{Hr}{Gs}T — [Krs), r,s=1,2,3, n
p{G.H{H,}T — (K rs] r,s=1,2,3,..., n
p{GHGYT = [K),  rs=1,23,...,n
—p<%> {H:} — {F.} r=1,2,3,...,n
—P (%) {¢.} - AR} r=1,2,3,...,n (3.18)




3.5 Shear Contact Matrix for General Covers

In Figure 3.8, point (2o, yo) is on the edge P> Ps. Point (zo, yo) is also the assumed
contact point of vertex P;. The shear spring on the direction P, P3 connects vertices P; and
bB.

Let

I=+/(z2+us— 23 —u3)? + (y2 + v2 — y3 — v3)2,

the shear displacement of P and P; along line P, P; is

d= 1P -FF (3.19)
1 T3+ uz) — (T2 + U
= 7 ((z1+u1) = (20 + wo) (yl+”l)‘(y°+”°))((<y3+v3§—gy2+v2>))‘

The step displacements
(us,vi) 1=1,2,3

is small as the results of small time step. The contact distance % is small from the definition

of the contacts. Then the projection of the displacements (ug, vo) and (uy, vy ) of points Py
555
and P; on vector P, P;

U1

Ug
Vo

Uy
(23 +uz — 22 — us y3+v3—y2—v2)< )

(23 4+ uz — 22 —usy ys +v3 —y2 —v2)

are small. And

u
(U3—u2 ’Ug—’l)g)(vs)

is second order small.

The contact distance is small from the definition of the contacts. Then Py P; is small,
and

T3 — T2
So={(21—20 y; —1
o= (a1 0 Yt JO)(ys—yz)
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is small.

Uz — U
(161—110 yl"y0)<3 2)

vz — U2

is second order small.

d =
1

\/($2+U2—x3—u3)2+(y2+v2—y3—v3)2

(z3 +us) — (z2 + u2)>

((z1 +u1) — (2o + uo) (y1 +v1) — (o +UO))<(y3+v3)—(y2+vz)

d=~
1

Vw2 —z3)? 4+ (y2 — y3)?

((z1 + u1) — (2o +uo) (y14v1)— (%o +vo))<

(z3 + ug) — (z2 + uz))
(ys + v3) — (y2 +v2)

Therefore the formula of [ can be simplified as

I =/(z2 —23)? + (32 — v3)? (3.20)
NSO 1 Uy — Ug
d~7+7<$3_$2 yB_y2)<v1_Uo>,
S 1
d%70+7(x3_;p2 yg——yz)(zll)
1
+ 5 (22— 3 y2—y3)<u0>. (3.21)
Vo
Denote
1 Ty — T
HY=Z[T O 3.22
() = )" (225, 3.22)
1 To — 2
GY = —[T(zo, T2 3>, 3.23
(€)= ool (222 (3.9
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and

() = el (220,
(6 = JTtz0w)” (22 2)),
SO
H1 Gl
H2 G?
{H} = 1{3 {G} = Cfi*
H, Go
Then (3.21) becomes
d={H}"{D} +{G}"{D} + ﬁ. (3.24)

The potential energy of the shear spring is

I, = gdZ
= (o) + 6oy + 2)

=& [{D}T{H}{H}T{D} +{D}'{GHG}Y'{D} + 2{ DY {H}{G}"{D}

+2<50>{D}T{H}+2< >{D} {G}+<b;0> ] (3.25)
Thus,

p{HY{H}"

p{HHG}T

p{GHH}"

p{GHG}IT
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are the shear spring matrices of [K]

—p (%) {H}
-+(3) @

are the load matrices of [F'] from shear spring.

p{HT}{HS}T — (K], r,s=1,2,3,...,n
p{HHGHT = K], rns=123,...,n
PG HENT = (K], rs=1,23,...,n
P{Gr}{Gs}T — (K rs], r,s=1,2,3,...,n
—p (%) {H:} — {F.}, r=1,2,3,...,n
—P (%) {¢:} - A{E} r=1,2,3,...,n (3.26)

3.6 Friction Force Matrix for General Covers

Friction forces are treated as loading forces in forward analysis, therefore the coef-

ficient matrix of the equations will still be symmetric.

When Coulomb’s law allows sliding between two sides of boundary contacts, there

exist friction forces in two sliding sides if the friction angle ¢ is not zero.

As shown in Figure 3.8, P, is on one side of a contact and P,, P3, Py are on the other
side of the same contact. The friction force is calculated from the normal contact compres-
sive force and the direction of the friction force is depending on the movement of P; relative
to P, in the direction from P, to P3. Let p be the stiffness of normal contact spring, then

the friction force

F=p-d-s-tan(¢), (3.27)
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P2 Po —

Ps

FIGURE 3.8 Position of shear spring

where

d is the normal penetration distance,
tan(¢) is the friction coefficient,

s = sgn (movement of P, relative to Py in the direction from P, to P;) , and
1, ifz>0,
sgn(z) = { 0, ifz=0,
-1, ifz <O.

The friction force F is along the direction

(@ -2 -wm),

and

l=(z2 — 23) + (y2 — y3)?
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is the length of line P, Ps.

Then the potential energy of friction force F at Py side is

Hf:—?(ul U1)<$3—$2)

Y3 — Y2
= FY )" ({5 27
= F{DYT {1},
Denote
() = im0,
and
() = T (222,
SO
Hy
H,
(= | A
ﬁn
Then
{H1}
{Ha}

_F{H}=-F| U}

(H,)

is the loading matrix for point P;; and
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(3.29)

(3.30)




-F{H,} = {F}, r=123,...,n

Similarly, the potential energy of friction force F at P, side is

Hf:—%uo vo)((“‘“))

(3 — y2)
= — F{D;}*Tj(z0,90)|" (((zi :;22))//[[)
= - F{D;}T{G},
Denote
1 T3 — T
(G} = 7[T(wo,yo)}T <y3 — s ) ’
and
1 T3 — Ty
{G} = 7[Ti(aco,yo)]T <y — Yy )
SO
Gy
G,
{Gy=|
é‘ll
Then
{G1}
{G2}

+F{G) = +F | {Gs}

(G}

(3.31)

(3.32)

(3.33)
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is the loading matrix for point Fy; and

+F{G:} - {F:+}, r=12,3,...,n
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Chapter 4
Finite Element Covers of Manifold Method

4.1 Finite Covers Formed by Finite Element Nodes
and Physical Boundaries

The manifold method can perform the computations of finite element method for
continuous material. After transferring the finite element mesh to finite covers of manifold
method, the joint lines can be input as new physical mesh, then the same finite element mesh
can compute joints in the same material volume.

The finite element meshes can be used to define finite covers for manifold method.
Considering any node, all elements having this node form a mathematical cover (called
“star” in algebraic topology).

In Figure 4.1 and 4.2, the mathematical cover V5 of node 5 has three elements 2 4 5,
25 3 and 3 5 6. The mathematical cover V; of node 1 has only one element 1 2 3 which is
the only element having node 1.

mathematical covers of Figure 4.1 and Figure 4.2

node element element element element element element
1 1,2,3

2 1,2,3 245 2,53

3 1,2,3 2,53 35,6

4 24,5

5 2,4,5 2,53 3,5,6

6 3,5,6

Figure 4.3 shows the mathematical covers of nodes 1, 2, 4, 5, mathematical covers
of all nodes are listed in the table.
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5,
2, 3;
51 51 51
5 {

FIGURE 4.1 FEM covers on two blocks
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3

i 51 3
2,2 22 31
4 5, 51 51 6,

4 5 6

FIGURE 4.2 FEM covers with a joint
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mathematical covers of Figure 4.3

node element element element element element element
1 1,2,5 1,54

2 2,3,6 2,6,5 25,1

3 2,3,6 3,7,6

4 1,54 4,58

S 1,54 1,2,3 2,6,5 5,6,9 5,9,8 45,8
6 2,6,5 2,36 3,7,6 6,7,10 6,10,9 6,9,5
7 3,7,6 6,7,10

8 4,58 59,8

9 59,8 5,6,9 6,10,9

10 6,7,10 6,10,9

Any original finite element is the common area of the mathematical cover of its
nodes. In Figure 4.1 and Figure 4.2, mathematical cover Vs of node 5 is the area defined
by the polygon 2 4 5 6 3; mathematical cover V; of node 2 is the area defined by the poly-
gon 1245 3; mathematical cover V3 of node 3 is the area defined by the polygon 125 6 3.
The common part of mathematical covers Vs, V, and Vs are original finite element 5 2 3.

The physical mesh of Figure 4.1 and 4.2 are the thick lines, which are the bound-
aries and the fractures of the material volume. The physical covers or covers are defined as
following:

[1] The region of physical cover is the materials contained in the mathematical cover, or
mathematically speaking the intersection of the mathematical cover and the material
field.

[2] If the material boundaries, block boundaries or fractures divided the mathematical
cover to totally isolated regions, each region is a physical cover. Therefore the phys-
ical covers are the subdivision of the mathematical covers.

The mathematical covers and divided physical covers of Figure 4.1, 4.2 and 4.3 are
listed by the tables.

the mathematical covers and physical covers of Figure 4.1
math cover physical cover  physical cover  physical cover  physical cover
Vi 1,

57




Vs 21 29

Vs 31 32
Vi 4 45
Vs 51 02
Ve 61 6,

the mathematical covers and physical covers of Figure 4.2

math cover physical cover  physical cover  physical cover  physical cover
Wi L

Va 2 2y

Vs 31

Vs 4, 49

Vs 5

Ve 61

the mathematical covers and physical covers of Figure 4.3

math cover physical cover  physical cover  physical cover  physical cover
Wi 1 1,

Va 2y 2

Vs 31

Va 4 4,

Vs 1 952 53
Ve 61 62 63
Ve 71

Ve 81 8,

Vs 9, 9, 93
Ve 10,4

4.2 Elements as The Common Part of Node Covers

The elements of the manifold are the common regions or the intersections of the
physical covers. Each point inside the material boundary lies in a “‘element” which is a com-
mon part of exactly three physical covers in the triangle finite element case. The relations
of the original finite element terminology and its manifold generalization are
dimensions finite element method manifold method
0-d to 2-d node physical cover
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1-dto 1-d edge two cover intersection
2-d to 0-d element intersection of covers

Under manifold method, the “elements” and “nodes” here are the extensions of their
FEM counterparts. Using the new nodes and elements, the joints can open and slide, the
blocks can move away and the continuous area of the material body can still be connected.

The proof of these important conclusions come directly from the definition of the
finite cover systems and the cover functions and global displacement functions of the man-
ifold method.

A original finite element can be divided to several elements of manifold method by
the block boundaries, joints or fractures. Before the deformation, the nodes share the same
position. It can be understood as many layers divided by discontinuities on the original sim-
ple finite element mesh.

The manifold elements of Figure 4.1, Figure 4.2 and Figure 4.3 are listed bellow.

Physical covers or nodes of elements of Figure 4.1
element number physical cover  physical cover  physical cover
1,2,3 1l>21a31

24,5 29,41,5 21,42,5
2,53 21,52,31 22,51, 32
3,5,6 31, 52,62 32,51, 61

Physical covers or nodes of elements of Figure 4.2
element number physical cover  physical cover  physical cover
1,2,3 11’21a31

2,4,5 22,41,51 21,42,51
25,3 21,91,31 22,51,31
3,5,6 31, 51’61

Physical covers or nodes of elements of Figure 4.3
original element physical cover  physical cover  physical cover
1,5,4 11,51341

192y5 11321151 ]-2)22152
2’6’5 21’61,51 22162352 21763751
2,3,6 21731a61
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3,76 31,71,61

4,5,8 41,51,82 4,,53,8;

59,8 51,92,82 53,91,8:

5,6,9 53,61,9 51,63, 92 52,62,93
5,6,9 51,61,94

6,10,9 61,101,94 61,101,9:

6,7,10 61,71,10;

In Figure 4.1, the only joint inside the material divided completely the material to
two disconnected parts, any manifold element divided by this joint have completely differ-
ent nodes or physical cover numbers. Therefore the two manifold elements are free to move

independently.

element separation along joint in Figure 4.1

original element manifold element manifold element
24,5 29,41,51 21,492,529
2,53 21,52,31 22,51,32
3,5,6 31,592,692 32,51,61

In Figure 4.2, the only joint inside the material divided partly the material, any man-
ifold element divided by this joint have partly different nodes or physical cover numbers.

Therefore the two manifold elements can have different movements.

element separation along joint in Figure 4.2

original element manifold element manifold element
245 22,41,91 21,42,51

2,53 21,51,31 22,951,341

3,5,6 31, 51,61

If two manifold elements share a edge of original finite element mesh, as this edge

is not a joint, the two manifold elements have the same nodes on the edge:

element connection along edges in Figure 4.1

nodes of edge manifold element manifold element
2,3 11,21,3: 21,92,31
2,5 21,42,92 21,52,31
2,5 29,41,91 22,51,32
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35
3,5

nodes of edge

2,3
2,5
2,5
3.5
3,5

21)52731
29,51,39

element connection along edges in Figure 4.2

11,21,34
21,49,51
29,41, 5
21,51,31
29,51,31

manifold element

31,52,62
32,51, 61

manifold element
21,91,31
21,51,31
22,581,381
31,51,61
31,901,6;

Using the manifold definition of nodes and elements, the following important con-

clusions can be proved and also can be seen directly from Figure 4.1, 4.2 and 4.3:

[1] the elements are irregularly shaped;

[2] each element has three physical cover numbers;

[3] these three covers have one element as their common area;

[4] the three covers can be seen as three “nodes” of the element;

[5] the adjacent elements have the same nodes along the common edge;

[6] two elements divided by fractures or boundaries have different nodes.

4.3 Cover Functions and Weight Functions of Finite Element Mesh

The displacement functions are independent from the material boundary. If the ma-

terial oécupies only part of the element, the displacement functions are still the same. For a

triangular element, there are three covers containing this element corresponding three nodes.

Therefore each element is the common region of three covers of its three nodes.

For a element, the weight functions are computed, denote i; : (z;,y;) the coordi-

nates of nodes « = 1, 2, 3, and the related nodal displacements as follows:
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coordinates — displacements
i ¢ (xl’yl) - (ul,vl)s
it (T2,92) — (uz,v2),
i31 ($3,y3) — (U3,1)3).

The displacement field can be described as:

u=a; +biz + ay,

(4.1)
v =as + bz + c2y,
The nodal displacements are
u; = a1 + bz + aay1,
uy = a; + bize + 1y,
uz = a; + bizs + c1ys,
(4.2)
v; = az + bez1 + coy1,
vy = ag + bax2 + C2¥2,
v3 = a2 + baz3 + c2y3,
and by matrix notation equation (4.2) becomes
uq 1 1 »n ay
Ug = 1 T2 Y2 b1 3 (43)
Uus 1 z3 3 c1
and
V1 ]. T 1)1 ag
V2 = 1 T2 Y2 bz . (44)
V3 1 T3 Y3 C2
Then
-1
ay 1 oy w»n uy
by | =11 22 y2 uz |,
C1 1 I3 Y3 Uus
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—1

as 1 I Y1 (%1

by | =1 22 vy vg |,
C2 1 T3 Y3 Vs
and
a az
u=(1 2z y)[b |, v=(1 2 y)|b |,
1 C2
thus,
1 1 yl -1 U1
u=(1 2 y)|1 z9 1wy ug |,
1 z3 y3 u3
and
-1
Iz yn vy
v=(1 z y)|[1 zo u vy
]. I3 Y3 Vs
Denote .
I =z u
(fi fo fi)=(1 = y)|1 z, y )
1 z3 ys
and "
fir fiz fis 1 =z, w»n
for fa2 faz =1 zo yo )
fs1 fa2 faz 1 23 ys3
and the determinant
1 T2 yl
A=|1 T2 Y2
1 I3 Ys
is two times the area of the element.
+ T2 Y21 _|T1 Y1 + 1 WU
1 2 -1 T3 Ys3 3 Y3 T2 Y2
1 zo y =i—ly2 +1y1 N
1 A 1 ys 1 ys 1y
3 Y3
n 1 z9 _ 1 z n 1 z
1 X3 1 x3 1 T2
then
fii fiz fis 1 [ T2Ys — T3Y2 T3Yr — T1Ys  T1ye — T2y
f21 f22 f23 :_A— Y2 — Y3 Ys — Y1 Y1 — Y2
f31 f32 f33 I3 — X2 Ty — T3 T2 — I

(4.5)

(4.7)
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fll f12 f13

fa fB)=(1 = y) fa foo fa3 ],
fs1 fa2 fa3
fi fi1 + faiz + fary
f2 | = | fizt f2z + fa2y | . (4.8)
f3 fiz + fasz + fa3y
Ul v
u=(fi fo f3)|u], v=_(fi fo f3)]| v (4.9)
U3 V3

In the finite element, the cover functions are the constant function u;, v; over the

whole cover. The cover functions (u;(z,y), vi(z,y)) defined on physical cover U;

(ot = (1) wwren w10

The weight function w;(z, y) is the shape function of finite element method.

wi(z,y) = fi(z,y) 1=1,2,...,n

The meaning of the weight functions w;(z, y) is weighted average, which is to take a
percentage from each node displacements u;, v; . For each element, the summation of three

weight function of three nodes are 1.

> wilz,y) = 1. (4.11)

(z,y)€U;

Equation (4.11) can be derived from equation (4.7),

fuut fiz+ f13=1
for + faa + f23=0
fa1+ faa+ f33=0
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wi(z,y) + w2z, y) +ws(z,y)
=fi(z,y) + fa(z,y) + fa(z,y) =1

4.4 Finite Element Global Functions for
Continuous and Discontinuous Materials

Using the weight functions w;(z,y) a global function on the whole physical cover
system is defined from the cover functions

e = (Basm) “
{sen= (g fom) 19
Then

(o (5 0 fp k)|

— [Te]{De}, " (4.14)
where
{D:1}
(T.] = ([Th] [T»] [T3]), {De}=<g£),

and

[Ti] = (fi(z,y) fi(:g,t)>’ {D;} = (31’), i=1,2,3.

fi(z,y) fit+ faiz + fary
folz,y) | = | fiz+ f2z + faoy |-
f3(z,y) fiz + fazz + fazy
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The cover functions of the triangular finite element method are constants, the global

functions are linear functions of the coordinates (z,y).

For manifold method, the cover function can be normal two dimensional series,

where the unknowns are the coefficients of the series.

{Uf(:c,y) } _ (Z}ll us‘ij(way)) (4.15)

i iss5(z,y)

The global displacement function is the combination of locally defined series.

(i)
(i otz
<Z?=1 i u,:]'s]'(:z:,y)w,;(:c,y)> (4.16)

2im1 E;’f—_l vijs;(z,y)wi(z,y)

11

The submatrix form of the global displacement function is

u(z,y) | _
{uoud — o (17)
where
{D1}
[Te]:([Tl] [T2] [Ts]), {De}"—‘ {D2} )
{Ds}
and
[T.] =
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(v

Vi1

U2

V2
fa 0 fio 0 fis 0 ... ... fom 0> 313
0 fau 0 fio 0 fiz ... ... 0 fam i3

Uim

Kvim)
i=1,2,3.

fij(z,y) = sj(z,y)wi(z,y) 1=1,2,3, j=1,23,...,m.

4.5 Finite Element Equilibrium Equations Based on Manifold Method

The total potential energy II is the summation over all the potential energy sources:
individual stresses and forces. In the following, the potential energy of each force or stress
and their differentiations are computed separately.

[1] the strain potential energy II. produces the stiffness matrix,

[2] the potential energy II, of initial stresses produces the initial stress matrix,
[3] the potential energy II,, of point load produces the point load matrix,

[4] the potential energy II,, of body load produces the body load matrix,

[5] the potential energy II; of inertia produces mass matrix,

[6] the strain potential energy II, of contact springs produces contact matrices,
[7]1 the potential energy Il of friction forces.

There are n physical covers or n nodes. For the two dimensional triangle elements
7, there are three physical covers or nodes per element j;, j2, 3. Each physical cover or

node 7 has two unknowns (u;, v;)
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Therefore the unknown [D;] of cover i is a 2 x 1 submatrix. The coefficient matrix
should formed by the 2 x 2 submatrices [K;;] in the equation (4.18). The force term F; on
cover ¢ is also a 2 x 1 submatrix due to the dimension of D;

Adding all potential energy together, the total potential energy has the form

1(11 ]X"]Q I&’13 .o Ky, D]
I\’gl I(22 1{23 - A’Qn Dz
I = % ( DlT Dg D;{ o DT’I; ) IX’31 K3 Kz ... Ks, D3
K,y K, K., ... K, D,
F
Fy
+(DT pT pI ... pIy| B | +C. (4.18)
F,
From the formulation of II, the formula (1.12) can be written as a symmetric repre-
sentation,

. _ 7T
I = K,

For cover i, equations

o1l oIl
=0 =0 4.19

Ou; ’ Ov; ( )

represent the equilibrium of all the loads and contact forces acting on cover 7 or node 7 along

z and y directions respectively.

The differentiations
0’1l
0d;,0d;, ’

are the coefficients of unknowns d;, of the equilibrium equation (4.18) for variable d;,..

r,s =1,2, (4.20)

The differentiations (4.20) of the total potential energy I, produces n equations of
submatrices as there are n physical covers or nodes in the manifold. The simultaneous equi-
librium equations have the same coefficient matrix as the quadratic form of II in (4.18):
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I\"] 1 ]{1 2 I(l 3 ... I\"l n D1 F1

I(2l Koy I(gg e I(gn D, FQ
Ii’gl 1{32 11’33 e I(gn D3 — Fg . (421)
Ky, Kpo Kps ... Kpn D, F,

Because each node or cover has two degrees of freedom in 2-d FEM manifold, each element
[K;;] in the coefficient matrix given by equation (4.21) isa 2 x 2 submatrix. {D;} and {F;}
are the 2 x 1 submatrices.

In case the cover functions are series with m unknown coefficients, the displacement
function (u;(z,y),vi(z,y)) have 2m unknowns. Therefore each submatrices K;; in the
coefficient matrix given by equation (4.21) is then a 2m x 2m submatrix. D; and F; are

2m x 1 submatrices, where D; represents the displacement variables of physical cover i.

di Uil

dio Vi1

di3 Uq2

dig Vio

dis U3

{Di} = dis =1 vis
di2m—-] Um

diZm Vim
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Chapter 5

Element Matrices of Finite Element Covers

5.1 Stiffness Matrix for Finite Element Covers

For FEM, the integration domains of the stiffness matrices are whole elements with
standard boundaries. For manifold method, the integration domains of the stiffness matrices

are the manifold elements, which can be part of the elements.

Same as FEM method, the relationship between stress and strain, is given by

Oz E 1 v O €x €z

oy | = stv 10 ey | =Ell & | (5.1)
1-v 1—v

Try 0 0 =5 Yoy Yy

where

(8] = 1 (

and E, v are the Young’s modulus and Poisson’s ratio respectively. And

(1) - mapy

{D1}
=([T1] [T2] [T3)) | {D2} |,
{Ds}

where
m=(§ 7). wi=(%).
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and

h fuu+ faiz + fary
fo ]l = | fiz+ foex + fa2y | .

fs fi3 + fazz + fasy
Then
U1
A N NN
z s T g u
(ey)=0—a§0—afyzo7j% o
T 8h dfi 3fy 3 8fs 3fs 2
*y dy oz dy T dy oz Uug
U3
3
v
faa 0 fara 0 fa3 O ulg
= 0 fax 0 fzz 0 fa3 vy
far far fa2 fe2 faz fas vs
V3
Let
[Be] = ([B1] [B:] [Bs]),
where
fai O
[Bi=1 0 fa], i =1,2,3.
fzi fai
Then
{D:}

Tzy

(ei)=[Be]{De}=([Bll [B,] [Bm(

{D2}
{Ds}

The strain energy II. done by the elastic stresses of element e is

1
He = // ‘2’(520'3: + €yOy +7J:y7-xy)d$ dyv
A

where the integration is over the entire material area 4 in that element. Then
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1 e
II. = // —(ex € Yzy)| oy | dzdy
42

Try

=5 /[ DB EBHDY do dy

- 307 [ [ BB ] (D)

= (D" (SUIBTENB.) {D.), (5.7)

where S€ is the area of that element.

Therefore,
. [B,]T
S*[BTE|B = 5 | [Bo]” | (E)(1Bi) (B2l [Ba)), (5.8)
B3]T
is the element stiffness matrix.
Then
S¢(B,|T[E][Bs)] - Kimi),  ms=1,2,3,
and
fai O
[Bz] = 0 f3i P 1= 1)233)
fai fa
where

19, £ =2, second node of the element

{ i, £=1, first node of the element
13, £=3, third node of the element

5.2 Initial Stress Matrix for Finite Element Covers

Following the time sequence, the manifold method computes step by step. The com-
puted stresses of previous time step will be the initial stresses of the next time step. There-

fore the initial stresses are essential for manifold computation.
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For the element e, the potential energy of the initial constant stresses

T
{oe}=(02 oy 72)

18

I, = // (ez02 + eyag + ’nyTgy) dz dy
A
o

0
= // (€x € 7oy)| 02 | dzdy
A d

T:cy
_ / / (D )T[BT{0%} da dy
A
= S{D.}T([B.]"{0?}, (5.9)
where S°¢ is the area of that element. Therefore,
Bl]T 0'2
—S¢[B)T{0%} = —=5° [ [B)T o9 (5.10)
[Bs]T Try
is the load matrix.
Then
oy
—S¢BJT | o° — {Fin}, r=123.
Try
where

, second node of the element

11, £=1, first node of the element
{ e
{=3, third node of the element

5.3 Point Loading Matrix for Finite Element Covers

Different from ordinary FEM method, a load point can be any point in its element.
The point loading force
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acts on point (z,y) of element e. And

The potential energy due to the point loading is

I, = —(Fzu + Fyv)

=~ (5 (5.11)

Therefore,

(5.12)

5
S
N
&3 3
N’

Il
N
S83
NN
~——
TN
&
N~

is the load matrix.
Then
[Tr]T<£Z) 5 {Fy) =123,

where

i(6) =

19, £ =2, second node of the element

{ 11, £=1, first node of the element
13, £ =13, third node of the element

5.4 Body Loading Matrix for Finite Element Covers

Assuming that

(fe f)7
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is the constant body force acting on the material area of element e.

The potential energy due to the body loading is

I, = —//A(fzu#fyv)d:vdy
:—//A(u U)Gy) dz dy
= —{D.}* [//A[Te]’l"dxdyJ Gz) (5.13)

Therefore,

l/A[Te]Td:cdy} <g> = {//A (%;E) dxdyJ (;;) (5.14)

is the body loading matrix. And

s fL (4 £) o

_ fri + faiz + faiy 0
—//A( 0 f1i+f2i$+f3iy> de dy

_ (flise+f2i5’;+f3i55 0
' 0 f1:8¢ + f2iS; + faiSy )
Then P
()7 dwdy = ( : ) ,
/1, s
and
Si = f1i8° + f2:5; + fa:Sy,
where

Se :// dz dy, (5.15)
A

S :// z dz dy, (5.16)
A

Sy ://Ayd:cdy. (5.17)
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Then
ST 0 f‘t . - —
( 0 Sr) (fy) - {F’(T)}’ = 172,3-

where

iz, £=2, second node of the element

{ i1, £=1, first node of the element
13, £=23, third node of the element

5.5 Inertia Force Matrix for Finite Element Covers

The inertia force matrix is equivalent to the mass matrix of FEM. This matrix is the
most important matrix of manifold method. Giving a small time steps, the inertia force ma-
trix will control the movements of all points of the whole material volume. Choosing small

time steps, the discontinuous contact computation will be stable.

Considering the current time step, denote

(u(t) o(t))"

as the time dependent displacements of any point (z,y) of element e and M as the

mass per unit area. The force of inertia per unit area is

(ﬁ) N _Mg_:? (383) = _M[TJL{;%@—}‘- (5.18)

The potential energy of the inertia force of element e is

// (5 ) o

// M ( T]m dz dy. (5.19)

Assume {D.(0)} = {0} as the element displacements at the beginning of the time
step, {D.(A)} = {D.} as the displacements at the end of the time step, A as time interval
of this time step. Then
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{De} = {De(A)} = {Dc(0)} + Aa{Da:(O)} N %ﬁ@z{gt;m)}

AHD(0)} | A2 F{D.(0)}

ot 2 o (5.20)

0 {gtez(o)} AZ{ } _ 38{_%_:__).1 = é{Dc} — %{VC(O)}, (5_21)
where D00

oy = 24500 (5.22)

is the velocity at the beginning of the time step. Then the potential energy becomes

I = M{D.}" [ / [ ()T e dy] (~A-2—5{D.,} _ %{VC(O)}) . (5.23)

Therefore,

- [ / /,4 [T°]" (7] d:cdy] <—F{D} 224 v (0)1)_ (5.24)

is the load matrix. Thus,

%“‘;‘- // (T.ITIT.] de dy}

2M
-2 // (52 ) ] (T [Tal)dwdy} S K, (5.25)

and

M // [T]TT]dzdy] {Ve(0)}

M // ([Tz ) T (1) [dexdy} .0} > {F)}.(526)
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Then
2A—A: [//A[T,.]T[Ts] dx dy] — [Kitryi(s)), rs=1,23. (5.27)

-2-21[ //,4 [T,]T[Ts]dxdy] V) = {Fo) {z :ﬁ:g: (5.28)

where 5 (0)
Us
{V;(O)} - b—t (vs(O) ) :
The matrix integration can be computed as

J[ Eryasay
=[[ U ) = (5 L),
where

bre = / /A fof dzdy

= //A(flr + f2rz + f3ry)(f1s + f2s7 + fasy) dz dy,

and
trs =flrflsSe

+ (firfos + f1sf2r)S;
+ (firf3s + f1sfar) S,
+ forfosSez
+ farf3sSy,
+ (far f3s + f2s far)Szy

(5.29)

where
Sey = //_A zy dz dy, (5.30)

S;x=// z? dz dy, (5.31)
A

Se, ==//Ay2 da dy. (5.32)
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As this element of the manifold method is a generally shaped polygon,

PP ... Py P P, Py =Ppyy, Pi=(zi,u)

are its ordered vertices rotating from axis z to axis y. Denote Py = (2o, yo) as the arbitrary
chosen point, The analytical solutions of these integrations are the following:

1 m |1 To Yo
S¢ = 3 Z 1oz oy |, (5.33)
=111 Tip1 Yigr
S &
S; = 3 Z(:co +zi +Ti41), (5.34)
=1
Se m
Sy =3 2o +yi +yit1), (5.35)
i=1
S
e = 3 Z(m% + @i+ 2l + zizo + Tip120 + TiTit1), (5.36)
=1
e S° < 2 2 2
Syy = F Z(yo + Yy, + Yi+1 + yiYo + Yi+1Y%0 + yiyi"”l)’ (537)
i=1
€ Se -
T (2z0Y0 + 27:Yi + 2Ti41Yit1
i=1
+ ZiYo + Tiv1Yo + ToYi + ToYi+1 + TiYi1 + Tiv1Yi)- (5.38)

Then the final formula is

2M (t,, 0 i
AT ( 0 tr,> = Eeiel,  ns=1,23, (5.39)
2M (t., 0O P =123,
_A— ( 0 t”> {Vs(o)} — {Fi(r)}7 {S =1223. (540)
where

tg, £=2, second node of the element

1, £=1, first node of the element
1(€) = {
13, £=23, third node of the element
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5.6 Fixed Point Matrix for Finite Element Covers

As a boundary condition, some of the elements are fixed at specific points. The con-
straint can be applied by using two very stiff springs. Assume the fixed point is (z,y) at
element e with the displacements

u(z,y)\ _ (0
v(z,y) /) \0/)°
The computed displacements are

(v v)"

There are two springs which are along the z and y directions respectively. The stiff-
ness of the springs is p. The spring forces are

(7)=():

The strain energy of the spring is Il ¢, then

Iy = S(u* + %)
P u
-3 0(3)
= 2{DYTITITIT{D.). (5.41)
Then
(Th]”
plT)7[T.] = p ([Tle) ([h] [T2] [T3]). (5.42)
[T5]"

is the [ K| matrix. Therefore,

1 0 .
Pfrfs(o 1) - (Ki(ryics))s r,s=1,2,3.
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where

12, £=2, second node of the element

{ 1, £=1, first node of the element
13, £=23, third node of the element
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Chapter 6

Entrance Theory on Contacts of
Finite Element Covers

6.1 Contacts and kinematics for Finite Element Covers

As the physical covers are formed by the triangle element meshes and physical
boundaries, the contact surfaces are edges from

[1] block boundaries,
[2] one of two sides of joints in the material field.
The vertices of the edges can be
[1] the vertices of physical boundaries or joints,
[2] the intersection points of triangular with block boundaries or joints.

The simple penetration inequality in Chapter 3

I zv+ur y1+u
1 zo4us y2+v|< 0. (61)
1 I3 + Uus Y3 -+ V3

is fundamental for contacts.

[1] the inequality (6.1) always correct when three points Py, Py, P3 moves simultane-
ously,

[2] the inequality (6.1) is still accurate when rotation takes place,
[3] the assumption of small displacements (u;, v;) is not needed,
[4] no second order infinite small is omitted.

It seems, the judgment of three point penetration is a simple matter. One can find
several formulae for the same judgment. From mathematics the inequality (6.1) is the only
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complete accurate formula. Neglecting second order small of (u;, v;), other formulae are

also correct and accurate if the movements are small enough.
The formula of contact distance (3.3) of Chapter 3 is also an accurate formula.
1 zi4ur y1+wn

d=-11 Ty + U2 y2+’l)2 (62)
1 T3 + U3 y3+v3

l:\/(3324'“2_3?3_“3)2+(y2+vz—y3—v3)2

However, in (6.2), formula of [ is complex and should be simpliﬁed. Under assump-

tion of small pre-existing distance

1 1 =1 w»n
2 Y2

= 1
\/(x2—$3)2+(y2—y3)2 1 73 y3

Distance formula can be simplified as

d

) I zy4+wur y1+u
d— 1 oy tus g+ o (6:3)
\/(;1:2 —z3)? + (y2 —¥3)% | 1 r3+uz Y3 +v3

In formula (6.3), the denominator does not include unknown variables (u;,v;).

Therefore, formula (6.3) is a simple function with respect to unknown variable (u;, v;).

9

The inequalities (6.1) will be a equation having “=" sign instead of “<” sign if its
contact becomes a close contact. A stiff spring will be added on the contact to fulfill the
equation (6.1).

The friction law or Coloumb’s law is also inequalities.

F < Ntan(@) +C (6.4)
The solution of this inequality is
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apply a shear stiff spring ifF < Ntan(¢) +C
apply a pair of friction forces ifF = N tan(d)+C

In this way, the inequality of friction law is also transferred to equations.

The kinematics of the triangle elements is the same as the general kinematics in
Chapter 3:

[1] distance criteria of contacts,
[2] angle criteria of contacts,
[3] definition of entrance lines,
[4] penetration judgments,

[S] penetration prevention,

[6] entrance position.

6.2 Normal Contact Matrix for Finite Element Covers

Assume P is a vertex, P, P; is the entrance line and (z4, yx) and (ug, vi) are the
coordinates and displacement of Py, k = 1,2, 3 respectively. If points Py, P, and P; rotate
in the same sense as the rotation of ox to oy (see Figure 3.3 and 3.4), then the distance d
from P; to entrance line P, P5 1s

A 1 1 zi+ur y1+wun v
d:*—-:T 1 o) +UQ y2+’02 y (65)
1 z34+uz ys+us

I=+/(z2 —23)% + (y2 — y3)2.

d should be zero if P; passed edge P, Ps

Let
I z3 wun
So=1|1 =2 2|,
1 z3 y3
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Then

And

then

Denote

then

A%So—f—

{H} =
{G} =

I

I

1 wy ¥ 1 ;1 vy
1 Ug Y2 + 1 T v,
1 us ys 1 z3 w3

A =S80+ ((y2 —y3) (z3—x2)

+((y1 —y2) (22 — 1)

()
(s —w) (o1 —23) ( )
(%)

) ~ [T,y D,

U1

U2
v2

) — [Ty(za,1)1{D;),

U3

fl

[T5 (22, y2){ D;},

TN TN TN

A =50+((y2 —ys) (xs —:vg))[T,-(xl,yl)]{D,:},
+((y3 —y1) (21— 23) ) [T5(z2,92){D;},
+((y1 ~y2) (22 — 1)) [Tj(zs,y3){Dj}-

%[ ($1,y1)]T(gz:zZ)’
%[ i(22,92)])7 (i’fiiﬁ
+%[T(x3,yz)]T($:z21>’

{H:}

{Hz}

{Hs}

[TI]T(:Elayl)
[Tz]T(CEhyl)) 32:13 )
(lrn) (2o2)

~

3 (xlvyl)

(6.6)

(6.8)

(6.10)




T

{G
{G} = ({Gz
1Gs

( ($27y2
($27y2
(

NI'—I

) ys - )
Iy — I3
T2,Y2

)

)

)
(553,3/3)
o) | (7%,
( )) 2 1>

T3,Y3

[T1
[T>
[T3

Nl’—‘

[T

]
]
]
[Ty]”
)z
(T3]

where

e} = (zb, " fr(:r?, yl)) (gj:iz)’

(Fere) ) (228
(" e o) (278,

fr(z1i, y1) = fir + forz1 + f3rtn at element ¢,
fr(z2, ¥2) = fir + forza + fary2 at element 7,
fr(zs, y3) = fir + forzs + farys  atelement j.

/_\

{Gr} =

o~ = N|,_. N|,_..

_|_

and

Then (6.5) becomes |
d={H}Y'{D:} +{G}"{D;} + % (6.11)

The potential energy of the normal spring is

p
I, = 5d?
=2 (yroa+ o) + )
=2 [{Di}T{H}{H}T{Di} +{D;}{GHGY{D;} + 2{ D} {HHG} {D;}
+2(SO>{D} {H}+2< ){D}{G} ( H (6.12)
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{H:1}
{H2}
{Hs3}

pHHH} =

{H} )

p{GHH}T =

p{GHGY" =

{H1}
p{HHG}" = <{Hz}

are the [ K] matrices; and

So
(%) o
-»(2) @
are the load matrices.
Then
P{Hr}{Hs}T —
p{HHG} -
P{Gr}{Ha}T -
p{G-HG,}T -
»(F) ey -
»(P)er -
where

for element :
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({H:}T {H.}T {H;}7),

({G1}T {G:}T {Gs}7),

)({Hl}T
) ({G:}T

{H}T {H3}7T),

{G2}T {Gs}T),

(Kiryinl,  15=1,2,3,
[Iﬂri(r)j(s)], T8 = 1,2, 3,
[I(j(r)i(a)]a TS = 132’3a
(Kjmis),  rs=12,3,
{Fi(T)}’ r= 1’2333
{Fj(r)}’ r= 172a3,

2(1) =11

2(2) =12

1(3) = 13,

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)




and

J
for element j { J
J

6.3 Shear Contact Matrix for Finite Element Covers

InFigure 3.8, (0, yo) is on the edge P, P; and is the assumed contact point of vertex
Py. The shear spring is on the direction P, P3, and connects vertices P; and Py. Let

l= /(22 ~23)? + (2 — y3)?,

the shear displacement of P, and P; along line P, P; is
d= %P““’op1 .B,P, (6.19)

1 z3 +uz) — (T2 + uz
= ()=o) n+w)= o)) (120,

Denote
So = (71— 2o yl—yo)(;z:;;), (6.20)
since Py Py is small,
N So 1 Uy — Ug
d~7+7($3—$2 Ys — Y2 ) (v1-vo)’
S 1
d“—lg‘*‘?(ms—wz Ys —y2) (le)
1
+7($2-—.’I)3 y2_y3)<:j(c;> (621)
Denote
{Hl} 1 T T3 — 22
) = | {1 ) = ine ) (220, (6.22)
(H3) l Ys — Y2
{Gl} 1 T{({ T2 —Z3
€)= (G2} | = o ) (6.23)
{GS} l Y2 — Y3
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where

= (w0 o) (2T,
1= ("% " 4 w) (25

and ‘
fr(z1, y1) = fir + forz1 + farin at elementz,
Fe(zo, Yo) = fir + farzo + f3:02  atelementy,
Then (6.21) becomes

d = {HYT{D:;} + {G}"{D;} + %9 (6.24)

The potential energy of the shear spring is
P
II, = §d
=2 (T + D)+ )
=L [{Di}T{H}{H}T{Di} +{D;}T{GHG}YT{D;} + 2{D:} {HHG} {D;}

+2(SO>{D }T{H}+2( >{D }T{G}+<SO> ] (6.25)
Thus,
{Hl}\
p{HHH} = {{f? ({H:}T {H}T {H3}"), (6.26)
{H:
p{HHGY = ({H?. ({G1}T {G2}T {Gs}T), (6.27)
{H,}
{G1
p{GHH}T = ({G2 ({H)T {H}T {H3)7T), (6.28)
{G1
p{GHG} = (g?) ({G1}T {G}T {Gs}7T), (6.29)
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are the [ K| matrices, and

”p<%>{y}:—p(%> gﬁ , (6.30)
(%)@ (%) (@) o3

are the load matrices. Then

p{HT}{HS}T - [I{i(r)i(s)]v rys = 112)3a
p{HT}{GS}T - [I{i(r)j(s)]a S = 1a2>3a
p{GT}{H-‘J}T — [I{j(r)i(s)]) rs = 1’273’
p{G,-}{Gs}T - [I(](T)](s)]a r,8 = 1,2,3,
S
—-P (_IQ) {HT} - {Fi(r)}a r= 152,37
So
—-p T {GT} - {F](r)}7 r= 1a 2’3’
where
i(1) = iy,
for element ¢ 1(2) = 1q,
1(3) = i3,
and '
3(1) = 71,
for element j J(2) = jo2,
7(3) = Js.

6.4 Friction Force Matrix for Finite Element Covers

When the Coulomb’s law allows sliding between two sides of the boundary contacts,
there exists the friction forces in the two sliding sides if the friction angle ¢ is not zero.

P, is on element 1 and Pz, Ps, P, are on element 5. The friction force is calculated
from the normal contact compressive force and the direction of the friction force is depend-
ing on the movement of P relative to P, in the direction from P, to P;. Let p be the stiffness
of the normal contact spring, then the friction force
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d is the normal penetration distance,

tan(¢) is the friction coefficient,

s = sgn (movement of P; relative to P in the direction from P, t0 P3), and

1, ifz >0,
sgn(z) = {O, ifz=0,
~1, ifz <0.

The friction force F is along the direction

1

7((3?3 —z2) (y3 —y2)>,

and

= /(22 —23)% + (y2 — 13)

is the length of line P, Ps.

Then the potential energy of friction force F at Py on element ¢ is

F T3 — I
=7 Ul)(sfz—y:)

_ _ _ (z3 — z2)/!
= f{DI}T[Tz(-’Elayl)]T ( (y3 _ yz)/l )

= F{D:}"{H}, (6.33)

where (H)
— ' — l -z T( T3 — T2
o () =4 (7).
Then
()
—F{H}= -F | {H) (6.34)
{Hs}
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is the loading matrix for element z; and

—-F{H,} — {Fin }, r=1,2,3,

where

(H}=1 (fr(mé w) fr(cv(z yl)) (2 :;j) !

and
fr(z1y1) = fir + forz1 + f3ry1.

Similarly, the potential energy of friction force F at Py on element j is

nf—_——jTr(uo vo)(($3_$2)>

(y3 — y2)
=~ F{D;}"[T;(z0,0)]" (EZ’ - ;22))//11>

= - F{D;}{G}, (6.35)
where )
Gi
_ = 1172 )T [ ¥ 22
@)= (%g%) = 0,0 (72222
Then
<{G1})
+F{G} = +F | {G2} (6.36)
{Gs}

is the loading matrix for element 7; and

+f{Gr} —> {FJ‘(T)}, r = 1,2,3,

<fr(1‘o Yo) 0 ) <$3—$2>
0 fr(zo yo) ys—y2 )’

where

(\.lb—-i

{Gr} =
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fr(zo yo) = fir + forzo + faryo-

6.5 Spring stiffness

The stiffaess p of the contact springs is important. If p is too small the penetration

distances become too large so that
[1] the closed contact can not be transferred to next step;
[2] the stresses in materials can be reduced;
[3] deformation along joints and boundaries can be wrong.

If spring stiffness p is too large, the simultaneous equation can be nearly linear de-

pendent or ill conditioning so that
[1] the solution errors can be unacceptable;
[2] the iteration method may not converge;
[3] contact displacement may not be correct.

To estimate p, the relationship of spring stiffness p and material Young’s modulus
E is computed. Consider a rectangular block supported by two springs as shown by Figure
6.1,
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the block stress is

(6.36)

where

a is the length of the rectangle

b is the height of the rectangle

F is the value of two vertical point loads

o is the vertical stress of the rectangle

€ is the vertical strain of the rectangle

dp is the vertical displacement on the top of rectangle
d, is the vertical penetration of the spring

Assuming a = b, from (6.36),

dy = d, 22 (6.37)

It would be reasonable if
p=20E to p=100F

ischosen. Fromequation (6.37), the block displacement dj is 40 times to 200 times of spring
displacement d,. Therefore the spring displacements are neglected.

In the current program, p = 40F is chosen. There are several ways of choosing p
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[1] directly enter the p value;
[2] define p in terms of F, such as let p = 40E;

[3] define p by the maximum spring displacement.

6.6 Non-penetration Physical Springs

The options of non-penetration springs are available only for the latest discontinuous
deformation analysis code. The algorithm of non-penetration spring is still in testing stage.
This algorithm hopefully will be transferred to the manifold method.

For the real materials, the contact stiffness is not as large as the program had set,
but the penetration still keeps small. The algorithm of the low stiffness springs with small

penetrations will make the contact more real or more physical.

The previous springs are mathematical; while the new springs are physical. The ad-

vantages of the physical springs are in the following:

[1] the spring penetrations are small so that the contact can be transferred to next step

without missing;
[2] the springs can have the physical contact stiffness;

[3] contact springs with low stiffness will form better-conditioned simultaneous equa-

tions;
[4] low spring stiffness leads faster converge of iterative solution;
[5] no extra unknowns are added;

[6] submatrix structure of the equations are reserved.
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Chapter 7

Two Dimensional Simplex Integrations

7.1 Simplex Integration on a Simplex

For the manifold method, the manifold elements are the integration zones which
have general shapes, therefore the integrations are more difficult than the integrations of
FEM. However analytical solutions were found for many cases of manifold method. The
finite element method computes the integrations of complex functions in simple domains;
the manifold method computes the integrations of simple functions in complex domains.
The integrations on complex domain can be reduced to the integration on the simplex. The
simplex is the oriented simplest domain.

The simplex has the most simple shape in 1,2, 3, ..., n dimensional space. Differ-
ent from the ordinary integration, the simplex integration has only the simplex as the integral
domain. The simplex also has positive or negative orientations. Positive or negative orien-
tations define positive or negative volumes respectively. Figure 7.1 shows the 0, 1, 2, 3

dimensional simplex.

P2

Po Po P1 Po P1

Figure 7.1. 0,1,2,3 dimensional implex
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The 0 dimensional simplex is a point P, its volume is

%|11:1 (7.1)

The 0-d simplex integration can be considered as a normal real number.

The one dimensional simplex Py P; is an oriented segment, its volume is

=T311 — 210 (72)

111 =
1 zpy

The volume of the simplex P F; is the negative volume of the simplex Py P;. The

ordinary 1-d integrations are the simplex integrations:

P, Py
fa)de =~ [ f(x)da
Py Py

Therefore, for any co-line point P,

P P P Py Py Py
/ f(z)dz+ (z)dz = (z)dz+ , f(:z:)d:c—i—/ f(z)dz = f(z)dz

Py Py Py Py Py

The 1-d integration addition is the same as vector addition. The integrations on neg-

ative vectors and positive vectors can be nullified.

Two dimensional simplex Py P; P, is an oriented triangle, its volume is

1 z10 220

5 1 11 21 (73)

The volume of simplex P; Py P, is the negative volume of simplex Py P, P;.

7.2 Simplex Integration on a General Polygon

Unfortunately, the two dimensional ordinary integrations are volume integration,
where the volume is always positive. For the 2 dimensional ordinary integration, the inte-

gration domains have no orientations, therefore the integrations have no algebraic addition
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on oriented domains. It is then necessary to introduce simplex integration on a simplex,

which is a simple oriented domain.

The simplex integration is not intended to do integrations on a simplex only. Obvi-
ously a complex shape always can be subdivided into simplex, so simplex integration can be
computed in each simplex, the summation of simplex integrations is the ordinary integration
over the complex shape. However this is also not the way of using simplex integration.

Giving a polygon P, P, P, P, Ps Ps with P = P, such that P, rotates at the same
direction as from oz to oy. For any point P, the algebraic addition of the 2-d simplex vol-
ume (area) Po P\ Py, PyP, P3, PyP3 Py, Py PyPs and Py Ps P, is the area A of the polygon.
Let Py = (0,0),

13 1 0 0 13 : -
A=~ 1 ; ; - = 11 21 7.4
2 Z o 2 2 Z T1i+1 T2 i41 (7.4)
i=1|1 T1i41 T2iya i=1

Figure 7.2 shows the addition of plus and minus areas of simplex. In Figure 7.2, the
area of simplex Py Py P3, Po P3Py, Po Py Ps and Py Ps P; are positive; the area of simplex
Py P, P, is negative. The algebraic sum is exactly the area of polygon P, P, P, Py Ps Ps. The
area A is then represented by the coordinates of boundary vertices.

Ps Pa

Figure 7.2. Addition of plus or minus area of simplex 99




In general, the simplex integration can compute ordinary integrations without subdi-
viding 2-d domains to triangles. FEM mesh is unnecessary for simplex integration. Using
simplex integration, the integration of any polynomials can be represented by the coordi-

nates of boundary vertices of generally shaped polyhedron.

7.3 Two Dimensional Simplex Integrations

The two dimensional integrations here in this section are used for two dimensional
manifold method algorithm. Since the displacement function is linear function of coordi-

nates (z,y), the integrands are of degree 0, 1, 2.
A 2 dimensional simplex has 3 vertices

PO,PI’PQ-

B : (ivlo, $20)
P (z11, 21) (7.5)
P, (11712, 5522)

The 2 dimensional coordinate simplex has 3 vertices

Uo, Ui, Us.
Upo: ( 0, 0)
Ui: (1, 0) (7.6)
U22 ( 0, 1)

The following coordinate transformation
(u1,u2) = (21,22)

transfers coordinate simplex

UpgUr Uy
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to normal simplex

PP P,
Ty = ZTio (1—qui)+ Ti1 U1+ Tiz U (7.7)
Ty = I (1——qu1')+ 21 ur + Tey U
The Jacobi determinant is
J___D(xlax2)
D(U],UQ)
9z Oz
J— 3u1 BU.Q
| 8z2 éz«‘zl
aul 8u2

=11 11 21 (78)

Since Py P, P, is a 2-dimensional simplex with non-zero volume, J is non-zero.

Translation can be rewritten as

(uo,ur,uz) = (1,21, z2)

1 = ug + u;y  + U
Ty = 10 Uo + Ti1 U1 + Tip ug (7.9)
Tg = Zz0 UUo + T21 U1 + T2z Uo

Two dimensional simplex integration

Spop, P, (M1, m3)

on a 2 dimensional simplex
PP, P,

is defined as normal integration times the sign of determinant .J.
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Spyp, P, (M1, m2)

= sign(J // it zy? dzydz,y
Po Py Py

-——sign(J)//U vy iz ?|J|duydug
ovita

= J// z] 2y 2duydug (7.10)
UoUyUs
Here
2 mi
i = () zwur)
k=0

then the two dimensional simplex integration can be represented by the following basic

forms of simplex integration:

Si =// ulult ui2du, dug
UoUp Uz
wotuituz=1
// uloultui2du, du,
ug,u1,u2 20
1— —Uag
=/ / ul2ubt o du; duy
o Jo
1 i 1—11,2 . .
:/ u? (/ u;‘(l — Ug — ul)mdul) dUQ (711)
0 0
After ¢; times of integration by parts, the inner integration can be computed.
1—u2 i .
/ u;1(1 — Ug — ul)"’dul
0

1—usp 1 .
:/0 d(mu;1+l)(1 — Ug — ‘U])'O

1 i1+1 ig |1—u2
=g -w—w)?
l*ug 1 +1 i
- —— (1 = ug —uy)®
/0 e (1w - )

1—us 1 41 .
=- (1 = g — )
/(; i+ 1 Uy (( ug —uy)")
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1_. .
:/ “ 0 ui1+1(1 —Up — ul)io_ldul
0 7:1 +1 !

1—1.1,2 N N
10{10 — 1 i i0—2
:/o (i1 i(lo)(z‘l lz)ulﬁz(l Tt

1—u . .
* do(to—1)(0—2) 4 io—3
= _ 3] gy — d
/o Gt D)+ 2 43 v w)t

_ /l—uz lO(ZO — 1)(20 — 2) “es 2 ui1+i0—1
o (A Dm A2 +3). (i tio—1) !
(1 —uz —u1) du

1—u .. .
2 Zo(lo — ].)(Z() - 2) 1 iy i

= . : . ———u;' " Odu

A (7,1 +1)(21 +2)(21 +3)(21 +Zo) 1 !

lo!il! io+i1+1 (1—u2
(io +ir + 1)1 0
2oliy! i1+io+1
= (1-— 1T 7.12
Gitior DM (712)

1 . l—UQ . .
S1 :/ u?duz/ ul (1 —ug — uy)®duy
0 0

/1 i2(1 )io+i1+1d ZO'Zl'
= u —u Ug rr—————
o ? lo + i1 + 1)
20171 V12!
= 7.13
(1o + 11 + 12 + 2)! ( )

Based on the previous formula of Sy, the two dimensional integration of polynomi-
als of degree 0, 1, 2 can be computed.

Sp,p p,(0,0) = Sign(J)// dzidzo
Py Py Py

ZJ// duyduy
UgU,Us

Sp,p, p,(0,0) = 3ign(J)// dzidz,
Po P, P
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o 1
=J—— =J (7.14)

0+2)0! " 2

Sp,p, p,(1,0) = sign(J)// zydzdz,
Po P, Py

= J// (z10u0 + T11u1 + T12uz)durdusy
UpgU, U2

1!
= Jm(xlo + 211 + Z12)

Sp,p,p,(1,0) = sign(J)// z1dz1dz)
PyP, P,

1
= EJ(fElo + z11 + 212)

Sp,p,p,(0,1) = sign(J)// zodz1dzTs
Po Py Py
1
= EJ(-'L'zo + 221 + T22) (7.15)
SP0P1P2(2’0) = Sign(‘])// xfdwldxz
Py P, Py

= J// (z10t0 + T11u1 + Ti2uz) dusdug
UoUy Uz

2!
1!
Jo—
HMTED)]
(0 +Z10211 +Z10712
+Z11Z10 +0 +211212

+z12210 +T12711 +0)

Spop P,(2,0) = sign(J)// zidzydzy
Py P P
1
= J—
24
(2z10T10  +Z10Z11  +ZT10Z12

+z11210 +2z11211 +T11712
+z12710  +Ti2%11 +2T12712)

Srorr(0,2) =sign(J) [ [ dhdeida
PyP, Py

1
i
24 _
(2220720 +Z20T21  +T20%22
+z21220 42721721 +T21T22 (7.16)

+T22220 +T22221  +2z22222)
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Sp,ppy(1,1) = sign(J)// z172dz1dT2
PoP P,

= J// (z10uo + T11U1 + T12U2)
UoUy Us

(z20uo + z21ur + Ty )duq dug
21

_ Jm(xloxzo + 211221 + T12%22)
1!
J—_______
T
(0 +T10T21 +T10T22
+$11x20 +0 +$11$22
+Ti2T20 +T12%21 +0)

Spop Pa(1,1) =si9n(J)// z129dz1dzy
PP, Py

1
= ﬁj(2$10$20 + 2211221 + 2212222

+ 210%21 + T10T22 + T11220 + T11%22 + T12Z20 + T12221)

1
—JQZ

(2210720 +T10T21  +T10T22
+z11220 +2T11%21 +T11%22 (7.17)
+T12220 +T12Z21  +2T12%22)

7.4 Simplex Integration for Two Dimensional Manifold Method

Since simplex integrations always have the Jacobian J as factor and J is an oriented

area, the integrations on positive area and negative area can be neutralized. Denote

PPP;--- Py Poy1=P

with
P; = (214, 22i)
as a polygon, the integrations (7.14)-(7.17) on

PPPs--- P,
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are computed by summations. (7.18)-(7.21) are the integrations of manifold method.
Here P, can be any point, Py = (0, 0) are chosen in order to have simpler formulae. Com-
puted by simplex integrations, integrals (7.18)-(7.21) are represented by the coordinates of

the boundary vertices only.

// dridzy =Y Spopipus(0,0)
(4) -

I 1 k T2k
= 7.18
2 Zk:l T1 k+1 T2 k41 ( )
n
// r1drydry :Zk—l SPOPkPk+1(1’O)
(A) -
_ Tk T2k
//(A) z1dz1dTe = 8 Zk:l T ko1 T2 kg1 (21 & + 21 k41)
l T1 k T2 k
dridzy = = Tor+x 7.19
//(A)m sday =300 [ T @t mn) (119)
/[ ):E?dxldx? = Zk—l SPOPkPk-l-l (270)
N =
_ 1 Z" Tik  Tak
12 k=1 T1 k4+1 T2 k41
(23 ¢ + 23 k41 + 1 ET1 k41)
1 n T z
2 1k 2 k
zidzidz, = —
//(A) Y k=1| T1 k41 T2 k+1
(2.731 kL1 k +T1 kT k41
+21 k4171 & +2T1 k4121 k+1)
1
// zidr dey = — " 1k T2k
(A) 24 £~k=1| T1 k+1 T2 k41
(222 kT2 & +&y kT2 k41 (7.20)

+To k4122 k

+222 k4122 k+1)

n
// T179dz1dTo :Zk—-l SPOPkPk+1(l’1)
(A) B

T 94 Lag=1

(221 k2o ¢ + 221 k4172 k41 + 2

Ty k
T1 k+1

T2k
T2 k41

1 kT2 k41 + T1 k4122 &)

1 n 1k To L

// z1xodziday, = — Lk 2k
(A) 24 k=11 ZT1 k41 T2 k41
(271 k22 & +2T1 kT2 k41

+1 k41T2 &k 221 k41T2 k1)
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Chapter 8

Equation Solver and Open-Close lterations
for Inertia Dominant Equilibrium Equations

8.1 Time Step Based Large Displacement Analysis

The manifold method computations follow the time steps. The time steps are small
enough that the second order displacements are neglected. All the geometric and physical
parameters have to be transferred from the end of the previous time step to the beginning of
the next time step. The following items are to be transferred:

[1] stresses of each element,

[2] strains of each element,

[3] velocities of each element,

[4] geometry of the joint boundaries and elements,
[5] all closed contacts

The position and state parameters of the closed contacts have to go to the next step.
The geometric parameters and physical parameters of contacts will be transferred:

[1] the contact vertex and edge,

[2] the position of contact point,

[3] the normal displacement and normal force,
[4] the shear displacement and shear force,

[5] locking or sliding as contact state.

The manifold method computes both statics and dynamics by time steps. For large

displacements and deformations, the statics is the ultimate stabilized state of dynamics af-
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ter sufficient long times. Such a stabilized state can be reach only if some kind of energy

reduction is counted in the computation.

The previously customized one-step static computation is correct only if the second
order displacements can be omitted. In such a case, physically one infinite large time step A
is chosen under the small ultimate displacements. The inertia force would be proportional

with

U
The value of (8.1) is zero if time step A is very large, then the inertia force is zero.
This is the reason why the one step statics do not consider the inertia force or mass matrices.

The current version of the manifold code is a simple version. In the beginning of a
time step, the dynamic computations inherit the velocity of the end of the last step. For static
computation it is assumed that, the initial velocity of each time step is zero. The current
static computation is obviously incomplete, the way of energy reduction has to be studied

in the future.

8.2 Open-Close lterations

Within each time step, the global equations have to be solved repeatedly while se-
lecting the lock positions. The procedure of adding and removing stiff springs is open-close

iteration.

If a contact has a tensile contact force from the normal spring, the two sides will
separate after the removal of this stiff spring. If the vertex penetrated the edge in other side

of the contact, a stiff spring is applied.

For each contact, there are three modes: open, sliding and lock. The criteria of the

mode changing is in the following.

mode change condition

open - open N >0

open - slide N < 0and |T| > tang|N|
open - lock N < 0and |T] < tan¢g|N|
slide - open N >0
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slide - slide
slide - lock
lock - open
lock - slide
lock - lock

N<0andf||—-f
N<Oandf||f

N>0

N < 0and |T| > tan¢|N|
N < 0and |T| < tan¢|N|

where p is spring stiffness

fi is normal displacement vector pointing vertex

N is normal displacement, N > 0 is open

. . T
t is shear displacement vector pointing P, P;

. . — .. ==
T is shear displacement, 7' > 0 if ¢ in same direction as P, P;

|| means two vectors point the same direction

P e
t is friction force vector pointing P, P;

¢ friction angle

Finding the mode changing, the following operations will be done:

mode change

open - open
open - slide
open - lock
slide - open
slide - slide
slide - lock
lock - open
lock - slide
lock - lock

operation

no changing

apply pair of friction forces

apply normal and shear springs

delete friction forces

no changing

delete friction forces and apply shear spring
delete normal and shear springs

delete shear spring and apply friction forces

no changing

The open-close iterations to ensue

[1] no-penetrations in the open contacts,

[2] no-tensions in the contacts with normal springs.
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The two conditions have to be fulfilled in all contacts. If the two conditions are not
fulfilled after five times of open-close iterations, the time step will be reduced to one third,

and the open-close iteration continues.

8.3 SOR Iteration Method

The abbreviation “SOR” stands for successive over relaxation mcthod.v This method

is for solving linear equations,

Equation (8.2) has submatrix structure

All
AZ]
A31
Aél
Anl

where

[1] [Alis a n x n coefficient matrix,

Aja
Agy
Asz
Ago

AnZ

Aus
Aas
Ass
A43

An3

[A][X] = [F]

Ay
Az
A34
Agq

An4

[2] [X]is an x 1 unknown matrix ,

Aln
A2n
A3n
A4n

X1
X
Xs
X4

(8.2)
F
F
F3
F |- (8.3)
Fr

[3] [F]is an x 1 matrix of free terms. The elements of these matrices are still subma-

trices.

[1] The elements A;; of matrix [A] are ¢ x ¢ matrices,

[2] The matrix [A] is symmetric, [A;;]7 = [4}i]

[3] The elements X; of matrix [X] are ¢ x 1 matrices,

[4] The elements F; of matrix [F] are ¢ x 1 matrices.
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Denote the diagonal matrix [D] as

A, 0 0 0 0

0 Ay 0 0 0

0 0 Ass 0 0

D=1 0 0 0 Ay 0
0 0 0 0 Ann

Then there are

(([4] = [D]) + [DD)X] = [F]
[D]IX] = [F] - ([A] - [D])[X]
[X] = [D]7*[F] - [D]7*({4] - [D])[X]
[X] = [G] - [BI[X] (8.4)

where

[G] = [D] 7' [F])
[B] = [D]™" (4] - [D])

[1] [B]is an x n coefficient matrix,

[2] [G]isan x 1 force matrix ,

[3] [X]isan x 1unknown matrix , The elements of these matrices are still submatrices.
[1] The elements D;; of matrix [D] are ¢ X ¢ matrices,

[2] The elements B;; of matrix [B] are ¢ x ¢ matrices,

[3] The elements G; of matrix [G] are ¢ x 1 matrices.

[Dii] = [Auil,

[Di5] = [0], ifi #j
[Gi;] = [Dai] 7H{Fy),

[B,-]] = [Du] ™Ay, ifi#
[Bii] = [0].

-,
-,
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For SOR method the factor of over relaxation is w,

l<w<?2

Denote [X;](™) is the solution after m iterations, then the solution [X;](™+1) of the

next iteration is

i—1 n

[Xi](m+1) = [X; ](m) + (] Z i) [Xx] (m+1) _ Z [Bik”Xk](m) _ [Xz.](m))
k=1 k=141
i—1
[Xi](m+1) = (1~ w)[X ](m) +w Z[B L XL (m+1) _ Z [Bir][X# (m))
k=1 k=i+1
(8.5)
The matrix form of the SOR method is
x{mt x{m G2
XM g —w) | XM | 4w ]| G
Xr(lr§1+1) X,(;m) G,
0 0 0 0 0 x (m+1)
By 0 0 0 0 Xl(m+1)
Bsi  Bs, 0 0 0 %m+1)
W By Bsys By 0 0 X3
: : : : S 'n:z+1
Bnl Bn2 Bn3 Bn4 ... 0 X"(”‘ )
0 B12 Blg BM Ce Bln X(m)
0 0 B23 B24 e BQn Xl(m)
0 O 0 B3y ... Bi, %m)
@0 0 0 0 ... By X (8.6)
0 0 0 0 0 X
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8.4 Simple lteration Method

The simple iteration method of equation
[A][X] = [F]

has a simpler algorithm. Generally speaking, the simple iteration method is mush more
slower than SOR iteration method. The formula of simple iteration method is mathemat-
ically clear and clean. However, practically this method never became a major equation
solver, because of its low efficiency comparing with the other iteration methods. It seems
this method will stay in textbook forever to give the beginners a fresh idea about what is
iteration method.

It is often, that things can change in an unexpected manner. Two thing happened
recently:

[1] parallel computation,
[2] inertia dominant computation in discontinuous deformation analysis.

Now, simple iteration method is the equation solver which is most suitable to the
parallel computation. In the mean time, the diagonal dominant matrices of DDA and mani-
fold method are good enough to use the simple iteration method. Choosing small time steps,
the coefficient matrices can be almost diagonal matrices, then, there will be almost no dif-
ference between simple iteration method and SOR iteration method.

As before, the equation is

Ay A Az Ay ... Als X1 E
Agy Ags Ags Ay ... Aog Xo Fy
A3y Az Asz Azs ... Asg Xz | F
Agn Age Az A .. Agn Xe | 7| By
An] An2 An3 An4 e Ann . Xn Fn

The algorithm of the simple iteration method is
x{my
Xé m+1)

Xr(ln}+1)
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0 0 0 0

A0 0 0

0 A O 0

0 0 Ay 0

o 0 0 .. A;

Ajp Az A ... Al Xfm)

0 Az Ayy ... Aon x(m)

Az 0  Asg ... Asn 2

Az A 0 ... A || X5

An2 AnB An4 0 X'(‘m)

0o 0 0 0

A 0 0 0 ?

0 Az 0 0 F2

0 0 Ay 0 3 (8.7)
\o 0 0 0 .. ax/) Mo

8.5 Time Step Algorithm and Iteration Convergence
The principles of choosing time steps A are
[1] A is small enough, so that the second order displacements are neglected,
[2] A issmall enough, so that the SOR iteration will converge in less than 30 iterations;

[3] A is small enough, so that the open-close iterations will converge in less than 6 it-

erations,

[4] A is large enough, so that the computation will represent larger time span and the

displacements are stabilized if possible.
There are three options to define time step:
[1] directly enter the time step,

[2] enter the allowable maximum step displacement, then define time step from the max-

imum allowable step displacement,
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[3] compute the maximum allowable step displacement, then define time step from the

maximum allowable step displacement.

Denote

D as the maximum allowed step displacement,

U as the mass of the average elements,

F as the maximum load on the average elements,

VY as the maximum velocity of elements,

The equation of time step A is
GA?+VA-D=0

let

].'
G =1

A= 515(—12 +v/V? +46D)
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Chapter 9
Applications of Numerical Manifold Method

9.1 Joint Computations
Figure 9.1 shows the ability of the manifold method to compute a joint or fracture.

Figure 9.2 shows the deformations of a domain with a self intersected curved joint

9.2 Block Computations

Figure 9.3 shows the failure of an arch under the point load on the center block and
self weight.

Figure 9.4 shows the failure of a gravity dam with rock foundation. The loads are
the upstream water pressure and the self weight of the dam.

9.3 Slope Sliding

Figure 9.5 is the result of slope sliding of rock blocks. It can be noticed that, the
center block separated two adjacent blocks during the sliding. The result is consistent with
the lab test.

Figure 9.6 is a soil slope which slides along a circular surface. The circle sliding
computation satisfies all equilibrium conditions.

9.4 Failure of Structures

Figure 9.7 shows the deformation of the joints, blocks and the continuous materials
of double simply supported beams

Figure 9.8 shows the deformation of the joints, blocks and the continuous materials
of jointed double cantilever beams
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9.5 Conclusions

This new theory, entitled the Manifold Method of Material Analysis, combines
physical meshes and mathematical meshes. These physical meshes provide the means to
consider both jointed and continuous materials, and even different material phases (i. e.
solid, gas or liquid). At present, a theory for the manifold method has been accomplished,
as has a first generation 2-D dynamic computer code. The preliminary results are encour-
aging ( for example, the convergence of the solutions has been established). Finite element
and DDA formulations are special cases of this developing theory. A brief listing of a few
of the advantages of the manifold method follows:

[1] free surface and flexible boundaries

[2] analysis not hindered by boundary conditions
[3] free form elements (any shape)

[4] conservation of energy

[5] obeys Coulomb’s law

[6] very small to very large deformation

[71 statics and dynamics possible

[8] analytically correct

[9] continuous and discontinuous analysis
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Appendix: The mathematical manifold

The “ Manifold ” is a main subject of differential geometry and topology in modern
mathematics. The basic structure of the manifolds is a finite cover system and the connec-
tion functions among the covers. Different from the mesh, the covers can be overlapped or
folded to present a combinatorial space. Therefore the manifold method is to pursue global
solutions on global spaces. There were no direct connections before between manifolds and
engineering analysis. The essential difficulty is the complicated boundaries and discontin-

uous interfaces of the real engineering cases.

Under the generalized definition of manifold, there are two independent mesh sys-
tems now: mathematical mesh and physical mesh. The mathematical mesh consists of the
folded covers. Independent cover functions are defined on each cover. The weight functions
connect all locally defined functions to a combinatorial global function.
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Simplex Integration for Manifold Method
and Discontinuous Deformation Analysis

Gen-hua Shi
Geotechnical Lab, US Army Engineer Waterways Experiment Station
Vicksburg, MS 39180-6199

Abstract

At least every engineer has to compute the volume of generally shaped blocks. Is
there a formula where the volume is precisely represented by the coordinates of boundary
vertices? If block movements are considered, the center of gravity has to be computed? Is
there a formula where the center of gravity is also represented by the coordinates of bound-
ary vertices? The simplex integration developed for DDA computation can also solve these
questions. The convergency and accuracy of DDA algorithms depend upon mainly the an-
alytical integrations on complex shapes. Simplex integrations are accurate solution on n-
dimensional generally shaped domains. The integrand could be any n-dimensional polyno-
mials. The DDA computations of three rock failure cases are presented.

Simplex Integration on a Simplex

Simplex has the most simple shape in 1,2,3,...,n dimensional space. Different
from the ordinary integration, simplex integration has only simplex as integral domain.
Simplex also has positive or negative orientations. Positive or negative orientations define

positive or negative volumes respectively.

3

P2

Po Po P1 Po P1

Figure 1. 0,1,2,3 dimensional implex
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The 0 dimensional simplex is a point Py, its volume is
1
The 0-d simplex integration can be considered as a normal real number.

One dimensional simplex Py P is an oriented segment, its volume is

1 ]. T10
=11 — T10

1 11

1!

The volume of the simplex P; Py is the negative volume of the simplex Py P;. Ordinary 1-d

integrations are simplex integrations:

P Py

flz)dz = — f(z)dz

Py P

Therefore, for any co-line point Ps,

Py P

Py Py Py Py
(z)dz+ f(z)dz = flz)dz+ (z)dz+ flz)dx = f(z)dz
Py Py Fo Py Py Py

The 1-d integration addition is the same as vector addition. The integrations on negative

vectors and positive vectors can be nullified.

Two dimensional simplex Py P; P; is a oriented triangle, its volume is

1 1 xi0 720
30 I =1 o
|1 z12 T2

The volume of simplex P; Py P; is the negative volume of simplex Py Py P;.

Three dimensional simplex Py Py P, P; is a oriented tetrahedron, its volume is

1 xi0 z20 T30
I @y zo1 a3
311 x4 w22 32
1 x13 x23 33

The volume of simplex P Py P, Ps is the negative volume of simplex Po Py P Ps.

Unfortunately, two dimensional and three dimensional ordinary integrations are vol-

ume integration, where the volume is always positive. For the 2 or 3 dimensional ordinary
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integration, the integration domain has no orientation, therefore the integration has no alge-
braic addition of oriented domain. It is then necessary to introduce simplex integration on
a simplex, which is a simple oriented domain.

The simplex integration is not intended to do integrations on simplex only. Obvi-
ously a complex shape always can be subdivided into simplex, so simplex integration can
be computed in each simplex, the summation of simplex integrations is the ordinary integra-
tion over the complex shape. However this is also not the way of using simplex integration.

Giving a polygon P, P, P, Py Ps Ps with Ps = Py, such that P; rotate at the same
direction as from oz to oy. For any point Py, the algebraic addition of the 2-d simplex vol-
ume (area) Py Py Py, Po PP, PyP3 Py, Py Py Ps and Py Ps P is the area A of the polygon.
Let Py = (0,0),

T1¢ T2

Z1 341 T2 i41

In Figure 2, the area of simplex Py P2 P3, Py P3 Py, Py Py Ps and Py Ps P are positive;
the area of simplex Py P, P, is negative. The algebraic sum is exactly the area of polygon
P, P, P, Py Ps Ps. The area A is then represented by the coordinates of boundary vertices.

Figure 2. Addition of plus or minus area of simplex 131




In general, simplex integration can compute ordinary integrations without subdivid-
ing 2-d domains to triangles and 3-d volumes to tetrahedrons. FEM mesh is unnecessary
for simplex integration. Using simplex integration, the integration of any n-dimensional
polynomials can be represented by the coordinates of boundary vertices of generally shaped

polyhedron.

Two Dimensional Simplex Integrations

The two dimensional integrations here in this section are used for two dimensional
DDA algorithm. Since the displacement function is linear function of coordinates (z, y),

the integrands are of degree 0, 1, 2.

A 2 dimensional simplex has 3 vertices
Py, Py, Ps.

Py: (210, 20)
P : (211, 1)
Py (212, z22)

The 2 dimensional coordinate simplex has 3 vertices

UOaUlaUQ-
U()Z ( O, 0)
Ul : ( ]_, 0)
U2 . ( 0, ].)

The following coordinate transformation
(lLl s UQ) — (CC] s .’E2)

s coordinate simplex

UgU, U,
to normal simplex
Py P, P,
Ty = T (1—232%')*!- T ur 4 Tio U2
Ty = Ty (1—“qu1')+ Ta1 U1+ Too U
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The Jacobi determinant is

J= D(‘Tla 2)

D(ul, UQ)

8z Oz

—_ 8u1 Bug
I ) dzo {
6u1 aug

11 —Ti10 Ti12 — T10
Tp1 — 220 T22 — T20

1 zi0 T2
=1 =z @
1 z12 22

Since Py P, P, is a 2-dimensional simplex with non-zero volume, J is non-zero.

Translation can be rewritten as

(uo,u1,u2) = (1,21,22)

1 = ug + up + Ug
Ty = ZTi0 Uo + Ti1 ur + ZTi2 U2
To = Tgo Uo + To1 Ui + Tz U2

Two dimensional simplex integration
SP0P1 P, (ml ’ m2)

on a two dimensional simplex
PP, P,

is defined as normal integration times the sign of determinant J.

Spyp,P(M1,m2)

= sign(J // i 2y"? drydzy
Po P, P>

:sign(J)// e 2y ?|J|durdug
UoUy Uy

= // Tras?durdusg
U0U1U2

2
rm_ E ’L‘mLk

k=0

Here
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then the two dimensional simplex integration can be represented by the following basic

forms of simplex integration:

S1 :// uo u1 u2 2duidug
UoUy Uy
uotuytuz=l
— 0,11
—-// uloutt ui duy dug
ug,u1,u2 20
1 1—us
=/ / u2 ul uo °duydug
o Jo
1 . 1—1&2 . i
:/ The (/ ui' (1 —ug — ul)zodu;l) dus
0 0

After i; times of integration by parts, the inner integration can be computed.

I—UQ
(1 g
u (1 — ugz —uy) °duy
0

e 1 i1 +1 o
= d U1~ up — uy)
| e - - w)

= u;1+1
11 + 1

e 1 i
—/0 T up (1 - up — 1))
1 Uug 1 +1 3
:—/ it u (1~ e =)
1— U9 .
/ i +1 up (L —up — ) duy
0 1

R e VT io—2
; Z1+1 z1_}_2)1,41 (1 —up —up) duy

20 _ 1)(10 — 2) i1+3 1p—3

1— —

A (11 + 1)(e1 + 2)(31 + 3)u1 ( Uz — Uyp) duy

/ io(io — 1)(io — 2)...2 i
A ) e R R

(1 Uz — u]) du,

/ 10(20 - 1)(10 —2)1 i1+io
= - —uj duy
0 Zl—f—l 21+2)(21+3)...(21+10)

Iy
t0lty! i1+
/ 'u;1+lodul
0 11 + Zo .

(1 —ug — ul)io :)—‘UQ

Il

i

I
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1—uz 17!
10:11: i1 +io+1
- —-—-—————d U7 0

/0 (’Ll—*‘lo—}-l)! (1 )

!

_ 10'7’1 ioFip+1 |1 w2
- . B 1
(20 + 11 -+ 1)' 0
ioliy!

t1+1i0+1
poEren SO

1 1—u
i2 2 il iO
S = ustdug uit (1 —ug — uy) *duy
0 0

1 L il !
— | izl —wp) ot ot
/0 7 { 2) Mo +11 + 1)!
lo'll'lg'
(io + 11 + iz +2)!

Based on the previous formula of Sy, the two dimensional integration of polynomi-

als of degree 0, 1, 2 can be computed.

SP0P1P2(Ov0) = S'Lg?’L(J) // dw1d$2
Py Py Py

:J// duldu2
UoU U2

Spyp,p,(0,0) = sign(])// dzidzy
Po Py P2

o! 1
=J = -
o -2’

Spyp,P,(1,0) = sign(J) / z1dzydzs
PoPL Pp

= J/ / (z10uo + T11U1 + Ti2u2)durduy
UogU1 U2

1!
= Jm(iﬂm + z11 + 212)

SP0P1P2(1,0) = szgn(J)// z1dz1dT
FPo P P2
1
= “éJ($1O + 31 + Z12)

Sp,p, P,(0,1) = sign(J) // Todzidey
PyPy P,
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1
= gj(l'?o + 21 + 222)

Skopups(2,0) = sign(J) / / 22dz, da,
Py Py Py

= J// (100 + z11u1 + xlzug)zdulduz
UoU; Uz

21

IR el o)
1!
o
(0 +Z10211  +210212
+z11210 +0 +21112

+2Z12Z10 +T12211 +0)
Srapy £a(2,0) = sign(J) / / 22z, deg
PyP, Py

1
__Jﬂ

(2z10710 +Z10711 +T10712
+z11710 +2711211 4T11T12
+Z12710  +T12211  +2Z12%12)

Spor, 12(0,2) = sign(J) / / e2deydey
PyP Py
1
_Jﬂ
(2220720 +z20723 429022

+z21220 +2z21721  +T1T22
tz22T20 +T22T21  +2T22732)

Sroppy(1,1) = sign(J) / / 2125dzydes
Py P, P,

= J// (z10uo + T11u1 + T12u2)
UoU, Uy

(z20uo + Z21u1 + T22uz)du;du,

2!
= J(—é—+—2),(xm$20 + 211721 + T12722)
1!
J
ECEE)
(0 +Z10T21 +ZT10T22

+T12T20 +T12T21 +0)
Sp,p,p,(1,1) = sign(J)// z172dz 1 dTy
PoPy P2
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1
= ﬁJ(QICloCUzo + 2211721 + 2212222

+ 10%21 + T10To2 + T11T90 + T11T22 + 12220 + T12T21)
1

=J—
24

(2210220 +T10Z21 +Z10%22

+z11220 +2z11T21 +T11T22
+212T90  +T12T21  +2T12T22)

Three Dimensional Simplex Integrations

The three dimensional integrations here in this section are used for three dimensional
DDA algorithm. Since the displacement function is linear function of coordinates (z,y, 2),
the integrands are of degree 0, 1, 2.

A 3 dimensional simplex has 4 vertices

Po, P, Py, Ps.

Py: (z10, 20, %30)
P (211, za1, z31)
P : (3312, T22, $32)
Ps : (5613, T23, 3333)

The 3 dimensional coordinate simplex has 4 vertices

Up,Uy,Us, Us.
Us: (0, 0, 0)
U12 ( 1, 0, O)
U22 ( 0, 1, 0)
U3: ( 0, 0, 1)

The following coordinate transformation
(u1,ug,us) = (z1,22,3)

s coordinate simplex
UgU UUs

to normal simplex
PyP, P, Ps.
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zy = z10 (1- Zi’ u))+  z11
T2 = xo (1- Ei’ i)+ T21
T3 = z30 (1-— Zf ui)+ 31

The Jacobi determinant is

Since Py P, P, P; is a 3-dimensional simplex with non-zero volume, J is non-zero.

Uy
Uy

3!

l)(xla T2, $3)
J =
1)(u1, Ua, U3)
Oz, Sz, Ox
du, Ousy dug
| 8z, Ay Oxo
- 6u1 8u2 8u3
Ozxg Ox3 dz3a
aul aug 8u3
11 — Z10
= | T21 — I20
T31 — T30
1 10 720 230
|1 zir omy zm;
1 12 T2 32
1 z13 z23 33

Translation can be rewritten as

1 =
1
o) =
T3 =

(UOaulau29u3)

Uo
Ti0 Uo
T20 Uo
T30 Uo

+
+
+
+

T11
T21
T31

Ui
Ui
U1
31

Three dimensional simplex integration

+

+
_I._
+

+ T2 uz +
+ T2 u2 +
+ x32 uz +

— (1,11,'1,.’172,.‘133)

uz +
T2 uz + 13
oz uz + o3
T32 Uz -+ ZTs33

Spy P, P, Ps (1, M2, m3)

on a n dimensional simplex

Fb]?LFafﬁ

is defined as normal integration times the sign of determinant J.

SP0P1 P, Py ml,m23m3

o
P0P1P2P3

sign(J /// 1 ray ey | J|duydusdus
UoUlUqu

[
UogU,UaUs
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T3

m
33 d$1d$2d$3

T durduqgdus

Tri3us
T23U3
T33U3

U3
us
Uus
Uus




Here

3 m

™ = () wiku)

k=0
then the three dimensional simplex integration can be represented by the following basic
forms of simplex integration:

S1 :/// ué)ou“u'?u3 duidusdus
UoUU2Us
upturtustuz=l1
-——/// uz,ouilu?u:, duyduqdus
uo,u1,u2,u3>0
1 1—us 1—ug—us
-—~/ / / u?‘u;?ul uo °duidugdus
o Jo 0
1 1—us o ia 1—ug—us i i
= Uyt Uy ul (1 — uz — ug —uy) °duy ) duzdus
o Jo 0

After 1; times of integration by parts, the inner integration can be computed.

l—lL3—’LL2 i i
?
/ u;‘(l—ug—uz—ul)odul
0 .

_ /1 ug—u2 d(_l___u211+1)(1 — g — ug — u1)io
0 11 +1
1 11+1 ?
:-7:—1'~.+—_—1u11 (1—U3—UZ_U1)O

1 uUug—u2 1 '+1 l
—/0 i1+1u§1 d((1 —uz —uz —u1))

1-us—uz 1 i1+ld 10
=- ———uP T d((1 —uz —ug —u1)”°)

1—u3—~u2
0

7,1 +1
1 —Uug—u-n N 41 . 1
11 00—
= —u 1—wusg —ug —uy duq
/ i )

T oo —1) i io—2
; zl+1)(z1+2)u11 (1 —ug —up —uy)° “duy

/1 uz—un 0 — 1)(2'0 — 2) ui1+3(1

0 (41 + D)4 +2)(41 + 3) !
/1 uz—u2 ‘0(10 — 1)(10 —2)...2 ui1+io—1
A (i + D) +2)(61 +3).. (11 +i0—1) !

(1 —us —ug —Ul) duy

/1 ug—u2 ZO(iO — l)(lo — 2)1 u ‘+’°du1
0 Zl + 1)(11 + 2)(21 + 3) e (Zl +Zo) 1

i

io—3
—uz —ug —u1)® “duy

l
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l—u;;—ug N P
10.71: : ;
/ ————uilﬂodul
0 (

i1 + 10)!
1—-ug—us> N R
10:271. ; ;
:/ -,——,———d(u;1+10+1)
0 (Zl + 10 + 1)'
— ol ylotintl |tmus—ue
— . . 1 ' 1 0
(0 + 21+ 1)!
0lip!

t1+io+1
EZET TS A

1 l—ua . . 1—u3—u2 . .
1
S, = / ué"u?duzdug/ ul (1 —ug —ug —uy) “duy
o Jo 0

L pl-us i ioliy!
:/ u;s U?(l — Uz — UQ)EO_HI-I_ dU2dU3——,—,—-——'
0 0 (t0 + 141 + 1)}

1 ey P P |

; ; 10:11.19.
:/ us*(1 — ug)‘o“ﬁ”“du?, , , : '
0 (io + 11 + 12 +2)!

2021 15105!
(io + 11 + iz + 13 + 3)!

Based on the previous formula of Sy, the three dimensional integration of polyno-

mials of degree 0, 1, 2 can be computed.

Sp,p,r,r,(0,0,0) -——sign(J)/// dzidzodzs
Py Py P2 P3
! 1
0 J

0+3)! 6

Sp,p, PP (1,0,0) :sign(J)/// z1dz1daodes

= J/// (z10uo + T11u1 + T12u2 + T13u3)
UoU, UsUs
duldUQdu;g

1!
m(mm + 211 + 212 + 213)
Spop1p2p3(1,0,0) :szgn(J)/// :vld:vldargdxg,
PoP Py P3
1
= J—(z10 + 211 + 212 + 13)

24
Sp,ppypy(0,1,0) = Sign(J)/// 22dzidezdes
PoP1 P2 Ps

=J
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1
= Jﬁ(wzo + 91 + T22 + T23)

SP0P1P2P3(03 0’ 1) = Slgn(J)/// $3d1:1d1'2d$3
PoP, P2 Ps

= Ji(ﬂfso + 231 + T32 + T33)

SP0P1P2P3(2’0a0) :Sign(J)/// $§d:€1d$2dm3
Py Py P2 P3

2
= J/// (z10uo + Z11U1 + Ti2u2 + T13u3)
UoU Uz Us

duldusz3
2!

= Jm(a?fo + 2}y + 23, + 213)
1!

Jo
t e )

(0 +T10T11  +T10T12 +T10T13
+T11%10 +0 +211T12  +T11Z13
+T12%10 +ZT12211 +0 +T12713
413710 +T13T11 +HT13T12 +0)

Sp,p,P,P,(2,0,0) = Sign(J)/// :E?d:rldwgdmg
Py Py P, Ps
1
=150

(221010  +zi0T11 +T10%T12  +Ti07T13
+zr11210 +2T11T11 +T11T12 +211%13
+r12210 +Ti2Z11 +H2T12T12 +T12T33
+z13710  +T13711 +Z13T12 +2213213)

SP0P1P2P3(0, 2,0) = Slgn(J)/// x%dm1dw2dwg
PoP\ P> Ps3

1
=50

(222020 +T20T21  +T20T22  +T20T23
+221720 +2T21T21  +T21T22 +T21%23
+za2100 +T22T21  +2T22T22 +T22T23
+T23T20 +Z23T21  +T23Toz  +2T23T93)

Sp,p, PP (0,0,2) =sign(J)/// zidzydzydes
POP1P2P3

1
=1
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(2z30z30 +Z30Z31  +T30T32 +x30%33
+231230 +2T31T31  +T31T32 +z31733
+x32730 +T32T31  +2T32T32 +T32T33
+z33230 +T33T31 +T33T32 +2T33733)

SP0P1P2P3(1,170):Sign('])/// T122dz1dTodzs
Po Py Py P3

= J/// (z10uo + T11U1 + T12u2 + T13u3)
UoU;Ua Us

(z20uo + T21u1 + T22u2 + To3usz)durduzdus

2!
= Jm($10$20 + 211221 + T12%22 + T13T23)
1!
Joo
T
(0 +T10%T21 +T10T22 +T10%23
+211%20 +0 +T11T22 +T11T23
+ZT12220 +ZT12%21 +0 +Z12723
+z13%20 +T13T21 +T13T22 +0)
Spopxpzps(l,l,())=Sig7’L(J)/// z1T2dzdzodTs
PyP P;P3
. 1
- 7120

(2210220 +Z10%21  +ZTi0T22  +T10T23
+Z11220 +2711T21  +T11T22 +T11%23
+Z12T20 +ZT12T21  +2T12T22 +T12T23
+T13%20 +T13T2r  +T13T22  +2T13%93)

Sp,p,P,ps(1,0,1) =sign(J)/// z1z3dridzodes
Po Py P, P
1

B J120

(2z10230 +Z10%31  +T10T32  +ZT10%33
+Z11230 +2711T31  +T1i1T32 +T11T33
+T12T30  +T12T31  +2T12%T32  +ZT12T33
+213230  +T13%31 +T13Zz2  +2213%33)

Sp,p,P,P;(0,1,1) = Sign(J)/// zor3dz1dTodTs
Py Py Py Py
1

B J120

(2220730  +Z20Z31  +Ta0T32  +T20T33
+Z21230 +2T21731  +T21T32 +T21233
+T92T30 +T22T31  +2T22T32 +T22733
+x23230 +T23%31 +x23132 +2$23$33)
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Three Dimensional Simplex Integrations
to the Coordinate Simplex

A n dimensional simplex has n+1 vertices

POaPl7P2,"',Pn~

Py: (z10, 720, T30, ...,
Py (zy, 21, =z, ...,
Py (z12, w22, 32, ...,
P,: (Zin, T2n, ZT3n, ...,

The n dimensional coordinate simplex has n+1 vertices

Uo,U1,Us,...,Up.

Us: (0, 0, 0, ..., 1

The following coordinate transformation

(ulau2au3a"',un)'-}(x17$27$3>"

transfers coordinate simplex

UgU Uy ... U,
to normal simplex
BP P ... P,
1 = z0 (1-2Tuid+ 2z wi + z
Tz = 20 (1-=3Tuwi)+ z21 wr + zo
3 = =m0 (1-2Tui)+ z31 wur + za
Tn = ZTao (1= Tuwi)t Tm w1 + 2no

The Jacobi determinant is

7= D(z1, z2, T3, ..., Ty)

l)(ul) Uz, U3, ..., un)

an)
xnl)
an)

Tnn)

UQ+-”.
UQ+m..
UQﬁ-”.

UQ+-“.

' Tn)

++ +

TinUn
TonlUn
T3nUn

xnnun
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9z  Oxy Oz

8u1 Bug BU3

dxa ok Oz,

3u1 Bug 8u3

dzxg Ozg drg

Bul aug BU3

9, 8Ty Ay

3u1 BU2 8u3

11 —T10 Ti2 — T10
Z21 — T20 T22 — T20
Tr31 — T30 T332 — T30
Tnl — Tno Tno2 — Tno
T11 —Ti0 21 — T2
T2 —Ti10 T22 — T2
T13 —T10 T23 — T20
Tin —T10 T2n — T20
1 zi0 %20 T30

1 z11 2z 31

1 z12 z22 T32

1 2i1n Ton Z3n

mt%
RI8
3

Q|
H:F:H

QO
=
3

Zn3
T31 — T30
T32 — T30
33 — T30

T3n — T30
Zno
Znl
In2

Tnn

— Z10
— 20
— T30

— Tno

Tin — T10
Tan — I20
T3n — T30
Tnn — Tno
Tnl — Tno
Tp2 — Tno
Tn3 — Tno
Tnn — Tno

Since PoP, P, ... P, is a n-dimensional simplex with non-zero volume, J is non-zero.

Translation (2) can be rewritten as
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T
Z2
z3

Tn

1l

I

(Uo’ul,uz,um---

T10
T20
T30

Tno

1
T
T3
I3

Tn

up -+
ug +
ug -+
up -+
uo +

Uy
Tix U1
Tr21 Uy
31 U1
Tpnl U1
1 1
ZTi0 T11
20 T21
T30 T31
Tno Tni

T12
Z22
Z32

+ 4+ +

1
Ti12
T22
I32

Tn?

U2
U2
U2
Uz

Uz

1
Tin
Z2n
T3n

,un) —%(1,$1,$2,$3,..

+ ...

+ 4+ + +

7$n)
+
+ Tin
+ T2n
+’ T3n
+ Zan
Ugp
Ui
Ug
Uus
Un




The determinant is

1 1 1 1 1 10 20 Z30 ... Tno
T Z11 Zi2 ... Zin 1 211 z21 Z31 ... Tm
Tao T21 T2 ... Tan I z12 T2 T3z ... Tn2 ; .
T30 %31 T32 ... Tan| |1 Tiz T2z T3z ... Tnz| ()
Tno Tni Tn2 o Tpn 1 Tin T2n T3n ... Tnn
From formula (4) (uo, u1,u2,us,...,u,) can be computed
-1
Ug 1 1 1 1 1
Uy Tio T1i1 Ti2 ... ZLin 1
U2 o0 T21 T2 ... T2n )
uz | | T30 T31 T32 ... T3n 3
Up Tno Tpn1 Tnp2 ... Tan Tn

Definition of N Dimensional Simplex Integration
Simplex integration
SP0P1P2...Pn (m17m23m3’ ... 7mn)

on a n dimensional simplex
PyPiP;... P,

is defined as normal integration times the sign of determinant J.

Sp,p,P,..P, (M1, Mg, m3,...,mp)

= sign(J /// / ety ey - cayt dzydeadrs .. dzg,
PoPi Ps..
:sign(J)///---/UUU : :ch:L';n?:c;"‘*---:cnm"].]lduldu;gdu3...dun
ovibt2...Un
= J//// e ey Pag et durdugdus .. dug (6)
UgUyUy.. Uy,

In order to compute the integration, coefficients of invariants u} in

n my

et = () wirur)

k=0
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of formula (6), the following formula (7) is useful.

The formula

Jotgitiat. . Hja=m '0 + .1 + .2 + - + ] ; .
Z- N g ']1'1]'1 1 ) avaltal? - -alr  (7)
10,J1,J24-+1Jn 20 Joig1ig2t . gt

el

o

can be found in algebra books, however a brief derivation are given here for convenience.

In case of n=0, formula (7) is correct:

m

0 :
o= |
Jo=m Jqg.
Mo =" " al =ap
Jo>0 jo!

k=

[

In case of n=1, formula (7) is correct:

jo+ii=m (jo + j1)!
(D o) =Z~ ; 151 afaf’

J6:J120 Jol71!
Assuming formula (7) is correct for n:
n m

jotiitiateAin=m (jo+j1+Jj2+...+J .
=yt e Bt Ik apatal ol
J0,J1+J250-0dn 20 ]0!.71-]2---"]11-

k=0
then the following computation shows formula (7) is correct for n+1

n+1 m

(> )
k=0

n

=((Z ak) + ant1)

k=0

m

n in
jn+1
ak) apiy
=0

_ Zln+1n+1-—m ’Ln +jn+1)!
inyJn4120 in!jn-%-l! k

Z intinp1=m ('I,n +jn+1)!
ln,Jn+1>O Z'n!jn+1-

. jn j"+4
an an+1

Z]O+]1+]2+...+j11:in (_]0 +]1 + j2 + ... +]n) a"oah aj2
J0,J1:J2,-Jn 20 Jolgilga!. . lyn! 0 "1 T2

Zin+jn+1=m Zj0+j1+j2+---+jn=in
T Lti jng1 20 0171 ,J2sen 20
(Zn +.7n+1) (]0 +51+72+. +.7n) Jo _Jji J2 In L dn41
in!Jnt1! Jolglge!. . lgn!
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Zin+jn+1=m Zjo+j1+j2+---+jn=in
i'n)jﬂ+120 j01j17j27"'1jn20

(1n + ]n+1)! a]oaha]z
I T, o 41 Yo
Jolgilsa! . Agnlgnga!
Z]O+Jl+]2+ +]n+]n+1—

. ] jn+1
an" an+1

J0yJ1,J2,- ;jnyjn+120

Gotirtgat.  tjntint1)! jo i o yingints
jolgalge! . Lgnlinta! o St Tt n

Denote

n

uozl—Zui,

1
from the previous algebraic formula,

= (i UkZIk)

Zi10+i11+i12+-~+itn=mz (ilo +in+ie+...+ iln)!

20,H1,82, 00 20 woliptin! . ig!
2o, 1, U2 fin 00 U1, U2 Un
Ug Uy U™ " Uy Ty Ty Tyg =" Ty (8)

Substituting (8) into (6), integral (9) is obtained.

SPQPlPQ...Pn(ml’m27m3)'"’ /// /
U0U1U2...Un

(Zi1o+i11+i12+---+i1n=m1 ('510 ‘i1t +.. + lln

110,811,812,-++y%10 20 110'111!212!.. 'Zln'

t10,,%11 iin 110,011 112 , . .%1n
Ug Uy uz URT Ty Tyy Tyo mln)

(Zi20+i21+i22+--«+i2n=7712 (igo 4191 + 299 + ...+ lgn).

120,121,822,--i2n 20 i20'i21'i22! odign!

iz, i21 L.at2n 020 i21 422 | i2n
Ug Uy u2 "Up Top T21 T2 mZn)

(Ziao+is1+i32+m+i3n=ma (igo +i31+32+ ...+ 'L3n).

i30,i31,i32,...,i3n20 i30!i31!i32! . '311,!

130, 131 i32'.. i3n 130 %31 132__. t3n
Uy Uy Ug Up™ T30 T31 T32 x3n)

(Zin0+in1+in2+~-+inn=7nn (?'nO + inl + inz + ...+ Znn)!
|

inOainlyin21-~~yinn ZO inO!inl !Z.TLQ! . 'Znn

1no lnl n2 .., 000 tn0 ,.inl .in2 L. minn
uO ul 2 Un mnO :Lnl xn2 xnn )

dulduzdu;:, e dun (9)
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SpPopy Py...P, (M1, M2, M3, . .., Mn)
i20+121+iz2+...+izp=m2

J2i10+i11+i12+---+i1n=m1 Z
120,i21,822,.--,02n 20

110,811,2120+092015 20
1notint+ina+.. . Finn=my,

Zi30+i31+i32+~~~+i3n:m3 Z
inOyinl 7in2y~-~yinn ZO

130,a1,132,-.,23n 20

m1! 77’L2!
i10%11Y12! .. Yig,! 12021 Viza! - - Nign!

ms! My
130310539! - dian!  inoliniling!. . Yina!
CHE A R TR TR T
T Ay o ey T

//// uéou’fu?---uf{‘dulduzdm...dun (10)
UgUU3... Uy,

=1y +i+tat -+ ta, [=0,1,2,...,n.

where

Formula of N Dimensional Simplex Integration

The coordinate simplex integration in (10) is another form of well known Dirichlet
integration in classical analysis. The direct computation of the integration is given below.

S ://// ugou’llu?~--u;"du1du2dU3...dun
UgU,Uz...Uy

uptur+uz+t...+u,=1

—'://// uguytuy’ - uprduydugdus .. dup
uOy“lv“?v'-'yunZO
/1 /l—u" \/Al—un-—un_l /1—un—un_1_..._u,‘,
o Jo 0 0
2

Tn—

H Tn—1 i1, 1o
upru, T u s utugdudugdug .. duy,

/1 /l—un /1_“n—un—1 /l—un—un_l_..._ua
0 0 0 0

in in—l in—? R
Uy un—l Up_—2 Ugy

l—up—up_g——uz " i
(/0 % (1 —Zkzluk) du1> dusdus ... du, (11)

After ¢; times of integration by parts, the inner integration of (11) can be computed.

l-up—tun_y—-—uz n io
utt <1 - E uk> duy
0 k=1
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=‘/Ol—un—u"--l—m“u2 d(i1 }}- luil-H)(l - Z:=1 uk)io
_\/Ol—u”_u"‘l_m*uz;_l_l;_i ;l+1d(( Z:zl uk>io)
ST (- )

/1 Tt ;I_’L;—T-:—:[-uil-*_l(l Z:=1 Uk)io—ldUI
T R ) e
A = e o= () AR R

/1 n—U%p—)1——Ug io(io _ 1)(,L'0 _ 2) L9 ui1+io—1
(1 + )6 +2)(G1 +3)... (G +ig—1)

Zn LU )du1

/1 T 10(io —1)(20 — 2)...1 wirtiogy
0 (33 + 1)(51 + 2)(31 + 3) ... (31 + 40) “

11—ty — ———— .y
/ Un—1 Uz 20!11! '1+10du
—. 1

o

o

I

o

]

[N

Il

o (i] + Z0)
I—up—up_y——uy 10l7q! d(y ot

T (u] )
(21 + 10 + 1)'

_ZO_'ZL.__ fo+i+1 |[I—tUn—tn_1——uz

(Zo +14 + 1)' ! °

ioliy! ( . )z’1+io+1
il . 12
(11 + 90 + 1)! Zk=2 ‘ "

1—-u, 1—up—Up_1 l—u,—Up_1——ug ) . ) )
1 In—1_tn-2 19
S1= / / / / Upg Uy Up_g " Uy
0
l—uy—up_q1—-- n io
(1— E uk) duidusdus...duy,
0 k=1

1 1—uy, 1ty —tUp_y l—up—tUpg— " —Uqg . . .

1 tn—1_tn-2 13

:/ / / / unnun—lun—'l”'u?»
0 0 0 0

l—up—up-1——uz n iotis+1
us?(l — Z Uk)
0 k=2

iol1q!

.d N
dUQdU3dU4 u (ZO i+ 1)
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1—u, l—up—Un—1 l—up—Up—y— - —Uyg
. in th-1 -2, 14
/ / / / Uy Uy u o Uy u3
0

ioir+iz+2 ioliy lig!

(1- . dusdugdus . .. dun
PBNIRD Hodtadts S (g iy g + 2)!

1—u, l-—up—Up-1 l-up—up—1—"""—Us . . )

e tn, tn—1, tn-2 LY

/ / / / Up Up_jUp_g " Uy
0

l—up—tp_g1—-—u n io+i1+i2+2
1-— E u
O (1= w)

ioli1!1a!

(io + 11 + 12 +2)!

\ [ toti1tio+ - Fip_o+n—2
/ / U Uy 11(1 — Up—1 — Un) o 2 dun—1duy

10!11!22! .. .!Zn_g!

(lo+i1+i2+ ... +in—g +n—2)

1
; 3 ] 3 'n__ —1
:/ u;n(l_un)10+1l+z2+ +in-1+n dun
0

IR P
(lo+t1+22+ ...+ 101 +n—1)
10l11 0] . . ey!

“Gotirtizt . tintn)

dusdugdus ... duy

Substituting equation (13) into (11), the integrals of an dimensional simplex
SP0P1P2...Pn (ml y M2, M3,..., mn)

is obtained.

SP0P1P2 (m1,m2,m3,...,mn)

Zl1o+l11+112+m+11n—-m1 Zi20+i21+i22+...+i2n=m2
$10,811,%124+,21n 20 120,821,122,.-,t2n >0
Zi30+i31+i32+---+i3n=m3 Zin0+in1+in2+~~-+inn=mn
130,131,132, --+)i3n 20 o in0yin1 in2, e inn 20
m1! 7’)12!
210!111!212!---!1171! 120!221!222!---!2211!

ma! my!
130'131'232' gy zno'ln1'ln2' inn!
110,011 ,.012 iin 120 121,122 | 120
T19 T11 Tz " Tin Tog To1 Loz ="~ Tan
130 !31 132 1371 .. an lnl ln2 .. lnn
T30 T31 T2~ T3n - T30 Tnl Tn2 Lnn

20!11!22! .. 'Zn'
(io +11+12+ ... +in +n)
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where
iI:i1l+i2l+i3l+"'+inl7 l:0)1323--

Examples of Simplex Integrations on Simplex

A general n dimensional simplex has n+1 ordered vertices PoP, P, ... P,, its Jaco-

bian is
1 z0 20 %30 ... Zno
I zy1 221 %31 ... ZTp
J=11 T2 =2 T32 ... ZTno (15)
1 Zin Z2n T3n ... Tpn

Formula (14) directly gives many integrations on a simplex.

Sp,p, P,...P, ,0,my,0,...,0)
/// / x;”’ duidusdus ... du,
PoPP;..
Elzo+1u+212+ +21n—m1 my!
- 10,11, E 2,y iin 20 ot lip! .. i)
o011 itz . oin toliglig!. . 1g,,!

1011 12 In (Zo+11+22+---+1n+n)!

Zito+i11+izz+---+izn=mt my!

(ml + n)!

10 111 112 tn
Tio Ty Ty =" Ty

il01illyil2»"'1iln20

As special case, the normal one dimensional integral formula (16) can be derived.

+i : !
Sp,p,(m) = sign(J)/ zdzy = tho 1= zloxilll_m___

PPy 110,111 20 (m+ 1)!
= '(’7%1)(3011 — T10)
(21729 + 2} alo + 2y Pado + ..+ 2l 2yt + 23y 2T)
= g =) (16)

Srrura(0,0) =sign(7) [ [ deida

PoP Py
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= J// duldu2
UoU, Uz
t1o+i11+1i12=0 0!
=J
zim‘iu,iuZO (O + 2)'

Sp,p, p,(0,0) = sign(J)// dzidz,
Po Py P2

1
= QJ (17)

SpopPy(1,0) =Sign(J)// z1dz dzy
Po P, P2

Zi10+i11+i12=1 1' 110 111 .012
—_— s I
110,111,81220 (1 + 2)' 10 %11 *12

Sp,p,p,(1,0) = sign(J // r1dziday
Py Py P>
= —J(CClo + 11 + 212)

SP0P1P2(0, 1) = 329” // zodzdry
Py P, P

= —J(fl?zo + 21 + T22) (18)

Sp,p, P,(2,0) = sign(J // z3dzdzy
PoPL P2

t10Ft11+812=2
110 011 012

= Jzzlo,zu,llz)o mxlo Ty1 Tyo
Spyp,P,(2,0) = sign(J // zidzydzy
Po Py P2

= 12J($1o + 51711 + 5'312 + z10Z11 + T10T12 + T11712)

J24
(2210210  +T10T11  +T10Z12
+z11210 +2711711 FT11T12
+z12710  +T12z11 +2T12712)

SP0P1P2(0’2) = sign(J)// $§d$1d$2
Py Py Py

1
= -1—2«](33%0 + :E%I + 22, 4+ T20T21 + T20%22 + T21T22)

1
—J—ZZ
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(2220720 +T20T21  +Zo0Ta2
+Z21T20 +2221221  +T21T2 (19)
+222220 +T22T21 +2z22292)

Sp,ppy(1,1) = sign(J)// T1z2dz1dTy
PoPy Py
J Zi1o+i11+i12=1 Zizo+i21+i22=l
110,%11,812>0 120,121,122 20
1 10,11 i1s 1 120 ..121 422 (410 + 120)!(i11 + 121)!(t12 + 122)!

13’10 T11 %13 I‘”zo 21 L7 2+ 2)

SP0P1P2(1’1) = Slgn(‘])// zi1Todzydzs
Py Py P

1
= —J(2z10220 + 2211721 + 2212292

24
+ Z10Z21 + T10T22 + T11T20 + T11Z22 + T12T20 + T12Z21)
1
= J—
24
(2210220 +z10T21 +T10T22
+Z11%20 +2211721 4120 (20)

TT12%20  +T12T21  +2z19292)

S.Popl P2P3 (03 07 0) = Slgn(n]) / // dxl d$2d$3
PoP, P, P;
0! 1

S, (21)
Spopy Papy(1,0,0) = sign(J) / / /P | odadadeg
o Py P, Py
g S
Spop, P, pPs(1,0,0) =sign(J)///P b z1dzidzodzs
o Py P, Ps
= ngé'i(wm + 211 + 712 + 213)
Spop, P, P;(0,1,0) = sign(J)///P . zodridrodas
o Py P, Py
= ngz(ﬁzo + Z21 + 22 + T23)
Sp,p,P,p,(0,0,1) = sign(J)///P . z3dzidrodas
= Jélz(xgo + 231 + 32 + 233) (22)
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SP0P1P2P3(270>0) :Slgn(J)/// Jfgdicldl’gdl‘;;
PoP, P2 P3

t10+111+t12ti13=2 iro i11 812 113 21
T1o 11 T12 T13 ‘(2_‘_—+ 3)!

110,f11,412,813 20

— J 1 2 2 2 2
= 6‘6(110+$11 +$12+$13+$]0$11 +$10$12+$10$13

+ z11212 + T11%13 + T12213)
SP0P1P2P3(2a070) :Slgn(J)/// SE%d:L’ldedzg
PoP1 P2 Ps

1
=50

(2210710 +Ti0711  +Z10T1iz FT10713
+z11210 221211 Tz TT%is
+212210  +T12T11 +2T12812 +T12713
+z13710 +T13T11 +FT13T12 +2z13713)

Spyp, P,Ps(0,2,0) zsign(J)/// z3drydzades
PP, P2 Ps

1
S

120
(2x907T20 +T20%21 +T20T22 +x20T23
+To1Z00 +2x21T21  +ZT21T22 421723

+To2Zoo +To2T21  +2T22T22  TT22723
+To3T90 +T23T21  +T23T22 +2293T23)

SP0P1P2P3(03032):Sign('])/// $§d$1d$2d$3
PoP1 P2 Ps

1
=J 1%

(2230730 +T30T31  FT30T32  TT30L33
+z31730 +2731T31 +T31T32 +x31733
+a302T30 +TaeTsz1  +2T3aTzz TT32T33
tTaszso  +TazTzi  +T3zTzz  +H2733733)

Sp,p,rP,ps(1,1,0) :Sign(J)/// z1zodzidzodes
PoPy P2 Py

J Zi10+i11+i12+i13=1 Zi20+i21 +ig2+123=1
#20,121,222,123 20

110,%11,%12,t13 20
10 .i11 12,113 120 .i21 P22 123
T L1y T4y T13 Lo o1 T2 P23
(110 + i20)} (211 + i91)! (212 + i22)!(13 + i23)!
(24 3)!

PoPyP2Ps
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1
=I5

(2210220 +zT10T21  +Ti10T22  +Ti0T23
+211220 +2T11T21 +T1iT22 +T11T23
+x12%20 +T12T21  +2T12722  +Ti12T23
+r13%90  +Ti3T21 +Zi3Toz  +2733293)

Sp,p P, P(1,0,1) =5ign(J)/// z1z3dzdzodTS
PyP, P, Ps
1

B leo

(2z10730  +Ti0%31  +Ti0T32  +T10T33
+x11730 +2T11T31  +T11T32 +211Z33
+x12730  +T12Z31  +2T12%32  +T12233
+z13T30 +r13T31 +T13T32 +2T13T33)

zsign(J)///PPPP zoz3dz1d2odT3

~—

SP0P1 P2P3(Oa L1

1
=J—
120
(2220730 +Z2031  +To0T30 +220733
+zo1730 +2z21731  +T21%32 +I21233 (24)

+Z22730 +Z22%31  +2T20T32 +To2%33
+zo3w30 +T23T31 +To3Tzz  +2T23Z33)

One dimensional simplex integration (16) is same as conventional integration. Formulae
(17)-(20) are 2-d simplex integrations over triangles. Formulae (21)-(24) are 3-d simplex
integrations over tetrahedrons.

Simplex Integration on General Two-dimensional Blocks

Since simplex integrations always have the Jacobian J as factor and J is an oriented
area, the integrations on positive area and negative area can be neutralized. Denote

PiPPy-- P, Ppyy =P

with
P; = (214, 22:)

as a polygon, the integrations (17)-(20) on
PP Py
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are computed by summations. (25)-(28) are the integrations of DDA method. Here Py can

be any point, Py = (0, 0) are chosen in order to have simpler formulae.

/‘/( d.’L‘ldl’Q :Zk_ISPoPkPkM(O’O)
A) -

1 n 1k T2k
_ = 25
2 Zk=l T1 k+1 T2 k+1 (25)
n
// iderdey =) Spppu.(1,0)
(A) -
// $1dl‘1d$2zlzn Tk T2k (z1 %k + 21 k+1)
(A) 6 “~k=1| T1 k41 T2 k41 *
1 " T1k T2k
//(A) zodz1dzTo 5 Zk:l T k1 T2 Epd (22 k + 22 k41) (26)
/[A) :U%dl‘ld:l:g = Zk:l Spopkpk_H (2, 0)
_ _}_ " 1k T2 k
12 k=1| T1 k41 T2 k41
(2% ¢ + 2} k41 T T1kT1 k41)
1 n
// zidzidzy = — 1k T2k
(A) 24 ~k=1| Ty k41 T2 k41
(2331 ET1 k +z1 k21 k41
+Z1 k4121 & 201 k4171 k41)
1 n T T
2d d - 1k 2k
//(l@ T = 04 Lk | k+1 T2 k41
(222 kz2 & +Z2 kT2 k41 (27)

+I2 k4122 &

+222 k4172 k41)

// zi1Todzidry = Zk——l SPOPkPk+1(1’ 1)
(A) B

. 1 n L1k T2 k
24 k=1| T3 k+1 T2 k+1
(221 kT2 & + 21 k4122 k41 + T1 kT2 kg1 + T1 k4122 &)
1 n z 9 I
xlibzdl‘ldCEg = Z 1k 2k
A 24 4~k=1| T1 k41 T2 k41
(A)
(221 k2 & +T1 kT2 ket (28)
+21 k41T 8 F2T1 k4122 k41)
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Figure 3. shows equal-lateral 2-dimensional polygons. The equal-lateral triangle,
square, pentagon and hexagon are in the unit circle. The distance from each node to the
circle center is 1. The edge length and area of each equal-lateral polygon are listed in the
following table. The centers of gravity of the equal-lateral triangle, square, pentagon and

hexagon are the center of the unit circle.

O
OO

Figure 3. Equal-lateral of 2-dimensional polygons

The coordinates (x;, y; ) of vertices of equal-lateral polygon can be computed by the

following formulae:

r; = sin(360/n * 1)
y; = cos(360/n * 1)

1=1,2,---,n

here n is the edge number of the polygons.

Using the simplex integrations, the same area and center of gravity are obtained for

each equal-lateral polygon.
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polygon edge length area

equal-lateral triangle V3 13/3 =1.299038
equal-lateral square V2 2.000000

equal-lateral pentagon 25— V5) V10 + 2v/5 = 2.377641
equal-lateral hexagon 1 13v/3 = 2.598076

Simplex Integrations on General Three-dimensional Blocks

Integrations (21)-(24) are the integrations of tetrahedrons. By summations of sim-
plex integrations (21)-(24), the volume or integrations of any 3-d block can be computed.

Assume
PAPHIP. .. P,
(4 t -
Pn(])+1 1[] 1=1,2,3,...,8

are all outward rotated polygons of a block,

pll — ([%] (i) [1])

J Ty P25 T2

and Py = (0,0,0). The volume of this block is given by (29). Computed by simplex in-
tegrations, integrals (29)-(32) are represented by the coordinates of the boundary vertices

only.

v

n()
/// dzidz,des = ZZ 12 on]P”P,E'L(O’O’O)

[1+1 x[2]k+1 xgl]k-a}—l

n(t)
///V) z1dzdeades = Z, 12 PPl["]P;E"]Pﬂl(l’O’O)
n(t
/// IC]dCCleIIQd.’C;; Z 12 )
() =
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(211 +SE1 k+T1k41)

///(V) (L‘Qd.’lfldﬂlgdivg = Zz , Zn( Y

x%]l x[z y
1 Lok Ty
[1] [1] (4]

Tr%+1 Tok41r T3k41
(221 + Ty k + T2 kt1)

///(V) madeidrade; = Zz 1Zn()

xifil W
Ty o'k T3k

[4] [1] (1]
Ty%k+1 Tok+1 T3kt

(231423 &+ 23 k+1)

"()
/// $1d$1d$2d13—z IZ P[]P[]P[] (2,070)
(V) =
n(7)
///v)x dedeydzs = 155 Z DI

py T x
oo [2'11 o}
1 1 1
1k Lok T3k
A5t
Tkl T2k+1 T3'kt1
(221 121 1 +T11T1 +Z11%1 k41
+21 k11 +221 12y & +T1 kT1 k41

+T1 k41211 +21 k+1$1 k221 k4121 k41)

///(v) vadviduadas _1—2021 1Zk 1

(i] (7] [¢]

Ti1 T2 T3

‘T[ll]k 33[21]1: x[;]k
x[ll]k+1 ${21]L+1 xg]k+1
(2z2 1221 +T2 172 & +Z2 122 k41
+22 T2 +2x9 (T2 +T2 kT3 k41

+2z; k+1$2 1 T2 k1228 +F2T2 k4122 kt1)

n(z)
///(V) vadeideadey = Eﬁ Zz IZ

(¢] (2]

‘i 1[211 i
Tk T3k
{1] [1] ]

Tyk+1 Tokt1 T3'k41
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(2x3 123 1 +T31%3 &k +T3 123 k41
+3 kT3 1 +2x3 kT3 & +2T3 kT3 k41 (31)
4T3 kp1%31 T3 k4123 &k F2T3 k4173 k1)

n()
/// $1$2d$1d.’1]2d.’£3 ZZ IZ PP[ P[]P (171>0)
(V) .
n(1)
///(V) mirdndeadts = g5 5 i L

5’7[11_]1 552,1 T31

?[12]1: z[zl]k ?E;]k
$[11]k+1 x[;]k—}-l $[3$]k+1
(221 1291 +z1122 % +21 122 k+1
+21 kz21  +2T1 kT2 k +1 kT2 k41

+z; L+1I1?2 1 Ty kp1T2 k F201 k4122 k1)

n(i)
/// 3311E3d$1d$2d$3 = 120 ZI 12

v

l[1]k+1 x[Q]k—H xg]k+1

(221 1731 +Ty 123 &k +T1 173 k41

+T1 kT3 1 +2z1 kT3 & +21 kT3 k+1
+z3 L+1$3 1 +IE1 L+1373 ko 2T1 k4173 k1)

(2] [¢] (]

T11 Z21 T3 1
x[l]k [1]k xg*]k
$[11]k+1 x[Z]L+1 xgl]k—i—l
(222 123 1 +T2 123 k +T2 173 k41
+x2 kT3 1 +2x9 k3 +T2 kT3 kg1 (32)

429 k11231 +FT2 k4173 &k T2T2 k4173 k41)

Figure 4. shows 3 different blocks. Each block is shown from two different view
angles. For each block, the geometric formulae of boundary plan angle, edge length, dis-
tance of boundary polygon node to the polygon center, distance of polygon plane to the unit
sphere center, and the theoretical volume of the block are listed in the following tables.

The first block is a tetrahedron with four equal-lateral triangles as its boundary faces.
The block is in the unit sphere. The distance from each vertex to the sphere center is 1.
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Figure 4. 3-dimensional blocks with equal-lateral boundary polygon
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First block of 4 face polygons

boundary polygon number 4

edge number of polygons 3

angle of two adjacent polygon planes arctan(2/2)
edge length of polygons 2\/g
distance from polygon to sphere center %

distance of node to its polygon center 22
distance from vertex to sphere center 1

volume of block /3 =0.51320

The second block is a cube with six equal-lateral squares as its boundary faces. The

block is in the unit sphere. The distance from each vertex to the sphere center is 1.

Second block of 6 face polygons

boundary polygon number 6
edge number of polygons 4
angle of two adjacent polygon planes 90
edge length of polygons %
distance from polygon to sphere center %

. . 2
distance of node to its polygon center 3
distance from vertex to sphere center 1

8_ _

volume of block Vol 1.53960

The third block has twelve faces, each face is a equal-lateral pentagon. The block is

in the unit sphere. The distance from each vertex to the sphere center is 1.

Third block of 12 face polygons

boundary polygon number 12

edge number of polygons )

angle of two adjacent polygon planes 180 — arctan(2)

edge length of polygons 715(\/5 - 1)

distance from polygon to sphere center 711? V5 +2v/5

distance of node to its polygon center \—/—1;3 2(5 — V5)

distance from vertex to sphere center 1

volume of block $ 75V 10(3 + V5) = 2.78516

In order to use the simplex integration, the node coordinates (z, y) in each boundary
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polygon have to be computed. Based on the angles of boundary planes and distances of these
planes to the sphere center, the polygons, the edges and the vertices can be computed.

The three dimensional simplex integrations give the same volume as computed di-
rectly from the geometric formulae listed in the tables.

Rock Failure Examples by DDA

The equilibrium of the DDA method is reached by minimizing the total potential
energy. As the energy is computed by integrations, most of the DDA formulae are formed
by the polynomial integrations over the generally shaped blocks. The simplex integration is
developed and applied to DDA formulation. This new integration gives analytical solutions.
The integrand can be multi-dimensional polynomials.

In the two dimensional case, the integration domain can be any convex or concave
polygons. In the three dimensional case, the integration domain can be any complex body
with plane polygon boundary. The integration results are simply represented by the coordi-
nates of boundary vertices. Based on the simplex integration, DDA algorithms are simple,
efficient yet accurate. Most important, the accurate integral solution of mass matrix ensured
the convergence of “open-close” iterations.

Three rock failure examples are presented. The failure process is a transition from
continuous to discontinuous states. The discontinuous deformation analysis (DDA) has to
fulfill physical laws of both continuous and discontinuous materials. When the computed
displacements and deformations are large enough to be visible, the mechanism of the failure
and the final damage can be shown, and the ultimate strength of materials or structures can
be intuitively estimated. The visible sliding and joint opening from the computation can
demonstrate that the physical laws are satisfied.

The computations require equilibrium in both the discontinuous contacts and the
continuous zones throughout the entire dynamic process. Following a real time sequence,
the DDA uses a step by step approach. The displacements of each time step are so small that
normal linear equations for small displacements can be adopted. At the end of each time

step, the equilibrium in both discontinuous interfaces and continuous zones are reached.

As the step displacements are small, the kinematic relation and friction law are ex-

k3

pressed as linear inequalities. Based on natural contact phenomena, an “entrance theory’
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was developed. The entrance lines are used to form linear inequality equations. The same
linear inequalities are used to define the entrance distances, entrance points, entrance con-
straints and entrance criteria. The “open-close” iterations ensure that no tension and no pen-
etration occur at all entrance positions. There are three entrance modes: open, sliding and
locking. Coloumb’s Law is also fulfilled at all entrance modes and all entrance positions.

There are 1500 to 2000 rock blocks in each example. The dimensions of computed
regions are about 40 to 80 meters. The numbers of time steps are from 300 to 600. The total
elapsed times are from 0.2 to 2.0 second. The maximum total displacements are more than

ten times the average block diameter.
Figure 5 shows the collapse process of a tunnel caused by high initial stresses.

Figure 6 shows the penetration of a missile at a velocity of 300 meters per second

into a blocky rock mass with two tunnels.

Figure 7 shows the damage state as a strong stress wave passing through three tun-

nels excavated in a blocky rock mass.

Figure 8 shows a rock toppling failure caused by slope excavation.
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