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Application of Cavity Expansion Analysis to Penetration Problems 

Sikhanda Satapathy 

Chapter 1: Introduction 

1.1      Motivation and objective 

The problem of penetration of a projectile into metallic and ceramic targets has received 

extensive attention from the research community. Given the geometry of impact and the material 

properties of the penetrator and target, the primary goal is to predict the depth of penetration. 

Furthermore, for finite targets, determination of the ballistic limit and the characteristics of the 

ejecta behind the target are important. This research finds application in a wide variety of problems 

involving impact and penetration, such as armor and anti-armor design and protection of space 

structures from orbital debris and meteoritic impact. In addition, the analysis can aid in the design 

and evaluation of protective structures for high-speed machinery such as turbines, in the 

determination of vehicle crash-worthiness, and in the design and evaluation of nuclear reactor 
containment. 

There have been several review articles on different aspects of penetration mechanics 

(Zukas 1990; Herrman and Wilbeck 1987; Backman and Goldsmith 1977; Johnson 1972). The 

various physical phenomena that occur in the impact and penetration situation include wave 

propagation, elastic-plastic deformation, crack formation and propagation, petalling, plugging and 

spalling, shear band formation, melting and phase change, and fragmentation. While most of the 

above phenomena belong to distinct established areas of science, in impact and penetration 

mechanics one has to deal with the entire gamut of these physical phenomena, which makes the 

subject complicated. Depending on the penetration regime, different phenomena predominate. The 

mechanics of penetration varies for different impact velocities, material properties and geometries 

of the penetrator and the target. For example, the phenomena that exist near ballistic limit 

penetration (like spall fracture, petalling, plugging, etc.) are absent in semi-infinite target 

penetration (Figures 1.1-a, b). Similarly, at very high impact velocities, the projectile penetration 

can be explained by fluid flow models. At low velocities, the penetration is explained by elastic- 

plastic deformation and wave propagation. 



I 

(a) (b) (c) 

Figure 1.1.  Effect of target thickness on penetration mechanics. 

One of the most important parameters used in penetration analysis is the resistance of the 

target material to impact and penetration. In conjunction with some form of Newton's second law, 

one uses the target resistance value to predict the depth of penetration, size of the cavity made, 

deceleration and erosion of the projectile, and other dynamic response characteristics. In the break- 

out problem (Figure 1.1-c), one is concerned with the mass and momentum distribution of the 

ejecta after the projectile passes through the target/ armor. In such cases, modeling the penetration 

of the finite target is necessary before any attempt can be made to describe the residual 

characteristics. 

In this dissertation cavity expansion analyses are used to calculate target resistance values 

for metals and ceramics. The problems of cavity expansion in ductile and brittle materials are 

completely different. While ductile materials flow plastically and eventually fail under increasing 

applied load, brittle materials develop extensive cracking and comminution (Figure 1.2). This 

behavior complicates the analysis of brittle materials. Introduction of a finite boundary changes the 

penetration resistance values of both metals and ceramics significantly. There is no physically 

based model to quantify this effect for use in penetration equations. Furthermore, in metals 

having relatively low failure strain, a cracked zone is observed near the penetration channel. Finite 

ductility seems to play a role for such cases. To capture the physics of these different kinds of 

situations, the analyses are necessarily specialized depending on the case at hand. 



Figure 1.2.   Penetration phenomenology of brittle materials. 

The main objectives of this research were: 

a) To present a complete account of the existing cavity expansion theory for ductile and brittle 
materials; 

b) To extend the cavity expansion theory for certain cases of practical importance, i.e., for 

finite metal targets where presence of a finite boundary affects the penetration resistance, 

and for brittle metallic targets which show a distinct cracked zone surrounding the 
penetration channel; 

c) To derive quasi-static and dynamic cavity expansion pressures for brittle ceramics and 

identify and quantify the important material parameters that influence their penetration 
resistance; 

d) To critically analyze the application of cavity expansion theory for modeling the penetration 
resistance parameter. 

1.2      Organization and summary of research 

In this chapter the existing literature on cavity expansion theory is reviewed briefly and a 

summary of this research is presented. Cavity expansion analyses of ductile materials are 

described in Chapter 2. Existing incompressible and compressible theories are presented for both 

static and dynamic cavity expansions. The effect of finite ductility on the cavity expansion 

pressure is then quantified in a new analysis. The effect of a finite boundary on the penetration 

resistance is investigated. Comparisons with experimental data are presented.  Quasi-static punch 



experiments performed on PMMA are then described and cavity expansion analysis is used to 

model these experiments. Finally, the theoretical predictions of load-displacement curves and the 

size of the plastic zone are compared with the experimental data. 

Cavity expansion analysis for brittle materials is presented in Chapter 3. Existing models 

are reviewed, then simplifying assumptions are introduced to model the cracking and comminution 

behavior observed in experiments. The static cavity expansion problems in spherical and 

cylindrical symmetries are solved. Two different methods are employed to solve the dynamic 

cavity expansion problem in ceramics. The important material parameters determining the 

penetration resistance are identified and compared with experimental data. The results from cavity 

expansion analyses of ductile and brittle materials are used to model the penetration into ceramic 

tiles backed by thick metallic substrates. 

In Chapter 4 existing penetration models for rigid and eroding projectiles are reviewed. 

Strengths and limitations of these models are pointed out. A new approach is hypothesized for 

modeling penetration by long rod projectiles into metallic targets. The connection between cavity 

expansion pressure and the target resistance is established in this model. Comparisons with 

experimental data are presented. 

The findings of this research are summarized in Chapter 5. The significant conclusions are 

presented and scope of future work in this area is indicated. 

1.3      History and literature on cavity expansion analyses 

Cavity expansion theory has received a great deal of attention for the past few decades. 

Here I present an overall narrative review of the past work in this area. Technical details for ductile 

materials are presented in Chapter 2. Similarly, existing cavity expansion analyses for brittle 

materials are presented in Chapter 3. In Chapter 4, some of the currently used penetration models 

are discussed. 

In the 19th century, Poncelet's equation (see Johnson 1972) was used as a penetration 

model for rigid penetration into geologic materials like sand and clay. The resistive force was 

determined to be a function of the square of the penetration velocity plus a constant. 



Since World War II, attention has been focused on development of higher velocity impacts 

that generate stresses high enough to deform and erode the projectile. The highest-velocity 

penetrator, shaped charge jets, for which one can ignore the strength of the projectile and target 

materials compared to the high impact pressure generated, can be modeled by a hydrodynamie 

analysis. Subsequently, the penetration resistance of the target and the strength of the projectile 

were introduced into the hydrodynamie penetration equation (Täte 1967, 1969; Alekseevskii 
1966). 

Cavity expansion analysis began in the middle of this century, when Bishop, Hill and Mott 

(BHM) (1945) derived formulas for the pressure required to open spherical and cylindrical cavities 

from zero radius in metals. They found that for a deep punching event, the punch pressure is 

closely bracketed by the spherical and cylindrical cavity expansion pressures. Hill (1946) 

subsequently derived a formula for dynamic cavity expansion pressure in metals that took inertial 

effects into account. Hill (1950) suggested that the cavity expansion pressure be considered as the 

work required to open a cavity of unit volume. He contended further that this energy per unit 

volume should be a constant irrespective of how the cavity is formed, as long as friction can be 

neglected. Subsequently, the cavity expansion pressure has been used as an approximation to the 

penetration resistance of target materials. 

Chadwick (1959) solved the spherical cavity expansion problem in a Mohr-Coulomb 

material. Hopkins (1960) presented an excellent summary of the post World War II work done on 

static and dynamic cavity expansion. Hunter and Crozier (1967) derived the dynamic cavity 

expansion pressure for a compressible metal using a similarity transformation under the 

assumption that the ratio of yield stress to density remains constant. Goodier (1965) successfully 

applied the cavity expansion results to model linear penetration of hard rigid spheres into soft 

targets assuming that the dynamic cavity expansion pressure has a sinusoidal variation from the tip 

to the edge. Hanagud and Ross (1971) used a locking hydrostat assumption in their cavity 

expansion solution to model target compression for hypervelocity impact of steel projectiles into 

aluminum targets. Täte (1967, 1969) also discussed the utility of using cavity expansion pressure 

to represent the target resistance term. Durban and Baruch (1976) numerically solved the non- 

linear equations for an incremental elastic-plastic material and showed that asymptotic value of 

expansion pressure exists. Forrestal, Longcope and Norwood (1981) and Forrestal (1986) 

estimated the force on a conical penetrator in dry porous rock from the cavity expansion pressure, 

assuming a linear hydrostat and a linear shear-pressure relation.   The dynamic cavity expansion 



problem in an elastic-plastic solid was solved by Forrestal and Luk (1988) using a similarity 

transformation. This solution showed that the elastic-plastic boundary speed asymptotically 

approaches the plastic wave speed in the material and does not indefinitely rise with cavity 

expansion velocity as was suggested by the incompressible models. Forrestal, Okajima and Luk1 

(1988) then used this solution to model penetration of Aluminum targets by long rod projectiles 

made of steel. Subsequently, Luk, Forrestal and Amos (1991) developed a dynamic spherical 

cavity expansion solution for strain-hardening materials. Tzao and Li (1994) calculated the thermal 

wave profile generated in penetration of metals using the dynamic cavity expansion solution of 

Forrestal and Luk (1988). Forrestal, Brar and Luk (1991) and Forrestal et al. (1995) have 

successfully used the cavity expansion solution to model rigid penetration into ductile targets. 

Sternberg (1989) discussed the application of cavity expansion pressure to model the 

strength term in Tate's penetration equation for ceramic targets. Forrestal and Longcope (1990) 

incorporated tensile cracking into their cavity expansion solution to model a ceramic material as a 

plastic-cracked-elastic material. Huang, Hutchinson and Travergaard (1991) exploited cavity 

expansion analysis to characterize the cavitation instabilities in elastic-plastic solids. In an attempt 

to describe deep penetration of polycarbonate by a cylindrical punch, Wright, Huang and Fleck 

(1992) modified the cylindrical cavity expansion solution to account for the hackle zone 

surrounding the penetration channel, with limited success. Florence et al. (1992) derived a 

solution for the dynamic cavity expansion pressure in brittle ceramics by assuming a constant 

"flow" stress for the failed material. Partom (1993, 1995, 1996) used cavity expansion analysis 

for modeling ceramic materials and to describe finite lateral effects in metallic targets. Klopp et al. 

(1994) conducted spherical cavity expansion experiments in ceramics to study their behavior under 

impulsive loading situations. Satapathy and Bless (1995) and Bless, Satapathy and Simha (1996) 

presented static and dynamic cavity expansion theories for ceramic materials. Recently, Forrestal 

and Tzao (1996) developed a spherical cavity expansion based penetration model for concrete 

targets. 

This dissertation thoroughly reviews the existing cavity expansion theories for both metals 

and ceramics. These theories are then extended to several cases of practical application for both 

metals and ceramics. Several examples are cited in which the theoretical results are compared with 

experimental data. Finally, a new penetration model is hypothesized which shows excellent 

agreement with several sets of experimental data. The hypothesized material behavior still needs to 

be experimentally verified. 



Chapter 2: Cavity Expansion in Ductile Materials 

The cavity expansion pressure required to open a cavity from zero radius in a metal has 

been shown to provide a good approximation for target resistance properties such as the values of 

R, used in Tate-Alekseevskii model (Täte 1967; Anderson et al. 1993) and the penetration 

resistance properties for rigid body penetration (Goodier 1965; Hanagud and Ross 1971; Forrestal 

et al. 1995). For an infinite target medium, this pressure is independent of the cavity size and is 

fully determined by fundamental material properties. Thus it elevates the target resistance term in 

the Tate-Alekseevskii formulation from quasi-empirical status to being a "first principle" solution. 

Penetration models are discussed in Chapter 4. 

The cavity expansion theory has received the attention of a distinguished group of 

researchers in the past few decades. In their pioneering work, Bishop, Hill and Mott (1945) 

derived formulas for spherical and cylindrical cavity expansion pressures in ductile metals and 

found that these two values closely bracket the deep punching pressure. Hill (1950) later included 

compressibility in the cavity expansion formula. Chadwick (1959), adopting a slightly different 

approach, derived a compressible cavity expansion solution which did not vary much from Hill's 

formula numerically. Chadwick's expression encompassed both metals and soils obeying Mohr- 

Coulomb type constitutive behavior. Hopkins (1960) presented an excellent summary of the post 

World War II work in this area. Hunter and Crozier (1967) studied the problem of expansion of a 

spherical cavity at a constant velocity. Among others, Forrestal's et al. (1988, 1991, 1995) works 

on dynamic cavity expansion taking into account the compressibility effects are noteworthy. They 

applied the dynamic cavity expansion analysis to model penetration of metals, rock, and concrete 

by rigid penetrators. Wright et al. (1992) studied the effect of finite ductility on cavity expansion 

pressure in an attempt to describe the hackle zone they observed in punch tests of PMMA. Huang 

et al. (1991) used the cavity expansion solution to study cavitation instability in metals. For 

penetration mechanics of ductile materials, cavity expansion solutions have been used by Täte 

(1967, 1986), Goodier (1965), Hanagud and Ross (1971), Forrestal (1988, 1991, 1995), Partom 

(1996), Rosenberg (1990), Walker and Anderson (1995), and Bless and Lee (1996). 



In this chapter, the existing literature on spherical and cylindrical cavity expansion analyses 

are reviewed in some detail (Sections 2.1 and 2.2). The derivations for the quasi-static spherical 

cavity expansion pressure are shown for various elastic-plastic constitutive behaviors in 

incompressible and compressible media. The dynamic cavity expansion solution for an elastic-' 

perfectly plastic material is presented for both incompressible and compressible cases. The strain- 

hardening case is then discussed. The existing cylindrical cavity expansion theory is presented and 

compared with the spherical cavity expansion theory. During this detailed review, certain new 

derivations are presented and some of the existing results are analyzed. 

Subsequently, the existing theory is modified to account for the presence of a finite 

boundary. The resulting theory is compared with experimental data. The implications of finite 

ductility on the spherical cavity expansion analysis are discussed. Such effects are quantified and 

compared with experimental data. Finally, quasi-static experiments performed on PMMA are 

described. The predictions from the cavity expansion analysis are compared with experimental 

data. 

2.1      Spherical cavity expansion 

2.1.1   Static spherical cavity expansion in an incompressible medium 

There are several equivalent derivations of the static spherical cavity expansion solution in 

the literature (Bishop et al. 1945; Hill 1950; Chadwick 1959; Hopkins 1960; Huang et al. 1991; 

Luk et al. 1991). Here the most generalized derivation is presented, showing details of all the 

equations used. 

2.1.1.1   Elastic solutions 

Consider expansion of a spherical cavity in an infinite elastic-plastic continuum by gradual 

application of radial pressure on the inner boundary, r = a^ The ensuing deformation is quasi- 

static. Initially, the state of stress in the medium is elastic. Taking stresses to be positive in 

tension, for spherical symmetry the equilibrium equation is given by: 

—L + 2-i §- = 0, (2.1) 
dr r 



where or and oe are the radial and hoop stresses, respectively, and r is the radial coordinate. The 

linear elastic constitutive equation is 

ar = (I + 2|i)er + 2tee and ae = ter + 2{X + u>6, (2.2) 

where X and \i are the Lame constants and er and £9 are the radial and hoop strains respectively. 

Assuming small strain theory, in which strains are related to displacement, u, through 

du       , u 
£r=— and ee=£$=-, (2.3) 

dr *     r 

where 0 and <|> denote the two equivalent hoop directions, the equilibrium equation reduces to 

d2u    2 du    2u    n 
—J + — r = 0. (2.4) 
dr      r dr     r 

This equation has a solution of the form 

u = cir + ^-, (2.5) 

where c, and c2 are integration constants to be evaluated from the boundary conditions. Since the 

displacement has to be zero at infinity, c, has to be zero. For the other boundary condition, let the 

pressure applied at the inner boundary be P0, i.e., ar|r=a = -P0. Evaluating Eqs. (2.2), (2.3), 

(2.5) and the boundary conditions, one obtains 

«."Jjf- (2.6) 



This completes the solution for the elastic field. As the pressure P0 is increased, the 

material might become plastic, depending on its yield behavior. For spherical symmetry, von 

Mises and Tresca yield criteria coincide (Mendelson 1968) and are given by 

|ae-cr| = Y, (2.7) 

where Y is the yield strength. From the elastic solution, the stress difference is given by 

Ce-<*r = 
3Pofao^ 
2\i) 

(2.8) 

This expression is greatest at the inner boundary.  Thus from Eqs. (2.7) and (2.8), the internal 

pressure required to just yield the material is given by 

2Y 
Po = —■ (2-9) 

At this pressure, the elastic strains, which are maximum at the inner surface, are given by 

Y Y 
er = and £9 =—. (2.10) 

3u. e    6|i 

Since for most metals, Y « (I, the assumption of small strain theory for the elastic region is 

justified. This was originally shown by Chadwick (1959). 

2.1.1.2 Elastic-plastic solutions 

As the applied pressure is increased beyond the value given by Eq. (2.9), a plastic zone 

will appear surrounding the cavity (Figure 2.1).    A yield function is needed to describe the 

10 



constitutive behavior of the plastic deformation.   Let the effective stress, ce, be related to the 

effective strain, e, through the following functional relation, which is essentially the uniaxial 

stress-strain curve: 

= f(E). (2.11) 

Cavity 

Plastic Region 

Elastic Region 

Figure 2.1.   Response regions. 

For radial loading, the Prandtl-Reuss equations (the associated flow-rule for the von Mises yield 

criterion) are given by 

ij    2o> 
(2.12) 

where e£ is the plastic part of the strain tensor, eij5 ep is the effective plastic strain and Sr is the 

stress deviator. The total effective strain e is the summation of the elastic part, ee, and the plastic 

part ep. Using this decomposition, one obtains from Eqs. (2.11) and (2.12) 
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fcij 2ae     VY; 
f-, ^ a.Y.     3S, 

,J    2E 
(2.13) 

where the elastic relation ae = EE
6
 has been used. The elastic strain tensor, e?, is given by 

e     1 + v        v      5. 
1J p 1J p       KK    1J 

_3_ 

2E 

1      s ' 0ij-g0kk°i] (for incompressibility, v = 0.5) 

"2ESij' 
(2.14) 

where Sy is Kronecker delta. Now adding Eqs. (2.13) and (2.14), the total strain tensor becomes 

e.«-?-f-'(^ ,J     2G„     VY) V (2.15) 

This is the same expression derived by Wright et al. (1992).   For spherical symmetry, the von 

Mises yield criterion becomes, 

^e =V^2   =|<Tr-<ye| = a8_ar' (2.16) 

since Ge>Gr. The term J2 = SjjSy/2 is the second invariant of the deviatoric stress tensor. Taking 

either the radial component or the hoop component of Eq. (2.15) and realizing that for an 

incompressible material, er= -2^, the plastic constitutive equation for the elastic-plastic material 

becomes 

f(-er) = f(2ee) = ^ (2.17) 
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Before using Eq. (2.17), one needs to derive an expression for strain so that the functional 
form of Eq. (2.11) can be used. For the elastic region, the use of small strain theory was shown to 

be justified. In the plastic region, even though the strain is small near the elastic-plastic boundary, 
it is not small as one proceeds towards the cavity surface. Thus for the plastic region the use of 
logarithmic true strain is appropriate. Using the convective differentiation of particle displacement, 
the particle velocity is 

v = 
9u/3t 

1-öu/or' 
(2.18) 

Integrating the physical strain rates defined by 

3v      ,   .      v 
er = — and e9 = -, 

or r (2.19) 

Hopkins (1962) derived the following formulas for logarithmic true strains, 

er =-ln O-D"-*-!'- (2.20) 

Eq. (2.20) reduces to Eq. (2.3) for small strains.   The mass conservation equation in Eulerian 
coordinates is given by (Forrestal 1990) 

A(r-u)3=3r2-P-. 
dr Po 

(2.21) 

For incompressible material, integration of (2.21) from a to r yields 

u^    1. (l    a'-a^ 
ln|1-7=l'" V J 

(2.22) 
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Now from Eqs. (2.17), (2.20) and (2.22), one obtains 

3 

f 3 3 ' 

V r3 f^-JL. (2.23) 

The location of the elastic-plastic interface, r = c, is given by a/Y=f(ey), where £y=Y/E is the strain 

at incipient yield.   Thus from Eq. (2.23), the following expression for the relative size of the 

plastic zone is obtained. 

c 
a 

l + (Vf_e-3E>/2 -1/3 

(2.24) 

Eq. (2.24) is plotted in Figure 2.2 for different values of ey. It is seen that the plastic zone 

size relative to the cavity radius rapidly approaches a limiting value. Thus if one were to open a 
cavity in a continuous medium (i.e., from zero radius), the plastic zone expands in a constant 

proportion to the current cavity size. On the other hand, the initial cavity size does not matter as 
long as the final cavity size is larger than about twice its initial value. This situation is akin to an 
instability, since no matter how much the applied pressure is increased, there will be a limited 
plastic deformation induced. Hence the material cannot support any pressure higher than that 
required to deform the material to this limiting cavity size. This pressure, which is independent of 
the initial cavity size and depends only on the material constants, is called the cavity expansion 
pressure. Consequently, since the limiting value of the cavity expansion pressure is independent 
of a/a,) and only depends on the value of c/a, in the following derivations a,, is dropped out of the 

equations. This is true for cases where a/ao>2, or for expansion from zero initial radius. This 
limiting value also quantifies the extent of plastic region in the penetration model of Walker and 

Anderson (1995). 
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■Yield  Strain=0.001 

■Yield  Strain=0.005 
Yield Strain=0.01 

12 3 4 5 

a/aO 

Figure 2.2.   Cavity expansion instability. 

Now, using Eqs. (2.24), the equilibrium equation (2.1) can be integrated from r = a to °°. 

Defining the cavity expansion pressure to be Pc = -ar(r = a), 

-^ = 2|f 
Y J 3 

f     a3^ 

V.       r  J 

dr 

r 
(2.25) 

Introducing a change of variable, T| = a/r, this integral becomes 

i = 2ff 
V       J 

l   L 

2, f    iYI —In 1—r 
3 I     HJJJ 

dp 
(2.26) 

Introducing one more change of variable, X = -(2/3)ln(l-l/r|3), the cavity expansion pressure is 

given by 

Y    J
0exp (3X/2)-l (2.27) 
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Hence, once the stress-strain curve of the material is known, Eq. (2.27) can be integrated 

to find the cavity expansion pressure, which is about 4 to 5 times the yield strength for metals 

(shown later). As will be shown in the next few sections, integration of Eq. (2.27) gives a' 

constant value for the cavity expansion pressure purely determined by material constants. Hill 

(1950) noted that this pressure may be thought of as the work needed to make unit volume of a 
cavity. The following comment of Hill (1950, page 106) is noteworthy: "The work needed to 

make unit volume of cavity deep in a medium should not depend greatly on the shape of the 

indenter or, within broad limits, on the way the cavity is produced, provided friction is negligible." 

Thus in a penetration situation, where friction can be neglected in comparison to the high levels of 

dynamic stress operating, cavity expansion pressure does provide a reasonable estimate of the 

resistance of the target. 

2.1.1.3 Elastic-perfectly plastic material 

For an elastic-perfectly plastic material, the stress-strain curve is given by 

-7 = f(e) = — fore<£y, 
Y ey 

= 1 fore>ey. (2.28) 

It was shown in Section 2.1.1.1 that the strains are small in the elastic region.  Thus for the elastic 

part, e3xy2-l = 3x/2. Substitution of Eq. (2.28) into Eq. (2.27) and integration yields 

P„     2    7 dX ±L-£      f 
Y ~3+jexp (3x/2)-l 

= -[l-ln(l-exp(-3ey/2))]. (2.29) 

For small values of e (for typical metals e ~ 0.01), Eq. (2.29) reduces to 

Y     3 
f2E 

1 + ln — 
V3YJ 

(2.30) 
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This is the same as the spherical cavity expansion pressure for incompressible material originally 

derived by Bishop et al. (1945). 

2.1.1.4 Material showing strain hardening 

Hopkins (1960) has pointed out that under a general condition of work hardening, 

numerical solution of the ensuing non-linear equations is unavoidable. For certain simple cases, 

analytical expressions have been found. Consider, for example, a linear strain hardening law of 

the type 

Y e„ 
for £<£., 

= 1+Ae      for £>e„ (2.31) 

Exact evaluation of the integral in Eq. (2.27) needs numerical solution.  However, Bishop et al. 

(1945) showed that if (a/c)3 can be ignored compared to unity, the strain hardening term is given 

by 2Arc2/27Y in addition to the non-strain hardening term of Eq. (2.30).   For a power hardening 

material of the type 

Y £„ 

(    V £ 

v£yy 

for £<£, 

for £>£v, 

For small values of £ , integration of Eq. (2.27) yields 

(2.32) 

P      2    r» (X/£V) 
— = ±+\    \'7

yJ   dX Y     3    Jeye3x/2_1 

= Ö + Tkr7 777^4d^; where ^=exp(3X/2) 
3     3UY; Jl+3ey/2   ?(P-i)   * ^       FV ' 
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UY; JO       l-x 
; where x=l/^. (2.33) 

Luk et al. (1991) arrived at the same expression as in Eq. (2.33) by using a similarity 

transformation method. For a given strain hardening coefficient n, the integral in Eq. (2.33) must 

be numerically evaluated. Huang et al. (1991) also presented graphically the cavity expansion 

pressure for a strain hardening material by numerically evaluating the equations involved. 

For practical applications, the work hardening is usually ignored, since the contribution of 

the work-hardening part is small. For example, Bishop et al. (1945) found that for copper, work 

hardening contributed about 5% of the total cavity expansion pressure. On the other hand, as 

discussed in Chapter 4, at very high strain rates arising from hyper-velocity penetration, the typical 

target materials behave mostly in an elastic-perfectly plastic manner. Effect of finite ductility of 

hard metals would further reduce the effect of work hardening. 

2.1.2 Static spherical cavity expansion in a compressible material 

2.1.2.1 Elastic-perfectly plastic material 

For an elastic-perfectly plastic material, evaluation of the field equations are 

straightforward. Recognizing that lar-G6l = Y for this case in the plastic region, integration of the 

equilibrium equation 2.1 yields 

Gr = 2Yln(r) + B. (2.34) 

Evaluation of the integration constant B is effected from the continuity of stress at the elastic-plastic 

boundary, r = c. At this boundary, the radial stress is 2Y/3 from Eq. (2.9). Thus using this 

boundary condition and evaluating Eq. (2.34) at r = a, one obtains 

Pe=^ + 2Ylnf||. (2.35) 
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From the elastic solution of Section 2.1.1, using Equations (2.5), (2.6) and (2.9) and with the 
understanding that the elastic-plastic interface is at r = c (thus a„ in Eq. 2.6 is replaced by c), the 
displacement at the interface is given by 

u(c)     Y 
 = T- (2.36) c       6(1 

If one ignored the compressibility effect in the plastic region, conservation of volume 
dictates that 

[c-u(c)]3 = c3-a3 , (2.37) 

for a cavity opening from zero radius. Neglecting higher order terms in u(c)/c (which is good for 

Y « [i, as seen from Eq. 2.36), one gets 

u(c)/c = (a/c)3/3. (2.38) 

Equating this with Eq. (2.36), the relative size of the plastic zone is 

c/a=(2n/Y)I/3. (2.39) 

Finally, insertion of Eq. (2.39) into Eq. (2.35) results in the following expression for cavity 
expansion pressure: 

c      3 Mf (2.40) 

For v = 0.5,   Eq. (2.40) reduces to the incompressible solution, Eq. (2.30).    Thus, ignoring 

compressibility in the plastic region only, c/a is thus calculated using volume conservation in that 
region. This was derived by Bishop et al. (1945). If the compressibility effect of the plastic 
region needs to be accounted for, the situation is slightly complicated. Hill (1950) and Hopkins 
(1960) adopted an innovative procedure. Taking the movement of plastic boundary as a scale of 
time, integration of the mass conservation equation yielded a formula for cavity expansion in a 
compressible elastic-plastic material. Hill (1950) suggested that the same result can be arrived at 
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by directly using the compressibility equation in the integrated form.  I adopt the latter approach, 
which is considerably simpler than the former. The mass conservation equation can be written as 

Po _   1   d , ,3 

3r2dr 
(u + r)'. (2.41) 

Using the linear equation of state, p0/p = 1 - P/K, where P is the hydrostatic pressure given by 

P = - (GT+2G6) 13, and the von Mises yield criterion, lor-ael = Y, one obtains from Eq. (2.41), 

i(3cr+2Y) = K 1- 
J__d_ 
3r2dr 

(u + r)3 (2.42) 

The stress ar is given by Eq. (2.34) and the boundary condition in the following paragraph. 

Integrating this equation from the Lagrangian positions R = 0 to R = c-u(c) and ignoring higher 

order terms of u(c) / c (in view of Eq. (2.36) for Y « (i), I obtain the following expression for 

plastic zone size: 

c 
a 

-il/3 

3Y(l-v) 
(2.43) 

Substitution of Eq. (2.43) into Eq. (2.35) yields the following formula for compressible cavity 
expansion pressure, which is identical to the formula derived by Hill (1950): 

p.-- c      3 

( 
1 + ln 

A" 

l3Y(l-v). 
(2.44) 

Here the fact that Y«|i was used several times. For v = 0.5, Eq. (2.44) becomes identical to the 

incompressible solution, Eq. (2.30). Huang et al. (1991) also arrived at this formula by adopting a 
somewhat different approach, and showed that this is the cavitation limit, i.e., the material cannot 
support any higher pressure than this.  Evaluation of the plastic zone size from Eqs. (2.24) and 

(2.43) for typical steels (E = 206 GPa, Y = 1  GPa, v = 0.3) indicates that the incompressible 

solution  (c/a = 5.16)   overpredicts the compressible solution  (c/a = 4.6)   by   about   12%. 
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Similarly, evaluation of Eqs. (2.30) and (2.44) indicate that incompressible solution for cavity 

expansion pressure (Pc = 3.95 GPa) overpredicts the compressible solution (Pc = 3.7 GPa) by 

about 7%. On the other hand, BHM's partial compressible solution (Eqs. 2.39 and 2.40) 

overpredicts the plastic zone size and the cavity expansion pressure by about 17% and 10%' 

respectively, compared to the fully compressible solution (Eqs. 2.43 and 2.44). 

2.1.2.2 Strain hardening material 

Both Hill (1950) and Hopkins (1960) pointed out the difficulties in obtaining the cavity 

expansion solution for a compressible strain hardening material. For general strain hardening, 

numerical integration by using incremental steps on the non-linear stress-strain curve is 

unavoidable. Thus they assumed incompressibility in deriving formulas for a strain hardening 

material, as discussed in Section 2.1.1. Later Luk et al. (1991) used a similarity transformation to 

solve the non-linear field equations and numerically evaluated the resulting differential equations. 

From their result, it is found that for quasi-static expansion, the compressible model predicts a 

slightly lower cavity expansion pressure than the incompressible model. The difference increased 

for the dynamic case with increasing cavity expansion velocity. 

2.1.3   Dynamic cavity expansion in an incompressible material 

So far, the cavity expansion solution for quasi-static expansion ignoring inertial effects, has 

been considered for different material behaviors. As discussed by Hopkins (1960), Hill was the 

first to derive the dynamic cavity expansion solution for an incompressible ductile material. Here 

this solution is presented briefly. 

The equation of motion, written in spherical coordinates, is 

3cr    2 ( , 
^- + -(ar-a9) = p 

3v      9v^ 
(2.45) 3r 

The equation of conservation of mass is 

T^(Prv) + ^ = °- (2.46) r23rvr     '    3t 
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For an incompressible material p = constant, and thus equation (2.46) becomes —(r2v) = 0. 

Integration of this equation with the boundary condition v(a) = ä reveals that the particle velocity 

in the incompressible region is determined by 

v = 
a2a 
la-' (2.47) 

Insertion of Eq. (2.47) into Eq. (2.45), along with the yield condition lar-Gel = Y and subsequent 

integration yields 

ar =2Ylnr-p 
a ä + 2aä a4ä2 

2r4 + g(t), (2.48) 

where g(t) is an arbitrary function, which can be determined from the boundary condition at the 

elastic-plastic interface. Substitution of Eq. (2.47) into the strain rate definition given in Eq. (2.19) 

and subsequent integration between limits r = a0att=Otor=aatt = t results in the following 

expressions for the strains in the incompressible medium: 

er = -
2(a3-ao}-    ande.^3-^ 

3rJ -e 3rj (2.49) 

Finally, substitution of Eq. (2.49) into the elastic constitutive equation (2.2) and use of the yield 

criterion l<7r-Gel = Y results in the relative location of the plastic front as 

c(t)    f2u_ 

a(t)    I Y 

1/3 

(l + u)Y 
(2.50) 

Thus, evaluation of Eq. (2.45) results in the following behavior of the radial stress in the elastic 

region: 

a  = — 
2YV 
3  r3 — P 

a2ä + 2aä2 aV 

2r4 for r > c. (2.51) 
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Here the fact that the material is at the yield point on the elastic-plastic interface has been used. 

Finally, using the continuity of the radial stress at the elastic-plastic interface, the following 

formula follows from Eqs. (2.48), (2.50) and (2.51): 

c      3 

2E 
1 + ln— 

3Y 
+ p|aa + -a2 (2.52) 

The first term on the right-hand side is the quasi-static term derived in Eq. (2.30) for an 

incompressible elastic-perfectly plastic material. 

2.1.4   Dynamic cavity expansion in a compressible material 

Even though the incompressibility assumption resulted in an analytically tractable dynamic 

cavity expansion solution, there are certain limitations that were pointed out by Chadwick et al. 

(1964) and Hunter and Crozier (1967). For an incompressible material, the elastic wave speed is 

infinite. The plastic wave speed, which bears a constant ratio to the cavity expansion speed 

(Eq. 2.50), can increase indefinitely for high enough cavity expansion speed. They also criticized 

the instantaneous transmission of energy and failure to describe the shock discontinuity arising a 

priori due to the velocity field in Eq. (2.47). The assumption of a single plastic zone is valid only 

for ä > 0. However, this is usually true for penetration problems. 

Hunter and Crozier (1967) noted that for the case where the cavity is expanded at a constant 

speed, i.e., a = V0t, the problem admits a similarity solution in which stress, velocity and density 

depend on a single similarity variable, rj = rt'1.  Further, they assumed that throughout the cavity 

expansion process, the ratio of the yield stress to the density is constant. Their solution admitted a 

shock discontinuity for cases where the elastic-plastic boundary speed was  in excess of 

cp=^ V(K/p). Their solution showed that with increasing cavity expansion velocity, the elastic- 

plastic interface speed increases and ultimately reaches the elastic wave speed. Hopkins (1960) 

gave a detailed exposition of the nature of the plastic wave propagation in spherical symmetry. He 

recognized that a part of the plastic displacement can be derived from a plastic displacement 

potential function arising out of irrotational motion. This part necessarily travels at the plastic 

wave speed cp, whereas the rest of the displacement does not satisfy the wave equation and hence 

nothing can be said about its speed. Thus he pointed out that the elastic-plastic boundary does not 
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necessarily travel at the plastic wave speed cp. On the other hand, a later solution of Forrestal and 

Luk (1988) has shown that the elastic-plastic interface speed asymptotically approaches the plastic 

wave speed. 

Forrestal and Luk (1988) presented a solution for expansion of a spherical cavity at a 

constant velocity.   As pointed out earlier, this situation admits a self-similar solution1 by a 

similarity transformation. For spherical symmetry, introduction of a similarity variable, t, = r/ct, 

where c is the elastic-plastic interface speed, reduces the coupled partial differential equations to a 

set of coupled ordinary differential equations. 

Unlike Hunter and Crozier, Forrestal and Luk did not envisage a shock discontinuity at the 

elastic-plastic interface. Rather, using the Hugoniot jump condition along with the condition that 

the material is about to yield on either side of the elastic-plastic interface, they determined that 

particle velocity, stresses and the density are continuous across the elastic-plastic boundary. They 

assumed a linear hydrostat for the plastic region. Using the following non-dimensional variables, 

S = Gr/K; T = Y/K; U = v/c; e = V/c; ß = c/cp? (2.53) 

where cp = V(E/p0), c is the elastic-plastic interface speed, and V is the constant cavity expansion 

speed, they derived the following approximate solution for the dynamic cavity expansion pressure: 

SC=S2- 
ß2(e2-U2)    2(U2ß

2+T)(l-£) 

<l-ß2) 
( 

-2Tlne + Tln 
l-ß2e 

1-ß2 

2„2 \ 

+ —In 
ße 

(l + ß2e)(l-ß)" 
(l-ß2e)(l + ß) 

(2.54) 

where S2 and U2 are obtained from evaluation of the elastic solution at the elastic-plastic boundary, 

and are given by 

U2 = T(l + v) 
3(1-2v) 

and s2 = ?I 
2      3 

1 + - 
(l + v)a2 

(l-2v)(l + a) 
(2.55) 

1 An excellent exposition on self-similar solutions and similarity transformations is given by Barenblatt (1979). 
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where a=c/cd with cd
2=E(l-v) / [(l+v)(l-2v)p0]. 

To evaluate Eq. (2.54), the velocity of the elastic-plastic interface, c, has to be calculated 

first. From the condition that the cavity opens from zero initial radius, they obtained the following 

transcendental equation, whose root yields the interfacial velocity: 

Tße + ßvJ^ß2;T)tß2£2)-I^glln 
(1-ß2) 2 

"(1 + ßeXl-ß)' 
(l-ß£)(l + ß) 

= 0.       (2.56) 

Forrestal and Luk presented numerical solutions of Eqs. (2.54) and (2.56) and compared 

them with the full non-linear solution of the field equations. The approximate solutions were 

shown to be in excellent agreement with the full non-linear solution. The important aspect of their 

solution was that the elastic-plastic interface velocity asymptotically approached the plastic wave 

speed, cp. As expected, the compressible solution predicted a lower value of dynamic cavity 

expansion pressure compared to the incompressible solution, while agreeing with the latter and the 

quasi-static solution (Eq. 2.44) for zero cavity expansion velocity. The effect of compressibility 

increased with expansion velocity. In a later paper, Forrestal et al. (1988) described the 

compressible dynamic cavity expansion pressure by the following curve-fit formula: 

Pc(u) = Pstat+1.041pu2, (2.57) 

where Pstat is the quasi-static term given by Eq. (2.44). 

In Figure 2.3 I have plotted the dynamic cavity expansion solution from Eqs. (2.54) and 

(2.57) for steel together with the incompressible solution of Eq. (2.52). It is seen from this figure 

that even though Eq. (2.57) represents the compressible solution, Eq. (2.54), quite well for a 

velocity below about 1200 m/s, it diverges significantly from the former at higher velocities. Use 

of the full solution of Eq. (2.54) results in a significant drop in the inertial term with velocity 

(compared to the curvefit formula, Eq. 2.57), which will be shown in Chapter 4 to be in good 

agreement with the experimental data. 
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Recently, Warren and Forrestal (1997) derived the dynamic cavity expansion solution for 

aluminum targets taking into account the effects of compressibility, strain hardening and strain-rate 

sensitivity. This model explained the rigid penetration into aluminum targets quite well. 

2.2      Cylindrical cavity expansion theory 

The solution for cylindrical cavity expansion is more difficult than that for the spherical 

case, since this is a two dimensional problem as compared to the one dimensional spherical cavity 

problem. The cylindrical cavity problem requires some assumption about the longitudinal strain or 

the longitudinal stress. Hill (1950) has discussed this problem in length. For the spherical case, 

the von Mises and the Tresca yield criteria are the same. This is not true for the cylindrical case, 

and hence the choice of yield condition affects the solution. For cylindrical symmetry, the 

equilibrium equation is, 

dar | <yT-Q9 ^Q 

dr r 
(2.58) 

Eq. (2.15) was derived from the Prandtl-Reuss equation, which is the associated flow rule for von 

Mises yield condition (Mendelson, 1968). Thus Eq. (2.15) cannot be used for the Tresca yield 

condition. However, for an elastic-perfectly plastic material, the yield condition is, 

k-oe| = ßY, (2.59) 
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where ß = 1 for the Tresca and ß = 2/V3 for the von Mises criterion. Integration of Eq. (2.58) 

with the elastic constitutive equation for the elastic region and with Eq. (2.59) for the plastic 

region, and satisfaction of the boundary conditions that the stress and displacements are continuous 
at the elastic-plastic boundary and that the cavity opens from zero initial radius, gives the 

expression for cavity expansion pressure. Assuming an incompressible plastic region and the von 
Mises yield condition, Bishop et al. (1945) derived the following formula for the cavity expansion 
pressure: 

P = 
V3 

1 + ln 
V3E 

2(1 +v)Y (2.60) 

For a compressible plastic zone, Hill (1950) derived the following formula: 

P„ = 
ßY 

1 + ln 
2E A' 

U5-4v)ßY. 
(2.61) 

Here ß takes the appropriate value for Tresca or von Mises yield criterion.   For the von Mises 

criterion and an incompressible material (v = 0.5), Eq. (2.60) and (2.61) are identical.   For an 

incompressible strain hardening material with the stress-strain curve of the form given by 
Eq. 2.31), the cavity expansion pressure is given by (Hill 1950) 

P = 
V3 

1 + ln 
V3Y, 

7t2A 

18 " 
(2.62) 

The dynamic cavity expansion problem for cylindrical symmetry has not been studied 
extensively. The only published work in this area appears to be that due to Forrestal (1986), 
where for application in the area of penetration in dry porous rock, he derived an approximate 
solution for dynamic cylindrical cavity expansion. In a later paper, Forrestal et al. (1988) 
presented the following curve-fit formula for this numerical solution: 

'-7 
/ 

1 + ln 
2E 

U5-4v)Yj 
+ 1.837pV2. (2.63) 

27 



where V is the constant cavity expansion velocity. 

A generalized dynamic cavity expansion analysis in cylindrical coordinates for cavities with' 

arbitrary cross-sections (including cylindrical) is the subject of a current doctoral dissertation 

(Woo 1997). 

2.3      Spherical vs. cylindrical cavity expansion 

From the above description of the cavity expansion in spherical and cylindrical symmetry, 

it turns out that for commonly used metals, the quasi-static cavity expansion pressures differ by 

only about 15% (e.g., for steel with E = 206 GPa, Y = 1 GPa and v = 0.3, Eqs. 2.44 and 2.61 

yield Pc = 3.7 GPa and 3.2 GPa respectively). Bishop et al.'s (1945) deep punching experiment 

into copper showed that the punch pressure was bracketed by the spherical and cylindrical cavity 

expansion pressure. Additionally, as described in Section 2.1.2, Hill (1950) contended that the 

spherical cavity expansion pressure may be thought of as the work needed to make a unit volume 

of cavity, which should not depend on how the cavity is formed. All this lead to the use of cavity 

expansion pressure as a good approximation of the target resistance even at high penetration 

velocities. 

Researchers have used both the spherical cavity expansion theory (Täte 1967; Goodier 

1965; Hanagud and Ross 1971; Forrestal et al. 1988) and the cylindrical cavity expansion theory 

(Wright et al. 1992; Rosenberg 1990) in penetration applications. Forrestal et al. (1988) found that 

for rigid penetration into aluminum targets, both cavity expansion theories gave close enough 

agreement with data. For this case, their figures showed that the experimental data had a 

somewhat better agreement with spherical cavity expansion solution. Hydrocode simulations of 

hypervelocity penetration (Walker and Anderson 1995) also indicates a spherical quality of the 

stress and velocity distributions ahead of the tip of the penetrator. Partom (1996) observed that 

application of a spherical cavity expansion model for understanding the degradation of target 

resistance in partially confined targets yields a better agreement with hydrocode simulations 

compared to a cylindrical cavity expansion solution. Forrestal and Luk's (1992) spherical cavity 

expansion solution for soil penetration compared well with field test data. Forrestal and Tzao 

(1996) noted that a cylindrical cavity expansion solution overpredicts the early time deceleration 

and underpredicts the later deceleration response for penetration into dry porous rock. On the other 
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hand, they noted that the spherical cavity expansion approximation (Forrestal and Luk 1992) is in 

reasonably good agreement for the entire deceleration response. I shall show in the next chapter 

that the spherical cavity expansion pressure provides a better approximation of penetration 

resistance of ceramics as compared to cylindrical cavity expansion pressure. On the other hand, as 

described at the end of this chapter, quasi-static punch experiments in PMMA agreed better with 

the cylindrical cavity expansion solution after the punch was fully embedded. 

In view of the above discussion, it appears that the spherical cavity expansion solution is 

preferable for applications involving high velocity penetration. For cases where the penetrator is in 

contact with the target, e.g., in static punching, the cylindrical cavity expansion solution is 

preferable. Also, for yawed penetration (Bless and Satapathy 1997), the calculation of the 

trajectory of the penetrator in the slot cutting mode warrants use of the cylindrical cavity expansion 

solution since the penetrator is in contact with the target, and the deformation is plane strain. 

2.4      Effects of finite ductility on cavity expansion pressure 

In dealing with the plastic yielding of metals, it is usually assumed that once the material 

yields, it can plastically deform indefinitely. Thus an elastic-perfectly plastic material can support 

any amount of straining at the constant yield stress. However, both quasi-static and high-strain 

rate experiments show that there is a finite ductility associated with any metal, i.e., it fails at some 

finite strain. There seems to be little research on this aspect of material behavior, perhaps due to 

the difficulties in interpreting the experimental data. For tensile testing, the specimen necks and is 

subjected to a three dimensional (3D) state of stress at the neck. But the very fact that the material 

develops necking at a specific strain, points to the existence of a failure strain limit. What happens 

after this point can be explained using 3D stress analysis (Rajendran and Bless 1986). Similar 

finite failure strains are observable in compression testing as well, where necking is absent. In a 

compressive stress field, failure may occur due to localization effects, e.g., shear banding. In 

torsion tests the specimen fails by adiabatic shear banding. The observation of a specific strain at 

which this form of failure is initiated, points to the existence of a finite failure strain in this case as 
well. 
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Effects of finite ductility in a compressive 3D stress situation are not clear. Firstly, 

hydrostatic pressure increases ductility. Thus the failure strain value has to be corrected from its 

one-dimensional value appropriately. The effect of hydrostatic pressure on ductility has been 

studied for quasi-static cases (Rice and Tracy 1969; McClintock 1968; Hancock and Mackenzie' 

1976). No such studies appear in the literature for cases involving high strain rates experienced in 

penetration situations. Secondly, what happens to the material behavior beyond the failure strain is 

not clear either. In a one-dimensional experiment, the effective strength drops to zero because the 

specimen breaks. A direct extension to a 3D case would mean that the material cannot support any 

shear and thus will behave in a hydrodynamic fashion, capable of supporting only compressive 

pressure. On the other hand, if effective strain is taken as a failure criteria, cracks may appear in 

certain preferred directions. Wright et al. (1992) took this as the explanation for the appearance of 

a hackle zone in cylindrical symmetry, in which material was supposed to have cracked in the 

radial direction. In analogy, for spherical symmetry, either the material could crack simultaneously 

in both the equivalent hoop directions or could crack in either one of the hoop directions. If the 

cracks appear in either one of the hoop directions then the spherical symmetry is lost and the 

analysis becomes extremely complicated. In the following discussion, I consider the case where 

radial symmetry is preserved due to appearance of cracks in both hoop directions and the case 

where the material looses all its shear strength upon attaining the failure strain. This analysis 

addresses an important practical problem due to current interest in high strength steels and titanium 

as penetration barriers. These materials are prone to shear localization leading to cracking in a 

compressive stress field. 

Consider an incompressible elastic-perfectly plastic material. Figure 2.4 shows the 

response regions in the material. Surrounding the cavity there is a failed zone where the strain has 

exceeded the failure strain. Beyond the failed zone, is a plastic zone, which is surrounded by an 

elastic region. For an incompressible material, Eq. (2.23) related the equivalent stress with the 

stress-strain curve for spherical symmetry. At the failed-plastic boundary, r = b, the function f of 

Eq. (2.11) is 

Kef) = aJY, (2.64) 

where e, is the failure strain. Thus taking a,, as zero in Eq. (2.24), the following expression for the 

size of the failed region is obtained: 
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b 

a 
l-exp|-^ 

-1/3 

(2.65) 

For comparison, Wright et al.'s (1992) formula for the case of cylindrical symmetry is 

= [l-exp(-V3ef); 
cyl 

-1/2 
(2.66) 

Cavity 
Failed Region 

Plastic Region 

Elastic Region 

Figure 2.4.   Material response regions with a failure zone, in spherical symmetry. 

Eqs. (2.65) and (2.66) are plotted in Figure 2.5 for a range of ^. The size of the cracked region 

decreases with increasing failure strain value. As expected, for an infinitely ductile material (i.e., 

£f= <*>), the cracked region disappears. 
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Figure 2.5.  Size of the failed zone vs. failure strain. 

Case-a: Spherically symmetric radial cracks (needle cracks) 

If it is assumed that upon attainment of failure strain, radial cracks appear, then 

°8 = CT<t, = 0    for a < r < b. (2.67) 

Thus inserting Eq. (2.67) into the equilibrium equation, Eq. (2.1) and integrating from r = a  to 

r = b, one obtains 

c rir=a 
arlr=b a2 • (2.68) 

ar(r = b) is obtained by integrating the equilibrium equation, Eq. (2.1) with the plastic constitutive 

equation, Eq. (2.23) with a^ 0. Thus, 

ar(r = b) = -2j;f 

= -2f f 
Jb/a 

2       a3^ 

V     r J 

dr 

r 

—In 
3 ■^ V        M  J 

drj 

Tl 
—       where T|=r/a 
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r<      f(X) 
"I „pOX/q-l"-      "^»»^OMl-lAl1). (2.69) 

Eq. (2.65) was used to change the upper limit of the integral in the last equality of Eq. (2.69). 
From Eqs. (2.65), (2.68) and (2.69), the cavity expansion pressure is given by 

^['-^^»rteJlH«' <2-70) 

Note that Eq. (2.70) reduces to Eq. (2.27) for the infinite ductility case, i.e., when ef -» «.. 

Case-b: Loss of shear strength. 

In this case the material in the failed zone behaves in a hydrodynamic fashion, capable of 

supporting only hydrostatic compression with zero shear strength.  Taking ae = ae-ar = 0 in the 

failed region, one deduces from the equilibrium equation, Eq. (2.1), that the radial stress is 
constant in this region. Thus from Eq. (2.69), the cavity expansion pressure is given by 

Pc = -ar(r = b) = f' /(X\     dX. (2.71) Jo exp(3X/2)-l K      } 

For ef-» oo, Eq. (2.71) reduces to Eq. (2.27). 

Example: 

Bless et al. (1996) conducted penetration experiments into Ti6A14V alloys.   The elastic 
constants for these alloys are calculated from Steinberg's (1991) database as: E = 112.22  GPa, 

v = 0.34. Macdougall and Harding (1996) reported a constant shear yield strength of about 

0.675 GPa at a strain rate of 1000/s. The shear failure strain in their shear experiment was about 

0.4. For the von Mises criterion, the yield strength is 1.17 GPa (yield strength=V3* shear 

strength). The failure strain, ef, is 0.2. Use of Eq. (2.44) for a compressible material with infinite 

ductility gives a cavity expansion pressure, Pc = 3.25Y.  Bless et al. observed that the penetration 
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resistance of this material decreases from about 4.5Y to 3.5Y for impact velocities varying from 

1.5 km/s to 2.3 km/s. This is the same trend that the cracked-failed zone model (case a) shows in 

Figure 2.6, if one assumes that the failure strain increases with impact velocity due to increase in 

hydrostatic pressure. On the other hand, case-b (loss of shear strength) indicates that the cavity' 

expansion pressure increases from 2.5Y to 3.25Y as the failure strain increases. Thus the cracked- 

failed zone model (case-a) is in better agreement with the experimental observations. 

0.2 

Cracks in failed zone 

Loss of shear strength 

Infinite  ductility 

0.4 0.6 0.8 

ef 

Figure 2.6.   Cavity expansion pressures vs. failure strain. 

In Figure 2.7, the post test sectioned specimen of the target used by Bless et al. (1996) is 

reproduced. It is observed that the cracked zone extends to about 1.6 times the cavity size. This is 

in reasonable correspondence with Figure 2.5 for £f = 0.2. 
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Figure 2.7.  Cracked zone in Ti alloy target (Bless et al. 1996). 

2.5      Effect of finite target thickness on penetration resistance 

The common conceptual framework for describing penetration of long projectiles is based 

on the work of Täte (1967, 1969). Penetration is considered as steady state; the penetrator of 

density rp and velocity Vp penetrates the target of density rt with a velocity U . Along the center 

streamline, one uses the approximation 

Y+^PP(
vp-up)2=^P.UP

2 + Rt, (2.72) 

which equates the stresses in the target (RHS) and projectile (LHS) at their interface. Here, Y is 

the strength of the penetrator and R, is the target resistance. This is referred to as the Täte equation. 

Quasi-static cavity expansion pressure is a good approximation for R,. 

In the cavity expansion analysis, it is assumed that the cavity opens in a infinite medium 

and hence the cavity expansion pressure turns out to be independent of the geometry of the cavity 

and only a function of the material parameters. However, for penetration into a finite target, the 

proximity to the boundary can affect the penetration resistance of the target. Normandia and 

Litüefield (1996) conducted penetration experiments into high hard 4340 steel (BHN 330) using 
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tungsten projectiles. The impact velocity was near the ballistic limit. They thereby, observed the 

effects of finite dimension on the average target resistance (Figure 2.8). The latter was calculated 

using Täte equation to match the depth of penetration. 
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Figure 2.8.  Degradation of penetration resistance near ballistic limit velocity 
(Normandia and Littlefield 1996). 

The cavity expansion analysis can be easily modified to account for finite target thickness 

effects by solving the field equations with changed boundary conditions reflecting a stress free 

surface at a finite distance. The response regions in a finite target are depicted in Figure 2.9. 

Plastic Zone 

Elastic Zone 

Figure 2.9.   Response regions in a finite target. 

The stress field ahead of the penetrator tip is assumed to have spherical symmetry. If the 

stress at the cavity surface is sufficiently high, the material yields. As a result, a plastic zone 

extends into the target with radius c, beyond which the target material is elastic. The displacement 

36 



in the elastic region is given in Eq. (2.5).   Using Eqs. (2.2) and (2.3), the following solution is 
obtained for the stresses in the elastic region: 

C I 

or =c1(3X, + 2^i)-4(i^- and a9 = C1(3X + 2\L) + 2\L- (2.73) 

Using a stress free boundary condition at r = b, i.e., cr(r = b) =0   and the condition that the 

material begins to yield at r = c, i.e., (ar - ae)| _ = Y, one obtains 

c,= 2Y/3 (cV      J Yc3 

—  —      and   c, =  
3X + 2\iKb) 6|i 

(2.74) 

Thus, the solutions for displacement and the stresses in the elastic region are given by 

u = 
6\i     UJ 

1  + 
4|i 

UJ_ j 

3X + 2|i 

<*r = ■  2Y fCl 3   UJ 
3 

f1] 
3 

-    1 anc I   ae =2m .UJ 
3   1 

+ - 
2 

(2.75) 

(2.76) 

Integration of Eq. (2.1) for the plastic region with ar - ae = Y yields 

o=2F In r + c. (2.77) 

Normal stress is continuous across the elastic-plastic interface (r = c).  Thus c3 is evaluated from 
Eqs. (2.73) and (2.76) as 

c3 =-2Ylnc- 
2Y u3X + 2\ifc\ 

4n    UJ (2.78) 

Denoting the negative of the stress at the cavity boundary, r = a, as the target resistance, R,, 

„w (c}      2 rrVl 2Yln -   + -Y 1 - - 
UJ       3 UJ J (2.79) 
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where the explicit dependence of Rt on the proximity to the target rear surface is evident. The 

relative size of the plastic zone, c, is determined from mass conservation equation, Eq. (2.21). 

Assuming that the plastic zone is non-dilatant and neglecting higher order terms in u(c), integration 

of Eq. (2.21) between r = a and r = c yields 

u(c)      If a 
Vc 

(2.80) 

Displacement is continuous across the elastic-plastic interface (r = c) and hence from (2.75), an 

expression for the relative size of the plastic zone, a/c, is: 

(2.81) 

Finally, using this relationship in Eq. (2.79) to eliminate the cavity radius, a, an expression for R, 
is obtained as a function of material constants and relative proximity to the target boundary. 

3' Y 
2|i 

[n   ^ fcTl 3X + 2nW 

R. = r*Yl 2      , 
1 - - —Y In 

IbJ J 3 2|x I        3X + 2|i\b/ 
(2.82) 

The target boundary limits the extent of the elastic region, b. The distance to the rear surface, b, 
appears in the expression normalized by the plastic zone radius, c, which from Eq. (2.75) is related 
to cavity size radius, a. Bishop et al.'s result (Eq. 2.40) for semi-infinite targets is recovered in the 

limit as, b —» °°.   After the plastic region touches the boundary, Eq. (2.79) is used directly with 

c = b. 

In a penetration formulation, it is more convenient to express R, in terms of cavity radius a 
and b. One can rearrange Eq. (2.81) to determine c/b in terms of a/b. This gives an expression for 
the plastic zone size in terms of cavity radius, namely: 

. "i+J fY] 2I 4(2Y)   * fa? CT - UMJ 3{ 3 )3\ + 2u. UJ 
bj " (1 VY\       1 

(2.83) 

3 J3X + 2|i 
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Substitution of Eq. (2.83) into Eq. (2.82) gives the value of R, for a given cavity radius, a, and 

distance from the boundary, b. 

The cavity size can be calculated from Täte' s (1986) formula, 

1P     V Rt 7= \\1+       R.      ■ (2-84) 

where ap is the radius of the penetrator and Vp and Up are the tail and tip velocities, respectively, of 

the penetrator calculated from Täte equation (2.72). Eqs. (2.82), (2.83) and (2.84) have to be 

solved simultaneously along with the Täte equation (2.72) to obtain the target resistance value at 
each time step. 

Using 1.4 GPa as the dynamic flow stress of the target material, E = 206 GPa and v = 0.3, 

from Eq. (2.40) one obtains the target resistance for an infinite medium as 5.3 GPa. In Figure 

2.10 the penetration depth calculated from Täte equation using a fixed target resistance of 5.3 GPa 

and that calculated from Eqs. (2.82), (2.83) and (2.84) are shown along with the experimental data 

from Normandia and Littlefield (1996). The cavity expansion pressure modified to account for 

finite target thickness is in good agreement with experimental data. Normandia et al. (1996) used 

this model to study the penetration into double RHA targets separated by an air gap. They found 

that the trends in the penetration velocity as predicted by the hydrocode CTH in the first RHA 

target are well captured by this model. 
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Figure 2.10.  Comparison of finite target model with experimental data. 

Recently, cavity expansion analysis has also been exploited to account for finite lateral 
extent of the target by Littlefield et al. (1997). A cylindrical cavity expansion pressure was derived 
taking into account the presence of the finite lateral extent. The cavity expansion pressure was 
averaged over the final cavity size to determine the penetration resistance of the target. Good 
agreement was found with hydrocode simulations. Partom (1996) developed a "limit of stability" 
concept for penetration resistance of finite targets. Solving the cavity expansion problem with non 
zero initial inner radius and a finite outer radius, he observed a maximum in pressure in the P/Y 
vs. a/ag plot. He defined this maximum as the "limit of stability." By this he meant that if the 
applied pressure was below this value, a stable cavity growth would ensue. On the other hand, if 
the applied pressure was more than this maximum pressure, the cavity would grow in an unstable 
manner. Using this concept, he showed that a spherical cavity expansion analysis results in better 
agreement with hydrocode simulations than a cylindrical cavity expansion analysis. His 
expression for the spherical cavity expansion pressure is identical to Eq. (2.79), which was 
derived independently by this author, prior to Partom's work. Partom's expression for the relative 
size of the plastic zone is 

c Y = 2|Li     (l-ajl/a3) 

Y,    „l-2vfc 
1 + 2  - 

1 + v \b 

(2.85) 

For a0=0 (i.e., expansion of the cavity from zero initial radius), Eqs. (2.85) and (2.81) are 
identical, in view of the relation, X = 2|iv/(l-2v). 
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2.6      Punch tests in PMMA 

Punch tests were conducted to explore the phenomenology of penetration in quasi-brittle 

materials and provide a quantification check on cavity expansion analysis. Armor materials are so 

hard that penetration by means of a rigid punch is probably impossible. Thus PMMA was selected 

as a surrogate on which to measure penetration force. It turned out that the PMMA developed 

brittle like cracks when tested without confinement. Under confinement, PMMA behaved more 

like a plastic than a brittle material. A distinct plastic zone could be observed surrounding the 

cavity. It was found that the load vs. displacement curves are well explained using elastic-plastic 

cavity expansion theory. 

2.6.1   Test description 

The tests (see Table 2.1) were conducted on an MTS machine with maximum capacity of 

90 KN (20 klbs). A LVDT was used to measure the displacement of the punch. The load was 

plotted versus the stroke on a chart recorder. All the punch tests were done on PMMA, a low 

strength thermoplastic. Due to the time-dependent nature and temperature dependence of 

mechanical properties, its strength parameters are in general history dependent. All our tests were 

conducted at room temperature in a quasi-static manner. Steinberg (1991) gave the properties of 

PMMA as: shear strength = 2.32 GPa, bulk sound speed = 2180 m/s and density =1182 kg/m3. 

Other material properties calculated from Steinberg's data are: modulus of elasticity, E = 6.12 GPa, 

and v = 0.32.   Earlier compression tests (Lee and Satapathy 1994) on the samples studied in the 

present tests had shown the static yield strength to be 166 MPa. 

The punches were tool hardened circular steel rods with a shank radius of 3.175 mm 

(0.125"). The conical punch had a 18.43° semi-included cone angle. All the PMMA specimens 

were 152 mm X 152 mm X 50 mm (6" X 6" X 2") blocks. The punches were held in place by a 

drill chuck attached to the load cell of the cross arm of the MTS testing machine. The specimens 

were placed on a platen, which was raised at the specified displacement rate by a hydraulic piston 

while the punch was held in a fixed position. For the confined tests, the blocks were confined 

peripherally by four steel plates (see Fig. 2.11), which were held against a hollow rectangular steel 

block by six bolts (3/8" nominal dia, 16 threads per inch) on each side. For the experiments where 

no initial pressure was to be applied, the bolts were sufficiently tightened so that the plates were 
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just in contact with the blocks. For the experiments in which confining pressure was to be applied, 

each bolt was tightened to a torque of 25 ft-lbf (34 m-N) by a torque wrench. The resulting 

transverse stress was about 6.89 MPa (1 ksi). Table 2.1 shows the test matrix. 

Table 2.1. Test Matrix 

Test Punch Max. Defl.   at  max. Confinement Comment 
No. shape Load(KN) load(mm) 

1 Conical 15.03 15.24 UC Sample split into two 
2 Conical 14.95 15.24 uc Sample split into two 

3 Conical 20.91 28.58 CWNP No cracks 
4 Conical 20.02 22.86 CWNP No cracks 

5 Conical 44.48 19.05 CWP No cracks 

6 Spherical 20.02 7.95 UC Sample split into two 
7 Spherical 17.79 8.89 UC Sample split into two 
8 Spherical 22.24 25.4 CWNP Sample cracked but didnot split 
9 Spherical 26.69 14.22 CWP Cracks grew upon removal of 

confinement. 
UC: Unconfined;     CWP: Confined With Pressure;     CWNP: Confined With No Pressure 

The tests were conducted in the stroke control mode, with a maximum stroke of 63.5 mm 

(2.5") and with a maximum load of 44.48 KN (10,000 lbs). The input was in the form of a ramp 

of 5 seconds duration. 
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Figure 2.11.   Arrangement for confined tests. 
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2.6.2   Results and discussions 

The details of the cracking phenomenology observed in these experiments is described by 

Satapathy and Bless, (1995). The load (axial force) vs. stroke plots for various cases are' 

presented in Figure 2.12 in the same diagram for ease of comparison. The legends used in Figure 

2.12 are as follows: UC: Unconfmed; CWP: Confined with Pressure; CWNP: Confined with no 

pressure. The last letters "s" and "c" stand for spherical and conical nosed punches, respectively. 

Splitting of Unconfined Blocks: The acrylic blocks fractured into two separate pieces in 

both the unconfined tests with spherical nosed punch and in two of the three unconfined tests with 

conical punch. When the blocks split, the load dropped to zero. Although cracks sometimes 

formed in the confined tests, the block could not split apart. 

Knee in Load-Displacement Curves: Knees in the load-stroke plot are observed at a 

penetration of about 0.5 X diameter (full embedment) of the spherical punch and at about 1.5 X 

diameter (full embedment) of the conical punch. 

Increasing Load in Confined Tests: In the confined tests, force always increased with 

penetration, apparently due to friction on the lateral face of the punch, whereas in unconfined tests 

the force was nearly constant after full embedment. This is presumably because, in the absence of 

confinement, the lateral surface loses contact with the specimen as the cracks form and propagate. 

Load Relaxation Due to Cracks: Drops in the load-displacement record are caused by 

crack initiation and propagation. For example, as can be seen from Figure 2.12 (CWNP-S), in the 

confined test with spherical nosed punch, the cracks started at a penetration of about 8 mm (0.3") 

and either stopped or stabilized at a penetration of about 13 mm (0.5"). 
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Figure 2.12.  Load vs. stroke plot for all tests. 

Oscillation in Load: For tests with initial confinement pressure, load spikes are observed 

at frequent intervals. These spikes are not due to crack initiation or propagation, since with the 

conical punch, no cracks were formed but the load spikes were still present. I believe that the load 

spikes are the result of shearing of the lateral surface of the specimen in contact with the punch; 

i.e., load increases until the lateral surface experiences a limiting shear stress, after which the load 

drops due to shearing failure of this surface. As the penetration increases, the lateral surface area 

increases; therefore, a larger amount of load can be withstood prior to slip. As a consequence, the 

amplitude of the spikes increase with increasing penetration. For the spherical punches, the spikes 

appear after the knee of the load-stroke diagram, but for conical punches these spikes are observed 

even before the knee. This is so because the spherical head can transmit more load than the conical 

head. As a result, the proportion of load supported by the lateral surface is more for the conical 

punch. Hence, the lateral surfaces start shearing at a lower value of total load. The ratio of the 

load carried by the head to that carried by the lateral surface can also be found from the slope of the 

load-stroke plot, since in the absence of lateral load, the slope should have been zero. It is 

surmised that the contact quasi-static friction coefficient can be calculated from this slope. 

Spherical Punches Induce Earlier Fracture: In the unconfined tests, the spherical nosed 

punches penetrated less before fracture than did the conical punches. In all the tests, the spherical 

punches had a higher load-stroke slope, higher load at the knee, and higher peak load before 
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fracture as compared to the conical nosed punches.  This behavior conforms to the effect of nose 

shape as discussed in Eqs. 2.6.3.2. 

Suppression of Cracks in Confined Blocks with Conical Punch: In the confined tests, the 

acrylic blocks did not develop any crack under the conical punch. The punch was simply 

embedded in the block. In contrast, under a spherical punch, even though cracks were formed, the 

block did not fragment into pieces in the presence of lateral confinement. 

2.6.3   Comparison of experimental data with CEA predictions 

2.6.3.1   Unconfined tests 

In the unconfined tests, propagation of cracks results in splitting of the specimen which 

renders comparison of experimental data with CEA predictions (where presence of a running crack 

is unaccounted for) difficult. On the other hand, confinement suppresses crack extension and the 

lateral surface of the penetrator does not loose contact with the specimen. Thus for unconfined 

tests, I simply compare the maximum experimental load with the prediction from the CEA, while 

for the confined tests, I compare the whole load-stroke-plot with the CEA prediction. 

Taking into account the geometry of the nose, assuming tangential stress on the nose to be 

proportional to the normal stress and neglecting friction on the shank of the penetrator, Forrestal 

et al. (1988) showed that for a spherical nose, axial load is given by: 

F=i»Pe(l + ^. (2.86) 

where jif is coefficient of sliding friction and Pc is the cavity expansion pressure. For a conical nose, 

the axial load is given by: 

F = 7ca Pc z c 

(       to  ^ 
^     tan<|)y 

where (p is the semi included angle. 

(2.87) 
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I assume a friction coefficient, nf of 0.15. Table 2.2 shows the experimental and 

theoretical values of the force on the tip of the punch. It is seen that the spherical cavity expansion 

solutions of Bishop, et al. (Eq. 2.40) and Hill (Eq. 2.44) yield the closest predicted load values for 

spherical and cylindrical punch tests, respectively. 

2.6.3.2 Confined tests 

Following Forrestal etal. (1988) I calculated the theoretical load-stroke curve as follows: 

a) Spherical nosed penetrator 

_ ,   „ ,       fcos    (1-z/a) „ 
For z < a:    F2 (z) = 7ta2Pc Jo (sin 26 + 2|if sin20)de. (2.88) 

Forz>a:    Fz(z) = 7ca2Pj 1 + M j + 27C|ifrPc(z-a). (2.89) 

where z is the penetration depth, a is the penetrator radius and Pc is the cavity expansion pressure. 

b) Conical nosed penetrator 

For z < a / tan<|):   Fz (z) = 7rPc 1 + 
tanc() 

z2tan2()>. 

For z>a / tan(J>:   Fz (z) = ira Pc ̂(l + Jh^ + ^        a   ^ 
v tancj)      a 

z- 
V tan(|) 

(2.90) 

(2.91) 
)) 

Where Fz is the axial force exerted by the penetrator, z is the depth of penetration, a is the 

penetrator radius and <|> is the penetrator cone angle. 
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Table 2.2.   Comparison of Experimental Values of Maximum Axial Load with CEA 
Predictions for Unconfined Experiments 

PC(CEA) 
(GPa) 

Fz(CEA) 
(KN) 

Fz(Exp.) 
(KN) 

(a) Spherical 
Punch 

Cylindrical 
Cavity 

BHM 
Hill 

No. Vol. Change 

0.401 
0.368 
0.389 

15.7 
14.4 

15.22 

17.8-20 
17.8-20 
17.8-20 

Spherical 
Cavity 

BHM 
Hill 

No Vol. Change 

0.479 
0.431 
0.465 

18.74 
16.87 
18.2 

17.8-20 
17.8-20 
17.8-20 

(b) Conical 
Punch 

Cylindrical 
Cavity 

BHM 
Hill 

No. Vol. Change 

0.401 
0.368 
0.389 

18.4 
16.9 

17.86 

15 
15 
15 

Spherical 
Cavity 

BHM 
Hill 

No Vol. Change 

0.479 
0.431 
0.465 

15.7 
14.4 

15.22 

15 
15 
15 

The Eqs. (2.88) to (2.91) are plotted in Figure 2.13 for Pc = 0.431 GPa (spherical cavity 

expansion pressure from Eq. 2.44) and for Pc = 0.368 GPa (cylindrical cavity expansion pressure 

from Eq. 2.61). The experimental curves are also plotted in the same figure. It is found that the 
experimental curves lie within the predictions from spherical and cylindrical cavity expansion 
analyses for partial embedment of the punch. After the punch is fully embedded (i.e., after a 
penetration of 0.5D for spherical punch and 1.5D for conical punch), the experimental data 
conform to the cylindrical cavity expansion analysis. This is to be expected since after the head is 
fully embedded, the pressure on the lateral surface of the punch is due to walls of the cylindrical 
cavity. In addition, it is found that the correlation between the experimental and theoretical curves 

is excellent. 

48 



70 

60 

50 

Z 
* 40 

§ 30 

Conical punch, Cyl. CEA 
 Conical Punch, Sph. CEA 
 Spherical Punch, Cyl. CEA 
 Spherical Punch,Sph. CEA 
O      CWP-S 
O      CWP-C 

10 20 

Displacement,   mm 

30 40 

2.6.3.3 

Figure 2.13.   Comparison of data from confined experiments with CEA predictions. 

Plastic zone 

As mentioned earlier, for the spherical punch case with initial confinement pressure, a distinct 

plastic zone appeared (Figure 2.14). This zone is brought out clearly by using differential lighting 

and careful exposure. In this zone the lateral cracks are absent. At the punch tip, this region has a 

radius of about 2.4 X cavity radius (i.e., c/a = 2.4, where c is the plastic zone radius and a is the 

penetrator radius). Boussinesq's solution (Timoshenko and Goodier 1987) for contact stress 

correlates the contact pressure with stress at a given distance, and is given by 

2(°e-az) = § — + (1+v) if: Va2+z2 2 (>/a2+z2 
(2.92) 

where CQ and az are circumferential and radial stresses respectively, q is the pressure under the 

punch of radius a, z is the axial coordinate. Using the von Mises criterion for the plastic zone, the 

LHS of Eq. (2.92) is equal to the shear strength of the material, which is 83 MPa. a is 3.175 mm; 

q is approximated by the maximum load divided by the nose area (assuming that, due to shearing at 

49 



the lateral contact surface, at some point in time the total load is supported by the nose head). Its 

numerical value is 0.632 GPa. Use of a v of 0.32 yields a z of 5.21 mm. Thus the plastic zone 

size is about c/a = 2.64. 

Figure 2.14.  Plastic zone in PMMA. 

Table 2.3.   Comparison of plastic zone size 

c/a 
Experimental 2.4 
Boussinesq 2.64 

BHM model 2.9 
Hill 2.58 
No Vol. Change 2.77 

Similarly, cavity expansion solution Bishop et al. (Eq. 2.39) yields a value of 2.9 for c/a 

and Hill's formula (Eq. 2.43) yields a value of 2.58. Since the cavity expansion solutions assume 

expansion of a cavity in an infinite medium from zero radius, they provide an upper limit for c. 

Hill's (1950) compressible solution yields the closest value for c/a obtained from the experiment. 

Even though Eqs. (2.39) and (2.43) were derived for expansion of cavities in infinite media, 

Satapathy and Bless (1995) have shown that application of confinement pressure at a finite 
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boundary does not change the plastic zone size significantly.   On the otherhand, I relied on the 

change of refractive index of the sample to give an indication of plastic zone. It is possible that the 

refractive index does not change much near the elastic-plastic interface, and hence experimental 

measurement may not yield an accurate value for the plastic zone size. Thus, in essence, the cavity' 

expansion solutions give a reasonable prediction of the experimentally observed plastic zone size. 
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Chapter 3: Cavity Expansion Analysis of Brittle Ceramics 

Brittle materials possess low tensile strength and low ductility. As a result, they readily 

fracture under tensile loading conditions and cannot withstand large strains without developing 

cracks. However, low density, high compressive strength and hardness, and good thermal 

properties make brittle ceramics like A1203, A1N, SiC, TiB2 suitable for use as light weight armors 

and other protective structures. Various issues associated with the impact behavior of ceramic 

materials have been discussed by Bless and Lopatin (1988), Rajendran and Cook (1988) and Bless 

and Rajendran (1996). The dynamic properties of armor ceramics have been characterized by 

many researchers, e.g., Grady (1995), Raiser and Clifton (1993), Rosenberg, et al. (1991), 

Sairam and Clifton (1994), Subramanian and Bless (1995), Orphal et al. (1996), Klopp et al. 

(1994), Cagnoux and Langy (1987), Simha and Bless (1995). Research has been conducted to 

characterize dynamic properties of other brittle materials like glass (Bless and Brar 1993; Bless et 

al. 1990, 1992), concrete (Forrestal and Tzao 1997), and rock (Forrestal 1986). 

The analysis of the penetration response of brittle materials is complicated due to the 

presence of cracking and comminution (breaking into a powder-like structure). As a result, 

various simplifying assumptions are necessary to make the analysis tractable. Attempts have been 

made to describe the constitutive behavior, i.e., strength, plasticity, porosity and fracture of the 

ceramics (Rajendran 1993; Johnson and Holmquist 1992; Partom 1993; Littlefield et al. 1994). 

The existing constitutive models have not reached a level where design of armors can be reliably 

carried out. In some cases, quantitative predictions are impossible, while in others, basic 

phenomenology cannot be duplicated. Bless et al. (1993) found that state-of-the-art constitutive 

models employed in finite difference and finite element codes could not predict penetration of very 

thick ceramic tile (T/d > 18) by long rod projectiles. Thus extensive research is being carried out 

to develop better constitutive models for ceramic materials. 

Cavity expansion analysis presents an excellent tool to identify various important material 

parameters affecting the resistance of brittle materials to penetration. Implications of different 

constitutive assumptions are easy to investigate using this method, rather than performing 

extensive numerical modeling.   This approach has been used to characterize the penetration 
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resistance of brittle ceramics by Sternberg (1989), Forrestal and Longcope (1990), Florence et al. 

(1992), Wright et al. (1992), Partom (1993), Satapathy and Bless (1996) and Bless et al. (1996). 

Even though the mechanical behavior described in the following discussion may be' 

applicable to many different brittle materials, attention is restricted to modeling of armor ceramics 

only. In this chapter, the qualitative constitutive behavior of brittle materials is first discussed. 

Existing work on the cavity expansion analysis of brittle materials is briefly reviewed. However, 

observations of ceramic targets suggests that the operating failure mechanisms are not those on 

which past analyses are based. Therefore, a new quasi-static cavity expansion pressure is derived 

under appropriate assumptions and compared with available experimental data. The dynamic 

cavity expansion problem for a constant expansion velocity is also solved assuming steady state 

wave propagation. Finally, a self-similar solution is presented for the dynamic case and the effect 

of a "shear cap" on the failed material behavior is discussed. 

3.1      Constitutive behavior of brittle materials 

Brittle materials usually possess very high compressive strength. Their shear strength 

increases with superimposed hydrostatic pressure. But they are extremely weak in tension and the 

spall strength1 is about one order of magnitude smaller than the compressive strength. Hence these 

materials readily crack when subjected to relatively low tensile stress. Reflection of compressive 

elastic waves leads to failure in these materials, unlike metals. Experiments have shown that 

extensive tensile failure can be reduced or delayed by suitably confining the material. Material 

damage progresses due to the accumulation of micro-cracks initiated at the grain boundaries. 

Presence of glassy phases in the intergranular spaces aids in the "plastic" type flow of certain 

ceramic materials. Sternberg (1989) noted that since ceramic materials do not possess enough slip 

systems, "plasticity" observed in these materials is not similar to von Mises type plasticity in which 

five independent slip systems are required. The plastic-type behavior of ceramics at high pressures 

arises from micro-cracking and intergranular shear. The intact material slowly rubblizes and 

becomes comminuted as the induced damage increases. The presence of the Mescall zone2 under 

high speed penetration is a result of this comminution. Oblique plate impact tests suggest that the 

shear stress in the failed material bears a constant ratio to the applied normal stress.   Very-high 

1 defined as the tensile strength in one dimensional strain configuration, such as in a plate impact test 
2 defined as a region where material is comminuted or reduced to powder-like granular structure 
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pressure plate impact tests have shown that the shear strength of certain ceramics saturates at a level 

slightly higher than that experienced at the Hugoniot Elastic Limit1 (HEL). 

The above description leads to a two-curve behavior of brittle ceramics (Figure 3.1) in' 

describing their pressure-shear relationship, as discussed by Bless and Lopatin (1988), Johnson 

and Holmquist (1992), Partom (1993), Cosculleula (1992). In this figure, P denotes the 

hydrostatic pressure and S denotes the maximum shear stress (i.e., one half the difference between 

maximum and minimum principal stresses). An "upper curve" is required to describe the pressure- 

dependent shear strength of the intact material, whereas, a "lower curve" is needed to describe such 

behavior in the failed material. These curves do not prescribe any general path for the material to 

follow; rather they impose a limiting material behavior. The upper curve serves as a failure 

criterion, since upon reaching this curve, the material fractures. The lower curve is like a flow 

curve for the failed material. The actual path followed should lay somewhere between these two 

curves, depending on the loading path imposed. If the material fails and drops to the lower curve, 

then it should stay on that curve. 

Uniaxial Tension 

Spall test 

Uniaxial Compression 

Uniaxial Strain 

Intact material 

Figure 3.1.  Qualitative Constitutive description of Brittle Materials 

1 defined as the level of axial stress at which transition from elastic to plastic behavior is observed in a one 

dimensional strain configuration, such as in a plate impact test 
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There is no single experimental technique which can be used to characterize more than a 

small region of the relevant stress state. However, several distinct points along the curves can be 

identified with standard experiments. Point "A" can be reached with a spall test (tensile test in 1-D 
strain mode), in which the shear strength and pressure are given by, 

2  (1-v) 3   1-v • l    ; 

where ox is the axial stress. Point "B" is determined by uniaxial tensile tests, in which the shear 

strength and pressure are given by, 

S = ^- and      P = -^-. (3.2) 
2 3 

Point "C" can be evaluated with simple shear experiment, in which pressure is zero. The points 
"D" and "E" are given by uniaxial compression stress tests (bar impact) and uniaxial compression 
strain tests (plate impact). The shear stress and the pressure for these two points are the same as 
those for points "A" and "B", respectively, with the difference that pressures are of opposite sign. 
The upper curve is thus constructed by interpolation and extrapolation of these few well-defined 
points. Theoretically, compression tests in a Hopkinson bar with a superposed confinement 
pressure can yield more points on this curve. However, significant excursion from point "D" has 
not been possible yet due to experimental difficulties. Other possible test configurations include 
expanding ring, cylindrical impact, plane stress impact, etc. Research is being conducted in these 
areas currently. 

The failed material is assumed to possess no cohesive strength, i.e., it cannot support any 
shear stress in the absence of confining pressure. Therefore, the lower curve passes though the 

origin. Oblique plate impact experiments show that for low speed impacts, the pressure-shear 
relation of the comminuted material is linear. High speed plate impact experiments show that for 
certain ceramics, the shear strength of the failed material is saturated at high pressures. Thus 
interpolating for intermediate pressures, the lower curve is assumed to be bilinear. The slope of 
the segment O-F is obtained from oblique plate impact tests, whereas the segment F-G may be 
obtained from high speed normal plate impact tests. 
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3.2      Review of existing cavity expansion models for brittle materials 

Sternberg (1989) discussed various material properties that determine the resistance of 

ceramics to high velocity penetration. Recognizing that the constitutive behavior of ceramics is not 

well defined above the elastic limit, he pointed out the difficulty in directly extending the ductile 

cavity expansion approach to brittle materials. Forrestal (1986) considered the cracking behavior 

of dry porous rocks in deriving a dynamic cavity expansion solution. Using a Mohr-Coulomb- 

type strength criterion and a linear hydrostat, he obtained good agreement with projectile 

deceleration data obtained from experiments. Adopting a similar approach, Forrestal and 

Longcope (1990) derived the static cavity expansion pressure for ceramic materials. The assumed 

Mohr-Coulomb-type material description was given by 

ar-a9 = XP + T, (3.3a) 

where % is cohesive strength (=2 X the value of S at point "C" in Figure 3.1, since the LHS of Eq. 

3.3a is 2S), and X is the slope of the assumed linear pressure-shear curve (=2 X linear slope of the 

upper curve in Figure 3.1). To conform to the uniaxial compression test, X and T are related by 

T = [(3-*,)/3]Y, (3.3b) 

where Y is the compressive strength. They considered three different scenarios for the behavior of 

the material beyond the cavity: elastic-cracked problem, elastic-plastic problem and elastic-cracked- 

plastic problem. In the "plastic" region the material followed the upper curve of Figure 3.1. Their 

solutions showed that the elastic-cracked-plastic situation yields the smallest value for the cavity 

expansion pressure. For the elastic-cracked-plastic problem, the cavity expansion pressure was 
given by 

(3.3c) 
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where a = 
fr.\3 R(i-?v»r . .., QM-V^YV yV'2 

3 + 2A,' 

and af is the tensile strength, 

UJ XB     L J 2     U 2af 

For AD995 alumina ceramic, bar impact tests (Simha and Bless, 1995) indicate a 

compressive strength, Y, of 3 GPa (Point "D" in Figure 3.1). Plate impact tests (Grady, 1995) 

give a value for HEL (point "E" in Figure 3.1) as 6.2 GPa.  Eqs. (3.1) and (3.2) yield a slope of 

0.322 for a linear fit between these two points. Since X is twice this slope, X = 0.644 and 

T = 2.36. Calculation of the S-intercept of the linear fit through points "D" and "E" gives an 

identical value for i. The other constants for AD995 are: E = 373 GPa, v = 0.22 (from Grady, 

1995), af = 0.262 GPa (Coor's data). Evaluation of Eq. (3.3b) with the above constants results 

in 11.54 GPa for Pc. However, penetration experiments (Subramanian and Bless, 1995) indicate 

that the penetration strength of this ceramic varies from 7 GPa to 9 GPa, with an average value of 

8.5 GPa. Thus the Forrestal and Longcope model overpredicts the target resistance for AD995 by 

about 35%. Evaluation of the elastic-plastic model and the elastic-cracked model of Forrestal and 

Longcope yield a cavity pressure of 15.3 GPa and 18.03 GPa, respectively. 

I believe that the discrepancy between Forrestal and Longcope's prediction and the 

experimental value of the target resistance is due to the fact that the behavior of the failed material 

(lower curve in Figure 3.1) has not been considered. While their model was a step forward 

towards modeling the cracking behavior due to low tensile strength, it did not account for the 

complete failure and comminution of the ceramic material which is observed in the penetration 

event. 

Florence et al. (1992) considered a failed-cracked-elastic model for ceramics. In their 

model, incompressibility was assumed for all the regions. The strength of the failed material was 

taken to be a constant, i.e., the saturation level of the lower curve. Thus they ignored the linear 

portion of the pressure-shear relation for the failed material. The cavity pressure was given by: 
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Pc=Y + |o0ln(J|) + pV^2 1- — 
3YV

/3
' 

2E 

+pVV (3.4) 

where a0=2Sp=ar-cie. 

For AD995 ceramic, with representative values of SF = 1.5 GPa and 2 GPa (values of SF 

are discussed in section 4.3.1.9), the static cavity expansion pressures from Eq. (3.4) are 11.84 

GPa and 14.78 GPa, respectively. These values are more than 40% above the average 

experimental penetration resistance value. I shall compare the full dynamic cavity expansion 

pressure in Eq. (3.4) with the current analysis later in this chapter. 

Partom (1993) modeled the behavior of ceramic materials using the constitutive behavior as 

described in Figure 3.1. Bilinear representations for the pressure-shear behavior of both the intact 

and the failed material were considered. He derived the cylindrical cavity expansion pressure using 

an elastic-plastic-type material behavior, where a "plastic" behavior used for the failed material. 

The elastic zone extended from the point "O" to the S-intercept, point "C". The cavity expansion 

pressure was given by, 

'-* 

^    W(V3+m» 

V 
(3.5) 

where m is the pressure-shear slope of the lower curve, and Y is the strength of the material at zero 

pressure (point "C"). Evaluating this expression for AD995, with representative values for m of 

0.2 and 1, Pc is 2.75 GPa and 8.9 GPa, respectively. Evaluation of the hoop stress at the inner 

boundary of the elastic zone yields a = -Y/V3= -1.73 GPa, which is much smaller than the tensile 

strength of the material (~ - 0.4 GPa). Partom's model is thus inconsistent with the tensile 
behavior. 

Partom also considered the implications of the presence of a pressure field on the static 

cavity expansion solution.   Instead of solving the full dynamic cavity expansion problem, for 
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simplicity he assumed that a uniform pressure field with pressure level equal to the inertial pressure 

(=0.5pUp
2) is present at the projectile-target interface. This constant inertial pressure was assumed 

to prevail throughout the target. Using this assumption, he derived the static cavity expansion 

pressure for different saturation values of the shear stress of the failed material. Since an inertial 

pressure field was superimposed, he had to simultaneously solve the Täte equation (Eq. 2.72) and 

the cavity expansion pressure equation. His results showed that penetration resistance of ceramics 

should increase with increasing penetration velocity for all values of pressure-shear slope. 

Littlefield and Anderson (1994) also assumed a pressure dependent shear strength to derive 

the penetration resistance for ceramics. They used the Walker-Anderson model (1995) framework, 

where the target resistance was calculated using von Mises type plasticity. They did not consider 

any strength degradation due to cracking or comminution. Therefore, the material model used was 

elastic-plastic. Nevertheless, they found that the analytical prediction of position vs. time plots for 

penetration compared favorably with experimental results for an assumed pressure-shear 

coefficient of 0.75. 

3.3      Quasi-static spherical cavity expansion analysis of brittle materials: A new approach 

In the following, I will derive the cavity expansion pressure in a brittle material in which 

distinction is made between the strengths of intact and failed materials. First I derive the cavity 

expansion pressure for spherical symmetry. Then the solution for the cylindrical cavity expansion 

problem is presented. Using experimental values for various parameters, I will show that the 

resulting cavity expansion pressure indeed gives a reasonable prediction of the penetration 

resistance of typical ceramics materials used as armor. 

3.3.1      Spherical cavity expansion 

3.3.1.1   Response regions 

In steady state penetration (after the initial shock phase is over), the penetrator erodes and 

decelerates due to the stress at the target-penetrator interface. The stress in the target that resists 

penetration consists of two parts: 1) the inertial stress required to accelerate target material out of 

the path of the penetrator; and 2) the stress required to deform the target around the cavity. This 

second term is identified with the target resistance Rt. 

60 



The stress field ahead of the penetrator-target interface can be approximated to have 

spherical symmetry. I model the alumina ceramic as an elastic-brittle material which cracks under 

tension and then pulverizes when the compressive stress exceeds the one-dimensional compressive 

failure strength. The implication of this assumption is depicted schematically in Figure 3.2, which 

shows three zones: the region near the cavity is comminuted; next to the comminuted zone (a.k.a. 

Mescall zone) there is a "radially cracked" zone (radial cracks are formed because the hoop stress 

exceeds the tensile strength); and beyond the "radially cracked" zone the material is elastic. This 

phenomenology is consistent with the observations by Collombet and Tranchet (1994) of explosive 

cavities in alumina (see Figure 3.3); they find "intergranular cracks" near the cavity, next to which 

"transgranular cracks" were found. The "transgranular cracks" are radially oriented, which implies 

that for spherical symmetry, the hoop stress is zero. In the "intergranular crack" region, the cracks 

are randomly oriented and are interconnected. Essentially, the material in this region is fragmented 

and comminuted. This sequence of failed regions around the cavity is generally consistent with 

measurements on aluminas penetrated by long rods (Shockey et al. 1990). Although there are 

some observations that the level of communition varies in the pulverized zone (Curran et al. 1993), 

I model the entire pulverized material as a Mohr-Coulomb material with a pressure dependent shear 

strength. The pressure-shear coefficient is derived from the uniaxial stress-shear coefficient 

experimentally obtained by Sairam and Clifton (1994). 

pulverized region 

cracked region 
elastic region 

Figure 3.2.   Response regions in the target. 
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View A-A 

Intergranular 
cracks 

Transgranular 
cracks 

(a) 

Figure 3.3 (a).  Isotropie and anisotropic networks of cracks (b). Transgranular cracks 
in the soft recovered sample, Collombet and Tranchet (1994). 

3.3.1.2   Elastic region 

Referring to Figure 3.2, the elastic zone extends from r = c to r = b where b is the stress- 

free outer boundary of the target. At the cracked-elastic boundary the hoop stress equals the tensile 

strength of the material. Inertial terms are neglected, since Rt, by definition, does not include 

inertial effects. The stresses and strains are positive in tension. The field equations can be written 

as, 

Equilibrium equation: 
dr r 

(3.6) 

Strain-displacement relation: 
du     , u 

er = — and e9=e =-, 
dr r 

(3.7) 

Constitutive relation for elastic region:      er = — [or - 2vae] (3.8) 

ee=e*=^[(1-v)cye-v<yr]- (3-9) 
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Solving Eqs. (3.6) through (3.9), one obtains 

u = c,r + ^-. (3.10) 

To evaluate c, and c2, two boundary conditions are required, which are: 

ar|r=b=0   and   ae|r=c=af, (3.11) 

where Gf is the tensile strength.    Solving Eqs. (3.6) through (3.9) with Eq. (3.10) and the 

boundary conditions Eq. (3.11) yields 

U=2E(1+
gbV2c')[('-2V)r + (1 + V)b3/r')' (3-12) 

A1'""4 (3'13) 
<*r = 

<*8 = 
c 

(l + b3/2c3) 
fej\[1 + bV2r3]. (3.14) 

Evaluation of Eq. (3.7) along with Eq. (3.12) for b»c yields the maximum strains in the elastic 

region as: er = 2of(l+v)/E and £„ = af(l+v)/E. Since af«E for typical brittle materials, the use 

of small strain theory for the elastic region is justified. Expressions for the pressure (positive in 
compression) and the shear stress in this elastic region are given by: 

P=1ÄT (315) 

1. |    3       af       b
3 

I|o'-a°l = 4(T7bV2?)7- (3-16) 
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3.3.1.3    Cracked region 

As discussed before, the material will crack when the tensile hoop stress exceeds the tensile 

strength. Thus, the elastic region will be bounded inwardly by a radially cracked region' 

(a < r < c), within which the radial cracks are assumed to be of various sizes and spatially 

distributed in such a manner that the hoop stress in the whole region is zero. The inner boundary 

of this region is defined by the boundary condition that the material is pulverized. Since the stress 

state in the cracked region is uniaxial, pulverization occurs where the radial stress exceeds the 

uniaxial compressive strength, Y; i.e., 

or|     =-Y. (3.17) 

The stress and displacements are taken as volume-averaged quantities allowing for local variations. 

Since oe = 0, the equilibrium equation (3.6) reduces to, 

^- + 2^ = 0, (3.18) 
dr        r 

which can be integrated with (3.17) to yield, 

O,=-YV (3.19) 
r 

Also, since the radial stress has to be continuous at the elastic-cracked boundary, r = c, then from 

(3.13) and (3.19), 

.2 c 
(3.20) 

To evaluate displacement in the cracked region, Forrestal et al. (1990) used the equation of 

state with the bulk modulus of the intact material. But in fact, the presence of radial cracks will 
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render the material anisotropic. Thus, it is better not to use the isotropic elastic constants of the 

intact material to characterize the displacement of this anisotropic cracked region. However, 

absence of transverse cracks ensures no degradation of elastic moduli in the radial direction. 

Hence using (3.19) with the stress-strain relation in the radial direction, <Jr = Eer = Edu/dr,' 

displacement is given by, 

u = J^- + A. E r (3.21) 

The constant A is evaluated by using continuity of displacement at r = c.  Thus from (3.12) and 

(3.21), one obtains 

u = ■ 

2E 1 + 
b^ 

2c3, 

(l-2v)c3+(l + v)b3 YaVc 
+  

E c 
--1I. 

Vr 
(3.22) 

For b»a, Eq. (3.22) gives the maximum strain in the cracked region as: er = -Y/E.  As before, 

since Y«E, as well as af«E, use of small strain theory for the cracked region is justified. The 

pressure and shear stress in this region can be written as 

P = 
3r2 

x = —a -a» =■ 
2r2 

(3.23) 

(3.24) 

3.3.1.4   Comminuted region 

I model the entire pulverized material as a Mohr-Coulomb material with a pressure 

dependent shear strength. The pressure-shear coefficient is derived from the uniaxial stress-shear 

coefficient experimentally obtained by Clifton et al. (1995) for AD995 alumina and by Curran et al. 
(1993) for A1N. 
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The shear stress in the comminuted region (h < r < a) is set equal to the "flow stress," 
which is taken as pressure dependent (linear portion, O-F, of the lower curve in Figure 3.1). 
Thus, 

— - = m 
o, + 2CT„ 

I      3 
(3.25) 

The equilibrium equation (3.6) reduces to 

^ + 20^ = 0, 
dr r 

(3.26) 

_       6m 
where a = 

3 +4m 
(3.27) 

With the boundary condition (3.17), (3.26) can be solved to yield 

a =-Y 
2a 

(3.28) 

The target resistance, Rt, which is the negative of the radial stress at the cavity boundary, r = h, is 

thus found to be 

R. = Y - 
,2a 

(3.29) 

Finally, the pressure and the shear stress in the comminuted region can be calculated as 

P = Y 
faYa3-2ä 
vry 

1-,/a 
T = -a-a0 = -<xY-    • 

V r 2     Vr 

2a 

(3.30) 

(3.31) 
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3.3.1.5   Calculation of h/a 

From (3.29), note that to solve for Rt, one needs to evaluate the size of the pulverized zone 

relative to the cavity size. Even though this ratio turns out to be a constant, independent of 

geometry for an infinite target, I first derive its value for a finite target. Thus far I have avoided 

using any constitutive relation for the comminuted region. In the previous section, the equation of 

motion was integrated with the assumption that the shear stress varies linearly with pressure in this 

region (Mohr-Coulomb criterion). Even if statistical homogeneity is assumed, the elastic moduli 

may be different from those of the intact material. Presence of bulking due to comminution 

complicates the problem further, due to the competition between dilatancy and pore compaction. 

Curran et. al. (1993) observed that dilatancy occurs only after the large compressive stress has 

disappeared. In this work, I assume that the dilatancy and compaction cancel out at least to a first 

order approximation, and so there is no volume change in the comminuted region. From the 

conservation of mass, and ignoring higher order terms in u(a), 

lfhV     u(a) 

Since the radial displacement has to be continuous at r = a, u(a) is given by (3.22). Thus, 

1 

[-1 Of 

3 
2E 

I      2c3J 

(l-2v)c3+(l + v)b3 

c2a 
+ l(1"t) (333) 

Equations (3.33) and (3.20) have two unknowns, c and a. For a given geometry (h and b 

known), these two equations can be solved for "a", and the cavity expansion pressure, Rt, can be 

calculated. 

3.3.1.6   Infinite target 

For an infinite target (i.e., b is very large), the RHS of (3.33) is a function of only c/a 

which can be evaluated from (3.20). Thus, the ratio h/a and hence Rt is determined purely from 

the material constants. By letting b -» <*>, one derives: 
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R. =Y 
f-1 

!     föT(l-v) 
VY    V2 

2a 

3 

(3.34) 

3.3.1.7   Material constants for Coors AD995 alumina and A1N 

Hie elastic constants for Coors AD995 alumina are calculated from the longitudinal and 

transverse wave speeds reported by Grady (1995) as E = 373.14 GPa, K = 231.8 Gpa, p = 3890 

kg/m3. The quasi-static strength parameters as published by Coors are: compressive strength, 

Y = 2.62 GPa; and tensile strength oy = 0.262 GPa. Simha, et al. (1995) measured the 

compressive strength of AD995 alumina from bar impact tests; it varied from 2.6 GPa to 3 GPa. 
Bar impact tests of similar alumina give intermediate results, as shown by Brar, et al. (1988) and 
Cosculleula (1992). Dandekar and Bartkowski (1993) measured the spall strength of this alumina 
as 0.462 GPa. To bound results for Rt, I use two values for the compressive strength, Y: 2.6 GPa 

and 3 GPa. A tensile strength of 0.462 GPa is used. Finally, calculation of the pressure-shear 
coefficient, m, is based on Clifton's (1995) and Curran et al.'s (1993) experimental value of 

normal stress vs. shear stress coefficient, \is as follows. 

Let       ^r"^)^«^- (3.35) 

Therefore, m is given by: 

m = 
_ (q,-qe)/2 =  3a, 

(ar+2oe)/3    3-4|is 

(3.36) 

From Clifton's (1995) measured value of [is = 0.2, one obtains, m = 0.273 for AD995 alumina. 
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The following-properties are used for A1N. From Curran, et al.(1993): K = 210 GPa, E = 

315 GPa, Y = 3 GPa, af =1 GPa,   \is = 0.163 and hence m = 0.208. 

3.3.1.8   Conservation of mass 

It must be shown that mass is conserved in the cracked region. The average density of the 

material in the cracked region is given by 

p = j^7üPo [[c - u(c)]3 - [a - u(a)]3]/ |*(c3-a3)]}, (3.37) 

where p0 is the initial density.   u(a), u(c) and (c/a) are given by equations (3.22), (3.13) and 

(3.20), respectively. For an infinite target, evaluating these expressions for b -» <», and inserting 

them in (3.37) gives, 

Po 

P = 

1-f-d + v) 
n3 

^t_^t( rxr.i 
Y      EN2cf 

1- 
2af 

3/2 (3.38) 

Denoting pc as the density of the ceramic material in the cracked region, 

Pc       1      P — = 1 +—. 
Po K 

(3.39) 

Using the elastic relation in the radial direction, from (3.23) and (3.39), 

Po=Pc 
Y a2 

1 +—— 
3Kr2 (3.40) 
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Evaluation of (3.38) and (3.39) for AD995 ceramic, gives p =0.9977 p0< pe(c) = 1.0008 p0. 

Since pc is a decreasing function of r, it follows that pc > p for a < r < c, which is consistent 

with the assumption that the region is cracked. Similarly, for A1N, p =0.9786 p0< 

pc (c) = 1.002   p0, which does not violate mass conservation. 

3.3.1.9   Results 

Rt for an infinite target of AD995 alumina is plotted as a function of the pressure shear 

coefficient, m, in Figure 3.4. For m = 0.273 (from Clifton's data), it turns out that Rt = 7.7 GPa 

for Y = 2.62 GPa, and Rt = 8.6 GPa for Y = 3 GPa. Subramanian and Bless (1994) 

conducted penetration experiments on AD995 targets with tungsten penetrators and found that R, is 

scattered from 7 GPa to 9 GPa and that solution corresponding to a Rt of 8.5 GPa passes through 

almost all the error bars for the experimental values. Thus, the closed form solution has resulted in 
Rt values that tightly bracket the experimental observation. Similarly for A1N, Curran et al.'s 

(1993) material data imply that R, = 7 GPa, which agrees with the average value of experimental 
data obtained by Orphal et al.(1996) (their experimental R, value ranged from 5 GPa to 9 GPa, 

while most of the data points were clustered about an R, of 7 GPa). 

14 

12 

10 

Rt for Y=3 GPa 

■Rtfor Y=2.6 GPa 

Data from Subramanian 
and  Bless(I1995) 

0.1 0.2 0.3 0.4 0.5 

m 

Figure 3.4. Variation of Rt with pressure-shear coefficient, m for AD995. 
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The-radial stress and the hoop stress for AD995 alumina are plotted as functions of 

normalized radius (r/h) in Figure 3.5. It can be seen that the pulverized zone and the cracked zone 

extend to about 3.5 and 9 times the cavity size, respectively. The stresses fall off to zero 

asymptotically beyond r/h > 15. Thus the assumption of an infinite target is valid if the target to' 

penetrator diameter ratio is at least 15. This is consistent with radial confinement effects as 

reported by Bless et al. (1995). 
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Figure 3.5.   Variation of stresses with normalized radius, r/h. 

In Figure 3.6 pressure vs. shear stress in the various regions is plotted. It depicts the path 

taken by a virgin material element as the penetrator approaches and the cavity pressure starts to 

build up. The following discussion compares the pressure-shear constitutive behavior (Figure 3.6) 

depicted by the above analysis with the general pressure-shear constitutive behavior described in 

Figure 3.1. Figure 3.6 indicates that the loading path of the material starts out at the origin in 

Figure 3.1. Since the pressure in the elastic region is zero, the material loads along "O-C". When 

the tensile strength is exceeded, radial cracks appear. Thus the material jumps to a point on the 1-D 

stress path "O-D". In the cracked region, radial cracks make the structure of the material needle- 

like which justifies the assumption of 1-D stress path. Along this path, the maximum stress occurs 

at point "D", where the material further fails and jumps to the failure (lower) curve, "0-F\ Since 

the loading path has touched the upper curve only at one point, no assumption was required 

regarding the shape of the upper curve.   This is an important result of this analysis, since it 
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indicates that high pressure dependence of the fracture strength (upper curve) of ceramics does not 

affect penetration resistance. 

1.8 

Compressive 
\     Failure * 

Cratked Zone 

tensile failure 

Elastic Zone 
—i 1— 

cavity wall 

pulverized zone 

1 3 4 

Pressure   (GPa) 

Figure  3.6.  Shear stress vs. pressure in different zones. 

After compressive fracture, the material follows the linear portion of the lower curve. In 

the above analysis, the shear saturation of the lower curve (F-G) was not considered. Neglect of 

the limiting shear strength of failed material is justified by the following argument. The maximum 

pressure and shear experienced by the failed material is at the cavity wall and is given by Eqs. 

(3.30) and (3.31) with r = h.     Evaluation of these expressions for Y = 3    GPa yields 

Pmax = 6.3GPa   and xmax=1.72   GPa.     From Figure 3.1   P(F)  and S(F)  are related by 

P(F) = S(F)/u,.   High pressure plate impact tests on AD85 ceramic (Rosenberg et al. 1987) 

suggests that the shear stress behind the shock wave saturates for a shock pressure which is 

slightly above the HEL. The saturated shear stress is reported as 2.7 GPa for this material. There 

are other tests (Cosculleula 1992) which show that the HEL of AD85 ceramic involves extensive 

microcracks, which begin at the glass inclusions. The shear strength of the material behind the 

shock wave is maintained at a constant level for other alumina ceramics as well (Arhens, 1968). 

Similar material behavior should hold for AD995 alumina ceramic. The state of the material 

immediately behind the shock wave may not be fully failed. Thus, this value is an overestimate of 

the saturated shear strength of the fully failed material. On the other hand, the shear stress at the 

HEL for AD995 is 2.23 GPa (HEL = 6.2 GPa).   This should be a conservative estimate of the 
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shear strength of the failed material. Use of the above two representative values for the shear 

stress levels yield the pressure levels for P(F) of 13.5 GPa and 11.13 GPa respectively, for 

U\s=0.2.    Thus the maximum shear stress and maximum pressure experienced in the cavity 

expansion are well below the saturation levels. Thus ignoring the saturation limit in the analysis is 
justified. 

In Figure 3.7, the pressure-shear plot of the present analysis is compared with those from 

Forrestal and Longcope (1990) and Partom (1993). The plots from Forrestal and Longcope and 

the current analysis are identical in the elastic and cracked regions. In the "plastic" region of 

Forrestal and Longcope's analysis, the pressure-shear plot follows the upper curve for the intact 

material. On the contrary, in the present analysis, the material follows the lower curve for the 

failed material in the comminuted region. The pressure-shear plot from Partom's analysis is 

plotted for a lower curve slope of 1, which gives a cavity expansion pressure comparable to 

experimental value for AD995. This model does not account for the excess of tensile hoop stress 

at the inner boundary of the elastic region, as discussed earlier. Thus, from this comparison it is 

evident that the present analysis alone accounts for both the upper curve for intact material and the 

lower curve for the failed material. The cavity expansion pressure derived in the present analysis 

shows much better agreement with the experimental value of penetration resistance than the other 
two models. 

« 
0. 
o 

3.5 

3 

2.5 

2 

2 1.5 + 

1 

0.5 

0 
-1 

 Forrestal and Longcope, 1990 
 Partom,   1993 

Current Analysis                      »' 
'■>"" 

**' 
«*»« ^   * ^   , • 

<*     .' 

_^»            » 
4*                                    . • 

^•^                                        « 
Vv                    '                                      -^^ 

+ -       1                         '^\.                               ^***^ 

k./*"*        x^-^"^ 

 1 1 1 1 1  

2 3 4 

Pressure,   GPa 

Figure 3.7.   Comparison of different models. 
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3.3.1.10 Sensitivity Study 

The solution procedure provides useful insight into the properties of ceramics that most 

influence the penetration resistance. It has succeeded in explaining the low value of target 

resistance, R, for AD995 alumina and A1N. Even though there is an uncertainty of about 0.4 GPa 

in the compressive strength, this does not cause Rj to vary beyond the experimentally observed 

range. The analysis used an average value of the pressure-shear coefficient (m) in the comminuted 

zone equal to those measured by Clifton (1995) for AD995 alumina and by Curran et al. (1993) for 

A1N. It is not known whether or not m varies with the degree of comminution or even whether or 

not the degree of comminution is uniform in the Mescall zone. As seen in Figure 3.4, a plausible 

10% perturbation in the experimentally measured value of m produces about 10% perturbation in 

the Rt value, which will still lie within the experimental scatter. Rt is found to be quite insensitive 

to variation in the tensile strength value near its experimentally measured value. For example a 

100% change in the tensile strength value causes only about a 5% change in Rt . 

For the pulverized zone, I assumed that to a first order approximation, the compression due 

to high pressure and the dilatancy due to comminution cancel out each other so that the density in 

this region remains constant. It is found that a net dilatancy due to comminution would raise the Rt 

value rapidly. However, plate impact experiments for Al^ ceramics (Arhens et al. 1968) show 

that above the HEL, when the material is microfractured, the shock Hugoniot is parallel to the 

extrapolated hydrostat, which strongly suggests negligible dilatancy. Shock data for A1N 

(Rosenberg et al. 1991) are difficult to interpret in this respect because of probable phase 

change(Kipp and Grady 1994). Curran et al. (1993) also found that dilatancy would occur only 

after unloading. Thus the presence of large scale bulking before passage of the penetrator can be 

ruled out. On the other hand, a decrease in volume would lower the Rt value. However, at the 

maximum possible compressibility (treating the material as an uncomminuted elastic ceramic), Rt 

values reduce by less than 10%, which is again within the experimental scatter of Rf Therefore, I 

believe that the final density of the comminuted material must lie close to its original value, and 

hence the no-volume-change assumption holds good. 

In summary, the model is found to explain the observed R, values. The approximations 

that I made, should not affect this conclusion. The model demonstrates that the properties of the 

comminuted material (pressure-shear coefficient and its width, which is dependent on other 

material constants) are very important in determining the penetration resistance. The shape of the 
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upper curve in Figure 3.1 (the pressure dependence of fracture curve) does not affect the 
penetration resistance. Only the compressive strength (obtainable from bar impact tests) has a great 
bearing on R,. Effects of tensile strength is minimal. 

3.3.2      Cylindrical cavity expansion 

The spherical cavity expansion solution described in the previous section identified the 
important material properties of brittle ceramics that affect penetration resistance. The excellent 
agreement of the spherical cavity expansion pressure with experimental values of R, for long rod 
penetration suggests that a cylindrical cavity expansion solution can be used to derive the 

penetration resistance value for plane-strain penetration, as suggested by Bless (1995). The 
cylindrical cavity expansion solution may be used to indicate the lateral confinement required to 
minimize cracking in brittle ceramics. 

The cavity expansion solution for cylindrical symmetry is similar to that for spherical 

symmetry. However, for cylindrical symmetry, some assumption needs to be introduced 
regarding the axial stress or axial strain. In the following, I show derivations for both plane stress 

(az = 0) and plane strain (ez = 0) conditions for cavity expansion in an infinite material. The field 

equations for cylindrical symmetry are: 

Equilibrium equation: —- + —T- 2- = 0 (3-41) 
dr r 

Strain-displacement relation: er = — and ee = — (3-42) 
dr r 

Constitutive relation for plane stress:        er = — [cr - vcr9] (3-43) 

ee=-[<*e-VOr] (3.44) 
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Constitutive relation for plane strain:        £r = [ar(l-v)-vael (3.45) 
E 

ee=^%Je(l-v)-var] (3.46) 
E 

since az=v(ar+a9) for plane strain. 

Substituting the constitutive relations and the strain-displacement relations into the equiübrium 

equation, for either plane stress or plane strain conditions one obtains: 

u = c,r + ^.. (3.47) 

To evaluate cx and c2 two boundary conditions are needed, which are 

ar\     = 0, and aJ     =af. (3.48) 
r|r-oo ' ülr=c r 

Solving Eqs. (3.41) through (3.46) with Eq. (3.47) and the boundary conditions Eq. (3.48) yields 

Gf(l + v)c2 of(l + v)c2 . 
u = — for plane stress and u = —• for plane strain, (3.49) 

Er 2E      r 

c2 a c2 

ar = -af — for plane stress and Gr = —-— for plane strain. (3.50) 

Since the stress state in the cracked region is uniaxial, pulverization occurs where the radial stress 
exceeds the uniaxial compressive strength, Y; i.e., 

at\    =-Y. (3.51) 

Since in the cracked region, ae = 0, the equilibrium equation (3.41) reduces to 

^ + ^ = 0, (3.52) 
dr      r 
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which can be integrated with (3.42) to yield 

or=-Y-. (3.53) 

Also, since the radial stress has to be continuous at the elastic-cracked boundary, r = c, from 
(3.50) and (3.53), 

c     Y c     2Y 
- = — for plane stress and - = — for plane strain. (3.54) 
a    af a     cf 

Using continuity of displacement at r = c, the displacement can be expressed as 

Y f    c > 
u = — a In - +1 + v   for either plane stress or plane strain (3.55) 

The shear stress in the comminuted region (h < r < a) is equal to the "flow stress," which is taken 

as   pressure   dependent.       Thus,   writing   -* 2. = m ^s—?J.1   for   pj^g   stress   and 
2 \     3     J 

m(l + v)l    r      9 j for plane strain, the equilibrium equation (3.41) reduces to 
gr-ge_„„ .../qr+qe 

-^ + 2a-^ = 0, (3.56) 

where: a = for plane stress and a = — for plane strain.   (3.57) 
3 + 2m 3 + 2m(l + v) ' 

With the boundary condition (3.51), (3.56) can be solved to yield 

c=-Y\^a 
(3.58) 
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The cavity expansion pressure, Pc, which is the negative of the radial stress at the cavity boundary, 
r = h, is thus found to be 

PC=Y 
a 

(3.59) 

For an incompressible comminuted region, volume conservation yields 

(h V = u(a) 
vaj        a 

(3.60) 

Evaluating u(a)/a from the cracked region solution, Eqs. (3.54) and (3.55), the cavity expansion 

pressure for an infinite target is given by 

PC=Y 

PC = Y 

(E/2Y) 

l + v + ln(Y/Gf) 

(E/2Y) 
l + V + ln(2Y/Gf) 

for plane stress and 

for plane strain. (3.61) 

For AD995 with \is = 0.2, the cavity expansion pressure for plane stress and plane strain 

conditions are 5.47 GPa and 5.25 GPa, respectively, which are about 35% less than the average 
experimental value of penetration resistance for long rod case. Thus the spherical cavity expansion 
pressure is a better approximation to the penetration resistance (for long rods) of ceramic materials 
than the cylindrical cavity expansion pressure. On the other hand, this calculation indicates that 

planar penetrators (Bless 1996) would penetrate better than long rods, since a cylindrical cavity 

expansion pressure is applicable for the former, whereas spherical cavity expansion pressure is 

applicable for the later. 
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3.4      Dynamic spherical cavity expansion in a brittle material 

In the static analysis of the previous sections, it was assumed that the penetration 

resistance, R„ is given by only the static-cavity expansion pressure. This assumption leads to a 

condition of no velocity dependence of the penetration resistance term. When using this derived 

value, the velocity dependence is described by the dynamic term in the Täte equation (Eq. 2.72). 

The Täte equation equates the stress in the penetrator and the stress in the target at the penetrator- 

target interface. Even though the Täte equation (Eq. 2.72) correctly models the one-dimensional 

stress state of the projectile, it does not consider the effect of the 3-D state of stress in the target 

since the inertial term (i.e., velocity dependence) is based on 1-D relationship. A more consistent 

approach would be to model dynamic effects in the target, which could allow calculation of the 

complete RHS of the Täte equation. Cavity expansion analysis presents a framework by which the 

effects of 3-D states of stress in the target can be incorporated into a pressure-balance approach as 

in the Täte equation. However, to adapt the cavity expansion solution for a linear penetration 

problem, the relationship between the cavity expansion speed and the linear penetration speed must 
be established. 

In the following, I first solve the dynamic cavity expansion problem for a constant cavity 

expansion velocity using a steady-state elastic-wave propagation solution. This approximate 

solution considers only a linear behavior for the failed material (no shear saturation) and does not 

admit a jump in radial stress at the cracked-comminuted boundary. Subsequently, I solve the same 

problem using self-similarity transformations, where implications of shear saturation are 

considered and the necessary jump conditions are satisfied. The cavity expansion velocity is 

related to the linear penetration velocity, and the cavity expansion pressure is compared to 
experimental data for linear penetration. 

3.4.1   Dynamic cavity expansion solution using elastic-wave theory 

As detailed for the quasi-static analysis, the alumina ceramic is modeled as an elastic 

material that cracks under tension and then pulverizes when the compressive stress exceeds the 

one-dimensional compressive failure strength. The equation of motion in Eulerian spherical 
coordinates is written as 

lr + 7(<Jr-a,) = p^- + v-J, (3.62) 
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where v is the particle velocity. The mass conservation equation is written as 

3t    r23rVK     ; 
(3.63) 

For steady-state motion, assuming no volume change in the comminuted region, and 

recognizing that v = h at r = h, Eq. (3.63) reduces to 

v = 
hii 

.2    * 
(3.64) 

Inserting the post-failure strength behavior, Eq. (3.25) and Eq. (3.64) into Eq. (3.62), one 

obtains, 

do.    „_ar —i + 2oc-!- = p 
dr r 

/Vh + 2hh2    2h4h2^ 
(3.65) 

Equation (3.65) is readily integrated to obtain the stress distribution in the comminuted region as 

ar=-p 1     h2h + 2hh2       2hh2 

l-2ä (2-ä)r5 _2ä (3.66) 

where c, is the integration constant. The cracked region begins at r = a. Since at the cracked- 

pulverized interface, r = a, pulverization occurs when Gr = - Y, c, can be solved for. The radial 

stress distribution is thus given by 

ar=-p 
.2Ü h'h-2hhz 2hV 
(l-2ä)r     (2-ä)r ~-*l£ 

2a 

+ P 
raV5 Ü2 2h2(h/a)      hz   (h 

l-2a      2-aVa 
.(3.67) 
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In long rod penetration experiments (Subramanian and Bless 1995) h is essentially constant. 

Thus, h can be neglected. By definition, h/a < 1; hence (h/a)4 can be neglected too. Evaluation of 
Eq. (3.67) at r = h yields the steady-state cavity expansion pressure as 

Pc=Y|i)\ph: 
(l-2ä)(2-cc)    l-2öcUi 

,2o-l a 
(3.68) 

Even without further analysis, it is evident that the steady-state cavity expansion pressure is 
determined by the Mescall zone size and the pressure-shear behavior of post-fractured material. 

Incidentally, Eq. (3.68) reduces to the static cavity expansion solution (3.29) when h= 0. 
Obviously, the size of the Mescall zone depends on the mechanics of the "radially cracked" zone 
and the elastic region beyond it. 

For the "radially cracked" region, the equation of motion reduces to 

dar    2aT      3
2u 

lf+r = P3?' (369) 

where 9u/3t is the particle velocity. The isotropic elastic constants are not applicable in this region 

due to the anisotropy introduced by the presence of radial cracks. However, as discussed in 
Section 3.3.1.3, absence of transverse cracks ensures no degradation of the elastic moduli in the 

radial direction. Hence, using ar = E 3u/9r in Eq. (3.69), one obtains, 

32u    2 8u      1 32u 
or      r or     cc dt 

where cc = V(E/p). Equation (3.70) is a wave equation which has a solution of the form 

u = -[f(r-cct) + g(r + cct)]. (3.71) 
r 
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The first term in Eq. (3.71) represents a divergent propagating wave and the second one is a 

convergent reflected wave. Since the acoustic impedance on either side of the elastic-radially 
cracked boundary is essentially the same, the reflected wave can be neglected. Thus, the 

displacement is propagated without any dispersion but attenuates as 1/r.   Introducing a variable' 

change, displacement can be expressed as u = F(x)/r where x = t - (r - a)/cc.  x = 0 at the wave 

front, i.e., at r = a + cct and x = t at the cracked-pulverized boundary. Using the inner boundary 

condition at r = a, ar = E 3u/3r = -Y, 

F'(t) + F(tA = ^-. (3.72) 
a       E 

The solution of this equation is given by 

F(t) = c,exp(-cct/a) + Ya2/E. (3.73) 

For AD 995 alumina, cc~ 9.5 km/s, which is consistent with the experimentally measured speed of 
the failure front1 in this material (Strassburger et al. 1994). Existence of a failure front has been 
established in glass2 (Bless et al. 1992). These observations lend additional credence to the 
cracking behavior assumed in this analysis. The wave in the cracked front is highly over-damped 

because of a high value of wave speed compared to the time of penetration and the pulverized zone 

size. By simply replacing t by x, an expression for displacement in the cracked region is, 

c Ya2 

u(x) = -*-exp(-ccx/a) + . (3.74) 
r Er 

For the outer elastic region, (r > c), using the elastic stress-strain relationship, the equation of 
motion, Eq. (3.62) reduces to 

<^u    23u_2u=J_^u 
or2     r3r     r2     c2 3t2 ' {      } 

1
 A failure front in brittle materials like glass is a wave front behind which material is extensively damaged. Speed 
of a failure front in glass is about half the Raleigh wave speed (Bless et al. 1992). Strassburger et al. measured the 
speed of an extensively damaged zone by impacting ceramic plates edge-on. This is essentially a plane-stress 
condition; thus, this failure speed may not be similar to what has been observed in glass. 
2 Failure fronts in polycrystalline ceramics is a topic of current research (IAT-Russian project: Bless 1997). 
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where c: = E(l-v) 
is the elastic dilatational wave speed.  Since for pressure loading in 

p(l + v)(l-2v) 

spherical symmetry the motion is irrotational, the displacement can be expressed in terms of a 
scalar potential gradient as 

u = 
3r' (3.76) 

Inserting Eq. (3.76) into Eq. (3.75), it can be shown that (j) satisfies the one-dimensional spherical 

wave equation: 

2   i a ^ v2-— 
c2 at2 <t> = o, (3.77) 

where   V2 a — —■ r2— I.   Given a pressure boundary condition, Eq. (3.77) can be solved by 

transform methods as discussed by Hopkins (1960) and Graff (1975).  For the case of constant 

radial stress at r = a (a= -Y), the displacement, u, can be expressed as 

a3Y 
u(r,t) = 

4ux 
1 - e ^ | 1 — sin GOT - COSCDX (3.78) 

2c 
where q = —*-;   co = <;{(c2 /c2) - ll     with cs and ce being dilatational and shear wave speeds, 

aCe 

respectively, in the medium and (i is the shear modulus. 

Since the value of q is high, the motion in the elastic region is almost deadbeat. For the purpose of 

calculating size of the pulverized zone, I assume a steady state value of u in the elastic region, 
namely, 

u elastic a3Y 
4ux2 (3.79) 
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Now to calculate the constant ct in Eq. (3.74), equate the particle displacements at r = c; thus using 

x = 0 (at the wave front), Eqs. (3.74) and (3.79) yield 

.cracked Ya'e 3     -c.t/a 

4[ic     r Er 
(e-c<t/a-l). (3.80) 

The last step is to apply the incompressibility condition of the pulverized region along with the 

condition of expansion from zero radius to get 

1 (hY    ucracked(a) 
3va 

(3.81) 

Therefore, from Eqs. (3.80) and (3.81), neglecting the over-damped time-dependent part (i.e., 
considering the steady state value), 

lfhY    Y 
3laJ      E 

(3.82) 

Thus, inserting Eq. (3.82) into Eq. (3.68), the steady-state cavity expansion pressure becomes 

.25/3 

P, =Y|— I      +ph2 _E_Y 
3YJ (l-2ä)(2-cc)    l-2ä 

2ä-l 
f_E_YT 
,3Y 

(3.83) 

Equation (3.83) is in form of Pc = A+BV2. This is a Poncelet type equation discussed in 
Chapter 2. Pe should be used to give the total pressure at the penetrator-target interface. The terms 
in the square bracket in the RHS should give the coefficient of the dynamic term (which is 0.5 in 
Täte equation).   Eq. (3.83) suggests that the important material parameters that determine the 

penetration resistance are: Y, E and a. 
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3.4.1.1 Comparison with data 

As discussed earlier, the Täte equation does not account for the 3-D state of stress in the 

target. To adapt the dynamic cavity expansion pressure for modeling linear penetration, the 

dynamic term must be suitably modified. To account for a non-uniform radial pressure distribution 

in the cavity wall, Goodier (1965) assumed a factor of cos 9 for the dynamic pressure variation 

and during linear penetration equated the average radial pressure prevailing in the penetration 

process to the cavity expansion pressure (6 is the angle from the axis of penetration).   Forrestal 

et al. (1995) adapted the dynamic spherical cavity expansion solution for metals by assuming a 

cosine variation in the normal component of the cavity expansion velocity, thus introducing a factor 

of 1/2 in the dynamic term of the equation of motion. Thus, one must be cautious in directly 

applying the cavity expansion solution to a Täte framework. 

To relate the cavity expansion pressure Pc and steady-state velocity (V^ to those of a linear 

penetration process (Pt and U, respectively), I suggest the following procedure. Consider a linear 

penetration event. Let the cavity in the target grow from x to x + Ut during time t, the steady state 

constant pressure is P, during this time. Assume that using the same amount of energy, a spherical 

cavity would have grown from radius r to radius r + Vct, with a constant cavity pressure Pc. 

Now equating energy absorbed in both the processes, 

Ptrcr2UAt = Pc |7t[(r + VcAt)3 - r3] = Pc -rc[3r2VcAt], (3.84) 

neglecting higher order terms in At. Thus, PtU= 2PCVC. 

Hence, in order to compare (equate) cavity expansion pressure with the average penetration 

pressure, one must use a cavity expansion velocity that is half the steady-state penetration velocity. 

This also corresponds to the average value of a cos 6 dependence of the normal components of 

penetration velocity (i.e., ranging from U at 8 = 0 to zero at 9 = n I 2). This is also consistent 

with the assumption of Forrestal et al. (1995). 
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Figure 3.8 compares Pt for penetration velocities in AD995 alumina up to 3 km/s with 

experimental data (Subramanian and Bless). Evaluation of Eq. (3.83) was done using the values 

of elastic constants for alumina given in Section 3.3, with Y= 3 GPa and the velocity equivalence 

discussed above. The agreement is excellent despite the simplifying assumptions introduced. The 

good agreement substantiates both the analytical model and the framework for the description of 

failure in this ceramic. 
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Figure 3.8.   Comparison of computed and measured value of P, for alumina (in the 
above figure, th SE theoretical; nu = v). 

3.4.2   Self-similar solution for dynamic cavity expansion problem 

In the previous section I derived the expression for dynamic cavity expansion with a 

constant cavity expansion speed using certain approximations. Here I present a solution to the 

field equations using a similarity transformation. Use of the similarity transformation technique 

enables the incorporation of a jump condition at the elastic-pulverized boundary and the shear- 

saturation behavior of the failed material. For constant expansion velocity, the cavity expansion 

problem admits a self-similar solution. Hunter and Crozier (1967) and Forrestal and Luk (1988) 

presented self-similar solutions for cavity expansion in ductile materials. Recently, Forrestal et al. 

(1997) have solved the dynamic cavity expansion problem in brittle-plastic materials like concrete. 
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The pressure-shear behavior of concrete follows the upper curve of Figure 3.1, and there is no 

need to consider a failure behavior of the type observed in brittle ceramics (lower curve of Figure 

3.1). Forrestal et al. model concrete response as elastic-cracked-plastic. Here I present a solution 

for an elastic-brittle material which exhibits the cracking and comminution behavior described in' 

the last two sections. Use of a similarity transformation in the steady-state cavity expansion 

problem is particularly attractive for penetration problems, since for high velocity penetration it is 

known that the steady state-regime dominates the penetration process. 

Elastic 

|r=h=Vt 
£3=1 

(r=a=Cpt    * f=c=Cct    "* 

Figure 3.9.   Dynamic response regions in a spherical cavity. 

3.4.2.1    Elastic region 

The stress-displacement relations for spherical symmetry can be written as 

E ..     . 3u   _   u 
(1-v)—+ 2v- 

3r         r. 
°r - 

(l + V)(l-2v) 

<*e = 
E 3u    u 

v—+ - 
dr     r (l + v)(l-2v) 

? 

(3.85) 

(3.86) 
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where stresses are taken positive in compression.  Ignoring the convective terms in Eqs. (3.62) 
and (3.63) and combining these equations with Eqs. (3.85) and (3.86) yields 

32u    2 3u_2u=J_3^u 
3r2 + r 3r    r2 " C2 3t2' (3"87) 

where Ce is the dilatational elastic wave speed. Now introducing a similarity transformation 

t=— andü, =—, (3.88) 
Cet Cct 

Equation (3.87) transforms to 

d2u     2 du     2ü       ,f 2 d2ü 

d£,2   £,(!$,   £,2        d£,2 

where a = Cc/Ce. 

Forrestal and Luk (1988) have shown that Eq. (3.89) has a solution of the form, 

1 - 3a2E 2 

Ü = A<-B1     , ? , (3.90) 
id ^[ 

where A and B are constants of integration to be evaluated from the boundary conditions. 
Denoting jump in any quantity by double square brackets, 

NU,-«. (3-91) 

since displacement has to be continuous at the elastic-undisturbed boundary. The other boundary 
condition is given by the fact that the elastic material cracks when the tensile hoop stress equals the 
tensile strength of the material, i.e., 

oe(^=l) = -of. (3.92) 
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Using the boundary conditions (3.91) and (3.92), 

B = —A and A = 
2 In r 2 

,2 cr(l-v) 
2v(a3-l) + (2a3-3a2 + l) 

(3.93) 

3.4.2.2   Cracked region 

In this region the hoop stresses are zero due to the presence of radial cracks. For spherical 
symmetry, the two hoop directions perpendicular to the radial direction are equivalent. The 
material in this region is assumed to be in the form of needles. Alternatively, it is possible that the 
cracks are distributed in an incoherent and discontinuous manner in such a way that the material 
cannot support hoop stress and yet is not needle like. In either case, the material in the cracked 
region is capable of transmitting only radial stress. Since the hoop stress is zero, Eq. (3.62) 
reduces to, 

—i + —L = -pU. (3.94) 
dr       r 

As before, the stress and displacements are related by 

or=-E—. (3.95) 

For the cracked region, I introduce the following similarity transforms: 

S2=^ and ü2=^. (3.96) 

Using Eqs. (3.95) and (3.96) in (3.94), one obtains 

d2U2     2 du,     D2, , d2ü, 
 - + T1T = ßV-^T, (3.97) d^2

2    S2 d^2    
r "2 d£2

2' 

89 



where ß s Cv/Ca ;Ccr = ^/E/p is the bar wave speed.   Integration of Eq. (3.97) results in the 

following expression for the dimensionless displacement in the cracked region. 

u2 = -c, 
1 + ßV + c2, (3.98) 

where c, and c2 are constants of integration. The inner boundary of the cracked region is defined 

by the condition that the cracked material pulverizes when the compressive radial stress exceeds the 

compressive strength of the material. Thus, 

ar(^2 = l) = -E 
du. 

^ 
= Y. (3.99) 

$2=1 

Since no transverse crack is envisaged at the elastic-cracked boundary, the displacement should be 

continuous there. As a result, the second boundary condition for displacement is as follows. 

u,.     =Yu,L   ,, 2|$2=Y        '     "Si-«' 
(3.100) 

where y = Cc/Cp.   Substitution of the boundary conditions, Eqs. (3.99) and (3.100), into Eqs. 

(3.95) and (3.98) yields, 

Y . Y(ß¥ + l) 
i 77^ \ and c2 =—  /^ \   + E(ß2-1) IE  (ß2-l) 

c, = 
vP0ce

: j 

(l-v)(2a3-3a2 + l) 

2v(a3-l) + (2a3-3a2 + l) 
.(3.101) 

3.4.2.3   Hugoniot jump conditions 

For the dynamic cavity expansion involving propagation of comminuted, cracked and 

elastic waves into the undisturbed material, Hugoniot jump conditions have to be satisfied at the 

propagation fronts. Denoting quantities on either side of the disturbance by subscripts + and -, 

Hugoniot jump conditions for mass and momentum can be written as (Courant and Friedrichs 

1948): 

p_(v_-C) = p+(v+-C), (3.102) 
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c+-G_ = p_(C-v_)(v+-v_), (3.103) 

where v, C and c are particle velocity, disturbance velocity and normal stress respectively. 

Denoting the volumetric strain by r\ ,i.e., 

K p 
(3.104) 

Equations (3.102) and (3.103) can be combined to yield 

Po(C-v_)2, . 
(3.105) 

For applying Eq. (3.105) to the elastic-cracked interface, I denote the quantities on the 

elastic and cracked sides of the interface by subscripts 1 and 2, respectively. The particle velocity 

and the radial stress on the elastic side of the interface are given by following equations: 

v'=är=c< u,-£i 
du. 

= 3C„A (I"«2) 

J*i-i 
2a2 (3.106) 

_    ApC2 

o,=- 
(1-v) 

a3(l + 2v)-3va2-(l-2v)" 

a2 (3.107) 

The volumetric strain on the elastic side of the interface can be calculated from Eqs. (3.85), (3.86), 

(3.88), (3.90) and (3.104) as follows. 

Hi=- 
3af q2(q-l)(l-v) 

pCe
2 J [2a3 (1 + v) - 3a2 + (1 - 2v)] 

(3.108) 
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Similarly, the volumetric strain on the cracked side of the interface can be calculated from Eq. 
(3.95), (3.96), (3.98) and (3.104) as follows. 

*n2 = 
Y (1-ßV) 
3K(l-ß2)Y

2 (3.109) 

Now using Eqs. (3.85), (3.95) and (3.109) in Eq. (3.105), the following relation between a and 

ß is obtained. 

f = 
vßccry 

Y(ßY-i) 1 + -^ 
3K 

( ccr-V 
v i-Tii J 

-a.ßY-Ti.ßYp 

( 
<^i + TliPo 

cg-v, 

ccr-v, 
v 1 —"Hi  J 

-(3.110) 

3.4.2.4   Comminuted region 

When the radial compressive stress in the cracked region, where the material has already 
failed in two orthogonal hoop directions, increases to the compressive strength of the material, it 
becomes granular or pulverized. The Mohr-Coulomb material model is employed to define the 
material behavior of the granular material. The granular material cannot support any shear in the 
absence of pressure, as observed by Rosenberg et al. (1988). Thus the cohesive strength is taken 
as zero. There is a possibility that the level of comminution will vary with varying pressure, 
resulting in a non-linear pressure-shear behavior. I ignore this possible non-linearity, and assume 
that the shear strength increases linearly with the confining pressure. Denoting the constant of 
proportionality between pressure and shear by m, for spherical symmetry, 

■ ae        CT. + 2a6 —t = m—- 2-, (3.111) 

Using Eq. (3.111), the equation of motion, Eq. (3.62) reduces to, 

da.    n-GT (dv      dv~\ 
(3.112) 

92 



where a = 6m/(3 + 4m). Employing the similarity transformations 

^3=^'  Ü3=^andU = V' (3-113) 

Eq. (3.112) becomes 

Ä.aa.-pV^-U. (3,14) 

Ignoring dilatancy in the comminuted region, Eq. (3.63) reduces to, 

v = -j-, (3.115) 

where D, is the constant of integration. For a cavity being created in a continuous medium, with a 
constant cavity expansion velocity, v(r=h) = V. Thus, in terms of non-dimensional quantities, Eq. 
(3.115) becomes 

u = rr- (3.H6) 
S3 

Inserting Eq. (3.116) into Eq. (3.114) and integrating once yields 

°r=- e 2a 
VS3     J -«h^-'+ih^-'y^ (3-117) 

where D2 is the integration constant. The Hugoniot jump condition is invoked at the comminuted- 
cracked interface to evaluate D2. By assumption, there is no dilatancy across the cracked- 
comminuted interface. Hence from Eq. (3.102) and (3.103), there will be no jump in particle 
velocity or radial stress at this interface. But the density for this region is the same as that at the 
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cracked-comminuted boundary. From Eqs. (3.99) and (3.104), the density is given by p = p0/(l- 

Y/3K). Since Y« K, p~p0. Now using the condition that the cracked material pulverizes when 

the radial stress equals the compressive strength, i.e., cr\ =s = Y (where feCp/V), and continuity' 

of radial stress from the Hugoniot jump condition, 

D2=Y82a+2p0V 1 '       g2a-4   . *       ft2""1 

2(a - 2) 2a -1 
(3.118) 

Finally, denoting the pressure at the cavity surface by Pc, the stress required to maintain the 

constant cavity expansion velocity for opening up a spherical cavity in a continuous ceramic media 

is given by the following expression. 

fs2a-4       oS2a-l 

Pc=°rL ,=Y52a+p0V n 8 
I$J-I 

282 A 

^2-a    l-2a    (l-2a)(2-a), 
(3.119) 

8 needs to be related to a and ß.  Volume conservation in the incompressible comminuted 

zone, in terms of the non-dimensional quantities, is given by 

ft,-.Ü3)'=$3J-l (3.120) 

Evaluating Eq. (3.120) at £3= 8 and assuming that u3(£3 = 8) is small, 

^3=5) = ^ (3.121) 

Continuity of displacement at the cracked-comminuted boundary is enforced by requiring that 

ü3(^=8) = 8ü2(^=l). (3.122) 
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Thus, from Eqs. (3.98), (3.121) and (3.122), the following relation between a, ß and 8 is 

obtained. 

8i = 3[c2-c,(l + ß')] <3-123» 

To compute R, as a. function of the cavity expansion velocity, I adopt the following 

procedure.   Starting with a given a, v, and r^ are calculated from Eqs. (3.106) and (3.108), 

respectively. Then Eq. (3.110) is employed to compute ß.   Subsequently, the constants c, and c2 

are calculated from Eq. (3.101).   Finally, 8 is calculated from Eq. (3.123), from which R, is 

calculated from Eq. (3.119). 

3.4.2.5   Elastic-comminuted response 

Numerical evaluations (shown later) indicate that the cracked zone disappears when the 
cavity expansion velocity increases beyond a certain value. Thereafter the material response is 
elastic-comminuted. In such a situation, the constant A in Eq. (3.90) needs to be reevaluated using 

the boundary condition cr(£, = 1) = Y. Evaluation of Eq. (3.85) with Eqs. (3.88) and (3.90), 
along with the above boundary condition, yields 

A = _Y(l-v) ß2 

p0C*   Lß3(1 + 2v)-3vß2-(l-2v) 

Also to evaluate 8, the boundary condition Eq. (3.122) must be replaced by 

(3.124) 

u3(£3=8) = 8ui(£i=l)- (3.125) 

Evaluating Eqs. (3.125), (3.124), (3.121) and (3.90), the following relationship between ß and 8 

is obtained. 
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S3 =      , o3
2ß2 n2     . (3.126) 

3A(2ß3-3ß2 + l) 

The cavity expansion pressure is still given by Eq. (3.119). 

3.4.2.6   Shear saturation in the failed material 

Experiments (Rosenberg et al. 1987) suggest that the shear strength of the material 

immediately behind the shock wave in plate impact experiments saturates for shock pressures 

above the HEL. This issue was discussed at length, at the end of Section 3.3.1.9. So far, I have 

modeled the comminuted material as a linear Mohr-Coulomb-type material. If the failed material 

saturates at a level Gr-Ge=2T, the comminuted region can be divided into two sub-regions: a 

saturated region (a< r< b) and a linear region (b< r< c).  From Eq. (3.111), 

2x 
Gr=^. (3.127) 

a 

The equation of motion for the saturated region becomes 

|+r-pvf(u-y. (3.128) 
dq3    S3 

ds3 

Integrating Eq. (3.128) with Eq. (3.115) from r = a (£3= 1) to r = b (£3= 8,), 

„     2%    A  .   2     pV2 

P. = —+ 4Tln8,+-— 
a 2 

1 4       o ~r + 3 
5?    5,     , 

(3.129) 

The equation of motion for the linear failed region is given by Eq. (3.113).    Integrating this 

equation with the velocity distribution given by Eq. (3.115), from r = b   (£3= 8,) to r = c 

(l;3= 8) and recognizing that cyr(^3= 8,)=2T/(X and cyr(^3= 8) = Y, one obtains 
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Y825-^8f5 = 2p0V
: 

a 

j2a-4 .5]2ä-4 ;2a-l -8 2<x-l 

2ÖC-4 2ä-l 
(3.130) 

Thus for a given ß, Eq. (3.126) is solved for 8. Eq. (3.130) is then iteratively solved to obtain 8,, 

which is used in Eq. (3.129) to yield the cavity expansion pressure. 

3.4.2.7   Results 

Figure 3.10 shows the expansion velocities of cracked and comminuted fronts for different 

cavity expansion velocities in AD995 ceramic. The material constants used are the same as those 

presented in Section 3.3.1.7. For a cavity expansion velocity of 980 m/s the cracked region 

disappears, i.e., Cc=Cp=4.9 km/s. Thereafter the material response is elastic-comminuted. Similar 

observations were made by Forrestal et al. (1997) for dynamic cavity expansion in concrete. The 

speed of the comminuted zone becomes saturated at a level of 9.5 km/s, after a cavity expansion 

speed of about 1.5 km/s. Strassburger et al. (1994) had observed a saturation speed of about 9.5 

km/s in end-on impact of alumina plates by cylindrical projectiles whose diameter was greater than 

the thickness of the target plates. Even though this experimental geometry was a plane stress 

configuration, the saturation limit speed of the failed zone seems to be similar to that found for 

spherical cavity expansion. 
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Figure 3.10.   Speeds of the comminuted and cracked zones. 
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To relate the dynamic cavity expansion pressure to the projectile-target interface pressure 

prevalent in a penetration situation, the velocity equivalence discussed in Section 3.4.1.1. is 

adopted. Thus the cavity expansion speed, V, is equivalent to half the steady state penetration' 

velocity, U . The cavity expansion pressure for AD995 alumina ceramic is plotted in Figure 

3.11 (a) for cases of shear saturation and no shear saturation in the comminuted region. The 

curves yield the value of quasi-static cavity expansion pressure (Eq. 3.34) at zero cavity expansion 

velocity, as a check for the numerical solution. Rosenberg et al.'s (1987) plate impact experiments 

suggested that the shear stress behind the shock wave saturates at about 2.7 GPa for AD85 

ceramic. The material immediately behind the shock wave is unlikely to be totally damaged. Thus, 

the saturation level of the lower curve should be less than this value. In Figure 3.11 (a), the cavity 

expansion pressure is plotted for four different levels of saturation value and for \i = 0.2. 

Experimental values of the interface pressure from Subramanian and Bless (1995) are also plotted 

in the same figure. Assuming that the specimen's finite size has not affected the experimental data, 

the data exhibits closer agreement with the analytical solution for a saturation stress of 1.5 GPa. 

Traditionally, penetration resistance of target materials is measured in terms of the target 

resistance, R, in the Täte equation, where the inertial term is 0.5pUp
2.  Figure 3.11 (b) shows the 

equivalent Rj (equivalent Rt = cavity expansion pressure with cavity expansion velocity equal to 

half the penetration velocity - 0.5pUp
2)  along with the experimental values obtained by 

Subramanian and Bless (1995). While the model with saturation stress of 1.5 GPa shows best 

agreement with the trend of the experimental data, all the curves are within the experimental scatter. 
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Figure 3.11. (a) Cavity expansion pressure vs. penetration velocity for different shear- 
saturation levels, (b) Equivalent Rt vs. penetration velocity for different shear- 
saturation levels. 

The model suggests that the quasi-static spherical cavity expansion pressure is a good 

approximation for the constant R, term in the Täte equation until a penetration velocity of about 2.5 

km/s.  Beyond this speed, the penetration resistance starts to decrease sharply.   Comparison of 

99 



Figure 3.11(a) with the penetration resistance curve for RHA steel (Figure 4.5) suggests that, 

while penetration resistance of RHA drops significantly with velocity (becomes negative beyond a 

penetration speed of 2.3 km/s), AD995 ceramic retains its resistance at a nearly constant level until 

a penetration speed of about 2.5 km/s. Thus ceramics like AD995 alumina are much better 

materials for use as protective structures compared to RHA. 
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3.5      Penetration resistance of ceramic/ metal laminate targets 

A semi-infinite target has no outer boundary by definition. It was found in 

the previous sections that the cavity expansion pressure for this case is purely 

determined by the material properties. However, practical applications involve 

protective structures with finite geometrical dimensions. Also, for performance 

evaluation of different ceramic materials, finite ceramic tiles backed by thick metal 

substrates are used. By measuring the residual penetration (DOP)1 into the metallic 

substrate, the effectiveness of the overlaying ceramic material is measured (Woolsey 

1992). Thus, for these cases, the effective penetration resistance of the finite ceramic 

tile may be strongly affected by the presence of finite boundaries. 

In the following, I consider the case where a ceramic tile lays over a semi- 

infinite metallic substrate. The effects of the finite lateral boundary are ignored by 

assuming that the lateral dimension is infinite. In practice this condition may also be 

achieved if the ceramic is suitably confined so that the effects of the free-lateral 

surfaces are eliminated. The finite dimension of the metal substrate may also affect 

the performance grading results. However, that consideration will be deferred for 

future work. 

Depending on the proximity of the penetrator-target interface to the ceramic- 

metal interface, four distinct possibilities arise (see Figure 3.12). It shall be shown 

that no other possibility can exist. 

1 DOP was defined by Woolsey as the depth of (residual) penetration into the substrate over which 
the ceramic tile lays. 
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Figure 3.12.   Schematic of cavity profiles for four different possible scenarios, in ceramic 
targets backed by semi-infinite metal. 
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Case (a) 

When the tip of the penetrator is far away from the ceramic-metal interface 
(henceforth called "the interface"), the ceramic material has four zones: cavity, 
comminuted, cracked and elastic. The metallic substrate is elastic. The solutions to 
the field equations for spherical cavity expansion in metal were presented in 

Chapter 2 and those for ceramics were presented in this chapter. These solutions for 
different regions in Figure 3.12(a) are as follows. 

ci u = 7 
°r     =-4H»4 

a9 = 2]i. m    3 r 

for b < r < oo. (3.131) 

u = c2r + ^- 

ar  = c2 (3A. + 2H)- 4\L-± 
r 

ae = c2(3A, + 2|i) + 2\i-{ 

for c < r < b. (3.132) 

Ya2 

u = —— +c. 
E r 

o.=-Y|- 
.V 

for a < r < c. (3.133) 

u(a)_l(<hN 

a      3la, 

\3' 

ar = -Y - 
vry 

25 for h < r < a. (3.134) 
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Here jx and X are the Lame constants for the ceramic and [im is the elastic shear 

modulus for the metal. Ci through c4 are constants to be evaluated from the boundary 
conditions. The boundary conditions are that the radial stresses and the 

displacements are continuous at r = a, c and b. Using these boundary conditions in 

Eqs. (3.131) to (3.134), the following relations between the constants are obtained. 

Cl i.       C3 -L = c,b + -f- 
b2      2     b2 

-4fiBfLasc2(3X + 2|i)-4|i§- 
b b 

C2(3X + 2^I)-4^I% = -Y[- 
V 

cy 

c2(3A, + 2|i) + 2(i-| = af 

c3     Ya2 

c2c + —= + c4 
E c 

3\&)      E     a 

(3.135) 

InEq. (3.135), there are six relations involving four unknown constants, cp c2, c3, 
c4, and two unknown boundaries, a and c; h (cavity radius) and b (proximity to the 
interface) are known. With some algebra, solution of these relations yields 

expressions for the unknowns, which are then substituted into Eq. (3.134) to yield 

[E 

fbV _ 6K( 

v)+        _f(l 
\&J E 

"(a/c)2+af/Y" 
_(a/c)2-2cf/Y_ 

-V) 

-V) 

-1-25/3" 

Vc)        4| 

'hV _ 3Y 
<aj      E 

xm+3K 
(3.136) 
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where Pc is the cavity expansion pressure, equal to the negative of the radial stress at 

the cavity boundary, r = h. Additionally, the equivalent stress at the interface is 

given by 

K-<*r)|r=b=3^imaf 
4n + 3K 

_ßV(4^m+3K)-6K(Hm-|i) 
(3.137) 

where ß = b/c. The maximum value of ß is 1, corresponding to the situation where 

the cracked front reaches the interface. Evaluating Eq. (3.137) for ß = 1 and with 

H = 152   GPa, K = 222   GPa (for AD995) and (Xm = 80  GPa (for RHA), the 

maximum equivalent stress is 0.5 GPa.   Since this is smaller than the yield strength 

of the steel, it is concluded that the metal has not yielded for this case. 

Case (b) 

When the tip of the penetrator draws closer to the interface, the cracked front 

will reach the interface, as shown in Figure 3.12(b). The solutions for different 

regions are as follows. 

u=   2 r 

CTr   =-4(X "l    3 r 

^9 = 2^4- 

for b < r < oo. (3.138) 
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Ya2 

u = + c, 
Er       2 

f^2 

or=-Y 
a 

Vr 

for a < r < b. (3.139) 

u(a) _ 1 'h VI 
a       3Vay 

<Tr = -Y( 
V 2a 

for h < r < a. (3.140) 

The constants c, and Cj will be evaluated from the boundary conditions that the radial 
stresses and displacements are continuous at r = a and c. Thus the following 
relations among the constants are obtained. 

El 
b3 -4HmfH-Ylf 

bj 

c2     Ya2 

-4 = + c, 
E b 

lfh 
3U 

Y    c, 
- -    =— + ■ 

E     a 

(3.141) 

In Eq. (3.141), there are three relations involving constants c,, c2 and the unknown 
boundary a, for given h and b. Solution of these relations yields 

3Y 

3Y 
E 

', faY 1     Y (&"\ 

rlbl J   4nmUJ 

r, faY Y "a" 

rlbl ' 4^m _b_ 

-2a 13 

(3.142) 
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From Eqs. (3.139) and (3.141), the equivalent stress in the metal at the interface is 

given by 

(°- L-?(S" (3.143) 

Thus the metal will yield when 

a 

b 
En 
' 3Y 

(3.144) 

where Ym is the yield strength of the metal. For AD995 ceramic/ RHA steel 

composite (Ym= 1 GPa), a/b = 0.47. After this point, a plastic zone will appear in 

the metal, which is case (c). 

Case (c) 

When the penetrator tip is sufficiently close to the interface so that the 

response of the metal is plastic-elastic, the following equations are the solutions to 

the field equations in different regions. 

u = 7 
<*r    =-4H»4 for d < r < oo. (3.145) 

Oe = 2^ra4 
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u(b) = u(d) 

or   =
2Ymlnr + c2j 

for b < r < d. (3.146) 

Ya2 

u = -- +c3 
E r 

ar=-Y- 
Vry 

for a < r < b. (3.147) 

u(a)_l(h 
a       3v.a )'l 

25 
for h < r < a. (3.148) 

The constants c,, c2 and c3 are obtained from the continuity of radial stresses and 

displacements at r = a, b and d and the yield condition at r = d. Thus the following 

equations relate the constants c,, c2, c3 and the unknown boundaries a and d. 

6u, l- = Y m J3 -"-m 

Si 
d3 -4|Im^- = 2Ymlnd + c2 

c,     Ya2 

b2     E b      3 

,V 
2Ymlnb + c2=-Y - m 2 I   , 

3vaJ     E     a 

(3.149) 

108 



Solving the above equations yields 

p_=y3Y + 3Y„fdV^ 
E     6\im\b J\SLJ EU, 

-2a/3 

-|=exp 
1 

2Y„ 

2Y„ 

ay      E      6u.mVbJU 

(3.150) 

Case rd') 

Finally, after the cracked zone has disappeared, the comminuted zone of the 

ceramic material will be in contact with the metal, whose response is plastic-elastic, 

as shown in Figure 3.12(d). The solutions to the field equations for this case are 

a = 7 
a,  =-4n m    3 r 

o9 = 2^m^- 
r 

for d < r < oo, (3.151) 

fdV 
u(b) = u(d) - 

\bj 
or   =2Ymlnr + c 2 J 

forb< r<d, (3.152) 

u(a) 
a -sen 

<*r = 
c3 
r2ä              j 

for h < r < b. (3.153) 
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Solving these equations with the boundary conditions that the radial stresses and 

displacements are continuous at r = b and d and the yield condition at r = d, one 

obtains 

6^m^ = Yni 

-Him-H2Ymlnd + c2 

2Ymlnb + c2=-^- m 2        i 2o 

Ifh 

b 

Y„ fdY 

3U;      6\im{b) 

(3.154) 

Solution of these equations results 

P =Yj2\n 

2|i„ 

vd> 

(- 
,b 

+m 
2a 

(3.155) 

It is noted that when b/h = 1  (i.e., when the penetrator hits the metallic substrate), 

Pc in Eq. (3.155) reduces to the cavity expansion pressure for the metal. 

3.5.1    Results 

Eqs. (3.136), (3.142), (3.50) and (3.155) can be solved to obtain the cavity 

expansion pressure and the size of the different zones for given values of h (cavity 

size) and b (interface distance from the penetrator tip). In Figure 3.13 the relative 

sizes of different zones are plotted for different values of b/h. Figure 3.14 shows the 

variation of the cavity pressure with b/h ratio. It is seen that the penetration resistance 

is not affected for b/h > 15, where the ceramic behaves as an infinite target. Once the 
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boundary is sensed, slow and gradual strength reduction occurs until the cracked 

region reaches the interface (at about a distance of 11 penetrator radii from the 

interface). An immediate reduction occurs, followed by a near constant strength 

which falls rapidly as the cracked/ comminuted interface approaches the ceramic/ 

metal interface. The comminuted region reaches the interface at about 2 penetrator 

radii, at which point the strength degrades towards a lower bound equal to the cavity 

expansion pressure in the metal. 

Thus, this analysis shows that the effect of the finite boundary on the ceramic 

must be considered for cases in which the penetrator reaches about 10 X diameter 

from the ceramic boundary. DOP tests with thin tiles (thickness ~ 5 X penetrator 

diameter) do not indicate the inherent penetration resistance of semi-infinite ceramics. 

The average resistance encountered will depend on the thickness in addition to the 

material constants of the ceramic and the metallic substrate. 

10 15 20 25 

b/h 

Figure 3.13.  Variation of relative size of different zones with proximity to interface. 
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Figure 3.14.  Variation of cavity expansion pressure with proximity to the interface. 

Anderson et al. (1995) presented data for 2.586 cm thick alumina targets 

backed by semi-infmite RHA substrates, and impacted by tungsten alloy penetrators. 

The alumina thickness was about 3.5 times the penetrator diameter. The following 

table compares the penetration data with the predictions from the model described 

above. The second and third columns show the experimental impact velocities and 

the measured residual penetration into the RHA block, respectively. The fourth 

column shows the predictions of the CTH hydrocode for the residual penetration. 

The fifth and sixth columns shows the depth of penetration obtained by using Täte 

equation along with the degrading R, model described in the previous section, and a 

constant R, equal to the spherical cavity expansion pressure. Good agreement is 

observed using the analysis described here. Note also that the calculated residuals 

based upon full strength values are far less than those observed in the experiments. 
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Table 3.1. Comparison of the effect of inclusion (variable Rt) and exclusion 
(constant R,) of boundary effects in Cavity Expansion Analysis with 
experimental data and CTH for unconfined (UC) and radial confined (RC) 
alumina tiles, 2.586 cm thick backed by semi-infinite RHA, per Anderson et al. 
(1995) 

Shot No. Impact 
Velocity 

km/s 

Residual 
-   Penetration, 

cm 

CTH 
Calculated 
Residual, 

cm 

Calculated 
Residual 

(varying Rt), 
cm 

Calculated 
Residual 

(R, = 8.5 GPa), 
cm 

150UC-1 1.5 4.65 4.48 4.19 2.98 

150UC-2 1.48 4.36 4.34 4.05 2.80 

170UC-1 1.78 6.18 5.98 5.73 4.92 

170UC-2 1.79 6.30 6.02 5.77 4.97 

150RC-1 1.55 4.32 4.51 4.52 3.40 

150RC-2 1.52 4.32 4.30 4.32 3.14 

170RC-1 1.78 6.06 5.84 5.73 4.92 

170RC-2 1.79 6.20 5.90 5.77 4.97 

3.5.2   Discussion 

In the above analysis, it was assumed that the ceramic tile was in perfect 

contact with the substrate. The acoustic impedances of AD995 alumina (41.1X106 

kgs'm"2) and steel (46.6X106 kgs'm2) are close. Thus, the reflected wave from the 

interface can be ignored. Often, a low impedance material (e.g., epoxy with acoustic 

impedance of 3.12X106 kgs'm"2; Marsh 1980) is used as a bonding agent between 

the laminates. Presence of such a low impedance material would cause the 

compressive wave to reflect as a tensile wave from the interface. This would result 

in the appearance of cracked and comminuted zones ("reverse fracture") at the 

interface, which would propagate back towards the penetrator. If the thickness of the 

ceramic tile is sufficient, these "reverse fracture" zones will coalesce with the 

forward-moving cracked and comminuted zones. This phenomenology would 

certainly degrade the penetration resistance of the ceramic material. Such effects in 

thick ceramic tiles have been reported by Bless et al. (1995) and Hauver et al. 

(1992).    Analysis of the phenomenology of "reverse fracture" would require 
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inclusion of the travel time of waves in the analysis. Hence, the penetration 

resistance model would have to be solved simultaneously with a penetration equation 

(e.g., the Täte equation) to obtain a time-dependent penetration resistance 

degradation. Such considerations were avoided in the above analysis and can be 

pursued in future work. 

In summary, the model developed in this section shows the importance of 

interface effects in layered targets. Its predictions are in quantitative agreement with 

experiments. This analysis should be a valuable aid in designing ceramic armor and 

in interpreting DOP tests. However, it does not yet explain the experimental 

observation that in very thick tiles, average resistance is lower than predicted levels. 
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Chapter 4: Cavity Expansion Analysis and Penetration Models 

There exists a number of models that, with varying degrees of success, are used to analyze 

penetration of solids by projectiles (Recht and Ipson 1963; Täte 1969; Donaldson and 

McDonough, 1973; Awerbuch and Bodner 1974; Walker and Anderson 1995; Forrestal 1995). 

The approaches in these models range from simple empiricism (Lanz and Odermatt 1992; Silby et 

al. 1989) to extremely complicated micro-mechanical hypotheses (Curran et al. 1990). While the 

more "first-principle" models attempt to capture the detailed mechanics, they require calibration and 

evaluation of a large set of parameters. Computational methods are required to solve their lengthy 

sets of non-linear equations. Often this is time consuming and expensive. It is not only difficult to 

identify the physics of the problem, but also use of numerical techniques may introduce other 

sources of non-physical errors. An alternative is to utilize analytic models arising out of simplified 

continuum mechanics principles and based on experimental observations, simulation results and 

experience. Such an approach can deliver a convenient tool for rapid estimation of complicated 

physical problems, although at the expense of some accuracy. It provides valuable insight into the 

role of individual parameters. The models discussed in this chapter belong to this second category. 

The problems dealt herein are associated with semi-infinite target penetration (where the 

boundaries do not exert any significant influence). The thin plate perforation problem having 

typical application in space debris shielding, body armor design, etc., is excluded from the current 

analysis. The projectiles considered in this discussion are long rods, that are typical of military 

applications. No attempt has been made to explain the impact and cratering associated with short 

(small aspect ratio) or spherical projectiles. 

In this Chapter, penetration phenomenology associated with high impact velocity is 

described first. Then the existing penetration models for both rigid and eroding penetrators, that 

use cavity expansion analyses, are discussed. Strengths and shortcomings of these models are 

pointed out. Subsequently, I introduce a hypothesis for ductile material behavior which leads to a 

new approach for modeling penetration. Cavity expansion solutions are used to describe the 

response of the target material. Several examples are.shown to demonstrate the utility of this 

approach. The hypothesis introduced needs experimental verification. 
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4.1      Penetration phenomenology 

A variety of phenomena exist in impact and penetration mechanics problems, e.g., shock 

formation, elastic-plastic wave propagation, fracture and fragmentation, thermal effects. This' 

precludes a closed form analysis of the complete scenario. As a result, attempts have been made to 

identify different penetration regimes based on the dominant physical processes involved. Then 

simplifying assumptions are made in each regime so that analytical solution is possible. The 

solution, however, usually works only in the intended region of applicability. 

Wierauch (1970) used a simple velocity scale to divide the regimes of impact and 

penetration phenomena where different mechanics of penetration predominates.   Johnson (1972) 

used the non-dimensional number, pV2/Y, where V is the relative speed at normal impact, p is the 

density and Y is the flow stress, as a damage number to delineate different penetration regimes 

ranging from quasi-static punching to hypervelocity penetration. This number, which is suggested 

by dimensional analysis (Shanbing et al. 1994), is the ratio of the inertial force to the mechanical 

strength and can be thought of as a measure of the order of strain imposed in the region where 

severe plastic deformation occurs (Zukas 1990). In. this dissertation, attention has been given 

mainly to high velocity penetration problems, where the penetration velocity ranges from a few 

hundred m/s to a few km/s. In this regime, the Johnson's damage number is about 1 to 100, so 

the mechanical strength of the material can not be ignored compared to the inertial effects. 

In the absence of a comprehensive mathematical model for high velocity penetration, 

phenomenological stages have been identified. The interface pressure history can be divided into 

four distinct regimes (Gehring et al. 1965). In the transient shock regime, at the instant of impact, 

spherical shock waves are formed. The pressure can be found from the Hugoniot relation as 

P = pusup, where us is the impact shock velocity, and up is the particle velocity.   During this 

phase, a momentum field is established in the target. The duration of this transient shock regime is 

the time required for the rarefaction waves generated at the free surface to relieve the high shock 

pressure. If the projectile is long enough, in the steady state regime the kinetic energy in the 

projectile is dissipated under steady state penetration. The penetration behavior is similar to fluid 

flow, and hence Bernoulli's relation can be used to predict the interfacial pressure as, P = jpuj;. 

In the cavitation phase, the momentum transferred from the projectile to the target causes the crater 

to expand under inertia until the energy density falls below the material resistance level. Finally in 
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the recovery regime, after momentum in the target has been dissipated, the crater dimension 

reduces due to elastic rebound. This rebound may produce tensile stresses that may cause 

spallation failure. The high temperature to which the crater material has been subjected, can cause 

recrystallization beneath the crater. 

Most of the penetration takes place in the steady-state regime under high-velocity impact of 

long rods, as has been observed in experiments and in numerical simulations. Thus, a great deal 

of attention has been focused on correctly modeling the mechanics of this regime. The widely used 

modified hydrodynamic models described below belong to this category. 

4.2      Rigid body penetration 

For low speed penetration of hard projectiles into relatively soft targets, the interaction 

stresses are not sufficient to deform the projectile which can be considered rigid. Historically, the 

resistive force in penetration of soft materials like sand and clay has been assumed to be a function 

of velocity. Work of Robins (1742), Euler (1750), Poncelet (1835) and Resal (1895) are 

noteworthy (see Johnson 1972). In Poncelet's equation the target resistance was taken to be of the 

form A + BV2, which in conjunction with Newton's second law yielded the depth of penetration. 

The constants A and B were of empirical nature and were determined from the experimental data. 

It was not until the middle of this century that Hill (1948) derived essentially the same equation 

based on sound theoretical principles. Derivation of Hill's equation (Eq. 2.52) was presented in 

Chapter 2, which was based on the analysis of expansion of a spherical cavity from zero radius in 

an incompressible target continuum. 

Goodier (1965) used the incompressible cavity expansion solution to predict the deep 

penetration of spherical steel projectiles into aluminum targets.   While adapting Hill's dynamic 

cavity expansion solution to the penetration problem, Goodier scaled the dynamic term by cos(9) 

as a simple representation of the fact that the dynamic term should fall off to zero at the edge of the 

projectile. As a result, the axial force on the nose of the rigid sphere is given by 

2Y 
1 + ln + P. 

2 dvz 2 -a—- + v, 
.3    dt 

(4.1) 
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Forrestal et al. (1995), on the other hand, argued that since the rigid projectile is in contact 

with the target material (found from posttest radiographs), the cavity expansion velocity, not the 

dynamic cavity pressure, should have a cosine variation so that the velocity is zero at the edge. 

Thus, for a long rod, the resistive force during penetration is given by 

1 + ln 
'2E 

,3Y 
(4.2) 

They then used a compressible cavity expansion model to show that compressibility cannot be 

ignored in modeling penetration of rigid long rods into aluminum targets. The agreement of their 

model with experimental data was very good. Forrestal et al. (1986, 1997) have also applied 

cavity expansion models to predict penetration into concrete and rock. Their results are in excellent 

agreement with experiments. 

It should be noted that dependence of target resistance on acceleration, if any (e.g., in RHS 

of Eq. 4.1), can be recast into an apparent mass and included in the force term. Thus, for 

incompressible materials, the penetration resistance is essentially of the form A + BV2. Cavity 

expansion analyses provide analytical expressions for the constants, A and B, that satisfactorily 

predict penetration by rigid projectiles (Forrestal et al. 1986,1988,1995). 

For eroding projectiles, however, the connection between cavity expansion analysis and 

linear penetration is not obvious, since the projectile is not rigid, nor is it in contact with the target 

except at the tip. It shall be shown in the following that cavity expansion analysis can form an 

integral part of the penetration equation for such cases as well. 

4.3      Eroding penetrator and modified hydrodynamic theory 

At high impact velocities, the stress generated at the penetrator-target interface is sufficient 

to yield both the target and projectile. At a slightly higher velocity, the penetrator starts to erode 

during penetration. Hohler and Stilp (1990) summarize theoretical models for eroding rod 

penetration. They observed that it is very difficult or probably impossible to develop a physical 

model of general validity. Thus, there exists no analytical solution based on fundamental 

mechanics that models the entire erosion regime correctly. Most treatments make use of the 

modified hydrodynamic theory, which is based on some physics and some intuition. If the impact 

velocity is high enough, the material strength terms can be ignored compared to the inertial term (in 
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the regime of Johnson's damage number of 100, the strength is only one percent of the inertial 

term). Drawing upon experience with shaped charge jet penetration, it was assumed that, to first 

order, the long rod projectile can be thought of as a liquid jet penetrating another liquid medium. 

Then assuming one dimensional (along the streamline) steady state incompressible flow, ensuing' 

Bernoulli's equation can be used to relate the stagnation pressures at the projectile-target interface 

as 

P = ipP(v-u)2=iptu
2 

2 2       , (4.3) 

where v and u are tail and tip velocities of the projectile respectively, pp is the density of the 

projectile, and pt is the density of the target. If the velocity at the tail and tip of the projectile are 

different, the projectile must shorten at the rate 

i = -(v-u), (4.4) 

where 1 is the current length of the projectile. Thus, integration of u dt from 1 = L to 0 yields the 

penetration depth, P which is given by 

(4.5) 

where L is the initial length. This equation predicts that the penetration depth is proportional to the 

initial length of the projectile, irrespective of the impact velocity. Experiments show that this is 

unrealistic. This fixed ratio may be obtained only as a limit for very high velocities, where the 

strength can be ignored compared to the hydrodynamic inertial term; thus this limit was termed the 

"hydrodynamic limit." 

In the 1960's, it was realized that for penetration of most structural materials by gun- 

launched projectiles, strength effects can not be ignored. Alekseevskii (1966) and Täte (1967, 

1969) independently suggested that strength terms be added to both sides of Eq. (4.3). Thus, 

Yp + -pp(v-u)2=-pTu2+Rt, (4.6) 
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where Yp is the dynamic strength term of the penetrator and R, is the strength of the target, should 

more accurately predict the penetration below the hydrodynamic limit. Initially, it was Tate's 

recommendation that R, be the cavity expansion pressure for the target as calculated from Bishop,' 

Hill and Mott's (1945) formula. Subsequently, in a recent paper, Täte (1986) used a solenoid 

model for incompressible fluid and derived a new estimate of R,, which was somewhat higher than 

the cavity expansion pressure. In fact the experimental values of R, lay between the above two 

values. Rosenberg et al. (1990) contended that cylindrical cavity expansion pressure can be used 

to estimate Rt. Anderson and Walker (1991) discuss various points of view associated with the 

estimation of Rt. The fact remains that in absence of an ab-initio approach, the static cavity 

expansion pressure gives a close estimation of Rt. Arguing that the penetrator is essentially 

decelerated by the dynamic strength, Y , Täte estimated the deceleration to be 

v = -^L (4.7) 
PP

1 

Thus, Eqs. (4.4), (4.6) and (4.7) can be integrated to obtain the penetration depth for given initial 

conditions. 

This simple model captures most of the trends observed in penetration experiments.   For 

u = 0, Eq. (4.6) indicates that there exists an impact velocity, v*, below which no penetration is 

possible. For u = v, the rod can be considered to be rigid, since from Eq. (4.4), 1 = 0, i.e. the 

penetrator does not erode. In this case, from Eq. (4.6), Yp must be greater than R, in order to 

achieve any penetration. For high enough impact velocity, this model indicates the existence of a 

hydrodynamic limit given by Eq. (4.5). The net result is, for cases where R, > Yp, an "s" shaped 

curve is obtained for the behavior of penetration to length ratio (P/L) with impact velocity, similar 

to experimental observations. Even though the experimentally observed trends are matched, for 

calculation of actual penetration, values of Yp and R, have to be varied with velocity. If suitable 

values of these constants are selected to match penetration at low velocity, penetration at high 

velocity is underpredicted. Later, Täte (1986) suggested that contributions from the initial transient 

phase and the final cavitation phase should be added to the steady state penetration to match the 

total penetration. However, this modification does not always give satisfactory agreement with 

experiments. 
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There have been several criticisms of Täte's approach (Wright 1981; Anderson and Walker 
1991). First of all, the model is based on the assumption that a one dimensional (along the 
streamline aligned with the centerline) steady state incompressible flow pertains and thus the 

ensuing Bernoulli's equation can be used. Integrating the linear momentum equation along the 

centerline (z-direction), (initially shown by Wright 1981) Anderson and Walker (1991) derived the 
following equation. 

-pp(v-u)2 + -azz(zp) + 2j^dz = iptu
2J-cJzt)-2j^dz (4.8) 

Here zp and zt are any two points on the centerline in the penetrator and the target, respectively, and 
r is the radial coordinate. Wright (1981) argued that even though the shear stress is zero along the 
centerline for normal penetration, its radial gradient is not zero. Thus to be able to reduce Eq. (4.8) 
to the Bernoulli's equation of the form given by Eq. (4.6), where Yp and R, are considered to be 
material constants, it must be demonstrated that the terms inside the curly brackets in Eq. (4.8) add 
up to constants. 

Secondly, the value of R, in Tate's equation is arbitrary. Even though the cavity expansion 
analysis gives a close enough estimation of R, (at least for low penetration velocities), no rigorous 
connection between them has been worked out. To match the experimental data, R, needs to be 
varied with velocity. Partom (1993) and Anderson et al. (1993) observed that R, has to be reduced 
drastically for high velocity penetration to match the experimental data. In Partom's formula for R, 
reduction, R, can even become negative at high velocities. Täte (1986) suggested that the apparent 
discrepancy between the experimental data and the steady-state model can be accounted for by 
taking into consideration the initial transient phase and the final after-flow (cavitation) effects. 
Even with such modifications, Täte was unable to match the penetration data at both low and high 
velocities. In fact, Tate's secondary penetration formula is a function of velocity raised to the 2/3 
power. Bless and Anderson (1993) pointed out that for long rods, the experiments clearly show 
that at high velocities, P/L ratios do not follow this afterflow trend described by Täte. 
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Thirdly, since the rod is in a one dimensional stress state, the coefficient of 1/2 appearing 

before the rod's inertia term seems to be appropriate. Since the target does not behave in a one 

dimensional fashion, but rather has a spherical quality associated with the stress behavior and the 

velocity distribution, the coefficient appearing in front of the target's inertial term should be' 

somewhat less than 1/2 to reflect the confinement effect. Thus far, it has been tacitly assumed that 

the three dimensional confinement effect can be taken into account by suitably modifying the R, 

value only. The possible confinement effect on the inertia term has not been considered. The 

velocity dependence of R, camouflages the confinement effect on the one dimensional inertial term. 

Evaluation of Täte's model results in an "s" shaped penetration curve which is somewhat different 

from the "s" shaped curve obtained experimentally. No matter how Yp and R, are varied, it is 

impossible to match the experimental "s" shaped curve at both the lower and upper ends with the 

same set of Yp and R,. This points to the conclusion that the confinement effect on the inertial term 

must be explicitly taken into account. 

Finally, the form of Bernoulli's equation used, applies only for incompressible flow. For 

high impact velocities, the pressure generated at the projectile-target interface can be very high 

(more than 10 GPa).   At such high pressures, compressibility effects may not be negligible. 

Figure 4.1 shows how the relative density (p/p0) changes with pressure for steel and tungsten. 

Two curves are plotted for each material: a linear hydrostat (for a constant bulk modulus) and the 

shock Hugoniot (the pressure-density relationship from plate-impact experiments, in which a 

shock is driven into the material). The shock equation and the constants used are from Asay and 

Shahinpoor (1993). It is seen that the density changes by more than 5% for pressures exceeding 

10 GPa for steel and for pressure exceeding 20 GPa for Tungsten. However, since the densities 

of both the penetrator and the target increase with pressure (and hence with penetration velocity), it 

is possible that the net effect on penetration might cancel. Further study is required to quantify the 

effect of compressibility. 
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Figure 4.1.   Pressure-density relation for Stainless Steel and Tungsten. 
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Other criticisms arise out of the steady-state assumption and use of elastic-perfectly plastic 

material behavior (Wright, 1983, 1988). However, numerical simulations and experimental 

evidence show that most of the high velocity penetration is in fact due to the steady-state phase. 

The analyses of the Taylor impact tests by Recht (1978) and Wilkins and Guinnan (1972) show 

that the work hardening effect in the typical armor materials at high strain rates is rather small. 

Bless (private communication) also points out similar experience with Hopkins pressure bar 

experiments. Cazamias and Bless (1997) conducted Taylor tests on armor steel and found that the 

strain rate effect on the flow stress can at best be logarithmic. They point out that logarithmic 

dependence of the flow stress would result in barely perceptible changes in penetration. 

In spite of the above limitations, Tate's approach appears to be a good baseline penetration 

model in the eroding rod regime, since it provides the correct trend with experimental data even 

though quantitative predictions are often unsatisfactory. 

4.4      Walker-Anderson model 

Recently, Walker and Anderson (1995) have developed a more fundamental approach to 

deriving a penetration model. Figure 4.2 shows the assumed penetrator and target response 

regions. zp and Zj locate the tail and the tip of the penetrator at all times, where the velocities are v 

and u, respectively. The penetrator has a plastic zone of size S that grows with time. The target 
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has a plastic zone surrounding the penetration cavity; this plastic zone bears a ratio, a, with the 

cavity radius, R. The target was considered to be semi-infinite. 

Plastic zone 

Penetrator 

Figure 4.2.   Response regions in the Walker-Anderson Model 

Using the axi-symmetry condition, they wrote the Eulerian momentum equation along the 
center-line (z-direction), as follows. 

9u,    1   3u2    3a, 
P^T + TP 3t     2   dz      dz 

— 2 
dx 

= 0 (4.9) 

Integrating the above equation from Zp to °o   with the assumption that density changes are 

sufficiently small, to justify the extraction of density terms from the integrals, they obtained, 

'du da. fZidu,, (""du,,      1/2      2\    1      2    nr°G„ ,      n pi   —^dz + p.    —■Mz + -pD(u
2-v2)--p.u -2    ——dz = 0 

3x 
(4.10) 

To evaluate the integrals in the above equation, velocity and stress distributions were 
required. They assumed the following velocity distribution for the penetrator. 

uz(z) = 
V —u 

u (Z-Zj) (Zi-S)<Z<Zi 
(4.11) 

z  <z<(zs-s) 
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The portion of the rod beyond the plastic zone, S, was considered to be elastic. The elastic wave 

(with a stress amplitude equal to Yp, the flow stress of the rod) that was generated at the instant of 

impact, bounces back and forth between the elastic-plastic front and the rear of the rod. Each 

reflection at the rear of the rod reduces the projectile velocity. Dividing the step change of velocity' 

associated with elastic wave reflection at the rear boundary by the transit time for each reflection, 

they derived the following equation for projectile deceleration. 

dv_        Yp 

dt       pp(l-s) 
,    v-u     s 
1 + + — 

c        c e e, 
(4.12) 

Here ce is the elastic bar wave speed for the rod. Furthermore, since the tail and the tip of the 

penetrator have different velocities, the erosion rate is given by 

i = -(v-u). (4.13) 

They considered the target material to be incompressible. Numerical simulations showed 

that the flow in the target material had a spherical quality associated with it. Consequently 

assuming incompressibility, they showed that the velocity in the flow region that best describes the 

numerical result is the curl of a velocity potential (whose divergence is zero to automatically satisfy 

the incompressibility condition) of the form 

Ä = f(r)sin(6)e4 , (4.14) 

where f(r) is a suitable function describing r-dependence. Taking the curl of this vector in 

spherical coordinates, one obtains the following expressions for radial and azimuthal velocities in 
the target: 

2f 
ur(r,8) = — cos(6), (4.15) 

u9(r,e) = -i^sin(0). (4.16) 
r   dr 

The function, f(r) was taken to be of the form 
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ur 

f(r) = - 
fT-i 

2(a2-l) 
(4.17) 

where a is the extent of plastic zone in the target. They further showed that for a perfectly plastic 

material having a velocity distribution derivable from a potential of the form given in Eq. (4.14), 
use of the von Mises yield criterion results in the following. 

aR-\ - 

f^dz = —-ln(a)Y. (4.18) 
{ 5x 6 

Y is the flow stress. Here the integration is performed along the center-line. This result is 

independent of the form of the function f(r). Inserting Eqs. (4.11), (4.12), (4.15) and (4.18) into 

Eq. (4.10), they obtained 

ppv(L-s) + u(pps + p,R—| + p^—jT + p,a^7F 

= ipp(v-u)!-{ip,u2-3ln(a)} 

Moreover, for incompressible materials, the condition that the derivative of the velocity 
normal to the contact surface is continuous gives an additional equation for s. These form a 

complete set of differential and algebraic equations that can be integrated for given initial 
conditions. They derived the initial value of u from shock equations. An equation for R is 
required, which they obtained from the experimental data for the given pair of penetrator and 

target. They plotted their result for constant values of a derived from spherical and cylindrical 

cavity expansion analyses. Recognizing that a constant a does not result in good agreement with 

the experimental data for different velocities, they used the compressible dynamic cylindrical cavity 

expansion solution to derive a velocity-dependent a. Using a heuristic expression for stiffening of 

bulk modulus with velocity, they obtained good agreement with experimental data. 
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The Walker-Anderson model is a more fundamental approach to a penetration model than 

the modified hydrodynamic theories discussed in the previous section. Many trends observed in 

experiments and numerical simulations were incorporated into this model. This time-dependent 

model captured the initial unsteady behavior in the penetration velocity. However, the solutions' 

showed that the bulk of the penetration is due to the steady-state. They showed that under certain 

restrictive conditions, Eq. (4.16) reduces to a Tate-like penetration equation. Additionally, their 

result for the integral of the shear stress gradient, Eq. (4.18) seems to be a fundamental solution 

and addresses one of the concerns of Wright (1981) regarding inclusion of such an integral in the 

momentum balance equation. 

There are a few limitations of this model. Firstly, the cavity radius, R, needs to be known 

a priori for the given pair of materials. This restricts the predictive capability of the model. 

Secondly, even though the integral of shear stress gradient was calculated for an incompressible 

condition, they had to use a heuristic compressible solution for a.  This seems inconsistent, since 

the solution of the form given by Eq. (4.18) may not be valid for compressible material. 

Additionally, the use of a cylindrical cavity expansion solution for a region having spherical quality 

for flow seems unreasonable. Use of a spherical. cavity expansion solution instead seems 

preferable. Thirdly, their assumed velocity distribution in the target was scaled in such a way that 

the radial velocity became zero at r = ocR, whereas for spherical symmetry, the velocity should 

drop of as 1 / r2 throughout the target. This scaling results in an unusual feature in the distribution 

of u9 as well. From Eqs. (4.16) and (4.17), Ug is given by, ue = usin(0)/(a2 -1).  This implies 

that at 0=rc/2, the target material flows back at the constant speed ue = u/(oc2 -1) throughout the 

plastic region, which extends for about 5 times the cavity radius (as5) at low speeds and for about 

2 times the cavity radius (ot=2) at high speeds. This behavior seems somewhat nonphysical. 

4.5      Eroding penetrator: A new approach based on cavity expansion theory 

Based on the results of the models for eroding rod penetration described above, a new 

approach is presented below. Figure 4.3 shows different response regions. 
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Figure 4.3.  Different zones in the target. 

The following assumptions are made: 

1. The state of stress in the penetrator is one-dimensional. 

2. The stress and velocity distributions in the target have spherical quality. 

3. In the target, there exists a small "damaged zone" surrounding the cavity (z = a to z = b) 

where material is extremely deformed. Extensive shear-flow is limited to this zone. The 

density in this region stays constant and is equal to the density (higher than the original 

density) at the damaged-plastic zone boundary, z = b. 

4. Response of the target material is elastic-perfectly plastic. The plastic and elastic regions 

are compressible with a linear compression behavior. 

Discussion of the assumptions: 

Since in the following analysis penetration by long rods with large aspect ratios are 

considered, assumption (1) seems reasonable. Numerical simulations by Walker and Anderson 

(1995) show that the stress and velocity distributions in the target have spherical qualities. Thus 

the assumption (2) seems reasonable too. 

Assumption (3) hypothesizes existence of a small "damaged zone" surrounding the 

penetration cavity. As the rod penetrates at high velocity, it erodes. The eroded rod material flows 

out of the path of the rod. This flow exerts a high shear stress on the wall of the cavity in the 

target. Additionally, the target material in the immediate vicinity of the interface experiences very 

128 



high pressure. As one proceeds from the elastic-plastic boundary towards the penetration cavity, 

the amount of plastic strain experienced by the target material increases. Plastic strain is mainly 

associated with dislocation motion, climbing of dislocations and twinning. During severe 

dislocation motion, if one dislocation stops at a micro-stress concentration such as micro defects or' 

grain boundaries, other dislocations pile up, creating a micro crack and thus debonding (Lemaitre 

1992). This process is called ductile damage evolution. The amount of ductile damage depends on 

the amount of plastic strain present. As the damage process continues, a critical stage is reached at 

which the material experiences an unstable state. Further shear deformation is possible only in a 

compression state, since under tensile conditions, void nucleation and linkup will cause macro- 

scale fracture and structural failure. Under compression conditions, upon attainment of some 

critical damage condition, localization phenomena may occur in the micro-scale, depending on the 

constitution of the material. Possible examples could be plastic instability resulting in extensive 

shear flow in the form of deformation bands or shear bands, change of phase due to very high 

pressure and temperature experienced, inter and intra-granular fracture and flow due to saturation 

of dislocation motion, recrystallization, etc. In a penetration situation, this would lead to a small 

process-zone in the target, in which the target material is severely strained and flows out of the way 

of the penetrator.  I denote this region as the "damaged region." 

Tham et al. (1980) observed such a small region below the crater in mild steel in high 

velocity impact tests (see Figure 4.4). In addition to gradation of grain size due to recrystallization, 

they found distinctly different behavior of hardness in the inner region (process-zone) and the outer 

zone. The hardness increased from the crater-wall in the direction of penetration in the inner 

region. At the boundary between the inner and outer regions, it dropped down suddenly and 

continued to decrease away from the boundary. Huang et al. (1996) found that near the 

penetration channel in RHA, severe micro-structural distortions existed in a region of size of about 

one penetrator radius. Of course, these observations are not conclusive, and further experimental 

studies are required to establish the existence of a process zone. Lemaitre (1992) suggested several 

testing methods to measure damage in ductile materials, such as micrography, micro-hardness 

testing, electrical resistance measurement, measurements of ultrasonic waves, etc. Such tests 

should help to characterize the damaged region. 
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Figure 4.4.  Sectioned target in Tham -et al.'s (1980) experiment 

If the energy associated with hydrostatic compression is neglected compared to the energy 

required for extensive microstructural distortion and deformation flow in the damaged region, the 

change in density should be negligible. This assumption enables us to use the shear gradient 

integral derived by Walker and Anderson (1995) for incompressible material. Additionally, since 

shearing is assumed to be restricted to this region, the surrounding region can be modeled by a 

compressible cavity expansion solution for which the shear stress in the inner boundary is assumed 

to be zero. 

By virtue of the fourth assumption, the dynamic cavity expansion solution of Forrestal and 

Luk (1988) for a compressible elastic-plastic material with a linear compression behavior can be 

utilized. 

4.5.1   Model for the rod 

Consider a long rod penetrator (with a high aspect ratio) penetrating a semi-infinite target. 

Let the impact velocity be high enough that the pressure existing at the penetrator/ target interface 

130 



exceeds the yield strength of both the projectile and target materials. Upon impact, an elastic and a 
plastic wave will propagate into both the rod and the target.  In the rod, the elastic wave will travel 

at the bar wave speed [= V(E/pp)].   If the material work hardens, the plastic wave speed is the 

square root of the ratio of tangent plastic modulus and the density. For metals, the plastic wave 
speed is more than one order of magnitude smaller than the elastic wave speed. Models of Taylor 

impact test (Zukas 1990) serve as useful guides in modeling the wave interaction in the rod. 
Wilkins and Guinan (1972) found that for typical metals, the extent of plastic zone for any impact 
velocity and any initial length of the rod is a fixed fraction (= 0.12) of the initial rod length. Even 
though there exists no mathematical explanation for this ratio, its existence points to the fact that the 
plastic zone front is stationary with respect to the stagnation point. Täte (1986) argues that during 
penetration, if the erosion rate is higher than the plastic wave speed, a shock will stand at the 

interface (i.e., s in the Walker-Anderson model is zero), while the rest of the rod is elastic. Thus, if 
one assumes that the stress that decelerates the elastic part of the rod is the yield strength, Y , 
application of Newton's second law yields 

dv       Yp 

dT-iJ- (4'20) 

Since the projectile has different velocities at its tip (u) and tail (v), it must erode at a rate 

i = -(v-u). (4.21) 

From the Walker-Anderson model, for s = 0, the stress at the penetrator-target interface is 
given by, 

a
z(

a) = --TPp1 + rPp(v-u)2, (4.22) 

where stress is taken to be positive in compression. From Eqs. (4.20) and (4.22), the axial stress 
at the interface is given by 

Gz(a) = Y+-pp(v-u)2. (4.23) 
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This equation can also be derived by attaching a moving coordinate system to the interface and 

integrating the linear momentum equation. 

4.5.2   Target model 

If the interaction stress is greater than the yield strength of the target material, the target will 

deform plastically. The flowing eroded rod material applies shear stress in the hoop direction to 

the cavity in the target, in addition to the radial stress induced by the interfacial pressure. The 

target material exhibits three distinct zones: an elastic zone spreading out at the longitudinal sound 

speed, followed by a plastic zone, where the material has yielded, propagating at a speed lower 

than bulk sound speed, and finally a zone of incompressible damaged material, in which shear- 

flow in the hoop direction is restricted. The damaged zone may be thought of as zone of extensive 

shear, in which the target material is pushed aside to create an instantaneous penetration cavity. 

This cavity is subsequently expanded by inertia and momentum of the failed rod and target 

materials to attain the final cavity size. There are a few models that attempt to calculate the cavity 

diameter (Täte 1986; Bless and Lee 1995; Scott 1984). Recently, Raftenberg (1994) presented 

experimental and numerical studies of holes formed by shaped charge jets. The present analysis is 

not concerned with predicting the cavity diameter, since this should be an outcome of a penetration 

model in association with either energy balance (Täte) or with dynamic equilibrium (Bless and 

Lee). In passing, it may be noted that at the velocities considered here ( 2 to 3 km/s), the cavity 

diameter in RHA steel is of the order of twice the tungsten penetrator diameter (Raftenberg and 

Kennedy, 1995). This could be due to the fact that the rod turns inside out during complete 

erosion. But if one recognizes the facts that: a) the eroded rod material can either travel forward or 

backward with respect to the interface, depending on the penetration velocity, and b) the 

momentum imparted to the wall of the penetration channel causes subsequent hole growth, this 

factor can be substantially different from 2. 

Following Walker and Anderson (1995), a velocity potential of the form given by 

Eq. (4.14) is assumed for the incompressible damaged zone. The resulting velocities are given by 

Eqs. (4.15) and (4.16). It was shown in the last section that Walker and Anderson's assumed 

function, f(r) resulted in unsatisfactory behavior of the target material velocities. To avoid these 

difficulties, I assume that the function f(r) has the following representation. 
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uR2 

f(r) = — (4.24) 
2r 

Substitution of Eq. (4.22) into Eqs. (4.16) and (4.17) result in the velocities, 

Ue = 0 and ur= u cos(6)(R/r)2. (4.25) 

This means that the material only flows in the radial direction and does not flow back. Viewed 

from a moving coordinate system attached to the interface, the target material flows sideways and 
backwards, as observed in numerical simulation of Batra and Wright (1986). Additionally, this 
radial velocity is consistent with Forrestal et al.'s (1995) velocity distribution for a rigid rod 

penetration model and satisfies the desired conditions that radial velocity should be maximum at the 
center line and should drop to zero at the edge. This velocity distribution is applicable in the 
incompressible damaged region and serves as the inner boundary condition for the compressible 
plastic region, which I shall model using compressible cavity expansion theory. 

Taking stresses positive in compression, the equation of motion along the center line can 
be written in Eulerian form as 

3a,   „ 3a, 
3z        3x 

3u,       3u 
+ 2^ = -p^ + uI-i. (4.26) 

at    z 8z 

The density in the damaged region is assumed to be constant at a level attained at the damaged- 
plastic zone interface, z = b.     Along the center line of penetration, the axial coordinate z is 

equivalent to the spherical coordinate r.  Integrating the above equation from a (r = R) to b (r = 

a,R), one obtains 

az(b)-az(a) + 2af^dz = -pb
af^ + ur|-]dr, (4.27) 

where pb is the density at the damaged-plastic interface, z = b. Walker and Anderson (1995) have 

shown that for a perfectly plastic material obeying the von Mises yield criteria with a velocity 
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distribution derivable from any potential of the form Eq. (4.14), the integral of the shear stress 
gradient in Eq. (4.27) takes the elegant form 

Gt.R 

^2.dz = ~ln(a,)Yt. dx 6 
(4.28) 

What is remarkable about this solution is that the result is independent of the function f(r) in Eq. 

(4.14) and depends only on the extent of the zone where the integration is carried out. Inserting 

the velocity distribution arising out of Eqs. (4.14) and (4.24) into the right hand side of Eq. 

(4.27), one obtains 

"fYdur        3urV     af(2uKR    2uR4Y 

1      2 =—u 
2 

o 1 4 

a,     a, 
(4.29) 

where the fact that R = u has been used.   Now, insertion of Eqs. (4.28) and (4.29) into Eq. 
(4.27) yields 

7 1 
oz(a) = az(b) + -ln(a,)Y + -pbu

2 3 + - 
a, a, 

(4.30) 

az(b) is the stress required to push the plastic front at the average velocity, ub = u/2a,2 (average of 

u cos(8)/a2 on a spherical surface), given by the assumed velocity distribution.  It was shown in 

Section 3.4.1.1 that taking this average velocity as the cavity expansion velocity implies that the 
work required for a given penetration is the same for linear penetration and spherical cavity 

expansion.   Forrestal and Luk (1988) have shown that for spherical symmetry, the cavity 

expansion pressure, cm, for an elastic-perfectly plastic material is a function of cavity expansion 

velocity and the material parameters, i.e., acav= o^^M) where M denotes the material constants. 

The equations required to derive this dynamic cavity expansion pressure were presented in Chapter 

2 (Eqs. 2.53 to 2.56). Since, a linear pressure-volume relation is assumed for the plastic region, 
the density at the damaged-plastic zone is given by 

134 



ft—ÖL- b     1-P/K 
P o 

l-(ar+2a9)|z=b/3K 

(4.31) 

lz=b 

Po 

l-(3oetf-2Yt)/3K' 

since cr-a6 = Yt. Here p0 is the initial density, P is the hydrostatic pressure at z = b, and K is the 

bulk modulus. 

Now since the axial stress must be continuous at the penetrator-target interface, z = a, from Eqs. 
(4.23) and (4.31) I obtain, 

Yp+ipp(v-u)2=Gcav(u/2a?) + ^ln(a1)Yt+- ^~ 
2rpV       '        cavV        "    3   *  " «    l-(3ow-2Y,)/3K[;V    <*. 

*      1       4 
3 + —  (4.32) 

Solution of Eqs. (4.17), (4.18) and (4.32) along with the cavity expansion solution 
contained in Eqs. (2.53) through (2.56) results in the depth of penetration for given initial 

conditions and a given value for a,. To give a physical interpretation to a,, it can be related to the 

strain at a,R. From Eqs. (2.20) and (2.22), a, can be related to the radial strain at r = a,R, 

defined as eal, as follows: 

a,=[l-e(-3e°'/2)]"3. (4.33) 

For eal= 0.2 and 0.3, evaluating Eq. (4.33) one obtains a, = 1.57 and 1.4, respectively. These 

strain values are typical failure strains for armor materials obtained from one-dimensional 

compression tests (Recht 1978).     For these values of a, the damaged region is about one 

penetrator radius deep since the cavity radius, R, is about twice the penetrator radius. Thus £al 

may be used to denote the critical damage strain, since it defines the extent of the damaged region. 
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In Figure 4.5, the equivalent R, term in Eq. (4.29) (equivalent R, is the RHS of Eq. (4.30) 

minus p0u
2/2) is plotted for two cases: (a) ub = u/oc,2 (cavity expansion velocity = centerline 

velocity of damaged/ plastic zone interface) and (b) ub = wl2ax
2 (cavity expansion velocity =, 

average velocity of damaged/ plastic zone interface). The critical damage strain, eal is taken to be 

0.2. In the same figure, Partom's (1993) velocity-dependent R, that matches Silsby's (1989) 

experimental data, is also plotted. Partom's formula, which was based on impact velocity, was 

modified by using Eq. (4.6) to make it a function of penetration velocity, u.   Case (a) is strictly 

true along the center-line, where ub = u/oc,2. Radial confinement effect on the inertial term has not 

been accounted for. As a result, this case yields a nearly constant Rt, as assumed in Tate's one 

dimensional modified Bernoulli's equation. Case (b) shows a close match with Partom's formula 

and thus with experimental data. Thus it appears that the analysis described in this chapter is able 

to model the inertial effects in the target correctly. 

Case - (a) 

Case - (b) 

Penetration   velocity,   u,   m/s 

Figure 4.5.    Comparison  of equivalent   Rt predicted   from  the  penetration   theory  with 
observed trend based on experiments. 

4.5.3   Comparison with experiments 

I now proceed to compare the prediction from the above penetration analysis based on 

cavity expansion theory, with the experimental data of various researchers. In evaluating 

Eqs. (4.17) and (4.32), the dynamic flow stress of the materials needs to be established.  Recht's 
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(1978) formula shall be used to determine these terms for high strain rate conditions. He plotted 

the dynamic yield strength data for several metals versus their Brinnel Hardness Number for 

experiments at a strain rate of about 1000/s and for 4340 steel at strain rates varying from 500/s to 

10,000/s .  By curve fitting, he found that the following correlation represents the dynamic yield' 

strength, adyn, accurately enough. 

adyn = 3.92 x BHN + 4.55 x BHN x ep (4.34) 

Here £p is the plastic strain and BHN is the Brinnel Hardness Number. Eq. (4.34) can be used to 

evaluate the dynamic yield strength of the target and projectile material for a given E^.   Recht'S 

results showed that hard metals like 4340 steel typically failed at a strain of about 0.2. This value 

of strain is used in the following examples to calculate the dynamic flow stress of steels. A strain 

value of 0.1 is assumed for tungsten. 

In Figure 4.6, Hohler and Stilp's (1992) experimental data are compared with the 

predictions from the penetration theory. The experiments were performed using L/D = 10 

tungsten penetrators and St52 steel targets. The BHN for the penetrator and target materials were 

294 and 180, respectively. The theoretical curve for eal = 0.3 for the target material matches the 

experimental data reasonably well. Since softer material are tougher and more ductile, strain at 

failure should be higher compared to the harder materials (0.2 for 4340 steel with BHN-250). 

Thus the optimum value for eal follows the reasonable trend of increasing with decreasing 

hardness. 
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Figure 4.6.   Comparison between penetration theory and experimental data for St52 from 
Holder and StUp (1992). 

In Figure 4.7, the theoretical curves are plotted along with data from Silsby (1984) and 

Hohler and Stilp (1992) for penetration by tungsten alloy (BHN-352) into hard steel (BHN-230- 

300).  For steel, BHN = 250 is used. As expected, a lower eal = 0.2 compared to that for the 

softer steel in the previous example agrees with the experimental data. 

Finally the predictions from the theory are compared with the experimental data from the 

IAT (Institute for Advanced Technology) data base (Bless 1997) for long rods (L/D-20 to 30). 

This comparison is of greater significance, since for high L/D ratios, the end effects should be 

minimal.  In the calculations, target hardness of 250 BHN and projectile hardness of 350 BHN 

were used. As seen in Figure 4.8, the theoretical curves with £al = 0.2 and £al = 0.3 reasonably 

agree with the wide variety of experimental data.  Considering the experimental scatter of the data 

(due to the variation in BHN of target and projectile materials), the agreement is rather good. 
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Figure 4.7.   Comparison between penetration theory and data from Silsby (1984) and Hohler 
and Stilp (1992). 
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Figure 4.8.  Comparison between penetration theory with IAT's long rod data base. 

The examples cited above indicate that penetration continues to increase with velocity and 

has not reached "hydrodynamic limit," as suggested by the existing models. This is due to the fact 

that the inertial term in the RHS of Eq. (4.32) does not have a velocity squared dependence. The 

suggested theory agrees reasonably with a wide variety of experimental data both at the low and 
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high velocity regimes.    This is achieved at the expense of introducing a new parameter, (Xj 

(equivalently eal). Reasonable values for eal, those comparable to the failure strains in one- 

dimensional compression tests, are used. At the low velocity end, the result is not very sensitive to 

£al. At higher velocities, where high levels of stresses are prevalent, the values of £al used indicate 

acceptable sizes for the damaged region.   Furthermore, a constant value for a, is used for all 

velocities. It is likely that critical damage strain, eal, will change with impact velocity due to effects 

of high compressive hydrostatic pressure. The trends observed in the above examples support a 

variation in eal. 
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Chapter 5: Summary, Conclusions, and 

Future Work 

5.1      Summary of work completed 

The historical and theoretical backgrounds of cavity expansion analyses as a means to 

model projectile penetrations have been thoroughly reviewed. In the last few decades, solutions 

have become available for elastic plastic targets and simple brittle materials penetrated by rigid 

projectiles. However, the steps to model more realistic material behavior, consistent with 

contemporary understanding, as well as the consequences of projectile erosion, were yet to be 

made. These considerations provided a motivation and a framework for the current work. 

Phenomenology of "classical" cavity expansion was experimentally examined by quasi- 

static punch tests on PMMA. A cavity expansion solution was worked out using published 

theories, and it was found that using a single value for the friction coefficient, the experimental data 

for spherical and conical punches were accurately predicted both before and after the embedment of 

the tip. The measured size of the plastic zone was reasonably predicted by the cavity expansion 

solution. Thus confidence was established in traditional solutions for plastic targets. 

Conventional elastic-plastic solutions were extended to quantitatively determine the effects 

of a finite boundary on the penetration resistance of metallic targets. The solution successfully 

explained the experimentally observed degradation of the penetration resistance in small samples. 

Cavity expansion analysis for metals was extended to include a new brittle behavior not 

previously considered—cracking due to tensile strain. Titanium, an important current target 

material, exhibited this behavior. Experiments conducted at IAT were modeled. The size of the 

cracked region and the penetration resistance value were well explained by the theory. 

In recent years, new ideas have emerged about the nature of the failed region during 

penetration of brittle materials. Based on these concepts, the quasi-static cavity expansion problem 

for brittie materials was solved for both spherical and cylindrical symmetries, assuming a Mohr- 

Coulomb-type failure behavior. Material parameters, evaluated by other researchers from different 

experiments, were used.  Excellent agreement was found between the spherical cavity expansion 
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solution and experimental values of penetration resistance. A low value of cylindrical cavity 

expansion pressure relative to that for spherical cavity expansion pressure indicates that plane strain 

penetrators should be superior to long rod penetrators. 

The dynamic cavity expansion problem with spherical symmetry was solved using two 

different methods. The solution using elastic wave propagation theory yielded trends in the 

penetration resistance of AD995 alumina that are in agreement with experiments. Effects of shear 

saturation in the failed material was studied using a self similarity transformation. This solution 

agreed and showed correct trends with the experimental data. The dynamic solution showed that 

the penetration resistance (Täte resistance) of AD995 alumina ceramic remains at a nearly constant 

level (equal to static cavity expansion pressure) until a penetration velocity of 2.5 km/s. 

Cavity expansion analysis was also employed to model the effects of finite boundaries of 

ceramic tiles in ceramic/ metal layered targets. Superior agreement was obtained with experimental 

data compared to that obtained by the traditional approach of using a constant resistance value. 

A new model for linear penetration of metal targets was hypothesized, that relates spherical 

cavity expansion pressure to the pressure on the projectile nose. For tenable values of the failure 

strain, excellent agreement was achieved for a variety of experimental data sets for both low speed 

and high speed penetrations. This model showed superior prediction of penetration depth 

compared to existing penetration models. 

5.2      Conclusions 

A single value of friction coefficient results in excellent agreement between experimental 

data and theoretical predictions for spherical and conical punches and before and after the 

embedment of the tip. Thus punch tests can be used to determine the friction coefficient. Spherical 

cavity expansion pressure gives a good approximation for the penetration resistance of both 

metallic and ceramic target materials. This agreement is better than for cylindrical cavity expansion 

pressure. For finite targets, whether metal or ceramic, penetration resistance decreases with 

decreasing thickness. It follows that when evaluating ceramics in a DOP configuration, thickness 

of the ceramic tile and the metallic substrate must be taken into account. 

The analysis of brittle materials reveals the parameters that are most important for achieving 

high penetration resistance. They are the one-dimensional compressive strength, Young's 

modulus and the slope of pressure-shear coefficient of the failed material.   The shape of the 
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pressure-dependent shear behavior of the fracture curve does not appear to influence the 

penetration resistance of ceramics. Thus, the confined compressive strength (i.e., Hugoniot elastic 

limit) is not directly relevant to penetration resistance. The dynamic cavity expansion analyses 

showed that the penetration resistance of ceramic targets (Täte resistance) remains at nearly ä 

constant value (compared to metals, whose penetration resistance strongly decreases with velocity) 

equal to the static spherical cavity expansion pressure until a penetration velocity of 2.5 km/s. 

Thus ceramics should be effective material for armor applications to counter hypervelocity 

projectiles. 

The predictions from the new hypothesized penetration model for ductile materials yield 

excellent agreement with several sets of data at all velocities. However, the hypothesis needs 

experimental verification. This model indicates that the penetration depth always increases with 

velocity; thus the existence of the "hydrodynamic limit" in penetration of ductile materials, as 

postulated by conventional theory, will not exist. 

5.3      Suggested future work 

The behavior of failed ceramic is the subject of current research. A limited number of 

experiments exist, which indicate that above the HEL, the shear strength of the failed ceramic is 

constant. However, interpretation of these results is problematic, because it is unlikely that the 

material behind the shock is fully comminuted. Thus, a few representative values for the saturated 

shear strength of the failed material were considered for AljOj ceramic. Plate impact and bar 

impact experiments on failed ceramics would establish the level of saturated shear strength. 

The cavity expansion analysis needs to be extended for finite ceramic tiles backed by a 

finite metal substrate to determine the utility of evaluating different ceramic materials in DOP 

configuration. The minimum thickness of the metallic substrate required to make it behave as an 

infinite medium should depend on the overlying ceramic and the impact velocity. This analysis 

would enable one to better interpret DOP tests and predict armor performance. Additionally, 

presence of the low impedance bonding agent between the laminates must be considered to explain 

the experimentally observed degradation of penetration resistance of thick ceramic tiles. The 

penetration resistance degradation model for finite targets can be used to describe behind-the-armor 

characteristics for the break-out situation. Before this can be achieved, a model is required for 

capturing the modes of break-out, i.e., shearing, plugging etc. 
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The cavity expansion analysis presented in this dissertation may be extended to include 

layered brittle materials and functionally graded materials. Another interesting extension of this 

analysis would be to model the phenomena of "interface defeat," in which the projectile is defeated 

at the ceramic/metal interface under suitable test configuration. 

The hypothesis that the material surrounding the penetration cavity in the metallic target is 

incompressible and that extensive shear flow is restricted to this region needs experimental 

verification. The post-test target material should be sectioned and the micro-structure surrounding 

the penetration cavity must be studied. If this hypothesis is true, one must observe a damaged 

region of extensive straining and fluid-like flow is manifested by the presence of extruded parallel 

thin layers (probably a few grains thick). The surrounding compressible plastic region should 

demonstrate only plastic deformation, primarily within the grains themselves. The demarcation of 

extreme deformation by inter-granular flow and the plastic-deformation inside the grains should 

define the extent of the failed region. The change in density can be investigated by electrical 

resistance measurement and measurements of ultrasonic wave propagation. 
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