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A FUZZY LOGIC MULTISENSOR ASSOCIATION ALGORITHM: 
THEORY AND SIMULATION 

1. INTRODUCTION 

The problem considered in this report is how to associate Electronic Support Measures (ESM) 
signals with one or more of m possible radar tracks. An algorithm based on fuzzy set theory has been 
developed to solve this problem. It considers the complexities offered by having multiple radar tracks 
and unequal numbers of measurements. It is capable of making its own estimate from ESM data of 
bearing and, as such, provides additional measures of association unlike the Trunk-Wilson (TW) 
Bayesian theory [1] with which it is compared. It can estimate the number of targets present in the 
data and use fuzzy set theoretic techniques to suppress outliers. The fuzzy grades of membership pro- 
vide opportunities for incorporation of heuristic rule sets and extension to probability theory. The 
fuzzy cluster centers represent reduced noise estimates of the measured quantities. Finally, in com- 
parison to an existing Bayesian algorithm, the fuzzy association algorithm exhibits superior perform- 
ance. 

In Section 2, the concepts of fuzzy set theory, hard and fuzzy clustering, defuzzification, and su- 
perclustering are introduced. Section 3 introduces the TW algorithm, an established algorithm with 
which the fuzzy algorithm will be compared. Section 4 discusses how, in a recursive algorithm, the 
process of estimating the number of targets present in the data through superclustering can be im- 
proved by introducing a priori information. Section 5 discusses fuzzy clustering results for simulated 
data and examines the performance of the fuzzy clustering and superclustering algorithms. Section 6 
demonstrates the ability of the fuzzy association algorithm to deal with both noisy ESM and noisy 
radar. Section 7 discusses research and development related to the algorithm that will be carried out 
in the near future. Finally, Section 8 provides conclusions. 

2. FUZZY SETS, CLUSTERING, DEFUZZIFICATION, AND SUPERCLUSTERING 

The development of the fuzzy association algorithm requires the concepts of the fuzzy set, clus- 
tering, fuzzy clustering, defuzzification, and superclustering. These concepts are developed in the 
following subsections. 

2.1 Fuzzy Set Theory 

This section provides a basic introduction to the ideas of fuzzy set theory, which allows an object 
to have partial membership in more than one set. It does this through the introduction of a function 
known as the membership function, which maps from the complete set of objects X into a set known 
as membership space. More formally, the definition of a fuzzy set [2] is the following: 

Manuscript approved September 4, 1997. 
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If X is a collection of objects denoted generically by x, then a fuzzy set A in X is a set of ordered 
pairs: 

A = {(x,\iA(x))\xeX}. 

\iA(x) is called the membership function or grade of membership (also degree of compatibility or de- 
gree of truth) of x in A, which maps X to the membership space M. (When M contains only the two 
points 0 and 1, A is nonfuzzy, and \iA(x) is identical to the characteristic function of a nonfuzzy set.) 
The range of the membership function is a subset of the non-negative real numbers whose supremum 
is finite. Elements with a zero degree of membership are normally not listed. 

2.2 Fuzzy Clustering 

Fundamental to the development of the fuzzy association algorithm is the concept of clustering. 
Clustering is an operation that allows data to be grouped into classes defined by a similarity measure. 
By definition [3], given K objects, the algorithm forms N clusters such that, with respect to the simi- 
larity measure, the members of each cluster have a greater similarity to each other than to the mem- 
bers of any other cluster. 

The kind of clustering used for association is known as fuzzy clustering. A batch version of the 
algorithm appears in Ref. 4. There are many kinds of clustering. If each point is assigned 100% to a 
particular cluster, the algorithm is referred to as a hard-clustering algorithm. Fuzzy clustering differs 
from hard clustering in that each data point can have partial assignment in each cluster. The grade of 
membership previously defined under the concept of a fuzzy set gives the degree of membership of 
each point in each cluster. 

In the development of the fuzzy association algorithm, clustering will play a significant role. The 
grades of membership will be established by minimizing a functional. This functional can be found in 
many places in the literature of fuzzy sets and fuzzy clustering [5,6]. It is defined below after some 
preliminary notation is established. 

Let X be any finite set; Vcn is the set of real c x n matrices; c is an integer with 2 < c < n, and n 
is the number of data points. The fuzzy c-partition space for X is the set 

Mfc = \ue Vcn\uik e[0,1]VU;iuik = 1V£;0< iuik <«Vii 
I i=l k=l J 

Row i of a matrix U e Mfc exhibits (values of) the ith membership function (or rth fuzzy subset) C/,in 
the fuzzy c-partition U of X. Stated less formally, utj is the grade of membership of data point j in 
fuzzy cluster i. 

Definition: Let Jm : Mfc x Rcp -» R+, 

Jm(U,v)= £  i(uik)
m(dik)

2, 
fc=li=l 
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where Rcp is the collection of possible p-dimensional vectors with real elements taken c at a time and 
R   is the real interval [0,°°); 

UeMfc 

is a fuzzy c-partition of X; 

v = (Vl,v2,...,vc)eRcp withv,-e/?p 

is the cluster center or prototype of «,, 1 < i < c; 

(dik)
2=\\xk-Vif     and||.« 

is any inner product induced norm on Rp, and weighting exponent m e [1,°°). Since each term of Jm 

is proportional to (d^) , Jm is a square-error clustering criteria. The solution of the fuzzy clustering 
problem consists of minimizing Jm as a function of U and v subject to the constraints imposed in the 
definition of Mfc. Stated more formally, solutions of 

min  {Jm(U,v)\ 

are least-square error stationary points of Jm. 

The value of m used for the simulations in Sections 5 and 6 is m = 2. The significance of the 
m parameter is more fully discussed in Ref. 6. 

The goal of the fuzzy clustering algorithm is to determine fuzzy cluster centers v,- that represent 
the average value of the quantities in the fuzzy clusters, and the grade of membership of the Mi data 
point in the ith fuzzy cluster for all data points-fc and clusters-/. The algorithm determines these quan- 
tities by minimizing a least-square cost function where each term is weighted by a power of the grade 
of membership. Each term of the cost function simultaneously measures the distance of the data point 
from a cluster center and is weighted by the point's membership in that cluster. The minimization is 
conducted subject to the constraints that the sum of the grades of membership over clusters for a par- 
ticular data point must equal unity, and for each cluster, the sum of grades of membership over data 
points must be bound between one and the maximum number of data points. 

The fuzzy clustering algorithm requires input data to be clustered, the number of anticipated 
clusters, and an estimate of the grades of membership or the fuzzy cluster centers. The output will 
consists of: 

• high quality estimates of the grades of membership, these quantities providing a measure of confi- 
dence of how well the data are clustered and a means of making an optimal data-point cluster as- 
signment. This is especially useful if a data point falls on the boundary between clusters, and 

• the fuzzy cluster centers, which will represent reduced noise values of the measured quantities. 
Cluster centers are also useful for conveying the position of the cluster. 
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For many applications, it is necessary to extract from the clustering algorithm a nonfuzzy, i.e., 
crisp statement of the assignment of each point. The process of taking fuzzy results and extracting 
definite, i.e., crisp data point-cluster assignment is known as defuzzification. 

The current approach to defuzzification consists of making a definite data point assignment to that 
cluster for which the data point has the largest grade of membership. If it should occur that a data 
point has equal grades of membership for more than one cluster, the point, in the simplest form of 
defuzzification, is assigned to the first cluster that is encountered. A potentially better approach is 
discussed in Section 4. 

2.3 Determination of the Fuzzy Grades of Membership and Fuzzy Cluster Centers 

The cost function Jm is minimized over Mfc x Rcp by using Lagrange multipliers and taking de- 
rivatives. This gives rise to a coupled iterative system of equations. The fuzzy partition matrix and 
fuzzy cluster centers are iteratively changed until the norm of the change in the fuzzy partition matrix 
is less than a preset value. When this convergence criterion is applied to the values of the fuzzy par- 
tition matrix, the coupled system and the convergence criterion are referred to as the Picard algo- 
rithm. The Picard algorithm is guaranteed to converge to a local minimum; this particular type of 
fuzzy clustering is referred to as a c-means algorithm [5]. 

The system of equations resulting from the minimization represents a coupling between the fuzzy 
cluster centers and the fuzzy partition matrix. An initial estimate of either quantity is all that is re- 
quired to initialize the iteration process. Thus, an initial estimate of the fuzzy cluster center by one 
class of sensors can be used to cluster data measured by another sensor system. The algorithm can be 
made recursive by using previous estimates of cluster centers and/or cluster center estimates derived 
from other sensors. 

Another procedure for initializing the iterative process is to initially estimate the fuzzy partition 
matrix, i.e., the grades of membership, using some other clustering algorithm. Since the Picard algo- 
rithm is guaranteed to converge to a local minimum, if the fuzzy clustering algorithm is initialized 
using a good but not perfect clustering algorithm, it can frequently improve clustering results because 
of its ability to deal with ambiguous data-point cluster assignments. 

2.4 Superclustering 

Clustering algorithms, including the fuzzy clustering algorithm, generally require a specification 
of the final number of clusters. If the data being clustered represent ships, aircraft, missiles, etc., this 
implies a priori knowledge of the number of targets. Obviously, in general, the number of targets will 
not be known before processing. So it is desirable to develop a technique for determining from the 
data the appropriate number of clusters, i.e., the number of targets. Such a technique, known as 
superclustering, has been developed that provides a solution to this problem. The superclustering 
techniques developed here are related to and represent an extension of techniques in fuzzy cluster va- 
lidity theory [5]. 

The method of superclustering is described as follows: given an upper bound on the number of 
clusters, this bound is supplied to the fuzzy clustering algorithm. This algorithm produces this number 
of clusters for the data with associated grades of membership for each data point in each cluster. The 
fuzzy clustering algorithm also provides the coordinates of the fuzzy cluster centers. Intuitively, clus- 
ters should be separated, nonoverlapping, and not extremely close to each other with respect to some 
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measure. It then becomes essential to define a measure of "closeness" and provide a criterion for 
what "too close" means. 

An obvious candidate for a measure of closeness of two clusters is the separation of the cluster 
centers. The cluster centers do not tell the whole story. The data points may be distributed close to 
the cluster center or they may be a significant, absolute distance from it. Also, when dealing with 
fuzzy clustering (before defuzzification), the points generally do not belong 100% to any cluster. In 
an effort to provide a unitless measure of closeness and incorporate the concept of vagueness inherent 
in fuzzy algorithms, the distance between fuzzy cluster centers should be normalized by some func- 
tion of the grades of membership. Incorporation of the grades of membership, i.e., superclustering 
before defuzzification, has the advantage of potentially better cluster assignments for points that fall 
on the boundary between clusters. 

One such normalized measure of cluster center separation is the c-matrix, defined below. Let v(i) 
and v(j) be the position vectors for the fuzzy cluster centers for cluster i and cluster j, respectively, 
and N the number of data points. Then the ith - yth element of the c-matrix is 

c(i,j) =11 v(Z) - v(;) II / max(std(i),std(j)), (1) 

where 

std(k) =    Xu(i,k)m *(JC(0 - mean(k))2/iu(i,k)m , (2) 
j=l 

and 
(N ___ \  IN 

mean(k) = Zu(i,k)m * x(i) X"(ur. 0) 

Equations (2) and (3) define the fuzzy standard deviation and the fuzzy mean, respectively. 

The c-matrix capitalizes on the intuitive idea that cluster centers should be separated by a certain 
number of fuzzy standard deviations. If cluster centers are closer than this, they probably correspond 
to the same cluster. If it is determined that two or more clusters should be merged into a single clus- 
ter, the resulting grouping will be referred to as a super cluster. A criterion must be established to 
determine when supercluster formation is warranted. A simple criterion consists of defining a thresh- 
old x such that if c(ij) < x, then clusters i and j are merged into a supercluster. A method of select- 
ing the value of x is discussed below. 

A simple criterion for selecting the value of x would be to first consider the elements of each 
cluster as points randomly distributed around some mean value. If the data have a Gaussian distribu- 
tion, then 98% of the points are within three standard deviations of the mean. So a value of x = 3 is 
selected. 

After c-matrix formation and establishing the threshold, the next step involved in superclustering 
is determining exactly how to form superclusters, i.e., when there is more than one choice based on 
what has been developed up to now, what is the best supercluster formation scheme. Accordingly, 
four different procedures for supercluster formation have been examined [4]. 

Superclustering is conducted as follows: first fuzzy clustering is carried out followed by c-matrix 
formation. All the fuzzy cluster centers that are within threshold of fuzzy cluster center one fall into 
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the first supercluster. Those that are within threshold of fuzzy cluster center two fall into the second 
supercluster and so on. This allows determination of the number of superclusters—hence, targets. 
New fuzzy cluster centers and grades of membership are calculated corresponding to the determined 
number of superclusters using the fuzzy clustering algorithm described above. In Ref. 4, this algo- 
rithm is compared to several other more sophisticated superclustering schemes and found to be ac- 
ceptable except under conditions of very poor data. 

3. THE TRUNK-WILSON (TW) ALGORITHM 

The TW algorithm assumes there are K ESM tracks, each specified by a different number of 
ESM measurements. These ESM measurements will be associated with either no radar track or one of 
m radar tracks, each radar track having a different number of measurements. The association of ESM 
tracks with radar tracks using the multiple hypothesis testing technique is as follows: 

HQ: ESM measurements are associated with no radar track; 
Hj: ESM measurements are associated with the first radar track; 

HJ: ESM measurements are associated with the yth radar track; 

Hm: ESM measurements are associated with the /nth radar track. 

The Bayesian procedure, which minimizes the probability of error, is to select the hypothesis 
having the largest a posteriori probability. It is assumed that the ESM measurement errors are inde- 
pendent and Gaussian distributed with zero mean and constant variance a . If the a priori probabilities 
are equal, the minimum error decision rule selects the target j based on the statistical distance <tf- for 
which dj is minimized and given by 

K 

dj = l    [eeUi)-*j(tiJ\2'02 7 = 1,...,«, (4) 

where {Be(ty, 1 < i < Kj) is a set of Kj ESM bearing measurements, and 9,(f,) is the true bearing to 
target j at the time of the ith ESM measurement. The minimized statistical distance d:min has a chi- 
square density with Kj degrees of freedom. Consequently, the desired a posteriori probability P- is 
given by 

oo 

Pj=\%2{t)dt, (5) 

2 
where % (f) is the chi-square density function. The TW algorithm selects the association that has the 
largest probability, P^^ where 

Pnm=max{Pj \j = l,...m}. 
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The TW algorithm also uses the next largest probability Pnext and four decision theoretic quanti- 
ties obtained by Trunk and Wilson. Three of the quantities are the high (TH), middle (TM), and low 
(Tj) probability thresholds. The fourth quantity is the probability margin (R). The corresponding deci- 
sion rules are: 

(1) firm correlation, Pmax > TH and, Pmax > Pmxt + R, the ESM signal goes with the radar track 
having largest P} (i.e., Pmax), 

(2) tentative correlation, TH > Pmax > TM and Pmax > Pnext + R, ESM signal probably goes with 
radar track having largest Pj (i.e., Pmax), 

(3) tentative correlation with some track, PM > TM but Pmax < Pnext + R, ESM signal probably 
goes with some radar tracks (but the algorithm cannot determine which), 

(4) tentatively uncorrelated, TM > Pmax > TL, ESM signal probably does not go with any radar 
track, and 

(5) firmly uncorrelated, TL > P^, ESM signal does not go with any radar track. 

The threshold TH is set equal to PFA defined as the probability of falsely associating a radar track 
with an ESM signal when the ESM signal does not belong with the radar track. The threshold TH is a 
function of the azimuthal difference, denoted by ji, between the true (ESM) position and the radar 
track under consideration. The threshold TH was determined for two values u. =1.0a and 1.5a by 
Trunk and Wilson using simulation techniques. Also, the threshold TM was determined using the 
simulation previously used to determine TH for the same two values of u., 1.0a and 1.5a. The thresh- 
old TL is defined as a rejection rate of PR. In this report, ^i = 1.5a is used, and the threshold 7} is 
set equal to 0.001. 

The probability margin R is determined by specifying a probability of an association error P ac- 
cording to the following equation 

Pe = PR {Prnax^ ^next +*}, 

where Pmax corresponds to an incorrect association, and Pnext corresponds to the correct association. 
The probability margin R is a function of Pe and the separation |i of the radar tracks. The values of R 
were determined by Trunk and Wilson for Pe = 0.01 by simulation techniques. 

4. PROBABILITY AUGMENTED SUPERCLUSTERING 

In many cases, superclustering alone can determine the number of targets exactly or within one 
target if there are enough data [4]. In a recursive algorithm, data are arriving from one moment to the 
next. The amount of data required to make a correct decision as to the number of targets can be re- 
duced by adding in a priori information, e.g., noise statistics. By calculating the probability that the 
data are associated with each cluster center, cluster centers with a probability of association much less 
than the maximum can be neglected. The rejection threshold that has been found to be useful is 20% 
of the maximum probability. This procedure is referred to as probability augmented superclustering 
and has been found to be quite effective (Section 5). 
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5. APPLICATION OF THE FUZZY ASSOCIATION ALGORITHM TO SIMULATED DATA 
AND COMPARISON TO THE TW ALGORITHM 

5.1 Bearing Estimation and Superclustering 

This section demonstrates the fuzzy algorithm's ability to estimate parameters and determine the 
number of targets present in the simulated ESM data. The ESM bearing data were simulated for a 
single target moving with constant bearing of 0° with zero mean, 1° standard deviation Gaussian noise 
added. 

Figure 1 is a plot of the fuzzy estimates of bearing in degrees versus the number of data points 
for a simulated target having constant bearing of 0°. The algorithm is initialized using the radar esti- 
mates given in Table 1 for Example 1. The algorithm is not very sensitive to initialization, thus Figs. 
1 and 2 are similar if the radar estimates in Examples 1 through 4 are used. The absolute fuzzy 
bearing estimate is always less than 0.12°; for more than four data points, it is always less than 
0.07°. The fuzzy association algorithm is initialized using radar estimates. The fuzzy algorithm con- 
verges rapidly and, as such, the bearing estimate curves look similar, independent of initialization. 
Due to the similarity of the figures, only one will be displayed to save space. 

In this example, the fuzzy algorithm estimates the value of bearing with an error of no more than 
0.12°, even with only two data points. The error falls off rapidly with additional data points. As the 
number of data points approaches 50, the error approaches zero, as expected. 

5 10 15 20 25 30 35 40 45 50 
No. of Data Points 

Fig. 1 - Fuzzy bearing estimate in degrees vs number of data points. Truth = 0° and one target. 
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Table 1 - Radar Measurements 

Radar Simu ation Cases 
Example a b c 

1 0° 1° -1° 
2 2° 1° -1° 
3 0° 2° -2° 
4 4° 2° -2° 

No. of TARGETS 

One Target  =' 

Two Targets =o 

Three Targets=+ 

Four Targets = 

(a) 

1 

0.8 

!06 

2 0.4 
Q. 

0.2 

0 

No. of TARGETS 

One Target  =* 

Two Targets =o 

Three Targets=+ 

Four Targets =. 

#^«jfe-o—©a.®©-■<&•■© oLo ••© © 
20 25 30 35 40 45 50 
No. of Data Points 

(b) 

Fig. 2 - The probability of (a) superclustering determining there are one, two, three, or 
four targets and (b) the probability of probability-augmented superclustering determining 
there are one, two, three, or four targets 

Figure 2(a) is the probability versus the number of data points that superclustering determines the 
following number of targets: one target (*), two targets (o), three targets (+), or four targets (.). In 
this example, there must be more than 15 data points for superclustering to determine the exact num- 
ber of targets more than 50% of the time. After 30 data points, superclustering is correct more than 
80% of the time. The probability of superclustering making a two-target error remains less than 10% 
by the time 16 data points have been accumulated. The probability of the estimate being off by one 
target falls below 30% by 25 data points. As for the bearing estimates, the plots for this case are 
similar, and as such, only one will be displayed. 

The observation that superclustering can be off by one or two targets for small numbers of data 
points suggests that a few outliers are establishing their own cluster centers. When additional data 
points are added, the effect of these additional cluster centers is small resulting in those data points 
being superclustered into a larger supercluster, thereby improving the estimate of the number of tar- 
gets. The fact that, for small number of data points, some outliers establish their own superclusters 
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suggests that an outlier suppression mechanism can be usefully employed. It is this motivation that 
gives rise to the probability-augmented superclustering procedure that is used in Fig. 2(b). 

Figure 2(b) is a plot of probability-augmented superclustering determining that there are one tar- 
get (*), two targets (o), three targets (+), or four targets (.). Once again, the vertical axis is the en- 
semble probability, and the horizontal axis is the number of data points used. By the time six data 
points are accumulated, there is a 50% probability that the number of targets will be predicted cor- 
rectly and only a 10% chance that the number of targets estimated will be off by two. When 10 data 
points are collected, the probability of correctly estimating the number of targets exceeds 80%. With 
more than 16 data points, the probability of correctly estimating the number of targets exceeds 90% 
and remains nearly 100% for 20 or more data points. 

The use of the probability augmentation test to suppress outlier superclusters greatly improves the 
quality of the estimates of the number of targets present. In a comparison between Figs. 2(a) and 2(b) 
for 4 to 10 data points, the probability-augmented test increases the probability of correctly estimating 
the number of targets by 10% to 30%. For 16 data points, the improvement is about 40%. 

5.2 Comparison of the Fuzzy and TW Association Algorithms 

In this section, four simulations are considered (Examples 1 to 4). In each case, the target has a 
constant bearing of 0°, and there are three constant-bearing radar estimates (a, b, and c). Table 1 
shows the radar estimates, which provide the distinction among the four examples. In each simula- 
tion, 2 data points are added each time until total of 50 data points are accumulated. The ESM data 
used are described in Section 5.1. For each example, the simulation has been run 1000 times, and the 
results averaged, i.e., an ensemble with 1000 elements is used. 

Figures 3 through 10 summarize the results of simulations that compare the ability of the fuzzy 
association algorithm using probability-augmented superclustering and the TW algorithm. There are 
four simulation examples corresponding to the four different radar-bearing tracks. The radar meas- 
urements are noiseless. The data were generated as in Figs. 1 and 2. As above, the data represent a 
target moving with constant bearing of 0° with zero mean unit variance Gaussian noise added. The 
four sets of radar measurements each consist of three bearing measurements that are constant in time. 

The algorithms determine one of the following about the ESM data, as explained in Section 3. 
The ESM data are 

• firmly correlated (FCT) with one of the radar tracks, 
• tentatively correlated with one of the radar tracks (TCT), 
• tentatively correlated with an unknown radar track (TUT), 
• tentatively uncorrelated with any of the radar tracks (TNT), or 
• firmly uncorrelated with the radar tracks (FNT). 

The fuzzy association algorithm compares its estimate of bearing to the radar measurements and 
uses the fuzzy standard deviation for a. So when Eq. (4) is used in the fuzzy association algorithm, 

9e(f,) = the fuzzy bearing estimate at the time tt and 
a = the fuzzy standard deviation. 

The substitution of the fuzzy bearing estimate and the fuzzy standard deviation into Eq. (4) is what 
distinguishes the fuzzy association algorithm from the TW association algorithm. All definitions of 
correlation, i.e., FCT, TCT, TUT, TNT, and FNT remain the same. 
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Fig. 3 - The fuzzy association and the TW algorithms probability 
of FCT for the radar example 0°, 1°,-1°. Truth is 0°. 
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The figures summarize the probability of occurrence of each hypothesis class. Since in each ex- 
ample there are three radar tracks for potential association with this ESM data, it follows there are 10 
potential probability curves to plot. Figures 4, 6, 8, and 10 exhibit all 10 curves for Examples 1 
through 4. The fuzzy association algorithm results are always plotted in the left figure (a) and the TW 
results, in the right figure (b). 

Figures 3, 5, 7, and 9 compare the relevant curves from the fuzzy association algorithm and the 
TW algorithm on the same axes. The fuzzy association algorithm results are given by the curve 
marked with o's, and the TW results are indicated by the curve marked with + 's. The vertical axis 
indicates probability of FCT (Figs. 3 and 7) or FNT (Figs. 5 and 9) and the horizontal axis, the num- 
ber of data points necessary to establish the associated level of probability. 

In Figs. 4, 6, 8, and 10, the results for all hypothesis classes for the fuzzy algorithm (Figs. 4(a), 
6(a), 8(a), 10(a)) and the TW algorithm (Figs. 4(b), 6(b), 8(b), 10(b)) are displayed using the fol- 
lowing labeling scheme. In both (a) and (b), there are 10 curves. The data represent the probability 
that each of the hypothesis classes occur versus the number of data points. The legend indicates the 
meaning of each of the symbols. A common system of marking has been employed for figure types 
(a) and (b). Curves indicating probability of FCT and TCT are marked with l's and 2's, respectively. 
The curves that also have an a, b, or c label, correspond to the appropriate radar track indicated in 
Table 1. The remaining three hypothesis classes—TUT, TNT, and FNT—are marked with a 3, 4, and 
5, respectively. The curves in Figs. 4(a), 6(a), 8(a), and 10(a) marked with a "1(a)" correspond to 
the curves marked with a " + " in Figs. 3, 5, 7, and 9. Curves marked with a "1(a)" label in the even 
"b" figures correspond to curves marked with an "o" in the odd numbered figures. 

Figure 3 presents results for the radar example \i = 0°, 1°, -1°. Since the radar results contain 
truth, i.e., a target moving with constant bearing of 0°, a good association algorithm will establish 
that there is a firm correlation between the ESM data and the 0° bearing track. Figure 3 plots the 
probability that the association algorithms establish a firm association between ESM data and the ra- 
dar measurements. The fuzzy association algorithm results are given by the curve marked with o's, 
and the TW results are indicated by the curve marked with + 's. The vertical axis indicates probabil- 
ity of firm correlation, and the horizontal axis, the number of data points necessary to establish that 
level of probability. 

The fuzzy association algorithm results are always superior to the TW algorithm. At 10 data 
points, the fuzzy algorithm has established a 70% probability of firm correlation, whereas the TW 
algorithm requires about 26 points to establish the same level of probability of FCT. An 80% prob- 
ability of FCT is established by the fuzzy algorithm by the 13th data point, whereas TW requires 
about 32 points to reach the same level of success. The fuzzy algorithm reaches 90% probability of 
FCT at 18 data points and the TW algorithm at about the 39th point. So the fuzzy algorithm estab- 
lishes high probabilities of firm correlation with one-third to one-half the data required by the TW 
algorithm. In this sense, the fuzzy algorithm is two to three times faster than the TW algorithm. Also, 
this is a difficult example for any association algorithm since there are two additional radar measure- 
ments within one noise standard deviation. The ability of the fuzzy algorithm to make high-quality 
decisions with fewer data points than the TW algorithm is significant since real data are frequently 
sparse and intermittent. 

Figure 4 considers the same ESM and radar data as Fig. 3, with all hypothesis classes for the 
fuzzy algorithm (a) and the TW algorithm (b) plotted for completeness. In Fig. 4(a), the fuzzy asso- 
ciation algorithm's probability of firm correlation with 0° radar measurement rises rapidly. The other 
hypothesis classes approach zero within only a small number of data points. After 12 data points, all 
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other hypothesis classes have probability of < 10%. In comparison, the probability of firm correlation 
between ESM and the 0° radar track has a much slower rise for the TW algorithm, with the other 
hypothesis classes maintaining high probabilities. Even at 20 data points, the TW algorithm gives a 
20% to 30% probability that the ESM, and 0° radar track are only tentatively associated. With fewer 
than 20 data points, the TW algorithm gives significant probabilities of declaring that the data are 
TUT or TNT. In conclusion, the TW results are much more ambiguous than the fuzzy association 
results. 

Figure 5 presents results for the radar example p. = 2°, 1°, -1°. Since the radar results do not 
contain truth, i.e., a target moving with constant bearing of 0°, a good association algorithm will es- 
tablish that the ESM data are firmly uncorrelated with the radar tracks. Figure 5 plots the probability 
the association algorithms establish that the ESM and radar data are firmly uncorrelated. By the 8th 
data point, the fuzzy algorithm has reached a 55% probability of FNT, whereas the TW algorithm 
never exceeds that probability. For this example, the fuzzy algorithm is six times faster than the TW 
algorithm, i.e., it reaches the TW algorithm's maximum probability of FNT with one-sixth of the 
data. The fuzzy algorithm has 80% and 90% probability of FNT by the 13th and 20th data points, 
respectively. Thus once again, the fuzzy algorithm makes a high-quality decision long before the TW 
algorithm. 

Figure 6 considers the same ESM and radar data as Fig. 5. Figures 6(a) and 6(b) give all 10 
hypothesis classes for the fuzzy algorithm (a) and the TW algorithm (b). In Fig. 6(a), the fuzzy asso- 
ciation algorithm's probability of FNT rises rapidly. The other hypothesis classes approach zero 
within a small number of data points. After five data points, only the probability that the ESM and 
radar data are TNT or FNT are still significant. The probability that the data are tentatively not cor- 
related has fallen below 10% by 12 data points, and the probability of firm correlation is above 80% 
by 14 data points. In comparison, in Fig. 6(b), the TW algorithm never has more than a 54% prob- 
ability of declaring that the ESM and radar data are FNT. For the first 20 data points, there are sig- 
nificant probabilities of this algorithm declaring five different hypothesis classes to be correct. So 
once again, the conclusions of the TW algorithm are more ambiguous than the fuzzy association algo- 
rithm. 

Figure 7 presents results for the radar example p = 0°, 2°, -2°. Since the radar results contain 
truth, i.e., a target moving with constant bearing of 0°, a good association algorithm will establish 
that there is a firm correlation between the ESM data and the 0° bearing track. The fuzzy association 
algorithm results are always superior to the TW algorithm. At 10 data points, the fuzzy algorithm has 
established a 70% probability of firm correlation, whereas the TW algorithm requires about 26 points 
to establish the same level of probability of FCT. An 80% probability of FCT is established by the 
fuzzy algorithm by the 13th data point, whereas the TW requires about 32 points to reach the same 
level of success. The fuzzy algorithm reaches 90% probability of FCT at 16 data points and the TW 
algorithm at about the 38th point. So the fuzzy algorithm establishes high probabilities of firm corre- 
lation with one-third to one-half the data required by the TW algorithm. In this sense, the fuzzy algo- 
rithm is two to three times faster than the TW algorithm. 

Figure 8 considers the same data in Fig. 7, except as in Fig. 6, all hypothesis classes are dis- 
played. In Fig. 8(a), the fuzzy association algorithm's probability of firm correlation with the 0° radar 
track rises rapidly. The other hypothesis classes approach zero within only a small number of data 
points. After 12 data points, all other hypothesis classes have probability of less than 10%. The 0° 
FCT TW curve exhibits a much slower rise with the other TW hypothesis classes maintaining corre- 
spondingly high values. Even at 20 data points, the TW algorithm gives about a 40% probability that 
the ESM and 0° radar track are only tentatively associated. With fewer than 20 data points, the TW 
algorithm gives significant probabilities of declaring that the data are TUT or TNT. So in conclusion, 
the TW results are more ambiguous than the fuzzy association results. 
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Figure 9 presents results for the radar example ^i = 4°, 2°, -2°. Since the radar results do not 
contain truth, i.e., a target moving with constant bearing of 0°, a good association algorithm will es- 
tablish that the ESM data are firmly uncorrelated with the radar tracks, i.e., it is FNT. Figure 5 plots 
the probability the association algorithms establish that the ESM and radar data are firmly uncorre- 
lated. By two data points, the fuzzy algorithm has established an 80% probability of FCT and a 90% 
probability of FNT by the fourth data point. The TW algorithm establishes an 80% probability of 
FNT by about the 8th data points and a 90% probability of FNT by 10th point. This is an extremely 
easy example for the algorithm to determine that the radar data are firmly uncorrelated with the ESM 
data since the radar measurements are two to four noise standard deviations from truth. 

Figure 10 considers the same example as Fig. 9, except that all the hypothesis classes are dis- 
played. In Fig. 10(a), the fuzzy association algorithm's probability of FNT rises rapidly. The other 
hypothesis classes approach zero within only a small number of data points. After two data points, 
only the probability that the ESM and radar data are firmly uncorrelated is significant. The probabil- 
ity of FNT is above 90% by four data points. In comparison, in Fig. 10(b), the TW algorithm 
reaches a 90% probability of FCT by 10 data points. Like the fuzzy association algorithm, only the 
probability of FNT remains significant for the TW algorithm after 10 data points. In this example, all 
radar estimates are two to four standard deviations from truth. This accounts for the ability of both 
algorithms to come to a correct conclusion with so few points. This example is easier than the others. 
Observe that even for an example that is very easy for the TW algorithm, the fuzzy algorithm comes 
to a correct conclusion much more rapidly. 

6. ASSOCIATION OF NOISY ESM AND NOISY RADAR MEASUREMENTS 

In the previous simulations, it was assumed that the radar measurements were noiseless. Follow- 
ing the procedure of Ref. 8, the TW algorithm can be used to associate noisy ESM and noisy radar 
measurements as follows. The radar measurements for radar track ;' at time tt will have zero mean 
Gaussian noise added to them. The variance of the noise will be denoted as a], for the ;'th radar track 

and the ith time. If the variance in Eq. (4) is replaced by 

a2=a2
E+crl > 

where a\ = the variance of the ESM noise, then the statistic defined in Eq. (4) still has a chi-square 
density. Thus, it follows that all the thresholds should have the same value, whether or not the radar 
measurements are noisy. There will be some difference in multitarget performance because of the dif- 
ferent dependence between the squared errors {djj = l,2,....,m} due to the radar variances. 

Figures 11 and 12 are for the radar example 0°, 1°, -1° with atj = 0.1° for all times ti and radar 
tracks;'. They correspond to the perfect radar cases given in Figs. 3 and 4. The radar noise standard 
deviation is consistent with levels found in modern radar systems. Figures 3 and 11 are practically 
indistinguishable, as are Figs. 4 and 12. This implies that both algorithms are insensitive to the small 
amounts of noise found in modern radar systems. 

Figures 13 and 14 correspond to radar example 2°, 1° -1°. Once again the radar noise has stan- 
dard deviation of Gy = 0.1° for all times tt and radar tracks;'. Figures 13 and 14 correspond to the 
noiseless cases provided in Figs. 5 and 6. Once again, both the fuzzy association and TW association 
algorithm show little sensitivity to the radar noise. 
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7. FUTURE DEVELOPMENT 

The algorithm will be used to examine the effect of variations in data window size. Multiple tar- 
get cases will be considered. The algorithm will be converted to the computer language C. Finally, 
the algorithm will become part of a larger ESM tracker currently under development at NRL. 

8. CONCLUSIONS 

A fuzzy logic algorithm for clustering and associating data measured on different sensors has 
been developed. It can estimate parameters such as bearing with only a small error. Two subcompo- 
nents of the algorithm—known as superclustering and probability augmented superclustering—can 
determine the number of targets present in the data. The probability that probability-augmented super- 
clustering determines the number of targets present in the data correctly approaches 100% with as 
few as 20 data points. Finally, the superclustering procedure can also be used to suppress outliers 
when dealing with very noisy ESM data. 

The fuzzy algorithm's abilities as an association algorithm have been compared to the Trunk- 
Wilson (TW) association algorithm, a Bayesian philosophy algorithm. In simulations in which noise- 
less radar data contained truth, the fuzzy association algorithm establishes a firm correlation with one- 
third to one-half the data required by the TW algorithm. When the noiseless radar data did not con- 
tain truth, the fuzzy algorithm outperformed the TW algorithm with only one-sixth the data. When 
simulated radar data are used with noise of realistic magnitude, the fuzzy algorithm shows almost no 
deterioration in its performance. The fuzzy association algorithm's ability to make correct decision 
with fewer data than the TW algorithm is crucial since ESM data are generally sparse, intermittent, 
and noisy. Finally, the fuzzy association algorithm should be applicable to many different multisensor 
problems requiring high-quality decisions even though the data are sparse, intermittent, and noisy. 
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