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Abstract 

We show that the far fields generated by a source inside or near a micropar- 
ticle can be obtained readily by the use of the reciprocity theorem along 
with the internal or near fields generated by plane-wave illumination. The 
method is useful for solving problems for which the scattered fields gener- 
ated with plane-wave illumination have already been obtained. We illustrate 
the method for the case of a homogeneous sphere, and then apply it to the 
problem of emission from a dipole inside a sphere near a plane interface. 
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1.    Introduction 

Methods for obtaining the radiation from a source inside or near a micropar- 
ticle are needed for a variety of applications: e.g., in modeling the fluorescence 
[1-4], Raman [5,6], lasing [7-9], or nonlinear emission [10,11] from molecules 
inside or near scattering objects such as homogeneous [12,13] or layered [14] 
spheres, spheroids [15], cylinders [16], microdisks [8], radially inhomogeneous 
bodies [17], particles with complex structures [18], or particles near surfaces 
[19-33]. Methods for modeling emission from polarization sources inside par- 
ticles are also needed for some techniques [34] for calculating light scattering 
by inhomogeneities inside particles [35,36]. 

The problem of emission from a molecule or other point source inside or 
near a microparticle can be modeled if we treat each point source as a time 
harmonic (exp (-iut) time variation) dipole p(rfc) at r6, which generates an 
electric field E(ra) at r0. We can model emission from molecules with nonzero 
emission linewidths by integrating the electric fields over emission frequencies 
[3]. The generated fields are related to the dipole source as follows: 

" £i(ra) " 

E2{va) = iü2ß 

. E3(ra) . 

<?ii(ra,r6) Gi2(ra,rb) G13(ra,rb) 

G2i(ra,rb) G22{ra,rb) G23(ra,rb) 

G3i{ra,rb)   G32{ra:rb)   G33{ra,rb) 

P2(rb) 

Pain) 

,   (1) 

where the matrix (typically labeled G(r0,r6)) is the dyadic Green function 
[14,37],* and where the w-dependence of E, G, and p is suppressed. We have 

'Another common way to write the Green function relation is 

E(r)=w2/x/  G(r,r')P(r')dv', 
Jv 

where P(r') = -iwJ(r'). The dipole moment p(r') of the source is related to the polar- 
ization per unit volume, P(r') by 

p(r') = /  P(r') dv'. 
Jv 

We use the notation of individual dipoles because we have been modeling radiation from 
individual molecules. 



assumed that the permeability // is uniform.* Although equation (1) is valid 
for general ra and r6, in this report we treat only the case in which ra is far 
from the particle, and r6 is inside, on, or near it. 

The Green function of equation (1) obeys the reciprocity relation [14,38,39],f 

G(ra,r6) = Gr(r6,ra), (2) 

where T indicates transpose. Given a solution to a scattering problem with a 
source at point r0, we can use the reciprocity of the Green function to obtain 
[13] or verify [14] Green-function solutions to scattering/emission problems 
for sources in other regions. Beginning with the Green function for a source 
near a sphere, we can use reciprocity to obtain the solutions for the fields 
generated by an incident plane wave [37]. 

In this report we describe a simple, reciprocity-based method for obtaining 
the far-field Green function (the Green function for fields far from an object) 
for a source inside or near a microparticle or other scattering object, when 
the solutions for the fields generated by an incident plane wave are known. 
This far-field Green function differs from the complete Green function for an 
emission problem in that several elements of the complete Green function 
are not specified. The far-field Green function is often all that is required be- 
cause it is typically all that can be detected, for example, by a lens-detector 
system located far from the particle. A main benefit of the approach is that 
the far-field Green function can be obtained in a simple manner from existing 
solutions for the fields generated with plane-wave excitation. Such fields have 
been obtained and implemented in computer codes for a variety of scattering 
objects (e.g., homogeneous and layered spheres and spheroids, spheres with 
continuously variable refractive index, finite cylinders, objects with axisym- 
metric surfaces described by Chebyshev polynomials, cylinders, and particles 
on or near plane interfaces [21-26]). Another benefit of the approach is that 
we can transfer some of the understanding/intuition developed for internal 
and near fields of spheres [40-42] and cylinders [42] to the emission problem. 
With the reciprocity relations for plane waves and far fields, the intuition 
developed with ray-optics or other methods can more readily be used to as- 
sist in understanding the problem of emission from a source inside a particle 
[3]. We can also use known solutions for plane-wave incidence to validate 
the far-field limits of newly developed Green functions and their computer 
implementations. 

•The assumption of a uniform permeability is valid for the problems we want to model, 
which are at optical frequencies. 

fSee Chew [14], pp 410-411. The relation for regions with varying n is G(ra,r(,)/z(rfc) = 
GT(r6,rQ)/z(ra). 



In section 2, we show how the Green function for the fields far from a mi- 
croparticle can be obtained from expressions for the fields generated inside 
or near a microparticle by an incident plane wave. In section 3, we illustrate 
how this method works for the case of a sphere, a well-studied particle for 
which the Green function is known. In section 4, we apply the method to 
obtaining the Green function for a dipole inside a sphere on or near a con- 
ducting surface, a problem for which (so far as we know) solutions have not 
yet been derived. This example illustrates how readily the desired expressions 
are obtained from the solution to the plane-wave-incidence problem. Section 
5 summarizes the paper. 



2.    Green Function from Reciprocity 

We assume that the solution to the problem of a plane wave illuminating the 
particle is available. Our goal is to obtain that part of G(ra,r6) required for 
writing the fields far from the dipole and particle. 

We begin by writing the plane-wave-illumination problem in matrix form: 

" £i(r6) 

E2(n) = 

_ E3(rb) _ 

Fn(r6,ra) Fi2(r6,ra) Fi3(r6,ra) 

F2i{rb,Ta) F22(rb,ra) F23(rb,ra) 

F31(r6,ra)   F32(r6,ra)   F33(r6,ra) 

E0e0 • ii(ra) 

E0e0 ■ i2(ra) 

E0e0 ■ i3(ra) 

,   (3) 

where Fi(r6), F2(r6), and F3(r6) are the field components at position rb inside 
or near the particle, and the incident plane-wave field is given by 

Einc(r) = E0e0e ikr (4) 

where k is the propagation vector and the unit vector e0 is perpendicular to 
k. We write the unit vectors as ij(ra) to emphasize that each is evaluated 
at ra. An example of F^ for axisymmetric particles analyzed in a spherical 
coordinate system is given in appendix A. 

The incident plane wave can be generated to any degree of accuracy by a time- 
harmonic dipole polarization source, p(ra) = e0p(ra), with e0 perpendicular 
to ra, when the dipole is sufficiently far from the object (i.e., |ra| » A, 
and |ra| is many times larger than the object). (The surface on which the 
outgoing boundary conditions are applied for the Green-function solutions is 
many times further from the object than |rQ|.) Near the particle, the field of 
the dipole is [43] 

. ,2,.    ik-(r-r0) 
E« = ^l rfr*)*" (5) 

47T   |r-ra| 

Comparing equations (4) and (5), we see that the amplitude of the plane 
wave generated by the source p(ra) is approximately 

47rra 
(6) 

where |r - ra| in the denominator is replaced by ra = |ra| because the points 
r are near the particle and because |r| < |r0|. 



Using equation (6) for E0, we can rewrite equation (3) as 

Ei{rb) 

E2(rb) 

L E3(rb) J 

where 

= U fJ, 

Gn{rb,ra) Gi2(rfc,r„) G13(r6,ra) 

G2i(rb,ra) G22(r6,ra) G23(r6,ra) 

G3i(rb,ra)   G32{rb,ra)   G33(r6,ra) 

Pi(ra) 

P2(ra) 

P3(0 

(7) 

Gij(rb,ra) — 
g-tk-r0 

Aixrr, 
-Fij(rb,ra). (8) 

Equations (7) and (8) provide the Green function for the fields inside an 
object excited by a dipole far from the object. Then, using the reciprocity 
relation, equation (2), we obtain the desired elements of G(ra,r6) generated 
by a source at rb inside or near the particle: 

Ei(ra) 

E2{va) 

E3(Ta) 

= U2fJ, 

Gu(r6,ra) G2i(r6,ra) G3i(r6,ra) 

Gi2(r6,ra) G22(r6,ra) G32(r6,ra) 

Gi3(rfc,ra)   G23(r6,ra)   G33(r6,ra) _ 

P2{n) (9) 

It must be emphasized that the above Green function is valid only for field 
points ra far from the particle. For ra close to the particle, some or all of the 
Ga would have additional terms that would decay with distance from the 

particle. 

If a spherical coordinate system is chosen, then ra is far from the particle, 
on a line going from the origin in the -k (or ir direction), and pi(ra) for the 
incident plane wave is zero; thus, the plane-wave-illumination problem can 

be written as 

Er(rb) 

Ee(rb) 

E^in) 

C/£(rb,ra)   F12(rb,ra)   F13(r6,ra) 

E/£(r6,r0)   F22(r6,ra)   F23(r6,ra) 

_ Udir^Ta)   F32(r6,ra)   F33(rb,ra) _ 

0 

E0e0 • iß 

E0e0 • 1$ 

(10) 

where we write the Fa(r6,ra) as t/£(rb,ra) to emphasize that they are un- 
specified and unneeded for the internal/near fields at rb. The Fi2(rb,ra) and 
Fi3(rb,ra)are known. The desired Green function, obtained with equations 

(8) and (2), is 

0 

E9(ra) 

£*(r«) . 

: U>2fl 

U&(rb,ra)    Ug(rb,ra)    Ug(rb,ra) 

G12(rb,ra)   G22{rb,ra)   G32(r6,ra) 

.G13(r6,ra)   G23(rb,ra)   G33(rb,ra) 

Pr{n) 

Pe{n) 

. P4>(n). 

(11) 



where Gn(rb,ra), G2i(r6,rtt), and G3i(r6,ra) are written as üjf(r6,ra), simi- 
lar to the C/£(rb, rQ) of equation (10), because the values are unspecified and 
not needed for the far-field solutions at ra. The above expression is valid for 
complex u, and so may be useful for treating problems in terms of quasinor- 
mal modes [44]. 

The relations given in equations (9) and (11) are key results of this report. 
In particular, in the spherical coordinate system commonly used for parti- 
cle scattering problems, equation (11) indicates how the known internal field 
solutions (the Fnm) specify the far fields from an arbitrary dipole source 
inside the microparticle. The understanding of the spatial variations of the 
Fnrn (proportional to the Gmn) for some microparticles (spheres [40-42] and 
cylinders [42]) can now more readily be used to visualize and understand 
the emission problem. Distributions of fluorescence collected from oriented 
dipoles inside a sphere have been previously shown [3]. Although the previ- 
ous study noted that the emission problem was related to the incident field 
problem by reciprocity, the specific relations shown in equation (11) were not 
known at that time. 



3.    Example: Fields from a Source in a Homogeneous 
Sphere 

3.1 

To illustrate the above method for a well-studied particle (a homogeneous 
sphere), we compare the fields at ra on the -z axis far from the particle 
generated by a dipole inside the sphere and lying in the 0 = 0 (i.e., x - z) 
plane. In this case, we use the spherical coordinate system; i.e., ii = ir is 
the unit vector in the radial direction, i2 = U, and i3 = i^. Expressions 
for the fields emitted by a source inside a sphere are well known [12]. The 
fluorescence collected from a dipole inside a sphere, calculated as a function 
of dipole position, has been illustrated elsewhere [3]. 

Using Reciprocity 

For points in the 0 = 0 plane, Fi3(r6,r0), F23(r6,ra), and F32(r6,ra) are zero 
(see app B), and equation (3) reduces to 

Er{vb) 

Eeirb) 

E/£(r6,r0)   Fl2(rb,ra) 0 

[/£(rfc,ra)   F22(r6,ra) 0 

_ C/3^(r6,ra) 0 F33(rb,ra) 

0 

E0e0 •ifl(ra) 
E0e0 • U(ra) . 

(12) 

The desired Green function, as in equations (9) and (11), is of the form 

Er(ra) 

Ee{Ta) 

E^Ta) 

Lü2ß 

Ug(Tb,ra)    Ug(rb,ra)    Ug(rb,Ta) 

G12(rh,ra)   G22(r6,ra) 0 

0 0 G33(rfc,ra) 

Pr(rb) 

Pe(n) 

. P4>(n) 

(13) 

We consider the case of a (^polarized dipole in which pi = p2 = 0, and 
p3(rb) = p$. Using the Green function from reciprocity (eq (13)) and equation 
(8), we obtain Ee(ra) — 0, and 

plrZTa 

Et(ra) = Lü2ßG33{rb, ra)p0 - uß^p^-^Fz^r^ ra), (14) 

where k • ra = -kra because ra is on the —z axis. 

Using the F33 given by equation (A-6) with m = 1, we obtain from equation 
(14) 



„ikra 

47rra 

(15) 

d _,.      . . Id,.,,   „Pi(cosÖ6 
-jn{r}kTh)—7-Pn{cos8b)cein + J w     ' d8b   

n r)krbdrb sin fj, 

where from equations (4.3) and (4.5) of Barber and Hill [15] 

.„  2n+l i 
C-eln     — ^ 

d0ln     —     ~l n+1   2« + ! ^ 
n(n + 1) ^„(^[z/i^x)]' - [r]xjn{r]x)}'xh{n} (x 

(16) 

-, (17) 

where x is the size parameter of the sphere and TJ is its refractive index. With 

equations (16) and (17), equation (15) can be written 

E^Ta) 
„ikr 

E 
u>2fj,kp^ (2n + r 

kra   „       47T     n(n 4- 1) 

in+1jn(vkrb) — P^(cos8b) 

■n 

+ 
—-[r^fofer»)]    shy6b 

xjn(vx)[xh£\x)]' - [r]xjn(r)x)]'xh(n](x) 

P^cos8b) 

tfxjnirix^xh^ix)}' - [vxjn(Tjx)]'' xh>n'\x 
(18) 

3.2    Using the Complete Green-Function Solution 

We verify our results by comparing them with results obtained in the tra- 
ditional boundary-value fashion: i.e., starting out with a radiating dipole 
within the sphere, satisfying the boundary conditions at the sphere surface 
and finding the resulting scattered far field in the 8a = 7r direction. Using 
the complete Green-function solution for a source inside a sphere (see app B) 
with p3(rfc) = pf and pi = p2 = 0, we obtain the scattered field coefficients 

as 

fv   = -u ßP<t> 7 
i^-Mi^fafcrb) 

'™jn(nx)[xh£\x)] - [rjXJn(vx)]'h{r;\x) 

by using equations (B-4) and (B-7), and 

(19) 



k rji^-N^^kTb) 
(20) 

9V U ^irxrPMrixXxWix)]' - [vxjn(vx)]'hg\x) 

by using equations (B-5) and (B-8). 

Prom the definitions of Mi/^fcrt,) and Ni/1^^)»the fv° and 9»° simplify 
tO fZnn = gfmn = 0> and 

/, 
G 
emn 

uPukpt 
3n{r)krb)—P™{cos6b) 

W/ 7TX    jB(^)[x^(a;)]' - fosjnfo*)]'«^*) 

iJomn 
-U2fip<i> 

irj„(?M)1») 
rfrft srnflfc 

(i)/ ™r6   ^„(^[Ä^x)]' - [r?xj„(77x)]'^J(s) 

(21) 

(22) 

Now, by restricting the field points ra to the z axis where the contributions 
for m 7^ 1 are zero, and restricting the source points rb to the <f> = 0 plane, 
noting that 

^(cosfl.) 
sin(9a öa=7T 

(_ir+1^±l), 

= ("I)' 
tn(n + l) 

(23) 

(24) 

(because 0a = 7r at the field point), and using the far-field expansion of the 
spherical Hankel function, 

,-(n+i) 

WW = ^—e ikr 

kr 
(25) 

we obtain 

+1n(n + l)e ,ikr 

kr'1*1 Meln(/cr)|e=7r   =   i 

/    M „n(n+l)eifcr. 

Then using equation (B-6), we obtain Eg = 0, and 

(26) 

(27) 

E1 = ^Z^lDlnUi^feln + lngoir 
kr, a     n 

(28) 



El   = 

which is equivalent to 

eikra       co2fikp4 (2n + 1) 

kra   „      47T     n(n + 1) 

i^Jn(vkrb)—P^cos6b) 

+ 

in   d 
-r-j-[rbjn(T]krb)} 
krb drb  

xjn(rjx)[xh!lt\x)]' - [rixjnirix)]xh{n\x) 

sinöfc 

(29) 

(i)/ ^XJn(r,x)[xh{n1}(x)}' - [vXJnMJxh'n'ix) 

The expressions for the electric field that we obtained using reciprocity (eq 
(18)) and using the complete solution (eq (29)) are the same. 

10 



4.    Example: Fields from Source in Homogeneous 
Sphere near a Plane Conducting Interface 

M(p) 
run 

N(p) 

Fluorescence and Raman emission have been used in characterizing particles 
on, inside, or near a surface, e.g., a biological cell or spore on a filter, or a 
contaminant particle on a silicon wafer. Solutions have been described for 
the fields scattered by a sphere in close proximity to a plane interface and 
illuminated with a plane wave [21-26]. However, as far as we know, solutions 
for the fields emitted from a dipole inside a sphere on a plane surface have not 
been described. Here we use the reciprocity theorem and a known solution 
for the fields generated in a sphere with plane-wave excitation to write the 
solution for the far fields generated by a dipole emitting inside a sphere on or 
near a plane surface. To obtain the F^ required for equation (3), we use the 
derivation of Videen [26] who presents a solution to the fields of a particle on 
or near a perfectly conducting plane surface. The vector spherical harmonics 
used in that article [26] and in this section are normalized: 

sine/ 
h{:\kr)-eP™{cos6)e™\ (30) 

1 1   d 
=   r-z^{kr)n{n + l)P?(cosd)e™> + 6-- 

kr kr dr 
rz, ip)(*r)]^JT(cos60e' 

1   d 
kr dr 

+ <j>—- rz^(kr)  — P™(cos0)e 
im 

-I sinö 

Although it is usually not appropriate to use multiple definitions of the vector 
spherical harmonics in one paper, here the multiple definitions help illustrate 
the generality of the approach stated in section 2. 

We solved the plane-wave-incidence problem by expanding the incident plane 
wave, the scattered fields, and fields interior to the sphere in vector spher- 
ical harmonics. In addition to these fields, there is an interaction field that 
scatters from the sphere, reflects from the plane surface, and illuminates the 
sphere again. We determine the field coefficients by forcing the boundary 
conditions at the interfaces of the sphere and plane surface to be satisfied 
simultaneously. 

The fields inside the homogeneous sphere are expanded as [26] 

11 



12 

E?\rikr) = £ e^M^kr) + e^N^kr), (31) 
n.m 

where e<£ are the interior field coefficients. These coefficients are expressed 
in terms of the known scattering, interaction, and incident field coefficients, 
6« , CW , and a«, as 

eäUfafo")   =   a^M + ^N + cl^N, (32) 
megUfaAr)   =   aSM+&N+6„(b). (33) 

We can express equations (31) to (33) in the Green-function formalism of 
section 2 by writing out the vector spherical harmonics in equation (31), and 
writing the fields in terms of the F{j of equation (3) as 

F12(r,,ra)   =   Y,^™^r^Hvkrb)n(n+l)P-(coseb)e^,     (34) 

F13(rfe,ra)   =   Y:eTE~£)(vkrb)n(n + l)P-(cos9b)e^,      (35) 
n,m VKrb 

F22(rb,ra)   =   ^e^M^z^(vkrb)P-(cos6b)e^ + (36) 
sin ub 

1    d   nz^ivkn)} J-P„m(cosöb)e^, P(2)TM  
J de ib 

F2s(rb,ra)   =   E^T££^41)(^rfe)Pr(cos^)e^+ (37) 
t~z. sin % n.m smtffc 

1     d 
nm    T]krb drb 

}>zn\r)krb)]~P™{coseb)e^ 

d 
F32(rb,ra)   =   E-^™41)(^r6)-^Pn

m(cosö6)e^+ (38) 

(2)TM   ■*■     ^   r im   ~ '^H^r^l^-Pr^osö^e^, 
sinöj 

P33(rb,ra)   =   J2-eilTEz£\vkrb)±P™(cosöb)e^+ (39) 

0{2)TE_   ■*•       ^ 

7?fcr6 drfc 

d06 

'rbz£\vkrb)}^]rP™ (cos 9b)e
im*\ 

J sm t7h 

where the superscripts TE and TM, on the internal field coefficients, refer 
to the polarization state of the incident plane wave. The desired Green func- 
tion is then given directly by equation (11) with Gij(rb,Ta) obtained from 
Fij{rb,Ta) as described in equation (8). Thus, the scattered field components 



resulting from a dipole within a sphere near a perfectly conducting surface 
are obtained with equation (31). 

Although the above was derived for the particular problem of a sphere above 
a surface, the preceding expressions for the Fij(rb,ra) and the Gij{rb,ra) are 
valid for any particle for which the internal field coefficients of equation (31), 
el1! and el22, are known. For a dipole outside but near the particle, equations 

71771 TilJl> -»■ . .\rp 

(34) to (39) may also be used, where the internal field coefficients e^ * are 
now replaced by the scattered field coefficients, and the Bessel functions are 
replaced by the appropriate Hankel functions. The particular case of a sphere 
near a substrate is slightly more complicated when the dipole is outside the 
sphere, because the interaction field must also be included with the scattered 
field. Finally, although we have used normalized vector spherical harmonics, 
these equations may also be applied to coefficients derived with unnormal- 
ized vector spherical harmonics by a simple replacement of the normalized 
associated Legendre polynomials, P™(cos#fc), with the associated Legendre 
polynomials, P^(cos0b). 

13 



5.    Summary 

This report is based on the following three observations: (1) The Green func- 
tion relating a source and a scattered field obeys a reciprocity relation [14,38]. 
(2) Solutions for the fields inside or near a variety of scattering objects have 
been obtained for plane-wave excitation but not more general sources. (3) For 
many problems in which a molecule or polarization source emits inside or near 
a scattering object, it is only the far fields that are measured or are of in- 
terest; for these problems, a far-field Green function that only specifies the 
fields far from the particle is sufficient. 

The key point of this report is that reciprocity and known solutions for the 
fields generated in a particle by plane-wave incident fields can be readily used 
to find the far fields emitted by a source inside or near the particle. Although 
only a partial Green function is known from the plane-wave-incidence prob- 
lem, that partial Green function and reciprocity are sufficient for specifying 
the far fields. These key results are given in equations (9) and (11). 

In section 4, we illustrate the technique by applying it to a particle for which 
the solution is well known: a homogeneous sphere in a homogeneous medium. 
We then demonstrate the power of this technique by applying it to a more 
complicated problem for which the fields emitted by a dipole in the parti- 
cle are not known: a dipole located within a sphere near a plane interface. 
Although the solution was derived for this particular system, the equations 
given in section 4 can be applied to any system for which the internal or scat- 
tering coefficients of an expansion in vector spherical harmonics have been 
derived. 

Another benefit of understanding these reciprocity relations of the inter- 
nal fields generated by incident plane waves is that the understanding of 
the internal intensity patterns of particles (obtained from ray-optic analyses, 
comparisons with Fabry-Perot cavities, etc) can be used to help develop an 
understanding of emission patterns from sources inside the particle [3]. 

14 



Appendix A.    Example:   Fij for Axisymmetric 
Particles 

If the scattering solution is found for an axisymmetric particle with a spher- 
ical coordinate system and spherical wave functions, and rb is in the 0 = 0 
plane, then F12, F22, F32 are given by the summation over n' of E™*, E™\ 
E^ of equation (3.10) of Barber and Hill [15], i.e., 

F12   =   yn(n+l)jn (fn) cos rnfoK (°°S °b) sin 6bdemn,    (A-l) 

F22   =   2^3n(r}krb)cosm(pb — Comn {A-l) 

+  1— T~ [njuivkn)} cos m(j)—P™{cos 8b) demn, 
r]krb drb da 

F32   =   ^2-jn(vkrb) sin mcl)b—P™{cos8b)comn (A-3) 
n,m 

-  —— 3— [rbjn(rjkrb)}smm(f)b *h—7 demn, 
rjkrb drb sm t)b 

where the cemn, Comn, demn, and cUm are the internal field coefficients of the 
particle. The Fa are not specified in the plane-wave-incidence problem. The 
F13, F23, F33 are given by the summation over n' of E™\ E'^\ üj1* of equation 
(3.11) of Barber and Hill [15]: 

F13   =   E " (" + 1) jn yrb) sin ™& P™ (CT 6b) sin ^    (A"4) 
v^    •  / 1    \  •      JL rnP™(cos6b) ,      , 

F23   =   >   -j„(77Äx6)sinm06 — cemn (A-5J 

+ -7—3- [njn(r]krb)} smmfo—P™(cos6b)domn, 
r]krb drb dv 

F33   =   Y.-^ir)krb)cosm(j)b—P^{coseb)cemn (A-6) 

1     d   r    ■ /  1    M ^ mPn
m (cosÖb) 

+ "I-"F- Vb3nV)krb)\cosm(pb — dom„. 
r]krbdrb sm06 
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If the particle has spherical symmetry, these equations can be simplified, 
since only the m = 1 terms contribute to the scattered fields. The reduced 
equations for F12, F22, F32 are given by the summation over n of E1^, Ef-, 
Ef of equation (4.33) [15], and F13, F23, F33 are given by the summation 
over n of Ef\ Ef\ Ef of equation (4.34). 
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Appendix B.    Fields from a Dipole Inside a Sphere 

The Green function for a source inside a sphere has been described [12-14,37]. 
The total internal field generated by the source inside the sphere is [3] 

ET(^r) = EH{rjkr) + E^fafcr). (B-l) 

Here, EH{rjkr) is the electric field at r radiated by arbitrary polarization 
sources at r' (where r > r') in a homogeneous region of refractive index 77, 

00 

EH{Vkr) = J2 Dv{cuHMu\r]kv) + d^Ni/^fcr)]. (B-2) 
v=\ 

The superscripts on the vector spherical harmonics refer to the kind of radial 
function (first or third) used in the expansion, and u represents the spherical 
harmonic triple index a, m, n, where a is even or odd, n is the mode number, 
and m is the azimuthal mode number. The normalization constant is 

n     = em(2n+l)(n-m)! ,ß 3) 
mn      4n(n+l)(n + m)! ' V      ; 

where em is equal to 1 for m = 0 and equal to 2 for m > 0. 

The field expansion coefficients cuH and duH are determined by the strength, 
position, and orientation of the source polarization p(r6) as 

cuH   =   iw2//—PW-M^^fcr«,), (B-4) 
7T 

duH   =   iwV—PW-NI/1^), (B-5) 

where the superscript H indicates a homogeneous region. 

The induced electric fields outside the sphere are expanded as 

00 

EsG{kr) = J2 Dv[fuGMv3(kr) + guGNus(kr)}, (B-6) 

where fuG and guG are termed the "scattered" field expansion coefficients 
because of their similarity in equation (B-6) to the scattering coefficients of 
the usual scattering problem. The G in the superscripts of the cvlG, dulG, 

17 



/VG, and gvG differentiates these internal and scattered coefficients from the 
field coefficients used with other incident fields. 

The scattered field coefficients are 

rjxjn(T]x)[xh{n\x)}' - rj[rixjn(r]x)]'xh£)(xy 

qv
G    =   duH jrr — ffTTT' (B~8) 

Ti2xjn(r)x)[xh£\x)]' - [r]xjn(r1x)]xhV{x) 

where x is the size parameter and rj is the refractive index of the host sphere, 
jn (TJX) is the spherical Bessel function, and h™ (x) is the spherical Hankel 
function of the first kind. All derivatives (denoted by the primes) are with 
respect to the argument. 

In our earlier work describing the fields from a dipole inside a sphere, the 
sign of the coefficients of the induced internal transverse magnetic fields (the 
dvlG in eq (A9) of Hill et al. [3] and in eq (12) of Hill et al. [34]) should 
have been negative. These dviG coefficients are not used here, nor were they 
used in the previous references [3,34]. However, the sign error is important 
for anyone verifying the above expressions. 
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